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Abstract

In survival analysis, different regression models are available to estimate the effects of

covariates on the censored survival outcome. The proportional hazards (PH) model has

been the most popular model among them because of its simplicity and desirable theoretical

properties. However, the PH model assumes that the hazard ratio is constant over observed

time. When this assumption is not met or we are interested in the risk difference, the

additive hazards (AH) model is a useful alternative. On the other hand, assuming linear

structure of covariate effects on survival in these models may be too strict. As a remedy

to that, partially linear survival models are getting increasingly popular as it combines

the flexibility of nonparametric modeling with the parsimony and easy interpretability of

parametric modeling. Nonetheless, building these models becomes a challenging problem

when predictors or covariates are high-dimensional and grouped. Consequently, it becomes

crucial to select important groups and important individual variables within groups by the

so called bi-level variable selection method to reduce the dimension of the data and build

a sensible and useful semiparametric model for applications as the methods for individual

variable selection in such cases may perform inefficiently by ignoring the information present

in the grouping structure.

To fill gaps in estimation and group selection in partially linear survival models with

high-dimensional data, in this thesis, we propose new methods for estimation and group

selection in two partially linear survival models, namely, the partially linear AH model and

the partially linear PH model.

In the first part of this thesis, we consider estimation in a partially linear AH model

with left-truncated and right-censored data when the dimension of covariates is fixed and

the risk function has a partially linear structure. We construct a pseudo-score function

to estimate the coefficients of the linear covariates and the B-spline basis functions. The
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proposed estimators are asymptotically normal under the assumption that the true nonlinear

functions are B-spline functions whose knot locations and the number of knots are held fixed.

In the second and third parts, we study group variable selection in the partially linear

AH model and the partially linear PH model with right censored data. In such regression

models with a grouping structure among the explanatory variables, variable selection at the

group and within group individual variable level is important to improve model accuracy and

interpretability. Motivated by the hierarchical grouped variable selection in the linear PH

model and the linear AH model, we propose a hierarchical bi-level variable selection approach

for high-dimensional covariates in the linear part of the partially linear AH model and the

partially linear PH model, respectively. The proposed methods are capable of conducting

simultaneous group selection and individual variable selection within groups in the presence

of nonparametric risk functions of low-dimensional covariates. For group selection in the

partially linear AH model, the rates of convergence and selection consistency of the proposed

estimators are established using martingale and empirical process theory; after reducing the

dimension of the covariates, we suggest the use of the method in the first part for inference in

the partially linear AH model. For group selection in the partially linear PH model, similar

theoretical results of the proposed estimators are obtained, and the oracle properties such as

asymptotic normality of the estimators are discussed.

Finally, computational algorithms and programs are developed for utilizing the proposed

methods. Simulation studies indicate good finite sample performance of the methods. For

each model, real data examples are provided to illustrate the application of the methods.
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Chapter 1

Introduction

1.1 Survival Analysis and Semiparametric Models

Survival analysis is an umbrella term to denote a wide variety of statistical methods to describe,

explain, or predict the timing and duration until the occurrence of an event (Kleinbaum, 1998).

Originally, the name “survival analysis” was developed by the biostatisticians to analyze the

occurrence of deaths in medical science, however, these methods are also applied in a number

of areas including social science, engineering, economics, actuarial science, etc. In medical

science, examples of survival times can be time to death, time until tumor recurrence; in social

science, examples include time to change jobs, divorce; in engineering, survival data comes

from studying the life of a machine; in actuarial science, it is time to life insurance claim,

and so on. Different names have been used to refer survival analysis due to its adaptation in

other research fields, namely, time to event analysis, failure time analysis, duration analysis,

reliability analysis, however, survival analysis remains the most widely used and recognized

name (Lee and Wang, 2003). One unique feature of survival data is the presence of censoring,

that is, survival data are not fully observed in all subjects. For example, in a medical science

study, censoring can occur if a subject chooses to quit participating in the study, moves away

from the study area and cannot be followed anymore, or die from some unrelated event. On

the other hand, truncation in the survival data occurs when only part of the population is

included and observed in the study and nothing at all is known about the unobserved part.

For example, in actuarial science, if an automobile physical damage policy has a deductible of

$500 per claim, then any losses below $500 will not appear in the data sets. While censoring

data is from the whole population, truncated data is from a subpopulation who experience

some event that is not of our interest.
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We introduce the counting process notations here which will be used in our research for

estimation and establishing theoretical properties.

1.1.1 Counting Processes and Martingales

In survival analysis our interest is in the time to occur a specific event. This data can be

represented as the standard counting process notation, N(t), which is simply a random

function of time t and counts the number of events observed in a time interval [0, t]. It is

zero at time zero and constant over time except it jumps at each time point where an event

occurs, with jumps of size 1. The following definitions will be used in our study:

Definition 1. (Counting Process) A counting process is a stochastic process {N(t), t ≥ 0}

with jumps of size one and values which are positive integers and increasing, such that

(1) N(t) ≥ 0,

(2) N(t) is an integer,

(3) If s ≤ t then N(s) ≤ N(t).

Definition 2. (Uniformly Integrable) A stochastic process X(t) is called uniformly integrable

(UI) if there exists a K ∈ [0,∞) such that sup
t∈[0,∞)

E (|X(t)|I(|X(t)| ≥ K)) ≤ ∞, where I(·) is

an indicator function.

Theorem 1. (Doob-Meyer) Let N be a submartingale of class D with N(0) = 0. Then

there exists a unique, increasing, integrable, predictable process A with A(0) = 0 such that

M(t) = N(t)− A(t) is a uniformly integrable martingale.

Because of the third condition of the counting process in Definition 1, a counting process

is increasing and hence, a submartingale. Thus, by Theorem 1, it can be decomposed into

two parts as follows

N(t) = A(t) +M(t),

2



where M(t) is the martingale associated with the counting process N(t) and A(t) is a

predictable increasing process. A(t) is known as the compensator or the cumulative intensity

of N(t). Such a representation of semiparametric survival models is widely used because

central limit theorem (CLT) is available for martingales and makes it possible to derive large

sample properties of the estimators (Theorem 2).

We will use predictable variation of martingale for computing the variance of the counting

process martingale M(t) = N(t)− A(t), and the variance of integrals with respect to M(t).

Also, the martingale CLT conditions are formulated using predictable variation process.

We assume that only one event can occur at a given point of time, so we are only dealing

with untied observations. The behavior of N(t) is controlled by its intensity process, fN(t).

The intensity process is given as fN (t)dt = P (event occurs in [t, t+ dt] | Ft−), where Ft− is a

filtration representing all the available information just before time t. Based on Aalen et al.

(2008) the intensity process of N(t) is assumed to take the following form

fN(t) = ν(t)Y (t),

where ν(t) is a nonnegative function indicating the hazard rate and Y (t) is an observable

process that indicates the number of at risk individuals just before time t.

Definition 3. (Predictable Variation of a Martingale) Let M be a right-continuous martingale

with respect to a right-continuous filtration {Ft : t ≥ 0} and assume E[M2(t)] <∞ for any

t ≥ 0. Then there exists a unique increasing right-continuous predictable process 〈M,M〉 =

〈M〉, called the predictable variation of M , which is defined as

〈M〉(t) =
∫ t

0
E[{dM(u)}2|Fu− ].

It can be shown that 〈M〉(0) = 0 a.s., E[〈M〉(t)] <∞ for each t, and {M2(t)−〈M〉(t) : t ≥ 0}

is a right-continuous martingale.

3



Theorem 2. The predictable variation process of the integration with respect to the martingale

M(t), assuming that H(t) is a predictable process, is given by

〈
∫ t

0
H(s)dM(s)〉 =

∫ t

0
H2(s)d〈M(s)〉.

In other words, the integrand H(s) acts like a constant after conditioning. This is due to the

predictability of H(t).

For more details about counting processes and martingales, see Hall and Heyde (1980)

and Fleming and Harrington (2011).

Next we outline the main survival models on which our proposed research is built on.

1.1.2 Cox Proportional Hazards Model

The proportional hazards model (PHM) proposed by Cox (1972) is probably the oldest

and the most prominent regression model used in survival analysis to study the association

between the survival time and risk factors. It estimates the relative risk of experiencing an

event of interest between two groups of subjects. To describe the PHM, let Ti represent the

survival time for the ith subject (i = 1, . . . , n), Xi be the associated d-dimensional vector

of covariates, and Ci denote the censoring time for the ith subject. Let Zi = min(Ti, Ci)

be the observed time and δi denote the event indicator, i.e., δi = I(Ti ≤ Ci), which takes

value 1 if the event occurs, or 0 if the event time is censored. The data, therefore, consist

of n observations (Zi, δi, Xi), i = 1, . . . , n, which are assumed to be an independent and

identically distributed (i.i.d.) sample from (Z, δ,X). The conditional hazard function for a

subject with a d-dimensional covariate vector X under the PHM is given as

h(t|X) = h0(t) exp(β>X), (1.1)

where β is a d-dimensional regression parameter vector and h0(t) is the baseline hazard,

which is usually left unspecified.
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One of the main reasons for the popularity of the PHM is the estimation of the regression

parameters does not depend on the unspecified baseline hazard function h0(t). Cox (1975)

proposed this partial likelihood estimates of β which is a technique developed to make

inference about the regression parameters in the presence of nuisance parameters.

Let Ni(t) = 1 {Ti ≤ t, δ = 1} be the right continuous counting process and Yi(t) =

1 {Ti ≥ t} be the left continuous at-risk process for the ith individual. We only consider

events over a finite time interval [0, τ ]. Then the partial likelihood in counting process

notation is written as

L(β) =
∏
t≥0

n∏
i=1

Ñ
Yi(t) exp

Ä
β>Xi

ä
∑n
j=1 Yj(t) exp (β>Xj)

édNi(t)

,

where dNi(t) is the increment of Ni(t) over a small interval dt around time t. Consequently,

the partial log-likelihood is given as

l(β) =
n∑
i=1

∫ τ

0

β>Xi − log
n∑
j=1

Yj(t) exp
Ä
β>Xj

ä dNi(t).

The estimates are obtained by maximizing l(β) which is done by solving the set of d nonlinear

equations Uh(β) = 0, h = 1, . . . , d, where

Uh(β) =
∂l(β)

∂βh
=

n∑
i=1

∫ τ

0

Xih −
∑n
j=1 Yj(t)Xjh exp

Ä
β>Xj

ä
∑n
j=1 Yj(t) exp (β>Xj)

 dNi(t).

The resulting maximum partial likelihood estimators possess asymptotic properties similar to

those of the standard maximum likelihood estimator (Tsiatis, 1981; Andersen and Gill, 1982).

Such desirable theoretical properties, simple interpretation of the results and extensively

available computer programs, have made the PHM the default method of choice in survival

analysis (Lin and Ying, 1994).

1.1.3 Additive Hazards Model

The PHM has one important assumption, the proportional hazards assumption, which assumes

the hazards ratio is constant over the observed survival times. However, when this assumption

5



is not met or when we are interested in the absolute hazards change instead of hazards ratio,

the additive hazards model (AHM) serves as a useful alternative to the PHM. Aalen et al.

(2008) in their book pointed out a number of reasons why using the AHM is advantageous

sometimes. Rothman (2012) focused on the importance of additive models when evaluating

independent risk factors. As mentioned in Aalen (1989), the PHM is sensitive to adding or

removing covariates from the model while the AHM handles this situation better due to its

linear nature. We can consider the hazard of an event as the sum of the baseline hazard and

an excess hazard. When the interest is to study how excess hazard depends on covariates,

the AHM is specifically useful as the excess hazard may easily become negative, where the

PHM may not be very practical (Hall and Müller, 2003). Tang and Dickinson (1998) referred

that, relative risk or hazards ratio as a measure of actual effect of a risk factor could be

misleading sometime, while the difference measure may be better in many circumstances,

especially, useful for comparing groups with different baseline rates.

The hazard function for the failure time T associated with a d-vector of covariates X in

the AHM (Cox and Oakes, 1984; Thomas, 1986; Breslow and Day, 1987) takes the form

h(t|X) = h0(t) + β>X. (1.2)

The AHM in various forms have been advocated and successfully utilized by many authors

(Aalen, 1980; Pocock et al., 1982; Buckley, 1984; Pierce and Preston, 1984; Thomas, 1986;

Breslow and Day, 1987; Aalen, 1989; Huffer and McKeague, 1991), however, none were able

to directly use the partial likelihood approach to eliminate the nuisance baseline function

h0(t) when estimating β.

Lin and Ying (1994) proposed the pseudoscore function to estimate β in the AHM that

mimics the martingale feature of the partial likelihood score function for the PHM where the

estimating equation does not involve h0(t),

U(β) =
n∑
i=1

∫ τ

0

¶
Xi− X̄(t)

© ¶
dNi(t)− Yi(t)β>Xidt

©
,
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where X̄(t) =
∑n
i=1 Yi(t)Xi/

∑n
i=1 Yi(t). The resulting estimator takes the explicit form

β̂ =

[
n∑
i=1

∫ τ

0
Yi(t)

¶
Xi − X̄(t)

©⊗2
dt

]−1 [ n∑
i=1

∫ τ

0

¶
Xi − X̄(t)

©
dNi(t)

]
,

where a⊗2 = aa>.

The pseudoscore method has been frequently used by researchers because of the closed

form solution of the estimators, where the estimators are consistent and asymptotically

normal with an easily estimated covariance matrix.

In our research, we have extended the linear PHM and linear AHM by incorporating

covariates that can have a nonlinear effect on the survival probability and called them partially

linear proportional hazards model (PL-PHM) and partially linear additive hazards model

(PL-AHM). In the next section, we illustrate the concept of partially linear models.

1.2 Partially Linear Models

In real data, all covariates might not necessarily be linearly related with the response, some

of them might have a nonlinear relationship. Partially linear models (PLMs), which include

both linear and nonlinear components in the model, are flexible extension of linear models

and have been systematically studied in recent years (Härdle et al., 2012). A PLM usually

takes the form,

Y = α + β>X +
Q∑
q=1

φq(Wq) + ε,

where Y is a response variable and W = (W1, . . . ,WQ) is a Q dimensional vector of covariates,

α is the intercept, φq’s are unknown smooth functions with zero means, i.e., Eφq(Wq) = 0,

and ε is the random error term with mean zero and a finite variance σ2.

Using the same idea, the PL-PHM is obtained by extending model (1.1) as follows:

h(t|X,W ) = h0(t) exp

β>X +
Q∑
q=1

φq(Wq)

 . (1.3)
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Similarly, the PL-AHM which is an extension of model (1.2), takes the form:

h(t|X,W ) = h0(t) + β>X +
Q∑
q=1

φq(Wq). (1.4)

Model (1.3) and model (1.4) now contain both the linear component β>X and the nonlinear

components φq(Wq); q = 1, . . . , Q. These models extend a purely linear model given in (1.1)

and (1.2) and avoids the curse of dimensionality of a purely nonparametric model.

1.2.1 B-Splines

To approximate the nonparametric functions in a PLM, B-splines have been extensively

used by many researchers. B-splines are well-known for their ability to provide good

approximations to smooth functions (De Boor, 1978; Schumaker, 1981), they are numerically

stable, computationally faster, and has broad application in nonparametric smoothing (Stone

et al., 1997).

To approximate an unknown function of variable x on the interval [a, b], a B-spline is

defined as a piecewise polynomial function of degree k in the domain of the variable. Let

a = u0 ≤ u1 ≤ · · · ≤ um+1 = b be a sequence of m + 2 ascending real numbers which are

considered as a subdivision of m + 2 distinct points on the interval [a, b] on which the x

variable is valued. These points are called knots or break points. The interval [ui, ui+1) is

considered as the i-th knot span for i = 0, 1, . . . ,m. The significance of B-splines is in the

fact that any spline function of degree k on a given set of knots, U = {u0, u1, . . . , um+1}, can

be expressed as a linear combination of its basis functions. Here, we use normalized B-splines

where the i-th B-spline basis function of degree k, is written as Nk
i (x) and defined recursively

as follows.

Definition 4. (Cox-de Boor Recursion Formula) For all x ∈ [a, b],

N0
i (x) =


1 if ui ≤ x < ui+1

0 otherwise,
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Nk
i (x) =

x− ui
ui+k − ui

Nk−1
i (x) +

ui+k+1 − x
ui+k+1 − ui+1

Nk−1
i+1 (x),

where 1 ≤ k ≤ m. There is a special case of B-splines when the knots are equally spaced, and

they are usually known as uniform B-splines.

B-splines have some convenient properties. A B-spline basis function of degree k has k+ 1

polynomials of degree k on k + 1 intervals. Outside these k + 1 intervals, the basis function

is zero, which makes the basis functions local. The derivative of a B-spline of degree k is a

B-spline of degree k − 1. In general, the ith k degree B-spline is nonzero only on the interval

[ui, ui+k+1]. This property ensures that the ith and (i+ j + 1)th B-splines are orthogonal for

j ≥ k. B-splines whose supports overlap are linearly independent. For each fixed sequence

of interior knots {u1, . . . , um}, the set of such splines is a linear space of functions with

m+ (k + 1) (= number of interior knots + order of B-spline basis functions) free parameters

(De Boor, 1978).

Another important property of splines is their smoothness. kth degree splines usually

have no more than k − 1 continuous derivatives. For example, cubic splines often have two

continuous derivatives. Two continuous derivatives are often sufficient to provide smooth

approximations to the functions, one of the main reasons for the popularity of B-splines. In

addition, third degree piecewise polynomials are usually numerically well-behaved. As shown

in Gray (1992) and Cheng and Wang (2011), it is adequate to choose less than 10 knots for

sufficiently smooth approximation.

1.3 Variable Selection

Variable selection is fundamental in high-dimensional statistical modeling when the number

of covariates is large and grows with the sample size in analyzing data. Generally, a large

number of potential predictors are measured to avoid missing an important one, however,
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often a smaller number of important variables is desirable to improve statistical efficiency and

model interpretability. In addition, many of the traditional variable selection methods become

undesirable as a result of high computational cost and lack of stability in high-dimensional

data due to noise accumulation and excessive predictors. Breiman (1996), for example,

pointed out that best-subset selection can be unstable leading to poor prediction performance

of the model.

To simultaneously estimate and select important variables, a family of penalized approaches

is proposed. Variable selection is performed by minimizing a penalized objective function by

adding a penalty function of the following form

min {Loss function + Penalty} .

Popular choices of loss functions are least squares and negative log-likelihood. Plenty of

different penalty functions have been used for penalized regression, such as the bridge

estimator (Frank and Friedman, 1993; Fu, 1998); least absolute shrinkage and selection

operator (LASSO) (Tibshirani, 1996), the smoothly clipped absolute deviation (SCAD) (Fan

and Li, 2001), elastic net (Zou and Hastie, 2005), adaptive LASSO (Zou, 2006), adaptive

elastic net (Zou and Zhang, 2009), the smooth integration of counting and absolute deviation

(SICA) (Lv and Fan, 2009), and the minimum concave penalty (MCP) (Zhang, 2010), among

others. All of these methods are designed to conduct individual variable selection.

In many applications, covariates are naturally grouped. For example, in factor analysis-of-

variance (ANOVA), a factor that has several levels can be expressed through several dummy

variables where the dummy variables form a natural group, i.e., for response Y with two

factors α and β, intercept µ and random error ε,

Y = µ+ αj + βk + ε, j = 1, . . . , J, k = 1, . . . , K,

where {αj}Jj=1 and {βk}Kk=1 can be considered as two groups. Similarly, in additive models

with polynomial or nonparametric components, each component may be expressed as a linear
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combination of a number of basis functions of the original measured variable, which also form

a natural group; for example,

Y = µ+ ϕ1(W1) + · · ·+ ϕJ(WJ) + ε,

where the ϕj(Wj) =
∑m
`=1 γ`jB`(Wj), here {B`(Wj)}m` are basis functions and can be consid-

ered as a group.

Therefore, it would be reasonable to select groups of related covariates rather than

individual variables in the above situations. Common group variable selection methods that

are available in the literature include the group LASSO (Yuan and Lin, 2006), group SCAD

(Wang et al., 2007), group bridge (Huang et al., 2009) and group MCP (Breheny and Huang,

2009) penalties.

1.3.1 Penalty Functions

Many penalty functions are available in the literature for variable selection. Fan and Li (2001)

advocated penalty functions that give estimators with three properties:

1. Sparsity : The coefficients of insignificant variables should be estimated as zero.

This achieves the purpose of the variable selection.

2. Continuity : The estimated coefficients should be continuous in data to enhance

the model stability. This avoids unnecessary variation in the prediction.

3. Unbiasedness : When the true coefficients are large, they should be estimated

asymptotically unbiased. This avoids unnecessary biases in the model selection

steps.
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We introduce the following notations first:

L0 norm : ‖β‖0 =
d∑
j=1

I(|βj| > 0),

L1 norm : ‖β‖1 =
d∑
j=1

|βj| ,

L2 norm : ‖β‖2 = (
d∑
j=1

|βj|2)1/2,

Lγ norm : ‖β‖γ = (
d∑
j=1

|βj|γ)1/γ.

Some frequently used penalty functions are listed below where λ > 0, λ1 > 0 and λ2 > 0

are the tuning parameters. Note that, (1.5)-(1.9) perform individual variable selection and

(1.10)-(1.13) perform group variable selection.

1.3.2 The LASSO Penalty

The LASSO (Tibshirani, 1996) uses the L1 penalty,

pλ(|βj|) = λ |βj| . (1.5)

Here, L1 penalty is not differentiable at zero, and therefore, some of estimates will be obtained

as exactly zero. Leng et al. (2006) showed that LASSO, in general, is not variable selection

consistent.

1.3.3 The Bridge Penalty

The bridge penalty (Frank and Friedman, 1993; Fu, 1998) is defined by

pλ(|βj|) = λ |βj|γ , (1.6)

where 0 ≤ γ ≤ 2 is the bridge index. It includes LASSO with γ = 1, ridge regression with

γ = 2 and subset selection with γ = 0 as special cases.

Frank and Friedman (1993) proposed a family of bridge penalty with γ > 0. Notice that

0 < γ < 1 corresponds to a class of concave penalties, while 1 ≤ γ ≤ 2 corresponds to a class
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of convex penalties. Thus, for a convex loss function, the bridge penalty has the variable

selection feature when 0 < γ < 1.

1.3.4 The Elastic Net Penalty

The elastic net penalty (Zou and Hastie, 2005) has the form

pλ(|βj|) = λ1β
2
j + λ2 |βj| = (λ1 + λ2)

¶
αβ2

j + (1− α) |βj|
©
, (1.7)

where α = λ2/(λ1 + λ2). The Elastic Net penalty can capture grouping effect, where strongly

correlated predictors tend to be all-in or all-out of the model together. When the number

of predictors is much bigger than the number of observations (d >> n), this penalty is

particularly useful.

1.3.5 The SCAD Penalty

The SCAD penalty (Fan and Li, 2001) was proposed to reduce the bias caused by the L1

penalty (LASSO). The SCAD penalty and its first derivative are defined as

pλ,a(|βj|) =


λ |βj| , if |βj| ≤ λ,

−β2
j−2aλ|βj |+λ2

2(a−1)
, if λ < |βj| ≤ aλ,

(a+1)λ2

2
, if |βj| > aλ,

(1.8)

p
′

λ,a(|βj|) = λ

®
I(|βj| ≤ λ) +

(aλ− |βj|)+

(a− 1)λ
I(|βj| > λ)

´
,

where a > 2 and (s)+ = s for s > 0 and 0 otherwise. This penalty function takes off at the

origin as L1 penalty and then gradually levels off until its derivative reaches zero.

1.3.6 The MCP Penalty

The MCP (Zhang, 2010)and its first derivative are defined by

pλ,a(|βj|) =


λ |βj| −

β2
j

2a
, if |βj| ≤ aλ,

1
2
aλ2, if |βj| > aλ,

(1.9)
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p
′

λ,a(|βj|) = λ
(aλ− |βj|)+

aλ
,

where a > 1 is a shape parameter. The MCP can handle situations where the number of

covariates is greater than the number of observations (d > n).

1.3.7 The Group LASSO Penalty

Let Xk = (X1k, . . . , Xnk)
>, k = 1, . . . , d, be the design vectors and Y = (Y1, . . . , Yn)> be the

response vector, then a multiple linear regression model can be written as

Y = β1X1 + · · ·+ βdXd + ε,

where ε = (ε1, . . . , εn)> is the error vector. Let A1, . . . , AJ be subsets of {1, . . . , d} representing

known groupings of the design vectors and denote the regression coefficients in the jth group

by βAj = (βk, k ⊆ Aj)
>.

The group LASSO penalty, proposed by Yuan and Lin (2006) is given as

λ
J∑
j=1

‖βAj‖Kj ,2, (1.10)

where λ > 0 is the tuning parameter and Kj is a positive definite matrix and ‖βAj‖Kj ,2 =

(β>AjKjβAj)
1/2. Yuan and Lin (2006) suggested the choice of Kj is Kj = |Aj|Ij with Ij being

the |Aj| × |Aj| identity matrix, where |Aj| is the cardinality of Aj.

The group LASSO is a natural extension of the LASSO, and tends to select a larger model

than the true model by including unimportant variables. Group LASSO penalty selects

groups of important variables, however, it can not select individual variables within groups

(Huang et al., 2009).

1.3.8 The Group Bridge Penalty

To conduct variable selection at the group and individual variable levels simultaneously,

Huang et al. (2009) proposed the following group bridge penalty

λ
J∑
j=1

cj‖βAj‖
γ
1 , (1.11)
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where cj’s are constants for the adjustment of the different dimensions of Aj. Huang et al.

(2009) suggested a simple choice of cj is cj ∝ |Aj|1−γ for uncensored data.

The group bridge approach has been shown to have the oracle group selection property,

that is, it can correctly select important groups with probability converging to one.

1.3.9 The Group SCAD Penalty

Wang et al. (2007) introduced the the group SCAD penalty as

J∑
j=1

pλ,a(‖βAj‖2), (1.12)

where pλ,a(·) is the SCAD penalty, defined in (1.8), and ‖βAj‖2 =
»∑

k∈Aj β
2
k .

1.3.10 The Group MCP Penalty

The group MCP developed by Breheny and Huang (2009) is defined as

J∑
j=1

pλ,b

Ñ∑
k∈Aj

pλ,a(|βk|)

é
, (1.13)

where p(·) is the MCP penalty given by (1.9).

Huang et al. (2012) showed that the group MCP can perform bi-level selection, i.e., the

penalty is capable of selecting important groups as well as important variables within selected

groups.

1.4 Summary

The PLMs are an extension of linear regression models and additive nonparametric regression

models which combine both, and are more flexible than parametric models and more efficient

than nonparametric models. Estimation and inference for the PLMs is well studied (Ma

and Yang, 2011; Härdle et al., 2012). Additionally, several authors have considered variable

selection in the linear part of a PLM. They were motivated by the genetic epidemiology

studies where data are usually collected on high-dimensional genomic measurements as well
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as low-dimensional clinical covariates as combining both of them in disease prognosis gives

better sensitivity and specificity. Such improvement has been observed in some disease

studies (Rosenwald et al., 2002; Pittman et al., 2004). More examples of such studies can be

found in Ma and Huang (2007). Therefore, as referred in Ma and Du (2012), two distinct

sets of covariates are measured in these studies; X representing high-dimensional genomic

measurements such as gene expressions or SNPs, and W denoting low-dimensional clinical

and environmental risk factors such as age, gender, blood pressure etc. The high-dimensional

X is typically modeled in a parametric way for better interpretability where the interest lies

in identifying a small subset that is associated with the disease prediction. On the other hand,

the low-dimensional W is handled in a more flexible nonparametric way as many biological

processes are nonlinear.

Our research is motivated by four biological data sets. Our first data set is the South

Wales nickel refiners study data set (Breslow and Day, 1987, Appendix D). Here we estimated

the risk of developing carcinoma of the bronchi and nasal sinuses associated with different

covariates. The three other data sets are the primary biliary cirrhosis (PBC) data (Fleming

and Harrington, 2011), Wisconsin prognostic breast cancer (WPBC) data (available from

the UCI machine learning repository) and mantle cell lymphoma (MCL) data (Rajabi and

Sweetenham, 2015). In these data sets, we were interested in determining which groups and

within-group individual variables have a significant effect on the survival time.

As we introduced at the beginning of this chapter, the most popular model used in survival

analysis is the PHM, which examines the covariate effects on the hazard function and requires

meeting the proportional hazards assumption. Another alternative method for the analysis of

survival data is the AHM that does not need this assumption and can easily be implemented

and the results interpreted. Wang et al. (2009) and Huang et al. (2014) investigated group

selection in the linear PHM, where, Liu et al. (2014) investigated group selection in the linear

AHM. However, no group variable selection is investigated in the PL-AHM and PL-PHM. Our
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research fills in this gap and investigates the method, procedure, properties and application

of group selection in the PL-AHM and PL-PHM.

The rest of the thesis is organized as follows. We described the estimation procedure in the

PL-AHM in Chapter 2. A hierarchical method for group selection in the PL-AHM is reported

in Chapter 3. In Chapter 4, we developed a hierarchical method for group selection for the

PL-PHM. Summary and future research directions are reported in Chapter 5. Chapters 2, 3,

and 4 are written in manuscript style. Chapter 2 has been published in Statistical Modeling.

We are preparing two manuscripts from Chapters 3 and 4 for submission to statistical journals

for publication.
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Chapter 2

Estimation of Partly Linear Additive Hazards Model

with Left Truncated and Right Censored Data

2.1 Introduction

In survival analysis, the multiplicative risk model (Cox, 1972) and the additive risk model

(Aalen, 1980; Lin and Ying, 1994) provide two principal frameworks for the regression analysis

of censored survival data where the former estimates the risk ratio and later estimates the risk

difference. The multiplicative risk model which is also called the Cox proportional hazards

model (PHM), has so far been the most popular model for studying the association between

risk factors and survival times. On the other hand, in contrast to the Cox PHM, the additive

risk or additive hazards model (AHM) describes a different aspect of the association between

covariates and failure times, and provides a useful alternative to the multiplicative risk model

or PHM. Buckley (1984) pointed out that the AHM is biologically more plausible than the

PHM, while O’neill (1986) found that the use of the PHM may result in serious bias when the

true model is additive. Aalen et al. (2008) in their book listed a number of reasons justifying

the use of the AHMs. Particularly, the AHM considered by Lin and Ying (1994) has drawn

much attention in research in analyzing left truncated and right censored data, due to its

easy interpretation and implementation. Their AHM has the following form:

λ(t; X) = λ0(t) + β>X(t), (2.1)

where λ0(t) is an unknown baseline hazard function, X(t) = (X1(t), . . . , Xp(t))
> is a p

dimensional possibly time varying covariate vector. Mimicking the estimation procedure for

the Cox PHM, for left truncated and right censored data, Lin and Ying (1994) developed

a conditional estimating function for β, which does not contain the nuisance parameter
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λ0(t). The AHM has been also applied to other types of censored data. For example, Lin

et al. (1998) proposed an estimation method for current status data under the AHM. Later,

Martinussen and Scheike (2002) and Lu and Song (2012) used a semiparametric efficient

score function to improve estimation efficiency, at the cost of estimating λ0(t) separately.

Some of the recent literature that considered data arising from an AHM include bivariate

current status data (Tong et al., 2012), current status data with auxiliary covariates (Feng

et al., 2015), informative current status data (Zhao et al., 2015), clustered interval censored

data (Li et al., 2012), gap time data of recurrent events with multiple causes (Sankaran and

Anisha, 2012), left truncated and right censored data (Huang and Qin, 2013), right censored

data with missing covariates (Hao et al., 2014), right censored data with missing censoring

indicator (Qiu et al., 2015), left truncated and case I interval censored data (Wang et al.,

2015), right censored data with instrumental variable (Li et al., 2015) and error contaminated

survival data with replicate measurements (Yan and Yi, 2016), among others.

All the works aforementioned concern the linear AHM defined in (2.1), which cannot

handle nonlinear or nonparametric covariate effects. On the other hand, partially linear models

(PLMs) are getting increasingly popular due to the fact that it combines the flexibility of

nonparametric modeling with the parsimony and easy interpretability of parametric modeling.

PLMs, thus, play an important role in health sciences, economics and engineering studies

(Engle et al., 1986; Robinson, 1988; Speckman, 1988; Andrews, 1994; Yatchew, 1997). For

uncensored data, substantial amounts of works are available in the literature on partially

linear models and their generalizations. For instance, You and Chen (2006), Zhou and Liang

(2009) and Ma et al. (2013) proposed estimation procedure of varying coefficient partially

linear model with error-prone covariates; Liang et al. (2011) and Wang and Sun (2007)

considered PLMs where covariates and responses were missing at random, respectively; Zhang

et al. (2016) accounted for time series error in a PLM; Kim (2016) included locally stationary

regressors in a PLM; Li and Xue (2015) made inference in a generalized PLM with random
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effect for longitudinal data; Hu et al. (2014) applied a PLM to panel data; Aneiros et al.

(2015) estimated the error variance in semi-functional PLMs.

In survival analysis, data are often censored, relatively, fewer works are seen in the

literature regarding partly linear models. Among those works, Huang (1999) considered the

efficient estimation of the partly linear additive Cox model and used B-splines to estimate the

nonparametric functions. Yin et al. (2008) proposed the partially linear varying-coefficient

additive hazards model with a nonlinear interaction between the covariates and an exposure

variable where they used kernel method to estimate the nonlinear function. Zhang (2016)

investigated semiparametric estimation of a partially linear transformation model under

conditional quantile restriction and its extension to random censoring. With current status

data, Ma and Kosorok (2005) and Cheng and Wang (2011) studied penalized log-likelihood

estimation for the partly linear transformation model; Ma (2011) researched the partly linear

cure rate AHM. Recently, Lu and Song (2015) proposed efficient estimation of the partly

linear additive hazards model with current status data and used B-splines to estimate the

nonparametric functions.

In this Chapter, we consider the additive hazards model with a semiparametric risk

function that has a partially linear structure in the same vein as that of Huang (1999) and

Lu and Song (2015). More specifically, we assume that the conditional hazard function is

given by

λ(t;W,X) = λ0(t) + β>X(t) +
q∑
j=1

ϕj(Wj), (2.2)

where λ0(t) and X(t) are defined in model (2.1), W = (W1, . . . ,Wq)
> is a q dimensional

time-independent covariate vector, ϕj (j = 1, . . . , q) are known or unknown nonlinear smooth

functions. The model now contains both the linear component β>X(t) and the nonlinear

components ϕj(Wj), j = 1, . . . , q, where the former is a parametric component and the

latter could be parametric or nonparametric components. For technical reasons, we assume

that ϕj(·), j = 1, . . . , q, are B-splines functions with fixed knots and orders defined in (2.3),

20



hence they are also of parametric forms. In practice, these nonlinear functions may not be

specified and are purely nonparametric. Under this situation, we suggest to approximate

them by B-splines so that the proposed method still can be used. Our simulation studies

shown at the end indicate the performance is quite satisfactory and the approximation error

could be ignored. In summary, this model extends a purely linear model given in (2.1) and

avoids the curse of dimensionality of a purely nonparametric model; the existing computing

software makes it readily available for data analysis.

The rest of the chapter is organized as follows. In Section 2.2, we illustrate the estimation

method for model (2.2) and present a theorem of asymptotic normality for the proposed

estimator. In Section 2.3, we discuss implementation of the algorithm using some existing R

packages. In Section 2.4, we examine the finite-sample properties using simulation studies

and illustrate the proposed method with a real data set. Concluding remarks are made in

Section 2.5. Finally, proof of Theorem 1 is presented in the Appendix.

2.2 Estimation Method and Theory

In this section, we will construct a pseudo-score function motivated by the work of Lin

and Ying (1994) to estimate the parameters of the linear part and the nonlinear functions

consisting of B-splines. Under some regularity conditions, we prove a theorem of asymptotic

normality for the proposed estimator. Following Lin and Ying (1994), we use notations for

counting processes to denote the left truncated and right censored survival data of size n

drawn from the population characterized by model (2.2). We assume the survival times or

responses Ti are not completely observable due to left-truncation and right-censoring by the

random variables Li and Ci, respectively. Let (Xi(t),Wi) be the corresponding linear and

nonlinear covariate vectors. Let T̃i = min(Ti, Ci) and δi = I[Ti ≤ Ci], I[A] is the indicator

function of a set A. Thus (T̃i, δi,Xi,Wi) can be observed only when T̃i ≥ Li. The data,

therefore, consist of n observations (T̃i, Li, δi,Xi,Wi) with T̃i ≥ Li, i = 1, . . . , n. Define the
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at-risk processes Yi(t) = I[T̃i > t ≥ Li] and the counting processes Ni(t) = δiI[Li ≤ T̃i ≤ t].

For more details related to data subject to left-truncation and right-censoring, see Lai and

Ying (1991).

In order to use the estimation method of Lin and Ying (1994), we assume the non-

linear functions ϕj(Wj)’s are B-splines. Specifically, we assume Wj has a common sup-

port [a, b] where a and b are finite numbers. For each nonlinear component, ϕj(Wj),

let τ0 = a < τ1 < · · · < τk′ < b = τk′+1 be a partition of [a, b] into sub-intervals

[τk, τk+1), k = 0, . . . , k′ with k′ internal knots. A polynomial spline of order r is a func-

tion whose restriction to each sub-interval is a polynomial of degree r− 1 and globally r− 2

times continuously differentiable on [a, b]. The collection of splines with a fixed sequence

of knots has a normalized B-spline basis
{
B∗j1(x), . . . , B∗

jk̃
(x)
}

with k̃ = k′ + r. As ϕj is

identifiable only up to a constant, we put a centering constraint E{ϕj(Wj)} = 0, we instead

focus on the subspace of spline functions S0
j := [s : s =

∑k̃
k=1 αjkBjk(x),

∑n
i=1 s(Wij) = 0],

with basis
¶

Bjk(x) = B∗jk(x)−∑n
i=1 B

∗
jk(Wij)/n, k = 1, . . . , K = k̃ − 1

©
(the subspace is k̃−1

dimensional due to the use of normalized B-spline basis functions, i.e.,
∑k̃
k=1 Bjk(x) = 1

before centering). Therefore, each nonlinear component is expressed as

ϕj(x) =
K∑
k=1

αjkBjk(x), 1 ≤ j ≤ q. (2.3)

Using this spline expansion, the problem of estimating ϕj is then transformed to the problem

of estimating the coefficients αj = (αj1, . . . , αjK)>. Model (2.2) can be written as

λ(t;W,X) = λ0(t) + β>X(t) +
q∑
j=1

K∑
k=1

αjkBjk(Wj) = λ0(t) + γ>Z(t), (2.4)

where γ> = (β>,α>)>, α> = (α>1 , . . . ,α
>
q )>, Z(t) = (X(t)>,B1(W1)>, . . . ,Bq(Wq)

>)>, and

Bj(Wj) = (Bj1(Wj), . . . , BjK(Wj))
>, j = 1, . . . , q. Based on the linear additive hazards

model studied by Lin and Ying (1994), the intensity function for Ni(t) is given by

Yi(t)dΛ(t; Zi) = Yi(t){dΛ0(t) + γ>Zi(t) dt}, (2.5)

where Λ0(t) =
∫ t

0 λ0(u) du is the cumulative baseline hazard function.
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The counting processes Ni(t) can be uniquely decomposed so that for every i and t,

Ni(t) = Mi(t) +
∫ t

0
Yi(u) dΛ(u; Zi), (2.6)

where Mi(t) is a local square integrable martingale (Andersen and Gill, 1982). The cumulative

baseline hazard function Λ0(t) is estimated by

Λ̂0(γ, t) =
∫ t

0

∑n
i=1{dNi(u)− Yi(u)γ>Zi(u) du}∑n

i=1 Yi(u)
. (2.7)

Mimicking the partial likelihood score function of the multiplicative risk model, as done by

Lin and Ying (1994), we propose to estimate γ> = (β>,α>)> from the estimating function,

U(γ) =
n∑
i=1

∫ τ

0
Zi(t){dNi(t)− Yi(t)dΛ̂0(γ, t)− Yi(t)γ>Zi(t) dt}, for 0 < τ ≤ ∞.

In practice, τ is the study ending time satisfying P (T̃ ≥ τ) > 0. U(γ) is equivalent to

U(γ) =
n∑
i=1

∫ τ

0
{Zi(t)− Z̄(t)}{dNi(t)− Yi(t)γ>Zi(t) dt}

=
n∑
i=1

∫ τ

0
{Zi(t)− Z̄(t)} dNi(t)−[

n∑
i=1

∫ τ

0
Yi(t){Zi(t)− Z̄(t)}⊗2 dt

]
γ, (2.8)

where a⊗2 = aa> for a column vector a and

Z̄(t) =
n∑
j=1

Yj(t)Zj(t)/
n∑
j=1

Yj(t).

The resulting estimator takes the explicit form

γ̂ =

[
n∑
i=1

∫ τ

0
Yi(t){Zi(t)− Z̄(t)}⊗2 dt

]−1 [ n∑
i=1

∫ τ

0
{Zi(t)− Z̄(t)} dNi(t)

]
. (2.9)

In the following theorem, we give asymptotic normality of the derived estimator and provide

a basis for inference.

Theorem 1. Assume that the nonlinear functions in (2.3), ψj (j = 1, . . . , q), are B-splines,

α0 is their true coefficient vector, β0 is the true coefficient vector of the linear part, γ>0 =

(β>0 ,α
>
0 )>. Let

ηr(t) = E{Y1(t)Zr
1(t)}, r = 0, 1,
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A = E
∫ τ

0
Yi(t)

®
Zi(t)−

η1(t)

η0(t)

´⊗2

dt,

Σ = E
∫ τ

0

®
Zi(t)−

η1(t)

η0(t)

´⊗2

dN1(t),

and V = A−1ΣA−1. Then, we have

n1/2(γ̂ − γ0)
d−→ N(0, V ),

where
d−→ represents convergence in distribution, V can be consistently estimated by Vn =

A−1
n ΣnA

−1
n , with

An = n−1
n∑
i=1

∫ τ

0
Yi(t){Zi(t)− Z̄(t)}⊗2 dt

and

Σn = n−1
n∑
i=1

∫ τ

0
{Zi(t)− Z̄(t)}⊗2 dNi(t).

We relegate the proof of Theorem 1 to the Appendix.

Suppose that the estimated covariance matrices for β̂ and α̂j, j = 1, . . . , q, are Vnβ

and Vnαj , respectively, then the large sample (1− π)100%-level confidence region for β0 or

confidence intervals for βi (i = 1, . . . , p) based on the above asymptotic normal distribution

is given by

Rβ = {β : n(β̂ − β)>V −1
nβ (β̂ − β) ≤ χ2

p(π)}, (2.10)

β̂i − Zπ/2SE(β̂i) ≤ βi ≤ β̂i + Zπ/2SE(β̂i), (2.11)

where χ2
p(π) is the (1 − π)100th quantile of the chi-squared distribution with degrees of

freedom p, Zπ/2 is the (1− π/2)100th quantile of the standard normal distribution and SE

stands for standard error.

By the similar argument the large sample (1− π)100%-level point-wise confidence interval

for ϕj(w) at a fixed value w is given as

ϕ̂j(w)− Zπ/2SE(ϕ̂j(w)) ≤ ϕj(w) ≤ ϕ̂j(w) + Zπ/2SE(ϕ̂j(w)), (2.12)

where ϕ̂j(w)=α̂>j Bj(w) and SE(ϕ̂j(w))=
¶
B>j (w)VnαjBj(w)

©1/2
.
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2.3 Implementation

To estimate the partly linear additive hazards model with left truncated and right cen-

sored data, we used two publicly available R packages: package fda and package ahaz. R

(http://www.r-project.org) is a free programming language and software environment for

statistical computing and graphics, and is widely used by statisticians for developing statistical

software and data analysis. The packages in R are an efficient way to maintain collections of

R functions and data sets. The package fda is developed by Ramsay, Wickham, Graves and

Hooker to support functional data analysis as described in Ramsay and Silverman (2006).

We used the function bsplineS from this package to generate B-spline basis functions which

we later use as an argument in the ahaz function from the ahaz package. The bsplineS

function mainly takes three arguments: a w vector of values at which the B-spline basis

functions are to be evaluated, breaks or knot positions, and the order of the B-spline basis

functions. In practice, we suggest equal probability spaced quantiles as knot positions. The

second package ahaz is developed and maintained by Anders Gorst-Rasmussen and uses

Lin and Ying (1994)’s procedure for estimating semiparametric additive hazards regression

model. The function ahaz supports left truncated and right censored survival data, takes the

survival object Surv as the response which is formed with observation times and censoring

indicators, and the design matrix created by combining the linear covariates and B-spline

basis functions obtained from package fda, and returns estimates with associated standard

errors. To improve the efficiency of the estimators, we selected optimal number of knots by

implementing the BIC proposed by Gorst-Rasmussen and Scheike (2011) at each simulation

run where we keep the number of knots same for all nonparametric functions in one simulation

but allow it to vary between simulations.
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2.4 Numerical Studies

In this section, first, we conduct four simulation studies to evaluate the finite-sample perfor-

mances of the proposed model. In Example 1, we consider right censoring only. In Example

2, we consider both left-truncation and right-censoring. In these simulation studies, we mimic

scenarios where the nonlinear functions ϕj(wj) are assumed to be unknown, and then use

B-splines to approximate them in estimation. In Example 3, we set the nonlinear functions

to be exact B-spline functions with left-truncated and right censored data. In Example 4, we

compare the proposed B-spline approach with the kernel-based approach of Yin et al. (2008)

with right censored data only. At the end, we apply the proposed method to a data set from

the South Wales Nickel Refines Study, which involves both left-truncation and right-censoring.

In these numerical studies, we set the order of B-splines at 4 and the knots at the quantiles

of the observed w’s, which implies that the B-splines are cubic B-splines. Then we selected

optimal number of knots by the BIC proposed by Gorst-Rasmussen and Scheike (2011), we

found that in all these numerical studies, on average, zero interior knots were selected, so

that the number of basis functions were four. This also implies that in most applications,

cubic B-splines without interior knots are enough to fit underlying nonlinear functions, so

the model is quite parsimonious and practically useful.

2.4.1 Simulation Study

Example 1: Data are right censored without left-truncation. Event times are

generated from an exponential distribution with a hazard rate given as follows:

λ(t|x,w) = λ0(t) + βββ>z + ϕ1(w1) + ϕ2(w2),

where λ0(t) = 5, βββ = (β1, β2)
> = (0.3, 0.5)>, and the covariates z = (z1, z2)

T , which

are generated from Z1 ∼ U(1, 4) − 2.5 and Z2 ∼ Bernoulli(p = 0.5) − 0.5. The two

nonlinear functions are ϕ1(w1) = sin{π(w1/3− 1)} and ϕ2(w2) = 0.3{(w2 − 6)2 − 3}, with

both W1 and W2
iid∼ Uniform(3, 9). The covariates are centered such that E(Z1)=E(Z2)=
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E {φ1(W1)}=E {φ2(W2)}=0. The censoring time C follows a uniform distribution U (0, c0)

with c0 chosen to obtain a censoring proportion (cp) of about 20%, 30% and 40%, respectively.

The sample size has been chosen to be 50, 200 and 500 respectively. The simulation is

replicated 1000 times for each combination of n and c0. For the confidence interval with

nominal level (1− α)100% = 95%, the coverage probability and joint coverage probability

are computed from the Wald test statistics. We approximated the nonlinear functions using

B-spline functions. Since the sum of the basis functions equals 1 for any w in the support of

W1 and W2, we tackled the overparameterization problem by removing the last basis function.

The final estimates of the nonlinear functions were centered at their Monte-Carlo sample

means.

Table 2.1 summarizes the results of estimation and coverage probability. We observe

that the averages of parameter estimates are close to the true values, so the estimation

consistency is evident. As sample size increases, the sample standard deviations and the

averaged estimated standard deviations decrease dramatically and are almost identical. Even

with a high censoring proportion of 40%, the estimation performance is very satisfactory.

The coverage probabilities almost reach the nominal level irrespective to the sample size and

censoring proportion.

Figure 2.1 and Figure 2.2 show the fitted curves and 95% point-wise confidence bands of

ϕ1(·) and ϕ2(·). It is evident that average estimated curves capture the true curves very well

and the true curves lie in the 95% point-wise confidence bands. Moreover, with an increase

of sample size, the 95% point-wise confidence interval becomes narrower.

Example 2: Data are left truncated and right censored. The setup of this simulation

is the same as that in Example 1 except for the conditions that: (i.) the baseline hazard

depends on time now and is taken to be λ0(t) ≡ 0.1t+ 3.3, and (ii.) the data are also left

truncated. Here, survival times are subject to the left-truncation where the left-truncation

times are generated from a Uniform[0, 10], then the residual survival times T̃ − L are right
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Figure 2.1: Estimation of ϕ1(·) in Example 1: 95% confidence bands for function ϕ1(·) based
on 1000 replicates with different sample sizes and censoring proportions. The solid lines stand
for the true curves. The dashed lines are the average estimated curves. The dotted lines
and the dot-dashed lines represent the 95% point-wise confidence bands based on averaged
estimated standard deviation and sample quantiles, respectively.
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Figure 2.2: Estimation of ϕ2(·) in Example 1: 95% confidence bands for function ϕ2(·) based
on 1000 replicates with different sample sizes and censoring proportions. The solid lines stand
for the true curves. The dashed lines are the average estimated curves. The dotted lines
and the dot-dashed lines represent the 95% point-wise confidence bands based on averaged
estimated standard deviation and sample quantiles, respectively.
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censored by the censoring times C ∼ Uniform [0, c0], where c0’s are chosen to obtain a

pre-specified censoring proportion of about 20%, 30% and 40%, respectively.

Table 2.2 summarizes the results of estimation and coverage probability. Compared to the

results in Example 1, even the data are left truncated, the estimation performance remains

quite satisfactory. The coverage probabilities of 95% confidence intervals almost reach the

nominal level irrespective to the sample size and censoring proportion. The fitted curves and

95% point-wise confidence bands for ϕ1(·) and ϕ2(·) are shown in Figure 2.3 and Figure 2.4.

It is evident that average estimated curves capture the true curves very well for n = 200

or larger and the true curves lie in the 95% point-wise confidence bands. Also, the 95%

point-wise confidence interval becomes narrower as the sample size increases.

Example 3: Data are left truncated and right censored and the nonlinear func-

tions are B-spline functions.

The setup of this simulation is the same as that in Example 2 except that the two nonlinear

functions ϕ1(w1) and ϕ2(w2) are B-spline functions. First we generate six B-spline basis

functions in the interval [3, 9] with two interior knots fixed at 5 and 7, which are shown in

Figure 2.5. Using the first five basis functions plus an intercept, we define the two B-spline

functions as

ϕ̃1(w1) = 0.03− 0.06B1(w1) + 0.78B2(w2) + 1.58B3(w1)− 1.63B4(w1)− 0.83B5(w1)

and

ϕ̃2(w2) = 1.80 + 1.4× 10−6B1(w2)− 1.20B2(w2)− 2.80B3(w2)− 2.80B4(w2)− 1.20B5(w2),

then center them at E{ϕ̃1(W1)} and E{ϕ̃2(W2)}, thus we obtain two centered B-spline

functions given by ϕ1(w1) = ϕ̃1(w1) − E{ϕ̃1(W1)} and ϕ2(w2) = ϕ̃2(w2) − E{ϕ̃2(W2)},

respectively. The two expected values were estimated by Monte-Carlo sample means. The

coefficients specified in ϕ̃1(w1) and ϕ̃2(w2) were obtained by fitting a linear model to the true

values of the two nonparametric functions in Example 2 with a very small disturbance, so

that these two B-spline functions behave like those two nonparametric functions.
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Figure 2.3: Estimation of ϕ1(·) in Example 2: 95% confidence bands for function ϕ1(·) based
on 1000 replicates with different sample sizes and censoring proportions. The solid lines stand
for the true curves. The dashed lines are the average estimated curves. The dotted lines
and the dot-dashed lines represent the 95% point-wise confidence bands based on averaged
estimated standard deviation and sample quantiles, respectively.
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Figure 2.4: Estimation of ϕ2(·) in Example 2: 95% confidence bands for function ϕ2(·) based
on 1000 replicates with different sample sizes and censoring proportions. The solid lines stand
for the true curves. The dashed lines are the average estimated curves. The dotted lines and
and the dot-dashed lines represent the 95% point-wise confidence bands based on averaged
estimated standard deviation and sample quantiles, respectively.
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Table 2.3 summarizes the results of estimation and coverage probability. Compared to the

results in Example 2, the performance of the parameter estimators are almost the same. The

estimated B-spline functions and their 95% point-wise confidence bands shown in Figures

2.6 and 2.7 are analogous to those in Figures 2.3 and 2.4. The results in Examples 2 and 3

indicate that the proposed method works almost equally well even if the nonlinear functions

are completely unknown and nonparametric.

In summary, in the partly linear additive hazards model, our simulation results indicate

that even the nonlinear components are not B-splines, using our method, these functions

are treated as B-splines, then they become parametric functions and can be estimated along

with the linear component. The proposed method can work very well and has satisfactory

performance in estimation for left truncated and right censored data. This is very important in

real applications, where it is difficult to know the functional forms of nonlinear risk functions,

a practical solution as the proposed method is desirable.

Example 4: Comparison with the kernel-based approach.

From a different motivation, Yin et al. (2008) studied the partially linear varying-coefficient

additive hazards model using a kernel-based approach. To compare with their method, we

applied the B-spline approach to both the varying-coefficient functions and the additive

functions. Specifically, we used their Simulation I as an example and compare our results

with their results reported in Table 1 of their paper. The data were generated from the

following model

λ(t|Z, V,W ) = λ0(t) + β(W )Z + γV + α(W ),

where β(w) = 1.2 + sin(2w), γ = 1, α(w) = 0.2w, and λ0(t) = 0.5. The covariate Z was

generated from a uniform distribution U [0, 1], and the covariate V was generated from a

Bernoulli random variable taking value 0 or 1 with probability 0.5. The censoring time was

taken as min(C0, τ) with C0 generated from uniform U [τ/2, 3τ/2]. Following their approach,

we took τ = 0.86 which yielded an approximate censoring rate of 25% without left-truncation,
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chose 29 even partitions at w0 = (0.1, 0.2, . . . , 2.9) and computed the estimators for β(w0),

α(w0) and γ. We considered sample sizes n = 200 and 400 and replicated 500 simulations.

For the confidence interval estimation of the derivative α′(w0), we used the same idea of

(2.12). That is, assuming α(w0) = θ>1 B(w0) and β(w0) = θ>2 B(w0), B(w0) is B-spline basis

functions evaluated at w0, then the large sample (1− π)100%-level confidence interval for

α′(w0) is given as

α̂′(w0)− Zπ/2SE(α̂′(w0)) ≤ α′(w0) ≤ α̂′(w0) + Zπ/2SE(α̂′0(w0)), (2.13)

where α̂′(w0)=θ̂
>
1 B′(w0) and SE(α̂′(w0))=

¶
B′T (w0)Vnθ1B

′(w0)
©1/2

.

The results are presented in Table 2.4. We observe that the results based on the B-spline

approach are comparable to or even superior to the kernel based approach, particularly for

the estimate of α′(w), the estimate is more efficient in terms of the size of sample standard

deviations.
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Figure 2.5: B-spline basis functions in Example 3, order=4 and two interior knots are 5 and
7.
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Figure 2.6: Estimation of ϕ1(·) in Example 3: 95% confidence bands for function ϕ1(·) based
on 1000 replicates with different sample sizes and censoring proportions. The solid lines stand
for the true curves. The dashed lines are the average estimated curves. The dotted lines
and the dot-dashed lines represent the 95% point-wise confidence bands based on averaged
estimated standard deviation and sample quantiles, respectively.
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Figure 2.7: Estimation of ϕ2(·) in Example 3: 95% confidence bands for function ϕ2(·) based
on 1000 replicates with different sample sizes and censoring proportions. The solid lines stand
for the true curves. The dashed lines are the average estimated curves. The dotted lines and
and the dot-dashed lines represent the 95% point-wise confidence bands based on averaged
estimated standard deviation and sample quantiles, respectively.
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2.4.2 Real Data Analysis: the South Wales Nickel Refiners Study

For illustration of the proposed estimation procedures, we apply them to the South Wales

nickel refiners study (Breslow and Day, 1987, Appendix D). The data contained complete

records for 679 men workers employed before 1925 in a nickel refinery in South Wales. The

purpose of the study is to determine the risk of developing carcinoma of the bronchi and nasal

sinuses associated with the refining of nickel. The follow-up through 1981 uncovered 137 lung

cancer deaths among men aged 40 ∼ 85 years and 56 deaths from cancer of the nasal sinus.

Since the workers had been working in the company for various periods of time before the

follow-up was initiated, their survival times were subject to left-truncation. A right-censored

observation arose either because the worker died from a competing cause or because he was

still alive on the date of data listings. Breslow and Day (1987, pp. 222-223) and Lin and

Ying (1994) fitted the conditional proportional hazards model and the conditional additive

hazards model to the data respectively. They considered survival time to be years since first

employment and found three significant risk factors: age at first employment, AFE, year at

first employment, YFE, and exposure level, EXP. Their final estimation results based on the

additive hazards model are given under the conditional estimating equation estimator β̂AHM

columns in Table 2.5 along with the estimates obtained from the Cox PH model.

Let w = (Y FE − 1915)/10, both the PH model and AH model reported in Lin and Ying

(1994) included w and w2, hence, w has a quadratic effect on the hazard rates. However, the

quadratic effect in their models is a subjective choice, it is interesting to see a data driven

functional form of the w effect. This suggests that the partly linear AH model perfectly

suits the need. Therefore, we apply the proposed model to the data. Let X1=log(AFE-10),

X2=log(EXP+1), the new model can be expressed as follows:

λ(t;W,X) = λ0(t) + β1X1 + β2X2 + ϕ(W ).

We use equal probability spaced knots in B-splines. The BIC proposed by Gorst-Rasmussen

and Scheike (2011) selects one inner knot, the fitted nonparametric function and 95%

37



−1.0 −0.5 0.0 0.5 1.0

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

w = (YFE − 1915) 10

ϕ(
w

)

Figure 2.8: Estimated nonparametric function ϕ̂(w) (w=(YFE-1915)/10) in the partly linear
additive hazards model for the nickel data. The solid line is the estimated curve, the dotted
lines are the 95% point-wise confidence bands, the dashed line is the centered estimated
quadratic polynomial curve 0.00005w − 0.00496w2, computed from the fitted linear additive
hazard model.

point-wise confidence bands are shown in Figure 2.8, and the estimates for the linear

parameters are reported in Table 2.5. Compared to the linear AH model, we observe that

the partly linear AH model estimates the linear effects similarly, but for the nonlinear effect

of w = (Y FE − 1915)/10, the proposed model provides a different trajectory of estimation.

The difference is shown in the tail part of the curve after w = 0.6, where the fitted curve

shows an opposite direction from the parametric polynomial curve. This indicates that the

nonlinear effect of w may not be explained simply by a quadratic polynomial.
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2.5 Concluding Remarks

The additive hazards model serves as an important alternative to the proportional hazards

model. To enhance modeling flexibility, we have studied the semiparametric partly linear

additive hazards model and established the estimation and inference procedures. We applied

polynomial splines with the computationally favorable B-spline basis, which allows reasonable

approximation of smooth functions with just a small number of basis functions. The proposed

model and estimation procedure are particularly attractive due to the analytic solution for

the estimator and the easy computation using the existing R packages.

We treated the true nonlinear functions as B-spline functions and assumed the number

and locations of the knots were fixed, and developed the asymptotic theory for inference.

Huang and Liu (2006) took a similar approach in studying the single-index proportional

hazards model for analyzing right-censored data. They used polynomial splines estimation

along with a partial likelihood approach to estimate the parameters of the model. They also

suggested to use BIC to select number of knots in B-splines. In practice, the true nonlinear

functions are not necessarily B-splines functions, deriving large sample properties of the

estimators under this setting is an open problem and is worthy of further investigation in

our future research. However, our simulation studies showed that the proposed method can

be used as an approximate approach to the underlying problems and such an approximate

inference procedure appears to be quite accurate and can be applied to effectively solve real

problems.

To specify a partially linear model, at least two possible strategies are applied in the

literature. One is simply to put discrete covariates in the linear part and continuous ones

in the nonlinear part. Another more reasonable approach is to first perform a preliminary

univariate analysis and then separate the covariates based on the shape of the estimated

nonparametric functions. In this paper, we assumed that a partially linear specification is

already available one way or another and did not further consider how the partially linear
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structure comes by in the first place. Apparently this is an interesting problem in itself,

we leave it as a future work. Another consideration in our future research is to improve

estimation efficiency when data subject to left-truncation, for that we can apply the method

of Huang and Qin (2013) to combine the so-called marginal pairwise pseudo-score function

and the conditional estimation function proposed by Lin and Ying (1994).

2.6 Appendix

Proof of Theorem 1. It is easy to see that

U(γ0) =
n∑
i=1

∫ τ

0
{Zi(t)− Z̄(t)} dMi(t),

which is a martingale integral. Following the standard counting process arguments of Andersen

and Gill (1982), we have E {U(γ0)} = 0 and

V ar {U(γ0)} =
n∑
i=1

V ar
ï∫ τ

0
{Zi(t)− Z̄(t)} dMi(t)

ò
=

n∑
i=1

E
∫ τ

0
{Zi(t)− Z̄(t)}⊗2 d〈Mi(t),Mi(t)〉

=
n∑
i=1

E
∫ τ

0
{Zi(t)− Z̄(t)}⊗2 Yi(t)dΛ(t; Zi)

=
n∑
i=1

E
∫ τ

0
{Zi(t)− Z̄(t)}⊗2 {dNi(t)− dMi(t)}

=
n∑
i=1

E
∫ τ

0
{Zi(t)− Z̄(t)}⊗2 dNi(t)−

n∑
i=1

E
∫ τ

0
{Zi(t)− Z̄(t)}⊗2 dMi(t)︸ ︷︷ ︸

0

= nΣ1n,

where Σ1n = E
∫ τ

0 {Z1(t)− Z̄(t)}⊗2 dN1(t) −→ Σ, when n −→∞. By central limit theorem

for martingales, n−1/2U(γ0)
d−→ N(0,Σ). That is, by Andersen and Gill (1982), the random

vector n−1/2U(γ0) converges weakly to a (p + Kq)-variate normal with mean zero and a

covariance matrix Σ, which can be consistently estimated by Σn. Next, expanding the score
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function evaluated at the γ̂ around γ0 using a first order Taylor series so that

U(γ̂) = U(γ0) +
∂U(γ)

∂γT

∣∣∣γ=ξn (γ̂ − γ0),

where ξn is between γ0 and γ̂. Noticing that U(γ̂) = 0, we have the first order approximation

γ̂ − γ0 =

®
∂U(γ)

∂γT

´−1

γ=ξn

U(γ0) =

[
n∑
i=1

∫ τ

0
Yi(t){Zi(t)− Z̄(t)}⊗2 dt

]−1

U(γ0).

We obtain

n1/2(γ̂ − γ0) = n

[
n∑
i=1

∫ τ

0
Yi(t){Zi(t)− Z̄(t)}⊗2 dt

]−1

× n−1/2U(γ0)

=

[
n−1

n∑
i=1

∫ τ

0
Yi(t){Zi(t)− Z̄(t)}⊗2 dt

]−1

× n−1/2U(γ0)

= A−1
n × n−1/2U(γ0),

where An = n−1 ∑n
i=1

∫ τ
0 Yi(t){Zi(t) − Z̄(t)}⊗2 dt. Since An −→ A in probability and

n−1/2U(γ0)
d−→ N(0,Σ), by Slutsky’s theorem and the central limit theorem for martingales,

we have

n1/2(γ̂ − γ0)
d−→ N(0, V ),

where Vn = A−1
n ΣnA

−1
n . It then follows that the estimator (2.9) converges weakly to a

(p+Kq)-dimensional normal variate with mean zero and a covariance matrix which can be

consistently estimated by Vn. The proof of Theorem 1 is completed.
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Table 2.1: Summary results of the simulation study in Example 1. Bias: bias of the parameter
estimates; AESD: average estimated standard deviation of the parameter estimates; SSD:
sample standard deviation of the parameter estimates; CP: coverage probability of the 95%
confidence interval; cp: censoring proportion; n: sample size; Results are based on 1000
simulation replicates.

cp n True βββ Bias AESD SSD CP Joint CP
20% 50 β1 = 0.3 0.071 1.242 1.351 0.945 0.961

β2 = 0.5 0.040 2.127 2.214 0.957
200 β1 = 0.3 0.005 0.476 0.477 0.955 0.940

β2 = 0.5 0.011 0.826 0.842 0.933
500 β1 = 0.3 0.004 0.288 0.285 0.957 0.962

β2 = 0.5 -0.005 0.498 0.499 0.954
30% 50 β1 = 0.3 0.007 1.317 1.292 0.960 0.955

β2 = 0.5 -0.035 2.247 2.375 0.952
200 β1 = 0.3 0.019 0.516 0.519 0.955 0.956

β2 = 0.5 0.070 0.890 0.894 0.953
500 β1 = 0.3 0.004 0.310 0.310 0.946 0.963

β2 = 0.5 -0.010 0.535 0.516 0.955
40% 50 β1 = 0.3 0.010 1.417 1.538 0.948 0.947

β2 = 0.5 0.083 2.419 2.512 0.959
200 β1 = 0.3 0.020 0.558 0.554 0.959 0.955

β2 = 0.5 -0.001 0.961 0.962 0.954
500 β1 = 0.3 0.011 0.335 0.326 0.956 0.949

β2 = 0.5 0.008 0.580 0.581 0.943
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Table 2.2: Summary results of the simulation study in Example 2. Bias: bias of the parameter
estimates; AESD: average estimated standard deviation of the parameter estimates; SSD:
sample standard deviation of the parameter estimates; CP: coverage probability of the 95%
confidence interval; cp: censoring proportion; n: sample size; Results are based on 1000
simulation replicates.

cp n True βββ Bias AESD SSD CP Joint CP
20% 50 β1 = 0.3 0.040 0.743 0.749 0.958 0.969

β2 = 0.5 0.190 1.295 1.295 0.963
200 β1 = 0.3 0.009 0.274 0.283 0.941 0.958

β2 = 0.5 0.009 0.479 0.467 0.963
500 β1 = 0.3 0.013 0.164 0.159 0.958 0.950

β2 = 0.5 0.018 0.287 0.290 0.946
30% 50 β1 = 0.3 0.083 0.796 0.780 0.960 0.964

β2 = 0.5 0.135 1.369 1.382 0.963
200 β1 = 0.3 0.014 0.295 0.291 0.961 0.953

β2 = 0.5 0.028 0.515 0.531 0.949
500 β1 = 0.3 0.007 0.176 0.168 0.961 0.960

β2 = 0.5 0.011 0.307 0.309 0.946
40% 50 β1 = 0.3 0.089 0.881 0.904 0.968 0.970

β2 = 0.5 0.006 1.514 1.523 0.958
200 β1 = 0.3 0.022 0.323 0.314 0.952 0.955

β2 = 0.5 0.032 0.560 0.560 0.944
500 β1 = 0.3 -0.005 0.193 0.187 0.963 0.951

β2 = 0.5 0.003 0.336 0.346 0.948
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Table 2.3: Summary results of the simulation study in Example 3. Bias: bias of the parameter
estimates; AESD: average estimated standard deviation of the parameter estimates; SSD:
sample standard deviation of the parameter estimates; CP: coverage probability of the 95%
confidence interval; cp: censoring proportion; n: sample size; Results are based on 1000
simulation replicates.

cp n True βββ Bias AESD SSD CP Joint CP
20% 50 β1 = 0.3 0.029 0.740 0.736 0.964 0.969

β2 = 0.5 0.133 1.265 1.207 0.973
200 β1 = 0.3 0.016 0.275 0.268 0.962 0.960

β2 = 0.5 0.052 0.481 0.477 0.953
500 β1 = 0.3 0.015 0.163 0.158 0.955 0.960

β2 = 0.5 0.013 0.286 0.293 0.947
30% 50 β1 = 0.3 0.062 0.799 0.808 0.962 0.971

β2 = 0.5 0.130 1.363 1.340 0.965
200 β1 = 0.3 0.003 0.297 0.294 0.960 0.958

β2 = 0.5 0.012 0.517 0.504 0.965
500 β1 = 0.3 0.007 0.176 0.175 0.953 0.958

β2 = 0.5 0.006 0.307 0.307 0.952
40% 50 β1 = 0.3 0.029 0.873 0.861 0.959 0.964

β2 = 0.5 0.143 1.506 1.503 0.954
200 β1 = 0.3 0.037 0.321 0.316 0.957 0.958

β2 = 0.5 0.012 0.559 0.565 0.950
500 β1 = 0.3 -0.001 0.192 0.193 0.954 0.952

β2 = 0.5 0.011 0.336 0.341 0.948
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Table 2.4: Summary results of the simulation study in Example 4. The results are compared
with those in Table 1 of Yin et al. (2008) via the kernel-based approach. The censoring
proportion was set at cp = 25%.

Kernel based approach B-spline based approach
β(w) = 1.2 + sin(2w) β(w) = 1.2 + sin(2w)

n w0 Bias AESD SSD CP(%) Bias AESD SSD CP(%)
200 0.5 0.190 1.226 1.186 95.4 0.163 1.036 1.072 93.8

1.0 0.075 1.171 1.205 96.0 0.005 1.067 1.058 96.0
1.5 0.021 1.123 1.078 95.6 0.009 0.855 0.836 96.6
2.0 0.064 0.925 0.948 96.8 0.082 0.896 0.915 95.6
2.5 0.016 1.048 0.994 95.8 0.005 0.908 0.913 95.6

400 0.5 -0.061 0.798 0.790 94.6 0.111 0.705 0.729 94.8
1.0 -0.047 0.824 0.810 94.4 -0.037 0.733 0.736 95.4
1.5 0.069 0.768 0.734 95.8 -0.038 0.586 0.580 95.6
2.0 0.104 0.643 0.638 93.2 0.019 0.609 0.602 94.6
2.5 0.109 0.674 0.660 94.4 -0.031 0.607 0.591 95.6

α′(w) = 0.2 α′(w) = 0.2
n w0 Bias AESD SSD CP(%) Bias AESD SSD CP(%)
200 0.5 -0.069 1.787 1.740 95.8 -0.069 1.281 1.329 95.0

1.0 0.095 1.644 1.565 95.8 0.009 0.650 0.704 95.0
1.5 0.112 1.623 1.559 95.0 0.028 0.829 0.866 95.2
2.0 0.023 1.561 1.518 95.2 0.050 0.660 0.658 95.0
2.5 0.071 1.780 1.804 95.2 0.018 1.420 1.428 95.0

400 0.5 0.065 1.229 1.156 94.2 -0.041 0.844 0.868 95.4
1.0 -0.102 1.094 1.069 94.6 0.001 0.431 0.471 94.2
1.5 0.030 0.970 1.045 96.0 0.036 0.559 0.560 95.0
2.0 -0.052 1.037 1.024 94.2 0.025 0.442 0.464 96.2
2.5 0.098 1.197 1.192 96.4 -0.088 0.935 0.937 94.0

γ = 1 γ = 1
n Bias AESD SSD CP(%) Bias AESD SSD CP(%)
200 0.081 0.370 0.311 91.6 0.035 0.330 0.313 96.2
400 0.025 0.223 0.218 95.2 0.014 0.227 0.231 95.4

Table 2.5: Summary statistics of the Nickel Data Analysis with three different models: AH
model (β̂AHM ), PH model (β̂PHM ) and partly linear AH model (β̂PLAHM ), including estimate
(Est) and estimated standard error (SE).

β̂AHM β̂PHM β̂PLAHM
Parameter Est SE Est SE Est SE

log(AFE-10) 0.00431 0.00083 2.22 0.44 0.00426 0.00086
log(EXP+1) 0.00373 0.00093 0.77 0.17 0.00380 0.00096

(YFE-1915)/10 0.00005 0.00102 -0.09 0.32
B-splines NA

(YFE-1915)2/100 -0.00496 0.00209 -1.26 0.51
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Chapter 3

Hierarchically Penalized Partially Linear Additive

Hazards Model with a Diverging Number of

Parameters

3.1 Introduction

As a useful alternative to the Cox proportional hazards model (PHM), the additive hazards

model (AHM) assumes that the hazard function is the sum of the regression function of

covariates and the baseline hazard function, and describes a different aspect of the relationship

between survival time and covariates than the PHM. The AHM addresses the risk difference

while the PHM deals with the risk ratio. When the excess risk is the quantity of interest,

the AHM is more reasonable than the PHM. Buckley (1984) pointed out that the AHM is

biologically more plausible than the PHM, while O’neill (1986) found that the use of the

PHM may result in serious bias when the true model is additive. Aalen et al. (2008) in their

book listed a number of reasons justifying the use of the AHMs. The AHM proposed by Lin

and Ying (1994) has the following form:

h(t|X) = h0(t) + β>X, (3.1)

where h0(t) is a completely unspecified baseline hazard function, β = (β1, . . . , βp)
> is the

vector of regression coefficients, and X = (X1, . . . , Xp)
> is a p-dimensional covariate vector.

Here we consider a partially linear additive hazards model (PL-AHM), presented in

Chapter 2, which was proposed by Afzal et al. (2017) with right censored data. More

specifically, we assume that the conditional hazard function is given by

h(t|W,X) = h0(t) + φ(W ) + β>X, (3.2)
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where φ(W ) =
∑Q
q=1 φq(Wq), W = (W1, . . . ,WQ)> is a Q dimensional covariate vector, φq

(q = 1, . . . , Q) are known or unknown nonlinear smooth functions. This model combines

the flexibility of nonparametric modeling with the parsimony and easy interpretability of

parametric modeling, and avoids the curse of dimensionality of a purely nonparametric model.

In this chapter, we investigate the group variable selection problem in the linear part of

the PL-AHM given in (3.2), where the covariates in X can be naturally grouped. The data

and model settings are partly motivated by cancer prognosis studies reported in Ma and

Huang (2007) and the variable selection method introduced by Ma and Du (2012) in the

partly linear accelerated failure time (AFT) model with diverging dimensions in X for right

censored data. In their studies, two distinct sets of covariates are measured. The first set

X represents high-dimensional genomic measurements such as microarray gene expression

or SNPs. The second set W represents low-dimensional clinical and environmental risk

factors where the dimension Q of W was fixed and low. For better interpretability and easier

computation, the effect of X is usually modeled in a parametric way and the effect of W is

modeled with more flexible additive nonparametric functions, since many biological processes

are nonlinear. However, variable selection based on such model settings mainly focuses on

individual variables such as that in Ma and Huang (2007). In some applications, groups of

measurements may be taken in the hopes of capturing unobservable latent variables or for

measuring different aspects of complex entities (Breheny and Huang, 2009). Examples include

measurements of gene expression, which can be grouped by gene pathways, and genetic

markers, which can be grouped by the gene or haplotype (a set of genetic determinants located

on a single chromosome) that they belong to. For example, as Wang et al. (2009) explained,

when analyzing microarray gene expression data, one can group genes into functionally similar

sets as in The Gene Ontology Consortium (2000), or into known biological pathways such as

the Kyoto encyclopedia of genes and genomes pathways (Kanehisa and Goto, 2000). In these

settings, methods for individual variable selection may perform inefficiently by ignoring the
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information present in the grouping structure, while making use of the group information, as

shown in Wang et al. (2009) and Huang et al. (2014), can help to identify both pathways

and genes within the pathways related to the phenotypes, and hence improves understanding

of biological processes.

Since grouping structures are natural in many important practical problems, several

authors tackled the problem of variable selection in linear regression models with grouped

covariates. Examples include group LASSO (Yuan and Lin, 2006), adaptive group LASSO

(Wang and Leng, 2008; Wei and Huang, 2010), group SCAD (Wang et al., 2007) etc. All of

these methods select variables in an all-in-all-out fashion. That is, a group of predictors are

either all selected or all deleted from the model, and hence, these methods are not capable of

differentiating important variables from the unimportant ones within a group.

Lately, bi-level group selection has attracted much attention since it can identify important

groups as well as important variables within each selected group. Such a technique can be

very useful in gene expression data where a biological pathway can be related to a certain

biological outcome although some genes in that pathway may be not related to the biological

outcome. Accordingly, it is sensible to identify important pathways, and important genes

within important pathways, simultaneously. Popular bi-level group selection methods are

group bridge (Huang et al., 2009), group MCP (Breheny and Huang, 2009), sparse group

LASSO (Simon et al., 2013), adaptive sparse group LASSO (Fang et al., 2015), group

exponential LASSO (Breheny, 2015) etc. Based on perspectives different from Huang et al.

(2009), Zhou and Zhu (2010) proposed a hierarchically penalized method, which is a special

case of the group bridge method in the linear regression model studied by Huang et al. (2009).

A few authors studied variable selection in the AHM, see Leng and Ma (2007); Martinussen

and Scheike (2009); Lin and Lv (2013), among others. Their methods were for individual

variable selection only. To conduct group selection, Liu et al. (2014) extended the hierarchical

penalty to the AHM and established the oracle property of the estimators.
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Recently, many authors have considered variable selection in partially linear models

(PLMs). For example, variable selection in the linear part of a PLM has been extensively

studied for uncensored data. Examples include Xie and Huang (2009), Ni et al. (2009), Liang

and Li (2009), Zhao and Xue (2010), Kai et al. (2011), Xia and Yang (2016), Lv et al. (2016)

and Yang et al. (2017), among others. Relatively fewer works are seen on variable selection

in partially linear survival models (Johnson, 2009; Du et al., 2010; Long et al., 2011; Hu and

Lian, 2013; Lian et al., 2014; Jicai et al., 2016; Liu et al., 2017). However, those authors

focused on individual variable selection in the partially linear accelerated failure time model

(PL-AFT) and partially linear proportional hazards model (PL-PHM), variable selection in

the PL-AHM is yet to be investigated.

To the best of our knowledge, in the literature, group selection has not been investigated

for the PL-AHM and PL-PHM. To bridge this gap, in this chapter, specifically, we propose

a bi-level group variable selection in the PL-AHM with a diverging number of covariates

X, assuming a group structure in the linear part and a fixed and low dimensional W for

clinical and/or environmental covariates in the nonparametric part. Similar approach could

be applied to other types of partially linear survival models, such as PL-PHM in the form of

h(t|W,X) = h0(t) exp
¶
φ(W ) + β>X

©
, in contrast to the PL-AHM given by (3.2), which will

be addressed elsewhere in a different chapter. In this work, we consider the number of zero

coefficients is diverging with the sample size. Generally, although the number of covariates

collected is large, only a subset of covariates are important in predicting the event times.

Therefore, we assume the numbers of non-zero coefficients and non-zero groups are fixed.

Such an assumption is often reasonable with high dimensional data.

The remainder of the chapter is organized as follows. In Section 3.2, we describe the

variable selection procedure for the PL-AHM. Asymptotic theories and further improvements

are discussed in Section 3.3. In Section 3.4, numerical results are presented. Concluding

remarks are made in Section 3.5. All technical proofs are contained in the Appendix.
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3.2 Grouped Variable Selection in the PL-AHM

Suppose that a random sample of n subjects is observed. For the i-th subject, let T ei

and T ci be the event time and the censoring time respectively, where the hazard function

of T ei is given by (3.2). Assume that T ei and T ci are independent given the covariates,

and the censoring mechanism is noninformative. The true nonparametric functions and

parameters will be denoted using a superscript 0. The i.i.d observable random variables are

(Ti,∆i,Wi, Xi) where Ti = min(T ei , T
c
i ) and ∆i = I[T ei ≤ T ci ], (I[A] is the indicator function

of a set A), Wi = (Wi1, . . . ,WiQ)> ∈ RQ, and Xi = (Xi1, . . . , Xip)
> ∈ Rp are the covariates

in the nonparametric and the parametric parts, respectively. Define the at-risk processes

Yi(t) = I[Ti > t] and the counting processes Ni(t) = ∆iI[Ti ≤ t]. Note that, φq is identifiable

only up to a constant and thus we assume E {φq(Wq)} = 0.

Following similar strategy of Wang et al. (2009), we assume that the p variables in the

linear part X can be divided into G groups. Let the g-th group have pg variables. We use

Xi,(g) =
Ä
Xi,g1, . . . , Xi,gpg

ä>
to denote the pg variables in the g-th group for the i-th observation,

Xi =
Ä
X>i,(1), . . . , X

>
i,(G)

ä>
to denote the total p variables, and β(g) =

Ä
βg1, . . . , βgpg

ä>
to

represent the regression coefficients for the g-th group. We assume that the G groups do not

overlap, i.e., each variable belongs to only one group.

Thus, the partially linear additive hazards model (3.2) can be written as

h(t|W,X) = h0(t) +φ(W ) +
G∑
g=1

pg∑
j=1

βgjXgj = h0(t) +φ(W ) +β>(1)X(1) + · · ·+β>(G)X(G). (3.3)

Next, we use polynomial splines to approximate the nonparametric components. Without

loss of generality, we assume Wq (q = 1, . . . , Q) has a support [0, 1]. For each non-parametric

component, φq(Wq), let τ0 = 0 < τ1 < · · · < τk′ < 1 = τk′+1 be a partition of [0, 1] into

subintervals [τk, τk+1), k = 0, . . . , k′ with k′ internal knots. A polynomial spline of order

r is a function whose restriction to each subinterval is a polynomial of degree r − 1 and

globally r− 2 times continuously differentiable on [0, 1]. The collection of splines with a fixed

sequence of knots has a normalized B-spline basis
¶
B̃q1(x), . . . , B̃qk̃(x)

©
with k̃ = k′ + r. As
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φq is identifiable only up to a constant, we put a centering constraint E{φq(Wq)} = 0, and

use the subspace of spline functions: S0
q := [s : s =

∑k̃−1
k=1 αqkBqk(x),

∑n
i=1 s(Wiq) = 0], with

basis
¶

Bqk(x) =
√
K(B̃qk(x)−∑n

i=1 B̃qk(Wiq)/n), k = 1, . . . , K = k̃ − 1
©

(the subspace has a

degree = k̃ − 1 due to the normalization constraint
∑k̃
k=1 B̃qk(x) ≡ 1). The multiplicative

constant
√
K is incorporated in the basis definition to simplify some expression later in

the proofs, as done in Wang et al. (2011). Using spline expansions, we can approximate

the nonparametric components by φq(x) ≈ ∑K
k=1 αqkBqk(x), 1 ≤ q ≤ Q. Therefore, the

problem of estimating φq is now transformed to the problem of estimating the coefficients

αq = (αq1, . . . , αqK)>.

Let Z = (B11(W1), . . . , B1K(WQ), . . . , BQ1(W1), . . . , BQK(WQ))> denote the QK basis

functions and α = (α11, . . . , α1K , . . . , αQ1, . . . , αQK)> denote the corresponding coefficients.

Since the q-th nonparametric component can be approximated by
∑K
k=1 αqkBqk(x) (q =

1, . . . , Q), it is reasonable to assume that Bq1(x), . . . , BqK(x) are K variables belonging to

one group. Therefore, the QK variables in Z can be divided into Q groups, where each of the

q-th group has K variables. We use Zi,(q) = (Bi,q1, . . . , Bi,qK)> (q = 1, . . . , Q; k = 1, . . . , K),

to denote the K basis functions in the q-th group for the i-th observation. Similarly, we

use Zi =
Ä
Z>i,(1), . . . , Z

>
i,(Q)

ä>
to denote the total QK variables for the i-th observation, and

α(q) = (αq1, . . . , αqK)> to represent the regression coefficients for the q-th group. We assume

that the number of variables in each group is K, i.e., we consider the same number of basis

functions to approximate each nonparametric function. To simplify computation, since we

have assumed Wq (q = 1, . . . , Q) have the same support [0,1], we can assume Bqk(x) = Bq′k(x)

for q 6= q′, 1 ≤ q, q′ ≤ Q, 1 ≤ k ≤ K.

The partially linear additive hazards model in (3.3) is then written as

h(t|Z,X) = h0(t) +
Q∑
q=1

α>(q)Z(q) +
G∑
g=1

β>(g)X(g). (3.4)

To estimate regression parameters (α0, β0), we propose a pseudo-score function Un(α, β)
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following Lin and Ying (1994),

Un(α, β) = − 1

n

n∑
i=1

∫ τ

0
{Li − L̄n(t)}{dNi(t)− Yi(t)

Ä
α>, β>

ä
Li dt},

where Li = (Z>i , X
>
i )>, L̄n(t) =

∑n
j=1 Yj(t)Lj/

∑n
j=1 Yj(t) and τ is the study ending time

with P (T ≥ τ) > 0. By some algebraic manipulation, Un(α, β) = 0 is equivalent to the linear

equations Dn

Ä
α>, β>

ä>
= dn, where

dn =
1

n

n∑
i=1

∫ τ

0
{Li − L̄n(t)} dNi(t) and Dn =

1

n

n∑
i=1

∫ τ

0
Yi(t){Li − L̄n(t)}⊗2 dt,

with a⊗2 = aa> for any column vector a. Furthermore, solving the equation Un(α, β) = 0

with respect to (α, β) is equivalent to minimizing the following loss function,

Ln(α, β) =
1

2

Ä
α>, β>

ä
Dn

Ä
α>, β>

ä> − d>n Äα>, β>ä> . (3.5)

Following Hu and Lian (2013) and Lian et al. (2014), who conducted individual variable

selection in the linear part of the PL-PHM, our model could be realized by minimizing the

penalized loss function defined as follows:

pLn(α, β) = Ln(α, β) +
p∑
j=1

pλn(βj),

where pλn(βj) is a penalty function. Let (α̂, β̂) be the minimizer of the above penalized loss

function. Then, the penalized estimators of φq (q = 1, . . . , Q) and β are
∑K
k=1 α̂qkBqk and

β̂, respectively. In this chapter, our focus is on group selection, and the above individual

variable selection is a special case of the following group selection problem.

3.2.1 Hierarchically Penalized PL-AHM

To conduct group selection, we closely follow Wang et al. (2009) and Liu et al. (2014)’s

procedure. Similar to theirs, we reparameterize βgj as

βgj = γgθgj (g = 1, . . . , G; j = 1, . . . , pg),
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where γg ≥ 0 for identifiability. This decomposition indicates that all βgj (j = 1, . . . , pg) belong

to the g-th group as it treats βgj hierarchically. Parameter γg explains βgj (j = 1, . . . , pg) at

the group level and θgj’s explain differences among individuals within the g-th group. Let

θ(g) = (θg1, . . . , θgpg)
>, then β(g) = γgθ(g). The loss function in (3.5) can be written as

Ln(α, γ, θ) =
1

2
(α>, γ1θ

>
(1), . . . , γGθ

>
(G))Dn(α>, γ1θ

>
(1), . . . , γGθ

>
(G))

>

−d>n (α>, γ1θ
>
(1), . . . , γGθ

>
(G))

>,

where γ = (γ1, . . . , γG)> and θ = (θ11, . . . , θ1p1 , . . . , θG1, . . . , θGpG)>. To select important

variables in the linear part, we regularize the hierarchical parameters γ and θ by

min
α(q),γg ,θgj

Ln(α, γ, θ) + λγ
G∑
g=1

γg + λθ
G∑
g=1

pg∑
j=1

|θgj|

 , (3.6)

subject to γg ≥ 0 (g = 1, . . . , G), where λγ ≥ 0 and λθ ≥ 0 are two tuning parameters, which

control the sparsity of the estimation at the group level and within group level, respectively.

As indicated by Liu et al. (2014) in the linear AHM, for fixed (α, β) and given values of λγ

and λθ, the minimizer of (3.6) with respect to (γ, θ), where Ln(α, γ, θ) is constant, is unique.

Finally, in the same vein as Wang et al. (2009), we can combine λγ and λθ into one tuning

parameter λ = λγλθ such that (3.6) is equivalent to

min
α(q),γg ,θgj

Ln(α, γ, θ) +
G∑
g=1

γg + λ
G∑
g=1

pg∑
j=1

|θgj|

 , (3.7)

subject to γg ≥ 0 (g = 1, . . . , G). Lemma 1 illustrates the meaning of equivalence.

Lemma 1. Let (α̂∗, γ̂∗, θ̂∗) be a local minimizer of (3.6). Then there exists a local minimizer

(α̂†, γ̂†, θ̂†) of (3.7) such that α̂∗ = α̂† and γ̂∗g θ̂
∗
gj = γ̂†g θ̂

†
gj. Similarly, if (α̂†, γ̂†, θ̂†) is a local

minimizer of (3.7), then there exists a local minimizer (α̂∗, γ̂∗, θ̂∗) of (3.6) such that α̂∗ = α̂†

and γ̂∗g θ̂
∗
gj = γ̂†g θ̂

†
gj.

Furthermore, criterion (3.7) can be written into an equivalent form using the regression

coefficients α and β.
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Lemma 2. If (α̂, γ̂, θ̂) is a local minimizer of (3.7), then (α̂, β̂), where β̂gj = γ̂gθ̂gj, is a local

minimizer of the following objective function:

Qn(α, β) = Ln(α, β) + 2λ1/2
G∑
g=1


pg∑
j=1

|βgj|


1/2

. (3.8)

On the other hand, if (α̂, β̂) is a local minimizer of (3.8), then (α̂, γ̂, θ̂) is a local minimizer

of (3.7), where γ̂g = (λ
∑pg
j=1 |β̂gj|)1/2 and θ̂gj = β̂gj/γ̂g if γ̂g 6= 0 and zero, otherwise.

Instead of using L2-norm which performs group LASSO (Yuan and Lin, 2006), we used

L1-norm to the within group coefficients in (3.8). In addition, the group coefficients are

penalized by a bridge-type penalty (Frank and Friedman, 1993), i.e., L1/2-norm. So, the

hierarchical penalty can remove unimportant groups and some unimportant variables in the

important groups.

3.3 Asymptotic Properties

We denote the true risk score by m0(W,X) = φ0(W ) + β0>X where φ0(W ) = φ0
1(W1) + · · ·+

φ0
Q(WQ). Let R> = (W>, X>) be all the covariates, and h be any function of R (h can be

vector valued). Define

S(0)
n (t) = n−1

n∑
i=1

Yi(t),

S(1)
n (t)[h] = n−1

n∑
i=1

Yi(t)h(Ri),

S(2)
n (t)[h] = n−1

n∑
i=1

Yi(t)h(Ri)
⊗2.

Let s(j)(t) = E
¶
S(j)
n (t)

©
, j = 0, 1, 2, L̄n(t) = S(1)

n (t)[L]/S(0)
n (t) L̄(t) = s(1)(t)[L]/s(0)(t),

D = E
[∫ τ

0 Y (t)
¶
L− L̄(t)

©⊗2
dt
]
, and ‖a‖ denote the l2-norm of a.

Let us consider the penalized loss function with a general penalty function. The objective

function that is to be minimized is

Qn,gen(α, β) = Ln(α, β) +
G∑
g=1

p
(g)
λn

(|β(g)|), (3.9)
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where p
(g)
λn

(|β(g)|) = p
(g)
λn

(|βg1|, . . . , |βgpg |) is a general pg-variate penalty function for the linear

parameters in the g-th group. We let the penalty functions p
(g)
λn

(·) (g = 1, . . . , G) in (3.9) to

vary between groups as well as p
(g)
λn

(·) to depend on the tuning parameter λn that differs with

n.

Adopting notations of Wang et al. (2009), we write the true parameter vector in the sparse

linear part as β0 = (β0>
A , β0>

B , β0>
C )>, whereA =

¶
(g, j) : β0

gj
6= 0
©
, B =

¶
(g, j) : β0

gj
= 0, β0

(g) 6= 0
©
,

and C =
¶
(g, j) : β0

(g) = 0
©
. Here A, B, C contain the indices of nonzero coefficients, indices

of zero coefficients that belong to nonzero groups, and indices of zero coefficients that belong

to zero groups. Thus, A, B and C are disjoint and partition the set of all indices of coefficients.

We write D = B ∪ C, which contains the indices of all zero coefficients. We also define

an = max
(g,j)

∂p
(g)
λn

(|β0
g1|, ..., |β0

gpg |)
∂|βgj|

: β0
gj 6= 0

 ,
bn = max

(g,j)

∂
2p

(g)
λn

(|β0
g1|, ..., |β0

gpg |)
∂|βgj|2

: β0
gj 6= 0

 .
Further, let s be the number of nonzero groups. Without loss of generality, we assume that

β0
(g) 6= 0 (g = 1, . . . , s) and β0

(g) = 0 (g = s + 1, . . . , G). Let sg be the number of nonzero

coefficients in group g (g = 1, . . . , s). Again, without loss of generality, we assume that

β0
gj 6= 0 (g = 1, . . . , s; j = 1, . . . , sg) and β0

gj = 0 (g = 1, . . . , s; j = sg + 1, . . . , pg).

The following regularity conditions are assumed to study the asymptotic properties:

(A1) (i) The covariate vector R> = (W>, X>) = (R1, . . . , Rp+Q) has a bounded

support: without loss of generality the support of W is assumed to be [0, 1]Q,

with the marginal density of each covariate in W being continuous and bounded

away from zero and infinity, and the covariate vector X is bounded. (ii) There

exist constants M1,M2, σ > 0 such that P (‖Rj‖ > x) ≤ M1 exp(−M2x
σ) for

all x > 0 and j = 1, . . . , p+Q.

(A2) (i) Only observations with censored event times in a finite interval [0, τ ] are

used in the loss function. At the point τ , the baseline cumulative hazard
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function Λ0(τ) ≡
∫ τ

0 λ0(s)ds <∞. (ii) P (∆ = 1|R) and P (T c > τ |R) are both

bounded away from zero with probability one.

(A3) Let Hd be the collection of all functions on support [0, 1] whose m-th order

derivative satisfied the Hölder condition of order r with d ≡ m+ r, i.e., for each

h ∈ Hd, there exists a constant M0 ∈ (0,∞) such that
∣∣∣h(m)(s)− h(m)(t)

∣∣∣ ≤
M0|s − t|r, for any s, t ∈ [0, 1]. Assume, φ0

q ∈ Hd (q = 1, . . . , Q), for some

d > 1/2. The order of the spline satisfies r > d+ 1/2.

(A4) E

[
sup
t∈[0,τ ]

Y (t) ‖L‖2
¶
β0>X + α0>Z

©2
]

= O(K + p).

(A5) The eigenvalues of D are bounded away from zero and infinity.

(A6) The pg-variate penalty function for parameters in the g-th group satisfies the

following two conditions:

p
(g)
λn

(|β(g)|) ≥ 0 (β(g) ∈ Rpg), p
(g)
λn

(0) = 0; (3.10)

p
(g)
λn

(|β(g)|) ≥ p
(g)
λn

(|β∗(g)|) (|βgj| ≥ |β∗gj|; j = 1, . . . , pg). (3.11)

Similar conditions to those listed above have been considered in the literature (Hu and

Lian, 2013; Wang et al., 2009) and are quite reasonable. Condition (A1)(i) places the

boundedness condition on the covariates. It is unpleasant, but not too restrictive because

in many practical situations continuous covariates may be typically rescaled to fall between

0 and 1. (A1)(ii) controls the tail behavior of the covariates and is trivially satisfied for

bounded covariates. (A2)(i) avoids the unboundedness of the loss function and pseudo-score

function at the end point of the support of the observed event time. (A2)(ii) ensures that

the probability of being right censored at τ and the probability of being observed events are

positive and bounded away from zero regardless of the covariate values. (A3) ensures the

uniform continuity of the functions. A condition similar to (A4) was considered by Bradic
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et al. (2011) for diverging number of parameters following Andersen and Gill (1982). The

positive-definiteness of D in (A5) is a reasonable assumption by the following discussion.

The term LL> appears in the definition of D. Under mild assumptions, Huang et al. (2010)

showed that eigenvalues of E(ZZ>) are bounded and bounded away from zero and hence,

we can expect that eigenvalues of E(LL>) are bounded and bounded away from zero if

eigenvalues of E(XX>) are, and Z and X are linearly independent. Wang et al. (2009)

considered the condition (A6) about the properties of the penalty function in the hierarchical

group variable selection in the linear PHM.

Theorem 1. Let γn =
»

(K + p)/n+K−d. Under regularity conditions (A1) - (A6), assume

that Q, s and sg are fixed, K → ∞, p → ∞, (K + p)/n → 0, an = Op(γn) and bn → 0,

there exists a local minimizer (α̂>, β̂>)> of (α>, β>)> in (3.9) and φ̂q(wq) =
∑K
k=1 α̂qkBqk(wq),

φ̂(w) =
∑Q
q=1 φ̂q(wq) such that

∥∥∥φ̂− φ0
∥∥∥+

∥∥∥β̂ − β0
∥∥∥ = Op

(»
(K + p)/n+K−d

)
.

Theorem 2. Let γn =
»

(K + p)/n+K−d and (α̂>, β̂>A , β̂
>
B , β̂

>
C )> be the local minimizer of

Qn,gen(α, β) in (3.9). For (g, j) ∈ D, i.e., β0
gj = 0, under the same conditions as in Theorem

1, if γ−1
n ∂p

(g)
λn

(|β̂g1|, . . . , |β̂gpg |)/∂|βgj| → ∞ as n→∞, then we have β̂gj = 0 with probability

approaching to 1.

In the following section, we construct a penalty function p
(g)
λn

such that the conditions in

Theorem 2 satisfies.

3.3.1 Adaptive hierarchically penalized method

The above results are obtained for any general penalty. Following Wang et al. (2009), here we

will show the asymptotic results for the hierarchically penalized PL-AHM based on criterion

(3.8). If we write λn = 2λ1/2 in (3.8), then based on Theorems 1 and 2 we have

Corollary 1. Let γn =
»

(K + p)/n + K−d. If λn = Op(γn), then there exists a local

minimizer (α̂>, β̂>)> = (α̂>, β̂>A , β̂
>
B , β̂

>
C )> for the hierarchically penalized PL-AHM in (3.8)
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such that
∥∥∥φ̂− φ0

∥∥∥ +
∥∥∥β̂ − β0

∥∥∥ = Op (γn); if further p−1/2γ−3/2
n λn → ∞ as n → ∞, then

β̂C = 0 with probability tending to 1.

Comparing Corollary 1 with Theorem 2, we see that although the hierarchical penalty

can effectively remove unimportant groups because β̂C = 0 with probability approaching to 1,

it cannot effectively remove unimportant variables within the important groups as β̂D = 0

with probability tending to 1 may not hold. To tackle this limitation, we apply the adaptive

idea used in Breiman (1995), Shen and Ye (2002), Zhang and Lu (2007), Zhao and Yu (2006),

Zou (2006), Zou (2008), Wang et al. (2009), Liu et al. (2014), and others, which is to penalize

different coefficients differently. To do so, we consider our objective function as

Q∗n(α, β) = Ln(α, β) + λn
G∑
g=1


pg∑
j=1

wn,gj|βgj|


1/2

, (3.12)

where wn,gj’s are pre-specified non-negative weights. The next theorem shows that, by

controlling weights properly, the adaptive hierarchically penalized PL-AHM has the selection

consistency as stated in Theorem 2.

Theorem 3. Let us define

wAn,max = max {wn,gj : (g, j) ∈ A} , wAn,min = min {wn,gj : (g, j) ∈ A} ;

wDn,max = max {wn,gj : (g, j) ∈ D} , wDn,min = min {wn,gj : (g, j) ∈ D} .

Let γn =
»

(K + p)/n + K−d. Under the same conditions as assumed in Theorem 1, if

γ−1
n λnw

A
n,max

Ä
wAn,min

ä−1/2 → 0, λn
Ä
wAn,max

ä2 Ä
wAn,min

ä−3/2 → 0, and γ−1
n λnw

D
n,min/(w

A
n,max +

wDn,max)1/2 →∞ as n→∞, there exists a local minimizer (α̂>, (β̂>A , β̂
>
D))> of (α>, (β>A , β

>
D))>

in (3.12) such that
∥∥∥φ̂− φ0

∥∥∥+
∥∥∥β̂ − β0

∥∥∥ = Op (γn) and β̂D = 0 with probability tending to 1.

Finally, we specify our λn and the weights wn,gj that satisfy conditions in Theorem 3,

which are given by the following corollary.

Corollary 2. Let γn =
»

(K + p)/n+K−d and β̃n be an estimator such that,
∥∥∥β̃n − β0

∥∥∥ =

Op(γn). If λn = γn/log(n) and wn,gj = 1/|β̃n,gj|r, where r > 0, then there exists a local
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minimizer (α̂>, (β̂>A , β̂
>
D))> of (α>, (β>A , β

>
D))> in (3.12) such that

∥∥∥φ̂− φ0
∥∥∥ +

∥∥∥β̂ − β0
∥∥∥ =

Op (γn) and β̂D = 0 with probability tending to 1.

In practice, we choose (α̃n, β̃n) = arg minα,β Ln(α, β), the estimator from the unpenalized

score function when p is diverging with n and p < n. From Corollary 1 and Corollary 2,

we notice that the rates of convergence of the estimators are the same but the selection

performance of the adaptive hierarchically penalized method is superior to that of the

hierarchically penalized method, because the adaptive method possesses the individual

variable selection consistency, while the non-adaptive method holds only group selection

consistency.

3.4 Numerical Computations and Results

Direct minimization of Qn(α, β) in 3.8 (or Q∗n(α, β) in 3.12) is difficult because the penalty is

not a convex function. Following Huang et al. (2009) and Liu et al. (2014), we formulate an

easier equivalent minimization problem to solve it. We define

Sn(α, β, θ) = Ln(α, β) +
G∑
g=1

θ−1
g

pg∑
j=1

|βgj|+ λ
G∑
g=1

θg, (3.13)

where λ is a tuning parameter.

Proposition 1. For λn = 2
√
λ, (α̂, β̂) minimizes Qn(α, β) in (3.8) if and only if (α̂, β̂, θ̂)

solves

min
α,β,θ

Sn(α, β, θ) subject to θ ≥ 0,

where θ ≥ 0 means θg ≥ 0, g = 1, . . . , G.

This proposition can be considered as a special case of bridge group penalty used by

Huang et al. (2009) in linear regression model and it is also used by Liu et al. (2014) in

AHM. For fixed α, minimizing Sn in (3.13) with respect to (β, θ) performs variable selection

at individual and group levels in the linear part. Hence, following Liu et al. (2014) and based
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on Proposition 1, we propose the following iterative algorithm.

Step 1. Obtain an initial estimate (α(0), β(0)) by minimizing Ln(α, β). Let s = 1.

Step 2. Compute

θ(s)
g = λ−

1
2

Ñ
pg∑
j=1

|β(s−1)
gj |

é 1
2

, g = 1, . . . , G.

Step 3. Compute

(α(s), β(s)) = arg min
α,β

Ln(α, β) +
G∑
g=1

(θ(s)
g )−1

pg∑
j=1

|βgj|

 .

Step 4. s← s+ 1, repeat steps 2-3 until convergence.

Step 3 is the major computational step and is efficiently solved using iterative coordinate

descent algorithm (Friedman et al., 2007). Since at each step it decreases the non-negative

objective function (3.13), this algorithm always converges.

For the adaptive hierarchically penalized method, we only need to replace Sn(α, β, θ) by

S∗n(α, β, θ), where

S∗n(α, β, θ) = Ln(α, β) +
G∑
g=1

θ−1
g

pg∑
j=1

wgj|βgj|+ λ
G∑
g=1

θg.

Proposition 2. For λn = 2
√
λ, (α̂∗, β̂∗) minimizes Q∗n(α, β) in (3.12) if and only if

(α̂∗, β̂∗, θ̂∗) solves

min
α,β,θ

S∗n(α, β, θ) subject to θ ≥ 0,

where θ ≥ 0 means θg ≥ 0, g = 1, . . . , G.

The computational procedure is similar to that for Proposition 1 with θ(s)
g replaced by

θ∗(s)g , where

θ∗(s)g =

Ñ
λ−1

pg∑
j=1

wgj|β(s−1)
gj |

é 1
2

, g = 1, . . . , G.

Tuning parameter selection
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We select the tuning parameter λn in (3.12) by cross validation in the same way as done

by Liu et al. (2014) in AHM. For a sequence of λn (λn1, . . . , λnL), we apply the iterative

algorithm to estimate (α, β) for each λn, (α̂>λn1 , β̂
>
λn1

)>, . . . , (α̂>λnL , β̂
>
λnL

)>. Next, we chose the

tuning parameter λn from λn1, . . . , λnL using the M -fold cross-validation

λ̂n = arg min
λn∈{λn1,...,λnL}

CV(λ) = arg min
λn∈{λn1,...,λnL}

{
M∑
m=1

L(m)(α̂(−m)(λ), β̂(−m)(λ))

}
,

where

CV(λ) =
M∑
m=1

L(m)(α̂(−m)(λ), β̂(−m)(λ))

is a score function of cross validation for λn; L(m) is the loss function in (3.5) using the m-th

subset and (α̂(−m)(λ), β̂(−m)(λ)) is the estimator evaluated without the m-th subset.

3.4.1 Simulation Studies

To evaluate the finite-sample performance of the hierarchically penalized method and its

adaptive version, we conducted two simulation studies. We compared the results with those

based on some existing individual variable selection methods such as LASSO, SCAD and

adaptive LASSO (A-LASSO), these penalties have been used for variable selection in the

PLMs (Ma and Du, 2012; Hu and Lian, 2013). In our simulation studies, we used R package

ahaz for implementing computation for these penalties after linearizing the nonparametric

functions φ(·) using B-splines. For computation of our AHP group selection method in the

PL-AHM, we constructed our R program where we also used some of the existing R packages,

for example, survival, ahaz, and fda.

Five performance measures are used to compare these methods: number of true groups

selected (TG), number of zero group selected (FG), number of true nonzero variables selected as

nonzero (TP), number of true zero variables selected as nonzero (FP), and L2- prediction error

(PE) in the excess risk defined as
∥∥∥{β̂>Z + φ̂1(W1) + φ̂2(W2)

}
−
¶
β>Z + φ1(W1) + φ2(W2)

©∥∥∥.
The optimal tuning parameter λn is chosen by five-fold cross-validation. As a benchmark, we
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computed the oracle estimates, which are obtained by minimizing (3.5) for model (3.3) which

includes only important variables and groups.

Variable selection is a computationally extensive procedure and can take a lot of time if

convergence is slow. We used ‘WestGrid’ (https://www.westgrid.ca) to conduct our simulation

studies which benefited us in terms of computational time. WestGrid is helping Compute

Canada (https://www.computecanada.ca) to lead the acceleration of research and innovation

by bringing together computing facilities, research data management services, and a network

of technical experts to meet researchers need. It has multiple computing facilities where

the researchers can send their computing codes and define parameters like computing time,

memory, cores to be used based on the computational burden of their jobs. To conduct our

simulation studies, we submitted all of our simulations parallelly to the computing facilities

at the same time. On average, it took only an hour to conduct 500 simulations in WestGrid.

In Example 1, the number of groups is moderately large, the group sizes are equal and

relatively large, and within each group the coefficients are either all nonzero or all zero. In

Example 2, the group sizes vary and there are zero coefficients in a nonzero group. In each

example, we set sample size n = 200 and baseline hazard function h0(t) = 1.0. The censoring

variable is generated from a uniform distribution over [0, C0], where C0 is chosen to yield

censoring rate = 30%. For each of these settings, we replicated 500 simulations.

Example 1. In this example, there are 7 groups in the linear part, each with 5 co-

variates, and two nonparametric functions. For the linear covariates, the covariate vector

is X> = (X>1 , . . . , X
>
7 ). The subvector of covariates that belong to the same group is

X>j = (X5(j−1)+1, . . . , X5(j−1)+5); j = 1, . . . , 7. To generate the covariatesX1, . . . , X35, we first

simulate 35 random variables R1, . . . , R35 independently from the standard normal distribu-

tion. Then Zj (j = 1, . . . , 7) are simulated from a multivariate normal distribution with mean

zero and an AR(1) covariance structure such that cov(Zj1, Zj2) = 0.4|j1−j2| for j1, j2 = 1, . . . , 7.

The covariates X1, . . . , X35 are generated as Xj = (Zgj +Rj)/
√

2 (j = 1, . . . , 35), where gj is
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the smallest integer greater than (j − 1)/5 and the Xj’s with the same value of gj belong to

the same group. This structure of correlation was considered in Huang et al. (2009). The

nonparametric functions are φ1(W1) = W 2
1 −(25/12) and φ2(W2) = exp(−W2)−2 sinh(5/2)/5,

where the covariates W ’s are sampled from U (−2.5, 2.5). Such nonparametric functions were

considered in Cui et al. (2013) in a nonparametric additive regression model. The event times

in Example 1 are generated from an exponential distribution with a hazard rate given as

follows:

h(t|X,W ) = h0(t) + β>X + φ1(W1) + φ2(W2),

where β = (1.2, . . . , 1.2︸ ︷︷ ︸
5

, 3.6, . . . , 3.6︸ ︷︷ ︸
5

, 2.4, . . . , 2.4︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

)>.

To estimate nonparametric functions, we used B-splines, see details in Section 3.2 for

centering of B-splines in general. Specifically, we center φ1(W1) and φ2(W2) such that

E {φ1 (W1)} = E {φ2 (W2)} = 0. We approximated the nonlinear functions using cubic

B-spline functions. We used data-driven method for choosing the regularization parameter λ.

Lian et al. (2014) used 5 to 8 basis functions in their simulations and found similar results.

They reported the results only for 6 basis functions. To ease the computational burden, we

also choose K = 6 as the number of basis functions in B-splines. This choice of K is small

enough to avoid overfitting and big enough to flexibly approximate the smooth functions

(Gray, 1992; Cheng and Wang, 2011). In this example, there exists three important groups

and all variables within each group are important. This example illustrates that the proposed

group selection methods have the ability to identify important groups.

Example 2. In this experiment, the group size differs across groups and some groups have

a mixture of important and unimportant variables. There are seven groups: three groups each

of size 8 and four groups each of size 4. The covariate vector is X> = (X>1 , . . . , X
>
7 ), where

the seven subvectors of covariates are X>j = (X8(j−1)+1, . . . , X8(j−1)+8), for j = 1, 2, 3, and

X>j = (X4(j−1)+13, . . . , X4(j−1)+16), for j = 4, 5, 6, 7. To generate the covariates X1, . . . , X40,

we first simulate Zi (i = 1, . . . , 7) and R1, . . . , R40 independently from the standard normal
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distribution. For j = 1, . . . , 24, let gj be the largest integer less than j/8 + 1 and, for

j = 25, . . . , 40, let gj be the largest integer less than (j − 24)/4 + 1. The covariates

X1, . . . , X40 are obtained as Xj = (Zgj + Rj)/
√

2 (j = 1, . . . , 40). The nonparametric

functions are generated in the same way as of Example 1. Therefore, the corresponding

coefficients in Example 2 are,

β = (1.2, . . . , 1.2︸ ︷︷ ︸
8

, 3.6, 3.4, 3.2, 3.0, 2.8, 0, 0, 0︸ ︷︷ ︸
8

, 0, . . . , 0︸ ︷︷ ︸
8

, 2.4, 0, 0, 0︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
4

)>.

This example considers three important groups in a more complex structure than that in

Example 1. These three groups represent three different settings: all variables within the

group are important, many variables within the group are important and very few variables

within the group are important, respectively.

Table 3.1: Simulation results with median and standard deviations (in parentheses) of L2-PE,
TG, FG, TP and FP over 500 simulations for Example 1

L2-PE TG FG TP FP

LASSO 124.02 (34.25) 3 (0.15) 2 (1.17) 12 (1.77) 3 (2.15)
SCAD 182.83 (46.05) 3 (0.55) 1 (0.90) 7 (2.34) 1 (1.16)

A-LASSO 118.84 (29.71) 3 (0.21) 2 (1.22) 9 (1.87) 2.5 (2.24)
HP 98.91 (26.75) 3 (0.18) 1 (0.88) 14 (1.35) 2 (2.83)

AHP 95.60 (25.73) 3 (0.23) 0 (0.80) 13 (1.50) 0 (2.44)
Oracle 94.00 (29.44) 3 (0.00) NA 15 (0.00) NA

Table 3.2: Simulation results with median and standard deviations (in parentheses) of L2-PE,
TG, FG, TP and FP over 500 simulations for Example 2

L2-PE TG FG TP FP

LASSO 101.50 (28.66) 3 (0.44) 2 (1.18) 10 (1.75) 4 (2.45)
SCAD 144.03 (36.94) 2 (0.59) 0 (0.80) 6 (2.24) 1 (1.25)

A-LASSO 97.16 (23.55) 3 (0.44) 2 (1.21) 8 (1.77) 3 (2.66)
HP 84.38 (22.96) 3 (0.52) 0 (0.76) 12 (1.40) 4 (3.25)

AHP 83.53 (20.81) 2 (0.50) 0 (0.58) 12 (1.40) 3 (2.72)
Oracle 78.32 (22.85) 3 (0.00) NA 14 (0.00) NA
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Figure 3.1: Estimation of φ(·)’s in Example 1: 95% point-wise confidence bands for φ(·)’s
based on 500 replicates. The solid lines stand for the true curves. The dashed lines are the
average estimated curves. The dot-dashed lines represent the 95% point-wise confidence
bands based on 500 estimated values.

Tables 3.1 and 3.2 summarize the group and variable selection results for Examples 1

and 2 by using the LASSO, SCAD, A-LASSO, hierarchical (HP) and adaptive hierarchical

penalties (AHP), respectively, where, the first three perform individual variable selection.

From Table 3.1 we see the group variable selection methods perform significantly better

than individual variable selection methods with lower L2-prediction error and choose more

important and less unimportant variables. Therefore, if there is known grouping structure

available among the covariates, group selection methods are preferable over individual variable

selection methods. Furthermore, the AHP method has the lowest L2-prediction error and

effectively removes more unimportant variables than the HP method. Hence, adaptive group

selection performs superior over non-adaptive group selection method. In Table 3.2 with a

complex grouping structure, the performance of the adaptive method is still better than the

other methods. The fitted curves and 95% point-wise confidence bands for φ1(·) and φ2(·)

are shown in Figures 3.1 and 3.2 for Examples 1 and 2, respectively. It is evident that the
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Figure 3.2: Estimation of φ(·)’s in Example 2: 95% point-wise confidence bands for φ(·)’s
based on 500 replicates. The solid lines stand for the true curves. The dashed lines are the
average estimated curves. The dot-dashed lines represent the 95% point-wise confidence
bands based on 500 estimated values.

average estimated curves capture the true curves very well and that the true curves lie in the

95% point-wise confidence bands.

3.4.2 Application

In this section, we illustrate application of our proposed variable selection methods in two

real data sets.

3.4.2.1 Mantle Cell Lymphoma Data analysis

Mantle cell lymphoma (MCL) is a rare non-Hodgkin B-cell lymphoma which can be at an

aggressive form or be more indolent in clinical representation (Rajabi and Sweetenham,

2015). Treatment is usually based on multiple factors including age, presence or absence of

symptoms, and comorbidities. The median age at presentation is in the 60s and regardless of

new assertive therapeutic approaches, the median overall survival for MCL patients is only
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between 5-7 years.

Rosenwald et al. (2003) performed gene expression profiling to establish a molecular

diagnosis of MCL, to clarify its pathogenesis, and to predict the length of survival of

these patients. The dataset is available at http://llmpp.nih.gov/MCL. Based on established

morphologic and immunophenotype criteria, 92 patients were classified as having MCL. The

following variables were included in the data:

• Status: patient status at follow up (1 = death, 0 = censored);

• Time: time of follow-up in year;

• INK.ARFdeletion(X1): deletions of INK4a/ARF (1 = yes, 0 = no);

• ATMdeletion(X2): deletions of ATM (1 = yes, 0 = no);

• P.53deletion(X3): deletions of P53 (1 = yes, 0 = no);

• CyclinD.1taqmanresults(X4): cyclin D1 TaqMan result;

• BMIexpression(X5): body mass index expression;

• Proliferation.average(X6): proliferation signature averages.

Ma and Du (2012) performed variable selection in this data set using a partially linear

accelerated failure time (AFT) regression model. They selected variables in the linear part

without a grouping structure using iterated LASSO and estimated the nonlinear part using a

sieve approach. They excluded the covariate Proliferation.average(X6) from the analysis and

included all other covariates X1 – X5 in the nonparametric part. In addition, they removed 7

records (patients) with missing covariates; with the rest 85 patients, the censoring rate was

29.4%.

To perform group variable selection in the MCL data using a PL-AHM, we conducted

some preliminary diagnosis of the data. Covariates X1, X2, and X3 are binary variables, where
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covariates X4, X5, and X6 are continuous. Since variables belonging to the same group usually

share some relationships among them, we tested for the significant correlations between the

covariates. We tested the correlation between continuous variables by Pearson correlation

coefficients; continuous and binary variables by Point-biserial correlation coefficient, and the

association between binary variables by Fisher’s exact test. The table below illustrates which

variables share significant correlations where ‘X’ indicates significant correlations with the

associated sample correlations in the parentheses:

X1 X2 X3 X4 X5 X6

X1 X(1.00)

X2 5 (0.16) X(1.00)

X3 5 (0.10) 5 (0.23) X(1.00)

X4 X(0.28) 5 (-0.10) 5 (-0.08) X(1.00)

X5 5 (-0.17) 5 (-0.17) 5 (0.00) 5 (0.20) X(1.00)

X6 X(0.50) 5 (-0.05) X(0.23) X(0.41) 5 (0.17) X(1.00)

From the above table we see that X1, X4, X6 shares significant correlation among each

other, therefore, we can consider them as a group. X2 and X5 do not have significant

correlations with any other variables. Note that, X6 also shares significant correlation with

X3 and they can be considered as a group as well. Thus, X6 belongs to two overlapping

groups; one with (X1, X4), another with X3. However, in this chapter, we assumed covariates

can only belong to one group. Therefore, we assign X6 to the group with (X1, X4) based on

the strength of the relationship.

Thus, we have three groups in the linear part of our PL-AHM. Group 1 constitutes of

(X1, X4, X6), Group 2 has X2 and Group 3 has X3 in it. Similar to the common practice of

putting discrete covariates in the linear part and continuous variables in the nonlinear part

(Hu and Lian, 2013), we assigned the dichotomous variables in Group 2 and Group 3 in the

linear part, and estimated the effect of the continuous variable X5 on the survival of MCL

patients nonparametrically.
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Figure 3.3: Boxplot of BMI Expression and estimated curve of φ (BMI Expression) in the
analysis of MCL data.
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Table 3.3: Estimation results of MCL data

n = 85 n=83
Group Covariates LSE LASSO HP AHP LSE LASSO HP AHP
G1 INK.ARFdeletion (X1) 0.04 0 0.06 0.06 0.06 0 0.07 0.07

CyclinD.1taqmanresults (X4) 0.54 0.23 0.50 0.50 0.54 0.30 0.49 0.49
Proliferation.average (X6) 0.46 0.36 0.45 0.45 0.45 0.38 0.43 0.43

G2 ATMdeletion (X2) 0.07 0 0 0 0.07 0 0 0

G3 P.53deletion (X3) -0.02 0 0 0 -0.05 0 0 0

Table 3.3 shows the estimation and variable selection performance by four methods. The

LSE is the least square estimates of the linear covariates using the pseudoscore method of Lin

and Ying (1994), which uses the loss function (3.5), where we approximated the nonlinear

function of X5 using B-splines. For the full data set (n=85), we see that all of the variable

selection methods discard Groups 2 and 3. In addition, LASSO also discards X1. This is

not surprising as from the simulations (Tables 3.1 and 3.2) we observed that LASSO tend to

select less important variables by aggressively penalizing the variables. The estimates from

LSE and AHP are very close in magnitude, HP and AHP are identical, where the LASSO

estimates shrink more towards zero. Figures 3.3 (a) and (b) present the boxplot and nonlinear

profile of BMIexpression(X5), respectively. We found two extreme outliers which fall outside of

upper inner fence (Q1− 3 ∗ IQR) or upper outer fence (Q3 + 3 ∗ IQR) where Q1, Q3 and IQR

are first quartile, third quartile and inter-quartile range, respectively. Figures 3.3 (c) and (d)

show the boxplot and nonlinear profile of BMIexpression (X5) after discarding the outliers. In

addition, Table 3.3 also shows the variable selection performance when these two extreme

values are omitted (n=83). From this comparison analysis, we see that the performance of

variable selection is almost the same, but the estimated nonparametric function of X5 is

quite different in the right tail when the two large X5 values are included. This may tell the

investigators that large BMIexpression(X5) values could increase the risk of death of MCL

patients.
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In our model, we included Proliferation.average(X6) for variable selection which was

not incorporated by Ma and Du (2012), and found that it has strong correlation with

INK.ARFdeletion(X1) and CyclinD.1taqmanresults(X4). Both LASSO and AHP showed that

X6 has a strong effect, further investigation may provide additional knowledge of this effect

on the survival probability of the MCL patients.

3.4.2.2 Wisconsin Prognostic Breast Cancer Data analysis

In the Wisconsin prognostic breast cancer (WPBC) data, each record represents follow-up

data for one breast cancer case where cases represent invasive breast cancer or no evidence of

distant metastases at the time of diagnosis. There are 198 breast cancer patients in total

with no missing values. The data is available in R package “TH.data”. The data set contains

the following variables that we are interested in:

• status(δ): a factor with levels N (nonrecurrent) and R (recurrent);

• time: recurrence time (for status == “R”) or disease-free time (for status ==

“N”);

• mean-radius(X1): radius (mean of distances from center to points on the

perimeter) (mean);

• mean-texture(X2): texture (standard deviation of gray-scale values) (mean);

• mean-perimeter(X3): perimeter (mean);

• mean-area(X4): area (mean);

• mean-smoothness(X5): smoothness (local variation in radius lengths) (mean).

• mean-compactness(X6): compactness (mean);

• mean-concavity(X7): concavity (severity of concave portions of the contour)

(mean);
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• mean-concavepoints(X8): concave points (number of concave portions of the

contour) (mean);

• mean-symmetry(X9): symmetry (mean);

• mean-fractaldim(X10): fractal dimension (mean);

• tsize(X11): diameter of the excised tumor in centimeters.

We set status = R (recurrent) as the event and then status = N (nonrecurrent) as the censoring

indicator. The censoring rate of WPBC data was about 76%. To discover the grouping

structure among the covariates, we computed the Pearson’s correlation coefficient since all of

the covariates are continuous. If the correlation is moderate-high (≥ 0.40) and positive, we

assumed those variables belong to the same group. The table below depicts which variables

share moderate to high, positive relationships with the associated sample correlations in the

parentheses:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1 X(1.00)

X2 5 (0.14) X(1.00)

X3 X(1.00) 5 (0.14) X(1.00)

X4 X(0.99) 5 (0.14) X(0.99) X(1.00)

X5 5 (-0.05) 5 (-0.17) 5 (-0.01) 5 (-0.06) X(1.00)

X6 5 (-0.16) 5 (-0.19) 5 (-0.10) 5(-0.14) X(0.54) X(1.00)

X7 5 (0.16) 5 (-0.04) 5 (0.24) 5 (0.16) X(0.67) X(0.67) X(1.00)

X8 X(0.47) 5 (0.04) X(0.53) X(0.48) X(0.53) X(0.62) X(0.84) X(1.00)

X9 X(0.66) 5 (0.01) X(0.71) X(0.67) X(0.43) X(0.55) X(0.72) X(0.91) X(1.00)

X10 5 (-0.42) 5 (-0.15) 5 (-0.35) 5 (-0.40) X(0.60) X(0.75) X(0.74) X(0.45) 5 (0.27) X(1.00)

X11 5 (0.17) 5 (0.03) 5 (0.17) 5 (0.18) 5 (-0.15) 5 (-0.08) 5 (-0.06) 5 (-0.01) 5 (0.05) 5 (-0.13) X(1.00)

From the above table, we observe two groups: Group 1 is consists of (X1, X3, X4, X8, X9)

and Group 2 consists of (X5, X6, X7, X8, X9, X10). Similar to the MCL data, we have (X8, X9)

who belong to both of the groups. Generally speaking, the magnitude of correlation between

X8 and Group 1 is higher than Group 2, whereas X9 has higher magnitude of correlation
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with Group 2 although the correlation between (X9, X10) is fairly small. Since the correlation

between X8 and X9 is very strong (0.91), we decided to assign them in the same group and

based on our observation above, we assigned them to Group 1. X2 and X11 do not share

moderate-high correlation with any other variables. Since they are the only variables in a

single variable group and are continuous, we estimate them nonparametrically.

Table 3.4: Estimation results of WPBC data
Group Covariates LSE LASSO A-LASSO HP AHP
G1 mean-radius (X1) -0.020 0 0 0 0

mean-perimeter (X3) 0.002 0 0 0 0
mean-area (X4) 8.06 ×10−5 4.70 ×10−6 0 0 0

mean-concavepoints (X8) -0.006 0 0 0 0
mean-symmetry (X9) -0.072 0.007 0 0 0.03

G2 mean-smoothness (X5) -0.054 -0.022 0 -0.11 -0.11
mean-compactness (X6) 0.312 0 0.18 0.25 0.22

mean-concavity (X7) 0.053 0 0 0.11 0.09
mean-fractaldim (X10) -0.872 0 -0.41 -0.82 -0.72

The AHP method selects only one variable from Group 1 (X9) and all of the variables from

Group 2 (Table 3.4). In total, it selects five significant variables in predicting recurrence of

breast cancer. HP only selects the variables in Group 2. LASSO and A-LASSO, on the other

hand, select only three variables and two variables, respectively. It is surprising that LASSO

does not select X10 which is quite big in magnitude in estimating the probability of breast

cancer but selects X4 which is very small in magnitude. To conclude, X5, X6, X7, X9, X10

can significantly predict the recurrence of breast cancer where the effects of X7 and X9 are

relatively small.

Figure 3.4 shows the estimated nonlinear effects of mean-texture(X2) and tsize(X11) on

the recurrence of breast cancer. Overall mean-texture has a bell-shaped curve. Tumor size on

the other hand has a more nonlinear profile in estimating recurrent breast cancer.
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Figure 3.4: Estimated curves of φ1 (Texture) and φ2 (Tumor size) in the analysis of WPBC
data.

3.5 Concluding Remarks

In this chapter, we proposed a hierarchically penalized method for variable selection in

the PL-AHM with diverging number of parameters. The hierarchically penalized method

can effectively remove unimportant groups and select important variables within a group.

However, the hierarchically penalized method tends to select more unimportant variables

in important groups. To tackle this problem, the adaptive hierarchically penalized method

is considered. We established the asymptotic convergence and selection consistency for the

proposed estimators. Numerical studies indicate that the hierarchically penalized method

and its adaptive version perform better than LASSO, SCAD and adaptive LASSO. Once

variable selection is performed and a smaller set of important variable is selected, one can

follow Afzal et al. (2017) to estimate the coefficients of PL-AHM where the asymptotic

normality of the estimators is established. Our computation cost was somewhat high since

the computation algorithm takes a while to converge; however, our estimators were precise
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in terms of estimation accuracy and selection consistency at the cost of high computational

time.

In applications, it is important to have the goodness of fit procedures available for

assessing the model fit. Lin et al. (1993) proposed martingale-based residuals to graphically

and numerically check the adequacy of the proportional hazards model with right censored

data. Kim and Lee (1998) adopted two methods for model checking of the additive hazards

model with right censored data by dividing the data into two groups and testing for the

proportional hazards assumption to the additive hazards model to test the monotone departure

from the additivity. One method is based on the martingale residuals and the other is based

on the difference between weighted estimators of the excess risk. These model checking

techniques were developed for the linear models. In our case, we can consider each B-spline

basis function as a covariate in the model, then the proposed model becomes a linear model,

and their methods can be applied to choose either the PL-AHM or PL-PHM in practice.

It should be noted that we did not address how to partition the covariates into linear

and nonlinear parts. Few possible strategies are available in the literature to specify a PLM.

Researchers might also follow the strategy suggested by Ma and Du (2012), where they put

low dimensional clinical covariates in the nonparametric part and high dimensional gene

expressions in the parametric part. We have not investigated the theoretical properties

for ultra high dimensional data, i.e., p � n. Also, we only considered time-independent

covariates where the groups are disjoint, i.e., there are no overlapping groups. All of these

need further investigations in our future research.

In contrary to the frequentist approach, in a Bayesian framework, the variable selection

problem can be viewed as the identification of nonzero regression parameters based on

the posterior distributions. Bayesian models attempt to avoid the over-fitting problems of

frequentist methods by basing predictions on modes of posterior distributions rather than

estimators. In uncensored data, bi-level group variable selection using Bayesian selection
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method has been investigated by Zhang et al. (2014), Xu and Ghosh (2015) and Mallick

and Yi (2017). Faraggi and Simon (1998) is one of the first to consider Bayesian variable

selection method for censored survival data where they performed individual variable selection

in the Cox PH model. Later, Sha et al. (2006) conducted individual variable selection for

analyzing microarray data with the AFT model and Lee et al. (2011) performed individual

variable selection in the Cox PH model where the shrinkage prior is obtained through a

scale mixture representation of normal and gamma distributions and the cumulative baseline

hazard function is modeled as a priori by a gamma process. Recently, Lee et al. (2015)

performed group variable selection in the Cox PH model. As it appears in the literature, no

group variable selection has been investigated on the additive hazard model or its extensions

using Bayesian methods and can be worthy of future research.

3.6 Appendix

In this Appendix, we prove the lemmas, theorems, and propositions that are presented in the

previous sections and introduce some lemmas that will be used in the proofs.

We adopt the standard empirical process notation. For any measurable function f ,

we denote Pn(f) and P (f) the expectations of f under the empirical measure Pn and the

probability measure P , respectively. Let ‖·‖P,r denote the usual Lr(P )-norm. The “size” of a

class F of functions is measured by the bracketing number N[ ](ε,F , Lr(P )), the minimum

number of ε-brackets in Lr(P ) needed to cover F , and the covering number N(ε,F , L2(Q)),

the minimum number of L2(Q)-balls of radius ε needed to cover F . The logarithms of the

bracketing number and covering number are called entropy with bracketing and entropy,

respectively. The bracketing integral and uniform entropy integral are defined as

J[ ](δ,F , L2(P )) =
∫ δ

0

»
logN[ ](ε,F , L2(P ))dε, and

J(δ,F , L2) =
∫ δ

0
sup
Q

√
logN(ε ‖F‖Q,2 ,F , L2(Q))dε,

76



respectively, where F is an envelope of F , that is, |f | ≤ F for all f ∈ F , and the supremum

is taken over all probability measures Q with ‖F‖Q,2 > 0. Interested readers can find more

definitions and concepts about empirical processes in van der Vaart (1998, p. 127) and

Kosorok (2007, p. 18).

The proofs of Theorems 1 and 2 use Lemmas 1 and 2, and the following lemmas:

Lemma 3. Under Conditions (A1)-(A5), there exist constants C,K0 > 0 such that

P

(
sup
t∈[0,τ ]

∣∣∣S(0)
n (t)− s(0)(t)

∣∣∣ ≥ Cn−1/2(1 + x)

)
≤ exp(−K0x

2), (3.14)

P

(
sup
t∈[0,τ ]

∣∣∣S(1)
nj (t)[L]− s(1)

j (t)[L]
∣∣∣ ≥ Cn−1/2(1 + x)|ΩV

)
≤ exp(−K0x

2/V 2), (3.15)

P

(
sup
t∈[0,τ ]

∣∣∣S(2)
nij(t)[L]− s(2)

ij (t)[L]
∣∣∣ ≥ Cn−1/2(1 + x)|ΩV

)
≤ exp(−K0x

2/V 4), (3.16)

for all x > 0 and i, j = 1, . . . , (p+KQ), where S
(1)
nj (·) is the jth component of S(1)

n (·), S(2)
nij(·)

is the (i, j)th entry of the matrix S(2)
n , and ΩV denotes the event that maxp+KQj=1 |Lj| ≤ V for

V > 0.

Lemma 4. Under Condition (A1)-(A5), there exist constants C,M,K1 > 0 such that

P (|Dnij −Dij| ≥ Cn−1/2(1 + x)|ΩV ) ≤M exp(−K1
x2 ∧ n
V 4

)

for all x > 0 and i, j = 1, . . . , (p+KQ), where Dnij and Dij are the (i, j)-th entries of the

matrices Dn and D, respectively.

The proofs of Lemmas 1 and 2 closely follow those of Wang et al. (2009), respectively.

Proof of Lemma 1. Let Q∗(λγ, λθ, α, γ, θ) denote the criterion that we would like to min-

imize in equation (3.6), let Q†(λ, α, γ, θ) denote the corresponding criterion in equation

(3.7), and let (α̂∗, γ̂∗, θ̂∗) denote a local minimizer of Q∗(λγ, λθ, α, γ, θ). We will prove that

(α̂† = α̂∗, γ̂†g = λγ γ̂
∗
g , θ̂
†
(g) = θ̂∗(g)/λγ) is a local minimizer of Q†(λ, α, γ, θ).
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Replacing γ∗ = γ†/λγ and θ∗ = θ†λγ in (3.6), we immediately have Q∗(λγ, λθ, α, γ, θ) =

Q†(λ, α, λγγ, θ/λγ). Since (α̂∗, γ̂∗, θ̂∗) is a local minimizer of Q∗(λγ, λθ, α, γ, θ), therefore,

by the definition of local minimizer there exists δ > 0 such that if (α
′
, γ
′
, θ
′
) satisfies

|α′−α̂∗|+ |γ′− γ̂∗|+ |θ′− θ̂∗| < δ, then Q∗(λγ, λθ, α̂
∗, γ̂∗, θ̂∗) ≤ Q∗(λγ, λθ, α

′
, γ
′
, θ
′
). We choose

δ
′

such that δ
′
/min(λγ, 1/λγ) ≤ δ/2. Then, min(λγ, 1/λγ) ≤ 1 and δ

′ ≤ min(λγ, 1/λγ)δ/2 ≤

δ/2. Thus, for any (α
′′
, γ
′′
, θ
′′
) satisfying |α′′ − α̂†|+ |γ′′ − γ̂†|+ |θ′′ − θ̂†| < δ

′ ≤ δ/2, we have,

|α′′ − α̂†| = |α′′ − α̂∗| ≤ δ/2. Also,

∣∣∣∣∣γ
′′

λγ
− γ̂∗

∣∣∣∣∣+ ∣∣∣λγθ′′ − θ̂∗∣∣∣ ≤ λγ

∣∣∣∣γ′′λγ − γ̂∗
∣∣∣∣+ 1

λγ

∣∣∣λγθ′′ − θ̂∗∣∣∣
min(λγ,

1
λγ

)
=

∣∣∣γ′′ − λγ γ̂∗∣∣∣+ ∣∣∣θ′′ − θ̂∗

λγ

∣∣∣
min(λγ,

1
λγ

)

=
|γ′′ − γ̂†|+ |θ′′ − θ̂†|

min(λγ,
1
λγ

)
<

δ
′

min(λγ,
1
λγ

)
≤ δ

2
.

Therefore,
∣∣∣α′′ − α̂∗∣∣∣+ ∣∣∣γ′′/λγ − γ̂∗∣∣∣+ ∣∣∣λγθ′′ − θ̂∗∣∣∣ < δ/2 + δ/2 = δ. Hence,

Q∗(λγ, λθ, α̂
∗, γ̂∗, θ̂∗) ≤ Q∗(λγ, λθ, α̂

′′
, γ̂
′′
/λγ, λγ θ̂

′′
),

which gives us

Q†(λ, α̂†, γ̂†, θ̂†) ≤ Q†(λ, α̂
′′
, γ̂
′′
, θ̂
′′
).

So, (α̂† = α̂∗, γ̂† = λγ γ̂
∗, θ̂† = θ̂∗/λγ) is a local minimizer of Q†(λ, α, γ, θ).

Similarly, we can prove that for any local minimizer (α̂†, γ̂†, θ̂†) of Q†(λ, α, γ, θ), there

is a corresponding local minimizer (α̂∗, γ̂∗, θ̂∗) of Q∗(λγ, λθ, α, γ, θ) such that α̂∗ = α̂† and

γ̂∗g θ̂
∗
gj

= γ̂†g θ̂
†
gj

.

Proof of Lemma 2. Suppose (α̂, γ̂, θ̂) is a local minimizer of (3.7). Let β̂ satisfy β̂gj = γ̂gθ̂gj ,

then, θ̂(g) = β̂(g)/γ̂g. It is trivial that γ̂g = 0 if and only if θ̂(g) = 0. Hence, if γ̂g 6= 0, then

|β̂(g)| 6= 0.

Let (α, β) be fixed at (α̂, β̂). Then minimizing Q†(λ, α, γ, θ) in (3.7) only depends on the

penalty. For some g with |β̂(g)| 6= 0, the corresponding penalty term is γg + λ
∑pg
j=1 |β̂gj|/γg,

which is minimized at γ̂g = (λ|β̂(g)|)1/2.
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Let Q(λ, α, β) be the corresponding criterion to be minimized in equation (3.8). By

Lemma 1, the local minimizers α̂ of α in (3.6) and (3.7) are the same, so we only need to

consider other parameters, e.g., β, and fix α at α̂ in both (3.6) and (3.7). We first show that

(α̂, β̂) is a local minimizer of Q(λ, α, β), i.e., there exists a δ
′
> 0 such that if |∆α|+ |∆β| < δ

′
,

then Q(λ, α̂, β̂) ≤ Q(λ, α̂ + ∆α, β̂ + ∆β). Particularly, taking ∆α = 0, it becomes |∆β| < δ
′
,

then Q(λ, α̂, β̂) ≤ Q(λ, α̂, β̂+ ∆β). Denote ∆β = ∆β(1) + ∆β(2), where ∆β
(1)
(g) = 0 if |β̂(g)| = 0

and ∆β
(2)
(g) = 0 if |β̂(g)| 6= 0. We thus, have |∆β| = |∆β(1) + ∆β(2)| = |∆β(1)|+ |∆β(2)|.

We first show Q(λ, α̂, β̂) ≤ Q(λ, α̂, β̂+∆β(1)) for some δ
′
. We already have γ̂g = (λ|β̂(g)|)1/2

and θ̂(g) = β̂(g)/γ̂g if |γ̂g| 6= 0, and θ̂(g) = 0 if |γ̂g| = 0. Let γ̂
′
g = (λ|β̂(g) + ∆β

(1)
(g) |)1/2 and

θ̂
′

(g) = (β̂(g) + ∆β
(1)
(g))/γ̂

′
g if |γ̂g| 6= 0, and let γ̂

′
g = 0 and θ̂

′

(g) = 0 if |γ̂g| = 0. Then we have

Q†(λ, α̂, γ̂
′
, θ̂
′
) = Q(λ, α̂, β̂ + ∆β(1)) and Q†(λ, α̂, γ̂, θ̂) = Q(λ, α̂, β̂). Hence, we only need

to show Q†(λ, α̂, γ̂, θ̂) ≤ Q†(λ, α̂, γ̂
′
, θ̂
′
). As (α̂, γ̂, θ̂) is a local minimizer of Q†(λ, α, γ, θ),

for fixed α̂, there exists a δ such that for any (γ
′
, θ
′
) satisfying |γ′ − γ̂| + |θ′ − θ̂| < δ,

we have Q†(λ, α̂, γ̂, θ̂) ≤ Q†(λ, α̂, γ
′
, θ
′
). Let a = min

{
|β̂(g)| : |β(g)| 6= 0, g = 1, . . . , G

}
, b =

max
{
|β̂(g)| : |β(g)| 6= 0, g = 1, . . . , G

}
and δ

′
< a/2. It is seen that,

∣∣∣|β̂(g) + ∆β
(1)
(g) | − |β̂(g)|

∣∣∣ ≤ ∣∣∣∆β(1)
(g)

∣∣∣ ,∣∣∣(|β̂(g) + ∆β
(1)
(g) |

1/2)2 − (|β̂(g)|1/2)2
∣∣∣ ≤ ∣∣∣∆β(1)

(g)

∣∣∣ ,∣∣∣(|β̂(g) + ∆β
(1)
(g) |

1/2 − |β̂(g)|1/2)(|β̂(g) + ∆β
(1)
(g) |

1/2 + |β̂(g)|1/2)
∣∣∣ ≤ ∣∣∣∆β(1)

(g)

∣∣∣ ,
∣∣∣|β̂(g) + ∆β

(1)
(g) |

1/2 − |β̂(g)|1/2
∣∣∣ ≤

∣∣∣∆β(1)
(g)

∣∣∣
|β̂(g) + ∆β

(1)
(g) |1/2 + |β̂(g)|1/2

.

Since when min
g

{
|β̂(g)|

}
= a 6= 0, and when |∆β(1)

(g) | < δ
′
< a/2, we have

|β̂(g) + ∆β
(1)
(g) | ≥ |β̂(g)| − |∆β(1)

(g) | ≥ a− a

2
=
a

2
> 0,

and

|β̂(g) + ∆β
(1)
(g) |

1/2 + |β̂(g)|1/2 ≥
Åa

2

ã1/2

+ a1/2 = (2−1/2 + 1)a1/2 ≥ 21/2a1/2 = (2a)1/2.
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Therefore, ∣∣∣|β̂(g) + ∆β
(1)
(g) |

1/2 − |β̂(g)|1/2
∣∣∣ ≤ |∆β(1)

(g) |
(2a)1/2

.

Hence,

|γ̂′g − γ̂g| =
∣∣∣(λ|β̂(g) + ∆β

(1)
(g) |)

1/2 − (λ|β̂(g)|)1/2
∣∣∣ ≤ λ|∆β(1)

(g) |
(2λa)1/2

.

Next, if |γ̂g| = 0, then θ̂
′

(g) = θ̂(g) = 0, and |θ̂′(g) − θ̂(g)| = 0. If |γ̂g| 6= 0, then

θ̂
′

(g) − θ̂(g) =
(β̂(g) + ∆β

(1)
(g))

γ̂′g
−
β̂(g)

γ̂g

=
β̂(g)γ̂g + ∆β

(1)
(g) γ̂g − β̂(g)γ̂

′
g

γ̂′gγ̂g

=
β̂(g)[γ̂g − γ̂

′
g] + ∆β

(1)
(g) γ̂g

γ̂′gγ̂g
. (3.17)

We already have β̂(g) ≤ b and |γ̂′g − γ̂g| ≤ λ|∆β(1)
(g) |/(2λa)1/2. Consider

γ̂
′

gγ̂g = (λ|β̂(g)|)1/2(λ|β̂(g) + ∆β
(1)
(g) |)

1/2.

Since |γ̂g| = (λ|β̂(g)|)1/2 ≥ λ1/2a1/2, when |∆β(1)
(g) | < δ

′
and δ

′
< a/2, if γ̂g 6= 0, then |β̂(g)| 6= 0,

∆β
(2)
(g) = 0, it implies, |∆β(1)

(g) | ≤ |∆β(1)| < δ ⇒ |∆β(1)
(g) | < δ

′
< a/2 and |β̂(g) + ∆β

(1)
(g) | ≥

|β̂(g)| − |∆β(1)
(g) | ≥ a − a/2 = a/2 > 0. Therefore, |γ̂′g| = (λ|β̂(g) + ∆β

(1)
(g) |)1/2 ≥ λ1/2(a/2)1/2

and |γ̂′gγ̂g| ≥ λ1/2a1/2λ1/2(a/2)1/2 = λa2−1/2. From (3.17) we have,

|θ̂′(g) − θ̂(g)| ≤
|β̂(g)|
|γ̂′gγ̂g|

|γ̂′g − γ̂g|+ |∆β
(1)
(g) |

|γ̂g|
|γ̂g||γ̂′g|

≤
bλ|∆β(1)

(g) |
(2λa)1/2(λa2−1/2)

+ |∆β(1)
(g) |

1

λ1/2(a/2)1/2

≤
ñ

bλ

(2λa)1/2(λa)2−1/2
+

1

(λa/2)1/2

ô
|∆β(1)

(g) |

= |∆β(1)
(g) |
ñ

1

(λa/2)1/2
+

b

a(λa)1/2

ô
.

Therefore, we are able to choose a δ
′
> 0 satisfying δ

′
< a/2 such that |γ̂′g− γ̂g|+ |θ̂

′
g− θ̂g| < δ

when |∆β(1)
(g) | < δ

′
. Hence we have Q†(λ, α̂, γ̂, θ̂) ≤ Q†(λ, α̂, γ̂

′
, θ̂
′
) due to the local minimality,

that is, Q(λ, α̂, β̂) ≤ Q(λ, α̂, β̂ + ∆β(1)).
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Next we show Q(λ, α̂, β̂ + ∆β(1)) ≤ Q(λ, α̂, β̂ + ∆β(1) + ∆β(2)). This is trivial when

∆β(2) = 0. If ∆β(2) 6= 0, then ∆β(1) = 0 and we have

Q(λ, α̂, β̂ + ∆β(1) + ∆β(2))−Q(λ, α̂, β̂ + ∆β(1)) = (∆β(2))>
∂Ln(α̂, β∗)

∂β
+ 2

G∑
g=1

(λ|∆β(2)
(g) |)

1/2,

where β∗ is a vector between β̂ + ∆β(1) + ∆β(2) and β̂ + ∆β(1). Since |∆β(2)| < δ
′
, for a small

enough δ
′
, the second term in the above equality dominates the first term, hence we have

Q(λ, α̂, β̂ + ∆β(1)) ≤ Q(λ, α̂, β̂ + ∆β(1) + ∆β(2)). Thus we have shown that there exists a

δ
′
> 0 such that if |∆β| < δ

′
, then Q(λ, α̂, β̂) ≤ Q(λ, α̂, β̂ + ∆β), which implies that β̂ is a

local minimizer of Q(λ, α̂, β).

Similarly, we can prove that if (α̂, β̂) is a local minimizer of Q(λ, α, β), then (α̂, γ̂, θ̂) is a

local minimizer of Q†(λ, α, γ, θ), where γ̂g = (λ|β̂(g)|)1/2 and θ̂(g) = β̂(g)/γ̂g if |β̂(g)| 6= 0, and

γ̂g = 0 and θ̂(g) = 0 if |β̂(g)| = 0.

Proof of Lemma 3. The proof follows that of Lemma A.2 in Lin and Lv (2013). We

will only prove (3.15) and the other two inequalities follow similarly. Denote Bnj =

sup
t∈[0,τ ]

∣∣∣S(1)
nj (t)[L]− s(1)

j (t)[L]
∣∣∣. As given in Theorem 9 of Massart (2000), we want to apply a

functional Hoeffding-type inequality. To do that, we need to control the term E(Bnj). And, to

control the term E(Bnj), at first we will show that the class of functions {Y (t)Lj : t ∈ [0, τ ]}

has bounded uniform entropy integral.

Since a function of bounded variation can be expressed as the difference of two increasing

functions, from Lemma 9.10 of Kosorok (2007), it follows that Lj ≡ {Lj} is a VC-hull class

associated with a VC class of index 2. Therefore, by Corollary 2.6.12 of van der Vaart and

Wellner (1997), the entropy of Lj satisfies logN(ε ‖F‖Q,2 ,Lj, L2(Q)) ≤ K ′(1/ε)) for some

constant K ′ > 0, and hence, Lj has the uniform entropy integral

J(1,Lj, L2) ≤
∫ 1

0

»
K ′(1/ε)dε <∞.

Next, by Example 19.16 of van der Vaart (1998), Y ≡ {Y (t) : t ∈ [0, τ ]} is a VC class and

thus, has bounded uniform entropy integral. Therefore, by Theorem 9.15 of Kosorok (2007),
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the product of two VC-hull classes, YLj, also has bounded uniform entropy integral.

Finally, an application of Lemma 19.38 of van der Vaart (1998) gives

E(Bnj) ≤ C ′n−1/2J(1,YLj, L2) ‖F‖P,2 ≤ Cn−1/2

for some constants C ′, C > 0, where the envelope F is taken as sup
t∈[0,τ ]

Y (t)|Lj|. From Theorem

9 of Massart (2000), we have

P
Ä
Bnj ≥ Cn−1/2(1 + x)|ΩV

ä
≤ P

Ä
Bnj ≥ E(Bnj) + Cn−1/2x|ΩV

ä
≤ exp(−K0x

2/V 2)

for some constant K0 > 0, which concludes the proof.

Proof of Lemma 4. We closely follow the proof of Lemma A.4 in Lin and Lv (2013) to

prove Lemma 4. Let us write

Dnij −Dij =
∫ τ

0

{
S

(2)
nij(t)[L]− s(2)

ij (t)[L]
}
dt−

∫ τ

0

S
(1)
ni (t)[L]S

(1)
nj (t)[L]

S
(0)
n (t)

−
s

(1)
i (t)[L]s

(1)
j (t)[L]

s(0)(t)

 dt

≡ Tn1 + Tn2.

From (3.16) in Lemma 3 we have P (|Tn1| ≥ Cn−1/2(1 +x)|ΩV ) ≤ exp(−K0x
2/V 4). To bound

Tn2, let us write

S
(1)
ni (t)[L]S

(1)
nj (t)[L]

S
(0)
n (t)

−
s

(1)
i (t)[L]s

(1)
j (t)[L]

s(0)(t)
=
S

(1)
nj (t)[L]

S
(0)
n (t)

{
S

(1)
ni (t)[L]− s(1)

i (t)[L]
}

+
s

(1)
i (t)[L]

S
(0)
n (t)

{
S

(1)
nj (t)[L]− s(1)

j (t)[L]
}
−
s

(1)
i (t)[L]s

(1)
j (t)[L]

S
(0)
n (t)s(0)(t)

¶
S(0)
n (t)− s(0)(t)

©
.

It suffices to consider the case where supt∈[0,τ ]|S(0)
n (t)− s(0)(t)| ≤ δ and supt∈[0,τ ]|S

(1)
nj (t)[L]−

s
(1)
j (t)[L]| ≤ δ for some constant δ > 0 and j = 1, . . . , (p + KQ). Hence, from the above

representation and (3.14) and (3.15) in Lemma 3, it follows that P (|Tn2| ≥ Cn−1/2(1 +

x)|ΩV ) ≤ 3 exp(−K0x
2/V 2). Combining the bounds for Tn1 and Tn2 yields the desired

inequality and completes the proof.

The proofs of Propositions 1 and 2 follow closely those of Huang et al. (2009), respectively.
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Proof of Proposition 1. We have min
α,β,θ

Sn(α, β, θ) = min
α,β

Ŝn(α, β), where Ŝn(α, β) =

min
θ
{Sn(α, β, θ) : θ ≥ 0}. For any (α, β), the minimizer of Sn(α, β, θ) with respect to θ

depends on β only, which is given by

θ̂(β) ≡ arg min
θ


G∑
g=1

θ−1
g

pg∑
j=1

|βj|+ λ
G∑
g=1

θg

 .
Solving this minimization problem, we have

θ̂g(β) =

Ñ
λ−1

pg∑
j=1

|βgj|

é 1
2

, g = 1, . . . , G.

Writing Ŝn(α, β) = Sn(α, β, θ̂(β)) and substituting the expression θ̂g(β) into Sn(α, β, θ̂(β)),

we get,

Ŝn(α, β) = Ln(α, β) +
G∑
g=1

Ñ
λ−1

pg∑
j=1

|βgj|

é−1
2 pg∑
j=1

|βj|+ λ
G∑
g=1

Ñ
λ−1

pg∑
j=1

|βgj|

é 1
2

= Ln(α, β) + λ1/2
G∑
g=1


pg∑
j=1

|βgj|
1
2 +

pg∑
j=1

|βgj|
1
2


= Ln(α, β) + 2λ1/2

G∑
g=1


pg∑
j=1

|βgj|


1
2

= Ln(α, β) + λn
G∑
g=1


pg∑
j=1

|βgj|


1
2

.

Therefore, Ŝn(α, β) = Qn(α, β).

Proof of Proposition 2. We have min
α,β,θ

S∗n(α, β, θ) = min
α,β

Ŝ∗n(α, β), where Ŝ∗n(α, β) =

min
θ
{S∗n(α, β, θ) : θ ≥ 0}. Similar to the proof of Proposition 1, for any (α, β),

θ̂∗(β) ≡ arg min
θ∗


G∑
g=1

θ∗
−1

g

pg∑
j=1

wgj|βgj|+ λ
G∑
g=1

θ∗g

 .
Solving this minimization problem, we have

θ̂∗g(β) =

Ñ
λ−1

pg∑
j=1

wgj|βgj|

é 1
2

, g = 1, . . . , G.
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Writing Ŝ∗n(α, β) = S∗n(α, β, θ̂∗(β)) and substituting the expression θ∗g(β) into S∗n(α, β, θ̂∗(β)),

we get,

Ŝ∗n(α, β) = Ln(α, β) +
G∑
g=1

Ñ
λ−1

pg∑
j=1

wgj|βgj|

é−1
2 pg∑
j=1

wgj|βj|+ λ
G∑
g=1

Ñ
λ−1

pg∑
j=1

wgj|βgj|

é 1
2

= Ln(α, β) + λ1/2
G∑
g=1


pg∑
j=1

wgj|βgj|
1
2 +

pg∑
j=1

wgj|βgj|


1
2

= L(α, β) + 2λ1/2
G∑
g=1


pg∑
j=1

wgj|βgj|


1
2

= L(α, β) + λn
G∑
g=1


pg∑
j=1

wgj|βgj|


1
2

.

Thus, Ŝ∗n(α, β) = Q∗n(α, β).

Proof of Theorem 1. Let α0 = (α0>
1 , . . . , α0>

Q )> be a QK dimensional vector that satisfies∥∥∥φ0
j − α0>

j Bj

∥∥∥
∞

= O(K−d), 1 ≤ j ≤ Q. Then,
∥∥∥φ0 − α0>B

∥∥∥
∞

= O(K−d) and
∥∥∥φ0 − α0>B

∥∥∥ =

O(K−d) since Q is fixed. Such approximation rates are possible due to our smoothness

assumption (A2) and well known approximation properties of B-spline (De Boor, 1978).

Let γn =
»

(K + p)/n + K−d and u ∈ RQK+p where u> = (u>1 , u
>
2 ), u1 is a QK-vector,

and u2 is a p-vector. To prove Theorem 1, we first show that
∥∥∥φ̂− α0>B

∥∥∥ = Op(γn), and∥∥∥β̂ − β0
∥∥∥ = Op(γn) where φ̂ = α̂0>B. Then it is sufficient to show that for any ε > 0, there

exists a constant C such that

P

®
inf
‖u‖=C

Qn,gen((α0, β0) + γnu) > Qn,gen(α0, β0)

´
≥ 1− ε, (3.18)

when n is big enough. This implies that with probability of at least 1− ε, there exists a local

minimizer in the ball {(α0, β0) + γnu : ‖u‖ ≤ C}. Hence, there exists a local minimizer such

that
∥∥∥φ̂− α0>B

∥∥∥+
∥∥∥β̂ − β0

∥∥∥ = Op (γn).
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Since pλn satisfies conditions (3.10) and (3.11), we have,

Qn,gen((α0, β0) + γnu)−Qn,gen(α0, β0)

=
¶
Ln((α0, β0) + γnu)− Ln(α0, β0)

©
+

s∑
g=1

{
p

(g)
λn

(∣∣∣β0
g1 + γnu2,g1

∣∣∣ , . . . , ∣∣∣β0
gsg + γnu2,gsg

∣∣∣ , ∣∣∣β0
g(sg+1) + γnu2,g(sg+1)

∣∣∣ , . . . , ∣∣∣β0
gpg + γnu2,gpg

∣∣∣)

−p(g)
λn

(∣∣∣β0
g1

∣∣∣ , . . . , ∣∣∣β0
gsg

∣∣∣ , ∣∣∣β0
gsg+1)

∣∣∣ , . . . , ∣∣∣β0
gpg

∣∣∣)}
+

G∑
g=s+1

{
p

(g)
λn

(∣∣∣β0
g1 + γnu2,g1

∣∣∣ , . . . , ∣∣∣β0
gpg + γnu2,gpg

∣∣∣)− p(g)
λn

(∣∣∣β0
g1

∣∣∣ , . . . , ∣∣∣β0
gpg

∣∣∣)}

≥
¶
Ln((α0, β0) + γnu)− Ln(α0, β0)

©
+

s∑
g=1

{
p

(g)
λn

(∣∣∣β0
g1 + γnu2,g1

∣∣∣ , . . . , ∣∣∣β0
gsg + γnu2,gsg

∣∣∣ , ∣∣∣β0
g(sg+1) + γnu2,g(sg+1)

∣∣∣ , . . . , ∣∣∣β0
gpg + γnu2,gpg

∣∣∣)

−p(g)
λn

(∣∣∣β0
g1

∣∣∣ , . . . , ∣∣∣β0
gsg

∣∣∣ , ∣∣∣β0
g(sg+1)

∣∣∣ , . . . , ∣∣∣β0
gpg

∣∣∣)}
≥
¶
Ln((α0, β0) + γnu)− Ln(α0, β0)

©
+

s∑
g=1

{
p

(g)
λn

(∣∣∣β0
g1 + γnu2,g1

∣∣∣ , . . . , ∣∣∣β0
gsg + γnu2,gsg

∣∣∣ , 0)− p(g)
λn

(∣∣∣β0
g1

∣∣∣ , . . . , ∣∣∣β0
gsg

∣∣∣ , 0)}

= A+B.

For A, denote ω = (α, β), and ω̂ = (α̂, β̂) be the estimator of ω0 = (α0, β0). By Taylor

expansion at γn = 0, we have

Ln(ω0 + γnu) = Ln(ω0) + γnu
> ¶Dnω

0 − dn
©

+
1

2
γ2
nu
>Dnu,

A = Ln(ω0 + γnu)− Ln(ω0)

= γnu
>Un(ω0) +

1

2
γ2
nu
>Dnu

, A1 + A2. (3.19)
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By
∥∥∥φ0 − α0>B

∥∥∥
∞

= O(K−d), we have

Un(ω0) = − 1

n

n∑
i=1

∫ τ

0

¶
Li − L̄n(t)

©{
dNi(t)− Yi(t)(α0> , β0>)Lidt

}
= − 1

n

n∑
i=1

∫ τ

0

¶
Li − L̄n(t)

© [
dNi(t)− Yi(t)

{
φ0>(Wi) + β0>Xi

}
dt

+Yi(t)
{
φ0>(Wi)− α0>Zi

}
dt
]

= − 1

n

n∑
i=1

∫ τ

0

¶
Li − L̄n(t)

©
dMi(t)−

1

n

n∑
i=1

∫ τ

0

¶
Li − L̄n(t)

©
Yi(t)

{
φ0(Wi)− α0>Zi

}
dt

= −n−1
n∑
i=1

∫ τ

0

¶
Li − L̄n(t)

©
dMi(t) +Op(K

−d)

= −n−1ξn +Op(K
−d),

where ξn =
∑n
i=1

∫ τ
0

¶
Li − L̄n(t)

©
dMi(t). Direct algebraic calculations show that, E

¶
‖ξn‖2

©
=

E
¶
tr
Ä
ξ>n ξn

ä©
= tr

¶
E
Ä
ξ>n ξn

ä©
= tr

¶
E
Ä
‖ξn‖2

ä©
. Let,

ξn =
∑
i

∫ τ

0

¶
Li − L̄n(t)

©
dMi(t) =

∑
i

∫ τ

0
Hi(t)dMi(t), where Hi(t) = Li − L̄n(t).

Since ξn is a martingale integral, we have E(ξn|F−t ) = 0, where F−t denotes the past up to

the beginning of the small time interval [t, t+ dt), and

V (ξn|F−t ) = E(ξ⊗2
n |F−t )

= E(ξnξ
>
n |F−t )

= E
∑
i

∫ τ

0
Var

¶
Hi(t)dMi(t)|F−t

©
= E

∑
i

∫ τ

0
Hi(t)

⊗2d 〈M〉 (t)

= E
∫ τ

0

∑
i

¶
Li − L̄n(t)

©⊗2
Λi(t)dt,

where Λi(t) = Yi(t)
¶
h0(t) + φ0(W ) +X>β0

©
. We can show that

∑
i

¶
Li − L̄n(t)

©⊗2
Yi(t) =

∑
i

¶
L⊗2
i Yi(t)

©
−
∑
i

¶
L̄n(t)

©⊗2
Yi(t)

≤
∑
i

¶
L⊗2
i Yi(t)

©
.
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Then, V (ξn|F−t ) ≤ E
∫ τ

0

∑
i L
⊗2
i Λi(t)dt. Assume sup

t,W,X
|h0(t)+φ0(W )+β0>X| ≤ M̃ . Therefore,

E
¶
‖ξn‖2

©
= tr

[
E

{∫ τ

0

∑
i

Ä
Li − L̄n(t)

ä⊗2
Λi(t)dt

}]

≤ M̃

[
E

{∫ τ

0

∑
i

Ä
Li − L̄n(t)

ä⊗2
Yi(t)dt

}]

≤ nE
¶
trL⊗2

i Yi(t)
©
.

Therefore, by Condition (A4), we have,

‖ξn‖ = Op

(»
n(K + p)

)
,

and

∥∥∥U(ω0)
∥∥∥ = Op(

»
(K + p)/n+K−d) = Op(γn). (3.20)

Consequently, from (3.19),

A1 = γnOp(γn) ‖u‖ = Op(γ
2
n) ‖u‖ .

Next, for A2, we have,

A2 =
1

2
γ2
nu
>Dnu =

1

2
γ2
n

î
u>Du+ u> {(Dn −D)}u

ó
.

By Lemma 4, ‖Dn −D‖2 = op(1). Since D is positive definite and its eigen values are

bounded away from zero and infinity,

A2 = 1/2γ2
n(1 + op(1)) ‖u‖2 .
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For the penalty part, by Taylor expansion of the penalty function we have,

B =
s∑

g=1

{
p

(g)
λn

Ä
|β0
g1 + γnu2,g1|, . . . , |β0

gpg + γnu2,gsg |, 0
ä
− p(g)

λn

Ä
|β0
g1|, . . . , |β0

gpg |, 0
ä}

=
s∑

g=1


sg∑
j=1

∂p
(g)
λn

Ä
|β0
g1|, . . . , |β0

gpg |
ä

∂|βgj |
sgn(β0

gj)γnu2,gj

+
1

2

sg∑
i=1

sg∑
j=1

∂2p
(g)
λn

Ä
|β0
g1|, . . . , |β0

gpk
|
ä

∂|βgi|∂|βgj|
γ2
nu2,giu2,gj

+ op
¶
γ2
n(u2

2,g1 + · · ·+ u2
2,gsg)

©
≤ q

1/2
1 anγn ‖u2‖+

1

2
γ2
nbn ‖u2‖2 + op(γ

2
n ‖u2‖2)

= q
1/2
1 Op(γn)γn ‖u2‖+ op(γ

2
n ‖u2‖2) as bn → 0

= q
1/2
1 Op(γ

2
n) ‖u2‖+ op(γ

2
n ‖u2‖2)

, B1 +B2,

where q1 =
∑s
g=1 sg. We can see that, by choosing a sufficiently large C, A2 dominates A1,

B1, B2 uniformly in ‖u‖ = C. Thus, we have shown that ‖α̂− α0‖ +
∥∥∥β̂ − β0

∥∥∥ = Op(γn).

Then,
∥∥∥φ̂− α0>B

∥∥∥ = Op(γn) and
∥∥∥β̂ − β0

∥∥∥ = Op(γn). By
∥∥∥φ0 − α0>B

∥∥∥
∞

= O(K−d) and the

triangle inequality, we obtain

∥∥∥φ̂− φ0
∥∥∥ ≤ ∥∥∥φ̂− α0>B

∥∥∥+
∥∥∥α0>B − φ0

∥∥∥
= Op(γn) +O(K−d)

= Op(γn).

Hence,
∥∥∥φ̂− φ0

∥∥∥+
∥∥∥β̂ − β0

∥∥∥ = Op(γn).

Proof of Theorem 2. Here we will prove the sparsity: pr(β̂D = 0) → 1 as n → ∞. By

Taylor expansion, we have

∂Qn,gen(α̂, β̂)

∂βgj
=
∂Ln(α̂, β0)

∂βgj
+
∂p

(g)
λn

(
|β̂g1|, . . . , |β̂gpg |

)
∂|βgj|

sgn(β̂gj)

= C1 + C2.

(3.21)
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Using the result from (3.20), we have |C1| = Op(γn). It follows from the definition of β̂gj that,

if β̂gj 6= 0,

∂Qn,gen(α̂, β̂)

∂βgj
= Op(γn) +

∂p
(g)
λn

(
|β̂g1|, . . . , |β̂gpg |

)
∂|βgj|

sgn(β̂gj)

= γn

Op(1) + γ−1
n

∂p
(g)
λn

(
|β̂g1|, . . . , |β̂gpg |

)
∂|βgj|

sgn(β̂gj)

 . (3.22)

Next, we show that there is a contradiction in (3.22) if pr
{
β̂D = 0

}
does not tend to 1 when

n→∞, then, there exist (g, j) ∈ D, such that β̂gj 6= 0. By the condition given in Theorem

2, that is, γ−1
n ∂p

(g)
λn

(
|β̂g1|, . . . , |β̂gpg |

)
/∂|βgj| → ∞ with probability tending to 1 as n→∞,

for an arbitrary ε > 0, when n is large we have

∂Qn,gen(α̂, β̂)

∂βgj
> 0, 0 < β̂gj < ε,

∂Qn,gen(α̂, β̂)

∂βgj
< 0, −ε < β̂gj < 0.

This is in conflict with ∂Qn,gen(α̂, β̂)/∂βgj = 0 and results in a contradiction when β̂gj 6= 0.

Therefore, pr(β̂D = 0)→ 1 as n→∞.

Proof of Corollary 1. We only need to check that the conditions in Theorem 1 hold for

the penalty function p
(g)
λn

(|β(g)|) = λn(|βg1|+ · · ·+ |βgpg |)1/2, g = 1, ..., G.

For βgj ∈ A, i.e., β0
gj 6= 0, we have,

an = max
(g,j)∈A

∂pλn(|β0
g1|, . . . , |β0

gpg |)
∂|βgj|

= max
(g,j)∈A

∂λn(|β0
g1|+ · · ·+ |β0

gpg |)
1/2

∂|βgj|

= max
(g,j)∈A

1

2
λn(|β0

g1|+ · · ·+ |β0
gpg |)

−1/2

≤ 1

2
λnM

−1/2 = Op(γn),
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and

bn = max
(g,j)∈A

∣∣∣∣∣∂
2pλn(|β0

g1|, . . . , |β0
gpg |)

∂|βgj|2

∣∣∣∣∣
= max

(g,j)∈A

∣∣∣∣∣∣∂
2λn(|β0

g1|+ · · ·+ |β0
gpg |)

1/2

∂|βgj|2

∣∣∣∣∣∣
= max

(g,j)∈A

1

4
λn(|β0

g1|+ · · ·+ |β0
gpg |)

−3/2

≤ 1

4
λnM

−3/2 → 0,

where M = ming(|β0
g1|+ · · ·+ |β0

gpg |). Therefore, the rate of convergence follows from Theorem

1.

For sparsity, suppose there exists (g, j) ∈ C for which β̂gj 6= 0. Since for all (g, j) ∈ C,

β0
gj = 0; j = 1, . . . , pg, we have

γ−1
n

∂pλn
(
|β̂g1|, . . . , |β̂gpg |

)
∂|βgj|

= γ−1
n

∂λn(|β̂g1|+ · · ·+ |β̂gpg |)1/2

∂|βgj|

=
γ−1
n λn

2(|β̂g1|+ · · ·+ |β̂gpg |)1/2
.

According to the first conclusion of Corollary 1, there exists a γ−1
n consistent local minimizer

β̂ = (β̂>A , β̂
>
B , β̂

>
C )> for the non-adaptive hierarchically penalized loss function (3.8), which

implies
∥∥∥β̂C − β0

C

∥∥∥ ≤ M∗γn or for β̂gj 6= 0, we have |β̂gj − β0
gj| = |β̂gj| ≤ M∗γn for some

constant M∗. Thus,

γ−1
n λn

2(|β̂g1|+ · · ·+ |β̂gpg |)1/2
≥ γ−1

n λn
2(M∗γn + · · ·+M∗γn)1/2

=
1

2M∗1/2 ×
γ−1
n λnγ

−1/2
n

p
1/2
g

≥ γ−3/2
n λnp

−1/2

2M∗1/2 (since p ≥ pg).

Therefore, for γ−3/2
n λnp

−1/2 →∞ when n→∞, we have, γ−1
n ∂λn(|β̂g1|+· · ·+|β̂gpg |)1/2/∂|βgj| →

∞, which results in a contradiction when β̂gj 6= 0. So, for all (g, j) ∈ C, β̂gj = 0.

Proof of Theorem 3. We only need to check that the conditions in Theorem 1 hold for

the penalty function p
(g)
λn

(|β(g)|) = λn(wn,g1|βg1|+ · · ·+ wn,gpg |βgpg |)1/2.
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For βgj ∈ A, i.e., β0
gj 6= 0, we have,

an = max
(g,j)∈A

∂pλn(|β0
g1|, . . . , |β0

gpg |)
∂|βgj|

= max
(g,j)∈A

∂λn(wn,g1|β0
g1|+ · · ·+ wn,gpg |β0

gpg |)
1/2

∂|βgj|

= max
(g,j)∈A

1

2
λnwn,gj(wn,g1|β0

g1|+ · · ·+ wn,gpg |β0
gpg |)

−1/2

≤ 1

2
λnw

A
n,max

Ä
wAn,min

ä−1/2
M−1/2 = Op(γn),

and

bn = max
(g,j)∈A

∣∣∣∣∣∂
2pλn(|β0

g1|, . . . , |β0
gpg |)

∂|βgj|2

∣∣∣∣∣
= max

(g,j)∈A

∣∣∣∣∣∣∂
2λn(wn,g1|β0

g1|+ · · ·+ wn,gpg |β0
gpg |)

1/2

∂|βgj|2

∣∣∣∣∣∣
= max

(g,j)∈A

1

4
λn(wn,gj)

2(wn,g1|β0
g1|+ · · ·+ wn,gpg |β0

gpg |)
−3/2

≤ 1

4
λn
Ä
wAn,max

ä2 Ä
wAn,min

ä−3/2
M−3/2 → 0,

where M = ming(|β0
g1|+ · · ·+ |β0

gpg |). Thus, the consistency follows from Theorem 1.

Next, we prove the sparsity. Assume β̂gj is a local minimizer of Q∗n(α, β) in (3.12) with∥∥∥β̂gj − β0
gj

∥∥∥ = Op(γn). We can find a constant M∗, such that |β̂gj| ≤ M∗ for all (g, j) with

probability tending to 1. Then for (g, j) ∈ D, i.e., β0
gj = 0, we have

γ−1
n

∂pλn
(
|β̂g1|, . . . , |β̂gpg |

)
∂|βgj|

=
γ−1
n λnwn,gj

2(wn,g1|β̂g1|+ · · ·+ wn,gpg |β̂gpg |)1/2

≥
γ−1
n λnw

D
n,min

2M∗1/2(wAn,max + wDn,max)1/2
.

Therefore, when γ−1
n λnw

D
n,min/(w

A
n,max + wDn,max)1/2 → ∞ as n → ∞, then β̂gj = 0 with

probability approaching to 1. Hence, by Theorem 2, we have pr(β̂D = 0)→ 1.

Proof of Corollary 2. We only need to verify that wn,gj = |β̃n,gj |−r satisfy the condi-

tions in Theorem 3. Let A = max
g,j

¶
β0
gj

©
and B = min

g,j

¶
β0
gj

: β0
gj
6= 0
©
. Then by the
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consistency of β̃n, wAn,max → B−r and wAn,min → A−r. Thus, if λn = γn/log(n), we have

γ−1
n λnw

A
n,max

Ä
wAn,min

ä−1/2 → 0 and λn
Ä
wAn,max

ä2 Ä
wAn,min

ä−3/2 → 0, as n→∞.

For each (g, j) with β0
n,gj = 0, we have β̃gj = Op(γn). Therefore, wDn,min/(w

A
n,max +

wDn,max)1/2 = Op(γ
−1/2
n ). Thus, for λn = γn/log(n), we have γ−1

n λnw
D
n,min/(w

A
n,max+wDn,max)1/2 →

∞.
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Chapter 4

Hierarchically Penalized Partially Linear Proportional

Hazards Model with a Diverging Number of

Parameters

4.1 Introduction

The proportional hazards model (Cox, 1972) is probably the oldest and the most popular

model in survival analysis and has been widely used to study the relationship between multiple

covariates and censored event times. The model assumes that the hazard function of a subject

related to the covariates X is given by

h(t|X) = h0(t) exp
Ä
β>X

ä
, (4.1)

where h0(t) is a completely unspecified baseline hazard function, β = (β1, . . . , βp)
> is the

vector of regression coefficients, and X = (X1, . . . , Xp)
> is a p-dimensional covariate vector.

In practice, it is possible that not all covariates are linearly related to the hazard, i.e.,

some of them have a nonlinear effect on the hazard. Considering a purely parametric model is

too stringent in this case, while a purely nonparametric model suffers from the so called “curse

of dimensionality”. Partially linear models (PLMs) in such cases combine the flexibility of

nonparametric modeling with the parsimony and easy interpretability of parametric modeling,

and avoids the curse of dimensionality of a purely nonparametric model (O’Sullivan, 1993;

Fan et al., 1997).

To incorporate the nonlinear effect of a covariate, we consider a partially linear proportional

hazards model (PL-PHM) in the same vein as that of Huang (1999). More specifically, we
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assume that the conditional hazard function is given by

h(t|W,X) = h0(t) exp
¶
φ(W ) + β>X

©
, (4.2)

where φ(W ) =
∑Q
q=1 φq(Wq), W = (W1, . . . ,WQ)> is a Q dimensional covariate vector,

φq(·) (q = 1, . . . , Q) are known or unknown nonlinear smooth functions. This model contains

both a nonparametric component φ(W ) and the parametric component β>X.

In reality, rarely all covariates are important in predicting the response and some compo-

nents of β are in fact, zero. Efficient variable selection in such cases leads to parsimonious

models with better prediction accuracy and easier interpretation.

In this chapter, we investigate the variable selection problem in the linear part of the

PL-PHM given in (4.2) when covariates in X can be naturally grouped and the dimension Q

of W is fixed and low. The data and model settings are partly motivated by cancer prognosis

studies reported in Ma and Huang (2007) and the variable selection method introduced by

Ma and Du (2012) in the partly linear accelerated failure time (AFT) model with diverging

dimensions in X for right censored data. In their studies, two distinct sets of covariates

are measured. The first set X represents high-dimensional genomic measurements such as

microarray gene expression or SNPs. The second set W represents low-dimensional clinical

and environmental risk factors. For better interpretability and easier computation, the effect

of X is usually modeled in a parametric way and the effect of W is modeled with more flexible

additive nonparametric functions, since many biological processes are nonlinear. However,

variable selection based on such model settings mainly focuses on individual variables such

as that in Ma and Huang (2007). In some applications, groups of measurements may be

taken in the hopes of capturing unobservable latent variables or of measuring different

aspects of complex entities (Breheny and Huang, 2009). Examples include measurements

of gene expression, which can be grouped by gene pathways, and genetic markers, which

can be grouped by the gene or haplotype (a set of genetic determinants located on a single

chromosome) that they belong to. For example, as Wang et al. (2009) explained, when
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analyzing microarray gene expression data, one can group genes into functionally similar sets

as in The Gene Ontology Consortium (2000), or into known biological pathways such as the

Kyoto encyclopedia of genes and genomes pathways (Kanehisa and Goto, 2000). In these

settings, methods for individual variable selection may perform inefficiently by ignoring the

information present in the grouping structure, while making use of the group information, as

shown in Wang et al. (2009) and Huang et al. (2014), can help to identify both pathways

and genes within the pathways related to the phenotypes, and hence improves understanding

of biological processes.

Many variable selection methods originally proposed for uncensored data, later have been

extended to the PHM. Examples include LASSO (Tibshirani, 1997), SCAD (Fan and Li,

2002), adaptive LASSO (Zhang and Lu, 2007), Elastic Net penalty (Simon et al., 2011),

among others where the focus is on individual variable selection. Since grouping structures

are natural in many important practical problems, several authors recently tackled the

problem of variable selection with grouped covariates in the PHM. Ma et al. (2007) proposed

supervised group LASSO in an attempt to select important genes and building predictive

model in microarray gene expression data. Kim et al. (2012) used group LASSO in gene

data to combine clinical and genomic covariates effectively. In these group selection methods,

covariates belonging to the same group are either selected or deleted from the model together.

However, in gene expression data, a biological pathway can be related to a certain biological

outcome although some genes in that pathway may not be related to the same biological

outcome. A variable selection method that can identify important pathways, and important

genes within important pathways, simultaneously, is much more attractive in this case than

selecting the entire group. Such a method is popularly known as a bi-level selection method

and well studied in uncensored data (Huang et al., 2009; Breheny and Huang, 2009; Simon

et al., 2013; Fang et al., 2015; Breheny, 2015). Zhou and Zhu (2010) proposed a hierarchically

penalized method, which is a special case of the group bridge method (Huang et al., 2009) in
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the linear regression model. Later, Wang et al. (2009) extended the hierarchical penalty in

the PHM and established the oracle property of the estimators.

When linear models are extended to partially linear models (PLMs), variable selection

in the linear part of a partially linear model has been extensively studied for uncensored

data. Example includes Xie and Huang (2009), Ni et al. (2009), Liang and Li (2009), Zhao

and Xue (2010), Kai et al. (2011), Xia and Yang (2016), Lv et al. (2016) and Yang et al.

(2017), among others. Relatively fewer works are seen on variable selection in the PL-PHM.

Du et al. (2010) performed variable selection in the linear part of a PL-PHM using SCAD

and adaptive LASSO penalty where they approximated the nonparametric function using

smoothing spline ANOVA. Hu and Lian (2013) and Lian et al. (2014) also performed variable

selection applying SCAD penalty in diverging and ultra-high dimensional linear covariates in

the PL-PHM, respectively. The latter two papers approximated the nonparametric functions

using B-splines. However, all of these above researchers only considered individual variable

selection in the linear part.

To the best of our knowledge, in the literature, group selection has not been considered

for the partially linear survival models. To bridge this gap, in this chapter, we propose a

bi-level variable selection method in the PL-PHM with a diverging number of covariates

X, assuming a group structure in the linear part and a fixed and low dimensional W for

clinical and/or environmental covariates in the nonparametric part. Similar approach could be

applied to other types of partially linear survival models, such as the partially linear additive

hazards model (PL-AHM) in the form of h(t|W,X) = h0(t) + φ(W ) + β>X, in contrast to

the PL-PHM given by (4.2), which will be addressed elsewhere in a different chapter. In this

work, we consider the number of zero coefficients is diverging with the sample size. Typically,

although the number of covariates collected is large, only a subset of covariates are important

in predicting the event times. Therefore, we assume the numbers of non-zero coefficients and

non-zero groups are fixed. Such an assumption is often reasonable with high dimensional
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data.

The remainder of the chapter is organized as follows. In Section 4.2, we describe the group

variable selection procedure for the PL-PHM. Asymptotic theories and further improvements

are discussed in Section 4.3. Section 4.4 presents the numerical results. Concluding remarks

are made in Section 4.5. All the technical proofs are contained in Appendix.

4.2 Grouped Variable Selection in the PL-PHM

Suppose a random sample of n subjects is observed. For the i-th subject, let T ei and T ci be

the event time and the censoring time respectively, where the hazard function of T ei is given

by (4.2). Assume that T ei and T ci are independent given the covariates, and the censoring

mechanism is noninformative. The true nonparametric functions and parameters will be

denoted using a superscript 0. The i.i.d observable random variables are (Ti,∆i,Wi, Xi)

where Ti = min(T ei , T
c
i ) and ∆i = I[T ei ≤ T ci ], (I[A] is the indicator function of a set

A), Wi = (Wi1, . . . ,WiQ)> ∈ RQ, and Xi = (Xi1, . . . , Xip)
> ∈ Rp are the covariates in

the nonparametric and the parametric part, respectively. Define the at-risk processes

Yi(t) = I[Ti > t] and the counting processes Ni(t) = ∆iI[Ti ≤ t]. Note that, φq is identifiable

only up to a constant and thus we assume E {φq(Wq)} = 0.

Following similar strategy of Wang et al. (2009), we assume that the p variables in the

linear part X can be divided into G groups. Let the g-th group have pg variables. We use

Xi,(g) =
Ä
Xi,g1, . . . , Xi,gpg

ä>
to denote the pg variables in the g-th group for the i-th observation,

Xi =
Ä
X>i,(1), . . . , X

>
i,(G)

ä>
to denote the total p variables, and β(g) =

Ä
βg1, . . . , βgpg

ä>
to

represent the regression coefficients for the g-th group. We assume that the G groups do not

overlap, i.e., each variable belongs to only one group.
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Thus, the partially linear proportional hazards model (4.2) can be written as

h(t|W,X) = h0(t) exp

φ(W ) +
G∑
g=1

pg∑
j=1

βgjXgj


= h0(t) exp

¶
φ(W ) + β>(1)X(1) + · · ·+ β>(G)X(G)

©
. (4.3)

Consequently, the partial likelihood is written as

Ln(φ, β) =
∏
i∈D

exp
Ä
φ(Wi) +

∑G
g=1 β

>
(g)Xi,(g)

ä
∑
l∈Ri exp

Ä
φ(Wl) +

∑G
g=1 β

>
(g)Xl,(g)

ä , (4.4)

where D is the set of indices of observed failures, Ri is the set of indices of the subjects who

are at risk at time Ti, and φ(Wi) = φ1(Wi1) + · · · + φQ(WiQ). Let Yi(t) = I(Ti ≥ t). The

logarithm of model (4.4) in counting process notation can be written as

ln(φ, β) =
n∑
i=1

∆i

φ(Wi) +
G∑
g=1

β>(g)Xi,(g)

− log
n∑
l=1

Yl(Ti) exp

Ñ
φ(Wl) +

G∑
g=1

β>(g)Xl,(g)

é . (4.5)

To estimate parameter (φ, β) in the model (4.3), since φ is an infinitely dimensional non-

parametric function, we use the Sieve method in maximizing the log-likelihood ln(φ, β)

with respect to (φ, β), and construct Sieve space for φ. To do that, we use polynomial

splines to approximate the nonparametric components. Without loss of generality, we

assume Wq (q = 1, . . . , Q) has a support [0, 1]. For each non-parametric component,

φq(Wq), let τ0 = 0 < τ1 < · · · < τk′ < 1 = τk′+1 be a partition of [0, 1] into subinter-

vals [τk, τk+1), k = 0, . . . , k′ with k′ internal knots. A polynomial spline of order r is a function

whose restriction to each subinterval is a polynomial of degree r − 1 and globally r − 2

times continuously differentiable on [0, 1]. The collection of splines with a fixed sequence

of knots has a normalized B-spline basis
¶
B̃q1(x), . . . , B̃qk̃(x)

©
with k̃ = k′ + r. As φq is

identifiable only up to a constant, we put a centering constraint E{φq(Wq)} = 0, and use

the subspace of spline functions: S0
q := [s : s =

∑k̃−1
k=1 αqkBqk(x),

∑n
i=1 s(Wiq) = 0], with

basis
¶

Bqk(x) =
√
K(B̃qk(x)−∑n

i=1 B̃qk(Wiq)/n), k = 1, . . . , K = k̃ − 1
©

(the subspace has a
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degree = k̃ − 1 due to the normalization constraint
∑k̃
k=1 B̃qk(x) ≡ 1). The multiplicative

constant
√
K is incorporated in the basis definition to simplify some expression later in

the proofs, as done in Wang et al. (2011). Using spline expansions, we can approximate

the nonparametric components by φq(x) ≈ ∑K
k=1 αqkBqk(x), 1 ≤ q ≤ Q. Therefore, the

problem of estimating φq is now transformed to the problem of estimating the coefficients

αq = (αq1, . . . , αqK)>.

Let Z = (B11(W1), . . . , B1K(W1), . . . , BQ1(WQ), . . . , BQK(WQ))> denote the QK basis

functions and α = (α11, . . . , α1K , . . . , αQ1, . . . , αQK)> denote the corresponding coefficients.

Since the q-th nonparametric component can be approximated by
∑K
k=1 αqkBqk(x) (q =

1, . . . , Q), it is reasonable to assume that Bq1(x), . . . , BqK(x) are K variables belonging to

one group. Therefore, the QK variables in Z can be divided into Q groups, where each of the

q-th group has K variables. We use Zi,(q) = (Bi,q1, . . . , Bi,qK)> (q = 1, . . . , Q; k = 1, . . . , K),

to denote the K basis functions in the q-th group for the i-th observation. Similarly, we

use Zi =
Ä
Z>i,(1), . . . , Z

>
i,(Q)

ä>
to denote the total QK variables for the i-th observation, and

α(q) = (αq1, . . . , αqK)> to represent the regression coefficients for the q-th group. We assume

that the number of variables in each group is K, i.e., we consider the same number of basis

functions to approximate each nonparametric function. To simplify computation, since we

have assumed Wq (q = 1, . . . , Q) have the same support [0,1], we can assume Bqk(x) = Bq′k(x)

for q 6= q′, 1 ≤ q, q′ ≤ Q, 1 ≤ k ≤ K.

The partial likelihood in (4.5) is then equivalent to

ln(α, β) =
n∑
i=1

∆i

 Q∑
q=1

α>(q)Zi,(q) +
G∑
g=1

β>(g)Xi,(g)

− log
n∑
l=1

Yl(Ti) exp

Ñ
Q∑
q=1

α>(q)Zl,(q) +
G∑
g=1

β>(g)Xl,(g)

é . (4.6)

To conduct variable selection in the PL-PHM, Hu and Lian (2013) and Lian et al. (2014)

considered individual variable selection in the linear part by maximizing the penalized log
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partial likelihood objective function for estimating both α and β defined in the following:

pln(α, β) =
1

n
ln(α, β)−

p∑
j=1

pλn(βj),

where pλn(βj) is a penalty function. Let (α̂, β̂) be the maximizer of the above penalized

partial likelihood, then, the penalized estimators of φq (q = 1, . . . , Q) and β are
∑K
k=1 α̂qkBqk

and β̂, respectively. In this chapter, our focus is on group selection, and the above individual

variable selection is a special case of the following group selection problem.

4.2.1 Hierarchically Penalized PL-PHM

To conduct group selection, we follow Wang et al. (2009)’s procedure. Similar to theirs, we

reparameterize βgj as

βgj = γgθgj (g = 1, . . . , G; j = 1, . . . , pg),

where γg ≥ 0 for identifiability. This decomposition indicates that all βgj (j = 1, . . . , pg) belong

to the g-th group as it treats βgj hierarchically. Parameter γg explains βgj (j = 1, . . . , pg) at

the group level and θgj’s explain differences among individuals within the g-th group. Let

θ(g) = (θg1, . . . , θgpg)
>, then β(g) = γgθ(g). The partial likelihood function thus can be written

as

Ln(α, γ, θ) =
∏
i∈D

exp(
∑Q
q=1 α

>
(q)Zi,(q) +

∑G
g=1 γgθ

>
(g)Xi,(g))∑

l∈Ri exp(
∑Q
q=1 α

>
(q)Zl,(q) +

∑G
g=1 γgθ

>
(g)Xl,(g))

.

where γ = (γ1, . . . , γG)> and θ = (θ11, . . . , θ1p1 , . . . , θG1, . . . , θGpG)>. Let ln(α, γ, θ) denote

log {Ln(α, γ, θ)}. For group selection in the linear part, we consider the penalized log partial

likelihood is given as

max
α(q),γg ,θgj

 1

n
ln(α, γ, θ)− λγ

G∑
g=1

γg − λθ
G∑
g=1

pg∑
j=1

|θgj|

 , (4.7)

subject to γg ≥ 0 (g = 1, . . . , G), where λγ ≥ 0 and λθ ≥ 0 are two tuning parameters, which

control the sparsity of the estimation at the group level and within group level, respectively.
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As shown by Wang et al. (2009) in the linear PHM, for fixed (α, β) and given values of λγ

and λθ, the maximizer of (4.7) with respect to (γ, θ), where ln(α, γ, θ) is constant, is unique.

Finally, in the same vein as Wang et al. (2009), we can combine λγ and λθ into one tuning

parameter λ = λγλθ such that (4.7) is equivalent to

max
α(q),γg ,θgj

 1

n
ln(α, γ, θ)−

G∑
g=1

γg − λ
G∑
g=1

pg∑
j=1

|θgj|

 , (4.8)

subject to γg ≥ 0 (g = 1, ..., G). Lemma 1 illustrates the meaning of equivalence.

Lemma 1. Let (α̂∗, γ̂∗, θ̂∗) be a local maximizer of (4.7). Then there exists a local maximizer

(α̂†, γ̂†, θ̂†) of (4.8) such that α̂∗ = α̂† and γ̂∗g θ̂
∗
gj = γ̂†g θ̂

†
gj. Similarly, if (α̂†, γ̂†, θ̂†) is a local

maximizer of (4.8), then there exists a local maximizer (α̂∗, γ̂∗, θ̂∗) of (4.7) such that α̂∗ = α̂†

and γ̂∗g θ̂
∗
gj = γ̂†g θ̂

†
gj.

Furthermore, criterion (4.8) can be written into an equivalent form using the regression

coefficients α and β.

Lemma 2. If (α̂, γ̂, θ̂) is a local maximizer of (4.8), then (α̂, β̂), where β̂gj = γ̂gθ̂gj, is a local

maximizer of

max
αq ,βgj

 1

n
ln(α, β)− 2λ1/2

G∑
g=1

Ñ
pg∑
j=1

|βgj|

é1/2
 . (4.9)

On the other hand, if (α̂, β̂) is a local maximizer of (4.9), then (α̂, γ̂, θ̂) is a local maximizer

of (4.8), where γ̂g = (λ
∑pg
j=1 |β̂gj|)1/2 and θ̂gj = β̂gj/γ̂g if γ̂g 6= 0 and zero otherwise.

The numerical computation is based on (4.8) while the proof of asymptotic properties is

based on (4.9). Instead of using L2-norm which performs group LASSO (Yuan and Lin, 2006),

we used L1-norm to the within group coefficients in (4.9). In addition, the group coefficients

are penalized by a bridge-type penalty (Frank and Friedman, 1993), i.e., L1/2-norm. So, the

hierarchical penalty can remove unimportant groups and some unimportant variables in the

important groups.

101



4.2.2 Computational Algorithm

To estimate α, γ and θ in (4.8), we will use an iterative algorithm. First, we fix γ and estimate

(α, θ); then fixing θ, we estimate (α, γ). We iterate between these steps until convergence is

achieved. Precisely, the algorithm is written as

Step 0. Center and normalize Xgj , and obtain an initial value γ(0)
g for each γg; i.e., γ(0)

g =

1. Let s = 1.

Step 1. At the s-th iteration, let X̃i,gj = γ(s−1)
g Xi,gj (g = 1, . . . , G; j = 1, . . . , pg) and

obtain estimate (α(s), θ(s)) by

(α(s), θ(s)) = arg max
αqk,θgj

1

n
log

∏
i∈D

exp(
∑Q
q=1

∑K
k=1 αqkZi,qk +

∑G
g=1

∑pg
j=1 θgjX̃i,gj)∑

l∈Ri exp(
∑Q
q=1

∑K
k=1 αqkZl,qk +

∑G
g=1

∑pg
j=1 θgjX̃l,gj)

−λ
G∑
g=1

pg∑
j=1

|θgj|.

Step 2. Let X̃i,g =
∑pg
j=1 θ

(s)
gj Xi,gj (g = 1, . . . , G) and obtain estimate (α(s), γ(s)) by

(α(s), γ(s)) = arg max
αqk,γg≥0

1

n
log

∏
i∈D

exp(
∑Q
q=1

∑K
k=1 αqkZi,qk +

∑G
g=1 γgX̃i,gj)∑

l∈Ri exp(
∑Q
q=1

∑K
k=1 αqkZl,qk +

∑G
g=1 γgX̃l,gj)

−
G∑
g=1

γg.

In this step, α(s) is updated from α(s) in step 1.

Step 3. Repeat Steps 1 and 2 until α(s), γ(s), and θ(s) converge at the m-th iteration. Let

α̂ = α(m) and β̂(g) = γ(m)
g θ

(m)
(g) be the final solutions.

Since at each step, the value of objective function (4.8) is non-decreasing, this algorithm

always converges. Step 1 is a LASSO-type problem without penalizing α, and the algorithms

proposed in Fan and Li (2002), Gui and Li (2005), Zhang and Lu (2007) or Park and Hastie

(2007) can be used to solve for θ. Step 2 is a nonnegative garrote algorithm without penalizing

α, and we can use Fan and Li (2002) or Yuan and Lin (2007)’s algorithm to solve for γ.

4.3 Asymptotic Theory

For theoretical analysis, we will consider the counting process representation of the partial

likelihood. We denote the true risk score by m0(W,X) = φ0(W ) + β0>X where φ0(W ) =

φ0
1(W1) + · · ·+ φ0

Q(WQ). Let R> = (W>, X>) be all the covariates and g, h be any functions

102



of R (h can be vector valued). We define

S(0)
n (g, t) = n−1

n∑
i=1

Yi(t) exp[g(Ri)],

S(1)
n (g, t)[h] = n−1

n∑
i=1

Yi(t)h(Ri) exp[g(Ri)],

S(2)
n (g, t)[h] = n−1

n∑
i=1

Yi(t)h(Ri)
⊗2 exp[g(Ri)],

Gn(g, t)[h] = S(1)
n (g, t)[h]/S(0)

n (g, t),

Vn(g, t)[h] = S(2)
n (g, t)[h]/S(0)

n (g, t)−Gn(g, t)[h]G>n (g, t)[h],

where for any vector ξ, ξ⊗2 simply means ξξ>. Let s(0)(g, t) = E(S(0)
n (g, t)), s(j)(g, t)[h] =

E(S(j)
n (g, t)[h]), j = 1, 2, G(g, t)[h] = s(1)(g, t)[h]/s(0)(g, t), V (g, t)[h] = s(2)(g, t)[h]/s(0)(g, t)−

G(g, t)[h]G>(g, t)[h]. Also, let Pn be the empirical measure of (Ti,∆i, Ri), 1 ≤ i ≤ n

and let P be the probability measure of (T,∆, R). Let P∆n be the (subprobability) em-

pirical measure of (Ti,∆i = 1, Ri), 1 ≤ i ≤ n and let P∆ be one subprobability mea-

sure of (T,∆ = 1, R). It is convenient to use linear functional notation, for example,

P∆nf =
∫
fdP∆n =

∫
∆fdPn = n−1∑

i ∆if(Ti,∆i, Ri) for any f such that this integral is

well defined. Let ‖a‖ denotes the L2 norm of a column vector a.

The log partial likelihood can be rewritten as

ln(α, β) =
n∑
i=1

∫ τ

0

¶
ω>Li − log(S(0)

n (g, t))
©
dNi(t),

where ω = (α>, β>)>, Li = (Z>i , X
>
i )> and g is the function of R defined by (α, β) : g(R) =∑Q

q=1 α
>
q Bq(Wq) + β>X, Zq(Wq) = Bq(Wq) = (Bq1(Wq), . . . , BqK(Wq))

>. We only consider

events over a finite interval [0, τ ]. The score function and the observed information are given

by

Un(α, β) =
n∑
i=1

∫ τ

0
{Li −Gn(g, t)[L]} dNi(t),

and

Σn(α, β) =
n∑
i=1

∫ τ

0
Vn(g, t)[L]dNi(t),
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respectively. We first consider the penalized log partial likelihood function with a general

penalty function. Let the objective function be

Qn(α, β) =
1

n
ln(α, β)−

G∑
g=1

p
(g)
λn

(|β(g)|), (4.10)

where p
(g)
λn

(|β(g)|) = p
(g)
λn

(|βg1|, . . . , |βgpg |) is a general pg-variate penalty function for the linear

parameters in the g-th group. We let the penalty functions p
(g)
λn

(·) (g = 1, . . . , G) in (4.10) to

vary between groups as well as p
(g)
λn

(·) to depend on the tuning parameter λn that varies with

n.

Adopting notations of Wang et al. (2009), we write the true parameter vector in the sparse

linear part as β0 = (β0>
A , β0>

B , β0>
C )>, whereA =

¶
(g, j) : β0

gj
6= 0
©
, B =

¶
(g, j) : β0

gj
= 0, β0

(g) 6= 0
©
,

and C =
¶
(g, j) : β0

(g) = 0
©
. Here A, B, C contain the indices of nonzero coefficients, indices

of zero coefficients that belong to nonzero groups, and indices of zero coefficients that belong

to zero groups. Thus, A, B and C are disjoint and partition the set of all indices of coefficients.

We write D = B ∪ C, which contains the indices of all zero coefficients. We also define

an = max
(g,j)

∂p
(g)
λn

(|β0
g1|, . . . , |β0

gpg |)
∂|βgj|

: β0
gj 6= 0

 ,

bn = max
(g,j)

∂
2p

(g)
λn

(|β0
g1|, . . . , |β0

gpg |)
∂|βgj|2

: β0
gj 6= 0

 .
Lastly, let s be the number of nonzero groups. Without loss of generality, we assume that

β0
(g) 6= 0 (g = 1, . . . , s) and β0

(g) = 0 (g = s + 1, . . . , G). Let sg be the number of nonzero

coefficients in group g (g = 1, . . . , s). Again, without loss of generality, we assume that

β0
gj 6= 0 (g = 1, . . . , s; j = 1, . . . , sg) and β0

gj = 0 (g = 1, . . . , s; j = sg + 1, . . . , pg).

The following technical conditions are used in the study of asymptotic.

(B1) The covariate vector (R> = (W>, X>)) has a bounded support: without loss

of generality the support of W is assumed to be [0, 1]Q, with the marginal

density of each covariate in W being continuous and bounded away from zero

and infinity, and the covariate vector X is bounded.
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(B2) (i) Only observations with censored event times in a finite interval [0, τ ] are

used in the partial likelihood. At this point τ , the baseline cumulative hazard

function Λ0(τ) ≡
∫ τ

0 λ0(s)ds <∞. (ii) P (∆ = 1|R) and P (T c > τ |R) are both

bounded away from zero with probability one.

(B3) Let Hd be the collection of all functions on support [0, 1] whose m-th or-

der derivative satisfied the Hölder condition of order r with d ≡ m + r.

That is, for each h ∈ Hd, there exists a constant M0 ∈ (0,∞) such that∣∣∣h(m)(s)− h(m)(t)
∣∣∣ ≤ M0|s − t|r, for any s, t ∈ [0, 1]. Then, ϕ0

q ∈ Hd (q =

1, . . . , Q), for some d > 1/2. The order of the spline satisfies r > d+ 1/2.

(B4) E

{
sup
t∈[0,τ ]

Y (t) ‖L‖2 exp
Ä
ω>L

ä}
= O(K + p).

(B5) Let Σ =
∫ τ

0 V (m0, t)[L]s(0)(m0, t)λ0(t)dt, where m0 = m0(W,X). The eigenval-

ues of Σ are bounded away from zero and infinity.

(B6) The pg-variate penalty function for parameters in the g-th group satisfies the

following two conditions:

p
(g)
λn

(|β(g)|) ≥ 0 (β(g) ∈ Rpg), p
(g)
λn

(0) = 0; (4.11)

p
(g)
λn

(|β(g)|) ≥ p
(g)
λn

(|β∗(g)|) (|βgj| ≥ |β∗gj|; j = 1, . . . , pg). (4.12)

Similar conditions to those listed above have been considered in the literature (Hu and Lian,

2013; Wang et al., 2009) and are quite reasonable. Condition (B1) places the boundedness

condition on the covariates. It is unpleasant, but not too restrictive because in many practical

situations continuous covariates may be typically rescaled to fall between 0 and 1. (B2)(i)

avoids the unboundedness of the loss function and pseudo-score functions at the end point

of the support of the observed event time. (B2)(ii) ensures that the probability of being

right censored at τ and the probability of being observed events are positive and bounded
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away from zero regardless of the covariate values. (B3) ensures the uniform continuity of the

functions. A condition similar to (B4) was considered by Bradic et al. (2011) for diverging

number of parameters following Andersen and Gill (1982). The positive-definiteness of Σ

in (B5) is a reasonable assumption by the following discussion. The term LL> appears in

the definition of Σ. Under mild assumptions, Huang et al. (2010) showed that eigenvalues of

E(ZZ>) are bounded and bounded away from zero and hence, we can expect that eigenvalues

of E(LL>) are bounded and bounded away from zero if eigenvalues of E(XX>) are, and

Z and X are linearly independent. Wang et al. (2009) considered the condition (B6) for

hierarchical group variable selection in the PHM.

Theorem 1. Let γn =
»

(K + p)/n + K−d. Under the regularity conditions (B1) - (B6),

assume that Q, s and sg is fixed, K → ∞, p → ∞, (K + p)/n → 0, γn(K + p)3/2 = O(1),

an = Op(γn) and bn → 0, then there exists a local maximizer (α̂>, β̂>)> of (α>, β>)>

in (4.10) and φ̂q =
∑K
k=1 α̂qkBqk, φ̂(w) =

∑Q
q=1 φ̂q(wq) such that

∥∥∥φ̂− φ0
∥∥∥ +

∥∥∥β̂ − β0
∥∥∥ =

Op

(»
(K + p)/n+K−d

)
.

Theorem 2. Let γn =
»

(K + p)/n+K−d and (α̂>, β̂>A , β̂
>
B , β̂

>
C )> be the local maximizer of

Qn(α, β) in (4.10). For (g, j) ∈ D, i.e., β0
gj = 0, under the same conditions as in Theorem

1, if γ−1
n ∂p

(g)
λn

(|β̂g1|, . . . , |β̂gpg |)/∂|βgj| → ∞ as n→∞, then we have β̂gj = 0 with probability

approaching 1.

In the following section, we show how to construct penalty function p
(g)
λn

such that the

conditions in Theorem 2 can be satisfied.

4.3.1 Adaptive Hierarchical Penalty and Further Improvement

The above results are obtained for any general penalty. Following Wang et al. (2009), here

we will show the asymptotic results for hierarchically penalized PL-PHM based on criterion

(4.9). If we write λn = 2λ1/2 in (4.9), then based on Theorems 1 and 2 we have
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Corollary 1. Let γn =
»

(K + p)/n + K−d. If λn = Op(γn), then there exists a local

maximizer (α̂>, β̂>)> = (α̂>, β̂>A , β̂
>
B , β̂

>
C )> for the hierarchically penalized PL-PHM in (4.9)

such that
∥∥∥φ̂− φ0

∥∥∥ +
∥∥∥β̂ − β0

∥∥∥ = Op (γn); if further p−1/2γ−3/2
n λn → ∞ as n → ∞, then

β̂C = 0 with probability tending to 1.

Comparing Corollary 1 with Theorem 2, we see that although the hierarchical penalty

can effectively remove unimportant groups because β̂C = 0 with probability approaching to 1,

it cannot effectively remove unimportant variables within the important groups as β̂D = 0

with probability tending to 1 may not hold. To tackle this limitation, we apply the adaptive

idea used in Breiman (1995), Shen and Ye (2002), Zhang and Lu (2007), Zhao and Yu (2006),

Zou (2006), Zou (2008), Wang et al. (2009), Liu et al. (2014), and others, which is to penalize

different coefficients differently. To do so, we maximize the following objective function

Qw
n (α, β) =

1

n
ln(α, β)− λn

G∑
g=1


pg∑
j=1

wn,gj|βgj|


1/2

, (4.13)

where wn,gj’s are pre-specified non-negative weights. The next theorem shows that, by

controlling weights properly, the adaptive hierarchically penalized PL-PHM has the selection

consistency as stated in Theorem 2.

Theorem 3. Let us define

wAn,max = max {wn,gj : (g, j) ∈ A} , wAn,min = min {wn,gj : (g, j) ∈ A} ;

wDn,max = max {wn,gj : (g, j) ∈ D} , wDn,min = min {wn,gj : (g, j) ∈ D} .

Let γn =
»

(K + p)/n + K−d. Under the same conditions as assumed in Theorem 1, if

γ−1
n λnw

A
n,max

Ä
wAn,min

ä−1/2 → 0, λn
Ä
wAn,max

ä2 Ä
wAn,min

ä−3/2 → 0, and γ−1
n λnw

D
n,min/(w

A
n,max +

wDn,max)1/2 →∞ as n→∞, there exists a local maximizer (α̂>, (β̂>A , β̂
>
D))> of (α>, (β>A , β

>
D))>

in (4.13) such that
∥∥∥φ̂− φ0

∥∥∥+
∥∥∥β̂ − β0

∥∥∥ = Op (γn) and β̂D = 0 with probability tending to 1.

Finally, we specify our λn and the weights wn,gj that satisfy conditions in Theorem 3,

which are given by the following corollary.
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Corollary 2. Let γn =
»

(K + p)/n+K−d and β̃n be an estimator such that,
∥∥∥β̃n − β0

∥∥∥ =

Op(γn). If λn = γn/log(n) and wn,gj = 1/|β̃n,gj|r, where r > 0, then there exists a local

maximizer (α̂>, (β̂>A , β̂
>
D))> of (α>, (β>A , β

>
D))> in (4.13) such that

∥∥∥φ̂− φ0
∥∥∥ +

∥∥∥β̂ − β0
∥∥∥ =

Op (γn) and β̂D = 0 with probability tending to 1.

In practice, we choose (α̃n, β̃n) = arg maxα,β ln(α, β), the estimator from the unpenalized

score function when p is diverging with n and p < n. From Corollary 1 and Corollary 2,

we notice that the rates of convergence of the estimators are the same but the selection

performance of the adaptive hierarchically penalized method is superior to that of the

hierarchically penalized method, because the adaptive method possesses the individual

variable selection consistency, while the non-adaptive method holds only group selection

consistency.

We have obtained the rate of convergence and selection consistency of the estimators of φ

and β with a diverging β. For the sparse finite dimensional parameter vector β, a root-n rate

may be obtained using the semiparametric theory such as in Huang (1999). Further, oracle

properties of β̂ are expected to hold. Given the estimator β̂A is obtained by penalizing the

log semiparametric partial likelihood, following the lines in Hu and Lian (2013) and Wang

et al. (2009), we conjecture that, under certain conditions, β̂A = β0
A with probability 1 and

has an asymptotic normal distribution.

4.4 Numerical Results

4.4.1 Simulation Studies

To evaluate the finite-sample performance of the hierarchically penalized (HP) method and

its adaptive version (AHP) in the PL-PHM, we conducted two simulation studies. We

compared the results with those based on some existing individual (LASSO, Adaptive LASSO

SCAD, MCP) and group (Group SCAD or G-SCAD, Group MCP or G-MCP) variable

selection methods developed for linear models. LASSO, Adaptive LASSO (A-LASSO) and
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SCAD have been used for variable selection in the PLMs (Ma and Du, 2012; Hu and Lian,

2013). The asymptotic theory for G-SCAD and G-MCP under PLMs has not studied in

the literature, we used them only for comparison purpose and leave the asymptotic theory

for future research. We expect that similar results to those for AHP method will also hold

for G-SCAD and G-MCP penalties. In our simulation studies we used R packages ncvreg

and Coxnet for individual variable selection penalties and grpreg for computing G-SCAD

and G-MCP estimates. We used these penalties for variable selection in the linear part after

linearizing the nonparametric functions φ(·) using B-splines where the tuning parameter λn is

chosen by the built-in five-fold cross validation method. For computation of our AHP group

selection method in the PL-PHM, we used the R package penalized and R program written

by Wang et al. (2009) for the linear PHM, where the tuning parameter λn is chosen to be 10

for HP and 20 for AHP methods based on trial and error method. We have not developed a

data-driven tuning parameter selection method for HP and AHP group selection methods.

We will investigate this issue in our future work.

Five performance measures are used to compare these methods: number of true groups

selected (TG), number of zero group selected (FG), number of true nonzero variables selected as

nonzero (TP), number of true zero variables selected as nonzero (FP), and L2- prediction error

(PE) in the excess risk defined as
∥∥∥{β̂>Z + φ̂1(W1) + φ̂2(W2)

}
−
¶
β>Z + φ1(W1) + φ2(W2)

©∥∥∥.
As a benchmark, we compute the oracle estimates, which are obtained by maximizing (4.6)

for model (4.3) which includes only important variables and groups.

Variable selection is a computationally extensive procedure and can take a lot of time if

convergence is slow. We used ‘WestGrid’ (https://www.westgrid.ca) to conduct our simulation

studies which benefited us in terms of computational time. WestGrid is helping Compute

Canada (https://www.computecanada.ca) to lead the acceleration of research and innovation

by bringing together computing facilities, research data management services, and a network

of technical experts to meet researchers need. It has multiple computing facilities where
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the researchers can send their computing codes and define parameters like computing time,

memory, cores to be used based on the computational burden of their jobs. To conduct our

simulation studies, we submitted all of our simulations parallelly to the computing facilities

at the same time. On average, it took only an hour to conduct 500 simulations in WestGrid.

In Example 1, the number of groups is moderately large, the group sizes are equal and

relatively large, and within each group the coefficients are either all nonzero or all zero. In

Example 2, the group sizes vary and there are zero coefficients in a nonzero group. In each

example, we set sample size n =400 and baseline hazard functions h0(t) = 1.0. The censoring

variable is generated from a uniform distribution over [0, Co], where C0 is chosen to yield

censoring rate = 30%. For each of these settings, we replicate 500 simulations.

Example 1. In this example, there are 7 groups in the linear part, each with 5 co-

variates, and two nonparametric functions. For the linear covariates, the covariate vector

is X> = (X>1 , . . . , X
>
7 ). The subvector of covariates that belong to the same group is

X>j = (X5(j−1)+1, . . . , X5(j−1)+5); j = 1, . . . , 7. To generate the covariatesX1, . . . , X35, we first

simulate 35 random variables R1, . . . , R35 independently from the standard normal distribu-

tion. Then Zj (j = 1, . . . , 7) are simulated from a multivariate normal distribution with mean

zero and an AR(1) covariance structure such that cov(Zj1, Zj2) = 0.4|j1−j2| for j1, j2 = 1, . . . , 7.

The covariates X1, . . . , X35 are generated as Xj = (Zgj +Rj)/6 (j = 1, . . . , 35), where gj is

the smallest integer greater than (j − 1)/5 and the Xj’s with the same value of gj belong to

the same group. Similar correlation structure was considered in Huang et al. (2009). The

nonparametric functions are φ1(W1) = W 2
1 −(25/12) and φ2(W2) = exp(−W2)−2 sinh(5/2)/5,

where the covariates W ’s are sampled from U (−2.5, 2.5). Such nonparametric functions were

considered in Cui et al. (2013) in a nonparametric additive regression model. The event times

in Example 1 are generated from an exponential distribution with a hazard rate given as

follows:

h(t|X,W ) = h0(t) exp
¶
β>X + φ1(W1) + φ2(W2)

©
,
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where β = (1.2, . . . , 1.2︸ ︷︷ ︸
5

, 3.6, . . . , 3.6︸ ︷︷ ︸
5

, 2.4, . . . , 2.4︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

)>.

To estimate nonparametric functions, we use B-splines, see details in Section 4.2 for center-

ing the B-splines in general. Specifically, center φ1(W1) and φ2(W2) such that E {φ1 (W1)} =

E {φ2 (W2)} = 0. We approximated the nonlinear functions using cubic B-spline functions.

Lian et al. (2014) used 5 to 8 basis functions in their simulations and found similar results.

They reported the results only for 6 basis functions. To ease the computational burden, we

also choose K = 6 as the number of basis functions in B-splines. This choice of K is small

enough to avoid overfitting and big enough to flexibly approximate the smooth functions

(Gray, 1992; Cheng and Wang, 2011). In this example, there exists three important groups

and all variables within each group are important. This example illustrates that the proposed

group selection methods have the ability to identify important groups.

Example 2. In this experiment, the group size differs across groups and some groups have

a mixture of important and unimportant variables. There are seven groups: three groups each

of size 8 and four groups each of size 4. The covariate vector is X> = (X>1 , . . . , X
>
7 ), where

the seven subvectors of covariates are X>j = (X8(j−1)+1, . . . , X8(j−1)+8), for j = 1, 2, 3, and

X>j = (X4(j−1)+13, . . . , X4(j−1)+16), for j = 4, 5, 6, 7. To generate the covariates X1, . . . , X40,

we first simulate Zi (i = 1, . . . , 7) and R1, . . . , R40 independently from the standard normal

distribution. For j = 1, . . . , 24, let gj be the largest integer less than j/8 + 1 and, for

j = 25, . . . , 40, let gj be the largest integer less than (j − 24)/4 + 1. The covariates

X1, . . . , X40 are obtained as Xj = (Zgj +Rj)/6 (j = 1, . . . , 40). The nonparametric functions

are generated in the same way as of Example 1. Therefore, the corresponding coefficients in

Example 2 are,

β = (1.2, . . . , 1.2︸ ︷︷ ︸
8

, 3.6, 3.4, 3.2, 3.0, 2.8, 0, 0, 0︸ ︷︷ ︸
8

, 0, . . . , 0︸ ︷︷ ︸
8

, 2.4, 0, 0, 0︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
4

)>.

This example considers three important groups in a more complex structure than that in

Example 1. These three groups represent three different settings: all variables within the

group are important, many variables within the group are important and very few variables
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within the group are important, respectively.

Table 4.1: Simulation results with median and standard deviations (in parentheses) of L2-PE,
TG, FG, TP and FP over 500 simulations for Example 1

L2-PE TG FG TP FP

LASSO 18.79 (5.76) 3 (0.00) 4 (0.73) 15 (0.09) 6 (2.49)
A-LASSO 10.45 (3.95) 3 (0.00) 2 (1.16) 15 (0.37) 3 (2.18)

SCAD 11.18 (4.77) 3 (0.00) 2 (1.17) 15 (0.50) 3 (2.50)
MCP 11.24 (4.75) 3 (0.00) 1 (1.14) 15 (0.71) 1 (1.82)
HP 9.39(3.89) 3 (0.00) 2 (0.99) 15 (0.06) 5 (3.27)

G-SCAD 9.45 (4.53) 3 (0.00) 0 (0.75) 15 (0.00) 0 (3.73)
G-MCP 9.42 (4.45) 3 (0.00) 0 (0.39) 15 (0.00) 0 (1.93)

AHP 8.63 (3.67) 3 (0.60) 0 (0.60) 15 (0.22) 0 (1.00)
Oracle 8.87 (4.26) 3 (0.00) NA 15 (0.00) NA

Table 4.2: Simulation results with median and standard deviations (in parentheses) of L2-PE,
TG, FG, TP and FP over 500 simulations for Example 2

L2-PE TG FG TP FP

LASSO 15.74 (4.68) 3 (0.00) 3 (0.92) 14 (0.08) 7 (2.89)
A-LASSO 10.05 (3.33) 3 (0.00) 2 (1.09) 14 (0.49) 4 (2.45)

SCAD 10.84 (4.10) 3 (0.00) 2 (1.24) 14 (0.66) 3 (2.94)
MCP 10.80 (3.84) 3 (0.00) 1 (1.19) 13 (0.95) 2 (2.05)
HP 10.02 (3.82) 3 (0.00) 2 (1.00) 14 (0.06) 10 (3.84)

G-SCAD 9.73 (4.00) 3 (0.00) 0 (0.67) 14 (0.00) 6 (3.39)
G-MCP 9.55 (4.19) 3 (0.06) 0 (0.36) 14 (0.06) 6 (1.70)

AHP 8.55 (3.27) 3 (0.00) 0 (0.64) 14 (0.28) 2 (1.60)
Oracle 8.14 (3.79) 3 (0.00) NA 14 (0.00) NA

Tables 4.1 and 4.2 summarize variable selection results for Examples 1 and 2 by using

the LASSO, A-LASSO, SCAD, MCP, G-SCAD, G-MCP, hierarchical (HP) and adaptive

hierarchical (AHP) penalties, respectively. The first four penalties perform individual variable

selection, the next three perform group variable selection, and AHP performs adaptive

bi-level group selection. From Table 4.1 we see the group variable selection methods perform

significantly better than individual variable selection methods with lower L2-prediction error
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Figure 4.1: Estimation of φ(·)’s in Example 1: 95% point-wise confidence bands for φ(·)’s
based on 500 replicates. The solid lines stand for the true curves. The dashed lines are the
average estimated curves. The dot-dashed lines represent the 95% point-wise confidence
bands based on 500 estimated values.

and chose more important and less unimportant variables. However, the hierarchical penalty

is not performing satisfactorily, it is selecting more groups and more unimportant variables

although has the second lowest L2-prediction error. This performance has been significantly

improved in the adaptive version of the penalty, resulting in lowest L2-prediction error, also,

the group and individual variable selection performance is very comparable with the other

group selection penalties, G-SCAD and G-MCP. Nonetheless, the superiority of the adaptive

hierarchical method stood out with a complex grouping structure among the covariates as

shown in Table 4.2. Here, this penalty not only has the smallest L2-prediction error but also

selects significantly lower number of unimportant variables than any other group selection

penalties. Hence, if there is known grouping structure available among the covariates, group

selection methods are preferable over individual variable selection methods, furthermore,

adaptive bi-level group selection should be considered over non-adaptive group selection

method especially with a complex grouping structure. The fitted curves and 95% point-wise

113



−2 −1 0 1 2

−
2

0
2

4

W1

φ 1
(W

1)

(a) φ1(·)

−2 −1 0 1 2

−
2

0
2

4
6

8
10

W1

φ 1
(W

1)

(b) φ2(·)

Figure 4.2: Estimation of φ(·)’s in Example 2: 95% point-wise confidence bands for φ(·)’s
based on 500 replicates. The solid lines stand for the true curves. The dashed lines are the
average estimated curves. The dot-dashed lines represent the 95% point-wise confidence
bands based on 500 estimated values.

confidence bands for φ1(·) and φ2(·) are shown in Figures 4.1 and 4.2 for Example 1 and 2,

respectively. It is evident that the average estimated curves capture the true curves very well

and that the true curves lie in the 95% point-wise confidence bands which is quite narrower.

4.4.2 Application

In this section, we illustrate the application of our proposed method with two real data

examples.

4.4.2.1 Primary Biliary Cirrhosis data analysis

The Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver, a fatal chronic liver

disease, was conducted between 1974 and 1984. The data is available in R package ‘survival’.

A total of 424 PBC patients who met eligibility criteria for the randomized placebo controlled

trial of the drug D-penicillamin were referred to Mayo Clinic during that ten-year interval.
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At the end, a total of 312 PBC patients participated in the randomized trial of whom 158

were assigned to the drug D-penicillanmine while the rest were assigned to a control group

with placebo drug. During the follow-up 125 patients died due to PBC disease. The primary

interest of the study was to investigate the effectiveness of D-penicillanmine in curing PBC

disease. Several other covariates such as age, gender, albumin etc. were recorded as baseline

covariates at the beginning of the study. Detailed account of the PBC data can be found in

Dickson et al. (1989). The PBC data have been analyzed by Huang et al. (2014) for group

selection in PHM.

We analyze this data using our proposed adaptive hierarchical penalty (AHP) to identify

a smaller set of significant covariates that contribute to the hazards of dying from PBC

under a PL-PHM. Our interest is on the main effects of the observed 17 risk factors using

276 complete cases in the full model. Huang et al. (2014) described that these risk factors

are clustered into nine categories with 10 continuous and 7 categorical variables (Table 4.3).

Since age (Z1) and platelet (Z17) are the only covariates in groups with a single variable, and

are continuous; we consider them as fixed and low dimensional covariates in non-parametric

functions, and performed bi-level selection in the rest of the covariates by treating them as

linear covariates. We calculated the maximum likelihood estimate (MLE), LASSO, A-LASSO,

G-SCAD, G-MCP, HP and AHP estimates. The results are summarized in Table 4.4. All of

the methods suggest that gender and treatment should be excluded from the final model which

implies treatment (D-penicillanmine) has no effect on curing PBC disease. The performance

of group SCAD and group MCP is very similar. The HP selects more variables than AHP.

AHP suggest deleting Groups 5 and 8 in addition to gender and treatment.

The two estimated curves for φ1 (Age), φ2 (Platelet) are shown in Figure 4.3, indicating

nonlinear effects of age and platelet count on the hazards rate. The age effect φ̂1(Age) shows

that the hazards of death from PBC increases steadily upto about 66 years, and then drops

sharply. PBC is a disease of middle aged people, mostly women, with a median age of disease
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onset is 50 years (Talwalkar and Lindor, 2003), which explains the increase in risk with

aging. The drop in the risk for older population might be due to the fact that as the patients

get older, they are more probable of dying from other causes before the incidence of liver

failure (Kubota et al., 2009). On the other hand, PBC is associated with low platelet counts

(Bassendine et al., 1985). Since all of our participants are PBC patients, it is expected that the

hazard of death will decrease as the platelet count increases, as shown in the estimated curve

φ̂1(Platelet). However, normal platelet count ranges from 150-450 (per cubic microliter/1000)

(https://www.hopkinsmedicine.org) and one of the reason of higher hazard beyond the normal

limits is inflammatory diseases like liver cirrhosis; which explains the two tails of the curve

where the hazard increases with abnormally lower or higher platelet count. Therefore, our

analysis provides more detailed nonlinear profiles regarding the effects of age and platelet

counts, both of which are of clinical importance.
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Figure 4.3: Estimated curves φ1 (Age) and φ2 (Platelet) in the analysis of PBC data.
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Table 4.3: PBC data analysis. Dictionary of covariates
Group Variable Type Definition
G1: Age Z1 C Age (years)
G2: Gender Z2 D Female gender (0 male and 1 female)
G3: Phynotype Z3 D Ascites (0 absence and 1 presence)

Z4 D Hepatomegaly (0 absence and 1 presence)
Z5 D Spiders (0 absence and 1 presence)
Z6 D Edemaoed (0 no edema, 0.5 untreated

or successfully treated and
1 edema despite diuretic therapy)

G4: Liver function
damage

Z7 C Alkaline phosphatase (units/litre)
Z8 C Sgot (liver enzyme in units/ml)

G5: Excretory function
of the liver

Z9 C Serum bilirubin (mg/dl)
Z10 C Serum cholesterol (mg/dl)
Z11 C Triglyserides (mg/dl)

G6: Liver reserve function Z12 C Albumin (g/dl)
Z13 C Prothrombin time (seconds)

G7: Treatment Z14 D D-Penicillamine vs. placebo
(1 treatment and 2 control)

G8: Reflection Z15 D Stage (histological stage of disease,
graded 1,2,3 or 4)

Z16 C Urine copper (ug/day)
G9: Haematology Z17 C Platelets (per cubic ml/1000)

Type: type of variable, C: continuous; D: discrete.
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Table 4.4: Estimation results of PBC data

Group Covariates MLE LASSO A-LASSO G-SCAD G-MCP HP AHP
G2 gender -0.4458 0 0 0 0 0 0

G3 asc 0.6470 0.3665 0 0 0 0.4093 1.1869
hep 0.0935 0 0 0 0 0.0208 0
spid 0.2690 0 0 0 0 0.0973 0.5382
oed 0.2482 0.1931 0.1175 0 0 0.2423 0.4513

G4 alk -0.000002 0 0 0 0 0 0
sgot 0.0038 0 0.0015 0 0 0 0

G5 bill 0.0963 0.0904 0.1025 0.1289 0.1149 0.0969 0
chol 0.0004 0 0 0.0006 0.0005 0.0006 0
trig -0.0021 0 0 -0.0011 -0.0012 -0.0008 0

G6 alb -0.7478 -0.4189 -0.8033 -0.1227 -0.9658 -0.6672 -0.7547
prot 0.1784 0 0.1004 0.0247 0.2104 0.1126 0

G7 trt -0.1476 0 0 0 0 0 0

G8 stage 0.3517 0.1235 0.3232 0.5835 0.4222 0.3158 0
cop 0.0039 0.0033 0.0038 0.0052 0.0052 0.0046 0
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4.4.2.2 Mantle Cell Lymphoma Data analysis

Mantle cell lymphoma (MCL) is a rare non-Hodgkin B-cell lymphoma which can be at an

aggressive form or be more indolent in clinical representation (Rajabi and Sweetenham, 2015).

To establish a molecular diagnosis of MCL, clarify its pathogenesis, and to predict the length

of survival of these patients, Rosenwald et al. (2003) performed gene expression profiling on

the MCL dataset which is available at http://llmpp.nih.gov/MCL. In the dataset, 92 patients

were classified as having MCL and the following variables were included:

• Status: patient status at follow up (1 = death, 0 = censored);

• Time: time of follow-up in year;

• INK.ARFdeletion(X1): deletions of INK4a/ARF (1 = yes, 0 = no);

• ATMdeletion(X2): deletions of ATM (1 = yes, 0 = no);

• P.53deletion(X3): deletions of P53 (1 = yes, 0 = no);

• CyclinD.1taqmanresults(X4): cyclin D1 TaqMan result;

• BMIexpression(X5): body mass index expression;

• Proliferation.average(X6): proliferation signature averages.

Ma and Du (2012) performed variable selection in this data set using a partially linear

accelerated failure time (AFT) regression model. They selected variables in the linear part

without a grouping structure using iterated LASSO and estimated the nonlinear part using a

sieve approach. They excluded the covariate Proliferation.average(X6) from the analysis and

included all other covariates X1 – X5 in the nonparametric part. In addition, they removed 7

records (patients) with missing covariates; with the rest 85 patients, the censoring rate was

29.4%.

To perform group variable selection in the MCL data using a PL-PHM, we conducted some

preliminary diagnosis of the data. Covariates X1, X2, and X3 are binary variables, where
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covariates X4, X5, and X6 are continuous. Since variables belonging to the same group usually

share some relationships among them, we tested for the significant correlations between the

covariates. We tested the correlation between continuous variables by Pearson correlation

coefficients; continuous and binary variables by Point-biserial correlation coefficient, and the

association between binary variables by Fisher’s exact test. The table below illustrates which

variables share significant correlations where ‘X’ indicates significant correlations with the

associated sample correlations in the parentheses:

X1 X2 X3 X4 X5 X6

X1 X(1.00)

X2 5 (0.16) X(1.00)

X3 5 (0.10) 5 (0.23) X(1.00)

X4 X(0.28) 5 (-0.10) 5 (-0.08) X(1.00)

X5 5 (-0.17) 5 (-0.17) 5 (0.00) 5 (0.20) X(1.00)

X6 X(0.50) 5 (-0.05) X(0.23) X(0.41) 5 (0.17) X(1.00)

From the above table we see that X1, X4, X6 shares significant correlation among each

other, therefore, we can consider them as a group. X2 and X5 do not have significant

correlations with any other variables. Note that, X6 also shares significant correlation with

X3 and they can be considered as a group as well. Thus, X6 belongs to two overlapping

groups; one with (X1, X4), another with X3. However, in this chapter, we assumed covariates

can only belong to one group. Therefore, we assign X6 to the group with (X1, X4) based on

the strength of the relationship.

Thus, we have three groups in the linear part of our PL-PHM. Group 1 constitutes of

(X1, X4, X6), Group 2 has X2 and Group 3 has X3 in it. Similar to the common practice of

putting discrete covariates in the linear part and continuous variables in the nonlinear part

(Hu and Lian, 2013), we assigned the dichotomous variables in Group 2 and Group 3 in the

linear part, and estimated the effect of the continuous variable X5 on the survival of MCL

patients nonparametrically.
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Figure 4.4: Boxplot of BMI Expression and estimated curve of φ (BMI Expression) in the
analysis of MCL data.
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Table 4.5: Estimation results of MCL data
n = 85 n=83

Group Covariates MLE LASSO HP AHP MLE LASSO HP AHP
G1 INK.ARFdeletion (X1) -0.33 0 0 0 -0.30 0 0 0

CyclinD.1taqmanresults (X4) 1.19 0.89 0.89 0.85 1.16 0.92 0.88 0.82
Proliferation.average (X6) 1.82 1.43 1.42 1.48 1.77 1.41 1.39 1.44

G2 ATMdeletion (X2) 0.30 0 0 0 0.27 0 0 0

G5 P.53deletion (X3) -0.25 0 0 0 -0.30 0 0 0

Table 4.5 shows the estimation and variable selection performance by four methods. The

MLE is the partial maximum likelihood estimates of the linear covariates by maximizing

(4.6), where we approximated the nonlinear function using B-splines. For the full data set

(n=85), we see that the hierarchical penalty (HP), adaptive hierarchical penalty (AHP) and

LASSO discard all the dichotomous variables, X1 − X3. Similar results were obtained in

Ma and Du (2012). Figures 4.4 (a) and (b) present the box-plot and nonlinear profile of

BMIexpression(X5), respectively. We found two extreme outliers which fall outside of upper

inner fence (Q1−3∗IQR) or upper outer fence (Q3 +3∗IQR) where Q1, Q3 and IQR are first

quartile, third quartile and inter-quartile range, respectively. Figures 4.4 (c) and (d) show the

boxplot and nonlinear profile of BMIexpression (X5) after discarding the outliers. In addition,

Table 4.5 also shows the variable selection performance when these two extreme values are

omitted (n=83). From this comparison analysis, we see that the performance of variable

selection is almost the same, but the estimated nonparametric function of X5 is quite different

in the right tail when the two large X5 values are included. BMI significantly impacts on the

overall survival in indolent non-Hodgkins lymphoma and mantle cell lymphoma (Weiss et al.,

2017) and obesity is a well-known risk factor for the development of lymphomas (Patel et al.,

2013). This may tell the investigators that large BMIexpression(X5) values could increase the

risk of death of MCL patients.

In our model, we included Proliferation.average(X6) for variable selection which was not

incorporated by Ma and Du (2012), and found out it has nonzero effect in estimating the
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survival of MCL patients. Both LASSO and AHP showed that X6 has a strong effect, further

investigation can provide additional knowledge of this effect.

4.5 Concluding Remarks

In this chapter, we proposed a hierarchically penalized method for variable selection in the

PL-PHM with diverging number of parameters. Our model allows high dimensional linear

covariates and fix low dimensional nonparametric covariates to be included in the same

model to predict the hazard of failure time, which is more appealing and useful than models

with only a linear term or with a large number of nonlinear functions of covariates. We

approximated the nonparametric functions using B-splines and performed adaptive bi-level

group variable selection in the linear covariates. Our proposed method can effectively remove

unimportant groups and select important variables within a group in the linear part, and

estimate both parametric and nonparametric components simultaneously. We use the theory

of counting processes and martingales to establish the asymptotic convergence and selection

consistency of the proposed estimators. We developed computational algorithm for our

proposed estimators and presented simulation studies along with two real data analyses.

Numerical studies indicate that the adaptive hierarchically penalized method performs better

than existing individual variable selection methods (LASSO, Adaptive LASSO SCAD, MCP)

as well as non-adaptive group variable selection methods (group SCAD, group MCP and HP

penalties), especially in the cases with a complex grouping structure among the covariates.

Our computation cost was somewhat high since the computation algorithm takes a while to

converge; however, our estimators were precise in terms of estimation accuracy and selection

consistency at the cost of high computational time.

We did not get the asymptotic normality of β̂A, this remains an open question for our

future research to explore. But intuitively, given that our objective function in Qn is log

partial likelihood, following the lines in Wang et al. (2009) and Hu and Lian (2013), we
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conjecture that, the estimators for the nonzero coefficients β̂A have the same asymptotic

distribution as they would have if the zero coefficients were known in advance, therefore, it

possesses the oracle property of Fan and Li (2001).

In applications, it is important to have the goodness of fit procedures available for

assessing the model fit. Lin et al. (1993) proposed martingale-based residuals to graphically

and numerically check the adequacy of the proportional hazards model with right censored

data. Kim and Lee (1998) adopted two methods for model checking of the additive hazards

model with right censored data by dividing the data into two groups and testing for the

proportional hazards assumption to the additive hazards model to test the monotone departure

from the additivity. One method is based on the martingale residuals and the other is based

on the difference between weighted estimators of the excess risk. These model-checking

techniques were developed for the linear models. In our case, we can consider each B-spline

basis function as a covariate in the model, then the proposed model becomes a linear model,

and their methods can be applied to choose either the PL-AHM or PL-PHM in practice.

In a Bayesian framework, the variable selection problem can be viewed as the identification

of nonzero regression parameters based on the posterior distributions. Bayesian models

attempt to avoid the over-fitting problems of frequentist methods by basing predictions on

modes of posterior distributions rather than estimators. For uncensored data, bi-level group

variable selection using Bayesian selection method has been investigated by Zhang et al.

(2014), Xu and Ghosh (2015) and Mallick and Yi (2017). Faraggi and Simon (1998) is one

of the first to consider Bayesian variable selection method for censored survival data where

they performed individual variable selection in the Cox PH model. Later, Sha et al. (2006)

conducted individual variable selection for analyzing microarray data with the AFT model

and Lee et al. (2011) performed individual variable selection in the Cox PH model where

the shrinkage prior is obtained through a scale mixture representation of normal and gamma

distributions and the cumulative baseline hazard function is modeled as a priori by a gamma
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process. Recently, Lee et al. (2015) performed group variable selection in the Cox PH model.

As it appears in the literature, no variable selection has been investigated on the PL-PHM

using Bayesian methods and can be worthy of future research.

4.6 Appendix

The proofs of Lemmas 1-2 follow those of Wang et al. (2009) closely.

Proof of Lemma 1. Let Q∗(λγ, λθ, α, γ, θ) denote the criterion that we would like to max-

imize in equation (4.7), let Q†(λ, α, γ, θ) denote the corresponding criterion in equation

(4.8), and let (α̂∗, γ̂∗, θ̂∗) denote a local maximizer of Q∗(λγ, λθ, α, γ, θ). We will prove that

(α̂† = α̂∗, γ̂†g = λγ γ̂
∗
g , θ̂
†
(g) = θ̂∗(g)/λγ) is a local maximizer of Q†(λ, α, γ, θ).

Replacing γ∗ = γ†/λγ and θ∗ = θ†λγ in (4.7), we immediately have Q∗(λγ, λθ, α, γ, θ) =

Q†(λ, α, λγγ, θ/λγ). Since (α̂∗, γ̂∗, θ̂∗) is a local maximizer of Q∗(λγ, λθ, α, γ, θ), therefore,

by the definition of local maximizer there exists δ > 0 such that if (α
′
, γ
′
, θ
′
) satisfies

|α′−α̂∗|+ |γ′− γ̂∗|+ |θ′− θ̂∗| < δ, then Q∗(λγ, λθ, α
′
, γ
′
, θ
′
) ≤ Q∗(λγ, λθ, α̂

∗, γ̂∗, θ̂∗). We choose

δ
′

such that δ
′
/min(λγ, 1/λγ) ≤ δ/2. Then, min(λγ, 1/λγ) ≤ 1 and δ

′ ≤ min(λγ, 1/λγ)δ/2 ≤

δ/2. Thus, for any (α
′′
, γ
′′
, θ
′′
) satisfying |α′′ − α̂†|+ |γ′′ − γ̂†|+ |θ′′ − θ̂†| < δ

′ ≤ δ/2, we have,

|α′′ − α̂†| = |α′′ − α̂∗| ≤ δ/2. Also,

∣∣∣∣∣γ
′′

λγ
− γ̂∗

∣∣∣∣∣+ ∣∣∣λγθ′′ − θ̂∗∣∣∣ ≤ λγ

∣∣∣∣γ′′λγ − γ̂∗
∣∣∣∣+ 1

λγ

∣∣∣λγθ′′ − θ̂∗∣∣∣
min(λγ,

1
λγ

)
=

∣∣∣γ′′ − λγ γ̂∗∣∣∣+ ∣∣∣θ′′ − θ̂∗

λγ

∣∣∣
min(λγ,

1
λγ

)

=
|γ′′ − γ̂†|+ |θ′′ − θ̂†|

min(λγ,
1
λγ

)
<

δ
′

min(λγ,
1
λγ

)
≤ δ

2
.

Therefore,
∣∣∣α′′ − α̂∗∣∣∣+ ∣∣∣γ′′/λγ − γ̂∗∣∣∣+ ∣∣∣λγθ′′ − θ̂∗∣∣∣ < δ/2 + δ/2 = δ. Hence,

Q∗(λγ, λθ, α̂
′′
, γ̂
′′
/λγ, λγ θ̂

′′
) ≤ Q∗(λγ, λθ, α̂

∗, γ̂∗, θ̂∗),

which gives us

Q†(λ, α̂
′′
, γ̂
′′
, θ̂
′′
) ≤ Q†(λ, α̂†, γ̂†, θ̂†).
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So, (α̂† = α̂∗, γ̂† = λγ γ̂
∗, θ̂† = θ̂∗/λγ) is a local maximizer of Q†(λ, α, γ, θ).

Similarly, we can prove that for any local maximizer (α̂†, γ̂†, θ̂†) of Q†(λ, α, γ, θ), there

is a corresponding local maximizer (α̂∗, γ̂∗, θ̂∗) of Q∗(λγ, λθ, α, γ, θ) such that α̂∗ = α̂† and

γ̂∗g θ̂
∗
gj = γ̂†g θ̂

†
gj.

Proof of Lemma 2. Suppose (α̂, γ̂, θ̂) is a local maximizer of (4.8). Let β̂ satisfy β̂gj = γ̂gθ̂gj .

It is trivial that γ̂g = 0 if and only if θ̂(g) = 0. Hence, if γ̂g 6= 0, then |β̂(g)| 6= 0.

Let (α, β) be fixed at (α̂, β̂). Then maximizing Q†(λ, α, γ, θ) in (4.8) only depends on the

penalty. For some g with |β̂(g)| 6= 0, the corresponding penalty term is −γg − λ
∑pg
j=1 |β̂gj|/γg,

which is maximized at γ̂g = (λ|β̂(g)|)1/2, and θ̂(g) = β̂(g)/γ̂g.

Let Q(λ, α, β) be the corresponding criterion to be maximized in equation (4.9). By

Lemma 1, the local maximizer α̂ of α in (4.7) and (4.8) are the same, so we only need to

consider other parameters, e.g., β, and fix α at α̂ in both (4.7) and (4.8). We first show that

(α̂, β̂) is a local maximizer of Q(λ, α, β), i.e., there exists a δ
′
> 0 such that if |∆α|+ |∆β| < δ

′
,

then Q(λ, α̂ + ∆α, β̂ + ∆β) ≤ Q(λ, α̂, β̂). Particularly, taking ∆α = 0, it becomes |∆β| < δ
′
,

then Q(λ, α̂, β̂+ ∆β) ≤ Q(λ, α̂, β̂). Denote ∆β = ∆β(1) + ∆β(2), where ∆β
(1)
(g) = 0 if |β̂(g)| = 0

and ∆β
(2)
(g) = 0 if |β̂(g)| 6= 0. We thus, have |∆β| = |∆β(1) + ∆β(2)| = |∆β(1)|+ |∆β(2)|.

We first show Q(λ, α̂, β̂+∆β(1)) ≤ Q(λ, α̂, β̂) for some δ
′
. We already have γ̂g = (λ|β̂(g)|)1/2

and θ̂(g) = β̂(g)/γ̂g if |γ̂g| 6= 0, and θ̂(g) = 0 if |γ̂g| = 0. Let γ̂
′
g = (λ|β̂(g) + ∆β

(1)
(g) |)1/2 and

θ̂
′

(g) = (β̂(g) + ∆β
(1)
(g))/γ̂

′
g if |γ̂g| 6= 0, and let γ̂

′
g = 0 and θ̂

′

(g) = 0 if |γ̂g| = 0. Then we have

Q†(λ, α̂, γ̂
′
, θ̂
′
) = Q(λ, α̂, β̂ + ∆β(1)) and Q†(λ, α̂, γ̂, θ̂) = Q(λ, α̂, β̂). Hence, we only need

to show Q†(λ, α̂, γ̂
′
, θ̂
′
) ≤ Q†(λ, α̂, γ̂, θ̂). As (α̂, γ̂, θ̂) is a local maximizer of Q†(λ, α, γ, θ),

for fixed α̂, there exists a δ such that for any (γ
′
, θ
′
) satisfying |γ′ − γ̂| + |θ′ − θ̂| < δ,

we have Q†(λ, α̂, γ
′
, θ
′
) ≤ Q†(λ, α̂, γ̂, θ̂). Let a = min

{
|β̂(g)| : |β(g)| 6= 0, g = 1, . . . , G

}
, b =

126



max
{
|β̂(g)| : |β(g)| 6= 0, g = 1, . . . , G

}
and δ

′
< a/2. It is seen that,

∣∣∣|β̂(g) + ∆β
(1)
(g) | − |β̂(g)|

∣∣∣ ≤ ∣∣∣∆β(1)
(g)

∣∣∣ ,∣∣∣(|β̂(g) + ∆β
(1)
(g) |

1/2)2 − (|β̂(g)|1/2)2
∣∣∣ ≤ ∣∣∣∆β(1)

(g)

∣∣∣ ,∣∣∣(|β̂(g) + ∆β
(1)
(g) |

1/2 − |β̂(g)|1/2)(|β̂(g) + ∆β
(1)
(g) |

1/2 + |β̂(g)|1/2)
∣∣∣ ≤ ∣∣∣∆β(1)

(g)

∣∣∣ ,
∣∣∣|β̂(g) + ∆β

(1)
(g) |

1/2 − |β̂(g)|1/2
∣∣∣ ≤

∣∣∣∆β(1)
(g)

∣∣∣
|β̂(g) + ∆β

(1)
(g) |1/2 + |β̂(g)|1/2

.

Since when min
g

{
|β̂(g)|

}
= a 6= 0, and when |∆β(1)

(g) | < δ
′
< a/2, we have

|β̂(g) + ∆β
(1)
(g) | ≥ |β̂(g)| − |∆β(1)

(g) | ≥ a− a

2
=
a

2
> 0,

and

|β̂(g) + ∆β
(1)
(g) |

1/2 + |β̂(g)|1/2 ≥
Åa

2

ã1/2

+ a1/2 = (2−1/2 + 1)a1/2 ≥ 21/2a1/2 = (2a)1/2.

Therefore, ∣∣∣|β̂(g) + ∆β
(1)
(g) |

1/2 − |β̂(g)|1/2
∣∣∣ ≤ |∆β(1)

(g) |
(2a)1/2

.

Hence,

|γ̂′g − γ̂g| =
∣∣∣(λ|β̂(g) + ∆β

(1)
(g) |)

1/2 − (λ|β̂(g)|)1/2
∣∣∣ ≤ λ|∆β(1)

(g) |
(2λa)1/2

.

Next, if |γ̂g| = 0, then θ̂
′

(g) = θ̂(g) = 0, and |θ̂′(g) − θ̂(g)| = 0. If |γ̂g| 6= 0, then

θ̂
′

(g) − θ̂(g) =
(β̂(g) + ∆β

(1)
(g))

γ̂′g
−
β̂(g)

γ̂g

=
β̂(g)γ̂g + ∆β

(1)
(g) γ̂g − β̂(g)γ̂

′
g

γ̂′gγ̂g

=
β̂(g)[γ̂g − γ̂

′
g] + ∆β

(1)
(g) γ̂g

γ̂′gγ̂g
. (4.14)

We already have |β̂(g)| ≤ b and |γ̂′g − γ̂g| ≤ λ|∆β(1)
(g) |/(2λa)1/2. Consider

γ̂
′

gγ̂g = (λ|β̂(g) + ∆β
(1)
(g) |)

1/2(λ|β̂(g)|)1/2.
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Since |γ̂g| = (λ|β̂(g)|)1/2 ≥ λ1/2a1/2, when |∆β(1)
(g) | < δ

′
and δ

′
< a/2, if γ̂g 6= 0, then |β̂(g)| 6= 0,

∆β
(2)
(g) = 0, it implies, |∆β(1)

(g) | ≤ |∆β(1)| < δ ⇒ |∆β(1)
(g) | < δ

′
< a/2 and |β̂(g) + ∆β

(1)
(g) | ≥

|β̂(g)| − |∆β(1)
(g) | ≥ a − a/2 = a/2 > 0. Therefore, |γ̂′g| = (λ|β̂(g) + ∆β

(1)
(g) |)1/2 ≥ λ1/2(a/2)1/2

and |γ̂′gγ̂g| ≥ λ1/2a1/2λ1/2(a/2)1/2 = λa2−1/2. From (4.14) we have,

|θ̂′(g) − θ̂(g)| ≤
|β̂(g)|
|γ̂′gγ̂g|

|γ̂′g − γ̂g|+ |∆β
(1)
(g) |

|γ̂g|
|γ̂g||γ̂′g|

≤
bλ|∆β(1)

(g) |
(2λa)1/2(λa2−1/2)

+ |∆β(1)
(g) |

1

λ1/2(a/2)1/2

≤
ñ

bλ

(2λa)1/2(λa)2−1/2
+

1

(λa/2)1/2

ô
|∆β(1)

(g) |

= |∆β(1)
(g) |
ñ

1

(λa/2)1/2
+

b

a(λa)1/2

ô
.

Therefore, we are able to choose a δ
′
> 0 satisfying δ

′
< a/2 such that |γ̂′g− γ̂g|+ |θ̂

′
g− θ̂g| < δ

when |∆β(1)
(g) | < δ

′
. Hence we have Q†(λ, α̂, γ̂

′
, θ̂
′
) ≤ Q†(λ, α̂, γ̂, θ̂) due to the local maximality,

that is, Q(λ, α̂, β̂ + ∆β(1)) ≤ Q(λ, α̂, β̂).

Next we show Q(λ, α̂, β̂ + ∆β(1) + ∆β(2)) ≤ Q(λ, α̂, β̂ + ∆β(1)). This is trivial when

∆β(2) = 0. If ∆β(2) 6= 0, then ∆β(1) = 0 and we have

Q(λ, α̂, β̂+∆β(1) +∆β(2))−Q(λ, α̂, β̂+∆β(1)) = (∆β(2))>n−1∂ln(α̂, β∗)

∂β
−2

G∑
g=1

(λ|∆β(2)
(g) |)

1/2,

where β∗ is a vector between β̂ + ∆β(1) + ∆β(2) and β̂ + ∆β(1). Since |∆β(2)| < δ
′
, for a small

enough δ
′
, the second term in the above equality dominates the first term, hence we have

Q(λ, α̂, β̂ + ∆β(1) + ∆β(2)) ≤ Q(λ, α̂, β̂ + ∆β(1)). Thus we have shown that there exists a

δ
′
> 0 such that if |∆β| < δ

′
, then Q(λ, α̂, β̂ + ∆β) ≤ Q(λ, α̂, β̂), which implies that β̂ is a

local maximizer of Q(λ, α̂, β).

Similarly, we can prove that if (α̂, β̂) is a local maximizer of Q(λ, α, β), then (α̂, γ̂, θ̂) is a

local maximizer of Q†(λ, α, γ, θ), where γ̂g = (λ|β̂(g)|)1/2 and θ̂(g) = β̂(g)/γ̂g if |β̂(g)| 6= 0, and

γ̂g = 0 and θ̂(g) = 0 if |β̂(g)| = 0.

Proof of Theorem 1. Let α0 = (α0>
1 , . . . , α0>

Q )> be a QK dimensional vector that satisfies∥∥∥φ0
j − α0>

j Bj

∥∥∥
∞

= O(K−d), 1 ≤ j ≤ Q. Then,
∥∥∥φ0 − α0>B

∥∥∥
∞

= O(K−d) and
∥∥∥φ0 − α0>B

∥∥∥ =
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O(K−d) since Q is fixed. Such approximation rates are possible due to our smoothness

assumption (B2) and well known approximation properties of B-spline (De Boor, 1978).

Let γn =
»

(K + p)/n+K−d and u ∈ RQK+p with ‖u‖ = D, where u = (u1, u2), u1 is a

QK-vector, and u2 is a p-vector. To prove Theorem 1, we first show that
∥∥∥φ̂− α0>B

∥∥∥ = Op(γn),

and
∥∥∥β̂ − β0

∥∥∥ = Op(γn) where φ̂ = α̂0>B. Then it is sufficient to show that for any ε > 0,

there exists a constant D such that

P

{
sup
‖u‖=D

Qn((α0, β0) + γnu) < Qn(α0, β0)

}
≥ 1− ε, (4.15)

when n is big enough. This implies that with probability of at least 1− ε, there exists a local

maximum in the ball {(α0, β0) + γnu : ‖u‖ ≤ D}. Hence, there exists a local maximizer such

that
∥∥∥φ̂− α0>B

∥∥∥+
∥∥∥β̂ − β0

∥∥∥ = Op (γn).

Since pλn satisfies conditions (4.11) and (4.12), we have,

Qn((α0, β0) + γnu)−Qn(α0, β0)

= n−1
¶
ln((α0, β0) + γnu)− ln(α0, β0)

©
−

s∑
g=1

{
p

(g)
λn

(∣∣∣β0
g1 + γnu2,g1

∣∣∣ , . . . , ∣∣∣β0
gsg + γnu2,gsg

∣∣∣ , ∣∣∣β0
g(sg+1) + γnu2,g(sg+1)

∣∣∣ , . . . , ∣∣∣β0
gpg + γnu2,gpg

∣∣∣)

−p(g)
λn

(∣∣∣β0
g1

∣∣∣ , . . . , ∣∣∣β0
gsg

∣∣∣ , ∣∣∣β0
g(sg+1)

∣∣∣ , . . . , ∣∣∣β0
gpg

∣∣∣)}
−

G∑
g=s+1

{
p

(g)
λn

(∣∣∣β0
g1 + γnu2,g1

∣∣∣ , . . . , ∣∣∣β0
gpg + γnu2,gpg

∣∣∣)− p(g)
λn

(∣∣∣β0
g1

∣∣∣ , . . . , ∣∣∣β0
gpg

∣∣∣)}

≤ n−1
¶
ln((α0, β0) + γnu)− ln(α0, β0)

©
−

s∑
g=1

{
p

(g)
λn

(∣∣∣β0
g1 + γnu2,g1

∣∣∣ , . . . , ∣∣∣β0
gsg + γnu2,gsg

∣∣∣ , ∣∣∣β0
g(sg+1) + γnu2,g(sg+1)

∣∣∣ , . . . , ∣∣∣β0
gpg + γnu2,gpg

∣∣∣)

−p(g)
λn

(∣∣∣β0
g1

∣∣∣ , . . . , ∣∣∣β0
gsg

∣∣∣ , ∣∣∣β0
g(sg+1)

∣∣∣ , . . . , ∣∣∣β0
gpg

∣∣∣)}
≤ n−1

¶
ln((α0, β0) + γnu)− ln(α0, β0)

©
−

s∑
g=1

{
p

(g)
λn

(∣∣∣β0
g1 + γnu2,g1

∣∣∣ , . . . , ∣∣∣β0
gsg + γnu2,gsg

∣∣∣ , 0)− p(g)
λn

(∣∣∣β0
g1

∣∣∣ , . . . , ∣∣∣β0
gsg

∣∣∣ , 0)}

= A−B.
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For A, denote ω0 = (α0, β0). By Taylor expansion at γn = 0, we have

n−1 ln(ω0 + γnu) = n−1 ln(ω0) + n−1 γnU(ω0)>u+ (2n)−1γ2
nu
>∂U(ω0)

∂ω0
u+ An

A = n−1
¶
l(ω0 + γnu)− ln(ω0)

©
= n−1 γnU(ω0)>u+ (2n)−1γ2

nu
>∂U(ω0)

∂ω0
u+ An

, A1 + A2 + An, (4.16)

where An = (6n)−1∑
j,k,l(ωj−ω0

j )(ωk−ω0
k)(ωl−ω0

l )(∂
2Ul(ω̃)/∂ωj∂ωk), Ul is the l-th component

of U , and ω̃ is a value between ω0 and ω = ω0 + γnu. We first consider

U(ω0) =
∑
i

∫ τ

0

{
Li −

S(1)
n (m0

n, t)[L]

S
(0)
n (m0

n, t)

}
dNi(t), where m0

n(R) = α0>Z + β0>X.

Observe,

∑
i

{
Li −

S(1)
n (m0

n, t)[L]

S
(0)
n (m0

n, t)

}
Yi(t) exp

¶
ω>Li

©
h0(t)

=
∑
i

Li −
∑
i LiYi(t) exp

¶
ω>Li

©
∑
i Yi(t) exp {ω>Li}

Yi(t) exp
¶
ω>Li

©
h0(t)

= 0.

Since

Mi(t) = Ni(t)−
∫ τ

0
Yi(t) exp

¶
ω>Li

©
h0(t)dt,

this implies that,

U(ω0) =
∑
i

∫ τ

0

{
Li −

S(1)
n (m0

n, t)[L]

S
(0)
n (m0

n, t)

}
dMi(t). (4.17)

Similar to Lemma 5.3 of Huang (1999), we have

P∆n

[
S(1)
n (m0

n, t)[L]

S
(0)
n (m0

n, t)
− S(1)

n (m0, t)[L]

S
(0)
n (m0, t)

]
= P∆

[
s(1)(m0

n, t)[L]

s(0)(m0
n, t)

− s(1)(m0, t)[L]

s(0)(m0, t)

]
+ op(n

−1/2),

(4.18)
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where m0(R) = φ0(W ) + β0>X. Let s(m0
n, t) = s(1)(m0

n,t)[L]/s(0)(m0
n, t) and s(m0, t) =

s(1)(m0, t)[L]/s(0)(m0, t). By Taylor series expansion, for some ξ between m0 and m0
n we have

s(m0
n, t)− s(m0, t) =

∂s(m0, t)

∂m0
(m0

n −m0) +
1

2

∂2s(ξ, t)

∂ξ2
(m0

n −m0)2

∣∣∣s(m0
n, t)− s(m0, t)

∣∣∣ ≤ ∣∣∣∣∣∂s(m0, t)

∂m0
d

∣∣∣∣∣+
∣∣∣∣∣12 ∂

2s(ξ, t)

∂ξ2
d2

∣∣∣∣∣ ,
where d = m0

n−m0. Let W (t) = Y (t) exp (m0, t) /s(0)(m0, t). Then, by Lemma A.4 of Huang

(1999), we have∣∣∣∣∣∂s(m0, t)

∂m0
d

∣∣∣∣∣
2

≤ |E {W (t)h(R)d(R)} − E {W (t)h(R)}E {W (t)d(R)}|2

= |E [W (t) {h(R)− E(W (t)h(R))} {d(R)− E(W (t)d(R))}]|2

= [E {K1d(R)−K1E(K2d(R))}]2

≤ 2E {K1d(R)}2 + 2E {K1E(K2d(R))}2

≤ 2E
¶
K2

1

©
E
¶
d2(R)

©
+ 2E

¶
K2

3

©
E
¶
d2(R)

©
= K4E

¶
d2(R)

©
= K4 ‖d‖2

= K4

∥∥∥m0
n −m0

∥∥∥2

= Op

Å∥∥∥m0
n −m0

∥∥∥2
ã
.

Therefore, from the approximation rate given in the beginning of the proof of Theorem 1, we

have, ∣∣∣∣∣∂s(m0, t)

∂m0
d

∣∣∣∣∣ ≤ Op

(∥∥∥m0
n −m0

∥∥∥) = Op(K
−d).

Similarly, using Lemma A.4 of Huang (1999) gives us∣∣∣∣∣12 ∂
2s(ξ, t)

∂ξ2
d2

∣∣∣∣∣ = Op(K
−2d).

Therefore, from (4.18) we have,

P∆n

[
S(1)
n (m0

n, t)[L]

S
(0)
n (m0

n, t)
− S(1)

n (m0, t)[L]

S
(0)
n (m0, t)

]
= O(K−d) + op(n

−1/2) = Op(K
−d).
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Consequent, from (4.17), we obtain

U(ω0) =
∑
i

∫ τ

0

{
Li −

S(1)
n (m0, t)[L]

S
(0)
n (m0, t)

}
dMi(t) +Op

Ä
nK−d

ä
=
∑
i

∫ τ

0

¶
Li −Gn(m0, t)[L]

©
dMi(t) +Op

Ä
nK−d

ä
= ξn +Op(nK

−d),

where ξn =
∑
i

∫ τ
0 {Li −Gn(m0, t)[L]} dMi(t). Direct algebraic calculations show that,

E
¶
‖ξn‖2

©
= E

¶
tr
Ä
ξ>n ξn

ä©
= tr

¶
E
Ä
ξ>n ξn

ä©
= tr

¶
E
Ä
‖ξn‖2

ä©
. Let,

ξn =
∑
i

∫ τ

0

¶
Li −Gn(m0, t)[L]

©
dMi(t) =

∑
i

∫ τ

0
Hi(t)dMi(t),

where Hi(t) = {Li −Gn(m0, t)[L]} . Since ξn is a martingale integral, we have E(ξn|F−t ) = 0

where F−t denotes the past up to the beginning of the small time interval [t, t+ dt), and

V (ξn|F−t ) = E(ξ⊗2
n |F−t )

= E(ξnξ
>
n |F−t )

= E
∑
i

∫ τ

0
Var

¶
Hi(t)dMi(t)|F−t

©
= E

∑
i

∫ τ

0
Hi(t)

⊗2d 〈M〉 (t)

= E
∫ τ

0

∑
i

¶
Li −Gn(m0, t)[L]

©⊗2
Λi(t)dt,

where Λi(t) = h0(t)Yi(t) exp
¶
φ0(W ) +X>β0

©
. We can show that

∑
i

¶
Li −Gn(m0, t)[L]

©⊗2
Yi(t) exp

¶
m0(Ri)

©
=
∑
i

L⊗2
i Yi(t) exp

¶
m0(Ri)

©
−
∑
i

Gn(m0, t)[L]⊗2Yi(t) exp
¶
m0(Ri)

©
≤
∑
i

L⊗2
i Yi(t) exp

¶
m0(Ri)

©
.

Then, V (ξn|F−t ) ≤ E
∫ τ
0

∑
i L
⊗2
i Λi(t)dt. Assume sup

t,W,X
|h0(t) exp

¶
φ0(W ) + β0>X

©
| ≤ M̃ .
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Therefore,

E
¶
‖ξn‖2

©
= tr

[
E

{∫ τ

0

∑
i

Ä
Li −Gn(m0, t)[L]

ä⊗2
Λi(t)dt

}]

≤ M̃

[
E

{∫ τ

0

∑
i

Ä
Li −Gn(m0, t)[L]

ä⊗2
Yi(t)dt

}]

≤ nE
¶
trL⊗2

i Yi(t)
©
.

By condition (B4), we have,

‖ξn‖ = Op(
»
n(K + p)),

and

∥∥∥U(ω0)
∥∥∥ = Op(

»
n(K + p) + nK−d). (4.19)

Consequently, from (4.16),

A1 = γnOp(γn) ‖u‖ = Op(γ
2
n) ‖u‖ .

Next, for A2, we already have,

U(ω0) =
∑
i

∫ τ

0

{
Li −

S(1)
n (m0, t)[L]

S
(0)
n (m0, t)

}
dNi(t) +Op(nK

−d),

∂U(ω0)

∂ω0
= −

∑
i

∫ τ

0

S(0)
n (m0, t)S(2)

n (m0, t)[L]−
¶
S(1)
n (m0, t)[L]

©⊗2{
S

(0)
n (m0, t)

}2

 dNi(t) +Op(nK
−d)

= −
∑
i

∫ τ

0
V (m0, t)[L] {dMi(t) + λ(t|L)dt}+Op(nK

−d)

= −
{∑

i

∫ τ

0
Vn(m0, t)[L]dMi(t) +

∑
i

∫ τ

0
Vn(m0, t)[L]S(0)

n (m0, t)λ0(t)dt

}
+Op(nK

−d)

= −n (ϑω0 + Σn) +Op(nK
−d),

where ϑω0 = n−1∑
i

∫ τ
0 Vn(m0, t)[L]dMi(t) and Σn = n−1∑

i

∫ τ
0 Vn(m0, t)[L]S(0)(m0, t)λ0(t)dt.

Thus,

A2 = −(1/2)γ2
n

®
u>
Ç
n−1∂U(ω0)

∂ω0

å
u

´
= −(1/2)γ2

n

î
u>Σu+ u> {(Σn − Σ) + ϑω0}u+ u>O(K−d)u

ó
.
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By Lemmas 2.3 and 4.1 of Bradic et al. (2011),

‖(Σn − Σ) + ϑω0‖ ≤ ‖Σn − Σ‖+ ‖ϑω0‖ = op(1).

Since Σ is positive definite and its eigen values are bounded away from zero and infinity, we

have,

A2 = −(1/2)γ2
n(1 + op(1) +O(K−d)) ‖u‖2 .

Finally, since ‖ω − ω0‖2 ≤ γn and the average of i.i.d. terms, n−1 ∂
2Ul(ω̃)
∂ωj∂ωk

, is of order Op(1),

by the Cauchy-Schwarz inequality and condition γn(K + p)3/2 = O(1) from Theorem 1, we

have An = (K + p)3/2Op(γ
3
n) = Op(γ

2
n).

For the penalty part, by Taylor expansion of the penalty function we have,

B =
s∑

g=1

{
p

(g)
λn

Ä
|β0
g1 + γnu2,g1|, . . . , |β0

gpg + γnu2,gsg , 0|
ä
− p(g)

λn

Ä
|β0
g1|, . . . , |β0

gpg , 0|
ä}

=
s∑

g=1


sg∑
j=1

∂p
(g)
λn

Ä
|β0
g1|, . . . , |β0

gpg |
ä

∂|βgj |
sgn(β0

gj)γnu2,gj

+
1

2

sg∑
i=1

sg∑
j=1

∂2p
(g)
λn

Ä
|β0
g1|, . . . , |β0

gpk
|
ä

∂|βgi|∂|βgj|
γ2
nu2,giu2,gj

+ op
¶
γ2
n(u2

2,g1 + · · ·+ u2
2,gsg)

©
≤ q

1/2
1 anγn ‖u2‖+

1

2
γ2
nbn ‖u2‖2 + op(γ

2
n ‖u2‖2)

= q
1/2
1 Op(γn)γn ‖u2‖+ op(γ

2
n ‖u2‖2) as bn → 0

= q
1/2
1 Op(γ

2
n) ‖u2‖+ op(γ

2
n ‖u2‖2)

, B1 +B2,

where q1 =
∑s
g=1 sg. We see that, by choosing a sufficiently large D, A2 dominates A1, An,

B1, B2 uniformly in ‖u‖ = D. Thus, we have shown that ‖α̂− α0‖ +
∥∥∥β̂ − β0

∥∥∥ = Op(γn).

Then,
∥∥∥φ̂− α0>B

∥∥∥ = Op(γn) and
∥∥∥β̂ − β0

∥∥∥ = Op(γn). By
∥∥∥φ0 − α0>B

∥∥∥
∞

= O(K−d) and the

triangle inequality, we have∥∥∥φ̂− φ0
∥∥∥ ≤ ∥∥∥φ̂− α0>B

∥∥∥+
∥∥∥α0>B − φ0

∥∥∥
= Op(γn) +O(K−d)

= Op(γn).
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Hence,
∥∥∥φ̂− φ0

∥∥∥+
∥∥∥β̂ − β0

∥∥∥ = Op(γn).

Proof of Theorem 2. Here we will prove the sparsity: pr(β̂D = 0) → 1 as n → ∞. By

Taylor expansion, we have

∂Qn(α̂, β̂)

∂βgj
= n−1∂ln(α̂, β0)

∂βgj
+
∑
g′,j′

n−1∂
2ln(α0, β∗)

∂βg′j′∂βgj
(β̂g′j′ − β0

g′j′)

−
∂p

(g)
λn

(
|β̂g1|, . . . , |β̂gpg |

)
∂|βgj|

sgn(β̂gj)

= C1 + C2 + C3,

(4.20)

where β∗ lies between β̂ and β0. Using the result from (4.19), we have |C1| = Op(γn). By the

convergence rate in Theorem 1 and n−1∑
g′,j′ ∂

2ln(α̂, β∗)/∂βg′j′∂βgj = Op(1), |β̂g′j′ − β0
g′j′| =

Op(γn). Thus, |C2| = Op(γn). It follows from the definition of β̂gj that, if β̂gj 6= 0,

∂Qn(α̂, β̂)

∂βgj
= Op(γn) +Op(γn)−

∂p
(g)
λn

(
|β̂g1|, . . . , |β̂gpg |

)
∂|βgj|

sgn(β̂gj)

= γn

Op(1)− γ−1
n

∂p
(g)
λn

(
|β̂g1|, . . . , |β̂gpg |

)
∂|βgj|

sgn(β̂gj)

 . (4.21)

Next, we show that there is a contradiction in (4.21) if pr {β0
D = 0} does not tend to 1 when

n→∞, then there exist (g, j) ∈ D, such that β̂gj 6= 0. By the condition given in Theorem 2,

that is, γ−1
n ∂p

(g)
λn

(
|β̂g1|, . . . , |β̂gpg |

)
/∂|βgj| → ∞ with probability tending to 1 as n→∞, for

an arbitrary ε > 0, when n is large we have

∂Qn(α̂, β̂)

∂βgj
< 0, 0 < β̂gj < ε,

∂Qn(α̂, β̂)

∂βgj
> 0, −ε < β̂gj < 0.

This is in conflict with ∂Qn(α̂, β̂)/∂βgj = 0 and results in a contradiction when β̂gj 6= 0.

Therefore, pr(β̂gj = 0)→ 1 as n→∞.

Proof of Corollary 1. We only need to check that the conditions in Theorem 1 hold for

the penalty function p
(g)
λn

(|β(g)|) = λn(|βg1|+ · · ·+ |βgpg |)1/2, g = 1, ..., G.
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For βgj ∈ A, i.e., β0
gj 6= 0, we have,

an = max
(g,j)∈A

δpλn(|β0
g1|, . . . , |β0

gpg |)
δ|βgj|

= max
(g,j)∈A

δλn(|β0
g1|+ · · ·+ |β0

gpg |)
1/2

δ|βgj|

= max
(g,j)∈A

1

2
λn(|β0

g1|+ · · ·+ |β0
gpg |)

−1/2

≤ 1

2
λnM

−1/2 = Op(γn),

and

bn = max
(g,j)∈A

∣∣∣∣∣δ
2pλn(|β0

g1|, . . . , |β0
gpg |)

δ|βgj|2

∣∣∣∣∣
= max

(g,j)∈A

∣∣∣∣∣∣δ
2λn(|β0

g1|+ · · ·+ |β0
gpg |)

1/2

δ|βgj|2

∣∣∣∣∣∣
= max

(g,j)∈A

1

4
λn(|β0

g1|+ · · ·+ |β0
gpg |)

−3/2

≤ 1

4
λnM

−3/2 → 0,

where M = ming(|β0
g1|+ · · ·+ |β0

gpg |). Therefore, the rate of convergence follows from Theorem

1.

For sparsity, suppose there exists (g, j) ∈ C for which β̂gj 6= 0. Since for all (g, j) ∈ C,

β0
gj = 0; j = 1, . . . , pg, we have

γ−1
n

∂pλn
(
|β̂g1|, . . . , |β̂gpg |

)
∂|βgj|

= γ−1
n

δλn(|β̂g1|+ · · ·+ |β̂gpg |)1/2

δ|βgj|

=
γ−1
n λn

2(|β̂g1|+ · · ·+ |β̂gpg |)1/2
.

According to the first conclusion of Corollary 1, there exists a γ−1
n consistent local maximizer

β̂ = (β̂>A , β̂
>
B , β̂

>
C )> for the non-adaptive hierarchically penalized likelihood (4.9), which implies∥∥∥β̂C − β0

C

∥∥∥ ≤M∗γn or for β̂gj 6= 0, we have |β̂gj − β0
gj| = |β̂gj| ≤M∗γn for some constant M∗.
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Thus,

γ−1
n λn

2(|β̂g1|+ · · ·+ |β̂gpg |)1/2
≥ γ−1

n λn
2(M∗γn + · · ·+M∗γn)1/2

=
1

2M∗1/2 ×
γ−1
n λnγ

−1/2
n

p
1/2
g

≥ γ−3/2
n λnp

−1/2

2M∗1/2 (since p ≥ pg).

Therefore, for γ−3/2
n λnp

−1/2 →∞ when n→∞, we have, γ−1
n δλn(|β̂g1|+· · ·+|β̂gpg |)1/2/δ|βgj| →

∞, which results in a contradiction when β̂gj 6= 0. So, for all (g, j) ∈ C, β̂gj = 0.

Proof of Theorem 3. We only need to check that the conditions in Theorem 1 hold for

the penalty function p
(g)
λn

(|β(g)|) = λn(wn,g1|βg1|+ · · ·+ wn,gpg |βgpg |)1/2.

For βgj ∈ A, i.e., β0
gj 6= 0, we have,

an = max
(g,j)∈A

δpλn(|β0
g1|, . . . , |β0

gpg |)
δ|βgj|

= max
(g,j)∈A

δλn(wn,g1|β0
g1|+ · · ·+ wn,gpg |β0

gpg |)
1/2

δ|βgj|

= max
(g,j)∈A

1

2
λnwn,gj(wn,g1|β0

g1|+ · · ·+ wn,gpg |β0
gpg |)

−1/2

≤ 1

2
λnw

A
n,max

Ä
wAn,min

ä−1/2
M−1/2 = Op(γn),

and

bn = max
(g,j)∈A

∣∣∣∣∣δ
2pλn(|β0

g1|, . . . , |β0
gpg |)

δ|βgj|2

∣∣∣∣∣
= max

(g,j)∈A

∣∣∣∣∣∣δ
2λn(wn,g1|β0

g1|+ · · ·+ wn,gpg |β0
gpg |)

1/2

δ|βgj|2

∣∣∣∣∣∣
= max

(g,j)∈A

1

4
λn(wn,gj)

2(wn,g1|β0
g1|+ · · ·+ wn,gpg |β0

gpg |)
−3/2

≤ 1

4
λn
Ä
wAn,max

ä2 Ä
wAn,min

ä−3/2
M−3/2 → 0,

where M = ming(|β0
g1|+ · · ·+ |β0

gpg |). Thus, the consistency follows from Theorem 1.

Next, we prove the sparsity. Assume β̂gj is a local maximizer of Qw
n (α, β) in (4.13) with∥∥∥β̂gj − β0

gj

∥∥∥ = Op(γn). We can find a constant M∗, such that |β̂gj| ≤ M∗ for all (g, j) with
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probability tending to 1. Then for (g, j) ∈ D, i.e., β0
gj = 0, we have

γ−1
n

∂pλn
(
|β̂g1|, . . . , |β̂gpg |

)
∂|βgj|

=
δλn(wn,g1|β̂g1|+ · · ·+ wn,gpg |β̂gpg |)1/2

δ|βgj|

=
γ−1
n λnwn,gj

2(wn,g1|β̂g1|+ · · ·+ wn,gpg |β̂gpg |)1/2

≥
γ−1
n λnw

D
n,min

2M∗1/2(wAn,max + wDn,max)1/2
.

Therefore, when γ−1
n λnw

D
n,min/(w

A
n,max + wDn,max)1/2 → ∞ as n → ∞, then β̂gj = 0 with

probability approaching to 1, and by Theorem 2, we have pr(β̂D = 0)→ 1.

Proof of Corollary 2. We only need to verify that wn,gj = |β̃n,gj|−r satisfy the condi-

tions in Theorem 3. Let A = max
g,j

¶
β0
gj

©
and B = min

g,j

¶
β0
gj

: β0
gj
6= 0
©
. Then by the

consistency of β̃n, wAn,max → B−r and wAn,min → A−r. Thus, if λn = γn/log(n), we have

γ−1
n λnw

A
n,max

Ä
wAn,min

ä−1/2 → 0 and λn
Ä
wAn,max

ä2 Ä
wAn,min

ä−3/2 → 0, as n→∞.

For each (g, j) with β0
n,gj = 0, we have β̃gj = Op(γn). Therefore, wDn,min/(w

A
n,max +

wDn,max)1/2 = Op(γ
−1/2
n ). Thus, for λn = γn/log(n), we have γ−1

n λnw
D
n,min/(w

A
n,max+wDn,max)1/2 →

∞.
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Chapter 5

Discussion and Future Research

Partially linear models (PLMs) are important generalizations of linear models. Compared

to linear models, the PLMs possess desirable flexibility of non-parametric regression models

because they have both linear and non-linear components. Together with the flexibility of a

nonparametric regression model and desirable asymptotic properties of the linear estimators

with simple interpretability, PLMs are very useful models for analyzing high-dimensional data

where variable selection plays an important role. Since grouping structures arise naturally in

many statistical modeling problems, we have studied the bi-level selection and estimation in

PL survival models using right censored data. We studied the partially linear Cox proportional

hazards model (PL-PHM) and the partially linear additive hazards model (PL-AHM) as

an alternative to the earlier model. For bi-level variable selection, we investigated the

performance of the adaptive hierarchical penalty, which is a special case of the group bridge

penalty. For comparison purpose, we also studied several existing penalties and compared

the results with the adaptive hierarchical penalty.

In Chapter 2, we estimated the PL-AHM with right-censored and left-truncated data.

We approximated the nonparametric components using computationally favorable B-splines.

We extended the pseudoscore method (Lin and Ying, 1994) in our model for estimating

coefficients. In Chapter 3 with a high-dimensional data, we performed group variable selection

in the PL-AHM model using adaptive hierarchical penalty where the parameters can diverge

with the sample size. The proposed method can select significant groups and important

variables within selected groups simultaneously. In the same vein as of Chapter 3, in Chapter

4, we investigated the group variable selection in the PL-PHM with a high-dimensional data

where parameters can be naturally grouped.
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Theoretically, in Chapter 2, we established the asymptotic normality of the parameters

under the assumption that the true nonlinear functions are B-spline functions whose knot

locations and the number of knots are held fixed. In Chapter 3, we established the asymptotic

convergence rate and selection consistency of the penalized estimators of the PL-AHM.

In Chapter 4, when the dimension of the nonparametric functions are fixed and low, we

established the asymptotic convergence rate and selection consistency of the PL-PHM.

Numerically, we conducted extensive simulation studies to explore the performances of all

the proposed models and methods, and demonstrated the comparability and superiority of

our methods to the existing approaches. Four real data examples are provided to illustrate

the use of the proposed methods.

5.1 Future Research

Our proposed methods can be extended in several directions for future research.

(I). In this thesis, we considered the partially linear structure of our models is already

available. In literature, popular approaches of constructing a PLM are separating the

covariates based on the shape of the estimated nonparametric functions from univariate

analysis, or, putting discrete covariates in the linear part and continuous ones in the nonlinear

part of the model. However, it is an interesting problem which is largely overlooked. Zhang

et al. (2011) proposed a new approach to select structure in a PL model, and called it LAND

(Linear And Nonlinear Discoverer). They showed that the LAND estimator is able to identify

the underlying true model structure correctly, and simultaneously estimate the multivariate

regression function consistently. This approach may be extended to our PL survival models

for structure selection.

(II). For the purpose of variable selection, we considered only right censored data in

our survival models. Lu and Song (2015) and Lu et al. (2016) estimated the PL-AHM and

PL-PHM with current status data. Recently, Afzal et al. (2017) estimated the PL-AHM with

140



right-censored and left-truncated data. Our variable selection methods can be extended to

such different censoring and truncated data.

(III). In our thesis, we focused on variable selection in the linear part of the models,

where we estimated the fix and low dimensional nonparametric functions. Our method

can be extended to select nonparametric functions simultaneously. The basis functions to

approximate a nonparametric function can be viewed as a group and group variable selection

can be used to select the important nonparametric functions.

(IV). In addition to the PL-AHM and PL-PHM models, our method can be extended

to other survival models for variable selection, such as the accelerated failure time model,

transformation model, etc. We can also perform component selection in nonparametric

proportional hazards model and nonparametric additive hazard model, in a similar fashion

to Cui et al. (2013) where they performed component selection in nonparametric additive

regression model.

(V). In our thesis, we considered the covariates do not overlap and each variable belongs

to only one group. However, in real data, some covariates can belong to several groups. For

example, one gene can be shared by many different pathways. Wang et al. (2009) considered

overlapping groups in group variable selection in the PHM. Our proposed group selection

methods can be extended to problems with overlapping groups.

(VI). For variable selection, we considered time independent covariates. Our proposed

method can be extended to incorporate time-dependent covariates.

(VII). We investigated the variable selection problem where the covariates can diverge

with the sample size, however, we restricted our attention to p < n. It will be interesting to

see how our proposed methods perform in an ultra-high dimensional setting (p� n).

(VIII). In a Bayesian framework, bi-level group variable selection has not been investigated

in censored survival data. This could be our future research direction as well.
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