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Abstract 

With VLSI technology advancing rapidly, synchronous designers are finding it diffi-

cult to distribute clock signals and maintain functionality as more circuitry is packed 

onto chips. Ways out of the dilemma are to raise the level of abstraction and to use 

simple and standard rules of composition. These are amongst the advantages offered 

by asynchronous design. 

For years, designs have been "verified" via simulation at various levels. Atten-

tion is now being paid to formal methods which use induction proofs over regular 

structures in two steps and give full coverage over all input/output sequences. 

This thesis brings the formal methods to bear on the asynchronous hardware 

design style. A parallel specification style is developed which scales well when the 

number of inputs to a system increases and a testing style based upon the modal 

it-calculus is proposed to test the consequences of specifications. Several non-trivial 

designs are evaluated by this methodology. 
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Chapter 1 

Introduction 

With the rapid advancement in chip fabrication technology, VLSI circuits are be-

coming smaller, denser and faster. To retain their market advantage, manufacturers 

like to keep the design-verification-fabrication-test window small. This is becoming 

increasingly difficult with the standard synchronous design style, and so researchers 

and manufacturers are re-examining old decisions to see if neglected design styles 

can be resurrected. 

Two important requirements for a design style are composability and amenability 

to verification. 

Composability means there are simple and consistent rules for joining circuits 

and sub-systems together. It may also mean that if all constituents of a design share 

a property, then so will the complete design (e.g. delay insensitivity, or strong inputs 

and strong outputs). 

Traditionally, verification has been concerned with checking whether an imple-

mentation conforms to its specification. More attention is now being paid to formal 

verification since the simulation of hardware systems is exponential (in time) in its 

inputs, whereas formal proofs (which can abstract n-bit values on buses to a single 

function and prove regular designs in two steps by induction) tend not to balloon in 

size as we go up the design hierarchy. With formal techniques, we may also check the 

consequences of specifications and answer such questions as "Can the system dead-

lock? Is it safe? Live?". It is hard to see how these checks can be done satisfactorily 
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using simulation. 

The asynchronous design style has been neglected for a long time, perhaps mainly 

due to problems associated with producing hazard free designs and its extra logic 

requirements. But it has some positive features, amongst which we mention: 

• Since asynchronous design islands can work at their own rates, we may join 

asynchronous components together easy in the knowledge that this will not 

disturb other components, provided that suitable interfacing standards are 

adhered to. 

• Languages like CCS and CSP have been used to specify asynchronous designs. 

Since these languages have been given proper semantics, the way is now open 

to reason about the designs they represent. OCS has the added advantage of 

mechanized support. 

1.1 Asynchronous Circuit Design Style 

The major difference between synchronous design and asynchronous design is that 

asynchronous circuits do not use a global clock. However, with advances in VLSI 

technology, hard problems associated with synchronous design are arising [Sei8O], 

e.g. power, routing, clock distribution, and clock skew. 

These problems do not arise in asynchronous design, since attention is focussed 

upon letting components work at their own rate and finding standard ways of join-

ing them together. Thus it seems worthwhile to re-examine the pros and cons of 

asynchronous design. 
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Pros 

• Simple Standard Interfacing. Asynchronous design is quite different from 

conventional synchronous design in its signaling conventions. The signaling 

protocols of asynchronous systems only rely on the ordering of signals; they 

make no assumptions about signal speed. 

• Separation of Timing and Functionality. With its simple and standard 

signaling protocols, an asynchronous system can be designed as a set of separate 

subsystems with standard communications amongst them. The partition of 

subsystems is based only on functionality; speed is a performance issue to be 

handled separately. Thus we avoid problems with clock distribution and clock 

skew which may become severe when we compose synchronous systems. 

• Composability. Because asynchronous design enhances separating timing 

from functionality, large asynchronous systems can be composed of subsystems 

operating at widely different speeds, taking advantage of the maximum speed 

available from each of its subsystems. This leads to the most important feature 

of asynchronous design: composability. The composability of asynchronous de-

sign not only provides a simple way of building larger structures hierarchically, 

but also makes it easy for system upgrading when improved circuitry becomes 

available. 

• Testability. As far as the correctness of a design is concerned, the compos-

ability of asynchronous design also makes it easy to test. Each subsystem is 

first tested independently. When the whole system is composed adhering to a 
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self-timed communication protocol, it is easy to test the system without even 

knowing the details in each subsystem. 

• Layout. In synchronous design, more attention is paid to placement and 

routing in the effort to achieve a functionally correct circuit. This is no longer 

the case in asynchronous design, since delays caused by wire length only affect 

performance but have nothing to do with functionality. 

• System Performance. Besides its advantages mentioned above, asynchronous 

design may be superior to synchronous design in system performance. Gen-

erally speaking, synchronous systems tend to reflect a worst-case behavior, 

while asynchronous systems tend to reflect an average-case behavior. This is 

because the clock frequency in a synchronous circuit has to be set according 

to the worst-case delay in any of its subsystems, while the asynchronous sys-

tem starts a new computation' immediately after the previous data has been 

computed and the new data is available. Hence, provided the handshaking 

circuitry is not too slow or cumbersome, an asynchronous system should run 

faster than the worst case. 

Cons 

• Lack of experience. For many years, removing hazards from asynchronous 

design has been considered very difficult, and most circuit designers have shied 

away from asynchronous design. 

• Basic Modules are Difficult to Design. Designing basic asynchronous 

building blocks is very difficult. But, over the years, the problem has been 
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solved, and several libraries now exist [Bru87, Bru91b, MFR85]. In contrast, 

composing asynchronous systems from library components is very easy, so once 

a tried and trusted library is to hand, hierarchical design is straightforward. 

• Larger Circuit Area. One of the negative aspects of asynchronous design is 

that an asynchronous circuit is usually larger than its synchronous counterpart 

due to its extra logic requirements. However, it is interesting to note that 

the new (synchronous) DEC Alpha chip [Com92} not only has 30% of its area 

devoted to clocking circuitry, but also consumes 30 watts ( 17 by the clocks and 

probably 5-10 by the pads!). Perhaps these old ideas need re-evaluating too. 

• Lack of Supporting CAD Systems. A long history of designing syn-

chronous designs has resulted in a large variety of CAD systems available for 

supporting synchronous design, e.g. VTI, Cadence, GDT and etc. Although 

some CAD systems for asynchronous design do exist [Bru91c, Mar90b] they are 

still prototypes and do not support verification. Individual verification tools 

[Dil89, Mol91] have recently been developed to support the verification of asyn-

chronous designs. It is believed that these positives of asynchronous design are 

beginning to spur the development of CAD systems, and more support tools 

should be available in the near future. 

In summary, the advantages of asynchronous design are well-matched with the 

advancement of VLSI technology. The asynchronous design style is thus expected to 

become more practical and useful when the circuit size keeps on increasing. 

Techniques for the design of asynchronous circuits have been investigated and 

developed over the years. Special types of such circuits have been also proposed. 
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Among them, are speed-independent circuits and delay-insensitive circuits. A speed-

independent circuit is informally defined as a circuit of which the correctness is insen-

sitive to element delay; a delay-insensitive circuit is a circuit of which the correctness 

is insensitive to both element delay and wire delay. 

1.2 Verifying Asynchronous Systems with CCS 

1.2.1 Formal Verification of Asynchronous Circuits 

Formal verification of asynchronous circuits proves that an implementation meets a 

specification of its intended behavior (for all acceptable inputs) by using some formal 

reasoning frameworks. It not only checks whether an implementation conforms to 

its corresponding specification, but also verifies consequences of specifications such 

as deadlock, livelock, safety and liveness which should be possessed by a design. 

Informally, 

• deadlock means a system may evolve into a state from which no further action 

is possible. 

• livelock means that a system may get into an internal loop and make no further 

progress (accept no further input signals and emit no further output signals). 

• a safety property means that nothing bad will happen when a system operates, 

e.g. there may never be more than one bus master. 

• a liveness property means that something good will eventually happen when a 

system operates, e.g. a processor completes each instruction in finite time. 
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If a specification doesn't have these desired properties, it is pointless to imple-

ment it. Modifications should be made on the specification before embarking on 

implementation until satisfactory results have been achieved. 

Formal verification for asynchronous design is being developed as an alternative 

to simulation. According to the reasoning framework used, there are two general ap-

proaches to the formal verification of asynchronous design. One is to take an existing 

general-type reasoning framework which is powerful enough to model the behavior 

of asynchronous circuits, and use it to construct proofs for correctness. For example, 

being originally a framework to express and reason mathematics, High Order Logic 

and its associated proof system HOL [Gor88] are well-used in the verification of hard-

ware systems [Joy88, BGS+90]. An alternative approach is to develop a special-type 

reasoning framework for the area of interest. Examples of this are process algebras 

such as CSP and CCS developed by Hoare [Hoa85] and Milner [Mi189] respectively 

for describing and reasoning about concurrent systems. 

This thesis will focus on the application of CCS to the formal verification of 

asynchronous designs. GUS maps well onto delay insensitive asynchronous design 

and has some mechanized support as well.' 

1.2.2 Appropriateness of CCS 

GUS (Calculus of Communicating Systems) is a process algebra for describing and 

reasoning about concurrent systems developed by Milner [Mil89]. In GUS, a con-

current system is described as a collection of interacting processes which sometimes 

proceed on their own and sometimes need to synchronize with others before they can 

carry on. GUS provides well-defined syntax and semantics for specifying processes, 
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together with a set of laws for reasoning about these processes and how they com-

municate with each other. The Concurrency Workbench (CWB) [Mol91] is a tool 

supporting CCS which provides a very powerful model checker to verify whether a 

system behaves as expected by using Hennessy-Milner Logic (HML) [HM8O, 11M85] 

and the modal p-calculus [Koz83]. Thus, once a concurrent system is specified in 

CCS, it becomes possible to reason about its processes and verify the system to be 

correct. 

The purpose of using CCS and CWB in the verification of asynchronous circuit 

design is to put the building of asynchronous circuits on a firm formal basis. The 

key advantage of CCS/CWB is that we can investigate the consequences of a de-

sign specification before embarking upon an implementation. Provided with suitable 

propositions based upon modal p-calculus, the CWB model checker can be used to 

check the important characteristics of a concurrent system, such as deadlock free, 

livelock free, safety and liveness. Compared with the normal practice of circuit sim-

ulation, verification results proved by the CCS/CWB hold over all input sequences, 

while circuit simulation results are only valid for limited testing sequences. 

The thesis concentrates upon this aspect of formal verification. We show how to: 

1. give parallel specifications to complicated asynchronous systems 

2. develop a number of useful macros for testing the consequences of specifications 

3. apply them to a range of asynchronous designs 

Based upon the agreed specification and the chosen implementation, CCS/CWB 

may then be applied to see whether this implementation faithfully conforms to the 
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specification. The implementation should be equivalent to its corresponding spec-

ification. If so it will hold all the properties held by the specification, and we can 

replace the cumbersome implementation by a compact specification when reasoning 

further up the hierarchy. The equivalence checking is. not included in this thesis 

because when building designs by composition, we have to show that each element is 

fitted into an environment which respects its delay insensitivity. This checking is not 

directly supported by the CWB and proving equivalence by hand is very painstaking, 

time consuming and tedious. Its automation seems to be a suitable PhD topic. 

1.3 Structure of the Thesis 

This thesis is structured as follows: 

Chapter 2 describes the COS notation and the Concurrency workbench (CWB). 

The syntax and semantics of COS are described with examples. The main types of 

agent equivalence in COS are covered. A mechanized style of specifying and testing 

COS agents in the CWB is developed with examples. The limitations of COS are 

investigated. 

Chapter 3 describes the tools available for testing the consequences of a COS spec-

ification in CWB, which are Hennessy-Milner Logic (HML) and the modal 14-calculus. 

Useful, general-purpose macros for hardware verification are proposed, based upon 

the modal It-calculus. 

Chapter 4 gives the COS specification of a cell set for self-timed design. The 

CWB testing results are also given. 

Chapter 5 develops a methodology for applying CCS/CWB to the design and test 
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of specifications of asynchronous circuits. The examples have been chosen to cover 

a reasonable design spectrum: Sutherland's micropipeline and Ebergen's stack are 

flow-through architectures, Martin's distributed arbiter is a token ring, Brunvand's 

adder module is the basis of a self-timed ALTJ, and Sutherland's Move Machine is a 

tiny yet useful processor. 

Finally, Chapter 6 summarizes the thesis work and gives suggestions for further 

work. 

1.4 Contributions of the Thesis 

Although there are several examples of CCS applied to asynchronous systems [Bre9O, 

BA91, LM86, Par85b, Par85a], this thesis relates one of the first attempts to apply 

the CCS process algebra to asynchronous hardware description. CCS is used to write 

parallel specifications of asynchronous hardware and the CWB is used to test the 

consequences of these specifications. CCS/CWB has proved to be a nice tool because 

of its succinctness, scalability and equational reasoning capability. 

The work in this thesis is perhaps the first serious application of process logics 

to test hardware specifications. Useful macros based upon modal u-calculus and 

especially tailored for hardware verification are proposed to reason about the conse-

quences of asynchronous designs expressed in CCS. The automated model checking 

tool embedded in the CWB has proved to be very powerful and practical since spec-

ifications can be tested thoroughly before embarking on implementations. 



Chapter 2 

CCS Notation and Support Tools 

In this chapter, the CCS notation and CWB support tool are described with exam-

ples. The CCS syntax and semantics are explained first, followed by various notions 

of process equivalence in CCS. Examples of using the CWB are also given. Finally, 

the limitations of CCS are discussed. 

2.1 Syntax and Semantics of CCS 

In CCS, systems are described in terms of agents. An agent (or process) is a system 

whose behavior consists of interleaved, discrete actions. An agent may perform zero, 

one, or any number of sequential actions. More complex agents may be described as 

compositions of smaller agents executing in parallel. 

Associated with each CCS agent is a set of visible actions called its sort through 

which it interacts with its environment (informally, its i/o ports). Compound agents 

will usually have purely internal communication lines which are hidden (not visible). 

Agents may evolve in two ways: 

1. by a single visible interaction with the environment, 

2. by an invisible, internal handshake (a simultaneous communication between 

two agents with one agent performing an output action on a hidden line and 

the other performing a complementary input action on the same hidden line 

simultaneously). 

11 
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The semantics supported by CCS is interleaved and not fully parallel. 

2.1.1 Syntax of CCS 

E ::= 

where 

Nil 
A constant 

prefix 

E1 + E2 + ... + En summation 
E1 IE2I ... IEn composition 
E \ L restriction 
E [ f I relabeling 

A € Const, some fixed infinite set of agent constants, 

a E Act, the set of actions, 

L is a subset of Names, and 

f is a relabeling function. 

2.1.2 Semantics of CCS 

We give a semantics for CCS by induction over the structure of agent expressions. 

. Nil. Nil represents a process which can do nothing. There is no rule for Nil 

since it cannot evolve. 

• Constant definition. The behaviour of the defined agent A (A '( E) is that 

of its definition E as expressed by the rule Con: 
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Con E-4E' 

A -04 

• Prefix. If c is an action and P2 an agent then a.E is an agent which is capable 

of performing action c and then behaving as the agent E. This is expressed by 

the rule Act: 

Act 

• Summation. If 17!1 and E2 are agents, then P21 + E2 is an agent which non-

deterministically behaves either like P21 or like E2. This is expressed by the 

rules Sum1 and Sum2: 

Sum1 E1 - 04 E Sum2 E2 - E 

E1+E2 -Eç E1+E24E 

• Composition. If F1 and E2 are agents, then F1 I E2 is an agent whose 

behaviour is such that each of F1 and E2 may act independently of the other. 

This is expressed by the rules Corn1, Corn2: 
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c / c Corn1 - Corn2 E2 —* 

E1IE2 - EIE2 E1IE2 4 E1IE 

E1 and E2 may also together engage in a communication whenever they are 

able to perform tomplementary output and input actions. This is expressed 

by the rule Corn3: 

Corn3 E1- E E2- E  

E1IE2 -- EIE 

The r-action introduced in. Corn3 represents the occurrence of a communica-

tion event between two agents internally with no externally-visible effect. This 

internal communication is synchronized by one agent producing an output ac-

tion while the other agent produces a complementary input action. 

• Restriction. If E is an agent and L is a set of labels, then E \ L is an agent 

which behaves like E except that it cannot perform any of the actions (as well 

as the corresponding complementary actions) lying in £ externally, although 

each pair of these complementary actions can be performed for communication 

internally. This is expressed by the rule Res: 

• a / — Res E —* E (a)aL) 

E \ L —* E' \ L 

• Relabeling. If E is an agent and f is a relabeling function, then E[f] is an 

agent which behaves like E except that the labels are relabeled as specified by 

the function f. This is expressed by the rule Rel: 
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Rel E—a E 

f(a)  E[f] E/[f] 

The above GUS operators have decreasing binding power in the following order: 

Restriction and Relabeling > Prefix > Composition > Summation 

With these operators, processes can be described succinctly: 

Example 1: 

Match ' ef  strike .Nil 

This example describes the behaviour of a match which is initially capable 

of performing the action strike. Thereafter, no further activity can be 

engaged in since it evolves into the agent Nil. 

Example 2: 

Clock I tick. Clock 

Explicit recursive definition is used to describe the behaviour of a clock 

which ticks forever by repeatedly substituting the defining expression 

tick. Clock for Clock in the left hand side. 

Example 3: 

dg a.b.'z.0 + b.a.'z.0 
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This example uses the summation operator to show the non-deterministic 

choice between two possible action sequences of a C-element. The C-

element is a widely used cell in asynchronous circuit design which serves 

as the AND function for events. Upon receiving a transition on a, the 

C-element evolves into the agent b.'z. C; upon receiving a transition on 

the C-element evolves into the agent a.'z. C. But if the C-element receives 

a transition on both a and on b, it evolves into one of the above agents 

non-deterministically. 

Example : 

Scm 

U' 

U 

System 

'g.p.Sem 

ncs1.g.csl.p. Ui 

nsc2.g.cs2.'p. U2 

(Scm I Ui I U2) \ {g,p} 

This example uses the composition operator and the restriction operator 

to describe the competition between two users for one resource. The 

resource is protected by semaphore Scm under the competition amongst 

several users (two users here). Each user has a cyclic behaviour of a 

non-critical section ncs (not using the resource), and a critical section cs 

(using the resource). The winning user has sole access to the resource 

during its corresponding critical section named as cs1 or cs2 respectively. 

This is guaranteed by the users following the protocol: 

1. receiving a g request to compete for the semaphore before entering 

the critical section; and 
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2. producing a 'p acknowledge to release the semaphore when the crit-

ical section has been completed. 

Here, by restricting Sem I Ui I U2 with the set {g,p}, all the labels in 

this set and also their complementary labels are externally inaccessible. 

We note here that CCS does not broadcast; only one of the two users can 

gain the semaphore during one recursive Scm cycle: 

1 
—4 

T 
OR 

( 
( 
( 

'g.p.Sem I g.csi.'p.Ui I g.cs.'p.U2 
p.5cm I csi.'p.Ui I g.cs2.'p.U2 
p.Sem I g.cs1.'p.Ui I cs2.'p.U2 

Thus, this system evolves by interleaving, one of its many possible action 

sequences is listed as follows: 

Scm 

'g.p.Sem 

'g.p.Sem 

p.Sem 

p.5cm 

p.5cm 

Scm 
'g.p.Scm 

p.5cm 

U1 

ncs1 . g.cs1.'p. Ui 

.g.cs1.'p. Ui 

cs1.'p. Ui 

csi.'p. Ul 

P. U1 
U1 

ncs1 . g.cs1.'p. Ui 
ncs1 . g.csj.'p. U1 

2.2 Equivalence of Processes 

U2 ) Vg' PI 

ncs2.g.cs2.'p.U2 ) \19,P} 
ncs2.g.cs2.'p.U2 ) \19,P} 
ncs2.g.cs2.'p.U2 ) \19,P} 

g.cs2.'p.U2 ) \{g, p} 

g.cs2.'p.U2 ) \{g, p} 

g.cs2.'p.U2 ) \{g, p} 
g.cs2.'p.U2 ) \{g, p} 

cs2.'p.U2 ) \{g, p} 

Having described the syntax and semantics of CCS, we next consider the equivalence 

of processes in CCS. This is important since it is the basis for system verification 
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which is basically concerned with checking whether an implementation conforms to 

its specification. 

In CCS, we have four main types of agent equivalence, namely trace equivalence, 

strong equivalence, observation equivalence, and observation congruence. In the follow-

ing sections, we are going to explain all these equivalences one by one, and finally 

reach to the right one for system verification: observation congruence. 

2.2.1 Trace Equivalence ' 

In Trace Equivalence (r.j), two agents are regarded as being equivalent precisely when 

according to the operational semantics they perform the same sequences of actions: 

Given agents P and Q and a sequence .s = <a1, a2, ..., a> of actions, 

we write 

P - Q 

whenever for some agents F1, F2, ..., P,-_1 we have 

112 

We regard agents F and Q as equivalent precisely when for all sequences 

s of actions, for some Q, P -4 Q holds if and only if for some Q', F' -4 

Q' holds. 

However, - t is insufficiently discriminating as it can be seen from the following 

example. 
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Example 5: 

P a.(b.Nil+ c.Nil) 

P1 C a.b.Nil+ a.c.Nil 

P Pr 

I 
b.NIJ. + e.Nil b.Ni]. c.Ni]. 

/ /\q- b 

Nil Nil Ni.3. Ni]. 

Figure 2.1: Trace Equivalence between Agent P and Agent F' 

Traces (F) = {, a, ab, ac } = Traces (F'), so P -'- P' 

Though P F', they have different observable behaviours: 

1. after an a, Preaches a state from which it can do either a b or a c; 

2. after an a, F' reaches one of two states where: 

• it can do a b but not a c; or 

• it can do a c but not a b. 

Hence we do not wish to regard these agents as equivalent. is thus rejected 

as a reasonable equivalence between CCS agents. 
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2.2.2 Strong Equivalence 

In order to define Strong Equivalence (".'), it is necessary to introduce the notion of 

a Strong Bisimulation first. 

A Strong Bisimulation S is a binary relation between two agents satisfying: 

V P:agent Q:agent and c E Act, 

if P 5 Q then: 

1. whenever P - F', then for some Q' 

Q - Q' and P'S Q' 

2. whenever Q - Q', then for some F' 

PZP and P'S Q'. 

Then, Strong Equivalence is defined by: 

P r.i Q iff P 5 Q for some strong bisimulation S 

According to the above definition, if two agents are strongly equivalent, every 

action (including every r-action of one agent) would have to be "matched" by an 

action (or a r-action) of the other agent. Thus, the agents a.Nil and a.r.Nil would 

not be equivalent under this definition. But we would normally wish to regard them 

as equivalent. 

We thus conclude that is not a reasonable equivalence between CCS agents 

either. Though it is useful, it makes too many distinctions. 
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2.2.3 Observation Equivalence 

Similar to the definition of Strong Equivalence, it is necessary to introduce the no-

tion of a Weak Bisimulation first before we can give the definition of Observation 

Equivalence  

A Weak Bisimulation S is a binary relation between two agents satisfying: 

V P:agent Q:agent, and a 

if PS Qthen: 

1. whenever P - F', then for some Q' 

Q' and F' S Q' 

2. whenever P -* F', then for some Q' 

Q()* Q' and P'SQ' 

3. whenever Q - Q', then for some F' 

P (-!* )* )* F' and F' S Q'. 

4. whenever Q - Q', then for some F' 

p()*p and pFS Q' 

Note: )* stands for zero or more T transitions. 

Then, Observation Equivalence is defined by: 

F Q if P S Q for some weak bisimulation S 

Thus, P and Q are observation equivalent if, for every action a, every a-derivative 

of P is observation equivalent to some a-descendant of Q, and similarly with P and 

Q interchanged. 
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is almost a congruence relation of agents, i.e. in most cases, it is possible to 

substitute an agent in a complex system with an observationally equivalent agent 

and thereby obtain an observationally equivalent system. However, this is not always 

the case: 

Example 6: 

B( 

r.a.Nil 

a.Nil 

l.Nil 

Though we have A B, A + C F B + C does not hold. This is because 

that agent A + C may perform a r.action to become a.Nil, but agent 

B + C may not perform any sequence of T-actions to become an agent 

observationally equivalent to a.Nil. 

The above example illustrates that due to the pre-emptive power of r-actions, 

is not a congruence for summation. This leads us to refine slightly to obtain our 

final notion of equivalence of CCS agents: Obsrvation Congruence. 

2.2.4 Observation Congruence = 

The Observation Congruence (=) relation P = Q holds if for all a E Act, 

1. whenever P - F', then for some Q', 

Q (. )* (i. )* QF and F' Q'; 

2. whenever Q - Q', then for some F', 

p ( )* ( )* p/ and F' 



23 

The only difference between = and is that for P = Q, every action even a 

'r-action of F, must be matched by at least one corresponding action of Q, and vice 

versa. In this sense, r.P is generally not = to P. 

According to the above definition, = is a congruence relation of agents, it is a 

fully substitutive equivalence relation. This is the right equivalence we want to have 

between COS agents, and further, for system verification. 

2.3 The Concurrency Workbench 

The Edinburgh Concurrency Workbench (CWB) [Mol91, CPB9O] is an automated 

tool for analyzing concurrent systems expressed in COS. With the CWB, concur-

rent systems can be specified as a hierarchy of subsystems composed of a series of 

COS agents. After the specifications are input, the CWB can be used to check 

the specifications for such properties as sort, sequence, states, deadlock and various 

equivalences. 

It is worth mentioning that the command we use to check equivalence between 

two agents is the Observation Equivalence (eq) instead of Observation Congruence 

(cong). If neither of the agents P and Q can initially perform a r-action and P 

then we have P = Q. 

An agent which cannot initially perform a T-action is called a stable agent and 

whether or not an agent is stable can also be checked in the CWB. If -r-actions are 

not deliberately added, most COS agents are stable agents. Hence we can use eq 

instead of cong in checking equivalence between agents. 
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Example 7.-

Command: bi A 

Agent: t.nil 

Command: bi B 

Agent: nil 

Command: stable 

Agent: A 

**false 

Command: stable 

Agent: B 

**true 

Command: eq 

Agent: A 

Agent: B 

**true 

Command: cong 

Agent: A 

Agent: B 

**false 
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With the additional r-action introduced, agent A is not a stable agent 

like agent B. Thus, though A B, we don't have A = B. 

Example 8: (due to Parrow [Par85a]) 

rec send 

Figure 2.2: Behaviour of Two Simple Communication Protocols 

Sender 

Sender' 

Medium 

Medium' 

Receiver 

def 

def 

del 

def 

def 

rec.'sm.Sender' 

ms.'sm.Sender' + rs.Sender 

Sm. Medium' 

('mr.Medium + r .'ms. Medium) 

mr.'s end.' rs.Receiver 

Protocol 'I (Sender I Medium I Receiver)\ Ism, ms, mr,rs} 
Buffer del= rec. send.Buffer 

• The agent Protocol provides a model of the behaviour of a simple 

communication protocol, which takes into account the possibility 

that a message might be lost during transmission between Sender 

and Receiver. Upon receiving a message with an input event rec, 

Sender transmits it to Medium. Medium may either transmit the 
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message to Receiver, or lose the message (modeled by a -r-action) in 

which case the message needs to be retransmitted. After receiving 

the message, Receiver produces an output event 'send, and then 

sends an acknowledge signal directly to Sender. Only after it is 

acknowledged, may Sender receive another message. 

• The agent Buffer provides a very high level description of the be-

haviour of a communication protocol. 

With the bisimulation technology, we can construct a Weak Bisimulation 

relation between Protocol and Buffer: 

S S 
SI 

'sm.S' 

5, 
SI 

M 
M 
M 
M' 
M 
M 

R )\L, B), 
'rs.R )\L, B), 

R )\L, 'send.B), 
R )\L, 'send.B), 

'send.'rs.R )\L, 'send.B), 
'rs.R )\L, 'send.B), 

where, $ stands for Sender, 5' stands for Sender', M stands 

for Medium, M' stands for Medium', R stands for Receiver, B 

stands for Buffer, and L is defined as {sm, ms, mr,rs}. 

Here, we have established that Protocol and Buffer are Observation Equiv-

alent . Further, we know that both Protocol and Buffer are stable 

agents, thus we have reached that Protocol and Buffer are Observation-

ally Congruent =. All these facts can be proved using the CWB: 
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* On the CWB * 

*********************************************************** 

Command: bi Sender 

Agent: rec. ' sm.Sender' 

Command: bi Sender' 

Agent: ms.'sm.Sender' + rs.Sender 

Command: bi Medium 

Agent: sm.Medium' 

Command: bi Medium' 

Agent: ' mr.Medium + t.'ms.Medium 

Command: bi Receiver 

Agent: mr. ' send. ' rs.Receiver 

Command: bi Protocol 

Agent: ( Sender I Medium I Receiver )\{sm,ms,mr,rs} 

Command: bi Buffer 

Agent: rec. ' send.Buffer 
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Command: sort Protocol 

**{rec, ' send} 

Command: min Protocol 

Save result in identifier: Protocol' 

**Protocol' has 2 states. 

Command: vs 4 Protocol 

**=== rec ' send rec ' send ===> 

Command: eq 

Agent: Protocol 

Agent: Buffer 

**true 

Command: stable 

Agent: Protocol 

**true 

Command: stable 

Agent: Buffer 

**true 

Command: cong 
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Agent: Protocol 

Agent: Buffer 

**true 

The CWB also has a powerful model checker which can be used to check im-

portant characteristics of a concurrent system, such as deadlock free, livelock free, 

safety and liveness based upon the modal n-calculus. This will be discussed in the 

following chapter. 

2.4 Limitations of CCS 

Although the CCS process algebra can be used to specify the structure of concurrent 

systems accurately and succinctly, it is not entirely satisfactory for several reasons: 

1. Functionality is omitted. Note that Miler's text uses value passing CCS but 

this is not supported by the CWB nor by the modal n-calculus. 

2. Individual actions (here we exclude complementary handshake actions!) are 

not allowed to happen simultaneously. 

3. It is incapable of describing timing properties, the probabilities and priorities 

of actions performed by the components of the system being modeled: 

(a) There is no explicit timing in CCS, all actions that can fire will fire in due 

course, but we do not know how long this may take. 

(b) The probability that an action is to be performed is undefined. 
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(c) No priority can be added to control the internal actions performed inside 

a concurrent system. 

Note however that many varieties of COS exist which partially remedy this list 

of defects. Amongst them are (i) the value-passing COS [Bru91a], (ii) the Syn-

chronous Calculus of Communicating Systems (SCCS) [Mil83a] (which makes it pos-

sible to have individual actions happen exactly at the same moment), (iii) the Tem-

poral Calculus of Communicating Systems (TCCS) [MT89] (which can be used to 

model real time processes), (iv) the Weighted Synchronous Calculus of Communicat-

ing Systems (WSCCS) [Tof9Oa, Tof9Ob] (which allows probabilistic branching and 

is being used to formalise discrete event simulations), and (v) Miler's ir-calculus 

[MPW89a, MPW89b, Mil91] (which merges full functionality with the sequencing of 

COS). 

2.5 Summary 

In this chapter we have detailed the syntax and semantics of COS and explained 

various notions of process equivalence. Although COS has its limitations, it is a 

very compact notation with very clear semantics, and an amazing ratio of "range of 

application : size of language". Since this is my first foray into the complex world 

of asynchronous hardware, it was deemed best to tackle a limited range of problems 

with a small and clean tool so as best to understand the real problems and how to 

overcome them. 



Chapter 3 

Process Logics 

In chapter 2, we described some notions of equivalence between CCS agents. With 

the aid of the CWB, we can check whether an implementation conforms to its spec-

ification. But equivalence checking may take a long time if the agents have many 

states. Thus it pays to see whether we can spot any differences between an imple-

mentation and a specification first before we attempt equivalence checking. Process 

logics provide the framework for such an enterprise. Even more importantly, process 

logics can be used to examine specifications for their consequences, e.g. deadlock, 

'livelock, safety and liveness before we embark on implementation. In this chapter, 

we cover the process logics for CCS supported by the CWB, namely Hennessy-Milner 

Logic (HML) and the modal it-calculus, together with examples. 

3.1 Hennessy-Milner Logic 

Hennessy-Milner Logic (HML) is a special type of modal logic, which uses labeled 

transition systems as a model. With HML, we can show whether an agent can carry 

out a certain trace by one move at each state. In this section, we describe HML 

syntax, the satisfaction relation and give some examples on the CWB. 

3.1.1 Syntax of HML 

Labeled transition systems have the form 

31 
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(7', A, { T I a E A}) 

where 

7 is a non-empty set of agents, 

A is an action set, 

T is the set of transition relations, - P >< P for each a E A. 

Example 1: simple vending machine 

del 
V = 1p.little.'collect.V + 2p.big.' collect. V 

ip 

'S72 

little big 

V4 

Figure 3.1: A Simple Vending Machine 
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we have, 

2 t-' {V1,V2,V3,V.} 
A '( { ip, 2p, little, big, ' collect } 

'collect little big 

Let K range over subsets of an action set A, the syntax of HML is defined, 

A::= TI -' A IAA Bl[K]A 

where 

A is a formulae of HML, 

T is the constant true, the only predefined atomic formula in HML, 

-, is the negation of a formula, 

A is the conjunction of two formulae, 

[K ] A means: A holds after every action in K. 
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Other common operators are derived: 

F def -iT F is the constant formula false 

A V B ( -i(-iA A -iB) V is the disjunction of two formulae 

< K > A ( -'[ K]-'A < K>isthedualof[K] 

3.1.2 Satisfaction of HML 

For every formula A of HML, we interpret B = A as meaning "process E E P satisfies 

the property A", and B A as meaning "B fails to have the property A". The 

satisfaction relation = is defined inductively over the structure of HML formulae: 

1.ET V  

2. B = -iA iffEV=A 
3. B = A A B iffBt=AAEJ=B 
4. B [ K]A iffVE'E2,VoEK.ifE-iE' then E'I=A 

For the derived operators, we have, 

5.E=F iffBT 
6. B H AVB iffEAVEIB 

7. B H < K>A ifFaE'EP,2aE IC. E-E' and E'I=A 

Their interpretations are: 

1. Every process in P has the property T. 

2. A process has property -'A when it fails to have property A. 

3. A process has property A A B when it has both property A and 

property B. 
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4. A process satisfies [ K ] A if after every performance of any action 

in If, all the resulting processes have property A 

5. Every process fails to have property T. 

6. A process has property A V B when it has either property A or 

property B. 

7. A process satisfies < K> A if it is possible to perform an action in 

K such that the resulting process has property A. 

Given the HML satisfaction relations, we can prove whether an agent has some 

desired properties by the deduction rules. 

Example 2: 

A 

B 

B 

def 

def 

del 

a.(b.Nil+ c.Nil) 

a.b.Nil+ a.e.Nil 

<a>(<b>TA<e>T) 

As mentioned in chapter 2, although agents A and B have the same trace, 

they are not considered to be equivalent OCS agents. We now show the 

difference by proving A = B but B K B. 
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A 1= <a>(b>T /\ <c>T) 

a 
A—ø-b.nil + c. nil 

b.nil + c.n12. 1= cb>T /\ <c>T 

b.nil + c.nil 1= <b>T b.nil + c.nil 1= <c>T 

b.nil + c.n -Lxiii b.ni]. + c.nil-2--nil 

xiii = T nil 1= T 

Figure 3.2: Proof of A = < a >(< b >T A < c >T) 

B 1= <a>(b>T /\ <c>T) 

a 
B-- b. nil or a 1--  c.nil 

b.nil 1= b>T /\ <c>T c.nil I= -:Ib>T /\ <c>T 

b . / N c b / N . c 
b.nil—i. nil / and\._A /, / and'\. c.nil—.-nil 

nil 1= T nil 1= T 

Figure 3.3: Proof of B < a >(< b >T A < c >T) 
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3.1.3 Expressing Properties in HML 

Using the satisfaction relation, we can show whether an agent can carry out a certain 

trace one move at a time. This is realised by expressing agent properties at a certain 

state in HML and checking for correctness using the HML satisfaction. Several useful 

formulae for expressing agent properties and their interpretations are listed below: 

E = [ a ] F E cannot do an a action 
E = < a> T it is possible for Eto do an a action 

E 1= [ - ] F E cannot do any action (it is deadlocked) 
E = < — > T Ecan do some action (it is live) 
E = < — > TA [—a]F E can doan a action and nothing else 
E <— a> < b> T Ecandoanon- aactiontbenabaction 
E 1= [a] < b> T after all a actions from E, one can do a b action 

E = [a] T always true 
E < a> F always false 

As an example of using HML, we show how the properties of the simple vending 

machine (see Example 1) are tested automatically in the workbench. 

Example 3: V '1 1p.liUle.'collect.V + 2p.big.'collect.V 

Notice that on the CWB, V is written 1, and A is written &. 

* On the CWB * 

*********************************************************** 

-- It is possible for V to do a 2p move. 

Command: cp V 

Propositions: <2p>T 
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**true 

-- The only possible move after all 2p action is a big. 

Command: cp V 

Propositions: [2p](<->T & [-big]F) 

**true 

-- Initially, neither big nor little is possible for V. 

Command: cp V 

Propositions: [big, little]F 

**true 

-- After all ip or 2p actions, a ip move is impossible. 

Command: cp V 

Propositions: [ip , 2p] < lp>T 

**false 

Starting from its initial state, the third move for V 

can only be a ' collect. 

Command: cp V 

Propositions: <->T & [-](<->T & [-](<->T & [-' collect]F)) 

**true 
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Actually, there are two modal logics for OCS associated with the two transitions 

defined in conjunction with the strong and weak bisimulation. If -r-actions are to 

be accounted for (strong equivalence), the associated modalities are as mentioned 

above; if T-actions are to be ignored (weak equivalence), the associated modalities 

are expressed as [[]] and << >>. We show this using one of the examples discussed 

in chapter 2. 

Example 4: 

Scm 

Ui 

U2 

System 

* 

def 

dcl 

dcl 

del 

'g.p.Sem 

ncs1.g.cs1.'p. Ui 

nsc2.g.cs2.'p. U 

(Scm I Ui I U.$) \ {g,p} 

On the CWB * 

-- When tau-actions are taken into account, it is impossible 

-- for System to do a csl immediately after all nscl moves. 

Command: cp System 

Proposition: [ncsl] <csl>T 

**false 

-- When tau-actions are ignored, it is possible to do a csl 

-- immediately after all nscl moves. 
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Command: cp System 

Proposition: [ncslj <<csl>>T 

**true 

3.2 Modal ft-calculus 

HML is used to check whether an agent can carry out a certain trace by "asking 

questions one move at a time". It is suitable for checking the properties of simple 

agents with straight line or tree-like behaviors as shown in Figure 3.4. 

Figure 3.4: Simple Agent 

I 
/ 
/ 
/ 
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Unfortunately, interesting agents usually have loops or iterations (as shown in 

Figure 3.5). 

Figure 3.5: Agent with Loops between States 

Here are some typical "threads" or paths of states of this agent starting from 

agent Si. 

. Self iteration, such as (Si .-) 53 -* S3 

Iteration on a thread, such as S - p 52 - p 5 -+ S2 .. or S. - 53 - S -4 S3 

• Deadlock at the end of a thread, such as (S1 -+) 82 -+ nil. 

Interesting propositions associated with recursive agents are inevitably them-

selves recursive and cannot be handled by HML. Fortunately, by adding just one 

construct (fix point definition) to HML, we get the modal 4-calculus [Koz83, SW9l] 

which does permit recursive propositions: 

A ::= TI -iA I Al  A2 I [ K ] A Ifix(X.A) 
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3.2.1 Raw Modal -calculus 

The behaviour of the vending machine V (figure 3.1) is cyclic (every third action is 

a 'collect) and goes on forever. Clearly 

V 1= <->< -><' collect > T 

V = <->< -><' collect >< - >< - ><' collect > T 

V = <->< -><' collect >< - >< - ><' collect>< - >< - ><' collect > T 

which suggests that V satisfies the equation 

V = <—><—><' collect > V,or 

V = fix (V.<—><—><' collect > V) 

This is an example of a fix point equation. In general, fix point equations may have 

no solutions (X = -IX) or several solutions. There is a simple syntactic check for 

the existence of at least one solution: 

There will always be at least one solution provided that each fix point 

variable is within the scope of an even number of negations. 
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Example 5: fix points 

Consider the simple system specified below in Figure 3.6. 

Figure 3.6: Fix Point Example 

The system has 4 states (A1, A2, A3, A4), 5 labels (x, , a, b, c, d) and the following 

transition relations: 

Relations : ( Al, x, A2 ) 
(A2,a,A3) 
(A2,b,A4) 
(A3,c,A3) 
(A4) d,A4) 

1. [—JA. We interpret [—]A over a labelled transition system by looking in the 

relations for each X such that (X, -) A) and EVERY action from X leads into 

A. In this case, 
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[—]A1 = 0 
[—]A2 = A1 
[—]A3 = A3 
[—]A4 = A4 

2. <—> A. We interpret < - > A by looking in the relations for each X such that 

(X) -, A) and SOME action from X leads into A. 

<—>A1 = 0 
= A1 

<—>A3 = A2,A3 
<—>A4 = A2, A4 

As an example, the fix points of Y = [—]Yv <x > T are 

Y={A1} 

Y = Al) A3  
Y = {A1) A4  
Y = {A1,A2,A3,A4} 

min fix point 

max fix point 

Since an equation may have several fix points, natural questions to ask are: Which 

are of most interest? to which the answer is: 

• the maximum fix point which includes everything except that which is neces-

sarily false. It is used to express safety. 

• the mini mum fixpoint which includes only that which is necessarily true. It 

is used to express liveness. 

and How do we find them? The algorithms for finding minimum and maximum 

fix-points are easy to explain: 
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Minimum fix point of Y = FY 

1. start with Yo = 0 

2. compute Y1 = F Y0 

3. compute Yk+1 = F Yk 

4. until Yk+1 = Yk (= y the min fp of F) 

E.g. min(Y. <d>T V <->Y) 

< d > T 

Yo=0 
={A4} U  ={ A4 } 
= {A4} U {A2,A4} = {A2,A4} 
= {A4} U {A1,A2,A4} = {A1,A2,A4 } 
= {A4} U {A1,A2,A4} = {A1,A2,A4 } 

STOP 

Maximum fix point of Z = GZ 

1. start with Z0 = 2, the set of all states 

2. compute Z1 = G Zo 

3. compute Zk+1 = G Zk 

4. until Zk+1 = Z1ç. (= Z the max fp of G) 

E.g. max(Z. [d]F A [-] Z) is given as: 
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[d]F [—]Zk 

Z0 = {A1,A2,A3,A4} 
= {A1,A2,A3} fl {A1,A3,A4} = A,, A3  
= {A1,A2,A3} fl {A3} = {A3} 
= {A1,A2,A3} fl {A3} = {A3} 

STOP 

Interestingly enough, these extremal fix points are related: if Y is the min fix point of 

Fy, and Z is the max fix point of ,F(--iy) (the dual of Fy), then I I Y 11= 1'— I I Z 11. 

Above, we have shown that 

hence 

min FY = 

max GZ = 

<d>Tv<—>Y is {A1,A2,A4} 
[d]FA[—]Z is {A3} 

-'(< d > TV < —> (-'Z)) 

[d]F A [—]Z 
GZ 

IIYIl={A1,A2,A4}=7'-{A3}= 2- IIZII 

3.2.2 A Collection of Macros 

Here are some properties of the vending machine expressed in raw modal-It: 

** it is possible never to do a big 

Command: cp V 

Proposition: max(Z . <-big>Z) 

**true 
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** it is always possible to do a big now and in the future 

Command: cp V 

Proposition: min(Z . <big>T I <->Z) 

**true 

** when a coin is inserted a ' collect must eventually happen 

Command: cp V 

Proposition: 

iva.x(Z.[lp,2p](min(Y. ONLY ' collect I [-' collect]Y)) & C-] Z) 

**true 

As can be seen, propositions expressed in the raw modal -calculus can be very 

hard to read. Further we often need to describe "properties within properties" which 

require nested fix point equations. But the modal u-calculus is a very expressive logic 

and it has been shown that all the the provenly-useful temporal logic operators can 

be expressed within it [Dam9O]. These operators are considerably more intuitively 

understandable than their raw modal jt equivalents. We therefore choose to present 

our arguments in terms of selected temporal operators. 

Following Manna and Pnueli [MP92], two basic properties that we want are: 

• P holds on every state reachable from state S. This is expressed by S I= 0 P 

(read as "box P" or "always P"). 

For example, referring to Figure 3.4, S 0 live states that not all the states 

reachable from S1 are live. 
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• P holds on at least one thread from state S. This is expressed by S 1= 0 P 

(read as "diamond P" or "possible P"). 

For example, S = 0 deadlock states that it is possible to get deadlock on at 

least one thread from 5,. 

We can combine these operators in two useful ways:' 

• It is always possible to do P. Informally, if we don't do it this time, we might 

do it next time (when we loop back). This is expressed by S = 0 0 P. 

For example, 5, 1= 0 0 deadlock states that starting from 8, wherever we move 

to, it is possible to deadlock (reach the state nil). 

• It is possible to reach a set of states where P always holds. Informally, we can 

get possible stability after a warm up. This is expressed by S = 0 0 P. 

For example, S3 = 0 0 deadlock states that starting from S it is possible to 

reach a state (82) from which we can always get deadlock. 

Though 0 (> and 0 0 can be simply constructed with the combination of 0 and 

K> defined above, there are macros which cannot be constructed directly from 0 and 

0. One such useful operator is eventually: EV. Eventual properties are concerned 

with expressing that some desired properties eventually hold whichever thread is 

chosen. S 1= EV P states that either P holds at state S or state S has at least one 

derivative and EV P holds on every derivative. For example, in the simple vending-

machine we have previously mentioned, no matter which thread we take, a 'collect 

happens eventually. 

10 0 = 0 and 0 0 = 0 and so are of no further interest. 
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The differences between 0, 0 and EV are summarized as: 

• S 1= 0 P has P holding at S and at every state reachable from S; 

• S = EV P has P holding at S or on every thread reachable from S; 

• S = 0 P has P holding at S or at one state reachable from S 

In the following sections, we present examples of these basic macros. We close 

this section with their definitions in the modal -calculus and give some other macros 

found to be generally useful. 

Safety Property 

Safety properties are concerned with expressing that some undesirable property can-

not happen. The basic operator is 0. S = 0 P states that P holds on every state 

accessible from S. Usually we use [...]F to state an undesirable property P. 

Example 6: (due to Bradfield and Stirling [BS9O]) 

This is a simple finite state system representing a road crossing a rail-

way, in which train and car represent the approach of a train and a car 

respectively. green is the receipt of a green signal by the train, tcross is 

the train crossing and 'red sets the lights red. up is the gates opening for 

the car, and ccross is the car crossing and 'down closes the gates. 

Rail 

Road 

Signal 

Crossing 

clef 

def 

del 

def 

train. green. tcross.' red. Rail 

car. up. ccross.'down. Road 

'green, red. Signal + ' up. down. Signal 

( Road I Rail I Signal )\{green, red, up, down} 
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A crucial safety property of this system is that it is never possible for a 

ccross immediately after a tcross, and vice versa. 

Command: cp Crossing 

Proposition: BOX ([tcross] [ccross]F) 

**true 

Command: cp Crossing 

Proposition: BOX ([ccrossJ LtcrossjF) 

**true 

Instead, the car or the train should wait for a change of the crossing signal 

controlled by the invisible r- actionswithin this system, hence the above 

claim results in false when weak modality is used in the model checking. 

Command: cp Crossing 

Proposition: BOX ([[tcross]] [[ccross]]F) 

**false 

Command: cp Crossing 

Proposition: BOX ([[ccrossll [[tcross]JF) 

**false 

We can express Conditional Safety (if 0 P holds only under a certain condition 

Q)by 

0(Qo P) 



51 

Example 7: (also due to Bradfield and Stirling [BS9O]) 

The following system represents a process Ticker whose observable be-

havior is to perform a finite number of 'ticks and then stops. But the 

process also has the feature that it may diverge by performing T-actions 

indefinitely. 

Upi 

Downs 

DownO 

Ticker 

def 

def 

def 

def 

r.Up +1 + Down 

'tick.Down_1 

nil 

Up0 

Since we cannot represent an infinite state machine on the CWB, we 

approximate it. Here is a Ticker of a "size 2", 

Command: bi UpO 

Agent: t.Up1 + DownO 

Command: bi Upi 

Agent: t.Up2 + Downi 

Command: bi Up2 

Agent: t.Up2 + Down2 

Command: bi DownO 

Agent: nil 
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Command: bi Downi 

Agent: ' tick.DownO 

Command: bi Down2 

Agent: ' tick. Downi 

Command: bi Ticker 

Agent: UpO 

Though the Ticker may perform r-actions indefinitely, once we reach a 

state where a 'r-action is impossible (after the first 'tick), we can never 

do another r. 

Command: cp Ticker 

Proposition: BOX(EtJF => BOX [t]F) 

**true 

Liveness Property 

Liveness properties are concerned with expressing that a system can possibly "es-

cape". The basic operator is K'. S 1= K P states that P holds oh at least one thread 

accessible from S. For example, 0 <-> T states the possible liveness property of a 

system, and 0 [—]F states the possibility of deadlock in a system 

Command: cp Ticker 

Proposition: POSS <t>T 

**true 
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Command: cp Ticker 

Proposition: PUSS <' tick>T 

**true 

Command: cp Ticker 

Proposition: POSS <->T 

**true 

Command: cp Ticker 

Proposition: PUSS L-IF 

**true 

This is not the standard definition for ' liveness, but is close enough for our pur-

poses in this introduction. Obviously, we can combine 0, K and other operators 

(e.g. - i, A, v) to express more elaborate notions of liveness quite easily. 

With these definitions, the classes of liveness and safety properties are dual. The 

complement of a liveness property is a safety property, and vice versa: 

Response Property 

Response properties are concerned with expressing that some event happens infinitely 

many times. A basic response macro is formed by the operator 0 K. S = 0 0 P 
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states that one can always move to a state from which it is possible for P to hold on 

some following accessible threads. 

For example, in the Crossing system specified above, it is always possible for a 

train or a car to cross. 

Command: cp Crossing 

Proposition: BOX POSS <tcross>T 

**true 

Command: cp Crossing 

Proposition: BOX POSS <ccross>T 

**true 

An alternative form for response property is expressed as: 

0 (QP) 

where P is a guaranteed response to Q. For example, in the Ticker system specified 

above, the claim that if a move is possible (not deadlock) then a 'tick is possible in 

the future is always true. 

Command: cp Ticker 

Proposition: BOX (<->T => POSS <' tick>T) 

**true 

Persistence Property 

Persistence properties are concerned with expressing the possible stabilization of 

some state of a system. It allows an arbitrary delay until the stabilization occurs, 
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but require that once it occurs, it is continuously maintained. A basic persistence 

macro is based upon the operator K> 0. S = K> 0 P states that it is possible to reach 

at least one state from which P holds on every following accessible thread. 

We show this using the modified Ticker system which keeps on generating the 

warning signal 'flash upon receiving an error message. 

Command: bi Ticker-modify 

Agent: Ticker + error.ERR 

Command: bi ERR 

Agent: ' flash.ERR 

Command: cp Ticker 

Proposition: PUSS BOX E-'tickjF 

**true 

In many cases, the stabilization is triggered by a preceding event. This conditional 

persistence property is expressed as: 

o(QK>oP) 

which specifies the eventual stabilization of P is caused by Q. 

Command: cp Ticker-modify 

Proposition: BOX ([' flashiF => PUSS BOX [-' tick]F) 

**true 
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The classes of persistence and response properties are dual. The complement of 

a persistence property is a response property, and vice versa: 

- DKP=D -rP 

-  DP=D- P 

3.2.3 Defining Macros on the CWB 

In the workbench, the basic property macros are defined as follows based upon the 

modal it-calculus: 

Command: bmi BOX P 

Body: max(Z. P & E-JZ) 

Command: bmi POSS P 

Body: min(Z. P I <->Z) 

Command: bmi EV P 

Body: min(Z. P I ([-] Z & <->T)) 

3.2.4 Some Other Useful Macros 

In this section, we list some additional useful property macros from which other 

interesting propositions can be constructed. We will use these macros without further 

ado in the following chapters. 

. Only 

S = Only a states that it is possible to do an a action and no other action. 



57 

Command: bmi ONLY a 

Body: (<a>T Sc E-a]F) 

Hence, the only possible move at state S is performing an a. 

• Only-Then 

S j= Only-Then a P states that the only possible move at state S is performing 

an a, and we move to a state satisfying P after it is performed. 

Command: bmi ONLY-THEN a P 

Body: (ONLY a Sc [alP) 

• Must-Do 

S = Must-Do a states that starting from S we will eventually reach a state 

where a is the only possible move. 

Command: bmi MUST-DO a 

Body: EV (ONLY a) 

Hence, eventually a must happen. 

• Nec-For 

S Nec-For a z states that without a, a z is impossible, hence a is necessary 

for a z. It does not guarantee that after an a is performed, we will definitely 

have a z move. 

Command: bmi NEC-FOR a z 

Body: max(Z. [zJF Sc [-a]Z) 
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We can further extend this macro to Nec-For' defined as: 

Command: bmi NEC-FOR' P z 

Body: max(Z. [z]F Sc [-P]Z) 

where P is an action list which may consist of any number of actions. Nec-For' 

P z states that at least one of the actions in the action list P is necessary for 

producing a z. 

Notice that all the macros listed in this section are based upon the labeled modal 

u-calculus instead of the unlabeled modal it-calculus. Though using sets of labels 

adds nothing to the expressive power of the language, we do achieve flexibility and 

conciseness in expressing interesting properties. 

Example 8: Vending machine revisited 

• The inputs ip and 2p of the vending-machine are mutually exclusive. Once 

ip happens, 2p cannot happen until a 'collect signaling the end of buying a 

chocolate has happened; and vice versa. 

Command: bpi SV 

Proposition: 

max(SV. Elp](ONLY_THEN little (ONLY-THEN ' collect SV)) Sc \ 

[2p](ONLY_THEN big (ONLY-THEN ' collect SV))) 

Command: cp V 
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Proposition: SV 

**true 

• A 'collect must happen: eventually we reach a state where 'collect is the only 

possible move. 

Command: cp V 

Proposition: MUST-DO ' collect 

**true 

• A little is necessary for producing a 'collect after inserting .Lp; and a big is 

necessary for producing a 'collect after inserting 2p. 

Command: cp V 

Proposition: [ip] NEC-FOR little ' collect 

**true 

Command: cp V 

Proposition: [2p] NEC-FOR big ' collect 

**true 

With the unlabeled and labeled property macros defined above, it becomes an 

easy task to construct various property macros rich enough to express the properties 

concerned with testing asynchronous hardware. 
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3.3 Summary 

In this chapter we introduced the HML logic and the modal n-calculus supported by 

the CWB. HML is used to show whether an agent can carry out a certain trace from a 

named state one move at a time. The modal -calculus is used to show the properties 

of recursive CCS agents over all states. After a short introduction to minimum and 

maximum fix points, we presented a number of macros, each written in modal-it, 

which will be used in the rest of this thesis. The macros form a reasonably powerful 

basis for reasoning about hardware specifications, and are much more readable and 

intuitive than raw modal-p expressions. We consider this raising of the level of 

abstraction to be a useful thesis contribution. 



Chapter 4 

Cell Library Specification 

In this chapter we specify a number of small cells which have been suggested as basic 

library components by various researchers [Bru91c, Sut89, Ebe88]. The cells fall into 

three categories: 

1. Trivial control path modules: Merge, C-element, Toggle, Wire and IWire, and 

Fork. 

2. Non-trivial control path modules: Call, Arbiter and Mutual Exclusion, Select 

and Q-Select, and Join and Sequencer. 

3. Data path modules: Enable, Register, Latch and Boolean Register. 

In the following sections, we specify each of these modules in turn and present a 

variety of tests on their specifications. 

61 
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4.1 The Trivial Control Path Modules 

4.1.1 Merge 

a 
Merge 

Figure 4.1: A Merge Module 

Function 

A Merge module serves as the "OR" function for transition signals: a transition on 

either input (a or b) causes a transition on the output ('z), but after a transition 

on a or b, a subsequent input event cannot occur until an output event 'z has been 

generated. 

CCS specification 

Merge = a.'z.Merge + b.'z.Merge 

CWB testing 

Command: sort Merge 

**{a,b, ' z} 

Command: size Merge 

**Merge has 2 states. 

Command: vs 4 Merge 
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**=== a a ' z => 

**=== a 'z b ' z ==> 

**=== b ' z a ' z > 

**=== b ' z b ' z ===> 

Behaviour verification 

1. In its initial state, the Merge module is ready to accept an a or a b, but a 

is impossible. Upon receiving either an a or a b, the module reaches a state 

where it is ready for producing a 'z (both a and b are impossible), and then 

evolves back to its initial state after 'z is produced. 

Command: bpi SMab 

Proposition: max(SMab. [a]SMz & Eb]SMz & [' z]F) 

Command: bpi SMz 

Proposition: max(SMz. [a]F Sc Eb]F Sc [' z]SMab) 

Command: cp MERGE 

Proposition: SMab 

**true 

2. After an input transition, the only possible move is to produce a 'z. 

Command: cp Merge 

Proposition: (Box [a] ( ONLY ' z)) Sc (BOX [b](ONLY ' z)) 

**true 
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4.1.2 C-Element 

a 
C 

Figure 4.2: A C-Element Module 

Function 

A C-Element' serves as the "AND" function for transition signals: only after a 

transition has arrived on both of its inputs (a and b), will a transition be generated 

on the output ('z). 

CCS specification 

C= a.b.'z.C+ b.a."z.0 

This style of specification does not extend well to C-elements with more than two 

inputs. For example, a 3—input C-element would be specified as: 

C3 = a.(b.c.'z.C3 + c.b.'z.C3) + b.(a.c.'z.C3 + c.a.'z.C3) + c.(a.b.'z.C3 + b.a.'z.C3) 

11t is named the Join module in Brunvand's library. 
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The parallel style of specification examplified by 

A 

B 

C 

Z 

C3 

def 

def 

def 

def 

def 

a.'g.p.A 

b.'g.p.B 

c.'g.p. C 

g.g.g!z.'p.'p.'p.Z 

(Al BI C I 2) \ {g,p} 

is to be preferred as it is linear in the number of inputs. 

CWB testing 

Command: sort C 

**{a,b, ' z} 

Command: size C 

**C has 4 states. 

Command: vs 6 C 

**=== a b ' z a b ' z ===> 

**=== a b ' z b a ' z ===> 

**=== b a ' z a b ' z > 

**=== b a ' z b a ' z ===> 

Behaviour verification 

1. In its initial state, the C-Element is ready to accept either an a or a b, but a 

is impossible. Upon receiving an a, it waits for a b before producing a 'z; upon 

receiving a b, it waits for an a before producing a 'z. 
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Command: bpi SCab 

Proposition: max(SCab . La]SCb Sc [b]SCa Sc [' z]F) 

Command: bpi SCa 

Proposition: max(SCa Ea]SCz Sc [b]F Sc E'z]F) 

Command: bpi SCb 

Proposition: max(SCb [aJF Sc [b]SCz Sc L'zJF) 

Command: bpi. SCz 

Proposition: max(SCz EaJF Sc EbJF Sc [' z]SCab) 

Command: cp C 

Proposition: SCab 

**true 

2. After both inputs receive a transition, the only possible move is a 'z. 

Command: cp C 

Proposition: (BOX [a] [b] ( ONLY ' z)) Sc (BOX [b] [a] ( ONLY ' z)) 

**true 
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4.1.3 Toggle 

'zO 
tin Toggle 

Figure 4.3: A Toggle Module 

Function 

A Toggle module routes an input transition (tin) alternatively to its two outputs 

('zo, 'z1). After initialisation, the first input transition will be routed to 'ZO and the 

subsequent input transition will be routed to 'z1. The output that receives the first 

transition starting from the initial state is marked with a dot as shown in Figure 4.3. 

CCS specification 

Toggle = tin.'zo.tin.'z1.Toggle 

CWB testing 

Command: sort Toggle 

**{tin, ' zO, ' zl} 

Command: size Toggle 

**Toggle has 4 states. 

Command: vs 8 Toggle 

**=== tin ' zO tin ' zi tin ' zO tin ' zi => 
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Behaviour verification 

The behaviour of Toggle module is straightforward: starting from its initial state, 

the Toggle module is ready for accepting a tin and producing a then before it 

goes back to its initial state, the Toggle module should wait for another input tin to 

produce a 'z1. 

Command: bpi ST 

Proposition: 

max(ST. [tin](ONLY_THEN ' zO (ONLY-THEN tin (ONLY_THEN ' zi ST)))) 

Command: cp Toggle 

Proposition: ST 

**true 

4.1.4 Wire and IWire 

Wire 

Figure 4.4: Wire (and IWire) Module 

Function 

A Wire module produces an output transition (' z) upon receiving a transition on its 

input. An IWire module fires 'z first before receiving any input transitions and then 

behaves as a Wire. 
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CCS specification 

def / 
Wire = a. z. Wire 

de I Wire f , = z.a.I Wire 

The relationship between Wire and IWire is 

def 
I Wire = , z. Wire 

4.1.5 Fork 

Fork 
'C 

Figure 4.5: A Fork Module 

Function 

A Fork module steers an input transition ( a) to both of its outputs ('b and 'c). 

CCS specification 

def 
Fork = a.('b.'c.Fork + ' c.'b.Fork) 
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4.2 The Non-trivial Control Path Modules 

4.2.1 Call 

ri 

'al 

r2 

'a2 

Call 

Figure 4.6: A Call module 

'rs 

as 

Function 

The transition Call Module implements the hardware equivalent of a subroutine 

call. After a transition on either of the two request lines ri or r2, the Call module 

starts a subroutine process with the 'rs signal. When the subprocess completes and 

acknowledges with as, the Call module acknowledges the appropriate client on 'al 

or 'a2. A full request- acknowledge transaction must be completed before either side 

may request again and the input request signals must be mutually exclusive. 

CCS specification 

Call = rl.'rs. as.'al. Call + r2.'rs. as.'a2. Call 

CWB testing 

Command: sort Call 

**{as,rl,r2,'al,'a2,'rs} 
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Command: size Call 

**CALL has 7 states. 

Command: vs 8 CALL 

** ri ' rs as ' al ri ' rs as ' al ===> 

**=== ri ' rs as ' al r2 ' rs as ' a2 > 

**== r2 ' rs as ' a2 ri ' rs as ' al > 

** r2 ' rs as ' a2 r2 ' rs as ' a2 ===> 

Behaviour verification 

1. The input requests ri and r2 of the Call module are mutually exclusive. Once 

ri happens, r2 cannot happen until the corresponding done event 'al has been 

generated; once r2 happens, ri cannot happen until the corresponding done 

event W has been generated. 

Command: bpi SCall 

Proposition: 

max(SCall. \ 

[nj (ONLY_THEN ' rs (ONLY_THEN as (ONLY_THEN ' al SCall))) & \ 

[r2](ONLY_THEN ' rs (ONLY_THEN as (ONLY_THEN ' a2 SCALL)))) 

Command: cp Call 

Proposition: SCall 

**true 

2. The input requests vi and v2 of the Call module are mutually exclusive. 
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Command: cp Call 

Proposition: (BOX [ri] [r2] F) Sc (Box [r2] [r1]F) 

**true 

4.2.2 Arbiter and Mutual Exclusion 

ri  0. 

dl 

r2 

d2 

Arbiter 

'gl 

g2 

Figure 4.7: An Arbiter Module 

Function 

A two-way transition Arbiter (RGD arbiter) guarantees the mutually exclusive access 

to a resource of two independent users. If only one of the users' requests ('r1 or 

access is granted promptly ('gi or 'g2). If both users request, the Arbiter will grant 

access to only one of the two users. Whichever user receives the grant enters its 

critical section, and tells the Arbiter after desired actions have been performed by 

the done-transition (d1 or d2) which allows the Arbiter to grant access to the next 

requester. 

CCS specification 

The specification of arbiter module is a typical parallel specification. Two users 

contend for one resource, but the access is only granted to one of the two users. This 
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is guaranteed by an agent Scm: 

U1 
def 

def 
Sem = 

U2 
def 

r1. 

r2. 

'gi.d1. 4. U1 

I 2 
92. d2 - 4. 

Scm 

U2 

Once 4 is captured by one of this two users, 4 can only be returned by the same 

user in one Scm cycle. 

Formally in COS we have, 

U1 

U2 

Scm 

Arbiter 

L14  

del 

dcl 

del 

CWB testing 

Command: sort Arbiter 

**{dl,d2,rl,r2, ' gi, ' g2} 

ri.g.'g1.d1.'p. U1 

r2.g.'g2.d2.'p. U2 

'g.p.Sem 

(Ui IU2 ISem)\{g,p} 

Command: min Arbiter 

Save result in identifier: A' 

**A' has 12 states. 
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Command: pi A' 

A' = A'O 

where A'O = rl.A'12 + rl.A'2 + r2.A'6 + r2.A'13 

and A'lO = 'g2.A'11 

and A'll = d2.A'2 + d2.A'12 

and A'12 = t.A'2 + r2.A'7 + r2.A'8 + r2.A'lO + 'gl.A'3 

and A'13 = rl.A'lO +' g2.A'14 

and A'14 = d2,A'O + rl.A'll 

and A'2 = r2.A'8 +' gl.A'3 

and A'3 = dl.A'O + r2.A'9 

and A'6 = t.A'13 + rl.A'7 + rl.A'8 + rl.A'lO + 'g2.A'14 

and A'7 = t.A'8 + t.A'lO +' gl.A'9 +' g2.A'11 

and A'8 = 'gl.A'9 

and A'9 = dl.A'G + dl.A'13 

end 

From the above CWB testing on the Arbiter module, the benefits of parallel 

specification are clear compared with developing a specification state by state (A'). 

The latter is tedious and error prone (with much bookkeeping due to the large number 

of possible states) and becomes exponentially worse as the number of users of the 

Arbiter increases. 

Command: vs 4 A' 

ri r2 ' gi dl => 
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rl ' gi dl rl > 

rl ' gi dl r2 > 

rl ' gi r2 dl ===> 

rl r2 ' g2 d2 ===> 

r2 rl ' g2 d2 > 

r2 ' g2 d2 rl ===> 

r2 ' g2 d2 r2 > 

r2 ' g2 rl d2 > 

r2 rl ' gl dl ===> 

Behaviour Verification 

1. Requests from users may overlap. 

Command: cp Arbiter' 

Proposition: (Box Cr1] [r2]F) I (BOX Cr2] [rl]F) 

**false 

2. But once a request is granted, it is necessary for the corresponding done-

transition to be produced before another grant is allowed. For example, if 

the request from r1 is granted ('gi), neither 'g nor can happen before d1 is 

produced. 

Command: cp Arbiter' 

Proposition: [' gl]((NEC_FOR dl ' g1) & (NEC-FOR dl ' g2)) 

**true 
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Mutual Exclusion 

A Mutual Exclusion module grants permission ('g or 112) to one of the two users 

competing for a resource (ri and r2). It can be viewed as a simpler version of the 

arbiter module, with the difference that it resets the request line to its initial state 

after permission is granted (Return-to-Zero Signalling). 

It is specified as: 

ri 

r2 

Mutual 
Exclusion 

gi 

'g2 

Figure 4.8: A Mutual Exclusion Module 

U' 

U2 

Se?n 

ME 

def 

def 

def 

def 

r,.g.'g, . r,'g1.'p. U, 

r2.g.g2.r2.g2.p. U2 

'g.p.Sem 

(U,I U2lSem)\{g,p} 
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4.2.3 Select and Q-Select 

'zO 
tin Select 

I 
sel 

Figure 4.9: A Select Module 

zL 

Function 

A two-way transition Select module steers an input transition tin to either of its two 

outputs ('Zti,'Zi) depending on the value of a boolean data signal (sel). This Boolean 

data signal must be valid from before a transition occurs on the input until after a 

transition is generated at one of the outputs. 

A Q-Select module (as shown in Figure 4.10) has the same function as that of 

the Select module except that it is delay-insensitive: there is no bundling constraint 

on sel. Thus transition on sd might happen after the input request tin has occurred 

but before an event on one of the outputs has been produced. A special circuit must 

be used to sample the changing of sci so that output is produced according to the 

sampled value on sel. 
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'zO 
tin QSelect 

1L 
sel 

Figure 4.10: A Q-Select Module 

CCS specification of Select 

Select0 del = sel.Select1 + ten. z0.Sclect0 

Select1 dcl = sel.Selcct0 + tzn./ z1.5e1ect1 

Select - Select0 

CCS specification of Q-Select 

QSelecto 

QSelect1 

TIN 

QSelect 

def 

dcl 

del 

del 

sd. QSelecti + 'zero. outzero. QSelecto 

sd. QSelecto + 'orte.outone. QSelect1 

tin,. (zero! Z .' outzero. TIN + on,e.'z1 .' outone. TIN) 

( QSelecto I TIN) \ { zero, one, outzero,,outome} 

CWB testing 

Command: ort Select 

**{sel,tin, ' zO, ' zl} 

Command: sort QSelect 
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**{sel,tin, ' zO, ' zl} 

Command: size Select 

**Select has 4 states. 

Command: min QSelect 

Save result in identifier: QSelect' 

**QSelect' has 6 states. 

Command: vs 

sel sel 

sel sel 

sel sel 

sel tin 

sel tin 

tin ' zO 

tin ' zO 

tin ' zO 

4 Select 

sel sel ===> 

sel tin > 

tin ' zO > 

'zi sel ===> 

'zi tin ===> 

sel sel ===> 

sel tin ==> 

tin ' zO > 

Command: vs 4 QSelect' 

sel sel sel sel > 

sel sel sel tin > 

sel sel tin ' zO > 

sel sel tin sel > 
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sel tin ' zi sel > 

sel tin ' zi tin ==> 

sel tin sel ' zO > 

sel tin sel sel > 

tin ' zO sel sel > 

tin ' zO sel tin > 

tin ' zO tin ' zO > 

tin ' zO tin sel > 

tin se]. ' zi sel > 

tin sel ' zi tin > 

tin sel sel ' zO > 

tin sel sel sel ===> 

Behaviour verification 

1. Initially, the Boolean data signal sel is 0. The Select module is ready to either 

accept a transition on sel and evolve into a new state where the Boolean data 

signal .sel is ./, or accept a tin to produce a 'z0 before a sel can happen. When 

the Boolean data signal sel is 1, the Select module may accept a transition on 

sel and evolve back into the state where the Boolean data signal sel is 0, or 

accept a tin to produce a 'z1 before a sel can happen. 

Command: bpi SSO 

Proposition: max(SSO. EseliSSi Sc [tin](ONLY_THEN ' zO SSO)) 

Command: bpi SS1 
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Proposition: max(SS1. [sel]SSO Sc [tin](OI'ILY_THEN ' zi SS1)) 

Command: cp Select 

Proposition: SSO 

**true 

2. No matter whether the Select module is in state Select0 or in state Select1, once 

an input transition tin happens, a corresponding output must occur before the 

boolean data signal sel can change its logic state. 

Command: cp SelectO 

Proposition: Etinj(NEC_FOR ' zO sel) 

**true 

Command: cp Selecti 

Proposition: [tinj(NEC_FOR ' zi sel) 

**true 

3. We here show how a Q-Select module differs from a Select module: a transition 

on sel immediately after a tin is possible in the Q-Select, but impossible in the 

Select. 

Command: cp QSelect 

Proposition: BOX ([tin]<sel>T) 

**true 
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Command: cp Select 

Proposition: BOX ([tin]<sel>T) 

**false 

4.2.4 2- by-1 Join and Sequencer 

n 

al 

a2 
Join 

'bi 

'b2 

Figure 4.11: A 2-by-1 Join Module 

Function 

The 2-by-1 Join Module filters one (mutually exclusive) stream through (either a1. 

or a2. 'b2) once permitted by a "go" signal on n. 

CCS specification of Join 

We might specify the Join module by one of 

Join1 

Join2 

def 

Le  

a1.n.'b1.Join1 + a2.n.'b2.Join1 + n.a1.'b1.Join1 + n.a2.'b2.Join1 

a1.n.'b1.Join2 + a2.n.'b2.Join2 + n.(ai.'bi.Join2 + a2.'b2.Join2) 

(1) 

(2) 

but ( 1) is not satisfactory in that the action sequences are decided immediately after 

the first input event is received. (2) has the desired behaviour but we can make it 
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look neater by using a parallel specification. Again, think of its expansion to several 

users. 

J 

N 

Join 

CWB testing 

Command: sort Join 

{a.1,a2,n, ' bi, ' b2} 

def 

def 

def 

ai.g.'bi.'p.J + a2.g.'b2.'p.J 

n.'g.p.N 

(J I I\1) \ {g,p} 

Command: min Join 

Save result in identifier: Join' 

Join' has 6 states. 

Command: vs 3 Join' 

al n ' bi > 

a2 n ' b2 > 

n al ' bi > 

n a2 ' b2 ===> 

Behaviour Verification 

1. The two independent inputs a1 and a2 are mutually exclusive. 

Command: cp Join' 
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Proposition: (BOX [al] [a2]F) & (BOX [a2] [al]F) 

**true 

2. After an a1 and an ii the next action must be a 'b1, and symmetrically for level 

2. 

Command: cp Join' 

Proposition: (Box [al][n](ONLY ' bi)) & (Box [n] [all ( ONLY ' bi)) 

**true 

Command: cp Join' 

Proposition: (BOX [a2][n](ONLY ' b2)) & (BOX En] [a2] ( ONLY ' b2)) 

**true 

Sequencer 

A Sequencer module differs from the Join module in that its inputs a1 and a2 are 

not necessarily mutually exclusive. Because of this, the pair (ai, n) and the pair (a2, 

n) may contend for producing their corresponding output (b1 or b2). 
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n 

ai. 

a2 
Sequencer 

'bi 

'b2 

Figure 4.12: A Sequencer Module 

The parallel specification of the Sequencer is: 

Si 

5 2 

SN 

Sequencer 

def 

dci 

dcl 

def 

a1 

a2 . g.'b2 •'P.52 

n.'g.p.SN 

(SI I S2 I SI\1) \ {g,p} 

The behaviour of the Sequencer can also be verified on the CWB: 

1. a1 and a2 are not necessarily mutually exclusive. 

Command: cp Sequencer' 

Proposition: (BOX [al] [a2]F) I (BOX [a2] [al]F) 

**false 

2. After a pair of desired inputs happens, it is not necessary for the corresponding 

output to be produced before the third input occurs (because the third input 

action can enter to contend for producing its corresponding output). 
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Command: cp Sequencer' 

Proposition: 

([alj[n] -(NEC-FOR ' bi a2)) & [a2J[nj -(NEC-FOR ' b2 al)) 

**true 

4.3 Data Path Modules 

4.3.1 Enable 

ren 

'adis   

Enable 

Bundled 
Data in 

'aen 

rdis 

Bundled 
Data out 

Figure 4.13: An Enable Module 

Function 

An Enable module is used to gate bundled data input onto a shared output bus. An 

enable request ( rem) signifies that data is valid on the bundled data input and an 

enable acknowledge (aen) signifies the output data bundle is valid at all the receivers 

connected to the bus. When a disable request (rdis) is received, the data outputs 

are placed in a high impedance state and a disable acknowledge (adis) is generated. 

CCS specification 

def 
Enable rem.' aem.rdis.' adis.Enable 
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4.3.2 Register 

req 

Bundled 
Data in 

Register 

'ack 

Bundled 
Data out 

11 

Figure 4.14: A Register Module 

Function 

An register module is used to store bundled data information with transition sig-

naling as its control signals. When an input request (req) arrives at the register, 

the input data on the bundled data path are latched. An acknowledge transition 

('acic) is generated after the data is latched, and the output data are then valid at 

all recipients of the data. 

CCS specification 

def 
Register = req.'ack.Register 
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4.3.3 Latch 

cm 

'pout 

cout 

pin 

Bundled Bundled 
Data in Data out 

Figure 4.15: A Latch Module 

Function 

A Latch module has the similar function to that of a Register module, except with 

a slightly different set of control signals which has an explicit control over the trans-

parent state and opaque state: a cin signal tells the Latch to capture the data and 

become opaque, and a 'cout signal signals to the environment that the data has been 

latched; a pin signal tells the Latch to pass the data and become transparent, and a 

'cout signal signals that the data has been passed from the Latch to output. 

CCS specification 

Latch clef . , . = czn. cout.pzn. pout.Latch 
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4.3.4 Boolean Register 

rsetO 

rset]. 

test 

Boolean 
Register 

'asetO 

'aset]. 

'zO 

'zi 

Figure 4.16: A Boolean Register Module 

Function 

A Boolean register is a single-bit register which uses transition signaling interfaces 

for changing the register's contents. A transition on the rseto wire sets the value 

of the register to zero and acknowledges on the 'aset0 line; a transition on the rset1 

wire sets the value of the register to one and acknowledges on the 'aset1 line. Uses 

of these interfaces must be mutually exclusive. The value of the register can also be 

tested: a transition on the test input (test) produces a transition on either outputs 

('Zn or 'z1) depending on the current value of the register. 

CCS specification 

def 
BReg = BRego 

BRego 'I rseto.'aseto.BRego + rset1.'aseti.BRegi + test.'zo.BRego 

BReg1 ( rset0.'aseto.BRego + rset1.'aset1.BReg1 + test.'zi.BRegi 

CWB testing 
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Command: sort BReg 

**{rsetO,rsetl,test,'asetO,'asetl,'zO,'zl} 

Command: size BReg 

**BReg has 6 states. 

Command: vs 4 BReg 

rsetO ' asetO rsetO ' asetO ===> 

rsetO ' asetO rsetl ' aseti > 

rsetO ' asetO test ' zO ===> 

rsetl ' aseti rsetO ' asetO > 

rsetl ' aseti rsetl ' aseti ===> 

rsetl ' aseti test ' zi ===> 

test ' zO rsetO ' asetO ===> 

test ' zO rsetl ' aseti > 

test ' zO test ' zO ===> 

Behaviour verification 

1. The interfaces for setting the Boolean register, value to zero or one are mutually 

exclusive. It is necessary for a set to be acknowledged before the module can 

be set again. 

Command: cp BReg 

Proposition: (Box [rsetO][rsetl]F) Sc (BOX Crsetlj[rsetO]F) 

**true 
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Command: cp BReg 

Proposition: [rsetO] NEC_FOR ' asetO rsetl 

**true 

Command: cp BReg 

Proposition: [rsetl] NEC-FOR ' aseti rsetO 

**true 

2. When a test signal is received, reporting the current value of the Boolean 

Register is the only possible move followed. 

Command: cp BRegO 

Proposition: [test] (ONLY ' zO) 

**true 

Command: cp BRegi 

Proposition: [test] (ONLY ' zi) 

**true 
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4.4 Summary 

In this chapter, we have specified and tested a library of control path modules and 

data path modules for self-timed design. Where possible, parallel composition was 

used for generating neat and compact specifications. The key advantage of this 

specification style is that one can avoid developing specifications state by state (which 

is tricky, tedious and error prone). It is especially efficient for specifying multi-

client modules (such as the multi-input C-element and the multi-user Arbiter) with 

several users, since a parallel specification stays linear in the number of clients. The 

next chapter examines various asynchronous designs which may be built from these 

components and finite state machines. As in the synchronous case, smart tools exist 

for the synthesis of asynchronous finite state machihs (see [CDS93]). 



Chapter 5 

Design and Testing Circuit Specifications 

In this chapter, we show applications of CCS and the CWB to designing and testing 

the specifications of asynchronous subsystems. The subsystems described cover a 

variety of designs, including flow through architectures (Sutherland's micropipeline 

[Sut89] and Ebergen's stack [EG91]), a token ring structure (Martin's distributed 

arbiter [Mar85]), an arithmetic unit (Brunvand's Carry-Completion Sensing Adder 

[Bru91c]), and a small processor, Sutherland's Move Machine. 

The methodology adopted is summarized in the following steps: 

Step 1: Design of Specification 

Design a specification using parallel composition where possible. 

Step 2: Test of Specification 

Test the specification using process logics in the CWB. The specification should 

be proved to be deadlock free, livelock free, safe and alo live. Other special 

properties may be shown to hold in order to gain confidence in the specification. 

Step 3: Implementation 

An implementation is given in terms of exiting library modules. 

The main contributions of this chapter lie in demonstrating a style of specification 

and in systematically applying our library of macros to examining the consequences 

of the specifications. 

93 
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5.1 Sutherland's Micropipeline 

Ivan Sutherland described a new VLSI design style called micropipelines [Sut89] in 

his 1989 ACM Turing Award lecture. The design of micropipelines is based upon the 

transition signaling conceptual framework, and is significantly different from the con-

ventional VLSI design style of clock driven synchrony. As Sutherland concluded in 

his paper, complex systems can be built easily by hierarchical composition with this 

new micropipeline design style. Further, the composability offered by micropipelines 

and transition signaling provides a simple way to upgrade systems when new tech-

nologies become available. 

5.1.1 Control Circuit for a Micropipeline 

We first specify the control circuit for a micropipeline. The control part organizes 

the transfer of data from one micropipeline stage to another according to a simple 

request and acknowledge protocol. 

riri  

4  

am 
L 

n-
'rout 

4  

aout 

Figure 5.1: Specification of Control Circuit for a Micropipeline 

The specification of a n—stage control circuit for micropipeline is constructed by 

having one cell L at its left side to deal with input requests and one cell R at its 

right side to deal with output requests. n - 1 M cells between L and R provide the 

buffering spaces: 
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CCnspec=(LIMif ... IM....i IR)\{mo,mi,...,m_i} 

Cell L and Cell R provide the actual interface. Because they are operating in 

parallel, the actions belonging to L (rim, 'am) and R (' rout, aout) can interleave. 

The flexibility of this parallel specification style makes it trivial to specify an 

n—stage circuit: we merely adjust the number of M cells. As an example, here is the 

control circuit for a 4—stage micropipeline. 

Step 1: Design of Specification 

CC4spec (L 

I M C mO/left, Wright I 

I M C ml/left, m2/right I 

I M C m2/left, m3/right J 

I R C m3/mO I 

) \{mO,mi,m2,m3} 

where 

L = rin.'mO.'ain.L 

Ft = mO.'rout.aout.R 

M = left.'right.M 

Command: sort CC4spec 

**{aout,rin, ' am, ' rout)-

Command: min CC4spec 

Save result in identifier: CC4spec' 
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**CC4spec' has 20 states. 

Command: vs 4 CC4spec' 

**=== rin lain rin ' am > 

**=== rin lain nfl ' rout > 

** rin ' am ' rout aout > 

** rin ' am ' rout rin ===> 

**=== rin ' rout aout ' am ===> 

** nfl ' rout lain aout ===> 

** rin ' rout lain rin > 

Step 2: Test of Specification 

1. Deadlock Free 

Deadlock means a state from which no further actions are possible, e.g., no 

part of a concurrent system is able to proceed. We test for each reachable 

node using 0 operator. 

Command: bpi Deadlock 

Proposition: [-IF 

Command: cp CC4spec' 

Proposition: BOX ( Deadlock) 

**true 
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2. Livelock Free 

Livelock means that the system may be stuck looping by T actions in a cycle 

of one or more states moving from one to another without any visible actions 

on input and output ports. Thus no visible progress is made. It differs from 

deadlock in that it is always active, but nothing shows. 

Command: bmi CYCLE-ON 

Parameters: a 

Body: POSS BOX <a>T 

Command: bpi Livelock 

Proposition: CYCLE-ON t 

Command: cp CC4spec 

Proposition: -Livelock 

**true 

3. Safety 

Safety properties state that something bad never happens, that is, the system 

never enters an unacceptable state, such as deadlock. Different systems will 

have different classes of safety properties. Here, we consider one typical safety 

criterion which arises naturally from the above specification. 

9 Absence of Unsolicited Response 
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Every acknowledgement is in response to a request. Once an acknowledge-

ment is produced, another request is necessary for producing a further 

acknowledge. 

Command: bmi. Absence-of-Unsolicited-Response 

Parameters: req ack 

Body: (NEC-FOR req ack) & (Box Eack] (NEC_FOR req ack)) 

In the above specification, an input request rim is necessary for producing 

a corresponding acknowledge 'aim. Once an 'aim is produced, another rim 

is necessary for producing a further 'am. 

Command: cp CC4spec' 

Proposition: Absence-of-Unsolicited-Response nfl 'am 

**true 

And also, an output request 'rout is necessary for accepting a correspond-

ing acknowledge aout. Once an aout is accepted, another 'rout is necessary 

for having a further aout. 

Command: cp CC4spec' 

Proposition: Absence-of-Unsolicited-Response ' rout aout 

**true 
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4. Liveness 

Liveness properties state that something good eventually does happen, i.e. it 

is always possible for the system to enter a desirable state. Here, we consider 

a few typical liveness properties for the above specification. 

• Guaranteed Events 

An event which will always eventually be performed is called a guaranteed 

event. 

Command: bmi Guaranteed-Event 

Parameters: a. 

Body: BOX (EV <a>T) 

We here show that all the input and output actions in this specification 

are, guaranteed events. 

Command: cp CC4spec' 

Proposition: 

(Guaranteed-Event rin) & (Guaranteed-Event ' am) & \ 

(Guaranteed-Event ' rout) & (Guaranteed-Event aout) 

**true 
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Step 3: Implementation 

rin al r2 a3 'rout 

C 
0 

0 

C 

I ain ri a2 r3 aout 

Figure 5.2: Implementation of the Control Circuit for a 4-stage Micropipeline 

As shown in Figure 5.2, the C-element is the only element needed in implementing 

Sutherland's control circuit. Each stage of the control circuit uses a C-element with 

one of the inputs inverted to implement the following state rule: 

If the predecessor and successor differ in state 
Then copy predecessor's state 
Else hold present state 

We have already specified the C-element and tested its behaviour in Chapter 

4. The behavior of a C-element with an inverted input is the same as that of the 

C-element except for its initial state. With one of the inputs inverted, it requires 

only a single event on the other input to trigger an output event. Once this has 

occurred, its behavior is the same as that of the normal C-element. Hence we can 
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adapt the specification for C-element in specifying Sutherland's implementation of 

control circuit but starting from state Ca. 

CC4imp = Ca C nn/a, al/b, zl/z ] \ 

Ca [ ri/a, a2/b, z2/z ] \ 

Ca C r2/a, a3/b, z3/z J \ 

Ca C r3/a ,aout/b, z4/z ] \ 

Fork C zi/a, am/b, ri/c J \ 

Fork C z2/a., al/b, r2/c ] \ 

Fork C z3/a, a2/b, r3/c I \ 

Fork C z4/a, a.3/b,rout/c :i \ 

) \ { zl,z2,z3,z4,al,a2,a3,nl,r2,r3} 

where 

Ca = a.'z.0 

C = a.b. ' z.0 + b.a. ' z.0 

The above implementation only represents the interaction of a 4—stage ml-

cropipeline control circuit with no regard to its interface with the environment in 

which it operates. The safety property possessed by the specification implies that 

the implementation, in fact, operates in an environment which can be expressed in 

the following input and output constraints: 

1. Input Constraint: After an input request rin, an acknowledge aim must occur 

before another rim. 

2. Output Constraint: An output request 'rout must occur before an acknowledge 

aout can be received. 
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5.1.2 FIFO Micropipeline 

A FIFO micropipeline is simply a flow-through first-in-first-out buffer. The control 

for a single stage of FIFO has a request and acknowledge interface at both its input 

and ouput. The input request is used to signal that new data is available on the 

input data path, and the output request is used to indicate the next stage that new 

data is available at the output data path. The operation of each FIFO stage is to 

accept new input data, and then accept subsequent data only after its current data 

item has been taken by the next stage. 

nfl 

din 

'am 

L M I n-i R 

Figure 5.3: Specification of a FIFO Micropipeline 

rout 
dout 

4  

aout 

A n—stage FIFO is specified as having one cell L at its left side, one cell R at its 

right side and n - 1 M cells between L and R: 

FFnspec=(LIMi ... IM_iIR)\{ino,mi,...,m_i} 

In the following specification, we will see that M1 is slightly different from M (i 

= 2, n - 1) in that an additional semaphore s1 is used to prevent further data from 

coming in when the first stage of FIFO is already occupied. 

We here show a 4—stage FIFO micropipeline on the CWB. 
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Step 1: Design of Specification 

FF4spec= ( L \ 

I Ml C mO/left, ml/right ] \ 

I M C ml/left, m2/right ] \ 

I M C m2/left, m3/right ] \ 

I R [ m3/mO] \ 

) \ -C sl,mO,ml,m2,m3 )-

where 

L = rin.si.din.'mO.'ain.L 

Ml = left.'right.Ml + 'sl.Ml 

M = left.'right.M 

R = mO.'rout.'dout.aout.R 

Command: sort FF4spec 

**{aout,din,rin, ' am, ' dout, ' rout)-

Command: min FF4spec 

Save result in identifier: FF4spec' 

**FF4spec' has 39 states. 

Command: vs 6 FF4spec' 

nfl din lain nfl din ' am > 

nfl din lain nfl din ' rout > 

nfl din lain nfl ' rout din > 
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rin din lain rin ' rout ' dout > 

rin din ' am ' rout rin din ===> 

nfl din ' am ' rout rin ' dout ==> 

rin din ' am ' rout ' dout aout > 

nfl din ' am ' rout ' dout rin ===> 

= rin din ' rout lain rin din ===> 

rin din ' rout lain rin ' dout ===> 

rin din ' rout lain ' dout aout ==> 

nfl din ' rout ' a.in ' dout rin ===> 

rin din ' rout ' dout aout ' am > 

rin din ' rout ' dout lain aout > 

rin din ' rout ' dout lain rin ===> 

Step 2: Test of Specification 

1. Deadlock Free 

Command: cp FF4spec' 

Proposition: BOX ( -Deadlock) 

**true 

2. Livelock Free 

Command: cp FF4spec 

Proposition: Thivelock 

**true 
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3. Safety 

• Absence of Unsolicited Response 

At the input port of a FIFO micropipeline, an input request rim is nec-

essary for producing a corresponding acknowledge 'aim. Once an 'aim is 

produced, another rim is necessary for producing a further 'am. Similarly, 

rim is also necessary for din. 

Command: cp FF4spec' 

Proposition: Absence-of-Unsolicited-Response rin ' am 

**true 

Command: cp FF4spec' 

Proposition: Absence-of-Unsolicited-Response nfl din 

**true 

At the output port of a FIFO micropipeline, an output request 'rout is 

necessary for accepting a corresponding acknowledge aout. Once an aout 

is accepted, another 'rout is necessary for having a further aout. Similarly, 

'rout is also necessary for dout. 

Command: cp FF4spec' 

Proposition: Absence-of-Unsolicited-Response ' rout aout 

**true 

Command: cp FF4spec' 
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Proposition: Absence-of-Unsolicited-Response ' rout ' dout 

**true 

4. Liveness 

• Guaranteed Events 

All the input and output actions in this specification are guaranteed 

events. 

Command: cp FF4spec' 

Proposition: 

(Guaranteed-Event rin) & (Guaranteed-Event ' am) & \ 

(Guaranteed-Event ' rout) & (Guaranteed-Event aout) & \ 

(Guaranteed-Event din) & (Guaranteed-Event ' dout) 

**true 

Step 3: Implementation 

FIFO micropipeline can be constructed. by using registers to hold data in the FIFO 

and the C-elements (with an inverted input) to control the transfer of data from one 

register to another. 
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Figure 5.4: Implementation of a 4-stage FIFO Micropipeline 

The register module used here in the above implementation is Brunvand's asyn-

chronous register module with transition signaling as its control signals which we 

have specified in Chapter 4. 

FF4imp 

( FF1±mp [ ql/rout.,pl/aout,dl/dout J \ 

I FF1±mp [ ql/r±n,pl/ain,q2/rout,p2/aout,dl/din,d2/dout J \ 

I FF1±mp [ q2/rin,p2/a±n,q3/rout,p3/aout,d2/din,d3/dout ] \ 

I FF1±mp C q3lrin,p3lain,d3ldin ] \ 

) \ { pl,p2,p3,ql,q2,q3,dl,d2,d3 } 

where 

FFlimp = ( Ca C nn/a, aout/b, req/z I \ 

I Register \ 

I Fork C ack/a, am/b, rout/c I \ 

) \ { req,ack I-
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5.2 Ebergen's Stack 

Inspired by Sutherland's Micropipelines and Martin's Lazy Stack in [Mar9Oa], Eber-

gen presents a simple, fast design for an asynchronous stack [EG91]. The design of 

this asynchronous stack is split into two parts: a control part and a data part, where 

the control part dictates the transferring of data from one register stage to another. 

A feature of this design is that its control part is delay insensitive, but the data 

part is not. Hence some extra delay constraints are to be satisfied in the realization of 

the data part, while the correctness of the control part is insensitive to any variations 

in the response time of the basic components and delays in the connection wires. 

Figure 5.5 shows the interface between one stack cell and its left and right neigh-

bors. Each stack has one private register and shares two registers with its neighbours. 

Any data transfer between two private registers has to go through their shared reg-

ister. Pushing an item onto the stack results in shifting all data items one private 

register to the right, and popping an item from the stack shifts all items one private 

register to the left. 
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Figure 5.5: Control Part (solid lines) and Data Part (dashed lines) of a Stack Cell 

The function of the control part is to control the pushing of data into a register 

and also the popping of data out of a register. This design is not concerned with 

whether the stack is full or empty; it is always possible to push values onto and pop 

values from the stack. 

We specify the control part for a 2—stage stack. Information regarding private 

registers is hidden at this level of abstraction. Control parts with more stages can 

be accordingly expanded. 

Step 1: Design of Specification 

'ipAck 4  

1p 
rg 

'lgAck 4  

L 
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M 

rl 

r2 
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rpAck 

rp 

'rg 
rgAck 

Figure 5.6: Specification of the Control Circuit for 2-stage Stack 
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There are two mutually exclusive processes in this design: request of push and pop 

from the previous stage at the left port; request of push and pop to the following 

stage at the right port. These two processes are related in that a request of push at 

the left port is the trigger event for a request of push at the right port; a request of 

pop at the left port is the trigger event for a request of pop at the right port. 

Parallel specification methodology is adopted: 

def 
L = ip. 4. 'lpAck.L + 1g. 4. 'lgAck.L 

.1). 

R 4. 'rp.rpAck.R + 4. 'rg.rgAck.R 

Formally in COS we have, 

S2spec (L IR)\{p,g} 

where 

L = 1p.p.'lpAck.L+ lg.g.'lgAck.L 

R = 'p.'rp.rpAck.R+ ' g.'rg.rgAck.R 

Command: sort S2spec 

**{lg,lp,rgAck,rpAck, ' igAck, ' lpAck, ' rg, ' rp} 

Command: min S2spec 

Save result in identifier: S2spec' 

S2spec' has 19 states. 
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Step 2: Test of Specification 

1. Deadlock Free 

Command: cp S2spec' 

Proposition: BOX ( Deadlock) 

**true 

2. Livelock Free 

Command: cp S2spec 

Proposition: Thivelock 

**true 

3. Safety 

• Mutual Exclusion 

Mutually exclusive processes in a program will never execute their critical 

sections at the same time. 

Command: bmi Mutual-Exclusion 

Parameters: a b 

Body: (BOX ([a] [b] F)) & (BOX ([b] [a] F)) 

There are two mutually exclusive processes in the above specification. 

One is left port push ip and left port pop ig; the other is right port push 

'rp and right port pop 'rg. 
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Command: cp S2spec' 

Proposition: Mutual-Exclusion 1p ig 

**true 

Command: cp S2spec' 

Proposition: Mutual-Exclusion ' rp ' rg 

**true 

We can further show that once a process enters its critical section, it's only 

possible for its mutually exclusive counterpart to start after the critical 

section has been finished. For example, once ip happens, the correspond-

ing acknowledgement 'ipAck is necessary for starting lg. And similarly, 

after 'rp happens, the corresponding acknowledgement rpAck is necessary 

for starting 'rg. 

Command: cp S2spec' 

Proposition: BOX ([lpj NEC-FOR ' ipAck lg) 

**true 

Command: cp S2spec' 

Proposition: BOX ([' rp] NEC-FOR rpAck ' rg) 

**true 

• Absence of Unsolicited Response 

Again, we show that all the acknowledgements are in response to the 

corresponding input requests. 
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Command: cp S2spec' 

Proposition: Absence-of-Unsolicited-Response 1p ' lpAck 

**true 

Command: cp S2spec' 

Proposition: Absence-of-Unsolicited-Response ig ' lgAck 

**true 

Command: cp S2spec' 

Proposition: Absence-of-Unsolicited-Response ' rp rpAck 

**true 

Command: cp S2spec' 

Proposition: Absence-of-Unsolicited-Response ' rg rgAck 

**true 

4. Liveness 

• Guaranteed Events 

Input actions 1p and ig are Guaranteed events. 

Command: cp S2spec' 

Proposition: (Guaranteed-Event 1p) Sc (Guaranteed_Event lg) 

**true 

But this is not true for the rest of the input and output actions. 
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Command: cp S2spec' 

Proposition: 

(Guaranteed-Event 

(Guaranteed-Event 

(Guaranteed-Event 

**false 

'ipAck) 

'rp) 

rg) 

(Guaranteed-Event 

(Guaranteed-Event 

(Guaranteed-Event 

'igAck) I \ 

rpAck) I \ 

rgAck) \ 

Actually, these input and output actions will eventually happen only after 

the pre- request (trigger event) has been produced. We call this an ensured 

response. 

• Ensured Response 

An ensured response is a response which will eventually be produced after 

the corresponding request has occurred. It is defined as: 

Command: bmi Ensured-Response 

Parameters: req ack 

Body: BOX ([req] EV <ack>T) 

Here, we show that once the pre-request ip happens, 'lpAcic, ' rp and rpAck-

must happen. 

Command: cp S2spec' 

Proposition: (Ensured-Response ip ' ipAck) Sc \ 

(Ensured-Response ip ' rp ) Sc \ 

(Ensured-Response ip rpAck ) Sc 

**true 
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And once the pre-request ig happens, 'igAck, ' rg and rgAck must happen. 

Command: cp S2spec' 

Proposition: (Ensured-Response lg ' lgAck) & \ 

(Ensured_Response lg ' rg ) Sc \ 

(Ensured-Response lg rgAck ) Sc 

**true 

Step 3: Implementation 

As shown in Figure 5.7, basic components 2-by-1 Join, Merge and IWire are the only 

elements necessary in implementing the control part of Ebergen's stack. 

'ipAck 4  un 4-  

ip 

Join 
ig 

IWire 

'lg'Ack .4 

rout 

lout 

Merge 
4-

1 

rpAck 

 - 'rp 

 - 'rg 

rin rg-Ack 

Figure 5.7: Implementation of the Control Part for a 1-stage Stack 

With these modules, the control part for a 1—stage stack is implemented as: 

Slimp = ( Join C 1p/al, lg/a2,z2/n,rout/bl,lout/b2 I \ 

I Fork C rout/a, 1pAck/b, rp/c I \ 

I Fork C lout/a, lgAck/b, rg/c I \ 
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I Merge [ rpAck/a, rgAck/b, zl/z 

I IWire [ zl/a, z2/z 

) \ { rout,lout,zl,z2 )-

For the control part of a 2—stage stack, we have, 

'ipAck 

1p 

'1Ack 

STACK 

CELL 

p2 

p1 

91 

g2 

STACK 

CELL 

rpAck 

rp 

'rg 

4 rgAck 

Figure 5.8: Implementation of the Control Part for a 2-stage Stack 

S2imp = ( Slimp E pl/rput,p2/rputAck,gl/rget,g2/rgetAck 1 \ 

I Slimp C pl/lput,p2/lputAck,gl/lget,g2/lgetAck J 

) \ { p1, p2, gi, g2 } 

5.3 Martin's Distributed Arbiter 

The basic idea in distributed arbiter is that users contend through separate nodes 

joined together by a token ring. When the token reaches a node at which there is 

a request, the token stays until the request is satisfied, and then moves on; when 

the token reaches a node at which there is no request, the token moves on straight 

forward. 
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r,Igjdja1 

1  
A 

Node1 

2'g2d2'a2 

V 

Node2 

r,'g,d ,.'a, 

I t I t  
Node 

Figure 5.9: A Distributed Arbiter 

The deficiency with this design is that the token is in motion even if there are no 

requests from the users. Because of this, livelock may happen. 

Alain Martin suggested another distributed arbiter where the token does not 

cycle round the ring when there are no requests, but remains at the node where it 

last did some work until fetched. 

Here we show how the node in Martin's distributed arbiter is specified. 

Step 1: Design of Specification 

req 

done 

lreq 

'tout 

NODE 

'grant 

'ack 

'rreq 
tin 

Figure 5.10: Node of Martin's Distributed Arbiter 

We note that a node can either be initialised to have token or not have token. Hence, 

the possible behaviours per node are: 
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1. The node has the token: 

• a request is accepted: 

The firing sequence is req.' grant.done.' ack 

• the token is requested on the left and passed on: 

The firing sequence is ire q.'tout 

2. The node does not have the token: 

• a request is accepted, the token is fetched on the right, then the request 

is granted: 

The firing sequence is req.'rreq.tinJgramt.done.'ack 

• the token is requested on the left, is fetched on the right, and is then 

passed on: 

The firing sequence is ire q.'rreq.tin.'tout 

We design the specification of node in Martin's distributed arbiter by interfacing 

the user of the node User and the token of the node Token with a finite state machine 

which sorts out the current state of the NODE (the User has token, the User does 

not have token), the current request (from the User or from the Token) and then 

carries out the appropriate actions. 
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User 
del 

FSM d 

def 
Token = 

req. 4. Q. 'grant. done. M. ' ack. User 

.fr 

4. fetch?. Q. M. FSM 

+ 4. fetch?. FSM 

lreq. 4. . 'tout. Token 

where FSM splits into 

Stateo 

St ate1 

del 

del 

4.'rreq. tin. Q.M. St ate1 + * .' rreq. tin. . St ate0 

4S7.•.5tate1 + *..Stateo 

in which there are five rendezvous points: 

1. 4 - a user request arrives. The FSM is woken up and will be either in state 

Stateo (have to fetch the token) or in state State1 (already has the token). 

2. 7 - the node has the token and the user request may proceed. User is woken 

up and the FSM lies dormant until the transaction is completed. 

3. • - after the done signal is accepted, the FSM is set to state State1 and the 

User may send out the 'ack. 

4. * - a token request arrives. The FSM is woken up and will be either in state 

Stateo (have to fetch the token) or in state State1 (already has the token). 
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5. 0 - the node has the token and the token may be passed out. The Token is 

woken up and the FSM is set to state State0. 

Here is this specification in formal OCS: 

User = req.'gtO.cs.'grant.done.ptO.'ack.User 

Token = lreq.'gtl.ptl.'tout.Token 

StateO = gtO.'rreq.t±n.'cs.'ptO.Statel + gtl.'rreq.tin.'ptl.StateO 

Statel = gtO.'cs.'ptO.Statel + gtl.'ptl.StateO 

when node is initialised to not have token (NODEospec), 

NODEOspec = ( User I Token I StatcO ) \ { gtO,gtl,cs,ptO,ptl } 

when node is initialised to have token (NODEispe.), 

NODEispec = ( User I Token I Statel ) \ -C gtO,gtl,cs,ptO,ptl } 

Command: sort NODEOspec 

**{done,lreq,req,t±n, ' ack, ' grant, ' rreq, ' tout} 

Command: sort NODEispec 

**-Cdone,lreq,req,tin,'ack,'grant,'rreq,'tout} 

Command: min NODEOspec 

Save result in identifier: NODEOspec' 

**NODEOspec' has 36 states. 
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Command: min NODEispec 

Save result in identifier: NODEispec' 

**I\IODE1spec' has 36 states. 

Command: vs 4 NODEOspec' 

lreq req ' rreq tin > 

lreq ' rreq req tin > 

lreq ' rreq tin req ===> 

lreq ' rreq tin ' tout > 

req lreq ' rreq tin > 

req ' rreq lreq tin ===> 

req ' rreq tin lreq => 

req ' rreq tin ' grant ===> 

Step 2: Test of Specification 

1. Deadlock Free 

Command: cp NODEOspec' 

Proposition: BOX ( Deadlock) 

**true 

2. Livelock Free 

Command: cp NODEOspec 
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Proposition: Livelock 

**true 

3. Safety 

• Mutual Exclusion 

The mutually exclusive process in the above specification is that the token 

is requested and captured by the User and the token is moved on anti-

clockwise upon receiving a request from its left adjacent neighbour. 

Command: cp NODEOspec' 

Proposition: [tin] (Mutual_Exclusion ' grant ' tout) 

**true 

We further show that once the User enters its critical section after cap-

turing the token, it is only possible for the mutually exclusive counterpart 

to move the token left after the critical section has been finished. 

Command: cp NODEOspec' 

Proposition: [tin] BOX ([' grant] NEC-FOR ' ack ' tout) 

**true 

If the left neighbour wins the token, the User has to capture the token 

again before being allowed to enter its critical section. 

Command: cp NODEOspec' 

Proposition: [tin] BOX ([' tout] NEC-FOR tin ' grant) 

**true 
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• Absence of Unsolicited Response 

All acknowledgements are in response to corresponding input requests. 

For example, the acknowledgement from the User (' ack) signalling the end 

of its critical section is in response to the input request req for entering 

the critical section. 

Command: cp NODEOspec' 

Proposition: Absence-of-Unsolicited-Response req ' ack 

**true 

The token's left moving 'tout is in response to the request from the current 

node's left adjacent neighbour lreq. 

Command: cp NODEOspec' 

Proposition: Absence-of-Unsolicited-Response lreq ' tout 

**end 

4. Liveness 

• Guaranteed Events 

Because of the mutually exclusive divergence, none of the input and out-

put actions are guaranteed events. 

Command: cp NODEOspec' 

Proposition: 

(Guaranteed-Event req) I (Guaranteed-Event lreq) I \ 

(Guaranteed-Event tin) I (Guaranteed-Event ' rreq) I \ 
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(Guaranteed-Event ' tout) I (Guaranteed-Event ' ack) I 

(Guaranteed-Event done) I (Guaranteed-Event ' grant) 

**false 

• Ensured Response 

We cannot show that 'grant and 'tout are ensured responses to some trigger 

events in this specification because these two actions are the trigger events 

signalling which critical section the node is in. But 'grant and 'tout are 

ensured responses once their corresponding critical sections are chosen. 

This can be shown when watching-signals are inserted at the beginning 

of each critical section. 

By using 'grant as the pre-request, we show that once 'grant happens, 

done and 'ack are ensured to happen. 

Command: cp NODEOspec' 

Proposition: (Ensured-Response ' grant done) & \ 

(Ensured-Response ' grant ' ack) 

**true 

Similarly, we can show that tin is the ensured response of 'rreq. This 

means that once a token is requested by the node from its left adjacent 

neighbour, the token will eventually be passed to the node. 

Command: cp NODEOspec' 

Proposition: Ensured-Response ' rreq tin 

**true 
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Step 3: Implementation 

The implementation of Martin's arbiter is given by Ebergen [EBG92], and shown in 

Figure 5.11. It is achieved by combining a two-way ROD Arbiter and a finite state 

machine. 

'ack 

gtO 
req 

done 

lreq 

'tout 4  

Arbiter 
gtl 

FSM 

ptl 

Figure 5.11: Implementation of Martin's Arbiter 

'grant 

'rreq 

tin 

The ROD arbiter is specified in Chapter 4 as one of Brunvand's Control Path 

Modules. 

The finite state machine used here deals with requests from the ROD arbiter. 

FSMO = gtO. ' rreq.tin. ' grant . FSM1 + gtl. ' rreq.tin. ' ptl . FSMO 

FSM1 = gtO.'grant.FSMl + gtl.'ptl.FSMO 

1. FSM0 stands for the state when token is elsewhere: 

• A signal on gt0 corresponds to a user request. The token is fetched and 

then the request is granted. FSM0 moves to FSM1 signifying that the 
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token is here. 

A signal on gt1 corresponds to a request for the token from the left. The 

token is fetched and then passed on. The output signal on pt, is forked 

to 'tout and also back to the RGD arbiter so that the arbiter is cleared. 

FSM0 remains at state FSM1. 

2. FSM1 stands for the state when the token is local: 

• A signal on gto corresponds to a user request. The request is granted at 

once. FSM1 remains at state FSM1. 

• A signal on 9t1 corresponds to a token request from the left. The token 

is passed on at once. Similarly, the output signal on pt, is forked to 'tout 

and also back to the ROD arbiter. FSM1 then moves back to FSM0. 

Hence we have, 

NODEOimp = 

( Fork [ done/a, rib, ack/c I \ 

I Arbiter [ req/ri, gtO/gi, r/dl, lreq/r2,gti/g2, d/d2 I \ 

IFSM \ 

IFork C pti/a, tout/b, d/c I \ 

) \ {gtO, gti, pti, d2, r, d} 

where 

FSM = FSMO 

The node with the token has FSM = FSM1. 
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5.4 Brunvand's CSA Adder 

In his Ph.D thesis {Bru9lc], Brunvand described a Carry-completion Sensing Addi-

tion (GSA') module suitable for building self-timed adders. The trick in this design 

is that the carry of the addition results is propagated using two separate signals: 

'cout signifying a carry, and 'dout signifying the absence of a carry. Only one of the 

two signal lines may be active during one computing period. 

'cout 

'dôut 

I. 
b req 

I I  
CSA 

'sum ' ack 

cm 

din 

Figure 5.12: Carry-completion Sensing Addition (GSA) Module 

Self-timed adder circuits can be implemented in term of the GSA modules. It is 

interesting to note that the specification of a n—bit adder circuit is exactly the same 

as that of the basic CSA module, though the complexity of implementation increases 

a lot. We here develop the specification of the CSA module, which is also suitable 

for the n—bit self-timed adder constructed with n CSA modules. 

It is OCS in Brunvand's thesis, we name it CSA here to distinguish it from the CCS process 
algebra. 
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Step 1: Design of Specification 

The specification of the GSA module is quite tricky compared with specifications we 

have had before. In this specification, we have three agents, namely north N, east E, 

and west W, acting in parallel under suitable timing constraints. 

The main idea here is that the GSA module operates in two phases: (i) compute 

the appropriate sum and carry, and then (ii) reset all the internal carry lines. And it 

uses four-phase signaling: a rising req transition initiates the addition and a rising 'ack 

indicates the completion of computation; a falling req transition is used to initialize 

the module for the next addition by resetting the carry signal (or the no carry signal) 

back to low again and a falling 'ack is used to indicate that the module is ready to 

accept new data for computation. 

Informally, we give the specification as follows: 

1. the GSA module is enabled via req when both a and b inputs are set 

2. either a cin or a din is accepted for computing 

3. the sum value is computed and carry out available 'cout or carry out unavailable 

'dout rippled out 

4. when the computing has been finished by a 'ack, the computing results 'sum is 

ready for read 

5. the module is then enabled again by another req 

6. carry in signal (cin or din) and carry out signal ('cout or 'dout) are reset to 

their initial states (logic 0) in any order 
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7. the final completion is signalled by alTother 'ack 

And the timing precedences are tabulated below: 

a, b phase 1 'sum phase 2 

a 

b 

req 

1 

-< 

cm 

+ 

din 

2 

-< 

'cout 

+ 

'dout 

3 

-< 'ack 'sum req 

4 

-< 

cm + din 

'cout + 'dout 

5 

-< 'ack 

Formally in CCS, we have, 

CSA = ( N I E I W ) \ { s1,s2,s3s4,s5 } 

where 

N = data.req. ' sl.s3. ' ack. ' sum.req. ' s4. ' s4.s5.s5. ' ack.N 

E = sl.(cin.'s2.s4.cin.'s5.E + d±n.'s2.s4.din.'s5.E) 

W = s2.('cout.'s3.s4.'cout.'s5.W + 'dout.'s3.s4.'dout.'s5.W) 

In the above specification, we use signal data to express both bundled data a 

and b for simplicity (instead of a.b + b. a). The issue here is that a req will only be 

produced after all the data is valid on the data path, and we don't care about in 

which sequence a and b are set. 

Command: sort CSA 

**{cin,data,din,req,'ack,'cout,'dout,'sum} 
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Command: min CSA 

Save result in identifier: CSA' 

**CSA' has 26 states. 

Command: vs 10 CSA' 

data 

data 

data 

data 

data 

data 

=== data 

=== data 

req cin ' cout 

req cin ' cout 

req cin ' dout 

req cin ' dout 

req din ' cout 

req din ' cout 

req din ' dout 

req din ' dout 

Step 2: Test of Specification 

1. Deadlock Free 

'ack ' sum req cin ' cout 

'ack ' sum req ' cout cm 

'ack ' sum req cin ' dout 

'ack ' sum req ' dout cm 

'ack ' sum req din ' cout 

'ack ' sum req ' cout din 

'ack ' sum req din ' dout 

'ack ' sum req ' dout din 

Command: cp CSA 

Proposition: BOX ( Deadlock) 

**true 

2. Livelock Free 

Command: cp CSA 

Proposition: Livelock 

**true 

'ack ===> 

'ack ===> 

'ack ===> 

'ack ===> 

'ack ===> 

'ack ===> 

'ack ===> 

'ack ==> 
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3. Safety 

• Absence of Unsolicited Response 

It is obvious that the addition result 'sum is in response to input data data; 

and the acknowledgement for completing the addition 'ack is in response 

to the input request of starting the computation req. (The pair of req and 

'ack can also be viewed as the completion of resetting internal carry lines 

in response to the request of resetting.) 

Command: cp CSA' 

Proposition: Absence-of-Unsolicited-Response data ' sum 

**true 

Command: cp CSA' 

Proposition: Absence-of-Unsolicited-Response req ' ack 

**true 

• Mutual Exclusion 

According to the design strategy, the two carry in lines which stand for 

carry in available (cm) or carry in unavailable (din) respectively must be 

mutually exclusive. This must also be true for the two carry out lines 

('cout and 'dout). 

Command: cp CSA' 

Proposition: Mutual-Exclusion cin din 

**true 
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Command: cp CSA' 

Proposition: Mutual-Exclusion ' cout ' dout 

**true 

Further, we show that one of the two carry in signals is necessary for 

completing the addition (producing a 'sum) although neither cin nor din 

should necessarily be available. 

Command: cp CSA' 

Proposition: NEC-FOR cm ' sum 

**false 

Command: cp CSA' 

Proposition: NEC-FOR din ' sum 

**false 

Command: bsi Carry-in 

Enter action list: cin din 

Command: cp CSA' 

Proposition: NEC-FOR' Carry-in ' sum 

**true 

4. Liveness 

9 Guaranteed Events 
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In this design, all the input and output actions are guaranteed events. 

Command: cp CSA' 

Proposition: 

(Guaranteed-Event 

(Guaranteed-Event 

(Guaranteed-Event 

(Guaranteed-Event 

**true 

data) & (Guaranteed-Event 

'ack) Sc (Guaranteed-Event 

cm) Sc (Guaranteed-Event 

'cout) Sc (Guaranteed-Event 

req) Sc 

'sum) Sc 

din) Sc 

'dout) 

\ 

\ 

\ 

Step 3: Implementation 

A 4—bit self-timed adder can be implemented using four CSAs. The CSAs are 

chained together with the 'cout and 'dout of one stage connected to cin and din of 

the next. The req signal for starting computation is forked to the four CSAs, while 

the 'acic signals from each CSA are joined together with C-elements. The data signal 

here stands for the bundled data a (ao, a1, a2 and a3 in each CSA), and the bundled 

data b (b0, b1, b2 and b3 in each GSA). 



134 

req 

'cout -  

'dout-

'ack 

GSA GSA 

I, 

GSA 

-F-

GSA 
cm 

- din 

'sum 

Figure 5.13: A 4-Bit Self-timed Adder Based upon the GSA Module 

In CCS, the above implementation can be specified as: 

ADD4 = ( Fork [ data/a, dataO/b, dOO/c 1 \ 

I Fork [ dOO/a, datal/b, dil/c ] \ 

I Fork [ dil/a, data2/b, data3/c ] \ 

I Fork [ req/a, rO/b, rOO/c ] \ 

Fork [ rOO/a, ri/b, ni/c ] \ 

I Fork [ ru/a, r2/b, r3/c ] \ 

ICSA4 \ 

I C [ aO/a, al/b, aOl/z ] \ 

I C [ a2/a, a3/b, a23/z I \ 

I C [ aOi/a, a23/b, ack/zl \ 

I C [ sumo/a, sumi/b, sumOi/z I \ 

I C [ sum2/a, sum3/b, sum23/z I \ 
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IC [sumOl/a, sum23/b, sum/z I \ 

)\{dataO,datal,data2,data3,dOO,dll,rO,rl,r2,r3,rOO,rll, \ 

aO , al, a2, a3, aOl , a23, sumO, sumi , sum2, sum3, sumOl , sum23} 

where 

CSA4 = ( CSA [ dataO/data, rO/req, cm/cm, din/din, \ 

ci/cout, di/dout, aO/ack, sumO/sum I \ 

I CSA [ datal/data, rl/req, cl/cm, di/din, \ 

c2/cout, d2/dout, al/ack, sumi/sum I \ 

I CSA E data2/data, r2/req, c2/cin, d2/din, \ 

c3/cout, d3/dout, a2/a.ck, sum2/sum I \ 

I CSA [ data3/data, r3/req, c3/cin, d3/din, \ 

cout/cout, dout/dout, a3/ack, sum3/sum I \ 

) \ { cl,c2,c3,dl,d2,d3 } 

5.5 Sutherland's Move Machine 

The Move Machine was first suggested by Sutherland, who observed that conven-

tional processing units spend much of their time moving data back and forth between 

the memory and the CPU. The instruction set of the Move Machine merely controls 

the flow of instructions and data. It has no instructions for arithmetic or logic 

operations. 
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OPoo 

MEMORY 0Poi SREG [0 :4] 

'P 

JR 

FETCH DECODE EXECUTE 

MOVE 

Figure 5.14: The Structure of Sutherland's Move Machine 

Although most of the processors have at least 100 to 200 instructions in complex-

ity and the Move Machine has only a few instructions, it follows the usual design 

principles as larger processors. Hence the Move Machine is a handy-sized example 

for learning to reason about processors in general. 

A VHDL description of the Move Machine is given by Roy [RKDV92] with minor 

modifications from the ISPS (Instruction Set Processor Specifications) description 

proposed by Drongowski [Dro89]. The more abstract CCS specification follows their 

lead and decomposes the top level specification into three major processes: 

1. FETCH 

This is the start of the Move Machine. It fetches an instruction (sIR) from the 

instruction register JR according to the current instruction pointer IP. 
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2. DECODE 

After the instruction is fetched, it is decoded according to the 2—bit ad-

dress mode identification. The four possible modes are absolute decode mode 

(caseOO), immediate decode mode (caseOl), indirect decode mode (caselO) and 

IP relative decode (casell). Here we do not model these cases in any detail. 

3. EXECUTE 

Before starting execution, the instruction pointer is updated first. This is 

achieved by a modifylP action which modifies the IP according to the mode 

of decode. The instruction is then executed according to the 2—bit operation 

code. The four possible operations are load register (opOO), store register op0.i, 

jump (op.LO) and halt (opli). Again, we do not model these operations in detail. 

Step 1: Design of Specification 

F9rma1ly in CCS we have, 

MOVE ( FETCH I DECODE I EXECUTE ) \ -CsDEC,sEXEC,sFETCH} 

where 

FETCH = sIR.'sDEC.'sFETCH.FETCH 

DECODE = sDEC.(caseOO.D' + caseOl.D' + caselO.D' + casell.D') 

EXECUTE = sEXEC.modifylP.((opOO.E'+opOl.E'+oplO.E') + opll.nil) 

D' = 'sEXEC.DECODE 

SFETCH.EXECUTE 

N.B., agent D' and E' are used for conciseness and clarity in specification. 
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Command: sort MOVE 

**-CcaseOO,caseOl,caselO,casell,modifylP,opOO,opOl,oplO,opll,sIR} 

Command: min MOVE 

Save result in identifier: MOVE' 

**MOVE' has 5 states. 

Command: p1 MOVE' 

**MOVE' = MOVE'O 

where MOVE'O = sIR.MOVE'2 

and MOVE'2 = caseOO.MOVE'4 + caseOl.MOVE'4 + 

ca.selO.MOVE'4 + casell.MOVE'4 

and MOVE'4 = modifylP.MOVE'5 

and MOVE'S = opOO.MOVE'O + opOl.MOVE'O + oplO.MOVE'O + opll.MOVE'7 

and MOVE'7 = nil 

end 

Step 2: Test of Specification 

1. Not deadlock free 

Due to the halt operation in the execution process (opil), it is possible for the 

Move Machine to get deadlock. But this is the normal termination of the Move 

Machine. 

Command: cp MOVE' 

Proposition: BOX ( Deadlock) 
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**false 

We further show that the normal termination of the Move Machine is after 

doing an opli: 

Command: cp MOVE' 

Proposition: BOX ([opil] Deadlock) 

**true 

But we cannot deadlock after any none op.t1 move. 

Command: cp MOVE' 

Proposition: BOX ( E-opil] Deadlock) 

**true 

2. Livelock free 

Command: cp MOVE 

Proposition: Thivelock 

**true 

3. Safety 

• Mutual Exclusion 

We have defined the mutually exclusive macro for two actions, we now 

extend this macro to make it suitable for more than two actions. This is 

achieved by using the action list P whose length can be changed according 

to the particular example. 
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Command: bmi Mutual-Exclusion' a P 

Body: (Box ([a][P]F)) & (Box ([P][a]F)) 

With the extended macro, we can show that after one of the four branches 

in DECODE (or EXECUTE) is processed, none of the other branches in 

parallel can be processed, they are mutually exclusive. 

Command: bsi Rest-case 

Enter action list: caseOl caselO casell 

Command: cp MOVE' 

Proposition: Mutual-Exclusion' caseOO Rest_case 

**true 

Command: bsi Rest-op 

Enter action list: opOl oplO opil 

Command: cp MOVE' 

Proposition: Mutual-Exclusion' opOO Rest-op 

**true 

4. Liveness 

• Guaranteed Events 

Because the Move Machine will stop operating immediately after an op11 

action, none of the actions in this design is a guaranteed event. 
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Command: cp MOVE' 

Proposition: 

(Guaranteed-Event 

(Guaranteed-Event 

(Guaranteed-Event 

(Guaranteed-Event 

(Guaranteed-Event 

**false 

sIR) 

caseOO) 

caselO) 

opOO) 

oplO) 

(Guaranteed-Event 

(Guaranteed-Event 

(Guaranteed-Event 

(Guaranteed-Event 

(Guaranteed-Event 

modif yIP) 

caseOl) 

casell) 

opOl) 

opil) 

But this does not mean that we have lost the liveness property in this 

system. We can still show that all the actions will eventually happen pro-

vided an opil does not occur (we have already shown that Move Machine 

stops operating upon receiving an opli). 

Command: cp MOVE' 

Proposition: ( BOX 

( BOX 

( BOX 

( BOX 

( BOX 

( BOX 

( BOX 

( BOX 

( BOX 

**true 

(EV 

(EV 

(EV 

(EV 

(EV 

(EV 

(EV 

(EV 

(EV 

([-opll]<sIR>T))) & \ 

([-op ii] <modifylP>T))) & 

([-opll]<caseOO>T))) & 

([-opli] <caseOl>T))) Sc 

(E-opll]<caselO>T))) Sc \ 

(E-opll]<casell>T))) Sc 

(E-op11]<opOO>T))) Sc \ 

(E-opll]<opOl>T))) Sc \ 

(E-opil] <oplO>T))) 

\ 

\ 

\ 

\ 
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5.6 Summary 

In this chapter, we have specified a variety of asynchronous hardware architectures 

using parallel specifications. Using this style, designing specifications becomes quite 

methodical. After finding a suitable decomposition of the interface into parallel 

agents, we write down their interactions separately, and then weave them together by 

considering timing constraints. Since the set of possible behaviours of a specification 

is hard to fathom, we proposed various property macros for testing the consequences 

of hardware specifications in chapter 3. These together with others found useful in 

practice were applied systematically to the examples in this chapter. This made it 

possible for us to test our specifications thoroughly for the desired properties. This 

work on the methodology of asynchronous design is the major contribution of the 

research described in this thesis. 

Implementations (by others) corresponding to our specifications were given in all 

but one case (the Move Machine). The problem of proving the equivalence between 

specification and implementation is discussed in the final chapter. 



Chapter 6 

Conclusions 

6.1 Summary 

The contributions of this thesis have been to: 

• develop a parallel specification style which results in neat and compact speci-

fications for complex asynchronous hardware, and which scales well when the 

number of inputs to a system increases; 

• propose a set of property macros based upon the modal /.t-calculus to test the 

consequences of specifications, such as deadlock, livelock, safety and liveness; 

• and to apply the parallel specification style and the macro-based testing style 

to a modest range of asynchronous designs. 

In Chapter 2, we detailed the syntax and semantics of CCS and explained various 

notions of process equivalence. 

In Chapter 3, we covered the Hennessy-Milner Logic (HML) and the modal - 

calculus supported by the CWB. A set of basic property macros were proposed and 

motivated. 

In Chapter 4, we specified a library of control path modules and data path mod-

ules for self-timed design using parallel specifications wherever possible. We tested 

the behaviour of these specifications using the basic property macros proposed in 

Chapter 3. 
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In Chapter 5, we specified a variety of asynchronous hardware architectures using 

parallel specifications. We also tested these specifications for desired properties such 

as deadlock-free, livelock-free, safety and liveness. 

Because of its succinctness, scalability and equational reasoning capability, the 

CCS/CWB has proved to be a good tool for specifying and testing asynchronous 

designs. The parallel specification style makes it possible to avoid developing spec-

ifications state by state, which is tricky, tedious and error prone. The macro-based 

testing style makes it possible to investigate the consequences of a design specifica-

tion thoroughly before embarking upon an implementation - after all, it is rather 

pointless implementing something that can deadlock, livelock, is unsafe, isn't live, 

etc. Such properties are hard to locate via simulation, and it is usual practice never 

even to look for such possible defects. In this regard, applying process logics to 

hardware descriptions is an important improvement in the design methodology. 

The specification and testing experiences gained through this thesis work also 

show up certain deficiencies in CCS/CWB. (1) it takes a long time to minimize a 

specification (usually several hours for 1000 states). (ii) the CWB is not efficient in 

detecting the location of deadlock. It usually takes several iterations to achieve a 

satisfactory specification and each iteration has to be checked for deadlock. (iii) since 

CCS does not support the simultaneous synchronisation of several actions, we cannot 

formalise the isochronous fork assumption in CCS. This turns out to be essential in 

implementing basic level modules [Mar90c, BE9O]. The CWB also supports SOCS 

[Mil83b] which does permit the simultaneous operation of several actions. We believe 

it is the right tool for modelling this level of implementation, but an implementation 

defect (now rectified) stopped us from carrying out the work this time. 
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6.2 Future Work 

6.2.1 Equivalence between Specification and Implementation 

In addition to the specifying and testing of an asynchronous design, another impor-

tant aspect of formal verification is concerned with checking whether an implemen-

tation conforms to its specification. The importance of this equivalence checking 

is that once proved, we know that the implementation will hold all the properties 

possessed by the specification, and we can then replace the notationally cumbersome 

implementation by a compact specification when reasoning further up the hierar-

chicy. 

Unfortunately, equivalence checking between specification and implementation is 

not an easy task in the CWB. The action sequences of input transitions in the spec-

ification are inherently well-handled, but there is no easy way to constrain the input 

action sequences to an implementation. Hence, if there are some constraints on the 

operating sequences of input actions, they can only be enforced by the environment 

in which the implementation operates. 

For example, we pointed out the operating environment for the control circuit 

for a 4—stage micropipeline in Chapter 5: 

1. Input Constraint: After an input request nfl, an acknowledge aim must occur 

before another nfl. 

2. Output Constraint: An output request 'rout must occur before an acknowledge 

aout can be received. 

Expressed in CCS we have, 
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ENVin = reqin. ' nfl. am. ' ackin . ENVin 

ENVout = rout. 'reqout . ackout. 'aout . ENVout 

With this operating environment we have 

CC4specENV = ( CC4spec I ENVin I ENVout )\{nin,ain,aout,rout} 

CC4impENV = ( CC4imp I ENVin I ENVout ) \-Crmn, aout , am , rout} 

Although we can prove that CC4impENVis equivalent to CCspecENVon the CWB 

Command: eq 

Agent: CC4specENV 

Agent: CC4impENV 

**true 

we cannot be completely confident in that each component of the implementation 

sits in an environment (provided by the rest of the design) which corresponds exactly 

to that holding when we proved it equivalent to its specification, and if it isn't, we 

cannot replace it by its specification. In the above example, it means that each of 

the four C-elements used to implement the control circuit should be operating in an 

environment which does not change its delay insensitivity; and this should also hold 

when the 4—stage control circuit is used as basic module to construct control circuit 

with more stages. 

It is necessary and important to prove an implementation faithfully conforms to 

its specification, but the testing we require is not directly supported by the CWB 

now. The automation in the CWB of such delay insensitivity guarantees at different 

hierarchy levels would be an interesting and worthy component in a PhD. Larsen's 

PhD thesis [Lar86] provides a suitable starting point for this research. 
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6.2.2 Silicon Compilation 

The CCS process algebra has a succinct and compact notation and very clear and 

clean semantics. Since it has only three basic operators (., I and +) all a prototype 

silicon compiler has to be able to do is translate these operators into hardware. 

1. "." sequences actions and is implemented by just a wire 

2. "+" is used to express the nondeterministic choices amongst independent agents 

and can be implemented by the sequencer; 

3. "" has to cope with various synchronisations between parallel agents. these 

include: 

• the operation of external transitions 

• the internal 1—i handshake is a simple C-element with its output forking 

back to both clients as an acknowledgement 

• the many-to-1 and 1-to-many handshakes which can again be handled by 

the sequencer 

• the many-to-many handshake which still requires careful specification and 

a cheap implementation 

Such a prototype silicon compiler would be inefficient, and there is much work to do 

in locating special cases (e.g. if we know that inputs are mutually exclusive, we can 

use the cheaper join instead of the expensive sequencer). Again this is a suitable 

topic for a PhD, and Brunvand [Bru91c] is a good source for possible optimisations. 
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Finally, we believe another suitable PhD topic would Fe mechanisation of the 

design methodology proposed in this thesis. 

Putting all these ideas together leads towards tool support for the automatic 

synthesis of asynchronous circuits from specifications expressed in CCS. 
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