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Abstract 

We shall examine the numerical solutions of two dimensional incompressible fluid 

flow problems via spectral methods. The focus will be on Galerkin methods with 

the aim of constructing a Lagrange-Galerkin method which is adaptive in time. 

A comparison will also be made between the Lagrange-Galerkin method in both its 

adaptive and unadaptive forms with the pseudospectral method. The pseudospectral 

method has been chosen since it is a widely accepted standard method for solving 

periodic fluid flow problems. 

Since the Navier-Stokes equations, which govern the motion of incompressible 

fluids are nonlinear, there are often difficulties in computing the numerical solution. 

The main difficulty with the pseudospectral method is that it is only conditionally 

stable. This is the motivation for using the Lagrange-Galerkin method instead since 

it is unconditionally stable. So the only consideration that needs to be made for the 

step size is determined by how accurate the solution needs to be. The motivation for 

the adaptive Lagrange-Galerkin method is that it is a faster unconditionally stable 

method as opposed to the pseudospectral method. 
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Chapter 1 

Introduction 

Fluids can be encountered in almost every aspect of our daily life; from that hot 

cup of morning coffee to the very air we breathe. Some other examples include the 

instability of flow down a pipe, the jetstream in the atmosphere, volcanic lava flow in 

the Earth, the swimming of bio-organisms, oil reservoir simulation and magnetohy-

drodynamics [67]. It is no wonder that there is such an interest in not only how fluids 

behave, such as the propagation of waves in a pool, but in how they interact with 

their environment, such as how the air flow over a wing provides negative pressure 

and hence lift. The behavior of fluids can be simple or complex. Some simple cases 

can be solved directly [1]. The more complex problems however require a numerical 

solution. These numerical solutions are often quite computationally time consuming, 

especially in three dimensional flow. So the name of the game becomes how to trim 

down these computations from the most recent benchmarks, all the while maintain-

ing a desired level of accuracy. This thesis will present and compare three possible 

methods for the numerical solution of fluid dynamics. An overview of the pertinent 

fluid equations will be given before these three methods can be introduced. 

1.1 The Navier-Stokes equations 

First we let 

X = (x(t),y(t),z(t)) 

1 
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be a Euclidean position vector and then define 

U = (u(x,t),v(x,t),w(x,t)) 

to be the velocity for a given point x at time t. u, v, and w are the velocities in the 

x, y, and z directions respectively and depend on x, y, z, and t. We can think of x 

as the position of a tiny particle suspended in the fluid at a given time t. Then u 

becomes the velocity of that particle at that same time. 

It is assumed that the fluids discussed herein are ideal. An ideal fluid has a 

uniform density (p is constant), is incompressible (V u = 0) and the force on a 

surface element dS can be defined by pndS, where p(x, t) is the pressure function 

and n is the normal to the surface element dS. S refers to the closed surface of a 

fixed volume V in the domain [1, 12]. 

A fluid is said to be inviscid if there is no interaction between the particles of 

the fluid or if these interactions are small enough to be ignored [46]. The basic 

equations that describe the motion of inviscid fluids are called Euler's equations. 

Euler's equations of motion for inviscid fluids are 

V)u=—Vp+g 
P 

V.u=0. (1.2) 

The second equation is the incompressibility condition. If the fluid is incompressible 

then the net flow passing through the entire surface S must be zero [12], in which 
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case (1.2) can be shown as follows 

0= fu.ndS= V.udV V•u=0, 
J  

since this must hold for all bodies V. In (1.1) p is the pressure within the system, 

which like u can depend on x, y, z and t. p is called the mass density. g represents 

any external forces acting on the system. This could be anything from a magnetic 

force acting on a metal in a liquid state (although this would be by far the simplest 

case of magnetohydro dynamics [10]) to the ever present force of gravity. With the 

flow defined as it has been above then there are a few 'specialized' types or conditions 

in the flow that have very simple representations. Steady flow, for example, is a flow 

which remains constant and does not change with time and can be represented as 

Irrotational flow, as the name implies, has no points where the flow rotates and can 

be represented with 

Vxu=0. 

Otherwise we call w, defined as 

W = V x u, 

the vorticity of the flow. 

Euler's equations, given by (1.1) and (1.2), only describe the motion of inviscid 

fluids. However, since all fluids are viscous to one extent or another, it seems reason-
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able to include viscosity into the equations for the motion of the fluid. The viscous 

counterparts to Euler's equations are known as the Navier-Stokes (N-S) equations. 

These are given by 

au 1 
-+(u•V)u=--Vp+vV2u+g 

P 
(1.3) 

V•u=O (1.4) 

where v = 8 and = coefficient of viscosity. These equations are derived from 

three principles of physical motion applied to a mass of fluid: conservation of mass, 

balance of momentum and the conservation of energy [12]. One other useful piece of 

information when discussing fluid flow is the dimensionless Reynolds number given 

by 

R= — 

where U = characteristic velocity and L = characteristic length. The Reynolds 

number can also be thought of as a ratio of the magnitude of the two dominant 

terms in the Navier-Stokes equations: the convection term (u. V)u and the diffusion 

term vV2u [1]. This ratio can be written as 

(u.V)ul 0(WIL2 U2/L =0(R). 
IvV2uI - ) 

The Reynolds number can be used to determine when two flows are similar [12]. If 

we looked at a small pebble (L1 = 0.1cm) rolling around in water (v1 = 0.001) at 

a moderate speed (U1 = 10), and compared that to a bowling ball (L2 = 10cm) 

rolling around in olive oil (zi2 = 1.0) at slow speed (U2 = 0.1?), we would find 
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that the same model could be used to represent both cases, since 

U1L1 = U2L2 = 
LI1 

There are more practical uses for the Reynolds number, such as determining the 

thickness of a boundary layer 8 using the formula 

= O(R). 

The Reynolds number can also be used to split flows into two broad categories: low 

Reynolds flow and high Reynolds flow. Although there is no set division as to what 

constitutes low or high Reynolds flow, a good guideline would be R << 1 (R much 

smaller than 1) for low Reynolds flow and R > 1 (R near or greater than 1) for 

high Reynolds flow [1]. This distinction is useful since the behaviour of a fluid could 

change from one case to another. Consider the behaviour of air at low speeds, that 

is to say situations of low Reynolds flow like driving a car, the flow around an object 

can be modeled quite accurately by the Navier-Stokes equations. However at higher 

Reynolds flow, such as the case of a rocket travelling faster than the speed of sound, 

the simplified form of the Navier-Stokes equations that has been presented thus far 

may not be sufficient. A newer set of equations would be needed to account for the 

compressibility of the air at and beyond the speed of sound. 

In order to keep things simple we will restrict our attention to the two dimensional 

incompressible case and use periodic boundary conditions. In two dimensions, the 

vorticity w becomes a scalar [22]. With periodic boundary conditions we do not 
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have to worry about discontinuities near the boundary caused by sharp features. 

With these two simplifications the high accuracy of the pseudospectral method can 

be maintained with little effort. We will also work within the region Q = [0, 2ir]2 

knowing that any other rectangular area can be accomodated using a change of scale. 

1.2 Overview of spectral methods 

All of the methods discussed in this thesis can be classified under the broad label of 

spectral methods. The strength of the spectral methods lies in the transformation 

into Fourier space. This transformation carries many advantages, the most important 

of which are speed (via the Fast Fourier Transform (FFT), or the Inverse Fast Fourier 

Transform (IFFT) where applicable), the ease with which derivatives may be applied, 

and speed of convergence. 

The FFT is possibly one of the most important computational algorithms of the 

past century. The FFT was a huge leap forward in areas such as signal process-

ing, numerical analysis and, of course, spectral methods [7]. Being able to apply a 

Discrete Fourier Transform (DFT) in O(N log N) time rather than the cumbersome 

0(N2) is what makes these spectral methods practical. 

When we wish to apply a derivative to some function in Fourier space the op-

eration is a multiplication by a scalar. For example, given a sufficiently smooth 

differentiable function, f(x) on x € R, its Fourier coefficients corresponding to a 

frequency p can be represented as 1(p) in the following way 

00 

f(p) f 00 f (x)e-Pxdx, p E R. (1.5) 
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The process of getting f(p) from 1(x) is referred to as a Fourier transform. To undo 

this process an inverse Fourier transform can be applied and is defined as 

00  AX) = .fJ(P)eiPdP, xE1R. (1.6) 00 
2-7r 

Then for a derivative of f(x) in Fourier space, defined as in (1.6) will have OX 

coefficients ipf(p). If f(x) is a periodic function with a period of 2ir then the Fourier 

transform can be evaluated with an infinite sum rather than an integral. The periodic 

equivalent of (1.6) is written as 

where a(p) is defined as 

00 

1(x) = eilx 

a(p) = f 7T f(x)edx, p E Z. 

(1.7) 

We refer to (1.7) as the Fourier series expansion of a 27r-periodic function 1(x). Since 

we cannot sample every single point x E 11 then what we use instead is a Discrete 

Fourier Transform (DFT) where only a discrete number of evenly spaced points, x, 

are sampled [65]. At the discrete grid points xj = 2 , f(x) is represented by 

2 

j=O,... ,N-1 (1.8) 
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where 

a = 
N-i 

j=Q 

f(x)ei, p = _i, •• , - 1. 

The Fourier coefficients of the derivative of 1(x) when represented in the form given 

by (1.8) are ipap. The advantage to dealing with the derivatives in Fourier space is 

that the task of taking the derivative of a discrete periodic function f(x) is reduced 

to a matrix-vector multiplication [27, 43]. 

The area that most spectral methods differ is in how they deal with the non-

linear convective term (u. V)u in (1.3). Products in real space become convolutions 

in Fourier space. The convolution of two one dimensional discrete functions u(m) 

and v(n), periodically extended to Z for m = 0,... , N - 1, can be defined as 

(u*v)(m) =Eu(m)v(n—m), forn=0,... ,N-1. 
m=O 

To evaluate the convolution in this form would require 0(N2) operations, quite 

time consuming when compared to the other operations in Fourier space. The pseu-

dospectral method deals with this problem by making an FFT transformation back 

into real space (0(NlogN)), then performing the product directly (0(N)), then 

transforming back into Fourier space again (0(N log N)) for a total of 0(N log N) 

operations [52, 65]. In the two dimensional case that we will be working in, we get 

a savings of 0(2N2 log N) versus 0(N4). For a grid size of N = 32, that is the 

difference between 106 and iO. 

Semi-Lagrangian methods handle the convolution term by looking along the path 

the 'particle' velocity follows where the convolution term can be combined into a 
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single term with the time derivative. In other words, we are looking to change 

from the old coordinate system (x, t) to a new coordinate system (X (x, t), t) where 

U(x, t) = u(X, t). This new coordinate system is chosen such that the material 

derivative (the left side of (1.3)) becomes a directional derivative in the direction of 

X. This directional derivative is denoted as U, and is defined as 

Ut = ut(X,t) + (u(X,t) . V)u(X,t). 

In this new coordinate system (1.3) now looks like 

U = -Vp+vV2U+g. 

If g = 0 and p is constant then the equation (1.3) is reduced to a pure diffusion 

equation for U, and the problematic convective term has been assimilated into the 

term U. 

1.3 Overview of important references 

For comprehensive articles on the subject of spectral methods we need only look 

as far as Gottlieb and Orszag [31] and Fornberg and Sloan [27]. While the latter 

tends to focus almost entirely on pseudospectral methods, including a treatment of 

pesudospectral methods as a special case of finite difference methods, it is none the 

less a good introduction to the topic. The former is more suited to a reader looking 

for a broader, more comprehensive view, including aspects of stability, convergence, 

accuracy, and many explicative examples. Previous papers by Orszag would also 
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cover the same topics [51, 52]. For a more comprehensive resource one could look 

to the treatment given by Canuto et al. [8]. This is a very influential work on, 

the subject of spectral methods. For a slightly more mathematical and up to date 

reference one could look at Peyret [53]. Another article that was heavily referenced 

in regards to pseudospectral methods was that of Schneider, Keviahan and Farge 

[22]. This was also used as the basis for the comparisons done in Sections 3.5.3 

and 4.3.1. The basis for the comparisons in Sections 3.5.4 and 4.3.2 are the works 

done by Ware [66, 67]. These were also greatly referenced in regards to the spectral 

Lagrange-Galerkin method. The last of the extensively referenced works is treatment 

of numerical methods given by Iserles [40]. This was a particularly influential work 

in regards to the time stepping and adaptivity algorithms. 

One final work of importance is the FFT algorithm presented by Cooley and 

Tukey [16], without which spectral methods would simply not be feasible. 

1.4 Open problems and challenges 

The subject of fluid dynamics is a broad and widely applied field. Many other aspects 

of the field are widely researched and yet we still do not possess a full understanding of 

the subject. Other areas that could be discussed are: compressible flows, shocks and 

waves [12], the conditions and triggers for turbulence [18, 46], non-periodic boundary 

conditions, high viscosity flow [1], thermal convection [41] and combustible fluids [44]. 

Full texts can be written, as noted in the previous section, and still not cover all the 

possible topics. 

The aim of this section is to look at a few other topics and open problems in fluid 
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dynamics. The main focus will be on how they differ from what has been previously 

discussed and what the potential impact could be. 

1.4.1 Compressible flow 

It is somewhat unrealistic to restrict our attention to incompressible fluids since, 

to some extent, all fluids are compressible. However, when the Mach number M 

is small it can be shown that the N-S equations will provide a good approximation 

to the behavior of a compressible fluid. The Mach number here refers to another 

dimensionless number describing the ratio of the velocity of the flow compared to the 

speed of sound, c. First, assume that the fluid is adiabatic, that p, p and u depend 

on x and t and define the constant y as ry = where C = specific heat at constant CIO 

pressure and C = specific heat at constant volume. An adiabatic system is one in 

which no energy is lost or gained from outside sources. The Mach number may then 

be defined as 

M= lul 

where 

In a more general setting, one way of writing the compressible fluid equations 

would be 

au 
p(+u. Vu) = — VP +(A+i)v(v .u)+v2u 

at 
(1.9) 

where ). is defined by the relation = A+ , where = second coefficient of viscosity 
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and the enthalpy e (energy per unit mass) is given by 

(1.10) 

assuming the energy within the system is constant [8, 12]. The equation (1.9) differs 

from (1.3) only by the term (A + /.L)V(V u) and the fact that p and p depend on x 

and t. The dependence on x and t can be related by (1.10), and for obvious reasons 

the incompressibility condition (1.4) is not used. 

1.4.2 The onset of turbulence 

Spectral methods, particularly the semi-Lagrangian methods, have been used to 

investigate turbulent flows. A question that remains is when this turbulence will 

occur. Partial answers can be investigated using pseudospectra [4, 11, 48, 52]. Pseu-

dospectra in this case are different from the pseudospectral method referred to in the 

remainder of this paper. Here we are referring to the spectra of slightly perturbed 

operators. Another way to describe pseudospectra is as follows: we define A to be 

an operator on u then we define the spectrum A(A) to be 

A(A) = {A E CIAI - A is not invertible}. 

The 6-pseudospectrum A6(A) is then defined to be the set of all A E C such that 

II(Al -A)-'II ≥: 
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A(A) are often used to analyse the operator A. A6(A) can then be used to provide 

further analysis in a way A(A) cannot [56, 63]. 

These f-pseudospectra give a hint as to why turbulence sets in sooner than ex-

pected in an experiment where the velocity of the flow is slowly being increased 

from a stable state. It is clear that eventually turbulence will occur, but the cur-

rent models based on the spectrum do not yield results that are sufficiently close to 

the results of the physical experiments. If we extend those models to include the 

pseudospectrum then the model becomes an improved predictor for the experiments. 

Although this does provide a vast improvement, the predictions are still not as close 

as desired to the experimental results. What is also still missing from this topic 

is a complete understanding as to why the inclusion of the pseudospectra provides 

improved results [18, 64]. 

1.4.3 Existence and smoothness of the Navier-Stokes equations 

Another open challenge that exists for the N-S equations is that the existence and 

smoothness of the solutions has not yet been proven for three dimensional flows, for 

time [0, oo), given smooth initial conditions. (The existence and smoothness can be 

shown for two dimensions.) It can also be shown that the existence and smoothness 

holds for certain restrictions on the initial condition u0 and the time interval [0, T). 

The vague restriction on u0 is that it must be sufficiently small [13]. For the time 

interval, existence and smoothness can be shown when T depends on the initial 

data. In addition, it is known that N-S equations satisfying the above conditions 

will always have a weak solution, but the uniqueness of these weak solutions has not 

yet been proven. 
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When fluid equations can be found in such a vast number of fields as mentioned 

above, yet their existence and smoothness cannot be shown, it is of little surprise to 

see that proving the existence and smoothness for the N-S equations, became one of 

the seven Clay Mathematics Institute's Millennium problems [25]. 

1.5 Summary of thesis 

We will begin with a look at the pseudospectral method for two reasons. First, this 

method will be the method to which the Lagrange-Galerkin and its adaptive variation 

will be compared. The pseudospectral method has been chosen as this standard since 

it is widely known to provide highly accurate solutions if given sufficient time steps 

and for periodic boundary conditions [22]. The main fault with the pseudospectral 

method is that it is only conditionally stable. As shall be seen in Section 2.6, there is 

a minimum step size that must be taken so that the method will not diverge or as it 

is sometimes referred to: blow up. A second reason to start with the pseudospectral 

method is that it is a fairly straightforward spectral method and will thus provide a 

good introduction to the spatial discretization of spectral methods that we will see 

in Section 2.1 and the remainder of the thesis [31]. 

Having laid down the groundwork for spectral methods, specifically the pseu-

dospectral method in Chapter 2, we then look at the Lagrange-Galerkin method 

in Chapter 3. The most sensible way to discuss the Lagrange-Galerkin method is 

to first discuss the method of characteristics as in Sections 3.1 and 3.2, since the 

Lagrange-Galerkin method can be thought of as a multi-dimensional extension of 

that method [38, 66]. Having completed the discretization in time we then look at 
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the tools that will be needed to compute the spatial solution. To accomplish this we 

use an approximation to an unevenly spaced Fourier transform, as seen in Section 

3.3 [68], and then solve the Helmholtz equation. 

Once the Lagrange-Galerkin method has been described, then the only element 

that is needed in order to form an adaptive Lagrange-Galerkin method is some means 

of measuring the error, which shall be covered in Section 4.1. A way to adjust the 

step size accordingly as in Section 4.2 will be examined [40]. Each chapter will be 

finished off with a few examples to illustrate the performance of the various methods. 

Then for Chapter 5 there is a comparison of the two forms of the Lagrange-

Galerldn method for certain random and some selected initial conditions [36]. The 

intent of this comparison is to highlight the conditions for which adaptivity in time 

will be an asset to the computation. 



Chapter 2 

Pseudospectral method 

The pseudospectral (PS) method has a long history of use for numerical simulation 

of fluid flows with periodic boundary conditions [4, 5, 27, 37, 53, 66]. It is highly 

accurate and, with the use of the FFT, can be implemented very efficiently. For 

these reasons it shall be used to determine a reference solution to which the other 

methods can be compared, as was done in [22]. While this reference solution may 

not be the exact solution to the given problem, if a very small time step is used, 

it will be very close. A standard reference for pseudospectral methods is [8] and is 

heavily referenced in this section. 

2.1 Spatial discretization 

Given a function u E L([O, 2ir]), we can represent the function with its continuous 

Fourier series representation 

Co 

where 

If we define 

Su(x) = 

1 2 

2ir 
up = -I u(x)e dx 

= et, 

16 

(2.1) 

(2.2) 
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we can write 

lip = (u, OP), 

where (•,•) is the usual definition of a weighted inner product on L' ([0, 2ir]) [15], 

defined for 1,9 E L([O, 2ir]) by 

2ir 

(1 g) = -- J f(x)g(x)dx. 
2w 

It may be noted that the q5, are orthonormal functions, since 

fo 
2ir 

q5p(x)4q(x)dx = 2'Jröpq 

(2.3) 

where 6pq is the Kroenecker delta function. Su as it stands right now could be 

described as discrete but not finite-dimensional. Assuming N is even, then define a 

finite-dimensional approximation via 

if 

then 

PNU(x) = 

SN = span {(x) 
N N 
--<p<— 
2 

(PNU,V) = (u,v), Vv E SN, (2.4) 

so that PN is the orthogonal projection in L([O, 2ir]) onto SN. 

Using PNu(x) is pointless unless it can be shown that not only does the approxi-
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mation converge to u(x) but that it converges rapidly. This can be shown using the 

properties of the Fourier transform and the following lemma. 

Lemma 1 (Riemann-Lebesgue). If u E L[O, 2ir], then (u(x), qp(x)) —* 0 as 

P -4 ±00. 

This lemma enables us to establish some estimates on Ifil for sufficiently-smooth 

u. We assume that u and its first r - 1 derivatives are continuous and 2-7r-periodic 

and that its rth derivative is integrable. Then if we take equation (2.2) and apply 

integration by parts we get 

1 2,r 

fiP = 2ir(ip) u(T)(x)e_dx p E Z T o 

where U(T) (x) is the rth derivative of u (x). Then since we assume U(T) (x) is integrable 

we can apply the Riemann-Lebesgue lemma to get 

p -4 ±00. 
pr 

From this it can be shown that if u, extended periodically to R, is in C00(J1) then 

PNu(x) converges to u(x) faster than any finite power of -4 as N - oo, Vx E J1 

[31]. In simpler terms, very little accuracy is lost when we truncate Su(x) at a 

sufficiently large value of N. To clarify, we can say that for any 1 < oo, and any 

sufficiently smooth u, there is a constant C such that [8] 

lu — PNu11L2 ≤ CN Mu° IL2' VN> 0. 
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This rapid decay of the error is often refered to as "spectral" accuracy. 

In practice, numerical integration must be used to compute 'i2. This leads to the 

definition of the discrete Fourier transform. With xj = 21r-, j E Z, the discrete IV 

Fourier coefficients are defined as 

= Y' u(x)e (2.5) 
3= 

N 

N E "= for - ≤ p ≤ , (2.6) 

where is defined to be the regular definition of summation except that the first 
- p 

and last terms are halved [65, 67]. This second form of u is equivalent because of 

the periodicity. We can represent the function u discretely at xj as 

if 

(2.7) 

for j=O,1,... ,N-1. (2.8) 

N 

INU(X) ="ueiPx (2.9) 

then, under the condition that u is as above, INu(x) = u(xj) for j = 0, 1,... ,i. 

Thus INU, the discrete Fourier series of u, interpolates u at the points x. Again 

it can be shown [8] that, for sufficiently smooth u, and for any 1 > oo, there is a 
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constant C such that 

IIU - INUIIL2 ≤CN1IIuIIL2, VN>0. (2.10) 

A better way to think of this is that (2.6) is the numerical quadrature of the integral 

(2.2), wrapped onto [-7r, ?r] periodically, via the trapezoidal rule. 

2.1.1 Aliasing 

With the current notation we can say 

u(x) = Su(x) 
p=—oo 

= INtt(Xj) = 

N 
2 
— 'I, 

peipxj . 

- 

2 

Looking at the far right side of equation (2.11) we can then write 

up = 

3= 

1 

N N 
u(x)e 2 for p = ---, . . ., 

j=o 

00  i ( üqe i) e_i 2 

q=—(:)o 

q=—oo 

N-i 
i(q-p)xj 

j=o 

Discrete orthogonality can be defined as 

N ifp—q=mN, mEZ 
= 

0 otherwise 
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Then we can then say 

iiP = u + E Up+mN. 
moo 

(2.12) 

It is easy to see that at the grid points x1 that cbp+m N(xj) = O(x). An example of 

this phenomenon is shown in Figure 2.1.1. When frequencies differ by multiples of 

N we say that they are aliased. 

pV2 

sin 90) 

P1 3PI12 2p1 
o≤e2, 

Figure 2.1: Aliasing example: In the two examples we can see that when only 
looking at 8 points on the graph the frequencies of n = —7, 1 and 9 will be indistin-
guishable. 

If (2.12) is substituted into (2.9) then we can say 

N 

INU(X) = E " (ap + 
_L \ ImI≥1 

fi P+mN) eipx 
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.11 
2 2 

I, It 

+ )T ) - Up+mNCipx 
N p=_# I71I≥1 

N 

= PNu(x) + 

Define the aliasing error La as 

'I 

2 

Up+mN 

La = INU(X) - PNu(x). 

To show that IILaII CN 1 Iu'1) IL2 we proceed as follows 

lu - INUlIL2 = Ilu - PNU + PNU - INUllL2 

= IItL - PNuIl2 + IIPNU - INUIIL2 

= Ilu - PNull2 + ll'allL2. 

It follows that 

and from (2.10) we can say 

Ilu - INUIIL2 ≥ 11416 

Il''allL2 ≤ L2 

(by orthogonality) 

What this means is that the aliasing error is of the same order as the interpolation 

error [8, 53]. 
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2.1.2 Spectral derivatives 

Knowing INu(x) we can differentiate: 

N 

(INu(x))' = ipü iPX e. 

Hence, to get the derivative of a Fourier series of a function, we simply multiply the 

Fourier coefficients by ip, a scalar multiple of their respective index numbers p. Now 

(INu(x))' 0 Iiru'(x) but it can be shown [8] that the error (INu(x))' - INu'(x) is of 

the same order as the truncation error for u'; i.e., as of 

11U' _ (INu)'IILp ≤ cN' II II LP 

Now consider the multidimensional version of the Fourier transform and its ap-

plication to the two dimensional Navier-Stokes equations. If we take u(x, y, t) to be 

the velocity of a two dimensional flow, then 

INU(X,y,t) = 

where in a similar fashion to (2.9) 

Upq 

Al N 
2 

M-1 N-i 

NM 

2 
I, ll 

ÜpqC 

u(x, yk)e 2 xj. 

Then given u satisfying Ut + (u. V)u = —Vp + uV2u + g, such that V u = 0, we 



can define L(u) to be 

so that 

Then, projecting: 
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= —(u. V)u - VP + vV2u + g (2.13) 

Ut - 'C(U) = 0. (2.14) 

o = IN(Ut - 

= (INut) + IN((u• V)u) + INVP - Z'INV U - Ig. 

We define u(x, t) such that i(., t) E SN, Vt and i is sufficiently smooth as a function 

of t such that 

IN(Ut + U • Vi + VINP - vV2 - g) =0. (2.15) 

We wish to solve for the numerical solution u of the equation (2.15) which approxi-

mates equation (1.3)[53]. 

2.2 The vorticity formulation of the Navier-Stokes equations 

We will use vorticity form of the Navier-Stokes equations for the pseudospectral 

method. Since we are working in two dimensions, w = V x u = ( - is ay 

equivalent to a scalar. We will have no external forces, meaning that we will let 

g = 0. To get from the Navier-Stokes equations (1.3) and (1.4) to the vorticity 
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formulation of the Navier-Stokes equations: 

Ow 
+ (u V)w = uV2w (2.16) 

we take the curl of both sides of the Navier-Stokes equation. We have two reasons 

for choosing the vorticity formulation. First, in two dimensions w becomes one 

dimensional, so when we are solving for each time step (Section 2.3) we need only 

do half of the work. It is worth noting that this method would not work in three 

dimensions since the vorticity would also be three dimensional. Solutions in three 

dimensions are often mixtures of vorticity and velocity and possibly other variables 

such as the potential and the pressure of the system. The second reason is that the 

pressure p no longer has a bearing on the outcome. So we are saved the trouble of 

having to solve for p(x, t) at each time step. Evaluating the pressure can be a time 

consuming aspect of the computation [5, 37]. 

The curl of most terms in the Navier-Stokes equations is straightforward.' Only 

the convective term requires a little care and the use of the incompressibility condi-

tion. The curl of the convective term can be given as 

0 / 19V Ov\ 0 / 19U au 
19Y ax \ Vx(uV)u 

Ox\Ox Oyj 

Its expansion using the product rule becomes 

Ou 19V 52v Ov 8v 02v Du Ou 02u Ov 19U 52u 
-- +u- + -- +v ----U ---V-. 
OxOx Ox2 ax ay OxOy OyOx UxOy OyOy 0y2 
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Now using 0u - _8v from (1.4), we get 
- 

Dv Dv D2v Dv Dv D2v Du D'u D2u Du Du D2u 
---+u--+--+v ---U +---v--
Dy ax Dx2 Dx Dy DxDy Dy Dx DxDy Dx Dy &y2 

which 

D2v D2v D2u D2u 
Dx2 OxD Uy DxD V y Dy2 

/ a D\( av Du 

Dx Dyj Dx Dy 

/ a a 
Iu—+v—Jw 
\ ax Dyj 

=u•VW. 

For the pressure term we need only recall that V x Vr = 0 for any r (x, t) E C. 

2.2.1 Obtaining u from w 

As we shall see in Section 2.3, when we wish to discretize (2.16), there will come a 

point that when, given w(x, t), we wish to be able to compute u (x, t). Once again, 

to accomplish this we look to Fourier space to end up with the following equation 

[22] 
M N 
T 

If  
(x,y)= :i: p2 +q2 

p2+q254O 

6(p, q)6i(Px+qy)• (2.17) 

This equation is unique up to a constant value. This can be seen by defining j, = 

U + c = (u + c,v + c), where c is some constant value and V - u = 0, then w = 

8(v+c) O(u+c) -  jL  V au 
- - 

Ox t9y 0x 8y 
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To get (2.17) we start with 

or equivalently 

Since we know that 

then 

and 

which gives 

V•u=O 

Ov 

5x ay* 

Ov Du 

Ox Oy 

(02 02 \ 02u 02v 
57 + U = OxOy 

ay 19Y Ox 

Ow 

ay' 

(02 02\\ 02v 02u 
+ y2 aX2 V = OxOy 

O(9v Ott 

Ox\\Ox ay 

Ow 

Ox 

= '  V 2u W. (2.18) (ax 
Now if we interpolate (2.18) in a similar fashion to (2.9), using the Fourier derivative 
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[46], we get 

M N 
2 
-I, 

p=-q=-

zq\\ M N 

(i (p, q)i(PX+Y) = " p2 + q2)fl(p, q) e', Vx, y E Q. 

We can then rewrite the above, assuming p2 + q2 0 0 as 

M i 
2 it 2 

ii 1 —zq () p2 + q 6(p, q)e ') .. 

2.3 Time discretization 

We discretize in two stages: first in space using the interpolant INu(x), then in 

time. It shall be seen later that for the Lagrange-Galerkin method the discretization 

is done first in time, then in space. 

There are many possible time stepping algorithms that could be used for this 

method. A few such examples include the various Euler methods, the Adams-

Bashforth [17], Leapfrogging and the Crank-Nicholson scheme [51, 53]. Newer schemes 

include the Newmark-/9 scheme [43] and mixtures of the various schemes for different 

parts of the problem, such as using a Backward Difference Formula (BDF) for the 

viscosity terms and an Adams-Bashforth method for the convective terms [35, 55]. 

Another possible method that seems popular with Finite Element Schemes is the dis-

continuous Galerkin method [29, 57, 58]. Since the time steps At are evenly spaced, 

(for now) then a good method to use is the BDF since it is A(a)-stable for order s < 6. 

By A(ce)-stable, we mean that the infinite wedge Va = {pe °Ip> 0, IO+rI <a} ç 

lies entirely within the linear stability domain V of the BDF [40]. Another way of 
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s ,8 {a+i,. • 

2 
3 

fi -4,11 
1-i-, 33 

' 

U 
6 f1 -18 

• 9,-21 

4 12 
25 

-48 36 -16 3 
- ' 25 '25' 25 '25 

60 
137 

fi -300 300 -200 75 -12 
U'' 137 ' 137' 137 '137' 137 

'j 

20 
49 

f-i -120 150 -400 75 -24 10 
l. 49 49 ' 147 ' 49' 7 -9 1 147 

Table 2.1: BDF coefficients 

looking at this is to say that if all of the eigenvalues of the operator, in this case the 

BDF, lie inside V, then any errors that are incurred by the method will only decay, 

rather than grow. 

We can write the general form of the s order BDF for Ut = £(u) as follows 

ufl+1 - tL(u'') = aju 
j=n-s+1 

(2.19) 

where fi and aj correspond to the values in Table 2.1. Let Z(p, q) denote the Fourier 

coefficients of y) then, for 2nd order, given 2fl and then we wish to solve 

for ,n+1 from the discretization of (2.16), then 

(I + it/3VV2)W' = —Lt/3u. V ji* + 
2 

k=1 

akw+, (2.20) 

where I is the 2 x 2 identity matrix and u Vw* is an approximation to u 1 

in Fourier space. From (2.19) we can see that we need the term LtC(u'') to 
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evaulate w 1 using the BDF. Part of £(u') requires the evaluation of U 1 Vwn+l. 

This product could be evaluated in Fourier space in a manner similar to V2wTh+l, but 

as seen in Section 1.2, in Fourier space a product becomes the convolution operator. 

It is more efficient to evaluate the product in real space [52]. U 1 and W n41 are 

needed to evaluate the product. Since '' has not been evaluated yet, we use 

the approximations u and w" respectively, as seen on the right side of (2.20). To 

accomplish this, we extrapolate the value w, then compute u using (2.17). For 

s = 2, a linear extrapolation is used, so w = 2w - w' 1 and u is defined by letting 

M N 
T T 

(p, q) = " " 1  p2+q2 -. ) *(pq) forp2+q2 O (2.21) 

M 2 ( ip 

ü*(Ü,Ü) = 0. (2.22) 

The u is obtained from applying the inverse Fourier transform to W. 

The general 2nd order algorithm for each time step can then be summarized as 

follows. Given CJ and &' then 

Step 1. Extrapolate using and evaluate ÜK using (2.21). 

Step 2. Y' := —Lt,8u• V where the dot product u Vw* is evaluated in 

real space. 

Step 3. : fl+1 + E s= ak '' (apply the BDF). 

Step 4. ,fl+l(p, q) := wn+l 1 - Lt/3v(p2 + q2)' since multiplying the coefficients by 

—(p2 + q2) is equivalent to V2 in Fourier space. 
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2.4 Higher order 

The main advantage to having higher orders is that for a small increase in the 

runtime, and usually in the storage as well, we get a significant increase in the 

accuracy of the method. An example of this idea is shown in Figure 2.2, where 

an increase in the order of the error can be seen with each increase in the order 

of the method. This means that we can often achieve a fixed accuracy using fewer 

timesteps, since each time step has a higher accuracy. 

.,At o O(zt 2) 

•i . - o O(zt 3) 
At  

•i.'— .  -----  o O(t 4) 

Figure 2.2: Order versus error: using the s previous values (filled circles) and an 
s order method, the local error of the computed value (empty circle) is proportional 
to So, for At < 1, the higher the order, the smaller the local error. 

The two things that change when using a higher order are the BDF coefficients 

used in the time stepping and the number of points used for the extrapolation of w'. 

Since the time stepping is done by the BDF which we know to be A(a)-stable for 

order ≤ 6, then all we need to do is update the BDF formula according to Table 2.1. 
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For order s, if we are given C.Z,... , &Th_1, then 

(I + t/3vV2)6, = _Ltu* . Vw' + 
j=i 

(2.23) 

So now instead of storing only two of the previous results p n I Oj n-1) we need to 

store up to six. Since the grid size that we will be using is usually smaller than 

N = 2 7 = 128 then the extra storage is not a problem. If for whatever reason N 

were larger or we were to work in three dimensions, then the extra storage could 

become an issue. 

The Newton formula for interpolating polynomials [14] is used for the extrapo-

lation of the value w". Given the evenly spaced points in time to, t1 = to + At, t2 = 

to + 2t,... , = to + (n - 1)i.t then we have the corresponding values of 

,o, ,i , , fl1 • can then be approximated using 

n-i n-i 
= .•. ,t_1] J] (t - tk). 

j=O k=j+l 

The divided-difference , t_i] is defined via 

t+k] - , tj+k_l]  
tj+k] •-

- 
tj 

with 24t] = 2F1 for j = 0,... , n. - 1. Since all the elements are equally spaced in 

time the divided-difference can be simplified to a polynomial of the given order and 
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represented using the binomial expansion as [14] 

3= 

(-1)' (s). 

2.4.1 Initialization procedure for higher order methods 

When the order s was only two the initialization was not a big problem. Given 

W1 then we simply calculated w1 using /t with a first order (linear) method, then 

with ° and " we can start the main loop of the algorithm. The main loop involved 

solving for using & and The error of the linear step is Q(zt2). Problems 

arise when this is increased to s > 3 or higher where, with an exception near the 

initial steps, it no longer holds true that solving for c2" using 2i'', n-2,•• , 

will be of the desired accuracy. For example, if s = 3 then the error is of order 

So if you were given a starting value of w0 and were to then find w1 and w2 using At 

as the time step, then a linear method would be used to find w2. The error for w2 is 

then (9(t2). So for it < 1, .t2 > /.t3 so the ensuing values wm will be inaccurate 

since the initial conditions were not accurate to begin with. To fix this problem, 

we start with Jo where r E N is chosen so that w0,... , are accurate to 

/ts+1. 

Lemma 2. Given an s-order method then the initial time step Lo may be chosen to 

be Lc = for 0 <t ≤ 1 and r E N. A sufficient value for r such that the method 

remains O(Lt') is 

r 1092 (t 1 '1)1 (2.24) 

where f is the ceiling function. 
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Proof. To show this, first we must realize that the first order step O(Lcr2) must be 

small enough so that it will be the same level of accuracy as the main step O(Lts+l). 

So we want 

but we also know that 

The rest is as follows: 

At 

2' 

log2(t_(8_1)) <r. 

Now we want r E N. Since s ≥ 1 and s E N then we can say 

i n-≥[n-]=n-1=1n-11 if s = 2n,for n E N 

I.' 2 2 n=[n]≥rn—] ifs=2n+l, for nEN 

then 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 
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Finally we can say 

1092 (Lt_(8_1)) ≤ log2 (z.t log (zt-I-")1 = r (2.33) 

and r will be a minimal sufficient value so as to ensure the method remains O(Lt8+l). 

D 

Once a sufficient value of Au has been chosen and we are given 0, then we 

continue with the following steps: 

Step 1. Use a first order method to obtain w1,... , w 1. A higher order method 

may be used if sufficient values are available. This brings us to the second 

line of Figure 2.3. 

Step 2. Use the s most recent w's to find s—i more w values. So if we were to start 

with W6+l,... , then after this step we would have , 

This is the 3rd and 4th lines of Figure 2.3. 

Step 3. Take every second w value starting with w0, double the step size and 

repeat Step 2 until Lo = At. This is the last line of Figure 2.3. 

Step 4. Begin the main loop of the algorithm. 

From the steps above we can see that this start up procedure can be quite costly 

for higher order methods. 
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•so 

•7T;. ,- .--- o 

O(M 4) 

O(z3) 

O(z1 4) 

. ••—•---- o O(A 4) 

• • . 2A cy 0 O((2Ac)4) 

Figure 2.3: Leapfrogging: by the third line, there are enough values to use the 3rd 
order method. The Yd order method must be used 2 more times before the Lo can 
be doubled. 

2.5 Testing the method 

Here we apply the pseudospectral method to a few selected problems to illustrate 

the performance of the algorithm. 

2.5.1 Rotating cone problem 

The first test that will be used is the rotating cone problem. As its namesake indicates 

this is simply a conical "spike" in a fiat domain which will follow a given trajectory. 

Since we know or have constructed the trajectory we know the results at any given 

point and can then see how close our method is to the true solution. We can then use 

this as a reference point to see how the Lagrange-Galerkin method compares in both 

its fixed and adaptive forms. We look at the following advection-diffusion problem 
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(not the same as the N-S equations) for u [38, 51]: 

where g = 0, 

and 

Ut + a - Vu - vV2u = g 

u(x, 0) = uo 

a= 
- 

tir — x 

E ,t E [0,T] (2.34) 

x E 2 (2.35) 

cos 2r for r≤ 
U0 = 

0 otherwise 

(2.36) 

where r2 = (2x - ir)2 + (2y - 2ir)2. In the vorticity formulation (2.34) would look 

like 

wt + a VW - vV2w -• g (2.37) 

w(x, 0) = WO. (2.38) 

We use the following conditions: v = 5 x lO16, T = 2ir with 20000 time steps to 

ensure that the method 'is stable'. Now T has been chosen so that the true solution 

w is the same as the initial condition w0. The error measured is eN II WIIN,00, 

the infinity norm, where w is the computed solution for an N square grid and 1H IN,. 

is the discrete infinity norm, i.e. the maximum absolute value on the N x N grid. 

The results can be seen in Table 2.2. The '*' are cases where instability has caused 

the solution to blow up. The causes for this blow up will be examined below. 
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Order 1. 2 3 4 5 6 

5 16 0.0218 0.0168 0.0168 0.0168 0.0166 0.0168 

32 0.0215 0.00372 0.00367 0.00367 0.00364 0.00367 

5 64 * 8.22 x 10-4 7.95 x iO 7.93 x iO 7.88 x 10-4 7.94 x iO 

5 128 * 3.16 x iO 2.31 x iO 2.31 x iO 2.47 x 10 2.31 x iO' 

Table 2.2: Ps errors for the rotating cone problem 

We can see that across the orders there is only a small decrease in the error. This 

is acceptable since the initial condition is only second order continuous. On the plus 

side we can see that when the grid size is doubled in each direction we obtain 1 of 

the error from the previous step. This indicates that the dominant error for this 

problem is due to the discretization in space. So 5 N = 5 2N as expected. 

Figure 2.4 shows the rotating cone for N = 32, v = 10-16 and various steps as 

indicated. For the time steps indicated we are able to see some instabilities forming at 

the corners. The number of steps is chosen so that the instabilities are just beginning 

to be visible. 

2.5.2 Steady sine function 

Since the rotating cone problem in Section 2.5.1 used (a. V)u for the convective 

term rather than (u. V)u then it is not really a good representation of how the 

convective term behaves in the Navier-Stokes equations. It is a good idea to look at 

another problem with a known solution that will test this method using the (u. V)u 

term. This is accomplished by making use of the g value in (2.16). For each time 

step we set g = (u. V)u + Vp - vV2u or g = (u. V)w + Vp - vV2w. If we choose 

w = 2 sin(x) sin(y) then g = 4v sin(x) sin(y) which is what we get from (2.16) after 
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$=2 with 1400 stops 

Figure 2.4: Instability test: an example of the rotating cone at three different 
orders. The minimum number of time steps were used, so that the instabilities were 
just beginning to form in the corners. 

substituting and solving for g. The idea behind using g in this way is so that the 

true solution of the problem is simply the initial condition. 

For the values ii = 5 x i0, T = 10 and taking 2000 steps, the results can be seen 

in Table 2.3. As in Section 2.5.1, eN is the infinity norm for N as defined and '*' 

are cases where the solution has blown up. The results in Table 2.3 are acceptable 

since they are all less than 10. There is no change as N increases for orders 5 and 

6 as the resolution in time overshadows the spatial resolution. 
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Order 1 2 3 4 5 6 
616 0.0184 0.0167 1.3 0.0244 285 209 
632 0.0403 0.039 1.3 0.0255 285 209 
664 22.7 0.014 1.3 0.0316 285 209 
6 128 * 0.00155 0.013 0.022 285 * 

Table 2.3: PS errors (x10'2) for the standing sine problem 

2.6 Stability of the method 

One of the true faults with the pseudospectral method (2.23) is that it is only condi-

tonally stable, meaning that there is a minimum size for At such that the method will 

'converge. Naturally this aspect of the pseudospectral method has triggered research 

into methods which allow for a correction of these instabilities. This correction has 

been accomplished via the addition of a corrective term [9] and through the use of 

different basis functions for the different parts of the equations [39]. Since the pseu-

dospectral method is only being used as a basis for comparison in this case then these 

corrections need not be considered since the time steps will be sufficiently small. 

First, we shall look at the example of the 4th order pseudospectral method applied 

to the rotating cone problem, which was examined in Section 2.5.1. From the graph 

in Figure 2.5 we can see a sharp increase in the error when the number of steps has 

only been reduced by 10. 

So we can say that the minimum number of steps required for T = 2ir is approxi-

mately 1650. In this case approximately means ±2.5. When similar experiments are 

performed with different orders the results are as given in Table 2.4 

What we would like to do is look at the stability regions of the rotating cone 
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2000 

1642 1644 1646 1648 1650 1652 1654 
number of slope 

Figure 2.5: Instability example The errors inccurred by the rotating cone problem 
for the 4th order pseudospectral method for 1642-1655 steps. 

equation (2.34) or a suitably similar equation so that we may obtain some insight 

into the conditions that determine stability. For finite difference methods, stability 

is determined by the ratio using the Courant-Friedrichs-Lewy (CFL) condition. AX 

Since the derivatives are global in spectral methods rather than local as in finite 

difference methods, then the CFL condition and the domain of dependence triangles 

do not easily apply [32, 49]. What we can do instead is look at the eigenvalues of a 

suitable similar problem. For this purpose we choose a linear advection problem 

au 5u - _ 

---- + a--- 0, T  (2.39) 

where a is a constant. As has been done for the pseudospectral method, a BDF 

Order 2 3 4 5 6 
mm. steps 3360 1420 1650 2420 4110 

Table 2.4: Minimum steps for instability: approximately the minimum number 
of steps required in order for instabilities to be noticeable in the corners of Figure 
2.4, for T = 2'ir and N= 64. 
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is used to solve for the time derivative and the Newton extrapolation scheme from 

Section 2.4 is used for the advective part of the equation. When the two s order 

schemes are applied to (2.39) we get 

m+l - aum + aztVf3 
j=O 

= 0, (2.40) 

where aj and 8 are given according to Table 2.1, and 'yj can be found in Table 2.5 

or can be defined as = (_i)i_1 () . 

S {'y,. . .,'yn-s+i} 

2 {2,-1} 

3 13,-3,11 

4 {4,-6,4,-1} 

5 {5, —10,10, —5,11 

6 {6, —15, 20, —15,6, —1} 

Table 2.5: Newton extrapolation coefficients 

When (2.39) is transformed into Fourier space, it gives 

m+l(p) = - iaAtpP-yj)ftM-j (P) 

The characteristic polynomial for this equation can be given as 

s-i 

_As+ 
- iaztp/3y) = 0, (2.41) 
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which when solved for aLtp gives 

- 

- " Z_ij=G 
a P_ (siip ). (2.42) 

Define the stability region to be the region in the complex plane of values of (iatp), 

for which all the values of A satisfying (2.41) lie within the unit circle. To plot the 

stability region we evaluate A on the unit circle e°, and we end up with Figure 2.6. 

What we would like is for the eigenvalues of (2.40) to lie inside the regions plotted 

in Figure 2.6 [65]. Looking at Figure 2.6 we can see where z, the maximum value on 

the imaginary axis that is still inside the stability region, occurs and compare that to 

the experimentally observed stability boundary from Figure 2.4 and Table 2.4. From 

(2.36), a cannot be more than ir and for that experiment N = 64, so p ≤ 32. The 

results using the At values obtained via Table 2.4 can be seen in Table 2.6. All of 

the stability regions follow the imaginary axis for some interval, more or less closely. 

Only the 3X and 4th orders include the axis inside the region, as seen in Figure 2.7. 

For the others the axis is only slightly outside the stability region immediately once 

you've left the origin. 

It is worth noting that the results only differ by a constant value, so the results 

of Table 2.4 appear to match well with the computed values of z. For example 

Order 2 3 4 5 6 
z * 0.63 0.54 * * 

aLtp 0.19 0.44 0.38 0.26 0.15 

Table 2.6: Comparison of z and a/tp 
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when looking back to Figure 2.4 we see that given s = 3, aL.tp = 0.51 and given 

s = 4, aLtp = 0.44. As expected these results are comparable to those in Table 2.6. 

2.7 Variations on the pseudospectral method 

Adaptivity in time could easily be implemented via a Runge-Kutta time step or 

an unevenly spaced variation on the BDF. Another option would be to follow the 

method described in Section 4.2. 

Instead of using Fourier basis functions we could use wavelets to discretize in 

space. This method would allow for more flexibility in where the grid points are 

placed. More grid points could be placed where there is more activity in the domain 

and fewer where there is less activity [34, 42]. Another option for spatial discretiza-

tion could be to use Legendre polynomials instead of the Fourier basis functions 

[2]. 

A filtered pseudospectral method could also be employed. At each time step all 

values of the vorticity field that are below a specified threshold value of T are set to 

zero. T must be carefully chosen for this method to work: too big and the energy 

of the system is lost; too little and the method is not effective [22]. The expected 

gain with this variation is a saving in space and time since we would only be working 

with sparse matrices. 
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Figure 2.6: Stability regions: in order to have stability the eigenvalues of the 
equations (2.40) must lie inside the regions plotted above. Since we are considering 
an advection equation, then we are interested in how much of the imaginary axis lies 
inside the regions. 
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Figure 2.7: A zoom of part of the imaginary axis: s = 3 and 4 are the only 
regions that actually contain part of the imaginary axis, and the points of intersection 
can be seen above. These points of intersection are what determine the values z. 



Chapter 3 

The Lagrange- Galerkin method 

This method is specifically designed for convection-dominated problems. For this 

reason semi-Lagrangian schemes have been used by the meteorological community for 

massive numerical simulations [21, 50] and more recently in computer animation to 

obtain more realistic fire and water effects [23, 24]. Due to its unconditional stability 

and convergence, the Lagrange-Galerkin (LG) method is immensely popular with 

finite element methods particularly with atmospheric sciences and other such areas. 

The advantage with finite element methods is that the grids can easily be adapted 

to fit awkward shapes [47, 54, 57, 61, 62]. The downside is that they are not as 

accurate as spectral methods. Since we have made the decision to deal with periodic 

grids then it seems more sensible to employ a spectralLagrange-Galerkin method, 

thus maintaining a high level of accuracy [66, 67]. With these convection dominant 

problems we look for ways to simplify or remove the computation of the convective 

term (u. V)u that appears in the Navier-Stokes equations, as this is the part that 

causes the most computational difficulty. The method has a few advantages over 

the pseudospectral method. First, as we shall see the method does not have any 

stability issues, such as those seen in Section 2.6, provided the order is kept less 

than or equal to 6. This means that the size of the time step depends purely on the 

desired accuracy. 

The main idea is to apply a change of variables to a coordinate system that will 

simplify the equation. In this case we transform the grid so that it matches the 

47 
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charateristic curves, since in this system the convective term is zero. This means 

that we will be changing coordinates at each time step based on the progression of 

the flow. One way to look at the method is to start with a general advection-diffusion 

equation (2.34) [38]. First, for some trajectory a(x,t), we must solve 

19 
(X(x,u;t)) - a(X(x,a;t),t) 

at 
(3.1) 

X(x,o';cT)=x. (3.2) 

X(x, ci; t) is the path of the particle that passes through the position x E 1 at a 

time ci E (0, T] with the solution X(x, a; t) given as follows 

t 

X(x,a;t) =x+f a(X(x,a;r),r)dr. 

This will tell us the trajectories. We then look to evaluate the material derivative 

D, given by 

Dtu(x, t) :=a(X(x, a; t), t)at lt 

Dtu(x,t) =u(x,t) + a(x,t) . Vi(x,t) Vx E Q,t E (0)T]. 
at 

3.1 Characteristic curves 

In order to illustrate the procedure, we consider an example with the transport 

equation, which was first seen in Section 2.6, 

Ut + au = 0. 



49 

A 

n+1 

X(x,tn+1 ;t 1) 

t n 

t n-i 

X(i,t 1;t) 

X(xt' ;t 1) 

X 

Figure 3.1: An example of characteristic curves 

This can be rewritten using the chain rule to get 

u(at+c,t) = 0. (3.3) 

u is constant on the curves (at+c, t). If we are given some initial condition u(x, t0) = 

uo(x) then we choose the curve that passes through the initial point (x, t0). The 

solution then has the form 

u(x + a(t — to), t) =u0(x) 



50 

u(x,t) = u0(x— a(t—to)), 

where x - a(t - t0) are the characteristic curves, or in our notation 

X(x, to; t) = x + a(t - t0). 

If we return to our Navier-Stokes equations then the first task is to solve 

where 

dXdt  - u(X(x, t'; t), t), 

X(x,t;t' 1) = X. 

(3.4) 

(3.5) 

To examine this in a graphical context consider Figure 3.1. If we are sitting at point 

X(x, t''; t') and wish to know the value at X(x, t 1; ta), then we would look 

along the characteristic curve which we can obtain via (3.3) or the solution of (3.4) 

and (3.5). Then we simply follow the trajectory to the previous time step to get 

X(x, t' 1; ta). This is what is known as the method of characteristics. 

So the solution that we actually end up with is the position X(x, t'; t) that 

the characteristic curve u(X, t) will pass through at time t, if it also passes through 

the point x at time step t''. This is often refered to as the backward-trajectory 

scheme, since we need to look backward from the regular grid at t' to the previous 

position on the Lagrangian grid at t. To look forward from the regular grid at tm 

to a Lagrangian grid at t' 1 is refered to as a forward-trajectory scheme [6, 50]. So 

at every time step we are recomputing the characteristics with respect to some fixed 
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initial grid x. This will reduce the deformation that would occur in the non iterative 

case [59, 67]. To see how this helps to deal with the convection term we define a new 

function U to be 

U(x, t) = u(X (x, tn+l. t), t) 

U(x, tm+l) = u(x, t 1' 

applying the chain rule, then using (3.4), we obtain 

dU(x,t) = ut(X,t) + dX Vu(X,t) 
dt dt 

dU(x,t) = u(X,t) + (u. VU) (X,t). 
dt 

(3.6) 

(3.7) 

Note that when t = t'' then (3.7) is simply Ut + (u V)u. We can then rewrite 

(1.3) as 

Du = —Vp(X) + i/V2 U + g 

at t. If the pressure is constant and g = 0, then (3.8) simplifies to 

For t = t' this can be written as 

DU = vV2U. 

(3.8) 

Dtu= vV2u. (3.9) 

This is similar to a heat equation for u with the exception that it involves a directional 
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derivative. This directional derivative is the reason that we cannot solve for a series 

solution as we would for a heat equation, and hence must use an iterative method 

instead. 

3.2 Solving for the characteristics 

If equation (3.9) is discretized in time then at each time step we would look to solve 

for U 1 = u(X(x, t 1; tm+'), t'). We shall use the following notation 

u'  (x) = u(X(x, ti; t'),t'), 

with the two conventions 

ui'j = u_c(x) 

Ili = U )O. 

For reasons similar to those in Section 2.3 the BDF will be used. Assuming that the 

previous s values of u are available then our time discrete equations are 

(I + t vV2)un+l akum+lk. 

In order to obtain the previous s values of u we must first know X(x, t' 1; t) so 

that we may evaluate for Ic = 1,... I S. X(x, t 1; t) is defined by equations 

(3.4) and (3.5). Since the accuracy of the solution depends on X, then the higher 

the accuracy of the X value the more accurate the solution will be. To solve for X 
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X using {u72, u''1,... , us 1} 

-I-
{ U'1'1 .. , u1'1} 

-I-
n+1 * 

-I-
X using {ur', if, u''1,... , u' '} 

-I-
{ U'1'1 .. , u+1 _1} 

1-

Figure 3.2: Predictor-Corrector algorithm 
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is then repeated only this time using ur', un",. .. , u'' 1 and the A-M scheme to 

solve for X. Again this could be iterated to gain an improved value of X. This would 

correspond to repeating steps 4 and 5 in Figure 3.2. This new X is closer to the 

true value of X than X,, as a result evaluating UTh+l using X will be closer to the 

true solution than evaluating UTh+l using X. The final step is to solve for u 1 using 

. , and the BDF. 

3.2.1 Evaluating X 

It is useful to note that for some t, t 1, t 2 E [0, T], 

X(x,t;t2) = X(X(x,tm;tm_l),tm_l; tm_2). (3.10) 

In terms of the above notation we can interpret this as 

u'"(X(x, t; t')) = u''2. 

Now to take a closer look at how we solve for X using the previous u, u''1,... , u'' 

values. To solve for X(x, t' 1; t) from (3.4) we need to evaluate 

tn+l 

X - X(x, t'; t) = f u(X(x, t 1; r), r)dr. 

tn 

This is done with the approximation 

x—X(x,t';t) )' aju'. 
j=n-s+1 

(3.11) 

(3.12) 
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where cij corresponds to the appropriate Adams coefficient. Note that the integral 

(3.11) is from tm to t'. So for (3.12) 

fu n )  u''1,... , u'''} 

are the u values that are used. These values of u values are obtained by taking 

u(x, ti) for j = 0,... , s and pushing them along the trajectory X to tm. This is 

done at every step so that the stored list of the previous values is always up to date. 

To illustrate this idea, consider a list of values at a time t where s = 3, 

{u',lin,l,u'2}. 

To find u 1, the first step would be to evaluate all the elements of the list at 

X(x, t'; ta), and using (3.10) to get 

fu n+1,1 ,  un+l)2, uTh+lS}. 

Now that the list is updated to reflect the time t'', it may be used to evaluate 

u(x, t724.1). u(x, t') is then queued into the front of the list, 

fu n+1 I  u11 , uTh+l 2}. 

The list can now be used to evaluate the next time step. 

What has not yet been discussed is how when we have X do we evaluate ui'i(X) 

using ii_' (x). Since the points are irregularly spaced, we cannot use the IFFT, so 
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for now we need to do it the long way with 

M. N 
2 

ufl-i (X) = //" flfl-j iJ1X1+iqX2 
p,q 

M N 

j=O,... ,s-1 

then use the FFT to return to u(X,t), then solve for u' using the BDF. This 

way it would take 0(N4) operations. However there are ways to approximate this 

unevenly spaced FT that can be accomplished in little more time than it takes to 

evaluate the regular FFT. 

3.3 Approximate FT using Taylor polynomials 

There are several methods to approximate the FT for irregularly spaced data. A 

good overview of these various methods can be seen in [68] with some newer methods 

described in [26, 33]. In this thesis, Taylor polynomials are used to approximate the 

value of the function u at an irregular grid point x1 around the regularly spaced grid 

points :R,, . This method is based on the principle that in one dimension we can write 

a truncated Taylor expansion of u as 

K 

u(xj) = (IN u)(k)(xl) xl - 

Xn  
—, zl= 

rX 

As usual the derivatives u(k) are done in Fourier space and rx is the maximum 

deviation of the points x1 from -76n -

This algorithm can be divided into three parts. The first part we need only find 

the maximum deviation in the x and y direction from the nearest regular grid Rn-
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The maximum deviation in the x and y direction are denoted by ?, and r, and are 

defined as follows 

= max min Ixz - ml 

ry = maxmin Ii — VnI. 
I n 

Since the domain 1 is periodic, we must have r, j and r, ≤ 4JL where Lx is 

the distance between the grid points in in the x direction, and Ay the distance 

in the y direction. In two dimensions this can be done in (9(N2) operations. For the 

second part of the algorithm we calculate 

I 

2 2 (ip)'  (jq)kfli(Pfen+?n) 
Un = " " j!k! 

M N 

j,k=O,...,K. 

This is done by applying the IFFT to the matrix with elements given by (i  fip,q. 

This is the most time consuming part of the algorithm taking 0(2K2 N2 log N) op-

erations where N is the grid size, and where K refers to the number of Taylor 

coeffecients that are used. The last step is to compute 

where 

j,k j,k 
U Z1 

j,k=O 

= (x1 - 7Z Vi - Yn  
ZZ TX TV 

) . 

This final step is 0(K2N2). What must be decided ahead of time is how big to 
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make K. In order for this algorithm to be effective we need to have K << N. The 

appropriate size of K can be determined from the maximum error 

(II max(r, r,))"' 
(K (K+1)! 

which is essentially just the maximum of the next term in the Taylor expansion. K is 

chosen such that E is less than a predetermined tolerance T. For the overall method 

the number of operations at 0(2K2 N2 log N) has the potential to take a lot longer 

than a regular FFT of the same size. In practice K is quite small in comparison to 

N. For example K 8 for a 64 x 64 grid and T = iO. Approximating the FT in 

this way will usually run faster for smaller time steps since r and r, will often be 

smaller in those cases. As a result, E will be less than T for smaller values of K. 

While this may be true in practice there is no way to determine exactly how much 

time is saved since that would require knowing X ahead of time. 

3.4 Divergence free space 

As mentioned in the previous chapter, when the transformation to the vorticity 

formulation is made, we see that w is automatically incompressible. That is to say 

that w is divergence free, or that w exists in a divergence free space. For the Lagrange-

Galerkin method it is not a given that the solution u is automatically divergence 

free, especially since we will be transforming u so that it follows the characteristic 

curves. To ensure that u is still in a divergence free space, we apply an operator R 

to u at each time step, so that Ru is the projection of u onto the divergence free 
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zero-mean space V [66]. Define 

V={uEfl1IV•u=O and ii=O} 

where ü is the mean of u. The Hubert space ?-1 is given as 

= {uIDu E L2(f),O ≤ II ≤ o} 

where D for c = (a1,... , ad), is the derivative in the sense of periodic distributions 

defined as 

Du-- 0alOad 

Now define 

R = (I - V(V2)'V.). 

To see that this projection works, note that in Fourier space R is 

(=::) (p2q2) (=:)) 
= (I  1 (2 Pq) 2+q2 q2)) 

where p2 + q2 0. Take ü to be ('') then 

(upq'\ 1 (P2upq\\1 

Ru=I I 
0) p2 + q2 pqupq) 
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2 

- Upq q ( 

p2+q2 \pq 

and 

V -1f, = Upq + q2 (q2 ip - pqiq) = 0. 

Ru lies in the divergence free space V as required. A similar demonstration will 

yield similar results for ii = (vp°q )• For a general u we look at the span of u using 

R (uPq) and R (vq). What this means is that instead of worrying about whether or 

not we are in the space V, all that needs to be done is to apply the projection R to 

the whole equation and the result will follow. 

3.5 Some test problems 

For Sections 3.5.1 and 3.5.2, we apply the Lagrange-Galerkin method to two problems 

with known solutions to illustrate the behavior of the method. Specifically, we are 

looking for a demonstration of the order of convergence. For Sections 3.5.3 and 

3.5.4, the Lagrange-Galerkin method is applied to two fluid flow problems for which 

a reference solution is computed. These problems are of interest since they are 

designed to have steep gradients, which can often be difficult to compute. 

3.5.1 Rotating cone problem 

This is the same problem that was presented in Section 2.5.1. For this method we do 

not need as many steps as the pseudospectral method since we have no need to worry 

about stability. The difference in this case is that we look to solve (2.34) instead of 
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Order 1* 1 2 3 4 5 6 
SZE 0.000752 0.000973 0.000973 0.000977 0.000972 0.000976 0.000967 
SAM 0.000752 0.000965 0.000965 0.000983 0.000984 0.000979 0.000975 
4 

0.00062 0.00135 0.00135 0.00134 0.00135 0.00136 0.00137 

Table 3.1: LG errors for order versus T 

Order 1* 1 2 3 4 5 6 

SM 0.000453 0.000648 0.000654 0.000656 0.000655 0.000658 0.000686 
0.000562 0.000498 0.000496 0.000489 0.000486 0.000531 0.000574 

0.00186 0.000312 0.000172 0.000166 0.000165 0.000168 0.000168 

Table 3.2: LG errors for order versus T with v = 5 x 10 

(2.37) as was done in Section 2.5.1. 

Initially we will have 71 = 5 x 1016, T = 10 2, N = 64 and measure the error ST 

in the infinity norm, i.e. CT = Ilu - UIIT,00, where u is the exact solution at time T. 

The results are recorded in Table 3.1. All results were acheived using 10 time steps, 

with the exception of the first column (1*) where only one time step was used. 

Results from the same problem but with some diffusion can be achieved by setting 

ii = 5 >< 10* These results can be seen in Table 3.2. The extra column (1*) is 

displayed as an additional illustration of the unconditional stability of the method. 

Since the trajectories are given for this problem, and are therefore exact to within 

machine accuracy, then the error that occurs is from the solution of the parabolic 

equation (3.9) and the approximate evaluation of uii_lv(X). When fewer time steps 

are taken, fewer errors accumulate from the successive iterations of (3.9). Then the 

smallest cumulative error occurs when only a single step is taken .as is shown in 
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Tables 3.1 and 3.2 [66]. 

Another check is to compare the error of the solution as the size N increases, 

where the error is defined as EN = Ilu - UIIN,00. The conditions for the results seen 

in Table 3.3were as follows: u = 5 x 10'6,T = 10-2, and 10 time steps. In Table 

Order 1 2 3 4 5 6 

616 0.0237 0.0237 0.0196 0.0196 0.0200 0.0202 

932 0.00542 0.00542 0.00555 0.00557 0.00558 0.00565 

964 0.00136 0.00136 0.00136 0.00136 0.00138 0.00138 

E128 0.000338 0.000338 0.000300 0.000300 0.000302 0.000302 

Table 3.3: LG errors for order versus N 

Order 1 2 3 4 5 6 

916 0.0237 0.0237 0.0196 0.0190 0.0200 0.0202 

4932 0.0217 0.0217 0.0222 0.0223 0.0223 0.0226 

16664 0.0218 0.0218 0.0217 0.0218 0.0221 0.0221 

646128 0.0216 0.0216 0.0192 0.0192 0.0193 0.0193 

Table 3.4: Comparison of LG errors for order versus N 

3.4 we can see that when the grid size is doubled the error is reduced by a factor of 

4. With the trajectories given exactly the errors are then only restricted by the grid 

size. 

3.5.2 Steady sine function 

This is the same problem as described in Section 2.5.2 with the same conditions, 

T = 1, ii = 5 x iO, T = iO, except in this case order is being compared against 

increasing step sizes. All results can be seen in Table 3.5. The order of convergence 
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Order 1 2 3 4 5 6 
£20 0.454 0.154 0.0345 0.00931 0.00278 0.000704 
6 40 0.238 0.0446 0.00556 0.000813 0.000108 1.99 x i0 
£80 0.122 0.0120 0.000789 5.81 x lO 3.53 x 10-6 7.86 x lO 
£160 0.0616 0.00312 0.000105 3.8 x 10-6 1.1 x lO 2.01 x 10-8 

£320 0.0309 0.000796 1.35 x 10 2.4 x 1O 6.97 x 10_8 5.72 x 10_8 

Table 3.5: LG errors for the standing sine problem 

of the method can be observed in orders 1,2 and 3, meaning that for a given order s 

if the number of steps is doubled than the resulting error is 2_s times the previous 

error. The value of the tolerance T makes errors less than 10 difficult to analyse 

due to the dominance of the spatial discretization, and as a result the convergence 

is not noticeable for the higher orders. 

3.5.3 Vortex convergence problem 

This is the three vortex convergence problem as described in [22]. For this problem 

we have three vorticies in the center of the domain. This problem is designed so that 

the three vorticies will converge into two after a certain amount of time. Given the 

method we need to ensure that we will get reasonable results; i.e. we mean that the 

relative error using the L2 norm SN = Ilu - UIIN,2, where u is the reference solu-

tion and i is the result obtained from the method, is such that Q(eN) = 0(10-2). 

The reference solution in this case is not the same as the true solution, but is suf-

ficiently close for our purposes. What is really being used for u is the result of the 

pseudospectral method obtained using a very large number of time steps ( 106). 
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The initial condition for this problem is defined by letting 

j=1 

where 

1 
= - ((x - x)2 + (y - 

the weights are A1 = A2 = it, A3 = —ir and the points are x1 = (, ) , x2 = 
(v., it) and x3 (, it (1 + )) with c = 

For these results the following conditions were used: T = 40, ii = 5 x i0, N = 

128, T = 10-2 . The order s was compared to the number of time steps and recorded 

in Table 3.6. Figure 3.3 shows the progress of the flow for s = 3 and 400 time 

steps. Figure 3.4 shows plotted versus the number of steps taken on a 1092 scale. 

The higher orders (s = 5 and 6) show no useful information since they immediately 

attain the maximum resolution for the conditions used. The other orders display the 

order of convergence of the method. For s = 2 we can see that the slope is about 

2, in terms of convergence, as we would expect it to be. The s = 3 slope seems to 

be a bit steeper than the expected value of 3. In fact, with a value of about , it is 

almost the same as the slope for s = 4. This would seem to indicate that s = 4 did 

Order 2 3 4 5 6 

6100 0.527 0.434 0.267 0.023 0.0189 

6 200 0.15 0.0371 0.0240 0.00103 0.000752 

&100 0.0424 0.00383 0.00209 0.000319 0.000292 
e800 0.0101 0.000554 0.000471 0.000345 0.000364 

Table 3.6: LG errors for the vortex problem 
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Figure 3.3: LG solution of the vortex problem: contours of the vorticity w(x, t) 
of the solution of the vortex problem using the LG method, with s = 3 and 400 time 
steps, at selected times t. There is no discernable difference between the LG solution 
and the reference solution. 

a little worse than expected while s = 3 did better than expected. 

3.5.4 Stream vortex problem 

The initial condition for this problem is a rapidly moving stream in the middle of a 

nearly stationary fluid. The boundary between the stream (middle) and the edges 

(top and bottom) is meant to be tight as this will cause vortices to form and collide. 

As in Section 3.5.3 the reference solution is actually the result of the pseudospectral 

method with a very large number of time steps used. 
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—16  
100 200 

number of steps 
400 800 

Figure 3.4: 1092 S of the vortex errors: a plot of the 1092 6 of the errors for the 
vortex problem. We would expect to see the negatives of the slopes of the lines to 
match the order. The resolution of the method limits the use of the plot for s = 5 
and 6. 

The initial condition is given in [66] and is described as follows, 

w(x,y) =sech2(10(y—a)) — sech 2(10(y — b)) +10_2 (cos 4x+ cos 2x\10 )' 

where a=ir(1—) and b=7r(1+). 

For these results the following conditions were used: T = 150, ii = 5 x i0, N = 

128, T = 10-2. The order s was compared to the number of time steps and recorded 

in Table 3.7. Figure 3.5 shows the progress of the flow for s = 3 and 100 time 

steps. Overall, Table 3.7 seem to show faster convergence and smaller errors when 

compared to Table 3.6. This can be attributed to the fact that the initial condition 

in Section 3.5.3 is not as smooth as the one in this section. Figure 3.6 tells a similar 
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story to Figure 3.4. Orders s = 5 and 6 once again give little information about the 

order of convergence as At -4 0, since the errors are quickly dominated by the spatial 

discretization errors. For s = 2 and s = 3 the slopes look to be almost exactly 2 and 

3 respectively, while s = 4 has a slope of approximately LI . 

3.6 Stability of the method 

Being able to get a result in Section 3.5.1 by only taking a single time step, as seen 

in column 1* of Tables 3.1 and 3.2, is a result of the unconditional stability of the 

method. A method is unconditionally stable if there exists a C, that depends only 

on the divergent velocity field (V . a), such that 

IIuThII ≤ e Cp IIu°M, Vn ≥ 0. 

Note that there is no restriction on At, such as in Section 2.6. A sketch of the proof of 

the -unconditional stability, as related to equations (2.34) a (2.35), shall be presented 

here. This presentation will only be for the exact Galerkin method, meaning that 

all of the integrals are computed exactly. For more details see [66, 67], where Ware 

established stability for the fully discrete method for linear problems. 

Order 2 3 4 5 6 

9100 0.0424 0.0111 0.0188 0.00462 0.00541 

9 200 0.00821 0.00108 0.00124 0.00132 0.00149 
e400 0.00221 0.000298 0.000108 7.37 x 10-6 1.31 x 1O 
e800 0.000542 4.55 x 1O 8.06 x 10_6 6.64 x iO 1.41 x 10 6 

Table 3.7: LG errors for the stream vortex problem 
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Figure 3.5: LG solution of the stream vortex problem: contours of the solution 
of the vorticity (x, t) of the stream vortex problem using the LG method, with 
s = 3 and 100 time steps, at selected times t. There is some distortion between the 
computed solution and the reference solution, but considering that only 100 steps 
are being used the solution looks good. 

The following lemma will be useful for the completion of the proof. 

Lemma 3. let a be a sufficiently-smooth velocity field. If J is the Jacobian for the 

change of variables from x to X, where X is defined by equations (3.1) and (3.2), 

andVa=0, then J=I. 

This lemma could be considered a corollary of Liouville's Theorem and so the 

proof is similar [46]. 
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Figure 3.6: 1092 E..' of the stream vortex errors: a plot of 1092 .6 of the errors in 
Table 3.7. With the exception of s = 5 and 6, the negatives of the slopes of the lines 
are approximately equal to the order. 

Proof. Since J - dxj --dXk  define T(x, t) - - OX(x,s;t) Then from (3.1) 

19  19 a  
t) = äX(x, s; t) 

ax 

= -a(X(x,s;t),t) 
ax 

= Va(X (x, s; t), t) 19 -X(x,s;t) ax 
= Va(X(x, s; t), t) . J(x,t). 
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Now if we expand J(x, t + h) about t, 

 +0(h2) 
at 

= J(x, t) + hVa(X (x, s; t), t) J(x, t) + 0(h2). 

Then by multiplying both sides by J'(x, t) and taking the determinant, the right 

side is then equivalent to 1 + hV a(X(x, s; t), t) + 0(h2). Following the definition 

of a derivative 

lim det (((x, t + h) - =lim (x, t))J'(x, t)) hV a(X(x, s; t), t) + 0(h2)  
h-Oh h-O h 

= V - a(X(x, s; t), t). 

Since V a = 0 then Y(x, t) = 0 and finally, since J is initially I, we get J = I. E 
dt 

One last definition will be needed before continuing. Recall the notation from 

Section 3.2, then define the operator E to be such that Eu' = un". 

Theorem 1. For equation (2.34), where a is linear, and for the method described in 

this chapter, we have IIu'II ≤ IIuII, where the norm used is the L2 norm defined 

by (2.3). 

Proof. Using the definition u 1 = PNEUTh, then from (2.4) we can say 

(u' 1, v) = (Eu, V) Vv E SN• 
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The use of PN implies that u 1 E SN, then we can say the following 

(uTh+l,u7l) = (Eu )u"') = 

IIun+1112 < IIEuII MuTh'II := 

Mu+'M ≤ IlEuThII. 

From the definition (2.3), with IJI. meaning the maximum absolute value in the 

matrix J, 

IIEuThII2 = f u(X(x,t';t),t)l 2 dX 

= f Iu(X, t) I2 IJI dX 
≤ W101  lu(X,t)I2dX 
= IJI fn Iu(X,t)I2 dX (by periodicity) 

IJl iui. 

Applying Lemma 3 the desired conclusion is reached. D 

These results can be extended to the N-S equations. 

3.7 Variations on the Lagrange- Galerkin method 

There are many possible variations that could be applied to the Lagrange-Galerkin 

method, a few of which are described in this section. Since adaptivity in time is to 

be covered in Chapter 4, another possible variable that could be made adaptive is 
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order. For adaptivity in order, a lower order would be used when rapid changes are 

occuring and small time steps are used, and where a higher order is used otherwise. 

Although possible, very little would be gained in terms speed as most of that would 

be covered by the time stepping. 

The method could also be made adaptive in space; i.e. a refined grid spacing in 

areas where there is much activity and a looser grid elsewhere. The first challenge 

to applying this idea to the Lagrange-Galerkin method is the need for a spatial error 

estimate and a corresponding tolerance. The second challenge would be the need to 

adapt the Fourier derivatives, and implement an efficient Fourier transform for an 

irregularly spaced grid as in Section 3.3. Some examples of adaptive grid methods 

such as these can be seen in [11, 22, 42]. 

The Lagrange-Galerkin method could be modified so that it solves (2.16) rather 

than (1.3), as was done for the pseudospectral method in Chapter 2. In two dimen-

sions solving for the vorticity w rather than the velocity u would cut out about half 

of the computations. In reality very little would be saved since the u values would 

still need to be shifted along the trajectories, and this leads into a bottleneck for this 

method. 



Chapter 4 

Adaptive Lagrange- Galerkin method 

With the current setup of the Lagrange-Galerkin method, if we were faced with a 

problem in which there is some period on (0, T] which has rapid change or steep 

gradients, then we would need to have a small time step in order to attain a certain 

level of accuracy. Since the time is fixed then we would be using unnecessarily small 

time steps for the parts which are changing at a comparatively slower pace. The idea 

behind the adaptive Lagrange-Galerkin (A-LG) method is then to allow the time step 

to change so that larger time steps can be taken during these slow changing parts 

of the solution. The adaptivity could also work the other way. That is to say that 

the time step could become smaller in order to maintain the desired accuracy if the 

solution starts changing too fast. 

4.1 Error estimate 

The first issue that must be resolved before we can continue any further is how to 

measure the error. This error will be used to make a decision as to whether to 

increase or decrease the time step. Error measurements can be divided into two 

categories: a priori and a posteriori. 

For the a priori error estimate we would need to know certain attributes of 

our problem. Determining an a priori error estimate can be tricky and possibly 

unrepresentative of our solution. We have little to gain from using this type of error 

73 
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estimate. For a few examples of an a priori estimate see [30]. 

For an a posteriori error estimate we do not need to make any projections or 

determine any boundary values. We need only use what values are already known 

and perhaps carry an extra value along in the computations. Examples of a posteriori 

error extimates can be seen in [3] and in [19]. One such example can be summed up 

as follows. If is the Euclidean norm and let 0 be the solution of the linearized 

problem = Au at time T, then the dual problem which runs backwards in time at 

can be defined as - = ATq, with the initial condition q5(T) = b. An upper bound at 

on the error can be defined in the following way 

Sc (T) = max S. (T, '1') 
II ,II=1 

where 

S(T,'cb) =fo  ao 
at 

dt 

and it can be shown that 

II(T)II ≤ S, (T) max llk(t)R(u(t))II. 

For this upper bound, k(t) = k, = t - t_1 for t E (t_1,t], and the residual is 

defined as 

R(u(t)) = (u(t) - 
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Then the step size k can be chosen so that 

T.  Ilu(t) - u(t_i)II S(T)' 
(4.1) 

where Ta > 0 is some predetermined tolerance value. Since this is an a posteriori 

error estimate, then the way it would work is to choose some new time value t4.1 

to be used as the next time step. We then evaluate u(t i) and if it satisfies the 

condition (4.1) then it is kept, otherwise a new t 1 is chosen and that particular 

time step is reevaluated [20]. 

Another a posteriori error estimate would be to run a similar algorithm of the 

same order, using the same data and then comparing the results. This is not truly an 

estimate but more of an indicator since it does not attempt to place an upper bound 

on the error, as an estimate would, but instead only gives an idea of the size of the 

error. At a quick glance this may seem like a lot of extra computational work and 

hence a much slower way of estimating the error. In reality this will do very little 

to slow the algorithm down in this case since the bottleneck of the method is still 

the unevenly spaced FT. We know from Section 3.3 that the unevenly spaced FT 

is 0(2K2N2 log N) whereas implementing a time stepping scheme such as the BDF 

is only 0(N2). This second algorithm can also be chosen so that it shares similar 

structure to the original algorithm and will only require a few extra computations. 

4.1.1 A modified backward difference formula 

We will use the modified Backward Difference Formula (mBDF) for the second al-

gorithm in the adaptive method. The mBDF can be thought of as a higher order 
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trapezium rule and, for a general time stepping problem 

Ut = 

is given by the following formula 

Ii 

u'  (L(,,') + £(u)) = 
j=n-s+1 

(4.2) 

where 9 and aj correspond to the values in Table 4.1. It has been shown in [60] 

that for 1 ≤ .s ≤ 6, the mBDF is both convergent and stable. The mBDF is also 

3 {a+i,. . . 

2 1 {1,-1,0} 

6 -15 3 -1 
" 13 l. ' 13 ' 13' 13 

A 3 Si -19 9 -5 1 
7 1' 14 ' 14' 14' 14 

60 -235 180 -140 55 -91 
149 1 ' 149 ' 149' -T4-9 ) 149' 149 

60 Si -283 300 -300 175 -57 8 
' 157 l' 157 ' 157' 75-7 1 157' 157' 157 

Table 4.1: mBDF coefficients 

stable and convergent for s = 7. Since this is not so for the BDF, there is no point 

in discussing the mBDF for such an order. Aside from the differing coefficients, the 

main difference between (4.2) and (2.19) is the additional term £(u') on the left side 

of the equation (4.2) [60]. For this extra term we need only store one extra value 

from the previous time step. 
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The final piece that we need for the error indicator is the coefficients c1 and c2 

from the respective BDF and mBDF methods. These coefficients indicate the size 

of the error term for the given method, and will provide a way of normalizing the 

effect of these errors for the two methods. These c values are called the local error 

constants and are given in Table 4.2. Now that we have all of the components we 

method c 1 2 3 4 5 6 

BDFc1-1-2 
2 9 22 

12 
125 

jQ 
137 

Q. 
343 

mBDF c2 0 6 
_1 
6 

L 
10 

i 
15 63 

Table 4.2: Local error constants for the BDF and mBDF methods 

can define our error indicator in the following way. Starting with u',. . . , 

we first compute U' 1 using (2.19). Then we compute u 1 using (4.2). The error 

indicator e is then given by 

Cl 

Cl - C2 

I IuTh+l _.11n+lil 
II  

IIu+'II 

A ratio of the norms has been used in this definition, to give a norm relative to UTh+l. 

This relative norm is used since we are really only interested in how far ur' deviates 

from U' 1 as opposed to the true difference in the Euclidean norm [40, 45]. 

Once the error indicator has been decided then there are three choices based on 

the result. If the error is too small, i.e. 6 < then we can increase the step size. 

If the error is too large, i.e. 5 > Ta, then we ignore that particular value of u 1 

since it may be incorrect and then we decrease the step size. Otherwise if the error 

is within the tolerance that we have set, then we continue with the same step size. 
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This process is refered to as the Mime device. At this stage we have the option to 

choose exactly how much we will be increasing or decreasing the step size based on 

how far the error deviates from the tolerance boundaries (e.g. At = For 

this type of adaptive time stepping it would be better to use a true error estimate 

such as (4.1), since it is an actual upper bound on the error. Since we are using an 

error indicator and we know that overall, the timesteps will be small, it will suffice 

to simply double or half the timestep as required. 

4.2 Modifying the step size 

Once it has been decided that a doubling or halving of the time step is needed, there 

are a few more things to be done, as the list that is being used only contains elements 

that are /t apart. 

4.2.1 Halving At 

In order to halve the time step we need io have the elements that fit in between 

the values in the current list. Rather than {u',... , U 8+1}, which are /t appart, 

we want u',. .. , u%1 } where the spacing is . This'can be accomplished 

using a similar form of interpolating' polynomial to what was seen in Section 2.6, the 

Lagrange polynomial. In this case we are doing a true interpolation rather than an 

extrapolation. 

The general form of the polynomial for an s order algorithm can be defined as 

p(x) = aolo(x) + aili(x) + .. + a8l(x) 
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where 

lk(x)=j[, for k=O,...,s. 

i54k 

We can simplify this since we are dealing with evenly spaced elements and even 

further since we only need a few extra terms [14]. Knowing that Xk = kLt for 

k=O, ... ,s then with s'=Lj, 

  for k=O,...,s,j=1,... Is/ , (4.3) 

zØk 

which is independent of At so we can pre-compute the interpolating matrix L. 

Then, given the list {u,. .. , uTh 3+l} with a spacing of At we can obtain a new 

list ,u'9} where the new values . . ,u9} are com-

puted using the matrix multiplication 

[uIu4I Iu'] = [uI . Iu'']L. 

We can now use the normal BDF with a time step of on this new list to obtain 

un+. 

The error term for an interpolating polynomial is dominated by the next term 

in the expansion. From (4.3) it can be seen that the polynomial will depend on At. 

So if an s order polynomial is used then the error will be Q(zt') which is also the 

order of the error for the time stepping formula. So the newly interpolated values 

are sufficiently accurate provided all s points are used for the interpolation. 
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4.2.2 Doubling /t 

The process for doubling the time step is very similar to the initialization procedure 

seen in Section 2.4.1. In fact there is no need for an initialization procedure with 

this method as the step size will increase on its own when needed. As a consequence 

the initial time step for the method must be chosen to be sufficiently small in order 

that the results will still be meaningful. 

Starting with the list {u,... , we use 'leapfrogging' to get {(_'), 

U 8+'} and then choose every second value and let this be the new list as in 

Figure 4.1. Since the time increment has already been increased by (s - 1)Lt there 

Old list 

. . . . . 

• . 
New list 

Figure 4.1: Old list to new list 

is no need to immediately use the BDF with a time step of 2Lt to find a new value 

utm. It is better to simply return to the loop and start again using 2Lt as the time 

step. That way the procedure will be a little more sensitive to any changes in the 

solution. 

4.2.3 Overshooting 

Since the time steps are variable it could end up that the distance to the final time 

T is much smaller than At, as shown in Figure 4.2. Care must be taken to ensure 
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At 

Figure 4.2: Overshooting T 

that the final steps allow the method to finish exactly at T. This is accomplished by 

employing the algorithm for halving At from Section 4.2.1 whenever overshooting is 

going to occur. 

4.3 Some test problems 

Again, the method is implemented for a few problems to illustrate its behavior. 

When the rotating cone and the standing sine problems are solved with Ta = 10-2, 

results are obtained which are similar to those in Sections 3.5.1 and 3.5.2 and will 

thus be omitted. For the remainder of this thesis the errors are measured using the 

L2 norm unless otherwise specified. 

4.3.1 Vortex convergence problem 

This problem was described previously in Section 3.5.3. The conditions used will be 

the following: N = 128, T = 40, T = 10_2 and ii = 5 x io. The time stepping 

will be decided adaptively based on Ta = for j = 1, 2, 3. The Ej are the 

corresponding errors to the Ta = Results can be seen in Figure 4.3 and Table 

4.3. Figure 4.4 shows the size of At as time progresses. It is clear from this figure 

that around t 23, At was doubled. 
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Figure 4.3: A-LG solution for the vortex problem: contours of w(x, t) of the 
solution to the vortex problem for the times indicated using s = 3 and Ta = 10-2 at 

selected times t. 

4.3.2 Stream vortex problem 

This is the same initial condition as that which was described in Section 3.5.4. The 

values used for this computation are, T = 150, v = 5 x iO 4, T = 10_2 and N = 128. 

The results can be seen in Figure 4.5 and Table 4.4, where the error ej corresponds 

to the adaptive tolerance Ta = lOs. Figure 4.6 shows not only that At was doubled 

at t 40 but that At was quite large (zt> 1) for most of the computation. 

Order 2 3 4 5 6 
0.257 0.174 0.0464 0.167 0.191 

82 0.077 0.0366 0.00185 0.155 0.167 

83 0.111 0.000845 0.000155 0.0275 0.0583 

Table 4.3: A-LG errors for the vortex problem 
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Figure 4.4: At vs. t for the vortex problem 

35 40 

Looking at Tables 4.3 and 4.4, it seems that s = 3 or 4 would be good choices. 

This could be due to the idea that the higher order methods, s = 5, 6, tend to get a 

bit cumbersome. In Section 4.2.2 we saw that in order to double the step size from 

At to 2It, that (s —1) steps at /.t are needed. There is also the fact the C2 I= 24 

for s = 4. This high value will make the method even less likely to take larger time 

steps. 

Order 2 3 4 5 6 
.61 0.0487 0.0485 0.0195 0.08 0.0667 

-62 0.0342 0.009 0.0032 0.0212 0.0290 

-63 0.00556 0.000107 0.000301 0.000661 0.00431 

Table 4.4: A-LG errors for the stream vortex problem 
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Figure 4.5: A-LG solution to the stream vortex problem: contours of w(x, t) 
of the solution to the stream vortex problem using the A-LG method at order 3 and 
with Ta = 10 2 for selected times t. 

4.4 Variations on the adaptive Lagrange- Galerkin method 

This is not the only way to make the method adaptive in time. Some alternatives 

could be to use Runge-Kutta time stepping or a modified multistep method that can 

deal with variable At. 

4.4.1 Runge-Kutta time stepping 

As an alternative to the adaptive scheme presented above a one-step scheme could be 

used. The most widely known of these schemes are the Runge-Kutta (R-K) schemes 

for which the general r-stage version for a time dependent equation such as (2.14) 
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Figure 4.6: /t vs. t for the stream vortex problem 

can be defined as [53] 

K1 = 

i-i 

j=2, ... ,r 

u'' =u+ At >bjKj. 
k=1 

150 

If a R-K method is used then the halving and doubling of At becomes much simpler, 

as all that is really needed is to double or halve At between the steps of the method 

and the rest is already inherent in the algorithm. For this same reason it may 

be thought that a R-K scheme would not need a 'start up' procedure such as the 

leapfrogging method presented in Section 2.4.1. This is only partially true as it may 

also be necessary to use a different number of stages r in order to keep the same 

order of accuracy. 

Another reason to choose R-K schemes is to save storage space. s-order R-
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K methods have been developed so as to only use a fraction of the storage usually 

required. For example, a 4th order scheme that only requires the storage of 2 previous 

values of K, whereas a BDF method would require all four previous values. 

The main reason not to use R-K methods is that in general they are not useful for 

solving stiff problems or operators such as £ that require some implicit computations. 

Unfortunately, the N-S equations tend to fit both of these criteria. 

4.4.2 Variable multistep methods 

A variable multistep method is a time stepping algorithm that does not require the 

time steps to be evenly spaced as the BDF and Adams schemes do. There may be 

several of advantages to computing the time stepping with a multistep method for 

irregularly spaced data, such as generalized BDF. First, there would be a savings 

in the complexity of the computation, and as a consequence, the execution time. 

Savings would occur near the end of the iterations where the current method must 

take care not to overshoot the final time, T. The variable multistep method would 

simply finish with a single time step rather than 'winding' down as the current 

method does. The other advantage would be in the increasing (or the decreasing) of 

the time step. There would be no need to iterate s - 1 times as mentioned in Section 

4.2.2. /..t could simply be doubled, then a single time step could be taken and then 

the next iteration could' be computed. 



Chapter 5 

Results and comparisons 

In this chapter we look to make a direct comparison between the adaptive and the 

non-adaptive Lagrange-Galerkin method. As was done in the previous sections, a 

pseudospectral method with a very small time step will be used to compute the 

reference solution to the given problems. 

5.1 Speed vs. accuracy 

The problems examined in Sections 3.5.3, 3.5.4,, 4.3.1 and 4.3.2 will now be reexam-

ined. This time around we will restrict our attention to only the 3rd order methods, 

noting the time required for the computations. This will help to determine if the 

adaptive method can indeed provide an improvement over the unadaptive method. 

The way this will be done is to fix a desired accuracy, say 10-2, and then to choose 

Vorticity Stream 

Method steps time (h:m:s) 9 steps time (h:m:s) 

LO 0.00458 206 0:42:58 0.00323 100 0:20:59 

A-LG 0.000845 825 1:21:15 0.009 189 0:27:42 

LG 0.00284 810 1:12:57 0.00456 182 0:23:43 

Table 5.1: Computational time: a comparison of the LG and A-LG methods for 
the vorticity and stream problems. 
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the error in the s = 3 column of Tables 3.6, 3.7, 4.3 and 4.4 which are less than 

the tolerance 10-2. The results are given in Table 5.1. Note that the two methods 

are not exactly on even ground as can been seen by the number of timesteps that 

each method takes. For the vortex problem the error for the A-LG method is much 

smaller than the error for the first LG method. This accounts for the large difference 

in the time taken for the two methods. The fact that the A-LG method takes 4 times 

as many steps as the first LG method also backs up this idea. Table 4.3 shows that if 

Ta is loosened a degree then the resulting error is larger than the desired tolerance. 

For a fairer comparison, the LG method was used to evaluate the same problems but 

with the number of time steps chosen to more closely match the steps taken by the 

A-LG method, these results are shown in the last row of Table 5.1. While the LG 

method was a bit faster in .both cases, the error for the vortex problem was much 

more than its A-LG counterpart, whereas for the stream problem the error for the 

LG method was better. These results seem to indicate that the problem at hand will 

determine whether the A-LG method will be superior to the LG method or not. To 

investigate this further we shall devise a new problem. 

5.2 More comparative tests 

Now we shall look at a couple of other problems and compare the results obtained 

for the two different methods. For these new problems the initial conditions were 

chosen to have random phase and energy in a similar fashion to the inital conditions 

described in [36]. With the initial condition defined in this way we introduce a new 

parameter t. t determines the decay of the Fourier coefficients of the initial condition, 
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the larger the parameter t, the faster the decay of the coefficients, the smoother the 

initial conditions will be. For t < 1 the chosen grid size is not large enough to resolve 

all of the details in the initial condition. In other words, with N = 128, the initial 

condition cannot be determined with sufficient accuracy for our purposes. The initial 

condition is also scaled so that the maximum absolute value of the vorticity is 1. 

5.2.1 A random problem 

The results are shown in Figures 5.1 and 5.2, and were obtained using the following 

conditions: N = 128, T = 150, Ta = 10, s = 3, 1' = 5 X 10 4,t = and T = 2. 

Table 5.2 displays the errors, the number of steps and time taken for both methods. 

• The results for the random problem seem to indicate that the two methods give 

comparable results, with the adaptive solution a bit slower than its non-adaptive 

counterpart. This can be attributed to the conservative nature of the Milne device. 

One option that could change this is to use a looser tolerance Ta, and/or modify 

the value that determines whether E is too small. Currently if e < , then the 10 

step size is doubled. As a result of this decision, the method refused to change At, 

during the computation, except at the beginning and the end, as seen in Figure 5.3. 

This means that the problem does not vary enough to necessitate variable values 

Method steps time (h:m:s) 

LG 0.00767 280 0:36:08 

A-LG 0.00894 282 0:40:26 

Table 5.2: Results for the problem with a random initial condition 
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Figure 5.1: LG solution for the random problem: contours of w(x, t) of the LG 
solution using 280 time steps at selected times t with ii = 5 x 10'. The results are 
visually indistinguishable from those in Figure 5.2. 

of At. What has occured, is that the method has computed the solution using the 

most optimal value of At it had available. To make the method more apt to change 

we could change the value to , but in doing so there is a greater risk of 

incurring excessive error, due to the increased possibility of having the method take 

an erroneously large time step. 

With the method modified such that, At will be doubled if S < , we will look 

at a new problem, that will illustrate the adaptivity of the method. Again we take 

a random initial condition with the same values as stated above, only this time the 

viscosity is much higher, 71 = 5 x iO and t = . Increasing the viscosity will have 
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Figure 5.2: A-LG solution for the random problem: contours of (x, t) of the 

A-LG solution using T,, = 1O at selected times t with v = 5 x 10 The results 
are visually indistinguishable from those in Figure 5.1. 

similar results as extending the final time T. The results are shown in Figures 5.4, 

5.5 and Table 5.3. Figure 5.6 shows the variation of At as the time progresses. 

Since this problem is more diffusive than the previous problem, it becomes much 

smoother as it approaches the final time T. This smoothness is the reason for the 

progressively larger time steps. While this additional diffusion may allow the A-LG 

method to take larger steps and thus finish the computation quickly, it also diffuses 

any errors incurred at the early stages by the LG method. This makes the results 

in Table 5.3 comparable again, with neither method a clear improvement over the 

other. 
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1. 1. 

Figure 5.3: It vs. t for the random problem: /t does not vary for this problem 
(except at the ends) due to the conservative values chosen for the A-LG method. 

5.3 Further possible modifications 

It is by no means necessary to stick to the standard BDF, A-B or A-M formula, 

provided the version being used still satifies the stability and convergence conditions 

required for the problem. A few possible modifications could be to use a variable 

time stepping formula vBDF,vA-B or vA-M [53]. This would save a lot of time at 

higher orders when going through the growing phase in Section 4.2.2, since we would 

only have to iterate once. For the same reason there would be very few problems 

with overshooting the final time T. All that would be required is to set /t to be 

equal to the distance to T. One drawback to this idea is that often, the coefficients 

associated with the methods would have to be recomputed at each time step. 

Method steps time (h:m:s) 

LG 0.00339 404 0:52:52 

A-LG 0.00475 336 0:50:19 

Table 5.3: Results for a more viscous problem 
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Figure 5.4: LG solution for a more viscous problem: contours of w(x, t) of the 
LG solution using 404 time steps at selected times t with v = 5 x 10. Due to the 
high diffusion, there is little that changes visually between t = 50 and t = 150. 

Another possible variation is to chose a specific version to match the problem. 

One example can be seen in [28] where the A-BDF is especially suited to deal with 

highly oscillatory problems. This variation of the BDF can even go as high as s = 7. 

The drawback to the A-BDF is that since it is specially suited to this certain type 

of problem then it may not work so well in a more general setting. 
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Figure 5.5: A-LG solution for a more viscous problem: contours of w(x, t) of 

the A-LG solution using Ta = 1O at selected times t with v = 5 X iO. 

1. 

Figure 5.6: At vs. t for a more viscous problem: the smoothness of this problem 
allows the A-LG method to take larger steps as t progresses. The doubling of At is 
noticable at t 45 and 130. 



Chapter 6 

Conclusions 

When restricted to simple boundaries it is difficult to find a class of methods that can 

provide the combination of accuracy and simplicity that spectral methods provide. 

The pseudospectral method, which is possibly the most basic of the spectral methods 

was examined in Chapter 2. Provided sufficient time steps are used, so as to avoid 

any instabilities, the pseudospectral method provides quite accurate results. Often 

it will be such that the sufficient number of time steps required will be so large that 

the method will be too time consuming and end up with results which are more 

accurate than needed. While it is not necessarily wrong to have too much accuracy, 

the point here is that the method could take more time than needed to satisfy the 

minimum required accuracy. 

This conditional instability for the pseudospectral method is the very strength of 

the Lagrange-Galerkin method. As was mentioned in Section 3.6 it has been shown 

that the method is unconditionally stable provided the integrations are computed 

exactly. This means that the size of the time step is determined solely by the accuracy 

not the stability. The Lagrange-Galerkin method could be constructed so as to be 

as fast as the pseudospectral method, but with the addition of stability. 

Unfortunately with some of the choices made in this thesis this particular spectral 

Lagrange-Galerkin method is not as fast as this particular pesudospectral method. 

However it was never really the intention to compare the two methods directly. 

What we were looking to do is to provide an improvement to the existing spectral 
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Lagrange-Galerkin method. 

The regular fixed time stepping algorithm was replaced with an adaptive algo-

rithm, in order to achieve this improvement. This is a natural progression for the 

Lagrange-Galerkin method since, as was already mentioned, the method is uncondi-

tionally stable, up to certain constraints. The stability properties mean that there 

is no need to monitor the size of At in order to maintain some stability condition, 

as would be required for an adaptive pseudospectral method. 

It is possible that adaptive time stepping can improve over fixed time stepping in 

specific cases. These cases include problems there the energy of the system decays 

rapidly, or needs to be computed over a long time period, but fine details still exist 

at the final time. This was not the case with the problems chosen in Section 5.2, as 

the diffusion in the problem had a tendency to smooth out the details at the final 

time. Although it did not show improved results, the adaptive method described 

in this thesis gave results that were comparable to its unadaptive counterpart. One 

slight advantage that the A-LG method has, is that given a desired tolerance, it is 

a bit easier to determine the tolerance Ta that will satisfy that tolerance than to 

determine the required number of time steps for the LG method. 
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