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Abstract 

Partitioning and placement are two fundamental problems in Very Large Scale Inte-

grated (VLSI) circuit physical design. Clustering techniques are extensively used in 

today's partitioning and placement algorithms, due to their ability to speed up the 

partitioning and placement solving process, and improve the final solution quality. 

In this thesis, a series of clustering techniques with applications to circuit parti-

tioning and placement is proposed. These clustering techniques are based on identi-

fication of a set of high quality clusters, defined as "gain" clusters in this thesis. It is 

proved that all these algorithms to identify gain clusters have linear time complexity. 

Compared with existing clustering algorithms, the gain cluster-based clustering tech-

niques proposed in this thesis take more circuit connectivity information into account 

with a global view of the circuit structure. Therefore, better clustering solutions can 

be achieved. 

In order to deal with the cluster overlap problem, three techniques for finalizing 

clustering solutions are proposed in this thesis. Among these techniques, a net scoring 

technique is shown to be able to solve the cluster overlap problem very effectively. 

This net scoring technique solves the clustering overlap problem by selecting the best 

set of nets for clustering. 

The effectiveness of the proposed clustering techniques has been verified using the 

state-of-the-art circuit partitioners and placers on different public benchmark circuits. 

When using the proposed clustering techniques as a preprocessing step, the perfor-

mance of leading-edge partitioning and placement tools can be further improved. 
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Chapter 1 

Introduction 

1.1 VLSI Circuit Physical Design 

Very Large Scale Integration (VLSI) refers to the technology through which a circuit 

with a large number of components can be integrated and implemented in a small 

silicon chip [63, 69]. For today's VLSI circuit design, it is very common to have 

millions of transistors integrated on a chip. The process of VLSI circuit design is 

very complicated. It starts from the system specification, which describes the circuit 

performance, functionality and the physical dimensions, and ends with a packaged 

chip, which should have already been tested to meet all design requirements [69]. 

Physical design is a key step in the overall VLSI circuit design cycle. The input 

to the physical design is a circuit diagram, or schematic, which can be represented by 

a "netlist" format. Here the netlist is a list of nets. Each net in the netlist represents 

an interconnection between circuit components. The circuit components are usually 

referred to as "cells" in the netlist. The output of physical design is the circuit layout. 

The process of physical design can be further divided into three stages: partitioning, 

placement and routing, as illustrated in Figure 1.1. In the following, each stage of 

the physical design process is discussed briefly. 

1.1.1 Partitioning 

Today's VLSI circuits may easily contain several million logic gates [57, 58]. For such 

large circuits, it is necessary to partition the circuits into several smaller relatively 

independent sub-circuits. The smaller sub-circuits can be designed and tested sep-

arately and efficiently [63, 69]. This process of dividing a large circuit into smaller 

1 
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Circuit schematic 

Physical design 

Circuit layout 

Partitioning 

Global Placement 
Placement 

Detailed Placement 

Global Routing 

Routing 

Detailed Routing 

Figure 1.1: Schematic of the VLSI circuit physical design process 

sub-circuits is called partitioning. A typical objective of partitioning is to divide a 

circuit into several relatively independent partitions with roughly equal sizes. The 

independence of the partitions is measured using the number of nets that are cut, 

"netcut", between partitions. 

Partitioning is a fundamental problem in VLSI physical design. It can also be 

used to solve other problems in VLSI physical design, such as placement. However, 

partitioning is an NP-hard problem [16], therefore, practical partitioning algorithms 

are heuristics. 

1.1.2 Placement 

In this stage, the circuit components, such as logical gates and terminals, are arranged 

on a layout surface, such that each circuit component has a unique position and there 

is no overlap between these components [63, 69]. A general objective of the place-
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ment problem is to minimize the total estimated wire length for the interconnections 

between the circuit components. This objective corresponds to the minimization of 

timing, signal delay, and power consumption of the circuit [68]. 

In practice, placement is usually performed in two steps: global placement and 

detailed placement, as illustrated in Figure 1.1. In the global placement step, an ini-

tial placement solution is generated. This solution may have a few overlaps between 

circuit components. In the detailed placement step, the components' overlaps are re-

moved by performing placement legalization, and the placement solution is improved 

by performing local refinement. 

1.1.3 Routing 

In the routing stage, the paths for the interconnections that connect the circuit com-

ponents on the layout surface are determined. Usually the objective of routing is to 

minimize the total wire length for the routed interconnections. [17, 63, 73]. 

Similar to the placement process, routing can be divided into two steps: global 

routing and detailed routing. In the global routing step, the approximate routes for 

the interconnections are determined. In the detailed routing step, the output of global 

routing is further refined and the precise routes for interconnections are determined. 

1.2 Research Motivations and Contributions 

The proposed contributions in this thesis are focused on the VLSI circuit partition-

ing and placement problems. Partitioning and placement are important steps in 

VLSI circuit physical design. The results of partitioning and placement can affect 

the subsequent design stages and the final performance of the designed circuit. For 

example, a "poor" placement can result in an infeasible routing [6, 30]. In this case, 

the placement has to be redone. 
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In today's VLSI physical design, the sizes of the circuits are growing drastically. In 

order to deal with this increasing circuit size and design complexity, numerous circuit 

clustering algorithms have been proposed and successfully used in partitioning and 

placement algorithms [13, 14, 28, 30, 38, 42, 45, 47, 62]. The main idea of applying 

clustering algorithms to partitioning and placement is that by using clustering algo-

rithms, a circuit can be reduced to a smaller size, and the design can be completed 

on the smaller circuit more efficiently. Currently, almost all state-of-the-art parti-

tioning and placement academic tools use various clustering techniques, for example, 

[20, 23, 26, 47, 59]. It has been demonstrated that clustering plays an important role 

in the performance of circuit partitioning and placement algorithms. A good cluster-

ing algorithm not only speeds up the whole partitioning and placement process, but 

also helps in producing high quality solutions. 

Current clustering algorithms are generally efficient; however, the clustering solu-

tions produced by current clustering techniques can be further improved. The main 

motivation and goal for this thesis are to develop clustering techniques that use the 

circuit structure to identify high quality clusters, and improve the efficiency of state-

of-the-art of circuit partitioning and placement algorithms. In the case where there 

are cell overlaps between clusters, the clustering techniques should be able to remove 

cell overlaps and select the best set of clusters. 

The main contributions in this thesis are summarized as follows. 

A clustering concept, called "gain" cluster, is proposed and used to define clus-

ters with high quality. 

• Three "single cluster" identification algorithms are proposed to identify gain 

clusters in a circuit. These algorithms have different characteristics and can be 

applied in different situations. 

9 A net scoring technique is proposed to solve the cell overlap problem in a set of 
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identified gain clusters. 

• A net clustering algorithm is proposed which combines the single clustering 

identification and net scoring technique. 

• The above proposed clustering algorithms are compared with other clustering 

techniques and tested as a preprocessing step for circuit partitioning and place-

ment. The experimental results on public standard benchmark circuits demon-

strate the effectiveness of the proposed algorithms by improving the state-of-

the-art partitioning and placement algorithms consistently. 

1.3 Thesis Structure 

The rest of this thesis is organized as follows. 

• Chapter 2 

In this chapter, the circuit partitioning and placement problems, the two main 

application areas of the proposed clustering algorithms, are introduced. Differ-

ent partitioning and placement algorithms are classified and reviewed. 

• Chapter 3 

In this chapter, the existing clustering techniques for circuit partitioning and 

placement are reviewed. 

• Chapter 4 

In this chapter, the first contribution of this thesis, gain cluster definition and 

three algorithms to identify single gain clusters re proposed. The character-

istics of the proposed algorithms are studied using the clustering statistics on 

standard benchmark circuits used in physical design. 
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• Chapter 5 

In this chapter, the second contribution of this thesis, a net scoring technique 

and a net clustering algorithm are proposed. The effectiveness of the proposed 

clustering techniques in Chapters 4 and 5 are verified using state-of-the-art 

circuit partitioning and placement tools on public standard benchmark circuits. 

• Chapter 6 

In this chapter, a summary of this thesis and suggestions for future work are 

given. 



Chapter 2 

Circuit Partitioning and Placement 

2.1 Introduction 

In this chapter, circuit partitioning and placement, which are the two main applica-

tion areas for the proposed research contributions, are introduced. Partitioning and 

placement are two fundamental steps in the overall circuit physical design flow. In 

the partitioning process, a given circuit is divided into several smaller sub-circuits, 

such that each sub-circuit has a manageable size and complexity. In the placement 

process, the cells in a given circuit are arranged on a layout surface, such that each 

cell has a unique position in the layout surface and there is no overlap between cells. 

The rest of this chapter is organized as follow. In Section 2.2, some of the ter-

minologies used throughout this thesis for partitioning and placement are given. In 

Section 2,3, the circuit partitioning problem is introduced, and the existing parti-

tioning algorithms are reviewed in two categories: flat and multilevel approaches. 

In Section 2.4, the circuit placement problem is introduced, and the current place-

ment algorithms are reviewed in three categories: simulated annealing, partitioning 

based, and analytical approaches. Finally, in Section 2.5, a summary of this chapter 

is provided. 

2.2 Terminology 

In this section, the terminologies that are used in this thesis are listed. Most of these 

terminologies are used in the context of graph theory [63, 69]. 

• In graph theory, a graph C is represented by two sets (V, E), where V is a set 

7 
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of vertices {vi, v2, ..., V"' 1, with n as the total number of vertices, and E is a 

set of edges {ei, e2, ..., efl,,}. Here fle is the number of edges. In a graph each 

edge connects only two distinct vertices. 

• In graph theory, a hypergraph H is represented by two sets (V, E), where V 

is a set of vertices, and E = {hei, he2, ..., hene} is a set of hyperedges. Each 

hyperedge can connect two or more distinct vertices. 

From the above definitions, a graph can be regarded as a special kind of hyper-

graph; i.e., a hypergraph with each hyperedge connecting exactly two cells. In the 

following, unless specified, only hypergraphs are used to discuss the rest of the termi-

nology. For example, e can be used for either an edge or a hyperedge representation. 

The following terms are used to describe the characteristics of a hypergraph or a 

graph. 

• In a hypergraph, two vertices u and v are adjacent if there is one hyperedge e 

connecting them. 

• A hyperedge e is incident with the vertices u and v, if u and v are adjacent 

through e. 

• The degree of a vertex u is the number of hyperedges which are incident to u. 

• The degree of an edge or hyperedge, e, is the number of vertices that e is incident 

to. 

• In a hypergraph, depending on the specific applications, the vertices and hyper-

edges may have associated weights, which can be represented by w(u) or w(e), 

where u and e are a vertex or a cell and a hyperedge. 

• A graph, C' = (V', E'), is a sub-graph of a graph C = (V, E), if V C V and 

E'cE. 
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• In a graph, a clique is a sub-graph in which every two vertices are connected by 

an edge [69]. 

In VLSI physical design, a circuit is described in a "netlist" format, which can be 

represented either as a graph or a hypergraph, depending on the specific applications. 

The vertices in the graph or hypergraph represent the circuit modules, or cells, such 

as the logic gates and external terminals. The edges or hyperedges represent the 

interconnections, or nets, between the cells. In Figure 2.1, a simple circuit, and 

its corresponding hypergraph and graph models are shown respectively. In Figure 

2.1 (a), gO, gl and g2 represent the logic gates of a circuit, and P1 to P4 are the 

Input/Output (Abbreviated as I/O in subsequent text) pads. The nets, ni to n6, 

connect the gates and I/O pads. In Figure 2.1 (b), the hypergraph model for the 

circuit is shown. The gates, gO to g2, and I/O pads, P1 to P4, are modeled as cells cD 

to 0. The nets nl to ri6 are modeled by hyperedges hel to he6, respectively. In this 

hypergraph, the degree for cells D and ® is 3. In Figure 2.1 (c), the graph model for 

the circuit is shown. In this figure, the gates and I/O pads are also modeled as cells. 

However, the net n2, which connects more than two cells, is transformed to a clique 

in the corresponding graph model. All edge degrees in this graph model are equal to 

2. The degree for cell D is changed to 4 as shown in Figure 2.1 (c). 

From Figure 2.1, it can be seen that the graph and the hypergraph models for 

a circuit can be different. A hypergraph model has exactly the same topology as 

the original circuit; but a graph model changes the circuit topology. In practice, the 

graph and the hypergraph models are both widely used, depending on the specific 

application circumstances. 
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Figure 2.1: (a) A simple circuit (b) The hypergraph model (c) The graph model with 
a clique transformation 

2.3 Circuit Partitioning 

2.3.1. Problem Definition 

VLSI circuit partitioning is an NP-complete optimization problem [45, 62] and has 

been extensively studied over the past three decades, for example [13, 14, 30, 33, 38, 

45, 47, 62]. This problem can be described as follows: given a circuit, the partitioning 

objective is to divide the circuit into several smaller sub-circuits with roughly equal 
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sizes, such that the interconnections between these sub-circuits are minimized.' Each 

sub-circuit is referred to as a partition. 

In practice, the bipartitioning problem, i.e., partitioning the circuit into two sub-

circuits, is the most widely used application. Bipartitioning can be used recursively 

to partition a circuit into an arbitrary number of sub-circuits. It is also widely used 

to solve other physical design problems, such as placement [10, 61, 72]. Figure 2.2 

shows the bipartitioning of a simple circuit. The number of interconnections between 

the two partitions is equal to 2. 

Figure 2.2: Bipartitioning of a simple circuit 

Based on the operation mode of the circuit, partitioning algorithms can be clas-

sified into two categories: flat approaches and multilevel approaches [14]. Each 

category is briefly reviewed as follows. 

2.3.2 Flat Partitioning Approaches 

Flat partitioning approaches refer to those algorithms that directly work on the orig-

inal input circuit, i.e., on the "flat" netlist [32, 33, 34, 36, 49, 64, 65], without per-

11t should be noted that depending on the specific applications, the partitioning objective may 
vary, such as signal delay optimization. However, the minimization of interconnections between 
different partitions, i.e., "mincut", is the most typical objective function in partitioning problems. 
It has been demonstrated [63] that the mincut objective can enhance the whole system performance 
and reduce the cost of manufacturing. 
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forming any circuit simplification, such as clustering. There are two types of fiat algo-

rithms: iterative improvement based [24, 34, 49] and optimization based [17, 35, 37]. 

These algorithms were developed when the circuit sizes were not as large as today's 

circuits. Because of the complexity of optimization based algorithms, they proved not 

to be scalable to today's circuits. Typical representatives of iterative improvement 

based algorithms are Kernighan and Lin (KL) algorithm [49], Fiduccia-Mattheyses 

(FM) algorithm [32, 33, 34], and the simulated annealing based partitioning algo-

rithms [24]. Generally these algorithms start with an arbitrary initial solution, and 

iteratively improve the solution by swapping or moving cells between different par-

titions, until a local or global minimum is obtained. In the following, the three fiat 

partitioning algorithms mentioned above are described respectively. 

Kernighan and Lin (KL) Algorithm 

The KL algorithm is a bisecting partitioning heuristic that swaps pairs of cells between 

two partitions. This algorithm was introduced in 1970, and has a high runtime 

complexity of 0(n3) and serious limitations; but because of historical importance, it 

is briefly reviewed in this section. 

The KL algorithm starts with converting a netlist to its corresponding graph 

model, then an initial bisecting partitioning solution, the assignment of each cell to one 

of the two partitions, is generated. This initial solution can be generated randomly, 

but the size of the partitions needs to be eqhal. Then the number of interconnections, 

or nets, between the two partitions, referred to as "netcut" in partitioning problems, 

is calculated. The "gains" for swapping every possible pair of cells, which consist of 

one cell from one partition and an other cell from its opposite partition, are calculated. 

Here, the gain for swapping a pair of cells is equal to the number of netcut decreases, 

if the two cells are exchanged. After calculating the gains for all possible pair of 

cells exchanges, the pair of cells that has maximum gain is selected and "tentatively" 
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exchanged, and this exchange is stored in a table. After the swapping of a pair of 

cells, these cells are "locked", and can not be swapped or used in the following gain 

calculation. Next, the same procedure is repeated for the unlocked cells and another 

pair of cells is selected and tentatively exchanged. This process is continued until all 

the cells are locked, indicating there is no more cell swapping possible. At this point, 

the table that has stored all the tentative cell exchanges is inspected, and the series 

of exchanges that can result in the lowest netcut are selected and made permanent. 

This completes an iteration of the KL algorithm, which is referred to as a "pass" in 

the algorithm. If there is a netcut decrease at the end of a pass, another iteration 

will start; otherwise, the algorithm has reached a minimum and stops. 

It has been proved that the KL algorithm has a O(m) time complexity, where n 

is the number of cells in the netlist. In practice, this complexity is considered to be 

very expensive for large scale circuits [69]. In addition, the sizes of the two partitions 

have to be equal and only a graph model can be used. 

Fiduccia-Mattheyses (FM) Algorithm 

The FM algorithm is another gain based iterative improvement algorithm. However, 

in the FM, several improvements have been made over the KL in the gain calculation. 

The main modification in the FM algorithm is that only one single cell, instead of 

a pair of cells, is moved from its original partition to the opposite partition at each 

movement. A "bucket" data structure is used in FM to efficiently implement the cell 

gain calculations, storage and updating. As a result, FM has a linear time complexity 

of O(n), where n is the total number of cell pins in the netlist, and therefore runs 

faster than the KL algorithm. Furthermore, FM is not limited to using the graph 

model of a circuit and can use a hypergraph model. The sizes of the two partitions 

in FM can also be different. 

The basic procedure of the FM algorithm is similar to that of the KL algorithm: 
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starting with an initial partition for the netlist, the "gain" for each cell movement is 

calculated. In the FM algorithm, the gain of a cell is defined to be the number of nets 

by which the netcut will decrease, if this cell is moved from its current partition to the 

opposite partition. Here, the netcut has the same meaning as in the KL algorithm; 

i.e., the number of interconnections between two partitions. More formally, the gain 

for cell i, gain(i), can be calculated as follows: 

gain(i) = FS(i) - TE(i), 

where FS(i) is the number of nets that have cell i as their only cell in cell i's original 

partition, and TE(i) is the number of nets that contain cell i and have no cell in cell 

i's opposite partition. 

After calculating all the cell gains, a suitable cell for movement, referred to as 

"base" cell, is found. This base cell must have the following three characteristics: 

. The base cell can be moved freely. 

. The base cell has the maximum gain value among all cells; thus it can result in 

the maximum reduction in netcut after its movement. 

• The movement of base cell should not violate the partition size constraint. In 

other words, after the base cell movement, the size of each partition should be 

still within the range of the specified lower and upper limits. 

The base cell is moved and "locked"; any locked cell can not be moved again during 

the current "pass". Here, a pass refers to a sequence of cell movements that result 

in netcut to reach a local or global minimum. After each cell movement, the gains of 

the neighbors of the base cell are updated. This process is repeated until there are no 

available base cells for further movement. Then, the algorithm checks the partitioning 

solutions generated during the cell moving sequence, and chooses the one that results 
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in the minimum netcut as the output of the current pass. At this point, the current 

pass terminates, all locked cells are released, and the output of this pass is compared 

with the initial partitioning solution at the beginning of this pass. If the output of 

this pass is the same as the initial partitioning solution, i.e., the initial partitioning 

solution is not improved in this pass, the FM algorithm stops; otherwise, a new pass 

will start. The new pass uses the output of the previous pass; i.e., the best solution 

obtained at that pass, as its initial partitioning solution. A similar process will be 

repeated in this pass. 

An important property of the FM algorithm is its use of a "bucket" data structure 

to efficiently choose the base cells for movement. Figure 2.3 shows the schematic for 

the bucket structure [34, 69]. For each partition, an integer cell gain array is created, 

max 
gain 

-dOgrnm 

cell 

cefl# cell# 01100"0 1 

Figure 2.3: The data structure for cell gain manipulation [34, 69] 

and each entry of the array is a double linked list, which is used to accommodate the 

cell numbers with the same gain values. It should be noted that for any cell in the 

netlist, its gain value is an integer with range from —deg to +deg j, where deg,,,,,, 

is the maximum cell degree in the netlist. Therefore, the length of cell gain array in 

Figure 2.3 is 2 x deg + 1. Once all cell gains have been calculated, the cell numbers 

will be added into the array based on their gain values. The cells that have the same 
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gain values will have the same index and are put into the same linked list in the array. 

Furthermore, in the cell gain array, a "maxgain" index is maintained to keep track 

of the index for the list of cells that have the maximum gain value.' A base cell can 

be decided on by directly visiting the list of cells with current "maxgain" index in 

the array. Once a base cell is moved and locked, its number is removed from the gain 

value list in the cell gain array. Then, the maxgain index and the array are updated 

appropriately. In practice, this bucket data structure has been demonstrated to be 

very efficient. 

The most remarkable characteristic of the FM algorithm is its runtime efficiency. 

FM has a linear behavior: the complexity of FM algorithm is O(n), where n is 

the number of pins (the cells and I/O pad terminals) in the circuit [34]. However, 

although the FM algorithm has been shown to produce very good partitioning results, 

even optimal solutions, for small size circuits [20, 21], for large scale circuits, it can 

easily get stuck in a local minimum [12, 46]. 

Simulated Annealing (SA) Algorithm 

The inspiration of simulated annealing algorithms comes from the real physical pro-

cess of metal annealing. In the real annealing process, a metal is heated to a very high 

temperature, such that its atoms can have enough energy to move freely. Then, the 

metal is cooled down slowly, until its temperature reaches the recrystallization point, 

or is low enough. During this process, the atoms will move such that the metal crystal 

structure is changed towards the lower global energy equilibrium. Finally, when the 

temperature is low enough, the atoms are fixed and do not move again. At this point, 

the metal is stabilized with the global minimum energy [69]. Simulated annealing 

algorithms mimic the real annealing process and optimize a problem in a similar way 

as annealing metals [63, 69]. In VLSI physical design, simulated annealing has been 

2Note that this index is not necessarily at the top of the array. 
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successfully used as an iterative technique for many different problems, for example, 

partitioning [63], placement [54], and routing [66]. 

In the context of VLSI partitioning, simulated annealing partitioning algorithms 

try to reach a global optimal solution by mimicing the real metal annealing process. 

Generally, simulated annealing partitioning techniques start with a random partition-

ing solution, then, a series of cell movements is performed. Cell movements can be 

either the exchange of two cells, like the KL algorithm, or the movement of one single 

cell, like the FM algorithm. The cost of a movement, for example, change in netcut, 

is calculated. If this cost lowers the partitioning cost, the movement is accepted. If 

the cost increases the cost of the partition, it can be accepted based on a probability 

function. This process is repeated until a stopping criterion is reached. Then, another 

iteration starts with a decreased probability of accepting "bad" movements. 

An outstanding advantage of the simulated annealing over other iterative algo-

rithms is that simulated annealing can "escape" from a local minimum state and find 

better solutions; e.g., a better local minimum or hopefully a global minimum [63, 69]. 

An example of this effect is shown in Figure 2.4 for an arbitrary problem. In this fig-

ure, the x-axis corresponds to possible partitioning solutions, and the y-axis provides 

the corresponding partitioning netcut results. It can be seen that there are many 

local optimal points in the partitioning results. Depending on the starting points, 

different local optimum points can be obtained. Once a local minimum is found, un-

less the optimization algorithm is able to take steps that will result in worsening the 

solution, i.e., uphill moves, no better solution can be explored. The behavior of simu-

lated annealing algorithms is different from other local optimization techniques, such 

as Newton's method [18], Lagrangian techniques [18], and Interior-Point Methods 

[16, 18]. In simulated annealing algorithms, given a current point, the next iteration 

point can be a point that either has a better result, or has a worse result than the 



18 

Partitioning netcut results 

Downhill Uphill 

Local optimal 

Global optimal 

Possible partitioning solutions 

Figure 2.4: Illustration of the downhill and uphill movement in a simulated annealing 
algorithm for partitioning problem optimization 

current point with a controlled probability. An "uphill" movement is allowed with 

probability, as illustrated in Figure 2.4. 

The performance of the simulated annealing algorithm depends on fine tuning 

many parameters. Furthermore, for large scale circuits, simulated annealing algo-

rithms can be too slow. 

Overall, the fiat partitioning approaches can provide reasonable solutions for small 

to medium size circuits, but as circuit sizes become larger, the solution quality dete-

riorates [33, 45] and the runtime cost is also very expensive. Therefore, for today's 

big design problems, flat partitioning algorithms are seldom solely used [20, 47]. 

2.3.3 Multilevel Partitioning Approaches 

Multilevel partitioning approaches refer to the algorithms that perform partitioning 

on a small circuit derived from the original circuit and then refine the solution in 

multiple levels [13, 14, 28, 31, 42, 45, 47, 62]. Generally the multilevel partition-

ing approaches consist of three phases: multilevel clustering, initial partitioning and 

multilevel refinement. In Figure 2.5, the three stages of the multilevel partitioning al-

gorithms are shown [47]. In this figure, a hierarchy of 3 levels of clustering/refinement 
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Figure 2.5: Multilevel partitioning algorithm procedure [47] 

is constructed for a given circuit. LO, Li, L2, and L3 refer to circuits at each cluster-

ing/refinement level. LO is the original circuit and L3 is the smallest clustered circuit. 

In the first phase, multilevel clustering, the original circuit is clustered successively 

into a sequence of smaller circuits in several levels. In each level, a new smaller circuit 

is generated by clustering its upper level circuit. Specifically, at each clustering level, 

the cells that are highly connected are grouped together to form a cluster. This clus-

ter will be considered as a normal cell in the subsequent circuit level. The clustering 

process is repeated until the clustered circuit is reduced to a desirable size. Then, 

in the second phase, initial partitioning, one or several initial partitioning solutions 

on the lowest level circuit; i.e., the smallest clustered circuit, are obtained. In prac-

tice, these initial solutions are usually generated by a random assignment or a flat 

partitioning algorithm, such as the FM algorithm, since flat partitioning algorithms 

can produce high quality solutions efficiently on a circuit with small size. In the last 
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phase, multilevel refinement, each of the initial partitioning solutions on the lowest 

level circuit is mapped to its upper level circuit, and this solution is further refined 

by a fiat partitioning algorithm. Then the improved solution at the current level is 

mapped to its upper level circuit and further refinement is performed. This process of 

solution mapping and refinement is repeated in the reverse order of clustering, until 

the original circuit is reached. 

Two state-of-the-art circuit multilevel partitioners, hMetis [45, 46, 47, 67] and 

MLPart [13, 20] follow the scheme shown in Figure 2.5. However, they use different 

clustering, initial partitioning, and refinement techniques. In hMetis, five clustering 

techniques have been implemented, including edge coarsening, hyperedge coarsening, 

modified hyperedge coarsening, FirstChoice, and hybrid FirstChoice. These cluster-

ing techniques will be discussed in the next Chapter. The initial partitioning solution 

in hMetis can be either generated randomly, or by an FM algorithm. The refinement 

techniques used in hMetis are standard FM and two variations of FM, one-way FM 

and early-exit FM. In MLPart, the heavy-edge matching clustering technique is im-

plemented [13]. Furthermore, the netlist is dynamically updated during the clustering 

process. The initial partitioning solution in MLPart is generated by a variation of 

the FM algorithm, called CLIP-FM which can produce better partitioning results but 

needs more runtime than the standard FM algorithm. The refinement technique in 

MLPart uses the standard FM algorithm. 

2.3.4 Comparison between Flat and Multilevel Approaches 

Although multilevel partitioning algorithms are sophisticated procedures and require 

the implementation of efficient data structures, they offer several advantages over the 

traditional fiat approaches. 
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Low Runtime 

The overall runtime for the partitioning process is significantly reduced. The runtime 

speedup is mainly due to the application of clustering. Clustering reduces the size 

of circuits, making the partitioning problem easier to solve. As a result, less time is 

required to obtain or improve a partitioning solution. Furthermore, the refinement 

is performed in an iterative way with a refined solution from its previous level as a 

starting point. This good starting solution will reduce the number of iterations in 

the iterative refinement procedure and provide a more rapid convergence to a local 

or global minimum, further reducing the runtime. 

High Solution Quality 

The solution quality of the multilevel partitioning approaches is greatly enhanced, 

compared to that of the fiat approaches [30, 46]. This is due to the combination of 

multilevel clustering and refinement. 

In the multileyel framework, multilevel clustering and refinement benefit each 

other to improve the solution quality. Clustering reduces the circuit size and for a 

smaller circuit, a high quality solution can be obtained by fiat partitioning algorithms 

[20, 50]. This solution is the starting point for the subsequent multilevel refinement 

phase. It should be noted that due to the nonlinear nature of the partitioning prob-

lem, finding a good starting point is extremely important to the quality of the final 

result. The difference between starting points for a nonlinear programming problem 

is illustrated in Figure 2.6, where an arbitrary function F(x) is plotted. In this fig-

ure, the function, F(x), has many local minima and one global minimum. Different 

starting points can lead to different minimum values. For example, in Figure 2.6, 

starting point 1 can lead to a local minimum, while starting point 2 leads to the 

global minimum. 
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Figure 2.6: Starting point effect for a polynomial optimization problem 

High Performance Stability 

The third advantage of multilevel partitioning approaches is the higher performance 

stability, in terms of both the solution quality and runtime, compared to the flat 

approaches. Here, "stability" refers to variations between different results from several 

times of running a partitioning algorithm implementation; i.e., a partitioner. 

Due to the intractability of circuit partitioning problems, most practical algo-

rithms use "heuristic" approaches. In other words, currently there is no known poly-

nomial algorithm that can find the optimal results for partitioning problems. Most 

practical partitioning heuristics, including both fiat and multilevel approaches, have 

a random nature. As a result, partitioning results obtained by the same algorithm 

in different runs can be different. Here, a run refers to a one time execution of the 

algorithm implementation. In order to get a high quality partitioning solution, usu-

ally several independent runs of a partitioner are performed and the best partitioning 

result is chosen. 

In terms of the difference between partitioning results from different runs, it can 

be concluded that the performance of multilevel partitioning algorithms is much more 

stable than that of flat partitioning algorithms, since the variations in partitioning 
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results from multilevel algorithms tend to be quite small, compared to those of flat 

algorithms. In Figure 2.7, the bipartitioning results of 20 runs on benchmark circuit 

ibmOl by a flat partitioner, "FMPart" [34], and a multilevel partitioner, "hMetis" 

[47], are plotted respectively. In this figure, the x-axis is the run number for both 

partitioners, and the y-axis is the corresponding partitioning result in terms of netcut 

by each partitioner per run. It can be seen that the multilevel partitioner produced 
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Figure 2.7: The bipartitioning result comparison between flat and multilevel parti-
tioners on benchmark circuit ibmOl 

more stable results than the flat partitioner. The partitioning results of 20 runs 

by the flat partitioner fluctuate drastically. Furthermore, the solution quality of 

the multilevel partitioner is better than that by the flat partitioner. More stability 

experiments for different types of partitioning algorithms can be found in [12]. In [12], 

it is shown that for the whole ISPD98 benchmark suite, the multilevel partitioning 

algorithms produce more stable and better partitioning results than flat partitioning 

approaches. 

In summary, compared with the flat partitioning approaches, the multilevel ap-
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proaches have better optimality, scalability, and stability. 

2.4 Circuit Placement 

2.4.1 Problem Definition 

Placement, an NP-hard problem, is another important optimization problem in the 

physical design process. It is also an NP-complete problem [68, 69]. Generally, circuit 

placement problems can be defined as follows: given a circuit, the interconnections 

between the circuit components (including cells and I/O pads), called a "netlist", 

and the dimensions for these components (height, width), are known; the process of 

placement is to arrange or find a valid physical position for each circuit component 

on the layout surface, such that the total estimated wire length for interconnections 

is minimized. The main constraint on the placement problem is that there should 

be no overlap between components. It should be noted that depending on the cir-

cumstances, the objective of placement may vary. For example, the objective can 

be minimization of the layout area, reduction of circuit congestion, minimization of 

power consumption, timing, or some combination of these objectives [55]. Due to the 

intractability of the placement problem, placement is generally further divided into 

two stages: global placement and detailed placement. In the global placement stage, 

the cell positions are roughly determined and some cells may overlap. In the detailed 

placement stage, the placement result from the global placement stage is first legal-

ized by removing any cell overlap, and then the legalized placement result is further 

refined. It should be mentioned that, in practice, the cells are usually placed in rows 

on a rectangular layout surface. Furthermore, there may be areas on a layout surface 

that can not be used for cell placement. 

Placement has a deep impact on the final performance criteria, such as signal 

integrity, timing delay, and power consumption [43, 44, 55, 70]. After the placement, 
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Figure 2.8: An example of good placement VS bad placement [63] (a) Optimal place-
ment with estimated wire length = 12 (b) Alternative placement with estimated wire 
length = 22 

all cells will be fixed on the layout surface, and all subsequent procedures will be 

performed based on this placement result. A good placement will benefit the opti-

mization of subsequent design objectives; however, a bad placement will lead to poor 

subsequent design objectives, and, in the worst case, the subsequent design may not 

be feasible and the placement will have to be redone. The effect of a "poorly" placed 

circuit is shown in the example of Figure 2.8, where two placement solutions for a 

mesh are given. It can be seen that the total wire length, from the placement solution 

given in Figure 2.8(a) is much shorter than that from the solution given in Figure 

2.8(b). The placement solution in Figure 2.8(b) can lead to a circuit design with more 

timing delay, more interconnect congestion, and more power consumption. 

2.4.2 Wire Length Estimation 

The goal of the placement algorithms used in this thesis is to determine the cell 

positions such that the total length of estimated interconnections between the cells 

is minimized. The actual completion of interconnections between cells is performed 
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at the global routing stage. As a result, in placement, the model used to estimate the 

wire length can become important. On one hand, the model of wire length estimation 

should be accurate enough to represent the real interconnection wire length. On 

the other hand, the calculation should be computationally efficient so as to deal 

with the large sizes of circuits encountered in modern designs. Currently, there are 

several widely used models for wire length estimation [63, 69]. All these models use 

Manhattan geometry; i.e., the interconnect tracks are either horizontal or vertical 

[63]. In the following, three typical wire length estimation models are described. 

. Rectilinear Minimum Spanning Tree (RMST) 

In this model, a rectilinear minimum spanning tree [16, 27] is constructed for 

each interconnection, or net. A rectilinear minimum spanning tree (RMST) is 

a minimum length tree that connects all the given terminals, or cells, of a net. 

In an RMST, edge lengths are measured in Li (Manhattan) metric [4]. The 

estimated wire length is equal to the tree length. 

Figure 2.9 shows a rectilinear spanning tree for a net that connects 4 cells. If 

wire 1egth = 16 

Figure 2.9: Rectilinear minimum spanning tree model [69] 

the grid width and length in Figure 2.9 are 1 unit each, then the estimated 
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wire length for this interconnection is equal to 16 units. An RMST can be 

constructed using Prim's algorithm [4, 69] in 0(n2) time, where n is the number 

of terminals. Other algorithms to find RMST are Kruskal's greedy algorithm 

[69], and an efficient O(nlogn) algorithm that combines divide-and-conquer and 

Prim's algorithms together [4]. The advantage of the RMST model is that a 

spanning tree can be constructed rapidly for small nets. However, the model 

doesn't represent the real interconnection accurately, since this model can cause 

redundant interconnections and consequently longer estimated wire length [16, 

27, 69]. 

• Rectilinear Steiner Minimum Tree (RSMT) 

In this model, a rectilinear Steiner minimum tree [16, 27, 69] is constructed to 

represent an interconnection and the wire length calculation is performed on 

the constructed Steiner tree. A Steiner tree is a tree that contains not only all 

of the original vertices of a graph, but also some additional vertices, referred 

to as "Steiner" points. The purpose of introducing Steiner points is to reduce 

the cost of the tree. A minimum Steiner tree is a tree with minimum cost. The 

cost is defined to be equal to the sum of weight of edges connecting the vertices 

and Steiner points in the Steiner tree. A rectilinear minimum Steiner tree is a 

minimum Steiner tree where all the edges are either horizontal or vertical. 

Figure 2.10 shows a constructed Steiner tree for the same net as in Figure 

2.9. It can be seen that the wire length for the Steiner tree is 13 units. The 

rectilinear Steiner tree model is the most accurate representation of the real 

interconnection and the optimal wire length can be obtained from the Steiner 

tree model. However, the problem of finding a Steiner tree for an interconnection 

is NP-hard [16] and therefore, in practice, this model is not widely used. 

9 Half-Perimeter Wire length 
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wire length= 13 

Steiner point 

Figure 2.10: Rectilinear Steiner tree model [69] 

In this model, the smallest bounding rectangle that encloses all the intercon-

nection points is found, and the estimated wire length is equal to half of the 

perimeter of the bounding rectangle. 

In Figure 2.11, the wire length for the half-perimeter model is 12 units. Compared 

wfre length = 12 

Figure 2.11: Half-perimeter model [63] 

with the spanning tree and Steiner tree models, the half-perimeter model is the 

most widely used model in practical placement algorithms. This model is very 
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fast; i.e., the construction of the bounding rectangle and the computation of 

the perimeter can be done in linear time. This model is accurate to represent 

interconnections connecting 2 or 3 cells, where the wire length is equal to that 

obtained from a Steiner tree model, but this model underestimates the wire 

length of nets with higher degrees. In real integrated circuits, the majority 

nets connect only 2 or 3 cells [12, 57, 58]. Thus, this model represents a good 

trade-off between time complexity and accuracy. 

2.4.3 Existing Placement Algorithms 

There has been numerous research on placement, such as [10, 23, 25, 26, 30, 43, 

61, 68, 74, 76]. Since placement problems are also known to be NP-complete [68], 

most practical placement algorithms are heuristics. With the size and complexity 

of integrated circuits increasing rapidly3, numerous placement algorithms have been 

proposed in recent years to tackle with the new challenges and difficulties arising in 

modern VLSI circuit design. Currently, the state-of-the-art placement heuristics can 

be classified into 3 major categories: simulated annealing [54, 66, 77], partitioning 

based [10, 25, 61], and analytical methods [26, 43, 59, 71]. In the subsequent sections, 

each category is reviewed. 

Simulated Annealing Placement Approaches 

In Section 2.3.2, the basic concept behind the simulated annealing algorithms was 

introduced. Simulated annealing placement algorithms have the same characteristics 

as the simulated annealing partitioning algorithms discussed earlier. In solving the 

placement problem using simulated annealing, wire length minimization is usually the 

objective. The algorithm starts from an initial placement solution, and generates a 

'According to the famous Moore's Law [56], the number of transistors on an integrated circuit is 
doubled every 18 months. It is predicted that Moore's Law will continue for several chip generations 
[8]. 
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series of new placement solutions by operations such as cell movements or swappings. 

For each solution in the series, the cost is estimated, and the new solution is accepted 

if the cost is lower, or if the cost is higher, and where the annealing function allows 

the annealing operation (random jump to a new solution). 

Typical representatives of simulated annealing placement tools are TimberWolf 

[66] and Dragon2000 [77]. The main drawback of simulated annealing based place-

ment algorithms is that the process is very time consuming. For modern large scale 

circuit designs, the runtime cost of simulated annealing can be prohibitive [7, 74]. 

Partitioning Based Placement Approaches 

Partitioning based placement approaches are an important class of placement algo-

rithms. Essentially, these algorithms use a divide-and-conquer strategy to solve the 

placement problem. In these algorithms, first a given circuit is partitioned into smaller 

sub-circuits, where each sub-circuit is placed into one subsection of the layout area. 

At this point, this level of partitioning of both netlist and layout area is complete and 

a new level starts, where each sub-circuit is considered independently. The circuit and 

layout area partitioning process are repeated until the sub-circuits are small enough, 

and each sub-circuit contains just a few cells. 

In Figure 2.12, an example of a simple circuit placement using partitioning is il-

lustrated.' In Figure 2.12(a), originally all of the cells are placed at the centre of the 

layout area and they overlap with one another. In Figure 2.12(b), the original circuit 

is bipartitioned and the layout area is also partitioned horizontally into two subsec-

tions. Each subsection accommodates one sub-circuit. In Figure 2.12(c), another 

level of partitioning is performed. Note that this time, the layout area is partitioned 

vertically. In practice, the layout area partitioning is usually performed in horizontal 

and vertical directions alternatively. Finally, in Figure 2.12(d), the third level parti-

4For the purpose of simplicity, the interconnections between cells in Figure 2.12 are not plotted. 
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1 

(a) Original placement 

2 

r  

(c) The second level of partitioning 

1 

(b) The first level of partitioning 

2 

3a 

1 

3b 

EI 

(d) The third level of partitioning 

Figure 2.12: An example of the partitioning based placement [63]. Here, each par-

tition is shown using the dotted line. (a) Original placement (b) After the first 

bipartitioning (horizontal) (c) After the second bipartitioning (vertical) (d) After the 

third bipartitionings (two horizontal) 
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tioning is performed and each component occupies an unique layout subsection. From 

Figure 2.12, it can be seen that after the partitioning of the netlist and layout area is 

complete, the placement for each small sub-circuit on the corresponding small layout 

area section can be performed efficiently. For example, the branch-and-bound, or 

even enumeration methods can be used to solve such a placement problem optimally 

since the problem instance is small [21]. 

It should be noted that depending on the final placement objectives, the objective 

functions used in partitioning may vary [69]. A general objective function during 

partitioning is to minimize the interconnections between different partitions. It has 

been verified that interconnect minimization during partitioning is roughly equivalent 

to minimizing the half perimeter wire length for final placement [68, 69, 77]. During 

the circuit partitioning sequences, depending on the problem scale, i.e., the circuit 

sizes, different partitioning approaches can be used to achieve the best trade off 

between solution quality and runtime. For example, when the circuit is "large", 

e.g., more than 10000 cells, the multilevel partitioning algorithms are used; when the 

circuit is "small", the fiat partitioning algorithms are typically used. 

Typical representatives of partitioning based placers include Capo [61], FengShui 

[10] and NTUplace2 [25]. Generally these kind of placers are scalable. Furthermore, 

the global placement results from these placers are generally cell overlap free, or have 

only a small percentage of cell overlap. As a direct result, less effort is required in 

the subsequent detailed placement stage to legalize the result from global placement. 

Despite the above advantages, the placement results by partitioning based placers can 

be unstable; i.e., different runs of a placer will give different placement results. This is 

due to the instability of the partitioning algorithms used in the placement procedure. 

In addition, due to the recursive nature of partitioning based procedure, i.e., the orig-

inal netlist needs to be partitioned into thousands of smaller sub-circuits by invoking 
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the partitioner many times, the runtime for these placers is also prohibitively large 

for large scale circuits. 

Analytical Placement Approaches 

Analytical placement approaches refer to the algorithms in which mathematical anal-

ysis is used to solve the placement objectives. Generally, in these approaches, the 

original placement problem is formulated by a constrained nonlinear programming 

model [43]. This optimization problem is solved using nonlinear optimization tech-

niques. 

Analytical placement algorithms have numerous variations. Among these vari-

ations, force-directed quadratic placement techniques are widely used, due to the 

ease of solving this type of formulation [74]. In the remainder of this section, the 

force-directed quadratic placement technique is described in detail. Other analyt-

ical placement approaches are similar to this technique, except that the objective 

functions, or nonlinear optimization techniques used, can be different. 

In force-directed placement algorithms, an interconnection, or a net, connecting 

different cells in a netlist can be regarded as a physical spring with forces imposed on 

the cells incident to this net. The forces applied on each cell in a net try to pull cells 

together, so as to obtain a minimum energy solution in order to maintain the system 

equilibrium. According to Hooke's law in mechanics, the amount of the force exerting 

on the cells via the spring is proportional to the distance between these cells [63]. In 

a balanced physical system with objects and springs, each object will be at the exact 

location where the overall resultant forces from different directions on this object is 

zero. As a result, the overall energy required to maintain the system equilibrium is 

minimized; that is, the springs are stretched with minimum tension. Similarly, in 

force-directed placement algorithms, originally all cells, except for those fixed I/O 

pads and prefixed blocks, are supposed to move freely. Since these cells have nets 
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connecting them, they will move toward the direction of the resultant forces applied 

by the nets. The whole system is stable when all cells have zero resultant force on 

them. At this point, the minimum wire length objective can be achieved. 

Typical quadratic placers are FastPlace [74], hATP [59], Kraftwerk [71], mFAR 

[40], and BonnPlace [19]. Besides the quadratic wire length objective function, other 

wire length functions, such as the log-sum-exponential function, have been proposed 

in recent years and used in some analytical placers, such as APlace [43], NTUp1ace3 

[26], and mPL6 [23]. These non-quadratic analytical placers show comparable or even 

better performance compared to quadratic placers. 

2.5 Summary 

In this chapter, the circuit partitioning and placement problems have been introduced. 

These two problems are the main application areas fr clustering algorithms in the 

context of VLSI circuit physical design. 

Current partitioning algorithms can be classified into two categories: flat and 

multilevel methods. Multilevel partitioning algorithms use clustering and are shown 

to be able to handle the sizes of circuits encountered today. 

Current placement algorithms can be classified into three categories: simulated 

annealing, partitioning based, and analytical methods. Among these methods, ana-

lytical placement algorithms can achieve the best wire length results with the lowest 

runtime. In ISPD2005 and ISPD2006 placement contests, the analytical placers domi-

nated other types of placers in terms of wire length reduction and runtime cost [57, 58]. 

However, it should be mentioned that, in practice, wire length minimization is only 

one of the performance metrics for placement algorithms. In commercial placement 

tools, there are other key concerns, such as the routability of the placement results. A 

placement solution that has a minimum of estimated wire length does not guarantee 
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that the routing wire length for this placement solution is also minimum [6]. 



Chapter. 3 

Existing Clustering Algorithms for Partitioning 

and Placement 

3.1 Introduction 

In this chapter, background information on the current clustering algorithms for cir-

cuit partitioning and placement is provided. These algorithms are classified into two 

categories: scoreless and score-based. 

The rest of this chapter is organized as follows. In Section 3.2, clustering in the, 

context of circuit partitioning and placement is introduced. In Section 3.3, scoreless 

clustering algorithms are discussed. In Section 3.4, score-based clustering algorithms 

are discussed. In Section 3.5, a comparison between scoreless and score-based cluster-

ing algorithms is given. In Section 3.6, the motivations for the proposed research in 

this thesis are presented. Finally in Section 3.7, a summary of this chapter is given. 

3.2 Problem Definition 

In the context of VLSI physical design, the clustering problem can be described is 

finding a group of subsets of cells in a netlist, such that certain constraints, such 

as the cluster lower and upper size bounds are satisfied. A formal definition of the 

clustering problem is as follows. 

Given a hypergraph H(V, E) which represents a netlist, where V is the set of cells 

36 
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and E is the set of nets in the netlist, find a set of clusters C1, C2, ..., Ck, such that 

k ≤ m 

çb,1≤i≤k 

Ci C V,1≤i≤k 

u:'.=1C = V 

CflC = q,1≤i,j≤k,ij 

size(C) ≤ U, 1 ≤ i ≤ k 

size(C,) ≥ L, 1 ≤ i ≤ k, 

where m is the number of cells in the netlist; i.e., JVII = n, size(C) is the size of 

cluster C, and U and £ are the upper and lower bounds for the cluster size. In the 

context of VLSI physical design, the size of cluster can be either the number of cells 

inside the cluster, or sum of areas of cells inside the cluster. 

Depending on the specific circumstances, the optimization objective for clustering 

problems can be different. A typical objective can be the minimization of the number 

of nets that are cut by different clusters, or maximization of nets that are absorbed 

by clusters. For a cluster C, the set of nets that are cut by Ci is expressed as 

Ee,Lt(Cj)={CICEE, 

Then, the set of nets that are cut by all clusters can be expressed as 

E(C) = 

Eventually, the objective of minimization of nets cut by clusters can be expressed as 

JV[irt. IIEt(C)II, (3.1) 

where IIEt(C)II denotes the number of nets in set E(C). 
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In [15], other objective functions for clustering problems are presented, such as 

scaled cost and absorption. 

In the context of VLSI partitioning and placement, the clustering algorithms are 

mainly used to reduce the original large scale netlist into a smaller netlist. As illus-

trated in (3. 1), the general objective of a clustering algorithm is to identify the groups 

of strongly interconnected cells and then make each group into a cluster, subject to 

the cluster size constraints. Clustering can be performed in multiple levels; i.e., the 

clustering can be recursively applied to not only the original netlist, but also an al-

ready clustered netlist. As a result of multilevel clustering, a hierarchy of netlists are 

constructed. Then the partitioning and placement are performed in this multilevel 

hierarchy, as discussed in Section 2.3.3 in Chapter 2. 

It should be noted that in the multilevel clustering framework, the clustering 

process between continuous levels needs to be controlled appropriately. In practice, 

there is a predefined "clustering ratio" to determine how much the current netlist will 

be reduced in one single level of clustering. This clustering ratio is usually defined in 

terms of the number of cells in the netlist, and is expressed as 

Cell-Clustering-Ratio (CCR) 
- # cells in clustered netlist 
- # cells in original netlist 

At each level of clustering, clusters are generated sequentially. Once a desirable clus-

tering ratio has been reached, indicating that the netlist has been reduced small 

enough at the current level, the clustering stops and the clustered netlist is final-

ized. The main purpose of having a fixed clustering ratio is to control the clustering 

process. The value of the clustering ratio is dependent on the specific application 

circumstances. In some cases, the clustering ratio is set to be high to adequately 

smooth the clustering process. For example, in the multilevel partitioning process, 

the clustering ratio is usually set to be greater than 0.5; i.e., the size of next level 

clustered netlist is greater than half the size of the current level netlist [3, 20, 45, 47]. 
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Experiments by other researchers have demonstrated that when using a higher clus-

tering ratio, better partitioning results can be obtained [20]. However, in the context 

of multilevel placement, a smaller clustering ratio is generally desired. For example, 

in state-of-the-art placers, e.g., mPL6 [23] and APlace [43], the default clustering 

ratios are 0.25 and 0.1, respectively. The reason for choosing a small clustering ratio 

value for the placement problem is that compared to partitioning, placement is a 

more difficult problem and the process of solving placement requires more runtime 

and memory resources. 

With the size and complexity of today's VLSI circuits, the task of circuit physical 

design is becoming more difficult than ever. One main challenge arising with the large 

circuits is that the performance of many existing algorithms deteriorates as the circuit 

size increases. As a result, the solution quality can also deteriorate significantly. At 

the same time, the runtime increases drastically. For example, the FM algorithm [34] 

is a standard partitioning method for circuits with small to medium size. For small 

circuits, FM can produce optimal partitioning results. However, when much larger 

circuits are encountered, e.g., circuits with more than 100,000 cells, the partitioning 

results by FM are generally 2 times worse than known upper bounds [12]. 

In order to tackle today's large scale designs, numerous clustering algorithms 

have been proposed in recent years. Due to their capability to reduce circuit size and 

complexity, clustering algorithms are receiving more attentions. Previous empirical 

results have shown that by using clustering, both runtime reduction and better solu-

tions are obtained [11, 13, 22, 28, 39, 45]. Currently, clustering algorithms have been 

successfully applied in almost all aspects of the circuit physical design, for example, 

partitioning [20, 47, 62], placement [10, 22, 25, 59, 61, 72, 76], and routing [60]. 

Based on how clusters are formed, as discussed earlier, the clustering algorithms 

for circuit partitioning and placement can be classified into two categories: scoreless 
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and score-based methods. These two categories are discussed in detail below. 

3.3 Scoreless Approaches 

A clustering algorithm is defined as scoreless, if once a potential cluster is identified, it 

is finalized and no comparison between different potential clusters is made. The main 

scoreless clustering algorithms used for VLSI physical design are briefly discussed 

below. 

3.3.1 Edge Coarsening (EC) 

In [45], an edge coarsening algorithm is proposed. In edge coarsening, cells in a circuit, 

or netlist, are visited in a random order in order to form clusters. For each randomly 

selected cell, first the clustering status of this cell is examined. If the visited cell has 

already been clustered, it will be skipped and the next cell is examined. Otherwise, the 

connectivity between this "seed" cell and all of its unclustered neighbors is computed. 

The visited seed cell is clustered with the cell with the highest connectivity. Therefore, 

each time, edge coarsening clusters two cells and generates one new cluster. 

Figure 3.1 shows an example where edge coarsening is used to cluster a simple 

circuit. In Figure 3.1 (a), the original netlist is shown, where all cells are unclustered 

cells. If the cells are visited according their numbers, cell ® will be the first visited 

cell. It has the same connections with cells ®, ®, and can be grouped with any 

of the them to form a cluster. If cell ® is chosen and grouped with cell ®, the first 

cluster is produced. Then, cell © is visited, since it is already a clustered cell, it 

is skipped. Cell ® is visited and it will cluster with cell c, since cell © has the 

maximum connectivity with cell . The similar cell visiting and clustering process 

is repeated until cells ® and ® are clustered, as shown in Figure 3.1 (b), or the 

predefined clustering ratio is reached. The clustered netlist is shown in Figure 3.1 
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(c). 

(a) Original netlist 

(b) 4 clusters are formed in turn 

(c) Clustered netlist 

Figure 3.1: An example of the edge coarsening algorithm for a small circuit. Here, 
the cells are ordered as (, ®, ®, , ®, ®, 0, ® and . 

It should be noted that the edge coarsening algorithm is the basic clustering 

technique used for VLSI physical design. Many other clustering algorithms are derived 

from edge coarsening algorithm, and have similar characteristics. 
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3.3.2 Hyperedge Coarsening (HEC) 

In [45], a hyperedge coarsening algorithm is proposed. In hyperedge coarsening, 

clusters are formed by visiting the hyperedges or nets in the netlist. The nets in 

a circuit are first ordered ascendingly based on the net degree; i.e., the number of 

cells connected to the net. Then, each net is visited in turn. Similarly to the edge 

coarsening algorithm, first the clustering status of the visited net is examined: if the 

visited net contains any clustered cell, it will be skipped and the next net is visited. 

Otherwise, all of the cells in this net are grouped and a new cluster is produced. This 

process is repeated until all the nets have been visited and handled appropriately, 

or a predefined clustering ratio has been reached. From the above description, it 

can be seen that, unlike edge coarsening that has exactly two cells in one cluster, in 

hyperedge coarsening, each time one hyperedge is clustered, the number of cells in a 

cluster is arbitrary and only dependent on the net degree. 

In Figure 3.2, an example where hyperedge coarsening is used to cluster the circuit 

in Figure 3.1 (a) is given. Originally all the cells and nets are unclustered. The nets 

in the circuit are visited based on their degrees: nl, n3 and m2. Suppose the sum of 

areas of the cells in net ml does not exceed the cluster size upper bound, then, a new 

cluster is generated which consists of cells ®, ® and ®, as,, shown in Figure 3.2 (a). 

Next, net n3 connecting cells ®, 0, 0 and is examined. No cell in this net belongs 

to a cluster. If the sum of areas of the cells in this net does not exceed the cluster 

size upper bound, then another new cluster is generated which consists of cells D, ®, 

© and , as shown in Figure 3.2 (a). Finally, net m2 is visited. Since the cells ©, 

® and ® in net n2 are already clustered, net n2 is skipped. The final clustered 

netlist is shown in Figure 3.2 (b). 
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(a) All identified clusters 

(b) Clustered netlist 

Figure 3.2: An example of the hyperedge coarsening algorithm for a small circuit. 
Here, the nets are ordered as (ni, n3 and m2). 

3.3.3 Modified Hyperedge Coarsening (MHEC) 

In [45], a modified hyperedge coarsening algorithm is proposed. Modified hyperedge 

coarsening is based on the same procedure as hyperedge coarsening, with the dif-

ference that hyperedges containing clustered cells can still be considered for further 

clustering. In other words, modified hyperedge coarsening first uses hyperedge coars-

ening procedure to cluster the netlist. Then, the nets are visited again, and those 

unclustered nets that were left in the hyperedge coarsening process due to containing 

clustered cells are, themselves, clustered. During the process, if clustering a net or 

partial cells of a net does not satisfy the cluster size constraint, no cluster is pro-

duced. Furthermore, if the specified clustering ratio is reached, the clustering stops 

immediately. 

In Figure 3.3, an example is shown where modified hyperedge coarsening is used 
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to cluster the same circuit as in Figures 3.1 and 3.2. For the purpose of simplifica-

(a) All identified clusters 

(b) Clustered netlist 

Figure 3.3: An example of the modified hyperedge coarsening algorithm for a small 
circuit. Here, the nets are ordered as (ni, 0 and n2). 

tion, the hyperedge coarsening procedure is omitted and the resulting netlist after 

hyperedge coarsening is directly used in this example. Then, the modified hyperedge 

coarsening algorithm examines each unclustered net. In Figure 3.3 (a), cells © and 

© are unclustered cells in net ri2. Therefore, a new cluster is generated by grouping 

cells ® and ©. In Figure 3.3 (b), the final clustered netlist is shown. In modified 

hyperedge coarsening, the number of cells in a cluster is also arbitrary. 

3.3.4 FirstChoice Clustering (FC) 

In [47], the FirstChoice clustering algorithm is proposed. In FirstChoice, similar to 

edge coarsening, cells are visited randomly, and each visited seed cell, v, is clus-

tered with the neighbor, v, that has the maximum connectivity with v. Here the 
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connectivity, conri, between two cells vi and vj is calculated as follows: 

conn(v,v) = 
1 

L._i el — i' 
eE {elvjEe,vj Ee} 

where e E E, and is the net connecting cells vi and v, jej is the degree of net e. In 

FirstChoice, when a cell is visited, the connectivities between the visited seed cell 

and all of its neighbor cells are calculated and the visited cell is clustered with the 

neighbor that has the maximum connectivity regardless of the neighbor's clustering 

status. However, a seed cell can not be a clustered cell. This clustering is different 

from edge coarsening, where only the unclustered cells can be used to generate a 

cluster. As a result, when FirstChoice groups a visited cell and its selected neighbor, 

if the neighbor is a clustered cell already, then no new cluster is produced and the 

visited cell is added into an existing cluster. 

In Figure 3.4, an example where FirstChoice is used to cluster the circuit in 

Figure 3.1 (a) is given. Originally, all cells are unclustered and are visited randomly. 

Suppose, in this example, the cells are visited in the order of their cell numbers. Cell 

cD has the same connectivity with cells ®, ® and T and is randomly clustered with 

cell ®. The next seed cell is © which has the highest connectivity with cell T. Seed 

cell ® is randomly matched with © and seed cell has the highest connectivity with 

®. Finally, cell ® is visited. Although both neighbors of cell ®, i.e., cells ® and ®, 

are clustered already, FirstChoice still calculates the connectivity between cells © and 

®, and cells © and ®. As a result, cell ® is added into the existing cluster consisting 

of cells T and ®, as illustrated in Figure 3.4 (a). In Figure 3.4 (b), another clustering 

result using the same cell ordering is illustrated. As it can be seen in this example, 

the cluster sizes are varied. 
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(a) PC clustering solution I 

(b) FC clustering solution 2 

Figure 3.4: An example of different clustering results by FirstChoice algorithm using 
the same cell ordering on a small circuit. Here, the cells are ordered as (, 0, , , 
®, ©, 0, 0 and ®). 

3.3.5 Heavy-Edge Matching (HEM) 

In [13], a variation of edge coarsening algorithm, called heavy-edge ma'tching, is pro-

posed. The principle procedures of this algorithm are similar to edge coarsening, but 

the connectivity definition and computation are different. 

In heavy-edge matching [13], a connectivity measure for a pair of cells is proposed 

which considers both the areas of the cells and the degrees of the edges that connect 

them. Specifically, the connectivity, conn, between two cells vi and v, is calculated 

as follows: 

1 
comn(v,v) = 

A(v).A(v) lei 
eE{ejvEe,v1Ee} 

where A(v) represents the area of cell v, e represents the net that connects v, and 

v, and lei represents the number of cells in net e, i.e., the degree of the net. This 

(3.2) 
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connectivity measure emphasizes nets with lower degrees; i.e., nets with a low number 

of incident cells. It also gives priority to the cells with small area to prevent forming 

big clusters. Similar to edge coarsening, all the cells in a netlist are visited randomly. 

When an unclustered cell is visited, it will be clustered with one of its unclustered 

neighbors such that the connectivity between them is highest among all unclustered 

candidate neighbors. 

3.3.6 PinEC Clustering (PinEC) 

In [20], a variation of the heavy-edge matching algorithm, called PinEC, is proposed. 

In PinEC, the first modification to the heavy-edge matching connectivity is that 

the weight of hyperedges with degree equal to two is doubled to give higher priority to 

these nets. Second, in PinEC, the netlist is dynamically updated after the formation 

of each cluster. Subsequent connectivity calculations and clustering operations are 

aware of previously produced clusters. 

In Figure 3.5, an example where PinEC is used to cluster the circuit in Figure 3.1 

(a) is given. In this example, the cells are visited in the same order as edge coarsening; 

i.e., D, ®, ®, , ®, ©, 0, ® and ©. Cell D is visited first and cells ® and © are 

clustered, as illustrated in Figure 3.5 (a). Once the cluster is generated, cells D and 

are merged into a new cell, whose area is equal to the sum of cells D and ©, and 

the nets incident to this cell is the set of nets originally incident to cells and ©, 

as illustrated in Figure 3.5 (b). In the remainder of the clustering process, the new 

cell merged from and © is treated as a normal cell with the rest of the cells in the 

netlist. Figure 3.5 (c) shows the clustered netlist. For this small example, the netlist 

updating and adding cell areas to the connectivity computation prevent formations 

of clusters such as in the example shown in Figure 3.4 (b). 

Although in heavy-edge matching and PinEC, the connectivity, which can be 

regarded as a clustering score, is calculated, these algorithms are put into the scoreless 
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(a) First cluster 

(b) Second cluster after netlist update 

(c) Clustered netlist 

Figure 3.5: An example of the PinEC algorithm for a small circuit. Here, the cells 
are ordered as (a), ®, ©, (i), ©, ©, (D, ® and ®). 
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category since the score is not used in ordering the cells. 

3.3.7 Application of Scoreless Clustering Algorithms 

The scoreles clustering algorithms discussed above have been widely used in circuit 

partitioning and placement. 

In state-of-the-art circuit partitioner, hMetis [1, 45, 47], edge coarsening, hy-

peredge coarsening, modified hyperedge coarsening, and FirstChoice have been im-

plemented. In another leading-edge circuit partitioner, MLPart [3, 20], heavy-edge 

matching and PinEC have been implemented. 

In the context of placement, most of these scoreless clustering algorithms are in-

directly used in partitioning based placement tools, such as Capo [3] and FengShui 

[10]. Both of these two placers invoke either hMetis or MLPart to perform bisecting 

for placement. Furthermore, FirstChoice is directly used to construct the multilevel 

placement hierarchy in some other placement tools, such as mPL5 [22], NTUplace2 

[25], NTUplace3 [26], and FDP [48, 76]. In these placers, like the multilevel parti-

tioning scheme, the clustering algorithms are used to cluster the original netlist into 

a series of smaller netlists. An initial placement is performed on the smallest netlist 

in the hierarchy of netlists. This initial placement is further refined when the series 

of clustered netlists is mapped back to its upper level netlist, until the original netlist 

is recovered. 

In Table 3.1, the application of scoreless clustering algorithms on partitioning 

and placement is summarized. It should be noted that among all these scoreless 

clustering algorithms, FirstChoice has been shown to be the most used scoreless 

clustering technique in practice. 
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Table 3.1: A summary of scoreless clustering algorithm applications in partitioning 
and placement tools 

Tools Using Clustering Methods 
Clustering Methods Partitioners Placers 

Edge coarsening 
Hyperedge coarsening 

Modified hyperedge coarsening 
FirstChoice 

Heavy-edge matching 
PinEC 

hMetis 
hMetis 
hMetis 
hMetis 

MLPart 
MLPart 

Capo, FengShui, 
mPL5, FDP, NTUplace2/3 

3.4 Score-Based Approaches 

A clustering algorithm can be said to be a score-based approach, if a set of potential 

clusters are first identified, with a score assigned to each potential cluster, which 

indicates the priority or quality of that cluster among all potential clusters. Then, 

all potential clusters are ordered based on their associated clustering scores, and 

clustered in turn until a desired clustering ratio is reached. The following clustering 

algorithms are all score-based approaches. 

3.4.1 Edge Separability-Based Clustering (ESC) 

In [28, 29], clustering is performed based on edge separability, which is essentially 

another measurement of connectivity between a pair of cells in a netlist. In this 

technique, first the netlist is converted to its corresponding graph. Then, all the 

cells in the graph are visited in turn and the maximum flow between each visited cell 

and its adjacent cells is computed. Subsequently, different pairs of cells are ordered 

descendingly based on their maximum flow values; the pair of cells with the highest 

flow will be clustered first, and the pair of cells with the second highest flow will be 

clustered next. This process is repeated until a predefined clustering ratio is achieved. 

The edge separability clustering algorithm provides global connectivity information 

to guide the clustering process, since it computes the flows for all pairs of cells and 
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orders them globally. 

3.4.2 Fine Granularity Clustering (FGC) 

In [39], a Fine Granularity Clustering (FCC) algorithm is presented. Similar to edge 

separability, this algorithm first converts a given netlist into its corresponding graph 

model. This graph is initially clustered using a greedy seed cell growing algorithm: 

The cells in the netlist are visited randomly and for each visited cell, if it already 

belongs to a cluster, it is skipped; otherwise, the seed cell attracts its neighbor with 

the highest connectivity to the cluster. This process is repeated until the cluster size 

constraint is reached. After all the cells are visited as seed cells, the initially formed 

clusters are further refined by an adapted FM algorithm [34], to improve the quality 

of clusters iteratively by moving cells between different clusters. This cell movement 

process for refining clusters is like an iterative refinement for multi-way partitioning 

[47]. The refined clusters by FGC algorithm typically contain a few, 2 to 6, cells in 

each cluster. 

The edge separability and FGC algorithms both make clusters based on a global 

comparison of the possible clusters. However, they both transform a given hypergraph 

into a graph by replacing each hyperedge with degree greater than 2 to a clique model. 

In some cases this transformation can result in incorrect edge weights, as illustrated 

in [11]. 

3.4.3 Best Choice Clustering (BC) 

In [11, 59], a clustering algorithm called "best choice" is presented. This technique 

consists of two phases. In the first phase, the cells are visited randomly. For each 

visited cell, the connectivity between this cell and each of its neighbors is calculated. 

1 1 
conn(v,v) = 

A(v)+A(v) L_.i le 
eE{evEe,vEe} 
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This connectivity computation is similar to the equation (3.2). Once the connectivities 

for a visited cell and its neighbors are available, the neighbor that has the maximum 

connectivity with the visited cell is chosen, and a pair which contains the numbers 

for the selected neighbor and the visited cell is created and inserted into a priority 

queue, based on the value of the connectivity for this pair of cells. In best choice, the 

connectivity value for the pair of cells is referred to as the "clustering score". The 

above process is continued for each cell in the netlist. At the end of this phase, the 

priority queue will have exactly n, items inside, where m is the number of cells in 

the netlist. The priority of these items are determined by their associated clustering 

scores. In the second phase, the pair of cells at the top of priority queue is made into 

a new cluster, and the netlist is dynamically updated. As a result of netlist updates, 

the connectivities between the new cell, made of the cluster, and its neighbors can 

be changed. Therefore, the clustering score of the new cell and the cells connected to 

it are re-calculated and their positions are updated in the priority queue. The above 

process is continued until a predefined clustering ratio has been reached. 

In Figure 3.6, an example where best choice is used to cluster the circuit in Figure 

3.1 (a) is given. In this example, first the clustering score for each cell and its best 

match neighbor is calculated and inserted into a priority queue. It turns out that the 

pair of cells consisting of and © has the highest score, 0.25. Cells ® and ® are 

grouped as the first cluster, as illustrated in Figure 3.6 (a). Then, both the netlist 

and the clustering scores are updated. As a result, the pair of cells made of ® and 

has the highest score of 0.225. Therefore, a new cluster is made by grouping cells © 

and as illustrated in Figure 3.6 (b). This process is continued and in Figure 3.6 

(c), the clustered netlist is shown. 

Best choice combines the advantages of the previous clustering techniques by 

utilizing the connectivity computation in the heavy-edge matching algorithm. Also, 
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(a) First cluster, clustering score is 0.25 

(b) Second cluster, clustering score is 0.225 

(c) Clustered netlist 

Figure 3.6: An example of the best choice algorithm for a small circuit. (a) The first 
cluster is made of cells and ®. The clustering score is 0.25. (b) After netlist and 
clustering score update, the second cluster is made of cells © and ©. The clustering 

score is 0.225. (c) Final clustered netlist. 
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a clustering score is assigned to each potential cluster when it is identified. These 

clustering scores are used to guide the clustering sequence. As a result, at each time, 

the best pair of cells are guaranteed to be clustered [11]. Finally, in order to speed up 

the whole algorithm process, a lazy-update technique is proposed. The idea of this 

technique is to skip the clustering score updating for the neighbors of a newly created 

cluster cell. The empirical results show that by using this lazy-update technique, the 

overall runtime for clustering process is reduced by around 50%, with almost no loss 

of cluster quality [11, 59]. 

3.4.4 Application of Score-Based Clustering Algorithms 

The score-based clustering algorithms have been extensively used in circuit partition-

ing and placement. 

In [28, 29], edge separability has been used to construct a multilevel circuit parti-

tioner LR/ESC-PM. This edge separability based partitioner can provide comparable 

results to hMetis. However, the computation cost and runtime for this partitioner is 

higher compared to hMetis. The main reason is that the edge separability technique 

has a longer runtime than the FirstChoice algorithm used in hMetis. 

In [39], the FCC algorithm has been used as a preprocessing step for partitioning 

based placer Capo. The experimental results show that the overall placement runtime 

is decreased by about 3 to 5 times, with comparable or even better placement solution 

quality. Furthermore, in [40, 41], FCC is used in a quadratic analytical placer mFAR 

to construct the design hierarchy.' 

The best choice algorithm is the most used score-based clustering technique for 

circuit placement. It has been implemented in many state-of-the-art placement tools, 

such as hATP [59], mPL6 [23] and APlace2/APlace3 [43, 44]. The empirical results 

have verified the effectiveness of best choice algorithm. For example, compared to 

1iFAR won the second place in ACM ISPD2005 placement contest. 
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the fiat ATP placer, best choice based hierarchy placer hATP is 2.1 times faster and 

has a 1.4% improvement on the placement half perimeter wire length. Among almost 

all of the well-known academic placement tools, APlace2 and mPL6 ranked first and 

second place in ISPD2005 and ISPD2006 placement contests, respectively [57, 58]. 

In Table 3.2, the application of score-based clustering algorithms on partition-

ing and placement is summarized. It clearly shows that best choice is the favorite 

technique for many placers. 

Table 3.2: A summary of score-based clustering algorithm applications in partitioning 
and placement tools 

Tools Using Clustering Methods 
Clustering Methods Partitioners Placers 

Edge separability 
Fine granularity clustering 

Best choice 

LR/ESC-PM 
Capo, mFAR 

APlace 2.0/3.0, mPL6, 
hATP, FastPlace3.0 

3.5 Comparison between Scoreless and Score-Based 

Approaches 

Currently, both scoreless and score-based clustering algorithms are extensively used 

for circuit partitioning and placement. Compared to score-based algorithms, scoreless 

clustering algorithms are relatively easier to implement, and have lower runtime. 

However, a common drawback of these algorithms is their random behavior, which 

can cause different clustering results to be produced in different runs. Furthermore, 

compared to the score-based algorithms, the clustering results by scoreless algorithms 

are usually suboptimal. 

In [11, 15], it is demonstrated that the clustering solution quality can be greatly 

improved if the cells are "properly" ordered. Score-based clustering algorithms can be 

regarded as an improved version of scoreless approaches with the score manipulation. 
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Due to the introduction of clustering scores, clustering decisions can be made based 

on a comparison of cell connectivity and cluster areas, and consequently the cluster 

quality can be further improved [11]. However, the clustering score computation and 

manipulation require increased runtime for score-based clustering techniques than for 

scoreless algorithms. 

3.6 Research Motivations 

In Table 3.3, the various clustering algorithms and their applications on circuit par-

titioning and placement are summarized,2 Currently, almost all state-of-the-art par-

Table 3.3: A summary of clustering algorithm applications in partitioning and place-
ment tools 

Academic 

tools 

Clustering techniques 
Scoreless Score-based 

EC HEC MHEC FC HEM PinEC ESC FGC BC 

hMetis 
MLPart 

LR/ESC-PM 

x x x x 
x x 

x 
Capo x x x x x 

FengShui 
mPL5 
FDP 

NTUplace2/3 
mFAR 

APlace2.O/3.O 
mPL6 
hATP 

x x x x 
x 
x 
x 

x 
x 
x 
x 

FastPlace3.O X 

Kraftwerk 

titioning and placement tools use clustering techniques. Although these successful 

clustering applications on circuit layout design have been demonstrated, there is still 

considerable improvement room for current clustering algorithms. Generally, cur-

rent clustering algorithms for circuit partitioning and placement problems suffer the 

'To the author's knowledge, most of the current partitioners and placers are summarized in Table 
3.3. 
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disadvantages discussed below. 

First, the solutions produced by current clustering algorithms are not always opti-

mal. Among the different clustering techniques, edge clustering algorithms, including 

edge coarsening and its numerous variations, such as FirstChoice and best choice 

heuristics, are the most popular algorithms in practice, due to their high runtime 

efficiency. This can also be observed in Table 3.3. However, the trade-off for the 

lower runtime is the suboptimality of solution quality. Essentially, edge clustering 

algorithms compute connectivity and form clusters in a "pair wise" manner. On one 

hand, this pair wise scheme is very fast and easy to implement. On the other hand, 

the view of the cell connectivity is limited, and the clustering decision is made lo-

cally and in a greedy manner. As a result, the optimal clustering results may not be 

obtained. 

An analysis of current edge clustering algorithms from two points of view: cell 

connectivity and force-directed model, reveals the suboptimality of these algorithms. 

. Cell connectivity example 

Current edge clustering algorithms cluster pairs of cells that are highly intercon-

nected, but if "natural" clusters made of more than 2 cells in a netlist exist, the 

current edge clustering algorithms produce suboptimal results. Here, a "natural" 

cluster refers to a group of cells that are strongly connected and should be identified 

and clustered as a whole. In Figure 3.7, a netlist containing two natural clusters, 

made of cells (, ®, ®, ), and (©, ®, ©, is shown. However, if cell © is vis-

ited first, assuming that all cells in Figure 3.7 have equal area, an edge cluster based 

algorithm groups cells ® and © together, eliminating the two natural clusters. For 

score-based edge clustering algorithms, such as best choice, the pair of cells © and 

© end up having the highest clustering score and therefore are clustered first, thus, 

also not identifying the natural clusters. In summary, in either case, the optimal 
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Figure 3.7: Example of natural clusters in a circuit 

clustering is not obtained. 

• Force-directed model example 

The suboptimality of current edge clustering algorithms can also be illustrated in 

the context of force-directed placement. As it has been discussed in Section 2.4.3, 

force-directed models have been widely used in many state-of-the-art placement tools, 

such as Kraftwerk, FastPlace, mFAR and hATP. An essential reason for the great 

success of force-directed placers is that all nets that exert forces on a cell are considered 

simultaneously; therefore, the final solution is based on a global view of the netlist 

connectivity information. This mechanism is totally different from the pair wise 

method that is used by edge clustering algorithms. It can be claimed that, in essence, 

current edge clustering algorithms are not consistent with the force-directed model. 

In Figure 3.8, a simple circuit is shown. In this circuit, cell 0 has 5 incident nets. 

Among these nets, the 2 nets connecting cells © and © will try to pull cell © towards 

cell ©, and the other 3 nets will apply forces in the opposite direction. If each net in 

the circuit is assumed to have the same force, then cell © will be pulled leftward a 

little more, even though locally it looks like cell ® and cell © have more connections 

and should be pulled closer to each other. 

For the circuit in Figure 3.8, current edge clustering algorithms, such as FirstChoice 

or best choice, which are the two most commonly used edge clustering techniques, 

cluster cells © and © together. This simple example clearly shows that due to the de-

cision made based on a local and greedy pair wise manner, edge clustering approaches 
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Figure 3.8: The force directed model for clustering 

may produce suboptimal results given certain circuit structures. But in reality, the 

cells in a netlist interact with each other through nets and the connectivity should be 

considered as a whole, instead of with pairs of cells. This inconsistency with the force-

directed model accounts for the suboptimality of current edge clustering algorithms 

[52]. 

Another disadvantage of current clustering algorithms is that most of them are 

capable of reducing the circuit sizes, but tend to focus on clustering "cells" rather than 

"nets" in a netlist [53]. As a result, compared to the original netlist, the clustered 

netlist has a much lower cell clustering ratio versus net clustering ratio; i.e., in a 

clustered netlist originating from a large design, the number of nets is much higher 

than the number of cells. However, in practice, as an indication of the extent of 

a netlist structure's changes, a smaller discrepancy between cell and net clustering 

ratios, or a smaller net clustering ratio, is more desirable. For example, it has 

been demonstrated that in hierarchical FPGA design, a clustering algorithm which 

produces a lower net clustering ratio can also improve the routability, area, and power 

consumption of the designed device [701. 

Overall, the main motivations of this research work are to improve the perfor-

mance of current clustering algorithms, and consequently enhance the performance 

'Since all clustering algorithms produce larger net clustering ratio than cell clustering ratio, in 
order to reduce the gap between cell and net clustering ratio, the net clustering ratio should be 
minimized as much as possible. 
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of present leading-edge partitioning and placement tools in VLSI physical design, 

since clustering is extensively used in these tools. Based on the analysis of previous 

clustering algorithms, a series of new clustering algorithms is proposed in this thesis. 

Basically, this series of clustering algorithms have the following characteristics: 

• The proposed clustering algorithms use a novel cell connectivity formulation, 

which is consistent with the force-directed model, to identify a set of potential 

high quality clusters. Specifically, during the potential cluster identification 

process, instead of focusing on only the connections between pairs of cells, all 

involved connections are considered as a whole, and furthermore, instead of 

focusing on only the immediate, or first level, connections, second and higher 

level connections are also considered. Once all potential clusters have been 

identified, these clusters are globally compared with one another to decide their 

priority and are clustered in turn. The experimental results demonstrate that 

better clustering results can be obtained by the proposed clustering algorithms. 

• One of the proposed clustering algorithms has an explicit objective of minimiz-

ing the net clustering ratio, so as to reduce the discrepancy gap between the 

cell clustering ratio and net clutering ratio. This objective can be achieved 

by carefully selecting a set of nets, and clustering these nets directly instead 

of cells after all potential clusters have been identified, thus the proposed clus-

tering algorithm is a "net" clustering method. This net clustering mechanism 

differentiates the proposed method from most existing clustering techniques. As 

it will be illustrated in subsequent sections, this net clustering scheme is also a 

good method to resolve the cell overlapping problem between different potential 

clusters. 

• The main ideas of the proposed clustering algorithms, i.e., global cluster iden-

tification and selection, can be used in other existing clustering algorithms to 
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improve their performance. For example, the proposed connectivity formula-

tion can be adapted in edge clustering techniques to obtain a global connectivity 

computation, which may eventually lead to improved clustering results. 

3.7 Summary 

Clustering algorithms play an important role in current large scale circuit partition-

ing and placement tools. This chapter reviews the existing clustering algorithms for 

circuit partitioning and placement in two categories: scoreless and score-based meth-

ods. Scoreless clustering algorithms are usually fast, but the clustering results are 

random. On the contrary, score-based clustering algorithms require a longer runtime 

than scoreless methods, but the clustering results are deterministic and have im-

proved quality. Since, in practice, especially for large scale circuit designs, clustering 

occupies only a small percentage of the whole process', it is more desirable to spend 

more runtime and implement score-based clustering algorithms in partitioning and 

placement tools. The research motivation in this thesis is to further improve current 

clustering algorithms, and consequently enhance the state-of-the-art status of circuit 

partitioning and placement tools. 

'The runtime difference of scoreless and score-based clustering in terms of the percentage of the 
whole partitioning and placement process can be negligible. 



Chapter 4 

Algorithms for Single Cluster Identification 

4.1 Introduction 

Recently there has been a considerable amount of interest in clustering algorithms and 

they have been successfully used in many VLSI physical design problems. However, 

there is still improvement room for current algorithms. One of the main drawbacks 

of the current clustering algorithms is that they are greedy in nature. In these al-

gorithms, the clustering decisions are made based on connectivity of pairs of cells 

versus groups of cells. For example, most edge clustering based algorithms, such as 

FirstOhoice, consider the cell connectivity of a seed cell and its immediate neighbors 

and cluster the pair with highest connectivity. This pairwise clustering manner can 

result in suboptimal results [52]. There are algorithms that trade runtime for solution 

quality. For example, edge separability clustering - ESC [28, 29], can produce good 

clustering solutions by computing the maximum flows between pairs of cells and clus-

tering the pairs with highest flows. But, the computation of maximum flows for all 

pair of cells is very time consuming. However, with the increase in sizes of circuits, 

these trade offs can affect the performance of the circuit. 

In this chapter, one of the contributions of this thesis, clustering algorithms for 

single cluster identification, are proposed. The development of these algorithms are 

targeted to identify high quality clusters efficiently. The algorithms try to find clus-

ters by taking a considerable amount of connectivity information into account when 

making the clustering decisions, therefore, obtaining better clustering results. Fur-

thermore, the clustering algorithms are implemented based on a modified FM algo-

rithm, which has a linear time complexity, and, therefore, are efficient. In order to be 

62 
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able to measure the quality, a new concept called "gain" cluster has been proposed. 

The formal definition of a gain cluster is given in Section 4.2. Three techniques that 

can identify gain clusters efficiently, a scoreless algorithm, a seed cell based and a 

seed net based algorithms, are also proposed. 

The remainder of this chapter is organized as follows: In Section 4.2, gain cluster 

definition is given. In Section 4.3, a scoreless gain clustering algorithm is proposed in 

details, along with a theory proving its complexity. In Section 4.4, two score-based 

gain clustering algorithms along with their complexity analysis are given. In Section 

4.5, the numerical results on the ISPD98 benchmark suite [5, 12] are reported. Finally 

in Section 4.6, a summary of this chapter is made. 

4.2 Gain Cluster Definition and Terms 

In the context of VLSI physical design, a high quality cluster can be described as a 

group of cells that are tightly connected with each other and loosely connected with 

the other neighboring cells. Since this definition does not result in identification of 

clusters, in this thesis, a certain type of high quality clusters, referred to as gain 

clusters, are defined. The formal definition of gain cluster is as follows: 

Definition 1 (Gain Cluster): Given a netlist H(V, E), which consists of a set of 

cells, V = {ci, c2, ..., c,}, where nc is the total number of cells in the netlist, and a 

set of nets, E = {e1, e2, ..., where nn is the total number of nets in the netlist, a 

gain cluster, Cgain = {c, ..., c}, is a subset of V with the following characteristics: 

1. Cgain is not an empty set. 

2. For each cell in the cluster, the gain in terms of netcut decrease to move the 

cell out of the cluster is less than or equal to zero: 

VCi E Cgain, gain t(cj) < 0. (4.1) 
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Here, gainout is the gain in terms of netcut decrease to move a cell out of a 

cluster. 

3. For each cell outside the cluster, the gain in terms of netcut decrease to move 

the cell into the cluster is less than zero: 

VCj 0 Cg.in, gainjn (cj) < 0. (4.2) 

Here, gam in is the gain in terms of netcut decrease to move a cell into a cluster. 

The first characteristic in the definition is to ensure that a cluster is not an empty 

set. The second characteristic described in (4.1) is to ensure that the "attraction" 

from the cells outside the cluster is no more than the attraction from the cells inside 

the cluster. The third characteristic, (4.2), is to ensure that there are no cells outside 

the cluster that have greater attraction with those inside the cluster and should be 

moved. It should be mentioned that a gain cluster does not guarantee that the number 

of nets inside a cluster is more than the number of nets cut by the cluster. It simply 

states that the attraction forces on the cells inside the cluster must be greater than 

or equal to the forces outside the cluster. 

The following definitions are also used for the remainder of this thesis to describe 

the algorithms. 

Definition 2 (Seed Cell): A seed cell is any unclustered cell that can be used to 

form an initial cluster. 

Definition S (Seed Net): A seed net is a net that can be used to form an initial 

cluster. 

Definition 4 (Accessory Cell): An accessory cell is any non-seed cell that already 

belongs to a cluster. 

Definition 5 (Origin): A partition used to accommodate the netlist at the 

beginning of the cluster identification procedure. 
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Definition 6 (mit Cluster): A partition that can accommodate an initial cluster. 

Definition 7 (NeighborCl'uster): A partition that can accommodate the neighbor 

cells of an initial cluster. 

Definition 8 (The First Level Neighbors of A Seed Cell): For a seed cell, the 

first level neighbors are the cells that are connected directly to the seed cell. 

Definition 9 (The Second Level Neighbors of A Seed Cell): For a seed cell, the 

second level neighbors are the cells that are connected to the first level neighbors of 

the seed cell, excluding the seed cell itself. 

Definition 10 (The nlh Level, n> 2, Neighbors of A Seed Cell): For a seed cell, 

the n'' level neighbors are the cells that are connected to the (ii - l)thl level neighbors 

of the seed cell, but do not belong to the (n - 2) lh level neighbors. 

In Figure 4.1, a graph schematic is shown, where the first, second, and third level 

neighbors of a seed cell are illustrated respectively. The level number for neighbors of 

first level neighbors 

second level 
neighbors 

third level 
neighbors 

the seed cell 

Figure 4.1: Illustration of different level neighbors for a seed cell 

a seed cell indicates the distance from the seed cell to the neighbors; if the circuit is 

regarded as a tree, with the seed cell as the tree root, as illustrated in Figure 4. 1, then 

the level neighbors are the cells that are located at the n lh depth level of the tree; 

i.e., all cells at that level have a depth value of n. For a given tree, a breadth-first 

search algorithm can be used to efficiently search different depth levels of nodes; i.e., 
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different levels of neighbors of the seed cell. 

4.3 Scoreless Gain Cluster Identification 

In this section, a scoreless gain clustering algorithm is proposed. In this algorithm, 

unlike the other scoreless algorithms, cells are ordered based on their characteristics. 

This ordering is described in Section 5.2.1. Once the cells are ordered, each cell is 

visited in turn. Depending on the clustering status of the visited cell, it can be either 

a Seed Cell or an Accessory Cell. If the visited cell is an accessory cell, it is skipped; 

otherwise, it is considered as a seed cell and a single gain cluster can potentially be 

identified. 

4.3.1 Scoreless Single Gain Cluster Identification 

Initial Cluster Creation 

For a seed cell, first an initial cluster is created. The created initial cluster, referred 

to as partition "InitCluster", is made by grouping the seed cell and its different level 

unclustered neighbors. In this scoreless gain clustering algorithm, by default, the 

created initial cluster is made of a seed cell and its first level neighbors. In our im-

plementation, this strategy can produce good clustering results efficiently. However, 

for some circuits, this default mode cannot cluster original netlists to low clustering 

ratios. In this case, including the second level of neighbors, or even higher level of 

neighbors, can reduce the cell clustering ratio to the desired value. In addition, for 

some circuits, including higher level neighbors as well as the first level neighbors ben-

efits the final clustering solution quality. This is motivated by the fact that different 

circuits can have different structures. For a circuit with unknown inner structure, 

different initial cluster creation strategies might be tried in order to get a better clus-

tering solution. Therefore, if multiple runs of clustering are allowed, it is suggested 
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to try different initial cluster creations so as to obtain better clustering results. In 

Figure 4.2, a simple example is shown where including higher level neighbor cells 

improves the cluster quality. In this figure, If PAD 1 is selected to be the seed cell, 

- 
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10 PAD   
  onal cluster 

------------------------

optimal cluster 

Figure 4.2: Example of including the second level neighbor cells into initial cluster 

cells 0, ©, and © are the first level neighbors of PAD 1, and PAD 2 is the second 

level neighbor. Including PAD 2 in the cluster reduces the number of connections 

between the cluster and the rest of the circuit by 3 nets. The drawback of including 

higher level neighbors is the runtime increase. 

It should be noted that during the initial cluster creation process, a cluster area 

constraint is in effect. If adding a cell into the initial cluster results in a cluster area 

violation, this cell cannot be put into the initial cluster. The main purpose of the 

cluster area constraint is to control the cluster size so as to produce clusters with 

balanced sizes. It has been demonstrated that when applied in multilevel partition-

ing and placement, balanced sized clusters can improve the final partitioning and 

placement solution qualities [13, 31, 38, 39]. 

Initial Cluster Refinement 

As described above, in initial cluster creation, the seed cell and its neighbors are 

grouped together to form InitCiuster. Since this grouping does not consider the cell 
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connectivities, the cells in InitCluster are not necessarily tightly connected. In most 

cases, there exist some cells in InitCluster that have more connections with cells 

outside. Such cells should be identified and removed. The task of the initial cluster 

refinement step is to rectify the assumptions made in the initial cluster creation, and 

consequently improve the initial cluster quality. 

The specific procedure for this step is as follows: first, another group of cells, 

referred to as "NeighborCluster", is formed by the putting the cells that are directly 

connected to cells in InitCluster. A modified FM algorithm that restricts movements 

from InitCluster to NeighborCluster is performed. Like the standard FM algorithm 

procedure, the gains of cells in InitCluster need to be computed first. Next, the cell 

with highest positive gain in InitCluster is permanently moved to NeighborCluster, 

and the gains for the remaining cells in InitCluster are updated. This process of cell 

movement and gain updating is repeated until either of the following conditions is 

met: 

• Condition 1: The seed cell is moved out of InitCluster, indicating that the trial 

of finding a refined cluster that has the seed cell as its "central" cell has failed. 

• Condition 2: All cells are moved out of InitCluster, indicating that all cells in 

InitCluster have more connections with outside of InitCluster than inside of it. 

• Condition 3: All remaining cells in InitCluster have non-positive gains, indi-

cating that all remaining cells have more connections inside than outside of 

it. 

In any case, this step terminates. 

Final Cluster Formation 

After the initial cluster refinement, a post processing step, final cluster formation, is 

performed. In this step, depending on the refinement results, different procedures are 
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invoked. 

• Case 1: InitCluster is not empty, but the seed cell is moved out of InitCluster. 

This case is the first condition for stopping the cluster refinement process. In 

this case, even though there are still cells left in InitCluster, no cluster is formed. 

All the cells in both InitCluster and NeighborCluster are moved out and released 

for further cluster formation. 

• Case 2: There are no cells left in InitCluster. 

This case corresponds to the second condition for stopping the cluster refine-

ment process. In this case, all the cells have been moved out of InitCluster, 

which means that the initial created cluster was not tightly connected, and it 

is reasonable to discard this cluster. All cells in NeighborCluster are released 

for further cluster formation. 

• Case 3: There are at least two cells left in InitCluster, including the seed cell. 

This case corresponds to the third condition for stopping the cluster refinement 

process. This is the only case where a cluster can be formed. The remaining cells 

in InitCluster are shown to have more interconnections with each other; they 

are labeled with the seed cell number to form a Oluster, and become accessory 

cells. All cells are released for further cluster identification. 

4.3.2 Illustrative Example for Scoreless Gain Clustering Algorithm 

An example of the scoreless gain clustering algorithm is shown in Figure 4.3. Suppose 

in this example, the cells are visited based on their numbers, then, the first cell to be, 

visited as a seed cell is cell D. Cell cD and its unclustered neighbor, i.e., cell © are put 

into partition "InitCluster". The neighbors of cells in InitCluster, i.e., cells ® and ® 

are put into partition "NeighborCluster". Then, the gains of the cells in InitCluster 
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(a) InitOluster and NeighborCluster partitions for seed 
cell ® 

n7 n9 

NeighborCluster 
n4— 

Gain cluster for seed cell 2 
(b) Gain cluster identified for seed cell ® 

(c) All identified gain clusters 

Figure 4.3: Example of gain cluster identification using the proposed scoreless algo-
rithm for a small circuit 
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are computed. In this example, the gain for cell @ is: gain t((D) = -1, and the gain 

for cell © is: gain t(®) = 1. Cell © is moved from InitCluster to NeighborCluster, 

and the gain for remaining cells in InitCluster, i.e., cell ® is updated. The gain for cell 

has changed from -1 to 1, and therefore, will also be moved into Neighbor. Since at 

this point, there is no cell left in InitCluster, the cluster identification based on seed 

cell ® is considered to be a failure, and the cells in NeighborCluster are released. The 

next cell, cell ®, is visited as a seed cell. Cell © and its neighbors, cells @, ® and ® 

are put into InitCluster, and their neighbor, cell © is put into NeighborCluster. In 

Figure 4.3(a), InitCluster and NeighborCluster partitions by seed cell © are shown 

by dashed and dotted lines, respectively. Similar to the previous procedure, the cell 

gains in InitCluster are computed. Since cell ® has the highest positive gain at this 

point, it is moved from InitCluster to NeighborCluster. After this move, the gains of 

the remaining cells in InitCluster are updated. At this point the gain of all cells in 

InitCluster is negative, therefore, no more cells are moved. The cells in InitCluster 

are considered a gain cluster, as illustrated in Figure 4.3(b). The algorithm continues 

until all the cells have been visited. All of the gain clusters that can be obtained using 

this algorithm are shown in Figure 4.3(c). In this example, seed cell © identifies the 

gain cluster C2, made of cells D, © and ©. Seed cell ® identifies the gain cluster, C4, 

made of cells T and ®. Seed cell identifies the gain cluster, C7, made of cells ©, 

, ®, and ®. 

4.3.3 Complexity Analysis of Scoreless Gain Clustering Algorithm 

Theorem 1: The time complexity of the scoreless gain clustering algorithm to find 

gain clusters in a circuit, is O(n), where n,, is the number of pins, or cell terminals, 

in a circuit. 

Proof. In the proposed clustering method, the FM algorithm is used to identify a 
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single cluster. Since FM has a complexity of 0(p) [34], the complexity of a single 

cluster identification will be O(Pciuster), where Pcluster is equal to the number of pins 

in the cluster. 

The worst case complexity for the proposed algorithm happens when all the cells 

are visited as seed cells. If a circuit has m cells, then the worst case complexity of 

the proposed algorithm is: 

flc 

0 (pciusterj) = 0 
j=1 

( 
i=1 

Pciusteri), (4.3) 

where Pciusteri is the total number of pins of all the cells in a cluster made from the 

seed cell i. 

If the initial cluster is formed by only choosing the first level neighbor cells, this 

cluster contains the pins of seed cell i and the cells that are directly connected to it, 

therefore, Pclusterj is equal to: 

nc 

Pchzsterj = kij X (4.4) 

j= 1 

where npinj is the number of pins of cell j (also the number of nets that cell j is 

connected to), and kij is the connectivity coefficient: kij = 1 if cell i and cell j are 

connected or i = j, otherwise = 0. 

From equation (4.4), the total number of pins that will be visited can be calculated 

as: 
ne 

pciuster = 

i=1 i=1 j=1 

ii x 
j= 1 

npinj 
n 

i=1 

Let nneighborj denote the number of neighbors of cell j, i.e., the number of cells that 

,.-max connect to cell j max denote the maximum neighbøri i.e., Thnejghbor - Ibnejghbor, neighbor 
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then: 

flc 

j=1 

flc 

j=1 

flc 

flpinj (flneigiorj + 1) 
j=1 
n 

( max 
≥j Pj neighbor + 1) 
j=1 

< (,,max b +1) 
- k neigh 

j=1 

≤ (Th 'ax eigiii,or + 1)m. 

npinj 

(4.5) 

Similarly, if the initial cluster is formed by choosing the first and second level 

neighbor cells, it can be deduced that 

flc 

>..,Pcluster / < max neigh bor + i)2n. 
i=1 

(4.6) 

In practice, jghbor can be regarded as a constant, since its value does not increase 

with the circuit size increasing, therefore, from equations (4.3), (4.5) and (4.6), the 

overall time complexity of proposed algorithm is O(n). 0 

4.3.4 Scoreless Clustering Algorithm Analysis 

The clustering algorithm described in this section has the following advantages. 

• The algorithm finds refined clusters made of highly connected cells. 

• The algorithm is linear in time. 

• The algorithm produces clusters with no cell overlap. 

Note that once a cell has been assigned to a cluster, it is not considered for further 

clustering. Therefore, higher quality clusters may be ignored. This is due to the score-

less nature of the algorithm. In the rest of this chapter, two score-based algorithms 

that are capable of comparing clusters are introduced. 
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4.4 Score-Based Gain Cluster Algorithms 

The number of gain clusters in a circuit is very large and these clusters can overlap. 

The sizes, in terms of the number of cells, of these clusters can vary from two cells to 

the whole netlist. Because of the complexity and sizes of the circuits encountered in 

today's VLSI designs, having a smaller number of cells in a cluster can usually result 

in a higher quality solution. Therefore, in this thesis it is proposed to use a bottom 

up approach to find gain clusters. In the bottom up approach, small initial clusters 

are formed and refined. 

Two methods to form gain clusters and score them are proposed in this section. 

In the approach explained in Section 4.4.1, single cells are used as attractors to form 

initial clusters. These clusters are then refined and a score is assigned to them to 

measure the quality of the clusters. In the second proposed technique, instead of a 

seed cell, a seed net is used to form an initial cluster. This approach is described in 

detail in Section 4.4.4. 

4.4.1 Gain Cluster Identification Using Seed Cell 

Initial Cluster Creation and Refinement 

A single cluster can be formed by grouping a cell and its different level neighbors. 

To be able to identify as many gain clusters as possible, all the cells in a circuit are 

visited and considered as potential seed cells. First, all the cells in a circuit are put 

in the partition Origin. Another partition, referred to as InitCluster, is also created. 

This partition can accommodate a cluster, but initially is empty. Once a cell is visited 

as a seed cell, it is moved from Origin to InitCluster. Once a seed cell is moved to 

InitCluster, the FM algorithm is used to move the cell with the highest non-negative 

gain from Origin to InitCluster and the cell gains are updated. The cell movement 

process is repeated until all the cells in Origin have negative gains. This indicates 
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that all the cells in InitCluster have more connections with cells inside of InitCluster 

compared to the cells in Origin and cells in InitCluster form a natural cluster. At 

this stage, the cell numbers in InitCluster are saved for each seed cell as a linked list, 

and all the cells are returned to Origin and their original gains are recovered. 

There are two situations when a seed cell can fail to produce a cluster: 

. A seed cell fails to attract any other cells into InitCluster; i.e., all cells in Origin 

have negative gains. 

• The area of a cluster becomes more than a specified percentage of the total 

area of the circuit. This condition is imposed to avoid creating extremely large 

clusters. 

To reduce the runtime for moving the cells from Origin to InitCluster, the following 

algorithm is proposed. At the start of the algorithm, the gains of moving all the 

cells from Origin to InitCluster, gainj, are calculated and stored in a bucket array. 

This gain for each cell is equal to the negative of the degree of the cell, making the 

calculations linear in time. When a cell is moved from Origin to InitCluster, the 

gains of cells in Origin should be updated. But, only the gains of the cells directly 

connected to the moved cell need to be updated, which makes this algorithm very 

fast. In addition, once a cluster is either found or discarded, all the cells associated 

with the cluster are moved back to Origin and the original gain array is recovered. 

This makes the cluster identification algorithm very fast and efficient. 

Clustering Score Calculation 

After a gain cluster is identified, its quality is evaluated using a clustering score. The 

score of each cluster Ci is calculated as: 

nn(C)  
n(C) A(C) 

0 

m(C) 0 

n(C1) = 0, 
(4.7) 
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where, s(C) is the score of the refined cluster C, n(C) denotes the number of nets 

that lie entirely inside cluster C,, and n(C) represents the number of cells inside the 

refined cluster. A(.) is a function representing the area of the clusters, and is equal to 

the summation of cell areas in a cluster. This score function is designed to give higher 

priority to cluster formations that reduce the number of nets in a circuit. In addition, 

it penalizes clusters that have a high area, resulting in more balanced clusters. 

The outline of the proposed seed cell based gain cluster identification algorithm 

is shown in Figure 4.4. 

input: a fiat netlist 
output: a set of clusters 
For all cells 

a. Single gain cluster identification: 
1. Initial cluster creation using a seed cell 
2. Initial cluster refinement 

b. Cluster score calculation for the identified gain cluster 

Figure 4.4: Cell based gain cluster identification algorithm 

4.4.2 Illustrative Example for Gain Clustering Algorithm Using Seed Cell 

An example of this process is shown in Figure 4.5. At the beginning, the gain of all 

the cells to be moved to InitCluster, the negative of the cell degree, is calculated. For 

example, the gain for cell @ is: gainj () = -1, and the gain for cell ® is: gainjn ((D) 

= -3. All cells are visited as potential seed cells according to their cell numbers. 

Therefore, the first cell to be visited is cell ®. Cell @ fails to attract any cell and 

no cluster is identified. Then, the next cell, cell ©, is visited. In Figure 4.5(a), 

Origin and InitCluster partitions for seed cell ® are shown by dotted and dashed 

lines, respectively. Once cell ® is moved from Origin to InitCluster, the gains for 

cells , and have to be updated. The gain of cells D and ® changes from -1 to 

1 and the gain of cell changes from -3 to - 1. Since, cells ® and 0 have the highest 

positive gain at this point, they are also moved from Origin to InitCluster. At this 
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(a) Origin and InitCIuster partitions for seed cell ® 

n9 

Rest of the circuit 

Gain cluster for seed cell 2 

(b) Gain cluster identified for seed cell ® 

C4, C5 C7, C8 

(c) All identified gain clusters 

Figure 4.5: Example of gain cluster identification using the proposed seed cell based 
algorithm for a small circuit 
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point the gain of all cells in Origin is negative, therefore, no more cells can move to 

InitCiuster and this cluster is considered a gain cluster. For the example in Figure 

4.5, the gain cluster made for seed cell © consists of cells , © and ®, as shown in 

Figure 4.5(b). All gain clusters that can be obtained using this algorithm are shown 

in Figure 4.5(c). In this example, seed cells and © form the same initial clusters, 

C4 and C5, made of cells , ©, and ®. Seed cells and ® form the same initial 

clusters, C7 and C8, made of cells ®, ®, ®, and S. Other cells fail to construct any 

gain clusters. The initial clusters (C4, C5) and (C7, Cs) overlap on cell S. In this 

example no area constraints have been imposed. 

For the example in Figure 4.5, if all cells have unit area, the cluster scores are: 

s(C2) = 2 1 x = 0.22, 

31 
s(C4) = s(Cs) = x = 0.33, 

31 
SC(C7) = s(C8) = x = 0.19. 

4.4.3 Complexity Analysis of Seed Cell-Based Gain Cluster Identification 

Theorem 2: The time complexity of the cell based clustering algorithm to find gain 

clusters in a circuit, is O(n), where ri is the number of pins, or cell terminals, in a 

circuit. 

The proof of this theorem is similar to the proof of theorem 1, but for the purpose 

of completeness, it is repeated here. 

Proof. Figure 4.4 shows that the proposed cell based clustering algorithm is performed 

in two steps: initial gain cluster identification and cluster score calculation. In the 

following, the complexity of each of the steps is developed. 



79 

Complexity Analysis of Initial Gain Cluster Identification 

The first step of initial gain cluster identification is to calculate the gain of moving 

each cell from Origin to InitCluster. In this step, the cell gains are computed and the 

bucket pointer for each cell is inserted into the bucket list. Since the cell gains are 

computed by visiting each net and its incident pins, if pi represents the number of 

pins in net i, and nn represents the total number of nets, then, the total time required 

to calculate all gains is: 
fl 

( = 

where n is the total number of pins in the circuit. 

The gain insertion into the bucket list will take O(n), where n is the number of 

cells in the circuit. Since each cell has more than one pin, n < n, the total required 

time for initialization is: 

O(n) + O(n) = O(n). 

This means that the gain insertion implementation has linear time complexity. 

The initial cluster identification uses FM which has a linear complexity of O(n) 

[34]. Therefore, the complexity for each cluster identification is: O(pciusterj), where 

Pctuste.,' is the number of pins in cluster i. To identify all initial clusters, all cells are 

visited as seed cells, and initial clusters are formed for each seed cell. Therefore, the 

complexity of finding all initial clusters is: 

0(pctusterj) = O(>'pciusterj ). (4.8) 

In the rest of this section, an upper bound for E72:1Pciusteri = Ptotal or the total 

number of pins that will be visited, is developed. 

The total number of pins for cluster, Pduster, made from seed cell i is: 

ne  

Pclusteri = x 
j=1 
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where p is the number of pins of cell j (also the number of nets that cell j is 

connected to), and kij is a coefficient where kij = 1 if cell j is inside the initial cluster 

formed by cell i, otherwise kij = 0. The number of times cell j has been clustered is 

equal to k3. Therefore, the total number of pins that will be visited, Ptotal is: 

flc Thc flc 

Ptotal = 
i=1 

Pelusteri = 
j=1 i=1 

cc 'max inCtuster denote the maximum number of times that a cell is clustered, i.e. 

max > k, then, 

Ptotal = 
j=1 i=1 

C 

max 
Pc X ninCluster 

j=1 

— max 
Ptotal inC1uster 

nc 

j= 1 
max 

Ptotal ≤ ninclusternp. 

From (4.8) and (4.9), it can be deduced that 

flc 

,- / max 
0 (Pc1u8teri) = 0 ( Pciusterj) --  '-' 

j=1 j=1 

(4.9) 

(4.10) 

In real VLSI circuits minaCxluster does not increase with the circuit size increasing, '"  

,max 
therefore, 'inC1uster can be regarded as a constant, and (4.10) can be written as: 

n 

jrl 

O(Pciusterj) = mmax inClusterO(rtP) = O(n). 

So, the time complexity for the cluster identification step is 0(n). 

Complexity Analysis of Cluster Score Calculation 

The score calculations entail only a constant number of addition and multiplications 

for each, at most n, object, which are all linear in time. 

Overall, the time complexity for the whole seed cell based clustering algorithm is 

0(n). 0 
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4.4.4 Gain Cluster Identification Using Seed Net 

Forming clusters using a seed cell can be effective, but in some cases the percentage 

of the clusters that can be formed using this technique is very low. Therefore, a large 

circuit cannot be efficiently clustered with such a low clustering percentage. In this 

thesis, a new technique that uses a net as a seed to form a cluster is proposed. Such 

nets are called seed nets, as described in Definition 3. 

Initial Cluster Creation and Refinement 

Originally, all cells in the netlist are in partition, Origin. Another partition, InitClus-

ter, that is supposed to accommodate any cluster is empty. The gains for moving all 

cells from Origin to InitCluster is calculated. These gains, as discussed in Section 

4.4.1, are equal to the negative of the cell degree. 

To form clusters using seed nets, first the nets in a circuit are visited. When a 

net is visited as a seed net, all movable cells in this net and their neighboring cells, 

are moved from Origin to InitCluster. A movable cell is a cell that is not a terminal 

or a fixed object. After the movement, the gains for the cells that have been moved, 

and their neighbors, are recalculated. This initial cluster formation is different from 

other clustering techniques, since it visits nets, as opposed to cells, to produce initial 

clusters, and the resulting clusters can be larger. 

At this stage, the initial cluster needs to be refined. This phase is equivalent 

to calculating all the forces applied on a net through its connections to other nets. 

Because of the efficiency of the FM algorithm, it is proposed to use this algorithm to 

refine an initial cluster. As in the standard FM process, the cell with the maximum 

gain is moved from its original partition to the opposite partition. After the cell 

movement, the gains of the neighboring cells are updated. To give higher priority 

to cell movements into InitCluster, if the maximum cell gains in both partitions are 

equal, the cell in partition Origin is moved first. This process is repeated until the 
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gain to move any cell in InitCluster to Origin is less than or equal to zero, and the 

gain to move any cell in Origin to InitCluster is also less than zero. This indicates 

that the cells inside partition InitCluster have more inner-connections between each 

other than the outer-connections. At this point, a gain cluster is formed by saving 

the cell numbers in InitCluster a linked list with the seed net number used as the 

pointer. All the cells are returned to the Origin partition and their original gains are 

recovered. 

There are two situations when a seed net fails to produce a cluster: 

. All cells are moved out from the partition InitCluster. 

• A seed net has a high degree. In this case the net is not considered as a seed 

net. In a real electronic circuit, the majority of nets are those with low degree; 

i.e., nets connecting a small number of pins. The percentage of nets having a 

large number of pins is very small. These nets are usually clock or power nets. 

As a result, in practice, if a group of cells are indeed highly interconnected, 

then, it is more likely that these cells are mainly connected by low degree nets. 

However, the benefits of not including nets with high degrees are as follows: 

The proposed algorithm either uses a net as a seed net for starting an initiai 

cluster, or uses a net to add the neighboring cells of a seed net into the initial 

cluster. In either case, if the net has a higher degree, considerable cell gain 

calculations and cell movements need to be performed, which can be very time 

consuming. At the same time, the cells added into the initial cluster via the 

net with high degree probably do not have a high connectivity with the other 

cells in the initial cluster. Thus, skipping a long net does not necessarily result 

in losing any connectivity information. In addition, if a net with a high degree 

is clustered, the resulting cluster area can be very large. The experiments on 

ISPDO5 benchmark circuits [7] show that compared to the implementation in 
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[52], skipping the nets with high degree in the initial cluster formation can result 

in a clustering runtime reduction of up to two times, and also improved final 

placement results. Overall, skipping the nets with high degree during initial 

cluster formation can greatly improve the clustering runtime, with almost no 

loss of, or even better, cluster quality. 

It should be mentioned that in this algorithm no area constraints are used. The 

reason for this is that the clusters made in this step are scored based on their area. 

Therefore, it is not necessary to add cluster area constraints. 

Compared with the cluster refinement technique in Section 4.4.1, which only allow 

one directional cell movement, this initial cluster refinement step follows the standard 

FM algorithm to naturally select the best cell to move in either direction based on 

the cell gain. This refinement step captures the connectivity information from both 

groups. As a result, the refined cluster can be more accurate and have a higher 

quality. This step is analogous to identifying cells that have more internal forces than 

external forces applied to them. 

Clustering Score Calculation 

The cluster score calculations for this algorithm are the same as discussed in Section 

4.4.1, and are not repeated here. 

The outline of the proposed seed net based gain cluster identification algorithm is 

shown in Figure 4.6. 

input: a fiat netlist 
output: a set of clusters 
For all nets with low degree 

a. Single net based gain cluster identification: 
1. Initial cluster creation using a seed net 
2. Initial cluster refinement 

b. Cluster score calculation for the identified gain cluster 

Figure 4.6: Net based gain cluster identification algorithm 
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4.4.5 Illustrative Example for Gain Clustering Algorithm Using Seed Net 

An example of gain cluster identification using seed nets is shown in Figure 4.7. At 

InitCiuster Origin 

n5 

n6 

ni n2 ' i" n8 

(a) Origin and InitCiuster partitions for seed net nl 

Gain cluster for seed net 1 Origin 

(b) Gain cluster identified for seed net nl 

(c) All identified gain clusters 

Figure 4.7: Example of gain cluster identification using the proposed seed net based 
algorithm for a small circuit 

the beginning the gain of all the cells to be moved to InitCiuster, negative of the cell 

degree, is calculated. For example, the gain for cell @ is: gainjn((D) = -1, and the 

gain for cell © is: gainjn(©) = -3. All nets are visited to become seed nets according 
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to their net numbers. Therefore, the first net to be visited as a seed net is net nl. 

All the cells in net nl and their neighbors; i.e., cells @, ®, ® and , are moved from 

Origin to InitCluster. In Figure 4.7(a), Origin and InitCluster partitions are shown 

by dotted and dashed lines, respectively. Since cell © has the highest positive gain at 

this point, it is moved from Origin to InitCluster. After this move, the gain for cell 

© is updated from -2 to 0. Since the gain for © is nonnegative, it is also moved to 

InitCluster. At this point the gain of all cells in Origin is negative, and the gains of all 

cells in InitCluster are nonpositive, therefore, no more cells can be moved. The cells 

in InitCluster are considered to form a gain cluster. For the example in Figure 4.7, 

the gain cluster made for seed net ni consists of cells CD, ©, ©, CD, © and © as shown 

in Figure 4.7(b). All the gain clusters that can be obtained using this algorithm are 

shown in Figure 4.5(c). In this example, seed nets n.1, n2, n3, n4 and n5 identify the 

same gain clusters, C, C2, C3, C4 and C5, made of cells CD, ©, ©, CD, ® and ©. Seed 

nets n6 and n7 identify the same clusters, C6 and C7, made of cells CD, ©, ©, M, © 

and ©. Seed nets n8 and n9 identify the same initial clusters, C8 and C9, made of 

cells ©, ®, ©, and ©. 

These three clusters all overlap on cell ©. In addition, cells CD, ©, ©, ®, and ® 

belong to two clusters. 

For the example in Figure 4.7, if all cells have unit area, the cluster scores are: 

61 
s(CI) = s(C2) = s(C3) = s(C4) = s(Cs) = - - = 0.17, 

66 
61 

s(Cs) = s0(Cr) = - x - = 0.17, 
66 

s(Cs) = s(C9) = X = 0.19. 

4.4.6 Complexity Analysis of Seed Net-Based Gain Cluster Identification 

Theorem 3: The time complexity of the net based clustering algorithm to find gain 

clusters in a circuit, is O(n), where n is the number of pins, or cell terminals, in a 
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circuit. 

Proof. The proof of this theorem is the same as theorem 2. Minor changes are dis-

cussed as follows. 

First, in the seed net based clustering technique, an initial cluster is formed by a 

seed net, instead of a seed cell in cell based technique. However, the seed net based 

technique also used a modified FM algorithm to refine a cluster, and, therefore, the 

time complexity of the gain cluster identification for the seed net based technique can 

also be expressed as 

max 
= O(n), 

where uster denotes the maximum number of times that a cell is clustered, as 

defined in Section 4.4.3. 

Second, in the seed net based technique, since each net is visited as the seed 

net, the total number of clusters is n, where nn is the number of nets in the netlist. 

Therefore, for the cluster score calculation, it requires 0(nn) runtime, instead of O(n) 

runtime in the seed cell based technique. However, both nn and n are in linear time 

and smaller than rig. 

Overall, the time complexity for the whole net based clustering algorithm is O(n). 

EJ 

4.5 Numerical. Experiments 

All the proposed clustering algorithms have been implemented in C++ and tested 

on ISPD98 benchmark circuits. The ISPD98 benchmark suite was released by IBM 

Austin research laboratory in 1998. It consists of 18 real industry circuits' with 

sizes ranging from 12,752 to 210,613 modules, including bus arbitrators, bus bridge 

11n order to facilitate the application on partitioning, these circuits have been slightly changed, 
for example, all nets with more than 200 pins are removed from the netlist [12]. 
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Table 4.1: ISPD98 benchmark circuit statistics 

Circuit & Cells # Pads # Modules # Nets # Pins Max% 

ibm0l 12506 246 12752 14111 50566 6.37 
ibm02 19342 259 19601 19584 81199 11.36 
ibm03 22853 283 23136 27401 93573 10.76 
ibm04 27220 287 27507 31970 105859 9.16 
ibm05 28146 1201 29347 28446 126308 0.00 
1bm06 32332 166 32498 34826 128182 13.56 
ibm07 45639 287 45926 48117 175639 4.76 
ibm08 51023 286 51309 50513 204890 12.10 
ibm09 53110 285 53395 60902 222088 5.42 
ibml0 68685 744 69429 75196 297567 4.80 
ibmll 70152 406 70558 81454 280786 4.48 
ibml2 70439 637 71076 77240 317760 6.43 
ibml3 83709 490 84199 99666 357075 4.22 
ibml4 147088 517 147605 152772 546816 1.99 
ibml5 161187 383 161570 186608 715823 11.00 
ibml6 182980 . 504 183484 190048 778823 1.89 
ibml7 184752 743 185495 189581 860036 0.94 

ibml8 210341 272 210613 201920 819697 0.96 

chips, memory and PCI bus interfaces, communication adaptors, memory controllers, 

processors, and graphics adaptors [12]. The characteristics of ISPD98 benchmark 

circuits are given in Table 4.1. For each circuit, a cell is an internal movable object, 

a pad is an external object, and a module is either a cell or a pad. Max% gives the 

percentage of the total cell areas occupied by the largest module in the circuit [12]. 

The purpose of experiments presented in this section is to investigate the effect 

of clustering by studying various clustering statistics of different algorithms. The 

clustering statistical study can also help reveal the characteristics of each clustering 

algorithm, and furthermore, provide a guideline for making the best use of each 

clustering algorithm on a specific application field. 

In the following, different clustering statistics by the three proposed gain clustering 

algorithms are reported from Table 4.2 to Table 4.7, and explained respectively. In 

each table, columns 2 and 3 represent the clustering results of the scoreless gain 

cluster identification algorithm, columns 4 and 5 are clustering results of the gain 
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cluster identification algorithm using score-based seed cell technique, and finally in 

columns 6 and 7, the clustering results of the gain cluster identification algorithm 

using score-based seed net technique are reported. 

Table 4.2: Clustering statistics in terms of number of seed cells or seed nets that 

result in the formation of gain clusters 

Circuit 
Scoreless Score using seed cell Score using seed net 

# cells percentage # cells percentage # nets percentage 

ibmOl 828 6.49 2863 22.45 10775 76.36 
ibm02 1293 6.60 7629 38.92 13373 68.29 
ibrn03 1255 5.42 5028 21.73 16310 59.52 
ibm04 1972 7.17 5246 19.07 18899 59.11 
ibm05 3171 10.81 8195 27.92 23429 82.36 
ibm06 887 2.73 4762 14.65 13437 38.58 

ibm07 2097 4.57 11006 23.96 26070 54.18 

ibm08 2849 5.55 17221 33.56 35659 70.59 

1bm09 2627 4.92 10450 19.57 37901 62.23 

ibmlO 4581 6.60 12734 18.34 49452 65.76 
ibmil 4119 5.84 12499 17.71 50465 61.96 
ibml2 3499 4.92 13748 19.34 41877 54.22 

ibml3 3397 4.03 10457 12.42 49866 50.03 
ibml4 6582 4.46 27706 18.77 75619 49.50 

ibmiS 5351 3.31 15324 9.48 103644 55.54 

ibml6 6968 3.80 21962 11.97 111295 58.56 

ibml7 7445 4.01 21701 11.70 104169 54.95 

ibml8 13420 6.37 53993 25.64 132062 65.40 

Average 5.42 20.40 60.40 

In Table 4.2, the clustering results in terms of number of seed cells or seed nets 

that result in the formation of gain clusters, and their percentage to the number of 

total cells or nets, are reported. 

Table 4.2 indicates that among all three techniques, the score-based algorithm us-

ing seed net technique can identify a larger number of gain clusters when compared to 

either the score-based algorithm using seed cell technique, or the scoreless algorithm. 

Therefore, if a low clustering ratio is required, the score-based algorithm using seed 

nets can be more suitable. 

In Table 4.3, the clustering results in terms of number of cells per cluster and 
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Table 4.3: Clustering statistics in terms of number of cells per cluster 

Scoreless Score using seed cell Score using seed net 
Circuit avg / cells STD avg # cells STD avg # cells STD 

ibmOl 4.24 2.58 2.42 1.29 30.41 36.07 
ibm02 3.42 2.99 5.21 2.93 27.15 58.65 
ibm03 6.96 6.63 2.55 2.34 28.67 34.68 
ibm04 4.44 4.26 2.61 2.55 41.40 99.74 
ibm05 3.78 1.54 2.29 0.79 39.08 85.87 
ibm06 4.67 3.23 2.27 1.18 28.28 36.92 
ibm07 4.91 4.42 2.34 1.45 26.08 32.82 
ibm08 3.79 5.04 5.13 3.14 68.56 159.01 
ibm09 7.19 6.01 2.28 1.40 32.93 39.91 
ibmlO 4.31 4.89 2.69 4.97 38.30 54.16 
ibmll 5.48 4.79 2.42 1.60 24.02 30.17 
ibml2 4.95 9.19 2.65 9.63 68.74 139.33 
ibml3 6.00 6.13 2.43 1.36 34.39 50.43 
ibml4 4.53 5.40 2.30 1.86 35.83 78.71 
ibml5 6.94 8.66 2.43 1.38 37.26 60.52 
ibml6 5.79 4.64 2.28 2.02 38.71 53.55 
ibml7 5.02 3.48 2.29 1.26 47.03 61.94 
ibml8 3.61 2.47 4.88 3.14 33.51 63.79 

the standard deviation are reported. For each algorithm, the column "avg # cells" 

represents the average number of cells in a cluster, and the column "STD" represents 

the standard deviation for numbers of cells in a cluster. 

The results obtained in this experiment illustrate that on average for all bench-

mark circuits, the score-based algorithm using seed cell has a minimum average num-

ber of cells in one cluster and the score-based algorithm using seed net has a maximum 

average number of cells in one cluster. In other words, the clusters are relatively small 

when using the score-based technique via seed cells, and large when using the score 

based technique via seed nets. 

In the following, three figures are shown, where the detailed compositions of the 

clusters containing different number of cells are plotted. Figures 4.8 shows the per-

centages for clusters containing 2 cells, 3 cells, 4-10 cells and more than 10 cells, 

respectively, when using the scoreless gain clustering identification algorithm. Fig-
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ures 4.9 shows the similar result, when using the seed cell based scoring algorithm. 

Figures 4.10 shows a similar result, when using the seed net based scoring algorithm. 

These figures demonstrate consistent results with the data reported in Table 4.3. Fur-

thermore, from these figures, it can be seen that different clustering algorithms favor 

clustering different types of clusters. For example, a large percentage of the clusters 

identified by the score-based algorithm using the seed cell technique are clusters that 

contain 2 cells. However, for the score-based algorithm using seed nets, most of the 

identified clusters contain large numbers of cells. 

Percentage of clusters containing different number of cells by scoreless gain clustering technique 
100 : ...... ... ........ ... ...... ............. ...... ..... ...... ......... .. .......... 

go 

80 

4 6 8 10 12 
tSPD98 Benchmark circuit 

cells 
—*-- 3 cells 
—I---4 lOcells 
—a-- >10 cells 

14 16 

Figure 4,8: Clustering statistics in terms of number of cells per cluster for the scoreless 
clustering algorithm 

In Table 4.4, the clustering results in terms of area per cluster and the standard 

deviation are reported. For each algorithm, the column "avg. area" represents the 

average area for an identified cluster, and the column "STD" represents the standard 

deviation for the areas of the clusters. 

The results obtained in this experiment illustrate that on average, for all bench-
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Figure 4.9: Clustering statistics in terms of number of cells per cluster for the seed 
cell based clustering algorithm 
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Figure 4,10: Clustering statistics in terms of number of cells per cluster for the seed 
net based clustering algorithm 
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Table 4.4: Clustering statistics in terms of area per cluster 

Scoreless Score using seed cell Score using seed cell 
Circuit avg. area STD avg. area STD avg. area STD 

ibmOl 816.08 1251.32 1105.75 5686.78 12785.40 26477.90 
ibm02 912.98 12035.30 1314.00 16403.10 22527.30 173474.00 

ibm03 2254.48 18540.60 1533.41 23265.60 17160.00 65390.50 
ibm04 823.95 1314.13 1245.18 15629.40 23641.20 123495.00 
ibm05 575.14 213.71 318.38 119.43 6324.18 13816.40 

ibm06 562.51 1075.46 1057.81 23907.20 13744.00 141096.00 
ibm07 1555.41 19556.50 753.75 10850.00 15682.90 72224.10 

ibm08 1477.72 46242.70 1013.43 15189.90 96635.40 478679.00 

ibm09 2497.35 30195.20 1100.87 22171.30 25070.10 129149.00 

ibmlO 3362.77 96201.70 2938.00 56543.30 88140.90 560654.00 

ibmil 2404.27 32586.10 1096.52 20573.10 19024.10 108401.00 
ibml2 3925.34 73252.90 2133.11 51651.90 169737.00 589594.00 

ibml3 179293 25982.20 1367.21 20481,60 20288.50 90895.70 

ibml4 782.06 5922.07 556.02 5068.29 11900.30 48450.20 

ibmlS 2158.75 55957.20 1064.92 41293.30 19970.00 219958.00 

ibml6 2821.71 66352.20 1397.29 25011.60 52458.10 380801.00 

ibml7 1403.44 9528.37 733.62 6341.45 12485.00 28858.90 

ibml8 533.97 2478.09 727.16 2866.27 6272.64 36434.10 

mark circuits, the score-based algorithm using seed nets has the maximum average 

area per cluster. This is consistent with previous experiments, since the score-based 

algorithm using seed net has been shown to have more cells in a cluster on average. 

In Table 4.5, the clustering results, in terms of numbers of clustered cells and 

the percentage of those cells over the total number of cells, are reported. For each 

algorithm, the column cells" represents the number of clustered cells, and the 

column "percentage" represents the ratio of these cells over the total cells. 

The results obtained in this experiment show consistency with previous results: 

the score-based algorithm using seed net has the maximum number of cells that are 

being clustered. 

In Table 4.6, the clustering results in terms of number of overlapped clustered 

cells, i.e., those cells belonging to different clusters, and the percentage of those cells 

over the total number of clustered cells, are reported. For each algorithm, the column 
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Table 4.5: Clustering statistics in terms of number of clustered cells 

Scoreless Score using seed cell Score using seed net 
Circuit # cells percentage # cells percentage # cells percentage 

ibmOl 3514 27.56 5124 40.18 12582 98.67 
ibm02 4425 22.58 9142 46.64 16610 84.74 
ibm03 8735 37.76 9687 41.87 21068 91.06 
ibm04 8757 31.84 9338 33.95 25118 91.31 
ibm05 12000 40.89 13725 46.77 27801 94.73 
ibm06 4140 12.74 8485 26.11 26270 80.84 
ibm07 10291 22.41 18691 40.70 41238 89.79 
1bm08 10799 21.05 21083 41.09 48827 95.16 
ibm09 18876 35.35 18871 35.34 50370 94.33 
ibml0 19736 28.43 20847 30.03 65698 94.63 
ibmll 22576 32.00 22306 31.61 64569 91.51 
ibml2 17326 24.38 23713 33.36 65399 92,01 
ibml3 20371 24.19 20289 24.10 77012 91.46 
ibml4 29837 20.21 45765 31.01 127259 86.22 
ibml5 37154 23.00 28406 17.58 146995 90.98 
ibml6 40327 21.98 39600 21.58 171326 93.37 
ibml7 37362 20.14 39412 21.25 166965 90.01 
ibml8 48416 22.99 71926 34.15 194742 92.46 

Average - 26.08 - 33.18 - 91.29 

"# cells" represents the number of overlapped cells, and the column "percentage" 

represents the ratio of these cells over the total clustered cells. 

It should be noted that since the scoreless algorithm finalizes a cluster once it 

is identified, so there are no overlapped cells, therefore all the data for the scoreless 

algorithm are 0 in Table 4.6. Comparing the two score-based techniques, it can be 

seen that the technique using seed net has a much higher number of overlapped cells. 

In Table 4.7, the clustering results in terms of number of clusters that a cell 

belongs to, i.e., the number of times that a cell has been clustered, and the standard 

deviation are reported. For each algorithm, the column "# clusters" represents the 

number of clusters that one cell can belong to, and the column "STD" represents the 

corresponding standard deviation. 

Comparing the two score-based techniques, it can be seen that the technique using 

seed nets demonstrates a much higher number of times that a cell can be clustered 
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Table 4 6: Clustering statistics in terms of number of overlapped cells 

Circuit 
Scoreless Score using seed cell Score using seed net 

# cells percentage # cells percentage # cells percentage 

ibmOl 0.00 0.00 1019 19.89 12403 98.58 
ibm02 0.00 0.00 2333 25.52 14940 89.95 
ibm03 0.00 0.00 2775 28.65 20067 95.25 
ibm04 0.00 0.00 2396 25.66 23657 94.18 
ibm05 0.00 0.00 2693 19.62 26150 94.06 
ibm06 0.00 0.00 1451 17.10 23937 91.12 
ibm07 0.00 0.00 4684 25.06 39190 95.03 
ibm08 0.00 0.00 4917 23.32 47275 96.82 
ibm09 0.00 0.00 3387 17.95 48870 97.02 
ibml0 0.00 0.00 6502 31.19 63768 97.06 
ibmil 0.00 0.00 5419 . 24.29 61609 95.42 
ibml2 0.00 0.00 6103 25.74 63007 96.34 
ibml3 0.00 0.00 3541 17.45 73236 95.10 
ibml4 0.00 0.00 11372 24.85 117776 92.55 
ibml5 0.00 0.00 5559 19.57 140242 95.41 
ibml6 0.00 0.00 7811 19,72 165645 96.68 
ibml7 0.00 0.00 6930 17.58 160665 96.23 
ibml8 0.00 0.00 19798 27.53 187493 96.28 

Average - 0 - 22.82 - 95.17 

to different clusters. This suggests that, for the score-based algorithm using seed net, 

the clusters are highly overlapped with each other. 

4.6 Summary 

In this chapter, three algorithms are proposed to identify a single gain cluster. The 

first algorithm is a scoreless technique, and the other two algorithms are score-based 

techniques: one of them uses a seed cell to identify a gain cluster and the other one 

uses a seed net to find a gain cluster. All of the three algorithms have a linear time 

complexity. The characteristic of each algorithm can summarized as follows. 

• The scoreless algorithm finalizes a cluster when it is identified; however, since 

no comparison between clusters is made, the clustering solution quality can be 

further improved. 
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Table 4.7: Clustering statistics in terms of number of clusters that one cell belongs 

to, i.e., number of overlaps for one cell 

Circuit 
Scoreless Score using seed cell Score using seed net 

# clusters STD # clusters STD # clusters STD 

ibmOl 1.00 0.00 1.35 0.97 26.04 18.15 
ibm02 1.00 0.00 4.35 10.01 21.86 38.00 
ibm03 1.00 0.00 1.32 0.63 22.20 22.22 
ibm04 1.00 0.00 1.47 1.40 31.15 67.33 
ibm05 1.00 0.00 1.37 0.88 32.94 40.53 
ibm06 1.00 0.00 1.27 0.89 14.47 14.92 
ibm07 1.00 0.00 1.38 0.88 16.49 18.21 
ibm08 1.00 0.00 4.19 6.89 50.07 149.74 

ibm09 1.00 0.00 1.27 0.74 24.78 23.04 
ibml0 1.00 0.00 1.64 1.22 28.83 30.30 
ibmil 1.00 0.00 1.36 0.84 18.77 20.44 

ibml2 1.00 0.00 1.54 1.15 44.01 95.11 

ibml3 1.00 0.00 1.25 0.70 22.27 23.22 

ibml4 1.00 0.00 1.39 0.99 21.29 40.89 
ibml5 1.00 0.00 1.31 1.01 26.27 33,95 

ibml6 1.00 0.00 1.27 0.67 25.15 40.25 
ibml7 1.00 0.00 1.26 0.71 29.34 26.26 

ibml8 1.00 0.00 3.66 5.90 22.73 30.71 

• The score-based algorithm using seed cell is the fastest algorithm compared to 

the other two techniques; however, this technique cannot reduce the netlist to 

a low clustering ratio. 

• The score-based algorithm using seed net can achieve the lowest clustering ratio 

among all three techniques; however, the number of cells in a cluster, and the 

area of a cluster can be large. In addition, a large number of clusters produced 

by this technique overlap. 



Chapter 5 

Algorithms for Obtaining Clustering Solutions 

5.1 Introduction 

In Chapter 4, three algorithms for identifying single gain clusters in a circuit were 

proposed. In this chapter, another significant contribution of this thesis, clustering 

algorithms to form final clusters are introduced. The development of these algorithms 

is targeted to extend the application of clustering techniques proposed in Chapter 4 

to cluster a whole circuit. The efficiency of these algorithms are illustrated in the 

context of circuit partitioning and placement. 

The clusters produced using the score-based algorithms proposed in Chapter 4 can 

have overlap, as shown in Table 4.7, making the decision of the best group of clusters 

to be finalized complicated. An example of the cluster overlap is illustrated in Figure 

5.1. Figure 5.1 (a) illustrates the original circuit and the gain clusters identified using 

the seed cell based approach. In this example, the two clusters shown by dashed 

and dotted lines overlap in cell D. In Figure 5.1 (b), all the potential clusters using 

the seed net based technique are illustrated. In this example, three clusters overlap 

on cell S. In addition, cells ®, 0, 0, ®, and © belong to two clusters. In most 

clustering techniques, these cell overlaps are removed by either choosing the cluster 

that is deemed to have the higher quality, or merging the clusters. In this thesis, three 

different techniques for forming the final clusters are proposed and implemented. 

• The first technique is a scoreless technique, where cells are ordered and clusters 

are made based on the order of the cells. In this technique, cell overlap is not 

allowed and once a cluster is formed, all of the cells in that cluster are taken 

out of the possible cells that can be clustered. 

96 
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(b) All gain clusters identified using seed net based technique 

Figure 5.1: Example of initial clusters identified using the proposed seed cell based 
and seed net based algorithms in a small circuit 

• In the second technique, a score is assigned to each cluster and clusters with 

the highest scores are finalized. In this technique, the cell overlap problem is 

solved by scoring the clusters. 

• In the third technique, cluster overlaps are dealt with in a novel method. In this 

technique, the identified clusters are used to score nets. Then, nets that have 

a higher score are collapsed. Therefore the cluster overlap problem is solved 

without discarding cluster information. 

The rest of this chapter is organized as follows. In Section 5.2, the proposed 

scoreless clustering technique is presented. In Section 5.3, the cluster score-based 

technique is proposed. In Section 5.4, the new net score-based clustering algorithm 
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is proposed. Numerical experiments and analysis for the proposed techniques are 

reported in Section 5.5. These experiments are conducted on ISPD98 benchmark 

circuits [5, 12], ICCAD04 benchmark circuits [2, 9] and ISPD2005 placement contest 

circuits [7, 58] in the context of partitioning and placement. Finally a summary of 

the chapter is given in Section 5.6. 

5.2 Scoreless Algorithm for Obtaining A Clustering Solution 

Most clustering algorithms for VLSI circuit partitioning and placement start by or-

dering all the cells in a netlist [13, 38, 39, 46]. In scoreless clustering algorithms, 

such as FirstChoice and heavy-edge matching, the cell ordering criterion is usually 

random. Therefore, the clustering result is also random, resulting in an "unstable" 

clustering performance. When clustering algorithms with random cell ordering are 

used in multilevel partitioning, different runs of a partitioner can produce different 

and greatly varying partitioning results. Here, a run refers to one execution of a 

partitioner. For example, in Figure 5.2, the partitioning results of 20 runs of hMetis 

on benchmark circuit ibm03 are plotted. In hMetis, FirstOhoice is used to cluster the 

netlist. The x-axis is the run number for hMetis, and the y-axis is the partitioning 

result in terms of netcut for each run of hMetis. From Figure 5.2, it can be seen 

that the partitioning results from different runs have a wide range, from a minimum 

netcut of 700 nets to a maximum netcut of 800 nets. 

In this thesis, two cell ordering techniques that can improve the results without 

noticeably increasing the runtime are given. The algorithm proposed in this section is 

a scoreless clustering technique, and it starts by visiting cells in a netlist. To be able 

to deal with the cell overlap problem, if the visited cell already belongs to a cluster, 

it is skipped and the next cell in the queue is examined. There are two important 

factors that can change the results obtained by this scoreless technique. The first one 
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Figure 5.2: Illustration of fluctuation in the partitioning results in terms of netcut for 
20 runs of hMetis on benchmark circuit ibm03 

is the cluster formation that was discussed in Section 4.3, and the second one is the 

cell ordering. In order to improve the clustering solution quality, two nonrandom cell 

ordering criteria, cell degree based and number of neighbors based, are proposed and 

discussed in the rest of this section, Furthermore, in order to speed up the clustering 

process, sophisticated ordering computation is avoided in the proposed cell ordering 

criteria. Therefore, a good trade-off between clustering solution quality and runtime 

is achieved. 

5.2.1 Cell Ordering Criteria 

The two proposed ordering criteria in the scoreless clustering algorithm are as follows: 

Criterion 1 (Cell degree based ordering): Cells are ordered in ascending order 

according to cell degree, the number of nets incident to the cell. 

9 Criterion 2 (Cell neighbor number based ordering): Cells are ordered in ascend-
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ing order according to the number of their connected neighbors. 

Both criteria are based on local cell connectivity and favor cells with fewer incident 

nets or neighbors. To find gain clusters, each cell potentially can be used to form 

an initial cluster by grouping it with its neighbors. If a cell with a high degree or a 

large number of neighbor cells is visited at the beginning of the algorithm, a cluster 

with a large area is likely to be formed which can lead to unbalanced cluster sizes. 

Therefore, the nonrandom cell ordering methods are designed to give high priority to 

the cells that can lead to clusters with smaller area. The experimental results about 

the cell orderings are reported in Section 5.5.1. 

An example of how the proposed cell ordering techniques work is shown in Fig-

ure 5.3, using a small sample circuit. In this circuit, the degree of each cell c, 

Figure 5.3: A simple circuit 

degree(c), 1 ≤ i ≤ 5, is: dcgree(ci) = 1, degree(c2) = 1, degree(c3) = 6, degree(ca) = 

3, and degree(C5) = 2. If the cell degree based ordering criterion is used, then the 

cell ordering result is (, 0, ®, , ®). If criterion 2 is used, then the number of 

neighbors for each cell, neighbors(cj), 1 < i < 5, is calculated: neighbors(ci) = 2, 

neighbors(c2) = 2, neighbors(c3) = 4, neighbors(c4) = 1, and neighbors(c5) = 1. 

The cell ordering result is (, ®, ®, ®, (1). 

Once all the cells are ordered, each cell is visited, and the cluster formation step 

discussed in Section 4.3 is performed, and either a refined cluster is finalized or the 
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cluster is discarded. Then, the next cell in the ordered cell sequence is examined. If the 

cell already belongs to another cluster, it is skipped; otherwise the same single cluster 

formation process, which involves initial cluster creation, initial cluster refinement, 

and final cluster formation, is performed. The whole algorithm terminates when all 

cells have been visited. 

5.2.2 Clustered Netlist Generation 

Once all the cells have been visited and processed appropriately, the complete clus-

tering results are available: if a cell is a clustered cell, it is labeled with its seed 

cell number, otherwise, no label number is attached to this cell. With the complete 

clustering results, the process of generating a clustered netlist starts. The cells that 

have the same label number are merged into a newly created cell. The area of this 

new cell is equal to the sum of the area of the cells that are merged, and each net 

incident to the new cell is either a net that connects a merged cell to either an un-

merged cell, or a merged cell with different label number. At the end of this step, a 

new clustered netlist is created. Figure 5.4 shows the outline of the whole scoreless 

clustering algorithm. 

Input: A flat netlist 
Output: A clustered netlist 
a. Order all cells based on the ordering criterion 
b. For each unclustered cell 

1. Single cluster identification using the algorithm 
proposed in Section 4.3 
2. Finalize the identified cluster 

c. Clustered netlist generation 

Figure 5.4: Scoreless clustering algorithm procedure 
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5.2.3 Illustrative Example for Scoreless Clustering Algorithm 

For illustrative purposes, a simple circuit shown in Figure 5.5 is used to demonstrate 

the procedure for the gain clustering algorithm. In Figure 5.5(a), the original circuit 

(a) The original flat netlist 

Identified cluster for seed cell 4 

n 

"3 

ni n2 n8 

(b) The first identified cluster by seed cell 

C4 C8 

(c) All identified clusters 

(d) The final clustered netlist 

Figure 5.5: Illustration of the scoreless clustering algorithm procedure on a simple 
circuit 

is shown. The algorithm starts by ordering all the cells in the circuit based on either 

cell degree or cell neighbor number criterion. Suppose in this example, the cells are 

ordered based on cell neighbor number; then the ordered cell sequence is as follows: 
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(, ®, ®, , ®, ®, ®, © and (D). The first cell in the list, cell D, is visited as a 

seed cell. The cluster identification step discussed in Section 4.3 is performed, but no 

cluster is identified for this seed cell. Then, the next cell in the ordered cell sequence, 

®, is examined as a seed cell. This seed cell also fails to form a cluster. Cell is 

visited as the third seed cell, and it can result in a cluster, C4, made of cells and 

as shown in Figure 5.5(b). This process is continued. Cells ®, ®, ® and ® all fail 

to result in a cluster. Cell ® is a successful seed cell resulting in cluster, C8, made of 

cells , ® and S. Cell © is the last cell that results in a cluster, C2, made of cells 

D, © and ©. In Figure 5.5(c), all identified clusters are shown. 

By using the above clustering results, a clustered netlist is created, as shown in 

Figure 5.5(d). In this new netlist, the new cell D is created by merging cells ® 

and © in the original netlist, the new cell © is created by merging cells T and © in 

the original netlist, and similarly, the new cell T is created by merging cells ®, © 

and © in the original netlist. The new cell © is copied from the cell © in the original 

netlist. 

5.3 Cluster Score-Based Algorithm for Obtaining A Cluster-

ing Solution 

In this section, the cluster score-based technique for obtaining the final clustering 

solution is proposed. In this technique, once a set of gain clusters are identified and 

the corresponding scores are calculated for those clusters, the final clustering solution 

can be obtained as follows. First, the clusters are ordered descendingly based on 

their scores. Then each cluster is visited in turn. The cluster with the highest score 

is visited first and clustered. The next cluster is examined. If this cluster contains 

cells that belong to another cluster, then this cluster is skipped and the next cluster 

is visited; otherwise, this cluster is finalized. This process is repeated until a desired 
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clustering ratio has been reached. 

A high level outline of the cluster score-based algorithm is shown in Figure 5.6. 

The algorithm consists of two phases: potential gain cluster identification and final 

Input: A flat netlist 
Output: A clustered netlist 
Phase 1: Potential gain cluster identification 

a. Identification of a set of single gain clusters using 
the algorithms proposed in Section 4.4 

Phase 2: Final cluster formation 
b. Ordering of clusters 
c. Finalization of clusters in turn 

Figure 5.6: Cluster score-based algorithm procedure 

cluster formation. In the first phase, potential gain cluster identification, a score-

based single gain cluster identification algorithm, as proposed in Section 4.4, is used 

to find a single gain cluster. Then the score for the identified cluster is calculated. 

At the end of the first phase, a set of gain clusters is identified where each cluster has 

a clustering score. In the second phase, the final cluster formation, the clusters are 

ordered based on their associated scores, which indicate the quality of the clusters. 

The clusters with higher scores will be clustered first, if the cluster area constraint is 

satisfied. This process is continued until a desirable clustering ratio is reached. 

5.3.1 Illustrative Example for Cluster Score-Based Algorithm 

For illustrative purposes, a simple circuit shown in Figure 5.7 is used to demonstrate 

the procedure of the proposed cluster score-based clustering algorithm. 

In Figure 5.7(a), the original netlist is shown. In Figure 5.7(b), all identified gain 

clusters by the seed cell based technique, as proposed in Section 4.4, are shown. The 
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Figure 5.7: Illustration of the cluster score-based clustering algorithm procedure on 
a simple circuit 
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scores for clusters are: 

8, (C2) = 2 —x 1 — 
33 

s(C4) = s(C5) = 3 1 - x - 
33 
31 

s(Cr) = s(C8) = - X - 

44 

= 0.22, 

= 0.33, 

= 0.19. 

Therefore, the first finalized cluster is either C4 or C5. The second finalized cluster 

is C2, as illustrated in Figure 5.7(c). Then the remaining clusters, C7 and C8 are 

examined. Since they contain the clustered cell ©, they cannot be clustered. 

By using the above clustering results, a clustered netlist is created, as shown in 

Figure 5.7(d). In this new netlist, the cell CD is created by merging cells CD, ® and 

® in the original netlist, and cell © is created by merging cells CD, ® and © in the 

original netlist. The rest of the cells are just copied from the original netlist. 

5.3.2 Spectral Analysis of the Cluster Score-Based Technique 

In this section, the clustering effects of the proposed cluster score-based algorithms on 

the netlist structure are studied by the spectral technique proposed in [17]. In Figure 

5.8, an example of how the structure of a circuit is maintained during the clustering 

process, as highly connected cells are grouped together, is shown. The figures in 5.8 

are obtained by linearly ordering the cells in the benchmark circuit, ibm03, using the 

eigenvalue based technique in [ 17]. This technique is a spectral analysis method based 

on finding the second largest eigenvalue of the connectivity matrix of a circuit. In 

Figures 5.8 (a) and (b), the x-axis indicates the cell position number after the linear 

ordering. It should be noted that the x-axis in the two figures do not match since in 

Figure 5.8 (b) cells have formed clusters and therefore there is a smaller number of 

cells in the circuit. The y-axis is the netcut if the circuit is partitioned at the specified 

cell. The y-axis for both circuits match to show how the netcut has been reduced. In 

Figure 5.8(a), cells in the original test circuit ibm03 are linearly ordered. In Figure 
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5.8(b), the linear order of the same circuit, after applying two levels of clustering, 

is shown. In Figure 5.8(a), the netcut peak has occurred around cell 12000 and the 

number of netcuts is at 2500. This peak corresponds to the peak around cell 5500 

in Figure 5.8(b), with a maximum value of 2000. The second peak in Figure 5.8(a) 

has occurred around cell 18000 and the number of netcuts is over 2400. This peak 

corresponds to the peak around 10000 in Figure 5.8(b), with a maximum netcut lower 

than 2000 nets. By comparing these two figures, it can be seen that the number of 

netcuts in the linear order is reduced when clustering is applied. In addition, in Figure 

5.8(b), a valley has appeared around cell 7000, which may mean that the clustering 

algorithm is trying to naturally separate the circuit into different partitions. 

5.4 Score-Based Net Cluster Algorithm for Obtaining A Clus-

tering Solution 

The two score-based algorithms proposed in Chapter 4 can both produce a set of gain 

clusters. The clustering statistics from these two techniques, as shown in Section 4.5, 

indicate that the number of clusters produced by the seed net based technique is 

much larger than that by the seed cell based technique. Therefore, the seed net based 

technique potentially can reduce a netlist to a much lower clustering ratio, compared 

to the seed cell based technique. For today's large scale designs, a clustering technique 

producing a lower clustering ratio can be better suited to the design requirements. 

However, the statistics for the seed net based technique in Section 4.5 also show that 

there is a large number of cell overlaps between the clusters produced by the seed net 

technique. 

In most existing score-based clustering algorithms [11, 51, 59], the cell overlap 

problem is solved by ordering the clusters descendingly based on their scores, and then 

finalizing the clusters with highest scores. As a result, some clusters are discarded. 



109 

In this thesis, a new net scoring technique is proposed and used to solve the problem 

of cell overlap between clusters. The inspiration of the net scoring technique comes 

from the force-directed model. 

For a single net, its geometry relationship to a cluster can be one of the following 

three situations: 

1. The net is fully embraced by the cluster; i.e., all the cells in the net are inside 

the cluster. In this case, the relationship of the net to the cluster is referred to 

as " clustered". This is equivalent to a contraction force on the net, from the 

perspective of the force-directed model. 

2. The net is partially embraced by the cluster; i.e., some of the cells in the net 

are inside the cluster. In this case, the relationship of the net to the cluster is 

referred to as "cut". This is equivalent to an expanding force on the net. 

3. The net has no connection with the cluster; i.e., none of the cells in this net 

is inside the cluster. In this case, the relationship of the net to the cluster is 

referred to as "noncortrtected" This is equivalent to no force on the net. 

In the set of clusters produced by a score-based technique, for a single net, it- can be 

fully embraced by some clusters, be partially embraced by some clusters, and have 

no connections with other clusters, simultaneously. The final status of the net should 

be determined by considering all these clusters that have different relationships with 

the net, since different relationships indicate different intentions, or forces, on the 

net, The clusters that fully embrace the net have contraction forces on the net, the 

clusters that partially embrace the net have expanding forces on the net, and the 

clusters that have no connection with the net have no force on the net. 

Since once a cluster is identified, a score is calculated to evaluate the quality of 

that cluster, this score can be regarded as the force that the cluster applies to nets. 
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The force applied to each net is calculated based on the value of the cluster score, 

amount of force, and the relationship, direction of the force. This process is discussed 

in detail in the rest of this section. 

5.4.1 Net Score Calculation 

Originally, each net has a score with an initial value set to be 0. After the score-

based algorithm identifies a gain cluster, as discussed in Section 4.4, the cluster score 

is calculated. The cluster score calculation is the same as in equation 4.7: { nn(c) x 1 n(C1) 0 
S, Pi) = n(0) ;;i•y 

0 n(C1) = 0, 

where, s(C) is the score of the identified gain cluster C, n(C) denotes the number 

of nets that lie entirely inside the cluster C, and n(C) represents the number of cells 

inside the refined cluster. A(.) is the function representing the area of the clusters, 

and is equal to the summation of cell areas in a cluster. 

After calculating the cluster score, the nets that have connections with this cluster 

are examined. Based on the geometry relation of the net and the cluster, the score 

of the cluster, s(C), is added or subtracted from the net score. 

s(n) = s(n) + a1s(C), (5.1) 

where s(n) is the clustering score for net n, and s(C) is the clustering score for 

cluster C2 calculated above. aji is a coefficient, where 

aji = 

1 if nj is clustered by C 

—1 if nj is cut by C 

0 otherwise. 

From (5.1), the overall clustering score for a net nj can be calculated as: 

s(n) = as0(C), (5.2) 
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where m is total number of the identified gain clusters in a netlist. An overall positive 

net score in (5.2) means that there are more attraction forces on the net and the net 

should be contracted. An overall negative score in (5.2) for a net means that the net 

is being stretched. A zero score can be thought of as a case where the total forces on 

a net are zero. 

5.4.2 Net Cluster Formation 

In this step, cluster overlaps are removed and final clusters are formed based on the 

calculated net scores. First, all nets with a clustering score greater than 0 are ordered 

in descending order. Then, each such net is processed. If clustering a net satisfies the 

cluster area constraint, it will be considered to be clustered. Three different situations 

can occur when a net is examined: 

1. None of the cells in this net belong to a cluster: In this case, all the cells in this 

net are clustered and a new cluster is created. 

2. At least one cell in this net has already been clustered and all of the clustered 

cells belong to one cluster: In this case, the cluster made by this net has overlap 

with only one existing cluster. If the cluster area constraint is satisfied, all 

unclustered cells in this net join the overlapping cluster. If the cluster area 

constraint is not satisfied, the net is not clustered. 

3. At least two cells in this net have been clustered and these clustered cells belong 

to at least 2 different existing clusters: In this case, the cluster formed by this 

net has overlap with different existing clusters. The cells of the net under 

consideration and all of its overlapping clusters will be tried to see if they can 

be merged into a cluster that encompasses them all. If the area of this cluster 

is no more than the cluster area constraint, then, the cells of the current net 
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and the overlapping clusters are merged into a new bigger cluster. Otherwise, 

the net is not clustered. 

A high-level outline of the proposed score-based net cluster algorithm is shown in 

Figure 5.9. The algorithm consists of two phases: potential gain cluster identification 

Input: A flat netlist 
Output: A clustered netlist 
Phase 1: Potential gain cluster identification 
For each net with low degree 

a. Single cluster identification using the algorithm 
proposed in Section 4.4 
b. Cluster score calculation 
d. Net score calculation 

Phase 2: Final cluster formation 
d. Net cluster formation 

Figure 5.9: Score-based net cluster algorithm procedure 

and final cluster formation. In the first phase, potential gain cluster identification, 

the score-based single gain cluster identification algorithm proposed in Section 4.4 is 

used for each net. Then the score for the identified cluster is calculated and is used to 

update the scores for the nets in an incremental manner. At the end of the first phase, 

each net has a clustering score. In the second phase, final cluster formation, nets in 

the netlist are ordered based on their associated scores, which measures the quality 

of nets. The nets with high scores are clustered first. This net clustering process is 

continued until there are no remaining nets with score greater than 0, indicating that 

all "good" nets for clustering have been processed. 

5.4.3 Illustrative Example for the Score-Based Net Cluster Algorithm 

For illustrative purposes, a simple circuit shown in Figure 5.10 is used to demonstrate 

the procedure of the proposed score-based net cluster algorithm. In Figure 5.10(a), 

a netlist is shown. In Figure 5.10(b), all identified gain clusters using the seed net 
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(a) The original flat netlist 

C6, C7 

C1, C2, C3, 

C4, C5 \ 

iii, n2 

C8, C9 

(b) All identified clusters 

n4, n5, n6 n8, n9 

(c) The clusters by net scores 

(d) The final clustered netlist 

Figure 5.10: Illustration of the score-based net cluster algorithm procedure on a 

simple circuit 
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based technique proposed in Section 4.4 are shown. The scores for the clusters are: 

61 
s(C1) = s(C2) = s(Cs) = s(C4) = s(Cs) = 

61 
s(C6) = s(C7) = x 

31 
s(Cs) = s(Cg) = x 

= 0.17, 

= 0.17, 

= 0.19. 

The net score calculation is as follows. Nets n1 and n2, are clustered by C, C2, 03, 

C4 and C5; therefore, their scores can be calculated as 

s(ni) = Sn(fl2) = O+s(C) =O+O.17x 5=0.85. 
1=1 

Net n3 is clustered by Ci, C2, 03, 04 and 05, and cut by C6 and 07; therefore, its 

score is: 

s(n3) = 0+ s(C) - ) 's(C) = 0 + 0.17 X 5 0.17 X 2 = 0.51. 
i=1 3=6 

Nets ru4 and rib are both clustered by C, 02, C, C4 C, 06 and C7, therefore, their 

scores are: 

7 

sn(rt4) = s(n5) = 0+ E s(C) = 0+0.17 X 7 = 1,19. 
i=1 

Net n6 is clustered by C, C2, C3, C4 05, 06 and C7 and cut by 08 and Cg, therefore, 

its score can be calculated as 

s(n6) = 0+ s(C) -> s(C) = 0+0.17 x 7-0.19 x 2 = 0.81. 
1=1 5=8 

Net n7 is clustered by 06, 07, 08 and 09, and cut by C, 02, 03, 04 and C5, therefore, 

its score can be calculated as 

s(n7) = 0+) 's (C) - ) 's (C) 
i=6 5=1 

= 0+0.17x 2+0.19x 2-0.17x5= —0.13. 

Finally nets n8 and n9 are clustered by 06, C7 C8 and C9 therefore, their scores are: 

9 

s(n8)=s(ng) =0+Y's(C)=0+0.17x2+0.19x 2=0.72. 
i=6 
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After calculating the net scores, the nets are ordered based on their scores de-

scendingly, (n4, n5, ni, n2, n6, n8, n9, n3 and n7). Net n4 is clustered first. Since 

all cells in net n5 have already been clustered, clustering of net n5 is skipped. Net ml 

is the third clustered net. Net n2 has one' cell belonging to ml, and is merged with 

ml. The final clusters are shown in Figure 5.10(c). 

By using the above clustering results, a clustered netlist is created, as shown in 

Figure 5.10(d). In this new netlist, cell ® is created by merging cells ®, ® and © 

in the original netlist, cell ® is created by merging cells , © and © in the original 

netlist, and similarly, cell © is created by merging cells M, ® and ® in the original 

netlist. 

5.5 Numerical Experiments 

5.5.1 Experimental Results for the Scoreless Clustering Technique 

Cell Ordering Experiments 

The first experiments in this section are used to study the effects of different cell 

ordering techniques on cluster formation. ISPD98 benchmark circuits are used as the 

test circuits. 

To illustrate that the proposed technique results in balanced clusters, a set of 

experiments is performed, whereby the clustering statistics by different cell ordering 

techniques are obtained. In the following, these statistics are reported in Tables 5.1, 

5.2, 5.3 and 5.4. The results in all of these four tables are reported in the same 

manner. In each table: columns 2 and 3, "Ngr. ordering", are the results for cell 

neighbor number based ordering; columns 4 and 5, "Deg. ordering" are the results for 

cell degree based ordering; columns 6 and 7, "Rnd ordering 1" are the results for the 

first run of cell random ordering; and finally columns 8 and 9, "Rnd ordering 2", are 

the results for the second run of cell random ordering. For each ordering technique, 
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the column "On." lists the actual values of the clustering results, and the column 

"Comp." lists the comparison results of the actual values over the actual values of 

"Ngr. ordering" result. 

Table 5.1: Clustering statistics in terms of average number of cells in one single cluster 

from different cell ordering techniques 

Circuit 
Ngr. ordering Deg. ordering Rnd ordering 1 Rnd ordering 2 
On. Comp, On. Comp. On. Comp. On. Comp. 

ibmOl 4.24 1.00 4.29 1.01 4.71 1.11 4.64 1.09 
ibm02 3.37 1.00 3.44 1.02 4.08 1.21 4.02 1.19 
ibm03 6.88 1.00 6.94 1.01 7.32 1.06 7.32 1.06 
ibm04 4.50 1.00 5.35 1.19 5.88 1,31 5.75 1.28 
ibm05 3.79 1.00 3.81 1.00 3.92 1.03 3.91 1.03 
ibm06 4.68 1.00 5.02 1.07 5.30 1.13 5.26 1.12 
ibm07 4.92 1.00 5.00 1.02 5.12 1.04 5.21 1.06 
ibm08 3.82 1.00 3.96 1.04 5.17 1.35 5.13 1.34 
ibm09 7.06 1.00 7.16 1.01 7.56 1.07 7.47 1.06 
ibmlO 4.37 1.00 4.45 1.02 4.83 1.11 4.84 1.11 
ibmil 5.46 1.00 5.47 1.00 5.74 1.05 5.74 1.05 
ibml2 4.69 1.00 4.75 1.01 4.94 1.05 4.98 1.06 
ibml3 5.85 1.00 5.91 1.01 6.29 1.08 6.31 1.08 
ibml4 4.59 1.00 4.62 1.01 4.90 1.07 4.90 1.07 
ibml5 6.79 1.00 6.95 1.02 7.36 1.08' 7.38 1.09 
ibml6 5.70 1.00 5.84 1.02 6.06 1.06 6.05 1.06 
ibml7 5.07 1.00 5.37 1.06 5.68 1.12 5.69 1.12 

ibml8 3.63 1.00 3.75 1.03 4.59 1.26 4.60 1.27 

Average 1.00 - 1.03 - 1.12 - 1.12 

In Table 5.1, the average number of cells in one single cluster for different cell 

ordering techniques are given. The experimental data in this table suggests that 

among all ordering techniques, the cell neighbor number based ordering produces 

the minimum average number of cells in one cluster. The cell degree based ordering 

produces a slightly higher value than cell neighbor number based ordering, but a 

lower value than both of the random orderings. 

In Figure 5.11, the average number of cells in a cluster for all ISPD98 circuits are 

shown. An interesting point in this figure is that for circuits with similar sizes, for 

example, ibm08 and ibm09, the cluster sizes can be very different. This is due to 
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Figure 5.11: Average number of cells per cluster for different cell ordering techniques 
on ISPD98 benchmark circuit 

different circuit structures. 

In Table 5.2, the standard deviation for the numbers of cells in one cluster for 

different cell ordering techniques are given. The experimental data in this table show 

the difference or fluctuation between the cluster sizes in terms of number of cells for 

different ordering techniques. 

It can be observed that the cell neighbor number based and cell degree based 

orderings have lower standard deviation values, indicating that the clusters by these 

two algorithm have a "balanced" size in terms of number of cells in cluster, compared 

to the random ordering techniques. On average, if the standard deviation for cell 

neighbor based ordering is chosen as the base, then the cell degree based ordering 

have 5% more fluctuation in the sizes of clusters, and the two random ordering have 

29% and 27% more fluctuations. 

In Table 5.3, the maximum numbers of cells in a cluster for different cell ordering 

techniques are given. The experimental data in this table show the size in terms of 
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Table 5.2: Clustering statistics in terms of standard deviation for numbers of cells in 

one single cluster from different cell ordering techniques 

Circuit 
Ngr. ordering Deg. ordering Rnd ordering 1 Rnd ordering 2 
On. Comp. On. Comp. On. Comp. On. Comp. 

ibmOl 2.59 1.00 2.78 1.07 3.59 1.39 3.34 1.29 
ibm02 2.35 1.00 2.52 1.07 3.16 1.34 3.16 1.34 
ibm03 6.41 1.00 6.44 1.01 6.88 1.07 6.85 1.07 
ibm04 4.43 1.00 4.93 1.11 10.44 2.36 9.14 2.06 
ibm05 1.53 1.00 1.59 1.04 1.80 1.17 1.74 1.13 
ibm06 3.16 1.00 3.46 1.09 4.03 1.27 4.08 1.29 
ibm07 4.39 1.00 4.42 1.01 4.59 1.04 4.72 1.08 
ibm08 4.09 1.00 4.82 1.18 8.62 2.11 8.50 2.08 
ibm09 5.83 1.00 5.85 1.00 6.17 1.06 6.06 1.04 
ibmlO 6.32 1.00 6,44 1.02 7.36 1.17 7.40 1.17 
ibmil 4.69 1.00 4.66 0.99 4.96 1.06 4.96 1.06 
ibml2 3.94 1.00 4.04 1.03 4.56 1.16 4.51 1.15 
ibml3 5.52 1.00 5.54 1.00 6.14 1.11 6.29 1.14 
ibml4 5.36 1.00 5.39 1.01 5.95 1.11 6.11 1.14 
ibml5 7,89 1.00 7.95 1.01 8.49 1.08 8.70 1.10 
ibml6 4.15 1.00 4,26 1.03 4.78 1.15 4.72 1.14 
ibml7 3.48 1.00 3.67 1.06 4.07 1.17 4.00 1.15 
ibml8 2.47 1.00 3.02 1.22 3.53 1.43 3.55 1.43 
Average - 1.00 - 1.05 - 1.29 - 1,27 

number of cells for the biggest cluster for each ordering technique. 

It can be observed that the experimental data reported in Table 5.3 are consistent 

with previous tables: the cell neighbor number based ordering produces the minimum 

value for the largest cluster size; the cell degree based ordering produces a little higher, 

on average 6% higher, value for the largest cluster size; and both of the random 

orderings produce much higher values, on average 55% and 46% respectively, than 

the cell neighbor number based ordering. It should be noted that for this experiment, 

each ordering has the same predefined cluster size upper bound. 

In Table 5.4, the average cluster areas for different cell ordering techniques are 

given. This table shows consistent experimental data as previous tables. Although the 

same maximum cluster area constraint is applied to each ordering technique, the cell 

neighbor number based and cell degree based orderings produce clusters will smaller 
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Table 5.3: Clustering statistics in terms of maximum number of cells in one single 

cluster from different cell ordering techniques 

Circuit 
Ngr. ordering Deg. ordering Rnd ordering 1 Rnd ordering 2 
On. Comp. On. Comp. On. Comp. On. Comp. 

ibmOl 32 1.00 32 1.00 35 1.09 28 0.88 
ibm02 32 1.00 32 1.00 57 1.78 51 1.59 
ibm03 77 1.00 85 1.10 79 1.03 78 1.01 
ibm04 61 1.00 53 0.87 364 5.97 312 5.11 
ibm05 15 1.00 24 1.60 36 2.40 23 1.53 
ibm06 27 1.00 35 1.30 38 1.41 55 2.04 
ibm07 110 1.00 110 1.00 110 1.00 116 1.05 
ibm08 160 1.00 154 0.96 359 2.24 358 2.24 
ibm09 80 1.00 78 0.98 78 0.98 78 .0.98 
ibml0 305 1.00 305 1.00 305 1.00 305 1.00 
ibmil 117 1.00 117. 1.00 106 0.91 117 1.00 
ibml2 61 1.00 62 1.02 96 1.57 83 1.36 
ibml3 107 1.00 107 1.00 107 1.00 107 1.00 
ibml4 188 1.00 188 1.00 188 1.00 188 1.00 
ibml5 332 1.00 333 1.00 345 1.04 338 1.02 
ibml6 90 1.00 90 1.00 109 1.21 109 1.21 
ibml7 67 1.00 67 1.00 63 0.94 61 0.91 
ibml8 51 1.00 66 1.29 66 1.29 68 1.33 

Average - 1.00 - 1.06 - 1.55 - 1.46 

average area, compared to the random ordering techniques. Finally, the cell neighbor 

number based ordering produces the smallest values for average cluster areas. 

In general Tables 5.1 to 5.4 show that cell neighbor number based ordering results 

in the creation of the most balanced clusters. 

Partitioning Experiments 

To be able to illustrate the effectiveness of the proposed algorithm, a hybrid mul-

tilevel circuit partitioner is developed, where the proposed clustering technique is 

implemented as a preprocessing step. First, a flat netlist is clustered using the cell 

ordering algorithm. As a result, a clustered smaller circuit is obtained. Then, the 

multilevel partitioning process is performed on the clustered smaller circuit. In the 

implementation, the library interface of state-of-the-art circuit partitioner, hMetis 

[1, 46], is invoked to perform the initial partitioning on the clustered circuit. Finally, 
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Table 5.4: Clustering statistics in terms of average area of one single cluster from 

different cell ordering techniques 

Circuit 

Ngr. ordering Deg. ordering Rnd ordering 1 Rnd ordering 2 
On. Comp. On. Comp. On. Comp. On. Comp. 

ibmOl 814.54 1.00 822.14 1.01 963.04 1.18 958.26 1.18 
ibm02 579.70 1.00 584.65 1.01 696.92 1.20 683.88 1.18 
ibm03 2227.80 1.00 2210.35 0.99 2341.22 1.05 2333.47 1.05 
ibm04 828.02 1.00 994.34 1.20 1220.19 1.47 1161.46 1.40 
ibm05 575.17 1.00 576.81 1.00 595.67 1.04 594.89 1.03 

ibm06 559.20 1.00 561.59 1.00 586.72 1.05 582.69 1.04 
ibm07 1547.70 1.00 1716.69 1.11 1761.70 1.14 1785.68 1.15 
ibm08 631.88 1.00 675.02 1.07 942.45 1.49 924.82 1.46 

ibm09 2051.56 1.00 2076.36 1.01 2297.62 1.12 2223.87 1.08 

ibmlU 1336.93 1.00 1444.86 1.08 2504.79 1.87 2079.10 1.56 
ibmll 2362.11 1.00 2444.49 1.03 2440.75 1.03 2472.80 1.05 
ibml2 1818.64 1.00 1826.38 1.00 1910.67 1.05 1833.61 1.01 

ibml3 1725.15 1.00 1727.05 1.00 1847.98 1.07 1853.88 1.07 
ibml4 791.08 1.00 741.45 0.94 837.38 1.06 780.74 0.99 

ibmlb 1359,28 1.00 1381.51 1.02 1473.66 1.08 1477.95 1.09 

ibml6 1713.96 1.00 1662.18 0.97 1904.79 1.11 1896.57 1.11 

ibml7 1382.76 1.00 1427.80 1.03 1408.53 1.02 1414.04 1.02 

ibml8 536.92 1.00 571.32 1.06 698.33 1.30 698.41 1.30 

Average - 1.00 - 1.03 - 1.19 - 1.15 

the best partitioning result among multiple runs of hMetis on the clustered circuit 

is chosen, mapped back to original circuit, and further refined by the standard FM 

algorithm. All the implementations are in C++ and tested on the ISPD98 benchmark 

suite [5, 12]. Since the actual area bipartitioning, which uses each cell's actual area as 

its weight to calculate the balance condition during the bipartitioning process, is more 

typical and practical in the context of VLSI physical design, all experimental data 

reported in the following are actual area bipartitioning results. All these partitioning 

experiments are performed on a 900 MHz Sun Ultra Sparc 3 with 4G memory. 

The experimental setup for the hybrid partitionen is as follows: for each benchmark 

circuit, given a partitioning balance condition of either 10% or 2% deviation from an 

exact bisection,' 10 runs are performed. In each run, different sets of parameters 

'The 10% and 2% deviations are the most commonly used balance conditions for partitioning in 
current literature. 
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are used: 5 runs use cell degree based ordering and 5 runs use cell neighbor number 

based ordering. Each of the two 5 runs are further broken into 3 runs using first level 

neighbor and 2 runs using second level neighbor as well to form the initial clusters. 

Then, the library interface of hMetis is called to perform partitioning on the clustered 

circuit. The number of runs of hMetis is set to be 10. Finally, the partitioning result 

obtained from hMetis (The best result over 10 runs) is further refined by a fiat FM 

algorithm and the refined partitioning solution is given as the final output of the 

hybrid partitioner. 

After 10 runs of the hybrid partitioner for each circuit with either 10% or 2% 

deviation, the run that produces the best partitioning result is chosen and reported. 

In Table 5.5 the partitioning results with 10% deviation are given. In Table 5.6 the 

partitioning results with 2% deviation are given. In each table, the column "Initial 

netcut" reports the partitioning results of library interface of hMetis on the clustered 

circuit; the column "Refined netcut" is the final refined partitioning results of hybrid 

partitioner on the original circuit. The average runtime in seconds for 10 runs of the 

hybrid partitioner is also reported in column "Runtime (second)". 

In order to evaluate the effectiveness of proposed scoreless clustering algorithm 

and the hybrid partitioner, the following two experiments are performed: 

• Comparison between the proposed scoreless clustering and heavy-edge matching 

The purpose of this experiment is to compare the final results of the proposed 

scoreless clustering with other commonly used clustering algorithms. In this 

experiment, the heavy-edge matching algorithm [13] is also implemented as 

a preprocessing step for multilevel partitioning. First, a circuit is clustered 

using the heavy-edge matching algorithm, then the resulting clustered circuit is 

partitioned by library interface of hMetis, and finally the partitioning solution 

from hMetis is further refined by the FM algorithm. This partitioning process is 



122 

Table 5.5: Actual area bipartitioning results on ISPD98 benchmark suite. Solutions 

are constrained to be within 10% of bisection. 

Circuit 
Hybrid Partitioner Heavy-edge + hMetis hMetis 

Initial 
netcut 

Refined 
netcut 

Runtime 
(second) 

Refined 
netcut 

Runtime 
(second) 

Final 
netcut 

Runtime 
(second) 

ibmOl 
ibm02 
ibm03 
ibm04 

217 
249 
643 
440 

215 
249 
643 
440 

5 
9 
10 
11 

223 
264 
745 
443 

5 
9 
11 
12 

215 
269 
681 
440 

5 
8 
11 
12 

ibm05 1745 1715 17 1705 19 1722 17 
ibm06 363 363 15 372 15 367 14 
ibm07 754 718 23 760 23 737 24 
ibm08 1161 1156 30 1161 28 1157 28 
ibm09 530 520 22 524 23 524 23 
ibml0 740 735 38 758 38 756 37 
ibmil 709 694 31 694 33 695 32 
ibml2 2033 1972 49 1984 51 1976 53 
ibml3 913 833 46 844 44 833 44 
ibml4 1614 1521 107 1534 105 1527 120 
ibml5 1783 1783 126 1905 119 1801 128 
ibml6 1710 1667 143 1674 149 1668 167 
ibml7 2389 2215 215 2281 206 2257 246 
ibml8 1686 1522 182 1566 178 1522 213 

referred to as "heavy-edge + hMetis". The experimental setup for "heavy-edge 

+ hMetis" is the same as that for hybrid partitioner, and its partitioning results 

are reported under the columns "Heavy-edge + hMetis" in Tables 5.5 and 5.6. 

Similar to the results of hybrid partitioner, the reported "Refined netcut" data 

are the best partitioning results of 10 runs of "Heavy-edge + hMetis" for each 

circuit, and the reported runtime is also the average of 10 runs of "Heavy-edge 

+ hMetis". 

• Comparison between the hybrid partitioner and hMetis 

The purpose of this experiment is to compare the hybrid partitioner with an 

existing state-of-the-art circuit partitioner. In this experiment, the hybrid par-

titioner is directly compared with hMetis. 10 runs of hMetis are performed 

directly to each benchmark circuit with either 10% or 2% deviation. The best 
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Table 5.6: Actual area bipartitioning results on ISPD98 benchmark suite. Solutions 
are constrained to be within 2% of bisection. 

Circuit 
Hybrid Partitioner Heavy-edge + hMetis hMetis 

Initial 
netcut 

Refined 
netcut 

Runtime 
(second) 

Refined 
netcut 

Runtime 
(second) 

Final 
netcut 

Runtime 
(second) 

ibmOl 219 217 5 238 5 230 5 
ibm02 267 267 10 279 9 266 9 
ibm03 742 742 11 851 12 748 11 
ibm04 522 494 11 505 13 506 12 
ibm05 1743 1724 17 1751 20 1727 18 
ibm06 496 496 17 583 15 550 16 
ibm07 768 726 25 804 23 739 23 
ibm08 1182 1180 32 1206 27 1188 29 
ibm09 530 522 22 523 23 523 23 
ibmlO 1085 1085 38 1066 41 1133 40 
ibmll 818 770 31 793 33 781 33 
ibml2 2155 1986 51 1998 49 1998 51 
ibml3 931 890 49 894 45 902 45 
ibml4 1978 1756 106 1794 114 1772 131 
ibmlö 2092 2092 126 2204 121 2099 134 
ibml6 1702 1658 152 1665 149 1692 180 
ibml7 2496 2321 223 2361 212 2396 254 
ibml8 1962 1693 211 1664 196 1664 261 

partitioning result and the average runtime for these runs are reported under 

the column "hMetis" in Tables 5.5 and 5,6. 

From Table 5.5 and Table 5.6, the following can be observed: 

1. For most partitioning results of the hybrid partitioner, the initial netcuts, i.e., 

the partitioning results of hMetis on the clustered circuit, are close or equal to 

the final refined netcuts. This suggests that the proposed scoreless clustering 

algorithm has the ability to identify the gain clusters in a circuit and the clus-

tered circuit is a good representative of the original circuit. In most cases, the 

hybrid partitioner can maintain the partitioning solution quality when cluster-

ing a circuit; although in a few cases, there is a loss of partitioning solution 

quality during clustering; however, this loss can be recovered by the final FM 

refinement step. 
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2. Among the three comparison partitioners: Hybrid, heavy-edge + hMetis, and 

hMetis, Hybrid achieves the best partitioning solution quality, in terms of net-

cuts. The overall partitioning results by Hybrid is better than those by heavy-

edge + hMetis or hMetis for most of the test benchmarks. In Tables 5.5 and 

5.6, the best partitioning results for each circuit are indicated with bold font. It 

can be seen that for partitioning with 10% deviation, out of 18 test circuits, Hy-

brid produces 17 best partitioning results; for partitioning with 2% deviation, 

Hybrid produces 15 best partitioning results. 

3. The runtime of the hybrid partitioner is comparable to other partitioners. For 

the relatively small test benchmarks that have less than 10,000 cells, ibmOl 

to ibml3, the three partitioners use roughly equal runtime for each circuit. 

However, for the large test benchmarks that have more than 10,000 cells, ibml4 

to ibm18, Hybrid has less runtime than hMetis, and slightly more runtime than 

heavy-edge + hMetis. The reason for Hybrid being slower than heavy-edge + 

hMetis is that the heavy-edge matching algorithm is used in the same manner as 

the proposed scoreless clustering algorithm; but, in itself, heavy-edge matching 

is faster than the proposed scoreless algorithm. However, the final refined netcut 

comparison between heavy-edge + hMetis and Hybrid suggests that the cluster 

quality by heavy-edge matching is worse than that by the proposed algorithm. 

The runtime efficiency of Hybrid is mainly due to the following two reasons. 

First, the deterministic behavior of the proposed scoreless algorithm improves 

the efficiency of Hybrid. The proposed scoreless algorithm is a non-random 

clustering technique, and, given the same running parameters, it can generate 

the same clustering results in multiple runs. Therefore, in Hybrid, the clus-

tering results from one run of the proposed clustering algorithm can be used 

directly in subsequent runs. In contrast with this deterministic characteristic, 
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in other multilevel partitioning processes, e.g., hMetis, clustering is generally 

done randomly, therefore, the clustering results of a single run cannot be used in 

other runs; i.e., in each run, the clustering must start from the original circuit. 

As a result, more clustering operations, which require more runtime, need to be 

performed in hMetis than Hybrid. 

Second, the high quality clustering results produced by our proposed clustering 

algorithm improve the runtime for Hybrid. The proposed clustering algorithm 

has been shown to be able to identify the highly interconnected clusters in 

a circuit, and maintain the partitioning solution quality during the clustering 

process. As a result of this, after obtaining the partitioning result of hMetis on 

the clustered circuit and mapping it to the original circuit, the original circuit 

already has a very good initial partitioning solution. For this initial partitioning 

solution, the following FM based refinement step tends to use a low number of 

iterations to improve it, and consequently less time is required for the FM 

algorithm to converge. The small difference between the initial netcuts and 

final refined netcuts for Hybrid in Tables 5.5 and 5.6 also confirms that FM 

based refinement only has marginal netcut improvement. 

In conclusion, because of its deterministic nature and the ability to produce high 

quality clustering results, the hybrid partitioner can achieve good partitioning 

solutions in a reasonable runtime. 

5.5.2 Experimental Results for the Cluster Score-Based Technique 

In these experiments, the seed cell based clustering technique is used to identify gain 

clusters. Then, at each level, the final clustering solution is obtained using either the 

cluster scores (CS) or the net scores (NS). 
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Partitioning Experiments 

In the first experiment, the performances of different clustering scoring techniques are 

studied. A comparison between cluster score based and net score based techniques is 

performed to empirically determine the effectiveness of each scoring technique. Dif-

ferent combinations of cluster scoring (CS) and net scoring (NS), during two levels of 

our proposed clustering algorithm, are investigated. Specifically, 4 possible combina-

tions of scoring are considered, namely CS+CS, NS+NS, CS+NS and NS+CS (the 

notation "x+y" implies that the scoring methods "x" was used in the first level and 

method "y" was used in the second level of clustering). After clustering each of the 

ISPD98 benchmark circuits using each scoring combination, each netlist is partitioned 

with 20 runs of hMetis allowing a 10% deviation from an exact bisection. 

The results of this experimentation are provided in Table 5.7. The netcut and 

Table 5.7: Comparison between cluster-score based and net-score based techniques 

in terms of netcut and runtime 

Circuit 

Average net cut and average runtime compai ison 

CS + CS NS + NS CS + NS NS + CS 
Netcut Runtime Netcut Runtime Netcut Runtime Netcut Runtime 

ibmOl 1.017 1.024 0.988 1.024 0.996 1.056 0.97 1.073 

ibm02 0.897 1.112 0.99 1.150 0.894 1.141 0.897 1.175 

ibm03 0.989 0.996 0.973 1.103 0.977 1.048 0.969 1.029 

ibm04 0.952 1.138 0.961 1.112 0.954 1.122 0.952 1.118 

ibm05 0.997 1.035 1.001 1.048 0.999 1.014 0.997 1.028 

ibm06 1.021 1.133 1.032 1.159 1.026 1.156 1.024 1.136 

ibm07 1.022 1.041 1.04 1.063 1.041 1.073 1.01 1.009 

ibm08 1.005 1.089 1.003 1.178 1.003 1.123 1.002 1.175 

ibm09 0.992 1.048 0.991 1.183 0.991 1.067 0.990 1.036 

ibmlO 1.004 1.015 0.982 1.021 1.005 1.052 1.001 1.003 

ibmll 1.013 1.080 1.01 1.123 1.004 1.112 0.993 1.072 

ibml2 1.022 1.094 1.009 1.125 1.027 1.150 1.006 1.127 

ibml3 0.959 1.064 0.997 1.106 0.952 1.090 0.971 1.044 

ibml4 0.973 0.900 0.992 0.960 0.988 0.888 0.974 0.882 

ibml5 1.006 1.041 1.006 1.035 1.009 1.040 0.992 1.034 

ibml6 0.999 1.105 1.002 1.132 0.998 1.128 0.996 1.105 

ibml7 1.013 0.942 1.006 1.007 1.005 0.960 1.006 0.957 

ibml8 0.995 0.856 1.011 0.928 0.996 0.859 0.999 0.834 

Avg. 0.993 1.040 1.000 1.081 0.992 1.060 0.986 1.046 
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runtime in this table are the normalized netcut and average runtime per run from 

the different combinations of scoring techniques. Here, both netcut and the runtime 

are normalized to the average netcut and runtime from 20 runs of hMetis on the flat 

netlist as reported in Table 5.8. Empirically, it appears that the NS+CS combina-

tion is slightly more effective than the other scoring combinations. It produces the 

best trade-off between solution quality and runtime among all scoring combinations. 

Hence, this combination is used in the remainder of the experiments in this section. 

As the second partitioning experiment, the performance of our proposed clustering 

techniques, as a preprocessing step, is compared to hMetis and MLPart. In addition, 

the performance of best choice clustering (with lazy update) used as a preprocessing 

step is compared to the proposed techniques. This comparison is in terms of the 

final netcut value and runtime. For the proposed clustering techniques, two levels of 

clustering: net scoring and cluster scoring, the NS+CS combination, are used in the 

first and second levels of clustering, respectively. The library interface to hMetis is 

then called to perform partitioning on the clustered circuit. Finally, the results from 

hMetis are further refined using a flat FM partitioner. For each netlist, 20 runs with 

a 10% deviation from an exact bisection are performed. When calling hMetis, default 

parameters are used; 10 random starts are performed with V-cycling applied to the 

best result [45]. 

The experimental setups for hMetis, MLPart and best choice clustering used as 

preprocessing are similar. For hMetis, the parameters are identical to the experimen-

tal setup for proposed techniques (except that hMetis is provided with the original 

netlist). For MLPart, each run consists of 4 starts (this setup is from [20]). Finally, 

when using best choice clustering as an alternative preprocessing technique to NS+CS 

combination, the experimental setup is exactly the same as NS+CS combination. All 

reported results are for actual area partitioning. 
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In Table 5.8, partitioning results are provided for hMetis, MLPart, best choice 

(used as a preprocessor), and the NS+CS combination are given. In this table, the 

Table 5.8: Actual area partitioning results on ISPD98 benchmark suite when solutions 

are constrained to be within 10% of bisection. All experiments were performed on 

600 MHz Sun Ultra Sparc 3. 

Circuit 
hMetis MLPart 

(comparison) 
best choice + hMetis 

(comparison) 
NS+CS + hMetis 

(comparison) 
Avg. Time Avg. Time Avg. Time Avg. Time 

ibmOl 236 6.2 0.962 0.903 1.030 0.952 0.970 1.008 
ibm02 283 10.3 0.933 1.146 0.936 1.019 0.897 1.092 
ibm03 770 13.6 0.949 1.188 1.019 0.893 0.969 0.996 
ibm04 482 15.2 0.983 1.204 0.979 0.980 0.952 1.066 
ibm05 1725 21.7 1.023 1.074 0.994 0.972 0.997 1.005 
ibm06 370 17.3 1.084 1.185 1.008 1.061 1.024 1.136 
ibm07 766 29.3 1.013 1.087 0.993 0.937 1.010 1.012 
ibm08 1157 40.4 1.016 0.941 1.002 0.902 1.002 1.050 
ibrn09 524 30.4 1.048 1.232 1.002 0.933 0.990 1.003 
ibml0 774 51.6 1.094 1.125 1.003 0.903 1.001 0.955 
ibmll 715 44.6 1.036 1.197 1.008 0.955 0.993 1.049 
ibml2 2039 67.2 1.103 0.963 0.998 1.061 1.006 1.099 
ibml3 928 61.4 0.974 1.150 0.978 0.867 0.971 1.002 
ibml4 1623 187.1 1.020 0.712 0.978 0.811 0.974 0.898 
ibml5 1845 199.3 1.160 0.845 1.012 0.901 0.992 0.963 
ibml6 1717 242 1.119 0.722 1.003 0.923 0.996 1.115 
ibml7 2304 368.6 0.995 0.572 1.007 0.857 1.006 0.959 
ibml8 1535 326.6 1.023 0.554 1.004 0.849 0.999 0.827 

Avg. 1.000 1.000 1.030 0.989 0.998 0.932 0.986 1.013 

average netcuts, Avg., and the average runtime, Time, (the total runtime/number 

of runs) in seconds are given for hMetis under columns 2 and 3. For MLPart, best 

choice and NS+CS, only comparison results are given. In all comparisons, hMetis 

results are considered to be the base results, and the results from other partitioners 

are compared with hMetis. 

From Table 5.8, it can be seen that the proposed NS+CS clustering combination 

is effective to improve the netcut. When compared to hMetis, there are a total of 12 

circuits with improved results. In comparison with MLPart, there are 15 improved 

results, where in 13 of them the improvement is about 1%. In comparison with 
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best choice there are 13 improved results. Overall in terms of netcut, the NS+CS 

combination is the only algorithm that shows improved results by about 1%. MLPart 

produces results that are 3% worse and best choice has negligible gain over hMetis. 

During experiments with the NS+CS combination, it was discovered that the 

algorithm consistently does not perform well on certain circuits such as ibm05, where 

other circuits such as ibm02 consistently provide improved results. This discrepancy 

is probably a result of different circuit structures of the two benchmark circuits. For 

example, benchmark circuit ibm02 has 6 macro cells, each with an area of more than 

1% of the total area of the chip (one macro block occupies more than 11% of the total 

area). On the other hand, ibm05 does not have any macro blocks. Another main 

difference between the two circuits is the structure of the nets and cells. In ibm05, 

63% of the nets connect only two cells, where in ibm02, there re 55% of this type of 

nets (8% reduction). Also, the longest net (the net with the highest number of cells) 

in ibm05 connects 17 cells, where in ibm02 the longest net connects 134 cells. In 

ibm05, 74% of the cells have degrees lower than 5 (1 to 4), but in ibm02 this number 

is reduced to 51%. These differences between net and cell structures can indicate 

that the ibm05 has a more homogeneous structure, where cells are related together 

with the same connectivity. The spectral analysis technique, as mentioned in Section 

5.3.2, was performed on circuits ibm02, and ibm05 to obtain a visual measure of the 

circuit structure. These linear orderings are illustrated in Figure 5.12(a) and Figure 

5.12(b), respectively. This linear ordering for ibm02 shows many valleys and peaks, 

where the valleys correspond to a group of cells that are loosely connected. The linear 

ordering for ibm05 results in a very flat figure that means that there are no loosely 

connected groups of cells in this circuit. 
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Figure 5.12: Comparison between the circuit structure obtained by the linear ordering 

of circuits ibm02 and ibm05 
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Placement Experiments 

For placement, the ICCAD04 mixed-size placement benchmarks were tested using 

four well-known academic placement tools: Capolo.1 [61], FengShui5.1 [10], FDP 

[76], and mPL6 [23]. Capo and FengShui are partitioning based placers. FDP and 

mPL6 are force directed placers. The main objective in this experiment was to confirm 

the efficacy of the proposed clustering algorithms within the context of an additional 

physical design problem other than partitioning. As in partitioning, the NS+CS clus-

tering combination is used as a preprocessing step to each placement tool. Therefore, 

several revisions to the overall flow were made. Specifically, 

1. The NS+CS clustering combination was first used to cluster each of the IC-

CADO4 placement benchmarks. In performing the clustering, not only the area 

of the clustered cells, but also the proper sizes of the clustered cells were pre-

served. Only standard cells were clustered together and the dimensions of a 

cluster were set such that the height corresponds to the height of a standard 

cell while the width of the cluster is enough to accommodate all of the clustered 

cells if linearly arranged. It should be noted that this shaping might result in 

a set of oddly shaped standard cells and proper shaping remains an avenue for 

further investigation. 

2. The clustered mixed-size placement problems were run through each of the 

placement tools. Hence, for each clustered circuit, a legalized placement was 

obtained from each tool. 

3. The placement produced by each tool was unclustered. In this phase, the cells 

were positioned in the flat netlist at the centre of their assigned cluster. The 

results of the unclustered placement are the re-introduction of cell overlap which 

must subsequently be removed. To accomplish this task, Capolo.1 in several 
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different modes  was invoked. 

The total half perimeter wire length results for the four placers and the comparison 

when NS+CS clustering combination is used are given in Table 5.9. In Table 5.10 

the runtime comparison for all the placers involved in this experiment are given. In 

each table, the column "On." gives the result of a placer, and the column "Comp." 

gives the comparison value of the placement result when using proposed clustering 

techniques over the result in column "On.". 

Table 5.9: Placement wire length results on ICCAD04 mixed-size benchmark suite. 

The placement solution is measured from pin to pin. 

Circuit CapolO.1 FengShui5.1 FDP mPL6 Overall 
Comp. On, Comp, On. Comp. Ori. Comp. Ori. Comp. 

ibmOl 2.45 0.981 2.36 0.990 2.50 1.097 2.14 0.961 1.007 
ibm02 4.86 1.014 5.32 0,954 5.25 0.926 4.74 0.999 0.973 
1bm03 7.28 0.994 7.97 0.968 7.80 1.071 6.94 0.941 0.994 
ibm04 9.02 0.963 8.59 0.978 8.98 0.974 7.30 1.006 0.980 
ibm05 10.02 0.997 9.80 1.008 10.85 0.939 9.37 0.996 0.985 
ibm06 6.54 1.003 6.67 1.003 7.71 0.867 5.80 0.994 0.967 
ibm07 12.32 0.899 11.20 0.978 12.04 0.971 9.81 0.962 0.952 
ibm08 13.27 1.035 12.74 1.002 13.05 1.084 11.94 0.951 1.018 
1bm09 14.34 0.972 14.19 0.985 15.98 0.971 12.35 0.998 0.981 
ibml0 33.89 0.942 32.91 1.013 39.32 1.105 27.83 0.986 1.011 

ibmil 21.13 0.969 20.26 0.945 22.71 0.928 17.72 0.977 0.955 
ibml2 36.68 1.037 37.38 0.973 40.53 1.239 31.94 1.013 1.066 
ibml3 26.28 0.937 25.56 0.951 26.53 0.987 23.08 0.946 0.955 
ibml4 39.79 0.945 37.94 1.002 43.76 0.923 35.73 0.968 0.959 
ibml5 53.66 0.971 51.07 0.961 59.78 0.967 47.21 0.968 0.967 
ibml6 60.12 1.004 58.95 0.997 68.72 0.985 55.19 0.970 0.989 
ibml7 75.24 0.928 68.87 0.985 80.39 0.867 64.94 0.981 0.940 
ibml8 45.40 0.977 44.33 0.986 50.85 0.934 42.43 0.991 0.972 

Avg. 26.24 0.976 25.34 0.982 28.71 0.991 23.14 0.978 0.982 

. Total Wire Length Comparison 

The efficiency of the NS+CS clustering combination, used as a preprocessing step, 

can be seen from the results presented in Table 5.9. From this table it can be seen that 

2Capo 10.1 is equipped with several features that enable it to successfully legalize initially illegal 
placements produced by different placers. 
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Table 5.10: Placement runtime results on ICCAD04 mixed-size benchmark suite. The 

original runtime (Org.) of all placers are given in seconds. All experiments have been 

performed on dual core intel d820s. 

Circuit CapolO.1 FengShui5.1 FDP mPL6 
On. Comp. On. Comp. On. Comp. On. Comp. 

ibmOl 255 0.94 130 1.17 118 1.73 163 1.11 
ibm02 452 1.13 227 1.26 268 2.46 253 1.29 
ibm03 555 1.09 265 1.17 274 2.05 258 1.20 
ibm04 655 1.09 301 1.21 357 1.34 309 1.20 
ibm05 558 1.05 315 1.19 538 1.07 320 1.19 
ibm06 782 1.04 408 1.22 383 1.45 380 1.15 
ibm07 1240 0.93 554 1.19 488 1.46 540 1.18 
ibm08 1327 1.18 629 1.27 788 1.30 767 1.12 
ibm09 1297 1.13 644 1.19 754 1.10 851 1.05 
ibmlO 3387 0.84 965 1.27 1054 2.35 1016 1.29 
ibmil 1949 1.06 873 1.22 842 1.10 1042 1.16 
ibml2 2817 1.62 986 1.26 991 3.79 1170 1.17 
ibml3 2478 1.07 1128 1.21 1079 1.20 1190 1.28 
ibml4 4448 1.24 2063 1.17 1438 1.67 2061 1.21 
ibml5 6097 0.99 2478 1.28 2513 1.48 2487 1.27 
ibml6 6578 0.97 2789 1.29 2478 3.04 3231 1.08 
ibml7 7792 1.11 2986 1.26 2718 1.80 3076 1.23 
ibml8 6077 1,02 3118 1.18 3351 1.00 3082 1.16 

Avg. 2708 1.08 1159 1.22 1135 1.74 1233 1.19 

for all placement algorithms, on average, the total wire length was reduced by almost 

2%. For CapolO.1, FengShui5.1 and FDP, the placement results for 13 benchmarks 

were improved. For mPL6, 16 of the placement results were improved. The last 

column in Table 5.9 shows the overall improvement per circuit for all placers. It 

can be seen that for 14 circuits, improvements in total wire length are achieved. It 

should be mentioned that the flow and implementation of our preprocessing is far from 

optimal. Potentially, larger improvements in placement results could be obtained if 

the proposed clustering techniques are integrated into the placement algorithm. 

Timing Comparison for Placement 

Table 5.10 shows the runtime comparison for all placers involved in this experi-

ment. The original runtime for all placers is shown in the column labeled "On". The 
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comparison between the original runtime of each placer and total runtime with the 

preprocessing is shown under column "Comp.". For these placers, on average 8%, 

22%, 74% and 19% increase in total runtime was obtained. 

• Comparison with Best Choice Used as Preprocessing 

Placer mPL6 uses best choice clustering scheme, but to show the effectiveness of 

proposed clustering techniques, best choice clustering with lazy update was imple-

mented as a preprocessing scheme with the same setup as NS+CS clustering combi-

nation. The placement results when best choice is applied as a preprocessing step are 

Table 5.11: Placement results on ICCAD04 mixed-size benchmark suite for best choice 

clustering algorithm. The placement solution by best choice is normalized to the each 

placer's flat solution. 

Circuit CapolO.1 FengShui5.1 FDP mPL6 Overall comp. 
WL Time WL Time WL Time WL Time WL Time 

ibmOl 1.051 1.22 0.990 1.08 0.932 1.15 0.960 0.90 0.983 1.09 

ibm02 1.362 1.56 0.954 1.19 0.945 2.60 0.978 1.18 1.060 1.63 

ibm03 0.984 1.16 1.026 1.12 1.001 1.19 0.900 1.19 0.978 1.16 

ibm04 0.958 1.08 0.936 1.14 0.987 2.74 0.987 1.16 0.967 1.53 

ibm05 0.997 1.16 1.003 1.11 0.947 2.17 0.991 1.04 0.985 1.37 

ibm06 1.034 1.16 0.979 1.16 1.092 2.15 0.983 1.20 1.022 1.42 

ibm07 0.993 1.13 0.995 1.12 1.021 2.72 0.960 1.17 0.992 1.54 

ibm08 1.012 1.05 1.010 1.17 1.049 2.24 1.009 1.17. 1.020 1.41 

ibm09 0.985 1.23 0.922 1.15 1.002 1.24 0.976 1.11 0.971 1.18 

ibml0 0.932 0.81 0.995 1.15 0.967 4.96 1.009 1.31 0.976 2.06 

ibmll 0.968 1.19 0.958 1.17 1.139 2.48 0.990 1.11 1.014 1.49 

ibml2 1.136 1.13 1.044 1.21 0.973 2.82 1.027 1.17 1.045 1.58 

ibml3 0.986 0.85 0.921 1.17 1.026 1.20 0.962 1.29 0.974 1.13 

ibml4 0.961 1.03 0.997 1.18 0.929 2.30 0.982 1.22 0.967 1.43 

ibml5 0.990 1.31 0.980 1.27 1.068 2.56 0.945 1.27 0.996 1.60 

ibml6 0.969 1.05 0.997 1.27 0.999 2.60 0.953 1.10 0.979 1.50 

ibml7 0.960 1.00 1.029 1.26 0.980 2.73 0.986 1.28 0.989 1.57 

ibml8 0.988 1.02 1.006 1.17 0.927 1.80 0.965 1.15 0.972 1.28 

Avg. 1.015 1.12 0.986 1.17 0.999 2.31 0.976 1.17 0.994 1.44 

reported in Table 5.11, For each benchmark circuit, best choice is used to preprocess 

the netlist to the same clustering ratio as NS+CS clustering combination. The sub-

sequent experiment setup, in terms of cluster dimensions and legalization, is exactly 
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the same as the NS+CS combination. In Table 5.11, the wire length and runtime 

by using best choice as a preprocessing step are first normalized to the results from 

each fiat placer and then reported in Columns "WL" and "Time", respectively. From 

Table 5.11, it can be seen that the application of best choice as a preprocessing step 

also improves the placement wire length for most test placers. However, compared 

to the wire length results by the NS+CS combination in Table 5.9, the results by 

best choice are about 1% worse on average. Furthermore, the overall runtime by best 

choice is higher than that by NS+CS combination even though best choice in itself is 

faster on clustering the circuit. 

5.5.3 Experimental Results for the Score-Based Net Cluster Technique 

In this set of experiments, the score-based net cluster algorithm is investigated and 

applied in the context of circuit placement. In the following, the proposed score-based 

net cluster algorithm is referred to as SNC. The quality of clusters depends on many 

factors. Usually the only metric used to determine this quality is the final placement 

results. Final results are good indications, but placement is a complicated process and 

many factors can influence the final placement results. In this section, two aspects 

pertaining to the quality of clusters are considered. These are: the connectivity of 

cells in a cluster, and the final results. 

Experiments on Connectivity 

As a general rule, clustering algorithms need to be able to recognize clusters with 

high connectivity and group them together. In [ 15], several metrics are proposed to 

measure the connectivity. In this thesis, two measures for connectivity are tested. The 

first measure uses the relative net clustering ratio versus cell clustering ratio. A lower 

net clustering ratio means that most of the connections between the cells are within 

clusters, indicating that the algorithm has been successful. For example, it has been 
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demonstrated that a clustering algorithm that can produce a low net clustering ratio 

can benefit the routability, area, and power consumption in hierarchical FPGA designs 

[70]. The second set of experiments explore the change in net scores after performing 

clustering using the proposed SNC clustering technique, and using FirstChoice, and 

best choice. 

Net Clustering Ratio 

In these experiments, the clustering ratio achieved by the proposed algorithm is com-

pared to those obtained by best choice and FirstChoice clustering algorithms. In Ta-

ble 5.12, the clustering results obtained by using the three algorithms on ICCAD04 

benchmark circuits [2] are reported. The cell and net clustering ratios indicate the 

percentage of the clustered netlist size to original netlist size: 

Cell Clustering Ratio (CCR) 
# cells in clustered netlist  

= 

# cells in original netlist 

and similarly, 

Net Clustering Ratio (NCR) 
- # nets in clustered netlist  
- # nets in original netlist 

It should be noted that the results in, Table 5.12 are from one level of clustering, and 

all cell clustering ratios were matched to the clustering ratio achieved by the proposed 

SNC clustering technique. From Table 5.12, it can be seen that the net clustering 

ratios achieved by the proposed technique are the lowest compared to best choice and 

FirstChoice techniques. It can also be seen that the clustering ratios for different 

benchmark circuits vary. This is due to different inner structures of the benchmark 

circuits. 

• Net Scores 

In this section, a comparison between the net scores of the circuit after one level 

of clustering using the proposed clustering technique, best choice and FirstChoice is 
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Table 5.12: Clustering ratio comparison for ICCAD04 benchmark circuits 

NCR 
Circuit CCR SNC Best choice FirstChoice 

ibmOl 0.511 0.623 0.670 0.674 
ibm02 0.650 0.703 0.697 0.751 
ibm03 0.604 0.700 0.727 0.732 
ibm04 0.627 0.727 0.750 0.764 
ibm05 0.723 0.734 0.749 0.765 
ibm06 0.599 0.684 0.713 0.726 
ibm07 0.604 0.665 0.713 0.736 
ibm08 0.598 0.636 0.671 0.710 
ibm09 0.631 0.719 0.758 0.765 
ibmlO 0.572 0.653 0.679 0.708 
ibmll 0.637 0.743 0.779 0.782 

ibml2 0.640 0.718 0.750 0.766 
ibml3 0.591 0.707 0.755 0.752 
ibml4 0.633 0.690 0.716 0.753 
ibmiS 0.632 0.728 0.776 0.781 

ibml6 0,587 0.656 0.686 0.727 

ibml7 0.684 0.740 0.760 0.792 

ibml8 0.655 0.691 0.748 0.780 

Average 0.621 0.695 0.728 0.748 

given. A net's score shows how desirable it is to cluster a net. First, average positive 

net scores, Avg, and standard deviations, o, for ICCAD04 benchmark circuits before 

clustering are calculated and shown in columns 2 and 3 in Table 5.13. These scores are 

determined before performing any clustering. Then, the average positive net scores 

and standard deviations for the clustered circuits after one level of clustering using the 

proposed technique, best choice, and FirstChoice are also reported as a comparison 

with the original scores. From Table 5.13, it can be seen that the proposed algorithm 

results in the lowest average and standard deviation of the scores. This means that 

by performing one level of clustering, most nets that should have been clustered have 

been identified and clustered. At this stage the score distribution becomes narrower. 

The nets' score distribution for circuit ibml2 before and after clustering using the 

mentioned techniques is shown in Figure 5.13. In this figure, the score distribution for 

the proposed algorithm has the sharpest rise. In addition, only 2 benchmarks have 
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Table 5.13: Net score comparison for ICCAD04 benchmark circuits. The average 

positive net scores and standard deviations for the proposed algorithm, best choice 

and FirstChoice are shown as comparison. 

Circuit 
Nets' scores 

before clustering 
SNC 

(comp.) 
best choice 
(comp.) 

FirstChoice 

(comp.) 
Avg x103 o x 103 Avg a Avg a Avg a 

ibmOl 
ibm02 

ibm03 
ibm04 
ibm05 

ibm06 

1.460 

0.759 
1.930 
1.480 
1.010 
1.340 

6.16 
4.368 
9.218 

6.574 
4.96 
7.212 

0.503 
0.177 
0.632 
0.563 
0.095 

0.475 

0.417 
0.316 
0.584 
0.622 

0.381 
0.488 

0.74 

0.502 
0.74 
0.6 

0.203 
0.753 

0.535 

0.667 
0.632 

0.713 
0.319 
0.708 

0.859 
0.661 

0.781 
0.730 
0.644 

0.956 

0.693 
0.851 

0.767 
0.842 

0.893 
0.918 

ibm07 1.420 7.588 0.402 0.499 0.556 0.5 0.739 0.831 
1bm08 0.907 5.698 0.383 0.375 0.751 0.624 0.973 0.879 
ibm09 1.700 7.255 0.625 0.788 0.751 0.843 0.794 0.842 
ibmlO 1.030 5.323 0.248 0.303 0.409 0.41 0.709 0.918 
ibmil 1.710 8.125 0.633 0.787 0.667 0.749 0.771 0.803 
ibml2 0.765 4.144 0.273 0.378 0.494 0.592 0.829 1.899 
ibml3 1.490 7.548 0.663 0.638 0.727 0.707 0.773 0.752 
ibml4 1.200 6,558 0.355 0.364 0.485 0.454 0.772 0.845 
ibml5 1.530 7.839 0,671 0.641 0.851 0.756 0.904 0.846 
ibml6 1.080 6.226 0.345 0.417 0.598 0.617 0.902 1.074 
ibml7 0.759 4.473 0.346 0.390 0.556 0.578 0.901 1.027 
ibml8 0.802 4.688 0.345 0.412 0.595 0:566 0.917 0.883 

Avg. 1.243 6.331 0.430 0.514 0.610 0.622 0.812 0.892 

40-
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-630-
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Figure 5.13: Net score distribution for ibml2 
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lower standard deviations and the average net scores are higher for all the circuits 

when best choice is used. Compared to FirstChoice all circuits have improved average 

and standard deviation when using the proposed algorithm. 

Experiments on Placement 

The final test was performed to compare final placement results of the proposed SNC 

algorithm with other techniques. The SNC clustering algorithm is implemented and 

tested as a preprocessor for large scale netlists. Then, five publicly available academic 

placers are used to produce initial placements on the clustered netlist. Finally, the 

clustered netlist and the initial placement results are mapped back to the original 

netlist, and another round of legalization and detailed placement is performed to 

obtain legal placements for the original netlist. Details of this framework are as 

follows: 

1. During the clustering process, the maximum cluster area is set to be 5 times 

larger than the average standard cell area. The dimension of a cluster is set to 

accommodate all cells if they are linearly aligned. Three different shapes for 

clusters were implemented: all cells were aligned in one row, put in two rows, 

and a square shape with an area equal to the sum of the areas of all the cells 

in the cluster. Three placers CapolO.2, mPL6 and FengShui5,1 were used to 

obtain placement results for each cluster shape. The results show that when 

cluster shapes are square or the cells are put into two rows, the quality of the 

final results deteriorated. Based on the above experiments, it was decided to 

construct clusters with the same height as standard cells. It should be noted 

that this shaping of clusters might produce some long cells in the clustered 

netlist. As a result, only one level of clustering is performed, since more levels 

of clustering will produce very long cells that can make the placement problem 

more difficult to solve. The experiments also show that the placement results 
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Table 5.14: ISPD05 benchmark circuit statistics 

Total Mov. #Fixed #Nets #Total Design Design Pen. 
Circuit objs objs objs pins density utility I/Os 

adaptecl 

adaptec2 

211447 

255023 

210904 

254457 

543 

566 

221142 

266009 

944053 

1069482 

75.71% 

78.56% 

57.34% 

44.32% 

480 

407 

adaptec3 451650 450927 723 466758 1875039 74.53% 33.66% 0 
adaptec4 496045 494716 1329 515951 1912420 62.67% 27.23% 0 

bigbluel 278164 277604 560 284479 1144691 54.19% 44.67% 528 

bigblue2 557866 534782 23084 577235 2122282 61.80% 37.94% 0 
bigblue3 1096812 1095519 1293 1123170 3833218 85.65% 56.68% 0 
bigb1ue4 2177353 2169183 8170 2229886 8900078 65.30% 44.35% 0 

deteriorate when more levels of clustering are performed; this is because of the 

odd-shaped cells. 

2. When a placer is invoked to run on the clustered netlist, the generated placement 

result is a legal placement. 

3. When a cluster is unclustered and its component cells are mapped back into the 

original netlist, the positions of its cells are set to be at the bottom-left corner of 

the cluster. Since this process introduces cell overlaps, further legalization and 

detailed placement is required which is performed by Capolo.1 with the option 

"noCapo" for ICCAD04 benchmarks. For ISPD05 benchmarks, the FastPlace 

legalizer was used due to its high efficiency [75]. 

The placement results generated by the above framework are compared with the 

results from each placer directly. The total runtime for this framework is the sum-

mation of the time for each step. In the following experiments, ICCAD04 mixed-size 

placement benchmarks [2] and ISPD05 placement contest benchmarks [7] are chosen 

as the test circuits. The statistics of ISPD05 benchmark circuits are shown in Ta-

ble 5.14. In this table, "# Total objs" is the total number of cells in the circuit. 

"# Mov. objs" is the number of movable cells. "# Fixed objs" is the number of 

fixed cells. Design density is the ratio of area sum of total objects over the area of 
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placement region. Design utility is the ratio of area sum of only movable objects 

over the available free space. Four well-known academic placers, Capolo.1 [61], Feng-

Shui5.1 [10], mPL6 [23], and NTUplace3-LE [25], are tested by using the proposed 

clustering algorithm as a preprocessing step for ICCAD04 benchmark circuits. For 

ISPD05 benchmark circuits, FengShui5.1 was replaced by FastPlace3.0. CapolO.1 

and FengShui5.1 are partitioning-based placers. NTUp1ace3-LE, mPL6, and Fast-

Place3.0 are force-directed, or analytical placers. All placers use clustering, directly 

or indirectly, to achieve manageable circuit sizes. All experiments are performed on 

a dual-processor 2.8 GHz Xeon with 4 GB RAM running RedHat Linux. 

. Effects of Skipping Long nets on Clustering 

In Table 5.15, the statistics of clustering results without and with skipping long 

nets on ISPD05 benchmark circuits are given. In Table 5.15, the column "Max net 

deg." lists the maximum net degree for each benchmark circuit. It can be seen that in 

ISPD05 circuits, there are some very long nets inside, for example, for circuit bigb1ue4, 

the longest net contains over 20000 cells. If such long nets are treated as the short 

nets in SNC algorithm, the runtime will definitely become much more expensive. In 

column "CCR", the cell clustering ratio is given, and similarly, column "NCR" gives 

the net clustering ratio. It can be seen that the two schemes, without skipping long 

nets and skipping long nets, almost produce the same cell and net clustering ratios, 

i.e., the clustering effects in terms of clustering ratios are equal. However, the runtime 

for the two schemes are totally different. The last column "Runtime comp."in Table 

5.15 reports the runtime comparison between two schemes. It can be seen that when 

skipping the long nets, the runtime is decreased by around 50%. 

. Placement Wire Length and Runtime Results 

In this set of experiments, the efficiency of the SNC algorithm in terms of reducing 

the total half perimeter wire length and runtime is tested. 
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Table 5.15: Statistics of clustering results with and without skipping long nets on 
ISPD05 benchmark circuits 

Circuit 
Max 

net deg. 
Without skipping long nets Skipping long nets Runtime 

comp. CCR NCR Runtime(s) CCR NCR Runtime(s) 

adaptecl 2271 63.80 67.15 161 63.81 69.06 111 0.69 
adaptec2 1935 57.53 60.87 225 57.64 62.49 168 0.75 
adaptec3 3713 56.76 61.39 543 56.77 62.08 328 0.60 
adaptec4 .3974 53.81 57.27 627 53.82 57.87 305 0.49 
bigbluel 2621 61.25 65.04 288 61.28 65.68 197 0.68 
bigb1ue2 11869 59.65 63.86 1949 59.77 64.18 790 0.41 
bigb1ue3 7623 50.72 52.66 2534 50.74 52.88 860 0.34 
bigblue4 20766 56.12 57.98 6212 56.17 58.35 3066 0.49 

Average - 57.45 60.78 - 57.50 61.57 - 0.56 

In Figures 5.14 and 5.15, the placement wire length and runtime comparisons on 

ICCAD04 benchmark circuits are plotted, respectively. From Table 5.16 to Table 

5.23, the placement results of different placers, Capolo.1, FengShui5.1, mFL6, and 

NTliplace3-LE, on ICCAD04 benchmark circuits are reported respectively. In Ta-

ble 5.24, the overall placement wire length and runtime comparisons on ICCAD04 

benchmark circuits are given. 

In Figures 5.16 and 5.17, the placement wire length and runtime comparisons 

on ISPD05 benchmark circuits are plotted, respectively. From Table 5.25 to Table 

5.32, the placement results of different placers, Capolo.1, FastPlace3.0, mPL6, and 

NTUplace3-LE, oii ISPD05 benchmark circuits are reported respectively. In Table 

5.33, the overall placement wire length and runtime comparisons on ISPD05 bench-

mark circuits are given. 

For each of the test placers, the experimental data are given in two tables. The 

first table reports the final placement results with and without the SNC clustering 

application, and the comparison between these two modes. The second table re-

ports the runtime percentage of each stage when the SNC algorithm is used as a 

preprocessing step. For example, Tables 5.16 and 5.20 gives the placement results 

of placer CapolO.1 on ICCAD04 benchmark circuits. In Table 5.16, under "Origi-
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nal CapolO.1", the original half perimeter wire length results and runtime of placer 

CapolO.1 are given in column "HPWL" and "Runtime" respectively. Under "SNC 

+ CapolO.1", the placement results when SNC is applied as a preprocessing step 

are given in a similar way. The comparison results between "SNC + CapolO.1" and 

"Original CapolO.1" are given under "Comparison". 

. ICCADO4 Benchmark Circuits 

a) 
'a 

() 
o 100 
a) 
0 

0 
. 95 
'a 
0. 
E 
0 
o 90 
0) 

a) 

85 

110 

105 

80 

75  
0 

Comparison in percentage between placement wire length 
results wi h SNC clustering and without SNC clustering  

V Capolo.1 
—*-- FengShui5.1 
I mPL6 
0 NTUpIace3—LE 

2 4 6 8 10 12 
ICCAD04 Benchmark Circuit 

14 16 18 

Figure 5.14: Placement wire length comparison in percentage on ICCADO4 bench-
mark circuits 

From Tables 5.16 to 5.24, it can be seen that for ICCADO4 benchmark circuits, the 

proposed clustering algorithm consistently improves the placement HPWL results for 

all tested placers on most benchmark circuits, with a comparable or lower runtime. 

The overall average HPWL and runtime improvements for the 4 test placers are 3% 

and 5%, respectively. For CapolO.1, out of 18 test circuits, the HPWL results for 

15 circuits are improved. The average improvement is about 3%, and the maximum 

improvement is up to 6% for benchmark ibm07. Furthermore, the runtime is also 
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Figure 5.15: Placement runtime comparison in percentage on ICCAD04 benchmark 

circuits 

Table 5.16: Placement results of placer Capolo.1 on ICCAD04 benchmark circuits 

ICCAD04 
circuit 

Original Capolo.1 SNC + CapolO.1 Comparison 
HPWL Runtime HPWL Runtime HPWL Runtime 

ibmOl 2.45E+06 255 2.47E+06 237 1.011 0.931 

ibm02 4.86E+06 452 4.99E+06 407 1.026 0.902 

ibm03 7.28E+06 555 7.18E+06 605 0.986 1.090 
ibm04 9.02E+06 655 8.78E+06 581 0.974 0.887 
ibm05 1.00E+07 558 1.00E+07 549 1.002 0.984 

ibm06 6.54E+06 782 6.39E+06 692 0,977 0.886 
ibmO7 1.23E+07 1240 1.15E+07 1033 0.937 0.834 

ibm08 1.33E+07 1327 1.27E+07 1138 0.959 0.857 
ibm09 1.43E+07 1297 1.38E+07 1157 0.962 0.892 

ibmlO 3.39E+07 3387 3.23E+07 2657 0.953 0.784 

ibmil 2.11E+07 1949 1.98E+07 1644 0.938 0.843 
ibml2 3.67E+07 2817 3.57E+07 2347 0.974 0.833 
ibml3 2.63E+07 2478 2.52E+07 2159 0.958 0.871 

ibml4 3.98E+07 4448 3.86E+07 3947 0.969 0.887 
ibml5 5.37E+07 6097 5.11E+07 4897 0.953 0.803 
ibml6 6.O1E+07 6578 5.83E+07 5282 0.970 0.803 
ibml7 7.52E+07 7792 7.17E+07 6248 0.954 0.802 
ibml8 4.54E+07 6077 4.50E+07 5142 0.992 0.846 

Average 0.972 0.874 
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Table 5.17: Placement results of placer FengShui5.1 on ICCAD04 benchmark circuits 

ICCAD04 

circuit 

Original FengShui5.1 SNC + FengShui5.1 Comparison 
HPWL Runtime HPWL Runtime HPWL Runtime 

ibm0l 2.36E+06 130 2.29E+06 111 0.971 0.854 
ibm02 5.32E+06 227 5.11E+06 238 0.959 1.051 
ibm03 7.97E+06 265 7.71E+06 272 0.968 1.026 
ibm04 8.59E+06 301 8.04E+06 306 0.936 1.018 
ibm05 9.80E+06 315 9.91E+06 367 1.011 1.163 
ibm06 6.67E+06 408 6.63E+06 384 0.993 0.939 
ibm07 1.12E+07 554 1.10E+07 532 0.980 0.961 
ibm08 1.27E+07 629 1.32E+07 632 1.040 1.004 
ibm09 1.42E+07 644 1.36E+07 634 0.956 0.986 
ibmlO 3.29E+07 965 3.18111+07 917 0.967 0.951 
ibmil 2.03111+07 873 1.99111+07 889 0.981 1.018 
ibml2 3.74E+07 986 3.75E+07 1093 1.004 1.109 
ibml3 2.56E-i-07 1128 2.39E+07 1112 0.936 0.986 
ibml4 3.79111+07 2063 3.79E+07 2023 0.998 0.981 
ibml5 5.11E+07 2478 4.90E+07 2647 0.960 1.068 
ibml6 5.89E+07 2789 5.83E+07 2794 0.988 1.002 
ibml7 6.89111+07 2986 7.02111+07 3286 1.019 1.100 
ibml8 4.43E+07 3118 4.42E+07 3096 0.998 0.993 

Average 11 - 
0.981 1.012 

Table 5.18: Placement results of placer mPL6 on ICCAD04 benchmark circuits 

ICCAD04 
circuit 

Original mPL6 SNC + mPL6 Comparison 
HPWL Runtime HPWL Runtime HPWL Runtime 

ibmOl 2.14E+06 163 2.10111+07 107 0.984 0.660 
1bm02 4.74111+06 253 4.56E+07 270 0.962 1.066 

ibm03 6.94111+06 258 6.41E+07 278 0.924 1.078 
ibm04 7.30111+06 309 7.25113+07 316 0.993 1.022 

ibm05 9.37111+06 320 9.31111+07 338 0.994 1.055 
1bm06 5.80111+06 380 5.87E+07 395 1.012 1.038 

1bm07 9.81111+06 540 9.60E+07 552 0.978 1.023 

ibm08 1.19E+07 767 1.22E+08 617 1.026 0.804 
ibm09 1.24E+07 851 1.20E+08 712 0.968 0.837 
ibmlO 2.78E+07 1016 2.77E+08 1097 0.997 1.080 
ibmil 1.77E+07 1042 1.71E+08 889 0.963 0.853 
ibml2 3.19E+07 1170 3.27E+08 1234 1.024 1.054 
ibml3 2.31111+07 . 1190 2.23E+08 1316 0.968 1.106 
ibml4 3.57E+07 2061 3.46E+08 2255 0.968 1.094 
ibml5 4.72E+07 2487 4.56113+08 2892 0.967 1.163 
ibml6 5.52E+07 3231 5.21E+08 3053 0.944 0.945 
ibml7 6.49E+07 3076 6.33E+08 3612 0.975 1.174 
ibml8 4.24E+07 3082 4.07E+08 3185 0.960 1.033 

Average 0.978 1.005 
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Table 5.19: Placement results of placer NTUplace3-LE on ICCAD04 benchmark cir-

cuits 

ICCAD04 
circuit 

Original NTUplace3-LE SNC + NTUplace3-LE Comparison 
HPWL Runtime HPWL Runtime HPWL Runtime 

ibmOl 2.23E+06 47 2.16E+06 58 0969 1.231 
ibm02 4.64E+06 135 4.63E+06 120 0.998 0.892 
ibm03 6.64E+06 132 6.52E+06 161 0.982 1.218 
ibm04 7.47E+06 164 7.46E+06 206 0.998 1.258 
ibm05 9.69E+06 403 9.57E+06 331 0.987 0.822 
1bm06 6.12E+06 165 5.64E+06 224 0.921 1.356 
ibm07 1.03E+07 395 9.47E+06 361 0.922 0.915 
ibm08 1.26E+07 476 1.17E+07 418 0.934 0.878 
1bm09 1.21E+07 522 1.21E+07 485 0.997 0.928 
ibmlO 2.95E+07 546 2.82E+07 553 0.955 1.012 
ibmil 1.78E+07 658 ]..76E+07 613 0.991 0,931 
ibml2 3.25E+07 820 3.14E+07 756 0.967 0.922 
ibml3 2.27E+07 738 2.20E+07 889 0.970 1.204 
ibml4 3.56E+07 3048 3.40E+07 1798 0.954 0.590 
ibml5 4.69E+07 4152 4.54E+07 2497 0.967 0.601 
ibml6 5.79E+07 3995 5.28E+07 2334 0.912 0.584 
ibml7 7.67E+07 8288 6.87E+07 4918 0.895 0.593 
ibml8 5.55E+07 9338 4.22E+07 5776 0.761 0.618 

Average 11  - 0.949 0.920 
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Table 5.20: Runtime statistics for different stages of SNC + CapolO.1 framework 

on ICCAD04 benchmark circuits 

ICCAD04 SNC Clustering Initial Placement Mapping Placement Legalization 
circuit runtime ratio% runtime ratio% runtime ratio% runtime ratio% 

ibmOl 3 1.27 202.44 85.41 0.1 0.04 31.47 13.28 
ibm02 13 3.19 325.65 79.97 0.18 0.04 68.4 16.80 
ibm03 13 2.15 513.68 84.95 0.2 0.03 77.8 12.87 

ibm04 12 2.07 478.33 82.35 0.25 0.04 90.27 15.54 

ibm05 20 3,64 424.15 77.21 0.28 0.05 104.93 19.10 

ibm06 16 2.31 570.92 82.47 0.28 0.04 105.05 15.18 

ibm07 16 1.55 858.98 83.12 0.4 0.04 157.99 15.29 

1bm08 43 3.78 923.31 81.14 0.44 0.04 171.14 15.04 

ibm09 22 1.90 944.41 81.65 0.47 0.04 189.81 16.41 

ibml0 39 1.47 2317.51 87.22 0.57 0.02 300.12 11.29 

ibmll 26 1.58 1355.72 82.46 0.6 0.04 261.74 15.92 

ibml2 49 2.09 1954.84 83.30 0.61 0.03 342.33 14.59 

ibml3 53 2.45 1780.9 82.49 0.73 0.03 324.38 15.02 

ibm14 58 1.47 3268.35 82.82 1.26 0.03 618.92 15.68 

ibml5 124 2.53 3980.25 81.28 1.39 0.03 791.06 16.15 

ibmiG 96 1.82 4256.69 80.59 1.57 0.03 927.81 17.57 

ibml7 148 2.37 5112.03 81.82 1.68 0.03 985.87 15.78 

ibml8 105 2.04 4191.1 81.51 1.84 0.04 843.74 16.41 

Average - 2.20 - 82.32 - 0.04 - 15.44 



148 

Table 5.21: Runtime statistics for different stages of SNC + FengShui5.1 frame-

work on ICCAD04 benchmark circuits 

JCCADO4 
circuit 

SNC Clustering Initial Placement Mapping Placement Legalization 

runtime ratio% runtime ratio% runtime ratio% runtime ratio% 

ibmOl 3 2.70 75.81 68.12 0.11 0.10 32.37 29.09 

ibm02 13 5.45 161.41 67.70 0.18 0.08 63.82 26.77 

ibm03 13 4.78 178.99 65.87 0.2 0.07 79.55 29.27 

1bm04 12 3.92 203.52 66.48 0.24 0.08 90.37 29.52 

ibm05 20 5.45 235.23 64.09 0.28 0.08 111.51 30.38 

ibm06 16 4.17 263.37 68.68 0.28 0.07 103.85 27.08 

ibm07 16 3.01 356.92 67.05 0.4 0.08 159.03 29.87 

ibm08 43 6.81 407.45 64.50 0.44 0.07 180.77 28.62 

1bm09 22 3.47 433.75 68.39 0.46 0.07 178.06 28.07 

1bm10 39 4.25 591,85 64.52 0.6 0.07 285.83 31.16 

ibmil 26 2.92 603.7 67.91 0.62 0.07 258.61 29.09 

ibml2 49 4.48 690.41 63.14 0.62 0.06 353.46 32.32 

ibml3 53 4.77 729.71 65.65 0.74 0.07 328.09 29.52 

ibml4 58 2.87 1354.36 66.94 1.28 0.06 609.59 30.13 

ibml5 124 4.68 1676.9 63.35 1.4 0.05 844.6 31.91 

ibml6 96 3.44 1783.7 63.85 1.56 0.06 912.38 32.66 

ibml7 148 4.50 2148.69 65.38 1.7 0.05 987.97 30.06 

ibml8 105 3.39 2134.87 68.96 1.87 0.06 854.15 27.59 

Average - 4.17 - 66.14 - 0.07 - 29.62 
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Table 522: Runtime statistics for different stages of SNC + mPL6 framework on 

ICCAD04 benchmark circuits 

ICCAD04 
circuit 

SNC Clustering Initial Placement Mapping Placement Legalization 

runtime ratio% runtime ratio% runtime ratio% runtime ratio% 

ibmOl 3 2.80 70.83 66.06 0.1 0.09 33.39 31.14 
ibm02 13 4.82 196.43 72.78 0.16 0.06 60.47 22.40 
1bm03 13 4.68 193.85 69.79 0.19 0.07 70.9 25.53 
ibm04 12 3.80 215.43 68.24 0.24 0.08 88.25 27.96 

ibm05 20 5.93 212.09 62.84 0.27 0.08 105.44 31.24 

1bm06 16 4.06 268.78 68.14 0.27 0.07 109.69 27.81 

1bm07 16 2.90 366.82 66.44 0.38 0.07 169.28 30.66 

ibm08 43 6.98 402.97 65.40 0.43 0.07 170.21 27.62 

ibm09 22 3.09 501.00 70.37 0.45 0.06 188.92 26.54 

ibrnlO 39 3.56 789.00 71.94 0.56 0.05 268.69 24.50 

ibmll 26 2.93 612.93 68.98 0.59 0.07 249.69 28.10 

ibml2 49 3.97 878.88 71.28 0.6 0,05 305.2 24.75 

ibml3 53 4.03 915.35 69.59 0.68 0.05 347.05 26.38 

ibml4 58 2.57 1550.42 68.80 1.24 0.06 645.21 28.63 

ibml5 124 4.29 1938.53 67.07 1.34 0.05 827.67 28.64 

ibml6 96 3.15 1977.31 64.81 1.54 0.05 977.63 32.04 

ibml7 148 4.10 2417.24 66.95 1.6 0.04 1045.24 28.95 

ibml8 105 3.30 2249.91 70.68 1.83 0.06 828.11 26.02 

Average - 3.94 - 68.34 - 0.06 - 27.72 
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Table 5.23: Runtime statistics for different stages of SNC + NTUp1ace3-LE frame-

work on ICCAD04 benchmark circuits 

ICCAD04 SNC Clustering Initial Placement Mapping Placement Legalization 
circuit runtime ratio% runtime ratio% runtime ratio% runtime ratio% 

ibmOl 

ibm02 
ibm03 
ibm04 

3 
13 
13 
12 

5.18 
10.80 
8.09 
5.82 

24 
50 
69 

86 

41.47 
41.54 
42.92 
41.68 

0.11 
0.18 
0.21 
0.24 

0.19 

0.15 
0.13 
0.12 

30.76 
57.2 
78.55 
108.09 

53.15 
47.52 
48.86 
52.39 

ibm05 20 6.04 204 61.56 0.27 0.08 107.09 32.32 
ibm06 16 7.15 104 46.50 0.28 0.13 103.38 46.22 

ibm07 16 4.43 172 47.61 0.4 0.11 172.84 47.85 

ibm08 43 10.29 201 48.09 0.44 0.11 173.51 41.51 

ibm09 22 4.54 268 55.31 0.47 0.10 194.08 40.05 

ibml0 39 7,06 219 39.62 0.6 0.11 294.13 53.21 

ibmll 26 4.24 323 52.73 0.61 0.10 263 42.93 

ibml2 49 6.48 390 51.59 0.65 0.09 316.28 41.84 

ibml3 53 5.96 483 54.34 0.72 0.08 352.06 39.61 

ibml4 58 3.23 1125 62.56 1.34 0.07 613.92 34.14 

ibml5 124 4.97 1529 61.24 1.46 0.06 842.16 33.73 

ibml6 96 4.11 1254 53.72 1.63 0.07 982.55 42.09 

ibml7 148 3.01 3562 72.43 1.72 0.03 1206.36 24.53 

ibml8 105 1.82 4800 83.11 1.93 0.03 868.57 15.04 

Average - 5.73 - 53.22 - 0.10 - 40.94 
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Table 5.24: Overall wire length and runtime comparison results of 4 test placers on 
ICCAD04 benchmark circuits 

ICCAD04 
circuit 

Overall Comparison 
HPWL Runtime 

ibmOl 
ibm02 
ibm03 
ibm04 
1bm05 
ibm06 
ibm07 
ibm08 
ibm09 
ibmlO 
ibmil 
ibml2 
ibml3 
ibml4 
ibml5 
ibml6 
ibml7 
ibml8 

0.984 
0.986 
0.965 
0.975 
0.999 
0.976 
0.954 
0.990 
0.971 
0.968 
0.968 
0.992 
0.958 
0.972 
0.962 
0.954 
0.961 
0.928 

0.919 
0.978 
1.103 
1.046 
1.006 
1.054 
0.933 
0.886 
0.911 
0.957 
0.911 
0.980 
1.042 
0.888 
0.909 
0.833 
0.917 
0.873 

Average 0.970 0.953 

reduced by about 13% on average. For FengShui5.1, the HPWL results for 14 circuits 

are improved. The average improvement is about 2%. The maximum improvement is 

about 6% for circuits ibm04 and ibml3. However, the runtime is increased by around 

1% on average. For mPL6, there are overall 15 improved HPWL results. The average 

improvement is about 2% and maximum improvement is 7.6% for benchmark ibm03. 

The runtime increase is about 0.5% on average. For NTUplace3-LE, the HPWLs for 

all test circuits are improved, with an average 5% improvement. The runtime is also 

reduced by 8% on average. Especially, for the relatively big ICCAD04 benchmark 

circuits, ibml4 to ibml8, both the HPWL and runtime are significantly improved. 

For example, for circuit ibml8, the HPWL is improved by about 24% and the runtime 

is decreased by 32%. 

31t should be noted that there are two different versions of NTUplace3, called NTUplace3 and 
NTUplace3-LE respectively. NTUplace3 is based on the log-sum-exp wire length model, which is 
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. ISPD05 Benchmark Circuits 

Comparison in percentage between placement wire length results 
with SNC clustering and without SNC clustering 
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Figure 5.16: Placement wire length comparison in percentage on ISPD05 benchmark 

circuits 

Table 5,25: Placement results of placer CapolO.1 on ISPD05 benchmark circuits 

ISPD05 Original Capolo.1 SNO + Capo10.1 Comparison 
circuit HPWL Runtime HPWL Runtime HPWL Runtime 

adapted 9.00E+07 6255.82 8.78E+07 5109.87 0.975 0.817 
adaptec2 9.65E+07 7957.9 9.97E+07 5993.14 1.034 0.753 
adaptec3 2.35E+08 17962.2 2.32E+08 12497.55 0.988 0.696 
adaptec4 2.06E+08 17851.1 2.10E+08 11981.43 1.022 0.671 
bigbluel 1.08E+08 9972.82 1.07E+08 7545.89 0.995 0.757 
bigb1ue2 1.64E+08 19871.8 1.61E+08 15689.84 0.982 0.790 
bigb1ue3 3.85E+08 48447.2 4.04E+08 32923.68 1.050 0.680 

Average 1.006 0.738 

For ISPD05 benchmark circuits, the reported results are also promising. The 

overall average HPWL and runtime improvements for the test 4 placers are 1% and 

a patented technology from Synopsys. NTUpIace3-LE is based on the Lp-norm wire length model. 
Generally the placement results produced by NTUpIace3 are better than those by NTUp1ace3-LE, 
in terms of both wire length and runtime. However, at this time the author is not able to get a 
license to use NTUplace3. Therefore, NTUplace3-LE was used. 
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Comparison in percentage between total placement runtime 
with SNC clustering and without SNC clustering 
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Figure 5.17: Placement runtime comparison in percentage on ISPD05 benchmark 

circuits 

Table 5.26: Placement results of placer FastPlace3.0 on ISPD05 benchmark circuits 

ISPD05 Original FastPlace3.0 SNC + FastPlace3.0 Comparison 

circuit HPWL Runtime HPWL Runtime HPWL Runtime 

adapted 7.88E+07 568.21 7.97E+07 697.99 1.011 1.228 

adaptec2 9.34E+07 949.65 9.26E+07 1095.15 0.992 1.153 

adaptec3 2.12E+08 2093.3 2.33E+08 2703.99 1.096 1.292 

adaptec4 1.99E+08 1810.18 1.96E+08 1918.56 0.986 1.060 

bigbluel 9.70E+07 935.93 1.01E+08 1132.64 1.040 1.210 

bigblue2 1.53E+08 2388.75 1.53E+08 3086.03 0.998 1.292 
bigb1ue3 3.66E+08 4804.68 3.86E+08 6485.53 1.055 1.350 
bigblue4 8.37E+08 10207.3 8.26E+08 13833.22 0.987 1.355 

Average 1.021 1.243 
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Table 5.27: Placement results of placer mPL6 on ISPD05 benchmark circuits 

ISPD05 Original mPL6 SNC + mPL6 Comparison 
circuit HPWL Runtime HPWL Runtime HPWL Runtime 

adapted 

adaptec2 
7.79E+07 
9.20E+07 

3049.67 

3177.07 
7.73E+07 
9.02E+07 

2326.5 

3097.1 
0.992 

0.980 
0.763 
0.975 

adaptec3 2.14E+08 9619.88 2.07E+08 8879.39 0.969 0,923 
adaptec4 1.94E+08 8904.11 1.86E+08 7717.06 0.960 0.867 
bigbluel 9.68E+07 3812.8 9.59E+07 3563.76 0.990 0.935 
bigblue2 1.52E+08 10355.1 1.46E+08 7757.63 0.958 0.749 
bigblue3 3.44E+08 13994.9 3.40E+08 12885.08 0.989 0.921 
bigblue4 8.29E+08 31721.1 8.03E+08 29264.87 0.968 0.923 

Average 0.976 0.882 

Table 5.28: Placement results of placer NTUplace3-LE on ISPD05 benchmark circuits 

ISPD05 Original NTUplace3-LE SNC + NTUplace3-LE Comparison 

circuit HPWL Runtime HPWL Runtime HPWL Runtime 

adapted 8.06E+07 1635 7.77E+07 1134.29 0.964 0.694 

adaptec2 9.05E+07 1655 8.86E+07 1303.21 0.979 0.787 

adaptec3 2.15E+08 5102 2.12E+08 2906.45 0.984 0.570 

adaptec4 1.96E+08 5267 1.93E+08 2711.24 0.983 0.515 

bigbluel 9.70E+07 3420 9.55E+07 1557.89 0.984 0.456 

bigb1ue2 1.53E+08 5378 1.48E+08 3957.6 0.962 0.736 

bigblue3 3.53E+08 13163 3.34E+08 8248.7 0.946 0.627 

bigblue4 8.36E+08 30369 8.13E+08 17043.03 0.973 0.561 

Average 0.972 0.618 

Table 5.29: Runtime statistics for different stages of SNC + CapolO.1 framework 
on ISPD05 benchmark circuits 

ISPD05 

circuit 

SNC Clustering Initial PLacement Mapping Placement Legalization 

runtime ratio% runtime ratio% runtime ratio% runtime ratio% 

adaptecl 111 2.17 4786.47 93.67 2 0.04 210.4 4.12 

adaptec2 168 2.80 5475.16 91.36 3 0.05 346.98 5.79 

adaptec3 328 2.62 11477.5 91.84 6 0.05 686.05 5.49 

adaptec4 305 2.55 11164.5 93.18 5 0.04 506.93 4.23 

bigbluel 197 2.61 7006.9 92.86 3 0.04 338.99 4.49 

bigb1ue2 790 5.04 13739.2 87.57 6 0.04 1154.64 7.36 
bigblue3 860 2.61 30669.7 93.15 11 0.03 1382.98 4.20 

Average I - 2.91 - 91.95 - 0.04 - 5.10 
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Table 5.30: Runtime statistics for different stages of SNC + FastP1ace3.O frame-
work on ISPD05 benchmark circuits 

ISPD05 
circuit 

I SNC Clustering Initial Placement Mapping Placement Legalization 
runtime ratio% runtime ratio% runtime ratio% runtime ratio% 

adaptecl 111 15.90 249.53 35.75 2 0.29 335.46 48.06 
adaptec2 168 15.34 371.07 33.88 4 0.37 552.08 50.41 
adaptec3 328 12.13 693.11 25.63 5 0.18 1677.88 62.05 
adaptec4 305 15.90 554.2 28.89 9 0.47 1050.36 54.75 
bigbluel 197 17.39 389.11 34.35 4 0.35 542.53 47.90 
bigblue2 790 25.60 633.59 20.53 6 0.19 1656.44 53.68 
bigblue3 860 13.26 1180.01 18.19 11 0.17 4434.52 68.38 
bigb1ue4 3066 22.16 4060.21 29.35 24 0.17 6683.01 48.31 

Average - 17.21 - 28.32 - 0.27 - 54.19 

Table 5.31: Runtime statistics for different stages of SNC + mPL6 framework on 
ISPD05 benchmark circuits 

ISPD05 

circuit 

SNC Clustering Initial Placement Mapping Placement Legalization 

runtime ratio% runtime ratio% runtime ratio% runtime ratio% 

adaptecl 111 4.77 2009.71 86.38 2 0.09 203.79 8.76 

adaptec2 168 542 2544.61 82.16 3 0.10 381.49 12.32 

adaptec3 328 3.69 7564.98 85.20 5 0.06 981.41 11.05 

adaptec4 305 3.95 6712,86 86.99 6 0.08 693.2 8.98 

bigbluel 197 5.53 3108.08 87.21 3 0.08 255,68 7.17 

bigb1ue2 790 10.18 5631.15 72.59 6 0.08 1330.48 17.15 

bigblue3 860 6.67 10290.5 79.86 11 0.09 1723.58 13.38 

bigblue4 3066 10.48 22090.2 75.48 23 0.08 4085.67 13.96 

Average - 6.34 - 81.98 - 0.08 - 11.60 

Table 5.32: Runtime statistics for different stages of SNC + NTUp1ace3-LE frame-
work on ISPD05 benchmark circuits 

ISPD05 
circuit 

SNC Clustering Initial Placement Mapping Placement Legalization 

runtime ratio% runtime ratio% runtime ratio% runtime ratio% 

adaptecl 111 9.79 811 71.50 3 0.26 209.29 18.45 

adaptec2 168 12.89 878 67.37 3 0.23 254.21 19.51 

adaptec3 328 11.29 1888 64.96 5 0.17 685.45 23.58 

adaptec4 305 11.25 1881 69.38 6 0.22 519.24 19.15 

bigbluel 197 12.65 1105 70.93 4 0.26 251.89 16.17 

bigb1ue2 790 19.96 2137 54.00 7 0.18 1023.6 25.86 

bigblue3 860 10.43 5380 65.22 13 0.16 1995.7 24.19 

bigb1ue4 3066 17.99 10316 60.53 26 0.15 3635.03 21.33 

Average - 13.28 - 65.49 - 0.20 - 21.03 
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Table 5.33: Overall wire length and runtime comparison results of 4 test placers on 
ISPD05 benchmark circuits 

ISPD05 
circuit 

Overall Comparison 
HPWL Runtime 

adapted 0.986 0.875 
adaptec2 0.996 0.917 
adaptec3 1.009 0.870 
adaptec4 0.988 0.778 
bigbluel 1.002 0.839 
bigb1ue2 0.975 0.892 
bigblue3 1.010 0.894 
bigblue4 0.976 0.946 

Average 0.993 0.877 

12%, respectively. For Capol0.1, out of 7 test circuits,4 the HPWL results for 4 

circuits are improved. On average, the HPWL results are increased by only 0.6%. 

Furthermore, the runtime is reduced by about 26% on average. For FastPlace3.0, 

the HPWL results for 4 circuits are improved. On average, the HPWL results have 

a 2% increase. Besides, the runtime is increased by around 24% on average. For 

mPL6, all HPWL results are improved. The average improvement is about 2% and 

maximum improvement is 4.2% for benchmark circuit bigb1ue2. In addition, the 

runtime is reduced by about 12% on average. For NTUplace3-LE, the HPWLs for all 

test circuits are improved too. The average improvement is about 3% and maximum 

improvement is 5.4% for benchmark circuit bigblue3. At the same time, the runtime 

is significantly improved by 38% on average. 

5.6 Summary 

In this chapter, three algorithms are proposed to obtain the final clustering solutions. 

The first algorithm is a scoreless technique, and the other two algorithms are score-

based clustering techniques. All of these algorithms are able to remove cell overlap 

between clusters. The characteristic of each algorithm can be summarized as follows. 

4Capolo.1 run out of memory for benchmark circuit bigblue4 on our workstation. 
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• The scoreless algorithm finalizes a cluster once the cluster is identified. The 

cells in this cluster are not considered for further clustering. Two nonrandom 

cell ordering techniques are proposed in this algorithm to obtain the clustering 

solutions with balanced sizes. 

• The cluster score-based algorithm uses the scores to determine the cluster pri-

orities for clustering. The clusters with higher scores are clustered first. The 

cell overlap problem is solved by discarding some clusters. 

• The score-based net cluster algorithm represents a major contribution of this 

thesis. It introduces a net scoring technique to solve the cell overlap problem 

by mimicing the widely used force-directed model. As a result, this technique 

can produce high quality clustering solutions and at the same time, reduce the 

netlist to a low clustering ratio. 

The scoreless and score-based algorithms have been tested in the context of cir-

cuit partitioning and placement. The experimental results verify the effectiveness of 

these algorithms. State-of-the-art circuit partitioning and placement tools have been 

further improved by using these clustering techniques. 



Chapter 6 

Conclusions and Future Work 

6.1 Summary and Contributions 

The research work presented in this thesis is focused on clustering algorithms for VLSI 

circuit partitioning and placement. Circuit partitioning and placement are two funda-

mental optimizations problems in VLSI physical design, and the algorithms for circuit 

partitioning and placement have a deep impact on the overall circuit performance. 

With the increasing size and complexity for today's circuits, clustering algorithms 

have become popular in current partitioning and placement tools to effectively deal 

with the large scale designs. Most of current clustering algorithms are greedy in 

nature, therefore, the performance of current clustering algorithms can be further 

improved. This improvement on clustering algorithms can result in improvement of 

the partitioning and placement tools. 

The main contributions of this thesis can be summarized as follows. 

• The gain clustering concept, a new clustering concept, is proposed. The cell 

connectivities in a gain cluster are considered as a whole, instead of in the 

standard greedy pair wise manner. As a result, gain clusters have improved 

quality. 

• Three single gain cluster identification algorithms are proposed. One of these 

algorithms is a scoreless clustering technique, and the other two are score-based 

clustering techniques. The clustering statistical study shows that the score-

based gain cluster algorithm, using the seed net technique, can produce a so-

lution with a low clustering ratio, which is more suitable for large scale circuit 

158 
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design. 

• A net scoring technique is proposed. This net scoring technique is motivated 

by the force-directed model, and can be used to effectively solve cell overlaps 

between different gain clusters identified by our new algorithms. 

• A score-based net cluster algorithm is proposed. This algorithm combines the 

score-based single gain clustering algorithm, using seed nets, and the net scoring 

technique together. It can produce high quality clustering solutions with lower 

clustering ratios. 

• All of the proposed clustering algorithms have been compared with other pop-

ular clustering techniques, such as FirstChoice and best choice. The proposed 

algorithms are also tested as a preprocessing step for circuit partitioning and 

placement. The experimental results on ISPD98, ICCADO4 and ISPDO5 bench-

mark circuits show that by using the proposed clustering algorithm, the perfor-

mance of state-of-the-art partitioning and placement algorithms are consistently 

improved. 

• A software package in C++ has been developed. The code will be released 

as open source software. The package includes the implementations of the 

proposed clustering algorithms, and other useful utilities for circuit clustering, 

partitioning and placement study. 

6.2 Future Work 

As for the future work, the following directions deserve to be investigated. 

• The implementation of a library interface of the proposed score-based net cluster 

algorithm. This algorithm overall shows great potential to improve both the 
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placement solution quality and runtime. However, currently it is not seamlessly 

integrated into a placer. The library interface of proposed clustering algorithm 

will be available on line soon. 

• A more efficient implementation of proposed clustering algorithm. The runtime 

of the proposed clustering algorithm can be further improved. 

• Investigation of the new cluster score functions. Different cluster score func-

tions can result in different clustering results. The design of new cluster score 

functions is still on open problem. 

• Extension of the connectivity model in gain clusters to other clustering algo-

rithms. The connectivity model proposed in gain clusters can be applied to other 

clustering techniques, and improve the solution quality by those techniques. 

• Application of the proposed clustering techniques on industrial placers. The 

proposed clustering techniques have shown to be effective for academic placers, 

and can further be used or adapted for industrial placers. 
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