
THE UNIVERSITY OF CALGARY

An adaptive Lagrange- Galerkin method for the numerical solution of the

Navier-Stokes equations

by

Andrew Taylor

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

January, 2005

© Andrew Taylor 2005

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "An adaptive Lagrange-Galerkin

method for the numerical solution of the Navier-Stokes equations" submitted by

Andrew Taylor in partial fulfillment of the requirements for the degree of MASTER

OF SCIENCE.

/WAL
Dr. Tony Ware
Department of Mathematics and Statistics

Dr. Len Bos
Department of Mathematics and Statistics

Dr. Edward Krebes
Department of Geology and Geophysics

Date

11

Abstract

We shall examine the numerical solutions of two dimensional incompressible fluid

flow problems via spectral methods. The focus will be on Galerkin methods with

the aim of constructing a Lagrange-Galerkin method which is adaptive in time.

A comparison will also be made between the Lagrange-Galerkin method in both its

adaptive and unadaptive forms with the pseudospectral method. The pseudospectral

method has been chosen since it is a widely accepted standard method for solving

periodic fluid flow problems.

Since the Navier-Stokes equations, which govern the motion of incompressible

fluids are nonlinear, there are often difficulties in computing the numerical solution.

The main difficulty with the pseudospectral method is that it is only conditionally

stable. This is the motivation for using the Lagrange-Galerkin method instead since

it is unconditionally stable. So the only consideration that needs to be made for the

step size is determined by how accurate the solution needs to be. The motivation for

the adaptive Lagrange-Galerkin method is that it is a faster unconditionally stable

method as opposed to the pseudospectral method.

1'1

Acknowledgements

I would first like to acknowledge Prof. Tony Ware for his patience and perseverence

over the past number of years, and also for the little MATLAB tidbits that made

programming less of a torment and more of an enjoyment.

It is my humble opinion that friends are a necessary distraction in order to com-

plete a thesis. So thanks also go out friends, near and far, for movies, Ultimate,

camping trips, games, BBQ's and most importantly, just doing what friends do.

Finally I would like to thank my family for their support, and especially my

mother, as I know she would have liked to have seen my finished work.

iv

Table of Contents

Approval Page

Abstract

Acknowledgements iv

Table of Contents v

1 Introduction 1
1.1 The Navier-Stokes equations 1
1.2 Overview of spectral methods 6
1.3 Overview of important references 9
1.4 Open problems and challenges 10

1.4.1 Compressible flow 11
1.4.2 The onset of turbulence 12
1.4.3 Existence and smoothness of the Navier-Stokes equations 13

1.5 Summary of thesis 14

2 Pseudospectral method 16
2.1 Spatial discretization 16

2.1.1 Aliasing 20
2.1.2 Spectral derivatives 23

2.2 The vorticity formulation of the Navier-Stokes equations 24
2.2.1 Obtaining u from w 26

2.3 Time discretization 28
2.4 Higher order 31

2.4.1 Initialization procedure for higher order methods 33
2.5 Testing the method 36

2.5.1 Rotating cone problem 36
2.5.2 Steady sine function 38

2.6 Stability of the method 40
2.7 Variations on the pseudospectral method 44

3 The Lagrange-Galerkin method 47
3.1 Characteristic curves 48
3.2 Solving for the characteristics .. 52

3.2.1 Evaluating 54

V

3.3 Approximate FT using Taylor polynomials 56
3.4 Divergence free space 58
3.5 Some test problems 60

3.5.1 Rotating cone problem 60
3.5.2 Steady sine function 62
3.5.3 Vortex convergence problem 63
3.5.4 Stream vortex problem 65

3.6 Stability of the method 67
3.7 Variations on the Lagrange-Galerkin method 71

4 Adaptive Lagrange-Galerkin method 73
4.1 Error estimate 73

4.1.1 A modified backward difference formula 75
4.2 Modifying the step size 78

4.2.1 Halving /t 78
4.2.2 Doubling /t 80
4.2.3 Overshooting 80

4.3 Some test problems 81
4.3.1 Vortex convergence problem 81
4.3.2 Stream vortex problem 82

4.4 Variations on the adaptive Lagrange-Galerkin method 84
4.4.1 Runge-Kutta time stepping 84
4.4.2 Variable multistep methods 86

5 Results and comparisons 87
5.1 Speed vs. accuracy 87
5.2 More comparative tests 88

5.2.1 A random problem 89
5.3 Further possible modifications 92

6 Conclusions 95

Bibliography 97

vi

List of Tables

2.1 BDF coefficients 29
2.2 Ps errors for the rotating cone problem 38
2.3 Ps errors for the standing sine problem 40
2.4 Minimum steps for instability 41
2.5 Newton extrapolation coefficients 42
2.6 Comparison of z and aEitp 43

3.1 LG errors for order versus T 61
3.2 LG errors for order versus T with 11 - 5 x 10 61
3.3 LG errors for order versus N 62
3.4 Comparison of LG errors for order versus N 62
3.5 LG errors for the standing sine problem 63
3.6 LG errors for the vortex problem 64
3.7 LG errors for the stream vortex problem 67

4.1 mBDF coefficients 76
4.2 Local error constants 77
4.3 A-LG errors for the vortex problem 82
4.4 A-LG errors for the stream vortex problem 83

5.1 Computational time 87
5.2 Results for the problem with a random initial condition 89
5.3 Results for a more viscous problem 92

vii

List of Figures

2.1 Aliasing example 21
2.2 Order versus error 31
2.3 Leapfrogging for s = 3 36
2.4 Instability test 39
2.5 Instability example 41
2.6 Stability regions for the linear advection equation 45
2.7 positive imaginary axis for s = 3 and 4 46

3.1 Characteristic curves 49
3.2 Predictor-Corrector algorithm 53
3.3 LG solution of the vortex problem 65
3.4 1092 e of the vortex errors 66
3.5 LG solution of the stream vortex problem 68
3.6 1092 e of the stream vortex errors 69

4.1 Old list to new list 80
4.2 Overshooting T 81
4.3 A-LG solution for the vortex problem 82
4.4 At vs. t for the vortex problem 83
4.5 A-LG solution to the stream vortex problem 84
4.6 At vs. t for the stream vortex problem 85

5.1 LG solution for the random problem 90
5.2 A-LG solution for the random problem 91
5.3 /t vs. t for the random problem 92
5.4 LG solution for a more viscous problem 93
5.5 A-LG solution for a more viscous problem 94
5.6 At vs. t for a more viscous problem 94

viii

Chapter 1

Introduction

Fluids can be encountered in almost every aspect of our daily life; from that hot

cup of morning coffee to the very air we breathe. Some other examples include the

instability of flow down a pipe, the jetstream in the atmosphere, volcanic lava flow in

the Earth, the swimming of bio-organisms, oil reservoir simulation and magnetohy-

drodynamics [67]. It is no wonder that there is such an interest in not only how fluids

behave, such as the propagation of waves in a pool, but in how they interact with

their environment, such as how the air flow over a wing provides negative pressure

and hence lift. The behavior of fluids can be simple or complex. Some simple cases

can be solved directly [1]. The more complex problems however require a numerical

solution. These numerical solutions are often quite computationally time consuming,

especially in three dimensional flow. So the name of the game becomes how to trim

down these computations from the most recent benchmarks, all the while maintain-

ing a desired level of accuracy. This thesis will present and compare three possible

methods for the numerical solution of fluid dynamics. An overview of the pertinent

fluid equations will be given before these three methods can be introduced.

1.1 The Navier-Stokes equations

First we let

X = (x(t),y(t),z(t))

1

2

be a Euclidean position vector and then define

U = (u(x,t),v(x,t),w(x,t))

to be the velocity for a given point x at time t. u, v, and w are the velocities in the

x, y, and z directions respectively and depend on x, y, z, and t. We can think of x

as the position of a tiny particle suspended in the fluid at a given time t. Then u

becomes the velocity of that particle at that same time.

It is assumed that the fluids discussed herein are ideal. An ideal fluid has a

uniform density (p is constant), is incompressible (V u = 0) and the force on a

surface element dS can be defined by pndS, where p(x, t) is the pressure function

and n is the normal to the surface element dS. S refers to the closed surface of a

fixed volume V in the domain [1, 12].

A fluid is said to be inviscid if there is no interaction between the particles of

the fluid or if these interactions are small enough to be ignored [46]. The basic

equations that describe the motion of inviscid fluids are called Euler's equations.

Euler's equations of motion for inviscid fluids are

V)u=—Vp+g
P

V.u=0. (1.2)

The second equation is the incompressibility condition. If the fluid is incompressible

then the net flow passing through the entire surface S must be zero [12], in which

3

case (1.2) can be shown as follows

0= fu.ndS= V.udV V•u=0,
J

since this must hold for all bodies V. In (1.1) p is the pressure within the system,

which like u can depend on x, y, z and t. p is called the mass density. g represents

any external forces acting on the system. This could be anything from a magnetic

force acting on a metal in a liquid state (although this would be by far the simplest

case of magnetohydro dynamics [10]) to the ever present force of gravity. With the

flow defined as it has been above then there are a few 'specialized' types or conditions

in the flow that have very simple representations. Steady flow, for example, is a flow

which remains constant and does not change with time and can be represented as

Irrotational flow, as the name implies, has no points where the flow rotates and can

be represented with

Vxu=0.

Otherwise we call w, defined as

W = V x u,

the vorticity of the flow.

Euler's equations, given by (1.1) and (1.2), only describe the motion of inviscid

fluids. However, since all fluids are viscous to one extent or another, it seems reason-

4

able to include viscosity into the equations for the motion of the fluid. The viscous

counterparts to Euler's equations are known as the Navier-Stokes (N-S) equations.

These are given by

au 1
-+(u•V)u=--Vp+vV2u+g

P
(1.3)

V•u=O (1.4)

where v = 8 and = coefficient of viscosity. These equations are derived from

three principles of physical motion applied to a mass of fluid: conservation of mass,

balance of momentum and the conservation of energy [12]. One other useful piece of

information when discussing fluid flow is the dimensionless Reynolds number given

by

R= —

where U = characteristic velocity and L = characteristic length. The Reynolds

number can also be thought of as a ratio of the magnitude of the two dominant

terms in the Navier-Stokes equations: the convection term (u. V)u and the diffusion

term vV2u [1]. This ratio can be written as

(u.V)ul 0(WIL2 U2/L =0(R).
IvV2uI -)

The Reynolds number can be used to determine when two flows are similar [12]. If

we looked at a small pebble (L1 = 0.1cm) rolling around in water (v1 = 0.001) at

a moderate speed (U1 = 10), and compared that to a bowling ball (L2 = 10cm)

rolling around in olive oil (zi2 = 1.0) at slow speed (U2 = 0.1?), we would find

5

that the same model could be used to represent both cases, since

U1L1 = U2L2 =
LI1

There are more practical uses for the Reynolds number, such as determining the

thickness of a boundary layer 8 using the formula

= O(R).

The Reynolds number can also be used to split flows into two broad categories: low

Reynolds flow and high Reynolds flow. Although there is no set division as to what

constitutes low or high Reynolds flow, a good guideline would be R << 1 (R much

smaller than 1) for low Reynolds flow and R > 1 (R near or greater than 1) for

high Reynolds flow [1]. This distinction is useful since the behaviour of a fluid could

change from one case to another. Consider the behaviour of air at low speeds, that

is to say situations of low Reynolds flow like driving a car, the flow around an object

can be modeled quite accurately by the Navier-Stokes equations. However at higher

Reynolds flow, such as the case of a rocket travelling faster than the speed of sound,

the simplified form of the Navier-Stokes equations that has been presented thus far

may not be sufficient. A newer set of equations would be needed to account for the

compressibility of the air at and beyond the speed of sound.

In order to keep things simple we will restrict our attention to the two dimensional

incompressible case and use periodic boundary conditions. In two dimensions, the

vorticity w becomes a scalar [22]. With periodic boundary conditions we do not

6

have to worry about discontinuities near the boundary caused by sharp features.

With these two simplifications the high accuracy of the pseudospectral method can

be maintained with little effort. We will also work within the region Q = [0, 2ir]2

knowing that any other rectangular area can be accomodated using a change of scale.

1.2 Overview of spectral methods

All of the methods discussed in this thesis can be classified under the broad label of

spectral methods. The strength of the spectral methods lies in the transformation

into Fourier space. This transformation carries many advantages, the most important

of which are speed (via the Fast Fourier Transform (FFT), or the Inverse Fast Fourier

Transform (IFFT) where applicable), the ease with which derivatives may be applied,

and speed of convergence.

The FFT is possibly one of the most important computational algorithms of the

past century. The FFT was a huge leap forward in areas such as signal process-

ing, numerical analysis and, of course, spectral methods [7]. Being able to apply a

Discrete Fourier Transform (DFT) in O(N log N) time rather than the cumbersome

0(N2) is what makes these spectral methods practical.

When we wish to apply a derivative to some function in Fourier space the op-

eration is a multiplication by a scalar. For example, given a sufficiently smooth

differentiable function, f(x) on x € R, its Fourier coefficients corresponding to a

frequency p can be represented as 1(p) in the following way

00

f(p) f 00 f (x)e-Pxdx, p E R. (1.5)

7

The process of getting f(p) from 1(x) is referred to as a Fourier transform. To undo

this process an inverse Fourier transform can be applied and is defined as

00 AX) = .fJ(P)eiPdP, xE1R. (1.6) 00
2-7r

Then for a derivative of f(x) in Fourier space, defined as in (1.6) will have OX

coefficients ipf(p). If f(x) is a periodic function with a period of 2ir then the Fourier

transform can be evaluated with an infinite sum rather than an integral. The periodic

equivalent of (1.6) is written as

where a(p) is defined as

00

1(x) = eilx

a(p) = f 7T f(x)edx, p E Z.

(1.7)

We refer to (1.7) as the Fourier series expansion of a 27r-periodic function 1(x). Since

we cannot sample every single point x E 11 then what we use instead is a Discrete

Fourier Transform (DFT) where only a discrete number of evenly spaced points, x,

are sampled [65]. At the discrete grid points xj = 2 , f(x) is represented by

2

j=O,... ,N-1 (1.8)

8

where

a =
N-i

j=Q

f(x)ei, p = _i, •• , - 1.

The Fourier coefficients of the derivative of 1(x) when represented in the form given

by (1.8) are ipap. The advantage to dealing with the derivatives in Fourier space is

that the task of taking the derivative of a discrete periodic function f(x) is reduced

to a matrix-vector multiplication [27, 43].

The area that most spectral methods differ is in how they deal with the non-

linear convective term (u. V)u in (1.3). Products in real space become convolutions

in Fourier space. The convolution of two one dimensional discrete functions u(m)

and v(n), periodically extended to Z for m = 0,... , N - 1, can be defined as

(u*v)(m) =Eu(m)v(n—m), forn=0,... ,N-1.
m=O

To evaluate the convolution in this form would require 0(N2) operations, quite

time consuming when compared to the other operations in Fourier space. The pseu-

dospectral method deals with this problem by making an FFT transformation back

into real space (0(NlogN)), then performing the product directly (0(N)), then

transforming back into Fourier space again (0(N log N)) for a total of 0(N log N)

operations [52, 65]. In the two dimensional case that we will be working in, we get

a savings of 0(2N2 log N) versus 0(N4). For a grid size of N = 32, that is the

difference between 106 and iO.

Semi-Lagrangian methods handle the convolution term by looking along the path

the 'particle' velocity follows where the convolution term can be combined into a

9

single term with the time derivative. In other words, we are looking to change

from the old coordinate system (x, t) to a new coordinate system (X (x, t), t) where

U(x, t) = u(X, t). This new coordinate system is chosen such that the material

derivative (the left side of (1.3)) becomes a directional derivative in the direction of

X. This directional derivative is denoted as U, and is defined as

Ut = ut(X,t) + (u(X,t) . V)u(X,t).

In this new coordinate system (1.3) now looks like

U = -Vp+vV2U+g.

If g = 0 and p is constant then the equation (1.3) is reduced to a pure diffusion

equation for U, and the problematic convective term has been assimilated into the

term U.

1.3 Overview of important references

For comprehensive articles on the subject of spectral methods we need only look

as far as Gottlieb and Orszag [31] and Fornberg and Sloan [27]. While the latter

tends to focus almost entirely on pseudospectral methods, including a treatment of

pesudospectral methods as a special case of finite difference methods, it is none the

less a good introduction to the topic. The former is more suited to a reader looking

for a broader, more comprehensive view, including aspects of stability, convergence,

accuracy, and many explicative examples. Previous papers by Orszag would also

10

cover the same topics [51, 52]. For a more comprehensive resource one could look

to the treatment given by Canuto et al. [8]. This is a very influential work on,

the subject of spectral methods. For a slightly more mathematical and up to date

reference one could look at Peyret [53]. Another article that was heavily referenced

in regards to pseudospectral methods was that of Schneider, Keviahan and Farge

[22]. This was also used as the basis for the comparisons done in Sections 3.5.3

and 4.3.1. The basis for the comparisons in Sections 3.5.4 and 4.3.2 are the works

done by Ware [66, 67]. These were also greatly referenced in regards to the spectral

Lagrange-Galerkin method. The last of the extensively referenced works is treatment

of numerical methods given by Iserles [40]. This was a particularly influential work

in regards to the time stepping and adaptivity algorithms.

One final work of importance is the FFT algorithm presented by Cooley and

Tukey [16], without which spectral methods would simply not be feasible.

1.4 Open problems and challenges

The subject of fluid dynamics is a broad and widely applied field. Many other aspects

of the field are widely researched and yet we still do not possess a full understanding of

the subject. Other areas that could be discussed are: compressible flows, shocks and

waves [12], the conditions and triggers for turbulence [18, 46], non-periodic boundary

conditions, high viscosity flow [1], thermal convection [41] and combustible fluids [44].

Full texts can be written, as noted in the previous section, and still not cover all the

possible topics.

The aim of this section is to look at a few other topics and open problems in fluid

11

dynamics. The main focus will be on how they differ from what has been previously

discussed and what the potential impact could be.

1.4.1 Compressible flow

It is somewhat unrealistic to restrict our attention to incompressible fluids since,

to some extent, all fluids are compressible. However, when the Mach number M

is small it can be shown that the N-S equations will provide a good approximation

to the behavior of a compressible fluid. The Mach number here refers to another

dimensionless number describing the ratio of the velocity of the flow compared to the

speed of sound, c. First, assume that the fluid is adiabatic, that p, p and u depend

on x and t and define the constant y as ry = where C = specific heat at constant CIO

pressure and C = specific heat at constant volume. An adiabatic system is one in

which no energy is lost or gained from outside sources. The Mach number may then

be defined as

M= lul

where

In a more general setting, one way of writing the compressible fluid equations

would be

au
p(+u. Vu) = — VP +(A+i)v(v .u)+v2u

at
(1.9)

where). is defined by the relation = A+ , where = second coefficient of viscosity

12

and the enthalpy e (energy per unit mass) is given by

(1.10)

assuming the energy within the system is constant [8, 12]. The equation (1.9) differs

from (1.3) only by the term (A + /.L)V(V u) and the fact that p and p depend on x

and t. The dependence on x and t can be related by (1.10), and for obvious reasons

the incompressibility condition (1.4) is not used.

1.4.2 The onset of turbulence

Spectral methods, particularly the semi-Lagrangian methods, have been used to

investigate turbulent flows. A question that remains is when this turbulence will

occur. Partial answers can be investigated using pseudospectra [4, 11, 48, 52]. Pseu-

dospectra in this case are different from the pseudospectral method referred to in the

remainder of this paper. Here we are referring to the spectra of slightly perturbed

operators. Another way to describe pseudospectra is as follows: we define A to be

an operator on u then we define the spectrum A(A) to be

A(A) = {A E CIAI - A is not invertible}.

The 6-pseudospectrum A6(A) is then defined to be the set of all A E C such that

II(Al -A)-'II ≥:

13

A(A) are often used to analyse the operator A. A6(A) can then be used to provide

further analysis in a way A(A) cannot [56, 63].

These f-pseudospectra give a hint as to why turbulence sets in sooner than ex-

pected in an experiment where the velocity of the flow is slowly being increased

from a stable state. It is clear that eventually turbulence will occur, but the cur-

rent models based on the spectrum do not yield results that are sufficiently close to

the results of the physical experiments. If we extend those models to include the

pseudospectrum then the model becomes an improved predictor for the experiments.

Although this does provide a vast improvement, the predictions are still not as close

as desired to the experimental results. What is also still missing from this topic

is a complete understanding as to why the inclusion of the pseudospectra provides

improved results [18, 64].

1.4.3 Existence and smoothness of the Navier-Stokes equations

Another open challenge that exists for the N-S equations is that the existence and

smoothness of the solutions has not yet been proven for three dimensional flows, for

time [0, oo), given smooth initial conditions. (The existence and smoothness can be

shown for two dimensions.) It can also be shown that the existence and smoothness

holds for certain restrictions on the initial condition u0 and the time interval [0, T).

The vague restriction on u0 is that it must be sufficiently small [13]. For the time

interval, existence and smoothness can be shown when T depends on the initial

data. In addition, it is known that N-S equations satisfying the above conditions

will always have a weak solution, but the uniqueness of these weak solutions has not

yet been proven.

14

When fluid equations can be found in such a vast number of fields as mentioned

above, yet their existence and smoothness cannot be shown, it is of little surprise to

see that proving the existence and smoothness for the N-S equations, became one of

the seven Clay Mathematics Institute's Millennium problems [25].

1.5 Summary of thesis

We will begin with a look at the pseudospectral method for two reasons. First, this

method will be the method to which the Lagrange-Galerkin and its adaptive variation

will be compared. The pseudospectral method has been chosen as this standard since

it is widely known to provide highly accurate solutions if given sufficient time steps

and for periodic boundary conditions [22]. The main fault with the pseudospectral

method is that it is only conditionally stable. As shall be seen in Section 2.6, there is

a minimum step size that must be taken so that the method will not diverge or as it

is sometimes referred to: blow up. A second reason to start with the pseudospectral

method is that it is a fairly straightforward spectral method and will thus provide a

good introduction to the spatial discretization of spectral methods that we will see

in Section 2.1 and the remainder of the thesis [31].

Having laid down the groundwork for spectral methods, specifically the pseu-

dospectral method in Chapter 2, we then look at the Lagrange-Galerkin method

in Chapter 3. The most sensible way to discuss the Lagrange-Galerkin method is

to first discuss the method of characteristics as in Sections 3.1 and 3.2, since the

Lagrange-Galerkin method can be thought of as a multi-dimensional extension of

that method [38, 66]. Having completed the discretization in time we then look at

15

the tools that will be needed to compute the spatial solution. To accomplish this we

use an approximation to an unevenly spaced Fourier transform, as seen in Section

3.3 [68], and then solve the Helmholtz equation.

Once the Lagrange-Galerkin method has been described, then the only element

that is needed in order to form an adaptive Lagrange-Galerkin method is some means

of measuring the error, which shall be covered in Section 4.1. A way to adjust the

step size accordingly as in Section 4.2 will be examined [40]. Each chapter will be

finished off with a few examples to illustrate the performance of the various methods.

Then for Chapter 5 there is a comparison of the two forms of the Lagrange-

Galerldn method for certain random and some selected initial conditions [36]. The

intent of this comparison is to highlight the conditions for which adaptivity in time

will be an asset to the computation.

Chapter 2

Pseudospectral method

The pseudospectral (PS) method has a long history of use for numerical simulation

of fluid flows with periodic boundary conditions [4, 5, 27, 37, 53, 66]. It is highly

accurate and, with the use of the FFT, can be implemented very efficiently. For

these reasons it shall be used to determine a reference solution to which the other

methods can be compared, as was done in [22]. While this reference solution may

not be the exact solution to the given problem, if a very small time step is used,

it will be very close. A standard reference for pseudospectral methods is [8] and is

heavily referenced in this section.

2.1 Spatial discretization

Given a function u E L([O, 2ir]), we can represent the function with its continuous

Fourier series representation

Co

where

If we define

Su(x) =

1 2

2ir
up = -I u(x)e dx

= et,

16

(2.1)

(2.2)

17

we can write

lip = (u, OP),

where (•,•) is the usual definition of a weighted inner product on L' ([0, 2ir]) [15],

defined for 1,9 E L([O, 2ir]) by

2ir

(1 g) = -- J f(x)g(x)dx.
2w

It may be noted that the q5, are orthonormal functions, since

fo
2ir

q5p(x)4q(x)dx = 2'Jröpq

(2.3)

where 6pq is the Kroenecker delta function. Su as it stands right now could be

described as discrete but not finite-dimensional. Assuming N is even, then define a

finite-dimensional approximation via

if

then

PNU(x) =

SN = span {(x)
N N
--<p<—
2

(PNU,V) = (u,v), Vv E SN, (2.4)

so that PN is the orthogonal projection in L([O, 2ir]) onto SN.

Using PNu(x) is pointless unless it can be shown that not only does the approxi-

18

mation converge to u(x) but that it converges rapidly. This can be shown using the

properties of the Fourier transform and the following lemma.

Lemma 1 (Riemann-Lebesgue). If u E L[O, 2ir], then (u(x), qp(x)) —* 0 as

P -4 ±00.

This lemma enables us to establish some estimates on Ifil for sufficiently-smooth

u. We assume that u and its first r - 1 derivatives are continuous and 2-7r-periodic

and that its rth derivative is integrable. Then if we take equation (2.2) and apply

integration by parts we get

1 2,r

fiP = 2ir(ip) u(T)(x)e_dx p E Z T o

where U(T) (x) is the rth derivative of u (x). Then since we assume U(T) (x) is integrable

we can apply the Riemann-Lebesgue lemma to get

p -4 ±00.
pr

From this it can be shown that if u, extended periodically to R, is in C00(J1) then

PNu(x) converges to u(x) faster than any finite power of -4 as N - oo, Vx E J1

[31]. In simpler terms, very little accuracy is lost when we truncate Su(x) at a

sufficiently large value of N. To clarify, we can say that for any 1 < oo, and any

sufficiently smooth u, there is a constant C such that [8]

lu — PNu11L2 ≤ CN Mu° IL2' VN> 0.

19

This rapid decay of the error is often refered to as "spectral" accuracy.

In practice, numerical integration must be used to compute 'i2. This leads to the

definition of the discrete Fourier transform. With xj = 21r-, j E Z, the discrete IV

Fourier coefficients are defined as

= Y' u(x)e (2.5)
3=

N

N E "= for - ≤ p ≤ , (2.6)

where is defined to be the regular definition of summation except that the first
- p

and last terms are halved [65, 67]. This second form of u is equivalent because of

the periodicity. We can represent the function u discretely at xj as

if

(2.7)

for j=O,1,... ,N-1. (2.8)

N

INU(X) ="ueiPx (2.9)

then, under the condition that u is as above, INu(x) = u(xj) for j = 0, 1,... ,i.

Thus INU, the discrete Fourier series of u, interpolates u at the points x. Again

it can be shown [8] that, for sufficiently smooth u, and for any 1 > oo, there is a

20

constant C such that

IIU - INUIIL2 ≤CN1IIuIIL2, VN>0. (2.10)

A better way to think of this is that (2.6) is the numerical quadrature of the integral

(2.2), wrapped onto [-7r, ?r] periodically, via the trapezoidal rule.

2.1.1 Aliasing

With the current notation we can say

u(x) = Su(x)
p=—oo

= INtt(Xj) =

N
2
— 'I,

peipxj .

-

2

Looking at the far right side of equation (2.11) we can then write

up =

3=

1

N N
u(x)e 2 for p = ---, . . .,

j=o

00 i (üqe i) e_i 2

q=—(:)o

q=—oo

N-i
i(q-p)xj

j=o

Discrete orthogonality can be defined as

N ifp—q=mN, mEZ
=

0 otherwise

21

Then we can then say

iiP = u + E Up+mN.
moo

(2.12)

It is easy to see that at the grid points x1 that cbp+m N(xj) = O(x). An example of

this phenomenon is shown in Figure 2.1.1. When frequencies differ by multiples of

N we say that they are aliased.

pV2

sin 90)

P1 3PI12 2p1
o≤e2,

Figure 2.1: Aliasing example: In the two examples we can see that when only
looking at 8 points on the graph the frequencies of n = —7, 1 and 9 will be indistin-
guishable.

If (2.12) is substituted into (2.9) then we can say

N

INU(X) = E " (ap +
_L \ ImI≥1

fi P+mN) eipx

22

.11
2 2

I, It

+)T) - Up+mNCipx
N p=_# I71I≥1

N

= PNu(x) +

Define the aliasing error La as

'I

2

Up+mN

La = INU(X) - PNu(x).

To show that IILaII CN 1 Iu'1) IL2 we proceed as follows

lu - INUlIL2 = Ilu - PNU + PNU - INUllL2

= IItL - PNuIl2 + IIPNU - INUIIL2

= Ilu - PNull2 + ll'allL2.

It follows that

and from (2.10) we can say

Ilu - INUIIL2 ≥ 11416

Il''allL2 ≤ L2

(by orthogonality)

What this means is that the aliasing error is of the same order as the interpolation

error [8, 53].

23

2.1.2 Spectral derivatives

Knowing INu(x) we can differentiate:

N

(INu(x))' = ipü iPX e.

Hence, to get the derivative of a Fourier series of a function, we simply multiply the

Fourier coefficients by ip, a scalar multiple of their respective index numbers p. Now

(INu(x))' 0 Iiru'(x) but it can be shown [8] that the error (INu(x))' - INu'(x) is of

the same order as the truncation error for u'; i.e., as of

11U' _ (INu)'IILp ≤ cN' II II LP

Now consider the multidimensional version of the Fourier transform and its ap-

plication to the two dimensional Navier-Stokes equations. If we take u(x, y, t) to be

the velocity of a two dimensional flow, then

INU(X,y,t) =

where in a similar fashion to (2.9)

Upq

Al N
2

M-1 N-i

NM

2
I, ll

ÜpqC

u(x, yk)e 2 xj.

Then given u satisfying Ut + (u. V)u = —Vp + uV2u + g, such that V u = 0, we

can define L(u) to be

so that

Then, projecting:

24

= —(u. V)u - VP + vV2u + g (2.13)

Ut - 'C(U) = 0. (2.14)

o = IN(Ut -

= (INut) + IN((u• V)u) + INVP - Z'INV U - Ig.

We define u(x, t) such that i(., t) E SN, Vt and i is sufficiently smooth as a function

of t such that

IN(Ut + U • Vi + VINP - vV2 - g) =0. (2.15)

We wish to solve for the numerical solution u of the equation (2.15) which approxi-

mates equation (1.3)[53].

2.2 The vorticity formulation of the Navier-Stokes equations

We will use vorticity form of the Navier-Stokes equations for the pseudospectral

method. Since we are working in two dimensions, w = V x u = (- is ay

equivalent to a scalar. We will have no external forces, meaning that we will let

g = 0. To get from the Navier-Stokes equations (1.3) and (1.4) to the vorticity

25

formulation of the Navier-Stokes equations:

Ow
+ (u V)w = uV2w (2.16)

we take the curl of both sides of the Navier-Stokes equation. We have two reasons

for choosing the vorticity formulation. First, in two dimensions w becomes one

dimensional, so when we are solving for each time step (Section 2.3) we need only

do half of the work. It is worth noting that this method would not work in three

dimensions since the vorticity would also be three dimensional. Solutions in three

dimensions are often mixtures of vorticity and velocity and possibly other variables

such as the potential and the pressure of the system. The second reason is that the

pressure p no longer has a bearing on the outcome. So we are saved the trouble of

having to solve for p(x, t) at each time step. Evaluating the pressure can be a time

consuming aspect of the computation [5, 37].

The curl of most terms in the Navier-Stokes equations is straightforward.' Only

the convective term requires a little care and the use of the incompressibility condi-

tion. The curl of the convective term can be given as

0 / 19V Ov\ 0 / 19U au
19Y ax \ Vx(uV)u

Ox\Ox Oyj

Its expansion using the product rule becomes

Ou 19V 52v Ov 8v 02v Du Ou 02u Ov 19U 52u
-- +u- + -- +v ----U ---V-.
OxOx Ox2 ax ay OxOy OyOx UxOy OyOy 0y2

26

Now using 0u - _8v from (1.4), we get
-

Dv Dv D2v Dv Dv D2v Du D'u D2u Du Du D2u
---+u--+--+v ---U +---v--
Dy ax Dx2 Dx Dy DxDy Dy Dx DxDy Dx Dy &y2

which

D2v D2v D2u D2u
Dx2 OxD Uy DxD V y Dy2

/ a D\(av Du

Dx Dyj Dx Dy

/ a a
Iu—+v—Jw
\ ax Dyj

=u•VW.

For the pressure term we need only recall that V x Vr = 0 for any r (x, t) E C.

2.2.1 Obtaining u from w

As we shall see in Section 2.3, when we wish to discretize (2.16), there will come a

point that when, given w(x, t), we wish to be able to compute u (x, t). Once again,

to accomplish this we look to Fourier space to end up with the following equation

[22]
M N
T

If
(x,y)= :i: p2 +q2

p2+q254O

6(p, q)6i(Px+qy)• (2.17)

This equation is unique up to a constant value. This can be seen by defining j, =

U + c = (u + c,v + c), where c is some constant value and V - u = 0, then w =

8(v+c) O(u+c) - jL V au
- -

Ox t9y 0x 8y

27

To get (2.17) we start with

or equivalently

Since we know that

then

and

which gives

V•u=O

Ov

5x ay*

Ov Du

Ox Oy

(02 02 \ 02u 02v
57 + U = OxOy

ay 19Y Ox

Ow

ay'

(02 02\\ 02v 02u
+ y2 aX2 V = OxOy

O(9v Ott

Ox\\Ox ay

Ow

Ox

= ' V 2u W. (2.18) (ax
Now if we interpolate (2.18) in a similar fashion to (2.9), using the Fourier derivative

28

[46], we get

M N
2
-I,

p=-q=-

zq\\ M N

(i (p, q)i(PX+Y) = " p2 + q2)fl(p, q) e', Vx, y E Q.

We can then rewrite the above, assuming p2 + q2 0 0 as

M i
2 it 2

ii 1 —zq () p2 + q 6(p, q)e ') ..

2.3 Time discretization

We discretize in two stages: first in space using the interpolant INu(x), then in

time. It shall be seen later that for the Lagrange-Galerkin method the discretization

is done first in time, then in space.

There are many possible time stepping algorithms that could be used for this

method. A few such examples include the various Euler methods, the Adams-

Bashforth [17], Leapfrogging and the Crank-Nicholson scheme [51, 53]. Newer schemes

include the Newmark-/9 scheme [43] and mixtures of the various schemes for different

parts of the problem, such as using a Backward Difference Formula (BDF) for the

viscosity terms and an Adams-Bashforth method for the convective terms [35, 55].

Another possible method that seems popular with Finite Element Schemes is the dis-

continuous Galerkin method [29, 57, 58]. Since the time steps At are evenly spaced,

(for now) then a good method to use is the BDF since it is A(a)-stable for order s < 6.

By A(ce)-stable, we mean that the infinite wedge Va = {pe °Ip> 0, IO+rI <a} ç

lies entirely within the linear stability domain V of the BDF [40]. Another way of

29

s ,8 {a+i,. •

2
3

fi -4,11
1-i-, 33

'

U
6 f1 -18

• 9,-21

4 12
25

-48 36 -16 3
- ' 25 '25' 25 '25

60
137

fi -300 300 -200 75 -12
U'' 137 ' 137' 137 '137' 137

'j

20
49

f-i -120 150 -400 75 -24 10
l. 49 49 ' 147 ' 49' 7 -9 1 147

Table 2.1: BDF coefficients

looking at this is to say that if all of the eigenvalues of the operator, in this case the

BDF, lie inside V, then any errors that are incurred by the method will only decay,

rather than grow.

We can write the general form of the s order BDF for Ut = £(u) as follows

ufl+1 - tL(u'') = aju
j=n-s+1

(2.19)

where fi and aj correspond to the values in Table 2.1. Let Z(p, q) denote the Fourier

coefficients of y) then, for 2nd order, given 2fl and then we wish to solve

for ,n+1 from the discretization of (2.16), then

(I + it/3VV2)W' = —Lt/3u. V ji* +
2

k=1

akw+, (2.20)

where I is the 2 x 2 identity matrix and u Vw* is an approximation to u 1

in Fourier space. From (2.19) we can see that we need the term LtC(u'') to

30

evaulate w 1 using the BDF. Part of £(u') requires the evaluation of U 1 Vwn+l.

This product could be evaluated in Fourier space in a manner similar to V2wTh+l, but

as seen in Section 1.2, in Fourier space a product becomes the convolution operator.

It is more efficient to evaluate the product in real space [52]. U 1 and W n41 are

needed to evaluate the product. Since '' has not been evaluated yet, we use

the approximations u and w" respectively, as seen on the right side of (2.20). To

accomplish this, we extrapolate the value w, then compute u using (2.17). For

s = 2, a linear extrapolation is used, so w = 2w - w' 1 and u is defined by letting

M N
T T

(p, q) = " " 1 p2+q2 -.) *(pq) forp2+q2 O (2.21)

M 2 (ip

ü*(Ü,Ü) = 0. (2.22)

The u is obtained from applying the inverse Fourier transform to W.

The general 2nd order algorithm for each time step can then be summarized as

follows. Given CJ and &' then

Step 1. Extrapolate using and evaluate ÜK using (2.21).

Step 2. Y' := —Lt,8u• V where the dot product u Vw* is evaluated in

real space.

Step 3. : fl+1 + E s= ak '' (apply the BDF).

Step 4. ,fl+l(p, q) := wn+l 1 - Lt/3v(p2 + q2)' since multiplying the coefficients by

—(p2 + q2) is equivalent to V2 in Fourier space.

31

2.4 Higher order

The main advantage to having higher orders is that for a small increase in the

runtime, and usually in the storage as well, we get a significant increase in the

accuracy of the method. An example of this idea is shown in Figure 2.2, where

an increase in the order of the error can be seen with each increase in the order

of the method. This means that we can often achieve a fixed accuracy using fewer

timesteps, since each time step has a higher accuracy.

.,At o O(zt 2)

•i . - o O(zt 3)
At

•i.'— . ----- o O(t 4)

Figure 2.2: Order versus error: using the s previous values (filled circles) and an
s order method, the local error of the computed value (empty circle) is proportional
to So, for At < 1, the higher the order, the smaller the local error.

The two things that change when using a higher order are the BDF coefficients

used in the time stepping and the number of points used for the extrapolation of w'.

Since the time stepping is done by the BDF which we know to be A(a)-stable for

order ≤ 6, then all we need to do is update the BDF formula according to Table 2.1.

32

For order s, if we are given C.Z,... , &Th_1, then

(I + t/3vV2)6, = _Ltu* . Vw' +
j=i

(2.23)

So now instead of storing only two of the previous results p n I Oj n-1) we need to

store up to six. Since the grid size that we will be using is usually smaller than

N = 2 7 = 128 then the extra storage is not a problem. If for whatever reason N

were larger or we were to work in three dimensions, then the extra storage could

become an issue.

The Newton formula for interpolating polynomials [14] is used for the extrapo-

lation of the value w". Given the evenly spaced points in time to, t1 = to + At, t2 =

to + 2t,... , = to + (n - 1)i.t then we have the corresponding values of

,o, ,i , , fl1 • can then be approximated using

n-i n-i
= .•. ,t_1] J] (t - tk).

j=O k=j+l

The divided-difference , t_i] is defined via

t+k] - , tj+k_l]
tj+k] •-

-
tj

with 24t] = 2F1 for j = 0,... , n. - 1. Since all the elements are equally spaced in

time the divided-difference can be simplified to a polynomial of the given order and

33

represented using the binomial expansion as [14]

3=

(-1)' (s).

2.4.1 Initialization procedure for higher order methods

When the order s was only two the initialization was not a big problem. Given

W1 then we simply calculated w1 using /t with a first order (linear) method, then

with ° and " we can start the main loop of the algorithm. The main loop involved

solving for using & and The error of the linear step is Q(zt2). Problems

arise when this is increased to s > 3 or higher where, with an exception near the

initial steps, it no longer holds true that solving for c2" using 2i'', n-2,•• ,

will be of the desired accuracy. For example, if s = 3 then the error is of order

So if you were given a starting value of w0 and were to then find w1 and w2 using At

as the time step, then a linear method would be used to find w2. The error for w2 is

then (9(t2). So for it < 1, .t2 > /.t3 so the ensuing values wm will be inaccurate

since the initial conditions were not accurate to begin with. To fix this problem,

we start with Jo where r E N is chosen so that w0,... , are accurate to

/ts+1.

Lemma 2. Given an s-order method then the initial time step Lo may be chosen to

be Lc = for 0 <t ≤ 1 and r E N. A sufficient value for r such that the method

remains O(Lt') is

r 1092 (t 1 '1)1 (2.24)

where f is the ceiling function.

34

Proof. To show this, first we must realize that the first order step O(Lcr2) must be

small enough so that it will be the same level of accuracy as the main step O(Lts+l).

So we want

but we also know that

The rest is as follows:

At

2'

log2(t_(8_1)) <r.

Now we want r E N. Since s ≥ 1 and s E N then we can say

i n-≥[n-]=n-1=1n-11 if s = 2n,for n E N

I.' 2 2 n=[n]≥rn—] ifs=2n+l, for nEN

then

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

35

Finally we can say

1092 (Lt_(8_1)) ≤ log2 (z.t log (zt-I-")1 = r (2.33)

and r will be a minimal sufficient value so as to ensure the method remains O(Lt8+l).

D

Once a sufficient value of Au has been chosen and we are given 0, then we

continue with the following steps:

Step 1. Use a first order method to obtain w1,... , w 1. A higher order method

may be used if sufficient values are available. This brings us to the second

line of Figure 2.3.

Step 2. Use the s most recent w's to find s—i more w values. So if we were to start

with W6+l,... , then after this step we would have ,

This is the 3rd and 4th lines of Figure 2.3.

Step 3. Take every second w value starting with w0, double the step size and

repeat Step 2 until Lo = At. This is the last line of Figure 2.3.

Step 4. Begin the main loop of the algorithm.

From the steps above we can see that this start up procedure can be quite costly

for higher order methods.

36

•so

•7T;. ,- .--- o

O(M 4)

O(z3)

O(z1 4)

. ••—•---- o O(A 4)

• • . 2A cy 0 O((2Ac)4)

Figure 2.3: Leapfrogging: by the third line, there are enough values to use the 3rd
order method. The Yd order method must be used 2 more times before the Lo can
be doubled.

2.5 Testing the method

Here we apply the pseudospectral method to a few selected problems to illustrate

the performance of the algorithm.

2.5.1 Rotating cone problem

The first test that will be used is the rotating cone problem. As its namesake indicates

this is simply a conical "spike" in a fiat domain which will follow a given trajectory.

Since we know or have constructed the trajectory we know the results at any given

point and can then see how close our method is to the true solution. We can then use

this as a reference point to see how the Lagrange-Galerkin method compares in both

its fixed and adaptive forms. We look at the following advection-diffusion problem

37

(not the same as the N-S equations) for u [38, 51]:

where g = 0,

and

Ut + a - Vu - vV2u = g

u(x, 0) = uo

a=
-

tir — x

E ,t E [0,T] (2.34)

x E 2 (2.35)

cos 2r for r≤
U0 =

0 otherwise

(2.36)

where r2 = (2x - ir)2 + (2y - 2ir)2. In the vorticity formulation (2.34) would look

like

wt + a VW - vV2w -• g (2.37)

w(x, 0) = WO. (2.38)

We use the following conditions: v = 5 x lO16, T = 2ir with 20000 time steps to

ensure that the method 'is stable'. Now T has been chosen so that the true solution

w is the same as the initial condition w0. The error measured is eN II WIIN,00,

the infinity norm, where w is the computed solution for an N square grid and 1H IN,.

is the discrete infinity norm, i.e. the maximum absolute value on the N x N grid.

The results can be seen in Table 2.2. The '*' are cases where instability has caused

the solution to blow up. The causes for this blow up will be examined below.

38

Order 1. 2 3 4 5 6

5 16 0.0218 0.0168 0.0168 0.0168 0.0166 0.0168

32 0.0215 0.00372 0.00367 0.00367 0.00364 0.00367

5 64 * 8.22 x 10-4 7.95 x iO 7.93 x iO 7.88 x 10-4 7.94 x iO

5 128 * 3.16 x iO 2.31 x iO 2.31 x iO 2.47 x 10 2.31 x iO'

Table 2.2: Ps errors for the rotating cone problem

We can see that across the orders there is only a small decrease in the error. This

is acceptable since the initial condition is only second order continuous. On the plus

side we can see that when the grid size is doubled in each direction we obtain 1 of

the error from the previous step. This indicates that the dominant error for this

problem is due to the discretization in space. So 5 N = 5 2N as expected.

Figure 2.4 shows the rotating cone for N = 32, v = 10-16 and various steps as

indicated. For the time steps indicated we are able to see some instabilities forming at

the corners. The number of steps is chosen so that the instabilities are just beginning

to be visible.

2.5.2 Steady sine function

Since the rotating cone problem in Section 2.5.1 used (a. V)u for the convective

term rather than (u. V)u then it is not really a good representation of how the

convective term behaves in the Navier-Stokes equations. It is a good idea to look at

another problem with a known solution that will test this method using the (u. V)u

term. This is accomplished by making use of the g value in (2.16). For each time

step we set g = (u. V)u + Vp - vV2u or g = (u. V)w + Vp - vV2w. If we choose

w = 2 sin(x) sin(y) then g = 4v sin(x) sin(y) which is what we get from (2.16) after

.3Y4th623 stops

39

$=2 with 1400 stops

Figure 2.4: Instability test: an example of the rotating cone at three different
orders. The minimum number of time steps were used, so that the instabilities were
just beginning to form in the corners.

substituting and solving for g. The idea behind using g in this way is so that the

true solution of the problem is simply the initial condition.

For the values ii = 5 x i0, T = 10 and taking 2000 steps, the results can be seen

in Table 2.3. As in Section 2.5.1, eN is the infinity norm for N as defined and '*'

are cases where the solution has blown up. The results in Table 2.3 are acceptable

since they are all less than 10. There is no change as N increases for orders 5 and

6 as the resolution in time overshadows the spatial resolution.

40

Order 1 2 3 4 5 6
616 0.0184 0.0167 1.3 0.0244 285 209
632 0.0403 0.039 1.3 0.0255 285 209
664 22.7 0.014 1.3 0.0316 285 209
6 128 * 0.00155 0.013 0.022 285 *

Table 2.3: PS errors (x10'2) for the standing sine problem

2.6 Stability of the method

One of the true faults with the pseudospectral method (2.23) is that it is only condi-

tonally stable, meaning that there is a minimum size for At such that the method will

'converge. Naturally this aspect of the pseudospectral method has triggered research

into methods which allow for a correction of these instabilities. This correction has

been accomplished via the addition of a corrective term [9] and through the use of

different basis functions for the different parts of the equations [39]. Since the pseu-

dospectral method is only being used as a basis for comparison in this case then these

corrections need not be considered since the time steps will be sufficiently small.

First, we shall look at the example of the 4th order pseudospectral method applied

to the rotating cone problem, which was examined in Section 2.5.1. From the graph

in Figure 2.5 we can see a sharp increase in the error when the number of steps has

only been reduced by 10.

So we can say that the minimum number of steps required for T = 2ir is approxi-

mately 1650. In this case approximately means ±2.5. When similar experiments are

performed with different orders the results are as given in Table 2.4

What we would like to do is look at the stability regions of the rotating cone

41

2000

1642 1644 1646 1648 1650 1652 1654
number of slope

Figure 2.5: Instability example The errors inccurred by the rotating cone problem
for the 4th order pseudospectral method for 1642-1655 steps.

equation (2.34) or a suitably similar equation so that we may obtain some insight

into the conditions that determine stability. For finite difference methods, stability

is determined by the ratio using the Courant-Friedrichs-Lewy (CFL) condition. AX

Since the derivatives are global in spectral methods rather than local as in finite

difference methods, then the CFL condition and the domain of dependence triangles

do not easily apply [32, 49]. What we can do instead is look at the eigenvalues of a

suitable similar problem. For this purpose we choose a linear advection problem

au 5u - _

---- + a--- 0, T (2.39)

where a is a constant. As has been done for the pseudospectral method, a BDF

Order 2 3 4 5 6
mm. steps 3360 1420 1650 2420 4110

Table 2.4: Minimum steps for instability: approximately the minimum number
of steps required in order for instabilities to be noticeable in the corners of Figure
2.4, for T = 2'ir and N= 64.

42

is used to solve for the time derivative and the Newton extrapolation scheme from

Section 2.4 is used for the advective part of the equation. When the two s order

schemes are applied to (2.39) we get

m+l - aum + aztVf3
j=O

= 0, (2.40)

where aj and 8 are given according to Table 2.1, and 'yj can be found in Table 2.5

or can be defined as = (_i)i_1 () .

S {'y,. . .,'yn-s+i}

2 {2,-1}

3 13,-3,11

4 {4,-6,4,-1}

5 {5, —10,10, —5,11

6 {6, —15, 20, —15,6, —1}

Table 2.5: Newton extrapolation coefficients

When (2.39) is transformed into Fourier space, it gives

m+l(p) = - iaAtpP-yj)ftM-j (P)

The characteristic polynomial for this equation can be given as

s-i

_As+
- iaztp/3y) = 0, (2.41)

43

which when solved for aLtp gives

-

- " Z_ij=G
a P_ (siip). (2.42)

Define the stability region to be the region in the complex plane of values of (iatp),

for which all the values of A satisfying (2.41) lie within the unit circle. To plot the

stability region we evaluate A on the unit circle e°, and we end up with Figure 2.6.

What we would like is for the eigenvalues of (2.40) to lie inside the regions plotted

in Figure 2.6 [65]. Looking at Figure 2.6 we can see where z, the maximum value on

the imaginary axis that is still inside the stability region, occurs and compare that to

the experimentally observed stability boundary from Figure 2.4 and Table 2.4. From

(2.36), a cannot be more than ir and for that experiment N = 64, so p ≤ 32. The

results using the At values obtained via Table 2.4 can be seen in Table 2.6. All of

the stability regions follow the imaginary axis for some interval, more or less closely.

Only the 3X and 4th orders include the axis inside the region, as seen in Figure 2.7.

For the others the axis is only slightly outside the stability region immediately once

you've left the origin.

It is worth noting that the results only differ by a constant value, so the results

of Table 2.4 appear to match well with the computed values of z. For example

Order 2 3 4 5 6
z * 0.63 0.54 * *

aLtp 0.19 0.44 0.38 0.26 0.15

Table 2.6: Comparison of z and a/tp

44

when looking back to Figure 2.4 we see that given s = 3, aL.tp = 0.51 and given

s = 4, aLtp = 0.44. As expected these results are comparable to those in Table 2.6.

2.7 Variations on the pseudospectral method

Adaptivity in time could easily be implemented via a Runge-Kutta time step or

an unevenly spaced variation on the BDF. Another option would be to follow the

method described in Section 4.2.

Instead of using Fourier basis functions we could use wavelets to discretize in

space. This method would allow for more flexibility in where the grid points are

placed. More grid points could be placed where there is more activity in the domain

and fewer where there is less activity [34, 42]. Another option for spatial discretiza-

tion could be to use Legendre polynomials instead of the Fourier basis functions

[2].

A filtered pseudospectral method could also be employed. At each time step all

values of the vorticity field that are below a specified threshold value of T are set to

zero. T must be carefully chosen for this method to work: too big and the energy

of the system is lost; too little and the method is not effective [22]. The expected

gain with this variation is a saving in space and time since we would only be working

with sparse matrices.

45

Figure 2.6: Stability regions: in order to have stability the eigenvalues of the
equations (2.40) must lie inside the regions plotted above. Since we are considering
an advection equation, then we are interested in how much of the imaginary axis lies
inside the regions.

46

0.7

0.6

0.5

0,4

0.3

,
/
/
/
/

- - -s4

-0.2 -0.1 0 0.1 0.2

Figure 2.7: A zoom of part of the imaginary axis: s = 3 and 4 are the only
regions that actually contain part of the imaginary axis, and the points of intersection
can be seen above. These points of intersection are what determine the values z.

Chapter 3

The Lagrange- Galerkin method

This method is specifically designed for convection-dominated problems. For this

reason semi-Lagrangian schemes have been used by the meteorological community for

massive numerical simulations [21, 50] and more recently in computer animation to

obtain more realistic fire and water effects [23, 24]. Due to its unconditional stability

and convergence, the Lagrange-Galerkin (LG) method is immensely popular with

finite element methods particularly with atmospheric sciences and other such areas.

The advantage with finite element methods is that the grids can easily be adapted

to fit awkward shapes [47, 54, 57, 61, 62]. The downside is that they are not as

accurate as spectral methods. Since we have made the decision to deal with periodic

grids then it seems more sensible to employ a spectralLagrange-Galerkin method,

thus maintaining a high level of accuracy [66, 67]. With these convection dominant

problems we look for ways to simplify or remove the computation of the convective

term (u. V)u that appears in the Navier-Stokes equations, as this is the part that

causes the most computational difficulty. The method has a few advantages over

the pseudospectral method. First, as we shall see the method does not have any

stability issues, such as those seen in Section 2.6, provided the order is kept less

than or equal to 6. This means that the size of the time step depends purely on the

desired accuracy.

The main idea is to apply a change of variables to a coordinate system that will

simplify the equation. In this case we transform the grid so that it matches the

47

48

charateristic curves, since in this system the convective term is zero. This means

that we will be changing coordinates at each time step based on the progression of

the flow. One way to look at the method is to start with a general advection-diffusion

equation (2.34) [38]. First, for some trajectory a(x,t), we must solve

19
(X(x,u;t)) - a(X(x,a;t),t)

at
(3.1)

X(x,o';cT)=x. (3.2)

X(x, ci; t) is the path of the particle that passes through the position x E 1 at a

time ci E (0, T] with the solution X(x, a; t) given as follows

t

X(x,a;t) =x+f a(X(x,a;r),r)dr.

This will tell us the trajectories. We then look to evaluate the material derivative

D, given by

Dtu(x, t) :=a(X(x, a; t), t)at lt

Dtu(x,t) =u(x,t) + a(x,t) . Vi(x,t) Vx E Q,t E (0)T].
at

3.1 Characteristic curves

In order to illustrate the procedure, we consider an example with the transport

equation, which was first seen in Section 2.6,

Ut + au = 0.

49

A

n+1

X(x,tn+1 ;t 1)

t n

t n-i

X(i,t 1;t)

X(xt' ;t 1)

X

Figure 3.1: An example of characteristic curves

This can be rewritten using the chain rule to get

u(at+c,t) = 0. (3.3)

u is constant on the curves (at+c, t). If we are given some initial condition u(x, t0) =

uo(x) then we choose the curve that passes through the initial point (x, t0). The

solution then has the form

u(x + a(t — to), t) =u0(x)

50

u(x,t) = u0(x— a(t—to)),

where x - a(t - t0) are the characteristic curves, or in our notation

X(x, to; t) = x + a(t - t0).

If we return to our Navier-Stokes equations then the first task is to solve

where

dXdt - u(X(x, t'; t), t),

X(x,t;t' 1) = X.

(3.4)

(3.5)

To examine this in a graphical context consider Figure 3.1. If we are sitting at point

X(x, t''; t') and wish to know the value at X(x, t 1; ta), then we would look

along the characteristic curve which we can obtain via (3.3) or the solution of (3.4)

and (3.5). Then we simply follow the trajectory to the previous time step to get

X(x, t' 1; ta). This is what is known as the method of characteristics.

So the solution that we actually end up with is the position X(x, t'; t) that

the characteristic curve u(X, t) will pass through at time t, if it also passes through

the point x at time step t''. This is often refered to as the backward-trajectory

scheme, since we need to look backward from the regular grid at t' to the previous

position on the Lagrangian grid at t. To look forward from the regular grid at tm

to a Lagrangian grid at t' 1 is refered to as a forward-trajectory scheme [6, 50]. So

at every time step we are recomputing the characteristics with respect to some fixed

51

initial grid x. This will reduce the deformation that would occur in the non iterative

case [59, 67]. To see how this helps to deal with the convection term we define a new

function U to be

U(x, t) = u(X (x, tn+l. t), t)

U(x, tm+l) = u(x, t 1'

applying the chain rule, then using (3.4), we obtain

dU(x,t) = ut(X,t) + dX Vu(X,t)
dt dt

dU(x,t) = u(X,t) + (u. VU) (X,t).
dt

(3.6)

(3.7)

Note that when t = t'' then (3.7) is simply Ut + (u V)u. We can then rewrite

(1.3) as

Du = —Vp(X) + i/V2 U + g

at t. If the pressure is constant and g = 0, then (3.8) simplifies to

For t = t' this can be written as

DU = vV2U.

(3.8)

Dtu= vV2u. (3.9)

This is similar to a heat equation for u with the exception that it involves a directional

52

derivative. This directional derivative is the reason that we cannot solve for a series

solution as we would for a heat equation, and hence must use an iterative method

instead.

3.2 Solving for the characteristics

If equation (3.9) is discretized in time then at each time step we would look to solve

for U 1 = u(X(x, t 1; tm+'), t'). We shall use the following notation

u' (x) = u(X(x, ti; t'),t'),

with the two conventions

ui'j = u_c(x)

Ili = U)O.

For reasons similar to those in Section 2.3 the BDF will be used. Assuming that the

previous s values of u are available then our time discrete equations are

(I + t vV2)un+l akum+lk.

In order to obtain the previous s values of u we must first know X(x, t' 1; t) so

that we may evaluate for Ic = 1,... I S. X(x, t 1; t) is defined by equations

(3.4) and (3.5). Since the accuracy of the solution depends on X, then the higher

the accuracy of the X value the more accurate the solution will be. To solve for X

53

X using {u72, u''1,... , us 1}

-I-
{ U'1'1 .. , u1'1}

-I-
n+1 *

-I-
X using {ur', if, u''1,... , u' '}

-I-
{ U'1'1 .. , u+1 _1}

1-

Figure 3.2: Predictor-Corrector algorithm

54

is then repeated only this time using ur', un",. .. , u'' 1 and the A-M scheme to

solve for X. Again this could be iterated to gain an improved value of X. This would

correspond to repeating steps 4 and 5 in Figure 3.2. This new X is closer to the

true value of X than X,, as a result evaluating UTh+l using X will be closer to the

true solution than evaluating UTh+l using X. The final step is to solve for u 1 using

. , and the BDF.

3.2.1 Evaluating X

It is useful to note that for some t, t 1, t 2 E [0, T],

X(x,t;t2) = X(X(x,tm;tm_l),tm_l; tm_2). (3.10)

In terms of the above notation we can interpret this as

u'"(X(x, t; t')) = u''2.

Now to take a closer look at how we solve for X using the previous u, u''1,... , u''

values. To solve for X(x, t' 1; t) from (3.4) we need to evaluate

tn+l

X - X(x, t'; t) = f u(X(x, t 1; r), r)dr.

tn

This is done with the approximation

x—X(x,t';t))' aju'.
j=n-s+1

(3.11)

(3.12)

55

where cij corresponds to the appropriate Adams coefficient. Note that the integral

(3.11) is from tm to t'. So for (3.12)

fu n) u''1,... , u'''}

are the u values that are used. These values of u values are obtained by taking

u(x, ti) for j = 0,... , s and pushing them along the trajectory X to tm. This is

done at every step so that the stored list of the previous values is always up to date.

To illustrate this idea, consider a list of values at a time t where s = 3,

{u',lin,l,u'2}.

To find u 1, the first step would be to evaluate all the elements of the list at

X(x, t'; ta), and using (3.10) to get

fu n+1,1 , un+l)2, uTh+lS}.

Now that the list is updated to reflect the time t'', it may be used to evaluate

u(x, t724.1). u(x, t') is then queued into the front of the list,

fu n+1 I u11 , uTh+l 2}.

The list can now be used to evaluate the next time step.

What has not yet been discussed is how when we have X do we evaluate ui'i(X)

using ii_' (x). Since the points are irregularly spaced, we cannot use the IFFT, so

56

for now we need to do it the long way with

M. N
2

ufl-i (X) = //" flfl-j iJ1X1+iqX2
p,q

M N

j=O,... ,s-1

then use the FFT to return to u(X,t), then solve for u' using the BDF. This

way it would take 0(N4) operations. However there are ways to approximate this

unevenly spaced FT that can be accomplished in little more time than it takes to

evaluate the regular FFT.

3.3 Approximate FT using Taylor polynomials

There are several methods to approximate the FT for irregularly spaced data. A

good overview of these various methods can be seen in [68] with some newer methods

described in [26, 33]. In this thesis, Taylor polynomials are used to approximate the

value of the function u at an irregular grid point x1 around the regularly spaced grid

points :R,, . This method is based on the principle that in one dimension we can write

a truncated Taylor expansion of u as

K

u(xj) = (IN u)(k)(xl) xl -

Xn
—, zl=

rX

As usual the derivatives u(k) are done in Fourier space and rx is the maximum

deviation of the points x1 from -76n -

This algorithm can be divided into three parts. The first part we need only find

the maximum deviation in the x and y direction from the nearest regular grid Rn-

57

The maximum deviation in the x and y direction are denoted by ?, and r, and are

defined as follows

= max min Ixz - ml

ry = maxmin Ii — VnI.
I n

Since the domain 1 is periodic, we must have r, j and r, ≤ 4JL where Lx is

the distance between the grid points in in the x direction, and Ay the distance

in the y direction. In two dimensions this can be done in (9(N2) operations. For the

second part of the algorithm we calculate

I

2 2 (ip)' (jq)kfli(Pfen+?n)
Un = " " j!k!

M N

j,k=O,...,K.

This is done by applying the IFFT to the matrix with elements given by (i fip,q.

This is the most time consuming part of the algorithm taking 0(2K2 N2 log N) op-

erations where N is the grid size, and where K refers to the number of Taylor

coeffecients that are used. The last step is to compute

where

j,k j,k
U Z1

j,k=O

= (x1 - 7Z Vi - Yn
ZZ TX TV

) .

This final step is 0(K2N2). What must be decided ahead of time is how big to

58

make K. In order for this algorithm to be effective we need to have K << N. The

appropriate size of K can be determined from the maximum error

(II max(r, r,))"'
(K (K+1)!

which is essentially just the maximum of the next term in the Taylor expansion. K is

chosen such that E is less than a predetermined tolerance T. For the overall method

the number of operations at 0(2K2 N2 log N) has the potential to take a lot longer

than a regular FFT of the same size. In practice K is quite small in comparison to

N. For example K 8 for a 64 x 64 grid and T = iO. Approximating the FT in

this way will usually run faster for smaller time steps since r and r, will often be

smaller in those cases. As a result, E will be less than T for smaller values of K.

While this may be true in practice there is no way to determine exactly how much

time is saved since that would require knowing X ahead of time.

3.4 Divergence free space

As mentioned in the previous chapter, when the transformation to the vorticity

formulation is made, we see that w is automatically incompressible. That is to say

that w is divergence free, or that w exists in a divergence free space. For the Lagrange-

Galerkin method it is not a given that the solution u is automatically divergence

free, especially since we will be transforming u so that it follows the characteristic

curves. To ensure that u is still in a divergence free space, we apply an operator R

to u at each time step, so that Ru is the projection of u onto the divergence free

59

zero-mean space V [66]. Define

V={uEfl1IV•u=O and ii=O}

where ü is the mean of u. The Hubert space ?-1 is given as

= {uIDu E L2(f),O ≤ II ≤ o}

where D for c = (a1,... , ad), is the derivative in the sense of periodic distributions

defined as

Du-- 0alOad

Now define

R = (I - V(V2)'V.).

To see that this projection works, note that in Fourier space R is

(=::) (p2q2) (=:))
= (I 1 (2 Pq) 2+q2 q2))

where p2 + q2 0. Take ü to be ('') then

(upq'\ 1 (P2upq\\1

Ru=I I
0) p2 + q2 pqupq)

60

2

- Upq q (

p2+q2 \pq

and

V -1f, = Upq + q2 (q2 ip - pqiq) = 0.

Ru lies in the divergence free space V as required. A similar demonstration will

yield similar results for ii = (vp°q)• For a general u we look at the span of u using

R (uPq) and R (vq). What this means is that instead of worrying about whether or

not we are in the space V, all that needs to be done is to apply the projection R to

the whole equation and the result will follow.

3.5 Some test problems

For Sections 3.5.1 and 3.5.2, we apply the Lagrange-Galerkin method to two problems

with known solutions to illustrate the behavior of the method. Specifically, we are

looking for a demonstration of the order of convergence. For Sections 3.5.3 and

3.5.4, the Lagrange-Galerkin method is applied to two fluid flow problems for which

a reference solution is computed. These problems are of interest since they are

designed to have steep gradients, which can often be difficult to compute.

3.5.1 Rotating cone problem

This is the same problem that was presented in Section 2.5.1. For this method we do

not need as many steps as the pseudospectral method since we have no need to worry

about stability. The difference in this case is that we look to solve (2.34) instead of

61

Order 1* 1 2 3 4 5 6
SZE 0.000752 0.000973 0.000973 0.000977 0.000972 0.000976 0.000967
SAM 0.000752 0.000965 0.000965 0.000983 0.000984 0.000979 0.000975
4

0.00062 0.00135 0.00135 0.00134 0.00135 0.00136 0.00137

Table 3.1: LG errors for order versus T

Order 1* 1 2 3 4 5 6

SM 0.000453 0.000648 0.000654 0.000656 0.000655 0.000658 0.000686
0.000562 0.000498 0.000496 0.000489 0.000486 0.000531 0.000574

0.00186 0.000312 0.000172 0.000166 0.000165 0.000168 0.000168

Table 3.2: LG errors for order versus T with v = 5 x 10

(2.37) as was done in Section 2.5.1.

Initially we will have 71 = 5 x 1016, T = 10 2, N = 64 and measure the error ST

in the infinity norm, i.e. CT = Ilu - UIIT,00, where u is the exact solution at time T.

The results are recorded in Table 3.1. All results were acheived using 10 time steps,

with the exception of the first column (1*) where only one time step was used.

Results from the same problem but with some diffusion can be achieved by setting

ii = 5 >< 10* These results can be seen in Table 3.2. The extra column (1*) is

displayed as an additional illustration of the unconditional stability of the method.

Since the trajectories are given for this problem, and are therefore exact to within

machine accuracy, then the error that occurs is from the solution of the parabolic

equation (3.9) and the approximate evaluation of uii_lv(X). When fewer time steps

are taken, fewer errors accumulate from the successive iterations of (3.9). Then the

smallest cumulative error occurs when only a single step is taken .as is shown in

62

Tables 3.1 and 3.2 [66].

Another check is to compare the error of the solution as the size N increases,

where the error is defined as EN = Ilu - UIIN,00. The conditions for the results seen

in Table 3.3were as follows: u = 5 x 10'6,T = 10-2, and 10 time steps. In Table

Order 1 2 3 4 5 6

616 0.0237 0.0237 0.0196 0.0196 0.0200 0.0202

932 0.00542 0.00542 0.00555 0.00557 0.00558 0.00565

964 0.00136 0.00136 0.00136 0.00136 0.00138 0.00138

E128 0.000338 0.000338 0.000300 0.000300 0.000302 0.000302

Table 3.3: LG errors for order versus N

Order 1 2 3 4 5 6

916 0.0237 0.0237 0.0196 0.0190 0.0200 0.0202

4932 0.0217 0.0217 0.0222 0.0223 0.0223 0.0226

16664 0.0218 0.0218 0.0217 0.0218 0.0221 0.0221

646128 0.0216 0.0216 0.0192 0.0192 0.0193 0.0193

Table 3.4: Comparison of LG errors for order versus N

3.4 we can see that when the grid size is doubled the error is reduced by a factor of

4. With the trajectories given exactly the errors are then only restricted by the grid

size.

3.5.2 Steady sine function

This is the same problem as described in Section 2.5.2 with the same conditions,

T = 1, ii = 5 x iO, T = iO, except in this case order is being compared against

increasing step sizes. All results can be seen in Table 3.5. The order of convergence

63

Order 1 2 3 4 5 6
£20 0.454 0.154 0.0345 0.00931 0.00278 0.000704
6 40 0.238 0.0446 0.00556 0.000813 0.000108 1.99 x i0
£80 0.122 0.0120 0.000789 5.81 x lO 3.53 x 10-6 7.86 x lO
£160 0.0616 0.00312 0.000105 3.8 x 10-6 1.1 x lO 2.01 x 10-8

£320 0.0309 0.000796 1.35 x 10 2.4 x 1O 6.97 x 10_8 5.72 x 10_8

Table 3.5: LG errors for the standing sine problem

of the method can be observed in orders 1,2 and 3, meaning that for a given order s

if the number of steps is doubled than the resulting error is 2_s times the previous

error. The value of the tolerance T makes errors less than 10 difficult to analyse

due to the dominance of the spatial discretization, and as a result the convergence

is not noticeable for the higher orders.

3.5.3 Vortex convergence problem

This is the three vortex convergence problem as described in [22]. For this problem

we have three vorticies in the center of the domain. This problem is designed so that

the three vorticies will converge into two after a certain amount of time. Given the

method we need to ensure that we will get reasonable results; i.e. we mean that the

relative error using the L2 norm SN = Ilu - UIIN,2, where u is the reference solu-

tion and i is the result obtained from the method, is such that Q(eN) = 0(10-2).

The reference solution in this case is not the same as the true solution, but is suf-

ficiently close for our purposes. What is really being used for u is the result of the

pseudospectral method obtained using a very large number of time steps (106).

64

The initial condition for this problem is defined by letting

j=1

where

1
= - ((x - x)2 + (y -

the weights are A1 = A2 = it, A3 = —ir and the points are x1 = (,) , x2 =
(v., it) and x3 (, it (1 +)) with c =

For these results the following conditions were used: T = 40, ii = 5 x i0, N =

128, T = 10-2 . The order s was compared to the number of time steps and recorded

in Table 3.6. Figure 3.3 shows the progress of the flow for s = 3 and 400 time

steps. Figure 3.4 shows plotted versus the number of steps taken on a 1092 scale.

The higher orders (s = 5 and 6) show no useful information since they immediately

attain the maximum resolution for the conditions used. The other orders display the

order of convergence of the method. For s = 2 we can see that the slope is about

2, in terms of convergence, as we would expect it to be. The s = 3 slope seems to

be a bit steeper than the expected value of 3. In fact, with a value of about , it is

almost the same as the slope for s = 4. This would seem to indicate that s = 4 did

Order 2 3 4 5 6

6100 0.527 0.434 0.267 0.023 0.0189

6 200 0.15 0.0371 0.0240 0.00103 0.000752

&100 0.0424 0.00383 0.00209 0.000319 0.000292
e800 0.0101 0.000554 0.000471 0.000345 0.000364

Table 3.6: LG errors for the vortex problem

65

1-0

120

lao

60

60

40

20

120

100

60

60

40

20

20 40 60 80 lOG 120

20 40 80 60 100 120

120

100

80

60

40

20

120

100

80

80

40

20

20 40 60 80 100 120

1.40

20 40 60 60 100 120

120

100

80

60

40

20

120

100

80

60

40

20

20 40 60 80 100 tOO

r&.r0000 .OltatOfl

20 40 00 80 100 120

Figure 3.3: LG solution of the vortex problem: contours of the vorticity w(x, t)
of the solution of the vortex problem using the LG method, with s = 3 and 400 time
steps, at selected times t. There is no discernable difference between the LG solution
and the reference solution.

a little worse than expected while s = 3 did better than expected.

3.5.4 Stream vortex problem

The initial condition for this problem is a rapidly moving stream in the middle of a

nearly stationary fluid. The boundary between the stream (middle) and the edges

(top and bottom) is meant to be tight as this will cause vortices to form and collide.

As in Section 3.5.3 the reference solution is actually the result of the pseudospectral

method with a very large number of time steps used.

66

—16
100 200

number of steps
400 800

Figure 3.4: 1092 S of the vortex errors: a plot of the 1092 6 of the errors for the
vortex problem. We would expect to see the negatives of the slopes of the lines to
match the order. The resolution of the method limits the use of the plot for s = 5
and 6.

The initial condition is given in [66] and is described as follows,

w(x,y) =sech2(10(y—a)) — sech 2(10(y — b)) +10_2 (cos 4x+ cos 2x\10)'

where a=ir(1—) and b=7r(1+).

For these results the following conditions were used: T = 150, ii = 5 x i0, N =

128, T = 10-2. The order s was compared to the number of time steps and recorded

in Table 3.7. Figure 3.5 shows the progress of the flow for s = 3 and 100 time

steps. Overall, Table 3.7 seem to show faster convergence and smaller errors when

compared to Table 3.6. This can be attributed to the fact that the initial condition

in Section 3.5.3 is not as smooth as the one in this section. Figure 3.6 tells a similar

67

story to Figure 3.4. Orders s = 5 and 6 once again give little information about the

order of convergence as At -4 0, since the errors are quickly dominated by the spatial

discretization errors. For s = 2 and s = 3 the slopes look to be almost exactly 2 and

3 respectively, while s = 4 has a slope of approximately LI .

3.6 Stability of the method

Being able to get a result in Section 3.5.1 by only taking a single time step, as seen

in column 1* of Tables 3.1 and 3.2, is a result of the unconditional stability of the

method. A method is unconditionally stable if there exists a C, that depends only

on the divergent velocity field (V . a), such that

IIuThII ≤ e Cp IIu°M, Vn ≥ 0.

Note that there is no restriction on At, such as in Section 2.6. A sketch of the proof of

the -unconditional stability, as related to equations (2.34) a (2.35), shall be presented

here. This presentation will only be for the exact Galerkin method, meaning that

all of the integrals are computed exactly. For more details see [66, 67], where Ware

established stability for the fully discrete method for linear problems.

Order 2 3 4 5 6

9100 0.0424 0.0111 0.0188 0.00462 0.00541

9 200 0.00821 0.00108 0.00124 0.00132 0.00149
e400 0.00221 0.000298 0.000108 7.37 x 10-6 1.31 x 1O
e800 0.000542 4.55 x 1O 8.06 x 10_6 6.64 x iO 1.41 x 10 6

Table 3.7: LG errors for the stream vortex problem

68

120

100

80

60

40

20

120

100

80

80

40

20

1.0

L
P

20 40 60 85 100 120

1.100

20 40 60 80 100 ISO

120

100

80

60

40

20

1.50

Jul

20 40 60 80 100 120

1.150

20 40 60 80 100 120

1.75

r.1.mnoa .olu000

Figure 3.5: LG solution of the stream vortex problem: contours of the solution
of the vorticity (x, t) of the stream vortex problem using the LG method, with
s = 3 and 100 time steps, at selected times t. There is some distortion between the
computed solution and the reference solution, but considering that only 100 steps
are being used the solution looks good.

The following lemma will be useful for the completion of the proof.

Lemma 3. let a be a sufficiently-smooth velocity field. If J is the Jacobian for the

change of variables from x to X, where X is defined by equations (3.1) and (3.2),

andVa=0, then J=I.

This lemma could be considered a corollary of Liouville's Theorem and so the

proof is similar [46].

69

-1

-12

-14

f
-10

-is

-20

-22

200
..,,,bera00p.

400 100

Figure 3.6: 1092 E..' of the stream vortex errors: a plot of 1092 .6 of the errors in
Table 3.7. With the exception of s = 5 and 6, the negatives of the slopes of the lines
are approximately equal to the order.

Proof. Since J - dxj --dXk define T(x, t) - - OX(x,s;t) Then from (3.1)

19 19 a
t) = äX(x, s; t)

ax

= -a(X(x,s;t),t)
ax

= Va(X (x, s; t), t) 19 -X(x,s;t) ax
= Va(X(x, s; t), t) . J(x,t).

70

Now if we expand J(x, t + h) about t,

 +0(h2)
at

= J(x, t) + hVa(X (x, s; t), t) J(x, t) + 0(h2).

Then by multiplying both sides by J'(x, t) and taking the determinant, the right

side is then equivalent to 1 + hV a(X(x, s; t), t) + 0(h2). Following the definition

of a derivative

lim det (((x, t + h) - =lim (x, t))J'(x, t)) hV a(X(x, s; t), t) + 0(h2)
h-Oh h-O h

= V - a(X(x, s; t), t).

Since V a = 0 then Y(x, t) = 0 and finally, since J is initially I, we get J = I. E
dt

One last definition will be needed before continuing. Recall the notation from

Section 3.2, then define the operator E to be such that Eu' = un".

Theorem 1. For equation (2.34), where a is linear, and for the method described in

this chapter, we have IIu'II ≤ IIuII, where the norm used is the L2 norm defined

by (2.3).

Proof. Using the definition u 1 = PNEUTh, then from (2.4) we can say

(u' 1, v) = (Eu, V) Vv E SN•

71

The use of PN implies that u 1 E SN, then we can say the following

(uTh+l,u7l) = (Eu)u"') =

IIun+1112 < IIEuII MuTh'II :=

Mu+'M ≤ IlEuThII.

From the definition (2.3), with IJI. meaning the maximum absolute value in the

matrix J,

IIEuThII2 = f u(X(x,t';t),t)l 2 dX

= f Iu(X, t) I2 IJI dX
≤ W101 lu(X,t)I2dX
= IJI fn Iu(X,t)I2 dX (by periodicity)

IJl iui.

Applying Lemma 3 the desired conclusion is reached. D

These results can be extended to the N-S equations.

3.7 Variations on the Lagrange- Galerkin method

There are many possible variations that could be applied to the Lagrange-Galerkin

method, a few of which are described in this section. Since adaptivity in time is to

be covered in Chapter 4, another possible variable that could be made adaptive is

72

order. For adaptivity in order, a lower order would be used when rapid changes are

occuring and small time steps are used, and where a higher order is used otherwise.

Although possible, very little would be gained in terms speed as most of that would

be covered by the time stepping.

The method could also be made adaptive in space; i.e. a refined grid spacing in

areas where there is much activity and a looser grid elsewhere. The first challenge

to applying this idea to the Lagrange-Galerkin method is the need for a spatial error

estimate and a corresponding tolerance. The second challenge would be the need to

adapt the Fourier derivatives, and implement an efficient Fourier transform for an

irregularly spaced grid as in Section 3.3. Some examples of adaptive grid methods

such as these can be seen in [11, 22, 42].

The Lagrange-Galerkin method could be modified so that it solves (2.16) rather

than (1.3), as was done for the pseudospectral method in Chapter 2. In two dimen-

sions solving for the vorticity w rather than the velocity u would cut out about half

of the computations. In reality very little would be saved since the u values would

still need to be shifted along the trajectories, and this leads into a bottleneck for this

method.

Chapter 4

Adaptive Lagrange- Galerkin method

With the current setup of the Lagrange-Galerkin method, if we were faced with a

problem in which there is some period on (0, T] which has rapid change or steep

gradients, then we would need to have a small time step in order to attain a certain

level of accuracy. Since the time is fixed then we would be using unnecessarily small

time steps for the parts which are changing at a comparatively slower pace. The idea

behind the adaptive Lagrange-Galerkin (A-LG) method is then to allow the time step

to change so that larger time steps can be taken during these slow changing parts

of the solution. The adaptivity could also work the other way. That is to say that

the time step could become smaller in order to maintain the desired accuracy if the

solution starts changing too fast.

4.1 Error estimate

The first issue that must be resolved before we can continue any further is how to

measure the error. This error will be used to make a decision as to whether to

increase or decrease the time step. Error measurements can be divided into two

categories: a priori and a posteriori.

For the a priori error estimate we would need to know certain attributes of

our problem. Determining an a priori error estimate can be tricky and possibly

unrepresentative of our solution. We have little to gain from using this type of error

73

74

estimate. For a few examples of an a priori estimate see [30].

For an a posteriori error estimate we do not need to make any projections or

determine any boundary values. We need only use what values are already known

and perhaps carry an extra value along in the computations. Examples of a posteriori

error extimates can be seen in [3] and in [19]. One such example can be summed up

as follows. If is the Euclidean norm and let 0 be the solution of the linearized

problem = Au at time T, then the dual problem which runs backwards in time at

can be defined as - = ATq, with the initial condition q5(T) = b. An upper bound at

on the error can be defined in the following way

Sc (T) = max S. (T, '1')
II ,II=1

where

S(T,'cb) =fo ao
at

dt

and it can be shown that

II(T)II ≤ S, (T) max llk(t)R(u(t))II.

For this upper bound, k(t) = k, = t - t_1 for t E (t_1,t], and the residual is

defined as

R(u(t)) = (u(t) -

75

Then the step size k can be chosen so that

T. Ilu(t) - u(t_i)II S(T)'
(4.1)

where Ta > 0 is some predetermined tolerance value. Since this is an a posteriori

error estimate, then the way it would work is to choose some new time value t4.1

to be used as the next time step. We then evaluate u(t i) and if it satisfies the

condition (4.1) then it is kept, otherwise a new t 1 is chosen and that particular

time step is reevaluated [20].

Another a posteriori error estimate would be to run a similar algorithm of the

same order, using the same data and then comparing the results. This is not truly an

estimate but more of an indicator since it does not attempt to place an upper bound

on the error, as an estimate would, but instead only gives an idea of the size of the

error. At a quick glance this may seem like a lot of extra computational work and

hence a much slower way of estimating the error. In reality this will do very little

to slow the algorithm down in this case since the bottleneck of the method is still

the unevenly spaced FT. We know from Section 3.3 that the unevenly spaced FT

is 0(2K2N2 log N) whereas implementing a time stepping scheme such as the BDF

is only 0(N2). This second algorithm can also be chosen so that it shares similar

structure to the original algorithm and will only require a few extra computations.

4.1.1 A modified backward difference formula

We will use the modified Backward Difference Formula (mBDF) for the second al-

gorithm in the adaptive method. The mBDF can be thought of as a higher order

76

trapezium rule and, for a general time stepping problem

Ut =

is given by the following formula

Ii

u' (L(,,') + £(u)) =
j=n-s+1

(4.2)

where 9 and aj correspond to the values in Table 4.1. It has been shown in [60]

that for 1 ≤ .s ≤ 6, the mBDF is both convergent and stable. The mBDF is also

3 {a+i,. . .

2 1 {1,-1,0}

6 -15 3 -1
" 13 l. ' 13 ' 13' 13

A 3 Si -19 9 -5 1
7 1' 14 ' 14' 14' 14

60 -235 180 -140 55 -91
149 1 ' 149 ' 149' -T4-9) 149' 149

60 Si -283 300 -300 175 -57 8
' 157 l' 157 ' 157' 75-7 1 157' 157' 157

Table 4.1: mBDF coefficients

stable and convergent for s = 7. Since this is not so for the BDF, there is no point

in discussing the mBDF for such an order. Aside from the differing coefficients, the

main difference between (4.2) and (2.19) is the additional term £(u') on the left side

of the equation (4.2) [60]. For this extra term we need only store one extra value

from the previous time step.

77

The final piece that we need for the error indicator is the coefficients c1 and c2

from the respective BDF and mBDF methods. These coefficients indicate the size

of the error term for the given method, and will provide a way of normalizing the

effect of these errors for the two methods. These c values are called the local error

constants and are given in Table 4.2. Now that we have all of the components we

method c 1 2 3 4 5 6

BDFc1-1-2
2 9 22

12
125

jQ
137

Q.
343

mBDF c2 0 6
_1
6

L
10

i
15 63

Table 4.2: Local error constants for the BDF and mBDF methods

can define our error indicator in the following way. Starting with u',. . . ,

we first compute U' 1 using (2.19). Then we compute u 1 using (4.2). The error

indicator e is then given by

Cl

Cl - C2

I IuTh+l _.11n+lil
II

IIu+'II

A ratio of the norms has been used in this definition, to give a norm relative to UTh+l.

This relative norm is used since we are really only interested in how far ur' deviates

from U' 1 as opposed to the true difference in the Euclidean norm [40, 45].

Once the error indicator has been decided then there are three choices based on

the result. If the error is too small, i.e. 6 < then we can increase the step size.

If the error is too large, i.e. 5 > Ta, then we ignore that particular value of u 1

since it may be incorrect and then we decrease the step size. Otherwise if the error

is within the tolerance that we have set, then we continue with the same step size.

78

This process is refered to as the Mime device. At this stage we have the option to

choose exactly how much we will be increasing or decreasing the step size based on

how far the error deviates from the tolerance boundaries (e.g. At = For

this type of adaptive time stepping it would be better to use a true error estimate

such as (4.1), since it is an actual upper bound on the error. Since we are using an

error indicator and we know that overall, the timesteps will be small, it will suffice

to simply double or half the timestep as required.

4.2 Modifying the step size

Once it has been decided that a doubling or halving of the time step is needed, there

are a few more things to be done, as the list that is being used only contains elements

that are /t apart.

4.2.1 Halving At

In order to halve the time step we need io have the elements that fit in between

the values in the current list. Rather than {u',... , U 8+1}, which are /t appart,

we want u',. .. , u%1 } where the spacing is . This'can be accomplished

using a similar form of interpolating' polynomial to what was seen in Section 2.6, the

Lagrange polynomial. In this case we are doing a true interpolation rather than an

extrapolation.

The general form of the polynomial for an s order algorithm can be defined as

p(x) = aolo(x) + aili(x) + .. + a8l(x)

79

where

lk(x)=j[, for k=O,...,s.

i54k

We can simplify this since we are dealing with evenly spaced elements and even

further since we only need a few extra terms [14]. Knowing that Xk = kLt for

k=O, ... ,s then with s'=Lj,

 for k=O,...,s,j=1,... Is/ , (4.3)

zØk

which is independent of At so we can pre-compute the interpolating matrix L.

Then, given the list {u,. .. , uTh 3+l} with a spacing of At we can obtain a new

list ,u'9} where the new values . . ,u9} are com-

puted using the matrix multiplication

[uIu4I Iu'] = [uI . Iu'']L.

We can now use the normal BDF with a time step of on this new list to obtain

un+.

The error term for an interpolating polynomial is dominated by the next term

in the expansion. From (4.3) it can be seen that the polynomial will depend on At.

So if an s order polynomial is used then the error will be Q(zt') which is also the

order of the error for the time stepping formula. So the newly interpolated values

are sufficiently accurate provided all s points are used for the interpolation.

80

4.2.2 Doubling /t

The process for doubling the time step is very similar to the initialization procedure

seen in Section 2.4.1. In fact there is no need for an initialization procedure with

this method as the step size will increase on its own when needed. As a consequence

the initial time step for the method must be chosen to be sufficiently small in order

that the results will still be meaningful.

Starting with the list {u,... , we use 'leapfrogging' to get {(_'),

U 8+'} and then choose every second value and let this be the new list as in

Figure 4.1. Since the time increment has already been increased by (s - 1)Lt there

Old list

.

• .
New list

Figure 4.1: Old list to new list

is no need to immediately use the BDF with a time step of 2Lt to find a new value

utm. It is better to simply return to the loop and start again using 2Lt as the time

step. That way the procedure will be a little more sensitive to any changes in the

solution.

4.2.3 Overshooting

Since the time steps are variable it could end up that the distance to the final time

T is much smaller than At, as shown in Figure 4.2. Care must be taken to ensure

81

At

Figure 4.2: Overshooting T

that the final steps allow the method to finish exactly at T. This is accomplished by

employing the algorithm for halving At from Section 4.2.1 whenever overshooting is

going to occur.

4.3 Some test problems

Again, the method is implemented for a few problems to illustrate its behavior.

When the rotating cone and the standing sine problems are solved with Ta = 10-2,

results are obtained which are similar to those in Sections 3.5.1 and 3.5.2 and will

thus be omitted. For the remainder of this thesis the errors are measured using the

L2 norm unless otherwise specified.

4.3.1 Vortex convergence problem

This problem was described previously in Section 3.5.3. The conditions used will be

the following: N = 128, T = 40, T = 10_2 and ii = 5 x io. The time stepping

will be decided adaptively based on Ta = for j = 1, 2, 3. The Ej are the

corresponding errors to the Ta = Results can be seen in Figure 4.3 and Table

4.3. Figure 4.4 shows the size of At as time progresses. It is clear from this figure

that around t 23, At was doubled.

82

1.0

120

too

00

60

40

20

120

100

80

60

40

20

20 40 60 80 tOO 120

20 40 60 80 tOO 120

120

100

80

60

40

20

120

100

80

60

40

20

1=10

20 40 80 80 100 120

1=40

20 40 60 80 100 tOO

120

100

80

00

40

20

120

100

80

80

40

20

1=20

C

20 40 60 80 tOO 120

re1=r.nce solution

20 40 60 80 100 120

Figure 4.3: A-LG solution for the vortex problem: contours of w(x, t) of the
solution to the vortex problem for the times indicated using s = 3 and Ta = 10-2 at

selected times t.

4.3.2 Stream vortex problem

This is the same initial condition as that which was described in Section 3.5.4. The

values used for this computation are, T = 150, v = 5 x iO 4, T = 10_2 and N = 128.

The results can be seen in Figure 4.5 and Table 4.4, where the error ej corresponds

to the adaptive tolerance Ta = lOs. Figure 4.6 shows not only that At was doubled

at t 40 but that At was quite large (zt> 1) for most of the computation.

Order 2 3 4 5 6
0.257 0.174 0.0464 0.167 0.191

82 0.077 0.0366 0.00185 0.155 0.167

83 0.111 0.000845 0.000155 0.0275 0.0583

Table 4.3: A-LG errors for the vortex problem

83

0.08

0.06

0.04

0.02 -

0
0 5 10 15 20 25 30

Figure 4.4: At vs. t for the vortex problem

35 40

Looking at Tables 4.3 and 4.4, it seems that s = 3 or 4 would be good choices.

This could be due to the idea that the higher order methods, s = 5, 6, tend to get a

bit cumbersome. In Section 4.2.2 we saw that in order to double the step size from

At to 2It, that (s —1) steps at /.t are needed. There is also the fact the C2 I= 24

for s = 4. This high value will make the method even less likely to take larger time

steps.

Order 2 3 4 5 6
.61 0.0487 0.0485 0.0195 0.08 0.0667

-62 0.0342 0.009 0.0032 0.0212 0.0290

-63 0.00556 0.000107 0.000301 0.000661 0.00431

Table 4.4: A-LG errors for the stream vortex problem

84

120

100

80

80

40

20

1.0

J L
r 1

20 40 60 80 100 120

120

100

80

60

40

20

.50

-U
1191011
20 40 60 80 100 120

1.150 r.l.r.nc. 60h0100

Figure 4.5: A-LG solution to the stream vortex problem: contours of w(x, t)
of the solution to the stream vortex problem using the A-LG method at order 3 and
with Ta = 10 2 for selected times t.

4.4 Variations on the adaptive Lagrange- Galerkin method

This is not the only way to make the method adaptive in time. Some alternatives

could be to use Runge-Kutta time stepping or a modified multistep method that can

deal with variable At.

4.4.1 Runge-Kutta time stepping

As an alternative to the adaptive scheme presented above a one-step scheme could be

used. The most widely known of these schemes are the Runge-Kutta (R-K) schemes

for which the general r-stage version for a time dependent equation such as (2.14)

85

1.4

1.2

0.8

•1

0.6

0.4 -

0.2

0
0 50 100

Figure 4.6: /t vs. t for the stream vortex problem

can be defined as [53]

K1 =

i-i

j=2, ... ,r

u'' =u+ At >bjKj.
k=1

150

If a R-K method is used then the halving and doubling of At becomes much simpler,

as all that is really needed is to double or halve At between the steps of the method

and the rest is already inherent in the algorithm. For this same reason it may

be thought that a R-K scheme would not need a 'start up' procedure such as the

leapfrogging method presented in Section 2.4.1. This is only partially true as it may

also be necessary to use a different number of stages r in order to keep the same

order of accuracy.

Another reason to choose R-K schemes is to save storage space. s-order R-

86

K methods have been developed so as to only use a fraction of the storage usually

required. For example, a 4th order scheme that only requires the storage of 2 previous

values of K, whereas a BDF method would require all four previous values.

The main reason not to use R-K methods is that in general they are not useful for

solving stiff problems or operators such as £ that require some implicit computations.

Unfortunately, the N-S equations tend to fit both of these criteria.

4.4.2 Variable multistep methods

A variable multistep method is a time stepping algorithm that does not require the

time steps to be evenly spaced as the BDF and Adams schemes do. There may be

several of advantages to computing the time stepping with a multistep method for

irregularly spaced data, such as generalized BDF. First, there would be a savings

in the complexity of the computation, and as a consequence, the execution time.

Savings would occur near the end of the iterations where the current method must

take care not to overshoot the final time, T. The variable multistep method would

simply finish with a single time step rather than 'winding' down as the current

method does. The other advantage would be in the increasing (or the decreasing) of

the time step. There would be no need to iterate s - 1 times as mentioned in Section

4.2.2. /..t could simply be doubled, then a single time step could be taken and then

the next iteration could' be computed.

Chapter 5

Results and comparisons

In this chapter we look to make a direct comparison between the adaptive and the

non-adaptive Lagrange-Galerkin method. As was done in the previous sections, a

pseudospectral method with a very small time step will be used to compute the

reference solution to the given problems.

5.1 Speed vs. accuracy

The problems examined in Sections 3.5.3, 3.5.4,, 4.3.1 and 4.3.2 will now be reexam-

ined. This time around we will restrict our attention to only the 3rd order methods,

noting the time required for the computations. This will help to determine if the

adaptive method can indeed provide an improvement over the unadaptive method.

The way this will be done is to fix a desired accuracy, say 10-2, and then to choose

Vorticity Stream

Method steps time (h:m:s) 9 steps time (h:m:s)

LO 0.00458 206 0:42:58 0.00323 100 0:20:59

A-LG 0.000845 825 1:21:15 0.009 189 0:27:42

LG 0.00284 810 1:12:57 0.00456 182 0:23:43

Table 5.1: Computational time: a comparison of the LG and A-LG methods for
the vorticity and stream problems.

87

88

the error in the s = 3 column of Tables 3.6, 3.7, 4.3 and 4.4 which are less than

the tolerance 10-2. The results are given in Table 5.1. Note that the two methods

are not exactly on even ground as can been seen by the number of timesteps that

each method takes. For the vortex problem the error for the A-LG method is much

smaller than the error for the first LG method. This accounts for the large difference

in the time taken for the two methods. The fact that the A-LG method takes 4 times

as many steps as the first LG method also backs up this idea. Table 4.3 shows that if

Ta is loosened a degree then the resulting error is larger than the desired tolerance.

For a fairer comparison, the LG method was used to evaluate the same problems but

with the number of time steps chosen to more closely match the steps taken by the

A-LG method, these results are shown in the last row of Table 5.1. While the LG

method was a bit faster in .both cases, the error for the vortex problem was much

more than its A-LG counterpart, whereas for the stream problem the error for the

LG method was better. These results seem to indicate that the problem at hand will

determine whether the A-LG method will be superior to the LG method or not. To

investigate this further we shall devise a new problem.

5.2 More comparative tests

Now we shall look at a couple of other problems and compare the results obtained

for the two different methods. For these new problems the initial conditions were

chosen to have random phase and energy in a similar fashion to the inital conditions

described in [36]. With the initial condition defined in this way we introduce a new

parameter t. t determines the decay of the Fourier coefficients of the initial condition,

89

the larger the parameter t, the faster the decay of the coefficients, the smoother the

initial conditions will be. For t < 1 the chosen grid size is not large enough to resolve

all of the details in the initial condition. In other words, with N = 128, the initial

condition cannot be determined with sufficient accuracy for our purposes. The initial

condition is also scaled so that the maximum absolute value of the vorticity is 1.

5.2.1 A random problem

The results are shown in Figures 5.1 and 5.2, and were obtained using the following

conditions: N = 128, T = 150, Ta = 10, s = 3, 1' = 5 X 10 4,t = and T = 2.

Table 5.2 displays the errors, the number of steps and time taken for both methods.

• The results for the random problem seem to indicate that the two methods give

comparable results, with the adaptive solution a bit slower than its non-adaptive

counterpart. This can be attributed to the conservative nature of the Milne device.

One option that could change this is to use a looser tolerance Ta, and/or modify

the value that determines whether E is too small. Currently if e < , then the 10

step size is doubled. As a result of this decision, the method refused to change At,

during the computation, except at the beginning and the end, as seen in Figure 5.3.

This means that the problem does not vary enough to necessitate variable values

Method steps time (h:m:s)

LG 0.00767 280 0:36:08

A-LG 0.00894 282 0:40:26

Table 5.2: Results for the problem with a random initial condition

90

t=0

120

100

80

60

40

20

20 40 60 80 100 120

WOO

120

100

80

60

40

20

120

100

80

60

40

20

120

100

80

60

40

20

t=50

20 40 60 80 100 120

t=150

20 40 60 80 100120

Figure 5.1: LG solution for the random problem: contours of w(x, t) of the LG
solution using 280 time steps at selected times t with ii = 5 x 10'. The results are
visually indistinguishable from those in Figure 5.2.

of At. What has occured, is that the method has computed the solution using the

most optimal value of At it had available. To make the method more apt to change

we could change the value to , but in doing so there is a greater risk of

incurring excessive error, due to the increased possibility of having the method take

an erroneously large time step.

With the method modified such that, At will be doubled if S < , we will look

at a new problem, that will illustrate the adaptivity of the method. Again we take

a random initial condition with the same values as stated above, only this time the

viscosity is much higher, 71 = 5 x iO and t = . Increasing the viscosity will have

91

t=0

120

100

80

60

40

20

20 40 60 80 100120

WOO

120

100

80

60

40

20

120

100

80

60

40

20

120

100

80

60

40

20

t=50

20 40 60 80 100120

t=150

20 40 60 80 100120

Figure 5.2: A-LG solution for the random problem: contours of (x, t) of the

A-LG solution using T,, = 1O at selected times t with v = 5 x 10 The results
are visually indistinguishable from those in Figure 5.1.

similar results as extending the final time T. The results are shown in Figures 5.4,

5.5 and Table 5.3. Figure 5.6 shows the variation of At as the time progresses.

Since this problem is more diffusive than the previous problem, it becomes much

smoother as it approaches the final time T. This smoothness is the reason for the

progressively larger time steps. While this additional diffusion may allow the A-LG

method to take larger steps and thus finish the computation quickly, it also diffuses

any errors incurred at the early stages by the LG method. This makes the results

in Table 5.3 comparable again, with neither method a clear improvement over the

other.

92

1. 1.

Figure 5.3: It vs. t for the random problem: /t does not vary for this problem
(except at the ends) due to the conservative values chosen for the A-LG method.

5.3 Further possible modifications

It is by no means necessary to stick to the standard BDF, A-B or A-M formula,

provided the version being used still satifies the stability and convergence conditions

required for the problem. A few possible modifications could be to use a variable

time stepping formula vBDF,vA-B or vA-M [53]. This would save a lot of time at

higher orders when going through the growing phase in Section 4.2.2, since we would

only have to iterate once. For the same reason there would be very few problems

with overshooting the final time T. All that would be required is to set /t to be

equal to the distance to T. One drawback to this idea is that often, the coefficients

associated with the methods would have to be recomputed at each time step.

Method steps time (h:m:s)

LG 0.00339 404 0:52:52

A-LG 0.00475 336 0:50:19

Table 5.3: Results for a more viscous problem

93

t=0

120

100

80

60

40

20

20 40 60 80 100 120

120

100

80

60

40

20

(=50

20 40 60 80 100 120

120

100

80

60

40

20

(-150

20 40 60 80 100 120

Figure 5.4: LG solution for a more viscous problem: contours of w(x, t) of the
LG solution using 404 time steps at selected times t with v = 5 x 10. Due to the
high diffusion, there is little that changes visually between t = 50 and t = 150.

Another possible variation is to chose a specific version to match the problem.

One example can be seen in [28] where the A-BDF is especially suited to deal with

highly oscillatory problems. This variation of the BDF can even go as high as s = 7.

The drawback to the A-BDF is that since it is specially suited to this certain type

of problem then it may not work so well in a more general setting.

94

1=0

120

100

80

60

40

20

1=50 1=150

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120

Figure 5.5: A-LG solution for a more viscous problem: contours of w(x, t) of

the A-LG solution using Ta = 1O at selected times t with v = 5 X iO.

1.

Figure 5.6: At vs. t for a more viscous problem: the smoothness of this problem
allows the A-LG method to take larger steps as t progresses. The doubling of At is
noticable at t 45 and 130.

Chapter 6

Conclusions

When restricted to simple boundaries it is difficult to find a class of methods that can

provide the combination of accuracy and simplicity that spectral methods provide.

The pseudospectral method, which is possibly the most basic of the spectral methods

was examined in Chapter 2. Provided sufficient time steps are used, so as to avoid

any instabilities, the pseudospectral method provides quite accurate results. Often

it will be such that the sufficient number of time steps required will be so large that

the method will be too time consuming and end up with results which are more

accurate than needed. While it is not necessarily wrong to have too much accuracy,

the point here is that the method could take more time than needed to satisfy the

minimum required accuracy.

This conditional instability for the pseudospectral method is the very strength of

the Lagrange-Galerkin method. As was mentioned in Section 3.6 it has been shown

that the method is unconditionally stable provided the integrations are computed

exactly. This means that the size of the time step is determined solely by the accuracy

not the stability. The Lagrange-Galerkin method could be constructed so as to be

as fast as the pseudospectral method, but with the addition of stability.

Unfortunately with some of the choices made in this thesis this particular spectral

Lagrange-Galerkin method is not as fast as this particular pesudospectral method.

However it was never really the intention to compare the two methods directly.

What we were looking to do is to provide an improvement to the existing spectral

95

96

Lagrange-Galerkin method.

The regular fixed time stepping algorithm was replaced with an adaptive algo-

rithm, in order to achieve this improvement. This is a natural progression for the

Lagrange-Galerkin method since, as was already mentioned, the method is uncondi-

tionally stable, up to certain constraints. The stability properties mean that there

is no need to monitor the size of At in order to maintain some stability condition,

as would be required for an adaptive pseudospectral method.

It is possible that adaptive time stepping can improve over fixed time stepping in

specific cases. These cases include problems there the energy of the system decays

rapidly, or needs to be computed over a long time period, but fine details still exist

at the final time. This was not the case with the problems chosen in Section 5.2, as

the diffusion in the problem had a tendency to smooth out the details at the final

time. Although it did not show improved results, the adaptive method described

in this thesis gave results that were comparable to its unadaptive counterpart. One

slight advantage that the A-LG method has, is that given a desired tolerance, it is

a bit easier to determine the tolerance Ta that will satisfy that tolerance than to

determine the required number of time steps for the LG method.

Bibliography

[1] D.J. Acheson. Elementary Fluid Dynamics. Oxford applied mathematics and

computing science series. Oxford University Press, New York, 1990.

[2] F. Auteri and N. Parolini. A mixed-basis spectral projection method. Journal

of Computational Physics, 175:1-23, 2002.

[3] John W. Barrett and Peter Knabner. An improved error bound for a Lagrange-

Galerkin method for contaminant transport with non-Lipschitzian adsorption

kinetics. SIAM Journal of Numerical Analysis, 35(5):1862-1882, October 1998.

[4] Antony N. Beris and Costas D. Dimitropoulos. Pseudospectral simulation of

turbulent viscoelastic channel flow. Computer Methods in Applied Mechanics

and Engineering, 180:365-392, 1999.

[5] J.P. Boyd. Chebyshev &4 Fourier Spectral Methods. Number 49 in Lecture notes

in Engineering. Springer-Verlag, Berlin, 1989.

[6] Christopher S. Bretherton and David E. Stevens. A forward-in-time advection

scheme and adaptive multilevel flow solver for nearly incompressible atmospheric

flow. Journal of Computational Physics, 129:284-295, December 1996.

[7] C. Sidney Burrus, Michael T. Heideman, and Don H. Johnson. Gauss and

the history of the fast Fourier transform. IEEE ASSP Magazine, pages 14-21,

October 1984.

97

98

[8] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods in

Fluid Dynamics. Springer-Verlag New York Inc., 1988. Fifth Edition.

[9] C. Canuto and V. Van Kemenade. Bubble-stabilized spectral methods for the

incompressible Navier-Stokes equations. Computer Methods in Applied Mechan-

ics and Engineering, 135:35-61, 1996.

[10] Ching J. Chen, Yousef Haik, and Vinay M. Pai. Bio-magnetic fluid dynam-

ics. In Wei Shyy and Ranga Narayanan, editors, Fluid dynamics at interfaces,

chapter 34, pages 439-452. Cambridge University Press, 1999.

[11] A. Cherhabili, N. K.-R. Keviahan, and 0. Vasilyev. An adaptive wavelet method

for turbulence in complex geometries. In Michel Deville and Robert Owens, edi-

tors, 161h Imacs world congress 2000, proceedings, Lausanne-August 21-25,2000,

pages 411-439. IMACS, 2000.

[12] Alexandre J. Chorin and Jerrold E. Marsden. A Mathematical Introduction to

Fluid Mechanics. Number 4 in Texts in Applied Mathematics, Springer-Verlag,

New York, Y d edition, 1993.

[13] Peter Consantin. Some open problems and research directions in the mathemat-

ical study of fluid dynamics. In Björn Engquist and Wilfred Schmid, editors,

Mathematics unlimited - 2001 and beyond, pages 353-360. Springer-Verlag, Jan-

uary 2001.

[14] S.D. Conte and Carl de Boor. Elementary Numerical Analysis: An algorithmic

approach. McGraw-Hill, Inc., New York, 3(edition, 1965.

99

[15] John B. Conway. A course in functional analysis. Springer-Verlag, New York,

1990. Second Edition.

[16] James W. Cooley and John W. Tukey. An algorithm for the machine calculation

of complex Fourier series. Mathematics of computation, 19(90):297-301, April

1965.

[17] A. Dipankar and T. K. Sengupta. A comparative study of time advancement

methods for solving Navier-Stokes equations. Journal of Scientific Computing,

21(2):255-250, October 2004.

[18] Tobin A. Driscoll, Satish C. Reddy, Lloyd N. Trefethen, and Anne E. Trefethen.

Hydrodynamic stability without eigenvalues. Science, 261(5121):578-584, July

1993.

[19] K. Eriksson, C. Johnson, and A. Logg. Adaptive computational methods for

parabolic problems. In Erwin Stein, Rene' de Borst, and Thomas J.R. Hughes,

editors, Encyclopedia of computational mechanics, volume 1, chapter 24. John

Wiley & Sons, Ltd, November 2004.

[20] Kenneth Eriksson and Claes Johnson. Error estimates and automatic time

step control for nonlinear parabolic problems, I. SIAM Journal on Numerical

Analysis, 24(l):12-23, February 1987.

[21] Maurizio Falcone, Roberto Ferretti, and Tiziana Manfroni. Optimal discretiza-

tion steps for a class of semi-Lagrangian schemes. In Numerical methods for

viscosity solutions. Iraklion, 1999.

100

[22] M. Farge, N.K.-R. Keviahan, and K. Schneider. Comparison of an adap-

tive wavelet method and nonlinearly filtered pseudospectral methods for two-

dimensional turbulence. Theoretical and Computational Fluid Dynamics, 9:191-

206, 1997.

[23] Ronald Fedkiw, Henrik Wann Jensen, and Duc Quang Nguyen. Physically based

modeling and animation of fire. In Proceedings of the 29th annual conference on

computer graphics and interactive techniques, pages 721-728, New York, 2002.

SIGGRAPH, ACM Press.

[24] Ronald Fedkiw, Henrik Wann Jensen, and Joe Stam. Visual simulation of

smoke. In Proceedings of the 28th annual conference on computer graphics and

interactive techniques, pages 15-22, New York, 2001. SIGGRAPH, ACM Press.

[25] Charles L. Fefferman. Existence and smoothness of the Navier-Stokes equation,

May 2000. http://www.claymath.org/millenium/Navier-Stokes-Equations.

[26] Jeffrey A. Fessler and Bradley P. Sutton. Nonuniform fast Fourier transforms us-

ing mm-max interpolation. IEEE Transactions on Signal Processing, 51(2):560-

574, February 2003.

[27] Bengt Fornberg and David M. Sloan. A review of pseudospectral methods for

solving partial differential equations. Acta Numerica, pages 203-267, 1994.

[28] Christoph Fredebeul. A-BDF: A generalization of the backward differentiation

formulae. SIAM Journal of Numerical Analysis, 35(5):1917-1938, October 1998.

[29] K. Gerdes, D. Schötzau, C. Schwab, and T. Werder. hp discontinuous Galerkin

101

time stepping for parabolic problems. Computer Methods in Applied Mathemat-

ics and Engineering, 190:6685-6708, 2001.

[30] Vivette Girault, Beatrice Rivière, and Mary F. Wheeler. A discontinuous

Galerkin method with nonoverlapping domain decomposition for the Stokes and

Navier-Stokes problems. Mathematics of Computation, 74(249):53-84, 2004.

[31] David Gottlieb and Steven A. Orszag. Numerical Analysis of Spectral Methods:

Theory and Applications. Number 26 in CBMS-NSF Regional Conference Se-

ries on Applied Mathematics. Society for Industrial and Applied Mathematics,

Philadelphia, Pa., 1977.

[32] David Gottlieb and Eitan Tadmor. The CFL condition for spectral approxima-

tions to hyperbolic initial-boundary value problems. Mathematics of Computa-

tion, 56(194):565-588, April 1991.

[33] Leslie Greengard and June-Yub Lee. Accelerating the nonuniform fast Fourier

transform. SIAM Review, 46(3) :443-454, 2004.

[34] Michael Griebel and Frank Koster. Adaptive wavelet solvers for the unsteady

Navier-Stokes equation. In Josef Malek, Jindrich Necas, and Mirko Rokyta,

editors, Advances in Mathematical Fluid Mechanics, Lecture notes of the sixth

international school "Mathematical Theory in Fluid Mechanics", Pasecky, Czech

Republic, September 19-26 1999. Springer-Verlag, 2000.

[35] Wilhelm Heinrichs. Least-squares spectral collocation for the Navier-Stokes

equations. Journal of Scientific Computing, 21(1):81-90, August 2004.

102

[36] William D. Henshaw, Heinz-Otto Kreiss, and Jacob Yström. Numerical ex-

periments on the interaction between the large and small-scale motions of the

Navier-Stokes equations. Multiscale Modeling and Simulation: A SIAM Inter-

disciplinary Journal, 1(1): 119-149, 2003.

[37] Richard S. Hirsh, Hwar C. Ku, and Thomas D. Taylor. A pseudospectral method

for the solution of the three-dimensional incompressible Navier-Stokes equations.

Journal of Computational Physics, 70:439-462, 1987.

[38] Paul Houston and Endre Süli. Adaptive Lagrange-Galerkin methods for un-

steady convection-dominated diffusion problems. Mathematics of Computation,

70(233):77-106, 2001.

[39] Weizhang Huang and David M. Sloan. A new pseudospectral method with

upwind features. IMA Journal of Numerical Analysis, 13:413-430, 1993.

[40] Arieh Iserles. A first course in the numerical analysis of differential equations.

Cambridge University Press, Cambridge UK, 1996.

[41] Hans Johnston, Jian-Guo Liu, and Chen Wang. A fourth order scheme for

incompressible Boussinesq equations. Journal of Scientific Computing, 2003.

[42] N. Kevlahan and 0. Vasilyev. An adaptive wavelet method for fluid-structure

interaction. In B.J. Geurts, R. Friedrich, and 0. Métais, editors, Direct and

large-eddy simulation workshop 4: University of Twente, pages 142-145, 2001.

[43] R. M. Kirby and Z. Yosibach. Solution of von-Kármán dynamic non-linear

plate equations using a pseudo-spectral method. Computer Methods in Applied

103

Mechanics and Engineering, 193:575-599, 2004.

[44] Markus Kraft and Sebastian Mosbach. A new explicit numerical scheme for

large scale combustion problems. Technical Report 12, Cambridge Center for

Computational Chemical Engineering, July 2003.

[45] John Denholm Lambert. Numerical methods for ordinary differential systems:

the initial value problem. John Wiley & Sons, Ltd, 1991.

[46] Carlo Marchioro and Mario Pulvirenti. Mathematical theory of incompressible

rz.onvisco'us fluids. Springer-Verlag, New York, 1994.

[47] P.D. Minev. A stabilized incremental projection scheme for the incompress-

ible Navier-Stokes equations. International Journal for Numerical Methods in

Fluids, 36:441-464, 2001.

[48] Rajat Mittal. A Fourier-Chebyshev spectral collocation method for simulating

flow past spheres and spheroids. International Journal for Numerical Methods

in Fluids, 30:921-937, 1999.

[49] K.W. Morton and D. F. Mayers. Numerical solution of partial differential equa-

tions. Cambridge University Press, Cambridge, 1994.

[50] Ramachandran D. Nair, Jeffrey S. Scroggs, and Frederick H. M. Semazzi. A

forward-trajectory global semi-Lagrangian transport scheme. Journal of Com-

putational Physics, 190:275-294, 2003.

[51] Steven A. Orszag. Numerical simulation of incompressible flows within simple

boundaries: accuracy. Journal of Fluid Mechanics, 49(1):75-112, 1971.

104

[52] Steven A. Orszag. Numerical simulation of incompressible flows within simple

boundaries: Galerkin (spectral) representations. Studies in Applied Mathemat-

ics, 50(4):293-327, 1971.

[53] Roger Peyret. Spectral methods for incompressible viscous flow. Springer-Verlag

New York Inc., 2002.

[54] A. Priestley. Exact projections and the Lagrange-Galerkin method: a realis-

tic alternative to quadrature. Journal of Computational Physics, 112:316-333,

1994.

[55] J. P. Pulicani and E. Serre. A three-dimensional pseudospectral method for

rotating flows in a cylinder. Computers &4 Fluids, 30:491-519, 2001.

[56] Satish C. Reddy and Lloyd N. Trefethen. Pseudospectra of the convection-

diffusion operator. SIAM Journal on Applied Mathematics, 54(6):1634-1649,

December 1994.

[57] D. Schötzau and C. Schwab. Time discretization of parabolic problems by the

hp-version of the discontinuous Galerkin finite element method. SIAM Journal

of Numerical Analysis, 38:837-875, 2000.

[58] Dominik Schötzau. hp-DGFEM for Parabolic Evolution Problems. PhD thesis,

Swiss Federal Institute of Technology, Zurich, 1999.

[59] Mohammed Seaid. Semi-Lagrangian integration schemes for viscous incom-

pressible flows. Computational Methods in Applied Mathematics, 2(4):392-409,

2002.

105

[60] Andrew Stuart. Modified backward difference formula. Private communication

with Tony Ware, June 1990.

[61] E. Sflhi. Stability and convergence of the Lagrange-Galerkin method with non-

exact integration. In J. R. Whiteman, editor, The Mathematics of Finite El-

ements and Applications VI (MAFELAP 1987), volume 6, pages 435-442. BI-

COM, Academic Press, 1988.

[62] Vidar Thomée. Galerkin Finite Element Methods for Parabolic Problems. Num-

ber 1054 in Lecture notes in mathematics. Springer-Verlag, Berlin, 1984.

[63] Kim-Chuan Toh and Lloyd N. Trefethen. Calculation of pseudospectra by the

Arnoldi iteration. SIAM Journal on Scientific Computing, 17(1):1-15, 1996.

[64] Lloyd N. Trefethen. Pseudospectra of linear operators. SIAM Review,

39(3):383-406, September 1997.

[65] Lloyd N. Trefethen. Spectral Methods in MATLAB. Society for Industrial and

Applied Mathematics, Philadelphia, PA, 2000.

[66] Antony F. Ware. A spectral Lagrange-Galerkin method for convection-dominated

diffusion problems. PhD thesis, Oxford University, 1991.

[67] Antony F. Ware. A spectral Lagrange-Galerkin method for convection-

dominated diffusion problems. Computer Methods in Applied Mechanics and

Engineering, 116:227-234, 1994.

[68] Antony F. Ware. Fast approximate Fourier transforms for irregularly spaced

data. SIAM Review, 40(4):838-856, December 1998.

