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ABSTRACT 

In almost all natural gas distribution systems and gas meter— 

ing stations there exists a problem of acoustic pulsation. As a 

result, excessive vibrations of the piping as well as amplification 

of the pressure sensed by steady—flow devices may occur. 

In this work, a typical, bridge—shaped gas metering station 

was considered. It was demonstrated how a proper choice of dif— 

ferent parameters could influence control of pulsation. These were 

parameters associated with the arrangement and geometry of the 

bridge network, flow conditions, medium composition as well as the 

measuring device's geometry. 

A universal mathematical model of a complex piping network was 

created to predict pressures and volume velocities at any point of 

a bridge network. The network had an arbitrary number of bridges 

and orifice plates, any combination of open or closed valves, side 

branches, and contained a medium whose composition, temperature and 

pressure could be varied. Two physical models of one— and two— 

bridge networks, without orifice plates and containing air as a 

medium, were utilized to verify the mathematical model. The 

results of this verification were .excellent which proved the model 

to be a useful tool in gas metering station simulation. 

A mathematical model of an assembly of a flow measuring device 

was developed. It was used to assess the behaviour of this coupled 

acoustic—mechanical system. Three pressure measuring devices: The 
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Barton, Gould and Rosemount differential gauges have been tested 

experimentally, and good agreement between theoretical and experi— 

mental results was observed. As a result, the model was used to 

find methods to improve measuring devices' characteristics and to 

make these devices best suited for a particular gas metering sta— 

tion. 
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Description 

Pulsation is an inherent phenomenon in almost all natural gas 

distribution and gas metering stations. The pulsation is due to 

acoustic energy which is generated by active elements, (as centri-

fugal or reciprocating compressors) and then, transmitted or 

reflected by reactive, nonabsorbing elements. The piston-crank--

valve mechanism of the reciprocating compressor generates a compo-

site wave which is made up of several components that are muftiples 

of the rotational frequency. The composite wave propagates down-

stream and upstream in the piping network at the speed of sound, 

and interacts with the piping. As a result, various undesirable 

events may be observed: 

a) Longitudinal and lateral vibrations of the piping 'elements 

which can lead to fatigue failure in the piping network when a 

piping system is not rigidly clamped (flexible supports). 

b) Acoustic resonances in the piping system causing local pres-

sure build-ups. 

c) Local acoustic resonances in the meter transmission lines. 

These resonances amplify the dynamic pressure sensed by the 

differential recorder. This often results in significant 

.monetary losses due to erroneous readings. 
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d) Impaired compressor performance which can lead to significant 

power losses. 

Therefore, it is necessary to control the amplitude of pulsation, 

making it as low as possible (6,23,24,49,84]. 

In general, there are three approaches in dealing with gas 

pulsation problems. The first is a conventional technique of 

building additional supports at critical piping locations to 

prevent excessive vibration. A second approach is to attenuate the 

fluid pressure pulsation by using acoustic filters. This can lower 

the pulsation level but usually is not completely effective. A 

third and most advanced, approach is to reduce the pulsation level 

by changing the arrangement and geometry of the piping network. 

Applied properly, this approach is able to counteract most 

phenomena associated with pulsation. It requires, however, a com— 

plete understanding of the acoustic characteristics of the entire 

piping network. 

In general, the complete elimination of pulsations in a com— 

plex network (see Figure 1.1 in which a typical bridge—shaped gas 

metering station is depicted) is impossible, even with careful 

application of the available attenuation methods described above. 

Therefore, the following management of systems containing pulsating 

gas is proposed: 

a) Select a system geometry to control pulsation, giving special 

attention to orifice plate locations. 
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b) Employ a properly designed differential pressure sensing-

recording device [51,931. Any of its natural frequencies 

should be out of the region of probable exciting frequencies, 

otherwise, the readings may be severely affected even if the 

pulsation at the orifice plate is very low. Williams [921 

characterizes the situation as follows: 

"...the orifice plate or nozzle flowmeter does not of 
necessity follow the steady-flow square law when the 
flow being metered is pulsating in character, manome-
ter errors can, nevertheless, greatly exceed all er-
rors associated with the primary element". 

Kulik affirms this in his paper (42]: 

"The errors contributed by the sensing lines can 
greatly exaggerate those at the orifice plate. Sensing 
line length, diameter and symmetry can affect signal 
resonance and attenuation at the output device". 

c) Identify the pulsation magnitudes at orifice plate tappings 

using control equipment which reads so-called "square root 

error". This error results from the inexact determination of 

the average flow from the instantaneous differential pressures 

across an orifice plate. If the error is 1% or less the pul-

sations can be treated as moderate [84]. 

The first two procedures give the possibility to handle the 

problem of pulsation most effectively because they may be imple-

inented at the design stage where any changes are most easily exe-

cutable. A designer may therefore choose proper dimensions with 

confidence that any pulsation in the system will have a minimal 

level and future structural changes will not be necessary. 



1) Suction Filter and Somber 
2) Suction Surge Drum 
3) Compressor 
4) Discharge Surge Drum and Pulsation Dapper 
5) Orifice Plate 
6) Ball Valve 
7) Non-Reflecting Pipeline 

Figure 1.1 , Typical Bridge—Shaped Gas Metering Station 
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1.2 Review of Previous Studies 

The basic element of most acoustic systems is a constant-

diameter àircular pipe. Different connection arrangeme'nts and 

changes in the pipe diameters give more complex but still rela-

tively simple components such as: sudden expansion and contraction 

chambers, extended outlets. and inlets, side-branch resonators etc. 

These components are usually built into a more complicated system 

whose role is to fulfill certain functions under imposed restric-

tions. These functions are for example, efficient removal of 

exhaust gases from an engine with simultaneous noise control, tran-

sportation of gas for long distances with high efficiency of the 

pipeline and high accuracy pressure transmission to transducers. 

The evaluation and understanding of any complex acoustic sys-

tem requires, as a base, knowledge of the acoustic properties of 

the system's components. They are reviewed first, in this chapter. 

Both empirical and analytical methods for their determination are 

discussed. 

Next, the factors influencing pulsating pressure measurement 

are reviewed. There is a great variety of work related to this 

subject, and in most cases, the authors are concerned with one or a 

few specific aspects. 

Finally, studies on pulsation in complexpiping networks are 

reviewed. Representative works are presented to outline the most 

important'approaches used in the modelling of this type of network. 
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1.2.1 Impedance and Reflection Factor 

In many practical cases, the acoustic impedance and the 

reflection factor can not be determined accurately by analytical 

means [791. Owing to complex geometry, the presence of mean flow, 

or for other reasons, experimental techniques must be used. The 

non-dimensional impedance (Z) and reflection factor (R) are 

directly associated with each other [891 by the following relation-

ship: Z  = (1+R)/(1-R). Either of them is sufficient to evaluate 

several other acoustic properties (absorption and transmission 

coefficients, transmission loss etc.). The standard relationships 

can be found. in numerous works and textbooks [5,11,40,41,55,79,89]. 

The impedance can be regarded as a linear function that relates the 

dynamic pressure and voliunevelocity at any point of an acoustic 

element. Furthermore, the impedance is dependent on the downstream 

geometry only. 

Several techniques have been used to experimentally determine. 

the normal incidence acoustic impedance. Some, of these techniques 

are described below along with a discussion of their major advan-

tages and disadvantages. The well known Standing-Wave-Ratio MR) 

method [21 requires a travelling microphone to determine the loca-

tions and magnitudes of maxima and minima of the standing wave pat-

tern in a tube terminated by the unknown system. Discrete fre-

quency excitation has to be used, and the tube is recommended to be 

at least one wavelength long. Due to these prerequisites the 

method is time consuming and requires the use of an additional 
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correction factor to compensate for losses. Gatley and Cohen [20] 

considered using pulse or transient excitations of the system with 

wall-mounted microphones. However, the required long tube and 

problems with separation in time of the incident and reflected 

waves convinced them that the method was laborious and incon-

venient. Seybert and Ross [79] employed a two-microphone random 

excitation method to measure impedance of a uniform pipe with no-

flow and mean flow conditions. Their equations were derived in 

terms of auto and cross spectra of microphone signals. No-flow 

experiments agreed very well with the results obtained from 

steady-state methods. Kathuriya and Munjal [37] introduced a 

method for determining the acoustic impedance of a black box at low 

frequencies. The sound pressures at three different locations were 

required to evaluate the reflection coefficient. Subsequently, the 

impedance of the termination could be obtained. The same authors 

also presented another work [39] in which they evaluated the acous-

tic impedance of a black box by measuring pressure at fixed posi-

tions. In this study the attenuation factor of the tube was 

required to describe the impedance. Scott [76] proved that the tube 

attenuation can not be neglected when precise measurements are to 

be made at lower frequencies. 

Singh and Katra [82] developed an acoustic impulse method to 

determine the acoustic properties of a system. They used a wall-

mounted microphone located midway along a tube connecting an acous-

tic driver to the system being tested. The system was excited by a 
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short duration rectangular pulse supplied to the driver. This 

arrangement allowed incident and reflected pulses to be separated. 

Lambert and Stainbrueck [44] determined experimentally both the 

magnitude and phase of the acoustic pressure reflection coefficient 

at a sudden area expansion in a flowduct with the presence of flow 

(low Mach numbers). They used the impedance tube method with fixed 

microphone positions as described in [39] by Kathuriya and Munjal. 

The authors expressed the acoustic reflection coefficient as a 

ratio of reflected to incident pressure amplitudes. The mean 

square pressure was sampled at various discrete points by flushed— 

mounted microphones. Chung and Blaser [11] developed a method 

employing a random signal as an excitation input. Using two micro— 

phones, they measured the pressure at two locations along the tube 

wall. They determined reflection factors employing a transfer 

function between the two pressures; they did not account for 

attenuation between two microphone ports. Their method appeared to 

be simpler than that of Seybert and Ross [79]. No—flow results 

presented in the study agreed well with theory. To and Doige [88] 

presented more practical expressions for determining the acoustic 

impedance and reflection factor. These expressions worked for both 

random and deterministic inputs. Both were functions of the pres— 

sure ratio measured between two microphone locations and the four— 

pole matrix parameters (known for the considered system). Tube 

attenuation was included, no mean flow was present in the tube, but 

the formulation was adaptable for the mean—flow case. 
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The reflection of sound waves due to a change in the cross-

section of a circular pipe was first described by Miles [52]. 

Based on the assumption of plane wave propagation in the pipe, he 

determined the pressure distribution in the neighbourhood of the 

discontinuity. This was used to calculate the reflection coeffi-

cient. Another important work dealing with the same problem 

appeared in the early fifty's. The author, Karal [35], determined 

theoretically the discontinuity impedance (called also inductance) 

as a function of the tube radius ratio. He treated this impedance 

as a correction term to be added to the acoustical impedance of the 

tube. Further works, analytically treating the acoustic proper-

ties, have appeared in the last decade. Levine and Schwinger [461 

determined the reflection factor for the case when the Mach number 

is zero. The expressions they derived describing the dependence of 

reflection factor on the wave number were tedious to evaluate, but 

a close empirical fit to their results can be found in [141. More 

recently, Munt [571 predicted the value of the reflection factor 

for subsonic flow using a theoretical model in which the jet of 

medium flows out of a pipe. He showed that as the flow velocity 

increases the magnitude of the reflection factor also increases. 

He did not use the end correction factors in his calculations. 

Ronnenberger [71] investigated the behaviour of sudden area expan-

sions with an anechoic downstream termination. He assumed that the 

flow in the vicinity of discontinuity was quasi-stationary and 

one-dimensional. Ronnenberger presented both predicted and meas-
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ured values of the acoustic pressure reflection coefficient for 

upstream mean flow Mach numbers up to 0.6. The agreement was poor 

except for low Mach numbers. Alfrodson and Davies (21 showed pred-

ictions and measurements of reflection coefficients for upstream 

low Mach numbers in the inlets and outlets to exhaust silencer 

chambers. The results were predicted under the same flow assump-

tions as described in [711. The predicted and measured values 

agreed quite well under tested flow conditions up to M = 0.15. 

However, it is not known if such an agreement exists for higher 

Mach numbers. 

1.2.2 Transmission Lines - Factors Influencing Pressure Measurement 

A differential flow-measuring device generally can be divided 

into two distinct parts: the primary meter such as an orifice 

plate, nozzle, etc., producing a signal which is a function of the 

flow rate and other variables of the flow; and the secondary system 

translating the signal into a reading. The secondary system nor-

mally consists of the transmission lines from the primary system to 

the recording element, and the recording element itself. 

Several authors (9,17,27,28,36,50,58,87] have investigated the 

response of transmission lines to oscillatory inputs. This kind of 

input was meant to simulate pressure pulsation. Iberall's [271 and 

Nichols's [58] investigations are probably the best known and their 

results have been verified theoretically and experimentally 

[34,36,70]. 
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Iberall described the attenuation and lag of a sinusoidal 

pressure signal applied to the end of a tube which terminated -in a 

volume. His analysis was based on the assumption of incompressible 

viscous-fluid flow. The solution was then modified to account for 

compressible flow, finite amplitudes, end effects, fluid accelera-

tion and heat transfer into the tube. The foregoing modifications 

appeared to be important factors influencing behaviour of transmis-

sion lines. Iberall also pointed out the importance of the line 

geometry and the sensor volume. He also emphasized the influence 

of the ratio between the instrument and line volume on frequency 

response. 

Nichols (58] discussed the subject of small signal transmis-

sion through pneumatic lines. He derived equations which governed 

transmission line performance. These equations were written in 

terms of series impedances and admittances per unit length. The 

author included in his mathematical description the behaviour of 

the medium (air) which was assumed to be governed by isothermal 

conditions at low frequencies and adiabatic conditions at high fre-

quencies. He considered the behaviour of the fluid to be a 

decisive factor influencing the system response. Therefore, he 

defined a characteristic frequency separating the transmission 

problem into low and high frequency cases. His theory was tested 

by Rolunan and Grogan [70] and was found to give accurate results. 

Brown (7] in a concurrent but independent investigation, described 

the equations for small signal inputs governing the behaviour of 
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fluid enclosed in a semi-infinite line. For sinusoidal excitation 

imposed on the system, the predictions were identical to those of 

Iberall [27] and Nicols [58]. The factors specified by Iberall 

[271 were again found to play an important role in the description 

of the transmission lines. 

Karam and Franke [361 used an electro-pneumatic analogy to 

find gain curves for different tubing lengths. They employed a 

small periodic input as an excitation to their system. The results 

obtained agreed very well with results predicted by Nichols's 

method [58]. Franke et al. [191, and Prasad and Crocker [64] 

derived a calculation procedure for muffler system that included 

the effect of a linear temperature gradient. They compared their 

results with experiments and obtained good agreement. Some 

researchers [4,81] have developed approximate formulas for viscous 

flow in manometer tubes connected in series. Generally, the 

authors' approach assumed an instantly established flow regime. 

The volume of the entire tubing was taken into account and variable 

sensor volume was included. Benedict [41 has proved the signifi-

cance of such an approach, particularly when the time lag must be 

predicted. 

Bell et al. (3] conducted a study of pneumatic pulse transmis-

sion in uniform area circular tubes. They provided signal attenua-

tion and distortion information for the design of pneumatic sys-

tems. They reported that bends and fittings in a transmission line 

had no noticeable effect on the pulse shape if there was little 
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change in the cross—sectional area. The pulse attenuation per unit 

length depended only on its input level, time history and tube 

diameter but did not depend on the pulse length. 

Hord [26] stated that although some data for estimating pres— 

sure losses in- fittings, bands etc. is available [62], these irre— 

gularities can be considered to have very little effect, particu— 

larly for low frequency ranges. This was confirmed by Botros et 

al. [6] and Lung [47,49]. Further, fiord added that most of the 

problems associated with pressure transmission lines occur with 

laminar flow (usually long, small—diameter lines) and not with tur— 

bulent flow (short, large—diameter lines). As a result there was 

little need for including turbulent flow into the analyses. 

More recent works assume different flow regimes. ' Brown (9], 

and Obmi and Usui (60] assumed unsteady turbulent flow through the 

line" and proposed to cover the whole frequency domain using low— 

frequency and high frequency models developed by Nichols [58]. 

Seimer et al. [77] took an even more complex approach and described 

transitional flow (large—amplitude pulsating laminar / turbulent / 

laminar flow) mathematically. However this method is difficult to 

assess because of the lack of experimental data. 
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1.2.3 Complex System Analyses  

The main purpose of all studies dealing with the pulsation 

problem in a complex system is to predict pressure and velocity 

distributions throughout the system for any given input. This has 

to be done for a particular character of pulsating flow. A wide 

range of flow regimes have been investigated theoretically and 

empirically (9,47,48,49,59,72,73,74,77,85,86]. The key to a 

theoretical solution of the problem was to properly model the sys-

tem by utilizing adequate assumptions and techniques. The most 

frequent approach was to linearize the system and assume steady 

flow conditions [6,47,48,49,85,86]. More recently, some efforts 

have been made to obtain the solution of the problem when unsteady 

nonlinear flow conditions are present [31,50]. 

Sakai and Saeki (72] developed a method to calculate the 

natural frequency of a complex piping system connected to a 

reciprocating compressor. They assumed no mean flow in the system, 

and only very small sinusoidal pressure fluctuations. The fluid in 

the tubing was compressible with constant density. The authors 

divided the system into basic elements with prescribed end condi-

tions. For example, when a tubing element incorporated a valve or 

a piston, they assumed a closed end for this element. On the other 

hand, when a large volume was connected to its side, an open end 

was assumed. The authors derived the transmission matrices for 

each element, solving differential equations for one-dimensional 

fluid flow. Afterwards, they obtained the overall transfer matrix 
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by simple cascade multiplication. Using floltzer's method, and tak— 

ing into account end conditions, they were able to calculate the 

na-tural frequency for the entire system. Their calculated results 

agreed well with preliminary experimental- data. Sakai and 

Mitsuiiashi [73] collected natural frequency data for piping system 

elements with prescribed boundary conditions. Then they combined 

these elements together and looked for the natural frequency of the 

new structure. The authors selected elements and their arrangement 

to reproduce the complex piping network considered in the work of 

Sakai and Saeki (72]. They were then able to compare a resonable 

number of collected empirical data with the data previously 

predicted. In general, they obtained good agreement between calcu— 

lated and measured natural frequencies. In 

and Mitsuhashi (74] modified the previous 

frequency calculation. The authors did not 

their next work, Sakai 

method (73] of natural 

consider viscous damp— 

ing, so their predicted pressures did not coincide well with their 

experimental data in the vicinity of the resonant frequency. 

Still, they found this result satisfactory, as it gave them the 

values of the frequencies associated with higher pressures. 

To and Doige [88] developed an experimental method which could 

be used to evaluate matrix parameters of any acoustic component or 

system. This method can be applied to both known and unknown 

acoustic elements or complex systems. For an unknown system, one 

has to collect experimental pressure data to derive the four—pole 

matrix parameters. The authors derived equations which could be 
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used in connection with random, transient or steady state excita-

tion. The authors gave a few examples for the evaluation of matrix 

parameters for some chosen acoustic components. They emphasized 

the advantages of the transient testing technique: it can be com-

pleted in a short time, because few averages are required, there 

are no leakage errors since a rectangular time window can be used, 

and it can be employed for any acoustic system, including all com-

plicated wave phenomena in the system (higher order modes). Lung 

in his work (47) extended this technique to cases with flow for low 

Mach numbers. He used several models to predict the four-pole 

matrix parameters. He verified these models with experimental 

tests. Botros et al. (6] pointed out how selection of the element 

lengths in a particular complex network affects the pressure pulsa-

tion levels at the desired locations. These pulsations can often 

be attenuated to low enough levels so that the use of acoustic 

filters becomes unnecessary. Using four-pole parameter matrix 

principles, the authors employed two different techniques to 

describe the system: the matrix chain multiplication methods, and 

the linear equation solver by determinants. They used an overall 

transfer matrix to calculate instantaneous pressure amplitudes at 

the characteristic points of a sample network. Then, the authors 

verified experimentally the calculated values by performing tests 

on a smaller scale laboratory model. Subsequently, the method was 

utilized for actual field conditions. Small geometrical changes 

made for the Monchy meter station of the Alaska pipeline were suf-
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ficient to secure relatively low pulsation levels. In section 

three of their study [49], Lung and Doige addressed briefly the 

problem of pressure pulsation in a complex piping network. The 

authors created a computer program to simulate a sample piping net-

work. Meanwhile, in the laboratory, they tested a model of such a 

system. They predicted acoustic characteristics for this model by 

using the transient testing technique. The authors obtained excel-

lent agreement between predicted and empirical data. 

1.3 Thesis Relevance 

The review of previous works reveals that a complete and 

universal method to analyze complex networks does not exist. A 

number of questions overlooked or treated superficially have been 

addressed in this work. They include: 

a) The investigation of systems having more than one orifice 

plate. 

b) The simultaneous prediction of volume velocity pulsations and 

pressure pulsations at orifice plate locations. 

c) The influence of complexity- of the network on its pulsation 

behaviour. 

d) The influence of any combination of open or closed valves on 

pressure and volume velocity pulsations at orifice plate loca-

tions. 
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e) The implications of the presence of flanged end pipes which 

can create a side-branch resonator effect. 

f) The treatment of a pressure sensing-recording device as a cou-

pled acoustic-mechanic system instead of purely acoustic sys-

tem. 

g) The investigation of the performance of modern measuring dev-

ices like the Gould or Rosemount differential gauges. 

h) The inclusion of non-ideal gas for the calculation of density 

and speed of sound and implications of changes in composition, 

pressure and temperature of medium. 

The purpose of this work was to assess the behaviour of a 

bridge-shaped gas metering station as a whole that is to include 

not only the network of transporting pipes but also the medium 

enclosed in them and the flow measuring devices. The ultimate 

objective was to suggest the methods to control pulsations in the 

system. 

A universal mathematical model of a complex network was 

created to predict values of pressure and volume velocities at any 

point of a bridge network. This model was subsequently implemented 

in the form of a computer program. The network may, have an arbi-

trary number of bridges and orifice plates, any combination of open 

or closed valves , side branches, and contains a medium whose com-

position, temperature and pressure can be varied. Two physical 
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models of one— and two—bridge networks, without orifice plates and 

containing air as a medium, were used to verify the mathematical 

model. 

A mathematical model of an assembly of a pressure sensing— 

recording device and trahsmission lines was also developed. Its 

purpose was to predict the behaviour of this coupled acoustic— 

mechanical system. The Gould, Rosemount and Barton differential 

gauges have been tested experimentally and the data was used both 

to evaluate their performance and to verify the mathematical model. 

In conclusion, a procedure was proposed to control the perfor— 

mance of a flow measuring device incorporated in a specific bridge 

network. The control can be realized by means of the network 

geometry, flow or medium changes as well as by rearranging the 

measuring device. 
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CHAPTER 2 

DETERMINATION OF DENSITY AND SPEED OF SOUND FOR MIXTURES OF TWO OR 

MORE GASES IN MODERATE PRESSURE AND TEMPERATURE RANGE 

There are two thermodynamic properties, density and speed of 

sound, which play a decisive role in a prediction of pressure and 

volume velocity distributions throughout an acoustic system. The 

speed of sound determines- the wave length which enables one to 

obtain an acoustical length of the system. Consequently, the pres— 

sure build—ups and resonances in the system are obtainable. On the 

other hand, the medium density describes the inertia of the medium, 

a property which produces wave motion and permits one element of 

the medium to transfer momentum to adjacent elements, and, conse— 

quntly, influences magnitudes of the peaks,. Therefore, the pred— 

iction of these two thermodynamic properties is essential when one 

wants to analyze piping systems in acoustic terms. 

The gas and oil industry deals with an ever increasing number 

of chemical compounds. Experimental evaluation of accurate 

pressure—volume—temperature data and related thermodynamic proper— 

ties, such as density - and speed of sound, for these substances is 

expensive, time consuming and not always convenient. It is there— 

fore desirable to determine such information analytically. 

In this study an equation of state for gas mixtures has been 

developed on the basis of the virial equation of state. The 
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compressibility factor, which is a function of temperature and 

pressure and is different for each substance included in the mix-

ture, was evaluated by using the forces of repulsion and attraction 

between molecules. This work is limited to non-polar gases with 

sphericalized molecules and to mixtures of such gases. Accord-

ingly, the Lennard-Jones (6-12) potential function model was 

assumed to describe most accurately the molecular interaction. 

Mixtures were assumed to be described by a hypothetical pure gas 

with intermolecular force constants which were average representa-

tions of the constants related to the mixture's species. Two types 

of mixing rules were implemented (22,61] to calculate the force 

constants' values. Three hybrid virial equations based on the 

Lennard-Jones (6-12) potential function model and the hard sphere 

model were developed. Different combinations of the hybrid virial 

equations and mixing rules resulted in five distinct methods by 

which PVT relations were immediately determinable. Instead of 

using two or three virial coefficients, which is generally done 

(45,61,75], five virial coefficients were used. As a result, the 

well known virial equation of state gave much better results and 

could be applied to wider ranges of pressure and temperature. 

All the required formulae used to calculate parameters associ-

ated with the mixtures were tested for three pure gases: argon, 

carbon dioxide and nitrogen. The ranges of temperature and pres-

0 sure considered in this work, are 243.15 to 318.15 K and 101.325 

to 10132.500 kPa respectively. These are commonly encountered 
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conditions in gas networks. 

2.1 Theoretical Background 

An empirical equation of state with a sound theoretical basis 

is •the virial equation of state [22,25,80]. It gives good agree-

ment with experimental data for pure gases at low and moderate den-

sities. Of particular importance to this work is the possibility 

to extend the virial equation to mixtures. The virial equation of 

state can be written as a power series in the inverse volume: 

IN = i + B (T) + C (T) + D LTI B (T) 
RT V v v'3 • 

(2.1) 

This equation is valid when the series converges; the condition is 

satisfied for low and moderate densities. B (T), C (T), ... are 

called the second, third etc. virial coefficients. They are func-

tions of temperature, and represent the deviations from ideal 

-behaviour when collisions involving the molecules become unimpor-

tant. For a highly dilute gas, the virial equation reduces to the 

well known ideal gas law (pV'/RT = 1). At low densities the second 

virial coefficient adequately describes the deviations; at higher 

densities more coefficients must be used. The virial coefficients 

can be calculated by the methods of statistical mechanics, using 

assumed intermolecular potential energy functions. 



23 

The simplest potential function, which allows one to obtain 

the virial coefficients in analytical form, is a function 

represented by the rigid sphere model[22,25]. The virial coeffi— 

cients for this model are temperature—independent and all positive. 

The compressibility factor Z is therefore greater than unity and is 

a function of the density only. The rigid sphere model gives rela— 

tively good results only at very high temperatures, since in this 

case the attractions between the molecules are unimportant. The 

virial coefficients are calculated from the following expressions: 

2 3 
B =?NoH=bfl 

,,' 52 
81'H 

D = 0.2869b 

E'-= 0.11514 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where N is the Avogadro's number, and or is the diameter of the 

hard sphere molecule. 

The best known realistic potential function, for nonpolar 

molecules is the Lennard—Jones (6-12) potential: 

(r) = 4e[ ()12....(g)6J (2.6) 
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where the parameters a and a are the so-called "force constants". 

They are characteristic constants of the chemical species of the 

colliding molecules. a represents the low velocity collision diam-

eter. a is the maximum energy of attraction or depth of the poten-

tial well which occurs at a separation distance given by:. r 2116 7. 

This model provides good estimates of the second and third virial 

coefficients. The remaining coefficients have not been verified 

experimentally. The expressions for the second and third coeffi-

cients, in their dimensionless form, are as follows: 

** 2 
B (T ) = B(T)/n Na3 = B(T)/b (2.7) 

C*(T*) = C(T)Ib2 (2.8) 

Their temperature derivatives are: 

= 

C * (T*) T* (dC*IdT*n) 

where 

T* = = is dimensionless (reduced) temperature, 

k 

(2.9) 

(2.10) 

k is the Boltzmann's constant, and 

0 is the potential well depth temperature. 

Figure 2.1 shows the potential functions for the hard sphere and 
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the Lennard—Jones models. 

C 
*  

a) Hard Sphere Model 1) Lennard—Jones Model 

Figure 2.1 Potential Energy Functions 

r 

Groves [22] proposed a hybrid virial equation of state in 

which the second and third virial coefficients were evaluated using 

Lennard—Jones (6-12) potential and the fourth and fifth virial 

coefficients were taken from the hard molecule assumption. This 

equation has the following form: 
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* * 2 0.2869b3 0.1928b 
* *b C(T)b  

pV = Z = 1 + B (T ),+ , + H +   
VV 

* *  = 1 + B (T )o ' + C* (T * )o '2 + 0.2869 + 0.1928(4 

(2.11) 

where o is dimensionless density for Leunard—Jones potential, and 

is a dimensionless density for hard molecules, 

b 
=--= bp 
V 

(ii = = bp 

(2.12) 

(2.13) 

Hirshfelder (25] proposed a different form of a hybrid virial- equa— 

tion to eliminate dependency on shape introduced by the third 

virial coefficient. He utilized the Lennard—Jones potential to 

evaluate only the second virial coefficient. His hybrid virial 

equation has the following form: 

IN 1 + B* (T* )w + 0.625cn + 0.2869w + 0.1928(4 (2.14) RT = = 

A third hybrid virial equation was proposed [22], (25] by substi— 

tuting 0.115 instead of 0.1928 for the fourth virial coefficient. 
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Q = 1 L. * * 
+ B (T ) + 0.625w + O.2869to + O.1154 RT  

(2.15) 

Groves [22] defined the following relationship between parameters 

associated with Lennard—Jones and the hard sphere model as follows: 

a11 I 

1/2 

2  

1 + (1+T *)l 2 

1/6 

2  
Cr 

1 + (1+T )112]  * 

(2.16) 

(2.17) 

Since this work dealt with binary and multicomponent mixtures, 

three hybrid virial equations' (2.6), (2.9), and (2.10) were then 

expanded over a gaseous mixture. It was assumed that the mixture 

of gases had the same thermodynamic properties as some hypothetical 

gas of only one component. For example, the force constants of the 

mixture were the same as the force constants of this hypothetical 

gas. Hirshfelder, et al.(251 proposed the following expressions 

for the force constants of the hypothetical gas: 

i=n j=n 
a = y.y.a.. 
M i=1 j=1 

(2.18) 
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i=n j=n 
yiy.eij 

i=1 j=1 
(2.19) 

where n is the number of species in the mixtures, subscripts i and 

j denote the components of the mixture, 

1/2 
0. = (0.0.) 
lj 1 3 

(2.20) 

(2.21) 

0thmer and Chen (611 gave a different method to calculate the force 

constants: 

1i=I 
1n M j=n j=1 

em = 

1/3 

i=n j=n 
- y.y.a. .0.. 

1 3 13 13 

3 

where values of the factor q, evaluated empirically are: 

(2.22) 

(2.23) 

q = l.6,if W > 1.64 (2.24) 
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q = 0.15,if W < 0.20 (2.25) 

q = 0.15 + 0.025(W—O.2) + 0.563(W-0.2) 2 l-0.089(W-0.2) 3 

+ 0.124(W-0.2) 4, 

if 0. j W .≤. 1.64 

where 

2.2. Procedure of Calculations 

(2.26) 

(2.27) 

The'computation of the desired thermodynamic properties were 

done using a computer. SI units are used throughout.- The stepwise 

procedure used for computation is outlined below. 

1. The force constants (a'., 0i ), ,specific heats at constant pres— 

sure (op.), critical temperatures (T), and critical pres— 

sures (P ) for the species under consideration were taken 

1 

from tables [25,30,78,97]. 

2. The specific heat constants at constant volume (cv.) were com— 

puted (see Appendix A). 

3. The force constants for mixtures (am), °M were evaluated using 

equations (2.18), (2.19), (2.14) and (2.23). 
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4. The reduced temperature (T*) was calculated, and the 

corresponding second and third virial coefficients as well as 

their temperature derivatives were taken from the tables [251. 

5. The density (p) was obtained by solving the three different 

hybrid virial equations (2.11), (2.14), and (2.15), in the 

required temperature and pressure range. 

6. The compressibility factors Z for a given 

obtainable from the equations of state. 

P was readily 

7. The speed of sound (c)in the mixtures concerned was calculated 

from the compressibility factors and the thermodynamic formu— 

lae given in Appendix A. 

2.3. Results and Conclusions  

The mixing rule given by (2.18) 'and (2.19) was applied to the 

virial equations given by (2.11) and (2.14). The other mixing 

rule (2.22) and (2.23) was applied to equations (2.11), (2.14) and 

(2.15). This resulted in five distinct methods to calculate the 

density, compressibility factor and, consequently, the speed of 

sound. Before the parameters associated with the mixtures were 

evaluated, all the required formulae were tested for pure gases 

(argon, carbon dioxide and nitrogen). More than two hundred and 

fifty experimental values of the densities, speeds of sound and 

compressibility factors were collected [45,61,65,66,67,68,80,97]. 

This data represents twenty—nine binary mixtures, one four com— 
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ponent mixture and three pure gases. The average deviation of the 

values calculated with these five methods from the experimental 

data was taken as a measure of the effectivness of each method. 

Using this criterion, the method based on the equations (2.14), 

(2.22) and (2.23) was classified as most accurate. This method 

gave an average deviation from observed values of the compressibil-

ity factors of 2.34%, that of densities for pure gases of 1.5% and 

that of speeds of sound for air and the pure gases of 1.27% (see 

Tables 1, 2, 3, 4 and Figures 2.2 to 2.7). The maximum deviations 

of compressibility factors, densities and speeds of sound were 

17.42%, 3.46% and 6.66% respectively (see Tables 1, 2, 3, 4). The 

deviations may be actually lower, because the accuracy of the. 

experimental data determination varied from source to source. 

The hybrid virial equation has a significant advantage over 

the virial equation because it takes into account five virial coef-

ficients, instead of three. It can handle pressure and temperature 

data in a very wide range with relatively little error. The error 

was probably introduced by a and 0 whose values are moon-

sistent in the literature. 
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Table 2.1 Calculated Compressibility Factors and Their Absolute 

Deviations from Experimental Data - 

System 
CH  

-CO2 

CH  

-C2116 

CR4 

-C3R8 

CH  

-nC4R10 

No. of 
Experimental 24 16 4 10 
Points 

Temp. (°] 310.93 310.93 310.93 310.93 

Pressure 1379 1723 3448 690 
[kPa] - 8618 - 6895 - 8247 - 8618 

Mole Fraction 0.2035 0.3900 0.5209 0.0175 
of First Comp. - 0.8469 - 0.9200 - 0.6779 - 0.8473 

METHOD 1 
Abs. Max 21.71 14.72 19.47 25.71 
Dev.[%] Min 2.45 5.43 12.35 13.97 

METHOD 2 
Abs. Max 12.35 13.21 20.03 17.41 
Dev.[%] Min 2.61 5.32 12.53 9.47 

METHOD 3 
Abs. Max 9.81 9.57 4.94 8.62 
Dev.[%] Min 1.65 4.13 2.03 5.47 

METHOD 4 
Abs. Max 8.11 8.68 3.35 7.06 

Min 1.51 3.99 2.29 2.79 

METHOD 5 
Abs. Max 7.52 8.63 3.39 7.05 
Dev.[%] Min 1.46 3.99 2.24 4.94 
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Table 2.1 (continued) 

System 
CH  

-nC5L 2 

C 2 H 6 

-CO2 

N2 

-C2116 

CO2 

-nC3!!8 

No. of 
Experimental 2 30 6 1 
Points 

Temp. (°K] 310.93 310.93 310.93 277.59 

Pressure 1379 1379 2633 1379 
[kPa] - 5516 - 7585 - 7719 - 1379 

Mole Fraction 0.8940 0.1777 0.7318 0.6036 
of First Comp. - 0.9460 - 0.8280 - 0.7318 - 0.6036 

METHOD 1 
Abs. Max 3.30 12.99 2.38 0.83 
Dev.[%] Min 2.10 3.60 1.81 0.83 

METHOD 2 
Abs. Max 3.77 26.65 3.20 0.95 
Dev.[%] Min 2.35 5.82 2.18 0.95 

METHOD 3 
Abs. Max 0.69 16.78 2.83 1.98 
Dev.[%] Min o.so 3.64 1.36 1.98 

METHOD 4 
Abs. Max 0.67 17.42 3.22 2.12 
Dev.[%] Min 0.57 3.90 1.61 2.12 

METHOD 5 
Abs. Max 0.64 23.97 3.21 2.12 
Dev.[%] Min o.ss 4.80 1.61 2.12 
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Table 2.2 Calculated Densities and Their Absolute Deviations from 

Experimental Data 

System Argon Nitrogen Carbon Dioxide 

No. of 
Experimental 26 24 22 
Points 

Temp. 273.15 273.15 273.15 
(°K] - 298.15 - 298.15 - 298.1 

Pressure 1080.3 1137.3 1000.3 
[kPa] - 9844.6 8927.9 4590.7 

Mole Fraction 1.000 1.000 1.000 

METHOD 1 
Abs. Max 0.56 2.20 2.02 
Devj%] Min 0.14 1.19 0.54 

METHOD 2 
Abs. Max 1.11 2.18 1.09 
Dev.[%] Min 0.53 1.35 0.43 

METHOD 3 
Abs. Max 3.09 2.13 2.12 
Dev.[%] Min 2.81 1.29 0.54 

METHOD 4 
Abs. Max 3.46 2.34 1.12 
Dev.[%] Min 2.86 1.39 0.40 

• METHOD S 
Abs. Max 3.45 2.33 1.03 
Dev.t%J Min 2.86 1.39 0.39 
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Table 2.3 Calculated Speeds of Sound and Their Absolute Deviations 

from Experimental Data 

System Air* Ar N2 CO2 

No. of 
Experimental 17 26 24 22 
Points 

Temperature 245.00 273.15 273.15 273.15 
(°K] - 315.00 - 298.15 - 298.15 - 298.15 

Pressure 95.43 1080.3 1137.3 1000.3 
(kPa] - 229.43 9844.6 8927.9 4590.7 

METHOD 1 
Abs. Max 0.90 1.76 1.14 4.37 
Dev.[%] Min 0.68 1.46 0.64 0.74 

METHOD 2 
Abs. Max 2.78 14.79 8.89 24.00 

Min 259 11.99 4.91 16.10 

METHOD 3 
Abs. Max 3.09 2.99 1.07 5.33 
Dev.[%] Min 1.66 1.32 0.61 0.89 

METHOD 4 
Abs. Max 3.08 3.25 1.34 6.66 
Dev.[%] Min 1.66 1.40 0.87 1.13 

METHOD 5 
Abs. Max 3.08 3.24 1.37 6.54 
Dev.[%] Min 1.66 1.40 0.88 1.12 

* Mole Fraction: 0.7809 N2, 0.2095 02 0.0093, Ar, 0.0003 CO2 
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Table 2.4 Methods' Efficiency 

Total Average Deviation (%] 

Method 1 2 3 4 5 

Compressibility Factor 5.32 5.15 2.68 2.34 2.71 

Density 0.62 0.77 1.55 1.55 1.55 

Speed of Sound 0.88 8.90 1.12 1.27 1.27 

Total Average 2.27 4.94 1.78 1.72. 1.84 
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Table 2.5 Gas Constants 

Gas 

Property 

He Ar N2 CO2 

MW 4.003 39.948 28.016 44.011 

O[ °K] 10.80 121.00 95.48 187.50 

[A] 2.560 3.420 3.704 4.550 

P(kPa] 2300.00 4860.00 3390.00 7386.63 

T[ °K] 5.3, 151.0 126.2 304.2 

t cp(°K] 200.00 200.00 200.00 200.00 

cp.(/'mol 0K] 20.78585 20.78585 29.12757 32.38071 

t CI,( °K] 298.00 298.00 298.00 298.00 

cpjJ/mol °KI 20.78585 20.78585 29.14432 37.15366 

t (°Ki 
Cp 

cp.(J/mol°KJ 

300.00 

20.78585 

300.00 

20.78585 

300.00 

29.14432 

300.00 

37.24577 

t [°KJ 
cp 

cp.[ymol °K] 

400.00 

20.78585 

400.00 

20.78585 

400.00 

29.26573 

400.00 

41.35302 
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Table 2.5 (continued) 

Gas CH 

Property 

4  C 2 H 6C 38 C  

MW 16.043 30.068 44.094 26.038 

142.50 243.00 242.00 212.00 

[A] 3.355 3.954 5.637 4.114 

P(kPa} 4640.73 4880.00 4255.65 6273.01 

T C(°Ki 191.1. 305.5 369.9 309.2 

t cp[°K] 200.00 0.00 0.00 200.00 

cp. [J/niol °K] 33.49859 0.00000 0.00000 35.60873 

t Cp(°K] 298.00 298.16 298.16 298.00 

op. [r/mol °KI 35.66316 52.69088 73.56208 44.12469 

t CI, [°K] 300.00 300.00 300.00 300.00 

op. [J/mol °K] 35.73434 52.95465 73.93889 44.25866 

t [°K] 
cp 

400.00 400.00 400.00 400.00 

op. [J/mol °K] 40.52822 65.64902 94.37047 50.51374 
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Table 2.5 (continued) 

Gas 
n-C4H10 i-C41110 n-051112 

* 
i-05H12 

Property 

MW 58.124 58.124 72.146 72.146 

O[ OK] , 297.00 321.55 219.50 293.65* 

a[A] 4.971 5.309 8.497 6.537* 

P[kpa] 3796.67 3647.74 3374.16 3241.801* 

T C (°KI 425.2 408.1 469.8 450.0* 

t op (On] 0.00 0.00 0.00 0.00 

op. (J/mol°K] 0.00000 0.00000 0.00000 0.00000 

t cp(°K] 298.16 298.16 298.16 '298.16 

cp. /mo1 °K] 98.85035 ' 96.88255 122.67324 120.70544 

t Cp (°KI 300.00 300.00 300.00 300.00 

cp. [J/mol °K] 99.52024 97.34310 123.55247 121.29160 

t (°KI 
cp 

cp. [J/mol °K] 

400.00 

124.76664 

-400.00 

124.64104 

400.00 

154.53479 

400.00 

155.12094 

* - Uncertain data 
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0 2000 4000 6000 8000 10000 

Pressure EkPaJ 

ci - experimental results 
c2 - results obtained from equations (2.11), (2.18), (2.19) 
c3 - results obtained from equations (2.14), (2.18), (2.19) 
c4 - results obtained from equations (2.14), (2.22), (2.23) 

Figure 2.2 Compressibility Factors of a Mixture of Methane and 

Carbon Dioxide 
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ci - experimental results 
c2 - results obtained from equations (2.11), (2.18), (2.19) 

c3 - results obtained from equations (2.14), (2.18), (2.19) 
c4 - results obtained from equations (2.14), (2.22), (2.23) 

Figure 2.3 Compressibility Factors of a Mixture of Methane and 
n—Butane 
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0 2000 4000 6000 8000 

Pressure [kPaJ 

ci - experimental results 
c2 - results obtained from equations (2.11), (2.18), (2.19) 
c3 - results obtained from equations (2.14), (2.18), (2.19) 
c4 - results obtained from equations (2.14), (2.22), (2.23) 

Figure 2.4 Compressibility Factors of a Mixture of Ethane and Car-

bon Dioxide 
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ci - experimental results 
c2 - results obtained from equations (2.11), (2.18), (2.19) 

0 - results obtained from equations (2.14), (2.18), (2.19) 
c4 - results obtained from equations (2.14), (2.22), (2.23) 

Figure 2.5 Speed of Sound in Air 
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ci - experimental results 
c2 - results obtained from equations (2.11), (2.18), (2.19) 
c3 - results obtained from equations (2.14), (2.18), (2.19) 

c4 - results obtained from equations (2.14), (2.22), (2.23) 

Figure 2.6 Test for Pure Gases: Speed of Sound in Argon 
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c3 - results obtained from equations (2.14), (2.18), (2.19) 
c4 - results obtained from equations (2.14), (2.22), (2.23) 

Figure 2.7 Test for Pure Gases: Density of Argon 
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CHAPTER 3 

FUNDAMENTALS OF TRANSFER MATRIX MODELLING 

3.1. Introductory Remarks about Modelling Techniques 

Modelling is a process of describing the behaviour of a physi— 

cal system by means of suitably selected mathematical equations. 

Systems to be modelled are often made up of a large number of com— 

ponents, interconnected in a complex fashion. The system method, 

used in this work, addresses system complexity not by a detailed 

physical description of the components, but by the portrayal of a 

multitude of components, the behaviour of each of which is modelled 

in a relatively simple fashion. When the dynamic behaviour of a 

system is considered, generally, the use of linear constant— 

coefficient ordinary differential equations is sufficient 

[16,43,32]. The reason is that this approach gives an opportunity 

to examine systems with many components while still preserving a 

large measure of qualitative and quantitative understanding. 

The system approach emphasizes "modular" methods in dealing 

with complex processes because they simplify the problem, are effi— 

cient and adaptable. That is, if the model components are easily 

interfaced, at the input and output ports, they can be used in any 

context. As a result, the transfer function of the whole system 

can be determined by multiplying the component transfer functions. 
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In the prediction of systems' responses, three main approaches 

have been used: the finite element method (10,12,13,33,91], the 

method of characteristics (8,18,31,34,94], and the transfer matrix 

method [43,53,54,64,90]. Generally, the transfer matrix method is 

the simplest, most versatile, and well suited for digital computa— 

tion. Furthermore, the transfer matxix method has some distinct 

advantages over the other two methods for- the applications con— 

sidered. These are: 

- The method can be applied to a very complex system as well as 

to any of its parts. 

- It requires relatively little computer time. 

- It is applicable in a field testing situation. 

- It can be used for a variety of acoustic systems with or 

without mean flow. 

3.2 Transfer Matrix Approach 

Four pole parameter equations for a uniform circular pipe have 

been derived in the literature [16,43,53,64]. A summary of these 

derivations has been included in this work for reasons of clarity 

and completeness. The description of the physical condition of a 

sound field in mathematical terms requires the introduction of some 

assumptions. These are outlined below. , 
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3.2.1 Assumptions  

1) Sound propagation is in the form of plane waves. 

2) Nonviscous flow through a constant area. 

3) A homogenous medium; no temperature gradient or humidity 

change through the system. 

4) Gravitational forces within the medium are neglected. 

5) Changes in density of the medium are small. 

6) The sound pressures are small in comparison with the average 

equilibrium pressure in the system. 

3.2.2 Momentum and Continuity Equations 

In order to derive four pole parameter equations, a two-port 

model relating Fourier-transformed pressure and velocity at x = 0 

to those at x = L (see Figure 3.1) was developed 116,43,53J. For 

simplicity, damping effects are excluded in the derivation 

presented below. 

The force acting on the element dx in the longitudinal direc-

tion is due to the pressure difference across dx, 

[p '  (p ' 'dx)lS = - 'Sdx ax j ax 

e mass of the free body element dx is 

(3.1) 

Th 



49 

x=O x = L 

- - 1 

Figure 3.1 Two—Port Model of a Circular Pipe 

dm = oSdx 

Its velocity is a function of both x and t, 

du = LU—dx + 
ax at 

The acceleration is then 

S I S P 

On au Am + = lau au + 

a = = Ox dt at Ox at 

(3.2) 

(3.3) 

(3.4) 

Applying Newton's law to the element dx and using equations (3.1), 

(3.2), and (3.4) yields 

- .a SdX = p Sdx(u + 
Ox Ox 8t 

(3.5) 
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which gives the following form of the momentum equation: 

+ p 'u' + p = 0 Ox ax at 
(3.6) 

From the conservation of mass for the space dx, the following 

must hold: The mass influx rate minus the mass efflux rate equals 

the mass storage rate, 

r, 

'Sdx I Sdx + a(SdX)dX] = (p 'Sdx) 
dttdt Ox dt  at 

The continuity equation for constant area S, reduces to 

+ p S +   - 0 at ax Ox 

3,2.3 Linearization 

(3.7) 

(3.8) 

Steady—state operating—point values (subscript 0) and small 

perturbation values (with no subscripts) are introduced for the 

purpose of linearization. Assuming an initial steady -state charac— 

terized by constant velocity u, pressure p, and density p0, the 

instantaneous values can be written: 

(3.9) 

(3.10) 
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(3.11) 

Equation (3.11) can be rewritten in another form, thus eliminating 

the unknown p. The density change is accomplished by compressing a 

fixed mass into a smaller volume by applying a pressure change: 

(3.12) 

where K is called the fluid compliance. The momentum and con-

tinuity equations can now he written in terms of perturbations. 

For that purpose equations (3.9) and (3.12) are substituted into 

(3.6) and (3.8). When, simplifying, the products of the perturba-

tion quantities are assumed to be very small and are neglected. 

ap 
Furthermore, is zero since there is no pressure gradient in 

au0 au0 ap0 
steady, frictionless, constant-area flow. Finally, , at 

ap 
and are all zero as there are no variations in velocity and 

ax 

density for the initial steady flow. Hence, equations (3.6) and 

(3.8) take the form: 

ax oOx 0 at 

au  —i-+u.2+-n=o K ax oOx at 
C 

(3.13) 

(3.14) 
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3.2.4 Analytical Solutions of the Equations for a Stationary Medium 

For the case when there is no. flow, u = 0, the linearized 

momentum and continuity equations (3.13) and (3.14) reduce to 

21)  + = 0 
K Ox at 
C 

(3.15) 

(3.16) 

Using the Laplace transform for time and taking the initial condi-

tions u(x,0) and p(x,0) as zero (there are no disturbances ini-

tially) yields: 

1 OP(x,$) + sU(x,$) = 0 
P 0 Ox 

1 dU(x,$)  
K dx + sP(x,$) = 0 
C 

(3.17) 

(3.18) 

This pair of simultaneous ordinary differential equations can be 

solved by using the classical method. Eliminating first P. then U 

leads to 

d2U(x,S) - s 2 K p0U(x,$) = 0 

dx2 

d2P(x,$) - s2IC pP(x,$) 0 
dx2 c 0 

(3.19) 

(3.20) 
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Since equations (3.19) and (3.20) are analogous, only one of them 

is solved as an example. Solution of 3.19 yields: 

U = C S1e (Kp C2e 1/2 0)112x —s(Kp0) x 

Applying boundary conditions at x = 0 and x = L: 

TT(L.$) -  P(O.se 

1 - 2sinh [s(Kp) 112L1 

_s(K CPO) "2L 

s(K CPO) 112L - 

IJ(L,$) 

C2 = sinh [s(K090)112L] 

Introducing the so called propagation time T, 

T p L(K C 1/2 p0) - L 1/2 
(1/K CPO) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

where L is the distance between stations and (1/K CPO) 1 '2 is the 

propagation velocity, gives 

U(x,$) -  1  ( U(L 1/2 xl 
sinh(T s) ,$) sinh[s(K p0)  

+ U(0,$) sinh(s(K CPO) 1"2(L_X)) ) (3.25) 

In order to relate variables at x = 0 to variables at x = L,equa— 

tion (3.25) must be further manipulated. Substituting equation 
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(3.25) into equation (3.18) gives: 

KsP(x,$) + 1  U(L,$) sinh(s(K p )" 2x] 
dx sinh(T s) C 0 

p 

+ TJ(O,$) sinh[s(K CPO) 1/2 (L—X)l 3 ) = 0 

which after differentiation results in 

U(L,$) 1/2 
K0sP(x,$) sinh (T s) 5 CPO) cash [s(K C o 

p )1/2x] 

p 

U(0,$) 1/2 
sinh(T s) s(Kp0) cosh [s(Kp0)"2(L—x)i = 0 

p 

Setting x = L yields: 

U(0,$) = _L sinh(Ts)P(L,$) + cosh(Ts)U(L.$) 
p 

0 

where 

Z = (p0/K)"2 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

is called the characteristic impedance. A similar procedure for 

equation (3.20) leads to: 

P(0,$) = cosh(Ts)P(L,$) + Z0 sinh(T s)TJ(L.$) (3.30) 

Equations (3.28) and (3.30), relating Fourier—transformed 

pressure and velocity at x = 0 and x = L, may be rewritten in more 

versatile form. This can be done by using the volume velocity V 

instead of the velocity U, where V = U S. Morover, Ts can be 
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replaced by the product of the propagation constant and tube 

length, Ts = L(KcPo)" () 2 = L iü = yL. (Note: y = a + ik, here 

a = 0). Using transfer matrix notation: equations (3.28) and 

(3.30) are reduced to: 

Ipi Icosh(yL) Zsinh(yL)l fl 
Lvix0 = [sini(YL) cosh(YL)j LVlx=L 

where Z = Z0/S is called the acoustic impedance. 

(3.31) 

Equation (3.31) was derived for no—flow conditions. If mean 

flow is present, the value of y has to be adjusted (the Mach number 

included) and the transfer matrix must be multiplied by e where 

M is the Mach number of the moving medium. Therefore, for mean 

flow conditions, equation (3.31) takes the form: 

V] cosh(7L) Zsinh(yL) f [p1 
tVJx0 e Isi(.yL) cosh(yL) 1VJxL 

3.3 Practical Expressions for the Acoustic Properties 

3.3.1 Acoustic Damping 

(3.32) 

Equation (3.32) presented in the previous section has not 

accounted for the dissipation of acoustic energy. In the case of a 

stationary medium this dissipation is caused by viscous effects, 
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heat transfer, and the exchange of molecular energy. For a moving 

medium, many formulae have been proposed to include the dissipation 

effects (47]. 

A convenient method to include the dissipation of acoustic 

energy is to express the parameters in the equations (3.31 and 

3.32) as complex quantities [41,47,88]. They are as follows: 

- Complex wavelength constant: k = k ia, 

where a is the attenuation factor. Using the model presented 

in (41], when an acoustic wave propagates with speed c in 

medium of density p0 enclosed by a circular pipe of diameter 

d, a is given by: 

a = (O.01946/cd)(flp)112 (no-flow) 

and a = a(1 + M) 2 (when flow is present) 

- Complex speed of sound 'c = 
k 

- - a + ik  
- Complex propagation constant: - 2' and 

1—M 

- Complex acoustic impedance: 
- p0c 

Z  

The expansion of equation (3.32) to include acoustic damping 

can now be written: 

[VPl -yLM c.isosh1xO e Zsinh(yL) IVp] 
cosh(yL) x=L 

(3.33) 
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3.3.2 Acoustic Impedance  

When sound propagation occurs in the form of plane waves, the 

acoustic impedance has the same value at every point of a particu— 

lar cross—section of a pipe. The impedance is defined as the complex 

ratio of sound pressure to volume velocity through the cross— 

section. For example, consider a uniform pipe section with sta— 

L P2 

Figure 3.2 A Uniform Pipe Section 

tions "1" and "2" as shown in Figure 3. The impedances at these 

stations are: Z1 = P1/V1, and Z2 = P21V2 respectively Using the 

four—pole parameter equation, 

A BJ1VP11] - IC DJ1,2 V2 (3.34) 

where A, B, C, and D are elements of transfer matrix [T] 12 (as in 
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equations (3.31), (3.32) or (3.33)), the volume velocities can be 

expressed as follows: 

P2(BCAD) P 1 D 

B 

(P1 - A P2) 

B 

(3.35) 

(3.36) 

Applying the reciprocal condition, det ET] = 1 (noflow), yields: 

(P1D - P2) 

B 

- A P2) 

B 

(3.37) 

(3.38) 

Therefore, the acoustic impedances and Z2can be calculated from 

the pressures P1 and P2, and the matrix parameters A, B, C and D. 

B  
- D - 

B  
- A 

(3.39) 

(3.40) 

From the equations (3.39) and (3.40), it can - be noticed that nei— 

ther Z1 nor depend directly on the input and output pressures, 

but only .on their ratio (P1/P2) which depends only on the down— 

stream geometry and termination impedance. The above equations can 

be used to experimentally determine the impedance. 
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3.3.3 Discontinuity Correction Factor 

A discontinuity such as a sudden expansion or contraction is 

usually corrected for by one of two methods. The first method is 

based on the physical fact that the gas beyond the open end of the 

smaller tube moves as a unit together with the gas enclosed in that 

tube [63]: The corrected length of the tube is then taken as 

Le = L + AL, where L is the actual tube length and AL is the Pol— 

lack correction factor given in Figure 3.2a. Hence, the transfer 

matrix Lu the equation (3.33) is written as 

1PP1 _yLe cosh(yL) Zsunh(yLe) I Vpjx=O [pa]= e (TLe cosh(yL0) ] LJx= (3.41) 

In the second method, a separate transfer matrix representing 

the discontinuity is used (35]. 

[T] = i()KL] (3.42) 

where KL is the Karal correction factor given in Figure 3.3b. In 

this work, the Karal correction factor was used. 
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Figure 3.3 Correction Factors for Sudden Expansion and Sudden Con-
tractions (d - diameter of th smaller tube, 0 - diameter of the 
large tube, (a = dID, L = 8p(3n dl 11(a)) 
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CHAPTER 4 

ARBITRARY BRIDGE NETWORK ANALYSIS 

4.1 Mathematical Model of an Arbitrary Bridge Network 

4.1.1 Transfer Matrix for a Bridge Network 

The principle of applying' the transfer matrix method to a 

bridge network is to express the overall transfer matrix in terms 

of the network's elements [83). In this chapter transfer matrices 

for a network's elements are presented. The matrices for the fun— 

damental elements such as a straight pipe, an elbow, a side branch, 

and an orifice plate are introduced first. Following this, the 

matrices for series—connected and parallel—connected elements are 

presented. Finally, the overall transfer matrix for an arbitrary 

bridge network is derived. Throughout this section, the transfer 

matrices are written for no flow conditions. The procedure to 

include mean flow involves only multiplication by a single factor 

and modifying the value of y (as shown in section 3.2). 

Straight Pipe 

The expression for the no—flow transfer matrix, derived in 

section 3.2, is: 

[T] 1,2 = 
cosh(1L) Zsinh(7L) 

sinh(yL) cosh,(yL) 
(4.1) 
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Figure 4.1. Straight Pipe 

Z2 

2 

Figure 4.2 Straight Pipe and Elbow Elements 
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b) Elbow 

In this work, an elbow is approximated by a straight pipe of 

equal length and cross-sectional area. An experiment was carried 

out to compare the behaviour of these two elements. For each, the 

following equation holds: 

l f Bi  
V1 -  [CDi V[P22 

From this, 

P 
= A + B/2 

2 

(4.2) 

(4.3) 

For station 2 (see Figure 4.2) closed, the impedance Z is infin-

ite. Consequently, it was possible to obtain the •A parameters of 

the transfer matrices for both cases by measuring the port pres-

sures. These parameters were plotted as a function of frequency. 

The graphs depicted in Figures 4.3 show that the adopted assumption 

is justified: effects of the distortion of waves by a duct bend are 

insignificant for frequencies below the cut-off frequency. In this 

work, the highest frequencies encountered are always lower than the 

cut-off frequency (plane wave propagation). The formula used to 

calculate the cut-off frequency [47] is given by: 

= 1.84 c/(2nr) 

For the above experiment, f = 4945 Hz 
C 

(4.4) 
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c) Side Branch 

The transfer matrix of a, side branch resonator is repeated 

here after reference [48] 

11 [TI 1 0 
12 = [1/2 ij (4.5) 

where Z (for closed end )is the ratio of the element A and C of the 

transfer matrix of the side branch. 

d) Orifice Plate 

An orifice plate and its model, tested at the University of 

Calgary, are depicted in Figure 4.5. The model, applicable for low 

flows, assumes that the orifice plate can be replaced by an 

equivalent system. The equivalent system is described by a short 

pipe of length given by: 

1 = 0.3d + 1 + O.3d (4.6) 
op op op 

and two side branches on each side of the pipe. The diameter and 

length of the branches are calculated as follow: 

db = (d2 - d2 )1/2 
op 

1 =O.3d 
op 

e) Series and Parallel Elements 

(4.7) 

(4.8) 

Series—connected and parallel—connected elements are charac— 

terized by having two inlets and two outlets as shown in Figure 
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Figure 4.4 Side Branch Resonator 

top 

JZb 

a) Orifice Plate b) Model 

Figure 4.5 Orifice Plate and Its Acoustic Model 
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4.6. As a result, the transfer matrices between the input and out— 

put are four by four matrices. These matrices have been derived in 

Pip Ylp _4 

1q V1  

1 

2 

1'2p "12p 

rp 
3 

P =P 
2p 3p 

P V 
3p 3p 

P2q V2q _• \ r q 3q 

© 
P =p 
2q 3d 

Figure 4.6 Series and Parallel Elements 

references (6] and [47]. 

The transfer matrix for the series element was obtained by 

combining the matrices of the component elements. Consequently, 

the input—output equation for a series element is: - 

P 
ip 
vip 

p iq 
V 
lq 

0 0 

0 0 

A2 B2 

C2 D2 

p 

V2p 

P 2q 

V2 

(4.9) 
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For the parallel—connected element the following continuity equa— 

tions must hold: 

P =P 
2p 3P 

P =P 
2q 3q 

V +V =V 
2p 3p p 

V =V +V 
3q 2q q 

The transfer matrix equation for element 3 is: 

r2p] - [A3 B3 
- I_c3 03 

P 12q 

Vq j 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

The transfer matrix for the parallel—connected element is obtained 

by combining equations (4.10) to (4.14). Hence, the input—output 

equation for a parallel element is: 

r 1 0 0 ol fp 1 
1 —A3/B3 ol Iv3I 

= [ I 0 0 1 0] I I •V2ql —1/B3 0 A3/B3 1 1V 
3q 

where, A3 = A3D3 - B3C3. 

f) Overall Transfer Matrix 

In this work an arbitrary bridge network was 

schematic representation is depicted in Figure 4.7 

composed of k segments, each of which comprises a 

(4.15) 

considered. Its 

The network is 

series type ele— 
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ment and a parallel type element. Segment k+1 includes a series 

type element only. The transfer matrix between station 1 and sta-

tion m is a four by four matrix: 

[N] 4x4 = [Sl](Pl][S2](P2] ... [Sk][Pk][Sk+l ] (4.16) 

where [S] 1 is a four by four matrix of the i-th series type ele-

ment, and (P].is a four by four matrix of the i-th parallel type 

Segments 1 VW&4 2 

P. 
in   
- I 

V  in 

in 

Header q   

AN 

2 

Stations 

4 

3 

5 

Figure 4.7 Arbitrary Bridge Network, Scheme 

element. 

A  

 J Header p 

z 
out 

out 

ry 
I out 

To relate the network's input to its output, the overall 

matrix [M] 2x2is used. It is obtained by substituting the con-

tinuity equations at the ends of the network into equation (4.16) 
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as is shown in [6]. Consequently, the input—output relation is: 

ut 

[VP 

1I-P0in1 = [M] LV tj (4.17) 
mi 

The parameters of matrix [Ml which are expressed in terms of the 

elements of matrix [N] are as follows: 

M 11 = [(N11 + N13 )K2 - (N12 - N14 )K1]/K2 

M12 = (N12N 4 - N14N32)/K2 

M21 = (K2K3 - 

= [(N22 + N42 )K2 - (N12 - N32 )K4]/K2 

where 

K1 = N11 + N13 - N31 - N33 

K2 = N12 - N14 - N32 + N34 

K3 = N21 + N23 + N41 + N43 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

K4 = N22 - N24 + N42 - N44 

If some of the valves in the network are closed, the transfer 

matrix [NI must be modified. For example, if a valve of run i is 

closed, the corresponding parallel type element must be replaced by 

a series type element with side branches: 

[NI = [S11[P1] ... [s.][P1] ... [Sk](Pk][sk+l] 

Here, 

(4.22) 
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[Tiu ol1  
ll (P.] = 0 T.  (4.23) 

where T. iu and T. 11 are transfer matrices for upper and lower side 

branches created as a result of shutting the valve in element i. 

Tand T1 are calculated from eq. (4.5). In the case when the very 

first run is closed, the procedure becomes more complex. The modi— 

fied transfer matrix [N] is: 

[N] ((S1](P1]) ...1S2] [P2] ... (Sk][Pk][Sk+1J (4.24) 

where 

and 

([S1](p1]) ' = [I] 

FT4 0 1 
ES2 ], = [0 T3T21T5J 

(4.25) 

(4.26) 

Additionally, the overall 2x2 matrix (Mi must be modified, namely, 

premultiplied by ((T2 ][T11). Matrices T1 ,T4 and T5 are transfer 

matrices for elements 1, 4 and 5 respectively, and are calculated 

by chain multiplication of the component elements (refer to Figures 

4.7 and 4.8). The situation when the last run is closed, is analo— 

gous to the case with the first run closed. Closing of several 

valves involves combining several required modifications. 
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Segment j Segment j + 1 

DC) 

Figure 4.8 Bridge Element Including an Orifice Plate 
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4.1.2 Volume Velocities and Pressures at Orifice Plate Locations  

The transfer matrices presented in section 4.1.1 were used for 

calculating volume velocities and pressures, both upstream and 

downstream of the orifice plates. The following procedure was fol— 

lowed: 

a) For a given input value of pressure P., the input volume 

velocity V in . was calculated using: 

[Vin-1 EM1 I YP1outi i 

from which 

P. in N 1 + M12 

V. - in M 21 z out  + N22 

(4.27) 

(4.28) 

In the above expression, the impedance Z = P /V was 
out out out 

evaluated from the anechoic end condition: 

out = S PC 
out 

b) The output values of pressure and volume velocity were 

calculated from: 

out' [MI1 Ivin] 
P.Vouti =  

(4.29) 

(4.30) 

c) The pressures and volume velocities at stations-1 and m 
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(see Figure 4.7 ) were evaluated from: 

MP 

P [ P ;E1 = CN3 Pmq 

V IV 
..lqj mq 

and the continuity equations: 

P. =P =P in pip lq 

P =P =P 
out nip mq 

V. =V +V 
in ip lq 

V =V +V 
out nip mq 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

The pressure values were obtained directly from equations (4.32) 

and (4.33). The expressions obtained for the volume velocities are 

as follows: 

V mq = P in 31 33 out . - (N + N P - Ng2V out IN34 - N32 

V1q =(N41 +N +N +(N )V )P V -N 
43 out 42 out 44 42 mq 

V = iV -V 
ip n lq 

V =V -v 
nip out mq 

(4.36) 

(4.37) 

(4.38) 

(4.39) 
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V(2+1) = (S j ] 
+l 

r(2j+1) q 

V(2j+l) q 

(2j+2)p 

P(22) q 

V(2j+2) q 

and for even numbered stations: 

P(2j)p 

- 

- (2j+1)q 

V(2j) q V(j+j•)q 

where j decrements from station k to station 1. 

(4.40) 

(4.41) 

e) The pressures and volume velocities downstream of the orifice 

plate placed in the i-th element (see Figure 4.8) were calculated 

using: 

JVP'd = ] I IT . 1'(2j)q 
Id] V(2j+l)q - V(•2j)q1 

(4.42) 

where [Tid] is the transfer matrix for the downstream part of ele-

ment i. The continuity equations used in equation (4.42) are as 

follows: 

P. =P =P 
iq (2j)q (2j+1)q 

V. =V -V 
iq (2j+1)q (2j)q 

(4.43) 

(4.44) 

The upstream values of pressure and volume velocity were obtained 

from: 
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['P 
1 IvPid] idlul = [T. I1.0iui  

where ET.] is the transfer matrix for the orifice plate. 

4.2 Verification of the Model  

(4.45) 

The mathematical model introduced above was verified by con-

ducting laboratory tests with one-bridge and two-bridge networks. 

No flow and random excitation of the system was used. 

4.2.1 Instrumentation 

Two bridge network models made from ABS plastic tubes and fit-

tings were tested. A schematic representation of . the testing 

apparatus is depicted in Figure 4.9. A loudspeaker (1) was con-

nected at the input of the network model; the output of the network 

was either closed or open. The loudspeaker was driven by a random 

noise generator from the Structural Digital Analyzer (6) through a 

power amplifier (3). There were two microphones (7,8) for which 

the calibration factors had been previously determined. One of.the 

microphones (7) was placed at the inlet tube, the other (8) was 

located either at the outlet or at points inside the network. 

These points are indicated in plots included in Figures 4.11, 4.13 

and 4.14. The acoustic signals sensed by the microphones were 

amplified (amplifiers 4 and 5) and transmitted to the DSA (6). 

Transfer functions between microphones were stored on magnetic tape 

for subsequent plotting and analysis. 
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 rL 

1) Loudspeaker (30 W) 

2) Bridge Network Being Tested (Two- or One-Bridge Network) 
3) Power Amplifier (Holiday Model - 7100 Stereo) 
4) Amplifier (B & K 2608) 
5) Amplifier (B & K 2608) 
6) Structural Digital Analyzer (HP 5423A) 
7) Condenser Microphone (B & K 4133) 
8) Condenser Microphone (B & K 4133) 

Figure 4.9 Diagram of Testing Apparatus 
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4.2.2 One-Bridge Network Model 

Dimensions of the one-bridge network model are given in Figure 

4.10. Experimental pressure ratios were obtained for four dif-

ferent locations (indicated with arrows in Figure 4.11) in the 

budge network model (P./P., i = 1,2,3 ) with all valves open. 

Both theoretical and experimental results for closed end are shown 

in Figure 4.11. An excellent agreement can be observed between the 

shape of the curves. Similar results were obtained for an open 

termination. The slight shift along the frequency axis, for higher 

frequencies, is most likely due to inaccuracies in calculating the 

speed of sound (see Chapter 2). The measurement of bridge dimen-

sions, temperature and pressure could also introduce errors. 

2 3 

Dimensions: 

1 = 0.895m 14 0.669m 
= 0.669m 1 = 0.893m 

1 = 0.669m 

Figure 4.10 One-Bridge Network Model 

Pipe ID = 0.041m 
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4.2.3 Two—Bridge Network Model  

Dimensions of the two—bridge network model are given in Figure 

4.12. Experimental pressure ratios were obtained at four different 

locations in the bridge network while all valves were open. Both 

theoretical and experimental results obtainedfor the given ambient 

conditions are shown in Figure 4.13. Also, the pressure ratios at 

different locations for all possible combinations of valve closing 

were determined. Some representative results fora closedend are 

depicted in Figure 4.14. Other results, not presented here, showed 

analogous behaviour. Again, a very good agreement between theoret— 

ical and experimental curves can be observed. The shapes of the 

curves are preserved, but there is a small shift proportional to 

frequency. As explained earlier, this is most likely caused by 

inaccuracies in calculating the speed of sound and by possible 

measuring errors. 

The results of these experiments prove, the model to be valid 

and useful in predicting pressure levels in bridge networks, with 

any combination of valve closure. 
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W1 

Dimensions: 

1 = 0.893m 14 = 0.671m 
12 = 0.671m 1 0.492m 
13 O.671m 16 = 0.895m 

Figure 4.12 Two—Bridge Network Model 

Pipe ID = 0.041m 
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4.3 Methods of Analysis  

Different dimensions of the bridge network, as well as various 

flow conditions and gas compositions were used as input data to 

the computer programs which calculated the levels of pressure and 

volume velocity and corresponding RMS values at chosen locations. 

The following locations of interest were chosen: the output and 

input of the bridge network, and points in the vicinity of orifice 

plates. The latter points were chosen because pulsations produced 

in the vicinity of orifice plates affect flow measurement. The 

influence is especially significant if large oscillations happen to 

be at the frequencies close to the natural frequencies of the pres-

sure meters. 

The pulsations were evaluated with regard to two aspects: 1) 

the levels of the peak oscillatory pressure and volume velocity 

amplitudes together with their associated frequencies, and ii) the 

RMS values of the pressure, volume velocity and also input 

impedance. 

The pulsation pressure levels and volume velocity levels were 

determined in each band of a set of contiguous frequency bands and 

were plotted as a function of the center frequency of the band. 

The component bands were of equal width Af = 0.2 Hz; the width of 

the integral-frequency-band was 200 Hz. The levels, as is usual, 

were given in decibels, shown above or below the reference level 

which is determined by the reference quantity. In this case, the 
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reference levels were chosen to be those associated with the input 

to thebridge network. The pressure level was then defined as: 

L = 2Olog10( P ) dB 
ref 

and the volume velocity level was defined as: 

L  = 2Olog10( " ) dB 
ref 

(4.46) 

(4.47) 

where P, P ref ' V and V ref are Fourier—transformed pressures and 

volume velocities respectively. (Note that the volume velocity 

levels can be used for comparisons since all the runs have the same 

cross—sectional areas). 

Pulsation in a piping network can be assumed as random in 

nature. For a random signal q(t), the average value q(t) given by: 

= lim Yl fq(t)dt (4.48) 
T—>co 

is a deterministic feature but does not describe the size of fluc— 

tuations which is of main interest. Any numerical measurement of 

q(t) is by necessity a statistical estimate whose uncertainty can 

be' reduced only by increasing T. For a purely random signal, the 

average q(t) is zero which is of no use in the evaluation of the 

signal. The most widely used measure of the magnitude of random 

fluctuations is the mean—squared value q2 (t) defined by 

2 it2 
q (t) = Jim j q (t)dt 

T— > COT 

Since it is desirable to use a quantity having the same physical 

'(4.49) 

dimensions as the signal, the root—mean—square (RMS) value was used 
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in this work: 

= (q - 2) 1/2 (4.50) 

Here, the q RMS values were used to compare the fluctuation magni-

tudes of several random signals in a gross way without judging them 

f [Hz] 

Figure 4.15 Mean-Square Spectral Density 

individually. The values of q RMS were computed from frequency 

spectra using the mean-square spectral density 9f(f) concept [15]. 

V(t) is a per-unit-frequency quantity that when integrated with 

respect to frequency between any two frequencies gives the coutri-

butionof that frequency band to the total mean square value. Tak-

ing a narrow increment Af and assuming that q(f.) is constant over 



89 

the range of Af, the mean square spectral density ç1(f) was com-

puted 

cl(f ) = q2 (f) (4.51) . 
1 Af 

The square root of the integral of (f) over the total frequency 

band gave the values of 

= (f(f)df) 112 (4.52) 

Using the above expressions, the RMS values for pressure, volume 

velocity and input impedance signals were computed. 

4.4 Results 

4.4.1 Reference Network Behaviour 

The reference network is one example of a gas metering station 

built by NOVA, An Alberta Corporation. A schematic representation 

of the station is depicted in Figure 4.16. The station includes a 

two-bridge network consisting of four runs and headers (collec-

tors). There is also a place for a fifth run for future develop-

ment. Dimensions of the network as well as flow conditions and 

typical gas compositions are gathered in Table 4.1. 

Pressure levels as well as the corresponding volume velocity 

levels at points upstream of the orifice plates and at the bridge 

output are shown in Figure 4.17. The complex shape of the pressure 

level curves, which is the result of numerous interactions, is dif-
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Table 4.1 Basic Dimensions, Flow Conditions and Gas Composi-
tion for Reference Network 

Basic Dimensions * 

Collector Pipe 1.372 x 0.025 Em] 

Run Pipe 0.610 x 0.0222 (ml 

Collector-Run 
Connection Pipe 0.508 x 0.0151 [m] 

M = (d D) 2 Ratio for 
Used Orifice Plate 0.586 

Flow Conditions 

Temperature 307.15 (°K] 

Pressure 3700 (kPa] 

Density 25.05 (kg m3] 

Speed of Sound 436.02 Em s2] 

Mach Number 0.1 

Gas Composition 

C1 0.9556 

C2 0.0208 

C3 0.0010 

nC4 0.0001 

N2 0.0185 

CO2 0.0004 

* 
For Missing Dimensions See Figure 4.16 
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ficult to explain in general. Only some of the minima can be, 

predicted from the lengths of the side branches. For example, the 

valley at approximately 72 Hz, noticed for all locations, is asso-

ciated with the effect of the 1.52 m-long side branch resonators 

created at the ends of collectors. The shapes of the curves are 

similar for all locations, but the values reached by the peaks are 

different. Generally, high peak values are present for lower fre-

quencies; for the range from .6 to 40 Hz, the pressure level reaches 

30 dB. These large amplifications can easily produce a pulsation 

problem and influence flow measurement. In all curves, the pres-

sures vary about zero dB mean. 

Volume velocity levels do not have mean value of zero dB. 

This is because the medium flow divides and goes through several 

runs. The volume velocity levels are generally very low, averaging 

about -17 dB. The curves, however, were shifted so that their 

arithmetic averages are at zero dB (the true averages are indi-

cated) . This shift was done in order to obtain the same scale for 

all the plots and to be able to compare the magnitudes of the 

oscillations. The highest velocity levels are for the first run;' 

they occur at 62 and 73 Hz. The lowest levels are for the fourth 

run. The shapes of the curves are equally complex as for the pres-

sure levels and again difficult to explain in general. 

The pressure RMS values upstream and downstream of the orifice 

plates and at the output are shown in Table 4.2 (p.121). Since the 

mean square pressure value (consequently, also RMS) is related to 
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the power carried by the signal, it can be noticed that the most 

unfavourable conditions for the reference system are for the third 

run. It is also evident that the orifice plates act as acoustic 

attenuation devices which cause a significant drop in the RMS of 

the passing signal. As a result of this and other damping effects, 

the whole bridge structure attenuates the incoming disturbances to 

a high degree (typically 20 to 30 dB). The RMS volume velocity 

values are gathered in Table 4.3. They show that the highest fluc— 

tuations are for the first run, lower for the second, and even 

lower for the third and fourth runs. There is an insignificant 

drop in volume velocity RMS values across the orifice plates. The 

input impedance RMS value for the reference system can be found in 

Table 4.4. 

4.4.2 Influence of Change in Flow Conditions 

The system was examined while one of the flow conditions 

changed and the remaining parameters retained their reference 

values. First, the Mach Number was set to zero (no mean flow); 

then,. the temperature of the medium was reduced to 286.48 0K (13.33 

°C); finally, the gas pressure was increased to 4439 kPa from 3700 

kPa. Pressure and volume velocity levels for the altered condi— 

tions are depicted in Figures 4.19 through 4.21. Input impedance 

levels are shown in Figures 4.33a, b and c. Behaviour of RMS 

values can be found in Tables 4.2 through 4.4. 
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For lower frequencies, up to 20 Hz, all the curves remain 

basically unchanged no matter what conditions were used. However, 

above this range there were noticeable changes in values reached by 

both the peaks and average fluctuations (RMS). Pressure peaks 

observed at about 30 Hz, which were consistently present in the 

tested network, were magnified for no-flow, reduced temperature 

(except for the third run), and increased pressure. This amplifi-

cation at such a low frequency can produce a pulsation problem, 

and, consequently, affect flow measurement. As shown in Chapter 5, 

the pressure gauges most frequently used for differential flow 

measurement have their mechanical or acoustic resonant frequencies 

in the range of 10 to 50 Hz. The volume velocity levels and aver-

age fluctuations are not much affected by flow condition changes. 

On the other hand, the input impedance RMS visibly grows when the 

temperature or pressure is changed. The increase in pressure does 

not cause any shift on the frequency axis, but for no-flow condi-

tion or reduced temperature such a shift occurs. The general char-

acter of the curves, however, does not change significantly for a 

particular position in the network. For no-flow, the pressure, 

volume velocity and input impedance level curves are shifted 

towards higher frequencies; the shift can be explained by lower 

acoustic damping (see section 3.3.1) due to absence of mean flow 

(the relationship between the presence of flow and acoustic damping 

is explained by Ingard (29]). There is an opposite effect for 

reduced temperature conditions, the curves are shifted towards 
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lower frequencies. In this case, the reason why the shift occurs 

is difficult to explain because there are changes in many proper-

ties of medium in different directions and to a different degree. 

As a result, simple relationships involving frequency are not 

available. 

4.4.3 Influence of Change in Medium Composition 

The same chemical species as for the reference system were 

used but their mole fractions were altered to values listed below 

(reference values are repeated in brackets). 

C1 = 0.9163 

C2 = 0.0455 

C3 = 0.0091 

nC4 = 0.0021 

N2 = 0.0192 

CO2 = 0.0078 

(0.9556) 

(0.0208) 

(0.0010) 

(0.0001) 

(0.0,185) 

(0.0004) 

Pressure and volume velocity levels are shown in Figure 4.21; input 

impedance levels are presented in Figure 4.33d. RMS values for 

pressure, volume velocity, and input impedance are gathered in 

Tables 4.2, 4.3 and 4.4 respectively. 

For this particular gas composition, pressure levels are gen-

erally lower, higher peaks being especially affected. Conversely, 

volume velocity levels become higher than those for the reference 
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medium. All curves, however,, remain unchanged for low frequencies, 

up to 15 Hz. The pressure, volume velocity and input impedance 

level curves, all exhibit a significant shift towards lower fre-

quencies. The described behaviour shows that even in a very well 

designed network, pulsation problems can be easily encountered 

because the medium itself is a decisive factor in producing the 

pulsation. 

4.4.4 Influence of Changes in Bridge Network Arrangement  

a) Absence of Orifice Plates 

The system analogous to the reference system but having no 

orifice plates was examined. Pressure and volume velocity levels 

are shown in Figure 4.22, while the input impedance levels are dep-

icted in Figure 4.33e. RMS values are gathered in Tables 4.2 

through 4.4. 

Pressure levels as well as their average fluctuations are 

lower. This could be expected because the orifice plates, major 

obstacles for the flow, were removed and less reflections were pro-

duced in the system. Associated with the above are also lower lev-

els of input impedance, which can be expected. 

b) Absence of End Pipes 

In this case, the reference system was changed by removing the 

end pipes (branch resonators). The level curves are depicted in 

Figures 4.23 and 4.33f. The RMS values can be found in Tables 4.2 
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through 4.4. 

A new feature, not observed in the case of previous changes, 

is now present. Namely, the pressure, volume velocity and input 

impedance level curves change both their character and their values 

reached at the peaks. There is no uniform tendency in lowering or 

increasing the peaks. Instead, the peaks are damped or amplified 

only at certain frequencies. Also, for the pressure level curves, 

the valley near 72 Hz which was formed by the side branch resonator 

vanishes. 

c) Closing of Valves 

Here, very important maintenance situations are simulated. If 

there is an increase or decrease in flow through the pipeline the 

orifice, plates have to be consecutively exchanged, and, conse-

quently, the corresponding runs have to be shut down. In emergency 

situations, more than one run can be turned off. Such situations 

are highly undesirable since they change the geometry of the bridge 

resulting in additional side branch resonators. In most situa-

tions, flow measurement is highly affected in the open runs. 

At most locations pressure and volume velocity levels are 

higher. As it can be noticed in Figures 4.24 through 4.30 some 

peaks are much higher than those encountered in the reference sys-

tem. However, there is no uniform tendency in their behaviour. It 

depends on the particular bridge configuration. Generally, the 
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average fluctuations of pressure, volume velocity and input 

impedance grow significantly, which can be observed in Tables 4.3 

through 4.4. 

d) Changing the Number of Runs 

Two bridge networks, one with a decreased and the other with 

an increased number of runs, are examined. 

Pressure and volume velocity levels for a one-bridge network 

are shown in Figure 4.31. Input impedance levels are depicted in 

Figure 4.33n. RMS values are gathered in Tables 4.2 through 4.4. 

The level curves exhibit a less jagged character and have different 

shapes although some similarities to the reference curves (Figure 

4.17) can be observed. For example, the valley near 72 Hz associ-

ated with end pipe resonators is still present. All the peaks are 

magnified and average fluctuations of pressure, volume velocity and 

input impedance are significantly higher. This can be explained by 

the smaller number of reflections cancelling out each other than in 

the reference system. 

Just the opposite behaviour can be noticed for a three-bridge 

network. The peaks and valleys are more numerous, the values 

reached by the peaks are not so high and the average fluctuations 

are also decreased. Pressure and volume velocity levels for 

three-bridge network are presented in Figure 4.32, and the input 

impedance levels are shown in Figure 4.33. The RMS values are 
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Figure 4.24 Pressure and Volume Velocity Levels Upstream of Orifice Plate on the Second and 
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Figure 4.26 Pressure and Volume Velocity Levels Upstream of Orifice Plate on the First and 
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Figure 4.27 Pressure and Volume Velocity Levels Upstream of Orifice Plate on the Second and 
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Figure 4.28 Pressure and Volume Velocity Levels Upstream of Orifice Plate on the Third and 
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Figure 4.29 Pressure and Volume Velocity Levels Upstream of Orifice Plate on the First and 

Fourth Runs When the Second and Third Runs Are Closed 
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Table 4.2 RMS Values of Pressures for Different Conditions 

Orifice 
Plate 

1 2 3 4 '5 

Conditions Up. On. Up. On. Up. On. Up. On. Up. On. 

Reference 189.5 139.9 177.4 129.8 203.3 124.8 196.7 124.5 -- - 

No Flow 173.1 144.5 235.0 207.9 135.9 102.6 199.9 172.9 ---

Temperature Changed 339.7 197.9 365.2 217.3 197.4 132.9 236.0 168.0 - - 

Pressure Changed 151.9 126.1 179.1 151.3 121.1 93.1 158.2 131.4 - 

Medium Changed 138.9 111.5 155.5 116.8 107.8 78.1 143.0 106.1 

Orifice Plate 
Absent 136.3 138.4 172.7 174.7 149.9 149.2 183.8 184.0 --

End Pipe Absent 94.7 88.3 131.1 103.3 194.8 130.8 234.1 151.3 

First Run Closed - --- 186.2 159.0 192.3 117.4 217.8 154.8 --

Second Run Closed 374.5 244.5 -- --- 241.2 154.1 227.5 145.2 -- --

Third Run Closed 221.3 202.7 172.2 159.7 - 163.4 115.1 --

Fourth Run Closed 246.0 237.2 303.2 256.0 249.4 235.4 -- -- -- ' - 

First and Second 
Runs Closed --- 338.1 224.1 367.4 244.6 -- 

Second  and Third 
Runs Closed 258.5 3,11.5 -- -- - 

313.6 174.4 

Third and Fourth 
Runs Closed 210.7 177.9 210.1 184.6 ' -- -- --

One-Bridge 
Network 238.3 196.3 -288.3 195.6 348.9 205.0 -- --

Three-Bridge 
Network 125.3 116.6 124.4 111.9 113.2 106.9 119.6 116.6 123.9 119.3 

Up. - Upstream Orifice Plate 
On. - Downstream Orifice Plate 
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Table 4.3 RMS Values of Volume Velocity for Different Conditions 

Orifice 
Plat e 

2 3 4 s 

Co nditions Up. On. Up. On. Up. On. Up. On. Up. On. 

Reference 22.5 22.5 13.2 13.1 12.0 11.8 12.2 12.1 --- - 

No Flow 17.5 17.4 13.5 13.3 11.9 11.7 12.0 11.9 - 

Temperature Changed 22.1 22.1 13.8 13.6 11.8 11.5 11.8 11.8 -- - 

Pressure Changed 23.2 23.3 15.1 15.1 12.6 12.5 12.5 12.6 - 

Medium Changed 34.0 34.1 17.6 17.4 13.9 13.6 12.9 13.1 

Orifice Plato 
Absent 38.7 38.6 14.1 14.1 11.4 11.4 12.3 12.0 --

End Pipe Absent 14.8 14.6 12.7 12.6 14.0 13.7 17.9 17.5 -- --

First Run Closed --- --- 20.9 20.8 13.5 13.3 16.0 16.1 --

Second Run Closed 22.6 22.6 --- -- 15.5 15.3 13.5 13.4 --- --

Third Run Closed 23.9 23.9 19.7 19.6 -- 13.5 13.5 --

Fourth Run Closed 26.4 26.4 15.6 15.3 15.1 15.0 --

First and Second 
Runs Closed --- -- --- --- 24.3 24.1 20.4 20.4 --- --

Second and Third 
Runs Closed 29.2 29.2 --- --- -- 19.4 19.4 --

Third and Fourth 
Runs Closed 33.7 34.9 26.0 26.0 --

One-Bridge Network 29.0 28.1 13.8 13.5 20.7 19.4 -- --

Three-Bridge Network 21.6 21.6 11.9 11.8 10.9 10.7 10.2 9.9 11.5 11.4 

Up. - Upstream Orifice Plate 
On. - Downstream Orifice Plate 
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Table 4.4 RMS Values of Input Impedance for Different Conditions 

Conditions Input Impedance 

Reference 113.7 

No Flow 110.5 

Temperature Changed 147.8 

Pressure Changed 177.3 

Medium Changed 99.7 

Orifice Plate Absent 93.9 

End Pipe Absent 80.3 

First Run Closed 441.1 

Second Run Closed 101.4 

Third Run Closed 132.7 

Fourth Run Closed 121.4 

Second and Third Runs Closed 130.9 

Third and Fourth Runs Closed 709.5 

One—Bridge Network 441.1 

Third—Bridge Network 101.4 



124 

found in Tables 4.2 through 4.4. 

4.5 Conclusions  

Table 4.5 shows in a condensed way how the pressure, volume 

velocity, and imput impedance respond to various changes introduced 

into a typical two—bridge network. From this 'table and previously 

discussed plots the following can be concluded. 

The shape of the pressure and volume velocity curves is quite 

unpredictable. Only the presence of the side branch resonator 

(created by end pipes) can be readily detected. 

2) High pressure levels are often noticed for lower frequency 

ranges in which the mechanical or acoustic resonant frequen— 

cies of the secondary device can be present. 

3) For specific conditions, the level curves are different in 

every run although they may be similar in shape. 

4) When all four runs are open (reference system and the first 

six alterations) the highest pressure fluctuations are present 

in the second and fourth runs. Volume velocity fluctuations 

are highest in the first run except when end pipes are absent. 

5) The pressure and volume velocity levels drop at the bridge 

output by about 20 to 30 dB because the system acts as an 

attenuation device. As a result, measurement of pressure and 

volume velocity at the output of the bridge gives little 

information about the behaviour of those values inside the 
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bridge (see Figure 4.17). 

6) From among different flow conditions (see upper part of Table 

4.5), reduced temperature has the most dramatic effect on 

pressure fluctuations, magnifying them most in the first and 

second runs. 

7) Closing the first run has only a slight effect on fluctuations 

in the remaining runs. On the other hand closing up the 

second or the fourth run results in much higher fluctuations 

in the open runs. 

8) Rearranging the bridge network by increasing the number of 

runs results in lower fluctuations. Decreasing the number of 

runs causes a meaningful rise in pressure and volume velocity 

fluctuations. In general, the effect of adding a run has less 

impact on fluctuations compared to the effect of eliminating a 

run. The negative influence is more significant. 

9) The second part of Table 45 indicates that when the flow con-

ditions and medium remain unchanged, and orifice plates as 

well as end pipes are present, the input impedance can be a 

good indicator of the behaviour of pressure and volume velo-

city fluctuations inside the bridge network. If the input 

impedance grows the fluctuations in pressure and volume velo-

city grow too. Consequently, the effects of shutting down one 

or more runs as well as rearranging the bridge network by 

adding or eliminating one run can be easily estimated. 
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Table 4.5 Behaviour of RMS Values of Pressure, Volume Velocity and 

Input Impedance 

Conditions 

Orifice Plato Number 

Input 1 2 3 4 1 2 3 4 

Impedance Pressure Volume Velocity 

No Flow U N 3, r'J N J 

Temperature Reduced 
ft tM H't t'J f t r'J 

Pressure Increased 34 NJ 33 i f f N 

Medium Changed 3 33 33 33 33,f f 44 4 
Orifice Plates Absent 3 33 tJ 33 4 444 4 3, NJ 

End Pipes Absent 3, 3,4 34 N 44 44 3, 14 144 
First Run Closed 4 NJ 

Second Run Closed $ 4$ 44 N 44 
Third Run Closed N 44 33 4 144 44 
Fourth Run Closed 44 
First and Second 
Runs Closed 4 ¶44 444 
Second and Third Runs Closed 4 44 444 44 444 
• Third and Fourth 
Runs Closed 441 4 4$ 

- 

444 444 
One—Bridge Network 4ft 44 444 444 44 4 344 
Three—Bridge Network 3, if 3,3 44 3, 3 44 4,4 

LEGEND 

Fluctuation Changes: 

About the Same NJ 

Small 

Moderate 

Significant 
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CHAPTER 5 

DIFFERENTIAL-PRESSURE TRANSMITTER ANALYSIS 

5.1 Description of Three Types of Differential-Pressure  

Transmitters  

Typically, the transmitter is connected across a primary dev-

ice, an orifice plate, and the pressure difference is measured. 

Differential-pressure transmitters are difficult to design since 

they need to sense small differences in large pressures while they 

also have to be able to withstand high line pressure overload. 

Described below are two electrical and one mechanical 

differential-pressure transmitters. 

5.1.1 Rosemount Transmitter 

A model 11S1DP Aiphaline D-PT with a range from 0 - 750 " H 2 0 

(193 kPa) was tested. Figure 5.1 shows a diagram of the sensing 

unit called a 6-cell. Pressure is transmitted through isolating 

diaphragms and silicone oil fill fluid to a sensing diaphragm in 

the centre of the 6-cell. The sensing diaphragm is a spring ele-

ment which deflects in response to differential pressure across it. 

The displacement of the sensing diaphragm is proportional to the 

differential pressure. The position of the. sensing diaphragm is 

detected by capacitor plates on both sides of the sensing 

diaphragm. The differential capacitance between the sensing 
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LEAD WIRES 

ISOLATING 

DIAPHRAGM 

'CAPACITOR PLATES 

SENSING DIAPHRAGM 

GLASS INSULATION 

SILICONE FILL 

THE 6-CELL 

WELDED SEALS 

Figure 5.1 Rosemount, Capacitive Differential—Pressure Transmitter 

diaphragm. The differential capacitance between the sensing 

diaphragm and the capacitor plates is converted electronically to 

either 4-20 milliamps DC or 10-50 milliamps DC current. The 8—cell 

is completely sealed. Welded stress isolation clamping in the'sen— 

sor housing prevents errors introduced by stresses and torques on 

the process flanges and minimizes the effects of line pressure and 

overpressure up to 2000 psi (13790 kPa). 
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5.1.2 Gould Transmitter 

A model PD 3000 with a range from 0-100" H 2 0 (25.7 kPa) was 

tested. The sensor of the Gould Transmitter consists of a beam— 

diaphragm assembly, with a thin film strain gauge bridge circuit 

R 

Sr 

+ 

.5 

Eex 

3 

Bolonce pot 

+ Stresses 
tension 

—Stresses 
compression 

N / 

Pressure.diophrogm 
rosette 

Figure 5.2 Beam Assembly with a Diaphragm—Type Strain Gauge 

located on the bending beam (Figure 5.2). This strain gauge offers 

the stability and resistance characteristics required for high sta— 

bili'ty and dependable performance. No bonding agents are used, 

minimizing the effects of stress and temperature. Differential 

pressure is transmitted to the sensing diaphragm by a silicone oil 

fill fluid. The displacement of the sensing diaphragm is transmit— 

ted to the beam assembly, whose strain gauges are electrically 
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connected to the amplifier circuit. A change in differential pres-

sure causes a corresponding change in the resistance of the strain 

gauge bridge and the transmitter 4-20 milliamps DC output of the 

transmitter. 

5.1.3 Barton Transmitter 

A model 199 DPU with a range from 0100"1120 (25.7 kPa) was 

tested. Figure 5.3 shows a cutaway view of the differential pres-
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OVERRANGE VALVE 

HEAD BOLTS 

N DAMPER 

Figure 5.3 Barton, Differential Bellows Pressure Transmitter, 

Cutaway View 

sure unit. The unit consists of two bellows, each of which is 
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sealed at one end and open at the other. The open ends are sealed 

to both sides of a centre plate. The bellows and centre plate are 

filled with a liquid. An opening through the centre plate allows 

the liquid to flow between the two bellows. There is a possibility 

to restrict flow for cases when a higher damping of the transmitter 

is desirable. The bellows are connected internally by a valve stem 

that passes through the opening in the centre plate. Each bellows 

is enclosed by a separate housing, one housing for the high pres— 

sure (HP) connection and one housing for the low pressure (LP) con— 

nection. The housings are connected by pipe or tubing to the high 

and low pressure sides of an orifice plate in the process system. 

Any pressure change within the housings causes the bellows to con— 

tract or expand laterally, forcing the fill liquid through the cen— 

tre plate. As the bellows move, the connecting valve stem follows 

the motion of the bellows. The valve stem movement is transmitted 

through the drive arm to twist the torque tube. Consequently, the 

rotation of the torque tube's shaft provides the DPU's mechanical 

output. 

5.2 Model of the Pressure Sensing Device  

Each of the transmitters described in section 5.1 consists of 

a volume enclosed in the transmitter's housing and sensing 

diaphragm which equally divides this volume. The diaphragm is 

exposed to pressures which are transmitted by the connecting tubing 

to the volumes on both sides of the diaphragm. 
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Figure 5.4 Model of the Differential—Pressure Sensing Device 
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The model of the pressure-sensing device is depicted in Figure 

5.4. The system is modelled as an assembly of acoustic and mechan-

ical elements. The acoustic part is composed of two tubes 

(representing the connecting tubing) and a chamber (representing 

the interior of the transmitter's housing). The volume included in 

the tubes is normally small compared to that inside the chamber, 

but is nevertheless taken into account in the model. The mechani-

cal part is modelled as a piston, 

diaphragm, whose motion in the chamber 

and damper. The mechanical stiffness 

compared to that of the acoustic system. 

representing the sensing 

is restricted by a spring 

is considered to be large 

The actual volume Vg was modelled as a cylinder whose dimen-

sions were similar to the actual chamber dimensions. The 

differential-pressure-sensing device was characterized by a 

transfer function relating the differential pressure at the primary. 

device to the linear displacement of the sensing element: 

TFg = Xg/AP.. = Xg/(P1 P6) (5.1) 

This transfer function was derived using transfer matrices to 

represent the system. Relationships among the acoustic variables 

at stations 1 and3, and 4 and 6 are: 

CT113 jVP'] 

[T] 46 [v6] 

(5.2) 

(5.3) 
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where [T] 13 and [T] 46 are the overall or combined transfer matrices 

between the stations indicated. For example, 

A13 B13 
[T] 13 = [T]1[T]2 = [ C13 D13 

The volume velocity V3 equals V4 and both are related to the 

mechanical element's dispacement by: 

V3 = V4 = (OS gXg (5.4) 

Using equations (5.2), (5.3) and (5.4), Fourier—transformed pres— 

sures P3 and P4 were derived as functi ons of the transfer matrix 

parameters: 

13 P3 =1/A13 (P1 —B S g iüX g ) (5.5) 

P4 = 1/D46 (P6 — B46SgIWXg) (5.6) 

In order to relate P3 and P4, the four—pol e equation for the 

mechanical element, derived in Appendix B, was used: 

[P31 - 1 (kg/Sg)(l - r2 + i2TIr) [P4 

x3j - 0 1 I4 

from which, the pressure P3 wa s obt ained: 

or 

P3 = P4 + (kg/Sg)(i - r2 + i2tir)X4 

P3 = p4 + B34X4 

(5.7) 

(5.8) 

(5.9) 
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Substituting equations (5.5) and (5.6) into (5.9) gives: 

[B13 ioS B46 iwS +B 1 I - 
A13 D46 - L A13 g + ii:; g 34j X  

(5.10) 

The system is reciprocal ( there is no mean flow ) which results in 

the following identities: 

A13 = D13 , A46 = D 46 

Also, for a symmetrical, system, 

A13 = A46 , B13 = B46 , C13 = C46, D13 = 

(5.11) 

(5.12) 

Substituting equations (5.11) and (5.12) into (5.10) gives the fol— 

lowing expression for the transfer function: 

P1 - P6 (2B 1g g 13 i()S + AB34) 

Equation (5.13) is used in the subsequent sections to predict the 

acoustic and mechanical behaviour of the secondary system. 

The model of a secondary device presented above can also be 

simplified and used to predict the Helmholtz frequency only. This 

procedure is included in Appendix C. 

5.3 Prediction of Transfer Function Based on the Model  

The influence of variations in four parameters, which are 

important in secondary device design, was examined using the model 

introduced in section 5.2. These parameters are: stiffness and 
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damping of the sensing diaphragm, volume •of the transmitter's 

chamber and the length of the connecting lines. The reference 

parameters of the hypothetical secondary device were chosen based 

on realistic typical values, and are given in Fig. 5.5 through 5.8. 

5.3.1 Influence of the Transmitter Stiffness  

The stiffness (kg) of the spring restricting the piston's 

motion (see model in section 5.2) was varied in the range from 

3.16e7 to 3.16e3 N/rn . Figure 5.5 shows how the transfer function 

behaves for two cases: i) when the piston's motion is undamped, and 

ii) when the piston's motion is slightly damped. Three resonant 

frequencies are apparent, two acoustic and one mechanical. To 

visually identify the mechanical resonant frequency, the frequency 

response curves were ploted with and without mechanical damping. 

The peak associated with mechanical resonance was decreased signi— 

ficantly when mechanical damping was present. The fundamental 

resonant acoustic frequency, the so—called Helmholtz frequency, 

results from the oscillatory motion of the mass of fluid in the 

line. The higher acoustic frequencies originate from standing 

waves in the cavity, and are not harmonically related to the funda— 

mental frequency. When the mechanical stiffness is varied, the 

behaviour of the Helmholtz and mechanical acoustic frequencies is 

analogous to that of a two—degree of freedom mechanical system corn— 

posed of two, masses connected by a spring. As the spring stiffness 

decreases, 
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the amplitude of the mechanical element vibration grows, opposite 

to that of the acoustic element. At the same time the resonant 

frequencies shift towards bier values, the Helmholtz frequency 

moving considerably slower. Simultaneously with the decreasing 

mechanical resonant frequency, a decrease in the actual ,damping 

coefficient in the mechanical element is also observed (note that 

the non-dimensional damping factor i is constant). 

5.3.2 Influence of the Transmitter Uampin  

The influence of varying the damping factor of the mechanical 

element on the transmitter's frequency response is shown in Figure 

5.6. Two secondary devices having preset stiffnesses of 107 N/rn 

(high stiffness) and 10 N/rn (moderate stiffness) were subjected to 

five different damping factors. • Here again, the interaction 

between the mechanical and the acoustic elements was noticed. For 

moderate stiffness, an increase in the mechanical damping factor 

causes a significant decrease in the amplitude not only of the 

mechanical resonant peak, but also of the adjacent, lower frequency 

acoustic resonant peak. The higher frequency acoustic resonant 

peak is relatively unaffected, so are the locations of all the 

resonances in the given frequency range. 

The similar pattern can be observed for high stiffness case. 

Decrease in both the mechanical and the adjacent acoustic ampli-

tudes when the mechanical damping factor increases is evident. 
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5.3.3 Influence of the Transmitter Volume Space 

A change in volume of the transmitter influences its charac-

teristics. Three cases for three different transmitter volume 

spaces were tested: 365e-6 in3 (Barton), 34e-6'm3 (Gould), and 23e-6 

m3 (Rosemount). The corresponding curves are depicted in Figure 

5.7. It can be observed that the increase in the volume at the end 

of the transmitter line causes a shift of the peaks towards lower 

frequencies. When the increase in volume is small, the shift is 

also small, particularly for the 'peaks in the lower frequency 

ranges; for example, the Helmholtz resonant frequency basically 

retains its value. However, when the volume increase is large the 

shift of the peaks is significant. 

In Figure 5.8, it is shown how the resonant frequencies depend 

on the transmitter's volume. The volume was normalized to the Bar-

ton transmitter's volume V0. Three curves correspond to two -acous-

tic and one mechanical resonances. It can be observed that the 

resonant frequencies tend to be lower when the volume increases. 

For small volumes, therefore stiffer systems, the acoustic resonant 

frequencies become higher, and, at the same time, increase the 

mechanical resonant frequencies. In practice, the plot can give a 

general idea how to choose the proper volume of a transmitter when 

the length of transmission lines is fixed. 
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5.3.4 Influence of the Lengths of the Conducting Tubes 

Varying the lengths of the connecting tube has effects as 

shown in Figure 5.9. The higher the frequencies at which the peaks 

occur, the more they are shifted to the lower frequencies when the 

tubing length increases. For the Helmholtz frequency this shift is 

not significant. - 

Figure 5.10 shows the relationship between the length of 

transmission lines and the resonant frequencies of the secondary 

system. The reference length L was the length of the shortest 

possible lines used to connect the Barton transmitter. It can be 

observed that the resonant frequencies decrease as the transmitter 

lines lengthen. For shorter tubing (stiffer systems), the acoustic 

resonant frequencies grow, increasing also the mechanical resonant 

frequency. The most sensitive frequency for length changes is the 

highest acoustic frequency. In practical situations, this kind of 

plot can be used to determine the best length of transmission 

lines, avoiding system resonance with peaks in the differential 

pressure spectrum. 

5.4 Experimental Evaluation of Secondary Device, 

5.4.1 Experimental Hardware and Testing Methods 

The apparatus used for the simulation of the differential— 

pressure (Ap) in a' run of the gas metering station is depicted in 
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Figure 5.11. A single-cylinder compressor (1), powered by a vari-

able speed dynamometer motor, charged reservoir (3) through cooler 

(2). The static pressure was controlled by a bleed valve (4). 

After the desired static pressure in the tank was reached, the 

bleed valve was opened to allow flow. The amount of dynamic pres-

sure variation transmitted from tank (3) to the differential-

pressure gauge (8) through lines (7) was regulated by another set 

of valves (5). Two Kistler pressure-transducers (6) each, of which 

had flat frequency response from a fraction of 1 Hz to 30000 Hz, 

were connected to a differential amplifier (through charge amplif-

iers). The transducers constituted a reference differential-

pressure transmitter. The reference transmitter was placed subse-

quently in two locations, i) in the mouth of a test transmitter 

chamber, ii) at the beginning of the tubing. The experimental 

transfer functions were obtained between the 

signal and reference transmitter's signal for 

nals from the reference and test transmitters 

tested transmitters' 

both locations. Sig-

were sent to the DSA 

(HP 5423A Digital Structural Analyzer) where they were digitized 

and stored on tape as time records or as transfer functions. 

The transmitters were tested with different tubing lengths. 

The static pressure in the system was kept at one of four chosen 

levels: ambient, 50 psi (344.7 kPa), 100 psi (689.5 kPa), or 150 

psi (1034.2 kPa). Gas temperature was held constant by the cooler 

at 23 °C (296.15 °K) during the testing procedure. In this manner, 

the conditions for each transmitter tested were fully repeatable. 
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8) Differential Pressure Gauge (Barton, Gould, Rosemount) 

Figure 5.11. Apparatus Used in Secondary Device Evaluation 
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Before the experiments were carried out, the frequency 

response for the Kistler transducers were recorded. Those with the 

flattest characteristics were chosen for use in the experiment. 

The Barton transmitter was modified slightly to adapt to the exper-

iment. The mechanical output, movement of its pen arm, was con-

verted into an electrical signal by placing the Bently non-

contacting displacement transducer close to the hinged point of the 

arm. The maximum displacement of the arm was sufficiently small, 

0.004 m, and belonged to the linear part of the Bently's calibra-

tion curve. There was also the possibility of adjusting the Bently 

location for a different static pressure, so the movement of the 

arm could always be in the Bently's linear operational range. 

The Barton, Gould and Rosemount transmitters examined were 

calibrated statically against another reference Rosemount 

transmitter whose maximum error of 0.2% was determined by an out-

side firm. The Kistler transducers were calibrated dynamically. 

Their errors were found to be smaller than 1% over the entire 

operating range 0-400 psi (2758 kPa), being the highest for upper 

limits. As the pressures in any of the experiments did not exceed 

• 150 psi (1034.2 kPa), the error due to the Kistlers' nonlinearity 

was negligible. 

5.4.2 Evaluation of the Barton Transmitter 

The frequency characteristics of the secondary device, com-

posed of the Barton differential-pressure transmitter and a 2.56 in 
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length of standard 3/8 (9.5 mm) tubing were obtained. The fre— 

quency characteristics for the Barton transmitter itself were also 

determined. The predicted and experimental characteristics for -the 

secondary device are shown in Figure 5.12 (a) and (b) respectively. 

A different scale is shown for these two plots because in the 

experiment, the signal was poor for frequencies higher than 50 Hz. 

The predicted and experimental resonant frequencies are the same; 

the magnitudes are different probably due to underestimation of the 

attenuation factor included in the program. The fundamental acous— 

tic frequency is not visible in the plots because it is located in 

the region dominated by the mechanical element response. The 

curves included in Figure 5.12 (b) were obtained for different 

static pressures. They show no meaningful shift in frequency which 

means that the secondary device behaves as a linear system, at 

least for the tested conditions. The experimental characteristics 

for the Barton transmitter without transmission lines is shown in 

Figure 5.13. The same mechanical resonance frequency as before is 

present. Similarly as for the complete secondary device, the Bar— 

ton transmitter alone was shown to behave linearly within the limi— 

tations of the test procedures. 

Time histories for the Barton transmitter were recorded and 

compared to those of the reference transmitter (described in 

5.4.1). The distorted dynamic pressure was in a form of a periodic 

wave having one of the following frequencies: 
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1) The same as the mechanical frequency of the secondary device 

including the Barton transmitter 

2) The same as the acoustic resonant frequency of the secondary 

device including the Barton transmitter 

3) Beyond the range of the above acoustic or mechanical resonant 

frequencies 

The second case was impossible to realize with symmetric, 2.56 m— 

long connecting tubes of standard diameter 3/8 (9.5 mm). As a 

result, only case 1) and 3) were examined as planned, and the 

corresponding plots are shown in Figure 5.14(a) and (b). To 

include also case 2), the length of one of the tubes was altered 

(to 6.62 m) making the system asymmetric. All three cases were 

examined for this configuration, and the corresponding plots are 

given in Figure 5.14(o), (d) and (e). From Figure 5.14 (a) and 

(b), it can be noticed that the Barton transmitter's signal lags 

behind that of the reference transmitter. The time lag is much 

larger when the mechanical resonance is present. The amplitudes 

for the Barton transmitter are significantly lower than amplitudes 

for the reference transmitter. The interesting point to note is 

that while the amplitudes measured by the reference transmitter 

remain basically the same for cases 1) and 2), the influence of 

mechanical resonance on the Barton transmitter is substantial. The 

measured amplitudes are almost two times higher when mechanical 

resonance is present. The behaviour of the asymmetrically arranged 
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secondary device is generally similar to the symmetrical case, but 

the effect of the resonances is exaggerated (higher magnitudes), as 

shown by the reference transmitter (see Figure 5.14 (c), (d) and 

(e)). 

5.4.3 Evaluation of Gould Transmitter 

Two frequency characteristics of the secondary device, includ— 

I, 

ing the Gould transmitter and 2.56 m length of standard 3/8 (9.5 

mm) diameter tubing, are shown in Figure 5.15. Part (a) of the 

figure presents the predicted characteristic, part (b) shows the 

experimental characteristics of the device. As for the Barton 

test, resonant frequencies coincide for both cases, but there is a 

difference in magnitudes. There are two acoustic peaks, the first 

of which represents, as usually, the Helmholtz resonant frequency. 

In Figure 5.16 the experimental characteristic of the Gould itself 

is given. The curve represents a typical second—order—device with 

very low frequency and high damping. There is no significant shift 

in characteristics for different static pressures both in the case 

of the complete secondary device and in the case of the Gould 

transmitter alone. This would suggest that the system and the 

transmitter itself are linear devices. 

Time histories for the Gould and the reference transmitters 

were captured for two cases: 



155 

40 

M
A
G
N
I
T
U
D
E
 

20 - 

0 20 40 60 80 100 

FREQUENCY [Hz] 

a) Predicted 

o, 000a_. 

MAC - 

0.0 

I. 

\ 

\. 

ambient 
344.7 kPa 
689.5 kPa 
1034.2 kPa 

I 

0.0 

b) Experimental 

HZ 100.00 

Figure 5.15 Frequency Characteristics of Secondary Device Includ— 
ing Gould Transmitter 



156 

0.0 

0.0 HZ 100.00 

Figure 5.16 Frequency Characteristic of Gould Transmitter Alone 
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1) The repetition rate of the oscillatory dynamic pressure 

matched one of the acoustic resonant frequencies 

2) The repetition rate of the oscillatory dynamic pressure did 

not coincide with any resonant frequency in the system. 

Both these cases were examined for the same dynamic input 

pressure as that used in the Barton test. Corresponding curves are 

depicted in Figure 5.17 (a) and (b). There was a similarity 

between time records for the Gould transmitter and the reference 

transmitter,. although some, details in the Gould's curve were par-

tially lost because of the sensing element's inertia. The time lag 

was insignificant, and the magnitudes measured by the Gould 

transmitter were only slightly lower than those for the reference 

transmitter. However, one undesirable feature of the Gould 

transmitter was revealed in this test. This was its nonlinear 

behaviour shown in the cut-off minima especially when the acoustic 

resonance was present. The nonlinearity was speculated to be 

caused by high differential dynamic signals which pushed the sens-

ing beam to the position where its motion was restricted. To ver-

ify this speculation the same test was performed for a lower 

dynamic input pressure. The plots are given in Figure 5.17 (c) and 

(d). As was expected, the nonlinearities disappeared, and the 

values of time lags were smaller. 
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5.4.3 Evaluation of Rosemount Transmitter 

The transfer functions are depicted in Figure 5.18 (a) and 

(b).. Part (a) of the figure shows the predicted characteristic of 

the tested secondary device, the Rosemount transmitter and two 2.56 

m by 3/8 (9.5 mm) standard tubes. Part (b) shows the experimen— 

tal curves for the same system. The scale is different because the 

signal above 50 Hz for the experiments was very poor. There are 

two acoustic peaks in the theoretical plot (the experimental plot 

shows only one peak due to a smaller range). The first peak 

corresponds to the system's Helmholtz frequency which coincides for 

the theoretical and experimental results. The peak magnitudes are 

different which, as for previous tests, is probably due to underes— 

timatioü of the attenuation factor included in the program. In 

Figure 5.19 the experimental characteristic of the Rosemount 

transmitter without transmission lines is given. When this plot is 

compared to that of Figure 5.18 (b) it can be noticed that the peak 

at about 30 Hz results from the presence of transmission lines. 

The curves are not different when the static pressure in the system 

changes; the secondary device and the transmitter behave linearly. 

Time histories for the reference and Rosemount transmitters 

are depicted in Figure 5.20. Two cases were investigated: 

1) The dynamic pressure fundamental frequency was the same as the 

acoustic resonant frequency for the tested system 
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2) The dynamic pressure fundamental frequency was not matched 

with any resonant frequency of the system 

The time histories for both transmitters behave similarly, although 

the magnitudes are much smaller for the Rosemount. When there is a 

resonance, the Rosemount's time record is better matched to that of 

the reference transmitter than when there is no resonance in the 

system. The reason can be attributed to the Rosemount's wide work-

ing range 0 to 750 H 2 0 and consequently to its inadequate sensi-

tivity (poor data) for low dynamic loadings (the same dynamic level 

was used as for previous tests). 

5.5 Conclusions  

A secondarydevice which measures differential-pressure across 

an orifice plate was examined both theoretically, using a mathemat-

ical model, and practically, using three popular transmitters. 

Characteristics of the secondary device behaviour for different 

conditions were evaluated and found to be similar for the model and 

experiment. The results lead to the following conclusions: 

1) Secondary devices can . have resonant peaks in low frequency 

ranges (for the examined devices it is the range from 10 to 90 

Hz). Such a system can be easily excited by pressure oscilla-

tions in the same frequency range. 

2) The stiffness of the sensing element is a significant factor 

determining the natural frequencies of the secondary device. 
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Higher stiffnesses shift the natural frequencies towards 

higher values, which is desirable in many instances but is 

associated with loss of sensitivity. 

3) Mechanical damping suppresses not only the mechanical resonant 

peaks but also the adjacent lower—frequency acoustic peaks. 

Consequently, the favourable effect is enhanced. 

4) A lower volume space of the transmitter shifts the resonances 

towards higher values, but at the same time magnifies the 

amplitudes. It is then advisable to stay away from extrema. 

5) Long connecting tubes are associated with the accumulation of 

more lower frequency resonances. Consequently, tubes should 

be as short as possible. 

6) For the experimental conditions encountered, the secondary 

devices behaved similarly for different static pressures which 

shows that the systems are to .a large extent linear. 

7) Time—pressure records revealed large time lags for the Barton 

transmitter and a nonlinearity for the Gould transmitter (for 

high dynamic load). 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions  

In this work, a complete modelling process was implemented to 

evaluate a bridge-shaped gas metering station. The purpose of such 

an evaluation was two-fold: 

1) to assess the behaviour of the bridge network and to find 

methods to reduce pulsations by altering various parameters 

2) to investigate the performance of flow measuring devices and 

to find methods to make them best suited for a particular gas 

metering station. 

The following models were developed and verified by experiment: 

a) Model of an arbitrary bridge network 

b) Model of a secondary flow measuring system 

c) Model of a non-ideal gas used as a medium in the bridge net-

work 

To optimize pulsations the following should be considered 

while designing, altering and using a bridge-shaped gas metering 

station: 

1) Varying the conditions of the flow, especially the tempera-

ture, can change the pattern of fluctuations and magnify them 
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to a high degree. 

2) The fluctuations in the gas metering station strongly depend 

on the medium composition. Even seemingly insignificant mol 

fraction changes of the medium can have a significant effect. 

on pulsations. 

3) In general, rearranging the bridge network by increasing the 

number of runs results in lower fluctuations. The opposite 

effect is observed when, the number of runs is decreased. The 

negative influence is more significant. 

4) Closing of the valves results in more or 'less significant 

increase in fluctuations in the open runs, depending on the 

number and arrangement of the closed valves. Generally, clos-

ing a run downstream an orifice plate results in more signifi-

cant increase in fluctuations at this orifice plate location. 

5) The assessment of the bridge network input impedance allows 

one to estimate easily- the effects of the network rearrange-

ment by shutting down, adding or eliminating one (or more) run 

for given flow conditions, and medium composition. If the 

input impedance grows the fluctuations behave accordingly. 

6) Modelling is useful for control of pulsations in any piping 

system because it can reveal pulsation characteristics .of the 

system in advance. It enables one to decide how to change the 

system and avoid the consequences of pulsation. 
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The investigation of secondary device performance revealed 

that the Rosemount transmitter followed most closely the behaviour 

of the reference secondary system. The Barton and Gould 

transmitter's work was significantly impaired in resonant condi— 

tions. Moreover, the Barton's natural frequencies were very low 

(11 Hz) and its time characteristic showed a large lag. The 

Gould's time characteristic exhibited nonlinearities for high 

dynamic loading. 

Apart from having desirable individual characteristic, the 

differential—pressure measuring device is expected to work properly 

when incorporated into the bridge network. The input to the secon— 

dary device is a differential pressure across the orifice plate. 

Therefore, it is necessary to consider the fluctuations of this 

differential pressure and compare their pattern to the characteris— 

tics of the secondary devices. 

A procedure is proposed to predict the performance of the 

secondary device which is connected to a particular bridge network 

with specific geometry arrangement, flow conditions and medium: 

1) Use the programs to calculate the magnitudes of differential— 

pressure fluctuations at a desired location 

2) Obtain a frequency response of the secondary device 

3) Compare both characteristics and check for coinciding resonant 

peaks 
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4) If a peak is present at the same frequency for both charac-

teristics, change either characteristic altering one of the 

parameters which were described in Chapters 4 and 5. 

Differential-pressure fluctuations for exemplary bridge net-

work conditions are presented in Figure 6.1. When they are related 

to the Rosemount's characteristic (see Figure 6.2) it is noticed 

that the peaks near the frequency of 29 Hz coincide. Two sample 

methods are shown below to improve the measurement conditions: 

1) Reducing the length of end pipes which results in vanishing of 

the peak around 29 Hz. 

2) Adding one more run to the network which also causes the peak 

near 29 Hz to disappear. 

6.2 Suggestions 'for Future Research 

Apart from a special parallel network called a bridge network 

considered in this work, other networksare also used broadly. The 

analyses performed here could be repeated for them. The improve-

ment of the orifice plate model, to make 'it useful also for higher 

flow conditions, would be very desirable. 
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APPENDIX A 

Well—Known Thermodynamic Relationships Used in 

Calculation of Density and Speed of Sound 

The equations in this appendix are given for better under— 

standing and completeness of Chapter 2. These equations can be 

found in any textbook on thermodynamics. 

pRT [ az 1 -= Z+p 

where, k is isothermal compressibility 

() = ZR + E (*(b )2 + dC*(bp)3] 
aTV b b 

BP 
- k 
- '8T'V 

where, 0 is volume expansivity 

CVM - Rbpl(2 + d2B) + (2 dC + d2C*)] 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

where, cvM is specific heat constant at constant volume for a mix— 

ture 

cv = cv.d + cvRe (A.5). 

where, CV id and CVRe are specific heat constants at constant volume 

for perfect gas and non—perfect gas respectively 
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cp = cv + 
pk 

(A.6) 

•1 = CP/CV (A.7) 

where, y is ratio of heat capacities 

CPidM = YjCPjd (A.8) 

where, CPidM is specific heat constant at constant pressure for an 

ideal mixture, and y. is mole concentration of i—th gas 

cv = cp.dM - R 

where, R is universal gas constant 

C = 
pk 

where c is speed of sound 

(A.9) 

(A.10) 
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APPENDIX B 

Four-Pole Equation for a Mechanical Element 

In this appendix, the four-pole equation for a piston sub-

jected to a differential pressure is derived. The piston is 

represented as a mass whose motion is restricted by a spring and 

damper. 

Ir 
0 

Note: 

13 = 14 = 

Figure Bi Model of the Differential-Pressure Sensing Device 

The differential equation of motion with a harmonic excitation is: 

x + 2iw x + W2  = (P3 - P4) - e 1 t 
g n   ug m 

(B.1) 

where P3 and P4 are complex amplitudes of pulsating pressures p3 
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and p4 respectively. The solution for equation (B.1) has the form 

x =X e 
g g 

Substituting (B.2) into (B.1) gives: 

S 
= (1 + i2ir - r2 )X = (P3—P4) 

n g m 

where, w = k/rn, r = o/w, i = c/c. 

Rearrangement of (B.3) results in: 

= P4 + (kglSg)(l + i2r - r2)Xg 

The transfer matrix notation of (B.4) is: 

p3 1 (kglSg) (1 + i2nr - r2) 

X = 
g 

(B.2) 

(B.3) 

(B. 4) 

(B.5) 
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APPENDIX C 

Model of the Pressure Sensing Device - Simvlification 

If the mechanical stiffness of the sensing element is con— 

sidered to be large compared to that of the acoustic system, the 

model introduced in section 5.2 can be reduced to a model presented 

in Figure Cl. 

L d 
1 

2 

L d 
2 

Figure C.1 Simplified Model of the Pressure Sensing Device 

As a result, only one side of the secondary device is examined. To 

further simplify the model, the acoustic damping is excluded. The 

four—pole parameter equation for the system is given by: 

1Pil [P31 
v1J = [T]12 [T I23 1v31 

where 

(C.1) 
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T - coskL1 iZ01sinkL1 

12 - 1/Z01sinkL1 coskL1 
(C.2) 

T23 - F coskL2 iZo2sinkL21 (C.3) 
- 1/Z02 sinkL2 coskL2 ] 

Substituting Z01 = 4pc/(7r4) Z02 = 4pcl(7r4), and U = 0 into 

equation (Cl) results in: 

P1 d212 
= coskL1coskL2 - dl i sinkL1sinkL2 (C.4) 

For acoustic resonance condition P3 is large compared to PlP there-

fore the right hand side of equation (C.4) has to be zero. This 

gives: 

2 

tankL1tankL2 1] (C. 5) 

Equation (C.5) can be solved for frequency f (f = kc/(2n)). Con-

sidering a situation where an approximation tankL1 = kL and 

tankL2 = kL2 can be used, equation (C.5) can be written as: 

or 

k2L1L2 = 

2 
4ir/4 

n14 

(C. 6) 

(C.7) 
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Subsequently, after substituting k = 2,tf/c, and solving for f, 

equation (C.7) becomes the well—known Helmholtz equation: 

S 

= = 2n lV2Li] (C.8) 

where S1 =Trd 2 A  and V2 = (ir4/4) L2 The above equation holds when 

the wave length is long compared to the dimensions of the acoustic 

system. 


