
THE UNIVERSITY OF CALGARY

REASONING ABOUT ASYNCHRONOUS

DESIGNS IN CCS

BY

YING LIU

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

CALGARY, ALBERTA

OCTOBER, 1992

©YINGLIU 1992

National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1AON4

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1AON4

the author has granted an

irrevocable non-exclusive licence
allowing the National Library of

Canada to reproduce, loan,

distribute or sell copies of

his/her thesis by any means and

in any form or format, making

this thesis available to interested

persons.

The author retains ownership of

the copyright in his/her thesis.

Neither the thesis nor substantial

extracts from it may be printed or

otherwise reproduced without

his/her permission.

Your file Voire référence

Our file Noire référence

L'auteur a accordé une licence

irrevocable et non exclusive

permettant a la Bibliothèque

nationale du Canada de

reproduire, prêter, distribuer ou

vendre des copies de sa these

de quelque manière et sous

quelque forme que ce soit pour

mettre des exemplaires de cette
these a la disposition des

personnes intéressées.

L'auteur conserve la propriété du

droit d'auteur qui protege sa

these. Ni la these ni des extraits

substantiels de celle-ci ne

doivent être imprimés ou

autrement reproduits sans son
autorisation.

ISBN 0-315-83194-4

Canad1+1 a

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "REASONING ABOUT ASYN-

CHRONOUS DESIGNS IN CCS", submitted by YING LIU in partial fulfillment of

the requirements for the degree of Master of Science.

Dr. G. Birtwistle, Superviser & Chairman
Department of Computer Science

Dr. B. Ges
Department of Computer Science

Date- October 21, 1992

\V. lIaslett
ept. of Electrical & Computer Engineering

Dr. L. E. Turner
Dept. of Electrical & Computer Engineering

11

Abstract

With VLSI technology advancing rapidly, synchronous designers are finding it diffi-

cult to distribute clock signals and maintain functionality as more circuitry is packed

onto chips. Ways out of the dilemma are to raise the level of abstraction and to use

simple and standard rules of composition. These are amongst the advantages offered

by asynchronous design.

For years, designs have been "verified" via simulation at various levels. Atten-

tion is now being paid to formal methods which use induction proofs over regular

structures in two steps and give full coverage over all input/output sequences.

This thesis brings the formal methods to bear on the asynchronous hardware

design style. A parallel specification style is developed which scales well when the

number of inputs to a system increases and a testing style based upon the modal

it-calculus is proposed to test the consequences of specifications. Several non-trivial

designs are evaluated by this methodology.

111

Acknowledgements

I would like to express the deepest appreciation to my supervisor, Dr. Graham

Birtwistle: for his willingness to accept me as one of his students when I was lost; for

his patience in leading me into the world of formal methods which was completely

new to me; for his enthusiastic encouragement and unfailing support all the time;

and for his thoughtfulness and help in every small aspect. Without his support, the

thesis would not have been possible.

Thanks to Shiu Kai Chin, Jo Ebergen, Doug Edwards, Brian Gaines, Brian

Graham, Carl McCrosky, and Faron Moller who carefully read the first draft of my

thesis. Their insights and suggestions helped me greatly in improving the quality of

this thesis. Thanks also to Mantis Cheng, Ganesh Gopalkrishnan, Chris Tofts, and

David Walker for beneficial discussions.

The Formal Method Group at the University of Calgary is a wonderful place

to do research. John Aldwinckle's incisive understanding in modal logics and Ken

Stevens' valuable experience in asynchronous design were a great help in carrying

out this thesis research. Thanks also to Robin Cockett, Tom Fukushima, Mike Her-

mann, Donald Kuzenko, Bruce MacDonald, Rajagopal Nagarajan, Cameron Patter-

son, Todd Simpson, Konrad Slind, Dave Spooner and Sue Stodart who were always

helpful and supportive.

This work could not have been completed without the support of the Alberta

Microelectronics Center and the University of Calgary.

Finally, special thanks to my parents for their long lasting support and encour-

agement when I was with them and when I am half the earth away.

iv

Contents

Approval Page

Abstract

Acknowledgements iv

List of Figures vii

1 Introduction 1
1.1 Asynchronous Circuit Design Style 2

1.2 Verifying Asynchronous Systems with CCS 6
1.2.1 Formal Verification of Asynchronous Circuits 6
1.2.2 Appropriateness of CCS 7

1.3 Structure of the Thesis 9
1.4 Contributions of the Thesis 10

2 CCS Notation and Support Tools 11
2.1 Syntax and Semantics of CCS 11

2.1.1 Syntax of CCS 12
2.1.2 Semantics of CCS 12

2.2 Equivalence of Processes 17
2.2.1 Trace Equivalence 18
2.2.2 Strong Equivalence .-..' 20
2.2.3 Observation Equivalence 21
2.2.4 Observation Congruence = 22

2.3 The Concurrency Workbench 23
2.4 Limitations of CCS 29
2.5 Summary 30

3 Process Logics 31
3.1 Hennessy-Milner Logic 31

3.1.1 Syntax of HML 31
3.1.2 Satisfaction of HML 34
3.1.3 Expressing Properties in HML 37

3.2 Modal -calculus 40
3.2.1 Raw Modal p-calculus 42
3.2.2 A Collection of Macros 46

v

3.2.3 Defining Macros on the CWB 56
3.2.4 Some Other Useful Macros 56

3.3 Summary 60

4 Cell Library Specification 61
4.1 The Trivial Control Path Modules 62

4.1.1 Merge 62
4.1.2 C-Element 64
4.1.3 Toggle 67
4.1.4 Wire and IWire 68
4.1.5 Fork 69

4.2 The Non-trivial Control Path Modules 70
4.2.1 Call 70
4.2.2 Arbiter and Mutual Exclusion 72
4.2.3 Select and Q-Select 77
4.2.4 2-by-1 Join and Sequencer 82

4.3 Data Path Modules 86
4.3.1 Enable 86
4.3.2 Register 87
4.3.3 Latch 88
4.3.4 Boolean Register 89

4.4 Summary 92

5 Design and Testing Circuit Specifications 93
5.1 Sutherland's Micropipeline 94

5.1.1 Control Circuit for a Micropipeline 94
5.1.2 FIFO Micropipeline 102

5.2 Ebergen's Stack 108
5.3 Martin's Distributed Arbiter 116
5.4 Brunvand's CSA Adder 127
5.5 Sutherland's Move Machine 135
5.6 Summary 142

6 Conclusions 143
6.1 Summary 143
6.2 Future Work 145

6.2.1 Equivalence between Specification and Implementation 145
6.2.2 Silicon Compilation 147

Bibliography 149

vi

List of Figures

2.1 Trace Equivalence between Agent P and Agent P' 19
2.2 Behaviour of Two Simple Communication Protocols 25

3.1 A Simple Vending Machine 32
3.2 Proof of A = < a >(< b >T A < c >T) 36
3.3 Proof of B V= < a >(< b >T A < c >T) 36
3.4 Simple Agent 40
3.5 Agent with Loops between States 41
3.6 Fix Point Example 43

4.1 A Merge Module 62
4.2 A C-Element Module 64
4.3 A Toggle Module 67
4.4 Wire (and IWire) Module 68
4.5 A Fork Module 69
4.6 A Call module 70
4.7 An Arbiter Module 72
4.8 A Mutual Exclusion Module 76
4.9 A Select Module 77
4.10 A Q-Select Module 78
4.11 A 2-by-1 Join Module 82
4.12 A Sequencer Module 85
4.13 An Enable Module 86
4.14 A Register Module 87
4.15 A Latch Module 88
4.16 A Boolean Register Module 89

5.1 Specification of Control Circuit for a Micropipeline 94
5.2 Implementation of the Control Circuit for a 4-stage Micropipeline . 100
5.3 Specification of a FIFO Micropipeline 102
5.4 Implementation of a 4-stage FIFO Micropipeline 107
5.5 Control Part (solid lines) and Data Part (dashed lines) of a Stack Cell 109
5.6 Specification of the Control Circuit for 2-stage Stack 109
5.7 Implementation of the Control Part for a 1-stage Stack 115
5.8 Implementation of the Control Part for a 2-stage Stack 116
5.9 A Distributed Arbiter 117
5.10 Node of Martin's Distributed Arbiter 117
5.11 Implementation of Martin's Arbiter 125

vii

5.12 Carry-completion Sensing Addition (CSA) Module 127
5.13 A 4-Bit Self-timed Adder Based upon the CSA Module 134
5.14 The Structure of Sutherland's Move Machine 136

viii

Chapter 1

Introduction

With the rapid advancement in chip fabrication technology, VLSI circuits are be-

coming smaller, denser and faster. To retain their market advantage, manufacturers

like to keep the design-verification-fabrication-test window small. This is becoming

increasingly difficult with the standard synchronous design style, and so researchers

and manufacturers are re-examining old decisions to see if neglected design styles

can be resurrected.

Two important requirements for a design style are composability and amenability

to verification.

Composability means there are simple and consistent rules for joining circuits

and sub-systems together. It may also mean that if all constituents of a design share

a property, then so will the complete design (e.g. delay insensitivity, or strong inputs

and strong outputs).

Traditionally, verification has been concerned with checking whether an imple-

mentation conforms to its specification. More attention is now being paid to formal

verification since the simulation of hardware systems is exponential (in time) in its

inputs, whereas formal proofs (which can abstract n-bit values on buses to a single

function and prove regular designs in two steps by induction) tend not to balloon in

size as we go up the design hierarchy. With formal techniques, we may also check the

consequences of specifications and answer such questions as "Can the system dead-

lock? Is it safe? Live?". It is hard to see how these checks can be done satisfactorily

1

2

using simulation.

The asynchronous design style has been neglected for a long time, perhaps mainly

due to problems associated with producing hazard free designs and its extra logic

requirements. But it has some positive features, amongst which we mention:

• Since asynchronous design islands can work at their own rates, we may join

asynchronous components together easy in the knowledge that this will not

disturb other components, provided that suitable interfacing standards are

adhered to.

• Languages like CCS and CSP have been used to specify asynchronous designs.

Since these languages have been given proper semantics, the way is now open

to reason about the designs they represent. OCS has the added advantage of

mechanized support.

1.1 Asynchronous Circuit Design Style

The major difference between synchronous design and asynchronous design is that

asynchronous circuits do not use a global clock. However, with advances in VLSI

technology, hard problems associated with synchronous design are arising [Sei8O],

e.g. power, routing, clock distribution, and clock skew.

These problems do not arise in asynchronous design, since attention is focussed

upon letting components work at their own rate and finding standard ways of join-

ing them together. Thus it seems worthwhile to re-examine the pros and cons of

asynchronous design.

3

Pros

• Simple Standard Interfacing. Asynchronous design is quite different from

conventional synchronous design in its signaling conventions. The signaling

protocols of asynchronous systems only rely on the ordering of signals; they

make no assumptions about signal speed.

• Separation of Timing and Functionality. With its simple and standard

signaling protocols, an asynchronous system can be designed as a set of separate

subsystems with standard communications amongst them. The partition of

subsystems is based only on functionality; speed is a performance issue to be

handled separately. Thus we avoid problems with clock distribution and clock

skew which may become severe when we compose synchronous systems.

• Composability. Because asynchronous design enhances separating timing

from functionality, large asynchronous systems can be composed of subsystems

operating at widely different speeds, taking advantage of the maximum speed

available from each of its subsystems. This leads to the most important feature

of asynchronous design: composability. The composability of asynchronous de-

sign not only provides a simple way of building larger structures hierarchically,

but also makes it easy for system upgrading when improved circuitry becomes

available.

• Testability. As far as the correctness of a design is concerned, the compos-

ability of asynchronous design also makes it easy to test. Each subsystem is

first tested independently. When the whole system is composed adhering to a

4

self-timed communication protocol, it is easy to test the system without even

knowing the details in each subsystem.

• Layout. In synchronous design, more attention is paid to placement and

routing in the effort to achieve a functionally correct circuit. This is no longer

the case in asynchronous design, since delays caused by wire length only affect

performance but have nothing to do with functionality.

• System Performance. Besides its advantages mentioned above, asynchronous

design may be superior to synchronous design in system performance. Gen-

erally speaking, synchronous systems tend to reflect a worst-case behavior,

while asynchronous systems tend to reflect an average-case behavior. This is

because the clock frequency in a synchronous circuit has to be set according

to the worst-case delay in any of its subsystems, while the asynchronous sys-

tem starts a new computation' immediately after the previous data has been

computed and the new data is available. Hence, provided the handshaking

circuitry is not too slow or cumbersome, an asynchronous system should run

faster than the worst case.

Cons

• Lack of experience. For many years, removing hazards from asynchronous

design has been considered very difficult, and most circuit designers have shied

away from asynchronous design.

• Basic Modules are Difficult to Design. Designing basic asynchronous

building blocks is very difficult. But, over the years, the problem has been

5

solved, and several libraries now exist [Bru87, Bru91b, MFR85]. In contrast,

composing asynchronous systems from library components is very easy, so once

a tried and trusted library is to hand, hierarchical design is straightforward.

• Larger Circuit Area. One of the negative aspects of asynchronous design is

that an asynchronous circuit is usually larger than its synchronous counterpart

due to its extra logic requirements. However, it is interesting to note that

the new (synchronous) DEC Alpha chip [Com92} not only has 30% of its area

devoted to clocking circuitry, but also consumes 30 watts (17 by the clocks and

probably 5-10 by the pads!). Perhaps these old ideas need re-evaluating too.

• Lack of Supporting CAD Systems. A long history of designing syn-

chronous designs has resulted in a large variety of CAD systems available for

supporting synchronous design, e.g. VTI, Cadence, GDT and etc. Although

some CAD systems for asynchronous design do exist [Bru91c, Mar90b] they are

still prototypes and do not support verification. Individual verification tools

[Dil89, Mol91] have recently been developed to support the verification of asyn-

chronous designs. It is believed that these positives of asynchronous design are

beginning to spur the development of CAD systems, and more support tools

should be available in the near future.

In summary, the advantages of asynchronous design are well-matched with the

advancement of VLSI technology. The asynchronous design style is thus expected to

become more practical and useful when the circuit size keeps on increasing.

Techniques for the design of asynchronous circuits have been investigated and

developed over the years. Special types of such circuits have been also proposed.

6

Among them, are speed-independent circuits and delay-insensitive circuits. A speed-

independent circuit is informally defined as a circuit of which the correctness is insen-

sitive to element delay; a delay-insensitive circuit is a circuit of which the correctness

is insensitive to both element delay and wire delay.

1.2 Verifying Asynchronous Systems with CCS

1.2.1 Formal Verification of Asynchronous Circuits

Formal verification of asynchronous circuits proves that an implementation meets a

specification of its intended behavior (for all acceptable inputs) by using some formal

reasoning frameworks. It not only checks whether an implementation conforms to

its corresponding specification, but also verifies consequences of specifications such

as deadlock, livelock, safety and liveness which should be possessed by a design.

Informally,

• deadlock means a system may evolve into a state from which no further action

is possible.

• livelock means that a system may get into an internal loop and make no further

progress (accept no further input signals and emit no further output signals).

• a safety property means that nothing bad will happen when a system operates,

e.g. there may never be more than one bus master.

• a liveness property means that something good will eventually happen when a

system operates, e.g. a processor completes each instruction in finite time.

7

If a specification doesn't have these desired properties, it is pointless to imple-

ment it. Modifications should be made on the specification before embarking on

implementation until satisfactory results have been achieved.

Formal verification for asynchronous design is being developed as an alternative

to simulation. According to the reasoning framework used, there are two general ap-

proaches to the formal verification of asynchronous design. One is to take an existing

general-type reasoning framework which is powerful enough to model the behavior

of asynchronous circuits, and use it to construct proofs for correctness. For example,

being originally a framework to express and reason mathematics, High Order Logic

and its associated proof system HOL [Gor88] are well-used in the verification of hard-

ware systems [Joy88, BGS+90]. An alternative approach is to develop a special-type

reasoning framework for the area of interest. Examples of this are process algebras

such as CSP and CCS developed by Hoare [Hoa85] and Milner [Mi189] respectively

for describing and reasoning about concurrent systems.

This thesis will focus on the application of CCS to the formal verification of

asynchronous designs. GUS maps well onto delay insensitive asynchronous design

and has some mechanized support as well.'

1.2.2 Appropriateness of CCS

GUS (Calculus of Communicating Systems) is a process algebra for describing and

reasoning about concurrent systems developed by Milner [Mil89]. In GUS, a con-

current system is described as a collection of interacting processes which sometimes

proceed on their own and sometimes need to synchronize with others before they can

carry on. GUS provides well-defined syntax and semantics for specifying processes,

8

together with a set of laws for reasoning about these processes and how they com-

municate with each other. The Concurrency Workbench (CWB) [Mol91] is a tool

supporting CCS which provides a very powerful model checker to verify whether a

system behaves as expected by using Hennessy-Milner Logic (HML) [HM8O, 11M85]

and the modal p-calculus [Koz83]. Thus, once a concurrent system is specified in

CCS, it becomes possible to reason about its processes and verify the system to be

correct.

The purpose of using CCS and CWB in the verification of asynchronous circuit

design is to put the building of asynchronous circuits on a firm formal basis. The

key advantage of CCS/CWB is that we can investigate the consequences of a de-

sign specification before embarking upon an implementation. Provided with suitable

propositions based upon modal p-calculus, the CWB model checker can be used to

check the important characteristics of a concurrent system, such as deadlock free,

livelock free, safety and liveness. Compared with the normal practice of circuit sim-

ulation, verification results proved by the CCS/CWB hold over all input sequences,

while circuit simulation results are only valid for limited testing sequences.

The thesis concentrates upon this aspect of formal verification. We show how to:

1. give parallel specifications to complicated asynchronous systems

2. develop a number of useful macros for testing the consequences of specifications

3. apply them to a range of asynchronous designs

Based upon the agreed specification and the chosen implementation, CCS/CWB

may then be applied to see whether this implementation faithfully conforms to the

9

specification. The implementation should be equivalent to its corresponding spec-

ification. If so it will hold all the properties held by the specification, and we can

replace the cumbersome implementation by a compact specification when reasoning

further up the hierarchy. The equivalence checking is. not included in this thesis

because when building designs by composition, we have to show that each element is

fitted into an environment which respects its delay insensitivity. This checking is not

directly supported by the CWB and proving equivalence by hand is very painstaking,

time consuming and tedious. Its automation seems to be a suitable PhD topic.

1.3 Structure of the Thesis

This thesis is structured as follows:

Chapter 2 describes the COS notation and the Concurrency workbench (CWB).

The syntax and semantics of COS are described with examples. The main types of

agent equivalence in COS are covered. A mechanized style of specifying and testing

COS agents in the CWB is developed with examples. The limitations of COS are

investigated.

Chapter 3 describes the tools available for testing the consequences of a COS spec-

ification in CWB, which are Hennessy-Milner Logic (HML) and the modal 14-calculus.

Useful, general-purpose macros for hardware verification are proposed, based upon

the modal It-calculus.

Chapter 4 gives the COS specification of a cell set for self-timed design. The

CWB testing results are also given.

Chapter 5 develops a methodology for applying CCS/CWB to the design and test

10

of specifications of asynchronous circuits. The examples have been chosen to cover

a reasonable design spectrum: Sutherland's micropipeline and Ebergen's stack are

flow-through architectures, Martin's distributed arbiter is a token ring, Brunvand's

adder module is the basis of a self-timed ALTJ, and Sutherland's Move Machine is a

tiny yet useful processor.

Finally, Chapter 6 summarizes the thesis work and gives suggestions for further

work.

1.4 Contributions of the Thesis

Although there are several examples of CCS applied to asynchronous systems [Bre9O,

BA91, LM86, Par85b, Par85a], this thesis relates one of the first attempts to apply

the CCS process algebra to asynchronous hardware description. CCS is used to write

parallel specifications of asynchronous hardware and the CWB is used to test the

consequences of these specifications. CCS/CWB has proved to be a nice tool because

of its succinctness, scalability and equational reasoning capability.

The work in this thesis is perhaps the first serious application of process logics

to test hardware specifications. Useful macros based upon modal u-calculus and

especially tailored for hardware verification are proposed to reason about the conse-

quences of asynchronous designs expressed in CCS. The automated model checking

tool embedded in the CWB has proved to be very powerful and practical since spec-

ifications can be tested thoroughly before embarking on implementations.

Chapter 2

CCS Notation and Support Tools

In this chapter, the CCS notation and CWB support tool are described with exam-

ples. The CCS syntax and semantics are explained first, followed by various notions

of process equivalence in CCS. Examples of using the CWB are also given. Finally,

the limitations of CCS are discussed.

2.1 Syntax and Semantics of CCS

In CCS, systems are described in terms of agents. An agent (or process) is a system

whose behavior consists of interleaved, discrete actions. An agent may perform zero,

one, or any number of sequential actions. More complex agents may be described as

compositions of smaller agents executing in parallel.

Associated with each CCS agent is a set of visible actions called its sort through

which it interacts with its environment (informally, its i/o ports). Compound agents

will usually have purely internal communication lines which are hidden (not visible).

Agents may evolve in two ways:

1. by a single visible interaction with the environment,

2. by an invisible, internal handshake (a simultaneous communication between

two agents with one agent performing an output action on a hidden line and

the other performing a complementary input action on the same hidden line

simultaneously).

11

12

The semantics supported by CCS is interleaved and not fully parallel.

2.1.1 Syntax of CCS

E ::=

where

Nil
A constant

prefix

E1 + E2 + ... + En summation
E1 IE2I ... IEn composition
E \ L restriction
E [f I relabeling

A € Const, some fixed infinite set of agent constants,

a E Act, the set of actions,

L is a subset of Names, and

f is a relabeling function.

2.1.2 Semantics of CCS

We give a semantics for CCS by induction over the structure of agent expressions.

. Nil. Nil represents a process which can do nothing. There is no rule for Nil

since it cannot evolve.

• Constant definition. The behaviour of the defined agent A (A '(E) is that

of its definition E as expressed by the rule Con:

13

Con E-4E'

A -04

• Prefix. If c is an action and P2 an agent then a.E is an agent which is capable

of performing action c and then behaving as the agent E. This is expressed by

the rule Act:

Act

• Summation. If 17!1 and E2 are agents, then P21 + E2 is an agent which non-

deterministically behaves either like P21 or like E2. This is expressed by the

rules Sum1 and Sum2:

Sum1 E1 - 04 E Sum2 E2 - E

E1+E2 -Eç E1+E24E

• Composition. If F1 and E2 are agents, then F1 I E2 is an agent whose

behaviour is such that each of F1 and E2 may act independently of the other.

This is expressed by the rules Corn1, Corn2:

14

c / c Corn1 - Corn2 E2 —*

E1IE2 - EIE2 E1IE2 4 E1IE

E1 and E2 may also together engage in a communication whenever they are

able to perform tomplementary output and input actions. This is expressed

by the rule Corn3:

Corn3 E1- E E2- E

E1IE2 -- EIE

The r-action introduced in. Corn3 represents the occurrence of a communica-

tion event between two agents internally with no externally-visible effect. This

internal communication is synchronized by one agent producing an output ac-

tion while the other agent produces a complementary input action.

• Restriction. If E is an agent and L is a set of labels, then E \ L is an agent

which behaves like E except that it cannot perform any of the actions (as well

as the corresponding complementary actions) lying in £ externally, although

each pair of these complementary actions can be performed for communication

internally. This is expressed by the rule Res:

• a / — Res E —* E (a)aL)

E \ L —* E' \ L

• Relabeling. If E is an agent and f is a relabeling function, then E[f] is an

agent which behaves like E except that the labels are relabeled as specified by

the function f. This is expressed by the rule Rel:

15

Rel E—a E

f(a) E[f] E/[f]

The above GUS operators have decreasing binding power in the following order:

Restriction and Relabeling > Prefix > Composition > Summation

With these operators, processes can be described succinctly:

Example 1:

Match ' ef strike .Nil

This example describes the behaviour of a match which is initially capable

of performing the action strike. Thereafter, no further activity can be

engaged in since it evolves into the agent Nil.

Example 2:

Clock I tick. Clock

Explicit recursive definition is used to describe the behaviour of a clock

which ticks forever by repeatedly substituting the defining expression

tick. Clock for Clock in the left hand side.

Example 3:

dg a.b.'z.0 + b.a.'z.0

16

This example uses the summation operator to show the non-deterministic

choice between two possible action sequences of a C-element. The C-

element is a widely used cell in asynchronous circuit design which serves

as the AND function for events. Upon receiving a transition on a, the

C-element evolves into the agent b.'z. C; upon receiving a transition on

the C-element evolves into the agent a.'z. C. But if the C-element receives

a transition on both a and on b, it evolves into one of the above agents

non-deterministically.

Example :

Scm

U'

U

System

'g.p.Sem

ncs1.g.csl.p. Ui

nsc2.g.cs2.'p. U2

(Scm I Ui I U2) \ {g,p}

This example uses the composition operator and the restriction operator

to describe the competition between two users for one resource. The

resource is protected by semaphore Scm under the competition amongst

several users (two users here). Each user has a cyclic behaviour of a

non-critical section ncs (not using the resource), and a critical section cs

(using the resource). The winning user has sole access to the resource

during its corresponding critical section named as cs1 or cs2 respectively.

This is guaranteed by the users following the protocol:

1. receiving a g request to compete for the semaphore before entering

the critical section; and

17

2. producing a 'p acknowledge to release the semaphore when the crit-

ical section has been completed.

Here, by restricting Sem I Ui I U2 with the set {g,p}, all the labels in

this set and also their complementary labels are externally inaccessible.

We note here that CCS does not broadcast; only one of the two users can

gain the semaphore during one recursive Scm cycle:

1
—4

T
OR

(
(
(

'g.p.Sem I g.csi.'p.Ui I g.cs.'p.U2
p.5cm I csi.'p.Ui I g.cs2.'p.U2
p.Sem I g.cs1.'p.Ui I cs2.'p.U2

Thus, this system evolves by interleaving, one of its many possible action

sequences is listed as follows:

Scm

'g.p.Sem

'g.p.Sem

p.Sem

p.5cm

p.5cm

Scm
'g.p.Scm

p.5cm

U1

ncs1 . g.cs1.'p. Ui

.g.cs1.'p. Ui

cs1.'p. Ui

csi.'p. Ul

P. U1
U1

ncs1 . g.cs1.'p. Ui
ncs1 . g.csj.'p. U1

2.2 Equivalence of Processes

U2) Vg' PI

ncs2.g.cs2.'p.U2) \19,P}
ncs2.g.cs2.'p.U2) \19,P}
ncs2.g.cs2.'p.U2) \19,P}

g.cs2.'p.U2) \{g, p}

g.cs2.'p.U2) \{g, p}

g.cs2.'p.U2) \{g, p}
g.cs2.'p.U2) \{g, p}

cs2.'p.U2) \{g, p}

Having described the syntax and semantics of CCS, we next consider the equivalence

of processes in CCS. This is important since it is the basis for system verification

18

which is basically concerned with checking whether an implementation conforms to

its specification.

In CCS, we have four main types of agent equivalence, namely trace equivalence,

strong equivalence, observation equivalence, and observation congruence. In the follow-

ing sections, we are going to explain all these equivalences one by one, and finally

reach to the right one for system verification: observation congruence.

2.2.1 Trace Equivalence '

In Trace Equivalence (r.j), two agents are regarded as being equivalent precisely when

according to the operational semantics they perform the same sequences of actions:

Given agents P and Q and a sequence .s = <a1, a2, ..., a> of actions,

we write

P - Q

whenever for some agents F1, F2, ..., P,-_1 we have

112

We regard agents F and Q as equivalent precisely when for all sequences

s of actions, for some Q, P -4 Q holds if and only if for some Q', F' -4

Q' holds.

However, - t is insufficiently discriminating as it can be seen from the following

example.

19

Example 5:

P a.(b.Nil+ c.Nil)

P1 C a.b.Nil+ a.c.Nil

P Pr

I
b.NIJ. + e.Nil b.Ni]. c.Ni].

/ /\q- b

Nil Nil Ni.3. Ni].

Figure 2.1: Trace Equivalence between Agent P and Agent F'

Traces (F) = {, a, ab, ac } = Traces (F'), so P -'- P'

Though P F', they have different observable behaviours:

1. after an a, Preaches a state from which it can do either a b or a c;

2. after an a, F' reaches one of two states where:

• it can do a b but not a c; or

• it can do a c but not a b.

Hence we do not wish to regard these agents as equivalent. is thus rejected

as a reasonable equivalence between CCS agents.

20

2.2.2 Strong Equivalence

In order to define Strong Equivalence (".'), it is necessary to introduce the notion of

a Strong Bisimulation first.

A Strong Bisimulation S is a binary relation between two agents satisfying:

V P:agent Q:agent and c E Act,

if P 5 Q then:

1. whenever P - F', then for some Q'

Q - Q' and P'S Q'

2. whenever Q - Q', then for some F'

PZP and P'S Q'.

Then, Strong Equivalence is defined by:

P r.i Q iff P 5 Q for some strong bisimulation S

According to the above definition, if two agents are strongly equivalent, every

action (including every r-action of one agent) would have to be "matched" by an

action (or a r-action) of the other agent. Thus, the agents a.Nil and a.r.Nil would

not be equivalent under this definition. But we would normally wish to regard them

as equivalent.

We thus conclude that is not a reasonable equivalence between CCS agents

either. Though it is useful, it makes too many distinctions.

21

2.2.3 Observation Equivalence

Similar to the definition of Strong Equivalence, it is necessary to introduce the no-

tion of a Weak Bisimulation first before we can give the definition of Observation

Equivalence

A Weak Bisimulation S is a binary relation between two agents satisfying:

V P:agent Q:agent, and a

if PS Qthen:

1. whenever P - F', then for some Q'

Q' and F' S Q'

2. whenever P -* F', then for some Q'

Q()* Q' and P'SQ'

3. whenever Q - Q', then for some F'

P (-!*)*)* F' and F' S Q'.

4. whenever Q - Q', then for some F'

p()*p and pFS Q'

Note:)* stands for zero or more T transitions.

Then, Observation Equivalence is defined by:

F Q if P S Q for some weak bisimulation S

Thus, P and Q are observation equivalent if, for every action a, every a-derivative

of P is observation equivalent to some a-descendant of Q, and similarly with P and

Q interchanged.

22

is almost a congruence relation of agents, i.e. in most cases, it is possible to

substitute an agent in a complex system with an observationally equivalent agent

and thereby obtain an observationally equivalent system. However, this is not always

the case:

Example 6:

B(

r.a.Nil

a.Nil

l.Nil

Though we have A B, A + C F B + C does not hold. This is because

that agent A + C may perform a r.action to become a.Nil, but agent

B + C may not perform any sequence of T-actions to become an agent

observationally equivalent to a.Nil.

The above example illustrates that due to the pre-emptive power of r-actions,

is not a congruence for summation. This leads us to refine slightly to obtain our

final notion of equivalence of CCS agents: Obsrvation Congruence.

2.2.4 Observation Congruence =

The Observation Congruence (=) relation P = Q holds if for all a E Act,

1. whenever P - F', then for some Q',

Q (.)* (i.)* QF and F' Q';

2. whenever Q - Q', then for some F',

p ()* ()* p/ and F'

23

The only difference between = and is that for P = Q, every action even a

'r-action of F, must be matched by at least one corresponding action of Q, and vice

versa. In this sense, r.P is generally not = to P.

According to the above definition, = is a congruence relation of agents, it is a

fully substitutive equivalence relation. This is the right equivalence we want to have

between COS agents, and further, for system verification.

2.3 The Concurrency Workbench

The Edinburgh Concurrency Workbench (CWB) [Mol91, CPB9O] is an automated

tool for analyzing concurrent systems expressed in COS. With the CWB, concur-

rent systems can be specified as a hierarchy of subsystems composed of a series of

COS agents. After the specifications are input, the CWB can be used to check

the specifications for such properties as sort, sequence, states, deadlock and various

equivalences.

It is worth mentioning that the command we use to check equivalence between

two agents is the Observation Equivalence (eq) instead of Observation Congruence

(cong). If neither of the agents P and Q can initially perform a r-action and P

then we have P = Q.

An agent which cannot initially perform a T-action is called a stable agent and

whether or not an agent is stable can also be checked in the CWB. If -r-actions are

not deliberately added, most COS agents are stable agents. Hence we can use eq

instead of cong in checking equivalence between agents.

24

Example 7.-

Command: bi A

Agent: t.nil

Command: bi B

Agent: nil

Command: stable

Agent: A

**false

Command: stable

Agent: B

**true

Command: eq

Agent: A

Agent: B

**true

Command: cong

Agent: A

Agent: B

**false

25

With the additional r-action introduced, agent A is not a stable agent

like agent B. Thus, though A B, we don't have A = B.

Example 8: (due to Parrow [Par85a])

rec send

Figure 2.2: Behaviour of Two Simple Communication Protocols

Sender

Sender'

Medium

Medium'

Receiver

def

def

del

def

def

rec.'sm.Sender'

ms.'sm.Sender' + rs.Sender

Sm. Medium'

('mr.Medium + r .'ms. Medium)

mr.'s end.' rs.Receiver

Protocol 'I (Sender I Medium I Receiver)\ Ism, ms, mr,rs}
Buffer del= rec. send.Buffer

• The agent Protocol provides a model of the behaviour of a simple

communication protocol, which takes into account the possibility

that a message might be lost during transmission between Sender

and Receiver. Upon receiving a message with an input event rec,

Sender transmits it to Medium. Medium may either transmit the

26

message to Receiver, or lose the message (modeled by a -r-action) in

which case the message needs to be retransmitted. After receiving

the message, Receiver produces an output event 'send, and then

sends an acknowledge signal directly to Sender. Only after it is

acknowledged, may Sender receive another message.

• The agent Buffer provides a very high level description of the be-

haviour of a communication protocol.

With the bisimulation technology, we can construct a Weak Bisimulation

relation between Protocol and Buffer:

S S
SI

'sm.S'

5,
SI

M
M
M
M'
M
M

R)\L, B),
'rs.R)\L, B),

R)\L, 'send.B),
R)\L, 'send.B),

'send.'rs.R)\L, 'send.B),
'rs.R)\L, 'send.B),

where, $ stands for Sender, 5' stands for Sender', M stands

for Medium, M' stands for Medium', R stands for Receiver, B

stands for Buffer, and L is defined as {sm, ms, mr,rs}.

Here, we have established that Protocol and Buffer are Observation Equiv-

alent . Further, we know that both Protocol and Buffer are stable

agents, thus we have reached that Protocol and Buffer are Observation-

ally Congruent =. All these facts can be proved using the CWB:

27

* On the CWB *

Command: bi Sender

Agent: rec. ' sm.Sender'

Command: bi Sender'

Agent: ms.'sm.Sender' + rs.Sender

Command: bi Medium

Agent: sm.Medium'

Command: bi Medium'

Agent: ' mr.Medium + t.'ms.Medium

Command: bi Receiver

Agent: mr. ' send. ' rs.Receiver

Command: bi Protocol

Agent: (Sender I Medium I Receiver)\{sm,ms,mr,rs}

Command: bi Buffer

Agent: rec. ' send.Buffer

28

Command: sort Protocol

**{rec, ' send}

Command: min Protocol

Save result in identifier: Protocol'

**Protocol' has 2 states.

Command: vs 4 Protocol

**=== rec ' send rec ' send ===>

Command: eq

Agent: Protocol

Agent: Buffer

**true

Command: stable

Agent: Protocol

**true

Command: stable

Agent: Buffer

**true

Command: cong

29

Agent: Protocol

Agent: Buffer

**true

The CWB also has a powerful model checker which can be used to check im-

portant characteristics of a concurrent system, such as deadlock free, livelock free,

safety and liveness based upon the modal n-calculus. This will be discussed in the

following chapter.

2.4 Limitations of CCS

Although the CCS process algebra can be used to specify the structure of concurrent

systems accurately and succinctly, it is not entirely satisfactory for several reasons:

1. Functionality is omitted. Note that Miler's text uses value passing CCS but

this is not supported by the CWB nor by the modal n-calculus.

2. Individual actions (here we exclude complementary handshake actions!) are

not allowed to happen simultaneously.

3. It is incapable of describing timing properties, the probabilities and priorities

of actions performed by the components of the system being modeled:

(a) There is no explicit timing in CCS, all actions that can fire will fire in due

course, but we do not know how long this may take.

(b) The probability that an action is to be performed is undefined.

30

(c) No priority can be added to control the internal actions performed inside

a concurrent system.

Note however that many varieties of COS exist which partially remedy this list

of defects. Amongst them are (i) the value-passing COS [Bru91a], (ii) the Syn-

chronous Calculus of Communicating Systems (SCCS) [Mil83a] (which makes it pos-

sible to have individual actions happen exactly at the same moment), (iii) the Tem-

poral Calculus of Communicating Systems (TCCS) [MT89] (which can be used to

model real time processes), (iv) the Weighted Synchronous Calculus of Communicat-

ing Systems (WSCCS) [Tof9Oa, Tof9Ob] (which allows probabilistic branching and

is being used to formalise discrete event simulations), and (v) Miler's ir-calculus

[MPW89a, MPW89b, Mil91] (which merges full functionality with the sequencing of

COS).

2.5 Summary

In this chapter we have detailed the syntax and semantics of COS and explained

various notions of process equivalence. Although COS has its limitations, it is a

very compact notation with very clear semantics, and an amazing ratio of "range of

application : size of language". Since this is my first foray into the complex world

of asynchronous hardware, it was deemed best to tackle a limited range of problems

with a small and clean tool so as best to understand the real problems and how to

overcome them.

Chapter 3

Process Logics

In chapter 2, we described some notions of equivalence between CCS agents. With

the aid of the CWB, we can check whether an implementation conforms to its spec-

ification. But equivalence checking may take a long time if the agents have many

states. Thus it pays to see whether we can spot any differences between an imple-

mentation and a specification first before we attempt equivalence checking. Process

logics provide the framework for such an enterprise. Even more importantly, process

logics can be used to examine specifications for their consequences, e.g. deadlock,

'livelock, safety and liveness before we embark on implementation. In this chapter,

we cover the process logics for CCS supported by the CWB, namely Hennessy-Milner

Logic (HML) and the modal it-calculus, together with examples.

3.1 Hennessy-Milner Logic

Hennessy-Milner Logic (HML) is a special type of modal logic, which uses labeled

transition systems as a model. With HML, we can show whether an agent can carry

out a certain trace by one move at each state. In this section, we describe HML

syntax, the satisfaction relation and give some examples on the CWB.

3.1.1 Syntax of HML

Labeled transition systems have the form

31

32

(7', A, { T I a E A})

where

7 is a non-empty set of agents,

A is an action set,

T is the set of transition relations, - P >< P for each a E A.

Example 1: simple vending machine

del
V = 1p.little.'collect.V + 2p.big.' collect. V

ip

'S72

little big

V4

Figure 3.1: A Simple Vending Machine

33

we have,

2 t-' {V1,V2,V3,V.}
A '({ ip, 2p, little, big, ' collect }

'collect little big

Let K range over subsets of an action set A, the syntax of HML is defined,

A::= TI -' A IAA Bl[K]A

where

A is a formulae of HML,

T is the constant true, the only predefined atomic formula in HML,

-, is the negation of a formula,

A is the conjunction of two formulae,

[K] A means: A holds after every action in K.

34

Other common operators are derived:

F def -iT F is the constant formula false

A V B (-i(-iA A -iB) V is the disjunction of two formulae

< K > A (-'[K]-'A < K>isthedualof[K]

3.1.2 Satisfaction of HML

For every formula A of HML, we interpret B = A as meaning "process E E P satisfies

the property A", and B A as meaning "B fails to have the property A". The

satisfaction relation = is defined inductively over the structure of HML formulae:

1.ET V

2. B = -iA iffEV=A
3. B = A A B iffBt=AAEJ=B
4. B [K]A iffVE'E2,VoEK.ifE-iE' then E'I=A

For the derived operators, we have,

5.E=F iffBT
6. B H AVB iffEAVEIB

7. B H < K>A ifFaE'EP,2aE IC. E-E' and E'I=A

Their interpretations are:

1. Every process in P has the property T.

2. A process has property -'A when it fails to have property A.

3. A process has property A A B when it has both property A and

property B.

35

4. A process satisfies [K] A if after every performance of any action

in If, all the resulting processes have property A

5. Every process fails to have property T.

6. A process has property A V B when it has either property A or

property B.

7. A process satisfies < K> A if it is possible to perform an action in

K such that the resulting process has property A.

Given the HML satisfaction relations, we can prove whether an agent has some

desired properties by the deduction rules.

Example 2:

A

B

B

def

def

del

a.(b.Nil+ c.Nil)

a.b.Nil+ a.e.Nil

<a>(TA<e>T)

As mentioned in chapter 2, although agents A and B have the same trace,

they are not considered to be equivalent OCS agents. We now show the

difference by proving A = B but B K B.

36

A 1= <a>(b>T /\ <c>T)

a
A—ø-b.nil + c. nil

b.nil + c.n12. 1= cb>T /\ <c>T

b.nil + c.nil 1= T b.nil + c.nil 1= <c>T

b.nil + c.n -Lxiii b.ni]. + c.nil-2--nil

xiii = T nil 1= T

Figure 3.2: Proof of A = < a >(< b >T A < c >T)

B 1= <a>(b>T /\ <c>T)

a
B-- b. nil or a 1-- c.nil

b.nil 1= b>T /\ <c>T c.nil I= -:Ib>T /\ <c>T

b . / N c b / N . c
b.nil—i. nil / and\._A /, / and'\. c.nil—.-nil

nil 1= T nil 1= T

Figure 3.3: Proof of B < a >(< b >T A < c >T)

37

3.1.3 Expressing Properties in HML

Using the satisfaction relation, we can show whether an agent can carry out a certain

trace one move at a time. This is realised by expressing agent properties at a certain

state in HML and checking for correctness using the HML satisfaction. Several useful

formulae for expressing agent properties and their interpretations are listed below:

E = [a] F E cannot do an a action
E = < a> T it is possible for Eto do an a action

E 1= [-] F E cannot do any action (it is deadlocked)
E = < — > T Ecan do some action (it is live)
E = < — > TA [—a]F E can doan a action and nothing else
E <— a> < b> T Ecandoanon- aactiontbenabaction
E 1= [a] < b> T after all a actions from E, one can do a b action

E = [a] T always true
E < a> F always false

As an example of using HML, we show how the properties of the simple vending

machine (see Example 1) are tested automatically in the workbench.

Example 3: V '1 1p.liUle.'collect.V + 2p.big.'collect.V

Notice that on the CWB, V is written 1, and A is written &.

* On the CWB *

-- It is possible for V to do a 2p move.

Command: cp V

Propositions: <2p>T

38

**true

-- The only possible move after all 2p action is a big.

Command: cp V

Propositions: [2p](<->T & [-big]F)

**true

-- Initially, neither big nor little is possible for V.

Command: cp V

Propositions: [big, little]F

**true

-- After all ip or 2p actions, a ip move is impossible.

Command: cp V

Propositions: [ip , 2p] < lp>T

**false

Starting from its initial state, the third move for V

can only be a ' collect.

Command: cp V

Propositions: <->T & [-](<->T & [-](<->T & [-' collect]F))

**true

39

Actually, there are two modal logics for OCS associated with the two transitions

defined in conjunction with the strong and weak bisimulation. If -r-actions are to

be accounted for (strong equivalence), the associated modalities are as mentioned

above; if T-actions are to be ignored (weak equivalence), the associated modalities

are expressed as [[]] and << >>. We show this using one of the examples discussed

in chapter 2.

Example 4:

Scm

Ui

U2

System

*

def

dcl

dcl

del

'g.p.Sem

ncs1.g.cs1.'p. Ui

nsc2.g.cs2.'p. U

(Scm I Ui I U.$) \ {g,p}

On the CWB *

-- When tau-actions are taken into account, it is impossible

-- for System to do a csl immediately after all nscl moves.

Command: cp System

Proposition: [ncsl] <csl>T

**false

-- When tau-actions are ignored, it is possible to do a csl

-- immediately after all nscl moves.

40

Command: cp System

Proposition: [ncslj <<csl>>T

**true

3.2 Modal ft-calculus

HML is used to check whether an agent can carry out a certain trace by "asking

questions one move at a time". It is suitable for checking the properties of simple

agents with straight line or tree-like behaviors as shown in Figure 3.4.

Figure 3.4: Simple Agent

I
/
/
/

41

Unfortunately, interesting agents usually have loops or iterations (as shown in

Figure 3.5).

Figure 3.5: Agent with Loops between States

Here are some typical "threads" or paths of states of this agent starting from

agent Si.

. Self iteration, such as (Si .-) 53 -* S3

Iteration on a thread, such as S - p 52 - p 5 -+ S2 .. or S. - 53 - S -4 S3

• Deadlock at the end of a thread, such as (S1 -+) 82 -+ nil.

Interesting propositions associated with recursive agents are inevitably them-

selves recursive and cannot be handled by HML. Fortunately, by adding just one

construct (fix point definition) to HML, we get the modal 4-calculus [Koz83, SW9l]

which does permit recursive propositions:

A ::= TI -iA I Al A2 I [K] A Ifix(X.A)

42

3.2.1 Raw Modal -calculus

The behaviour of the vending machine V (figure 3.1) is cyclic (every third action is

a 'collect) and goes on forever. Clearly

V 1= <->< -><' collect > T

V = <->< -><' collect >< - >< - ><' collect > T

V = <->< -><' collect >< - >< - ><' collect>< - >< - ><' collect > T

which suggests that V satisfies the equation

V = <—><—><' collect > V,or

V = fix (V.<—><—><' collect > V)

This is an example of a fix point equation. In general, fix point equations may have

no solutions (X = -IX) or several solutions. There is a simple syntactic check for

the existence of at least one solution:

There will always be at least one solution provided that each fix point

variable is within the scope of an even number of negations.

43

Example 5: fix points

Consider the simple system specified below in Figure 3.6.

Figure 3.6: Fix Point Example

The system has 4 states (A1, A2, A3, A4), 5 labels (x, , a, b, c, d) and the following

transition relations:

Relations : (Al, x, A2)
(A2,a,A3)
(A2,b,A4)
(A3,c,A3)
(A4) d,A4)

1. [—JA. We interpret [—]A over a labelled transition system by looking in the

relations for each X such that (X, -) A) and EVERY action from X leads into

A. In this case,

44

[—]A1 = 0
[—]A2 = A1
[—]A3 = A3
[—]A4 = A4

2. <—> A. We interpret < - > A by looking in the relations for each X such that

(X) -, A) and SOME action from X leads into A.

<—>A1 = 0
= A1

<—>A3 = A2,A3
<—>A4 = A2, A4

As an example, the fix points of Y = [—]Yv <x > T are

Y={A1}

Y = Al) A3
Y = {A1) A4
Y = {A1,A2,A3,A4}

min fix point

max fix point

Since an equation may have several fix points, natural questions to ask are: Which

are of most interest? to which the answer is:

• the maximum fix point which includes everything except that which is neces-

sarily false. It is used to express safety.

• the mini mum fixpoint which includes only that which is necessarily true. It

is used to express liveness.

and How do we find them? The algorithms for finding minimum and maximum

fix-points are easy to explain:

45

Minimum fix point of Y = FY

1. start with Yo = 0

2. compute Y1 = F Y0

3. compute Yk+1 = F Yk

4. until Yk+1 = Yk (= y the min fp of F)

E.g. min(Y. <d>T V <->Y)

< d > T

Yo=0
={A4} U ={ A4 }
= {A4} U {A2,A4} = {A2,A4}
= {A4} U {A1,A2,A4} = {A1,A2,A4 }
= {A4} U {A1,A2,A4} = {A1,A2,A4 }

STOP

Maximum fix point of Z = GZ

1. start with Z0 = 2, the set of all states

2. compute Z1 = G Zo

3. compute Zk+1 = G Zk

4. until Zk+1 = Z1ç. (= Z the max fp of G)

E.g. max(Z. [d]F A [-] Z) is given as:

46

[d]F [—]Zk

Z0 = {A1,A2,A3,A4}
= {A1,A2,A3} fl {A1,A3,A4} = A,, A3
= {A1,A2,A3} fl {A3} = {A3}
= {A1,A2,A3} fl {A3} = {A3}

STOP

Interestingly enough, these extremal fix points are related: if Y is the min fix point of

Fy, and Z is the max fix point of ,F(--iy) (the dual of Fy), then I I Y 11= 1'— I I Z 11.

Above, we have shown that

hence

min FY =

max GZ =

<d>Tv<—>Y is {A1,A2,A4}
[d]FA[—]Z is {A3}

-'(< d > TV < —> (-'Z))

[d]F A [—]Z
GZ

IIYIl={A1,A2,A4}=7'-{A3}= 2- IIZII

3.2.2 A Collection of Macros

Here are some properties of the vending machine expressed in raw modal-It:

** it is possible never to do a big

Command: cp V

Proposition: max(Z . <-big>Z)

**true

47

** it is always possible to do a big now and in the future

Command: cp V

Proposition: min(Z . <big>T I <->Z)

**true

** when a coin is inserted a ' collect must eventually happen

Command: cp V

Proposition:

iva.x(Z.[lp,2p](min(Y. ONLY ' collect I [-' collect]Y)) & C-] Z)

**true

As can be seen, propositions expressed in the raw modal -calculus can be very

hard to read. Further we often need to describe "properties within properties" which

require nested fix point equations. But the modal u-calculus is a very expressive logic

and it has been shown that all the the provenly-useful temporal logic operators can

be expressed within it [Dam9O]. These operators are considerably more intuitively

understandable than their raw modal jt equivalents. We therefore choose to present

our arguments in terms of selected temporal operators.

Following Manna and Pnueli [MP92], two basic properties that we want are:

• P holds on every state reachable from state S. This is expressed by S I= 0 P

(read as "box P" or "always P").

For example, referring to Figure 3.4, S 0 live states that not all the states

reachable from S1 are live.

48

• P holds on at least one thread from state S. This is expressed by S 1= 0 P

(read as "diamond P" or "possible P").

For example, S = 0 deadlock states that it is possible to get deadlock on at

least one thread from 5,.

We can combine these operators in two useful ways:'

• It is always possible to do P. Informally, if we don't do it this time, we might

do it next time (when we loop back). This is expressed by S = 0 0 P.

For example, 5, 1= 0 0 deadlock states that starting from 8, wherever we move

to, it is possible to deadlock (reach the state nil).

• It is possible to reach a set of states where P always holds. Informally, we can

get possible stability after a warm up. This is expressed by S = 0 0 P.

For example, S3 = 0 0 deadlock states that starting from S it is possible to

reach a state (82) from which we can always get deadlock.

Though 0 (> and 0 0 can be simply constructed with the combination of 0 and

K> defined above, there are macros which cannot be constructed directly from 0 and

0. One such useful operator is eventually: EV. Eventual properties are concerned

with expressing that some desired properties eventually hold whichever thread is

chosen. S 1= EV P states that either P holds at state S or state S has at least one

derivative and EV P holds on every derivative. For example, in the simple vending-

machine we have previously mentioned, no matter which thread we take, a 'collect

happens eventually.

10 0 = 0 and 0 0 = 0 and so are of no further interest.

49

The differences between 0, 0 and EV are summarized as:

• S 1= 0 P has P holding at S and at every state reachable from S;

• S = EV P has P holding at S or on every thread reachable from S;

• S = 0 P has P holding at S or at one state reachable from S

In the following sections, we present examples of these basic macros. We close

this section with their definitions in the modal -calculus and give some other macros

found to be generally useful.

Safety Property

Safety properties are concerned with expressing that some undesirable property can-

not happen. The basic operator is 0. S = 0 P states that P holds on every state

accessible from S. Usually we use [...]F to state an undesirable property P.

Example 6: (due to Bradfield and Stirling [BS9O])

This is a simple finite state system representing a road crossing a rail-

way, in which train and car represent the approach of a train and a car

respectively. green is the receipt of a green signal by the train, tcross is

the train crossing and 'red sets the lights red. up is the gates opening for

the car, and ccross is the car crossing and 'down closes the gates.

Rail

Road

Signal

Crossing

clef

def

del

def

train. green. tcross.' red. Rail

car. up. ccross.'down. Road

'green, red. Signal + ' up. down. Signal

(Road I Rail I Signal)\{green, red, up, down}

50

A crucial safety property of this system is that it is never possible for a

ccross immediately after a tcross, and vice versa.

Command: cp Crossing

Proposition: BOX ([tcross] [ccross]F)

**true

Command: cp Crossing

Proposition: BOX ([ccrossJ LtcrossjF)

**true

Instead, the car or the train should wait for a change of the crossing signal

controlled by the invisible r- actionswithin this system, hence the above

claim results in false when weak modality is used in the model checking.

Command: cp Crossing

Proposition: BOX ([[tcross]] [[ccross]]F)

**false

Command: cp Crossing

Proposition: BOX ([[ccrossll [[tcross]JF)

**false

We can express Conditional Safety (if 0 P holds only under a certain condition

Q)by

0(Qo P)

51

Example 7: (also due to Bradfield and Stirling [BS9O])

The following system represents a process Ticker whose observable be-

havior is to perform a finite number of 'ticks and then stops. But the

process also has the feature that it may diverge by performing T-actions

indefinitely.

Upi

Downs

DownO

Ticker

def

def

def

def

r.Up +1 + Down

'tick.Down_1

nil

Up0

Since we cannot represent an infinite state machine on the CWB, we

approximate it. Here is a Ticker of a "size 2",

Command: bi UpO

Agent: t.Up1 + DownO

Command: bi Upi

Agent: t.Up2 + Downi

Command: bi Up2

Agent: t.Up2 + Down2

Command: bi DownO

Agent: nil

52

Command: bi Downi

Agent: ' tick.DownO

Command: bi Down2

Agent: ' tick. Downi

Command: bi Ticker

Agent: UpO

Though the Ticker may perform r-actions indefinitely, once we reach a

state where a 'r-action is impossible (after the first 'tick), we can never

do another r.

Command: cp Ticker

Proposition: BOX(EtJF => BOX [t]F)

**true

Liveness Property

Liveness properties are concerned with expressing that a system can possibly "es-

cape". The basic operator is K'. S 1= K P states that P holds oh at least one thread

accessible from S. For example, 0 <-> T states the possible liveness property of a

system, and 0 [—]F states the possibility of deadlock in a system

Command: cp Ticker

Proposition: POSS <t>T

**true

53

Command: cp Ticker

Proposition: PUSS <' tick>T

**true

Command: cp Ticker

Proposition: POSS <->T

**true

Command: cp Ticker

Proposition: PUSS L-IF

**true

This is not the standard definition for ' liveness, but is close enough for our pur-

poses in this introduction. Obviously, we can combine 0, K and other operators

(e.g. - i, A, v) to express more elaborate notions of liveness quite easily.

With these definitions, the classes of liveness and safety properties are dual. The

complement of a liveness property is a safety property, and vice versa:

Response Property

Response properties are concerned with expressing that some event happens infinitely

many times. A basic response macro is formed by the operator 0 K. S = 0 0 P

54

states that one can always move to a state from which it is possible for P to hold on

some following accessible threads.

For example, in the Crossing system specified above, it is always possible for a

train or a car to cross.

Command: cp Crossing

Proposition: BOX POSS <tcross>T

**true

Command: cp Crossing

Proposition: BOX POSS <ccross>T

**true

An alternative form for response property is expressed as:

0 (QP)

where P is a guaranteed response to Q. For example, in the Ticker system specified

above, the claim that if a move is possible (not deadlock) then a 'tick is possible in

the future is always true.

Command: cp Ticker

Proposition: BOX (<->T => POSS <' tick>T)

**true

Persistence Property

Persistence properties are concerned with expressing the possible stabilization of

some state of a system. It allows an arbitrary delay until the stabilization occurs,

55

but require that once it occurs, it is continuously maintained. A basic persistence

macro is based upon the operator K> 0. S = K> 0 P states that it is possible to reach

at least one state from which P holds on every following accessible thread.

We show this using the modified Ticker system which keeps on generating the

warning signal 'flash upon receiving an error message.

Command: bi Ticker-modify

Agent: Ticker + error.ERR

Command: bi ERR

Agent: ' flash.ERR

Command: cp Ticker

Proposition: PUSS BOX E-'tickjF

**true

In many cases, the stabilization is triggered by a preceding event. This conditional

persistence property is expressed as:

o(QK>oP)

which specifies the eventual stabilization of P is caused by Q.

Command: cp Ticker-modify

Proposition: BOX ([' flashiF => PUSS BOX [-' tick]F)

**true

56

The classes of persistence and response properties are dual. The complement of

a persistence property is a response property, and vice versa:

- DKP=D -rP

- DP=D- P

3.2.3 Defining Macros on the CWB

In the workbench, the basic property macros are defined as follows based upon the

modal it-calculus:

Command: bmi BOX P

Body: max(Z. P & E-JZ)

Command: bmi POSS P

Body: min(Z. P I <->Z)

Command: bmi EV P

Body: min(Z. P I ([-] Z & <->T))

3.2.4 Some Other Useful Macros

In this section, we list some additional useful property macros from which other

interesting propositions can be constructed. We will use these macros without further

ado in the following chapters.

. Only

S = Only a states that it is possible to do an a action and no other action.

57

Command: bmi ONLY a

Body: (<a>T Sc E-a]F)

Hence, the only possible move at state S is performing an a.

• Only-Then

S j= Only-Then a P states that the only possible move at state S is performing

an a, and we move to a state satisfying P after it is performed.

Command: bmi ONLY-THEN a P

Body: (ONLY a Sc [alP)

• Must-Do

S = Must-Do a states that starting from S we will eventually reach a state

where a is the only possible move.

Command: bmi MUST-DO a

Body: EV (ONLY a)

Hence, eventually a must happen.

• Nec-For

S Nec-For a z states that without a, a z is impossible, hence a is necessary

for a z. It does not guarantee that after an a is performed, we will definitely

have a z move.

Command: bmi NEC-FOR a z

Body: max(Z. [zJF Sc [-a]Z)

58

We can further extend this macro to Nec-For' defined as:

Command: bmi NEC-FOR' P z

Body: max(Z. [z]F Sc [-P]Z)

where P is an action list which may consist of any number of actions. Nec-For'

P z states that at least one of the actions in the action list P is necessary for

producing a z.

Notice that all the macros listed in this section are based upon the labeled modal

u-calculus instead of the unlabeled modal it-calculus. Though using sets of labels

adds nothing to the expressive power of the language, we do achieve flexibility and

conciseness in expressing interesting properties.

Example 8: Vending machine revisited

• The inputs ip and 2p of the vending-machine are mutually exclusive. Once

ip happens, 2p cannot happen until a 'collect signaling the end of buying a

chocolate has happened; and vice versa.

Command: bpi SV

Proposition:

max(SV. Elp](ONLY_THEN little (ONLY-THEN ' collect SV)) Sc \

[2p](ONLY_THEN big (ONLY-THEN ' collect SV)))

Command: cp V

59

Proposition: SV

**true

• A 'collect must happen: eventually we reach a state where 'collect is the only

possible move.

Command: cp V

Proposition: MUST-DO ' collect

**true

• A little is necessary for producing a 'collect after inserting .Lp; and a big is

necessary for producing a 'collect after inserting 2p.

Command: cp V

Proposition: [ip] NEC-FOR little ' collect

**true

Command: cp V

Proposition: [2p] NEC-FOR big ' collect

**true

With the unlabeled and labeled property macros defined above, it becomes an

easy task to construct various property macros rich enough to express the properties

concerned with testing asynchronous hardware.

60

3.3 Summary

In this chapter we introduced the HML logic and the modal n-calculus supported by

the CWB. HML is used to show whether an agent can carry out a certain trace from a

named state one move at a time. The modal -calculus is used to show the properties

of recursive CCS agents over all states. After a short introduction to minimum and

maximum fix points, we presented a number of macros, each written in modal-it,

which will be used in the rest of this thesis. The macros form a reasonably powerful

basis for reasoning about hardware specifications, and are much more readable and

intuitive than raw modal-p expressions. We consider this raising of the level of

abstraction to be a useful thesis contribution.

Chapter 4

Cell Library Specification

In this chapter we specify a number of small cells which have been suggested as basic

library components by various researchers [Bru91c, Sut89, Ebe88]. The cells fall into

three categories:

1. Trivial control path modules: Merge, C-element, Toggle, Wire and IWire, and

Fork.

2. Non-trivial control path modules: Call, Arbiter and Mutual Exclusion, Select

and Q-Select, and Join and Sequencer.

3. Data path modules: Enable, Register, Latch and Boolean Register.

In the following sections, we specify each of these modules in turn and present a

variety of tests on their specifications.

61

62

4.1 The Trivial Control Path Modules

4.1.1 Merge

a
Merge

Figure 4.1: A Merge Module

Function

A Merge module serves as the "OR" function for transition signals: a transition on

either input (a or b) causes a transition on the output ('z), but after a transition

on a or b, a subsequent input event cannot occur until an output event 'z has been

generated.

CCS specification

Merge = a.'z.Merge + b.'z.Merge

CWB testing

Command: sort Merge

**{a,b, ' z}

Command: size Merge

**Merge has 2 states.

Command: vs 4 Merge

63

**=== a a ' z =>

**=== a 'z b ' z ==>

**=== b ' z a ' z >

**=== b ' z b ' z ===>

Behaviour verification

1. In its initial state, the Merge module is ready to accept an a or a b, but a

is impossible. Upon receiving either an a or a b, the module reaches a state

where it is ready for producing a 'z (both a and b are impossible), and then

evolves back to its initial state after 'z is produced.

Command: bpi SMab

Proposition: max(SMab. [a]SMz & Eb]SMz & [' z]F)

Command: bpi SMz

Proposition: max(SMz. [a]F Sc Eb]F Sc [' z]SMab)

Command: cp MERGE

Proposition: SMab

**true

2. After an input transition, the only possible move is to produce a 'z.

Command: cp Merge

Proposition: (Box [a] (ONLY ' z)) Sc (BOX [b](ONLY ' z))

**true

64

4.1.2 C-Element

a
C

Figure 4.2: A C-Element Module

Function

A C-Element' serves as the "AND" function for transition signals: only after a

transition has arrived on both of its inputs (a and b), will a transition be generated

on the output ('z).

CCS specification

C= a.b.'z.C+ b.a."z.0

This style of specification does not extend well to C-elements with more than two

inputs. For example, a 3—input C-element would be specified as:

C3 = a.(b.c.'z.C3 + c.b.'z.C3) + b.(a.c.'z.C3 + c.a.'z.C3) + c.(a.b.'z.C3 + b.a.'z.C3)

11t is named the Join module in Brunvand's library.

65

The parallel style of specification examplified by

A

B

C

Z

C3

def

def

def

def

def

a.'g.p.A

b.'g.p.B

c.'g.p. C

g.g.g!z.'p.'p.'p.Z

(Al BI C I 2) \ {g,p}

is to be preferred as it is linear in the number of inputs.

CWB testing

Command: sort C

**{a,b, ' z}

Command: size C

**C has 4 states.

Command: vs 6 C

**=== a b ' z a b ' z ===>

**=== a b ' z b a ' z ===>

**=== b a ' z a b ' z >

**=== b a ' z b a ' z ===>

Behaviour verification

1. In its initial state, the C-Element is ready to accept either an a or a b, but a

is impossible. Upon receiving an a, it waits for a b before producing a 'z; upon

receiving a b, it waits for an a before producing a 'z.

66

Command: bpi SCab

Proposition: max(SCab . La]SCb Sc [b]SCa Sc [' z]F)

Command: bpi SCa

Proposition: max(SCa Ea]SCz Sc [b]F Sc E'z]F)

Command: bpi SCb

Proposition: max(SCb [aJF Sc [b]SCz Sc L'zJF)

Command: bpi. SCz

Proposition: max(SCz EaJF Sc EbJF Sc [' z]SCab)

Command: cp C

Proposition: SCab

**true

2. After both inputs receive a transition, the only possible move is a 'z.

Command: cp C

Proposition: (BOX [a] [b] (ONLY ' z)) Sc (BOX [b] [a] (ONLY ' z))

**true

67

4.1.3 Toggle

'zO
tin Toggle

Figure 4.3: A Toggle Module

Function

A Toggle module routes an input transition (tin) alternatively to its two outputs

('zo, 'z1). After initialisation, the first input transition will be routed to 'ZO and the

subsequent input transition will be routed to 'z1. The output that receives the first

transition starting from the initial state is marked with a dot as shown in Figure 4.3.

CCS specification

Toggle = tin.'zo.tin.'z1.Toggle

CWB testing

Command: sort Toggle

**{tin, ' zO, ' zl}

Command: size Toggle

**Toggle has 4 states.

Command: vs 8 Toggle

**=== tin ' zO tin ' zi tin ' zO tin ' zi =>

68

Behaviour verification

The behaviour of Toggle module is straightforward: starting from its initial state,

the Toggle module is ready for accepting a tin and producing a then before it

goes back to its initial state, the Toggle module should wait for another input tin to

produce a 'z1.

Command: bpi ST

Proposition:

max(ST. [tin](ONLY_THEN ' zO (ONLY-THEN tin (ONLY_THEN ' zi ST))))

Command: cp Toggle

Proposition: ST

**true

4.1.4 Wire and IWire

Wire

Figure 4.4: Wire (and IWire) Module

Function

A Wire module produces an output transition (' z) upon receiving a transition on its

input. An IWire module fires 'z first before receiving any input transitions and then

behaves as a Wire.

69

CCS specification

def /
Wire = a. z. Wire

de I Wire f , = z.a.I Wire

The relationship between Wire and IWire is

def
I Wire = , z. Wire

4.1.5 Fork

Fork
'C

Figure 4.5: A Fork Module

Function

A Fork module steers an input transition (a) to both of its outputs ('b and 'c).

CCS specification

def
Fork = a.('b.'c.Fork + ' c.'b.Fork)

70

4.2 The Non-trivial Control Path Modules

4.2.1 Call

ri

'al

r2

'a2

Call

Figure 4.6: A Call module

'rs

as

Function

The transition Call Module implements the hardware equivalent of a subroutine

call. After a transition on either of the two request lines ri or r2, the Call module

starts a subroutine process with the 'rs signal. When the subprocess completes and

acknowledges with as, the Call module acknowledges the appropriate client on 'al

or 'a2. A full request- acknowledge transaction must be completed before either side

may request again and the input request signals must be mutually exclusive.

CCS specification

Call = rl.'rs. as.'al. Call + r2.'rs. as.'a2. Call

CWB testing

Command: sort Call

**{as,rl,r2,'al,'a2,'rs}

71

Command: size Call

**CALL has 7 states.

Command: vs 8 CALL

** ri ' rs as ' al ri ' rs as ' al ===>

**=== ri ' rs as ' al r2 ' rs as ' a2 >

**== r2 ' rs as ' a2 ri ' rs as ' al >

** r2 ' rs as ' a2 r2 ' rs as ' a2 ===>

Behaviour verification

1. The input requests ri and r2 of the Call module are mutually exclusive. Once

ri happens, r2 cannot happen until the corresponding done event 'al has been

generated; once r2 happens, ri cannot happen until the corresponding done

event W has been generated.

Command: bpi SCall

Proposition:

max(SCall. \

[nj (ONLY_THEN ' rs (ONLY_THEN as (ONLY_THEN ' al SCall))) & \

[r2](ONLY_THEN ' rs (ONLY_THEN as (ONLY_THEN ' a2 SCALL))))

Command: cp Call

Proposition: SCall

**true

2. The input requests vi and v2 of the Call module are mutually exclusive.

72

Command: cp Call

Proposition: (BOX [ri] [r2] F) Sc (Box [r2] [r1]F)

**true

4.2.2 Arbiter and Mutual Exclusion

ri 0.

dl

r2

d2

Arbiter

'gl

g2

Figure 4.7: An Arbiter Module

Function

A two-way transition Arbiter (RGD arbiter) guarantees the mutually exclusive access

to a resource of two independent users. If only one of the users' requests ('r1 or

access is granted promptly ('gi or 'g2). If both users request, the Arbiter will grant

access to only one of the two users. Whichever user receives the grant enters its

critical section, and tells the Arbiter after desired actions have been performed by

the done-transition (d1 or d2) which allows the Arbiter to grant access to the next

requester.

CCS specification

The specification of arbiter module is a typical parallel specification. Two users

contend for one resource, but the access is only granted to one of the two users. This

73

is guaranteed by an agent Scm:

U1
def

def
Sem =

U2
def

r1.

r2.

'gi.d1. 4. U1

I 2
92. d2 - 4.

Scm

U2

Once 4 is captured by one of this two users, 4 can only be returned by the same

user in one Scm cycle.

Formally in COS we have,

U1

U2

Scm

Arbiter

L14

del

dcl

del

CWB testing

Command: sort Arbiter

**{dl,d2,rl,r2, ' gi, ' g2}

ri.g.'g1.d1.'p. U1

r2.g.'g2.d2.'p. U2

'g.p.Sem

(Ui IU2 ISem)\{g,p}

Command: min Arbiter

Save result in identifier: A'

**A' has 12 states.

74

Command: pi A'

A' = A'O

where A'O = rl.A'12 + rl.A'2 + r2.A'6 + r2.A'13

and A'lO = 'g2.A'11

and A'll = d2.A'2 + d2.A'12

and A'12 = t.A'2 + r2.A'7 + r2.A'8 + r2.A'lO + 'gl.A'3

and A'13 = rl.A'lO +' g2.A'14

and A'14 = d2,A'O + rl.A'll

and A'2 = r2.A'8 +' gl.A'3

and A'3 = dl.A'O + r2.A'9

and A'6 = t.A'13 + rl.A'7 + rl.A'8 + rl.A'lO + 'g2.A'14

and A'7 = t.A'8 + t.A'lO +' gl.A'9 +' g2.A'11

and A'8 = 'gl.A'9

and A'9 = dl.A'G + dl.A'13

end

From the above CWB testing on the Arbiter module, the benefits of parallel

specification are clear compared with developing a specification state by state (A').

The latter is tedious and error prone (with much bookkeeping due to the large number

of possible states) and becomes exponentially worse as the number of users of the

Arbiter increases.

Command: vs 4 A'

ri r2 ' gi dl =>

75

rl ' gi dl rl >

rl ' gi dl r2 >

rl ' gi r2 dl ===>

rl r2 ' g2 d2 ===>

r2 rl ' g2 d2 >

r2 ' g2 d2 rl ===>

r2 ' g2 d2 r2 >

r2 ' g2 rl d2 >

r2 rl ' gl dl ===>

Behaviour Verification

1. Requests from users may overlap.

Command: cp Arbiter'

Proposition: (Box Cr1] [r2]F) I (BOX Cr2] [rl]F)

**false

2. But once a request is granted, it is necessary for the corresponding done-

transition to be produced before another grant is allowed. For example, if

the request from r1 is granted ('gi), neither 'g nor can happen before d1 is

produced.

Command: cp Arbiter'

Proposition: [' gl]((NEC_FOR dl ' g1) & (NEC-FOR dl ' g2))

**true

76

Mutual Exclusion

A Mutual Exclusion module grants permission ('g or 112) to one of the two users

competing for a resource (ri and r2). It can be viewed as a simpler version of the

arbiter module, with the difference that it resets the request line to its initial state

after permission is granted (Return-to-Zero Signalling).

It is specified as:

ri

r2

Mutual
Exclusion

gi

'g2

Figure 4.8: A Mutual Exclusion Module

U'

U2

Se?n

ME

def

def

def

def

r,.g.'g, . r,'g1.'p. U,

r2.g.g2.r2.g2.p. U2

'g.p.Sem

(U,I U2lSem)\{g,p}

77

4.2.3 Select and Q-Select

'zO
tin Select

I
sel

Figure 4.9: A Select Module

zL

Function

A two-way transition Select module steers an input transition tin to either of its two

outputs ('Zti,'Zi) depending on the value of a boolean data signal (sel). This Boolean

data signal must be valid from before a transition occurs on the input until after a

transition is generated at one of the outputs.

A Q-Select module (as shown in Figure 4.10) has the same function as that of

the Select module except that it is delay-insensitive: there is no bundling constraint

on sel. Thus transition on sd might happen after the input request tin has occurred

but before an event on one of the outputs has been produced. A special circuit must

be used to sample the changing of sci so that output is produced according to the

sampled value on sel.

78

'zO
tin QSelect

1L
sel

Figure 4.10: A Q-Select Module

CCS specification of Select

Select0 del = sel.Select1 + ten. z0.Sclect0

Select1 dcl = sel.Selcct0 + tzn./ z1.5e1ect1

Select - Select0

CCS specification of Q-Select

QSelecto

QSelect1

TIN

QSelect

def

dcl

del

del

sd. QSelecti + 'zero. outzero. QSelecto

sd. QSelecto + 'orte.outone. QSelect1

tin,. (zero! Z .' outzero. TIN + on,e.'z1 .' outone. TIN)

(QSelecto I TIN) \ { zero, one, outzero,,outome}

CWB testing

Command: ort Select

**{sel,tin, ' zO, ' zl}

Command: sort QSelect

79

**{sel,tin, ' zO, ' zl}

Command: size Select

**Select has 4 states.

Command: min QSelect

Save result in identifier: QSelect'

**QSelect' has 6 states.

Command: vs

sel sel

sel sel

sel sel

sel tin

sel tin

tin ' zO

tin ' zO

tin ' zO

4 Select

sel sel ===>

sel tin >

tin ' zO >

'zi sel ===>

'zi tin ===>

sel sel ===>

sel tin ==>

tin ' zO >

Command: vs 4 QSelect'

sel sel sel sel >

sel sel sel tin >

sel sel tin ' zO >

sel sel tin sel >

80

sel tin ' zi sel >

sel tin ' zi tin ==>

sel tin sel ' zO >

sel tin sel sel >

tin ' zO sel sel >

tin ' zO sel tin >

tin ' zO tin ' zO >

tin ' zO tin sel >

tin se]. ' zi sel >

tin sel ' zi tin >

tin sel sel ' zO >

tin sel sel sel ===>

Behaviour verification

1. Initially, the Boolean data signal sel is 0. The Select module is ready to either

accept a transition on sel and evolve into a new state where the Boolean data

signal .sel is ./, or accept a tin to produce a 'z0 before a sel can happen. When

the Boolean data signal sel is 1, the Select module may accept a transition on

sel and evolve back into the state where the Boolean data signal sel is 0, or

accept a tin to produce a 'z1 before a sel can happen.

Command: bpi SSO

Proposition: max(SSO. EseliSSi Sc [tin](ONLY_THEN ' zO SSO))

Command: bpi SS1

81

Proposition: max(SS1. [sel]SSO Sc [tin](OI'ILY_THEN ' zi SS1))

Command: cp Select

Proposition: SSO

**true

2. No matter whether the Select module is in state Select0 or in state Select1, once

an input transition tin happens, a corresponding output must occur before the

boolean data signal sel can change its logic state.

Command: cp SelectO

Proposition: Etinj(NEC_FOR ' zO sel)

**true

Command: cp Selecti

Proposition: [tinj(NEC_FOR ' zi sel)

**true

3. We here show how a Q-Select module differs from a Select module: a transition

on sel immediately after a tin is possible in the Q-Select, but impossible in the

Select.

Command: cp QSelect

Proposition: BOX ([tin]<sel>T)

**true

82

Command: cp Select

Proposition: BOX ([tin]<sel>T)

**false

4.2.4 2- by-1 Join and Sequencer

n

al

a2
Join

'bi

'b2

Figure 4.11: A 2-by-1 Join Module

Function

The 2-by-1 Join Module filters one (mutually exclusive) stream through (either a1.

or a2. 'b2) once permitted by a "go" signal on n.

CCS specification of Join

We might specify the Join module by one of

Join1

Join2

def

Le

a1.n.'b1.Join1 + a2.n.'b2.Join1 + n.a1.'b1.Join1 + n.a2.'b2.Join1

a1.n.'b1.Join2 + a2.n.'b2.Join2 + n.(ai.'bi.Join2 + a2.'b2.Join2)

(1)

(2)

but (1) is not satisfactory in that the action sequences are decided immediately after

the first input event is received. (2) has the desired behaviour but we can make it

83

look neater by using a parallel specification. Again, think of its expansion to several

users.

J

N

Join

CWB testing

Command: sort Join

{a.1,a2,n, ' bi, ' b2}

def

def

def

ai.g.'bi.'p.J + a2.g.'b2.'p.J

n.'g.p.N

(J I I\1) \ {g,p}

Command: min Join

Save result in identifier: Join'

Join' has 6 states.

Command: vs 3 Join'

al n ' bi >

a2 n ' b2 >

n al ' bi >

n a2 ' b2 ===>

Behaviour Verification

1. The two independent inputs a1 and a2 are mutually exclusive.

Command: cp Join'

84

Proposition: (BOX [al] [a2]F) & (BOX [a2] [al]F)

**true

2. After an a1 and an ii the next action must be a 'b1, and symmetrically for level

2.

Command: cp Join'

Proposition: (Box [al][n](ONLY ' bi)) & (Box [n] [all (ONLY ' bi))

**true

Command: cp Join'

Proposition: (BOX [a2][n](ONLY ' b2)) & (BOX En] [a2] (ONLY ' b2))

**true

Sequencer

A Sequencer module differs from the Join module in that its inputs a1 and a2 are

not necessarily mutually exclusive. Because of this, the pair (ai, n) and the pair (a2,

n) may contend for producing their corresponding output (b1 or b2).

85

n

ai.

a2
Sequencer

'bi

'b2

Figure 4.12: A Sequencer Module

The parallel specification of the Sequencer is:

Si

5 2

SN

Sequencer

def

dci

dcl

def

a1

a2 . g.'b2 •'P.52

n.'g.p.SN

(SI I S2 I SI\1) \ {g,p}

The behaviour of the Sequencer can also be verified on the CWB:

1. a1 and a2 are not necessarily mutually exclusive.

Command: cp Sequencer'

Proposition: (BOX [al] [a2]F) I (BOX [a2] [al]F)

**false

2. After a pair of desired inputs happens, it is not necessary for the corresponding

output to be produced before the third input occurs (because the third input

action can enter to contend for producing its corresponding output).

86

Command: cp Sequencer'

Proposition:

([alj[n] -(NEC-FOR ' bi a2)) & [a2J[nj -(NEC-FOR ' b2 al))

**true

4.3 Data Path Modules

4.3.1 Enable

ren

'adis

Enable

Bundled
Data in

'aen

rdis

Bundled
Data out

Figure 4.13: An Enable Module

Function

An Enable module is used to gate bundled data input onto a shared output bus. An

enable request (rem) signifies that data is valid on the bundled data input and an

enable acknowledge (aen) signifies the output data bundle is valid at all the receivers

connected to the bus. When a disable request (rdis) is received, the data outputs

are placed in a high impedance state and a disable acknowledge (adis) is generated.

CCS specification

def
Enable rem.' aem.rdis.' adis.Enable

87

4.3.2 Register

req

Bundled
Data in

Register

'ack

Bundled
Data out

11

Figure 4.14: A Register Module

Function

An register module is used to store bundled data information with transition sig-

naling as its control signals. When an input request (req) arrives at the register,

the input data on the bundled data path are latched. An acknowledge transition

('acic) is generated after the data is latched, and the output data are then valid at

all recipients of the data.

CCS specification

def
Register = req.'ack.Register

88

4.3.3 Latch

cm

'pout

cout

pin

Bundled Bundled
Data in Data out

Figure 4.15: A Latch Module

Function

A Latch module has the similar function to that of a Register module, except with

a slightly different set of control signals which has an explicit control over the trans-

parent state and opaque state: a cin signal tells the Latch to capture the data and

become opaque, and a 'cout signal signals to the environment that the data has been

latched; a pin signal tells the Latch to pass the data and become transparent, and a

'cout signal signals that the data has been passed from the Latch to output.

CCS specification

Latch clef . , . = czn. cout.pzn. pout.Latch

89

4.3.4 Boolean Register

rsetO

rset].

test

Boolean
Register

'asetO

'aset].

'zO

'zi

Figure 4.16: A Boolean Register Module

Function

A Boolean register is a single-bit register which uses transition signaling interfaces

for changing the register's contents. A transition on the rseto wire sets the value

of the register to zero and acknowledges on the 'aset0 line; a transition on the rset1

wire sets the value of the register to one and acknowledges on the 'aset1 line. Uses

of these interfaces must be mutually exclusive. The value of the register can also be

tested: a transition on the test input (test) produces a transition on either outputs

('Zn or 'z1) depending on the current value of the register.

CCS specification

def
BReg = BRego

BRego 'I rseto.'aseto.BRego + rset1.'aseti.BRegi + test.'zo.BRego

BReg1 (rset0.'aseto.BRego + rset1.'aset1.BReg1 + test.'zi.BRegi

CWB testing

90

Command: sort BReg

**{rsetO,rsetl,test,'asetO,'asetl,'zO,'zl}

Command: size BReg

**BReg has 6 states.

Command: vs 4 BReg

rsetO ' asetO rsetO ' asetO ===>

rsetO ' asetO rsetl ' aseti >

rsetO ' asetO test ' zO ===>

rsetl ' aseti rsetO ' asetO >

rsetl ' aseti rsetl ' aseti ===>

rsetl ' aseti test ' zi ===>

test ' zO rsetO ' asetO ===>

test ' zO rsetl ' aseti >

test ' zO test ' zO ===>

Behaviour verification

1. The interfaces for setting the Boolean register, value to zero or one are mutually

exclusive. It is necessary for a set to be acknowledged before the module can

be set again.

Command: cp BReg

Proposition: (Box [rsetO][rsetl]F) Sc (BOX Crsetlj[rsetO]F)

**true

91

Command: cp BReg

Proposition: [rsetO] NEC_FOR ' asetO rsetl

**true

Command: cp BReg

Proposition: [rsetl] NEC-FOR ' aseti rsetO

**true

2. When a test signal is received, reporting the current value of the Boolean

Register is the only possible move followed.

Command: cp BRegO

Proposition: [test] (ONLY ' zO)

**true

Command: cp BRegi

Proposition: [test] (ONLY ' zi)

**true

92

4.4 Summary

In this chapter, we have specified and tested a library of control path modules and

data path modules for self-timed design. Where possible, parallel composition was

used for generating neat and compact specifications. The key advantage of this

specification style is that one can avoid developing specifications state by state (which

is tricky, tedious and error prone). It is especially efficient for specifying multi-

client modules (such as the multi-input C-element and the multi-user Arbiter) with

several users, since a parallel specification stays linear in the number of clients. The

next chapter examines various asynchronous designs which may be built from these

components and finite state machines. As in the synchronous case, smart tools exist

for the synthesis of asynchronous finite state machihs (see [CDS93]).

Chapter 5

Design and Testing Circuit Specifications

In this chapter, we show applications of CCS and the CWB to designing and testing

the specifications of asynchronous subsystems. The subsystems described cover a

variety of designs, including flow through architectures (Sutherland's micropipeline

[Sut89] and Ebergen's stack [EG91]), a token ring structure (Martin's distributed

arbiter [Mar85]), an arithmetic unit (Brunvand's Carry-Completion Sensing Adder

[Bru91c]), and a small processor, Sutherland's Move Machine.

The methodology adopted is summarized in the following steps:

Step 1: Design of Specification

Design a specification using parallel composition where possible.

Step 2: Test of Specification

Test the specification using process logics in the CWB. The specification should

be proved to be deadlock free, livelock free, safe and alo live. Other special

properties may be shown to hold in order to gain confidence in the specification.

Step 3: Implementation

An implementation is given in terms of exiting library modules.

The main contributions of this chapter lie in demonstrating a style of specification

and in systematically applying our library of macros to examining the consequences

of the specifications.

93

94

5.1 Sutherland's Micropipeline

Ivan Sutherland described a new VLSI design style called micropipelines [Sut89] in

his 1989 ACM Turing Award lecture. The design of micropipelines is based upon the

transition signaling conceptual framework, and is significantly different from the con-

ventional VLSI design style of clock driven synchrony. As Sutherland concluded in

his paper, complex systems can be built easily by hierarchical composition with this

new micropipeline design style. Further, the composability offered by micropipelines

and transition signaling provides a simple way to upgrade systems when new tech-

nologies become available.

5.1.1 Control Circuit for a Micropipeline

We first specify the control circuit for a micropipeline. The control part organizes

the transfer of data from one micropipeline stage to another according to a simple

request and acknowledge protocol.

riri

4

am
L

n-
'rout

4

aout

Figure 5.1: Specification of Control Circuit for a Micropipeline

The specification of a n—stage control circuit for micropipeline is constructed by

having one cell L at its left side to deal with input requests and one cell R at its

right side to deal with output requests. n - 1 M cells between L and R provide the

buffering spaces:

95

CCnspec=(LIMif ... IM....i IR)\{mo,mi,...,m_i}

Cell L and Cell R provide the actual interface. Because they are operating in

parallel, the actions belonging to L (rim, 'am) and R (' rout, aout) can interleave.

The flexibility of this parallel specification style makes it trivial to specify an

n—stage circuit: we merely adjust the number of M cells. As an example, here is the

control circuit for a 4—stage micropipeline.

Step 1: Design of Specification

CC4spec (L

I M C mO/left, Wright I

I M C ml/left, m2/right I

I M C m2/left, m3/right J

I R C m3/mO I

) \{mO,mi,m2,m3}

where

L = rin.'mO.'ain.L

Ft = mO.'rout.aout.R

M = left.'right.M

Command: sort CC4spec

**{aout,rin, ' am, ' rout)-

Command: min CC4spec

Save result in identifier: CC4spec'

96

**CC4spec' has 20 states.

Command: vs 4 CC4spec'

**=== rin lain rin ' am >

**=== rin lain nfl ' rout >

** rin ' am ' rout aout >

** rin ' am ' rout rin ===>

**=== rin ' rout aout ' am ===>

** nfl ' rout lain aout ===>

** rin ' rout lain rin >

Step 2: Test of Specification

1. Deadlock Free

Deadlock means a state from which no further actions are possible, e.g., no

part of a concurrent system is able to proceed. We test for each reachable

node using 0 operator.

Command: bpi Deadlock

Proposition: [-IF

Command: cp CC4spec'

Proposition: BOX (Deadlock)

**true

97

2. Livelock Free

Livelock means that the system may be stuck looping by T actions in a cycle

of one or more states moving from one to another without any visible actions

on input and output ports. Thus no visible progress is made. It differs from

deadlock in that it is always active, but nothing shows.

Command: bmi CYCLE-ON

Parameters: a

Body: POSS BOX <a>T

Command: bpi Livelock

Proposition: CYCLE-ON t

Command: cp CC4spec

Proposition: -Livelock

**true

3. Safety

Safety properties state that something bad never happens, that is, the system

never enters an unacceptable state, such as deadlock. Different systems will

have different classes of safety properties. Here, we consider one typical safety

criterion which arises naturally from the above specification.

9 Absence of Unsolicited Response

98

Every acknowledgement is in response to a request. Once an acknowledge-

ment is produced, another request is necessary for producing a further

acknowledge.

Command: bmi. Absence-of-Unsolicited-Response

Parameters: req ack

Body: (NEC-FOR req ack) & (Box Eack] (NEC_FOR req ack))

In the above specification, an input request rim is necessary for producing

a corresponding acknowledge 'aim. Once an 'aim is produced, another rim

is necessary for producing a further 'am.

Command: cp CC4spec'

Proposition: Absence-of-Unsolicited-Response nfl 'am

**true

And also, an output request 'rout is necessary for accepting a correspond-

ing acknowledge aout. Once an aout is accepted, another 'rout is necessary

for having a further aout.

Command: cp CC4spec'

Proposition: Absence-of-Unsolicited-Response ' rout aout

**true

99

4. Liveness

Liveness properties state that something good eventually does happen, i.e. it

is always possible for the system to enter a desirable state. Here, we consider

a few typical liveness properties for the above specification.

• Guaranteed Events

An event which will always eventually be performed is called a guaranteed

event.

Command: bmi Guaranteed-Event

Parameters: a.

Body: BOX (EV <a>T)

We here show that all the input and output actions in this specification

are, guaranteed events.

Command: cp CC4spec'

Proposition:

(Guaranteed-Event rin) & (Guaranteed-Event ' am) & \

(Guaranteed-Event ' rout) & (Guaranteed-Event aout)

**true

100

Step 3: Implementation

rin al r2 a3 'rout

C
0

0

C

I ain ri a2 r3 aout

Figure 5.2: Implementation of the Control Circuit for a 4-stage Micropipeline

As shown in Figure 5.2, the C-element is the only element needed in implementing

Sutherland's control circuit. Each stage of the control circuit uses a C-element with

one of the inputs inverted to implement the following state rule:

If the predecessor and successor differ in state
Then copy predecessor's state
Else hold present state

We have already specified the C-element and tested its behaviour in Chapter

4. The behavior of a C-element with an inverted input is the same as that of the

C-element except for its initial state. With one of the inputs inverted, it requires

only a single event on the other input to trigger an output event. Once this has

occurred, its behavior is the same as that of the normal C-element. Hence we can

101

adapt the specification for C-element in specifying Sutherland's implementation of

control circuit but starting from state Ca.

CC4imp = Ca C nn/a, al/b, zl/z] \

Ca [ri/a, a2/b, z2/z] \

Ca C r2/a, a3/b, z3/z J \

Ca C r3/a ,aout/b, z4/z] \

Fork C zi/a, am/b, ri/c J \

Fork C z2/a., al/b, r2/c] \

Fork C z3/a, a2/b, r3/c I \

Fork C z4/a, a.3/b,rout/c :i \

) \ { zl,z2,z3,z4,al,a2,a3,nl,r2,r3}

where

Ca = a.'z.0

C = a.b. ' z.0 + b.a. ' z.0

The above implementation only represents the interaction of a 4—stage ml-

cropipeline control circuit with no regard to its interface with the environment in

which it operates. The safety property possessed by the specification implies that

the implementation, in fact, operates in an environment which can be expressed in

the following input and output constraints:

1. Input Constraint: After an input request rin, an acknowledge aim must occur

before another rim.

2. Output Constraint: An output request 'rout must occur before an acknowledge

aout can be received.

102

5.1.2 FIFO Micropipeline

A FIFO micropipeline is simply a flow-through first-in-first-out buffer. The control

for a single stage of FIFO has a request and acknowledge interface at both its input

and ouput. The input request is used to signal that new data is available on the

input data path, and the output request is used to indicate the next stage that new

data is available at the output data path. The operation of each FIFO stage is to

accept new input data, and then accept subsequent data only after its current data

item has been taken by the next stage.

nfl

din

'am

L M I n-i R

Figure 5.3: Specification of a FIFO Micropipeline

rout
dout

4

aout

A n—stage FIFO is specified as having one cell L at its left side, one cell R at its

right side and n - 1 M cells between L and R:

FFnspec=(LIMi ... IM_iIR)\{ino,mi,...,m_i}

In the following specification, we will see that M1 is slightly different from M (i

= 2, n - 1) in that an additional semaphore s1 is used to prevent further data from

coming in when the first stage of FIFO is already occupied.

We here show a 4—stage FIFO micropipeline on the CWB.

103

Step 1: Design of Specification

FF4spec= (L \

I Ml C mO/left, ml/right] \

I M C ml/left, m2/right] \

I M C m2/left, m3/right] \

I R [m3/mO] \

) \ -C sl,mO,ml,m2,m3)-

where

L = rin.si.din.'mO.'ain.L

Ml = left.'right.Ml + 'sl.Ml

M = left.'right.M

R = mO.'rout.'dout.aout.R

Command: sort FF4spec

**{aout,din,rin, ' am, ' dout, ' rout)-

Command: min FF4spec

Save result in identifier: FF4spec'

**FF4spec' has 39 states.

Command: vs 6 FF4spec'

nfl din lain nfl din ' am >

nfl din lain nfl din ' rout >

nfl din lain nfl ' rout din >

104

rin din lain rin ' rout ' dout >

rin din ' am ' rout rin din ===>

nfl din ' am ' rout rin ' dout ==>

rin din ' am ' rout ' dout aout >

nfl din ' am ' rout ' dout rin ===>

= rin din ' rout lain rin din ===>

rin din ' rout lain rin ' dout ===>

rin din ' rout lain ' dout aout ==>

nfl din ' rout ' a.in ' dout rin ===>

rin din ' rout ' dout aout ' am >

rin din ' rout ' dout lain aout >

rin din ' rout ' dout lain rin ===>

Step 2: Test of Specification

1. Deadlock Free

Command: cp FF4spec'

Proposition: BOX (-Deadlock)

**true

2. Livelock Free

Command: cp FF4spec

Proposition: Thivelock

**true

105

3. Safety

• Absence of Unsolicited Response

At the input port of a FIFO micropipeline, an input request rim is nec-

essary for producing a corresponding acknowledge 'aim. Once an 'aim is

produced, another rim is necessary for producing a further 'am. Similarly,

rim is also necessary for din.

Command: cp FF4spec'

Proposition: Absence-of-Unsolicited-Response rin ' am

**true

Command: cp FF4spec'

Proposition: Absence-of-Unsolicited-Response nfl din

**true

At the output port of a FIFO micropipeline, an output request 'rout is

necessary for accepting a corresponding acknowledge aout. Once an aout

is accepted, another 'rout is necessary for having a further aout. Similarly,

'rout is also necessary for dout.

Command: cp FF4spec'

Proposition: Absence-of-Unsolicited-Response ' rout aout

**true

Command: cp FF4spec'

106

Proposition: Absence-of-Unsolicited-Response ' rout ' dout

**true

4. Liveness

• Guaranteed Events

All the input and output actions in this specification are guaranteed

events.

Command: cp FF4spec'

Proposition:

(Guaranteed-Event rin) & (Guaranteed-Event ' am) & \

(Guaranteed-Event ' rout) & (Guaranteed-Event aout) & \

(Guaranteed-Event din) & (Guaranteed-Event ' dout)

**true

Step 3: Implementation

FIFO micropipeline can be constructed. by using registers to hold data in the FIFO

and the C-elements (with an inverted input) to control the transfer of data from one

register to another.

107

rin

C

req

din.... ow Register -

ack

C

req

register

ack

-0

C

req

Register

ack

C

req

Register

ack

aout

- ...' dout

'am 'rout

Figure 5.4: Implementation of a 4-stage FIFO Micropipeline

The register module used here in the above implementation is Brunvand's asyn-

chronous register module with transition signaling as its control signals which we

have specified in Chapter 4.

FF4imp

(FF1±mp [ql/rout.,pl/aout,dl/dout J \

I FF1±mp [ql/r±n,pl/ain,q2/rout,p2/aout,dl/din,d2/dout J \

I FF1±mp [q2/rin,p2/a±n,q3/rout,p3/aout,d2/din,d3/dout] \

I FF1±mp C q3lrin,p3lain,d3ldin] \

) \ { pl,p2,p3,ql,q2,q3,dl,d2,d3 }

where

FFlimp = (Ca C nn/a, aout/b, req/z I \

I Register \

I Fork C ack/a, am/b, rout/c I \

) \ { req,ack I-

108

5.2 Ebergen's Stack

Inspired by Sutherland's Micropipelines and Martin's Lazy Stack in [Mar9Oa], Eber-

gen presents a simple, fast design for an asynchronous stack [EG91]. The design of

this asynchronous stack is split into two parts: a control part and a data part, where

the control part dictates the transferring of data from one register stage to another.

A feature of this design is that its control part is delay insensitive, but the data

part is not. Hence some extra delay constraints are to be satisfied in the realization of

the data part, while the correctness of the control part is insensitive to any variations

in the response time of the basic components and delays in the connection wires.

Figure 5.5 shows the interface between one stack cell and its left and right neigh-

bors. Each stack has one private register and shares two registers with its neighbours.

Any data transfer between two private registers has to go through their shared reg-

ister. Pushing an item onto the stack results in shifting all data items one private

register to the right, and popping an item from the stack shifts all items one private

register to the left.

109

Stack Ce].].

i-i

Stack Cell

 'ipAck

 Ig
 'igAck

shared
register

SL

rp
rpAck4

'ry
rgAck4

Stack Ce].].

i+1

lj.n private rout shared
register register

lout R I _'L.J SR

Figure 5.5: Control Part (solid lines) and Data Part (dashed lines) of a Stack Cell

The function of the control part is to control the pushing of data into a register

and also the popping of data out of a register. This design is not concerned with

whether the stack is full or empty; it is always possible to push values onto and pop

values from the stack.

We specify the control part for a 2—stage stack. Information regarding private

registers is hidden at this level of abstraction. Control parts with more stages can

be accordingly expanded.

Step 1: Design of Specification

'ipAck 4

1p
rg

'lgAck 4

L
11

12
M

rl

r2
R

rpAck

rp

'rg
rgAck

Figure 5.6: Specification of the Control Circuit for 2-stage Stack

110

There are two mutually exclusive processes in this design: request of push and pop

from the previous stage at the left port; request of push and pop to the following

stage at the right port. These two processes are related in that a request of push at

the left port is the trigger event for a request of push at the right port; a request of

pop at the left port is the trigger event for a request of pop at the right port.

Parallel specification methodology is adopted:

def
L = ip. 4. 'lpAck.L + 1g. 4. 'lgAck.L

.1).

R 4. 'rp.rpAck.R + 4. 'rg.rgAck.R

Formally in COS we have,

S2spec (L IR)\{p,g}

where

L = 1p.p.'lpAck.L+ lg.g.'lgAck.L

R = 'p.'rp.rpAck.R+ ' g.'rg.rgAck.R

Command: sort S2spec

**{lg,lp,rgAck,rpAck, ' igAck, ' lpAck, ' rg, ' rp}

Command: min S2spec

Save result in identifier: S2spec'

S2spec' has 19 states.

111

Step 2: Test of Specification

1. Deadlock Free

Command: cp S2spec'

Proposition: BOX (Deadlock)

**true

2. Livelock Free

Command: cp S2spec

Proposition: Thivelock

**true

3. Safety

• Mutual Exclusion

Mutually exclusive processes in a program will never execute their critical

sections at the same time.

Command: bmi Mutual-Exclusion

Parameters: a b

Body: (BOX ([a] [b] F)) & (BOX ([b] [a] F))

There are two mutually exclusive processes in the above specification.

One is left port push ip and left port pop ig; the other is right port push

'rp and right port pop 'rg.

112

Command: cp S2spec'

Proposition: Mutual-Exclusion 1p ig

**true

Command: cp S2spec'

Proposition: Mutual-Exclusion ' rp ' rg

**true

We can further show that once a process enters its critical section, it's only

possible for its mutually exclusive counterpart to start after the critical

section has been finished. For example, once ip happens, the correspond-

ing acknowledgement 'ipAck is necessary for starting lg. And similarly,

after 'rp happens, the corresponding acknowledgement rpAck is necessary

for starting 'rg.

Command: cp S2spec'

Proposition: BOX ([lpj NEC-FOR ' ipAck lg)

**true

Command: cp S2spec'

Proposition: BOX ([' rp] NEC-FOR rpAck ' rg)

**true

• Absence of Unsolicited Response

Again, we show that all the acknowledgements are in response to the

corresponding input requests.

113

Command: cp S2spec'

Proposition: Absence-of-Unsolicited-Response 1p ' lpAck

**true

Command: cp S2spec'

Proposition: Absence-of-Unsolicited-Response ig ' lgAck

**true

Command: cp S2spec'

Proposition: Absence-of-Unsolicited-Response ' rp rpAck

**true

Command: cp S2spec'

Proposition: Absence-of-Unsolicited-Response ' rg rgAck

**true

4. Liveness

• Guaranteed Events

Input actions 1p and ig are Guaranteed events.

Command: cp S2spec'

Proposition: (Guaranteed-Event 1p) Sc (Guaranteed_Event lg)

**true

But this is not true for the rest of the input and output actions.

114

Command: cp S2spec'

Proposition:

(Guaranteed-Event

(Guaranteed-Event

(Guaranteed-Event

**false

'ipAck)

'rp)

rg)

(Guaranteed-Event

(Guaranteed-Event

(Guaranteed-Event

'igAck) I \

rpAck) I \

rgAck) \

Actually, these input and output actions will eventually happen only after

the pre- request (trigger event) has been produced. We call this an ensured

response.

• Ensured Response

An ensured response is a response which will eventually be produced after

the corresponding request has occurred. It is defined as:

Command: bmi Ensured-Response

Parameters: req ack

Body: BOX ([req] EV <ack>T)

Here, we show that once the pre-request ip happens, 'lpAcic, ' rp and rpAck-

must happen.

Command: cp S2spec'

Proposition: (Ensured-Response ip ' ipAck) Sc \

(Ensured-Response ip ' rp) Sc \

(Ensured-Response ip rpAck) Sc

**true

115

And once the pre-request ig happens, 'igAck, ' rg and rgAck must happen.

Command: cp S2spec'

Proposition: (Ensured-Response lg ' lgAck) & \

(Ensured_Response lg ' rg) Sc \

(Ensured-Response lg rgAck) Sc

**true

Step 3: Implementation

As shown in Figure 5.7, basic components 2-by-1 Join, Merge and IWire are the only

elements necessary in implementing the control part of Ebergen's stack.

'ipAck 4 un 4-

ip

Join
ig

IWire

'lg'Ack .4

rout

lout

Merge
4-

1

rpAck

 - 'rp

 - 'rg

rin rg-Ack

Figure 5.7: Implementation of the Control Part for a 1-stage Stack

With these modules, the control part for a 1—stage stack is implemented as:

Slimp = (Join C 1p/al, lg/a2,z2/n,rout/bl,lout/b2 I \

I Fork C rout/a, 1pAck/b, rp/c I \

I Fork C lout/a, lgAck/b, rg/c I \

116

I Merge [rpAck/a, rgAck/b, zl/z

I IWire [zl/a, z2/z

) \ { rout,lout,zl,z2)-

For the control part of a 2—stage stack, we have,

'ipAck

1p

'1Ack

STACK

CELL

p2

p1

91

g2

STACK

CELL

rpAck

rp

'rg

4 rgAck

Figure 5.8: Implementation of the Control Part for a 2-stage Stack

S2imp = (Slimp E pl/rput,p2/rputAck,gl/rget,g2/rgetAck 1 \

I Slimp C pl/lput,p2/lputAck,gl/lget,g2/lgetAck J

) \ { p1, p2, gi, g2 }

5.3 Martin's Distributed Arbiter

The basic idea in distributed arbiter is that users contend through separate nodes

joined together by a token ring. When the token reaches a node at which there is

a request, the token stays until the request is satisfied, and then moves on; when

the token reaches a node at which there is no request, the token moves on straight

forward.

117

r,Igjdja1

1
A

Node1

2'g2d2'a2

V

Node2

r,'g,d ,.'a,

I t I t
Node

Figure 5.9: A Distributed Arbiter

The deficiency with this design is that the token is in motion even if there are no

requests from the users. Because of this, livelock may happen.

Alain Martin suggested another distributed arbiter where the token does not

cycle round the ring when there are no requests, but remains at the node where it

last did some work until fetched.

Here we show how the node in Martin's distributed arbiter is specified.

Step 1: Design of Specification

req

done

lreq

'tout

NODE

'grant

'ack

'rreq
tin

Figure 5.10: Node of Martin's Distributed Arbiter

We note that a node can either be initialised to have token or not have token. Hence,

the possible behaviours per node are:

118

1. The node has the token:

• a request is accepted:

The firing sequence is req.' grant.done.' ack

• the token is requested on the left and passed on:

The firing sequence is ire q.'tout

2. The node does not have the token:

• a request is accepted, the token is fetched on the right, then the request

is granted:

The firing sequence is req.'rreq.tinJgramt.done.'ack

• the token is requested on the left, is fetched on the right, and is then

passed on:

The firing sequence is ire q.'rreq.tin.'tout

We design the specification of node in Martin's distributed arbiter by interfacing

the user of the node User and the token of the node Token with a finite state machine

which sorts out the current state of the NODE (the User has token, the User does

not have token), the current request (from the User or from the Token) and then

carries out the appropriate actions.

119

User
del

FSM d

def
Token =

req. 4. Q. 'grant. done. M. ' ack. User

.fr

4. fetch?. Q. M. FSM

+ 4. fetch?. FSM

lreq. 4. . 'tout. Token

where FSM splits into

Stateo

St ate1

del

del

4.'rreq. tin. Q.M. St ate1 + * .' rreq. tin. . St ate0

4S7.•.5tate1 + *..Stateo

in which there are five rendezvous points:

1. 4 - a user request arrives. The FSM is woken up and will be either in state

Stateo (have to fetch the token) or in state State1 (already has the token).

2. 7 - the node has the token and the user request may proceed. User is woken

up and the FSM lies dormant until the transaction is completed.

3. • - after the done signal is accepted, the FSM is set to state State1 and the

User may send out the 'ack.

4. * - a token request arrives. The FSM is woken up and will be either in state

Stateo (have to fetch the token) or in state State1 (already has the token).

120

5. 0 - the node has the token and the token may be passed out. The Token is

woken up and the FSM is set to state State0.

Here is this specification in formal OCS:

User = req.'gtO.cs.'grant.done.ptO.'ack.User

Token = lreq.'gtl.ptl.'tout.Token

StateO = gtO.'rreq.t±n.'cs.'ptO.Statel + gtl.'rreq.tin.'ptl.StateO

Statel = gtO.'cs.'ptO.Statel + gtl.'ptl.StateO

when node is initialised to not have token (NODEospec),

NODEOspec = (User I Token I StatcO) \ { gtO,gtl,cs,ptO,ptl }

when node is initialised to have token (NODEispe.),

NODEispec = (User I Token I Statel) \ -C gtO,gtl,cs,ptO,ptl }

Command: sort NODEOspec

**{done,lreq,req,t±n, ' ack, ' grant, ' rreq, ' tout}

Command: sort NODEispec

**-Cdone,lreq,req,tin,'ack,'grant,'rreq,'tout}

Command: min NODEOspec

Save result in identifier: NODEOspec'

**NODEOspec' has 36 states.

121

Command: min NODEispec

Save result in identifier: NODEispec'

**I\IODE1spec' has 36 states.

Command: vs 4 NODEOspec'

lreq req ' rreq tin >

lreq ' rreq req tin >

lreq ' rreq tin req ===>

lreq ' rreq tin ' tout >

req lreq ' rreq tin >

req ' rreq lreq tin ===>

req ' rreq tin lreq =>

req ' rreq tin ' grant ===>

Step 2: Test of Specification

1. Deadlock Free

Command: cp NODEOspec'

Proposition: BOX (Deadlock)

**true

2. Livelock Free

Command: cp NODEOspec

122

Proposition: Livelock

**true

3. Safety

• Mutual Exclusion

The mutually exclusive process in the above specification is that the token

is requested and captured by the User and the token is moved on anti-

clockwise upon receiving a request from its left adjacent neighbour.

Command: cp NODEOspec'

Proposition: [tin] (Mutual_Exclusion ' grant ' tout)

**true

We further show that once the User enters its critical section after cap-

turing the token, it is only possible for the mutually exclusive counterpart

to move the token left after the critical section has been finished.

Command: cp NODEOspec'

Proposition: [tin] BOX ([' grant] NEC-FOR ' ack ' tout)

**true

If the left neighbour wins the token, the User has to capture the token

again before being allowed to enter its critical section.

Command: cp NODEOspec'

Proposition: [tin] BOX ([' tout] NEC-FOR tin ' grant)

**true

123

• Absence of Unsolicited Response

All acknowledgements are in response to corresponding input requests.

For example, the acknowledgement from the User (' ack) signalling the end

of its critical section is in response to the input request req for entering

the critical section.

Command: cp NODEOspec'

Proposition: Absence-of-Unsolicited-Response req ' ack

**true

The token's left moving 'tout is in response to the request from the current

node's left adjacent neighbour lreq.

Command: cp NODEOspec'

Proposition: Absence-of-Unsolicited-Response lreq ' tout

**end

4. Liveness

• Guaranteed Events

Because of the mutually exclusive divergence, none of the input and out-

put actions are guaranteed events.

Command: cp NODEOspec'

Proposition:

(Guaranteed-Event req) I (Guaranteed-Event lreq) I \

(Guaranteed-Event tin) I (Guaranteed-Event ' rreq) I \

124

(Guaranteed-Event ' tout) I (Guaranteed-Event ' ack) I

(Guaranteed-Event done) I (Guaranteed-Event ' grant)

**false

• Ensured Response

We cannot show that 'grant and 'tout are ensured responses to some trigger

events in this specification because these two actions are the trigger events

signalling which critical section the node is in. But 'grant and 'tout are

ensured responses once their corresponding critical sections are chosen.

This can be shown when watching-signals are inserted at the beginning

of each critical section.

By using 'grant as the pre-request, we show that once 'grant happens,

done and 'ack are ensured to happen.

Command: cp NODEOspec'

Proposition: (Ensured-Response ' grant done) & \

(Ensured-Response ' grant ' ack)

**true

Similarly, we can show that tin is the ensured response of 'rreq. This

means that once a token is requested by the node from its left adjacent

neighbour, the token will eventually be passed to the node.

Command: cp NODEOspec'

Proposition: Ensured-Response ' rreq tin

**true

125

Step 3: Implementation

The implementation of Martin's arbiter is given by Ebergen [EBG92], and shown in

Figure 5.11. It is achieved by combining a two-way ROD Arbiter and a finite state

machine.

'ack

gtO
req

done

lreq

'tout 4

Arbiter
gtl

FSM

ptl

Figure 5.11: Implementation of Martin's Arbiter

'grant

'rreq

tin

The ROD arbiter is specified in Chapter 4 as one of Brunvand's Control Path

Modules.

The finite state machine used here deals with requests from the ROD arbiter.

FSMO = gtO. ' rreq.tin. ' grant . FSM1 + gtl. ' rreq.tin. ' ptl . FSMO

FSM1 = gtO.'grant.FSMl + gtl.'ptl.FSMO

1. FSM0 stands for the state when token is elsewhere:

• A signal on gt0 corresponds to a user request. The token is fetched and

then the request is granted. FSM0 moves to FSM1 signifying that the

126

token is here.

A signal on gt1 corresponds to a request for the token from the left. The

token is fetched and then passed on. The output signal on pt, is forked

to 'tout and also back to the RGD arbiter so that the arbiter is cleared.

FSM0 remains at state FSM1.

2. FSM1 stands for the state when the token is local:

• A signal on gto corresponds to a user request. The request is granted at

once. FSM1 remains at state FSM1.

• A signal on 9t1 corresponds to a token request from the left. The token

is passed on at once. Similarly, the output signal on pt, is forked to 'tout

and also back to the ROD arbiter. FSM1 then moves back to FSM0.

Hence we have,

NODEOimp =

(Fork [done/a, rib, ack/c I \

I Arbiter [req/ri, gtO/gi, r/dl, lreq/r2,gti/g2, d/d2 I \

IFSM \

IFork C pti/a, tout/b, d/c I \

) \ {gtO, gti, pti, d2, r, d}

where

FSM = FSMO

The node with the token has FSM = FSM1.

127

5.4 Brunvand's CSA Adder

In his Ph.D thesis {Bru9lc], Brunvand described a Carry-completion Sensing Addi-

tion (GSA') module suitable for building self-timed adders. The trick in this design

is that the carry of the addition results is propagated using two separate signals:

'cout signifying a carry, and 'dout signifying the absence of a carry. Only one of the

two signal lines may be active during one computing period.

'cout

'dôut

I.
b req

I I
CSA

'sum ' ack

cm

din

Figure 5.12: Carry-completion Sensing Addition (GSA) Module

Self-timed adder circuits can be implemented in term of the GSA modules. It is

interesting to note that the specification of a n—bit adder circuit is exactly the same

as that of the basic CSA module, though the complexity of implementation increases

a lot. We here develop the specification of the CSA module, which is also suitable

for the n—bit self-timed adder constructed with n CSA modules.

It is OCS in Brunvand's thesis, we name it CSA here to distinguish it from the CCS process
algebra.

128

Step 1: Design of Specification

The specification of the GSA module is quite tricky compared with specifications we

have had before. In this specification, we have three agents, namely north N, east E,

and west W, acting in parallel under suitable timing constraints.

The main idea here is that the GSA module operates in two phases: (i) compute

the appropriate sum and carry, and then (ii) reset all the internal carry lines. And it

uses four-phase signaling: a rising req transition initiates the addition and a rising 'ack

indicates the completion of computation; a falling req transition is used to initialize

the module for the next addition by resetting the carry signal (or the no carry signal)

back to low again and a falling 'ack is used to indicate that the module is ready to

accept new data for computation.

Informally, we give the specification as follows:

1. the GSA module is enabled via req when both a and b inputs are set

2. either a cin or a din is accepted for computing

3. the sum value is computed and carry out available 'cout or carry out unavailable

'dout rippled out

4. when the computing has been finished by a 'ack, the computing results 'sum is

ready for read

5. the module is then enabled again by another req

6. carry in signal (cin or din) and carry out signal ('cout or 'dout) are reset to

their initial states (logic 0) in any order

129

7. the final completion is signalled by alTother 'ack

And the timing precedences are tabulated below:

a, b phase 1 'sum phase 2

a

b

req

1

-<

cm

+

din

2

-<

'cout

+

'dout

3

-< 'ack 'sum req

4

-<

cm + din

'cout + 'dout

5

-< 'ack

Formally in CCS, we have,

CSA = (N I E I W) \ { s1,s2,s3s4,s5 }

where

N = data.req. ' sl.s3. ' ack. ' sum.req. ' s4. ' s4.s5.s5. ' ack.N

E = sl.(cin.'s2.s4.cin.'s5.E + d±n.'s2.s4.din.'s5.E)

W = s2.('cout.'s3.s4.'cout.'s5.W + 'dout.'s3.s4.'dout.'s5.W)

In the above specification, we use signal data to express both bundled data a

and b for simplicity (instead of a.b + b. a). The issue here is that a req will only be

produced after all the data is valid on the data path, and we don't care about in

which sequence a and b are set.

Command: sort CSA

**{cin,data,din,req,'ack,'cout,'dout,'sum}

130

Command: min CSA

Save result in identifier: CSA'

**CSA' has 26 states.

Command: vs 10 CSA'

data

data

data

data

data

data

=== data

=== data

req cin ' cout

req cin ' cout

req cin ' dout

req cin ' dout

req din ' cout

req din ' cout

req din ' dout

req din ' dout

Step 2: Test of Specification

1. Deadlock Free

'ack ' sum req cin ' cout

'ack ' sum req ' cout cm

'ack ' sum req cin ' dout

'ack ' sum req ' dout cm

'ack ' sum req din ' cout

'ack ' sum req ' cout din

'ack ' sum req din ' dout

'ack ' sum req ' dout din

Command: cp CSA

Proposition: BOX (Deadlock)

**true

2. Livelock Free

Command: cp CSA

Proposition: Livelock

**true

'ack ===>

'ack ===>

'ack ===>

'ack ===>

'ack ===>

'ack ===>

'ack ===>

'ack ==>

131

3. Safety

• Absence of Unsolicited Response

It is obvious that the addition result 'sum is in response to input data data;

and the acknowledgement for completing the addition 'ack is in response

to the input request of starting the computation req. (The pair of req and

'ack can also be viewed as the completion of resetting internal carry lines

in response to the request of resetting.)

Command: cp CSA'

Proposition: Absence-of-Unsolicited-Response data ' sum

**true

Command: cp CSA'

Proposition: Absence-of-Unsolicited-Response req ' ack

**true

• Mutual Exclusion

According to the design strategy, the two carry in lines which stand for

carry in available (cm) or carry in unavailable (din) respectively must be

mutually exclusive. This must also be true for the two carry out lines

('cout and 'dout).

Command: cp CSA'

Proposition: Mutual-Exclusion cin din

**true

132

Command: cp CSA'

Proposition: Mutual-Exclusion ' cout ' dout

**true

Further, we show that one of the two carry in signals is necessary for

completing the addition (producing a 'sum) although neither cin nor din

should necessarily be available.

Command: cp CSA'

Proposition: NEC-FOR cm ' sum

**false

Command: cp CSA'

Proposition: NEC-FOR din ' sum

**false

Command: bsi Carry-in

Enter action list: cin din

Command: cp CSA'

Proposition: NEC-FOR' Carry-in ' sum

**true

4. Liveness

9 Guaranteed Events

133

In this design, all the input and output actions are guaranteed events.

Command: cp CSA'

Proposition:

(Guaranteed-Event

(Guaranteed-Event

(Guaranteed-Event

(Guaranteed-Event

**true

data) & (Guaranteed-Event

'ack) Sc (Guaranteed-Event

cm) Sc (Guaranteed-Event

'cout) Sc (Guaranteed-Event

req) Sc

'sum) Sc

din) Sc

'dout)

\

\

\

Step 3: Implementation

A 4—bit self-timed adder can be implemented using four CSAs. The CSAs are

chained together with the 'cout and 'dout of one stage connected to cin and din of

the next. The req signal for starting computation is forked to the four CSAs, while

the 'acic signals from each CSA are joined together with C-elements. The data signal

here stands for the bundled data a (ao, a1, a2 and a3 in each CSA), and the bundled

data b (b0, b1, b2 and b3 in each GSA).

134

req

'cout -

'dout-

'ack

GSA GSA

I,

GSA

-F-

GSA
cm

- din

'sum

Figure 5.13: A 4-Bit Self-timed Adder Based upon the GSA Module

In CCS, the above implementation can be specified as:

ADD4 = (Fork [data/a, dataO/b, dOO/c 1 \

I Fork [dOO/a, datal/b, dil/c] \

I Fork [dil/a, data2/b, data3/c] \

I Fork [req/a, rO/b, rOO/c] \

Fork [rOO/a, ri/b, ni/c] \

I Fork [ru/a, r2/b, r3/c] \

ICSA4 \

I C [aO/a, al/b, aOl/z] \

I C [a2/a, a3/b, a23/z I \

I C [aOi/a, a23/b, ack/zl \

I C [sumo/a, sumi/b, sumOi/z I \

I C [sum2/a, sum3/b, sum23/z I \

135

IC [sumOl/a, sum23/b, sum/z I \

)\{dataO,datal,data2,data3,dOO,dll,rO,rl,r2,r3,rOO,rll, \

aO , al, a2, a3, aOl , a23, sumO, sumi , sum2, sum3, sumOl , sum23}

where

CSA4 = (CSA [dataO/data, rO/req, cm/cm, din/din, \

ci/cout, di/dout, aO/ack, sumO/sum I \

I CSA [datal/data, rl/req, cl/cm, di/din, \

c2/cout, d2/dout, al/ack, sumi/sum I \

I CSA E data2/data, r2/req, c2/cin, d2/din, \

c3/cout, d3/dout, a2/a.ck, sum2/sum I \

I CSA [data3/data, r3/req, c3/cin, d3/din, \

cout/cout, dout/dout, a3/ack, sum3/sum I \

) \ { cl,c2,c3,dl,d2,d3 }

5.5 Sutherland's Move Machine

The Move Machine was first suggested by Sutherland, who observed that conven-

tional processing units spend much of their time moving data back and forth between

the memory and the CPU. The instruction set of the Move Machine merely controls

the flow of instructions and data. It has no instructions for arithmetic or logic

operations.

136

OPoo

MEMORY 0Poi SREG [0 :4]

'P

JR

FETCH DECODE EXECUTE

MOVE

Figure 5.14: The Structure of Sutherland's Move Machine

Although most of the processors have at least 100 to 200 instructions in complex-

ity and the Move Machine has only a few instructions, it follows the usual design

principles as larger processors. Hence the Move Machine is a handy-sized example

for learning to reason about processors in general.

A VHDL description of the Move Machine is given by Roy [RKDV92] with minor

modifications from the ISPS (Instruction Set Processor Specifications) description

proposed by Drongowski [Dro89]. The more abstract CCS specification follows their

lead and decomposes the top level specification into three major processes:

1. FETCH

This is the start of the Move Machine. It fetches an instruction (sIR) from the

instruction register JR according to the current instruction pointer IP.

137

2. DECODE

After the instruction is fetched, it is decoded according to the 2—bit ad-

dress mode identification. The four possible modes are absolute decode mode

(caseOO), immediate decode mode (caseOl), indirect decode mode (caselO) and

IP relative decode (casell). Here we do not model these cases in any detail.

3. EXECUTE

Before starting execution, the instruction pointer is updated first. This is

achieved by a modifylP action which modifies the IP according to the mode

of decode. The instruction is then executed according to the 2—bit operation

code. The four possible operations are load register (opOO), store register op0.i,

jump (op.LO) and halt (opli). Again, we do not model these operations in detail.

Step 1: Design of Specification

F9rma1ly in CCS we have,

MOVE (FETCH I DECODE I EXECUTE) \ -CsDEC,sEXEC,sFETCH}

where

FETCH = sIR.'sDEC.'sFETCH.FETCH

DECODE = sDEC.(caseOO.D' + caseOl.D' + caselO.D' + casell.D')

EXECUTE = sEXEC.modifylP.((opOO.E'+opOl.E'+oplO.E') + opll.nil)

D' = 'sEXEC.DECODE

SFETCH.EXECUTE

N.B., agent D' and E' are used for conciseness and clarity in specification.

138

Command: sort MOVE

**-CcaseOO,caseOl,caselO,casell,modifylP,opOO,opOl,oplO,opll,sIR}

Command: min MOVE

Save result in identifier: MOVE'

**MOVE' has 5 states.

Command: p1 MOVE'

**MOVE' = MOVE'O

where MOVE'O = sIR.MOVE'2

and MOVE'2 = caseOO.MOVE'4 + caseOl.MOVE'4 +

ca.selO.MOVE'4 + casell.MOVE'4

and MOVE'4 = modifylP.MOVE'5

and MOVE'S = opOO.MOVE'O + opOl.MOVE'O + oplO.MOVE'O + opll.MOVE'7

and MOVE'7 = nil

end

Step 2: Test of Specification

1. Not deadlock free

Due to the halt operation in the execution process (opil), it is possible for the

Move Machine to get deadlock. But this is the normal termination of the Move

Machine.

Command: cp MOVE'

Proposition: BOX (Deadlock)

139

**false

We further show that the normal termination of the Move Machine is after

doing an opli:

Command: cp MOVE'

Proposition: BOX ([opil] Deadlock)

**true

But we cannot deadlock after any none op.t1 move.

Command: cp MOVE'

Proposition: BOX (E-opil] Deadlock)

**true

2. Livelock free

Command: cp MOVE

Proposition: Thivelock

**true

3. Safety

• Mutual Exclusion

We have defined the mutually exclusive macro for two actions, we now

extend this macro to make it suitable for more than two actions. This is

achieved by using the action list P whose length can be changed according

to the particular example.

140

Command: bmi Mutual-Exclusion' a P

Body: (Box ([a][P]F)) & (Box ([P][a]F))

With the extended macro, we can show that after one of the four branches

in DECODE (or EXECUTE) is processed, none of the other branches in

parallel can be processed, they are mutually exclusive.

Command: bsi Rest-case

Enter action list: caseOl caselO casell

Command: cp MOVE'

Proposition: Mutual-Exclusion' caseOO Rest_case

**true

Command: bsi Rest-op

Enter action list: opOl oplO opil

Command: cp MOVE'

Proposition: Mutual-Exclusion' opOO Rest-op

**true

4. Liveness

• Guaranteed Events

Because the Move Machine will stop operating immediately after an op11

action, none of the actions in this design is a guaranteed event.

141

Command: cp MOVE'

Proposition:

(Guaranteed-Event

(Guaranteed-Event

(Guaranteed-Event

(Guaranteed-Event

(Guaranteed-Event

**false

sIR)

caseOO)

caselO)

opOO)

oplO)

(Guaranteed-Event

(Guaranteed-Event

(Guaranteed-Event

(Guaranteed-Event

(Guaranteed-Event

modif yIP)

caseOl)

casell)

opOl)

opil)

But this does not mean that we have lost the liveness property in this

system. We can still show that all the actions will eventually happen pro-

vided an opil does not occur (we have already shown that Move Machine

stops operating upon receiving an opli).

Command: cp MOVE'

Proposition: (BOX

(BOX

(BOX

(BOX

(BOX

(BOX

(BOX

(BOX

(BOX

**true

(EV

(EV

(EV

(EV

(EV

(EV

(EV

(EV

(EV

([-opll]<sIR>T))) & \

([-op ii] <modifylP>T))) &

([-opll]<caseOO>T))) &

([-opli] <caseOl>T))) Sc

(E-opll]<caselO>T))) Sc \

(E-opll]<casell>T))) Sc

(E-op11]<opOO>T))) Sc \

(E-opll]<opOl>T))) Sc \

(E-opil] <oplO>T)))

\

\

\

\

142

5.6 Summary

In this chapter, we have specified a variety of asynchronous hardware architectures

using parallel specifications. Using this style, designing specifications becomes quite

methodical. After finding a suitable decomposition of the interface into parallel

agents, we write down their interactions separately, and then weave them together by

considering timing constraints. Since the set of possible behaviours of a specification

is hard to fathom, we proposed various property macros for testing the consequences

of hardware specifications in chapter 3. These together with others found useful in

practice were applied systematically to the examples in this chapter. This made it

possible for us to test our specifications thoroughly for the desired properties. This

work on the methodology of asynchronous design is the major contribution of the

research described in this thesis.

Implementations (by others) corresponding to our specifications were given in all

but one case (the Move Machine). The problem of proving the equivalence between

specification and implementation is discussed in the final chapter.

Chapter 6

Conclusions

6.1 Summary

The contributions of this thesis have been to:

• develop a parallel specification style which results in neat and compact speci-

fications for complex asynchronous hardware, and which scales well when the

number of inputs to a system increases;

• propose a set of property macros based upon the modal /.t-calculus to test the

consequences of specifications, such as deadlock, livelock, safety and liveness;

• and to apply the parallel specification style and the macro-based testing style

to a modest range of asynchronous designs.

In Chapter 2, we detailed the syntax and semantics of CCS and explained various

notions of process equivalence.

In Chapter 3, we covered the Hennessy-Milner Logic (HML) and the modal -

calculus supported by the CWB. A set of basic property macros were proposed and

motivated.

In Chapter 4, we specified a library of control path modules and data path mod-

ules for self-timed design using parallel specifications wherever possible. We tested

the behaviour of these specifications using the basic property macros proposed in

Chapter 3.

143

144

In Chapter 5, we specified a variety of asynchronous hardware architectures using

parallel specifications. We also tested these specifications for desired properties such

as deadlock-free, livelock-free, safety and liveness.

Because of its succinctness, scalability and equational reasoning capability, the

CCS/CWB has proved to be a good tool for specifying and testing asynchronous

designs. The parallel specification style makes it possible to avoid developing spec-

ifications state by state, which is tricky, tedious and error prone. The macro-based

testing style makes it possible to investigate the consequences of a design specifica-

tion thoroughly before embarking upon an implementation - after all, it is rather

pointless implementing something that can deadlock, livelock, is unsafe, isn't live,

etc. Such properties are hard to locate via simulation, and it is usual practice never

even to look for such possible defects. In this regard, applying process logics to

hardware descriptions is an important improvement in the design methodology.

The specification and testing experiences gained through this thesis work also

show up certain deficiencies in CCS/CWB. (1) it takes a long time to minimize a

specification (usually several hours for 1000 states). (ii) the CWB is not efficient in

detecting the location of deadlock. It usually takes several iterations to achieve a

satisfactory specification and each iteration has to be checked for deadlock. (iii) since

CCS does not support the simultaneous synchronisation of several actions, we cannot

formalise the isochronous fork assumption in CCS. This turns out to be essential in

implementing basic level modules [Mar90c, BE9O]. The CWB also supports SOCS

[Mil83b] which does permit the simultaneous operation of several actions. We believe

it is the right tool for modelling this level of implementation, but an implementation

defect (now rectified) stopped us from carrying out the work this time.

145

6.2 Future Work

6.2.1 Equivalence between Specification and Implementation

In addition to the specifying and testing of an asynchronous design, another impor-

tant aspect of formal verification is concerned with checking whether an implemen-

tation conforms to its specification. The importance of this equivalence checking

is that once proved, we know that the implementation will hold all the properties

possessed by the specification, and we can then replace the notationally cumbersome

implementation by a compact specification when reasoning further up the hierar-

chicy.

Unfortunately, equivalence checking between specification and implementation is

not an easy task in the CWB. The action sequences of input transitions in the spec-

ification are inherently well-handled, but there is no easy way to constrain the input

action sequences to an implementation. Hence, if there are some constraints on the

operating sequences of input actions, they can only be enforced by the environment

in which the implementation operates.

For example, we pointed out the operating environment for the control circuit

for a 4—stage micropipeline in Chapter 5:

1. Input Constraint: After an input request nfl, an acknowledge aim must occur

before another nfl.

2. Output Constraint: An output request 'rout must occur before an acknowledge

aout can be received.

Expressed in CCS we have,

146

ENVin = reqin. ' nfl. am. ' ackin . ENVin

ENVout = rout. 'reqout . ackout. 'aout . ENVout

With this operating environment we have

CC4specENV = (CC4spec I ENVin I ENVout)\{nin,ain,aout,rout}

CC4impENV = (CC4imp I ENVin I ENVout) \-Crmn, aout , am , rout}

Although we can prove that CC4impENVis equivalent to CCspecENVon the CWB

Command: eq

Agent: CC4specENV

Agent: CC4impENV

**true

we cannot be completely confident in that each component of the implementation

sits in an environment (provided by the rest of the design) which corresponds exactly

to that holding when we proved it equivalent to its specification, and if it isn't, we

cannot replace it by its specification. In the above example, it means that each of

the four C-elements used to implement the control circuit should be operating in an

environment which does not change its delay insensitivity; and this should also hold

when the 4—stage control circuit is used as basic module to construct control circuit

with more stages.

It is necessary and important to prove an implementation faithfully conforms to

its specification, but the testing we require is not directly supported by the CWB

now. The automation in the CWB of such delay insensitivity guarantees at different

hierarchy levels would be an interesting and worthy component in a PhD. Larsen's

PhD thesis [Lar86] provides a suitable starting point for this research.

147

6.2.2 Silicon Compilation

The CCS process algebra has a succinct and compact notation and very clear and

clean semantics. Since it has only three basic operators (., I and +) all a prototype

silicon compiler has to be able to do is translate these operators into hardware.

1. "." sequences actions and is implemented by just a wire

2. "+" is used to express the nondeterministic choices amongst independent agents

and can be implemented by the sequencer;

3. "" has to cope with various synchronisations between parallel agents. these

include:

• the operation of external transitions

• the internal 1—i handshake is a simple C-element with its output forking

back to both clients as an acknowledgement

• the many-to-1 and 1-to-many handshakes which can again be handled by

the sequencer

• the many-to-many handshake which still requires careful specification and

a cheap implementation

Such a prototype silicon compiler would be inefficient, and there is much work to do

in locating special cases (e.g. if we know that inputs are mutually exclusive, we can

use the cheaper join instead of the expensive sequencer). Again this is a suitable

topic for a PhD, and Brunvand [Bru91c] is a good source for possible optimisations.

148

Finally, we believe another suitable PhD topic would Fe mechanisation of the

design methodology proposed in this thesis.

Putting all these ideas together leads towards tool support for the automatic

synthesis of asynchronous circuits from specifications expressed in CCS.

Bibliography

[BA91] G. Bruns and S. Anderson. The Formalization and Analysis of a Com-
munications Protocol. Technical Report LFCS, Edinburgh University,
1991.

[BE9O] J. Brzozowski and J. Ebergen. On the Delay-Sensitivity of Gate Net-
works. Technical Report 90-5, University of Eindhoven, 1990.

[BGS+90] G. Birtwistle, B. Graham, T. Simpson, K. Slind, M. Williams, and
S. Williams. Verifying an SECD Chip in HOL. In L. J. M. Claesen,
editor, Formal VLSI Corrrectness Verification. VLSI Design Methods
'II, Proceedings of the IFIP TCJO/WGJO.5 Workshojp held in Leuven,
November 13-16, 1989, pages 369-378, Amsterdam, 1990. North Hol-
land.

[Bre90] G. Brebner. A CCS-based Investigation of Deadlock in a Multi-process
Electronic Mail System. Technical Report, University of Edinburgh,
1990.

[Bru87] E. Brunvand. Parts-R-Us: A chip aparts... Technical Report CMU-CS-
87-119, Carnegie Mellon University, 1987.

[Bru91a] G. Bruns. A Language for value-passing CCS. Technical Report LFCS
ECS-LFCS-91-175, Edinburgh University, 1991.

[Bru91b] E. Brunvand. A Cell Set for Self-timed Design Using Actel FPGA's.
Technical Report UUCS-91-013, University of Utah, 1991.

[Bru91c] E. Brunvand. Translating Concurrent Communicating Programs into
Asynchronous Circuits. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, 1991.

[BS9O] J. Bradfield and C. Stirling. Verifying Temporal Properties of Processes.
In Proceedings of CONCUR '90, number 458 in LNCS, pages 115-125.
Springer-Verlag, 1990.

[CDS93] Bill Coates, Al Davis, and Ken Stevens. Automatic Synthesis of Fast
Compact Self-Timed Control Circuits. Submitted for publication to the
IFIP Manchester Asynchronous Design Workshop, 1993.

[Com92] R. Comerford. How DEC developed Alpha. IEEE Spectrum, pages 26-
31, July, 1992.

149

150

[CPB9O] R. Cleaveland, J. Parrow, and B.Steffen. The Concurrency Workbench.
In J. Sifakis, editor, Automatic Verification Methods for Finite State
Systems, LNCS 407, pages 24-37. Springer Verlag, 1990.

[Dam90] M. Dam. Translating CTL into the Modal it-calculus. Technical Re-
port ECS-LFCS-90-123, Department of Computer Science, University of
Edinburgh, Edinburgh, 1990.

{Dil89] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits. MIT Press, Cambridge, Massachusetts,
1989.

[Dro89] P. J. Drongowski. An Organization-Level Story Board for Agent - A

VLSI Designer's Assistant. Internal Report, DSRG, CES Department,
Case Western Reserve University, Cleveland, Ohio, 1989.

[Ebe88] J. Ebergen. A Formal Approach to Designing Delay-Insensitive Cir-
cuits. Computing science note 88/10, Eindhoven University of Technol-
ogy, 1988.

[EBG92] J. C. Ebergen, P. F. Bertrand, and S. Gingras. Distributed Mutual
Exclusion: Specification and Implementation of Delay-Insensitive Pro-
tocols. Tech report, Department of Computer Science, University of
Waterloo, 1992.

[EG91] J. C. Ebergen and S. Gingras. An Asynchronous Stack with a Con-
stant Response Time. Tech report, Department of Computer Science,
University of Waterloo, 1991.

[Gor88] M. J. C. Gordon. HOL: A Proof Generating System for Higher Oorder
Logic. In G. Birtwistle and P. A. Subrahmanyam, editors, VLSI
Specification, Verification and Synthesis, pages 73-128, Norwell, Mas-
sachusetts, 1988. Kluwer.

[11M80] M. Hennessy and R. Milner. On Observing Nondeterminism and Con-
currency. In Lect. Notes in Computer Science 85. Springer, 1980.

[HM85] M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and
Concurrency. J. Assoc. Comput. Mach., 32:137-161, 1985.

[Hoa85] C. A. R. Hoare. Communicationg Sequential Processes. Prentice Hall
International, London, 1985.

151

[Joy88] J. Joyce. Formal Verification and Implementation of a Microprocessor.
In G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis, pages 129-157, Norwell, Massachusetts, 1988.
Kluwer.

[Koz83] D. Kozen. Results on the Propositional mu-calculus. Theoretical Com-
puter, 27:333-354, 1983.

[Lar86] K. G. Larsen. Context-Dependent Bisimulation between Processes.
Technical Report ECS-LFCS-86-4, University of Edinburgh, 1986.

[LM86] K. G. Larsen and R. Milner. A Complete Protocol Verification using
Relativized Bisimulation. Technical report ecs-lfcs-86-13, University of
Edinburgh, 1986.

[Mar85] A. Martin, Distributed Mutual Exclusion on a Ring of Processes. Sci-
ence of Computer Programming, 5:265-276, 1985.

[Mar90a] A. J. Martin. Programming in VLSI: From Communicating Processes
to Delay-Insensitive Circuits. In C. A. R. Hoare, editor, Developments
in Concurrency and Communication, New York, 1990. Addison-Wesley.

[Mar90b] A. J. Martin. Synthesis of Asynchronous VLSI Circuits. In
J. Staunstrup, editor, Formal Methods for VLSI Design, North Holland,

1990.

[Mar90c] A. J. Martin. The Limitations to Delay-Insensitivity in Asynchronous
Circuits. In Proc. 6th MIT Conference on Advanced Research in VLSI.
MIT Press, 1990.

[MFR8S] C. E. Molnar, T. P. Fang, and F. U. Rosenberger. Synthesis of Delay-
insensitive Modules. In H. Fuchs, editor, Proceedings of the 1985 Chapel
Hill Conference on VLSI. Computer Science Press, 1985.

[Mil83a] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer
Science, 25:267-310, 1983.

[Mil83b] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer
Science, 25:267-310, 1983.

[Mi189] R. Milner. Communication and Concurrency. Prentice Hall, London,
1989.

152

[Mi191] R. Milner. The Polyadic ir-Calculus: A Tutorial. Technical Report ECS-
LFCS-91-180, Computer Science Department, University of Edinburgh,
1991.

[Mol91] F. G. Moller. The Edinburgh Concurrency Workbench, Version 6.0.
Tech Report, Computer Science Department, University of Edinburgh,
1991.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive Systems: spec-
ification. Springer-Verlag, New York, 1992.

[MPW89a] R. Milner, J. Parrow, and D. Walker. A calculus of Mobile Processes:
Part I. Technical Report ECS-LFCS-89-85, Computer Science Depart-
ment, University of Edinburgh, 1989.

[MPW89b] R. Milner, J. Parrow, and D. Walker. A calculus of Mobile Processes:
Part II. Technical Report ECS-LFCS-89-86, Computer Science Depart-
ment, university of Edinburgh, 1989.

[MT89] F. Moller and C. Tofts. A Temporal Calculus of Communicating Sys-
tems. Technical Report ECS-LFCS-89-104, Department of Computer
Science, University of Edinburgh, Edinburgh, 1989.

[Par85a] J. Parrow. Fairness Properties in Process Algebra. PhD thesis, Uppsala
University, Uppsala, Sweden, 1985.

[Par85b] J. Parrow. Verifying a CSMA/CD-protocol with CCS. Technical report,
University of Edinburgh, 1985.

[RKDV92] J. Roy, N. Kumar, R. Dutta, and R. Vemuri. DSS: A Distributed High-
Level Synthesis System. IEEE Design and Test of Computers, 9(2):18-
32, 1992.

[Sei80] C. L. Seitz. System Timing. In C. A. Mead and L. A. Conway, edi-
tors, An Introduction to VLSI Systems, pages 218-262, Reading, Mas-
sachusetts, 1980. Addison Wesley.

[Sut89] I. E. Sutherland. Micropipelines. Communications of the ACM,
32(6):720-738, 1989.

[SW91] C. Stirling and D. Walker. Local model checking in the modal ri-calculus.
Theoretical Computer Science, 89:161-177, 1991.

153

[Tof9Oa] C. Tofts. A Synchronous Calculus of Relative Frequency. In J. W. Klop
J. C. M. Baeten, editor, CONCUR '90, number 458 in LNCS. Springer-
Verlag, 1990.

[Tof90b] C. Tofts. The Autosynchronisation of Leptothorax Acervorum (Fabri-
cius) Described in WSCCS. Technical Report ECS-LFCS-90-128, De-
partment of Computer Science, University of Edinburgh, Edinburgh,
1990.

