
THE UNIVERSITY OF CALGARY

NLO: A DEDUCTIVE OBJECT BASE

LANGUAGE

by

Mengchi Liu

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JULY, 1992

© Mengchi Liu 1992

I+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1AON4

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1AON4

The author has granted an

irrevocable non-exclusive licence

allowing the National Library of
Canada to reproduce, loan,

distribute or sell copies of
his/her thesis by any means and
in any form or format, making

this thesis available to interested
persons.

The author retains ownership of

the copyright in his/her thesis.

Neither the thesis nor substantial

extracts from it may be printed or

otherwise reproduced without

his/her permission.

Canad1.010 a

Your file Votre référence

Our file Noire référence

L'auteur a accordé une licence

irrevocable et non exclusive

permettant a la Bibliothèque

nationale du Canada de

reproduire, prêter, distribuer ou

vendre des copies de sa these
de quelque manière et sous

quelque forme que ce soit pour

mettre des exemplaires de cette

these a la disposition des

personnes intéressées.

L'auteur conserve la propriété du

droit d'auteur qui protege sa

these. Ni la thèseni des extraits

substantiels de' celle-ci ne

doivent être imprimés ou

autrement reproduits sans son

autorisation.

ISBN 0-315-79194-2

Name V/Et\IcCHI 1_lu
Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

('114)HPUTER ISOWCE
SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE ARTS
Architecture 0729
Art History 0377
Cinema 0900
Dance 0378
Fine Arts 0357
Information Science 0723
Journalism 0391
Library Science 0399
Mass Communications 0708
Music 0413
Speech Communication 0459
Theater 0465

EDUCATION
General 0515
Administration 0514
Adult and Continuing 0516
Agricultural 0517
Art 0273
Bilingual and Multicultural 0282
Business 0688
Community College 0275
Curriculum and Instruction 0727
Early Childhood 0518
Elementary 0524
Finance 0277
Guidance and Counseling 0519
Health 0680
Higher 0745
History. of 0520
Home Economics 0278
Industrial 0521
Language and Literature 0279
Mathematics 0280
Music 0522
Philosophy of 0998
Physical 0523

THE SCIENCES AND
BIOLOGICAL SCIENCES
Agriculture

General
Agronomy
Animal Culture and

Nutrition
Animal Pathology
Food Science and
Technology 0359

Forestry and Wildlife 0478
Plant Culture 0479
Plant Pathology 0480
Plant Physiology 0817
Range Management 0777

Biol Wood Technology 0746
og
General 0306
Anatomy 0287
Biostotistics 0308
Botany 0309
Cell 0379
Ecology 0329
Entomology 0353
Genetics 0369
Limnology 0793
Microbiology 0410
Molecular 0307
Neuroscience 0317
Oceanography 0416
Physiology 0433
Radiation 0821
Veterinary Science 0778
Zoology 0472

Biophysics
General 0786
Medical 0760

EARTH SCIENCES
Biogeochemistry 0425
Geochemistry 0996

Psychology 0525
Reading 0535
Religious 0527
Sciences 0714
Secondary 0533
Social Sciences 0534
Sociology of 0340
Special 0529
Teacher Training 0530
Technology 0710
Tests and Measurements 0288
Vocational 0747

LANGUAGE, LITERATURE AND
LINGUISTICS
Language

General 0679
Ancient 0289
Linguistics 0290
Modern 0291

Literature
General 0401
Classical 0294
Comparative * 0295
Medieval 0297
Modern 0298
African 0316
American 0591
Asian 0305
Canadian English) 0352
Canadian French) 0355
English 0593
Germanic 0311
Latin American 0312
Middle Eastern 0315
Romance 0313
Slavic and East European 0314

ENGINEERING
Geodesy 0370
Geology 0372

0473 Geophysics 0373
0285 Hydrology 0388

Mineralogy 0411
0475 Paleobotany 0345
0476 Paleoecology 0426

Paleontology 0418
Paleozoology 0985
Palynology 0427
Physical Geography 0368
Physical Oceanography 0415

HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences 0768
Health Sciences

General 0566
Audiology 0300
Chemotherapy 0992
Dentistry 0567
Education 0350
Hospital Management 0769
Human Development 0758
Immunology 0982
Medicine and Surgery 0564
Mental Health 0347
Nursing 0569
Nutrition 0570
Obstetrics and Gynecology 0380
Occupational Health and
Therapy 0354

Ophthalmology 0381
Pathology 0571
Pharmacology 0419
Pharmacy 0572
Physical Therapy 0382
Public Health 0573
Radiology 0574
Recreation 0575

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy 0422
Religjon

General 0318
Biblical Studies 0321
Clergy 0319
History of 0320
Philosophy of 0322

Theology 0469

SOCIAL SCIENCES
American Studies 0323
Anthropology

Archaeology 0324
Cultural 0326
Physical 0327

Business Administration
General 0310
Accounting 0272
Banking 0770
Management 0454
Marketing 0338

Canadian Studies 0385
Economics

General 0501
Agricultural 0503
Commerce-Business 0505
Finance 0508
History 0509
Labor 0510
Theory 0511

Folklore 0358
Geography 0366
Gerontology 0351
History

General 0578

Speech Pathology
Toxicology

Home Economics

PHYSICAL SCIENCES
Pure Sciences
Chemistry

General 0485
Agricultural 0749
Analytical 0486
Biochemistry 0487
Inorganic 0488
Nuclear 0738
Organic 0490
Pharmaceutical 0491
Physical 0494
Polymer 0495
Radiation 0754

Mathematics 0405
Physics

General
Acoustics
Astronomy and
Astrophysics

Atmospheric Science
Atomic
Electronics and Electrici
Elementary Particles on
• High Energy 0798
Fluid and Plasma 0759
Molecular 0609
Nuclear 0610
Optics 0752
Radiation 0756
Solid State 0611

Statistics 0463

Applied Sciences
Applied Mechanics 0346
Computer Science 0984

0
SUBJECT CODE

UMI

Ancient 0579
Medieval 0581
Modern 0582
Black 0328
African 0331
Asia, Australia and Oceania 0332
Canadian 0334
European 0335
Latin American 0336
Middle Eastern 0333
United States 0337

History of Science 0585
Low 0398
Political Science

General 0615
International Law and

Relations 0616
Public Administration 0617

Recreation 0814
Social Work 0452
Sociology

General 0626.
Criminology and Penology 0627
Demography 0938
Ethnic and Racial Studies 0631
Individual and Family
Studies 0628

Industrial and Labor
Relations 0629

Public and Social Welfare 0630
Social Structure and
Development 0700

Theory and Methods 0344
Transportation 0709
Urban and Regional Planning 0999
Women's Studies 0453

0460 Engineering
0383 Generat 0537
0386 Aerospace 0538

Agricultural 0539
Automotive 0540
Biomedical 0541
Chemical 0542
Civil 0543
Electronics and Electrical 0544
Heat and Thermodynamics 0348
Hydraulic 0545
Industrial 0546
Marine 0547
Materials Science 0794
Mechanical 0548
Metallurgy 0743
Mining 0551
Nuclear 0552
Packaging 0549
Petroleum 0765
Sanitary and Municipal 0554

0605 System Science 0790
0986 Geotechno!agy 0428

Operations Research 0796
0606 Plastics Technology 0795
0608 Textile Technology 0994
0748
0607 PSYCHOLOGY

General 0621
Behavioral 0384
Clinical 0622
Developmental 0620
Experimental 0623
Industrial 0624
Personality 0625
Physiological 0989
Psychobiology 0349
Psychometrics 0632
Social 0451

Nom
Dissertation Abstracts International est organisé en categories de sulets. Veuillez s.v.p. choisir le sulet qui décrit le mieux votre
these et inscrivez le code numérique approprié dans Vespace réservé ci-dessous.

UM1
SUJET

Categories par sujets

HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET LES ARTS
Architecture 0729
Beaux-arts 0357
Bibliothéconomie 0399
Cinema 0900
Communication verbale 0459
Communications 0708
Danse 0378
Histoire de 'art 0377
Journalisme 0391
Musique 0413
Sciences de 'information 0723
Théâtre 0465

EDUCATION
Généralités 515
Administration 0514
Art 0273
Colleges communautaires 0275
Commerce 0688
conomie domestique 0278
education permanente 0516
education préscoloire 0518
Education sanitaire 0680
Enseignement agrica!e 0517
Enseignement bulingue et

multiculturel 0282
Enseignement industriel 0521
Enseignement primaire 0524
Enseignement professionnel 0747
Enseignement religieux 0527
Enseignement secondaire 0533
Enseignement special 0529
nseignement supérieur 0745

Evaluation 0288
Finances 0277
Formation des enseignants 0530
Histoire de I'éducation 0520
Langues et littérature 0279

Lecture 0535
Mathématiques 0280
Musique 0522
Orientation et consultation 0519
Philosophie de 'education 0998
Physique 0523
Programmes d'études et
ensegnement 0727

Psych9logie 0525
Sciences 0714
Sciences sociales 0534
Sociologie de l'éducation 0340
Technalogie 0710

LANGUE, LITfERATURE ET
LINGUISTIQIJE
Lan gyes

Genéralites 0679
Anciennes 0289
Linguistique 0290
Modernes 0291

Littérature
Géneralités 0401
Anciennes 0294
Comparee 0295
Medévale 0297
Moderne 0298
Africaine 0316
Américaine 0591
Anglaise 0593
Asiatique 0305
Canadienne Anglaise) 0352
Canadienne Française) 0355
Germanique 0311
Latino-américaine 0312
Mayen-orientale 0315
Romane 0313
Slave et est-européenne 0314

SCIENCES ET INGENIERIE

SCIENCES BIOLOGIQUES
Agriculture

Généralités 0473
Agronomie. 0285
Alumentation et technologie

alimentaire 0359
Culture 0479
Elevage et alimentation 0475
Exploitation des péturages 0777
Pathologie animale 0476
Pothologie veØtale 0480
Physiologic vegétale 0817
Sylviculture et taune 0478
Technologie du bois 0746

Biologic
Généralités 0306
Anatamie 0287
Biologie (Statistiques) 0308
Bioloie moléculaire 0307
Botanique 0309
Cellule 0379
Ecologie 0329
Entamologie 0353
Genétique 0369
Limnologie 0793
Micrabiologie 0410
Neurologie 0317
Oceanographie 0416
Physiologie 0433
Radiation 0821
Science vétérinaire 0778
Zoologie 0472

Biophysique
Généralités 0786
Medicale 0760

SCIENCES DE LA TERRE
Biageochimie 0425
Géochimie 0996
Géodésie 0370
Geographic physique 0368

Geologie 0372
Geophysique 0373
Hydralogie 0388
Minéralogie 0411
Oceanographic physique 0415
Paleobotanique 0345
Paléoécologie 0426
Paleontologie 0418
Paleozoalogie 0985
Palynalogie 0427

SCIENCES DE LA SANTE El DE
L'ENVIRONNEMENT
Economie damestique 0386
Sciences de l'environnement 0768
Sciences de la sante

Généralités 0566
Administration des hipitaux 0769
Alimentation et nutrition 0570
Audio!ogie 0300
Chimiothérapie 0992
Dentisterie 0567
Développement humain 0758
Enseignement 0350
Immunologic 0982
Loisirs 0575
Médecine du travail et

thérapie 0354
Médecine et chirur9ie 0564
Obstetrique et gynecologie 0380
Ophtalmologie 0381
Orthophonie 0460
Pathologie 0571
Pharmacie 0572
Pharmacologic 0419
Physiotherapic 0382
Radiologie 0574
Sante mentale 0347
Sante publique 0573
Soins infirmiers 0569
Toxicologie 0383

PHILOSOPHIE, RELIGION ET
THEOLOGIE
Philosophie
Religjon

Générolités
Clergé
Etudes bibliques
Histoire des religions
Philosaphie de Ia religion]

Theologie

SCIENCES SOCIALES
Anthropologic

Archeo!ogie 0324
Culturelle 0326
Physique 0327

roit 0398
Economie

Genéralités 0501
Commerce-Affaires 0505
canomie agricole 0503
Economic du travail 0510
Finances 0508
Histoire 0509
Théarie 0511

etudes américaines 0323
etudes canadiennes 0385
Etudes FCministes 0453
Folklore 0358
Geographic 0366
Gerantologie 0351
Gestion des al!faires

GCnCralités 0310
Administration 0454
Banques 0770
Comptabilite 0272
Marketing 0338

Histoire
Histoire génerale 0578

SCIENCES PHYSIQUES
Sciences Pures
Chimie

Generalités 0485
Biachimie 487
Chimie agricole 0749
Chimie anaytique 0486
Chimie minerale 0488
Chimie nucléairc 0738
Chimie organique 0490
Chimie pharmaceutique 0491
Physique 0494
PolymCres 0495
Radiation 0754

Mathematiques 0405
Physique

Genéralités 0605
Acoustique 0986
Astranomie et
astrophysique 0606

Electroniquc et electricité 0607
Fluides et plasma 0759
Meteorologic 0608
Optique 0752
Particules (Physique

nucléaire) 0798
Physique atamique 0748
Physique de l'état solide 0611
Physique moléculoire 0609
Physique nucléairc 0610
Radiation 0756

Statistiques 0463

Sciences Appliqués Et
Technologie
InFormatique
Ingenierie

Généralités
Agricole
Automobile

CODE DE MET

Ancienne 0579
Médiévale 0581

0422 Moderne 0582
Histoire des noirs 0328

0318 AFricainc 0331
0319 çonadienne 0334
0321 Etats-Unis 0337
0320 Europeenne 0335
0322 Moyen-orientale 0333
0469 Latino-américoine 0336

Asic, Australic et Oceanic 0332
Histoire des sciences 0585
Loisirs 0814
Plonification urbaine et
regionale 0999

Science politique
Généralités 0615
Administration publique 0617
Droit et relations

internationales 0616
Sociologic

Généralités 0626
Aide etbien-àtre social 0630
Criminologie et

établissements
pénitentioires 0627
emagraphie 0938

Etudes de I' individu et
de Ia famille 0628

Etudes des relations
interethniques et
des relations rociales 0631

Structure at develappement
social 0700

Théorie et méthades. 0344
Travail et relations

industrielles 0629
Transports 0709
Travail social 0452

Biomedicale 0541
Chaleur et ther
modynamique 0348

Conditionnement
(Embolloge) 0549

Genie aérospatial 0538
Genie chimique 0542
Genie civil 0543
Genie electronique et

electrique 0544
Genie industriel 0546
Genie méconique 0548
Genie nucleaire 0552
lnénierie des systämes 0790
Mecanique navole 0547
Metallurgic 0743
Science des motériaux 0794
Technique du pétrole 0765
Technique miniére 0551
Techniques sonitaires et

municipales 0554
Technologie hydraulique 0545

Mécanique appliquee 0346
Geotechnologic 0428
Matiéres plastiques

(Technologie) 0795
Recherche operotionnelle 0796
Textiles et tissus (Technologie) 0794

PSYCHOLOGIE
Généralités 0621
Personnalité 0625
Psychobiologie 0349
Psychologie clinique 0622
Psychologie du comportement . 0384

0984 Psychologic du développement 0620
Psychologie expérimentale 0623

0537 Psychologic industrielle 0624
0539 Psychologie physiologique 0989
0540 Psycholo9ie sociole 0451

Psychometric 0632

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "NLO: A Deductive Object Base

Language" submitted by Mengchi Liu in partial fulfillment of the requirements for

the degree of Doctor of Philosophy.

Date July 24, 1992

Dr. Mildred L. G. Shaw
Department of Computer Science

H

Dr. E6W Gaines, Supervisor
Department of Computer Science

Dr. * hn G. ' ery
Dc a . tment o omputer SJnce

Dr. Poulas H. Norrie
Department of Mechanical Engineering

Dr. Jiawei Hn
Department of Computer Science
Simon Fraser University

Abstract

Deductive databases result from the integration of relational database and logic pro-

gramming techniques. This thesis analyzes two significant problems inherent in this

integration: namely complex object modeling and higher-order features. It also gives

a critical analysis of related work in logic programming and deductive databases, such

as extended logic terms which can represent the existence and complex intensional

structure of objects, and extended deductive database languages which incorporate

higher-order features.

A novel deductive database language called NLO (Natural Logic for Objects) is

proposed. It is based on the semantic and object-oriented data models, extended

logic term approaches and extended deductive database languages.

The major original contributions of the research presented here are threefold.

First, the language NLO is defined with enough expressive power to solve the above

two problems. Second, the language is given a firm logical foundation. This includes

extended Herbrand models, the model intersection property of definite programs,

fix-point, least and minimal models, stratification, perfect models, and precisely de-

fined semantics of NLO programs. Third, a transformation algorithm is given which

converts NLO programs and queries into semantically equivalent Prolog programs

and queries. Together these imply that NLO is not only syntactically expressive and

semantically sound, but also fully implementable in practice.

111

Acknowledgements

I am indebted to numerous people, without them this thesis would not have been

possible.

First, I would like to express my sincere thanks to Dr. Brian Gaines, my super-

visor for many helpful discussions which helps me to formalize my thoughts. His

assistance, encouragement, valuable suggestions, and wide-ranging knowledge have

made this thesis possible.

I would also like to extend special sincere thanks to Dr. John Cleary, for his

valuable criticisms, guidance, suggestions, and financial support throughout this

research project. His insight and knowledge were fundamental to the success of

this thesis.

Thanks are also due to my candidacy examination committee members and many

others for offering valuable comments, or encouragement regarding the work pre-

sented in this thesis: Dr. Mildred Shaw, Dr. K.L Chowdhury in the Department

of Mechanical Engineering, Dr. John Heintz in the Department of Philosophy, Dr.

Jiawei Han at Simon Fraser University, Dr. Paul Kwok, and Dr. Lisa Higham.

Thanks goes to Dr. Michael Kifer at SUNY in USA for helpful discussions during

DOOD' 91 in Munich and for sending technical reports. His work on F-logic has

significantly influenced this research. Thanks also to Dr. Serge Abiteboul, INRIA in

France, Dr. Andreas Heuer, TU Clausthal in Germany, for sending me some technical

reports which are related to this research. Thanks also to Dr. Ravi Krishnamurthy

and Dr. C. Zaniolo, MCC in USA, for answering my questions about L2 and LDL

by emails.

iv

Love and. appreciation to my wife Hongbo Liang for her tremendous support and

sacrifice enabling me to dedicate myself to the completion of this thesis. I simply

would not have done it without her unconditional love and support through my

periods of depressions. Thanks also to my little handsome son Robert for putting

up with the time away from him.

Finally, I would like to thank my parents, Jingfu Liu and Qingshu Wang for

putting up with far too much from me for four years and for their understanding

and encouragement began long before my work on this thesis.

v

Contents

Approval Page ii

Abstract iii

Acknowledgements iv

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Organization of Thesis 4

2 Background 5
2.1 Relational Databases 5

2.1.1 The Relational Data Model 5
2.1.2 Relational Query Languages 8

2.2 Logic Programming 11
2.2.1 Model Theory 14
2.2.2 Proof Theory 24
2.2.3 Summary of Logic Programming 32

2.3 Deductive Databases 32

3 Problems with Basic Deductive Databases 317

3.1 Complex Object Modeling 38
3.1.1 Object Identity 38
3.1.2 Objects and Object Properties 43
3.1.3 Types and Classes 50
3.1.4 Property Inheritance 54

3.2 Higher-Order Features 60
3.2.1 Schema 61
3.2.2 Sets 64
3.2.3 Problems with Higher-Order Logic 67

3.3 Summary 71

4 Critical Analysis of Related Work 72
4.1 Extended Logic Term Approaches 72

4.1.1 LOGIN 73

vi

4.1.2 0-Logic 77
4.1.3 Revised 0-Logic 79
4.1.4 F-Logic 81
4.1.5 Summary 86

4.2 Extensions to Deductive Databases 86
4.2.1 LDL 86
4.2.2 L2 90
4.2.3 COL 93
4.2.4 Summary 95

4.3 Summary 96

5 NLO - Informal Presentation 97
5.1 Objects, Programs and Queries 97
5.2 Type System 102
5.3 Object Base 106
5.4 Rules 108
5.5 Queries 113
5.6 Summary 115

6 Formal Presentation 116
6.1 Syntax of NLO 116
6.2 Mathematical Preliminaries 123
6.3 Semantics of NLO 126

6.3.1 Satisfaction of Types 127
6.3.2 Satisfaction of Objects 130
6.3.3 Satisfaction of Basic Terms and Basic Literals 131
6.3.4 Satisfaction of Rules 132
6.3.5 Satisfaction of Programs 133
6.3.6 Satisfaction of Typed Terms and Typed Literals 134
6.3.7 Answers to Queries 135

7 Herbrand Interpretations 136
7.1 Least Model Semantics for Definite Programs 140
7.2 Bottom-up Computation for Definite Programs 146
7.3 Perfect Model Semantics for Normal Programs 151

7.3.1 Stratified Programs 152
7.3.2 Perfect Model 155

7.4 Bottom-up Computation for Normal Programs 159

vii

8 Transformation into Prolog 164

8.1 Transformation of Types 164
8.1.1 Transformation of Built-in Types 165
8.1.2 Transformation of Set Types 166
8.1.3 Transformation of Basic Types 167
8.1.4 Transformation of Representational Types 168

8.2 Transformation of Objects 169
8.3 Transformation of Basic Terms 170
8.4 Transformation of Basic Literals 171
8.5 Transformation of Rules 172
8.6 Transformation of Typed Terms and Literals 175

8.7 Transformation of Queries 177
8.8 Correctness of Transformation 178
8.9 Summary 179

9 Conclusion and Further Work 181
9.1 Updates 184
9.2 Type and Label Variable in NLO Program 187

Bibliography 188

vi"

List of Tables

4.1 Comparison of Extended Logic Term Approaches 85
4.2 Comparison of Extensions to Deductive Databases 95

9.1 Summary of NLO 182
9.2 Summary of Comparison of NLO with Other Approaches 183

ix

List of Figures

2.1 Two Example Relations. 7
2.2 Answers to Queries. 10

3.1 Example Representation of Object Properties by Relations 47
3.2 Example Representation in Logic Programming 49
3.3 Type Definitions in Vbase 56
3.4 Type Definitions in TAXIS. 57

4.1 Signature F-Terms 82
4.2 Data F-Terms. 82
4.3 IS-A F-Terms 83

5.1 A Sample NLO Program. 100
5.2 Sample Queries and Answers. 101
5.3 A Sample Type System. 105
5.4 Sample Queries and Answers. 114

x

Chapter 1

Introduction

Databases and logic programming have been two independently developed fields in

computer science in the last two decades.

Database technology has evolved in order to efficiently organize, manage and

maintain a large amount of data on secondary storage. This led to the development

of several basic data models. A data model is a collection of well-defined concepts

that helps the database users to understand and express the static and dynamic

properties of applications. It determines the types of data structures visible to the

user and the operations allowed on these structures. It provides the conceptual basis

for thinking about applications and provides a formal basis for developing and using

the database systems. The relational data model was developed as a simplification

of more complex, machine-oriented hierarchical and network models, to enable set-

oriented, non-procedural data manipulation.

Logic Programming began in the early seventies as a direct outgrowth of earlier

work in automated theorem proving and artificial intelligence. Logic programming

is based on first-order logic, formalized in terms of proof theory and model theory.

Proof theory provides formal specifications for correct reasoning with premises, while

model theory analyses how general assertions may be interpreted with respect to a

collection of specific facts. First-order logic was not used in programming actual

applications until the introduction of Prolog, a language for PROgramming in LOGic.

1

CHAPTER 1. INTRODUCTION 2

Prolog uses a restricted form of more general theorem proving techniques to provide

efficiency and programmability.

Throughout the seventies and early eighties, the use of both Prolog and relational

databases has become widespread, not only in academic or scientific environments,

but also in the commercial world [CGT9O].

In recent years, there has been a growing interest in the integration of logic

programming and relational databases to generate a new type of systems, called

deductive databases, which use logic programming to make deductions about the

contents of a relational database. This integration combines the benefits of these

two approaches, such as representational and operational uniformity, ease of use,

deductive power, firm theoretical basis, and efficient secondary storage access.

Unfortunately, current deductive databases are quite limited in their expressive

power. They cannot support complex object modeling in a direct and natural way,

although this is a common requirement of advanced database applications [Mai86,

KL89, LR89]. They also cannot support higher-order features such as schema and

sets in a uniform way [KN88]. The problems result from the use of inexpressive flat

structures in the underlying relational data model and logic programming languages.

As a reaction to the lack of expressiveness, in relational databases, logic program-

ming, and correspondingly in deductive databases, a number of attempts have been

made to increase the expressive power.

To improve the relational data model, a number of new approaches called seman-

tic and object-oriented data models have emerged during the last two decades. These

aim to provide increased expressiveness to the user and incorporate a richer set of

CHAPTER 1. INTRODUCTION 3

semantics into the database. Examples are RM/T [Cod79], FDM [Shi79], TAXIS

[MBW8O], SDM [HM81], SHM+ [Bro84], Galileo [AC085], SAM* [Su86], Gemstone

[MSOP86], IFO [A1187], Orion [KBC87], FAD [DKV88], 02 [LR89], Vbase [And91],

etc. They provide a number of powerful data modeling manipulation concepts for

complex object modeling including object identity, object properties, types and in-

heritance.

To improve the expressiveness of logic programming, some extensions have been

made by using extended logical terms with internal structures, such as LOGIN

[AKN86], 0-Logic [Mai86], Revised 0-Logic [KW89], and F-logic [KL89, KLW9O].

To improve the expressiveness of deductive database languages, LDL [TZ86], COL

[AG88], IQL [AK89], L2 [KN88], etc. have been proposed which incorporate certain

higher-order features.

Semantic and object-oriented data models are quite expressive. However, the

proposed extended logic term approaches and extended deductive database languages

are not general enough to capture the most important ideas of these models.

This thesis proposes a deductive database language called NLO (Natural Logic

for Objects), based on the extended logic terms approaches and extended deductive

database languages. It is a natural generalization of semantic and object-oriented

data models. It has expressive and deductive powers that can naturally represent

and manipulate complex objects and desired higher-order features in a uniform way.

This thesis also investigates the syntactic and semantic properties of NLO pro-

grams. These include extended Herbrand models, the model intersection property of

definite programs, fixpoint, least and minimal models, stratification, perfect models,

CHAPTER 1. INTRODUCTION 4

and precisely defined semantics of NLO programs.

1.1 Organization of Thesis

In order to make this thesis as self-contained as possible, Chapter 2 first introduces

relational databases and logic programming. Then it describes deductive databases

based on these two approaches.

Chapter 3 analyzes the problems of deductive database design. It discusses the

requirements of many significant database applications and shows why the relational

data model and logic programming languages cannot satisfy these requirements.

Chapter 4 gives a critical analysis of related work. This gives the motivation for

the deductive database language NLO.

Chapter 5 introduces NLO by examples and shows its advantages over other

approaches.

Chapter 6 presents the syntax and semantics of NLO.

Chapter 7 focuses on the extended Herbrand models and discusses the syntactic

and semantic properties as well as the precisely defined semantics of NLO programs.

Chapter 8 presents a formal transformation algorithm which converts NLO pro-

grams and queries into semantically equivalent Prolog programs and queries.

Finally, Chapter 9 summarizes the research and discusses potential topics for

future research. Table 9.2 compares NLO with other approaches.

Chapter 2

Background

This chapter provides an introduction to the major concepts of relational databases

and logic programming which will be used in the following chapters.

2.1 Relational Databases

The kernel of the relational database technology is the relational data model. The

relational data model, although not the first data mdel used in database manage-

ment systems, has grown in importance since its exposition by Codd in 1970. The

most important reason for the model's popularity is its simplicity and formality. It

takes over the complex, machine-oriented hierarchical and network models to enable

powerful, set-oriented, declarative, i.e. non-procedural, data query or manipulation.

2.1.1 The Relational Data Model

In the relational model, data are organized using relations which are defined as

follows. A domain is just a finite set of values. The Cartesian Product of domains

D1, D2, ..., .b (not necessarily distinct) is denoted by D1 x ... x Dn and is the set of

all tuples (x1, ..., x) such that xi E D, i = 1, ..., n. A relation is any subset of the

Cartesian product of one or more domains. The members of a relation are called

tuples. Note that a relation is a set, therefore tuples in a relation are distinct, and

5

CHAPTER 2. BACKGROUND 6

the order of tuples is irrelevant. The arity of a relation R C D1 x ... x D, is n. The

number of tuples in It is called its cardinality. A relation is finite if its cardinality is

finite. A database is a finite set of finite relations.

It is customary when discussing relations to represent a relation as a table and

name it by a relation name in which each row is a tuple and each column is often

given a name called its attribute. In this view, a tuple is a list of values and a relation

is a set of lists. Attribute values of a tuple are determined by their positions in the

tuple. However, relations can also be viewed as a set of mappings from the attribute

names to values in the domains of the attributes. In this view, attribute values of a

relation are determined by their attribute names rather than positions.

Chapter 3 will show that current deductive databases can only take the first view,

i.e., relations as sets of lists rather than sets of mappings, which means that attribute

values of a tuple are determined only by their positions in the tuple. This is certainly

inconvenient to the user.

A minimal subset of the attributes of a relation whose values uniquely identify

the tuples of the relation is called a key of the relation. It is possible for a relation

to have more than one key. In this case, it is customary to designate one as the

primary key. The ordered set of attribute names for a relation is called the schema

of this relation. If a relation is named by REL, its relation schema has attributes

A1, A2,...,A, and A1, ..., Am is a primary key, then the relation schema is written

as REL(A1, ..., Am ,...,An). The specific relation is said to be an instance of the

relation schema.

Not all possible instances of a relation schema have meaningful interpretations;

CHAPTER 2. BA CKGRO UND 7

that is, they do not correspond to valid sets of data according to the intended se-

mantics of the database. Therefore a set of constraints, referred to as integrity

constraints, is introduced to be associated with relation schemas to ensure that the

database meets the intended semantics. There are two major kinds of integrity con-

straints: type constraints, which require the attribute values of relations to belong to

specified domains, and dependency constraints, which express structural properties

of relations.

Often a subset of the attributes of one relation will correspond to a key of another

relation so that different relations can be implicitly related. It is called a foreign key.

A foreign key need not be (and often is not) a .key of its own relation. Relations are

related normally through foreign keys.

NAME PHONE DEPT
Bob 6124 Mathematics
Henry 3620 Philosophy
John 5016 Physics
Jenny 6017 Mathematics
Smith 9015 Physics
Sally 3105 Mathematics

EMPLOYEE

DEPT LOCATION
Philosophy
Mathematics
Physics
Chemistry

Building 3
Building 1
Building 2
Building 5

DEPARTMENT

Figure 2.1 Two Example Relations.

Example 2.1 Figure 2.1 shows two relations. The relation EMPLOYEE has at-

tributes NAME, PHONE, and DEPT where NAME is a primary key and DEPT

is a foreign key. The schema of EMPLOYEE is EMPLOYEE(NAME, PHONE,

DEPT). The relation DEPARTMENT has attributes DEPT and LOCATION where

CHAPTER 2. BACKGROUND 8

DEPT is a primary key. The schema of DEPARTMENT is DEPT(NAME, LO-

CATION). Here an integrity constraint requires that the values of attribute DEPT

in the relation EMPLOYEE should be the values of attribute DEPT in the relation

DEPARTMENT. 0

To summarize, a database schema consists of a collection of relation schemes

together with a set of integrity constraints. A database, also called a database

instance or a database state, is a collection of relations (relation instances), one for

each relation schema in the database schema. A database is said to be valid if all

relations that it contains obey the integrity constraints.

2.1.2 Relational Query Languages

Associated with the relational data model, there are two kinds of relational query

or manipulation languages which can be used to express queries about relations in a

relational database:

Relational algebra is defined through several operators that apply to relations

and produce other relations. Queries of relational algebra naturally suggests some

order in which operations can be applied to the database. However, queries are often

transformed equivalently into some optimized forms so that they can be processed

in a more efficient way.

Relational Calculus expresses a query by means of a first-order logic formula on

the tuples or domains of the database; the result of the query is also a relation that

satisfies the formula. The relational calculus is a kind of pure declarative query

language, because the query expression in the calculus does not suggest a method

CHAPTER 2. BACKGROUND 9

for computing the answer.

These two kinds of languages have been proved to be equivalent in their expressive

power [Ull88]. Relational algebra seems to be inherent in the relational model. This

thesis considers relational algebra only.

Relational algebra consists of five basic operators: selection, projection, Cartesian

product, union, and difference, each of which applies to relations, yielding a new

relation as a result.

• Selection: Given a relation ft and a collection of conditions P over the relation,

the selection operation, denoted by op(R), produces a relation with the same

schema as that of ft, whose tuples are in ft and satisfy the given conditions.

• Projection: Given a relation R and a subset of attribute names A of ft, the

projection operation, denoted by 1rA(ft), produces a relation which consists of

the specified columns of the given relation, and eliminates duplicates from the

results. The schema of the result relation is A.

• Cartesian Product: Given two relations ft and S of arity r and .s respectively,

the Cartesian product operation, denoted by ft x S, is a relation of arity r + .s,

whose tuples are formed by all the possible concatenations of tuples of ft and

tuples of S.

• Union: Given two relations R and S which have identical schema, the union

operation, denoted by RU S, produces a relation with the same schema, whose

tuples are in ft or S or both.

CHAPTER 2. BACKGROUND 10

• Difference: Given two relations R and S which have identical schema, the

difference operation, denoted by R - 5, produces a relation with the same

schema, whose tuples are in R but not in S.

The most often used operation is called natural join or join which can be derived

from the above basic operations:

• (Natural) Join: Given two relations R and 5, the natural join operation, de-

noted by R ti 5, is formed by computing the Cartesian product R x 5, selecting

out all tuples whose values on each attribute common to B and S coincide, and

projecting one occurrence of each of the common attributes.

The join operation is used to draw explicit relationships between different rela-

tions via common attributes such as foreign keys. However the natural join operator

is also quite time consuming. A lot of efforts have been invested to improve its

performance [U1188].

NAME DEPT
Bob Mathematics
Jenny Mathematics
Sally Mathematics

Answers to a)

LOCATION
Building 3

Answer to b)

Figure 2.2 Answers to Queries

Example 2.2 In order to get the names and phone numbers of employees in the

Department of Mathematics and the location of Henry's department from the two

CHAPTER 2. BACKGROUND 11

relations in Figure 2.1, we can use

a)1rNAME,PHONE (ODEPT=MathematicsEMPLOYEE)

b)7rLocATIoN (7NAME=HenrY (EMPLOYEE x DEPT))

respectively. The answers to these queries are shown in Figure 2.2.

2.2 Logic Programming

0

Logic programming is based on mathematical logic which is the study of the rela-

tionship between formally expressed premises and conclusions. For example, if we

assume that Art is a parent of Bob and that a parent is an ancestor, then we can

infer that Art is a ancestor of Bob. The first two sentences imply the conclusion.

In logic programming the programmer encodes in a logic program a set of premises

about the application and the machine applies rules of inference to known premises

and derives conclusions that are logically implied by those premises. Subsequent

applications allow a program to derive further conclusions.

Most logic programming is based on clause form, which is a restricted form of

first-order logic. The most general kind of program clause usually considered is

A+-L1,...,L. (1)

where A is an atom and L, ..., Ln are literals [ABW88, Llo87, She88]. An atom is of

the form p(ti, ..., im) where p is an m-ary predicate symbol and ti, tm are terms.

A literal is either an atom or the negation of an atom, i.e. of the form -ip(ti, ..., tm).

A term can be either a constant, a variable, or a function which takes terms as

its arguments. Normally, constants, functions and predicates are represented by a

lower-case letter, while variables by upper-case letters or the underscore symbol. The

CHAPTER 2. BACKGROUND 12

atom A in the rule is called the head or conclusion, and L through Ln form the body

or conditions of the program clause.

A program clause A i- L1, ..., L, is a universally quantified first-order formula

VX1 ... VXm(AV'(LiA ... ALn)) where Xi, ..., Xm are all variables appearing in the pro-

gram clause. But variables appearing only in the body may be equivalently regarded

as quantified existentially within the body, while other variables are universally quan-

tified over the entire clause, that is, VX1 ... VX1(AV '2Xi+i...3Xm (Li A... AL)) where

X1i, ..., X are variables appearing only in the body.

There exist three types of program clauses: facts, rules, and queries (or goals)

[ABW88, Llo87, GM92]. A fact is a program clause with an empty set of conditions.

A rule is a program clause with non-empty head and conditions. A query is a program

clause with an empty head and is normally represented as ?— L1, .., L.

A logic program is a finite set of facts and rules. A logic program is definite if

it does not have negation in its rules. Otherwise, it is normal. Queries may be

associated with a logic program to be answered whether or not they can be satisfied

by the program.

A term which contains no variables is called a ground term. A program clause (a

literal) in which no variables appear is called a ground clause (ground literal).

A substitution 0 is a finite set of the form {X1/t1, ..., X/t}, where each Xi is a

distinct variable and each ti is a term distinct from X:. The substitution is ground if

every term ti is ground. Let 9={X1/11, ...;X/t} be a substitution and E is either a

term, a literal or a program clause, then EO, the instance of E by 0 is a term, a literal

or a program clause obtained from E by simultaneously replacing each occurrence

CHAPTER 2. BACKGROUND 13

of the variable Xi in E by the term t.

Example 2.3 An example of a definite logic program P1 is as follows.

(1). parent(art, bob) -.
(2). parent(mary,art) 4-.
(3). ancestor(X, Y) - parent(X, Y).
(4). ancestor(X, Y) — parent(X, Z), ancestor(Z, Y).

This program has two ground facts and two rules. The first fact says "Art is a parent

of Bob." The second fact says "Mary is a parent of Art." The first rule says "for all

X and Y, if X is a parent of Y, then X is an ancestor of Y." The second rule says

"for all X, Y, and Z, if X is a parent of Z and Z is an ancestor of Y, then X is an

ancestor of Y," or "for all X and Y, X is an ancestor of Y if there exists a Z such

that X is an ancestor of Z, and Z is a parent of Y." The query ?- ancestor(X, bob),

can be used to ask if there exists an X such that X is a parent of Bob based on the

program. 0

Example 2.4 An example of a normal logic program P2 is as follows.

(1). inWater(peter) 4-.
(2). canSwim(phil) 4-.
(3). sink(X) — inWater(X), -icanSwim(X).
(4). happy(X) 4- inWater(X), -isink(Y).

This program has two facts and two rules. The first fact says "Peter is in the water."

The second fact says "Phil can swim." The first rule says "for all X, if X is in the

water and X cannot swim, then X sinks." The second rule says "for all X, if X is

in the water and X does not sink, then X is happy." The query ?- happy(peter),

can be used to ask if Peter is happy or not based on the program. 0

What a logic program can compute or what the intended semantics of a logic

CHAPTER 2. BACKGROUND 14

program is, and how the output of a logic program can be computed; and when

given queries, what the answers to the queries should be and how these answers

can be found are the contents of two complementary aspects of logic programming.

One is called model theory, which deals with semantics, and the other is called proof

theory which deals with syntax [ABW88, CGT9O, Llo87, She88].

Model theory is, in general, considered as the more intuitive or declarative ap-

proach to the meaning of a program. Proof theory, on the other hand, often provides

more efficient computational methods.

2.2.1 Model Theory

The declarative semantics of a logic program is based on the usual model-theoretic

semantics of formulas in first-order logic.

In model theory, we are concerned with interpretations and models. An interpre-

tation of a set of program clauses consists of a nonempty set D, called the domain

of the interpretation, over which the variables range, and an assignment to each

constant of some fixed element in D, to each n-ary function symbol of a mapping

from D' into D, to each n-place predicate symbol of an n-place relation on D. An

interpretation thus specifies a meaning for each symbol in a set of program clauses.

A variable assignment assigns each variable an element in the domain.

Given an interpretation I with a domain D, and a variable assignment V, the

truth value, true or false, of a program clause, with respect to I and V, can be

obtained as follows. If p' is the relation assigned to an n-place predicate symbol

p, then the positive literal p(ti, ..., tm) evaluates to true if < i, ..., t >E p', where

..., t are the term assignments of t1, ..., tm with respect to I and V; otherwise it

CHAPTER 2. BACKGROUND 15

evaluates to false. A negative literal -'p evaluates to true if p is false; otherwise it

evaluates to false. If both p, and P2 are true, then p1, P2 evaluates to true; otherwise

it evaluates to false. If either p, is true or P2 is false, then p - P2 evaluates to true;

otherwise it evaluates to false.

Let b be a program clause, I an interpretation and V a variable assignment. If

& evaluates to true with respect to I and V, then we say that & is satisfied by I and

V, denoted by I = V('i).

For a program clause b, all variables in it are universally quantified. So given

an interpretation I, & is true under I if and only if it is true with respect to every

possible variable assignment V and I. In other words, b is satisfied by I, denoted

by I = b if and only if for every possible variable assignment V, I = V(b).

A model of a logic program P is an interpretation which satisfies all facts and

rules of P. A program clause C is said to be a logical consequence of a logic program

F, denoted by P = C, if and only if for every model M of F, M = C.

In first-order logic, given a logic program P without queries, we are concerned

with all its logical consequences, that is {C I P = C}. Given a logic program

P with a query ?- L1, ..., L, we are concerned whether or not the query can be

satisfied by the program, that is, whether or not there are ground substitution 0

such that P = L10, 1 ≤ i ≤ n. Therefore, we consider all possible interpretations

and models of the program with or without queries. This declarative view of a logic

program may be the ultimate ideal of logic programming. But it is not the way

current logic programming makes [She88]. There are two reasons. One is that we

do not intend to consider all possible interpretations and models of a logic program

CHAPTER 2. BACKGROUND 16

in logic programming. For the fact parent(art, bob) in Example 2.3, the constants

art, bob and predicate parent are intended to be interpreted as persons Art, Bob

and the parent relation between persons respectively, rather than something else.

Another reason is that in a logic program only the true facts are asserted and the

rules can only infer true facts, because the volume of false facts is usually much

greater than the volume of true facts. Negative facts are neither asserted nor can be

inferred. In this sense the program is incomplete. But it is very convenient to the user

and it results in efficient implementations [She88]. For example, we do not assert

that -iparent(bob, art), -iparent(bob, mary), -'parent(art, mary), etc. in Example

2.3 and -iinWater(phil), -'canSwim(peter) etc. in Example 2.4. These practical

reasons prohibit us to focus on logical consequences of a logic program because what

we obtain from a program may not be logic consequences of the program.

Therefore, in logic programming, we are concerned with the intended interpreta-

tions and models of a logic program, that is, so-called Herbrand interpretations and

Herbrand models. In some simple case, that is, for a definite logic program, the in-

tended meaning of a program clause in a logic program is also the logical consequence

of the program.

Herbrand Interpretations and Models

In logic programming, only a special kind of interpretation is of interest, rather

than general interpretations. This special kind of interpretation gives the intended

semantics of logic programs. These are the so-called Herbrand interpretations.

Given a program F, the domain U of a Herbrand interpretation includes all

constant symbols in P. Each constant symbol is assigned to itself. Every n-ary

CHAPTER 2. BACKGROUND 17

function symbol is assigned to a mapping Utm to U denoted by itself too. For ex-

ample, if f is a unary function and a, b, c, ... are constants, then f is interpreted

by {f(a), f(b), f(c), ...}. Therefore, all Herbrand interpretations have the same do-

main and assign the same meaning to the constant symbols and function symbols

in the program. Each n-place predicate is interpreted as mapping from U' to the

set {true, false}. Thus, Herbrand interpretations differ from one another only in

the interpretations of predicate symbols. This means that Herbrand interpretations

differ from one another only in the truth value of ground facts.

Note that in Herbrand interpretations, the so-called freeness axioms are assumed,

that is, the axioms

f(Xi,...,Xn)g(Yi) ...,Ym) (2)

for each pair f, g of distinct functions

f(X1, X) = f(Yi,...,Ym) Xi = Yi A AXn = Y. (3)

for each function f, and

(4)

for each term t(X) different from X in which X occurs [She88]. For this reason,

function symbols are usually called uninterpreted or freely interpreted because they

have no a priori meaning. As a result, hu.sband(mary) = john cannot be directly

expressed.

Normally, a Herbrand interpretation is represented as a set which includes all

the ground facts that are interpreted true. The set of all possible ground facts is

called the Herbrand Base. So, each different Herbrand interpretation corresponds to

a different subset of the Herbrand Base.

CHAPTER 2. BACKGROUND 18

Let H be a Herbrand interpretation of the program P. Then for a ground fact F,

H = F if and only if F E H;H = -iFifandonlyifnotH = F, that is, F 4 H. For

a non-ground fact F, H = F if and only if for each ground substitution 9, FO E H;

H = -iF if and only if not H = F, that is, there exists a ground substitution 0' such

that F0 4 H. For a rule rof the form AE—L1,...,L, H = r if and only if for each

ground substitution 0, whenever H = L10, ..., H = L,0, then H LO.

A Herbrand model of a logic program P is a Herbrand interpretation which is

a model for P. Every logic program has at least one Herbrand model which is the

Herbrand Base. However, the Herbrand Base is usually not used as the intended

semantics as it contains all possible ground facts. The usual approach is to look for

small Herbrand models in order to make the least number of assumptions concerning

what is true in a logic program [GM92].

Let P be a logic program, ?- L1, .., L, a query, and M a Herbrand model of P.

An answer to the query ?- L1, ..., L, under M is either no if there does not exist a

ground substitution 0 such that M = L0, 1 ≤ i ≤ n, or yes if there exists a ground

substitution 0 such that M = L0, 1 ≤ i ≤ n. In the later case, an answer is normally

represented by a ground substitution.

Example 2.5 For the definite logic program P1 in Example 2.3, following are some

possible Herbrand models:

M1 = {parent(art, bob), parent(mary, art),
ancestor(art, bob), ancestor(mary, art), ancestor(mary, bob)}

M2 = {parent(art, bob), parent(mary, art), parent(art , mary),
ancestor(art, bob), ancestor(mary, art), ancestor(art , mary)
ancestor(mary, bob), ancestor(art, art), ancstor(mary, mary)}

= {parent (art, bob), parent(mary, art), parent(bob, mary),
ancestor(art, bob), ancestor(mary, art), ancestor(bob, mary)

CHAPTER 2. BACKGROUND 19

ancestor(mary, bob), ancestor(bob, art), ancest or(art , mary)}
M4 = {parent (art, bob), parent(mary, art) , parent(bob, art),

ancestor(art, bob), ancestor(rnary, art), ancestor(bob, art)
ance.stor(mary, bob), ancestor(bob, bob), ancestor(art , art)}

For the query ?— ancestor(X, bob), different models give different answers. Under

M1 and M2, the answers to the query are {X/art}, and {X/mary}. Under M3 and

M4, the answers to the query are {X/art}, {X/mary}, and {X/bob}. 0

Example 2.6 For the normal logic program P2 in Example 2.4, following are some

possible Herbrand models:

M1 = {inWater(peter), canSwim(phil), sink(peter) }
M2 = {inWater(peter), canSwim(phil), canSwim(peter), happy(peter)}
M3 = {inWater(peter), canSwim(phil), canSwim(peter) , .sink(peter)}
M4 = {inWater(peter), inWater(phil), canSwim(peter) , canSwim(phil),

sink(peter), sink(phil), happy(peter) , happy(phil), }

For the query ?— happy(peter), under M2 and M4, the answer is yes; while under

M1 and M3, the answer is no. The models M3 and M4 contains information contra-

dictory to what is intended, such as canSwim(peter), .sink(peter), and sink(peter,

happy(peter). 0

Since there are many Herbrand models for a given logic program, how can we

define the semantics? Two kinds of Herbrand models are of special interests: least

models and minimal models. If a model M of a program P is a subset of every model

of F, then M is called a least model of P. If M is a model of P such that no model

of P is its proper subset, then it is called a minimal model of P [ABW88]. Thus, a

least model is a minimal model, but not necessarily conversely. The semantics of a

definite program is given by its least model. For a normal program, there may be

CHAPTER 2. BACKGROUND 20

more than one minimal model, its semantics is given by one of its minimal models

called perfect model which is preferable to other minimal models.

Least Model Semantics for Definite Program

A definite program F, that is, program without negation, has the following properties

[Llo87, ABW88]:

1. The intersection of its Herbrand models is itself a Herbrand model.

2. It has a unique least Herbrand model Mp.

3. Every ground fact in Mp is a logical consequence of P.

Property 1 is usually called the model intersection property of definite programs.

For the property 2, the least Herbrand model Mp is just the intersection of all

possible Herbrand models. Property 3 says that every ground fact are deducible

from P. Therefore, the declarative semantics of a definite program P is given by its

least Herbrand model Mp [SS86, CGT9O]. This Mp tells us exactly what the program

can compute, answer or prove. The answers to a query ?— Li,..., L, associated with

a definite program P, are all ground substitutions 0 such that Mp L0, 1 ≤ i ≤ ii.

Example 2.7 Consider the Herbrand models in Example 2.5, M1 fl M2, M2 fl M3,

M1 fl M2 fl M3 fl M4, etc. are models and M1 is the least Herbrand model which gives

the semantics of the definite program P1 in Example 2.3. Note non-least Herbrand

models, such as M2, include facts which are not deducible from the program, such

as parent(bob, art). The answers to the query ?— ancestor(X, bob), are {X/art} and

{X/mary}. 0

CHAPTER 2. BACKGROUND 21

Perfect Model Semantics for Normal Program

For a program P with negation, the intersection of Herbrand models does not need

to be a model of P and P may have no least model but several minimal models.

Example 2.8 Consider the normal program P3:

even(0) - -'odd(0)

It has three models {even(0)}, {odd(0)}, {even(0), odd(0)} but their intersection is

the empty set 0 which is not a model. The models {even(0)} and {odd(0)} are

minimal, but there exists no least model. The non-minimal model {even(0), odd(0)}

contains information which is contradictory to what is intended and thus cannot be

taken as the intended semantics of the program. 0

Example 2.9 Consider the Herbrand models in Example 2.6 for the normal pro-

gram P2 in Example 2.4, M1 fl M2, M2 fl M3 are not models of P2. Both M1 and

M2 are minimal models of P2. The contradictory information only appears into

non-minimal models. 0

As the above examples show, non-minimal models, such as {even(0), odd(0)} in

Example 2.8 and M3 and M4 in Example 2.6 may include facts which are contradic-

tory to what is intended. This suggests the semantics of a normal program should

be given by one of it minimal models. Since several minimal Herbrand models exist

for a normal program, as the above examples show, which one should be considered

as its intended semantics? Of course one would like to select the most "natural" and

"intuitive" one from the different minimal Herbrand models, which is supported by

the program. For the program P3, the fact odd(0) cannot be inferred and should be

CHAPTER 2. BACKGROUND 22

taken as false. This is intended for the negated facts. Then the fact even(0) can

be inferred and thus the minimal model {even(0)} is supported. This model can

be considered more natural and intuitive than the other minimal model {odd(0)}.

Similarly, for the program F2, M1 is more natural and intuitive than M2 in Example

2.6.

Unfortunately, not every normal program has a minimal model which can be

considered more natural and intuitive than any others.

Example 2.10 Consider another normal program F4:

(1). female(mary) i- -,male(mary).
(2). male(mary) - -ifemale(rriary).

This program has two minimal models: {female(mary)} and {male(mary)}, If

female(mary) is taken as false, then the model {male(rnary)} is obtained. If

male(mary) is taken as false, then the model {female(mary)} is obtained. How-

ever, it is certainly not clear whether female(mary) or male(mary) should be taken

as false, based on the program itself. 0

The program P4 shows that when recursion is combined with negation, the se-

mantics of the program is problematic. Therefore, a syntactic constraint called strat-

ification is added to normal programs which disallows the combination of recursion

with negation that may obscure the semantics of the program.

If a predicate p is in the head and a negation of a predicate q is in the body,

then p is said to depend-on q, denoted by >. This depends-on relation is transitive.

A program is called stratified if there is no predicate p in the program such that

p depends-on q, q also depends-on p. If a program P is stratified, then P can be

CHAPTER 2. BACKGROUND 23

partitioned into a set of stratums {P1, ..., P}, and P = P1 U ... U P,, such that if a

predicate p is in the head of a rule in P, then every predicate q which p depends on

can only be a head of a rule in U3<1P1.

Example 2.11 The programs P1 in Example 2.3, P2 in Example 2.4 and P3 in

Example 2.8 are stratified. But the program P4 in Example 2.8 is not stratified,

while The programs P1 and P3 just have one stratum. The programs

partitioned as follows.

P2 = {inWater(peier) 4- ., canSwirn(phil) - .}u
{sink(X) - inWater(X), - canSwim(X).}U
{happy(X) - inWater(X), -isink(X).}

P2 can be

0

Suppose that M and N are two distinct models of a stratified normal program

P. N is called preferable to M, if for every ground fact A in N - M there exists a

ground fact B in M - N, such that A depends on B. A model M is called perfect

if there are no models preferable to M. Every perfect model is minimal [Prz88].

Therefore, this unique distinguished minimal Herbrand model can be selected in a

very natural and intuitive way as the intended semantics of the program.

Intuitively and naturally, a fact B is true if it is asserted or is deducible from

some rule, otherwise it is intended to be false and its negation is then true. But if

such B is true in some model M, then the model N results from M by removing B

(making it false) and adding A which depends on the negation of B does reflect the

intended semantics.

Note that the least Herbrand model of a definite logic program is a special perfect

model of the program.

CHAPTER 2. BACKGROUND 24

The answers to the query ?— L1, ..., L, associated with a normal program F, are

all ground substitutions 0 such that Mp L10, 1 < i < n.

Example 2.12 Consider Example 2.8 again. For the program F3, since {even(0)} —

{odd(0)} = {even(0)}, {odd(0)} - {even(0)} = {odd(0)} and even depends on odd,

{even(0)} is preferable to {odd(0)} and therefore {even(0)} is the perfect model

of P3. For another example, consider Example 2.6 again. Since M1 M2 =

{sink(peter}}, M2 - M1 = {canSwim(peter), happy(peter)} and sink depends on

canSwim. So M1 is preferable to M2 and M1 is also the perfect model of P2. For

the query ?— happy(peter), the answer is no based on the perfect model M1. 0

2.2.2 Proof Theory

By model theory, we know what a program computes or proves. When given a query,

we know what the answers to the query should be, based on the intended model of

the program. However, this does not lead to any constructive method for evaluating

the program and computing the answers to the query. Such methods are the content

of the proof theory.

In proof theory, we are concerned with what can be derived by the application

of some given rules of inference from a given program.

There are two kinds of approaches for evaluating programs which are called for-

ward chaining or bottom-up computation and backward chaining or top-down com-

putation respectively. Bottom-up computation is better for computing all ground

facts that a program can prove, or all answers to a given query; while top-down

computation is better for computing one answer to a specific query at a time.

CHAPTER 2. BACKGROUND 25

Top-Down Computation for Definite Programs

In Top-down computation, an inference rule called resolution is the most extensively

studied and used to deduce new program clauses.

Two literals are said to be unifiable if they can be made identical by some sub-

stitution. For example, literals parent(X, bob) and parent(art, Y) are unifiable with

the substitution {X/art, Y/bob}. Literals parent(X, bob) and parent(Y, art), how-

ever, are not unifiable.

Given two clauses with unifiable literals on different sides of two clauses, the

resolution rule can be used to create, or deduce a new clause in which the left- and

right-side are the unions of the left- and right-hand sides of the two original clauses,

with the unified expressions deleted and the unifying substitution applied to the

remaining expressions.

Example 2.13 Given two program clauses as follows.

(1). ancestor(X, art) - parent(X, art).
(2). ancestor(X, bob) - ancestor(X, Y),parent(Y, bob).

Using the resolution rule to unify ancestor(X, art) in (1) and ancestor(X, Y) in (2),

we get

(3). ancestor (X, bob) i- parent(X, art), parent (art, bob). 0

Resolution is used mostly to carry out refutation proofs: Given a definite program

P and a query ?- L1, .., L, in order to prove L1, .., L, is deducible from F, written

as P I- L1, .., L, we can try to show that P and -(L1, .., La), are not simultaneously

satisfiable. If we can derive the empty clause qf, that is, a clause with no conditions

and no conclusions, then P and -(L1, .., La), cannot simultaneously be satisfiable,

CHAPTER 2. BACKGROUND 26

thus we have proved the query P 1- L1, .., L,. When a query contains variables and

the empty clause can be derived, then we have proved the query, and furthermore

found a desired answer from the substitution.

Example 2.14 Consider the definite program P1 in Example 2.3 and the query

?— ancestor(X, bob). Using resolution we can derive the empty clause and get one

answer {X/art} as follows.

?— ancestor(X, bob) query
?— pareni(Y, bob). Clause (3) in P1.
?— q with {X/art} Clause (1) in P1.

The following derivations show how to get the second answer {X/mari} for the

query.

?— ancestor(X, bob) query
?— parent(Z, bob), ancestor(X, Z). Clause (4) in Pi.
?— ancestor(X, art). Clause (1) in Pj.
?— parent(X, an). Clause (3) in Pi.
?— q with {X/mary} Clause (2) in Pi. 0

The resolution refutation has following properties. If a definite program P and

..., L,) have a refutation, i.e. P F L1, ..., L, and Mp is the least Herbrand

model of P, then Mp = L, ..., L1r (and P = L1, ..., L1 also). This means that the

resolution refutation is sound in that any conclusion it draws is guaranteed to be

correct with respect to its intended semantics so long as its premises are correct.

On the other hand, if Mp = L1, ..., L (or P = L1, ..., La), then P U {'(L1, ..., Ln)}

has a refutation and hence P F L, ..., L. This means that resolution refutation is

also complete in that it can derive any correct conclusion from a given program with

respect to the intended semantics.

CHAPTER 2. BACKGROUND 27

Top-Down Computation for Stratified Normal Programs

The above inference system is very specialized. It cannot deduce negative informa-

tion. In a program with negations, another inference rule called the negation as

failure rule is also used to infer negative information. It states that for a normal

program P if not P F- A then infer -'A.

Negation as failure is easily and efficiently implemented by the above resolution

proof. Suppose we have a query ?- -'A. The system tries the query ?- A. If ?- A

succeeds, then ?- -'A fails, while if it fails then ?- -'A succeeds.

Example 2.15 Consider the normal program P2 in Example 2.4 and the query ?-

happy(peter). Using resolution (R) and negation as failure (N) rules, we can get the

answer no as follows.

?- happy(peter)
?- inWater(peter) , --,sink(peter).
?- -'sink(peter).

?- sink(peter).
?- inWater(peter), -icanSwim(peter).
?- -'canSwim(peter).

?- canSwim(peter).
?- eanSwim(peter) fails

?- -'canSwim(peter) succeeds
?- sink(peter) succeeds

?- -sink(peter) fails
?- happy(peter) fails

query
By R on Clause (4) in P2.
By R on Clause (1) in P2.
Subquery 1.
By R on Clause (3) in P2.
R on Clause (1) in P2.
Subquery 2.
ByR
By N.
By R.
By N.
Answer to the query by R 0

Let P be a normal program and Mp its perfect model. Like resolution refutation,

we have if P F L1, ..., L, then Mp 1= L1, ..., L (but not P = L1, .., La). This

means that our top-down computation is sound in that any conclusion it draws is

guaranteed to be correct with respect to its intended semantics so long as its premises

CHAPTER 2. BACKGROUND 28

are correct. Also, if Mp H Li,..., L, then P I- L1, ..., L,. This means that our top-

down computation is also complete in that it can derive any correct conclusion from

a given program with respect to the intended semantics.

The most popular logic programming language Prolog uses this top-down, com-

putation.

Bottom-Up Computation for Definite Programs

Consider a rule r of the form A - A,, ..., A, and a list of ground facts gi, ..., g If

a substitution 0 exists such that for each 1 ≤ i ≤ n, A0 = g, then from rule r

and the facts gi, ..., gn, we can infer in one step the ground fact of AO. The inferred

fact may be either a new fact or it may be already known. This inference rule is

called elementary production [CGT9O]. Like resolution, it is a meta-rule, since it is

independent of any particular rules in a program.

Based on the elementary production, we can first infer all ground facts because

their bodies are empty and are always satisfied. This is normally considered as one

step even through it may actually take many steps to finish. Then we can infer new

ground facts using rules and inferred ground facts for another step. This process

keeps going until we reach a state in which no more new facts can be produced.

Example 2.16 Consider the program P1 in Example 2.3 again. The facts that can

be inferred in step i are shown below in the set S, and the process stops when i is 3.

S1 = {parent(art, bob), parent(mary, art)}
S2 = {pareni(art, bob), parent(mary, art),

ancestor(art, bob), ance.stor(mary, art) }
83 = {parent(art, bob), parent(mary, art),

ancestor(art, bob), ancestor(mary, art), ancestor(rnary, bob)}

CHAPTER 2. BACKGROUND 29

Note here that S3 is exactly the same as the least Herbrand model M1 in Example

2.7. Since we have inferred ancestor(art, bob), and ancesior(rnary, bob), we can

conclude that {X/art} and {X/mary} are the only two correct answers to the query

?— ancestor(X, bob). 0

The same as the resolution refutation, the inference rule elementary production

is also sound and complete with respect to the intended semantics of the program.

The above bottom-up computation for definite programs can be naturally de-

scribed as a least fixpoint computation based on concepts from the mathematical

theory of lattices.

A lattice is a set with a partial ordering (≤) relation. For a lattice L and a set

X C L, a E L is called an upper bound of X if x < a for all x E X. A least

upper bound of X, lub(X), is unique, if it exists. In a similar but opposite manner

the notions of lower bound and greatest lower bound can be defined. A lattice L is

complete if lub(X) and glb(X) exist for every subset X of L. A complete lattice L

has a bottom element which is glb(L) denoted by I.

Let L be a complete lattice for the following definitions. Let X C L, X is

said directed if it contains an upper bound for its every finite subset. A mapping

T: L -+ £ is monotonic if x ≤ y implies T(x) ≤ T(y), and continuous if T(lub(X)) =

lub(T(X)) for every directed subset X of L. An element a E £ is called a fixpoint

of T if T(a) = a. If there exists a fixpoint a of T such that for all fixpoints b of T,

a < b, then a is called a least fixpoint of T and is written as lfp(T).

Powers of a monotonic mapping T are defined as follows:

CHAPTER 2. BACKGROUND 30

TIO=±
TI (i+ 1) = T(TI i)

TIw=lub{TIi I i<w}

where w is the first infinite ordinal.

Following two results about lattices will be used to describe fixpoint computation.

(1) If T is monotonic then ifp(T) exists.

(2) If T is continuous then ifp(T) = T I w.

Let P be a program and HB be the Herbrand Base. Then 2HB is the set of

all possible Herbrand interpretations of P which forms a complete lattice under the

partial order of set inclusion C, a mapping Tp : 2HB . 2HB is defined as follows.

Let I be a Herbrand interpretation. Then Tp(I) = {A E HB I A - A,, -, A, is

a ground instance of a clause in P and {A1, ..., A4 9 I}. So Tp(I) contains all

immediate consequences of the rules of P applied to I. If I is a model of F, then

we have Tp(I) C I. Since Tp is defined over a complete lattice and it is monotonic,

it has a least fixpoint ifp(Tp). Also it is continuous, so ifp(Tp) = Tp I W. An

interesting result for the least Herbrand model Mp is Mp = Tp I W. This means Mp

can be bottom-up computed from the empty set which is Tp 1 0. Tp 1 1 corresponds

to the step one of the computation, Tp 1 2 corresponds to the step two, ..., Tp I w

corresponds to the state in which no more new facts can be produced, see Example

2.16 for detail.

Bottom-Up Computation for Stratified Normal Programs

For a stratified normal program P = F1 U ... U P, the bottom-up computation first

computes the least Herbrand model M1 for the stratum F1, then the least Herbrand

model M2 for the stratum P2 based on M1, ..., finally the least Herbrand model M

CHAPTER 2. BACKGROUND 31

for the stratum P, based on M....1. The negation as failure rule is also used here for

negative facts. That is, if a rule in stratum P uses a negative literal -'A, then -'A is

true if there is a ground substitution 0 such as only if AO 0 M3,j ≤ i.

Example 217 Consider the program P2 in Example 2.4 again. The facts that can

be inferred in stratum i are shown below in the set M, and the process stops when

i is 2.

M1 = {inWater(peter), canSwim(phil)}
M2 = {inWaier(peier), canSwim(phil), sink(peter) }

Note here M2 is exactly the same as the perfect model M1 in Example 2.12. Since

we do not have happy(peter) in M2 we can conclude that no is the correct answer

to the query ?- happy(peier). 0

Such bottom-up computation is also sound and complete with respect to the

intended semantics. It can also be naturally described by a fixpoint computation.

However, the Tp operator need not be monotonic for a stratified program. For

instance, in P3 of Example 2.8 with the predicates even and odd, we have Tp(q) =

{even(o)} and Tp({odd(0)}) = 4'. To avoid this problem, cumulative powers of an

operator T are used for stratified program as follows:

TIO(I)=I
TI(i-i-1)(I)=T(Tti(I))uTli(I)
T w(I) = U{T I i(I) I i < w}

Let P be a stratified program such that P = P1 U ... U P,. Then the bottom-up

computation can be described as a sequence of least fixpoint computations through

the levels 1, ..., n, via the strata P1, ..., P as follows:

CHAPTER 2. BACKGROUND 32

M1 = T 1 tw(q)
M2 = Tp2 lw(Mi)

M = Tp I w(M-1) = Mp

In other words, we first compute the least fixpoint M1 corresponding to the first

stratum of the program from the empty set. Then we compute the least fixpoint

M2 corresponding to the second stratum of the program based on M1. Finally the

computation terminates with the result M = Mp, the perfect model of the program.

2.2.3 Summary of Logic Programming

Logic programming is programming by description [0G84]. In traditional program-

ming, one builds a program by specifying the operations to be performed in solving

a problem, that is, by saying how the problem is to be solved. In logic programming,

however, a program is constructed by describing its application, that is, by saying

what is true in terms of clauses which have the requisite declarative semantics. The

system will use the rules of inference to choose specific operations to draw conclu-

sions about the application and to answer queries even though these answers are not

explicitly recorded in the description. The semantics of program clause logic can be

described declaratively as well as operationally.

2.3 Deductive Databases

In recent years, there has been a growing interest in the integration of relational

databases and logic programming. The most important reason for such interest is

that the integration is not only possible but also beneficial. The relational database

CHAPTER 2. BACKGROUND 33

and logic programming techniques have been found to be strongly similar in their

representation of data and complementary in their implementations.

Relational systems are superior to standard implementations of Prolog with re-

spect to ease of use, data independence, suitability for parallel processing and sec-

ondary storage access [TZ86]. They provide the technology for managing large,

shared, persistent, and reliable data collections. The control over the execution of

query languages is the responsibility of the system which, through query optimiza-

tion and compilation techniques, ensures efficient performance over a wide range of

storage structures. Physical structure changes do not affect the users view of data

in the database. The working assumption is that the volume of data to be manip-

ulated is too large to be contained in the memory of a computer and hence, that

special techniques for secondary memory data access and update must be employed.

However, the expressive power and functionality offered by a relational database

query language are limited compared with those of logic programming languages.

Relational query languages are often inadequate to express complete applications,

and are thus embedded in traditional programming languages. However, these two

kinds of languages are almost always mismatched in their type systems and their pro-

gramming style, which cause the so-called impedance mismatch [Mai87, ZAKB+85]

problem between programming and relational query languages.

On the other hand, logic programming offers a general programming language

which is a natural and powerful generalization of the relational data model. It can

express data, constraints, deductive information and queries in a uniform way. It

has no mismatch problem. Query and constraint representation are possible in a

CHAPTER 2. BACKGROUND 34

homogeneous formalism and their evaluation requires the same inferencing mecha-

nisms, hence enabling more powerful reasoning about the database contents. The

logic programming language Prolog is in fact being used so with great success in

varied applications such as symbolic manipulation, rule-based expert systems and

natural language parsing [Bra86]. However, Pure Prolog is based on the program

clause logic and a sequential execution-control model. Rules are searched and queries

are examined in the order in which they are specified (SLD resolution). Thus, the

responsibility for the efficient execution and termination of programs rests with the

programmer: an improper ordering of the predicates or rules may result in poor

performance or even in a non-terminating program. In addition, a number of extra-

logical constructs (such as the cut) have been grafted onto the language, turning it

into an imperative, rather than a purely declarative language.

Now let us see the inherent connection between the relational model and Prolog.

A logic program can be considered as a natural and powerful generalization of the

relational model [GMN84, Ull88, Rei84]. Any tuple (ti, ..., tm) of a relation p can be

expressed as a predicate of the form p(ti, ...tm). Relational databases can be consid-

ered from the viewpoint of logic in two different ways: either the model-theoretical

view or the proof-theoretical view. The model-theoretical view has contributed to the

understanding of the semantics of a databases and answers to queries. The proof-

theoretical view enables us to derive information which is not explicitly expressed,

therefore achieving the desired deductive power.

The use of mathematical logic in describing relational database models has helped

to solve a number of important problems, including the definition of formal query

CHAPTER 2. BACKGROUND 35

languages, the treatment of incomplete information (null values) in databases, and

the definition and enforcement of integrity constraints. The primary attraction of

logic here is the clear formalism capable of expressing facts, deductive information,

integrity constraints, and queries in a uniform way. Besides, by using first-order

logic as a database language, it is possible to explore well-developed techniques of

theorem proving for providing powerful deductive tools. Lastly, logic provides a firm

theoretical basis upon which one can pursue the data model theory in general.

Based on the above comparison, it seems possible and productive to integrate

these two approaches and obtain the benefits of both. This integration has resulted

in an active field in computer science called deductive databases [GMN84].

The advantages of deductive databases can be summarized as follows:

(1). Representational and operational uniformity. program clause form can be

used to express facts, integrity constraints, deductive information, and queries in a

uniform way.

(2). Ease of use. The user only needs to specify what should be done declaratively,

how to do it is the responsibility of the system. Besides, physical structure changes

will not affect users view of data in the database.

(3). Deductive power. By using program clause logic as a database language, it is

possible to use well-developed techniques of inference to provide powerful deductive

tools.

(4). Logic provides a firm theoretical basis upon which one can pursue problems

of relational data model theory in general such as the treatment of incomplete in-

formation (null values) in databases, and the definition and enforcement of integrity

CHAPTER 2. BACKGROUND 36

constraints.

(5). Efficient secondary storage access. It has great potential to be efficiently

implemented based on the existing relational database and Prolog technology.

As the theoretical basis has been formed, the next thing is to efficiently implement

deductive databases. There are two ways. One can be termed as loosely-coupled

Prolog and relational databases. The other as tightly-coupled Prolog and relational

databases.

In loosely-coupled systems, the connection between relational databases and Pro-

log is obtained by building an interface. The large collection of Prolog facts is man-

aged in secondary storage by using the existing relational database technology. Sys-

tems of this kind include EDUCE [Boc86], CGW [CGW86], and NU-Prolog [TL86].

This approach suffers from a mismatch between the computational models of these

coupled subsystem: Prolog is oriented towards a fact (or tuple) at a time model,

while the relational model is oriented towards a set at a time computation.

Tightly-coupled systems, on the other hand, use a logic-based language called

Datalog which is a similar to Prolog, but has no function symbols and is free

of the sequential execution model and other spurious constructs of Prolog. It is

based on bottom-up, fixpoint computation by extending database compilation and

optimization techniques to handle the richer functionality of the language. LDL

[TZ86, BNST91] is an example of this kind which extends Datalog by adding set

grouping and set enumeration constructors.

Chapter 3

Problems with Basic Deductive

Databases

Deductive databases represent the convergence of logic programming and relational

databases and combine the benefits of both, such as representational and operational

uniformity, ease of use, deductive power, data independence, efficient secondary stor-

age access, etc. However, such basic deductive databases are quite limited in their

expressive power. They cannot support complex object modeling in a direct and nat-

ural way, although this is a common requirement of advanced database applications

[Mai86, KL89, Llt89]. They also cannot support higher-order features such as schema

and sets in a uniform way [KN88]. These problems result from the use of inexpressive

flat structures in the underlying relational data model and logic programming lan-

guages. This chapter investigates why the relational data model and logic program-

ming languages cannot support complex object modeling and higher-order features

and discusses what should be incorporated to extend deductive databases, based on

the work of object-oriented programming languages and semantic and object-oriented

data models.

37

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 38

3.1 Complex Object Modeling

Many significant applications require effective representation, storage, and manipu-

lation of structured objects of high complexity. These include computer-aided soft-

ware engineering (CASE), mechanical and electrical computer-aided design (CAD),

computer-aided manufacturing (CAM), scientific and medical applications, graphics

representation, office automation, knowledge representation for artificial intelligence,

and business modeling applications. It has been realized that there are many pow-

erful data modeling and manipulation concepts which need to be introduced in both

programming languages and data models [Bee89, HK87, SS77, PM88]. One of these

concepts is the need to model arbitrarily complex objects. In fact, the ability to

model complex objects is characterized as one of the most important features of

modern object-oriented programming languages, semantic and object-oriented data

models [GH91].

Complex object modeling requires the adequate representation and manipulation

of object identity, object properties, types, classes and inheritance [HM81, KL89,

Mai87, Shi79]. The standard logic programming language and relational model us-

ing unexpressive flat structures are not rich enough to support them directly and

naturally. Corresponding deductive database languages also inherit these problems.

3.1.1 Object Identity

Object identity is the mechanism for identifying and referring to objects. The pur-

pose of introducing it is mainly for object sharing and updates. In traditional logic,

object names are assumed to be different and not to ever change. Thus they can

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 39

be used to identify and represent objects. The same is true for logic programming

systems. However, actual applications often violate this assumption. Two distinct

objects may have the same name. For instance, it is not uncommon that two individ-

uals have exactly the same name. In addition, object names are subject to change by

the users. A database having no conflicts on object names initially may be changed

to have such conflicts.

Even if we require that all objects always have distinct names, current logic

programming systems cannot handle changes of object names properly. If two facts

share an object, the system does not keep track of them. If the name of the shared

object in one fact is changed, the system does not know whether or not the name of

the object in the other fact should be changed. The user has to keep in mind which

facts share an object and must change all of them explicitly if he wants to change

the name of the object.

Example 3.1 Consider following two facts which describe the same individual called

Bob, who is the author of the books Prolog and Databases:

author(prolog, bob).
author (databases, bob).

If he changes his name to Henry, both facts should be updated. The change is made

by retracting those facts and asserting new facts:

author(prolog, henry).
author (databases, henry).

In interpreting these new facts, nothing about them requires that the domain element

representing Bob in the first case to be the same as in the second. There is no way

to say that everything stayed the same except the name. 0

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 40

One solution to this problem requires explicitly using a unique but meaningless

identifier which is also a term, or more specifically, a constant, to represent each

object.

Example 3.2 We can use following facts to replace the facts in Example 3.1:

author(prolog, ol),
author(databases, ol).
object(ol, bob).

To change the individual's name from Bob to Henry, we just need to retract the

fact obj ect(ol , bob) and assert a new fact obj ect(o1 , henry). The solution here requires

systematically introducing "meaningless" terms such as ol to identify corresponding

objects explicitly by the user. 0

Here, the user himself must remember the positions of such terms in the corre-

sponding predicates and their meanings, and make sure that they will not be changed

by chance. The system cannot treat these special terms as object identifiers and pre-

vent any changes on them. Also, it is unreasonable to restrict such name changes.

In the relational data model, user-defined and user-controlled primary keys or

foreign keys are intended for object identity. A major problem with this method

is that object identity is subject to change and a single such change may require

many other changes in different relations in order to keep the database consistent

and meaningful. For example, suppose we use social insurance numbers (SIN), social

security numbers (SSN), or other kind of serial numbers as object identity, for various

reasons such as status changing, we may need to change such numbers. Since these

numbers may participate in many relations as primary keys and foreign keys, all

of them should be changed. It is unreasonable to disallow the change of primary

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 41

keys as well as foreign keys because they are user-defined and user-controlled values.

The example below shows problems which apply to both logic programming and

relational databases.

Example 3.3 Suppose Mary has a car which is a white 1992 Toyota Corolla. Here

we mean a specific car. How could we identify it? —"Mary's car"? —we cannot

because Mary may sell the car to someone; "white 1992 Toyota Corolla"? —there are

lots of them; "car serial number?" —Another factory might use the same number for

their car; "both serial number and Toyota Corolla?" —if Toyota changes its name

to Tayoto someday, the identity discontinues. 0

The object discussed in Example 3.3 is a physical entity in the real world, but

current logic programming and relational databases have problems identifying such

an object, given the above situations. The approach to object identity which is being

used is not general enough to deal with these possible situations.

In object-oriented programming languages and semantic and object-oriented data

models, two mechanisms are used to represent object identity: addresses and surro-

gates.

Address In a program or a database, associated with every object is its unique

record number, i.e., address. Some language and data models take advantage of these

unique addresses and use them to identify and refer to objects, such as Smalltalk,

Gemstone [MSOP86], 02 [LR89], etc.

However, using addresses for object identity is still problematic. A major problem

is that it is not physical independent in the sense that moving objects in storage

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 42

devices changes object identity.

Surrogates Objects are better identified by something independent of their ad-

dresses and related values. Several data models use system-generated surrogates to

represent, identify and refer to objects in databases. These include RM/T, SDM,

Orion, etc. Here, the user just needs to tell the system to generate a unique surrogate

and then use it for some object. The generated surrogates can only be deleted, but

are not subject to change.

However, using system-generated surrogates is not always the best way. As long

as they are unique and unchangeable, user-defined surrogates are adequate also.

For example, the user first inserts a surrogate, if it already exists in the database,

then this insertion fails and user has to choose another one. This approach relies

on the system to do lookups. The advantage of this approach is that surrogates

can be meaningful to the user. It is used by TAXIS, Vbase, etc. But the user

has to interact with the system every time, which may not be convenient for some

applications. Ideally, system-generated and user-defined surrogates should both be

supported.

As discussed above, introducing addresses and surrogates is mainly for object

sharing and updates. There is another kind of object which have no problem with

sharing and updates, exemplified by numbers and strings. This kind of object can

be identified by its representation without the above problems. In this case, the

representation of an object and its identity can coincide.

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 43

Set Objects In semantic and object-oriented data models, we often need to model

set objects [Bro84, AH87, HK87]. A set object is a collection of objects. There are

two different ways to deal with its identity. One is using a surrogate or an address

as the identity of a set object. Any changes to sets do not affect their identity. The

other way is to treat a set object itself as its own identity. An insertion or deletion

does not change a set, but rather it produces a new set from the given set. These two

approaches are used in semantic and object-oriented data models. Choosing one or

the other depends on the other factors such as object properties which immediately

follows.

3.1.2 Objects and Object Properties

In many semantic and object-oriented data models and object-oriented program-

ming languages, everything is modeled as an individual object and set objects are

then constructed based on these individual objects. Constructing set objects from

individual objects is normally called set formation [Ull88]. Individual objects are

normally divided into two kinds, basic (or atomic) objects and composite (or con-

structed) objects [KBC+87, Car84]. A basic object is a nondecomposable value such

as a string and a number. A composite object is made up of a collection of basic

objects, composite and set objects.

Composite objects are normally used to describe complicated physical entities

and conceptual entities in the real world such as persons, cars, departments, and

universities. In relational databases and deductive databases, objects making up a

composite objects may spread among different relations or predicates because the

unknown values cannot be allowed in relations. For example, we cannot combine

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 44

relations EMPLOYEE and DEPARTMENT in Example 2.1 into one because no em-

ployees in the database are known in the Department of Chemistry. But in many

semantic and object-oriented data models and object-oriented programming lan-

guages, a composite object must have all component objects exist in it and normally

factual attributes (field names, or labels) are used to name the component objects.

A component object named by a factual attribute is then called the factual attribute

value. Each factual attribute and corresponding object is then called a faètual prop-

erty of the composite object. A factual attribute is called single-valued if the factual

attribute value is an individual objects. Otherwise it is called set-valued. Thus

composite objects are described via properties and thus acquire connotations. This

approach is normally called tuple formation [LR89] or record formation [Car84, Ull88]

by which objects are viewed as tuples or records. Note a composite object finally

consists of basic objects via various tuple formation and set formation.

Example 3.4 Consider a student called Smith, aged 29, male, who is studying in the

Department of Computer Science, takes courses CS 413 and CS 521, borrows books

Prolog and Databases. By tuple formation, this object is represented as follows.

tuple(name: "Smith",
age: 29,
gender: "Male",
studiesln:tuple(name: "Computer Science",...),
takes: {tuple(courseNo:"CS 413",...),

tuple(courseNo: "CS 521",...)},
borrows: {tuple(bookName: "Prolog",...),

tuple(bookName: "Databases" ,...)}).

This object is a tuple composed of several basic objects, a tuple and two sets of

tuples which are in turn composed of basic objects. 11

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 45

In programming languages and data models based on tuple formation, addresses

or surrogates are just used as an implementation mechanism for object sharing and

updates. Set objects normally have separate identity from their contents (states)

here. Basic objects also have their representation as their identity. If a component

object is a tuple or a set, it can have an identifier of some kind, i.e., address or

surrogate. Its inclusion in other objects is then implemented by using this identifier.

Therefore, it can be shared by more than one object and updating its contents does

not affect such sharing. But these identifiers have no meaning in the database or

program. This approach is used by IFO [A1187], FAD [DKV88], Vbase [And91],

Galileo [AC085].

Tuple formation is not necessarily the best way to represent complex objects.

Circular reference such as person's spouse's spouse is still this person cannot be di-

rectly represented by such formation. Since physical and conceptual entities in the

real world should have some kind of surrogates as their identity in the database, as

discussed in the last section, these surrogates can be viewed as objects called repre-

sentational objects because they represent real world entities. In [11K87, Bee89], they

are called abstract objects. But the term "abstract objects" have been extensively

used in logic and AT with completely different meanings [Zal88].

Factual properties of representational objects are described by a number of partial

functions called factual attributes which relate the described representational object

to other objects, which can be atomic object, representational object, or set of rep-

resentational objects. Since the related representational object may be described by

other factual attributes, complex objects are then constructed. This approach can be

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 46

called function (or attribute) formation in which objects are viewed as surrogates and

object properties are represented by functions on these surrogates. Here the objects

related through factual attributes are also called factual attribute values which are

different from the factual attribute values in tuple formation. Since factual attribute

values can be either individual objects or sets, the corresponding factual attributes

are called single-valued or set valued. Set objects normally have no separate identity.

In this approach, a surrogate is no longer an identification or implementation

mechanism, but a representation mechanism. It has full meaning in the database.

Circular reference is not a problem any more. This approach is used by SDM [HM81],

TAXIS [MBW8O], Orion [KBC87].

Example 3.5 Consider the object in Example 3.4 again. Let smith be a surrogate

for the above object and compSci, cs413, cs521, prolog and databases be surrogates

for the Department of Computer Science, courses CS 412 and CS 521, books Pro-

log and Databases respectively. By function formation, this object is described as

follows.

smith (name: "Smith",
age: 29,
gender: "Male",
studiesln: compSci,
takes: {cs413, cs521},
borrows: {prolog, databases}). 0

In the relational data model, there is no concept of properties in this sense.

Attributes of the relational model are simply the column names of relations. The

relational attribute values can be identified either by their names if we use the set

of mappings definition for relations or by their positions if we use the set of lists

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 47

definition for relations. The properties of an object can be represented by having

both the object identity which is the primary key and related objects or object

identifiers which are foreign keys in the same tuple of some relation. The related

objects may also have properties and are represented in the same way so that deeply

nested structured objects can exist. The set-valued properties are normally simulated

by a set of tuples.

NAME AGE STREET-NO STREET
Mary 18 182 Rocky
Bob 52 3452 Golden
Jenny 37 1834 Silver

(a) PERSON

CAR-NO MODEL YEAR

632087 Toyota Corolla 1989
724512 Ford Mustang 1990
393762 Mercedes Benz 1985
789413 Honda Accord 1992

(b) CAR

CAR-NO NAME
632087 Mary
724512 Bob
393762 Bob

(c) OWNED-BY

Figure 3.1 Example Representation of Object Properties by Relations.

•1

Example 3.6 The relations in Figure 3.1 represent objects, persons and cars. Each

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 48

individual in the relation PERSON has properties name, age, street number, and

street name. Each vehicle in relation CAR has properties car serial number, model,

and year. Each person also has a set-valued property own which relates the person to

a set of cars. But it is indirectly represented by the intermediate relation OWNED-

BY. For example, Bob has two cars: a 1990 Ford Mustang and a 1985 Mercedes

Benz. 0

The example above shows that the relationships between persons and cars are

represented through common values in different relations indirectly. To obtain such

a relationship, for example, what cars are owned by Mary, we must perform join

operations over these three relations. Users must keep in mind the relationships

between relations. One might argue that a single, relation can be used to represent

all objects for the above example. The problem with this is that some persons

without cars like Jenny and some cars without owner like the 1992 Honda Accord

cannot exist in the relation. For this reason, the relational model is sometimes called

a syntactic model, i.e., there is no semantics in the relations. The semantics are in

the user's mind.

In logic programming, uninterpreted function symbols can be used to describe

objects. The user can take advantage of this interpretation for organizing objects,

representing object properties and making them behave as tuple formation.

Example 3.7 Figure 3.2 shows a fact which represents information about cars. The

term vehicle(...) describes a certain car and the term owner(...) describes its owner.

The subterm no(6320847) represents the serial number of the car, model(toyota-

corolla) represents the model of the car and year(1989) represents the year when the

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 49

car was made for. The rest are self explanatory. 0

car(vehicle(no(6320847),
model (toyota - corolla),
year(1989)),

owner(name(mary),
age(18),
address(number(182),

street(golden))).

Figure 3.2 Example Representation in Logic Programming.

But this approach has several problems. First, it does not give direct semantics to

these object properties because these function symbols are not interpreted. Second,

the interpretation of argument positions within a predicate is not transparent to the

user. Indeed, in using the term owner(...) in the above fact, one must always be

aware that the first argument is a name, the second is an age, etc. Third, set-valued

properties cannot be supported directly. The problems with this will be discussed

further in the next section. Finally, circular reference cannot be directly represented.

First-order logic was developed to give precise meaning to statements in mathe-

matics. It does not support the description and manipulation of the existence and

intensional structure of complex objects naturally and directly [Mai86]. Logic pro-

gramming based on first-order logic inherits this problem.

In deductive databases, we have two choices to represent object properties: us-

ing uninterpreted function symbols as in logic programming, or taking the view of

relations as sets of lists and using the position names as the relational attribute

names. We cannot take the other view of relations as sets of mappings because a

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 50

tuple corresponds to a fact, the positions of a fact in which the components (rela-

tional attribute values) appear are important. The problems with the first choice

have been discussed. In relational databases, we can query attribute values simply

by using attribute names. However, in deductive databases, the position name is

in the contents of schema and is not usable in the database level. The next section

will show why. So the user must keep the schemas in his mind when referring to

the relational attribute values. This means the user must know precisely all struc-

tures of different fact collections (each of them represents a relation), instead of the

information contents of the facts which is typical to the relational model. So the

management of large applications becomes more complex from the view point of the

user. Data independence is lost.

In summary, in deductive databases, the representation of object properties is

not direct and natural, and querying on object properties is problematic.

3.1.3 Types and Classes

Objects often share common factual structural and behavioral properties. To be able

to describe them uniformly and make them more meaningful, the concept of types

and classes has been introduced [AFOP88, Bor88, Bee89].

Objects sharing common factual structural and behavioral properties are nor-

mally grouped into classes. Corresponding to each class, a type is used to give a

precise specification of common properties shared by all objects in the class. The

properties defined for a type are called definitional properties of the type, in contrast

to the factual properties of objects, and are normally represented different from fac-

tual properties. Therefore, type and class are two closely related aspects. They

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 51

represent the same group of objects with different functionality. The type repre-

sents the intensional or definitional aspect of this group. The class represents the

extensional aspect of this group.

In some language such as Galileo, both class name and type name must be given

explicitly. But this is inconvenient to the user [Bor88]. So normally, class names and

their type names are the same. For example, the type INTEGER may only allow

arithmetic operations on it and the class INTEGER denotes the set of all possible

integers; while the type STRING may only allow equality and inequality operations

on it and class STRING denotes the set of all possible strings.

Types can also be viewed as constraints on structural and behavior properties.

In this view, typing helps to enforce correctness and detect errors [CW85, Bor88].

In most object-oriented programming languages and semantic and object-oriented

data models, types for basic objects, such as strings and integers, called basic types,

are built-in as STRING and INTEGER and so are their objects. That is, these types

do not need to be defined and objects in the corresponding classes do not need to be

specified. But types for composite objects or representational objects, depending on

how objects are formed, must be defined explicitly. The extensions of these types,

that is, the classes are application dependent and may vary from time to time.

For every type A, its set type represented by set(A) (or set of A) is automatically

defined which normally allows usual set operations on the objects possessing this type

and the corresponding class represented also by set(A) which is power set of the class

A, that is, set(A) = 2A• Therefore, objects possessing a set type set(A) has to be a

homogeneous set in the sense that all objects in the set must possess the same type

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 52

A. Other kinds of set objects are normally disallowed.

Types for composite objects or representational objects are defined differently,

depending on how objects are formed. For tuple formation, structural properties of a

type are represented by a list of attributes and corresponding attribute types which

determine possible factual attribute values. This kind of types are called constructed

type or record types [Car84, KBC87, U1188]. Each object possessing such a type is

a tuple, and classes are sets of tuples.

Example 3.8 The type for the tuple object in Example 3.4 can be defined as follows.

type STUDENT
name: STRING;
gender: STRING;
age: INTEGER;
studiesln: DEPARTMENT(name: STRING; ...);
takes: set(COURSE(name: STRING; ...));
borrows: set(BOOK(name: STRING; ...));

end STUDENT. 0

For function formation, objects are just surrogates and classes are sets of sur-

rogates. Structural properties of a class, that is, its type is iepresented by a list

of definitional attributes which are mappings from the class to other classes. This

kind of types are called representational types in this thesis. Each object possessing

such a type has a list of factual attributes which link this object to other objects

(surrogates).

Example 3.9 The type for the representational object in Example 3.5 can be de-

fined as follows.

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 53

type STUDENT
name: STRING;
gender: STRING;
age: INTEGER;
studiesln: DEPARTMENT;
takes: set(COURSE);
borrows: set(BOOK);

end STUDENT. 0

In terms of expressive power, representational types are more powerful than con-

structed types, because circular reference is allowed. For example, we can have PER-

SON(father:PERSON, mother:PERSON, children:set(PERSON)) only as a repre-

sentation type rather than a constructed type. This is because the structural prop-

erties in constructed types have to be built bottom-up.

The interaction between types and objects is modeled normally in two different

ways in programming languages and data models. One is called conforms-to which

states that if an object possesses the structure that a type expects its elements to

have, then the object conforms to the type and is an element of the corresponding

class. The condition for conformity only bounds the object structure from below. It

is prescriptive: an object can have more structure than the type specifies and still

conforms to the type. In this way, types can be inferred from objects. This approach

applies to tuple formation only.

The other way is called asserted-of which states that an object possesses a type

if and only if it is explicitly asserted to be a member of the corresponding classes.

That it is asserted of a type. The reason for this is that two different types may

have exactly the same properties and we cannot tell which class an object is in by

its properties. For example, type NEWSPAPER and JOURNAL may have the same

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 54

properties: name, publisher. The asserted-of approach is intended to give this higher-

level control to the user: it is up to the user to decide on the intended conceptual

constraints. In this case, even though some attribute values of an object are unknown,

it still possesses the type. Unlike the conforms-to approach, here type inference is

disallowed. This approach applies to function formation and tuple formation. It is

especially useful for database applications. All the extensions to logic programming

and deductive databases which will be examined use this approach. Therefore, the

rest of this chapter focus on asserted-of approach.

3.1.4 Property Inheritance

The factual properties of objects determined by certain types, as discussed above,

are intended to be incomplete. That is, further , factual properties can be added to

these objects via the introduction of subtypes. A subtypes is a type which inherits all

definitional properties from its supertypes and can have extra definitional properties

local to itself.

The relationship between types is normally modeled by is-a (subtype of) which

states that if A is-a B then all definitional properties of type B are also definitional

properties of type A, and every object in class A either by confirms-to or by asserted-

of is also in class B. The is-a relationship is a partial order. That is, it is reflexive,

antisymmetric and transitive.

Subtypes of basic types are supported only in some models and languages. When

supported, they normally do not need to be defined, they are just directly used in

other type definitions. Using subtypes of basic types can make other type definitions

more precise and meaningful. For example, { 15. .35} is a subtype of INTEGER, which

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 55

contains all integers between 15 and 35 inclusive. Similarly, { "Male", "Female"} is a

subtype of STRING, which contains only two strings "Male" and "Female". For the

type definitions in Examples 3.8 and 3.9, it makes more sense if pairs gender:STRING

and age:INTEGER are changed to gender: {"Male","Female"} and age:{15..35}.

Normally, the type OBJECT (or ENTITY) for all possible representational ob-

jects or composite objects is built-in. It has no structural properties but it may have

some kind of behavioral properties such as equality or inequality operations applica-

ble to its objects. Its extension is application dependent and has to be inserted into

or deleted from the corresponding class explicitly by the user. Every composite type

or representational type is a subtype of OBJECT so that the behavioral properties

can be inherited.

Using inheritance, types can be and are often organized into a meaningful type

subsumption hierarchy (taxonomy). The type subsumption hierarchy affects both

intensional as well as extensional aspects of types. The former is manifested in the

form of inheritance: subtypes inherit all definitional properties from their supertypes.

The latter takes the form of subset inclusion, the class corresponding to a type is

included in the class corresponding to its supertypes.

Normally, a type definition contains its (immediate) supertypes and definitional

properties local to itself and may further refine some definitional properties of its

supertypes.

Example 3.10 Figures 3.3 and 3.4 show how types can be defined in two typical

databases. Both of them define two types: PERSON and STUDENT. Type PER-

SON is-a ENTITY and have definitional properties: name, gender, age and address.

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 56

define type PERSON
supertypes = {ENTITY}
properties {

name: STRING;
gender: STRING;
age: INTEGER;
address: STRING;}

end PERSON;

define type STUDENT
supertypes = {PERSON}

properties = {
studiesln: DEPARTMENT;
takes: set [COURSE];
borrows: set[BOOK];

end STUDENT.

Figure 3.3 Type Definitions in Vbase.

Type STUDENT is-a PERSON with additional definitional properties: studiesln a

department, takes a set of courses, borrows a set of books. In Figure 3.3, subtypes

of INTEGER and STRING cannot be used, therefore definitional property refine-

ment on age is disallowed. But in Figure 3.4 subtypes of INTEGER and STRING,

such as { 15..35}, {O..125} and {"Male", "Female"} can be used, which makes the

type definition more meaningful and precise. By saying STUDENT is-a PERSON in

type definitions, all definitional properties of PERSON are automatically inherited

by STUDENT and all objects in the class STUDENT are also in the class PERSON.

If we need to delete or add some definitional properties such as gender from or to

PERSON, we do not need to change the description for STUDENT at all. If an

object is deleted from or inserted to the class STUDENT, it is automatically deleted

from or inserted to the class PERSON. 0

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 57

class PERSON isa ENTITY with
name: STRING;
gender: {"Male", "Female"};
age: {O..125};
address: STRING;

end PERSON.

class STUDENT isa PERSON with
age: { 15..35};
studiesln: DEPARTMENT;
takes: set of COURSE;
borrows: set of BOOK;

end STUDENT.

Figure 3.4 Type Definitions in TAXIS.

Property inheritance has following advantages. It enhances semantics expres-

siveness and reduces conceptual complexity of a system specification by providing

a natural structure for defining and sharing definitional properties. It increases

system maintainability by allowing new definitional properties to be added by aug-

mentation, rather than mutation of existing code. It allows for sharing of code and

implementation and reduces the redundancy of the specification while maintaining

its completeness.

All the type definitions constitute the schema for the database and all entered

objects satisfying the schema form the database. Like the relational model, most

semantic and object-oriented data models offer a language for schema definition and

query and another language for object manipulation and query. The reason for this

separation is that schema information is used not only for querying but also for

strong type checking, enforcing integrity and database organization. Therefore, its

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 58

usage is quite different from object information in databases. For example, in Vbase,

schema language is called TDL and object language is called COP.

In the relational model, a relational schema can be viewed as a type definition

for the relation. Each attribute in a relation corresponds to a class named by itself.

It can also be viewed, quite artificially, as a mapping from the class of the objects

represented by the primary key to the class denoted by the attribute. Set-valued

definitional properties are not directly supported. Instead, they must be represented

as many-one or many-many relationships. These relationships among relations are

represented by the common data values and are not supported by the system, rather

they are kept in the user's mind and obtained through the use of join operations.

Example 3.11 Consider the relations in Figure 3.1, the relational schema PER-

SON(NAME, AGE, STREET-NO, STREET) can be viewed as a type definition

for type PERSON. The attribute AGE can be viewed as a mapping from the object

class denoted by NAME to the class denoted by AGE; while the set-valued property

own is represented by a many-one relationship from CAR to PERSON via three

relations PERSON, OWNED-BY, and CAR. 0

The subsumption relationship between two types A and B can be represented by

two relations A and B, which only share the same key values in relational systems,

see example below. This representation suffers the same problem, that is, the join

operation has to be used to obtain the inherited properties via the common key

values.

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 59

Example 3.12 Consider the Example 3.6 again. We can use relational schemas

PERSON(NAME, AGE, ADDRESS) and EMPLOYEE(NAME, SALARY, MAN-

AGER) to represent type PERSON and EMPLOYEE in the relational model. To

obtain the properties which EMPLOYEE inherited from PERSON, we must use the

join operation over the common key NAME. We cannot ask what properties an EM-

PLOYEE, say Mary has without knowing that EMPLOYEE is related to PERSON

and without joining them. 0

In summary, the structure of the relational data model is too simple to directly

support general hierarchies of types with complex nested structures.

It is argued by Reiter in [Rei84] that logic programming systems could use logical

implication to express inheritance. However Hassan and Nasr claim in [AKN86] that

using logical implication to represent data abstractions and inheritance does not

naturally represent what we mean:

"For example, when it is asserted that "whales are mammals", we un-

derstand that whatever properties mammals possess should also hold for

whales.

Naturally, this meaning of inheritance can be well captured in logic by

the semantics of logical implication. Indeed,

'c/xWhale(x) = Mammal(x)

is semantically satisfactory.

However, it is not pragmatically satisfactory. In a first-order logic de-

duction system using this implication, inheritance from "mammal" to

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 60

"whale" is achieved by an inference step. But the special kind of infor-

mation expressed in this formula somehow does not seem to be meant as

a deduction step—thus lengthening proofs. Rather, its purpose seems to

be to accelerate, or focus, a deduction process—thus shortening proofs."

What the argument suggests is that current logic programming systems are not

smart enough to track inheritance information represented by logical implication

and take advantage of it to produce more efficient systems. Using a special structure

other than logical implication to represent inheritance explicitly by the user could

be beneficial.

3.2 Higher-Order Features

In mathematical logic, the primitive symbols include constants, function symbols,

predicate symbols and various variables. In first-order logic, only individual variables

can be used, i.e., variables can only be used in the places where constants can be

used. In second-order logic, not only individual variables, but also function variables

and predicate variables can be used. In other words, variables can not only be used

in place of constants, but also in place of predicates and functions. Since predicates

are interpreted as sets and relations, variables can represent not only elements, but

also sets, subsets, relations and functions constructed out of the domain of discourse

in second-order logic. In higher-order logic, variables can be used over functions

defined on functions, etcetera.

In deductive databases, to manipulate schema and sets naturally lead us into

higher-order logic. This section focuses on the problems associated with these two

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 61

higher-order features.

3.2.1 Schema

A deductive database is a model of some portion of the real world in which one is

interested. This model is partitioned into two parts: (1) the schema, which captures

generic, time-invariant structural or definitional information, and (2) the database,

which captures specific, more volatile individual or factual information which satisfies

the schema. Usually the database is much larger than the schema. The schema

includes all predicate and function definitions, as well as integrity constraints on

legal values. It tells how the database is structured, such as how many relations

there are and how many attributes within each relation are used in the database.

This information allows the system to organize the database effectively and enables

static type checking which avoids a large number of common errors. It also gives

some kind of meaning to the data in the database. Relational names are described by

a set of attribute names and attribute names tell what the components in a relation

tuple are used for and thus make the relational names meaningful.

Example 3.13 Suppose the database consists of the three relations in Example

3.6: PERSON, CAR, OWNED-BY. The schema for each relation tells how many at-

tributes are used and what they are used for. For the relation PERSON, it has exactly

four attributes: person name, age, street number and street name and the correspond-

ing relational schema is PERSON(NAME, AGE, STREET-NO, STREET). Given

a tuple of PERSON or a fact such as person(mary, 18,182, rocky). We know how to

interpret each component based on the schema. We cannot insert person(henry, 25),

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 62

because it does not obey the relational schema. 0

It is a natural requirement of deductive databases to have function and predicate

variables to query the schema. Unfortunately, this cannot be done in the same way

as we query the database. There are several difficulties.

First, schema information is not compatible with either relation tuples or facts.

In other words, schema information cannot be directly and naturally represented in

the same way as individual information is dealt with. In deductive database, the

definition and query of data is done in a uniform way. However, the definition and

query of schema (or meta) information and data cannot be supported in such an

integrated framework directly and naturally. We have to separate the schema and

the database and also use a mechanism different from logic programming to represent

schema and queries on them. This is a serious impediment to the development of

integrated systems.

Example 3.14 Consider Example 3.6 again. The schema for the relation PERSON

is PERSON(NAME, AGE, STREET-NO, STREET). However, it cannot be repre-

sented as it is now. For example, how could a fact person(mary, 18,182, rocky) be

distinguished from the schema. Even if some mechanism can be used to tell them

apart in the way they are now, there may still be difficulties to query them in the logic

programming style. We may wish to use a variable X to list all predicates or relation

names in the schema. The substitution for X should range over all the predicate or

'relation names. However, the present form of deductive databases cannot represent

this query in such a simple way. Since relations or predicates can have different num-

bers of arguments, simply using a predicate variable does not allow us to express this

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 63

query in the usual way which logic programming uses. So we have to use a number

of queries X(_) for unary relations name, X(_, -) for binary relations name, etc. and

there should not be an upper bound for this sequence in theory. Even though we

know the relation name PERSON and we want to know the attribute names, if we

have no idea about the number of attributes, we still need to use a number of queries,

such as person(Ai), person(Ai, A2), ... to find out how many attributes the relation

has and what they are. Only the query person(Ai, A2, A3, A4) can succeed in this

case and report the first attribute name is name, the second is age, etc. 0

Secondly, even the above way to query the schema cannot work. In relational

databases, the user can use attribute names to query the database. But this cannot

be done in deductive databases based on traditional logic programming. It leads

us beyond first-order logic to higher-order logic to deal with the schema. However,

the use of higher-order facilities introduces serious technical problems which will be

discussed later in this section. So normally, a separate language is provided to specify

and query the schema information.

Based on the above discussion, the language for a schema is unrelated to the logic

programming language. As a consequence, the user cannot use the schema informa-

tion such as attribute names to query the database because of the separation of the

schema language and the logic programming language, even though the relational

schemas give some kind of interpretation to the data in the database. Instead, he

must find out schema information using the schema language and remember it, such

as relational names and attribute names, while he wants to query the database and

interpret the results. For example, Let person(john, mary, bob) be a fact obtained

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 64

by the user. This fact may be interpreted in many different ways, such as john's

mother is mary, and his father is bob, or mary and bob are john's children, etc. By

looking up the schema using the schema language or remembering the schema infor-

mation for person, the user can then give the right interpretation. This is certainly

inconvenient to the user.

3.2.2 Sets

As discussed earlier, the representation and manipulation of sets is an important

aspect of complex object modeling. In mathematical logic, unary predicates can be

used to represent sets and their arguments represent their elements. Using variables

to range over various sets actually requires these variables to range over predicate

symbols based on standard semantics. This is therefore a higher-order feature.

As will be discussed later in this section, the use of higher-order facilities intro-

duces serious technical problems. Besides, representing sets by predicates has other

problems. Here there is no notion of sets syntactically, only constants, function sym-

bols, predicate symbols and various variables. Therefore, a set cannot be represented

directly in the usual mathematical sense. It has to be represented via a predicate

indirectly or semantically. As example 3.5 shows, complex object modeling requires

syntactic sets. Using only semantic sets to simulate is not intuitive and convenient.

Besides, since there is no sets syntactically, there is no syntactic variables over such

sets. As a result, the relationships between sets such as subset, disjoint etc. cannot

be represented directly and intuitively.

Example 3.15 Suppose Mary speaks English, French, Chinese, and Bob speaks

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 65

English and French. In mathematical logic, predicate symbols mar ySpea lea and

bobSpeales can be used to represent sets of languages which Mary and Bob speak:

mar ySpeaks(english).
mar ySpeaks(french).
mar ySpeaks(chinese).
bobSpeaks(english).
bobSpeaks (french).

So a set is represented by a set of unary relation which is a special case of the

representation of the relational model. A similar example in the relational model

has been discussed in Example 3.6. To find out whether the languages spoken by

Bob are also spoken by Mary, set-valued variables cannot be directly used here to do

the comparison. Instead, an individual variables have to be used to ask the query:

4- bobSpeaks(X), -'(mar ySpeak(X)), which says if there is a language X which is

spoken by Bob but not spoken by Mary. This representation seems to be procedural.

That is, it tells how it will be done. This is contrary to the general philosophy of logic

programming. If syntactic sets like { english, french, chinese} { english, french} can

be used to represent the languages spoken by Mary and Bob in some way as Example

3.5 shows and variables X and Y can be used to range over them respectively, then

query 4- Y C X or i- subs et(Y, X) seems to be more direct and intuitive. 0

Since sets are so useful, an important extension has been proposed and used

extensively in the logic programming language Prolog [War82]. The extension is

based on the mathematical definition of sets: S = {XIP}, where S stands for the

defined set, X stands for the variable ranging over the set and P is a predicate in

which X occurs. It is read as "The set of all instances of X such that P is true is

S." Here S is a syntactic set. In Prolog, the extension takes the form of a built-in

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 66

predicate:

setof(X, P, S)

Unfortunately, there is no published formal semantics for the setof predicate

in current logic programming languages. The difficulties for the semantics is due

to the general higher-order logic problems which will be presented shortly, because

predicate variables can be used in it.

In addition, in Prolog, the set S is represented as a list whose elements are sorted

into a standard order without any duplicates. A list is defined as an uninterpreted

function consisting of the special functor "." applied on the head, and the tail which

is also a list, either empty [] or having its own head and tail.

.(Head, Tail)

Example 3.16 The set {english, french, chinese} can be represented in Prolog

by a list [english, french, chinese] which is an alternative notation for .(english,

.(french, .(chinese, []))). Using the .setof predicate, the query in Example 3.15 can

be represented as follows.

- setof (X, mar ySpeaks(X), Si),
setof(X, bobSpeaks(X), S2)
subs et(Si, S2).

where the predicate subset will be defined in Example 3.18. 0

Example 3.17 Using lists in Prolog, the membership predicate is usually be defined

as follows.

member(X, [XIL]) -.
member(X, [XIL]) - member(X, L). 0

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 67

Representing sets as lists also causes problems. The semantics for lists is quite

different from that of sets. When a predicate involves more than one set, the rules

can become quite complicated and unintuitive. The user has to specify details about

implementation, such as how to iterate over the sets (see examples below). This is

also contrary to the general philosophy of logic programming as well as deductive

databases [Kup87]. Whenever possible, the user should not have to deal with the

control structures in the program.

Example 3.18 In Prolog, the predicates that say one set is a subset of another and

two sets are disjoint could be defined as follows.

subset([], L) -.
subset([XIL1], L) - member(X, L), subs et(Li, L).

disjoint(L, []) -.
disjoint([], L) c—.
disjoint([XLi], [YIL2}) - disjoi rit([XIL1] , L2), X

disjoint(Li, [XIL2]). 0

In summary, even with the higher-order problems as will be discussed shortly,

sets cannot be directly and naturally represented in mathematical logic. To naturally

account for the complex object modeling, a new logical semantics should be developed

which includes syntactical sets as well as variables for these syntactical sets.

3.2.3 Problems with Higher-Order Logic

In mathematical logic, various formal systems called theories are studied [Hat82]. A

theory has two aspects: syntax and semantics. The syntactic aspect is concerned

with well-formed formulas admitted by the grammar of a formal language, as well as

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 68

deeper proof-theoretic issues. The semantics is concerned with the meanings attached

to the well-formed formulas and the symbols they contain. A theory consists of an

alphabet, an object language, a set of axioms, and a set of inference rules. The

language consists of the well-formed formulas of the theory built out of the alphabet.

The axioms are a designated subset of well-formed formulas. Based on the set of

axioms, whatever can be inferred from the language using inference rules are called

theorems.

An interpretation simply consists of some domain of discourse and a semantic

function which attaches some meaning to each of the symbols in the language and

decides the truth or falsity of every well-formed formula. The relationship between

valid well-formed formulas of a language and theorems is of most interest in mathe-

matical logic. A desired property is that valid well-formed formulas are exactly the

theorems. This is so called completeness and soundness property of the inference

rules.

First-order logic theories allow only individual variables. Higher-order logic the-

ories allows not only individual variables, but also function variables and predicate

variables.

For a theory (first-order and higher-order), it is often required that the alphabet,

the language, and the set of axioms be effective in the sense that there is some

procedure which can decide whether a given object is or is not a sign of the system,

or whether a given expression is or is not a well-formed formula, or whether a given

well-formed formula is or is not an axiom. A theory is called has an effective notion

of proof if all the theorems are a decidable set [Hat82, BJ89].

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 69

There are two kinds of semantics for higher-order logic, standard model, and

general model [Hat82, vBD83, BJ89]. In standard model, the logical consequences

are the well-formed formulas which are true in all possible models. In general model,

the logical consequences are the well-formed formulas which are true in all general

models which are models satisfying some constraints.

Higher-order logic is certainly more expressive than first-order logic. However,

it suffers various problems. Important properties held for first-order logic fail for

higher-order logic [BJ89]. First-order logic has an effective notion of proof which

is complete and sound with respect to the intended interpretation. This is the

content of Godel's completeness theorem, which says in any predicate calculus, the

theorems are precisely the logically valid well-formed formulas. As a result, the set

of universally valid first-order formulas is recursively enumerable based on Godel's

numbers [Hat82,vBD83, BJ89]. But with second-order logic, the set of second-order

validities is not arithmetically definable in standard semantics, let alone recursively

enumerable, and hence an effective and complete axiomatization of second-order

validity is impossible [vBD83]. In general model, second-order validities can be

defined, But there is no effective notion of proof for validity.

Even the simplest questions about the model theory of second-order logic turn

out to raise problems of set theory, rather than logic. If two models are first-order

equivalent and one of them is finite, they must be isomorphic. If we use second-

order equivalence and relax finiteness to, say, countability, it has been proved that

this question is undecidable.

The most significant problem with higher-order logic is that higher-order uni-

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 70

fication is undecidable [Gol81, Hue73]. In automatic theorem proving and logic

programming, unification is the kernel for deduction. The undecidability of higher-

order logic makes such deduction impossible. Given a query of higher-order logic,

we may end up with infinite waiting. This means that we cannot use it to query the

schema and the database.

In practice, many mathematical theories are first-order even though they involve

sets, subsets, relations. These includes number theory, ZF set theory [Hat82]. The

reason for this possibility is that these theories take advantages of the difference

between higher-order syntax and higher-order semantics. A theory has a higher-order

syntax if it appears to be higher-order, i.e., have variables for predicates, functions,

sets, or, subsets, etc. A theory has a higher-order semantics if its variables range

over not only individuals, but also domains of individuals, relations and functions

constructed out of the domain of individuals in its semantics.

Example 3.19 ZF set theory has sets, supports subset relations and allows variables

for them. But it is first-order because there is no variables for function and predicate

symbols. Based on this syntactical classification, it, can be said, has first-order

syntax. However semantically, individuals are interpreted as sets which can contain

other sets. Therefore, the variables for individuals become the variables for sets.

Every term is referred to as a set. The domain of interpretation no longer consists

of individuals, but rather of sets constructed out of individuals. Its semantics is no

longer that of traditional first-order logic. Based on this semantic classification, it,

can be said, has higher-order semantics. But if higher-order syntax is used, major

axioms of the ZF set theory would be represented more naturally. With higher-order

CHAPTER 3. PROBLEMS WITH BASIC DEDUCTIVE DATABASES 71

logic, one really enters the realm of set theory. However, the first-order version of

these axioms have turned out to be sufficient for many mathematical purposes. 0

3.3 Summary

To model complex object, we need proper notions to represent object identity, single-

valued properties and set-valued properties, syntactical sets, types, classes and in-

heritance. Since classes and objects are two fundamentally different concepts and

used differently, there ought to be some way to distinct them clearly. But it is also

desirable to treat classes as meta-objects and to view the associated type definitions

for their instances as part of their own properties and make the schema of a database

accessible to its users [Bor88]. In this sense, object properties and class properties

should be somewhat uniformly represented.

To represent and manipulate schema and sets, we need variables for not only

individuals, but also predicates and functions. This leads to higher-order logic.

However, higher-order logic has serious problems with its semantics and unification.

It seems to be a dilemma.

As will be discussed later, deductive databases only require very limited higher-

order features and it seems possible to avoid these problems.

We also need variables for syntactical sets. In such case, we no longer have well

formed logical foundation based on mathematical logic. Substantial theoretical work

is needed to account for this.

In the next chapter, various extensions to mathematical logic, logic programming

and deductive databases are examined against the above criteria.

Chapter 4

Critical Analysis of Related Work

In the last chapter, the need for complex object modeling and higher-order features

has been discussed and the corresponding concepts have been introduced. This

chapter examines typical extensions to mathematical logic, logic programming and

deductive databases in the literature and shows why they cannot naturally and

directly support complex object modeling and higher-order features. The examined

extensions to mathematical logic and logic programming can be called extended logic

term approaches.

4.1 Extended Logic Term Approaches

As a result of the lack of expressiveness in mathematical logic and logic programming,

some attempts have been made to provide those missing functionalities, such as

object identity, object properties, sets, types, inheritance, and well-formed semantics.

These include LOGIN [AKN86], 0-Logic [Mai86], Revised 0-Logic [KW89], and F-

logic [KL89, KLW9O]. They try to provide various notions to represent complex

objects and higher-order features. This section examines them individually from a

historical point of view based on the concepts developed in the last chapter. Following

the usual conventions in logic programming, variables are represented by upper-case

letters and words, non-variables are represented by lower-case words.

72

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 73

4.1.1 LOGIN

In LOGIN of Act-Kaci and Nasr [AKN86], a program consists of four parts: a

type signature, 0-terms, predicates and rules. Predicates and rules are the same as

traditional logic programming. But terms are extended to more expressive 0-terms

and unification is extended to deal with the type signature.

The type signature E is a partially ordered set of type symbols containing two

special elements: a greatest element (T) and a least element (I). All types in the

signature are representational types. The symbol T corresponds to the type OB-

JECT which denotes the set of all possible representational objects and the symbol

I denotes the empty set. The type signature is just a type hierarchy as discussed

earlier. The type signature determines the subtype relationship (<) between all

representational types. Even though subtypes of basic types are used in LOGIN and

can form a type hierarchy, they are not included in the signature. The reason might

be that subtypes of basic types in LOGIN usually have no names.

The 0-terms are used to define types and describe objects. For every type a,

if there is no type b except T in the signature such that a < b, then its type

definition can be represented directly by a 0-term. A -term consists of a type

symbol, labels, sub-0-terms and arrows (=) from labels to sub-0-terms. Labels

are used to represent attributes defined on the type symbol. Each label denotes a

function from the root class to the class denoted by its associated sub-0-term. That

is, LOGIN uses function formation to describe complex objects.

Example 4.1 Let the type person have definitional attributes name which is a

string; gender which is either "Male" or "Female"; age, an integer between 0 and 120;

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 74

lives, an addresse consisting of attributes number, an integer, street, city which are

strings. Suppose that there is no type B such that person < B is in the signature.

Then its definition in LOGIN can be expressed by a,0-term as follows.

person(name = string;
gender ["Male", "Female"];
age = [O...120];
lives => address(number = integer;

street = string;
city ='. string)). 0

If a < b is in the signature, then all definitional properties of b defined by a

1'-term are inherited by a. But if a has its own properties or further refines some

properties of b, then this must be expressed in LOGIN by a = W, where IF is a

0-term which has b as its root symbol and includes the properties local to a and

refined type properties of b. Each label in IF is no longer a function from the class b

but from the class a.

Example 4.2 Let student < person be in the signature. Besides the inherited defini-

tional properties from person in Example 4. 1, suppose student haè its own definitional

attribute studiesln a department and further refines person's definitional attributes

age to 15 till 35. This definition can be represented in LOGIN as follows.

student = person (studiesln => department;
age = [15...35]). 0

In LOGIN, objects are represented by user-defined identifiers. That is, objects

are viewed as surrogates in the sense discussed earlier. LOGIN uses the asserted-of

approach for types of objects. That is, objects of a type must be asserted in LOGIN.

To assert an object o to be of type t, we can use o = 1Q, where T is a 0-term which

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 75

has t as its root symbol and includes all the known factual properties of o defined

on type t.

Example 4.3 In LOGIN, to assert mary to be of type person, where mary is the

object identifier for a person called Mary, female, aged 18, living in 3452, Golden

street, Calgary, and to assert smith of type student, where smith is the object iden-

tifier for a student called Smith, Male, aged 29, who studies in the Department of

Computer Science, we could use

mary = person(name = "Mary";
gender = "Female";
age = 18;
lives = address(number = 3452;

street => "Golden";
city = "Calgary")).

smith = studerit(name = "Smith";
gender "Male";
age =- 29;
studiesln = cpsc)). 0

Even though types and objects are both represented by -terms, the results of

such representation have fundamental difference. A complete definition of a type can

be obtained by combining both a 0-term and the signature. But a description of an

object by a 0-terms itself is complete.

A 1'-term differs from a traditional term. It is not a fixed-arity term. Its argu-

ments are identified by their attribute labels, not by their positions.

In LOGIN, set types are not supported and therefore set-valued properties cannot

be defined for types directly in the way discussed in the last chapter. For example,

within the type definition for student in Example 3.8, the fact that every student

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 76

taking a set of courses cannot be defined. But information about set valued attributes

of individual objects can be represented by using traditional predicates and lists.

Example 4.4 The fact that student identified by smith takes two courses: cs413

and cs 521 and borrows two books: Prolog and Databases, can be represented in

LOGIN by

takes(smith, [cs413, cs5.21]).
borrows(smith, [prolog, databases]). 0

The intention of LOGIN is to extend the unification algorithm of Prolog. The

major contributions of LOGIN are that 0-terms are more meaningful and expressive

than traditional terms. Object identity, single-valued factual properties, type and

inheritance can be naturally supported. Inheritance information can result in more

efficient Prolog systems.

However, the approach is restricted to the unification algorithm, that is, given

two -terms, how to unify them with respect to the signature. The denotational

semantics is given only to?k-terms, not to programs. It is not clear in which logic

this unification algorithm would yield a sound proof procedure [KLW9O]. Besides,

given a program of LOGIN, what can be computed or what is the intended semantics

and what properties the program may have are not explored. Objects cannot be

generated here by rules. Besides, '-terms still function as normal terms. That is,

they are used in traditional predicates which are not V)-terms, as the above example

shows. Within a predicate, positions for terms are still important and each predicate

still has fixed-arity. Like Prolog, set objects are represented by lists and variables

can range over these lists. If LOGIN is used as the deductive database language, the

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 77

schema is very complicated, we have 0-terms as type definitions for objects, we also

have types for predicates which should be defined differently and separately for the

reasons discussed in the last chapter.

4.1.2 0-Logic

An extended first-order logic called 0-Logic (logic for objects) was described by

Maier [Mai86]. In 0-logic, a program consists of only two parts: 0-terms and rules.

0-terms are used to describe objects and rules are used to derive new objects. An

0-term is similar to a 1'-term in syntax, with a variable, labels, sub-0-terms and

arrows (-+) from labels to sub-0-terms. Type names can be added in front of the

variable in an 0-term.

Example 4.5 Objects similar to bob and mary in Example 4.5 can be represented

by 0-terms as follows.

person : P(name - string: "Mary";
gender - string: "female";
age - p integer: 18;
lives -+ address : A(number -* 3452,

street - string: "Golden",
city -+ string : "Calgary")).

student: S(name -+ string: "Smith",
gender - string: "Male",
age - integer: 29,
studiesln - dept : D(name - String: "Computer Science")).

where P, A, S, and D are variables. 0

The variables in 0-terms are somewhat misleading. They are not logical variables

intended to range over all objects of some types. A variable is intended to bind one

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 78

representational object semantically. It helps to view such a variables as telling the

system to generate a surrogate. Each label is a single-valued function which relates

the described object to another object. Note even though type names can be used,

type definitions are not proposed.

Unlike LOGIN, there is no predicate in 0-logic. 0-terms can function not only

as terms but also as atoms. This uniformity is certainly an advantage. Rules can be

defined by 0-terms alone. However, variables in a rule are different from variables

just in 0-terms. The variables in the body of a rule or in both the body and head

are intended to range over all objects of some types. The variables only in the head

are like the variables just in 0-terms. If the body is satisfied, then it tells the system

to generate a surrogate for the object described in the bead.

Example 4.6 Consider an object-creating rule that forms an interestirigPair ob-

ject for each employee whose manager has the same name. This is defined by the

following rule.

intere.stingPair:P(emp - employee:E, mgr - employee:M) =

employee:E(name - .string:N,
work.sln -+ dept:D(manager - employee:M(name -+ .string:N)).

In this rule, if the body is satisfied with some objects bound to E, N, D, and M, a

unique object is intended to be created and bound to P. 0

However, the object creating rules in 0-logic are problematic. These rules them-

selves do not determine what objects should be created. For the above example, the

problem is how P should be generated, since P does not occur in the body. The

author recognized that P should be existentially quantified, with respect to other

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 79

variables in the rules. But the scope of the existential quantifier remains unspecified

in the rule, there are several possible cases, VEVMVNVDBP and VEVMPVI'ND,

etc. each of which is reasonable and each of which has different semantics.

In summary, object identity and single-valued factual properties are supported in

0-logic. But set-valued properties are not expressible. Types, inheritance, schema,

set objects are not supported, let alone higher-order features. The semantics is not

well-defined.

4.1.3 Revised 0-Logic

Based on 0-logic, Revised 0-logic was presented by Kifer and Wu [KWS9], as a

solution to the problems of 0-logic. A program in Revised 0-logic consists of revised

0-terms (here called E-terms for convenience) and rules. Like 0-terms, E-terms can

only be used to represent objects rather than types. 0-terms are extended here to

include sets (set objects). An E-term consists of a class, an object identifier, labels,

sub-E-terms which can be single-valued or set-valued, and arrows.

Example 4.7 Consider the object smith in Example 3.5. It cannot be represented in

0-logic at all. It can be indirectly represented in LOGIN using a0-term in Example

4.3 and two predicates in Example 4.4. But it can be directly represented by an

E-term as follows.

student: smith[name - string: "Smith",
age - integer: 29;
gender —+ string: "Male",
studiesln -+ dept : corn pSci,
takes - 4 {course : csiLlS, course:cs5!1}-
borrows -* {book : prolog, book : databases}}.

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 80

where smith, compSci, prolog and databases are some kind of object identifiers. Since

compSci, prolog and databases can be further described in the same way, complex

objects are thus obtained. 0

Unlike the semantic and object-oriented models, E-terms do not require set ob-

jects to be homogeneous. That is, a set object can consist of objects of different

types, for example, {student : john, course : prolog} is allowed.

The problems with object-creating rules in 0-logic are solved here by introducing

explicit skolem functions of existential variables called object constructors so that

the quantification problem can be explicitly expressed by the user according to the

intended semantics. For example, to represent the quantification VXVYaZ, one

can use f(X, Y) directly to stand for the object Z. This is consonant with the

system-generated surrogate representation of object identity. For the same X and

Y, different object identifiers can be generated by using different object constructors.

Example 4.8 The object-creating rule in Example 4.6 can be expressed in Revised

0-logic as follows.

interestingPair:f(E, M)[emp - employee:E, manager --+ employee:M] =

ernployee:E [name - string:N,
worksln - dept:D [manager -* employee:M [name -+ string:N]].

where f(E, M) is an object constructor. 0

In the Revised 0-logic, object identity, object generation, single-valued and set-

valued factual properties are supported. Class and object are strictly distinct. But

type definitions and inheritance are not supported and set-valued variables are still

not allowed. It has been given a well-defined semantics, but it is quite complicated

and unintuitive because inconsistent information is allowed by way of terms p: T.

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 81

Example 4.9 In Revised 0-logic, the following two E-terms are allowed:

student : smith[age -+ integer : 29].
student : smith[age -+ integer : 32].

The semantics is so designed that the following E-term is logically entailed by the

above:

student: smith[age -* integer: T].

where T is the meaningless object. The claimed advantage for this is that inconsistent

knowledge about age only prevents a meaningful answer regarding smith's age, but

it does not affect the consistent parts of the database. 0

4.1.4 F-Logic

In order to incorporate type definitions and inheritance in the revised 0-logic, F-logic

was proposed by Kifer, Lausen and Wu [KL89, KLW9O]. In F-logic, there are three

kinds of terms: signature F-terms which are used to define types with single-valued

and set-valued definitional properties; data F-terms which are used to represent

complex objects with single-valued and set-valued factual properties; is-a F-terms

which are used to represent subtype-of relationship between types and asserted-of

relationship between objects and types, and to enforce property inheritance. Like

the revised 0-logic, objects are still viewed as surrogates and the object-generating

rules in Revised 0-logic are extended so that classes can be generated using rules.

But unlike the revised 0-logic, here the set objects are required to be homogeneous.

Also the ability to deal with incomplete information is abandoned.

Example 4.10 The type definitions in Example 3.9 and the object description in

Example 3.5 are represented in F-logic by signature F-terms in Figure 4.1, data

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 82

persori[name = string;
gender = sex;
age =-> age;
lives = string]

student[age => young;
studiesln ==> department;
takes =•-> course;
borrows = book]

Figure 4.1 Signature F-Terms.

F-terms in Figure 4.2, and is-a F-terms in Figure 4.3.

In the signature F-terms, single-valued and set-valued definitional properties are

represented by => and = respectively.

In the data F-terms, single-valued and set-valued factual properties are repre-

sented by - 'P and -+ respectively.

All is-a F-terms determine a partial order ':' over all classes and objects. Classes

and objects are not distinguished and are interweaved together by is-a F-terms. In

student : person, student is a class; while in smith : student, smith is an object.

Also not only subclasses but also objects inherit type properties. Based on is-a

F-terms in Figure 4.3 and signature F-terms in Figure 4.1 student inherits all type

smith[name -+ "Smith";
age - 29;
gender -+ "Male";
studiesln - compSci;
takes {cs413, cs5f.t};
borrows -+ {prolog, databases}]

Figure 4.2 Data F-Terms.

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 83

student : person
smith : student
compSci : department
cs413: course
cs521: course
prolog : book
databases: book

age : integer
young: age
29 : young
sex : string
"Male" : sex
"Female" : sex

Figure 4.3 IS-A F-Terms.

properties of person and has its own type properties and further refines the age prop-

erty of person. The object smith inherits all type properties of student. Therefore,

srnith[name =, string, takes course] is inherited by smith. Factual properties

of objects are represented by data F-terms using -* and -- and must satisfy their

type constraints. D

F-logic is the most elaborate approach so far. It supports object identity, object

generation, single-valued and set-valued definitional and factual properties, syntac-

tic sets, types and inheritance. The object-generating rules in Revised 0-logic is

extended so that classes can be generated using rules.

However, F-logic does not support higher-order features in a natural way. It mixes

the is-an-instance-of between objects and classes and is-a-subtype-of relationships

between types. In F-logic, classes and objects are interwoven together. Objects can

play dual roles: an instance of its class and a class of its instances. This special

treatment of classes and objects makes F-logic have higher-order syntax but first-

order semantics. Therefore, it is impossible to define an overall schema for the

database in F-logic in the sense discussed in the last chapter. As a result, the queries

in F-logic like ?— X : person is problematic. It may ask for objects of person. It

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 84

may also ask for subclasses of person. Given an answer a, the user has no idea if a is

an object or a class. There is no way for the system to implicitly find out this kind

of information. The proposed solution is to use symbols! in front of objects and #

in front of classes in all F-terms explicitly by the user which is inconvenient to the

user. Objects and classes are different level concepts and have different functionality,

there should be some simple way to distinguish them.

A second problem with F-logic is that set-valued variables are not allowed even

though set objects can be used. To query a set object, the user has to use individual

variables to get one answer at a time. For example, to query all the courses taken by

Smith in F-logic, we have to use ?— smith[takes -*- {X}} where {X} represents a set

over which the variable X ranges. For this reason, nested sets cannot b.e supported.

These certainly limit its expressive power. The reason for excluding them is also to

avoid higher-order semantics.

A third problem is that its use of , — and -+ to represent properties

makes it complicated. Even the factual properties of classes can be inherited by

its objects. For example, if every student speaks at least English, then there can

be a data F-term for the class student such that student [speaks {english}] so

that every instance of student can have this property. Such representation mixes

definitional properties and factual properties.

Another minor problem is that subtypes of basic types cannot be defined in the

way discussed earlier. For example, a subtype of integer cannot be represented as an

interval without giving a name, such as [0..125]. Instead, the user has to use a lot of

is-a F-terms, like 0 : age, 1: age, ..., 125 : age explicitly. The semantics of F-logic is

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 85

quite complicated [Zan89].

Last, is-a F-terms and data and signature F-terms are separated which violates

its goal of grouping data around objects. As in automatic theorem proving of first-

order logic, negated information must be explicitly represented in the program. F-

logic uses an existential quantification for object identifiers in clauses which makes

the semantics different and more complex than the standard one of logic program-

ming [Zan89]. Also, the intended semantics of its programs and their syntactic and

semantic properties are not explored as in logic programming.

Criteria LOGIN 0-Logic It-Logic F-Logic

Object is viewed as surrogate surrogate surrogate surrogate
Object Identity surrogate surrogate surrogate surrogate
Object Generation No Yes Yes Yes
Single-Valued Factual Property function function function function
Set-Valued Factual Property prolog No function function
Syntactic Sets list No hetero homo
Nested Sets No No No No
Set Variables prolog No No No
Separation of Classes and Objects Yes Yes Yes No
Uniformity of Terms and Atoms No Yes Yes Yes
Type Definitions some No No Yes
Subtypes of Basic types Yes No No some
Inheritance Yes No No Yes
Well-defined Semantics No No complex complex
Semantic Properties of Program No No No No

Table 4.1 Comparison of Extended Logic Term Approaches

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 86

4.1.5 Summary

This section has examined four typical extensions to traditional logic and logic pro-

gramming, LOGIN, 0-logic, Revised 0-logic and F-logic, based on the concepts

discussed in the last chapter. Table 4.1 summarizes the features of these extensions.

Some abbreviations are used: function means function formation; prolog means the

prolog approach; homo means sets are homogeneous; hetero means sets are hetero-

geneous; some means some of the desired functionalities are supported.

4.2 Extensions to Deductive Databases

Extended logic term approaches focus more on the complex object modeling than

higher-order features. But higher-order features are natural requirement of deductive

databases. In recent years, a few attempts have been made to deal with them,

such as LDL, 'COL, IQL, LPS, L2, etc. They are direct extensions to datalog by

adding syntactic sets, schema operators and higher-order predicates. Complex object

modeling is normally ignored in these approaches. This section analyses LDL, L2,

COL because they originate several important notions for higher-order features.

4.2.1 LDL

Based on traditional logic programming, LDL [BNST91, TZ86] proposes a way of

expressing sets. Set terms can be generated in LDL by using two set constructors:

set-enumeration and set-grouping. Set enumeration is the process of constructing a

set by listing its elements. But in set-grouping, the set is constructed by defining its

elements using a property (i.e., a conjunction of predicates) that they satisfy.

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 87

Example 4.11 Let the relation book include tuples whose first component is the

title of a book, and whose second component is the price of the book. To derive a

relation bookDeal on sets of three book titles from the book relation such that their

total price is less than $100, the following rule of LDL can be used:

bookDeal({X, Y, Z}) - book(X, Ps), book(Y, Pu), book(Z, .P),
xxz,Yz,
P33+P+P < 100.

Note that the same thing can not be directly represented in the standard logic

programming language. 0

Example 4.12 Given a parts-and-suppliers relation supplier, the following program

of LDL uses the set-grouping constructor to group all parts each supplier supplies:

partSets (Supplier, (Part)) - supplier(Supplier, Part).

where (...) in the head is the grouping operator. The intended meaning is to find,

for each Supplier, all substitutions that satisfy the body, to collect the Part-values

in them into a set, and to construct a tuple in the result from each Supplier and the

corresponding set of Part's. 0

Introducing set constructors improves the expressive power of LDL to a great

extent. Set variables and set constructors can be used to construct complicated

nested sets.

Example 4.13 Consider the program P1 in LDL:

p((X)) - q(X).
q((Y)) - r(Y).
q((Z)) - s(Z).
r(1).
s(2).

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 88

This program involves sets { 1}, {2}, {{ 1},{2}}. Note that none of the extended

term approaches discussed have such expressive power.

Some restriction has to be imposed on programs of LDL in order to have well-

defined semantics. In traditional logic programming with negation, every program

has to be stratified so that there exists a minimal model that is, in a well-defined

sense, preferable to all other models of the program, which can be used as the in-

tended semantics of the program. Since set variables and set constructors are allowed

in LDL, negation can be defined in terms of them. For example negation -ip(X),

can be defined in terms of the set constructor as q((X)) = p(X) and q(Y), Y = {},

where Y is a set variable. This means the stratification restriction on LDL programs

should be extended for predicates involving set constructions. Otherwise, problems

with negation are also problems here.

If a predicate p involves set constructions in the head and a predicate q is in

the body, or p is in the head and a negation of a predicate q is in the body, then p

depends-on q, denoted by >. This depends-on relation is transitive. A program is

said to be stratified if there is no predicate p in the program such that p depends-on

q, and q also depends-on p. The program in Example 4.12 is stratified.

Introducing set constructors also incurs problems. Extending stratification is not

enough for LDL program. The well-known model-intersection property of traditional

logic program fails in the context of LDL because of sets and grouping, with stratified

program without using negation.

Example 4.14 Consider the following stratified program P2 in LDL:

q(2).
p((X)) - q(X).

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 89

This program may have the following models:

M1 = {q(2),p({2})},
M2 = {q(1),q(2),p({1,2})},
M3 = {q(2),q(3),p({2,3})},
M4 = {q(1),q(2),q(3),p({1,2,3})},

The intersection of the above models is {q(2)} which is not a model as it does

not contain p({2}). The reason is that the predicate p freezes its arguments such

that p({l, 2}) and p({1, 2, 3}) are not comparable. To solve this problem, LDL

introduces the concept on top of the notion of minimality called model dominate

which is somewhat unnatural [KW89]. For the above example, M2 dominates M4,

M3 dominates M4, while M1 dominates M2 and M3 and M1 is the minimal model

based on domination. 0

LDL has a well-defined semantics. Important semantic properties of LDL pro-

grams are explored extensively. However, a number of unnatural concepts such as

model domination are used which makes the semantics quite complicated [KW89].

As will be shown later, NLO includes all the expressive power of LDL but gets rid

of its problems because of using attribute symbols.

LDL is based on traditional first-order logic, so the problems of complex object

modeling discussed in the previous section still exist. Objects here are viewed as

tuples and object identity is represented by object related values such as keys. Object

properties, types are represented as in traditional deductive databases. Inheritance

is not supported in the sense discussed earlier.

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 90

4.2.2 L2

LDL extends traditional logic programming to include set constructors. But it cannot

support schema and higher-order predicates in an integrated framework but relies on

a separate language to specify the schema information and on evaluable predicates

for expressing higher-order information. Furthermore, this schema information could

not be used to compose a condition on the database. This is true for many other

logic-based languages. To solve this problem, L2 was proposed by Krishnamurthy

and Naqvi [KN88].

Objects in L2 are classified into four categories: atomic objects, functor objects,

set objects and tuple objects. Atomic objects are basic objects discussed in the last

chapter, such as integers, strings, etc. A functor object is recursively defined as an

object of the form f(objecti, ..., object,), where f is an n-ary functor symbol. A

set object is a named (not necessarily homogeneous) collection of objects. A tuple

object is a sequence of named objects, whose names are called attributes, of the

form (aUri : objecti, ..., aUr : objeeth) in which each aitr : obj ecti pair refers to

the objecti that is the attri attribute of the tuple and objects can be another tuple,

a set object, a functor object, or an atomic object. Therefore, objects are viewed as

tuples in L2. Since attribute names can be used, the relations as sets of mappings

approach can be used rather than relations as sets of lists.

A database is defined as a tuple object database = (ri : Si, r2 : S2, ...' r :

whose attributes are relations, i.e., a set of tuple objects. A rule is of the form

p(...) <- X1(...), ..., X(...) in which p is an attribute of database for a derived relation

and each Xi is either an attribute of database or a variable ranging over all attributes

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 91

of database. Queries are then expressed over these relations.

Example 4.15 Suppose the database contains the following three relations: faculty,

staff and student. Every relation has the same attributes: name, age, phone.

faculty: {(name: henry, age : 28, phone : 6320),
(name : jenny, age : 41, phone : 5015),
(name : peter, age : 25, phone : 1675)},

staff: {(name: bev, age: 46, phone : 2518),
(name : jone, age: 28, phone : 2518)},

student: {(name : paul, age26,phone : 3108),
(name : mary, age: 28, phone : 3538)
(name : nancy, age : 24, phone : 4917)}

Then based on them, the following higher-order rules can be represented in L2:

(1). pi(name : X) - Y(name : X)
(2). p2(person : X, relation: Y) +- Y(name : X)
(3). p3(name: Z, relation : X) - X(name: Z, phone : T),

Y(name: Zi,phone: T),Z
(4). p4 (name: Z,relation: X) - X(name: Z, phone: T),

Y(name: Zi,phone: T),X 0 Y

In the first rule, the relation p is defined to include all the names of persons in faculty,

staff, and student relations. In the second rule, the relation P2 is defined to include

all person names and their relation names. A query ?P2 (person : mary, relation: Y)

computes mary's relation name, which is student as an answer. In the third rule,

the relation p3 includes the names of all persons and their relation names who share

their phones. In the fourth rule, the relation pj includes the names of persons and

the relation name who belong to different groups but share their phone. 0

The schema information can be represented as a special tuple expression p[meta-

exp] where p is a database attribute (i.e., relation name or predicate), metaexp is a

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 92

meta expression for schema information. The examples below show how to represent

schema and use schema information.

Example 4.16 The following expression defines a schema for relation person to be

a set of tuples, each of which contains two attributes, names and age, which are

defined to be of string and integer type respectively.

person : [type = set] { (name : [tipe = string], age: [type = integer])} 0

Example 4.17 To compute all attribute names in the predicates of the database

that are defined to be sets, irrespective of any value associated with these attributes

can be achieved by the rule:

P5 (y) - X: (Y: [type = set]) 0

Example 4.17 shows that meta information can be used in rules as well as queries

in conjunction with normal data. This uniformity in the treatment of the schema

information is achieved through the use of the higher-order predicates.

The solution to higher-order unification problem is based on a bottom-up seman-

tics where unification is replaced by matching, i.e. only one of the two terms contains

variables. The higher-order variables are limited to range over database attributes

and predicates. A rule with higher-order variables can be rewritten by replacing

variables with attributes or predicates. The rewritten rules are in first-order logic

and their meaning is well-defined. Since the number of database attributes and pred-

icates have to be finite, this makes the language decidable. This semantics is called

replacement semantics in that paper. The replacement semantics for higher-order

variables in fact is of great value. It provides a technique for the integration of the

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 93

definition and manipulation of schema and data. In almost all deductive databases,

only very limited higher-order features are used. Higher-order problems can actually

be avoided based on the the replacement semantics. It is used by NLO as well.

The semantics of L2 [KN88] is a simple extension of that of LDL except the

addition of domains for function variables and predicate variables constructed out of

the domain of individuals.

Certainly, L2 is quite expressive in terms of higher-order features with a decid-

able unification algorithm. It gets rid of those problems of higher-order logic by

restricting the language to be a decidable but expressive subset of higher-order logic

for deductive databases. The semantics of a program is given by its minimal model.

However, L2 is not expressive in terms of complex object modeling. Object identity

and inheritance issues are not addressed.

4.2.3 COL

The Complex Object Language (COL) [AG88] is an extension of Datalog by al-

lowing function symbols in a way different from logic programming, which permits

the manipulation of complex objects obtained using tuple and (heterogeneous) set

constructors.

Terms are made not only of functions but also of set and tuple constructors. A

term made of an n-ary function f and terms t, .., t, is, as usual, represented by

f(t1, ..., W. A term made of a tuple constructor on terms tm is represented

by [t1, ..., tm]. A term made of a set constructor on terms t, ..., tj, is represented

by {t1, ..., tk}. Here a set can be heterogeneous. For example, [1, {2, mary}, f(2)],

friend(mary), spouse(mary) are terms. Note objects in COL are viewed as tuples

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 94

like LDL and component objects are addressed by their positions.

Terms still function as terms, rather than as atoms like 0-logic. Two particular

predicates = and E are built-in in the language and have a predefined interpretation,

i.e., classical equality and membership. Formulas and rules are constructed in the

usual way. But they are more complex because of the complex terms and the two

built-in predicates.

Example 4.18 Following are examples of facts and rules:

(1). parents(mary, { bob, pam});
(2). address(mary, [3452, Golden, Calgary]);
(3). silly E friends(mary);
(4). phil = bestFriend(mary);
(5). friend(X, Y) - X E friend(Y);
(6). bestFriend(X) E friends(X);
(7). XEU(Y,Z)4—XEY,XEZ;

The first fact says Mary's parents are Bob and Pam. The second fact tells mary's

address. The third says silly is one of Mary's friends. The fourth says mary's best

friend is phil. The fifth is a rule defining the predicate friend., The sixth states that

the best friend of somebody is also a friend of that person. The last rule defines

set-valued function U, the usual set union. 0

COL has a fundamental difference from traditional logic programming as well as

LDL and L2. It doesn't assume the freeness axiom,

f(Xi,...,Xn)g(Yi,...,Ym)

for each pair f, g of distinct functions. So, john = spouse(mary) can exist in a COL

program. Certainly, COL gives a natural semantics to function symbols.

Like LDL, COL allows set variables, disallows function variables and predicate

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 95

variables, requires schema or types to be defined in a separate language, and repre-

sents object identity by object related names or keys. Inheritance is not supported.

4.2.4 Summary

This section has examined three typical extensions to deductive databases LDL, L2

and COL, based on the concepts discussed in the last chapter. Table 4.2 summarizes

the features of these extensions based on the same criteria in Table 4.1. Some

abbreviations are used: relational means the relational approach, tuple form means

the tuple formation, homo means sets are homogeneous, and hetero means sets are

heterogeneous.

Criteria LDL L2 COL

Object is viewed as tuple tuple tuple
Object Identity relational relational relational
Object Generation relational relational relational
Single-Valued factual Property tuple form tuple form tuple form
Set-Valued factual Property tuple form tuple form tuple form
Syntactic Sets hetero hetero homo
Nested Sets Yes Yes Yes
Set Variables Yes Yes Yes
Separation of Classes and Objects Yes Yes Yes
Uniformity of Terms and Atoms No No No
Type Definitions relational relational relational
Subtypes of Basic types No No No
Inheritance No No No
Well-defined Semantics Yes Yes Yes
Semantic Properties Explored Yes Yes Yes

Table 4.2 Comparison of Extensions to Deductive Databases

CHAPTER 4. CRITICAL ANALYSIS OF RELATED WORK 96

4.3 Summary

Chapter 2 has shown that program clause logic is a natural generalization of the

relational data model. This strong inherent connection results in the deductive

databases which combine the benefits of both approaches, such as representational

and operational uniformity, ease of use, deductive power, data independence, efficient

secondary storage access, etc. These new kinds of systems extend the frontiers of

computer science in an important direction and fulfill the needs of new applications.

However, as Chapter 3 has shown, these kinds of deductive databases are quite

limited in their expressive power. They cannot support in a direct and natural

way complex object modeling which is a common requirement of advanced database

applications. Also they cannot support objects and higher-order features such as

schema and sets in a uniform way. Semantic and object-oriented data models are

more expressive than the relational model. This chapter has shown that the typical

extended logic term approaches and extended deductive database languages are not

general enough to capture the most important ideas of these models. However, they

tackle some of the problems successfully. Based on them, the rest of this thesis is

dedicated to a novel deductive database language called NLO (Natural Logic for

Objects). As will be seen, NLO is a natural generalization of semantic and object-

oriented data models. It stands in the same relationship to the semantic and object-

oriented data models as the program clause logic to the relational data model. It has

expressive and deductive power and can naturally represent and manipulate complex

objects and desired higher-order features in a uniform way.

Chapter 5

NLO - Informal Presentation

The present form of NLO does not deal with update issues formally, that is, how

to insert an object, how to delete an object, and how to change attribute values of

an object. Like LOGIN, F-logic, COL, LDL, it deals with what makes up an NLO

program, how queries are represented, what properties an NLO program may have,

what the precisely defined semantics of a program is, and what the correct answers

to queries are.

It is assumed that all representational objects in NLO are represented by their

identifiers. The generation of such identifiers has been discussed in chapter 3 but is

not part of the formal semantics of NLO.

This chapter informally introduces NLO through a number of examples. It de-

scribes what makes up an NLO program, how queries are represented and what seem

to be correct answers to queries.

5.1 Objects, Programs and Queries

In NLO, there are two kinds of objects: individual objects and set objects. Individual

objects are classified according to their factual structural and behavioral properties.

Classes are used to denote the sets of objects which share common factual properties

and types are used to formalize definitional properties that constrain the factual

97

CHAPTER 5. NLO - INFORMAL PRESENTATION 98

properties of all objects in the corresponding classes. Types and classes always have

the same names. For individual objects, NLO takes the asserted-of approach. That

is, an object o is of a type t only if it is asserted by o : t explicitly or implicitly

via inheritance or rules. An object possessing a type should have all the factual

properties defined by the definitional properties of its type, but the factual attribute

values may be unknown.

Set objects are formed out of individual objects and represented in the standard

set formation. Correspondingly, a set type and set class are used for set objects.

That is, if p is a type, then set(p) is a set type. For set objects, NLO takes the

conforms-to approach. That is, if o, ---, On are individual objects of type p, then

{O17 ... , o} represents a set object of type set(p).

Types or classes themselves are meta individual objects which may have their

own factual properties, besides their definitional properties. They belong to the

meta type called type whose definitional properties constrain the factual properties

of types or classes. Similarly, the meta type type is also an object and has its own

factual properties. The type of type is defined to be itself.

Therefore, three disjoint kinds of objects function at three levels in any NLO

program: ordinary objects at level one, types or classes at level two, and the unique

meta type called type at level three.

Every object has a type. Every object may have definitional properties and

factual properties. The definitional properties of an object o of type t are embraced

in angle brackets, i.e., o : t(...). The factual properties of an object o of type t are

embraced in round brackets, i.e., o:

CHAPTER 5. NLO - INFORMAL PRESENTATION 99

In any NLO program, all information about objects at levels two and three is

grouped into a type system. All information about objects at level one is divided

into the object base and rules. Thus, an NLO program consists of three parts: a

type system, an object base, and a set of rules. The object base contains all known

information about objects. That is, all asserted representational objects and their

factual properties. Rules are used to deduce the information which is not explicitly

represented in the object base. Objects in the object base and inferred by rules must

satisfy the type definitions in the type system in order to have meanings.

Example 5.1 Figure 5.1 shows a simple NLO program. The type system only

contains one type definition for person. The type person has one factual property

called isa which says that person is a subtype of the built-in type object. It has

several definitional properties for its objects, name, age, address, etc. Note that we

can use a subtype of the integers such as {O. . 125} in NLO.

The object base consists of seven asserted representational objects and their

factual properties. Notice that these factual properties are all single-valued.

The rules of the program deduce factual properties of the objects in the object

base. The first rule says that for each person X, his father or mother is one of his

parents. Here {Y} and {Z} are called set grouping variables which represents sets of

which Y and Z are elements respectively. The second rule says that for each person

X, his parent Y is one of his ancestors. The third rule says that for each person X,

an ancestor Y of his parent Z is his ancestor as well. The fourth rule say that for

each person X, if he is not greater than 20 years old, then he lives with his father or

mother Y. The last rule says that for each person X, he lives with his spouse Y. 0

CHAPTER 5. NLO - INFORMAL PRESENTATION 100

person : type(isa -+ {object})
name - string,
age -+ {0..125},
address -4 string,
spouse -+ person,,
mother -4 person,
father -4 person,
parents -+ set(person),
ancestors -+ set(person)).

(a). The Type System

pam : person(spouse - torn).

tom : person(address "257 9 Ày NW").

bob: person(f at her -+ tom, mother - pam,
address - "128 2 St SW").

liz : person(f at her -+ torn).

ann : person(age -+ 20, father -+ bob).

pat : person(f at her -+ bob, address -4 "439 5 Ày NE").

jim : person(age -+ 16, mother -+ pat).

(b). The Object Base.

X: person(parents -+ {Y}).@ X: person(f at her -* Y);
X : person(mot her - 4 Y).

X : person (ancestors -+ {Y}) X per.son(parent -* {Y}).

X : person (ancestors -+ {Y}) -= X : person(parent Z}),
Z : person (ancestors -+ {Y}).

X : person(address -+ Z) = (X : person(age - A, father -+ Y);
X : person(age - A, mother -+ Y)),
Y: person(address - Z), A ≤ 20.

X : person(address -+ Z) = X : person(spouse -+ Y),
Y : person(address - Z).

(c). Rules

Figure Li A Sample NLO Program.

CHAPTER 5. NLO - INFORMAL PRESENTATION 101

Queries can be defined over the object base, rules, and type system to obtain

information about objects, types.

(Query 1.) ?- person: type (A -+ T).
(Answer 1.1.) A = name,T = string.
(Answer 1.2.) A = age, T = JO.. 125}

(Query 2.) ?- person: iype(isa - S).
(Answer 2. 1.) S = {object}.

(Query 3.) ?- student : type.
(Answer 3.1.) no.

(Query .4.) ?- bob: person(A — pam).
(Answer .4.1.) A = mother.

(Query 5.) ?- X : person (ancestors -+ S).
(Answer 5.1.) X = bob,S = { tom, pam}.
(Answer 5.2.) X = liz, S = {tom}.
(Answer 5.3.) X = ann, S = { tom, pam, bob}.
(Answer 5.4.) X = pat, S = {torn,parn, bob}.
(Answer 5.5.) X = jim, S = { tom, pam, bob, pat}.

(Query 6.) ?- X : T(address - A).
(Answer 6.1.) X = pam, T = person, A "2579 Av NW".
(Answer 6.2.) X = torn, T = person, A = "2579 Av NW".
(Answer 6.3.) X = bob, T = person, A = "128 2 Ày SW".
(Answer 6.4.) X = ann, T = person, A = "2579 Av NW".
(Answer 6.5.) X = pat, T person, A = "439 5 Ày NE".
(Answer 6.6.) X = jim, T = person, A "439 5 Ày NE".

Figure 5.2 Sample Queries and Answers.

Example 5.2 Figure 5.2 shows several queries and the corresponding answers to

them based on the program in Figure 5.1. The queries 1 to 3 ask about the type

system. The first query asks the definitional properties of the type person. The

CHAPTER 5. NLO - INFORMAL PRESENTATION 102

second query asks the factual property isa of the type person. The third query asks

if there is a type student in the type system. The answers to them are directly in

the type system. The rest of the queries ask for information in the object base and

deduced from the rules. The fourth query asks what kind of relationship bob and

pam have, that is, whether or not there is an attribute which links bob to pam. The

fifth query asks for each person X, his ancestors. The answers to it are deduced from

the rules in the program. The last query asks what type of object has the attribute

address and what the attribute value is. The answers to it are either directly in the

object base or derivable from the rules. 0

The above simple program and queries give a flavor of programming in NLO.

Following sections elaborate what can be represented in the type system, the object

base, rules and queries.

5.2 Type System

There are four kinds of types in NLO: set types, built-in types, basic types, repre-

sentational types.

For every type t, its set type set(t) is automatically defined and the corresponding

class is the power set of the class t, that is set(t) = 2. NLO extends the semantic

and object-oriented data models by allowing nested set types to be automatically

defined, for example, set(set(set(t))).

The built-in types are integer, string, and object. These built-in types have no

factual structural properties, but only factual behavioral properties in the sense

discussed in Chapter 3. The classes integer and string are intended to include all

CHAPTER 5. NLO - INFORMAL PRESENTATION 103

possible integers and strings respectively and do not need to be explicitly asserted.

The class object is intended to include all representational objects and is therefore

application dependent. It automatically includes all representational objects that

are in its subclasses because of inheritance.

Basic types are used to define subtypes of integer or string either by enumerating

or by specifying the ranges. Subtypes may or may not have names. For example,

{ 0.. 125} specifies a subtype of integer without a name, whose class contains integers

between 0 and 125; while gender = { "Male", "Female"} specifies a subtype of string

called gender, whose class has only two elements "Male" and "Female".

A representational type is a type for representational objects and is a named

subtype of object. Like the semantic and object-oriented data models, NLO uses

the symbol isa to represent subtype relationships between types as well as subclass

or subset relationships between classes. It is used as a set valued factual attribute

which relates one type to its immediate supertypes. Let t be a type and 3 i,

are its immediate supertypes. It is asserted in NLO as

: type(isa -+ {si, ..., Sm})

The result of such a representation is profound. The subtype relationships between

types represented by the isa attribute is a partial order. The type t inherits whatever

properties each si may have of its own or inherited from its supertypes and the class

t is included in each class s. Also the set class set(i) is automatically included in

each set class set(s), so are set(set(t)), ...,

Using the isa attribute turns out to be syntactically expressive and semantically

sound.

CHAPTER 5. NLO - INFORMAL PRESENTATION 104

A representational type may have definitional properties, besides the factual prop-

erty called isa. The definitional properties of a type constrain the factual properties

of its objects at one level lower. A definitional property of a type formally defines

the attribute as a mapping by letting the class corresponding to the defined type

be the range and some class as the domain of the attribute. If p is a type with a

definitional attribute 1 and the domain of 1 is q, then this is represented in NLO by

p: t(l -+ q), and 1 is called a definitional attribute of p and q is called the definitional

attribute value of the definitional attribute 1 of p.

There are two kinds of definitional attributes, single-valued and set-valued. A

single-valued definitional attribute relates a non-set type to another non-set type,

while a set-valued definitional attributes relates a non-set type to a set type as the

program in Figure 5.1 shows.

All definitional properties applicable to a type are normally grouped together.

That is, if a type p has definitional attributes li, ..., in and definitional attribute

values p, ... ,Pn, then this is normally represented as p : t(11 - pi, ..., l, -

If a representational type has definitional properties defined by

p: t(11 -+ p1,..., 4 - p,). and factual properties defined by p : t(isa - {qi, ...,

then it is normally represented in the type system as

p:t(isa — {qi,..,qm})(ii 'Pi,...,ln 4 Pn). (1)

The type person in Figure 5.1 is defined in this way.

Example 5.3 Figure 5.3 shows another example of a sample type system which

defines 4 types. Note that the two type definitions PERSON and STUDENT in

Example 3.9 are defined in NLO here. Based on the definitions, the type student

CHAPTER 5. NLO - INFORMAL PRESENTATION 105

person : type(isa - {object})
(name -+ string,
sex -+ gender,
age - {0..125},
address - string).

student : type(isa - {person})
(age - {15..35},
studiesln - p dept,
takes -+ sel(course),
borrows -+ set(book)).

employee: type(isa - p {person})
(age - {20..65},
worksln - dept,
heads - set(employee)).

workStudent : type(isa -* {student, student})

Figure 5.3 A Sample Type System.

inherits all properties of person because of the factual attribute isa and refines the

inherited property age. So is the type employee. The type workStudent multi-

ply inherits all properties of student and employee. It is noticeable that the type

representation of NLO is quite similar to TAXIS syntactically. 0

The type system of NLO consists of all type information for the object base and

rules. It is also a meta-object base which can be queried in the same way as the

normal object base.

The factual properties of representational types are constrained by the meta type

type which is predefined in the type system as follows:

type: type(isa - {type})(isa -+ set (type)).

CHAPTER 5. NLO - INFORMAL PRESENTATION 106

5.3 Object Base

In NLO, individual objects are classified into three disjoint classes, integer, string and

object. The classes of integer and string are explicitly defined. The class of object

is implicitly defined. The classes of basic types which are subclasses of integer and

string are explicitly defined. The classes of set types are implicitly defined. Only

the classes of representational types, are application dependent and their contents

determine some implicitly defined classes.

Every representational object o of type t has to be explicitly asserted by o: t.

A representational object may have and can only have factual properties. A

factual property of an object represents a relationship this object has with another

object. Such a relationship is called a factual attribute which is constrained by the

definitional attribute of the corresponding type. The related object is called the

factual attribute value of the corresponding factual attributes.

There are two kinds of relationships in NLO between objects, complete and par-

tial. If o is an object of type t and is related completely to an object o via the

factual attribute label 1, then this is represented in NLO by o: t(l - o8). It means

that o is the complete factual attribute value of 1 on the object o, that is, 1(o) = 03.

If o is an object of type t and is related partially to an object o via the factual

attribute label 1, then this is represented in NLO by o : t(l -+ o'3). It means that o

is only a partial factual attribute value of 1 on the object o, that is, l(o) 03.

Since a definitional attribute can be either single-valued or set-valued, the factual

attribute can also be single-valued or set-valued correspondingly. A single-valued

factual attribute relates an individual object to another individual object completely.

CHAPTER 5. NLO - INFORMAL PRESENTATION 107

A set-valued factual attribute relates an individual object to a set object either

partially or completely.

It is possible to have both 0: t(r -+ {Oi,i,...,Oi,m }') and 0: t(r -+ {02,1,...,02,fl}')

so that r(o) 9 {Oi,i, ..., Oi,m} U {02,1, ..., 02,fl }. Such interpretation for set-valued

attributes can naturally represent many important applications, see next section.

Example 5.4 Following are several examples of objects and their factual properties.

smith : person(name —* "Smith").
smith : person(age - 29).
mary : student (takes - {cs413, cs521}).
jenny: person(fri ends - {bob, silly, phil}').

Here, name and age are single-valued factual attributes and takes and friends are

set-valued factual attributes. The factual attribute value { cs413, cs52.L} of takes is

complete, while the factual attribute value {bob, silly, phil} of friends is partial. 0

An object o with a complete factual property represented by o : t(l - o3) is

called well-typed if t has a definitional property defined by t : type(l - s) and 0 is

an object of s.

An object o with a partial factual property represented by 0: t(l - o) is called

well-typed if t has a definitional property defined by t : type(l - s) and o3 is part

(subset) of an object of s.

All factual properties applicable to an object are normally grouped together.

That is, if an object o of type p has factual attributes 11, ..., l and factual attribute

value 01, ..., o, then this is normally represented as

11 1 I

CHAPTER 5. NLO - INFORMAL PRESENTATION 108

Note the isa attribute is a meta-attribute, that is, it can only be used to relate

types with special meanings. Therefore it cannot be used for normal objects.

Example 5.5 The object in Example 3.5 is represented in NLO as a representational

object as follows.

smith : student(name -+ "Smith",
age - 29,
sex -+ "Male",
studiesln - p compSci,
takes - p {cs413, cs521},
borrows -+ {prolog, databases}). 0

The object base consists of all asserted representational objects of the form (2)

which must satisfy the corresponding type definitions in order to have semantics.

Note that the object base only tells what is known about the values of factual

attributes of objects. The unknown factual attribute values can be inferred directly

from the type system.

Example 5.6 Consider the object smith in the example above. It satisfies the type

definition of type student in Example 5.3. The factual attribute value of address

can be inferred unknown: 0

5.4 Rules

Based on the object base, deductive information can be defined by using rules in

NLO.

Rules are defined in terms of NLO-terms and comparison expressions.

CHAPTER 5. NLO - INFORMAL PRESENTATION 109

Similar to objects, variables in NLO can be either individual variables or set

variables depending on whether the attributes are single-valued or set-valued (as

defined by the type system). Set variables can be either set-valued variables or set

grouping variables of the form {X}. A set grouping variable {X} represents a set

over which the variable X ranges. Here X itself is called a set element variable which

can be either an individual variable and the set {X} is then a set of individuals, or

a set-valued variable and the set {X} is then a set of sets, not both. A set grouping

variable {X} is similar to a set grouping variable (X) in LDL, see Example 4.11 and

Example 4.12. A set grouping variable {X} in NLO can appear in the head and the

body of a rule, see examples below, but a set grouping variable (X) in LDL can only

be in the head of a rule. However the set (X) in LDL can be a set of individuals and

sets which makes the semantics more complicated.

Following the usual conventions in logic programming, variables are represented

by upper-case letters and objects are represented by lower-case words in NLO.

To deal with object creation, NLO uses the method of the Revised 0-Logic,

that is, using explicit skolem functions of existential variables called object con-

structors. An object constructor is of the form f(Y1, ..., Y), where f is a skolem

function symbol, each Yi is either a variable, an object, or a simpler object construc-

tor. For example, i(a, f(Y, b), { c, a}) and g(X, h(c, {Z})) are object constructors,

where i, f, g, h are skolem function symbols. In NLO, skolem functions are treated

differently from attributes. Skolem functions are uninterpreted as the functions in

logic programming, while attributes are interpreted.

An NLO-term is similar to a representational object of the form (2), but variables

CHAPTER 5. NLO - INFORMAL PRESENTATION 110

and object constructors may be in place of the objects o, o, ..., o,. An NLO-term is

of the form

X:t(li—.Xi,...,lm --Xm)

where X, Xi, ..., Xm are either variables, object constructors, or objects.

(3)

Example 5.7 Based on the type definitions in Example 5.1, following are several

NLO-terms.

(1). X : person.
(2). mary : person(name - X, aye -+ Y).
(3). 1(X) : person(gender -* Y).
(4). X : person(iakes - {Y}).
(5). X person(borrows - 5).

Here X and Y are individual variables, S is a set-valued variable, {X} is a set

grouping variable, and 1(X) is an object constructor. 0

A comparison expression in NLO is either a traditional arithmetic comparison

between individual objects and individual variables using the operators =, >, ≥, <,

≤ +, -, x and i-, or a traditional set comparison expression between set objects

and set variables using the operators =, D, 2, c, g, u, fl, and /. Note that whether

or not an operator is applicable to some objects is fully determined by the types of

the objects. For example, +, -, >, etc., are applicable only to integers.

Example 5.8 Following are example of comparison expressions in NLO.

(1). X = Y x 2
(2). X> 50
(3). X ≤ 100
(4). Y="Mary"
(5). S=S1US2

CHAPTER 5. NLO - INFORMAL PRESENTATION 111

(6). S2 = S3/S4
(7). Si C S2

Here the first four expressions are arithmetic and the rest are set. 0

A rule in NLO is of the form A .= Li,..., L, where A is called the head of the rule

which is an NLO-term and L1, ..., L, is called the body of the rule, every Li in the

body of the rule is either an NLO-term, a negation of an NLO term or a comparison

expression, and every variable occurs in the head also occurs in the body.

A rules can be used in two different ways. One is to deduce factual attribute values

of existing representational objects. The other is to construct new representational

objects and deduce their attribute values. In the later case, object constructors have

to be used in the head of the rule.

The rules in Figure 5.1 are used to deduce factual attribute values for existing

objects.

Example 5.9 Following are two object creation rules. The first one is the NLO

version of the object creation rule in Example 4.7. The second one shows how sets

of sets are formed by set grouping where S is a set-valued variable.

f(E, M) : interestingPair(worker -+ E, manager - M) <--
E : employee(name - N, worksln - D),
D : dept(managr - M),
M: employee(name - N).

h(X, {Y}) : t(atti - 4 f S}) = X : s(att2 - {Y}), Y : s(aU3 - S). 0

Note that in NLO, relationships between objects are represented by either single-

valued attributes or set-valued attributes, while in traditional logic programming,

they are normally represented by predicates which s always set-valued. This is one

CHAPTER 5. NLO - INFORMAL PRESENTATION 112

of the reasons that NLO programs may not be satisfiable while traditional logic

programs are always satisfiable. For example, the gender attribute of person in

Example 5.2 is defined as single valued and if we infer someone whose gender is both

female and male, then this program is not satisfiable.

Another reason for a rule not being satisfiable is that some factual attribute

values which are not well-typed are inferred for some objects. For example, if the

age attribute of student is defined from 15 to 35 and we infer someone whose age is

36.

Like traditional logic programming and LDL, rules in NLO have to be stratified

in order to have a well-defined semantics. Stratification is based on the depends-on

relation between types and attributes. If a type t involves set objects or set-valued

variables in the head and another type s is in the body, or t is in the head and a

negation of another type .s is in the body, or s involves set objects or set-valued

variables, then t is said to depend on s. If t depends on s, then t depends on all

attributes of s, all attributes of t depends on s, and all attributes of t depends on the

attributes of s. Within a type, if an attribute aIt involves set-valued variables in the

head and another attribute attq is in the body, or attn is in the head and a negation

of an attribute attq is in the body, then attn is said depends on attq. This depends-on

relation is transitive. A set of rules is said stratified if there is no attributes or type

p, q such that p depends-on q, and q also depends-on p. Exam' ple 5.1 and 5.9 are

stratified rules. Complex examples are given in Chapter 7.

CHAPTER 5. NLO — INFORMAL PRESENTATION 113

5.5 Queries

Queries are defined over the object base, rules, and the type system in a uniform

way in NLO.

Queries are defined in terms of NLO-terms, typed NLO-terms and comparison

expressions.

A typed NLO-term is similar to an NLO-term of the form (3), but variables may

be in places of the types and attributes. A typed NLO-term is one of the following

form

P:type(Ai—Pj,...,Am --Pm)
P: type(isa - Q)
P : type(isa {Q})
P : type(isa - p {q,...,qm}')
X:P(Ai—Yi,..;,Am ---Ym)

where F, Pi,..., Fm are variables or types, A,, -, Am are variables or attribute, Q is

a variables or a set of types, and X, Y1, ..., Y are individual variables, set variables,

object constructors, or objects.

A query is of the form ?— L1, ..., L, where every Li is either an NLO-term, a

typed NLO-term, a negation of an NLO term or a typed NLO-term, or a comparison

expression.

Queries are used to ask for information which is either in the object base, derivable

from the rules based on the object base, or in the type system.

Example 5.10 Figure 5.4 shows some further examples of queries and the corre-

sponding answers based on the previous examples. The first query asks the defini-

tional properties of workStudent either directly defined or inherited. Note that the

CHAPTER 5. NLO - INFORMAL PRESENTATION 114

(Query 1.) ?— workStudent : type(L -+ P).
(Answer 1.1.) L = name,P = string.
(Answer 1.2.) L = sex, F = gender.
(Answer 1.3.) L = age,P = {20..35}.
(Answer 1.4.)

(Query 2.) ?— student: type(isa — {employee}').
(Answer 2.1.) no.
(Query 3.) ?— workStudent : type(isa — {X}).
(Answer 3.1.) X = student.
(Answer 3.2.) X = employee.

(Query 4.) ?— X : P(borrows -+ {X}).
(Answer 4.1.) X = smith, P = student, X = prolog.
(Answer 4.2.) X = smith, P = student, X = databases.

(Query 5.) ?— smith: T(L — {cs521}').
(Answer 5.1.) T = student,L = takes.

(Query 6.) ?— X : T(takes - p S, age — Y),Y > 25.
(Answer 6.1.) X = smith, T = student, S = {cs413, cs521}, Y = 29.

Figure 5.4 Sample Queries and Answers.

definitional attribute value of age is the intersection of definitional attribute values of

age of student and employee. The second asks if employee is one of the supertypes

of student. The third asks what types workstudent is a subtype of. The answers

to these three queries are based on Figure 5.3. The fourth asks under what type

of object X has the factual attribute borrows and what the factual attribute values

are. The fifth asks under what type and what factual attribute the object smith has

a factual attribute value cs521. The last asks under what type of object X has the

factual attribute takes and age, and the attribute value of age is greater than 25

The answers to them are based on Example 5.5. 0

CHAPTER 5. NLO. - INFORMAL PRESENTATION 115

5.6 Summary

Objects in NLO are viewed as surrogates and therefore object identity can be repre-

sented by the objects themselves. Objects can be generated in rules by using skolem

functions in the same way as F-logic. Single-valued properties and set-valued prop-

erties are represented by attributes. Homogeneous syntactical sets can be used to

represent set-valued properties of objects directly. Types and inheritance are sup-

ported in the natural way discussed in Chapter 3. To make type definitions more

meaningful, subtypes of basic types can be used. Since types and objects are two

fundamentally different concepts and used differently, they are distinct here in con-

trast to F-logic. However, types are also meta-objects so that objects and types are

uniformly represented. Terms in NLO can function as either terms or atoms. The

attributes are interpreted as mappings. To represent and manipulate schema and

sets, variables for not only individuals, but also types, attributes and syntactic sets

can be used. Since types and objects are uniformly represented, higher-order queries

and normal queries can also be uniformly represented. The higher-order problems

with such usage is avoided by taking the replacement semantics of L2. Compared to

other approaches, the semantics of NLO is quite simple, direct and natural.

Chapter 6

Formal Presentation

This chapter defines the formal syntax and semantics of NLO, The syntax is con-

cerned with - valid programs and queries admitted by the grammar of NLO. The

semantics is concerned with the meanings attached to the valid programs and the

symbols they contain as well as answers to the queries.

6.1 Syntax of NLO

This section introduces the syntax of NLO, i.e., its alphabet, type systems, object

bases, terms, rules and queries. Some of the definitions rely on the definitions below.

Definition 6.1 The alphabet of NLO consists of eleven classes of symbols:

(1). the set A = {type};

(2). the set 5 = {object, integer, .string};

(3). a countably infinite set T of type symbols;

(4). a countably infinite set Z of integers;

(5). a countably infinite set S of strings;

(6). a countably infinite set 0 of object identifiers;

(7). a countable infinite set £ of symbols for attributes labels containing isa;

(8). a countably infinite set I of function symbols containing set;

(9). a countably infinite set V of variable symbols;

(10). =; ≤, ≥, <,>; 9, , C, D; =, and -';

(11). +, -, x, ±; U, fl, \; (,), (,),{,},-•, comma, dot, semicolon, ', ', ', :,

116

CHAPTER 6. FORMAL PRESENTATION 117

Here the sets A, B, T, Z, 8, 0, £, ., V and symbols in (10) and (11) are assumed

to be pairwise disjoint. 0

Definition 6.2 The types of NLO are defined as follows:

(1). The type in A is a type, called a meta type.

(2). Every element of B is a type, called a built-in type.

(3). A basic type is a type and a representational type is a type.

(4). If p is a type, then set(t) is a type, called a set type. 0

By the above two definitions, if p is a type, then set(p), set(...(set(p))), etc. are

all types.

Definition 6.3 The basic types of NLO are defined as follows:

(1). jai,..., an} defines a basic type which is named by itself, where ES,
or a,,... Ian E Z, (n > 1).

(2). Let t be a symbol in T and a1, ..., a, E 8, or a,, ... I a, E 2, (n ≥ 1), then
t = {ai, ..., a,} defined a basic type t.

(3). {lb..rb} defines a basic type named by itself, where lb, rb E 2, and lb and rb are
called the left bound and the right bound of the range of the basic type {lb. .rb}
respectively.

(4). Let t be a symbol in T and lb, rb E 2, then t {lb..rb} defines a basic type t,
and lb and rb are called the left bound and the right bound of the range of the
basic type t respectively. 0

Definition 6.4 Let p belong to 7, 1 be a label of £ and q be a type. Then p

type(l -+ q) defines a representational type p and a definitional property of the type

p. The label 1 is called a definitional attribute of p and q is called the definitional

attribute value of 1 of the type p. 11

CHAPTER 6. FORMAL PRESENTATION 118

The definitional property of a representational type is used to constrain factual

properties of the representational objects.

Definition 6.5 Let p belong to T, qi, ..., q, m ≥ 1 be types. Then p : type(isa -+

{qi, ..., q,,j) defines a representational type p and a factual property of p called isa.

Each qj, 1 ≤ i ≤ m is called a supertype of p. 0

It is intended that a representational type inherits all the definitional properties

of its supertypes (if any) but may redefine them and may have its own properties.

In other words, a representational type may have several definitional properties of

the same name. For example, student can have both (age - {O. . 120}) and (age —+

{15..35}). This will be reflected in the semantics in the next section.

Definition 6.6 p : type(isa - {qi,...,qm})(li — i-i,..•,ln —+ p,) stands for p

type(isa - {q1, ..., q}) and p : type(li —+ pa), ... p : type(lm Pm). 0

Definition 6.7 The type system S of NLO consists of a finite set of type definitions

and property definitions according to the definitions 6.3 to 6.6. 0

Types in NLO are meta-objects and therefore have a type. The type for types is

the meta-type type. Every representational type is intended to be a subtype of the

built-in type object.

Definition 6.8 The meta type type and the built-in type object have following

definitions:

(1). type: type(isa — {type})(isa — set (type)).

(2). object : type(isa -+ {object}) 0

CHAPTER 6. FORMAL PRESENTATION 119

The definitional property of the meta-type type is used to constrain factual prop-

erties of types. Note that the factual property isa of object is constrained by the

definitional property isa of type.

Definition 6.9 The objects of NLO are defined as follows:

(1). Every element of Z and $ is an object, called a basic object.

(2). Every element of 0 is an object, called called a representational object.

(3). If f is a n-ary function symbol from .F other than set and 01, 0m are objects,
then f(o1, ..., o) is an object, called a representational object.

(4). If o1, ..., o, are objects, then {o, ..., o} is an object, called a set object {}
denotes the empty set object. 0

By this definition, not only individual objects, both also set objects, set set

objects, etc are allowed in NLO.

Definition 6.10 Let p be a representational type, 1 EC, 0 E 0 and o be an object.

Then o : p(l - o) defines a full factual property for the representational object o of

the type p, which is (1 -• o3), and 1 is called a factual attribute of o and o3 is called

the full factual attribute value of 1 of the object o. 0

Definition 6.11 Let p be a representational type, 1 E C, 0 E 0 and 0 be a set

object. Then o : p(l -+ o') defines a partial factual property for the representational

object o of type p, which is (1 -+ o'), and 1 is called a factual attribute of o and o is

called the partial factual attribute value of 1 of the object o. 0

It is intended that an object can only have a unique full factual attribute value for

a factual attribute, but may have several partial factual attribute values for a factual

attribute only if it does not have a full factual attribute value for this attribute. This

CHAPTER 6. FORMAL PRESENTATION 120

will be reflected in the semantics in the next section. The partial factual attribute

values are used for partly known attributes values.

Definition 6.12 0 : p(li + 01, ... 1m 0 in 1m+1 o1, ..., In —+ o) stands for

0

Definition 6.13 An object base of NLO consists of a finite set of factual properties

of representational objects, according to the definitions 6.10 to 6.12. 0

The rest of this section defines rules and queries which are based on terms.

Definition 6.14 The variables of NLO are defined as follows:

(1). Every element of V is a variable.

(2). If X is a variable then {X} is also a variable, called a set grouping variable. 0

Definition 6.15 An object constructor is defined inductively as follows:

If f is an n-ary function symbol from .'F, and Y1, ..., Y,, (n ≥ 1) are either
variables, objects, or object constructors, then f(Y1, ..., Y,) is also an object
constructor. 0

Definition 6.16 The basic terms are defined as follows:

(1). If p is a representational type, X is either a variable, an object, or an object
constructor, then X : p is a basic term.

(2). If p is a representational type, 1 is a label, X is either a variable, a represen-
tational object or an object constructor, and Y is either a variable, an object,
or an object constructor, then X : p(l — p Y) is a basic term.

(3). If p is a representational tyje, 1 is a label, X is either a variable, a represen-
tational object or an object constructor, and Y is either a variable, an object,
or an object constructor, then X : p(i —+ Y') is a basic term.

(4). If X: p(li — 4 X1), ... X : p(l, —+ X,) are basic terms, then
X: p(li —. Xi,...,l--X)isa basic term. 0

CHAPTER 6. FORMAL PRESENTATION 121

Definition 6.17 An arithmetic expression is recursively defined as follows.

(1). A variable or an object in Z is an arithmetic expression.

(2). If Si and 52 are arithmetic expressions, then Si + 82 Si - 82, 51 X 82, 81 -. 82 are
arithmetic expressions.

(3). If S is an arithmetic expression, then (8) is an arithmetic expression. 0

Definition 6.18 A set expression is recursively defined as follows.

(1). A variable or a set object is a set exression.

(2). If Si and 52 are set expressions, then 51 U S, 61n 62, Si \ 52 are set expressions.
(3). If 8 is a set expression, then (5) is a set expression. 0

Definition 6.19 A basic literal is defined as follows:

(1). A basic term is a positive basic literal.

(2). Si = 52 is a positive basic literal, where 81,82 are either variables or objects.

(3). If & is a positive basic literal, then -i& is a negative basic literal.

(4). If 1'2 are two basic literals, then 01; '02 is a basic literal.

(5). Si ≤ S2 Si ≥ 82 Si < S2 and Si > 62 are basic literals, where 81,52 are
arithmetic expressions.

(6). 81 c 82, 51 C 82, 51 82, and 81 D 82, are basic literals, where 8i82 are set
expressions. 0

Definition 6.20 A rule is an expression of the form A = L1, ..., L, where the body

L1, .., L, n ≥ 1 is a conjunction of basic literals, the head A is a positive basic literal

and all variables in the head occur in the body. 0

Rules are used in two different ways: generating representational objects using

object constructors and obtaining object attribute values, as shown' in Examples 5.5

and 5.6.

CHAPTER 6. FORMAL PRESENTATION 122

Definition 6.21 A program P is a triple P = (S, OB, R).

(1). S is a type system,

(2). OB is an object base,

(3). R is a finite collection of rules.

A program is called definite if it does not have negations or sets in the body of a

rule. Otherwise, it is called normaL 0

Definition 6.22 The typed terms are defined as follows:

(1). If P is a type or a variable, then P : type is a typed term.

(2). If P is a type or a variable, and {Q} is a type grouping variable, and £ is either
isa or a variable then P : type(L -+ {Q}) is a typed term.
If P is a type or a variable, and qi, ..., qn are types, and £ is either isa or a
variable, then P : type(L -+ {qi, ..., q}) is a typed term.

(4). If P is a type or a variable, and qi, ..., q are types, then

P : type(isa - {qi, ..., q}') is a typed term.

If P is a representational type or a variable, Q is a type or a variable, and £ is
a label or a variable, then P : type(L -+ Q) is a typed term.

(6). If P : type (Li - Pa), ... P : type(L - P) are typed terms, then
P : type (Li - Pi,..., L. --4 P.) is a typed term.

If P is a variable, X is either a variable, an object, or an object constructor,
then X: P is a typed term.

(8). If P is a representational type or a variable, L is a label or a variable, X is
either a variable, a representational object or an object constructor, and Y is
either a variable, an object, or an object constructor, then X: P(L -+ Y) is a
typed term.

If P is a representational type or a variable, L is a label or a variable X is
either a variable, a representational object or an object constructor, and Y is
either a variable, an object, or an object constructor, then X : P(L -+ Y') is a
typed term.

(10). If X : P(L1 - X1), ... X: P(L - X) are typed terms, then
X:P(Li—Xi,...,L--X)isa typed term. 0

(3).

(5).

(7).

(9).

CHAPTER 6. FORMAL PRESENTATION 123

The typed terms are used only in queries to ask information about the type

system.

Definition 6.23 A typed literal is defined as follows:

(1). A typed term is a positive typed literal.

(2). 61 = 62 is a positive typed literal, where 61, 82 are either variables or typed.

(3). If & is a positive typed literal, then -v1, is a negative typed literal.

(4). If 7kl, &2 are two typed literals, then &i; 02 is a typed literal. 0

Definition 6.24 A query is a conjunction of literals starting with ?-. 0

Queries are used to ask information about objects, type, factual attributes of

objects and types, definitional properties of types, which either is in the object base,

the type system, or can be inferred from the rules of the program.

6.2 Mathematical Preliminaries

This section will introduce the mathematical concepts which will be used later in

this thesis.

Definition 6.25 The cartesian product S x T of two sets S and T is the set of all

pairs (x, y) where x ES and yET. 0

Definition 6.26 A binary relation R from a set S to a set T is a subset of the

cartesian product S x T. That is, R C S x T. 0

Unless specified otherwise, all relations will implicitly considered to be binary

from now on. The notation xRy stands for (x, y) E R.

CHAPTER 6. FORMAL PRESENTATION 124

Definition 6.27 A mapping from a set S to a set T, denoted by f: S -p T, is a

relation from S to T such that every element of S is related to a unique element of

T. That is, for all x € 5, and all Yl, Y2 E T, xfyi and xf Y2 imply Yi = Y2• For this

reason, we note 1(x) = y rather than xfy and y is called the image of x under the

mapping f. The set S is called the domain of the mapping, and the set T is called

the codomain. 0

Definition 6.28 A mapping f : S -• T is said to be one-to-one if 1(x) = 1(y)

implies x = y, for all x,y ES. 0

Definition 6.29 A relation R on a set S is a relation from S to S. 0

Definition 6.30 A relation R on a set S is

(1). reflexive Hf xllx for all x E S.

(2). symmetric if xRy implies yRx, for all x, y E S.

(3). antis ymmetric 1ff xRy and yRx imply x = y, for all x, y E S.

(4). transitive 1ff xRy and yRz imply xRz, for all x, y, z E S. 0

Definition 6.31 A relation on a set S is a partial order if it is reflexive, antisym-

metric and transitive. 0

Definition 6.32 A set S is a partially ordered set, denoted by (S, ≤), if the set S is

endowed with a partial ordering relation ≤. 0

Definition 6.33 A mapping f from a partially ordered set (S, ≤) to a partially

ordered set (T, ,'52) is said to be monotonic if for any x, y E S x ≤ i y implies

f(x) ≤ 2 1(Y). 0

CHAPTER 6. FORMAL PRESENTATION 125

Definition 6.34 Let (S, :5) be a partially ordered set. Then a E S is an upper

bound of a subset X of S if x ≤ a, for all x E X. Similarly, b E S is a lower bound

ofXifb≤x, for all xEX. 11

Definition 6.35 Let (S, :5) be a partially ordered set. Then a E S is the join or

least upper bound (abbreviated lub) of a subset X of S if a is an upper bound of X

and, for all upper bounds a' of X, we have a ≤ a'. Similarly, b E S is the meet or

greatest lower bound (abbreviated gib) of a subset X of S if b is a lower bound of X

and, for all lower bounds b' of X, we have b' ≤ b. 0

Definition 6.36 A partially ordered set (L, ≤) is a meet-semilattice if for every

subset X of L, there is a glb. 0

Definition 6.37 A partial ordered set (L, :5) is a join-semilattice if for every subset

X of L, there is a lub. 0

Definition 6.38 A partial ordered set (L, ≤) is a lattice if for each pair of elements

a, b E L both lub({a, b}) and glb({a, b}) exist. 0

Definition 6.39 A mapping f from a lattice (L1, ≤) to a lattice (L2, ≤ 2) is a lattice

homomorphism if it preserves the meet and join operations. That is, for every pair

x,y E L1, f(lub{x,y}) = lub({f(x),f(y)}), and f(glb{x,y}) = glb({f(x),f(y)}). 0

Thus, a lattice homomorphism is necessarily monotonic.

Definition 6.40 Let L be a meet-semilattice and T : L - f L be a mapping. We

say a € L is the least fixpoint of T if a is a fixpoint (that is, T(a) = a) and for all

fixpoint b E L, we have a < b. o

CHAPTER 6. FORMAL PRESENTATION 126

Theorem 6.1 Let L be a meet-semilattice and T: L —+ L be monotonic mapping

and T(x) ≤ x. Then T has a least fixpoint lfp(T) = glb{x I T(x) ≤ x}.

Proof: Put G = {x I T(x) <x} and g = glb(G). We show that g E G. Now g < x

for all z E G, so that by the monotonicity of T, we have T(g) ≤ T(x), for all x E G.

Thus T(g) ≤ x, for all x E G, and so T(g) ≤ g, by the definition of gib. Hence

gEG.

Next we show that g is a fixpoint of T. It remains to show that g T(g). Now

T(g) ≤ g implies T(T(g)) ≤ T(g) implies T(g) E G. Hence g ≤ T(g), so that g is a

fixpoint of T. 0

6.3 Semantics of NLO

Definition 6.41 An interpretation I of NLO is a tuple (U, E, r, iv,

(1). U is a countably infinite set called the universe of objects, which consists of
three disjoint countably infinite sets S, Z and 0. That is U = Z U S U 0.

(2). E is a non-empty set called the universe of semantic types.

(3). I' is a countably infinite set called the universe of semantic labels, which consists
of three disjoint sets: which contains { isa}, I, r, every semantic label in r1
is called single-valued and every semantic label in I', u { 7isa } is called set-valued.

(4). iv maps each semantic type to its corresponding class. That is, IV : Z —+
2U 22U where = 2

(5). o- interprets each semantic label as a partial mapping as follows:

(5.1). oyiaa) is a mapping: E —

(5.2). for each 1 E I', u(l) is a mapping U —+ U,

(5.3). for each 1 E r1, o(l) is a mapping U —+
(6). 9T is a lattice homomorphism which interprets each syntactic type in T as a

semantic type in E, that is, gr : T — E.

CHAPTER 6. FORMAL PRESENTATION 127

(7). gc is a one-to-one mapping which interprets each syntactic label in £ as a
semantic label in r, that is, g, : £ -+ 1', especially, gc : isa — p

(8). go is a one-to-one mapping go : $ U Z U 0 —+ S U Z U 0.

(9). g is a function which interprets the symbol set as a mapping E — E and
interprets each k-ary object constructor as a mapping U' —+ U. 0

An interpretation I gives a denotational semantics to the language. It maps every

syntactic object to a semantic object by the mapping go; every syntactic type to a

semantic type by the mapping g7-; every syntactic label to a semantic label by the

mapping gc; every syntactic function to a semantic function by the mapping gr. It

associates every semantic type with a class of objects by the mapping ii-. It interprets

every semantic label as a function by the mapping o.

It is assumed that ≤, ≥, <,>, , D, C D, and = have their standard meanings.

6.3.1 Satisfaction of Types

Definition 6.42 Given an interpretation I = (U, E, r, ir, 0.gr, gc, go, g), the sat-

isfaction of a type r by I, denoted by I = r, is defined by gr and ir as follows:

(1). For the built-in types:

(1.1). I = object iff gr(object) E E and ir(g(objeet)) c 0;
(1.2). I = integer if gr(integer) E E and ir(g.i-(integer)) = Z;.

(1.3). I = string if gr(string) E E and ir(gr(string)) = S.

(2). For a set type set(s), I 1= set(s) if
I 1= s, gT(set(s)) = g.p(set)(gr(s)) E and ir(gr(set(s))) ç 21r(g-j-(s)) c 2U

(3). For the basic types:

(3.1). if Jai,..., an} is a basic type, then I = Jai,—, an} if gr({ai,...,an}) E
and either 7r(gr({ai,...,an})) = {go(ai),..., go(an)} CS
or 7r(g.2-({ai, ..., a,})) = {go(ai),, go(an)} C Z;

CHAPTER 6. FORMAL PRESENTATION 128

(3.2). if t = jai,..., a} is a basic type, then I = t if 9T(t) E F, and either
ir(gr(t)) = {go(ai),..., go(an)} CS or lr(gT (t)) = {go(ai),..., go(an)} C

(3.3). if {lb..rb} is a basic type, then I = {lb..rb} iff
gr({lb..rb}) E E and ir(gr({lb..rb})) = {x I go (lb) ≤ r ≤ go(rb)} C Z;

(3.4). if t = {lb..rb} is a basic type, then I = tiff
9T(t) E E and ir(gr(t)) = {x : 90 (lb) ≤ x ≤ go(rb)} C Z.

(4). For a representational type p:

(4.1). If p has a definitional property represented by p: type (I - q), then
I = p : type(l —* q) if 9T(p) E J,gT(q) E E, gc(l) E r/{7i8a} and
0(gc(l))(7r(gr(p))) ç

(4.2). If p has a factual property defined by p : type(isa — p {qi qm}), then

I = p : type(isa {qi, ..., qm}) 1ff 9T(p) E 7r(gT(type)) C E, gi-(qi) E
ir(g'r(iypc)) C E, ... gT(qm) E ir(gr(type)) C E, gc(isa) = 'lisa, and
gc(isa)(gr(p)) = {gr(qi), •.., T(qm)}, lr(gr(p)) lr(gT(qj)) C 0, for
1≤i_<rn, and ifIf=q: type (l-3. pt) , then I=p: type (l--3pg).

(5). For the meta type type and built-in type object:

(5.1). I = type: type(isa —+ {type})(isa - set(type)) if
9T(type) E E,gc(isa) = 'lisa, 0(gc(isa))(ir(gr(type))) C ir(gr(type))

and g,. (isa) (g.j-(type)) = {97-(type) };

(5.2). I = object: type(isa — {object}) if
gr(object) 1r(gT(type)) 9 E, g,.i(isa) = -yj, and g/.(isa)(gT(object)) =
{gr(object)}. 0

By the definition, for every type p, all the definitional properties of its supertype

are also its definitional properties. A type can have several definitional properties

for the same attribute.

Definition 6.43 Two types p and q have a subtype relation based on some interpre-

tation I denoted by p q, if lr(gr(p)) C lr(9T(q)). 0

So two types have subtype relation if their classes have subset relation. Immedi-

ately, the following theorems hold:

CHAPTER 6. FORMAL PRESENTATION 129

Theorem 6.2 The subtype relation is a partial order on T.

Proof: Direct from the definitions.

Theorem 6.3 The subtype relationships between types are:

(1). If jai,..., a,} is a basic type and ai E Z for 1 ≤ i ≤ n, then
integer; if {ai, ..., a} is a basic type and ai E S for 1 ≤
{ai, ..., a,} string.

(2). If ={a1,...,an} is a basic type and aiE Zfor 1 ≤ i ≤ n, then
{ai, an} is a basic type and aLES for 1<i< n, then, t

(3). If { lb. . rb} is a basic type, then {lb. .rb} integer.

(4). If t = { lb..rb} is a basic type, then t integer.

(5). If p is a representational type, then p object.

(6). If p q, p,q ES, then set(p) set(q).

0

{ai,...,an}
i < n, then,

t -< integer; if
string.

Proof Direct from the definitions. 0

Representational types have the following properties.

Theorem 6.4 Let p be a representation type with definitional properties: (1 -

..., (1 —+ pm). Then o(gc(l))(ir(gr(p))) c fl 1ir(gr(p3)).

Proof: We have that 0(gc(l))(lr(gi-(p))) 9 lr(gi-(pi)), 1 ≤ i < n. So immediately,

0(gc(13))(lr(gT(p))) c fl7=ilr(flT(Pj)). 0

Theorem 6.5 Let p be a representational type with p : type(isa _+ {pi, ..., Pm})

Then p p, 1 ≤ i ≤ m, i.e., p is a lower bound of Pi, ..., p under the relation ,

and lr(g.2-(p)) g fl1ir(gr(p)).

CHAPTER 6. FORMAL PRESENTATION 130

Proof: Direct from the definitions. 0

This theorem says that the class p is a subset of the intersection of the classes

P1, ..-, Pm, or p is a lower bound of Pi, ", Pm. For example, workstudent is a lower

bound of student and employee in Example 5.3.

Theorem 6.6 Let Pi : type(isa - {.., p, ...}), ..., Pm : type(isa -+ { p, ...}) are m

representational types. Then p p, 1 ≤ i ≤ m, i.e., p is a upper bound of p', ..., p,,

under the relation -<, and fl71.jir(gr(p5)) c (gT(p)).

Proof: Direct from the definitions. 0

This theorem says that the class p is a superset of the union of the classes

pi, ..., p, or p is an upper bound of Pi, .'., Pm For example, person is an upper

bound of student and employee in Example 5.3.

6.3.2 Satisfaction of Objects

Definition 6.44 Given an interpretation I, the satisfaction of an object o by I,

denoted by I = o is defined by go as follows:

(1). For each object oES,I=oiffgo(o)=uES;
for each object o e Z, I oiff go(o) = u E Z;
for each representational object o E 0, 11-- o Hf go (0) = u E 0;

(2). For each set object {oi,...,o,,j, I I={Oi,...,Om} iff I = o,1≤ i ≤ M.
(3). For a representational object o,

(3.1). if o has a full factual property defined by o : p(l -+ Ot), then
I j= 0: p(l - Ot) iffgo(o) € lr(gr(p)), and 0(gc(l))(go(o)) = go(ot);

(3.2). if o has a partial factual property defined by o : p(l - o), then
I = 0: p(l -+ o) iffgo(o) € r(gr(p)), and o(gc(l))(go(o)) go(o). 0

CHAPTER 6. FORMAL PRESENTATION 131

By the definition, if an object has more that one different full factual properties,

for example, if mary : person(gender - p "Female") and mary : person(gender -4

"Male"), then there is no interpretation which can satisfy both of them. However,

an object can have several partial factual properties.

Definition 6.45 Let I be an interpretation. A representational object o : p(li -+

O, ... In -+ o) is well-typed under I ill there exist a representational type p with

P : type (11 — P1, ..., In - p,) such that go (0i) E 1r(g-(pj)), 1 <i < n. 0

6.3.3 Satisfaction of Basic Terms and Basic Literals

Definition 6.46 A variable assignment, ii, is an assignment to each variable. It

assigns an element in U to a variable and the variable is called an individual object

variable, an element in 2T+ to a variable and the variable is called a set object variable,

a type in E to a variable and the variable is called a type variable, and a label in

1' to a variable and the variable is called a label variable. Besides, it is extended to

non-variable elements as follows:

(1). ifoE OuSUZ, then v(o) = go(o);

(2). if 1 E C, then v(i) = gc(l);

(3). if p E T, then v(p) = gr(p);

(4). if f E F, then u(f) =
(5). zi(f(.... X,...)) = gs.(f)(..., u(X), ...);

(6). v({oi,...,o} = {go(oi),...,go(o)};

(7). if t is a literal or an arithmetic expression, then v(t) results from t by applying
ii to every object, label, type, variable, and object constructor of t. 0

Definition 6.47 Given an interpretation I and a variable assignment ii, the satis-

faction of a basic term 0 by I and ii, denoted by I = zi(&), is defined as follows:

CHAPTER 6. FORMAL PRESENTATION 132

(1). For a basic term X : p, I = zi(X : p) if u(X) E lr(gr(p)).

(2). For a basic term b = X : p(l -+ Y), I = v(b) if
for all q such that I = p: type(l - p q), v(X) E lr(gr(p)), v(Y) E lr(gr(q)), and
gc(l)(v(X) = v(Y).

(3). For a basic term & = X : p(l - Y')), I = zi(&) if

for all q such that I = p: type(l -* q), v(X) E lr(gr(p)), V(Y) E lr(g'r(q)), and
o(gc(l))(v(X)) D zi(Y).

(4). For a basic term =X:p(li +Yi,...,l Y)),II=v(b) if
1 1= zi(X : p(li - u(X : p(li - Yi)).

Definition 6.48 Given an interpretation I and a variable assignment j1 the satis-

faction of basic literals other than basic terms are defined as follows:

M. I 1= v(&i = &2) if v() = V(02)-

(2). If 0 is a positive basic literal, I = v(­&) if I

(3). If 01, tb2 are basic literals, I = i'(; 02) if I = v(b1) or I 1= z'(2).
(4). I H 71(61082) 1ff i'(Si), '1(82) E Z and 71(81)071(82), where 0 E {≤≥<,>}.
(5). I = '1(61082) 1ff '1(81)071(82), where 0 E {, 2, c, }. 0

Clearly, for a ground basic term 0, i.e, a basic term without variables, its sat-

isfaction is independent of a variable assignment, and it can be simply written as

I b.

6.3.4 Satisfaction of Rules

Definition 6.49 Let I be an interpretation r be a rule of the form A 4= L1, ...,

I = r if for each variable assignment v, if I = v(Ai) for each A, 1 ≤ i ≤ n, then

I = v(A), or for some variable assignment ii, not I = v(pi) for some p, 1 ≤ i ≤ n.

11

CHAPTER 6. FORMAL PRESENTATION 133

Note here that there is a major difference between NLO and Horn-clause logic

in their definitions of satisfaction of a rule. In Horn-clause logic, a rule is always

satisfied by all interpretations, while in NLO, a rule may not be satisfied by any

interpretation. There are two reasons for a rule in NLO not to be satisfied based on

the above definition. One is that inferred factual attribute values do not confirm to

the constraints of type definitions. The other is that an attribute of an object gets

more than one full factual value.

6.3.5 Satisfaction of Programs

Definition 6.50 Let I be an interpretation and W be a set of type definitions,

object definitions, terms or rules, I = W iff for each W E W, I = Wi. 0

Definition 651 Let I be an interpretation and P = (S, OB, R) a program, I = P

ifffl=SUOBUR. 0

Definition 6.52 Let P be a program and I be an interpretation of F, I is called a

model of P Hf IM P. 13

Theorem 6.7 Let P = (S, OB, R) be a program. If P has a model, then every

representational object in 013 is well-typed.

Proof: Direct from the definition. 0

Definition 6.53 Let P be a program and F be an object. We say F is a logical

consequence of P written as P H F, if for every interpretation I of F, I = P implies

that fl=F. 11

CHAPTER 6. FORMAL PRESENTATION 134

Definition 6.54 Let P be a program, we say P is unsatisfiable if no interpretation

of P is a model. 0

Theorem 6.8 Let P be a program and F be an object. Then F is a logical conse-

quence of P liE P is satisfiable and P U {-iF} is unsatisfiable.

Proof: Suppose that F is a logical consequence of S. Let I be an interpretation of

P and suppose I is a model for P. Then I is a model for F. Hence I is not a model

for P U {-iFl. Thus P U {-iF} is unsatisfiable.

Conversely, suppose P U {-'F} is unsatisfiable. Let I be any interpretation of L.

Suppose I is a model for P. Since P U {-iF} is unsatisfiable, I can not be a model

for -'F. Thus I is a model for F and so F is a logical consequence of P. 0

6.3.6 Satisfaction of Typed Terms and Typed Literals

Definition 6.55 Given an interpretation I and a variable assignment i/, the satis-

faction of a typed term ib by I and z', denoted by I J= u(&), is defined as follows:

(1). For a typed term & = P : type, I = v(&) if
V(P) E ir(gc(type)) ç F,.

(2). For a typed term '& = P : type(L - {Q}), I = v() if
11(L) = 'yisa, v(P) E ir(gc(type)) 9 E, u(Q) E ir(gc(type)) C E, and
v(Q) E o(v(L))(v(P)).
For a typed term 1' = P : type(L - {qi,...,q}), I j v(b) if
v(L) = -y8 , v(P) E ir(gc(type)) , g2-(q) E ir(ge(type)) C E for 1 ≤ i ≤ n,
and cr(u(L))(u(P)) = {gr(ql),...,gT(qn)}.

(4). For a typed term & = P : type(L — p I qI, ..., qn}'), I z'(b) if
(L) = yisa,(P) E 7r(ge(type)) 9 F,,gr(qj) € r(g(type)) 9 E for 1 < i ≤ fl,

and (v(L))(u(P)) {g'r(qi),...,gy(q)}.

For a typed term & = P : type(L - 4Q), I = zi(b) if
V(P) e 1r(g - (type)) E, u(Q) E 1r(gT(type)) C E, and

9

(3).

(5).

CHAPTER 6. FORMAL PRESENTATION 135

(6). For a typed term ,0 = P : type (L1 -+ P1,...,L - Ps), 11= zi(&) Hf
11= v(P : type(Li — P1)),...,I 1= v(P :type(L _4 Pi)).

(7). For a typed term ,0 = X : P, I = v() if
v(P) E li-(gT(type)) J, and v(X) E ir(v(P)),

(8). For a typed term /i = X : P(L - Y), I = v(&) if
v(P) E ir(g.r(type)) E, v(X) e ir(zi(P)), and for all q such that I = u(P)
type(u(L) - q), v(Y) E ir(zi(q)), cr(v(L))(v(X)) = v(Y).

(9). For a typed term & = X : P(L - Y'), I = zi(&) if
v(P) E ir(gr(type)) E, v(X) E ir(v(P)), and for all q such that I = v(P)
iype(zi(L) - q), V(Y) E ir(v(q)), o(v(L))(u(X)) v(Y).

(10). For a typed term = X : P(L1 -+ Y1,...,L — Y) I = v() if

fl= v(X :P(Li—•Yi)),...,II= v(X :P(L—.Y)) 0

Definition 6.56 Given an interpretation I and a variable assignment a', the satis-

faction of typed literals other than typed terms are defined as follows:

(1). I=v(Si =82)ift'v(Si)=v(82).

(2). If is a typed literal, I = v(-'&) iff I I# v(b).
(3). If 01 , L'2 are typed literals, I 1= v(&i; &2) if I = zi(bi) or I = v('2)

6.3.7 Answers to Queries

0

Definition 6.57 Let P be a program, Q be a query and M be a model of P if it

has, an answer to the query Q based on M is a variable assignment a' such that

MI=v(Q). 0

So far, how a program can be satisfied and what answers to queries are have

been discussed. However, what is its intended semantics is still not clear. In fact,

the intended semantics of a program P is given by a special model Mp if it has which

has the desired properties. This model will be discussed in the next chapter.

Chapter 7

Herbrand Interpretations

The semantics given in the last chapter is quite general. It tells how various symbols

can be interpreted and how an interpretation can satisfy a program. A program may

have many different models and therefore answers to a query may be different based

on these models. However, it does not tell exactly what the intended semantics of a

program is, and when given queries, what should be the right answers to them.

This chapter deals with these questions. It investigates a special kind of inter-

pretation, as in traditional logic programming. This special kind of interpretation

extends the Herbrand interpretation discussed in Chapter 2 and is also called a

Herbrand interpretation in this chapter.

Definition 7.1 An interpretation H = (U,YJ,r,'ir,T,ga)gL,go,gp') is a Herbrand

interpretation if the following conditions hold:

(1). UO=SUZUO,
U=Uj...lU{f(ol,...,ok):fisafunct or of arity k, and oEU1_1,1≤j≤k}

* - i=1 $,

U= UU2 I*.

(2). E T.

(3). r=c.

(4). gr(p) = p, for every p E T.

(5). gc(l) = 1, for every 1 € C.

(6). go(o)=o, for every oEZUSUO.

136

CHAPTER 7. HERBRAND INTERPRETATIONS 137

(7). g,(f) = f, for every f E F. 0

By the definition, the domains for objects, types and labels and functions of

different Herbrand interpretations are the same, which are U, T, £ and F. Also

types, labels, objects and function symbols are interpreted as themselves in Herbrand

interpretations. Only the classes and the mappings of labels may be interpreted

differently. Since we are only interested in interpretations of a program, we can

represent an interpretation by showing what the meta-class and normal classes are

and how mappings of labels are defined and applied to objects.

Symbols such as integer and string have the normal fixed interpretation. For

the simplicity of representation, example interpretations will not contain them.

Example 7.1 Consider the following definite program P1 = (S, OB, R).

(a). Type System S

P: type(isa —+ {object})(f —+ integer).
q: type(isa —+ {object})(s — set(integer)).

(b). Object Base 013

a1 : p(f — 1).
a2 : p(f —* 2)-

(c). Rules R

b: q(s —+ {X}) = 0 : p(f — X).

A Herbrand interpretation for this program is

I= I U lo

IT = {x(type) = {p, q, object, integer},
o(isa)(p) = {object},(isa)(q) = {object},
o(f)(ir(p)) ç r(integer), o(s)(ir(q)) c 21r(inte9er)}.

Io = {r(object) = {ai,a2,b},r(p) = {ai,a2},r(q) = {b},
o(f)(ai) = 1,cr(f)(a2) = 2,o(s)(b) = {1,2}}

CHAPTER 7. HERBRAND INTERPRETATIONS 138

It is more intuitive to represent the interpretation IT and 10 in the following way:

IT = {p: type(isa -+ {object})(f - integer),
q : type(isa -+ {object})(f set(integer))}.

10 = {ai : object, a2 : object, b: object,
ai:p(f-1),a2:p(f-2),b:q(.s—+{1,2})}. 0

Later on, example interpretations will be represented by listing all classes and all

mappings of labels in the representational object form.

Definition 7.2 Given a program F, a Herbrand model is a Herbrand interpretation

which is a model for P. 0

For the Example 7.1, the Herbrand interpretation I is obviously a Herbrand

model for the given program.

Theorem 7.1 Let P be a program and suppose P has a model. Then P has a

Herbrand model.

Proof: Let I be an interpretation of P. A Herbrand interpretation I' is defined as

follows:

TI - TT I I TI
o. - 2

If = Is I .s = p: type(isa - {qi, ..., q})(l -+ q) and I = s}
I,={t It=o:p(li—+oi,...,ln—o) and I=t}

It is straightforward to show that if I is a model, then I' is also a model. 0

As the above theorem shows, Herbrand models as well as interpretations are the

union of two sets, the set of type properties and the set of object properties. They

do not contain negated information. Instead negated information can be inferred

based on them. This is similar to traditional logic programming.

CHAPTER 7. HERBRAND INTERPRETATIONS 139

Theorem 7.2 Let P be a program. Then P is unsatisfiable if P has no Herbrand

models.

Proof: If P is satisfiable, then the above theorem shows that it has a Herbrand

model. .0.

Unless specified otherwise, all interpretations from here on will be implicitly

considered as Herbrand interpretations and all models as Herbrand models.

Given a program, it may have many interpretations and models, which means it

can be interpreted differently.

Example 7.2 For the program in Example 7.1 again, following are some interpre-

tations which are also models.

IiI'r1UIo1
IT, = {p: type(isa -+ {object})(f -+ integer),

q : type(isa -+ {object})(s set(integer))}
101 = {ai : object, a2 : object, a3 : object, b: object,

ai :p(f -4 1),a2 :p(f -42),a3 :p(f — 3),b:q(s -+ {1,2,3})}.

'2 = IT U 02
Jr2 = {p: type(isa {object})(f - integer),

q : type(isa -+ {object})(f -* integer), s -+ set(integer))}

IO2 = jai : object, a2: object, a3 : object, b: object,
a1: p(f -+ 1),a2 : p(f -+ 2),a3 : p(f -+ 4),b: q(s 1, 2,4})}.

In ' 1, f maps a3 to 3, and s maps b to { 1,2,3}, while in 12, f maps a3 to 4, and s

maps b to { 1, 2, 4}. Besides, q has one more definitional property in 12 than in I. 0

Since there exist many interpretations and models, what is the exact semantics

of the program? To answer this question, we first consider the simpler definite

programs, then we consider normal programs.

CHAPTER 7. HERBRAND INTERPRETATIONS 140

7.1 Least Model Semantics for Definite Programs

This section first discusses the properties of definite programs.

Definition 7.3 Let P be a definite program, I = (U, E) r, wi,cri, gr, gc, go, gF)

and 12 = (U, , r, ir2, 02, gT, gc, go, g) be two interpretations of P. Then I is a

sub-interpretation of i2 denoted by I 12 if the following conditions hold:

(1). iri(type) ç ir2(type).

(2). irl(p) 9 ir2(p), for every p E iri(type).

(3). if o(l) is defined on o € U, then 02(l) is defined on o E U and
o'i(l)(o) = c2(l)(o), for every single-valued label 1 E I'.

(4). if al(l) is defined on o E U, then o-2(l) is defined on o E U and
o1(l)(o) 9 c2(l)(o), for every set-valued label 1 E I. 0

Example 7.3 For the interpretations I, I, 12 in examples 1 and 2, we have I Ii,

I 12 but neither I '2 nor 12 C I because o1(l)(as) 0 02(l)(as) and neither

cri(s)(b) C o2(s)(b) nor oi(s)(b) o2(s)(b). 0

Immediately, we have the following theorem.

Theorem 7.3 The sub-interpretation relation over the set {Ii}iEN of all possible

interpretations of a given definite program is a partial order and {I} EN is a partially

ordered set under E.

Proof: Direct from the definition. 0

Definition 7.4 Let P be a definite program and I (U, E, g.r, gc, 9019-F)

and 12 = (U, >2, r, 7 2, 02, gT) gc, go, YF) be two interpretations of P. The intersection

I = (U, >2, r, ir, o,gr,gc, go, g.r), of I and 12, denoted by I = 11 fl 12, is defined as

follows:

CHAPTER 7. HERBRAND INTERPRETATIONS 141

(1). ir(type) = in (type) n ir2(type).
(2). ir(p) = 7r1(p) fl ir2(p), for every p E ir(type).

(3). a(l) is defined on o E U if both cri(l) and 02(l) are defined on o, and o1(l)(o) =
72(l)(0),o E ini(p), o E 7r2 (P), for some p E E, then o(l)(o) = o-i(l)(o) and
o E r(p) for every single-valued label 1 E I.

(4). a(l) is defined on o E U if both o(l) and 02(l) is defined on o, and o E iri(p)
and o E 72 (p) for some p E F,, then o(l)(o) = oi(l)(o) fl c(l)(o) and o E
for every set-valued label 1 E r,. 0

Example 7.4 For the interpretations I, I, 12 in examples 7.1 and 7.2, we have

I = 11 fl 12, based on the above definition. 0

The intersection of interpretations of a definite program has the following prop-

erties.

Theorem 7.4 The relation fl over interpretations of a given program is commuta-

tive and idempotent i.e., I fl 12 = 12 fl 11 and I F1 I = I for any two interpretations

Ii and 12.

Proof: Direct from the definition. 0

Theorem 7.5 The relation fl over interpretations of a given program is associative,

i.e., I F1 (12 fl 13) = (I fl 12) fl 13 for any three interpretations I, 12 and 13.

Proof: Let

Ii = (U)YJ,r,ini,o-i,gr,gc,go,g,),

'2 = (U) E, F, in2,
13 =
I23 =I2nI3 = (U,,F,in23,o 23,gr,gc,go,g.r),
112 = 111112 =

'123 = 11 fl '23 = (U, E, r, 7123, 0 123, gT, 9,C) 90)

CHAPTER 7. HERBRAND INTERPRETATIONS 142

1123 112 fl I3 = (U,,T,ir 23,o 23,gr,gc,go,gF).

Now we prove I - TI 123 - 123

For 123 we have

ir23(p) = ir2(p) fl ir3(p),
023(l)(o) = 02(l)(o) = o-3(l)(o), if 02(l)(o) = o-3(l)(o) for every 1 E To,
723(l)(0) = cr2(l)(o) fl o(l)(o), if 02(l) and o-3(l) are defined on o for every 1 E Ti.

So for 1123 we have

1r123(p) = iri(p) fl ir23(p) = iri(p) 112(P) fl ir3(p),

u123(l)(o) = cri(l)(o) = 023(l)(o), if oi(l)(o) = cr23(l)(o) for every 1 E To,
u123(l)(o) = cri(l)(o), if o1(l)(o) = 02(1)(o) = cr3(l)(o) for every 1 € To,
u123(l)(o) = oi(l)(o) fl cT23(l)(o) = oi(l)(o) fl 02(l)(o) fl o-a(l)(o) if

oi(l), 02(l) and 03(l) are defined on o for every 1 E T, i ≥ 1.

Similarly for 1123 we have

"123(P) = lri(p) fl 7C2(p) fl 7(p),
0123(l)(o) = o(l)(o) if oi(l)(o) = 02(l)(o) = cr3(l)(o) for every 1 e To,
a123(0(0) = o(l)(o) fl c72(l)(0) fl cT3(l)(o) if

oi(l), o2(l) and cr3(l) are defined on o for every 1 € T, i ≥ 1.

Therefore we have ir123 = 123 0123 = 0 123. 0

Theorem 7.6 (Model Intersection Property)

Let P be a definite program and {Mi}iEN be a non-empty set of models for P. Then

the intersection 11 ENM is also a model for P.

Proof: Let M = fl1ENM. Clearly, M is an interpretation for P. If M is not a model

for F, then either some representational types, representational objects or rules are

not satisfied by M.

It is trivial to show that M must satisfy the type system of the program P.

Suppose that a representational object t in P which is

0 : p(li -p 01,12 -+ {o31 ,...,o3 }, 13 -+ {Oti, ... ,Otm}')

CHAPTER 7. HERBRAND INTERPRETATIONS 143

cannot be satisfied by M. Since M1, i E N are models of F, then M1 = t. That is,

0 E lrj(p), o(li)(o) = 01, o-(l2)(o) = {o31 ,...,o3 }, o(l3)(o) {oj1 ,...,oj }, for all

i E N. We have o E fl1EN7r(p), fliENoi(ll)(o) = 01, fliENoi(12)(o) = ...,

fliENo-i(13)(0) D lot,, ..., Therefore M = t, which is a contradiction.

Suppose a rule r in P which is

cannot be satisfied by M. Now let us consider every ground substitution 9, j E N.

If not every M is such that M = A105, ..., Mi = A.0j, then we do not have

M = A193, ..., M = AO3. Therefore we have M = r01. That is, M cannot satisfy

the body therefore satisfy the rule, which is a contradiction. Suppose for all Mi we

have Mi = A10, ..., M1 = AO3. Then M != A193, ..., M = A93. Since every M1

is a model of F, we have Mi = A03. So M = AO. Therefore M = r9,, which is

still a contradiction. For all ground substitution Oj,j E N, we have M 1= r93, that

is, M = r, which is a contradiction. 0.

The above theorem says that the NLO programs preserve the model intersection

property of traditional logic programming, based on Definition 7.4 for the model

intersection.

Definition 7.5 A model M of P is minimal if for each model N of P, if N M

then N=M. 0

Definition 7.6 A model M of P is least if for each model N of F, M N. 0

Theorem 7.7 If a definite program P has a model, then it has a unique least model

which is the intersection of all possible models for P denoted by Mp.

CHAPTER 7. HERBRAND INTERPRETATIONS 144

Proof: Direct from the definition. 0

Note that the intersection of all possible models for P is just the greatest lower

bound of all possible models.

Example 7.5 For the interpretations I, I, 12 in the examples 7.1 and 7.2, the least

model is I. If we define the union of two interpretations in a similar way, we will

note that the union may even not be an interpretation. For example, the union of

11 and ' 2 contain 03 : p(f -+ 3) and 03 : p(f - 4). 0

Theorem 7.8 The set {M} EN of all possible models of a given definite program is

a partially ordered set under .

Proof: Direct from the definition. 0

Theorem 7.9 All possible models ({MI}IEN, Q of a definite program form a meet-

semilattice.

Proof: Direct from the definition. 0

Theorem 7.10 Let P be a definite program. If P has a model, then Mp = IF I F

is a logical consequence of P}.

Proof: We have that

F is a logical consequence of P.

iff P U {-iF} is unsatisfiable, by theorem 6.8.

iff P U {-iF} has no Herbrand models, by theorem 7.2.

if for every Herbrand model M of F, not M = -'F.

CHAPTER 7. HERBRAND INTERPRETATIONS 145

iff for every Herbrand model M of F, M = F.

iffFEMp. 0

Definition 7.7 Given a definite program F, its declarative semantics is given by its

unique least model Mp if it has. 0

Unlike traditional logic programming in which every definite program has a

unique least model. A definite NLO program may not have a model, let alone a

unique least model.

Example 7.6 Consider the following definite program P2 = (S, OB, R).

(a). Type System S

person type(isa -+ {object})(gender -• { "Male", "Female"}).

(b). Object Base OB

mary : person(gender -p "Female").
john : person(gender -+ "Male").

(c). Rules R

mary : person(gender - X) john : person(gender -p X).

Following are two interpretations for the program.

I = {person: type(isa - {object})(gender { "Male", "Female"}),
mary : person(gender -+ "Female"),
john : person(gender -+ "Male")}.

'2 = {person : type(isa - {object})(gender { "Male", "Female"}),
mary : person(gender -+ "Male"),
john : person(gender -+ "Male")}.

But neither of them are models of the program. In fact, this program has no models

because the single-valued attribute gender of mary has two different values. 11

CHAPTER 7. HERBRAND INTERPRETATIONS 146

Example 7.7 Consider the following definite program P3.

student: type(age -+ {15..35}).
alan : student(age - 36).

This program has no model because the object alan is not well-typed. 0

Definition 7.8 Given a definite program P and a query ?— Li,..., L, a correct

answer to it is a ground substitution 0 such that Mp L10, ..., Mp L0. 0

Example 7.8 For the definite program P1 and its interpretation I in Example 7.1,

we know that I is the least model based on the previous discussions. Therefore the

semantics of P1 is given by I. Given a query ?— 0: P(L - Y), the only answer to

it is 0 = {P/q, L/s, Y/{1, 2}}. Given another query ?— P : type(L -* Q), there are

two answers to it: 01 = {P/p,L/f,Q/integer}, 02 = {P/q,L/s,Q/set(integer)}. 0

7.2 Bottom-up Computation for Definite Programs

Based on the above discussions, if a definite program has a model, then it has a

least model. This least model is the intersection of all models and contains all logic

consequence of the program. This section shows that this least model can be obtained

by the operator defined as follows, which corresponds to the bottom-up computation

of proof theory shown in Chapter 2.

Definition 7.9 Given a normal program P = (S, OB, R) and an interpretation I,.

then an operator Tp over I is defined as follows.

Tp(I) = {AO I A = Li,..., € R and there exists a ground substitution 0
such that I J= L10, ..., I = L0}. 0

CHAPTER 7. HERBRAND INTERPRETATIONS 147

Note that a definite program is also a normal program.

Theorem 7.11 Given a definite program P, Tp is monotonic, i.e, if I 12, then

Tp (Ii) Tp(I2).

Proof: For every rule A = A,, ..., A. E R, because of I 12, if I 1= A19,

I = AO, then 12 = A16, ..., 12 1= AO. So Tp(Ii) Tp(I2). 0

Theorem 7.12 Let P be a normal program and I be an interpretation of P. Then

I is a model for P iff Tp(I) I.

Proof: I is a model for P iff for each rule A = A,, -, A in F, we have I = A10,...,

I = AO implies I = AO if Tp(I) E I. 0

Definition 7.10 Given a definite program P = (5, OB, R), the powers of the oper-

ator Tp is defined as follows:

Tp1OSUOB
Tp1n_Tp(Tp1(n-1))USUOB
Tp I w = iub{Tp T n I w denotes the first ordinal number and n E w}

Example 7.9 For the definite program P1 again. We have:

Tp 10 = SUOB
Tp11Tp(TpO)UTp10

= SUOBU {o:q(.s-4 {1,2})}
Tpw ... Tp13Tp2Tp1I

Theorem 7.13 The powers of the operator Tp have the following properties.

(a). For all a, Tp T a C ifp(Tp).

(b). Foralla€w,TplacTpl(a+1)

(c). For all a, f3 Ew, if a < 8, then Tp T C Tp 119.

0

0

CHAPTER 7. HERBRAND INTERPRETATIONS 148

(d). For all a,/3 Ew, if a ≤ 18 and Tp la_=Tp 1/3, then Tp 1 a=lfp(Tp).

Proof: Direct from the definition. 0

This theorem says that Tp is monotonic.

Theorem 7.14 Let X = {Tp I n I n E w}. Then X is directed, i.e., every

finite subset of X has an upper bound in X, and zi({Bi, ..., B}) 9 lub(X) liE

I, for some I E X.

Proof: The first part of the theorem is straightforward. For the second part, it is

trivial that v({Bi, ..., B}) 9 I implies ({Bi, ..., B,} C lub(X).

Assume that v({Bi, B,}) 9 lub(X). Then for each i, 1 ≤ j ≤ n, we have

v(B) E lub(X). If not u(B) E I for all I E X, then not v(B) E lub(X), which is a

contradiction to assumption. Therefore, for each v(B), there is some Ii E X where

v(B) E 12. Since there are only a finite number of Ii and every finite subset of X

has an upper bound in X (part one of the theorem), we have some I E X such that

1= lub({I1,...,I}) and u({Bi,...,B}) ci. o

The above theorem is just used by the following theorem.

Theorem 7.15 Let P = (S, OB, R) and X = {Tp I n I n E w}. Then Tp is

continuous on X, i.e., Tp(lub(X)) = lub(Tp(X)), and Tp I w = lfp(Tp).

Proof: Now we have that

u(A) E Tp(lub(X))

liE A A,, -, An E R and v({Ai, ..., A}) C lub(X)

if A A1,...,A€ R and v({A1,...,A}) 9 I, for some I E X

CHAPTER 7. HERBRAND INTERPRETATIONS 149

by theorem 7.14

iff v(A) E Tp(I) for some I E X

if v(A) E lub(Tp(X)).

So we have Tp(lub(X)) = lub(Tp(X)).

For the second part of the theorem, we have that

Tp(Tp 1 w) = Tp(lub(X)) = lub(Tp(X))

=lub{Tp(Tpin) I nEw}=Tpw.

So Tp I w = lfp(Tp). 0

Now we come to the major result of the theory. This theorem provides a flxpoint

characterization of the least model of a definite program, as in traditional logic

programming.

Theorem 7.16 (Fixpoint Characterization of the Least Model)

Let P = (S, OB, R) be a program. If it has a model, then Tp T w = Mp. In other

words, Tp T w is a model of P and every model of P contains Tp I w.

Proof 1: Mp = ylb{I I I is a model for P}, by theorem 7.7

= glb{I I Tp(I) I}, by theorem 7.12

= lfp(Tp), by theorem 6.1

Tp T w, by theorem 7.15.

Proof 2: (1). Tp T w is model of P.

Assume Tp I w is not a model. Then there is a rule in R of the form

0

and a ground substitution 0 such that Tp I w H A10, ... Tp I w J= A0, but not

CHAPTER 7. HERBRAND INTERPRETATIONS 150

Tp T w = AO. For each i, there exists a j such that Tp I j 1= A20. Let a(i) denote

this j and m be max{a(i) 1 1 ≤ i ≤ n}. Then for some m' > rn, Tp T m' = A9. By

monotonicity of Tp, Tp T w 1= AO, which is a contradiction.

(2). Every model of P contains Tp T w.

Let N be a model. We prove by induction that Tp T i N. The basis is obvious.

Assume the claim holds for Tp T i, and consider Tp I+,. Since N is a model of

F, Tp(N) N by Theorem 7.12. Now that Tp I i N, we have Tp I (i + 1) =

Tp(Tpli)USUOB Tp(N)N. Hence also TpI(i+1)N. 0

Note that if a program has no model, then Tp T w may not even be an interpre-

tation of the program.

Example 7.10 Consider the definite program P2 in Example 7.6 again. By the

definition, we have

Tp0SUOB
TpI1Tp(Tp10)UTpI0

= S U OB U {mary: person(gender - "Male")}

Tp lw... Tp1 3 TpI 2 TpI 1 IiUI2
D {mary : person(gender - 'Male"),

mary person(gender "Female")}

which is not an interpretation of the program. 0

The reason for the problem is that the attribute gender of mary has two different

values. The theorem 7.16 only says that if a program has a model, then it has a least

model Mp which is equal to T

CHAPTER 7. HERBRAND INTERPRETATIONS 151

7.3 Perfect Model Semantics for Normal Programs

As discussed above, for a definite program F, if it has a model, then it has following

properties:

• Tp is monotonic,

• the intersection of two models of P is still a model of F, and

• P has a least model Mp.

The declarative semantics of P is given by Mp which equals Tp T W.

However, as in traditional logic programming, normal programs do not enjoy

these properties. Let P be a normal program, that is, a program which has negation

in the body of a rule or sets in both body and head of a rule. We have

• Tp need not be monotonic,

• the intersection of two models of P need not be a model of F, and

• P may have no least model.

Example 7.11 Consider the following normal program P4

mary : person.
X: female = X : person, --'X : male.

This program has two models M1 = {mary : person, mary : female} and M2 =

{ mary : person, mary : male}. Their intersection is {mary : person} which is not

a model. Both M1 and M2 are minimal models, but there is no least model. We

have {mary : person} M2, Tp({ mary : person}) = M1, and Tp(M2) = {}. Since

M1 {}, Tp is not monotonic. 0

CHAPTER 7. HERBRAND INTERPRETATIONS 152

Example 7.12 Consider another normal program F5 whose type system is omitted.

a1 : p(f - 1).
b1: q(si -+ {Y}) = 0 : p(f—+Y).
c1 : r(s2 - 4 {Y}) = 0 : q(si — Y).

Following are three models of the program.

M1= {ai : p(f—+ 1),b1 q(si -+ {1}),ci :r(s2 {{1}})}.
M2 = {ai : p(f -+ 1), a2: p(f 2), b1 : q(si -+ {1, 2}), c1 : r(s2 {{ 1, 2}})}.
M3 = {ai : p(f 1),a2 : p(f -+ 3),b1 : q(si {1,3)),ci : r(82 -+ 111, 3}})I.

Their intersection is {ai p(f -+ 1), b1 : q(si -+ {1}), c1 : r} which is not a model.

Here M1, M2 and M3 are all minimal models, but there is no least model. Let I =

{b1 : q(si - {1})} and 12 = {b1 : q(si - 11, 2})}. We have Ii E 12 Tp(Ii) = {ci

r(sj -+ {{ 1}})}, and Tp(I2) = {c1 : r(s1 -+ {{1,2}})}. That is, Tp(Ii) q Tp(I2).

So Tp is nonmonotonic. Note that this program can have many minimal models. 0

7.3.1 Stratified Programs

Similar to traditional logic programming, we restrict every normal program to be

stratified so that a distinguished minimal model, if it has, can be selected in a very

natural and intuitive way as the intended semantics of the program.

Definition 7.11 Let P = (S, OB, R) be a program. The depends-on relationship,

denoted by <, between types and between attributes in R, and an auxiliary relation

are defined as follows.

Dl. Let p and q be two types. p < q, if there is a rule in R with p in the head and
q in the body, and the term in which q occurs is negated, or either the term in
which p occurs or the term in which q occurs involves sets. If p < q, then for
every attribute attn of p and every attribute aitq of q, we have attn < aitq.

D2. Let p and q be two types. p:5 q, if there is a rule in B with p in the head and
q in the body, and the terms in which p and q occur have no negations and do

CHAPTER 7. HERBRAND INTERPRETATIONS 153

not involve sets. If p ≤ q, then for every attribute attn of p and every attribute
attq of q, we have attn ≤ attq.

D3. Let att1 and att2 be two attributes. att1 < att2, if they are the attributes of
the same type and there is a rule in R with att1 in the head and att2 in the
body, and the term in which att2 occurs is negated, or either the term in which
att1 occurs or the term in which att2 occurs involve sets.

D4. Let att1 and att2 be two attributes. att1 ≤ att2, if they are the attributes of
the same type and there is a rule in R with att1 in the head and att2 in the
body, and the terms in which at11 and aU2 occur have no negations and do not
involve sets.

D5. IfA≤BandB≤C,thenA≤C.

D6. IfA<BandB<C,thenA<C. 0

Example 7.13 For the programs P4 in Example 7.11 and P5 in Example 7.12, we

have female < male by Dl, female < person by D2, r < q, q < p by Dl, and r < q

by D6. 0

Example 7.14 Consider the following normal program P6 which is an NLO version

of the program in Example 2.4, the type system is obvious and omitted both in the

program and in models.

peter: person(in -+ water).
phil : person(can -+ swim).
X : person(could -+ sink) = X : person(in -+ water),

-'X : person(can swim).
X : person(is - happy) X : person(in -+ water),

person(could -+ sink).

We have could ≤ in and is ≤ in by D4, could < can and is < could by D3, is < can

by D5, etc.. 0

Definition 7.12 Let P = (S, OB, R) be a normal program. A definition of a class

p in P is the subset of P consisting of all rules in R such that p occurs in the head

CHAPTER 7. HERBRAND INTERPRETATIONS 154

of them, and all objects in OB in which p occurs. A definition of values of a factual

attribute att in F, we mean the subset of P consisting of all rules in R such that att

occurs in the head of them, and all objects in OB in which att occurs. 0

Definition 7.13 A program P = (S, OB, II) is stratified if there is a partition P =

P0UP1 ... P, where Po = OBUS, such that the following conditions hold for i = 0, ..., n.

• if A < B, then the definition of B is contained within U<1F3.

• if A ≤ B, then the definition of B is contained within U2<2F2.

Each P2 is called a stratum of P. 0

Definition 7.14 Let P be a normal program. The dependency graph G of P is the

directed graph. The nodes of G consist of all types and attributes of P. There is an

edge (p, q) in G 1ff p < q, or p ≤ q. Furthermore, the edge (p, q) is marked with a <

or ≤ depending on p < q or p ≤ q. 0

A dependency graph of P represents the relation depend-on between types and

attributes of P.

Definition 7.15 A program P is stratified if in its dependency graph there is no

cycles containing a < edge.

Proof: Essentially the same as the proof in [ABW88] 0

Since a program has only finite types and attributes, The above theorem suggests

a simple test whether a program is stratified. It is trivial to check that the programs

P4 in Example 7.11, P5 in Example 7.12, and P6 in Example 7.14 are stratified.

CHAPTER 7. HERBRAND INTERPRETATIONS 155

Example 7.15 Following is a program which is not stratified.

X: boredPerson = X: person(hobbies -+ {}).
X: person(hobbies —+ {iv}) = X: boredPerson.

We have both boredPerson < person and person < boredPerson. That is, there is

a cycle containing < edges in its dependency graph. Therefore, this program is not

stratified. 0

Definition 7.16 Let P be a normal program and I, = (U, E, r, ir1,o1, g -, gc, go) g)

and 12 = (U, E, r, 72, 0-2, gT) gc, go, g) be two interpretations of P. Then the differ-

ence of I and 12 is an interpretation I = (U, J, r, 1, o-i,gT,gc, go, g.i), denoted by

I = I - 12 is defined as follows:

dl. 7r(type) = ?ri(type).

U. o E ir(p), if o € iri(p) and o 4 ir2(p) for every p € ir(type);
o E ir(p), if o E iri(p) and o € ir2(p) and there is a label 1 such that o(l) is
defined on o, for every p E ir(iypc);

d3. if o(l) is defined on o € U and r2(l) is not defined on o E U, then then i(l) is
defined on o and o(l)(o) = oi(l)(o);
if both o(l) and cr2(l) are defined on o € U, and o1(l)(o) cr2(l)(o), then a(l)
is defined on o and cr(l)(o) = or(l)(o) — 02(l)(o);
if both o(l) and 02(l) are defined on o € U, and o1(l)(o) = cr2(l)(o), then cT(l)
is not defined on o. 0

7.3.2 Perfect Model

Now that we have defined the depend-on relation and model difference, we are pre-

pared to define the notion of a perfect model. It is our goal to minimize definitions

of classes and factual attribute values which are depended on by others as much as

possible, even at the expense of enlarging the set of definitions of classes and factual

attribute values which depend on the minimized ones.

CHAPTER 7. HERBRAND INTERPRETATIONS 156

Definition 7.17 Let P be a normal program and suppose that M and N are two

distinct models of P. Then N is said to be preferable to M, denoted by N < M,

if for every object in N - M, in which A occurs, there is an object in M - N, in

which B occurs, such that A < B. A model M of P is perfect if there are no models

preferable to M. 0

Theorem 7.17 Preferabilty is a transitive relation on models.

Proof: Assume N << M << Q. We show that N << Q. Since by Definition 7.17, <<

is irrefiexive, we first show N 0 Q, that is, they are distinct. Assume that N = Q.

Then we have Q << M << Q. Since M << Q, Q M is impossible. Similarly,

Q << M, M is impossible. Hence both Q - M and M - Q are nonempty.

From M << Q, we have that for every A in M - Q, there exists a B in Q - M such

that A < B. Now from Q << M, we have a C in M - Q, such that B < C, and

so on. Since < is transitive and irreflexive on the finite set of types and attributes

which appear in the program, it cannot have infinite decreasing chains, which is a

contradiction. Thus, N 0 Q.

To show that N << Q, consider a A in N - Q. If A is also in M, then it is in

M - Q, so we can deduce the existence of a B in Q - M such that A < B. If B

is not in N, we are done. If B is in N, then it is in N - M, which allows us to

infer the existence of yet another C in M - N such that B < C. If C is in Q, then

it is in Q - N and we are done. Otherwise, it is in M - Q, so we have the same

situation as we previously had for A. Since there exist no infinite decreasing chains

of <, a member in Q - N must eventually be found. The case where A is not in M

is handled similarly. 0

CHAPTER 7. HERBRAND INTERPRETATIONS 157

Theorem 7.18 If N M, then N < M. In particular, the perfect model is

minimal.

Proof: The first assertion is obvious and the second immediately follows from the

first. 0

The converse of the above theorem is, in general, not true. A normal program may

have many minimal models as the program P4 and P5 show. This theorem says that

a perfect model is just one of them. An advantage of the concepts of preferability and

perfect model is that they are based on the depend-on relations between types and

attributes, and are independent of the specific stratification chosen for a program.

Theorem 7.19 Let P be a definite program and supposed P has a model. N << M

if and only if N M. Consequently, a model of P is perfect if and only if it is the

least model of P.

Proof: Since P is a definite program, the depend-on relation < is empty. Conse-

quently, N << M if N M. 0

Theorem 7.20 In order to show that a model M is perfect it suffices to show that

there are no minimal models preferable to M.

Proof: Suppose that there is no minimal models preferable to M and suppose that

N is a model such that N << M. Let K be a minimal model such that K E N.

Then K << M, which is a contradiction. 0

Example 7.16 Consider the program P4 and its two models M1 and M2 in Exam-

pie 7.11. Since M1 - M2 = {mary : female} and M2 - M1 = {mary : male} (by

CHAPTER 7. HERBRAND INTERPRETATIONS 158

d2) and we have female < male based on Example 7.13, M1 < M2. Consequencely,

M1 is perfect. 0

Example 7.17 For the program P5 and its three minimal models M1, M2, M3, we

have M1— M2 = {ci : r(s2 -+ {{1}})} and M2 - M1 = {a2 : p(f - p 1),b1 : q(si -

{2}, c1 : r(s2 - {{ 1, 2}})} (by d3). Since r <p based on Example 7.13, M1 < M2.

Similarly we have M1 < M3. Consequencely, M1 is the perfect model. 0

Example 7.18 Consider the program P6 in Example 7.14, following are its four

models.

M1 = {peter : person(in -* water),phil : person(can -+ swim),
peter : person(could -+ sink)}

M2 = {peter : person(in -+ water),phil : person(can - f swim),
peter: person(can -+ swim), peter: person(is - happy), }

M3 = {peter: person(in -+ water), phil: person(can -+ swim),
peter: person(can - swim), peter: person(could -+ sink)}

M4 = {peter person(in -+ water),phil : person(can -+ swim),
peter : person(can -+ swim),phil : person(could -+ sink),
peter : person(could - sink),phil : person(is -+ happy),
peter : person(is -+ happy),phil : person(is -+ happy)}

We have M1 - M2 = {peter : person(could - k sink)} and M2 - M1 = {peter

person(can - swim), peter : person(is - happy)}. Since could < can, M1

M2. Similarly,Mi << M3,Mi<<M4,M2 <<M3,M2 <<M4, and M3 <<M4.

Consequently, M1 is perfect. 0

Definition 7.18 Given a normal program F, its declarative semantics is given by

its unique perfect model Mp if it has. 0

Definition 7.19 Given a normal program F and a query ?— L1, ..., L, a correct

answer to it is a ground substitution 0 such that Mp L10, ..., Mp L10. 11

CHAPTER 7. HERBRAND INTERPRETATIONS 159

7.4 Bottom-up Computation for Normal Programs

The last section gives a precise characterization of the semantics of a stratified nor-

mal program. The main results presented there are purely declarative. They do

not immediately lead to any constructive method for evaluating the program and

computing the answers to the query. This section shows that this perfect model can

be obtained by bottom-up computation.

First, we re-define powers of an operator Tp of a program P.

Definition 7.20 Given a normal program P = (S, OB, R), the powers of the oper-

ator Tp is defined as follows:

Tp 1 0(I) = I
Tplm(I) = Tp(Tp (n-1)(I))UTp(n-1)(I)
Tpw(I)lub{Tp1n(I) I n.Ew}

Theorem 7.21 If Tp is monotonic, then

Tp 1(m)(I) = Tp(Tp 1(n-1)(I))UI.

Proof: First we have

Tp I n(I) = Tp(Tp I (n - 1)(I)) U Tp I (n - 1)(1) 2 Tp T (n - 1)(I).

Since Tp is monotonic, we have

Tp(Tp I n(I)) Tp(Tp I (n - 1)(I)).

Now we prove the theorem by induction on n. Since

Tp 11(I) = Tp(Tp T 0(I)) U Tp 1 0(1) = Tp(Tp 1 0(I)) U I,

the theorem holds for n = 1. Assume it holds for n = lc, that is,

Tplk(I) Tp(Tp I(k-1)(I))UI

Consider n = ic + 1, we have

0

(1)

(2)

CHAPTER 7. HERBRAND INTERPRETATIONS 160

Tp I (k + l)(I) = Tp(Tp I k(I)) U Tp I k(I)

Tp(Tp I k(I)) U Tp(Tp I (k - 1)(I)) U I by (2)

= Tp(Tp lk(I))UI by (1)

Therefore, the theorem holds for all n.

The above theorem says that Definition 7.20 generalizes Definition 7.10.

0

Definition 7.21 Let P be a normal program stratified by P = Po U ... U P. Mn is

defined as follows.

M0 = SUOB,

M1 = Tp I w(Mo),
M2 = TP2 Iw(Mi),

M = Tp I w(M_1). 0

Theorem 7.22 Let P be a normal program stratified by P = Po U ... U P,. Then

Tp, is monotonically increasing, 1 ≤ i ≤ n.

Proof: Directly from the definition. 0

Let Mp be the unique perfect model of P. It is intended to show that M is a

model of P and M is preferable to every other models of F, that is, M = Mp. We

first consider a program which has only two strata.

Theorem 7.23 Let P be a program, stratified by P = Po U P1 U P2. If P has a

model, then

(1). M1 is a model of Po U P1.

(2). M2 is a model of P.

(3). If N is a model of P such that N fl M1 = M1, then M2 N.

CHAPTER 7. HERBRAND INTERPRETATIONS 161

Proof. (1): It follows directly from Theorem 7.16

(2): We first prove by induction on i that Tp2 T i(Mi) fl M = M1. The

claim is obviously true for i = 0. Since the program is stratified, applying Tp2 to

Tp2 I i(Mi) does not add any values to attributes and any objects to the classes in

P1. The claim follows.

Next, we show that M2 is a model of P. Let r in P2 be

(1)

and assume that for some 0, M2 j= LO, 1 ≤ j < n. Since Tp2 I i(MI) is monotonically

increasing by Theorem 7.22 and Tp2 I w(MI) is its limit, For each i, there exist a(i)

such that Tp2 I a(i) = L10, so for a sufficiently large q, we have Tp2 I q 1= Lk0.

For some 1 > q, r is one of the rules in P2 applied to Tp2 1 1(M1), to produce

Tp2 1(1 + 1)(M1). It follows that Tp2 1(1 + 1)(M1) 1= AO; hence Tp2 I w(M1) = AO.

(3): Let N be a model such that N fl M1 = M1. We show by induction

that Tp2 '' i(Mi) N. For i = 0, the claim is trivial. Assume the claim holds

for Tp2 I i(Mi), and consider Tp2 I (i + 1)(M1). Let r be a rule in P2 of the form

(1) above, whose application to Tp2 I i(Mi) adds AO to Tp2 I (i + 1)(M1). Since

Nfl M1 = M1, the body of the rule, under the substitution 0, is satisfied by N. Since

N is a model of R, we haveN 1= AO. Thus, T 2 I (i + 1)(M1) N. 0

Theorem 'T.24 Let P be a normal program stratified by P = Po U P1 U P2. If P

has a model, then M2 is the unique perfect model of P.

Proof: We just need to prove that M2 is preferable to every model of P. Let N be

any model of P that is different from M2. If N F1 M1 = M1, then by Theorem 7.23,

M2 N; hence M1 << N. If N fi M1 0 M1, then it must contain something that is

CHAPTER 7. HERBRAND INTERPRETATIONS 162

not in M1, and hence also not in M2. It follows that in this case also, M2 << N. 0

Now we are ready for the general case.

Theorem 7.25 Let P be a normal program stratified by P = Po U ... U P,. Suppose

that P has a model. Then M is a model of P and for each i, 1 ≤ i ≤ n, M fl M1 =

M.

Proof: We show, using induction on i, that M is a model of Po U ... U P, and for

all j, 0 ≤ j <i, M fl M1 = M3. When i = n, we prove the theorem.

For the basis, i = 0, the claim is trivially true. Assume the claim hold for some

i ≥ 0. By Theorem 7.23, M11 is a model of Po U ... U P:+i and M+1 fl Mj = M1,

0≤j<i+1.

Theorem 7.26 Let P be a norina1 program stratified by P = Po U ... U P,. Suppose

that P has a model. Then M is preferable to every other model of P. That is

MpM.

Proof: Let N be a model of P and is different from M. Then the restriction of

N to the classes and attributes in P0 U ... U P is a model of P0 U ... U P2. Denote

this restriction by N. Now, let j be the smallest integer such that Mj 54 N1. Then

M = N for all i ≤ j. From Theorem 7.24, it follows that M5 N3. Therefore, if

M - N 0 {}, the definition of each "A in this difference must belong to Pk, for some

k > j. It follows that M is preferable to N. 0

This theorem tells exactly how to compute the perfect model Mp of the program

P. The stratum zero contains OB U S. Then, some further classes and attribute

CHAPTER 7. HERBRAND INTERPRETATIONS 163

values defined (perhaps recursively) without the use of negation and sets in stratum

1 are obtained. Next, some new classes and new attribute values defined in terms of

the previous ones, possibly with the use of negation and sets in stratum are obtained.

This process is iterated. Then M is the perfect model.

Theorem 7.27 Given a program P and a query Q with type or label variables,

whether or not there is an answer to the query is decidable, based on the above

bottom up computation.

Proof: For the given program P, the types and attribute labels are finite. Thus,

the substitutions to the type and label variables in the query Q are finite. 0

This theorem says that even though we have type and label variables in NLO

which make it higher-order, it is still decidable.

Chapter 8

Transformation into Prolog

Chapters 5, 6 and 7 have shown that NLO has an expressive syntax and sound

semantics. This chapter shows that NLO is also implementable in practice. It shows

that satisfiable NLO programs and queries can be transformed into semantically

equivalent Prolog programs and queries and get correct answers.

It is assumed that in Prolog, there are three built-in predicates: integer(X)

which is true if X is substituted by an integer, .string(X) which is true if X is

substituted by a string, setof(X, F, S) which is true if the set of all substitutions

of X such that P is true is S. In Prolog, there is no real concept of sets, but lists.

But sets are normally represented indirectly by lists. To simplify the presentation

of the transformation, it is assumed that sets are directly representable in Prolog

in standard set notation { ... }. It is also assumed that predicates subset, member,

union, intersection and difference over sets are pre-defined.

8.1 Transformation of Types

A type in NLO is a name which may have a factual property and a number of

definitional properties which impose constraints on the factual properties which all

objects possessing this type should have. Associated with a type is a class which

is the set of all known objects possessing this type. Therefore, each type as well

164

CHAPTER 8. TRANSFORMATION INTO PROLOG 165

as class of NLO is transformed into five predicates: type, object-of, attribute, at-

tribute-value, and class. The predicate type is used for denoting the existence of a

type. If p is a type, then type(p) will be in the transformed program. The predicate

object-of is used for denoting that an object is known to belong to a class. If o is

an object in the class p, then object_of(o, p) will be in the transformed program.

The predicate attribute is used for the definitional properties of types. If p has a

definitional property 1 - q, then attribute(p, 1, q) will be in the transformed pro-

gram. The predicate attribute-value is used for the factual properties of types. If

p has a single-valued factual property 1 - q, then attribute_value(p, 1, q) will be in

the transformed program. If p has a set-valued factual property 1 -+ {qi, ..., q,,

then attribute_value(p, 1, qi) ,...,attri but e_value(p, 1, q,) will be in the transformed

program. The predicate class is used for the class associated with a type. If p

is a finite type, and a1, ..., a, are all elements of this type, then class (p, {ai, ...) a})

will be in the transformed program. If p is an infinite type, then it is impossible to

list all its extension and class (p, p) is used. The meta type type is used only for the

semantics of NLO programs so that it is not needed to include it in the transformed

program.

8.1.1 Transformation of Built-in Types

The following transformations of the three built-in types, integer, string and object

are included in the transformed program of NLO if they are used.

type(integer).
object_of(X, integer) :- integer(X).
class (integer, integer).

CHAPTER 8. TRANSFORMATION INTO PROLOG 166

type(string).
object_of(X, string) :- string(X).
class (string, string).

type(object).
attribute_value(object, isa, {object}).
class(object, X) :- setof(Y, object-of (Y, object), X).

The first group says that integer is a type, objects of integer are integers and the

class associated with the type integer is integer. The second group says that string

is a type, objects of string are strings and the class associated with the type string

is string. The last group says that object is a type, object has a factual property

called isa whose value is {object} and the class object contains all objects of type p.

In fact, the last rule can be generalized for all finite classes as follows.

class(T, X) :- t ype(T), T 0 integer, T Ostring, setoff, object-off, T), X).

8.1.2 Transformation of Set Types

According to the semantics of NLO, if p is a type, then set(p) is a set type. The

objects of the set type set(p) are subsets of the class p. The class set(p) is .set(p) if

p is infinite, otherwise, is the power set of class p. Based on the semantics, following

is its transformation.

type(set(P)) :- type(P).

object_of(X, set(P)) :- type(set(F)), subs et(X, Y), class(P, Y).

class(set(P), set(P)) :- class(P, F).
class(set(P), X) :- setof (Y, (class(P, Z), subs et(Y, Z)), X).

The third rule above deals with integer and siring. Based on it, we can infer

class (set (integer), set(integer)).

CHAPTER 8. TRANSFORMATION INTO PROLOG 167

8.1.3 Transformation of Basic Types

Since basic types are directly used in the program, rather than explicitly defined,

whenever they occur in the program, the following transformation will be used.

If Jai,..., an} is a basic type, then it is transformed into

type({ai,...,a}).
object_of(X, {a1, ..., a}) :- (X = a1; ...; X = an),

(object_of(X, string); object_of(X, integer)).

If s = {ai, ..., a,} is a basic type, then it is transformed into

type(s).
object_of(X, s) :- (X = a1; ... ; X = as),

(object_of(X, string); object-of (X, integer)).

If {lb..rb} is a basic type, then it is transformed into

type({lb..rb}).
object_of(X, {lb..rb}) :- object_of(X, integer), X ≥ lb, X ≤ rb.

If .s = {lb. .rb} is a basic type, then it is transformed into

type(s).
object_of(X, s) :- object_of(X, integer), X ≥ lb, X ≤ rb.

Example 8.1 The transformations of the basic types gender = { "Male", "Female"}

and {O. . 120} are as follows:

type(gender).
objecL.of(X, gender) :- object_of(X, string),

(X = "Male"; X = "Female").

type({O..120}).
object_of(X, {O.. 120}) :- object_of(X, integer), 0 ≤ X, X ≤ 120. 0

CHAPTER 8. TRANSFORMATION INTO PROLOG 168

8.1.4 Transformation of Representational Types

For each representational type p with a definitional property defined by

p: type(l— q), its transformation is

type(p).
attribute(p, 1, q) :- type(q).

For each representational type with a factual property defined by

p: type(isa) {pi, ..., pm}), its transformation is

type(p).

attribute_value(p,isa,{pi) ..., pn}) :- type(pi), ..., type(p).

object_of(X, pi) :- object_of(X, p).

objecLof(X, p,) :- object_of(X, p).

attribute(p, L, Q) :- attribute(pi, L, Q).

attribute(p, L, Q) :- attribute(p, L, Q).

Example 8.2 Consider the following two representational types of NLO:

person : type(isa - {object})
(sex - p gender,
age -+ {O..120}).

student: type(isa - {person})
(age -+ {15..35},
studying-in - p dept,
taking - 4 .set(cour.se)).

Their transformations are

tjpe(person).
attribute_value(student, isa, object) :- type(object).
object_of(X, object) :- object-of (X,person).
attribute(person, L, Q) attribute(object, L, Q).
attribute(person, sex, gender) :- tjpe(gender).
attribute(person, age, {O..120}) :- type({O..120}).

CHAPTER 8. TRANSFORMATION INTO PROLOG 169

type(studeni).
attribute...value(student, isa, person) :— type(person).
object_of(X, person) :— object_of(X, student).
attribute (student, L, Q) :— attribuie(person, L, Q).
attribute (student, age, {15..35}) :— type({ 15..35}).
attribute (student, studying-in, dept) :— type(dept).
attribute(student, taking, .set(course)) :— type(set(course)).

8.2 Transformation of Objects

0

For a representational object o with a full factual property represented by

o: p(l - Ot), the transformation is as follows:

object_of(o, p).
attribute_value(o, 1, Os).

For a representational object o with a partial factual property represented by

o : p(l —+ {Oi, ..., o}'), an additional predicate attribute-member is used for every

member of the set. The transformation is as follows:

objeeLof(o, p).
attribute..rnember(o, 1, o)

attribut&member(o, 1, o,)

attribute_value(O, L, X) :— setof(Y, attn bute.rnemben(O, L, Y), X)

Note that the rule above is quite general and applicable to all objects with partial

factual attribute values. Thus it should be included in the transformed program.

Example 8.3 Consider the following two representational objects:

mary : person(sex — "Female",
age — 28).

john : person(age —+ 35,
studies-in — math,

CHAPTER 8. TRANSFORMATION INTO PROLOG 170

takes -+ {m203,m321,cs213}',
borrows -* {prolog, databases}).

Their transformations are

object_of(mary, person).
attribute_value(mary, sex, "Female").
attribute_value(mary, age, 28).

objecLof(john, person).
attribute_value(john, age, 35),
attribute..value(john, studies-in, math).
attribute...member(john, taking, m203).
attribute...rnember(john, taking, m321).
attribute..rnember(john, taking, cs213).
attribute...valuc(john, borrow, {prolog, databases}).

8.3 Transformation of Basic Terms

0

Basic terms are used in queries and in rules either in head or in body. The transfor-

mation shown here only applies to the basic terms used in queries and in bodies of

rules.

For a basic term X p, its transformation is

obj ecLof (X, p).

For a basic term X : p(l - Y), where Y is either a variable, or an object, its

transformation is

object_of(X, p),
attribute_value(X, 1, Y).

For a basic term X : p(l - {Oi, ..., o}'), its transformation is

object_of(X, p),
attribute_value(X, 1, Y)),
member(oi, Y),

CHAPTER 8. TRANSFORMATION INTO PROLOG 171

member(o, Y),

For a basic term X : p(l —+ {Y}), where Y is a variable, its transformation is

object_of(X, p),
attribute_value(X, 1, Z),
member(Y, Z).

8.4 Transformation of Basic Literals

Similar to basic terms, the transformation shown here only applies to the basic literals

used in queries and in bodies of rules.

Let & be a basic term and trans(b) stand for the transformation of çb. Then for

arithmetic expressions, their transformation are straightforward:

trans(1'i +'02) = trans(01) + trans(?/2)

rans(&i — = trans(01) — trans(7k2)

trans(bi x &2) = trans(b1) xtrans(02)

trans(bi - I'2) = trans(bi) -1--trans(02)

For set expressions, their transformation are as follows.

trans(?/1 U &2) = union (trans (bi),irans(&2))

trans(/'i n02) = intersection (trans (?/,i) , trans(/ 2)).

trans(/i \) = difference(trans(?'i), trans('/2))-

For a negation of a basic term — ib, its transformation consists of the negative

sign followed by the transformation of the basic term without negation, i.e.

trans(- b) = -(trans(&)).

For a disjunctive basic term &2, it transformation is

CHAPTER 8. TRANSFORMATION INTO PROLOG 172

trans ('01; b2) = 1rans(/'i); trans (?J2).

For arithmetic comparison expressions, their transformations are straightforward.

trans(&i ≤ &) = trans(01) < trans(02)-

trans(?/'1 ≥ ?/'2) = trans(01) ≥ trans(02)-

trans(?/1 <'2) = trans(01) < trans(?/'2).

trans(J i > 1) = trans(0i) > trans(?/'2).

For set comparison expressions, their transformations are as follows.

trans(?/ 1 C &) = subset (trans(?/ 1) , trans(?/'2)), trans(01) 0 trans(?/'2).

trans(/'j D b) = subset (trans(?/'2) , trans(/'1)), trans(01) 0 trans(&2).

trans(/ 1 = (subset (trans (/ i), trans(/.'2)); trans(01) = trans('2)).

trans(/'1 = (subset (trans (&2), trans(?/.1)); trans(i) = trans(/'2)).

8.5 Transformation of Rules

A rule consists of a head and a body of the form A = body. The body is a collection

of basic literals L1, ..., L, each of which is either a basic term, the negation of a basic

term, a disjunctive basic term or an expression. The transformation of the body of

a rule is just the conjunction of the transformation of the literals in the body. That

is, trans (body) = trans (L1), ..., trans (L).

The head of a rule is a basic term. But its transformation is different from the

transformation of a basic term. It depends on the usage of the rule.

A rules can be used in two different ways. One is to deduce factual attribute values

of existing representational objects. The other is to construct new representational

objects and deduces their attribute values. In the later case, object constructors are

CHAPTER 8. TRANSFORMATION INTO PROLOG 173

used.

Let X : p(l - Y) = body be a rule. If X is not an object constructor, then the

rule only has the following transformation.

attribute_value(X, 1, Y) :- trans(body).

Otherwise the rule has the following additional transformation.

objecLof(p, X) :- type(p), trans(body).

Let X : p(l -* {Oi, ..., o}') = body be rules. If X is not an object constructor,

then the rule only has the following transformation.

aitribute..mernber(X, 1, oi) :- trans(body).

attribute..rnember(X, 1, o) :- trans(body).

Otherwise the rule has the following additional transformation.

object...of(p, X) :- type(p) , trans(body).

Let X : p(l - {Y}) @ body be a rule. If X is not an object constructor, then

the rule only has the following transformation.

attribui&mcmber(X, 1, Y) :- trans(body).

Otherwise the rule has the following additional transformation.

object_of(p, X) :- iype(p) , trans(body).

Let r be a rule of the form:

X:p(li—Xi,...,l--'X)= body.

If X is not an object constructor, then the rule r only has the following transforma-

tion.

trans (X : p(li -+ X1) :- (body)).

CHAPTER 8. TRANSFORMATION INTO PROLOG 174

trans (X : p(li — X) :- (body)).

Otherwise the rule has the following additional transformation.

object_of(p, X) :- iype(p) , trans(body).

Example 8.4 Consider the following two NLO rules which only deduce factual at-

tribute values of existing objects.

(1) X : person(address -+ Y) = A < 20
X : person(age -+ A, father —+
Z: person(address — f Y).

(2) X : employee(heading - p {Y}) = Y: employee(working_in - D),
D : dept(head - X).

Their transformations are:

(1) attribute_value(X, address, Y) :- A < 20,
object_of(X, person),
attribute_value(X, age, A),
aUribute_value(X, father, Z),
object_of(Z, person),
aUribute_value(Z, address, Y).

(2) attribute.inember(X, heading, Y) :- object_of(Y, employee),
aitribute_value(Y, works-in, D),
object_of(D, dept),
attribute_value(D, head, X). 0

Example 8.5 Consider the following rule which constructs new objects and deduce

their factual attribute values.

h(X,Y) : p(si —+ {Z}) = X : q(52 — {Y}),Y: r(f — Z).

The transformation is:

object_of(h(X, Y), p) :- objeet_of(X, q),
attribute_member(X, S2, Y),

CHAPTER 8. TRANSFORMATION INTO PROLOG 175

object_of(Y, r),
attribuie...value(Y, f, Z),

attribute...rnernber(f(h(X, Y), s1, Z) :- object_of(X, q),
attributenember(X, S2,
objecL.of(Y, r),
attribute_value(Y, f, Z).

8.6 Transformation of Typed Terms and Literals

For a typed term P : type, its transformation is

type(P).

For a typed term P : type(L -+ {Q}), where Q is a variable, its transformation is

type(P),
attribute(P, L, Z),
member(Q, Z).

For a typed term P type(L - {qi, ..., qn}), its transformation is

type(P),
attribute(P, L, {qi..... . q}).

For a typed term P : type(L -+ {q1, ..., q}'), Its transformation is

type(P),

attribute(P, L, Q),
rnember(qi,Q),

member(q, Q).

For a typed term P : type(L - Q), where Q is a variable, its transformation is

type(P),

attribute(P, L, Q).

0

CHAPTER 8. TRANSFORMATION INTO PROLOG 176

For a typed term P : type(Li - Pi,..., L. - Ps),

trans (P : type (Li, -+ F1)).

irans(P : iype(L, - Ps)).

For a typed term X : F, its transformation is

type(P),
object_of(X, F).

its transformation is

For a typed term X : P(L - Y), its transformation is

type(P),
object_of(X, F),
attribute(X, L, Y).

For a typed term X : P(L -+ Y'), its transformation is

type(P),
object_of(X, F),
atiribuie(P, L, Z),
.subsei(Y, Z).

For a typed term X : P(L1 - 1', ..., L, -• Y), its transformation is

trans (X : P(L1,-+ Y1)).

irans(X : P(L, - Y)).

For a typed literal &i = S2 its transformation is

trans(51) = trams(82).

For the negation of a typed term - i, its transformation consists of the negative sign

followed by the transformation of the typed term without negation, i.e.

trans(- b) = -(irans(&)).

CHAPTER 8. TRANSFORMATION INTO PROLOG 177

For a disjunctive typed term 1'i; 02, it transformation is

(trans (01); trans(/'2)).

Example 8.6 Consider the following typed terms and literals:

(1) worksudent : type(isa -+ {student, employee}).

(2) person: tjpe(L -+ {Q}).

(3) -'P : type(isa -+ {person}').

(4) P : type(L -+ Q).

Their transformations are as follows.

(1) type(worksiudeni),
attribuie_value(workstudeni, isa, {student, eraployee}).

(2) type(person),
attribute_value(person, isa, Z),
member(Q, Z).

(3) -i(type(P), attn but e_value(P, isa, Z), mcmbcr(person, Z)).

(4) type(P),
attribute(P, L, Q).

8.7 Transformation of Queries

0

A query is a conjunction of literals of form ?- Li,..., Ln. Its transformation is just

the conjunction of transformed literals, that is,

trans(?- Li,...,Ln) = ?- tnans(Li),...,trans(L).

Example 8.7 Consider the following queries:

(1) ?- X : person(children - {jenny}')

(2) ?- mary : person(children -+ {X}), X : person(children -* Y).

(3) ?- P : type(Li - Q1)(L2 -4 Q2)

CHAPTER 8. TRANSFORMATION INTO PROLOG 178

(4) ?— X: P(L - Y).

Their transformations are

(1) ?— object_of(X, person),
attribute_value(X, children, Y),
member(jenny, Y).

(2) ?— objeci_of(mary, person),
aitribuie_value(mary, children, X),
object_of(X, person),
attribute_value(X, children, Y).

(3) ?— type(P),
attribute_value(P, L1, Qi),
attribute(P, L2, Q2)-

(4) ?— type(P),

objecLof(X, F),

attribute_value(X, L, Y).

8.8 Correctness of Transformation

0

The previous sections have shown how to transform NLO programs and queries

into Prolog programs and queries. The transformation is justified by the following

theorems.

Theorem 8.1 Let P be an NLO program and assume that P is satisfiable and

Mp is the intended semantics of P. Let P* be the transformed program, that is,

trans(P) = P and M. be the intended semantics of *• Then trans(Mp) = Me..

Proof: Let P = (S, OB, R). Then S U OB Mp. It is straightforward to show

that trans(S) U trans(OB) 9 Mp*. Suppose Mp = o and o is not in OB U S, then

CHAPTER 8. TRANSFORMATION INTO PROLOG 179

we can prove by induction on the stratum of P that Mp* = trans(o), similar to the

proof in Theorem 7.25 Therefore, trans(Mp) C Mp*.

Now consider every fact in Mp. which is one of the following forms: type(p),

object-of (o,p), attribute(p, 1, q), attribute_value(o, 1, Os), attribute...rnember(o, 1, Ot),

and class (p, c). Then it is easy to show that

if Mp* = type(p), then Mp = p: type;

if Mp. = object_of(o, p), then Mp = o : p;

if Mp. = attribute(p, 1, q), then Mp = p: type (I — q);

if Mp* attribute_value(o, 1, Ot), then Mp = o : p(l — Ot) for some p;

if Mp. = class(p, c), then ir(p) = C;

if Mp* = attn but &memben(o, 1, Ot), then Mp = o : p(l —* lot}') for some p.

Therefore, trans(Mp) = Mp. 0.

Theorem 8.2 Let F, Mp, * and Mp. be the same as in the theorem above and Q

be an arbitrary query and Q* be its transformation. Then Mp QO ill Mp* Q*O

Proof: Straightforward and omitted.

These two theorems say that satisfiable NLP programs and queries can be trans-

formed into semantically equivalent Prolog programs and queries.

8.9 Summary

This chapter has shown how to transform NLO programs and queries into seman-

tically equivalent Prolog programs and queries. Such transformation suggests that

CHAPTER 8. TRANSFORMATION INTO PROLOG 180

NLO is fully implementable in practice, even though it is not intended to be imple-

mented in this way.

Substantial sample examples have been tested using NU-Prolog and Quintus

Prolog and operate correctly.

Chapter 9

Conclusion and Further Work

Approaches to deductive databases are subject to two opposing forces. On one side

there are the stringent real-world requirements of actual databases. The requirements

include efficient processing as well as the ability to express complex and subtle real-

world relationships. On the other side are the simple and clear semantics of logic

programming and its deductive power. The need for expressiveness has forced the

deductive models away from their simple roots in logic programming.

This thesis has analyzed two significant problems inherent in deductive databases,

namely complex object modeling and higher-order features. It has discussed what

should be incorporated to extend deductive databases, based on the work of object-

oriented programming languages and semantics and object-oriented data models.

To model complex objects, we need proper notions to represent object identity,

single-valued properties and set-valued properties, syntactical sets, types, classes

and inheritance. To represent and manipulate schema and sets, we need variables

not only for individuals, but also for nested syntactical sets, types and property

names.

Several typical solutions to these two problems have been examined, and why

they cannot naturally and directly satisfy the above requirements has been shown.

Based on the requirements and related work, this thesis has proposed a novel

181

CHAPTER 9. CONCLUSION AND FURTHER WORK 182

Criteria NLO

Object is viewed as
Object Identity
Object Generation
Single-Valued Factual Property
Set-Valued Factual Property
Syntactic Sets
Nested Sets
Set Variables
Separation of Classes and Objects
Uniformity of Terms and Atoms
Type Definitions
Subtypes of Basic types
Inheritance
Well-defined Semantics
Semantic Properties of Program

surrogate
surrogate

Yes
function formation
function formation

homogeneous
Yes
Yes
Yes
Yes
Yes
Yes
Yes

simple
Yes

Table 9.1 Summary of NLO

deductive database language NLO which can naturally and directly support object

identity, object properties, syntactical sets, types, classes, inheritance, schemas, sets,

and higher-order queries in a uniform way. Therefore, it solves the above two prob-

lems.

The semantics of NLO given here is quite simple, natural and direct, compared to

other approaches. The syntactic and semantic properties of NLO programs have also

been investigated and the precisely defined semantics of NLO programs are given in

the way similar to the traditional logic programming.

Table 9.1 summarizes the features of NLO based on the same criteria as in Ta-

bles 4.1 and 4.2 in Chapter 4. Table 9.2 summarizes Tables 4.1, 4.2 and 9.1 in an

CHAPTER 9. CONCLUSION AND FURTHER WORK 183

Criteria LOGIN 0-Logic R-Logic F-Logic LDL L2 COL NLO

0-view surr surr surr surr tuple tuple tuple surr
0-Identity surr surr surr surr rel rel rel surr
0-Gen. No Yes Yes Yes rel rel rel Yes
Single Val. func func func func tuple tuple tuple func
Set Val. prolog No func func tuple tuple tuple func
Syntac-Sets list No hete homo hete hete homo hete
Nested Sets No No No No Yes Yes Yes Yes
Set Variable prolog No No No Yes Yes Yes Yes
Separation Yes Yes Yes No Yes Yes Yes Yes
Uniformity No Yes Yes Yes No No No Yes
Type Del. some No No Yes rel rel rel Yes
Subtypes Yes No No some No No No Yes
Inheritance Yes No No Yes No No No Yes
Well-definded No No complex complex Yes Yes Yes simple
Sem. Prop. No No No No Yes Yes Yes Yes

Table 9.2 Summary of Comparison of NLO with Other Approaches

abbreviated form.

This thesis has also shown that NLO can be transformed into Prolog so that it is

fully implementable in practice. NLO is intended as a real deductive database lan-

guage, and how to implement it efficiently is a worthwhile topic for further research.

The rest of this chapter discusses two possible extensions to NLO. Section 1

discusses the update problem which is a very important aspect of database applica-

tions. Section 2 discusses the use of type and label variables in NLO to increase its

expressive power.

CHAPTER 9. CONCLUSION AND FURTHER WORK 184

9.1 Updates

There is another significant problem existing in deductive databases which is not

dealt with in this thesis. This is the update problem.

In Prolog, the basic update primitives are assert and retract. Assert is used to

insert a single clause into the database. Assert always succeeds initially and fails

when the computation backtracks. Clauses are deleted from the database in Prolog

by calling retract. Initially, retract deletes the first clause in the database which

unifies with the argument of retract. On backtracking, the next matching clause is

removed. Retract fails when there are no remaining matching clauses.

The semantics of assert and retract are not well-defined. Even if we did take one

particular implementation as the definition, the exact effect of calling code containing

assert and retract is often difficult to predict. There are two factors to be considered:

the set of answers returned and the resulting database update. These are interrelated

and both rely on the procedural semantics of Prolog, rather than just the declarative

semantics. The procedural semantics of Prolog affects what database updates are

done. The order of execution of subgoals is as important as the logical content of

the goal.

The notion of states is inherent in any notion of updates. The Dynamic Logic

approach assigns state transition semantics to a logic program [NK88]. The closure

operator associated with a logic program P computes a state of P in the sense that

it assigns valuations to the variables of P. Updates can be viewed as transitions of

a state through a state-space. In the absence of updates, a classical logic program

has only one state, and queries map this state to itself. So it reduces to the classical

CHAPTER 9. CONCLUSION AND FURTHER WORK 185

semantics of logic program. Two kinds of updates are distinguished in [NK88] which

have different semantics. First, those in which update actions depend on the order of

execution, that is, different orders of execution may yield different final states. This

kind of update is represented by (a; /3) where a and 8 stand for update predicates.

The semantics for this kind does not require that a executed before and after /3 gives

the same result. The other kind are those in which all different orders of execution

yield the same final state. A syntactic test has been given in that paper which can

ensure this property.

The Dynamic Logic interpretation of updates [NK88] gives a clean semantics

and is consonant with the operational meanings of the update predicates. But this

semantics is not declarative and is too complicated to be useful.

To reduce the number of database states by grouping small changes into big

ones and to address the issue of concurrency and atomicity of certain operations,

the concept of transactions are introduced into deductive databases in [NTR87].

The transaction concept has been widely used in relational database systems where

transactions are normally transparent to the users. A transaction is a collection

of updates which must be done atomically. This naturally specifies some form of

concurrency control. In [NTR87], a transaction is specified by two sets: the facts to

be deleted (D) and the facts to be inserted (I). The new database state (New_db)

after the transaction is defined in terms of the old database state (Old..db) before

the transaction, D and I:

New_db = (OldAb - D) U I

This definition corresponds to performing deletions before insertions. Only if the

CHAPTER 9. CONCLUSION AND FURTHER WORK 186

transaction is committed, then the updates have been made by first doing all the

deletions then all the insertions.

The main advantage of introducing transactions is that it gives a simple declar-

ative semantics for updates. However explicitly specifying transactions seems to be

a burden to the user.

Another approach which can solve the update problem is that of Starlog [C1e9O].

Starlog is a temporal logic programming language which handles time explicitly.

Every predicate in Starlog has a temporal argument which is a real interval. So the

database of Starlog is a history database and updates are represented as changes

with "logical" time.

There are two ways in which time can be used in the Starlog database. One way

is to use the time values to record actual history database information. Used in this

way, it should be possible to query information about the past. A different way of

using time in a database is just to express the semantics of updates and changes to

the database. Used in this way, time would have no meaning within the database

itself. In such a system the state of the database would be at its current time.

A query could be made only at the current time and updates would be inserted

and occur at the current time. The appropriate sequencing of updates would be

ensured by giving independent sources of updates (for example different users in a

multi-terminal system) their own unique time stamps.

It seems that it is possible to extend NLO based on the ideas of Starlog to solve

the update problem, i.e, incorporating an explicit temporal dimension into NLO.

However, more work is needed substantially.

CHAPTER 9. CONCLUSION AND FURTHER WORK 187

9.2 Type and Label Variable in NLO Program

The theory developed in this thesis requires programs having no type and label

variables. This requirement restricts the expressive power of NLO. By allowing type

and label variables, all the built-in semantics of NLO are syntactically expressible.

The following rules exemplify this:

(1) P : type(L -* T) '= P : type(isa - {Q}), Q : type(L -+ T).

(2) 0 : Q = P : type(isa -+ {Q}), 0 : P.

(3) set(P) : type = P : type.

Here P, Q, L, T, 0 are all variables. The first and second rules are for the factual

attribute isa of types. The first one says that if P is a subtype of Q, then all

definitional properties of Q are also definitional properties of P. The second says if

P is a subtype of Q, then all objects of P are also objects of Q. The last rule says

that if P is a type, then .set(P) is also a type.

It seems possible that a theory of local stratification can be developed to deal

with these requirements, similar to the local stratification theory in [Prz88]. However,

unlike normal stratification, local stratification of a logic program cannot be statically

checked but must be dynamically checked. Further work is needed to explore such

semantics in NLO.

Bibliography

[ABW8S] K.R. Apt, H.A. Blair, and A. Walker. Towards a Theory of Declarative
Knowledge, chapter 2, pages 89-148. In Minker [Min88], 1988.

[AC085] A. Albano, L. Cardelli, and R. Orsini. Galileo: A Strongly-Typed,
Interactive Conceptual Language. ACM Trans. on Database Systems,
10(2):230-260, June 1985.

[AFOP88] A.Albano, F.Giannotti, R. Orsini, and D. Pedreschi. The Types System
of Galileo, chapter 8. Springer-Verlag, 1988.

[AG88] S. Abiteboul and S. Grumbach. COL: A Logic-Based Language for
Complex Objects. In Schmidt et al. [SCM88], pages 271-293.

[AH87] S. Abiteboul and R. Hull. IFO: A Formal Semantic Database Model.
ACM Trans. on Database Systems, 12(4):525-565, December 1987.

[AK89] S. Abiteboul and P.C. Kanellakis. Object Identity as a Query Language.
In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 159-
173, 1989.

[AKN86] H. Ait-Kaci and R. Nasr. LOGIN: A Logic Programming Language
with built-in Inheritance. J. Logic Programming, 3(3):198-215, October
1986.

[And91] T. Andrews. Programming with Vbase, chapter 9. In Gupta and
Horowitz [GH91], 1991.

[Bee89] C. Been. Formal models for object-oriented databases. In Kim et al.
[KNN89], pages 405-430.

[BJ89] G.B. Boolos and R.C. Jeffrey. Computability and Logic. Cambridge
University Press, 3 edition, 1989.

[BMS84] M.L. Brodie, J. Mylopoulos, and J.W. Schmidt, editors. On Conceptual
Modelling. Springer-Verlag, 1984.

[BNST91] C. Been, S. Naqvi, 0. Shmueli, and S. Tsur. Set Construction in
a Logic Database Language. J. Logic Programming, 10(3,4):181-232,
April/May 1991.

188

BIBLIOGRAPHY 189

[Boc86] J. Bocca. On the Evaluation Strategy of EDUCE. In Proc. ACM Syum.
on Principles of Database Systems, 1986.

[Bor88] A. Borgida. Class Hierarchies in Information Systems: Sets, Types or
Prototypes, chapter 10. Springer-Verlag, 1988.

[Bra86] Ivan Bratko. Prolog Programming For Artificial Intelligence. Addison-
Wesley, 1986.

[Bro84] M.L. Brodie. On the Development of Data Models, pages 19-48. In
Brodie et al. [BMS84], 1984.

[Car84] L. Cardelli. A semantics of multiple inheritance. In Proc. Intl. Symp. on
Semantics of Data Types, pages 51-67. Springer-Verlag Lecture Notes
in Computer Science 173, June 1984.

[CGT9O] S. Ceri, G. Gottlob, and T. Tanca. Logic Programming and Databases.
Springer-Verlag, 1990.

[CGW86] S. Ceri, G. Gottlob, and G. Wiederbold. Efficient Database Access
through Prolog. IEEE Trans. on Software Engineering, Feb 1986.

[Cle90] J. G. Cleary. Colliding Pucks Solved Using a Temporal Logic. In Proc.
Conf. on Distributed Simulation, San Diego, Jan 1990.

[Cod79] E.F. Codd. Extending the Database Relational Model to Capture More
Meaning. ACM Trans. on Database Systems, 4(4):297-434, December
1979.

[CW85] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction,
and Polymorphism. Computing Surveys, 17(4):471-522, Dec 1985.

[DKV88] S. Danforth, S. Khoshafian, and P. Valduriez. FAD - A Database Pro-
gramming Language. Technical report, MCC, 1988.

[GG83] D. Gabbay and F. Guenthner, editors. Handbook of Philosophical Logic,
volume 1. D. Reidel Publishing, 1983.

[GG84] M.R. Genesereth and M.L. Ginsberg. Logic Programming. Comm.
ACM, 28(9) :933-941, September 1984.

[GH91] R. Gupta and E. Horowitz, editors. Object-Oriented Databases with
Applications to Case, Networks and VLSI CAD. Prentice Hall, 1991.

BIBLIOGRAPHY 190

[GM92] J. Grant and J. Minker. The Impact of Logic Programming on
Databases. Comm. ACM, 35(3):67-81, March 1992.

[GMN84] H. Gallaire, J. Minker, and J.M. Nicolas. Logic and Databases: A
Deductive Approach. ACM Computing Surveys, 16(2):153-186, June
1984.

[Gol81] W.D. Goldfarb. The Undecidability of the Second-Order Unification
Problem. Theoretical Computer Science, 13:225-230, 1981.

[Hat82] W.S. Hatecher. The Logical Foundations of Mathematics. Pergamon
Press, 1982.

[HK87] R. Hull and R. King. Semantic Database Modeling: Survey, Applica-
tions, and Research issues. ACM Computing Surveys, 19(3):201-260,
September 1987.

[HM81] M. Hammer and D. McLeod. Database Description with SDM: A Se-
mantic Database Model. ACM Trans. Database Systems, 6(3):351-386,
September 1981.

[Hue73] R. Huel. The Undecidability of Unification in Third-Order Logic. In-
formation and Control, 22:257-267, 1973.

[KBC87] W. Kim, J. Banerjee, H.T. Chou, J.F. Garza, and D. Woelk. Composite
Object Support in an Object-Oriented Database System. In OOPSLA
'87 Proceedings, 1987.

[KL89] M. Kifer and G. Lausen. F-Logic: A Higher-Order Language for Reason-
ing about Objects, Inheritance, and Schema. In Proc. ACM SIGMOD
Intl. Conf. on Management of Data, pages 134-146, 1989.

[KLW9O] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-
Oriented and Frame-Based Languages. Technical Report 90/14, Dept
of CS, SUNY at Stony Brook, 1990.

[KN88] R. Krishnamurthy and S. Naqvi. Towards a Real Horn Clause Language.
In Proc. Intl. Conf. on Very Large Data Bases, pages 252-263, Los
Angles, USA, 1988.

[KNN89] W. Kim, J.M. Nicolas, and S. Nishio, editors. Deductive and Object-
Oriented Databases, Kyoto, Japan, December 1989. North-Holland.

BIBLIOGRAPHY 191

[Kup87] G.M. Kuper. Logic Programming with Sets. In Proc. ACM Syum. on
Principles of Database Systems, pages 11-20, 1987.

[KW89] M. Kifer and J. Wu. A Logic for Object-Oriented Logic Programming
(Maier's 0-logic Revisited). In Proc. ACM Syum. on Principles of
Database Systems, pages 379-393, 1989.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2
edition, 1987.

[LR89] C. Lecluse and P. Richard. The 02 Database Programming Language.
In Proc. Intl. Conf. on Very Large Data Bases, pages 411-422, Amster-
dam, The Netherlands, 1989.

[Mai86] D. Maier. A Logic for Objects. Technical Report CS/E-86-012, Oregon
Graduate Center, Beaverton, Oregon, 1986.

[Mai87] D. Maier. Why Database Languages are a Bad Idea. In Proc. Workshop
on Database Programming Languages, Roscoff, France, Sept 1987.

[MBW8O] J. Mylopoulos, P.A. Bernstein, and H.K.T. Wong. A Language Fa-
cility for Designing Database-Intensive Applications. ACM Trans. on
Database Systems, 5(2):185-207, June 1980.

[Min88] J. Minker, editor. Foundation of Deductive Databases and Logic Pro-
gramming. Morgan Kaufmann Publishers, 1988.

[MSOP86] D. Maier, J. Stein, A. Otis, and A. Purdy. Development of Object-
Oriented DBMS. In OOPSLA '86 Proceedings, pages 472-482. ACM
New York, 1986.

[NK88] S. Naqvi and R. Krishnamurthy. Database Updates in Logic Program-
ming. In Proc. ACM Syum. on Principles of Database Systems, pages
261-272, 1988.

[NTR87] L. Naish, L.A. Thom, and K. Ramamohanarao. Concurrent Database
Updates in Prolog. In Proc. Intl. Conf. on Logic Programming, pages
178-189, 1987.

[PM88] J. Peckham and F. Maryanski. Semantic Database Models. ACM Com-
puting Surveys, 20(3):153-189, September 1988.

[Prz88] T.C. Przmusinski. On the Declarative Semantics of Deductive Databases
and Logic Programs, chapter 5, pages 193-216. In Minker [Min88], 1988.

BIBLIOGRAPHY 192

[Rei84] R. Reiter. Towards a Logical Reconstruction of Relational Database
Theory, pages 191-233. In Brodie et al. [BMS84], 1984.

[SCM88] J.W. Schmidt, S. Ceri, and M. Missikoff, editors. Proceedings of Inter-
national Conference on Extending Database Technology, Venice, Italy,
March 1988. Springer-Verlag Lecture Notes in Computer Science 303.

[She88] J.C. Shepherdson. Negation in Logic Programming, chapter 1, pages
19-88. In Minker [Min88], 1988.

[Shi79] D.W. Shipman. The Functional Extending the Database Relational
Model to Capture More Meaning. ACM Trans. on Database Systems,
4(4):297-434, December 1979.

[SS77] J.M. Smith and D.C.P. Smith. Database Abstraction: Aggregation and
Generalization. ACM Trans. on Database Systems, 2(2):105-133, June
1977.

[SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[Su86] S.Y.W. Su. Modeling Integrated Manufacturing Data with SAM*.
IEEE Computer Society, 19(1):34-49, January 1986.

[TL86] D.0 Tsichritzis and F.H. Lochovsky. NU - Prolog Reference Manual.
Technical Report 86/10, Dept of CS, Univ. of Melbourne, 1986.

[TZ86] S. Tsur and C. Zaniolo. LDL: A Logic-Based Data Language. In Proc.
Intl. Conf. on Very Large Data Bases, pages 33-41, Kyoto, Japan, 1986.

[U1l88] J.D. Ullman. Principles of Database and Knowledge-Base Systems, vol-
ume 1. Computer Science Press, 1988.

[vBD83] J. van Benthem and K. Doets. Higher-Order Logic, pages 275-329.
Volume 1 of Gabbay and Guenthner [GG83], 1983.

[War82]. D.H.D. Warren. Higher-Order Extensions to Prolog: Are they Needed?
In J.E. Hayes, D. Michale, and Y-H. Pao, editors, Machine Intelligence
10, pages 441-454. Ellis Horwood with John Willey and Sons, 1982.

[ZAKB+85] C. Zaniolo, H. Act-Kaci, H. Beech, D. Cammarata, and L. Kerschberg.
Object-Oriented Database Systems and Knowledge Systems. Technical
Report DB-038-85, MCC, 1985.

BIBLIOGRAPHY 193

[Za188] Edward N. Zalta, editor. Intensional Logic and The Metaphysics of
Intentionality. The MIT Press, 1988.

[Zan89] Carlo Zaniolo. Object identity and inheritance in deductive database
—an evolutionary approach. In Kim et al. [KNN89], pages 7-21.

