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Abstract 

This work presents statistical techniques to aid in the diagnosis of cancerous tissue by 

studying the shape of nuclei of cells quantitatively. A brief summary of stochastic ge-

ometry approaches is discussed. Techniques from functional data analysis are applied 

to the X, Y coordinates of two-dimensional profiles of nuclei. An exploratory analysis 

of variability via functional principal components and functional linear discriminant 

analysis is presented. The profiles are described by their Fourier series expansions 

and characterised by the use of principal differential analysis. Confidence-like inter-

vals for residual functions arising from such characterisations are provided. 
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Introduction 

"Statisticians get to play in everybody's backyard" paraphrases Tukey's quote about 

our science. It is true to some extent that Statistics lets us immerse ourselves into 

many different subjects. Given this appealing property of statistical thought, we tend 

to find ourselves involved in making decisions or calls about an issue at hand that is 

of interest to the community. The use of statistics in the medical sciences is thought 

of being concentrated in clinical trials and pharmaceutical discoveries. Few are the 

people that think of it in other aspects of medicine. One of the main applications 

of Statistics is that of classifying into groups, given information on characteristics of 

observations. 

Another closely related application is that of learning and discovering relation-

ships and/or features that allow us to characterise objects and therefore classify 

them into groups. The area of supervised learning or supervised clustering is an 

ever evolving area in statistics and it is an area that is easily related to medical 

applications. 

Through my life, I have seen several dear and loved family members pass away 

to cancer and heard the remark "Had it been caught in time, there would have been 

a better chance of survival" and hence I have developed an interest in merging my 

training as a statistician and my desire to aid in the detection of cancer. "There has 

to be some use for statisticsin cancer detection!!" has been my battle flag for these 

years, and luckily enough, there is a way I found exciting enough to immerse myself 

into it when it comes to cancer detection and the use of statistics. 

The shape of cancer cells and mainly of their nuclei seemed to be an identifier 
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for such type of tissues. Statistical shape analysis is the connection of both of these 

worlds. 

Although the dream and aim of the author of this thesis was to find a "holy grail" 

for cancer detection, it was soon recognised that, as most of the cases in statistics, all 

that could be found was a contribution for explaining the uncertainty and variability 

of shapes that could lead to indicate or propose a diagnostic of cancerous cells. 

At the beginning of my doctoral program, topics in stereology and the study of 

two dimensional profiles of cells opened a door to step into a fascinating world of 

discoveries. By the time I was getting a-hold of and started understanding the various 

techniques that could be used in this area, sadly and happily enough, many results 

and discoveries had been reached by people like Hoboith, Jensen and Pedersen [14, 

16]. Sadly beause it narrowed the field of opportunity to do something significant 

and "new" for the field; happily as they had found some good parameterisations to 

aid in the diagnosis of cancer. 

Rather than being disappointed and disheartened, the decision to "build on the 

shoulders of giants" was reached, a large amount of time was spent in analysing their 

approaches and in learning and analysing new tools that could be used to overcome 

some of the limitations that past approaches had encountered. This thesis deals 

with the use of a specific tool that was found to be useful in finding characterisations 

(though maybe not unique) of normal and malignant nuclei of cells, and its intent is 

that of setting an approach to cancer and non-cancer cell nuclei classification. 

The most important gain in the approach used in this thesis is being able to 

relax the constraint on the shape of the nuclei to be analysed. Past work in this 

field had been aimed at analysis of star shaped nuclei, which excluded many actual 
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observations from being included in the analysis. 

This thesis will seem to be more "algorithmic modelling" than "data modelling" 

to quote Breiman's words in his 2001 paper [3]. Yet it parts from the idea of letting 

the data talk and from intuitive ideas that the reader will hopefully find "natural" 

and interesting. This thesis presents the use of Functional Data Analysis (FDA) [29] 

in a rather new perspective. Such techniques had not been used on closed curves 

such as the cell profiles and this thesis focuses on such applications. 

Although Functional Data Analysis' techniques are not deemed to be inferential 

per se, still some generalisations like Functional ANOVA have been discussed and 

used by the Ramsay and Silverman [30]. In recent conferences FDA has been re-

ceiving criticism over the validity of this type of extrapolations where we can not 

impose statistical assumptions on the functional error terms as directly as with the 

non-functional data. 

Chapter 1 of this thesis presents preliminaries on the statistical and biological mo-

tivation for the research. It also presents an overview of the stereological approaches 

mentioned previously in this introduction and it ends with a brief discussion on FDA. 

Chapter 2 describes what all statisticians have to go through every time they have 

data, and that is data preprocessing for the proposed analyses to follow. Functional 

analysis using linear interpolation is discussed in Chapter 3 and the first attempts at 

finding characteristics for classification are attacked, namely Principal Components 

Analysis and Discriminant Analysis. A seemingly more complex approximation for 

the functional data is performed via basis functions in Chapter 5 and a curvature 

based classification approach is presented. In the latter part of Chapter 5 we take 

advantage of the functional form of the data and its basis function approximation for 



4 

an in-depth model-based analysis of the variability in the curves. Principal Differ-

ential Analysis is presented and used to gain more knowledge on the characteristics 

that are particular to each set of nuclei. 

The main goal of this thesis is to give the reader a taste of the richness of Func-

tional Data Analysis and to encourage the mixture of algorithmic and data-based 

modelling at the same time as we aim to find characteristics that could give a diag-

nostic for a set of nuclei profiles. We are not proposing these methods to be the one 

approach for objectively attempting to classify cancer and healthy cells, but to be 

another aid in the diagnosis and early detection. 



Chapter 1 

Preliminaries 

Tissues and organs in the human body are generated by the process of mitosis, that 

is, a process of cell division. This process is most of the time regulated and in such 

cases regeneration of damaged tissues or organs is achieved. Cells stop their mitosis 

once the cells have become specialised and have taken on specific functions. On the 

other hand, if the process is not normal and therefore the mitosis unregulated, then 

cells divide either too slowly or too rapidly. When mitosis is too slow organs or 

tissues are not replaced in a timely fashion and problems occur. If the mitosis is too 

rapid and/or uncontrolled the result can be the generation of cancerous tissue. 

Mitosis is a process that runs at the nuclei level and, as such,, there is an interest 

in studying the nuclei of cells with the purpose of detecting cancerous cells. Several 

studies (e. g. [23, 16]) indicate that the morphology of the cell nucleus will tend to be 

different in a healthy cell from what it is in an unhealthy cell. For example, Popescu 

et al [26] mention that "apoptotic cells have smaller, condensed and intensely stained 

nuclei compared to normal cells". In this sense, it is expected that one could be able 

to find morphological characteristics proper of cancer cells. As a matter of fact, when 

cancer cells are in an advanced state, the pathologist is able to visually differentiate 

them from normal cells. 

The two-dimensional profile of the nucleus of a cell can be considered a continuum 

of points. Norris et al [24] mention in their study of endometrial cancer that, even 

though pathologists are specifically trained, their ability to distinguish morphological 
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characteristics or parameters along this continuum is still a subjective matter which 

is often irreproducible. Hence, an objective quantitative reproducible method of 

analysing the morphology is needed. 

The study of shapes involves the imaging process step to get a "drawing" or graph, 

and the quantitative study of descriptors that serve the purpose of characterising such 

shapes. It is in the characterisation step that we are interested. 

The study of shapes has been visited with different approaches by many authors 

with different techniques; see Loncaric [21]. Grenander and Manbeck [13], in their 

potato experiment, attack the problem by approximating first a polygonal template 

to the shape and later using discretised versions of continuous templates. Others, like 

Chang et al [4] (mentioned by Loncaric [21]) and their points of higher curvature, like 

Lele [18, 19] or Dryden and Mardia [7], have used the existence of obvious landmarks 

when analysing shapes. The continuum of the cell membranes or of the nuclei profiles 

calls for a continuous approach where there might be no obvious landmarks. Much 

work has been done in this area by many authors, such as Grenander [12], Hobolth, 

Pedersen and Jensen [14, 15, 16]. 

When observing nuclei, it is difficult to distinguish, with the naked eye, specific 

features or landmarks that could define the shape. In this sense, Miller et al [23] 

described a model for representing spatial profiles with no obvious landmarks, as is 

the case of cell shapes. 

Recently Hoboith, Pedersen and Jensen have described cell nuclei as a deformable 

template model, both as a stochastic model on the deformations from an ellipse [16] 

and with the residual process from a radius vector function defining a star-shaped 

body [14]. 
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The basis of the first analysis is to model the profile as the possible deformations 

from a known shape or template. They start by fitting an ellipse to the profile via 

least squares [10]. Then, from a discretised set of points in the ellipse, the edge that 

delimits the nuclei is observable as the set of points in the profile that are orthogonal 

to the set of points in the ellipse. Let F be the profile defined by F(t), let C be 

the template curve defined by C(t) and let X(t) be the "height" process that defines 

the deformation from the template. The value of the function X(t) is negative if 

the profile is inside the template and positive if the profile is outside the template. 

Let w(t) be the unit vector that denotes the normal direction at a given point in the 

template. 

The nucleus profile is then seen as a function F(t) for tin [0, T]. This is: F(t) = 

C(t)+X(t)w(t), 0 ≤ t≤ T 

So, formally we can define: 

C={C(t)ER.2:0<t<T} 

F={F(t)E1t2:O≤t<T} 

The parameter T is, without loss of generality, normalised to 1. 

The work of Hoboith, and Jensen [16] dealt with the challenge of modelling 

the process X(t). This process was modelled as a stochastic process where, given 

the nature of the connections between points in the nuclei, the points can not be 

considered to be totally independent. Markov second order properties were imposed 

on the stationary cyclic stochastic process. The process was also considered to be 

Gaussian with mean zero. The class of Gaussian process was then defined by the 

parameterisation of the covariance function for the process. 

Mainly, the inverse of the covariance matrix E of the stationary residual process 
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X(t) is a circulant matrix and the order of the Markov property is constructed into 

it. A circulant matrix Mnxn  a1, a2) is defined by: 

a0 i=j 

a1 i=j-1,j+1 modn 

a2 i=j-2,j+2 modn 

0 otherwise 

The matrix for the second order Markov property they use is such that the inverse 

E is M(a/n + 2,5n + 67Th3, —,8n - 47Th3, 'yn3). Given that the elements off the 

diagonal by 3 places are zeroes, and that the process is Gaussian, the Markov second 

order property is satisfied. ce, /3 and 7 satisfy a one-to-one relationship with the 

parameters of the covariance function. 

Hypothesis tests were performed on /3 and y to assess the order of the Markov 

process and it was found that the second order model with 13 = 0 was best. With this 

model they estimate c and 'y and find that these parameters are useful in separating 

the malignant and benign classes of nuclei. 

In 2002, the deformable template model was revisited by Hobolth et al [14] and 

now the shape was modelled with a radius-vector function and once again (X(t)) 

played the role of a Gaussian residual process or deformation process. The radius 

vector function is of the form 

R(t) =r(t)+X(t), t  [0,1] 

where r(t) is the radius vector function of the template and X(t) is the residual 

process. The Fourier transform of such functions was used and the analysis of the 
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amplitude, angle and phase coefficients performed. They assume the residual process 

to be Gaussian, so the expansions for each of r(t) and X(t) are 

and 

r(t) = a 0 + 
s=1 

00 

a3 cos(2irst) + E b3 sin(2irst) 

X(t) = A0 + V As cos(2irst) + .B3 sin(2irst) 
s=1 s=1 

where, because of the Gaussian assumption, A0, A3, B3, s ≥ 1 are all mutually inde-

pendent and A3, B3 N(O, )). The variances ) are modelled with what they call 

"the p-order model" having 

\;'=a+8(s2 -32 ), s≥3 

Here, ce determines 'global' deviation from the template while ,8, p determine 'rough-

ness' of the boundary. 

Their findings were that on average the estimates of the global shape parameter 

ce were significantly lower for the malignant sample, the estimates of local shape fi 

are also significantly lower in the malignant sample, and the variance of log/3 was 

significantly larger in the malignant sample. 

The process {X(t)} of deformations from a template has been presented and used 

to represent the continuous process of the continuous cell membrane that creates the 

shape or profile of such cell. In this sense it seems reasonable to consider the cell 

profile as a functional data source. In the methods of Hobolth and Jensen statistical 

assumptions are imposed on the residual process, in their 2000 work [16] directly 

on the covariance structure of the Markov process, and in 2002 [14] on the Fourier 

expansion coefficients of the process. 
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There are advantages in considering the profile itself and/or the residual process 

as a functional data source. The main idea in the analyses mentioned so far is that 

there exists some difference in the morphology of cancer and non-cancer cell nuclei. 

Based on this, it is not unreasonable to consider that there is a functional process 

that generates each type of profile. Hence, the approaches suggested in this thesis 

will deal with the analysis of profiles expressed as a bivariate functional data source. 

The tools used in analysing them comprise: 

• The use of the whole profile as generated by the bivariate function (X(t),Y(t)) 

which we observe as x, y coordinates creating the continuous function as the 

result of linear interpolations of the discretised data and applying: 

- Principal Components Analysis directly on the observed fine grid, 

- Linear Discriminant Analysis directly on the observed fine grid, 

• Analysing the correlation structure within each of the univariate functional 

processes X(t) and Y(t) that form the bivariate process, as well as the cross-

covariance between them. 

• Creating smooth functional data as approximated by basis functions expansion 

in order to: 

- Analyse the behaviour of their derivatives 

- Perform statistical analysis on the coefficients of such basis functions. 

• The study of the cell profile as a univariate functional data source has been 

visited with the residual process X(t) as the deformation from a template by 

other authors, most recently Hoboith and Jensen [16, 14]. 
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The radius vector function of Hoboith, Pedersen and Jensen [14] is, in part and 

although they do not present it as such, a FDA approach. Given the restrictions on 

star-shaped bodies, they are creating their radius vector function as a function of an 

angle 0 as is done in polar coordinates. Once this radius vector function is defined, 

it is approximated by Fourier series and the statistical assumptions are imposed on 

the amplitudes and angles of such series. This translates into imposing statistical 

assumptions on the coefficients of the Fourier approximation. In this work they 

part from the assumption of a stationary process given the fact that the template is 

not circular but elliptical. However, they perform a transformation on their "time" 

parameter, which they call a "time change" such that the process in the new "time" 

is stationary. This is similar to time-warping in FDA for registration. In short, they 

have done a thorough job in applying FDA-like techniques for their analysis and it 

is therefore not dealt with in this thesis. 

The analysis they perform is constrained to star-shaped planar objects. A star-

shaped planar object is defined as an object in which at least one interior point, 

say z, exists and has the characteristic that, for all points y in the boundary of the 

object, the entire segment belongs to the object. 

Dealing with only this type of object sets constraints on the type of profiles we 

can study. Figure 1.1 shows some of the profiles that we have, which would violate 

the definition of a star-shaped object. 
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Figure 1.1: Non-star-shaped profiles 

The star-shaped body constraint is relaxed when dealing with the bivariate func-

tional data since the separation of X and Y functions enables the cell to follow 

any desired pattern. The parameter t that controls the bivariate function does not 

conflict with having 2 or 3 points lying at different distances from the center z 

for a given ray at a given angle. These discretely observed functional data can be 

approximated with different basis functions such as linear approximations, Fourier 

transforms, splines and wavelets to render them in continuous form. The derivatives 

of the functional data can be computed from these, now continuous, data. Analysis 

on the behaviour of the derivatives sheds light on possible discriminant features that 

may be hidden to the naked eye. 
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1.1 Functional data analysis overview 

In recent years, the feasibility of obtaining, recording and storing successively mea-

sured data from continuous processes such as the position in three dimensional space 

of knees, ankles and hips of a person walking, have called for more efficient and inter-

pretable ways to analyse such data [1]. Functional Data Analysis (FDA) recognises 

that the succession of measurements, say y, although measured at discrete intervals 

(e.g. times ti), are realisations of continuous processes or functions (x(t)), and pro-

vides suitable analysis methods for such type of data. In order to "preserve" and 

render the continuous nature of the functions, the discretised data are interpolated 

or smoothed [28, 29, 8] with a choice of different procedures depending on the nature 

of the data (Fourier for cyclic sinusoidal type data, polynomials and splines for other 

types). 

A more tangible way of thinking about FDA, mentioned in [28, 29], is to consider 

it as an extension from the multivariate scene, in a similar way in which Multivariate 

Data Analysis (MDA) would be an extension of univariate data analysis. The "ex-

tension step" involves the need for a more structured mathematical basis, but the 

"discrete-to-continuous" extension is intuitively appreciated as consistent with the 

nature of the data. 

We can run into trouble in MDA if the number of observations we have is less 

than the dimension of the data. The continuous curve that represents the functional 

datum can be taken to be an infinite-dimensional discrete variable which would be 

difficult to approach with MDA. An advantage gained from the FDA approach is 

that the multicomponent vector that might be unsuitable for MDA can be analysed 
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as a curve with FDA techniques. 

Data can be considered functional to accomplish data reduction. In some of 

the smoothing techniques a comparatively small number of parameters i's needed to 

permit the analysis of functions as a whole. There is, in FDA, the possibility of 

using summary statistics analogous to the univariate and multivariate case in their 

functional form, such as mean, 

(t) =  N N 1  

variances, 

varx(t)= (IV —1 

covariances and correlations, 

N 

i=1 

Covx(ti) t2) = (N - 1)1 {Xi (t1) -  (t1)} {x(t2) - (t2)} 
i=1 

corrx (t1, t2) = covx(ti, t2)  

/varx(ti)varx(t2) 

permitting then the possibility of descriptive analysis and inference-based deci-

sions. 

Information between sampled or measured points becomes available through the 

smoothing process. FDA estimates the continuous function from the observed data 

and is then used to discretise the function to enable us to find the values of the 

function at the desired points for analysis. It is not necessary that the sampled 

points be equally spaced. If we are interested in more intense sampling over a certain 

interval, this can be done easily [11, 29]. As part of the models considered in this 

thesis, and for purposes of convenience, when sampling points from the profiles for 

analysis, evenly spaced points were used. 
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Figure 1.2 shows the discrete values of the X coordinate of one of the profiles 

used in this thesis as circles and its spline-smoothed version as the line. 

Figure 1.2: Discrete data and smoothed function 

FDA is useful in analysing variation of functions across different study units or 

different types of study units. A considerable advantage resides in analyses done with 

FDA, in that functions, particularly smooth functions, can be analysed through their 

derivatives and such derivatives can have an interesting interpretaion in the context 

of the study. In this thesis, the use of derivatives will enable a quantitative and 
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objective analysis of the profiles' behaviour regarding smoothness and overall shape. 

The use of FDA techniques and the representation of data in functional form 

involves the use of some reference parameter. In most situations time is the parameter 

used. The word 'time' is used often and very loosely in FDA. In studies that deal 

with processes that specifically happen through time, such as angle measurements 

in a gait analysis [1], the word refers indeed to time. The functions can be thought 

of depending on a variable t that is assumed to be defined (as is time) continuously. 

According to this, the functions have a starting point "time" zero t = 0, and without 

loss of generality, the "time" can be normalised to the interval [0, 1]. In this sense, 

when we talk about equally time spaced points we are talking about having n + 1 

points at times t=i/n for i=0,1,...,n.so that t0=0 and t=1. 

As described, FDA does not necessarily deal with functions of time as such, and 

when it does, it is analysing features of variation and features that separate or define 

one type of function from another type. It does not deal with forecasting nor signal 

processing and hence is essentially different from Time Series Analysis. 

In order to obtain the continuous underlying function from the discrete obser-

vations, FDA techniques approximate the functions by expansion of basis functions 

[11]. Part of the techniques and a consequence of this expansion is smoothing which 

has sometimes brought on the criticism that FDA is mainly a smoothing process; see 

the discussion in the commentaries to [28]. Although smoothing plays an important 

role in the 'discrete-to-continuous' extension, it is not "just smoothing"; in reality, 

the smoothing creates connections between discretely observed values and more im-

portantly, the result of this smoothing is the estimation of the values of the function, 

hence the smoothing or interpolation has much more meaning in essence than it has 
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in, say, time series. 

1.2 Functional Data Analysis Techniques 

In this thesis, the profiles are considered to be continuous functions and hence func-

tional data. The analysis for these data considers the profiles as the result of a 

bivariate process Z(t) = (X(t), Y(t)) and studies the relationship between the X 

and Y parts as well as the difference between these in malignant and benign pro-

files. We intend to determine out if the autocovariance of each the X, Y processes is 

different for cancer and non-cancer cells. We also study the cross-covariance, that is 

the influence that each component has on the other at given times. An exaggerated 

but illustrative example is to think of normal profiles as perfect circles and cancerous 

profiles as rather flattened ellipses; the mapping of the values for the covariances and 

cross-covariances would be different. 

1.2.1 Principal Components Analysis 

In MDA, ordinary PCA creates linear combinations of the X variables, where the 

first of such combinations is given by finding i for 

fj' 
j=1 

such that N' E f,?j is maximised subject to 

Subsequently, second and up to p (number of variables) steps are carried out, 

computing, in the lth step (1 ≤ p), i and new fj that again has the maximum mean 

square, subject not only to the norm of being one but also having 1 - 1 additional 
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constraints 

>kek=O, k<l, 

which amounts to having orthogonal components. 

The functional counterpart of PCA becomes 

fi = f e(S)Xi(S)ds 

such that N' Tifil is maximised subject to f e,(s)ds = 1 for the first component 

and the analogous orthogonality constraints are imposed for . Hence instead of 

having the loadings being p-dimensional vectors, we have functions ej(t). 

A first analysis for the bivariate functional form is to create the functional datum 

by considering linear interpolation of the observed x and y coordinates. With the 

linear interpolation the Principal Components Analysis (PCA) [17] is applied to 

the 2-vector forms and we expect to find a difference in the means of some of the 

PCA scores which might reflect distinguishing characteristics for the overall shape 

of the profiles. In this step, graphical interpretations of each principal component 

are performed by studying the mean shape of nuclei augmented by the principal 

component. 

In PCA we expect to have only a few principal components to be important in 

setting malignant T-cell lymphoma nuclei and normal T-lymphocytes nuclei apart. 

This is expected because the profiles are comparable to elliptical templates. As a 

consequence, the first two components are expected to deal with the overall shape 

of the profiles - eccentricity and convexity - where most of the large-scale variabil-

ity would exist. The subsequent components are expected to deal with more local 

differences in outlines for the profiles. 
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1.2.2 Linear Discriminant Analysis 

Another method used is Linear Discriminant Analysis [17, 30]. This enables the clas-

sification of profiles into malignant T-cell lymphoma nuclei or normal T-lymphocytes 

nuclei profiles, from what seems to be a less geometric approach. However, the an-

alytical form of the discriminant function takes into account the geometry. Having 

the linear discriminant function as: 

f= {X(t)ax(t)dt + Y(t)ay(t)dt}, 

where ax (t), ay (t) are weight functions, it is seen that the X, Y functions will yield 

different 8 values depending on the geometrical body they delimit, even if linear 

combinations of the discrete X(t) and Y(t) were used - for example using the first 

principal components as our functions. Linear Discriminant Analysis is discussed 

further in Section 3.2. 

1.2.3 Basis Functions Expansions 

Linear interpolation from the discretised observations of X(t), Y(t) is the interpo-

lating method indicated in the previous sections. This method offers simplicity but 

presents the problem of not having smoothness. Information on derivatives of the 

continuous processes is sought and hence smoothing the functional data as expan-

sions of smooth basis functions is needed to be able to get such derivatives [30, 28]. 

These types of expansions, apart from offering derivative information,' can be 

useful in the possibility of analysing the coefficients of the basis functions themselves. 

Apart from the behaviour of the derivatives, we can use differential equations models 
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that would separate the intrinsic periodical structure and leave residual processes 

for analysis. This approach is named Principal Differential Analysis by Ramsay and 

Daizell [28]. 

The most commonly used basis functions are splines and Fourier. Ramsay and 

Silverman [29], and Green and Silverman [11] have used both of these expansions 

and have developed tools for their use, as well as applied the penalised approach to 

smoothing. These tools are used in analyses performed in this thesis. 



Chapter 2 

Data and data preparation 

A set of 100 nuclei profiles was obtained, provided by Hoboith and Jensen. The data 

comprise the profiles of 50 normal T-lymphocytes nuclei and 50 malignant T-cell 

lymphoma nuclei. 

Figure 2.1: Profiles of nuclei from 50 malignant T-cell lymphomas and 50 normal 
T-lymphocytes 

21 
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Figure 2.1 shows the 100 profiles all together. As can bee seen in the figure, the 

profiles vary in form and orientation. Figure 2.2 shows a thicker point indicating 

the way in which the profiles were read when digitised from the microscope. The 

nuclei were first outlined from a fixed point with integer coordinates in the device 

used to view them. That is to say that there is no statistical nor biological reason for 

starting to outline the nucleus profile from what seems to be the uppermost point at 

the "centre" of the horizontal plane diameter of the profile. Even if a specific location 

was desired, it would have been very difficult to "line up" the nuclei by eye. These 

nucleus profiles were kindly provided by Hoboith and Jensen. 
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Figure 2.2: 100 profiles with centres 
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The profiles, in this thesis, were to be analysed using FDA; and in such analysis 

we wanted to have a true "reference" point or time to that was not only meaningful in 

the sense of being the first point of the nucleus profile, but that would be, although 

arbitrary, determined by the same criteria for each profile. In such an effort, each 

nucleus was fitted with an ellipse via least squares to obtain information on the 

rotation, if any, of such corresponding ellipse. 
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Ellipses are used for the fit as they are the next step in geometrical complexity 

after the circle and they are still simple enough to manage. 

For the first stages of our analysis, where we are interested in overall shape, the 

profiles are "aligned" to avoid creating fictitious variability. If there are two ellipses 

that differ slightly, but only on their eccentricity, and if one of them is viewed as 

having its semimajor axis rotated by ir/2 and the other is viewed as a lying on 

its semimajor axis, more variability between the shapes seems to exist. If both 

ellipses are resting horizontally on their semimajor axis then we induce no fictitious 

variability. 

Some controversy sorrouncls the alignment or registration procedures. There are 

two main tendencies regarding shape analyisis, the landmark based approach and 

the outline based approach. We follow an outline based approach. 

Macleod [22] states "hard distinctions between landmark and outline morpho-

metric data/analysis are illusory and damaging to the entire enterprise of morpho-

metrics". He argues that although biological correspondence for measurements is 

legitimate, it does not address or avoids in itself the potential source of error. In 

his article he states that any comparison that is meaningful happens at the land-

mark to landmark comparison which is as good as the curve to curve comparison in 

comparing outlines. 

In palentobiology [?] and mathematical geology [6], amongst other sciences, elgen-

shape analysis consists of tracing a closed curve from a starting point, which is as 

a standard, a landmark in the shape and the angular differences between equally 

spaced points are taken to represent the shape function. Singular value decomposi-

tion procedures are applied to these. This procedure is analogous to POA. 
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Lohmann [20] argues that when there is no obvious or common landmark in its 

biological or physiological sense, objects are matched or aligned by adjusting the 

starting point to be a location determined by the maximal correspondence of the 

outline to that of a reference outline. This is analogous to the alignment done in this 

thesis by using the leftmost point in a profile that is aligned to the semi major axis 

of the fitted ellipse. 

Ferson, Rohlf and Kohen [9] describe the use of an invariant approach to Fourier 

elliptical decomposition. The Profiles are traced and then their Fourier coefficients 

"normalised" by a rotation, size and starting point transformation that makes the 

coefficient consistent. This work drives the first three Fourier coefficients to be 1 

and 0, 0 which are the coefficients that represent an elliptical form, namely an ellipse 

with either a horizontal or vertical semi major axis. The procedure appears to be 

invariant to the orientation of the profiles and to, the starting point as the profiles 

are traced in any given position and at any starting point: After the transformation, 

the profiles end up being 'aligned'. This is equivalent to rotating the profiles to lie 

on their semi major axis and the starting point to be as we chose in this thesis. 

It is worth mentioning that we are not searching for the biological reason that 

makes the shapes of the profiles to be the way they are. We are not assuming any 

biological homology. We measure shape itself as Ferson et al [9] do and therefore, 

quoting them "it is valuable to quantify shape variation sensu stricto". 

2.0.4 Fitting the ellipse 

The fitting of the ellipse was done with the method discussed by Fitzgibbon et al in 

their 1999 paper [10] which is based on solving a generalised eigenvector problem. 
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Let D be the matrix that has as rows the vectors xi = [x2 xy y2 x y 11T, let S be 

the square dispersion matrix obtained from DTD and let a = [a b c d c f]T such that 

ax2 + bxy + cy2 + dx + ey + f = 0. Then solve the generalised eigenvector problem: 

Sa =\Ca 

aTCa =1 

where C is the constraint matrix that guarantees elliptical results by constraining 

the system to have 4ac - b2 = 1. In matrix form C is 

0 2 0 0 

010000 

200000 

000000 

000000 

0 0 0 0 0) 

The solution to this system minimises the algebraic distance from the points to 

an ellipse, resulting in the coordinates for the centre, the angle of rotation and the 

semimajor and semiminor axes' lengths. 

2.1 Alignment 

The alignment and standardisation of the profiles is obtained by rotating the profiles 

in such a way that the best fitting ellipse will be resting on the semimajor axis. 

In order to have more clearly comparable profiles, after being rotated, the profiles 
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are centered and scaled in such a way that their caliper diameter, measured parallel 

to the semimajor axis, ranges from -1 to 1. This standardises the range of the X 

coordinates to be in [-1, 1]. The Y ranges are scaled by their corresponding X factor 

to preserve perspective and ratio between X and Y in each of the profiles. 

This approach seems to be arbitrary and artificial, but is indeed preventing the 

introduction of variability due to rotation or size in the study. This normalisation is 

performed in the same spirit as Ramsay and Silverman do for the bone shapes and 

the intercondilar notch in their case study publication [30]. 

It is thought that performing this centering and scaling might have the same 

effect that registration would have on the profiles. If registration in the FDA sense 

is to be performed on the profiles via the bivariate (X(t), Y(t)) function, we must 

keep in mind the fact that these two are not independent and hence the same time 

warping function should be used for both functions to keep the original shape. 

Figure 2.3 shows one of the nucleui with its corresponding fitted ellipse. Know-

ing the centre and rotation of these fitted ellipses gave the needed information for 

"aligning" all nuclei to lie in their corresponding ellipse's major axis. This action 

allowed for all nuclei profiles to have' a well-defined reference point (X (t0), Y(to)). 

After rotating the nuclei according to their corresponding ellipse, we determine 

the point that will be deemed as (X(t0), Y(t0)). This point is chosen as the leftmost 

point that lies on the semimajor axis; see Figure 2.4. If the desired point is not 

one of the sampled points, as it is possible that there might be no point whose Y 

coordinate is exactly zero, the needed point is obtained by interpolation. 

Figure 2.5 shows all the nuclei rotated and time zero to is shown as the point in 

the plot. 
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Figure 2.3: Ellipse fitted to nucleus profile 

The starting point or reference point,although arbitrary, has been determined in 

the same way for all nuclei now. For the linear interpolation in the profiles we can 

start measuring the arc length from to. Each profile is represented by 150 equidistant 

points. The distance between points refers to arc length in the profiles. For example 

if the perimeter of the profile is 10 length units, then the points were chosen to lie 

at distances 0, 10/149, 10 * 2/149, ..., 149 * 10/149) so the that total perimeter will be 

covered. 

Figure 2.6 shows the parameterisation of the X(t), Y(t) coordinates of the first 

normal T-lymphocyte nucleus with the equidistant approach. 
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Figure 2.4: Rotated profile 
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Figure 2.5: Rotated nuclei with starting points 
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Figure 2.6: X(t),Y(t) based on equidistant points 

The points can also be chosen by normalising the total time interval for each 

profile, hence having the points 0, i/n where n is the number of sampled points that 

define the profile and i = I, -, n, and then interpolating linearly the X and Y values 

for 150 equally spaced time points between [0, 1]. Figure 2.7 shows the same profile 

as in Figure 2.6 parameterised by taking the 150 points as uniformly distributed on 

the [0, 1] time interval. The number of sampled points differs from profile to profile, 

however this is not a problem since we have determined time zero to beforehand. 

Although the values of the X, Y coordinates will not necessarily be the same for 
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Figure 2.7: X(t), Y(t) based on uniform time points 

the two choices of determining times to = 0 to tv-, = 1 we can expect that the choice 

used will not affect the analysis. Comparing Figure 2.6 and Figure 2.7 the difference 

seems negligible to the naked eye. The principal component analysis is performed 

for each of the choices and compared for sensitivity. 

All the smoothing done in the thesis is performed using these points as the basic 

data for analysis. In many applications of FDA the functional data are registered in 

order to better 'align' characteristics and enable the analyst to find differences. In 

our case, however, registration was not performed as such. The profiles were rotated 
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to rest in their major axis so that analysis on the X(t) and Y(t) as functions of time 

would not be artificially affected by having some "horizontal" and some "vertical" 

profiles. 

At further stages, where derivative information is needed and analysed, the data 

are smoothed and approximated by basis functions. Given the cyclic nature of nu-

clei, as they are closed curves, approximation for each of the coordinates in the 

X(t), Y(t) process is based on Fourier expansions for the underlying cyclic structure 

and compared to the spline fit in order to extract residuals information. 



Chapter 3 

Analysis with linear interpolations 

3.1 Principal Components Analysis 

The profiles of the nuclei are formed by the X, Y pairs at each time t, and in this 

manner each of the pairs contributes to the variability of the profile at specific posi-

tions in the profile. Based on this, the profile can be seen as having the 150 points 

as variables and then Principal Components Analysis can be performed to discover 

the type of variation that affects each of the types of profiles the most. 

As mentioned in section 2.1, there are two approaches to the selection of the 

n = 150 generated points. One approach is to take arc-length equidistant points in 

the profile so that at in-between times tj = - 1), t+1 = (i + 1)/(n - 1) E [0, 1] 

we have walked the same distance along the profile. The other approach is to set 

n = 150 time points uniformly distributed over [0, 1] and interpolate on the existing 

X, Y sampled points for their respective X(t) and Y(t) values. 

In order to perform PCA, each bivariate X(t), Y(t) datum is taken as separate 

in each of its coordinates. The data from the 100 profiles are arranged in 100 rows 

with 300 columns, (150 for each of X and Y coordinates) and multivariate PCA is 

performed on these [30]. The resulting matrix of rotations or loadings is rearranged 

as a three-dimensional array for easier access and interpretation. This array has in 

its first two dimensions 150 x 2 matrices of loadings for the 2-vector X, Y pairs, and 

its third dimension accounts for the 100 'pages' corresponding to the 100 profiles. 

34 
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The purpose of performing POA on the data is to try to detect differences in the 

two groups while reducing the data dimensionality. We expect to find differences in 

the components' scores for the two different types of profiles. Apart from the score 

obtained from the 'linear combination' or score, we gain interpretability from the 

principal components in a graphical sense by investigating the possible effect that 

each of them has on the geometry of the mean profile. 

The effect of the principal components on the shape of the profiles is captured 

graphically by adding and subtracting a fixed amount C times the standard devia-

tion of the component to the mean profile (obtained by averaging out the values of 

X(t), Y(t) for each fixed t). 

The PCA routine returns 100 components and we are interested in keeping 

the ones that account for the highest percentage of the variability. The following 

screeplot shows the decrease in percentage of variance accounted for per component, 

and hence is a guide for choosing the number of components to study. 
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Figure 3.1: Plot of variance accounted for by POs 

Figure 3.1 indicates that there would be no real gain in the variability accounted 

for after using about 6 principal components. 

The effect of the principal components on the shape of the profiles is shown in 

Figure 3.2. 
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Figure 3.2: Effect of first 6 principal components on the mean profile; the thick 
line is the mean profile, the dotted line shows mean minus pca effect and the solid 
thin line shows mean plus pca effect. 

Figure 3.2 shows the effect of having a component being negative or positive for 

profiles. The first principal component is regulating the behaviour of the convexity 

or concavity of the bottom part of the profile. A positive first principal component 

tends to make the bottom of the profile cut into the profile making it concave, 

whereas a negative first component tends to create a convex bump in the lower part 
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of the profile as well as having the profile exceed the borders of the mean profile in 

most directions. 

The second component regulates what could be seen as the eccentricity of the 

profile, its roundness or its tendency to look more like a horizontal potato. A positive 

value on the second principal component will shrink the semiminor axis of profile, 

and hence the profile has a narrower Y range than the mean profile. If looking at 

the profile as an ellipse, the positive value of the second component creates an ellipse 

with greater eccentricity than the mean profile. A negative value on the second 

component will create a shape closer to that of a circle. The eccentricity is smaller 

than that of the mean profile. 

For the third component, a positive value shrinks the semiminor axis, causing 

most of the profile to be encased inside the mean profile, except for the fourth 

quadrant where a positive value for the component creates a protuberance that 

exceeds the borders of the mean profile both in the X and Y coordinates. A negative 

value on the third component has the opposite effect, that is, the profile is enlarged 

on the vertical scale almost everywhere except at the fourth quadrant, where the 

profile is concave and inside the mean profile. 

The fourth component affects mainly the first and third quadrant. A positive 

value in this component causes the profile to grow in the first quadrant, while the 

third quadrant effect is to pull the profile slightly to the inside of the mean profile 

without loss of convexity. The profile flattens on the right side. A negative value 

of this component has the effect of shrinking the profile in the first quadrant and 

protruding it on the right side, while also expanding the boundary outside the mean 

profile in the third quadrant. 
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The fifth and sixth components regulate the smaller scale bumpiness of the profile 

all around. In both cases the negative of the component does the opposite of the 

positive, hence where there is a bump in the positive part, there is a dip in the 

negative and vice versa. 

We expect normal profiles and lymphoma profiles to have different values on 

some of these components. Figure 3.3 shows the summary distributions of the first 

six components. 
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Figure 3.3: Comparison of PCA scores by profile type 
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Profiles of non-cancer nuclei tend to have a negative value for the first principal 

component and those of cancerous nuclei tend to have a positive value in this compo-

nent. For the second component, normal profiles tend to have negative 'values while 

cancerous ones tend to have a positive value. For components 3 to 6 the normal 

nuclei tend to have a positive value and the cancerous a negative value. We want to 

know if these differences are significant. 

Performing Welch's T test on the means of each type of profile, we see that the 

mean value of the first component for Normal profiles is significantly smaller than 

the mean value for first component of cancerous profiles (p-value < 0.002) with a 

95% confidence interval of (-1.3637, —0.2808). Wilcoxon's rank sum tet also yields 

a significant difference (p-value <.02). So the first principal component is useful in 

separating normal and cancerous profiles. 

Means for components 2 through '5 do not show to be significantly different. 

However, normal profiles have a significantly higher mean for component 6 than that 

of the cancerous profiles (Welch's: p-value < 0.04, Wilcoxon's: p-value < 0.03) 

A sensitivity analysis for different number of points and for different starting 

points was performed. Different numbers of points were taken, from as low as n = 50 

to as many as n = 150 points. The first component proved to be significantly different 

for normal and cancerous profiles for all values of n. The starting point was also 

shifted from to = 0 to analyse if it would have any effect on the calculations and 

hence make any difference in the conclusion. This was done by dividing the interval 

between to and t1 by 10 and performing the analysis again for every shift of one tenth 

of the interval. The analysis gave the same conclusions as before. 
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3.1.1 Were we really doing MDA instead of FDA? 

In the previous sections of this thesis the reader may be misled into thinking that 

there have been no FDA techniques used because of the fact that multivariate-like 

techniques and procedures were used. This is not the case. The fact that for the first 

analyses we decide to use linear interpolation on the data for conversion to functional 

form resulted in allowing us to use the MDA techniques on the data, almost as 

if doing only MDA. The very important interpretation part is the construction of 

vectors of the form (X(t), Y(t)). When using the multivariate techniques of P CA 

and LDA the fitting mechanics behind these methods lets us "trick" them into doing 

the analysis for the bivariate X(t), Y(t) multivariate process as if it was processing 

the multivariate problem on one long string of variables. 

Formally, PCA analysis looks for the linear combination of the variables that will 

have the largest mean square error, that is 

Pci= jXjj., i=1,...,N (3.1) 
3=1 

where the j are normalised weight coefficients that determine the linear combination 

of the i-th observed values of the j-th variable. In terms of inner products of the 

vectors and x, we write PC, = (, x,), i = I, -, N. The process of PCA is 

well known and documented as in Johnson and Wichern [17}, so little time will be 

spent on the detail of the process. The interesting part comes when dealing with 

functional data; here the counterparts of the vectors xi are functions xi(t) and the 

linear combinations become: 

pci = f (t)x(t)dt= (3.2) 
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The problem of finding the adequate e's is equivalent to solving an eigenvalue/eigenvector 

problem for the covariance matrix of the x's. The functional form is analogous except 

that we are dealing with weight functions rather than weight vectors. One concern 

is the fact that in the functional case the number of values of the functional datum is 

infinite as this is the counterpart for the dimensionality p in MDA and therefore, the 

concern for the maximum number of different eigenvalue-eigenfunction pairs arises. 

However, if the functional data xi(t) are not linearly dependent, the covariance op-

erator has rank N - 1 and hence there will be N - 1 non-zero eigenvalues. 

Let us now return to the bivariate functional case. In our case we are dealing with 

X and Y coordinates both as functions of time. Then a typical principal component 

is defined by the 2-vector = (, Y) of weight functions, with 61 taking into account 

the variability of x and 6Y the variability of y. Then (see Ramsay and Silverman 

[29]) the inner product is: 

(1)2) + (3.3) 

This is equivalent to concatenating the two functions to create a new function. 

The same procedure can be applied to the data and have one-vectors (with double 

the length of the original) representing each of the profiles and perform the analysis 

on these. The resulting components and vectors can be rearranged as 2-vectors to be 

used for graphical analysis. An analogous "trick" of stringing the data can be used 

for performing linear discriminant analysis or other functional version of MDA. 
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3.2 Discriminant analysis 

Assuming that we can obtain a value Ji for each profile, such that 

oi== 
f1 if cancerous 

—1 if normal 

• we would want to be able to calculate such 6 to be able to allocate each profile to 

one of Lymphoma or normal group. In multivariate analysis, where we would have 

vectors W) corresponding to populations i = 1, 2, we would be interested in finding 

the vector a that would determine the linear combination or linear discriminant for 

these profiles and a value ri-z., such that we could know from which population a vector 

W came by calculating whether aTW > 7h. In the MDA case a takes the following 

form 

and 

= - 

2) 

where is the mean for population i and is the pooled estimator' for the covari-

ance matrix, assuming equal population covariance matrices. The method is based 

on a comparison of within-group sum of squares and between-group sum of squares 

[17]. 

In the case of functional data analysis, we have a function of time, say a(t), and 

we have functions W(t) instead of the multivariate vectors. 

In the bivariate functional case, the case of our profiles, we equivalently propose 

to have a(t) = (ax(t), ay(t)) in such a way that our discriminant function becomes 
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= f {X(t)ax(t)dt + Y(t)ay(t)dt} (3.4) 

Recalling that the functional form of the data has so far been linear interpolation, 

we can perform the linear discriminant analysis simply on the sampled X, Y points 

from each profile. The classification of the profiles can be done in this manner, but 

the interpretation about the directions that the profiles should deviate from the mean 

in order to discriminate is cumbersome and even senseless. 

The analysis is carried out on the stringed X, Y points, having a matrix with 100 

rows, one row per profile, where the first n/2 points are the X's and the last n/2 are 

the Y's. 

For each of the points in the profile we obtain a direction for discrimination from 

the normal mean profile. Figure 3.4 shows with the arrows the direction of the 

projections for the discriminant. This figure is difficult to interpret and to follow if 

our aim is to classify a new profile or to look for characteristics that a profile should 

follow to be classified into one of the types. 

The approach that proves more interpretable is to carry out discriminant analysis 

based on a subset of the principal components. obtained from the former analysis. 

We first find the discriminant as a function of these components. In our case we 

find the discriminant based on the first six principal components that accounted for 

90.78% of the variability. The choice of 6 principal components for the discriminant 

calculation was based not only on the variability accounted for by the components. 

In addition, leave-one-out crossvalidation was performed for the discriminant anal-

ysis based on K = 2,. . . , 12 components and the false positives and false negatives 
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Figure 3.4: Discriminant directions for the naive approach 

calculated for each. The summary for each of these values of K is shown in Table 3.1. 

The discriminant is created based on the first 6 components and the obtained 

matrix of weights, the a's, is applied to the matrix of the corresponding rotations of 

the 6 chosen components and then rearranged in the X, Y coordinates. 

Figure 3.5 shows the normal mean profile with the arrows pointing in the direction 

of discrimination. This means that profiles following, on average, the shape formed 
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K 2 3 4 5 6 7 8 9 10 11 12 
False positives 
False negatives 

12 10 14 13 16 18 18 18 18 17 17 
24 26 23 24 20 21 23 23 23 26 21 

Table 3.1: Number K of PC's used with corresponding false positives and false 
negatives 

by the tips of the arrows, will have different value for the discriminant than that of 

the normal mean profile. 

Figure 3.6 is a comparison of the use of principal component based discriminant 

and the discriminant based just on the difference of the group means. This figure 

shows boxplots for the discriminant scores. Both methods were adjusted to have a 

mean value of 1 for Lymphoma profiles and a mean value of -1 for normal profiles. 

Welch's t test was performed on both methods and the discriminant values ob-

tained from the analysis based on components yielded a significant difference between 

the means of the discriminant values (p-value < 0.001), while that based on the group 

means was not significant. 
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Figure 3.5: Discriminant directions for the PC approach 
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Figure 3.6: Comparison of methods for discriminant values 



Chapter 4 

Basis function expansions 

In the previous parts of this thesis we created each functional datum via linear 

interpolation between the observed values of the profiles. We were able to perform 

principal components analysis and linear discriminant analysis directly on the chosen 

points using the existing MDA approach, as there was no smoothing performed on 

the profiles. It is worth mentioning that performing the smooth functional version of 

any multivariate analysis involves more than performing MDA and then smoothing 

the results. Ramsay and Silverman [29] and Green and Silverman [11] discuss the 

subject. Previously we had no smoothing and hence the results followed in a rather 

straightforward form. 

In this thesis we are interested in variability at different scales. So far, the analysis 

has been concerned with overall shape and the analysis was performed by first having 

to insure that extraneous variability was not introduced because of rotation or size 

effects. We want to study the variability of the profiles at the level of their derivatives, 

that is to study the speed at which the border of the profiles changes and compare 

measures of curvature. It is our assumption that a normal cell will tend to have a 

smooth nucleus and will have smaller total curvature measurements than that of a 

malignant one which we assume will tend to be a "squiggly" nucleus; this curvature 

can be measured locally. 

On the other hand, two nuclei that are smooth but whose profiles differ in their 

roundness should also yield different speed for profile border change and different cur-

49 



50 

vature. For example, taking the first profile from the group of normal T-Lymphocytes 

and the seventh from the Lymphoma group (see Figure 4.1), it is clear that the nu-

cleus that does not "cut" into itself will have a total sum of local curvature smaller 

than the Lymphoma one that is shaped like a croissant. 

Figure 4.1: Examples of normal and malignant profiles 

Now we are talking about curvature and therefore we are not only thinking of 

continuous functional forms, but of basically smooth continuous functional data. We 

create each functional datum as a smooth function of the observed points via basis 

functions expansion such as B-splines or Fourier expansions. 

With this in mind, we would like to examine the behaviour of the coordinates 

with respect to time. We start by graphing the raw discretised data as a function of 

time. Here we are assuming the data were taken at equal time intervals, that is to 

say that the first point in the data will be considered to happen at time to = 0, the 

second point at t1 = 1/n and so on until the last point in the data was taken at time 

= 1. It is important to point out that the number of points per profiles are not 

the same and that although the time points are spaced equally over [0, 1] this does 

not mean that they represent equally spaced points. 

Figure 4.2 shows one of the normal profiles and the X and Y coordinates as 
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functions of time. Figure 4.3 shows one of the malignant profiles and its X and 

Y coordinates as functions of time. In both graphs, the solid line is for the X(t) 

function and the dashed line is the Y(t). 
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Figure 4.2: Normal profile with coordinates as a function of time 
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Figure 4.3: Malignant profile with coordinates as a function of time 

These graphs present what could be taken as extreme cases, but are illustrative 

of the kind of variation that is observable. Our emphasis is on trying methods that 

will measure local variability, given that, as Peura and livarinen discuss [25], some 
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known descriptors, such as convexity ratio A/ACH where A is the area of the planar 

object and ACH is the area of the convex hull, prove not to be useful in distinguishing 

a planar object with a smooth boundary from another with irregular boundary if 

both happen to be non-convex. 

In order to try to perceive, if only graphically, differences between types of profiles, 

and also to aid in the decision of which type of basis functions to use for the basis 

function expansion, we present in Figure 4.4 the data for all the profiles' raw data 

and their corresponding coordinates as functions of time. 
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Figure 4.4: Raw profiles and their coordinates as function of time 

The nuclei are, by nature, closed curves and hence cyclic; this would suggest the 

use of Fourier series expansion for the profiles. In Figure 4.4 we observe that in the 

X(t), Y(t) graphs for the malignant profiles, both coordinates seem less regular and 

are prone to greater phase shifts than for the normal profiles, 
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4.1 Creating the functional data 

Recall that transforming the discrete data, say z, into functional form (x (t)) involves 

representing the function by a linear combination of a fixed number K of known basis 

functions, usually denoted by q5k, 

X(t) = CA(t)- (4.1) 

In the creation of the functional data from the discrete observed values via basis 

functions, we have the option of smoothing the function. The choice of type of basis 

functions and the number of basis functions on which to base the transformation 

has as a consequence smoothing. Ramsay and Silverman [29] and Efromovich [8] 

discuss the difference between interpolating with smooth functions and smoothing. 

In our case, if we are to take each point in the profile for our basis expansion and 

pass through them, we will introduce no smoothing, only interpolation. On the other 

hand if we base our approximation on fewer points than the total, or on K <n basis 

functions we might miss getting exactly the observed values, hence smoothing. If we 

have n points and no smoothing is wanted, by using K = n in the linear combination 

4.1 it is possible to choose the coefficients Ck to yield x(t) = zj for each j. 

The choice of number and type of basis functions is important for the estimation 

of the derivatives of the function. Bases that work well on representing accurately 

the observations may push the estimated x(t) to have high frequency oscillations. 
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Fourier series expansion, where the basis functions Oi are given by 

1 

sin rwt 

cos rwt 

and where w determines period 27r/w, yield a simple derivative estimation since 

the coefficients of the derivative function can be found by multiplying individual 

coefficients c1 by powers of the period-argument and the appropriate change of signs 

and interchange of sine and cosine function 

a 
Tt sin rwt = rw cos rwt 

a 
Tt cos rwt = —rw sin rwt 

Thus the first derivative has coefficients (0, —wc2, we1, —2wc4, 2wc3, ...) and the 

second derivative has coefficients (0, _W2 C1, w2c2, —4w2e3, _4W2 C4, ...). 

This basis generally yields smooth expansions but might be not so good when 

there are rather strong local features. 

In response to the need of reflecting both global and local features polynomial 

splines were developed [5]. In a nutshell, polynomial splines are functions constructed 

by smoothly joining polynomials at chosen points called knots spread in the interval 

[a, b] (in our case [0, 1]) increasingly. Between adjacent knots the spline is a polyno-

mial of fixed degree, but at the knots where the polynomials meet they are required 

to match in the values of a fixed number of derivatives. A spline of degree 0, or 

order 1, is a step function and hence discontinuous at knots; a spline of degree 3, 

order 4, is piecewise cubic with continuous second derivative. B-splines are versions 
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of splines defined on a smaller support, or truncated over certain values, usually the 

interval [t_2, t 2]. 

A useful approach for creating the expansion is the penalised smoothing approach 

[11, 28, 29]. The penalised smoothing yields a functional datum from discretised 

data, but instead of basing the fit only on minimising the sum of squares of the fit, 

a penalty is added to the object function; the idea behind penalising is to control 

roughness in the resulting function. One of the most used penalties is based on 

the integrated norm of the estimate of the second derivative of the function, that is 

the curvature of the function. There is a parameter A to regulate the degree of this 

penalisation. Formally we want to minimise the penalised sum of squares PENSSE: 

PENSSEA(xy) = - x(t)12 + AIID2xI!2 (4.2) 

where the penalisation is the integrated square second derivative of the function 

x(t), formally IID2xII2 = f{.D2x(s)}2ds and the operator Dm18 the Mth derivative 

operator. 

If the penalisation parameter A - co then we end up with a linear fit; if A -+ 0 

we end up with interpolation. As Ramsay and Silverman mention [29], even in the 

case where A -+ 0, the resulting function is the smoothest twice-differentiable curve 

that fits the data. 

Since we are interested in the variability of derivatives, and we are assuming that 

normal and malignant profiles differ on their borders locally, we are not interested 

in smoothing the data too much (at first) and will not penalise the fit. By not 

penalising the fit we will ty to preserve the variability in the curvature rather than 
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smoothing it out. We will create the functional data based on all the observed points 

for each profile, but with a fixed number of basis functions to be consistent in the 

approximation. 

We created the functional data based on a Fourier expansion with 17 basis func-

tions. We use 17 bases in order to capture the local variability and approximate the 

observed data closely. Recall that the Fourier approximation would be: 

(t) = co +cl sin wt+c2 COS wt+c3 sin 2wt+c4 COS 2wt+ ... (4.3) 

Figures 4.5 and 4.6 show the approximation applied to two normal and two 

malignant profiles. The difference between the observed data and the approximation 

is not visible. 

If we assume the profiles to be ellipses, then we would expect the first and second 

coefficients of the Fourier expansion, c0 and c1, for X to be relatively close to zero, the 

third coefficient (c2 corresponding to the first cosine term) to be negative and close 

to —1 and also that coefficients of order higher than 3 (c3, c4, ...) would tend to be 

zero or have averages of zero with observed variability due only to noise introduced 

by digitisation. For the Y coordinates we would expect the second coefficient (ci 

corresponding to the first sine term) to be negative and close to —1, and those 

coefficients of order higher than 3 to behave as for the X expansion. 

Based on the shapes observed in graphing the X and Y coordinates with respect 

to time and assuming that profiles are basically deformations from an elliptical tem-

plate, we can expect coefficients of order higher than 3, for the normal profiles, to 

have averages not so close to zero with small variability or close to zero but with high 

variability. Such behaviour is also expected for the normal Y. These are expected 
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Figure 4.5: Two normal profiles and approximations 

1.0 

because the normal profiles seem to have a shape that is closer to elliptical and seem 

to experience less local variability than malignant, profiles do. In the case of the ma-

lignant profiles we expect that coefficients of order higher than 3 tend to be greater 

in magnitude than those for the normal profiles due to the presence of concavity and 

tendency to cut into themselves (found in the PCA section of this thesis). 

The following figures, Figuies 4.7, 4.8, 4.9, 4.10 show boxplots of the coefficients 

for the expansions. 
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Figure 4.6: Two malignant profiles and approximations 
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Figure 4.7: Boxplots of coefficients for X in normal profiles 
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Figure 4.8: Boxplots of coefficients for Y in normal profiles 
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Figure 4.9: Boxplots of coefficients for X in malignant profiles 
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Figure 4.10: Boxplots of coefficients for Y in malignant profiles 

Figures 4.7, 4.8, 4.9, 4.10 show that for the normal profiles the coefficients of 

order higher than seven start being concentrated around zero, for both the X and 

the Y coordinates. For the malignant profiles the coefficients start dampening at the 

ninth or tenth coefficient for X and Y. 

Having the boxplots for the first three coefficients together with the boxplots for 

the higher order coefficients obscures the variation of the higher order coefficients. 

Therefore we exhibit Figures 4.11, 4.12, 4.13, 4.14 without them. Wilcoxon's tests 
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were performed to test if the mean of coefficients of higher order is significantly 

different from zero. 
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Figure 4.11: Boxplots of order > 3 coefficients for X in normal profiles 
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Figure 4.12: Boxplots of order > 3 coefficients for Y in normal profiles 
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Figure 4.13: Boxplots of order > 3 coefficients for X in malignant profiles 



67 

0 

q 
0 

.1 

I I 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Coefficient 

Figure 4.14: Boxplots of order > 3 coefficients for Y in malignant profiles 
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X normal Y normal X malignant Y malignant 
co 0.40 0.79 0.26 0.27 
Cl 0.05 0.00 0.15 0.00 
C2 0.00 0.39 0.00 0.13 
C3 0.19 0.59 0.09 0.01 
C4 0.37 0.92 0.64 0.04 
C5 0.06 0.00 0.01 0.00 
C6 0.00 0.71 0.00 0.17 
cr 0.26 0.04 0.93 0.00 
C8 0.72 0.14 0.00 0.02 
C9 0.56 0.02 0.67 0.00 

C10 0.00 0.22 0.55 0.64 
Cii 0;34 0.74 0.45 0.96 
C12 0.62 0.02 0.58 0.00 

0.99 0.02 0.30 0.78 
C14 0.32 0.08 0.86 0.58 
C15 0.04 0.64 0.95 0.28 
C16 0.43 0.69 0.45 0.21 

Table 4.1: P-values for Wiftoxon's test 
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Table 4.1 shows the p-values from Wilcoxon's test for H0 = 0 versus H1 0 

for the Fourier coefficients of X(t) and Y(t) for the normal profiles and for the 

malignant profiles. 

We observe that the means of the coefficients of orders higher than 3 are not 

all zero which is indicative of greater deformations from elliptical templates and 

indicative of greater local variability existing in the profiles. This local variability 

would be best captured with a basis expansion based on splines. 

Figure 4.15 shows the correlation contour plots of the X coordinates for each of 

the normal and malignant profiles, Figure 4.16 shows correlations for the Y coordi-

nates and Figure 4.17 shows the crosscorrelation between X and Y for each. 
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Figure 4.15: Correlations of X for normal and malignant profiles 
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Figure 4.16: Covariance of Y for normal and malignant profiles 
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Figure 4.17: Cross-covariance of X and Y for normal and malignant profiles 
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The normal profiles' X(t) present high correlation along small steps off the di-

agonal times for times less than 0.45 or greater than 0.55. Around the 0.45 - 0.55 

range the correlation in the smallest step from the diagonal rapidly decreases. This 

type of correlation is expected and is explained by two facts: 

• The starting time to was taken to be the minimum x value along the semimajor 

axis and then we moved counterclockwise, hence the first half of the time X(t) 

is increasing to close to its maximum. One quarter of the way we are still in 

negative values, closing in on 0 still increasing. Given that we have the profiles 

resting on their semimajor axis, we have the variable increasing for half of the 

time. Once we move away from the maximum x it starts decreasing. That is 

why around t = 0.5 the correlation is so tight. If we compare the values of the 

x at times tj = 0.2 and tj = 0.7 we are comparing negative values with positive 

values that have not much in common. 

• The normal profiles tend to follow a shape closer to that of an ellipse and hence 

we observe the symmetry not only with respect to the line extending from (0, 0) 

to (1, 1) but close symmetry with respect to the line extending from (0, 1) to 

(1, 0) as an ellipse would have. 

In the X for the malignant profiles the correlation contour plot appears to have 

three sections along the diagonal, instead of having two as does the normal profiles' 

correlation. This is indicative of the fact that malignant profiles tend to experience 

concavity and therefore the X(t) seems to be closing in into the area of small change, 

but then it increases again. The fact that there is no symmetry about the (0, 1) to 

(1, 0) line indicates that the X is not behaving the same way before and after time 
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0.5. 

Regarding Y for the malignant profiles the correlation contour plot appears asym-

metric with respect to the line spanned between (0, 1) and (1, 0). The correlation plot 

for normal profiles appears symmetric about the such line. This is indicative of the 

fact that malignant profiles tend to experience concavity and given the orientation 

of the profiles, Y(t) increases and then decreases rapidly. 

The cross-correlation plot of X - Y is difficult to interpret, but the variability in' 

the plot corresponding to malignant profiles is greater than it is in the plot for the 

normal profiles. 

4.2 Using the functional data 

The functional data, as constructed with Fourier or splines basis functions, enables 

us to analyse the total curvature in a profile, as we now have twice differentiable data. 

If we had univariate data we could calculate the integral of the second derivative as 

our estimate of curvature. This would amount to calculating the default penalisation 

term when smoothing is performed. 

In our case we are defining the profiles as bivariate functional data that describe 

a planar object. We are looking at the profiles in terms of the arc length s pa-

rameterised by t. We have X(t), Y(t) defining the profiles. The construction of 

the functional form of the data guarantees that the obtained planar curve (profile) 

is closed and twice differentiable [29]; hence we can use known calculus results to 

express the profiles' shape and curvature. 

Let Z be a profile in 72, parameterised by tin such a way that Z(t) = (X(t); Y(t)) 
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for 0 ≤ t ≤ 1. The arc length measured from our starting point to to a point Z(s) 

in the profile is 

= f8 (x'(t)2 +Y1(t)2)h/2 dt 

and hence 

dS 
= (XI (t)2+yl(t)2)h/2 

Now the curvature n(t) at some point t in the curve is: 

ic(t) X'(t)Y"(t) - X"(t)Y'(t) 

(XI (t) 2 + Y1(t)2)3/2 

And the total curvature Curv(Z) of the planar profile takes the form: 

Curv(Z) = fz k(s)Ids = fo X'(t)Y"(t) -  .K"(t)Y'(t)  
X/(t)2 + Y/(t)2 

(4.4) 

dt (4.5) 

For the calculation of curvature there is no need for registration or alignement of 

the data since the integration is over the entire C2 curve. 

We assume that the normal profiles w ill tend to have smaller values for the total 

integrated curvature since we are assuming that they will tend to be convex and with 

smoother borders. The malignant profiles are assumed to be nonconvex more often 

than the normal profiles and also exhibit more variability locally in the borders. 

We are interested in testing the hypothesis 

against the hypothesis 

H0 : I-Curv(z),Norma1 = [tCurv(z),Malignant 

H1 : I-'Curv(z),NorrnaI </Curv(z),MaIignant 
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Performing Welch's T test we conclude that the curvature is significantly smaller 

for the normal profiles than it is for malignant (p = 0.00029) and performing 

Wilcoxon's rank sum test takes us to the same conclusion (p = 0.00067). Fig-

ure 4.18 shows the density estimates for the curvatures of profiles and Figure 4.19 

shows boxplots for the curvatures. 

6 8 10 12 14 6 8 10 12 14 

Curvature Curvature 

Figure 4.18: Density estimates for the curvatures of normal (left) and malignant 
(right) profiles 
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Figure 4.19: Boxplots for the curvatures of normal and malignant profiles 



Chapter 5 

Principal Differential Analysis 

The aim of this thesis has been to find a process that will help us in classifying 

profiles into malignant or benign types. Moreover, we want to be able to provide 

some uncertainty measurement or assessment of this classification. Such a procedure 

should not only characterise the existing profiles, but be able to classify new profiles. 

Hoboith and Jensen [14, 16] assume in their modelling, and conclude in their 

results, that malignant and benign profiles differ in the amount and type of variability 

or deformation from the templates. They also show that local variability plays a 

significant role in the shape of the profiles [15]. This local variability, as measured 

by assessing curvature in the previous chapter, has proved to be significantly different 

in the two groups. 

A procedure that can be used to try to classify a new profile consists of the 

following steps: 

• Create the empirical cumulative distribution of curvature for the normal group 

and for the malignant group. 

• Calculate the curvature of the profile via the bivariate functional form as done 

previously. 

• Based on the empirical distributions, observe where the curvature for the new 

profile stands and calculate the probability of having a higher(lower) value in 

the normal and in the malignant group. 

78 
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The purpose of this procedure is based on the findings and assumptions that 

normal profiles have lower curvature values than those of the malignant profiles. A 

profile that is malignant would yield a low estimated probability of being larger than 

the observed value under the distribution for the normal profiles. It would yield a 

large probability of being greater than the observed value under the distribution for 

the malignant. 

If we have a new set ofprofiles coming from one tissue, we can calculate the mean 

of the observed data and perform Hypothesis testing against the means of normal 

profiles and against the mean of malignant profiles. Given the variability in the 

curvatures of the two types, this would be subject to a large Type I or Type II error. 

We observed, at the time of creating the functional data via Fourier series, that 

the data have high variability at local levels. Recall that if the profiles had been 

perfectly smooth ellipses, then we would have observed coefficients of higher order 

than three to be exactly zero. This was expected as the parameterisation of an ellipse 

in polar coordinates is well known to be 

x(t) = acost 

y(t) b sin t 

for t in [0, 2ir]. Hence the corresponding coefficients would necessarily be, for the 

X(t) series: c0 = 0, c1 = 0, and c2 = a and the rest of the coefficients would be zero; 

as for the Y(t) series, the coefficients would be c0 = 0, c1 = b, and c2 = 0 and the 

rest zero. 

In the case of small deformations from the elliptical template we would expect 

the coefficients of high frequencies to be nonzero but small. Observing the boxplots 
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from the previous chapter, we perceive that there is variability attributable to low 

frequencies and hence we detect that there is more structure than just that of period-

ical or sinusoidal nature in the X, Y coordinates. There is, apart from the sinusoidal 

structure, what may be considered a residual process. 

At this stage we would like to assess and possibly characterise the underlying 

structure of both the normal and malignant profiles and also to compare their resid-

uals. We would like to be able to decide whether a profile comes from a malignant 

or a normal nucleus based on the underlying structures of the X(t), Y(t) functions. 

We want to determine the structure in an objective and reproducible way for each 

type from the profiles we have. With this, we will be able to test a new profile and 

determine where it 'fits'. 

The variability structure of the coordinates can be assessed by the behaviour of 

their derivatives and the relationship between different orders of derivatives. Borrow-

ing concepts from the differential equations world, we can define a Linear Differential 

Operator (LDO) that determines the relationships between the derivatives of differ-

ent orders. This LDO annihilates the primary structural form of the functions. 

We use the notation: 

Dmx(t) - - 

atm 

for the mth derivative of the function x (t) where D is the derivative operator and 

when m = 0 then we have the identity, mainly D°x = x 

In this way, define a Linear Differential Operator by: 

PjDj (5.1) 
j=o 

In the functional case, j3j is a function j3(t). 
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To determine the structure of the functions we want to find a linear differential 

operator such that LX(t) = 0. In reality, this would be very difficult given the local 

variability of the profiles. Hence, instead of assuming a homogeneous differential 

model, we assume a more realistic model, a nonhomogeneous system where there 

exists a forcing function, say a(t), and also some error structure LX(t) = a(t) + 

j (t). If the LDO captures most of the structure we expect the error terms to oscillate 

very closely around zero. Given a specified LDO, we expect the normal profiles to 

have weight functions ,8(t) different from those of the malignant ones. Moreover, 

we expect that the weight functions will be characteristic of the type of profile. The 

residual processes or error functions should oscillate around zero, assuming that their 

LDO's are a good fit, for both types of profiles. 

Once the full form of the LDO is determined, and having these being charac-

teristic of each type, we want to determine the group to which a new profile would 

belong. We do this under the assumption that applying the weight functions for the 

normal profiles to a normal profile will result in a "nice" residual process, whereas 

applying it to a malignant profile will give erratic residuals. This procedure should 

yield similar results if we are to apply the malignant weight functions to the normal 

and malignant types of profiles. 

This type of analysis can be related to that of linear regression applied to two 

different populations to give a more intuitive idea of our analysis. In linear regression, 

when having two populations or two regions, say A and B, the linear relationship 

of a set of variables X1, X2,... ,X to a given response Y in each region is fitted by 

the linear model (in matrix form) yk = xk,I3k + k = A, B 

The separate fitting of ,8's assumes that the X variables in region A relate to the 
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response Y differently from the way in which the corresponding variables Xj relate 

to the response in region B. In this type of model, the error structure for regions 

A and B is assumed to be Gaussian with mean zero and constant variance for each 

region. A good fit of the data should yield residuals that satisfy the assumptions in 

each of the regions. Techniques for testing the equality of the p-vector of 8's, namely 

13A 13B, are based on F-ratios of the difference of residual sum of squares and their 

degrees of freedom. Basically, they are based on the concept that the residuals will 

tend to increase their magnitude and variability if the fit is not good. 

Based on this latter concept, and contemplating true difference in the /3's, the 

residuals for region A should be small when the yA is well fitted by the corresponding 

/3A, and should be comparatively larger when fitted by significantly different /3's. The 

/3 coefficients for each region or population can be thought of being characteristic of 

each population. 

Returning to the functional setup, in order to estimate the weight functions for 

the operators, we need the data to be aligned or registered to avoid any phase shifts 

that would introduce exogenous variability to the derivatives and therefore to the 

estimated structure. 

5.1 Registering the data 

Registration or alignment of functional data can be performed according to two cri-

teria regarding the target function. In some cases, we might be interested in aligning 

special characteristics such as local maxima that represent specific characteristics of 

the process in question. In other cases, we might be interested in a continuous and 
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overall alignment, that is, avoiding phase and amplitude shifts and trying to have 

the functions follow a target function as close as possible. 

The alignment or registration of the data is based on the creation of a "time 

warping" function that has the effect of stretching and/or shrinking the time axis so 

that the values of X(t), X(t) for tk' 0 tf align according to some criterion. The 

time warping function h(t) is then such that Xj(h(tk)) X(h(tkF)). This function is 

constrained to be strictly increasing and complies with having h(0) = 0 and h(T) = T 

where the functional datum is originally defined over [0, T]. 

The time warping function for the continuous registration is based on minimising 

a measure of shape similarity, a functional form of sum of squares criterion. Such a 

measurement is expressed as: 

TO 

FSSE(h, A) = f {x{h(t)} - Ax0 (t)}2 dt, (5.2) 

where h is the time warping function, xo(t) is the target function, and A is an ampli-

tude factor. If the target curve and the registered curve are very closely proportional 

then the matrix: 

f{xo(t)}2dt fxo(t)x[h(t)]dt 

f xo(t)x[h(t)]dt f{xo(t)}2dt 

will be singular and hence only one of its eigenvalues is nonzero. This minimisation 

can be penalised also and hence we can obtain a smoothed time warping function. 

We need to have a target function or curve defined for the registration. For this 

purpose we calculate the mean of the normal profiles using the normalised data, 

that is the 150 linearly interpolated values of the X(t), Y(t) functions, based on the 
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equidistant time points for the rotated and centred profiles. 

Figure 5.1, shows the mean curves for the X(t) and Y(t) curves to which we 

register. 

0.0 0.2 0.4 0.6 

time 

0.8 

Figure 5.1: Mean X(t), solid, and Y(t), dashed, curves 

We register the original rotated and centred data to the mean of the normalised 

data. Rather than registering the data directly, we perform registration based on the 

first derivative of the data because the derivatives usually exhibit more variability 

and they oscillate around zero. Once these are registered we register the data itself 
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using the time warping function (say W(t)) calculated for the derivatives. 

One can make the registration process an iterative one by re-calculating the 

warping function using the mean of the resulting data from the first registration. We 

iterated a second time with no gain in registration. 

Figures 5.2, 5.3 show the X(t), Y(t) data for the normal profiles before registra-

tion and the mean for each coordinate. Following these are Figures 5.4, 5.5 that 

show the registered data and the target function to which they were registered. 

0.0 0.2 0.4 

time 

0.6 0.8 1.0 

Figure 5.2: X(t), grey, and mean X(t), black, curves 
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Figure 5.3: Y(t), grey, and mean Y(t), black, curves 
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Figure 5.4: Registered X, grey, and mean X(t), black, curves 
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Figure 5.5: Registered Y, grey, and mean Y(t), black, curves 
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We can observe that there is only a small change in the graphs, and we can 

observe the change by looking at the different spread on the horizontal. That is 

to say that we see the horizontal variability to be less, the lines of the 50 profiles 

are tighter in the registered data. For the purposes of the FDA we registered both 

normal and malignant to the normal mean profile. 

The registration procedure was done for overall shape rather than for landmarks 

such as the local maxima or minima of the X(t), Y(t) functions because the profiles 

are not, indeed, perfect ellipses where we would certainly expect X(t) to reach its 

local minimum at time 0, then reach 0 at time T/4, reach its maximum of 1 at time 

T/2, then again 0 at time 3T/4 and finally the local minimum of —1 at time T. 

Given the possible nonconvexity of the profiles, we would be forcing the profiles to 

really change shape. We use the continuous overall registration that tries to align 

curves overall even if there is no exact alignment at minima or maxima. 

5.2 Principal Differential Analysis applied 

The structure that we have observed in the X(t), Y(t) functions is that of a sinusoidal 

nature. We are interested in the rate of change of the profile as this is one of the levels 

at which local variability exists. Given the sinusoidal structure, and our interest in 

velocity of X(t), Y(t) we propose to use the linear operator on it that would annihilate 

the structure of such velocity. The LDO we propose and use is 

Lx = D3x + /32D2x + /31Dx (5.3) 

which can be seen as a second order operator on the derivative of x. 
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This operator would definitely annihilate the structure in an exact sinusoidal 

structure for a homogeneous differential system, that is to say that Lx = 0 if we 

assume no forcing function is driving the variability and if x was, say Sint. In this 

way we would have 

Dx = cost 

D2x = — sint 

D 3 =  —cost 

and hence D3x+0 x D2x+1 x Dx = 0 (,82 = 0, /3 = 1). We know that the X(t), Y(t) 

functions are not exactly a sin or cos function as they have added variability and we 

are assuming that there is a forcing function c(t) that yields the nonhomogeneous 

differential model as Lx = a(t). Moreover we know that there is variability at higher 

frequencies (higher order Fourier basis functions) but it is considered to be error-like. 

We propose that we the weights /!3j (t) for the LDO will be the functions that will 

characterise each type of profile. 

The name of Principal Differential Analysis was coined by Ramsay as the process 

is, in its motivation at least, comparable to that of principal component analysis. 

The motivation or question is: 'Can we use a set of N functional observations x, to 

create a very small set of m functions on which we can approximate efficiently the 

observed functions?' 

In the case of the LDO, we want to have the LDO (defined by its weights) that 

comes as close as possible in satisfying the homogeneous equation Lx = 0. 

Once we have decided on the operator L, we can define linearly independent 

functions, say u,, that will span its null space. Any function x, satisfying Lx = 0 
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can be expressed as a linear combination of such u. 

Then we want to minimise: 

SSEPDA(L) = Lx(t)}2dt (5.4) 

and we minimise to find the weights. 

The calculation of such weights is outlined in the appendix, and are results from 

Ramsay and Silverman [29]. 

We present first the model for the change in X (t): 

LX(t) =a(t)+e(t) (5.5) 

where LX(t) = ,131(t)DX(t) + /32(t)D2X(t) + D3X(t) and so can be expressed as 

D3X(t) = /31(t)DX(t) + /32(t)D2X(t) + a(t) + 6(t) (5.6) 

here, we write Pi instead of —,8j as the Pi are to be estimated. 

In our calculations we estimate the forcing function a(t), the weight functions 

181(t), 132(t) simultaneously and from these we estimate the residual process e(t). We 

used 47 Bspline basis of order 8 for creating the functional forms of the data. The 

order might seem high, but the reader is reminded that we are to calculate third 

derivatives and we will do penalised smoothing for the creation of the functional 

data. Hence, we will be dealing with 5th derivatives and hence we fit with 2 degrees 

more; this results in degree 7 and therefore the order (degree of local polynomial +1) 

has to be 8. The choice of 47 basis functions yields 41 knots which gives, in the case 

of the smallest number of points for a profile (189), about 5 internal points between 

knots, and in the case of the greatest (343), some 8 internal points. 
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Given the bivariate nature of the profiles' process we end up estimating six func-

tions for the normal profiles and six for the malignant: Two forcing functions: ax (t) 

and ay(t), and the four weight functions thx, I32X, /3w, ,821' for each type. 

Figure 5.6 shows the estimated forcing functions &X (t) and &y (t) for the normal 

profiles. 
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Figure 5.6: Forcing functions for normal profiles 
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Figure 5.7 shows the estimated weight functions 9ix (t) and /y (t) for the D' term 

of L in the normal profiles and Figure 5.8 the estimated weight functions ã2x(t) and 

/2y(t) for the D2 term of L in the normal profiles. 
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Figure 5.7: First weight functions for Normal profiles 
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Figure 5.8: Second weight functions for Normal profiles 
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We present the forcing and weight functions together in Figure 5.9 to show that 

the forcing function is the largest source of variation and how the first and second 

derivatives have smaller impact in such variability. 
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Figure 5.9: Forcing and weight functions for Normal profiles. Solid black line is the 
forcing function, Grey line is 61 and dashed line is /92 

The object of fitting the weight function to the LDO was to try to characterise the 

normal profiles and be able to have residual functions which we expect to be small 

and oscillate around zero. Figure 5.10 shows the residual functions obtained from 

applying the LDO with weights calculated from all 50 normal profiles to the normal 

profiles via crossvalidation. Since the aim is to classify a new profile, we mimic this 

approach by calculating the residuals for the normal profiles by crossvalidation. 
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Figure 5.10: Residual functions for Normal weights on Normal profiles via cross-
validation 

Residual functions calculated for malignant profiles using the weight functions 

from the normal profiles should be significantly greater than the ones obtained for the 

normal profiles using the same weight functions. Figure 5.1.1 shows these residuals. 

The scale on the vertical axis has been set to be the same in Figure 5.11 and in 

Figure 5.10 for better comparison. 



98 

x 

0.0 0.2 0.4' 0.6 0.8 

time 

Y 

0.0 0.2 0.4 0.6 0.8 

time 

1.0 

1.0 

Figure 5.11: Residual functions for Normal weights on Malignant profiles 

Figure 5.12 shows the mean of the residual functions when the normal weights 

are applied to normal profiles, while Figure 5.13 shows the mean of residual functions 

when the normal weights are applied to malignant profiles. 
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Figure 5.12: Mean residual functions for Normal using Normal weights (via cross-
validation) 



100 

x 
300 - 

200 - 

100 - 

0-

-100 - 

300 - 

200 - 

100 - 

0-

-100 - 

0.0 0.2 

I I I 

0.0 0.2 

0,4 

0.4 

time 

Y 

time 

0.6 

0.6 

0.8 

0.8 

1.0 

1.0 

Figure 5.13: Mean residual functions for Malignant using Normal weights 

The range for the values of the vertical axis in Figure 5.13 is of greater magnitude 

than that in Figure 5.12. 

Figure 5.14 shows the estimated forcing functions &x (t) and &y (t) for the malig-

nant profiles. 
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Figure 5.14: Forcing functions for Malignant profiles 
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Figure 5.15 shows the estimated weight functions ,81x(t) and ,ôy(t) for the D' 

term of L in ihe malignant profiles and Figure 5.16 the estimated weight functions 

,32x (t) and 92 (t) for the D2 term of L in the malignant profiles. 
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Figure 5.16: Second weight functions for Malignant profiles 

We present the forcing and weight functions together in Figure 5.17 to show that 

the forcing function is the largest source of vaiiation and how the first and second 

derivatives have smaller impact. 
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Figure 5.17: Forcing and weight functions for Malignant profiles. Solid black line 
is the forcing function, Grey line is th and dashed line is i82 

Figure 5.18 shows the residual functions obtained from applying the LDO with 

weights calculated from all 50 malignant profiles to the malignant profiles via cross-

validation as done for applying normal profiles' weights on normal profiles. 
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Figure 5.18: Residual functions for Malignant weights on Malignant profiles (via 
crossvalidation) 

Residual functions calculated for normal profiles using the weight functions from 

the malignant profiles significantly deviate from 0, more so than the ones obtained 

for the malignant profiles using the same weight functions. Figure 5.19 shows these 

residuals. The scale on the vertical axis has been set to be the same in Figure 5.19 

and in Figure 5.18 for better comparison. 
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Figure 5.19: Reidual functins for Malignant weights on Normal profiles 

When looking at Figure 5.18 and Figure 5.19 the reader might think that the 

residuals from malignant weights on malignant profiles deviate more from 0 than 

the residuals from malignant weights on normal profiles do. This appears to be so 

because the variability in Figure 5.18 is more than the variability in Figure 5.19 at 

some Vs. By taking a closer look at the Figures it can be seen that although the 

variability is greater in Figure 5.18 most the curves are around the zero line whereas 

curves in Figure 5.19 are mainly and under the zero line. It is worthmaking a note 
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of this, otherwise the reader would tend to believe there is a contradiction between 

the assumptions of the behaviour of the residuals and the results obtained. 

Figure 5.20 and Figure 5.21 seem to be inconsistent with Figure 5.18 and Fig-

ure 5.19, but when taking into consideration the issue mentioned in the above para-

graph, the reader will find that they are consistent. 

Figure 5.20 shows the mean of the residual functions when the malignant weights 

applied to malignant profiles, while Figure 5.21 shows the mean of residual functions 

when the malignant weights are applied to normal profiles. 
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Figure 5.20: Mean residual functions for Malignant using Malignant weights (via 
crossvalidation) 
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Figure 5.21: Mean residual functions for Normal using Malignant weights 

The range for the values of the vertical axis in Figure 5.21 is of greater magnitude 

than that in Figure 5.20. 

We assumed that the residuals obtained from applying normal weight functions 

to normal profiles (normal on normal) and malignant weight functions to malignant 

profiles (malignant on malignant) would be distributed closer to zero than those 

obtained from applying normal weight functions to malignant profiles and vice versa. 

The results we observe are consistent with this assumption. We have seen that the 



mean of the residuals of normal on normal and those of malignant on malignant are 

not significantly different from zero at any time t for t E [0, 1]. 

Figure 5.22 shows the functional 95% confidence intervals for the X(t) and Y(t) 

for the mean of normal on normal and for malignant on malignant and it is clear 

that zero is always inside the interval. 

These intervals are calculated in an analogous way as confidence intervals for 

point estimates, the only difference is that the mean and standard deviation of the 

curves are curves themselves. The mean and the standard deviation are functions of 

the parameter t. 
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Figure 5.22: 95% Confidence-like interval for the mean of residuals. Black line: 
Normal on Normal, grey line: Malignant on Malignant 

Figure 5.23 and 5.24 show the p-values for the Wilcoxon test for the location 

parameter of zero. This figure shows that the p-values for normal on normal are not 

less than 0.53 for X(t) residuals and not less than 0.33 for, Y(t); the p-values for 

malignant on malignant are not less than 0.21 for X(t) and not less than 0.29 for 

Y(t) and hence it can be concluded that the residuals are centred at zero at all times 

tE [0, 1]. 
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Figure 5.23: Pointwise (fine grid of 1000 times t) P-values of testing p = 0 for 
residuals (X). Black line: Normal on Ncirmal, grey line: Malignant on Malignant. 
Dashed line: P-value=0.05 

Figure 5.25 shows the functional 95% confidence intervals for the X(t) for the 

mean of normal on malignant and for malignant on normal and it is clear that zero 

is not always inside the interval. For normal on malignant, zero is not within the 

interval 28.8% of the time for X and 21.1% of the time for Y. For malignant on 

normal, zero is not within the interval 39.8% of the time for X and 52.5% of the 
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time for Y. 

Figures 5.26 and 5.27 show the p-values for the Wilcoxon test for the location 

parameter of zero. This figure shows that the p-values are sometimes less than 0.05 

and in those time periods it can be concluded that the residuals are centred at a 

value significantly different from zero. 
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Figure 5.24: Pointwise (fine grid of 1000 times t) P-values of testing A = 0 for 
residuals (Y). Black line: Normal on Normal, grey line: Malignant on Malignant. 
Dashed line: P-value=O.05 
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Figure 5.25: 95% Confidence-like interval for the mean of residuals. Black line: 
Normal on Malignant, grey line: Malignant on Normal 
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Figure 5.26: Pointwise (fine grid of 1000 times t) P-values of testing IL = 0 for 
residuals (X). Black line: Normal on Malignant, grey line: Malignant on Normal. 
Dashed line: P-value=0.05 

The analysis has shown that the residual processes obtained by applying weight 

functions of the same type as the profile type (normal on normal or malignant on 

malignant) are "well behaved" in both of the coordinates X, Y and their confidence 

intervals always cover zero. On the other hand, when applying weight functions of 

different type than that of the profiles (normal on malignant, malignant on normal) 
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the residual processes are "ill behaved" in at least one of the coordinates X, Y, having 

the confidence intervals not covering zero over nonnegligible proportions of time 

spanning from 21.1% to 52.5%. 

Based on this analysis and given the fact that profiles are obtained in batches, 

say from a biopsy, a new batch of profiles can be digitised, converted into functional 

data, registered to the normal profiles' mean function and then have the weight 

functions applied to each of the profiles to obtain the residual processes. Once these 

are obtained, the confidence intervals and/or the Wilcoxon tests can be performed 

to obtain a diagnostic of normal or malignant. 
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Figure 5.27: Pointwise (fine grid of 1000 times t) P-values of testing p = 0 for 
residuals (Y). Black line: Normal on Malignant, grey line: Malignant on Normal. 
Dashed line: P-value=0.05 



Chapter 6 

Conclusions 

The methods and analyses used in this thesis have been based on many important 

and scientifically significant ideas and methods created recently by renowned people 

in their respective fields of research such as Hoboith, Jensen [14, 16, 15], Ramsay 

and Silverman [29, 30, 28], and on equally important methods that were created 

previously and that are now known to many, but that have been of great impact 

to the study of statistics and hence are still used and built on, such as Fourier 

transforms, splines approximations and some of the basic multivariate statistical 

procedures. 

The chapters in this thesis present a brief introduction and overview of some of 

the methods and look at some others in a more detailed manner. This is an attempt 

to give the reader some understanding for each of the methods used. 

The purpose of this thesis is to combine techniques from the methods presented 

in a new approach that surpasses constraints faced when applying the methods indi-

vidually. The approach used is of an exploratory nature in search for a possible aid 

in the diagnosis. 

The alignment and registration of the profiles is, from a biological point of view, 

arbitrary and has no physiological meaning. It is, however, a protocol followed to 

analyse all profiles in a consistent way. The 'reference' point is reached in each profile 

by following a fixed criterion. 

The different fitting procedures used in this thesis are performed using least 
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squares fitting. The use of other methods such as absolute error may give different 

inferences, for example, in the principal differential analysis. 

The ways in which we used the methods in this thesis allowed us to deal with 

the profiles as continuous functions which better represent the continuous form and 

nature of the nuclei profiles. We were able to study nuclei profiles without the 

constraint of restricting our study to that of objects that are star shaped with respect 

to their centre of mass [14]. 

If we had not been able to apply our methods to non-star shaped profiles, we 

would have lost 11 profiles from the Malignant set and 1 from the Normal set. Hav-

ing started with a set of 50 profiles for each type, this would have not only impacted 

our sample size, but we would have lost information on the possible relationship 

of shape and type. Excluding the non-star shaped profiles could have affected the 

discovery of the characteristics pointed out by the first principal component in sec-

tion 3.1. Section 3.1 shows that one of the graphical characteristics where the scores 

of principal components differ significantly relates to the non-convexity of the shape 

and to not having star shaped objects. 

The bivariate approach, the use of X(t), Y(t) for the profiles, also opens the 

door for future analyses where weight functions such as those in section 5 would not 

only be calculated for the coordinates separately, but would be modelled to assess 

variability and crosscorrelation between variables. Mainly the set of ,B(t) 's would be 

of greater dimension as we would have ,3xy(t) and I3yx(t) plus the ,8(t) and /3y(t). 

Here the subindexes XY and YX would indicate the influence that X has on Y and 

vice versa. 

This thesis enabled us to have a better understanding in a tangible graphical way 
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of the shape differences between the two types of profiles. These are observable in 

the results obtained from Section 3.1 and Section 3.2. In these sections we observe 

results that support the assumptions set forth at the beginning of the thesis which 

state the belief that healthy nuclei would tend to be more convex than malignant 

ones. 

We gained diagnostics of malignancy and a discriminator between the two types of 

profiles. Although the use of discriminant analysis in section 3.2 gave False Positive 

and False Negative rates higher than what could be desired, the procedure not only 

yields a label for classification but it also provides the misclassification rates which 

are a useful measurement of accuracy. 

We also gained a useful tool in the principal differential analysis, namely the 

criterion for classification based on the intervals for the residuals. 

When it comes to having some measure of uncertainty, we can relate to the confi-

dence intervals and the p-value function. It is important that the reader remembers 

that the profiles, although they are presented individually, usually belong to a set 

of nuclei which comes from one tissue sample such as a biopsy. In this sense, an 

analyst will not be facing the problem of having only one profile to diagnose or to 

classify, as there will be a set of profiles and hence the sample means and standard 

deviations of the residuals obtained by applying the weight functions from section 5 

and the construction of the confidence intervals is possible. 

Based on these intervals, we can be 95% confident in the proposed decision rule 

of classifying as Normal if the confidence intervals for the residuals obtained from 

applying the Normal weight functions contain zero throughout the whole [0, 1] inter-

val, or classifying as Malignant if there are periods of time in which the confidence 
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intervals do not contain zero. Once the new set of profiles is classified as Normal or 

Malignant the weight functions can be recalculated by using the full set of each type 

of nuclei. 

The methods used here open the doors to other possible diagnostics or classifiers. 

Some ideas came into mind during the realisation of this thesis. One of them has been 

mentioned above, that is the assessment of a linear differential operator that relates 

the influence of one coordinate on the other. This is proposed as a more realistic 

approach to assess the nuclei shapes, as opposed to having coordinates separate from 

each other. 

Another possibility is to impose statistical and distributional assumptions on the 

coefficients of the Fourier expansions of the X(t) and Y(t) functiohs. The distribu-

tional assumptions could be similar to those imposed by Hobolth and Jensen on the 

coefficients of their radius vector function. The results would not follow directly as 

one of the main advantages in their work is that the X,Y are combined into a radius 

vector function, and this is possible because of having star shaped objects. The in-

tuitive feeling for these distributions is that we would have to consider multivariate 

distributions. 

An extension of logistic regression cane to mind, given the fact that functional 

data analysis enables the creation of linear models of functional predictors on scalar 

responses. This logistic regression could use the functional X(t) and Y(t) as predic-

tors, or their derivatives and have the binary response to be "Normal" or "Malignant" 

type of nucleus. 

There is still work to be done in creating' some form of functional significance 

testing method. We have had pointwise testing on fine grids of values obtained from 
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functional data, but there has not been a functional testing method per-se. 

Other future work would include a transformation on the X(t), Y(t) functions into 

polar coordinates r(t), 0(t). This might bypass some of the issues with orientation, 

registration and landmarks as well as not being restricted to star shaped objects. 

Tests based on the derivatives of 0(t) and derivatives of r(t) could be useful. The 

function 0(t) would identify those non-starshaped objects. Tests on r/(t) would 

capture the local variability of profiles. 

Three-dimensional analysis of nuclei via parameterisation on two "time" param-

eters (s, t) and the use of spherical coordinates (r(s, t), 0(s, t), 0(s, t)) is another 

approach. With this approach, we would concentrate on 0(s, t), q(s, t) and first 

derivatives of r(s, t) in various directions as an approximation to measuring curva-

ture in three-dimensional space. 

The inclusion of "expert opinion" is an important issue to address. Based on 

pathologist's expertise, for example, we could search for special characteristics that 

are important because of their physiological function. Another way of using expert 

opinion would be to incorporate itfrom a Bayesian point of view and assume prior 

distributions on the parameters that address issues raised by such expert opinion. 
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Appendix A 

PDA calculations by pointwise minimisation 

This approach is based on having a very fine mesh of values and that the correspond-

ing design matrix Z(t) (as in usual regression analysis) be of full rank for all t or 

along the same line, the determinant of the dispersion matrix Z(t)'Z(t) is bounded 

away from zero. 

Let the pointwise criterion be 

PSSEL (t) = (Lx)2(t) = 1j=QLw1(t)(Dx)(t) 
having Wm(t) = 1 for all t. When t is taken as fixed, then we have the least squares 

fitting criterion. Define w(t) to be an rn-vector of coefficients 

W  = (WO (t),. . . 

the N >< m pointwise design matrix Z as 

{ (DXi)(t)}i=li...,N;j=O,...,m_l 

and the N-dimensional dependent variable vector as 

Y(t) = 

and following the usual least squares criterion, provided the conditions stated above 

are satisfied, we have 

W(t) = [Z(t)'Z(t)}' Z(t)'y(t). 
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Appendix B 

PDA by basis expansion 

Computing the solution for the linear equations for each value of t for high order 

m of the derivatives can be computationally intensive. A solution which can be 

approximate and quickly computed with rather smooth solutions is required. The 

pointwise method is sensitive to isolated singularities of the Z(t)'Z(t) matrix which 

correspond to isolated singularities in the weight functions. By using sufficiently 

smooth weight functions we can bypass this problem. 

Approximating the weight functions w3 (t) via the use of basis functions is one 

strategy to use. Then with 0 being the K-dimensional vector of the set of basis 

functions (q51,. . . , q5i<) we can get coefficients Cjk such that 

estimated form the data. 

Now the fitting criterion for FDA can be written in terms of c in quadratic form: 

- C + c'Rc + 2c's 

where the constant C does not depend on c and the estimate ê is the solution to 

Rc = —s, where R is symmetric of order mK formed by m x m array of K x K 

submatrices of the form: 

Rk = f (t)(t)' 
129 

Dixi (t)]Ycx (t)dt 
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for 0 ≤ j, k < m - 1. The mK-vectors has m subvectors sj of length K defined as 

DX(t)DmX(t)dt 

for j=O,...,m-1. 



Appendix C 

numerical results for FPCA 

Variability explained by components, expressed as 

[1] 44.442921 19.769229 11.845188 9.051975 3.371278 2.534699 1.763225 

[8] 1.483607 0.937484 0.822239 0.655304 0.609027 0.553985 0.399082 

[15] 0.228305 0.207018 0.181013 0.174710 0.139903 0.100226 0.096536 

[22] 0.073265 0.067168 0.057585 0.054755 0.036247 0.034861 0.030879 

[29] 0.028410 0.025589 0.02085S 0.019667 0.017511 0.016812 0.013599 

[36] 0.012377 0.010368 0.008894 0.008508 0.008202 0.008066 0.006607 

[43] 0.005829 0.005303 0.004873 0.004644 0.004112 0.003748 0.003592 

[50] 0.003153 0.002838 0.002488 0.002335 0.002145 0.001851 0.001742 

[57] 0.001554 0.001422 0.001357 0.001341 0.001294 0.001123 0.001069 

[64] 0.000986 0.000939 0.000897 0.000867 0.000783 0.000731 0.000696 

[71] 0.000631 0.000598 0.000549 0.000514 0.000502 0.000474 0.000445 

[78] 0.000411 0.000404 0.000359 0.000352 0.000331 0.000315 0.000301 

[85] 0.000293 0.000272 0.000255 0.000245 0.000235 0.000214 0.000202 

[92] 0.000200 0.000184 0.000166 0.000155 0.000139 0.000136 0.000119 

[99] 0.000104 0.000000 
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Appendix D 

Numerical results for FLDA 

Weights for the linear combination of the six principal components to calculate the 

discriminant are 

PCi PC2 PC3 PC4 PC5 PC6 

0.3171116 0.1378731 -0.2338837 -0.2984332 -0.1181688 -0.8501197 

which in turn yields the following discriminant values for each profile 

I' ll 

[1,] -0.42028766 

[2,] 0.06376649 

[3,] 0.01979505 

[4,] 0.20899943 

[5,] -0.44176278 

[6,] -0.53490293 

[7,] -0.21860285 

[8,] -0.25557551 

[9,] 0.36567275 

[10,] -0.13514305 
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[11,] -0.13024483 

[12,] -0.41505898 

[13,] 0.52145076 

[14,] -0.35161937 

[15,] -0.91112472 

[16,] -0.03052841 

[17,] -0.36330271 

[18,] 0.13219491 

[19,] -0.26978535 

[20,] -0.0310860 

[21,] 0.04214208 

[22,] 0.04117799 

[23,] -0.40710049 

[24,] -0.91984566 

[25,] -0.45560743 

[26,] -0.60802034 

[27,] 0.10395816 

[28,] -0.72721960 

[29,] -0.32203786 

[30,] 0.05740435 

[31,] -0.62997595 

[32,] 0.23598660 

[33,] -0.44235356 

[4,] 0.71995799 
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[35,] -0.89614884 

[36,] 0.44368194 

[37,] -1.30483202 

[38,] -0.85661026 

[39,] -0.10181206 

[40,] -0.11567428 

[41,] -0.49237179 

[42,] -0.49560579 

[43,] -0.24149690 

[44,] -0.44880228 

[45,] -0.38639557 

[46,] -0.42172850 

[47,] -0.30105205 

[48,] 0.59169814 

[49,] -0.23493563 

[50,] -0.25058912 

[51,] 0.53624177 

[52,] -0.93572547 

[53,] 0.39248067 

[54,] -0.21756093 

[55.,] 0.40479386 

[56,] -0.17040201 

[57,] 1.46647572 

[58,] 0.54436286 
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[59,] -0.50109106 

[60,] 0.91086324 

[61,] 0.85756191 

[62,] 1.85469110 

[63,] 0.13192536 

[64,] -0.08322844 

[65,] 0.20429708 

[66,] -0.48610425 

[67,] -0.29208118 

[68,] 0.33126584 

[69,] 1.21442451 

[70,] -0.15180907 

[71,] 011769025 

[72,] -0.31372668 

[73,] 0.25061110 

[74,] -0.06266782 

[75,] 0.32676063 

[76,] -0.36407293 

[77,] 0.20155362 

[78,] 1.68152856 

[79,] 0.69445593 

[80,] -0.44689770 

[81,] 0.06772069 

[82,] 0.28640130 
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[83,] 0.27266485 

[84,] -0.15621011 

[85,] -0.70641371 

[86,] -0.07085139 

[87,] -0.38066811 

[88,] 1.03528491 

[89,] -0.09697904 

[90,] 1.01095709 

[91,] 1.05091386 

[92,] -0.20228581 

[93,] 0.65038023 

[94,] 0.45276689 

[95,] 0.40709332 

[96,] 0.15432109 

[97,] 1.82647742 

[98,] -1.06632710 

[99,] -0.90418405 

[100,] 0.29364881 

the critical value for discrimination i is 8.47395886820245e-17 The classification 

results according to this ?ih 

Truevalue Classified 

1 normal normal 
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2 normal malignant 

3 normal malignant 

4 normal malignant 

5 normal normal 

6 normal normal 

7 normal normal 

8 normal normal 

9 normal malignant 

10 normal normal 

11 normal normal 

12 normal normal 

13 normal malignant 

14 normal normal 

15 normal normal 

16 normal normal 

17 normal normal 

18 normal malignant 

19 normal normal 

20 normal normal 

21 normal malignant 

22 normal malignant 

23 normal normal 

24 normal normal 

25 normal normal 
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26 normal normal 

27 normal malignant 

28 normal normal 

29 normal normal 

30 normal malignant 

31 normal normal 

32 normal malignant 

33 normal normal 

34 normal malignant 

35 normal normal 

36 normal malignant 

37 normal normal 

38 normal normal 

39 normal normal 

40 normal normal 

41 normal normal 

42 normal normal 

43 normal normal 

44 normal normal 

45 normal normal 

46 -normal normal 

47 normal normal 

48 normal malignant 

49 normal normal 
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50 normal 

51 malignant 

52 malignant 

53 malignant 

54 malignant 

55 malignant 

56 malignant 

57 malignant 

58 malignant 

59 malignant 

60 malignant 

61 malignant 

62 malignant 

63 malignant 

64 malignant 

65 malignant 

66 malignant 

67 malignant 

68 malignant 

69 malignant 

70 malignant 

71 malignant 

72 malignant 

73 malignant 

normal 

malignant 

normal 

malignant 

normal 

malignant 

normal 

malignant 

malignant 

normal 

malignant 

malignant 

malignant 

malignant 

normal 

malignant 

normal 

normal 

malignant 

malignant 

normal 

malignant 

normal 

malignant 
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74 malignant 

75 malignant 

76 malignant 

77 malignant 

78 malignant 

79 malignant 

80 malignant 

81 malignant 

82 malignant 

83 malignant 

84 malignant 

85 malignant 

86 malignant 

87 malignant 

88 malignant 

89 malignant 

90 malignant 

91 malignant 

92 malignant 

93 malignant 

94 malignant 

95 malignant 

96 malignant 

97 malignant 

normal 

malignant 

normal 

malignant 

malignant 

malignant 

normal 

malignant 

malignant 

malignant 

normal 

normal 

normal 

normal 

malignant 

normal 

malignant 

malignant 

normal 

malignant 

malignant 

malignant 

malignant 

malignant 
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98 malignant normal 

99 malignant normal 

100 malignant malignant 

It is worth mentioning that the final classification was done by leave-one-out cross-

validation. 


