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ABSTRACT

An adaptive power system stabilizer based on recurrent neural networks is develope-
ded in this dissertation. The Real-Time Recurrent Neural Networks with the Real
Time Recurrent Learning (RTRL) algorithm are applied in the design of a recurrent
neural network based power system stabilizer (RNN PSS). The structure and training
procedure of the proposed RNN PSS are discussed.

The architecture of the proposed RNN PSS has two recurrent neural networks.
The first one functions as an identifier to learn the dynamic characteristics of power
plant. the second one functions as controller to damp the oscillations of power plant
caused by different disturbances. The training of these two neural networks has two
stages: off-line training and on-line update. There is no reference model needed for
the proposed RNN PSS. It is trained directly based on the input and output of the
plant.

Simulation studies and comparison between the proposed RNN PSS and the con-
ventional PSS are conducted on both a single-machine infinite-bus power system
model and a multi-machine power system model. The results demonstrate the effec-
tiveness of the proposed RNN PSS in damping oscillations in the power system.

The designed RNN PSS is also implemented on a TMS320C30 Digital Signal Pro-
cessing Board in a real time enviroment, and applied to a physical power system which
consists of micro-alternator, DC motor, ABB PHSC2 PLC. The laboratory test re-
sults show that the prototype RNN PSS can provide a good response compared to

the conventional PSS.
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CHAPTER 1

INTRODUCTION

1.1 Power System and Stability

Today. the electrical power systems are no longer operated as isolated systems, but
as interconnected systems which may include thousands of electric elements and be
spread over vast geographical areas. The advantages of interconnected power systems

are that they[1][2]:
e provide large blocks of power and increase reliability of the system.

e reduce the number of machines which are required both for operation at peak

load, and required as spinning reserve to take care of a sudden change of load.
e provide economical sources of power to consumers.

On the other hand, interconnection of systems also brings about new problems.
The interconnecting ties between neighboring power systems are relatively weak when
compared to the connections within the system. It easily leads to low frequency in-
terarea oscillations. Many of the early instances of oscillatory instability occured at

low frequencies when interconnections were made.

The study of power system stability is an interesting topic in electrical engineering

research. Power system stability may be defined as[1]:

The property of the system that enables synchronous machines of a system
to respond to a disturbance from a normal operating condition so as to

return to a condition where their operation is again normal.
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Depending on the nature and order of magnitude of the disturbance, stability

studies are usually classified into three types. namely(1][2]{3]:

Steady State Stability - It refers to the behaviour of a power system around a
fixed operating point; the system is subjected to small and gradual changes in

the operating conditions.

Dynamic Stability - It refers to the long time response of a power system to rel-
atively small disturbances. It differs from the steady state stability because it
assumes that the system is steady state stable, and the system is subjected to

small disturbances.

Transient Stability - It is aimed at determining if a system will remain in synchro-
nism following major disturbances such as transmission system faults, sudden
load changes, loss of generating units, or line switching. Transient stability prob-
lems can be subdivided into first-swing problems where the time period under
study is the first second following the disturbance , and multiswing stability

problems where the period under study may be extended to over 10 seconds.

For the steady state and dynamic stability problems, a power system can be mod-
eled by linear differential equations. For the tranmsient stability problem, a power
svstem must be represented by nonlinear differential equations. In all stability stud-
ies. the objective is to determine whether or not the rotors of the machines being

perturbed return to constant speed operation.

1.2 Power System Damping Control Strategies
A common problem in small and large power systems is the inherent nature of oscil-

latory instability[4]. During the past decades, many methods have been investigated
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to improve the stability of power systems. Generally speaking. the damping control

strategies can be divided into two broad groups:
e add damping control in the transmission path.

e add damping control at generator location.

1.2.1 Damping control in the transmission path

High-voltage direct current (HVDC) transmission plays an important role in
improving system stability{5][6][7][S]. This is because there is no requirement to
maintain synchronism for HVDC. On the other hand, HVDC provides positive oscil-
lation damping because an HVDC link can change its power flow in accordance with
AC system needs much faster than any power plant.

The principal disadvantage of HVDC is the cost and complexity of the rectifier-
inversion equipment. Another disadvantage is that HVDC will generate harmonics
in the AC system.

Flexible ac transmission system (FACTS) owes its tighter transmission con-
trol to its ability to manage the interrelated parameters that constrain power system
such as series impedance, shunt impedance, phase angle etc[9][10] [11][12]. Some

FACTS controllers are listed below[13]:

e Static Var Compensator (SVC) uses thyristor valves to rapidly add or remove

shunt-connected reactors and/or capacitors.

e Thyristor controlled series capacitor (TCSC) can vary the impedance continu-

ously to levels below and up to the transmission line’s natural impedence.

e Static condenser (Statcon) generates reactive power and its polarity can be

controlled by controlling the voltage.
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e Phase angle regulator shifts voltage phase by adding or subtracting a variable

voltage component that is perpendicular to the phase voltage of the line.

e Unified power controller obtains a net phase and amplitude voltage change that

confers control of both active and reactive power.

Like HVDC, the main drawback of FACTS controllers is the cost.

1.2.2 Damping control at generator location

Excitation control is one type of damping control at generator location. It is preferred

for the following reasons:

e the electrical system has much smaller time constants than the mechnical sys-

tem,

e an electrical control system is more economical and easy to implement than a

mechanical control system,

e because of small loop time constant, an electrical control system is effectively a

continuously acting system; therefore, it can give smooth system response.

Generator supplementary excitation control, commonly refered to as Power System
Stabilizer (PSS), is the first choice for enhancing the damping ability of an excitation
system [14][15]. The basic function of a PSS is to extend stability limits by modulating
generator excitation to provide damping to oscillations of synchronous machine rotors
relative to one another. These oscillations of concern typically occur in the frequency
range of approximately 0.2 to 2.5 Hz, and insufficient damping of these oscillations
may limit the ability to transmit power. To provide damping, the stabilizer must
produce a component of electrical torque on the rotor which is in phase with speed
variation. The PSS input signals are usually one of the following or a combination of

them:
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speed deviation

acceleration

bus frequency deviation

electrical power deviation

1.3 Types of Power System Stabilizers

Power System Stabilizers{PSS) have been studied extensively in the recent decades.

Various techniques have been applied for PSS design.

1.3.1 Conventional Power System Stabilizer

The earliest PSS developed is called conventional PSS (CPSS) [16] [17] [18] [19] [20]
[21] [22] [23][24] - It is based on the use of a transfer function designed using the
classical control theory. It uses a lead-lag compensation network to compensate for the
phase shift caused by the low frequency oscillation of the system during perturbations.
By appropriately tuning the parameters of a lead-lag compensation network, it is
possible to make a system have desired damping ability.

However, power systems are highly non-linear systems. The linearized system
models used to design conventional power system stabilizers are valid only at the
operating point that is used to linearize the system. As a fixed parameter controller,
CPSS can not provide optimal performance under very wide operating conditions

which power systems usually have. Therefore, the following problems are presented

in the design of CPSS:

e How to choose a proper transfer function for a PSS that will give satisfactory

supplementary control signal, covering all frequency ranges of interest.

e How to effectively tune the PSS parameters,



e How to automatically track the variation of the system operation condition,
e How to consider the interaction between the various machines.

Lots of research has been carried out to solve these problems. One of the solutions
is an adaptive controller that has the ability to automatically tune itself to a new

environment.

1.3.2 Adaptive Power System Stabilizer

A large amount of work has been done on adaptive PSS (APSS) design[25][26] [27][28][29].
Most of the adaptive PSSs use self-tuning adaptive control scheme, as it is one of the
most effective adaptive control schemes. The structure of a self-tuning adaptive PSS
has two parts: an on-line parameter identification and a control strategy.

At each sampling period, a mathematical model is obtained by on-line identifi-
cation method to track the dynamic behavior of the plant. Different identification
techniques have been proposed. In self-tuning adaptive PSS design, the recursive
least squares (RLS) method is widely used for its simplicity, very good numerical
stability and fast convergence property.

The control strategy calculates the control signal based on on-line identified paramters.
There are several control strategies that can be used in a self-tuning adaptive control
such as: minimum variance (MV) control strategy, generalized minimum variance
(GMV) technique, pole assignment (PA) control strategy and pole shifting (PS) con-
trol strategy.

Studies have shown that an adaptive PSS can adjust its parameters on-line ac-
cording to the change in the environment, and maintain desired control ability over a
wide operating range of a power system. The main limitation of adaptive control is

that it takes a large amount of computing time for on-line parameter identification.



1.3.3 PSS Based on Fuzzy Logic Theory

Fuzzy logic control (FLC) is one of the new techniques that has gained increasing
attention in power system control[30][31](32] [33][34][35] - It models a complex system
by using a higher level of abstraction that is originated from accumulated knowledge,
and expresses the knowledge with subjective concepts that are mapped to numeric
ranges. The relative simplicity of FLC decreases the developement time and cost.

The basic fuzzy logic controller includes four components:
e fuzzification: transfer the crisp input variables to corresponding fuzzy variables.

e rule definition ( knowledge base): contain the meaning of the linguistic values

of the process state and control output variable.

e inference: obtain the firing strength of each rule according to membership val-

ues.

e defuzzification: convert the set of modified control output values into nonfuzzy

control values.

The limitations of FLC are: first, sometimes it is not easy to establish a knowledge
base for FLC. Second. for most FLCs, their membership functions are decided off-line,
and kept unchanged during the on-line operation. From this view-point, FLC can be

considered as a fixed parameter controller.

1.4 PSS Based on Artificial Neural Networks

Artificial neural networks (ANN) have become a useful tool in many engineering
disciplines since 1980s, because they have the potential to treat many problems that

cannot be handled by traditional analytic approaches. A neural network is a system
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with inputs and outputs and is composed of many simple and similar processing
units called neurons. Each neuron has a number of internal parameters called weights.
Changing the weights of neurons alters the behavior of these neurons and also changes

the behavior of the whole system.

1.4.1 Advantages of Neural Network

The use of neural networks provides the following useful properties and capabilities:
e Nonlinearity

A neuron is a nonlinear unit. A neural network, made up of an in-
terconnection of neurons, is itself nonlinear. Theoretically, a neural

network has the ability to approximate abitrary nonlinear mappings.
e Learning and adptation

Neural networks have built-in ability to adapt their weights to changes
in the surrounding environment. A neural network trained to operate in
a specific environment can be retrained to deal with a new environment.
A properly trained network also has the ability to generalize when

presented with the inputs not encountered during learning procedure.
e Parallel distributed processing

Neural networks have a highly parallel structure and the basic pro-
cessing element in a neural network has a very simply structure. This
makes neural network potentially fast for the computation of certain
tasks and ideally suited for parallel implementation using Very-Large-

Scale-Integrated technology.

e Uniformity of Analysis and Design



Basically, neural networks enjoy universality as information processors
since the same notation is used in all the domains involving the appli-

cation of neural networks.
e Multivariable systems

Neural networks naturally process many inputs and have many out-
puts. This is very attractive in control area application since the neural

networks are readily applicable to multi-input multi-output system.

1.4.2 Limitations of Neural Network

However, a neural network technique is not a perfect one. It also has some drawbacks:

e There is no systematic method to decide the neural network structure for dif-
ferent application, i.e., how many layers should be used in the network, how
many neurons should be employed in the layers. It is usually decided by a trial

and error method.

e There is a long training time for the neural network to be trained properly. The

more complex the system, the longer the time.

e The neural network has a black bor characteristic. It is difficult to understand

the information stored in the network.

1.4.3 Neural Network Application in Power System

A power system is a complex system. It can be characterized as non-linear, large-
scale, dynamic, stochastic, time-variant parameter system, etc. With the advantages
of neural networks mentioned above, neural networks provide exciting alternatives
for power system problem solutions. The application of neural networks in power

systems is summarized as follows: [36]



(1) System Planning

e Load Forecasting

e Economic Load Dispatching
e Unit Commitment

e Forecasting of Harmonics

e Network Reconfiguration

Generation Expansion and Maintenance Scheduling

(2) Security Assessment

e Dynamic Security Assessment
e Static Security Assessment

e Voltage Security Assessment
(3) Fault Detection and Diagnosis

e Alarm Processing
e Component Fault Detection
e Power System Fault Detection

(4) Control

e Machine and Plant Control
e Optimum Power Flow

e Voltage Reactive Power Control
(5) Analysis

e Parameter and State Estimation

10
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e Machine, Plant and System Modeling

e Load Modeling
e Power Flow Calculation

e Harmonics Evaluation

(6) Protection

1.4.4 Neural Network in PSS design

Applications of artificial neural networks in power system stabilizer design have been
reported since the early nineties.

In [37], an artificial neural network is investigated to tune the parameters of a
conventional PSS based on generator loading conditions. A proportional- integral
(PI) PSS is also employed in the research. A pair of on-line measurements, generator
real power output (P) and power factor (PF), are chosen as the input signals. The
outputs of the neural network are the desired PSS parameters: the gain setting K,
and K. The type of neural network in this paper is multilayer feedforward network.
The neural network is trained off-line.

In [38], 2 neural network based regulator is proposed for non-linear, multivariable
turbogenerator. The NN regulator consists of two neural networks which are used
for input-output mapping and control, respectively. The multilayer feedforward net-
work with the back-propagation training algorithm is employed. The neural network
provides control signals for both excitation system and governor.

An artificial neural network based adaptive PSS is proposed in [39]. This PSS
combines the advantages of self-optimizing pole shifting adaptive control strategy and
the quick response of ANN. Again, the type of ANN in the design is the multilayer
feedforward network trained with back-propagation algorithm. After the training is

finished, the weights of the neural network are kept constant for on-line application.
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Later in [40], a neural network based PSS is trained to learn the reverse input/output
mapping of the generating unit and work as the inverse plant. The shaft speed
deviation and past control signals are inputs to the neural network. Further, in [41],
a multi-input ANN PSS is developed to function as the inverse plant. The inputs
of the neural network are the generator speed deviation. electrical power deviation
and previous control signal. In all three ANN PSSs, only one neural network is
emploved, and the output of the neural network is the supplementary control signal.
A similar ANN PSS structure is also introduced in [42]; however, the ANN PSS is
trained by samples obtained from power system controlled by nonlinear PSS. The
hack-propagation algorithm is modified with variable learning rate and momentum
factor.

In [43], an adaptive neuro-control system is studied for power system stabiliza-
tion. The proposed control system consists of two multi-layered feedforward neural
networks that function as an identifier and a controller, respectively. The inputs for
the neural network are Aé, Aw, Aey, Aesq and AP,. The output is also the sup-
plementary control signal. An ANN PSS with neuro-identifier and neuro-controller is
also presented in [44]. The ANN PSS is tuned by on-line training algorithm, and the
inputs for ANN PSS are measurable variables from generator units.

In [45], a PSS combining fuzzy logic control and neural network is reported. A
five-laver feedforward network is employed to represent the fuzzy logic system. The
parameters in membership functions and inference rules are adjusted by the back
propagation algorithm. To train the new controller, a self-optimizing pole-shifting
APSS has been used for providing the training data. The input of network is gen-
erator speed deviation Aw and its derivative Aw. A similar neuro-fuzzy controller
architecture is also reported in [46], where an adaptive neural network based fuzzy
inference system is used to control low-head hydro power plant. The proposed con-

troller provides control signals to exciter system and governor. In [47], a fuzzy logic
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PSS based on neural network with self-learning ability is reported. The new PSS is

trained directly from the input and output data of the generating unit. It does not
need a desired controller to provide training data.

The successful digital simulation results in those papers show that neural networks

have a considerable potential in power system stability study. By far the multi-layer

feedforward network is the most common neural network emploved in current re-

search.

1.5 Dissertation Objectives

The design of an adaptive power system stabilizer based on recurrent neural network is
studied in this dissertation. It is hoped that the research work will make a contribution
to the development of a power system stabilizer based on artifical neural networks.

The objectives of this dissertation are listed in the following aspects:

e Investigate the theory of ANN, architectures of the different ANN types, and
learning algorithms for ANN. Discuss the feasibility of different ANNs for power

system control. Select a specific type of ANN suitable for PSS application.

e Design a framework of new power system stabilizer based on recurrent neural
networks. To obtain the proper information about the plant. besides a neu-
ral network controller, a neural network identifier is introduced in the control

system.

e Develop a control algorithm for the proposed PSS. The neural network PSS has
self-learning ability. It does not need another PSS to provide training data as it
is trained directly from the input and output data of the controlled generator.

On the other hand, power systems are not fixed. The operating conditions or the
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structure of the power system network change from time to time. Therefore, it is

desired that the parameters of the neural network PSS can be tuned adaptively.

e Behaviour of the neural network PSS is investigated both in the single ma-
chine infinite bus environment and the multi-machine power system environ-
ment through computer simulation. The results are also compared with the

results of the conventional PSS.

e In addition to the computer simulation studies, implement the proposed PSS in
a physical laboratory environment, and test the performance of the RNN PSS

on-line.

1.6 Contributions of Dessertation

The main contribution can be summarized as follows:

e The recurrent neural networks are employed in the design of PSS. For the recur-
rent neural network, its present outputs not only depend on present inputs but
also depend on past inputs and outputs. This kind of input/output relationship

is also true for the design object — generating unit.

e An adaptive control algorithm is developed. Therefore, the neural network PSS
has self-learning ability. In the design procedure. the mathematical model of
the generating unit is not linearized at any special generator operation points.

Also, there is no reference model needed for the RNN PSS.

e The behavior of the neural network PSS is simulated off-line on a SUN worksta-
tion for a single machine infinite bus system and a multi-machine power system.

The theoretical simulation studies verified the effectiveness of the neural net-

work PSS.
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e The laboratory implementation of the RNN PSS is tested in a real-time envi-
ronment. The results illustrate that the RNN PSS can provide better damping
effect than CPSS. It also shows that the proposed PSS is practical in the sense
that it is feasible to install a RNN PSS by using commonly available computer

hardware and obtain satisfactory performance.

1.7 Summary of Dissertation Chapters

This dissertation has seven chapters as outlined below:

o Chapter 2 gives an overview of the artifical neural network. Fundamentals of
different artifical neural networks are presented, followed by a discussion on
the training algorithm of different neural networks. Based on the comparison
of the characters of the different types of ANNs and their suitability to power
system control research. the recurrent neural network is selected for the new

PSS design.

e Chapter 3 presents application of artificial neural networks in dynamic system
identification and control. The structure of the adaptive PSS based on recurrent
neural networks is proposed. The control algorithm of the new PSS is also

discussed in this chapter.

¢ Computer simulation studies are given in Chapter 4. The performance of the
proposed Recurrent Neural Network based PSS (RNN-PSS) is studied in a
single-machine infinite bus power system with different types of disturbances
under various operating conditions. The results are also compared to that of a

CPSS.

e In Chapter 5 the behaviour of the proposed RNN-PSS is investigated in a multi-
machine power system. The response of the RNN-PSS to different local and

inter-area oscillation models is studied.
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e Implementation and experimental studies of the proposed RNN PSS are given
in Chapter 6. The real time test environment includes a physical model of the
power system, an ABB PHSC2 PLC and a PC installed with TMS320C30 DSP
board. For comparison, a CPSS is also implemented in the same environment.

The results obtained from experimental tests are discussed.

e Finally in Chapter 7. conclusions and suggestions for further research in this

area are presented.



CHAPTER 2

ARTIFICAL NEURAL NETWORKS

2.1 Introduction

Today, the term artificial neural network refers to any computing architecture that
consists of parallel interconnections of simple neurons. The motivation is that sci-
entists seek solutions to problems that are difficult with today’s digital computing
technology, problems that are easily solved by human brains.

ANN research has experienced three periods of extensive activity. In the 1940s,
McCulloch and Pitts showed that the neuron can be modeled as a simple threshold de-
vice te perform logic function [48]. From their pioneering work arose the first peak of
modern neural network study. The second occurred in early 1960°s with Rosenblatt’s
Perceptron, Widrow and Hoff’s Adaline, and Steinbuch’s Learning Matrix. However,
when Minsky and Papert pointed out serious limitations of the simple Perceptron in
their book Perceptrons, showing that the Perceptron was only capable of performing
very restricted tasks because of its linearity, the neural network research was lulled
for nearly 20 vears. In the early 1980s, neural networks again showed promise with
the publication of Hopfield's approach of introducing non-linearity and recognizing
the collective power of simple computational elements. The phase of neural network
development after 1982 has led to a plethora of network paradigms and learning
algorithms. However, by far the most popular network learning algorithm is Back-
Propagation of Error(BP) popularized by Rumelhart et al[49]. Cutter Information
Corporation once estimated that BP is used for 95% of neural network applications.

In this chapter, the neuron model and the classification of the ANNs are reviewed
[50] [51] [52] [53] [54] [55] [56]. Several popular neural networks, learning algorithms

and their potential applications in power system control are discussed.
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Figure 2.1. Schematic diagram of a neuron.

2.2 Neuron Model
Neuron is an information processing unit that is fundamental to the operation of a

neural network. A standard model for a neuron is shown in Fig. 2.1. It has three

basic elements:
e A set of synapses or connecting links.
e An adder for summing the input signals

e An activation function for limiting the amplitude of the output of a neuron.

Each of these basic elements are described as follows.
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2.2.1 Synapses

The synapses or connecting links are characterized by weights. For a synaptic weight
wy;. the first subscript refers to the neuron in question and the second subscript refers
to the input end of the synapse to which the weight refers. Specifically, a signal z; at

the input of synapse j connected to neuron k is multiplied by the synaptic weight wg;

2.2.2 Adder

An adder is used for summing the input signals, weighted by the respective synapses
of the neuron.
In mathematical terms, the adder can be described by the following equation:

p

U = Z WikiTy (21)
ij=1
where z,,z,...,z, are input signals; we,Wks,..., Wk, are the synaptic weights of

neuron k; ug is the summing output.

2.2.3 Activation Function

The activation function defines the output of a neuron in terms of the activity level
of its input. Usually, the amplitude range of the output of a neuron is normalized as
the closed unit interval [0, 1] or alternatively [-1, 1].

Six basic types of activation functions are shown in Table 2.1.

Among these activation functions, the sigmoid and hyperbolic tangent functions
are popular. One of the advantages is that they are differentiable. This makes it
possible to derive a gradient search learning algorithm for networks with multiple
lavers. Also, as these two functions are continuous, they are suitable for applications

which require a continuous-valued output rather than the binary output.



Name Formula Characteristics
+1,ifx>0 Non-differentiable,
Threshold Step-like,
0, otherwise Positive
+1,ifx>0 Non-differentiable,
Threshold Step-like,

-1. otherwise

Positive-Negative

+1,ifz > % Differentiable,
Piecewise linear | x if <z <3
0.ifz < —% Positive
Differentiable,
Sigmoid 1
1+ ee= Positive
Hyperbolic tangent e —e™* Differentiable
e+ e = Positive-Negative
Differentiable
_.12
Gausian e
Positive

Table 2.1. Types of Activation Function



2.3 Neural Network Architectures

When neurons are structured into a neural network, different connectivities vield dif-
ferent network behavior. Based on the architecture, neural networks can be grouped

into two categories [34] [53] [36]:
feed-forward networks. in which graphs have no loops, they include:

e Single-layer perceptron;
e Multilayer perceptron;

e Radial Basis Function nets.

recurrent (or feedback) networks in which loops occur because of feedback con-

nection. They include:

e Hopfield network:

e ART models;

e Discrete-Time Recurrent Neural Network;
e Elman Networks

e Kohonen’s Self-Organized Map.

Feed-forward networks are static. They produce only one set of output values
rather than a sequence of values from a given input. Feed-forward networks are
memory-less in the sense that their response to an input is independent of the previous
network state.

On the other hand, recurrent or feed-back networks are dynamic systems. Their
outputs are a function not only of the current inputs, but also past inputs or outputs.
Their node equations are typically described by differential or difference equations.

Recently, there have been a number of studies that investigate neural network ar-

chitectures that are somewhat between recurrent networks and feedforward networks
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by incorporating local feedback in feedforward networks [57] [38] [59]. Local feedback

can be introduced in one of three ways
(1) local activation feedback,
(2) local synapse feedback,
(3) local output feedback.

All those neural networks can be referred to as local recurrent globally feedforward

neural networks.

2.4 Learning

Different network architectures require appropriate learning algorithms. A learning
process for the neural network can be viewed as the problem of updating network
architecture and connection weights so that a network can efficiently perform a specific

task. Figure 2.2 shows The taxonomy of the learning process is shown in Figure 2.2.

2.4.1 Learning paradigms

A learning paradigm refers to a model of the environment in which the neural network

operates. There are three broad paradigms of learning:
e Supervised learning;
e Unsupervised learning;
e Reinforcement learning.

Supervised learning implies that the system is directed by an external “teacher”

to achieve the desired behaviour. A diagram of supervised learning system is shown
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Figure 2.2. A taxonomy of the learning process
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Figure 2.3. Schematic diagram of supervised learning

in Figure 2.3. In general. it implies that the system is supplied with examples of
input-output samples. The input-output examples used during training are assumed
to be mappings of a function that is to be learned by the neural network. It is
important that the set of training examples is uniformly distributed over the input
space and that it is presented to the learning network in a randomised manner. Firstly
this is necessary to enable statistical independence of the data sets; and secondly, to
introduce noise into the learning algorithm which aids good achievement of an optimal
solution.

Unsupervised learning does not require a correct answer associated with each input
pattern in the training data set, as shown in Fig. 2.4 . The basic idea is to have the
processing units configurate their structure and parameters according to a probability

distribution proportional to the distribution of the input vectors used to train the
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Figure 2.4. Schematic diagram of unsupervised learning

network. It explores the underlyving structure in the data. or correlations between
patterns in the data. and organizes patterns into categories from these correlations.
Reinforcement learning refers to the concept that if a particular action applied to
a syvstem is associated with a satisfactory response. then the trend to reproduce that
action in a similar situation should be enhanced. Figure 2.5 shows the diagram of
reinforcement learning. Reinforcement learning is in many ways similar to supervised
learning because both require information from the interacting environment. How-
ever. Reinforcement learning only provides a scalar performance index, called the
reinforcement signal, without indicating the direction in which the system could be
improved. The network system just knows whether its output is correct or not. The
advantage is that it is not necessary to provide the correct response to individual in-
puts to train the network. This is particularly useful for “on-line” application where

it is usually difficult to know the desirable output resulting from a specified input.

2.4.2 Learning rules

There are four basic learning rules:



Primary reinforcement

A 4

State input vector

Environment Critic

Heuristic reinforcement

........................

Learning
element

I

Knowledge .
base

{

Performance .
. element .

Action

Figure 2.5. Schematic diagram of reinforcement learning

Error-Correction learning;

Boltzmann learning;

e Hebbian learning;

Competitive learning.

2.4.3 Error-correction Learning

The basic principle of error-correction learning rules is to use a cost function based
on the error signal to modify the connection weights to gradually reduce this error.

The error signal can be defined as:

ex(n) = di(n) — yr(n) (2.2)
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where di(n) is the desired response (or training output) for neuron k at time n and
yr(n) is the actual response of this neuron.

The cost function can be defined as :
1 0 )
E(n) = 5 Z ei(n) (2.3)
ok

The network is then optimized by minimizing E(n) with respect to the synaptic
weights of the network. The adjustment made to the synaptic weight wy; at time n
is given by

Awgj(n) = nex(n)z;(n) (2.4)

where 7 is a positive constant that determines the rate of learning. z;(n) is the neuron
input. In other words, the adjustment made to a synaptic weight is proportational
to the product of the error signal ( measured with respect to some desired response
at the output of that neuron) and the input signal of the synapse in question. The

updated value of synaptic weight w;(n+1) can be writen as:

wij(n + 1) = wei(n) + Awii(n) ¢

Q]
(1]
~—

The learning rate parameter  has a profound impact on the performance of the
error-correction learning in that it affects not only the rate of convergence of learning
but also the convergence itself. If n is small, the learning process proceeds smoothly,
but it may take a long time for the system to converge to a stable solution. If, on the
other hand, 7 is large. the rate of learning is accelerated. but now there is a danger
that the learning process may diverge and the system therefore becomes unstable.

A plot of the cost function J versus the synaptic weights characterizing the neural
network consists of a multidimensional surface refered to as an error-performance

surface. There are two distinct suitations for the error-performance surface:

e the error-performance surface is bowl-shaped with a unique minimum point.
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e the error-performance surface has a global minimum (perhaps multiple global

minima) as well as local minima.

In both cases, the objective of the error-correction learning is to start from an
arbitrary point on the error surface and then move toward a global minimum, in a
step-by-step fashion. In the first case this objective is indeed attainable. In the second
case, it is not always attainable. as it is possible for the algorithm to get trapped at
a local minimum of the error surface and therefore never to be able to reach a global

minimum.

2.4.4 Boltzmann Learning

Boltzmann learning is a stochastic learning rule derived from information-theoretic
and thermodynamic principles. The Boltzmann machine is characterized by an energy
function E, the value of which is determined by the particular states occupied by the

individual neurons of the machine, as given by

1 o,
E=—33 3 w;js;si(i # J) (2.6)
24

where s; is the state of neuron i, and wyj; is the synaptic weight connecting neuron
i to neuron j. The machine operates by choosing a neuron at random at some step
of the learning process, and flipping the state of neuron j from s; to -s; at some

pseudo-temperature T, with probability

1

Wilsi = =) = T ean(=AE;/T)

where AFE; is the energy change resulting from such a flip. If this rule is applied
repeatedly, the machine will reach thermal equilibrium.
The neurons of a Boltzmann machine can be grouped into two categories: vistble

and hidden. The visible neurons provide an interface between the network and the
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environment in which it operates, whereas the hidden neurons always operate freely.

There are two modes of operation to be considered:

e Clamped condition. in which the visible neurons are all clamped onto specific

states determined by the environment.

e Free-running condition, in which all the neurons (visible and hidden) are allowed

to operate freely.

The change in the connection weight w;; is given by:

Awy; = n(pi; — pij)- (2.8)

where 7 is the learning rate, and p;; and p;; are the correlations between the states
of units i and j when the network operates in the clamped mode and free-running
mode, respectively. The values of p;; and p;; are usually estimated from Monte Carlo
experiments, which are extremely slow.

Boltzmann learning can also be viewed as a special case of error-correction learning
in which error is measured not as the direct difference between desired and actual
outputs, but as the difference between the correlations among the outputs of two

neurons under clamped and free-running operating conditions.

2.4.5 Hebbian Learning

Hebb’s postulate of learning rule is based on the following observation from neurobio-
logical experiments: If neurons on both sides of a synapse are activated synchronously
and repeatedly, the synapse’s strength is selectively increased.

Mathematically, the Hebbian rule can be described as :

Aw;j(n) = ny;(n)z:(n) (2.9)

wij(n + 1) = wi;(n) + Awij(n) (2.10)
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where z; and y; are the output values of neurons i and j. respectively, which are
connected by the synapse w;;, and 7 is the learning rate.

However in equation. 2.9, if the input signal z; is applied repeatedly, the synaptic
weight w;; will have an exponential growth and finally reach saturation. To avoid
such a situation from arising, a limit needs to be imposed on the growth of synaptic
weights. One method for doing this is to introduce a nonlinear forgetting factor into

the formula for the synpatic adjustment Aw;;(n). It can be redefined as :

Awij(n) = (nz:i(n) — aw;;(n))yx(n) (2.11)

where « is a new positive constant. If nz;(rn) > aw;;j(n), the synaptic weight w;;(n+1)
will increase in proportion to y;. When nzi(n) < ow;;j(n), the the synaptic weight
w;j(n 4+ 1) will decrease in proportion to y;. The use of this method eliminates the
problem of runaway synaptic weight instability.

An important property of this rule is that learning is done locally, that is, the
change in synapse weight depends only on the activitives of the two neurons connected

by it.

2.4.6 Competitive Learning

In competitive learning, the output neurons of a network compete among themselves
for being the one to be active. Only a single output neuron is active at any one time,
whereas in a neural network based on Hebbian learning multiple output neurons may
be active simultaneously.

There are three basic elements to a competitive learning rule:

e A set of neurons that are all the same except for some randomly distributed
svnaptic weights, and which therefore respond differently to a given set of input

patterns.
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e A limit imposed on the "strength” of each neuron.

e A mechanism that permits the neurons to compete for the right to respond to
a given subset of inputs, such that only one output neuron, or only one neuron

per group, is active.

For neuron j, to be the winning neuron, its net internal activity level v; for a
specified input pattern x must be the largest among all the neurons in the network.
The output signal y; of winning neuron j is set to one; the output signals of all the
neurons that lose the competition are set equal to zero.

A neuron learns by shifting synaptic weights from its inactive to active input nodes.
If a neuron does not respond to a particular input pattern, no learning takes place
in that neuron. If a neuron wins the competion, its synaptic weights get updated.
Let w;; denote the synaptic weight connecting input node i to neuron j. The change
Aw;; applied to synaptic weight w;; is defined by:

Args = n(z: — wj;) if neuron j wins the competition
710 if neuron j loses the competition

where 7 is the learning-rate parameter. The effect of this learning rule is to move the
stored pattern in the winner weights a little bit closer to the input pattern. Compet-

itive learning often clusters or categorizes the input data.

2.5 Multi-Layer Perceptron

2.5.1 Configuration

The Multi-Layer Perceptron is formed by cascading neurons in lavers. A four-layer
network ( one input layer, two hidden layers and one output layer) is shown in Fig. 2.6.
The input vector feeds into each of the first layer nodes and the outputs of this layer

feed into each of the second layer neurons, and so on. The output layer of the
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Figure 2.6. Schematic diagram of a multi-layer neural network.



network generates the mapping output. Usually, the neurons are fully connected
between layers, i.e., every neuron in layer [ is connected to every neuron in layer I+1.
However, there is no feedback connection and self-loop connection in the network.
The layers that are neither inputs nor outputs are called hidden layers.

A multi-layer perceptron has three distinctive characteristics:

o The model of each neuron in the network includes a nonlinearity at the output
end. A commonly used form is sigmoidal nonlinearity which is differentiable
everywhere. The presence of nonlinearities is important because, otherwise, the
input-output relation of the network could be reduced to that of a single-layer

perceptron.

e The network contains one or more hidden layers which enable the network to
learn complex tasks by extracting progressively more meaningful features from

the input patterns.

e The network exhibits a high degree of connectivity, determined by the synapses

of the network.

The capabilities of the Multi-Layer Perceptron can be viewed from three different

perspectives.
¢ to implement Boolean logic functions;
e to partition space for classification problems;

o to implement nonlinear transformations for functional approximation problems.

2.5.2 Back-propagation algorithm

One of the factors that make the Multilayer perceptron network so popular is the

back-propagation learning algorithm [49] for determining weights in MLP. Generally,
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in back-propagation there are two passes through the different layers of the network:

a forward pass and a backward pass.

In the forward pass. the weights remain unchanged throughout the network, and

the output signals of the network are computed on a neuron-by-neuron basis. During

the backward pass, the weights are all adjusted in accordance with the error-correction

rule.

First an error signal is produced by subtracting the actual response of the

network from a desired response. It is then propagated backward through the network.

The back-propagation algorithm can be summaried as follows:

1.

[V

Initialize all the synaptic weights and threshold of network to small random

values.

. Propagate the signal forward through the network. Let a training example in

the epoch be denoted by [x(n), d(n)]. The net internal activity level v_gl)(n) for
neuron j in layer [ is:

P
{ { [ P,
vI(n) = 3wl (n)y!(n) (2.12)
=0

where uﬁ)(n) is the weight of neuron j in layer [ that is fed from neuron 1 in
layer ~1. y,(l_l)(n) is the function signal of neuron i in the previous layer £1 at
iteration n. For i = 0, y(()l_l)(n) = -1 and w§~2(n) = 65-1)(1:1), where 9§l)(n) is the
threshold applied to neuron j in layer [ The output signal of neuron j in layer
[is

v = o(vi(n)) (2.13)

where (o(.) is activation function of the neuron j in layer L If neuron j is in the
first hidden layer, set

) = zj(n) (2.14)

where z;(n) is the jth element of the input vector X(n). If neuron j is in the
output layer, set

L
y" = 0j(n) (2.15)
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Hence, compute the error signal
e;(n) = dj(n) — 0(n) (2.16)
where d;(n) is the jth element of the desired response vector d(n)

3. Compute the §’s (i.e., the local gradients) for the preceding layers by propagat-

ing the errors backward, layer by layer L. For neuron j in the output,
L L -~
55 (n) = &7 (n)}(vi(n) (217)
For neuron j in hidden layer [,

89 (n) = ¢l(v;(n)) 3 Sx(n)wii(n) (2.18)
k

4. Hence, adjust the weights of the neural network in laver [ according to the
generalized delta rule:

w(n +1) = W (n) + efw(n) —wP(n — )] + 96O (n)y () (2.19)

n
where 7 is the learning rate parameter and o is the momentum constant.

5. Go to step 2 and repeat for the next pattern until the error in the output layer

is below a prespecified threshold or a maximum number of iterations is reached.

2.6 The Hopfield Network
The Hopfield network is one of the best known dynamic networks [60] [61]. The
structure of a Hopfield network with 4 neurons is shown in Fig. 2.7. It is a single-

layer network with the following characteristics:
e The output of each neuron in the network is fed back to all other neurons.

e There is no self-feedback in the network.
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Figure 2.7. Schematic diagram of a Hopfield network.
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e The weight matrix of the network is symmetric, i.e. the influence of neuron i

on neuron j is equal to the influence of neuron j on neuron i.

The Hopfield network is a nonlinear dynamical system which is capable of exhibit-
ing a wide range of complex behaviour. Depending on how the network parameters
are chosen, it may function as a stable system, an oscillator, or even a chaotic system.
There are two versions of the Hopfield Network: the continuous-time and discrete-
time. The continous-time version will be discussed here.

The behaviour of the network can be described by the differential equation:

N

Tdi = —zi+)_wijy; +w (2.20)
=1

v: = fi(zi),i=1,.... N (2.21)

where z; is the internal state of the ith neuron; y; is the output state of the ith
neuron; w;; is the weight connecting the jth neuron to the ith neuron. Additionally,
wi; = 0 and w;; = wj;; u; is the input to the ith neuron; f; is the sigmoid function of
ith neuron.

The Lyapunov function ( or energy function) can be defined as :

i N N N v N
E=—3Y Y wyys+ L [ FHEE - uiws (2.22)

= i=1 =1 i=1 =1

where p; are positive constants. The time derivative of the above function is given by

[53] [33]:
; N . ) d .
E == Ti(g:2))*[5—f"(y;)] (2.23)
i=1 dy;
Since T; and (y:(t))? are always positive, and f(-) is monotonically increasing, the
inverse output-input relation f~!(-) is also monotonically increasing. E(t) is always

< 0. Therefore, the network solution moves in the same direction as the decrease in

energy. The network will eventually reach an equilibrium point.
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Figure 2.8. Schematic diagram of a real-time recurrent neural network.
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2.7 Real-Time Recurrent Neural Network

2.7.1 Architecture

The structure of a real-time recurrent neural network is shown in Fig. 2.8. It differs

from the Hopfield network in the previous section in two respects:

e The network contains hidden neurons.

e It has arbitary dynamics.

Let the network have N neurons with M external input connections. Let x(t)
denote the M-by-1 external input vector applied to the network at time t, and let
y(t) denote the corresponding N-by-1 vector of individual neuron outputs at time t.
The input vector x(t) and output vector y(t) are concatenated to form the (M+N)-
by-1 vector u(t), whose ith element is denoted by u;(t). Let A denote the set of
indices i for which u;(t) is an external input and let B denote the set of indices i for

which u;(t) is the output of a neuron. Thus,

wo={ 7 Fie (224

The network is fully interconnected in that there are a total of MN forward connec-
tions and N? feedback connections; N of the feedback connections are in self-feedback
connections. Let W denote the N-by-(M+N) weight matrix of the network. In order
to make provision for a threshold for the operation of each neuron, one input whose
value is always -1 is simply included among the M input lines

The network internal activity of neuron j at time t, for j € B, is given by

vi(t) = D wji(t)u(t) (2.25)

teAUB
where A U B is the union of sets A and B. At the next time step t+1, the output of

neuron j is computed by passing v;(t) through the nonlinearity f(-), obtaining:

yi(t +1) = f(v;(t)) (2.26)
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The above two equations constitute the entire dynamics of the network. It is im-
portant to note that the external input vector x(t) at time t does not influence the

output of any neuron in the network until time t+1.

2.7.2 Learning Algorithm

One way to train the weights in this type of recurrent neural network is to convert
the network from a feedback system into a purely feedforward system by unfolding
the network over time. The network can then be trained as if it is one giant feedfor-
ward network. The approach to learning is called backpropagation through time[62].
Another approach, called truncated backpropagation through time [63], tries to ap-
proximate the true gradient by only unfolding the network over the last m time steps.

The third approach is the Real-Time Recurrent Learning (RTRL) algorithm, pro-
posed in [64]. This approach enjoys the generality of the backpropagation through
time method while not suffering from its large memory requirement in arbitrarily long

training sequences. The RTRL algorithm can be summarized as below:

1. Initialize the weights with a set of uniformly distributed random numbers.

2. For every time step t, starting from t = 0, use the dvnamic equations of the
network, i.e., equations ( 2.23) and ( 2.26), to calculate the output values of the

N neurons.

3. Let d;(t) denote the desired response of neuron j at time t, and C(t) denote the
set of neurons that are chosen to act as output neurons. Then the jth element,

e;j(t) of the error vector e(t) is

ei(t) = { d;(t) —y;i(t) ifj e C(t) (2.27)

0 otherwise

The instantaneous sum of squared error at time t can be computed as

B(t) = £ 3 et) (2.28)

< jec



4. The incremental change Awy(t) at time t is calculated as:

JE(t)

awkl

Awkl(t) = —7n

where 71 is the learning rate parameter. Considering equations ( 2.2

2
B
o

( 2.28), equation ( 2.29) can be written as:

_ oy 9yi(2) ,
Awg(t) =n)_ ej(t) Do (2.30)
1€C
The partial derivative %%J”L:ll can be written as
Oy;(t+1) . o Oui(d) 5
o =/ (vj(t))[i%;wn(f) s T k()] (2.31)

where &;; is a Kronecker delta equal to 1 when j =k, and zero otherwise. It
is natural to assume that the initial state of the network at time t = 0 has no

functional dependence on the synaptic weights; therefore;

9y;(0) _ 5 2
=0 (2.32)

Equations ( 2.31) and ( 2.32) hold for all j € B,k € B,and [ € AU B.
5. Update the weight wy in accordance with
wr(t + 1) = wi(n) + Awg(n) (2.33)
and repeat the computation.

One limitation of this algorithm is computational cost at each round.

2.8 Kohonen’s Self-Organizing Maps

In a Kohonen self-organizing map (SOM), the neurons are placed at the nodes of a
lattice that is usually one or two dimensional. The neurons become selectively tuned
to various input patterns (vectors) or classes of input patterns in the course of a

competitive learning process. The locations of the neurons so tuned (i.e., the winning



Inputs

Figure 2.9. Schematic diagram of a Kohonen’s Self-Organizing Map.

neurons) tend to become ordered with respect to each other in such a way that a
meaningful coordinate system for different input features is created over the lattice.
The Kohonen SOM is, therefore, characterized by the formation of a topographic
map of the input patterns, in which the spatial locations of the neurons in the lattice
correspond to intrinsic features of the input patterns. The structure of a Kohonen
SOM is shown in Fig. 2.9. The different shaded cells indicate how the features of
input patterns are represented by Kohonen KOM neurons.

The learning algorithm of Kohenon SOM can be summarized as follows:

1. Initialization. Choose random values for the initial weight vectors w;(0). Select

initial learning rate and neighborhood function.

2. Sampling. Present a pattern x and evaluate the network outputs.
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3. Stmilarity Matching. Find the best-maching (winning) neuron i(x) at time t

using the minimum-distance Euclidean criterion:

i(x) = min||x(t) = wjfl.j = 1.2,... ¥ (2.34)

4. Updating. Adjust the weights vectors of all neurons according to the following

learning rule: if j € N;(t), then
w;(t 4+ 1) = w;(t) + n(£)[x(t) — w;(t)] (2.35)

otherwise:

Wj(f + ].) = Wj(t) (2.36)

where 7(t) is the learning rate parameter, and V;(t) is the neighborhood function
centered around the winning neuron i(x). Both eta(t) and N(t) are varied
dynamically during learning procedure. In [49], it turned out to be advantageous

to let NV; be very wide at the beginning and shrink monotonically with time.

5. Continuation Repeat Step 2 through 4 until the change in weight values is less
than a prespecified threshold or a maximum number of iterations is reached.
2.9 Suitability of Different Neural Networks in Control Sys-

tem Application
The multilayer perceptron (MLP) is the most popular neural network structure em-
ploved in control application [65] [66] [67] [68] [69] [70] [71] [72] [73] . One of the
MLP capabilities is to implement nonlinear transformations for functional approx-
imation problems. The backpropagation algorithm also provides a computationally
efficient method for the traning of multilayer perceptrons. In control applications,

the multilayer perceptrons are reported in:

e adaptive control using generic index,
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e adaptive filtering and prediction
e adaptive non-linear control

e non-linear modeling

e gain scheduling

The self-organising neural network has been employed in robot control[74] [753]. In
[74], the self-organising network first adaptively discretizes the input space and learns
the linear mapping from input space to output space for each discretized cell, then
tunes the action space weights associated with only the winning neuron. However,
the neural controller is used in conjunction with another controller.

The ability of Hopfield network to approximate dynamic systems, in continuous
and discrete time, has been shown respectively in [76] and [77]. The Hopfield network
can also be used as a part of the adaptation mechanism [78] for a linear system. In
this case, the output of the network represents the parameters of the linear model.
The major limitation of hopfield network is that the number of patterns of the control
outputs that can be stored and accurately recalled is severely limited. It has been
shown that the number of classes M must be less than 15% of the number of nodes
N[79]. For a complex nonlinear system like generating unit, a large number of nodes
in a Hopefield network may be required.

In recent years, there has been a growing interest in using recurrent neural net-
work for modeling and controling non-linear systems. The reason is that time is an
important factor in non-linear system control, time needs to be represented by the
effect it has on the signal processing. This means that neural networks should have
dvnamic properties that make it responsive to time-varving signals. However the
representation and processing of temporal information is not an intrinsic capability

of static neural networks as they are memory-less. For the recurrent neural networks,
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their outputs are a function not only of the current inputs. but also past inputs or
outputs. they have important capability to deal with time varying input or output
through their own natural temporal operation. The recurrent neural network can also
be trained by supervised learning method.

Until now. most research of neural network application in PSS design is based on
multilaver perceptrons. In this dissertation, the recurrent neural network with real
time recurrent learning algorithm is employed to design an adaptive neural netwrok

control system.

2.10 Summary
In this chapter, the basic concepts and theories of neural networks are introduced.
The basic element of a neural network, the neuron, has three components: a set
of svnapses, an adder and an activation function. According to the connectivities of
neurons, neural networks can be classified into two groups: feed-forward and recurrent
(or feedback). Three learning paradigms: supervised learning, unsupervised learning
and reinforcement learning, are introduced. Detailed discussion has been given of four
basic learning rules: error-correction learning, Boltzmann learning, Hebbian learning
and competitive learning.

Four types of neural networks, the multilayer perceptrons, the Hopfield network,
the real-time recurrent network and Kohonen SOM, are discussed in this chapter.

The multilayer perceptron is a static network. The input signal propagates through
the network in a forward direction on a layer-by-layer basis. The development of
the back-propagation learning algorithm for determining the weights in a multilayer
perceptron has made multilayer perceptrons very popular.

Hopfield network is a dynamic network. A network energy function is used to
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design and analyse its dynamic behavior. Hopfield network always evolves in the
direction that leads to lower network energy. This implies that if combinatorial opti-
mization problem can be formulated as minimizing an energy function, the Hopfield
network can be used to find optimal ( or suboptimal) solution.

The real-time recurrent network is a feedback network with hidden neurons. It is
trained with a real-time recurrent learning algorithm. This network has a temporal
processing capability through feedback built into its design.

Kohonen’s self-organizing map is a special type of competitive learning network
that defines a spatial neighborhood for each output unit. During the competitive
learning, all the weight vectors associated with the winner and its neighboring units
are updated. Kohonen’s SOM can be used for projection of multivariate data, density
approximation, and clustering.

By comparing the features of the above neural networks and their status in present
research, the real-time recurrent network is selected to design the neural network

based PSS controller in this dissertation.



CHAPTER 3

NEURAL NETWORK IDENTIFICATION AND
CONTROL

3.1 Introduction

The power system is a complex system characterized with terms such as non-linear,
large-scale, dynamical, discrete, stochastic, random-like, time-variant parameter sys-
tem, etc. Among these terms, the non-linear and the large-scale aspects of a system
malke the power system problems hard to solve. In the earlier years of power system
stabilizer research, the power system was treated as linear time-invariant system, then
analvsized by well established techniques based on linear algebra. complex variable
theory, and the theory of ordinary linear differential equations. However, it is difficult
to obtain satisfactory solutions.

Many efforts have been made to develope techniques for the control of systems
with complex, unknown and non-linear dynamics. Several approaches have been pro-
posed: adaptive control[80][81], Liapunov-based control[82][83] robust control[84]{85]
and optimal control[86][87]. Advances in the area of artificial neural networks have
provided the potential of new approaches to the control of such systems. It is well
known that the ability to learn, to perform nonlinear functional approximation, and to
perform massive parallel processing are main advantages that make neural networks
so attractive.

Neural network control represents a unique methodology by which the knowledge
is acquired from sets of training examples and stored in a distributed manner in the
connectionist structure of the network. The distributivity contributes to increased
learning capablities of neural networks because the individual elements in the net-

work are capable of adjusting their connections to achieve near-optimal input-output
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mappings. Distributed learning is also advantageous because it permits a response
to a novel situation to be inferred using knowledge previously learned. in similar but
not exactly the same circumstances. Therefore, the neural network is very suitable
for accommodating a poorly modelled, non-linear dynamical system. It has been
demonstrated in [63] [66] [72] 73] that neural networks can be used effectively for the
identification and control of non-linear dynamical system.

In this chapter, a PSS based on neural networks using an indirect adaptive control
method, is presented. There are two subnetworks in the controller architecture. The
first one acts as a neural network identifier which tracks the dynamic properties of
the plant. The second one functions as a neural network controller which provides

the necessarv control signal to the plant.

3.2 Plant Model

A plant model may be required for several reasons:

e to use within a larger feedback control loop which requires an estimate of the

plant output;
e for predicting the performance of the plant when the true output is unavailable;
e for fault diagnosis;
e for use within an off-line controller design strategy.

In this section four models for the representation of Single-Input Single-Output
(SISO) plants are described. These models can also be generalized to multivariable

case.
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Model I:

n—1
Gk +1) = 3 agplk — ) + gluk)u(k—1).....u(k—m+1)]  (3.1)

Uolk + 1) = Flgp(B)s o = 1)soosgplb—n + D] + 3 Bk —1)  (3:2)

Model III: -
Yok +1) = flyp(E)syplk —1); .. yp(k —n + 1)} +
glu(k).u(k — 1).... . u(k —m + 1)] (3.3)
Model IV:
yp(k+1) = flyp(k),yp(k—1).....55(k —n+ 1)
w(k),u(k —1),...,u(k —~m +1)] (3.4)
where:

o [u(k),y,(k)] are the input-output pair of the SISO plant at time k, and m < n.

e The functions f: #* — R in Models II and III; f: R**™ — R in Model IV, and

g: ™ — R are assumed to be differential functions of their arguments.

In all four models, the output of the plant at time (k+1) depends both on its past n
values, yp,(k—7) (i = 0,1,...,n—1), as well as the past m values of the input u(k —j)
(j =0,1,...,m —1). Dependence on the past values y,(k — 7) is linear in Model I
while in Model II the dependence on the past values of the input u(k — 7) is assumed
to be linear. In Model III. the non-linear dependence of y,(k + 1) on y,(k — %) and
u(k — 7) is assumed to be seperable. Model IV is the generalized model for Models
I-III. A generating unit is non-linear dynamic system. Model IV with multivariables

is apparently more suited for plant model in this study.



3.3 Neural Network for Model Identification

The problem of identification includes setting up a suitably parameterized identifi-
cation model and adjusting the parameters of the model to optimize a performance

function based on the error between the plant and the identification model outputs.

U UNKNOWN | Yp
> PLANT I >

Learning
Algorithm

Figure 3.1. Schematic diagram of forward modelling.

3.3.1 Forward Modeling

A structure for forward modeling is shown in Fig. 3.1. The neural network model
is placed in parallel with the system and the error between the system and network
output is used as the neural network training signal. This learning structure is a
classical supervised learning problem where the plant (acting as a teacher) provides

target values (its outputs) directly in the output coordinate system of the learner



(i.e.. the neural network model).

If it is assumed that the system is governed by the following equation:

yp(k +1) = flyp(k),-- . yp(k —n +1);u(k),.... u(k —m+1)] (3.5)

Then. denoting the output of the network as ym. gives the following equation for

neural model:

~

ym(E+1) = flyp(B)... ook —n + Lsu(k),...,u(k—m+1)]  (36)

where f represents the non-linear input-output map of the neural network. If after a
suitable training period the neural network gives a good representation of the plant
(i.e.. Yym = Yp), then for subsequent post-training purposes. the neural network model

can be described as:
Ym(E+ 1) = flym(k),- .. ym(k —n +1);u(k), ..., u(k — m +1)] (3.7)

and the neural network can be used independently of the plant.

3.3.2 Inverse Modeling

The objective of the inverse modeling is to formulate a controller such that the over-
all controller/plant architecture has a unity transfer function. An inverse modeling
structure is illustrated in Fig. 3.2. Here the control signal is performing as a training
signal. The neural network output is compared with the training signal and this error
is used to train the network. This structure will tend to force the network to represent
the inverse of the plant.

The non-linear input-output relation of the network modelling the plant inverse

can be described as:

u(k) = Fyp(k +1), ..., up(k —n + 1);u(k — 1),...,u(k — m + 1)] (3.8)
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Figure 3.2. Schematic diagram of inverse modeling.

Since y,(¢ + 1) is not available at the time to calculate u(t), the solution to overcome
this problem will depend on the plant modelled.

For the inverse model to be well defined, the training examples must be unique.
This is satisfied when the plant is invertible or if the training data for a non-invertible
plant are contained in a restricted area of the input space so that the plant is locally
invertible. However, if the nonlinear system cannot be mapped one on one under any

consideration, then an incorrect inverse can be obtained.
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Figure 3.3. Schematic diagram of model reference control.

3.4 Neural network for Control

3.4.1 Model Reference Control

The model reference learning control architecture, shown in Fig. 3.3, has been previ-
ously widely used in the linear adaptive control field. Here, the desired performance
of the closed-loop system is specified through a stable reference model which is de-
fined by its input-output pair { r(k), y-(k}}. The control system attempts to make

the plant output y,(k) match the reference model output asymptotically by

lim | v (k) — (k) lI< € (3.9)

where ¢ is a small positive constant. The performance of this control structure de-
pends on the choice of a suitable reference model and the derivation of an appropriate

learning machanism.
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3.4.2 Predictive Learning Control

A predictive learning control architecture is shown in Fig. 3.4. In this approach
a neural network model provides prediction of the future plant response over the
specified horizon. The predictions supplied by the network are passed to a numerical
optimization routine which attempts to minimize a specified performance criterion in
the calculation of a suitable control signal.

The control signal u is chosen to minimize the quadratic performance criterion, J,

subject to the constraint of the dynamical model,

J o= 3 [l ) =yl 9P
+§/\f[u(k+j— 1) —u(k+35-2)P (3.10)

Jj=l



(W]}

J:
where the constants V; and N, define the horizons over which the tracking error and
control increments are considered. The values of A are the control weights.

An advantage of this approach is that the outer loop, consisting of plant model

and optimization routine, is no longer needed when training is complete.

Adaptive Critic Element (ACE)

PLANT >

Associative Search Element (ASE)

Figure 3.5. Schematic diagram of reinforcement learning systems.

3.4.3 Reinforcement learning Systems

Reinforcement schemes are minimally supervised learning algorithms. The only in-
formation that is made available is whether or not a particular set of control actions
has been successful. A control scheme which is composed of two adaptive elements
is shown in Figure 3.5: an Associative Search Element (ASE) and an Adaptive

Critic Element (ACE). The ASE attempts to reproduce the optimal control signal
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which satisfies the given performance objectives; while the ACE attempts to monitor
the performance of the controller internally and to provide an internal reinforcement
signal which is used to train the ASE. The ACE is trained using the external fail-
ure/success signal. The continuous internal training of the control element has been

shown to improve vastly the performance of the overall system.

3.4.4 Direct inverse Control

Direct inverse model is simply cascaded with the controlled system in order that the
composed system results in an identity mapping between desired response and the
controlled system output. Direct inverse control is also based on the assumption that
there exits a one-to-one mapping from the input state to output state. Problems will

be encountered if the mapping from control inputs to plant output is not invertible.

3.5 Proposed Adaptive Controller Based on Neural Network

Due to the nonlinear, time varying and stochastic nature of the power system. it is
essential for a controller to possess the ability to change its own behaviour according
to the changes of the controlled system. Using adaptive control techniques to design
power system stabilizer has drawn attention from both academy and industry. In this
section. an adaptive PSS based on recurrent neural network is presented.

The architecture of the proposed controller is illustrated in Fig. 3.6. It includes
two subnetworks. The first one functions as a neural identifier which will track the
dvnamic activity of the non-linear plant and will be a channel for back propagation
to train the controller network. The second one acts as a neural controller to provide
proper control signal to the plant. The controller structure is very similar to that of

the reference model control mentioned before. However, there is a little difference.
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No reference model is needed for this control scheme since for a complex system such

as power system it is difficult to obtain a proper reference model.

3.5.1 Neural Identifier

First. it is needed to select a proper model of the plant to be identified. The plant

model is considered in format of Model IV mentioned in Section 3.2, i.e.

w(k),u(k —1), ... ,u(k —m + 1)] (3.11)

The forward modeling method discussed in Section 3.3.1 is used, and a recurrent
neural network is trained to assume the nonlinear function f() which represents the
dvnamic relationship of the unknown plant.

For the neural-identifier, the input vector is:

[yl(k)t' ) yl(k - m), s 7yj(k): .- '7yj(k - n)’u(k)7 i 7u(k —p)] (312)

where y,(k), y;(k) are the plant output and (k) is the plant input ( controller output)
at the k-th time step. The output is ¥i1(k + 1), the predicted plant output at time

step (k=+1). Then the performance index of the ANN identifier is :

N| =

Ji(k) = s[u(k) — (k)] (3-13)
The weights in the neural-identifier are updated as below:
Wi(k) =W (k—-1) —n:Vw,Ji(k) (3.14)

where W ;(k) is the matrix of neural identifier weights at instant k, #; is the learning

rate for neural-identifier, and Vw,Ji(k), the instantaneous gradient, is calculated by

Virdi(k) = ~lun(k) — G (B g (315)
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At each sampling instant, the inputs and outputs of the generating unit are sampled,
and a mathematical model of the plant is represented by a recurrent neural network
which updates its weights every sampling period. With this neural identifier, it is

expected that the dynamic behaviour of the generating unit can be tracked.

3.5.2 Neural Controller

For the neural-controller, the input vector is,

1 (k). g2k = m), ., gk, - ys(k — )] (3.16)

The output is u(k), the control signal at time step k. The u(k) is sent to the sys-
tem and the neural identifier simultaneously. The performance index of the neural
controller is:

Jo(k) = F[Adie(k) - yia(k)]® (3.17)

| =

where y14(k) is the desired plant output at time step k. In this study, it is set to be

zero. The weights in the neural-controller are updated as below:
W (k) = We(k — 1) —n.Vw.Je(k) (3.18)

where W (k) is the matrix of neural controller weights at instant k, 7. is the learning
rate for neural-controller, and Vw.J.(k), the instantaneous gradient, is calculated by

9G:1(k), Ou(k)

Vw.J(k) = yl(k)[ Ou(k) ]aW' (k)

(3.19)

For the neural controller, the desired output cannot be defined explicitly. There-
fore, the neural controller has to be trained by driving the neural identifier to generate
the equivalent error. The neural identifier will back-propagate the error between the

desired and predicted plant output to update the weights of neural controller.
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3.5.3 Tranining Methods

One of the important aspects in neural network application is to properly train the
neural network. The training of the proposed adaptive neural network controller has
two steps, off-line training and on-line update. In the off-line training, the structure
of the neural network, i.e. the number of layers and the number of neurons will be
decided. The weights of the neural network will be adjusted to proper value based
on the traning patterns. The training patterns in this study will cover a wide range
of operating conditions and a number of possible disturbances for the power system.
After the off-line training is finished, the proposed controller will be connected to
the power system for on-line update. The parameters of the neural identifier and
controller will be adjusted every sampling period. This allows the controller to track
the dynamic variations of the power system and provide the best control action.
The online updating algorithm of the proposed power system stabilizer can be

summarized as follows:
o At k-th time step, y1(k).y2(k) are sampled.

e y:1{k),y2(k) are used to form input vector of neural-controller at k-th time step.
The output u(k) is calculated. At the same time, the weights of the neural-

identifier are updated to minimize the error between y,(k), and 71 (k)

e y1(k),y2(k) and u(k) are used to form an input vector for the neural-identifier,

and the temporal output y;(k + 1) is calculated.
e The weights of the neural-controller are updated to minimize [ (k + 1)]?

e The output of the neural-controller u(k) is calculated again with the same input

vector and the new weights calculated in the previous step.



61
e The control signal u(k) is applied to the plant. and to the neural-identifier again

to calculate y;(k + 1) for (k+1)-th time step .

In every sampling period, the learning is done only once for both the neural iden-
tifier and the neural controller. This simplifies the training algorithm in terms of

computation time.

3.6 Summary

In this chapter, various plant models are introduced first. Then two schemes for using
neural networks for identification are discussed and various neural network architec-
tures for the control of non-linear system are presented. Based on the discussion, an
adaptive controller based on neural networks is presented. The proposed controller
consists of two subnetworks; a neural network identifier and a neural network con-
troller. The two neural networks are first trained off-line and then their parameters
are updated during on-line operation. The on-line update algorithm allows the pro-
posed controller to track the dynamic behaviour of the controlled plant and provide
the proper control action. Finally, no reference model is needed for the proposed

controller.



CHAPTER 4

SIMULATION STUDY OF ADAPTIVE RNN
PSS IN A SINGLE MACHINE INFINITE BUS
SYSTEM

4.1 Introduction

Studies in the past four decades have shown that a power system stabilizer (PSS) is a
very effective tool to damp the low frequency oscillations in the power system. Since
power system is a highly non-linear dynamic system, to design a PSS which can keep
desired performance under different operating conditions is still a topic that needs
more investigation. Recently new techniques such as artificial neural networks and

fuzzy logic theory have been introduced to the design of PSS.

The conventional PSS is usually designed under a particular operating condition,
and its parameters are fixed at the end of the design procedure. It works well within
a certain range around the design point. When there is a drastic change in the
operating conditions, the conventional PSS may no longer provide fully satisfactory

damping effects.

Power systems are nonlinear and operate over a wide range. They are subject to ran-
dom load changes and the network structure changes from time to time. Therefore,
it is desired to develop a stabilizer which has the ability to adjust its own parameters
on-line according to the environment in which it works to provide satisfactory con-
trol performance. This idea leads to the research and development of power system

stabilizer with adaptivity.
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With their various advantages such as: nonlinearity, input-output mapping, adap-
tivity, fault tolerance, the artificial neural networks have become a useful tool in the
control area since the late 1980s . Especially, since in recurrent neural networks their
neuron outputs have relation not only with present inputs but also with past inputs
or past outputs, i.e. they have dynamic behaviour, there has been a growing interest

in using recurrent neural networks for modeling and control of nonlinear dynamic

svstems in the past few vears [88] [89] [90] [91] [92] [93] [94] [95] [96]-

Artificial neural networks have also been introduced in the design of PSS. Several
papers that applied the artificial neural network in the PSS design have been pub-
lished [37] [38] [39] [40] [41] [42] [43] [44] [45] [47] .Successful digital simulation results
in these papers show that neural networks have a considerable potential in power
system stability study. However, the feedforward Multi-layer Perceptron (MLP) is

the most common neural network emploved in current research.

Application of the adaptive control structure proposed in Section 3.5 as an adap-
tive PSS based on Real-Time Recurrent Neural Network(RTRNN) is presented in
this chapter. In the proposed control system architecture. there are two neural net-
works which act as an identifier and a controller, respectively. The training of ANN
PSS has two stages: off-line training and on-line update. So the recurrent neural
network PSS (RNN PSS) is not designed for a specific operating point. It can track
the variations of operating condition of the power system. The performance of the
proposed ANN PSS under different perturbations and operating conditions is inves-
tigated in the system of one machine connected to an infinite bus through a double

circuit transmission lines.
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4.2 Design of the RNN PSS

The structure of the proposed PSS is shown in Fig. 4.1. It consists of two components:
a control neural network to output the suitable control signal and an identifier neural
network to emulate the system behaviour.

For the neural identifier, the input vector is: (AG(k), APe(k), Uannc(k)). The

output is A@(k + 1). Then the performance index of the RNN identifier is :
Ji(k) = é[/_\.cb(l:) — Aw(k)]? (4.1)
The weights in the RNN identifier are updated as below:
Wi(k) = Wik — 1) — iV, Ji(k) (4.2)
where

e Aw(k) is the generator speed deviation, and Aw is estimated value at instant

k,

APe(k) is the change of electrical power,

Uannc(k) is the control signal output,

AS(E) = [Aw(k), Aw(k — 1),.. ., Aw(k — m)]

APe(k) = [APe(k)APe(k —1),... APe(k — n)]

6¢nnc(k) = [Drannc(k)7 U’annc(k - ]-)7 RN (jannc(k - P)]-

W (k) is the matrix of the RNN identifier weights at instant k,

Vw,J:(k) is the instantaneous gradient,

n; is the learning rate for the RNN identifier.
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For the neural-controller, the input vector is (L\d}(k),Aﬁe(k)). The output is

Uanne(k). The performance index of the RNN controller is:

Jo(k) = F[Ad(k + 1)]? (4.3)

&

| -

The weights in the RNN identifier are updated as follows:
W (k) = We(k — 1) —ncVw.Je(F) (4.4)
where
e W_(k) is the matrix of RNN controller weights at instant k.
o V. J.(k) is the instantaneous gradient,
e 7. is the learning rate for RNN controller.

Since the output of control neural network has no direct connections to A& (k+1),
the identifier neural network is acting as a bridge to back-propagate A&(k+1) to the
control neural network. In this process, the weights of the identifier neural network
are treated as constants.

The algorithm of the proposed power system stabilizer can be summarized as

follows:
e At k-th time step, Aw(k), APe(k) are sampled.

o Aw(k), APe(k) are used to form input vector of neural-controller at k-th time
step. The output Uznnc(k) is calculated. At the same time, the weights of the

neural-identifier are updated to minimize the error between w(k) and w(k)

o Aw(k), APe(k) and U,nnc(k) are used to form an input vector for the neural-

identifier, and the output A& (k + 1) is calculated.

e The weights of the neural-controller are updated to minimize [A&(k + 1)]?
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e The output of the neural-controller Uannc(k) is calculated again with the same

input vector and the new weights calculated in the previous step.

e The control signal U,.n.(k) is applied to the plant. and to the neural-identifier

again to calculate A&(k + 1) for (k+1)-th time step .

4.3 Neural Network Training
The weights of the RNN controller and identifier are first trained off-line. During the

off-line training procedure. the following parameters are decided:

(1) m.n,p. These were selected as 4 based on off-line simulation studies. This
means that , for Aw(k), APe(k) and Usnnc(k), three orders of delay are used as
inputs. Higher order of delays have been tested, however, it does not improved
the performance. Therefore, the ANN controller has 8§ and RNN identifier has

12 input neurons, respectively.

(2) The hidden neuron numbers, three, are assigned to networks at beginning, then
the numbers are increased gradually until 12. The neural networks performance
after training are compared. It is found that 5 and 7 hidden neurons in RNN
controller and RNN identifier respectively provide best performance. Further
increasing the numbers of hidden neurons provides almost the same results but

needs computation.

(4) The weights of the RNN controller and the RNN identifier are set randomly at

+0.03 and +0.04, respectively.

The training data for off-line studies was collected from a wide generator operating
range: the generator output ranging from 0.1 p.u. to 1.0 p.u., the power factor
ranging from 0.8 lead to 0.85 lag. Disturbances, such as input torque step change (+
0.1 p.u.), exciter voltage step change (& 0.03 p.u.) and 3 phase short circuit fault on

one transmission line, are also employed in the training. The sampling time is 30 ms.
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After the off-line training is finished, the weights of the RNN controller and the
RNN identifier will be further updated in the simulation studies described in the fol-

lowing sections.

4.4 System Identification

In the proposed RNN PSS, the neural network controller will calculate the control
signal based on the results of the identifier neural network. Therefore, it is very
important to properly track the system behaviour.

In this section, the proposed RNN identifier is studied in a single machine infinite
bus power system shown in Fig. 4.2. The mathematical models and the parameters
of the generator, AVR, exciter and governor are given in Appendix A. The response
of the RNN identifier after training is compared to the output of the plant. The

sampling period used in the studies is 30 ms.

4.4.1 Normal load condition

With the generator operating at P. = 0.7 p.u. and pf= 0.85 lag, 2 0.10 step increase at
the input torque reference is applied at 1 second. The actual generator speed deviation
and the RNN identifier output are shown in Fig. 4.3. It is clearly demonstrated that

the RNN identifier can closely follow the response of the generator.

4.4.2 Light load condition

In this test, with the generator operating at P, = 0.3 p.u., pf = 0.85 lag, 2 0.15 p-u.
step increase in the input torque reference is applied at 1 second. The response of the
generator speed deviation and identifier output under the new operating condition is

shown in Fig. 4.4.
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4.4.3 Voltage Reference Change

With the generator operating at P, = 0.8 p.u. and pf = 0.85 lag, a 0.03 step increase
in the exciter reference voltage is applied at 1 second. The actual generator speed
deviation and the RNN identifier output are shown in Fig. 4.5. The operating condi-
tion and the type of disturbance are different from previous studies. Again the RNN

identifier can satisfactorily track the variation of the generator.
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4.4.4 Leading power factor

In this test, with the generator operating at P. = 0.3 p.u.. pf = 0.85 lead, a 0.20 p.u.
step increase at the input torque reference is applied at 1 second. The response of
generator speed deviation and identifier output under the leading power factor oper-
ating condition is shown in Fig. 4.6. The RNN identifier can provide good tracking

performance.
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Figure 4.6. Identification result for 0.20 pu step change in input torque



4.5 Control Simulation Studies

Performance of the proposed RNN PSS is next investigated on a synchronous gen-
erator connected to a constant voltage bus through two parallel transmission lines.
The structure of the power system is shown in Fig. 4.2 . The response of the system
under different control schemes (i.e. RNN PSS, CPSS and no stabilizer (Open) )
is compared. The mathematical model and parameters of the conventional PSS are

listed in Appendix A. The sampling period for the RNN PSS is 30 ms.

4.5.1 CPSS parameter tuning

With the generator operating at a power of 0.7 p.u.. 0.85 power factor lag, a 0.06
p.u. step increase in input torque reference is applied at 1 second, and removed at 3
second, and the system returns to its original operating condition.

The CPSS is carefully tuned under the above conditions to yield the best per-
formance. the parameter of the CPSS are then kept the same for all the rest of
simulation studies. Results of the study with RNN PSS and CPSS for a 0.06 p.u.
step change in input torque are shown in Fig. 4.7. It can be seen both RNN PSS and

CPSS can effectively damp the low frequency oscillations .

4.5.2 Light Load Test

A light load test with the initial condition of 0.3 p.u. power and 0.85 pf lag is
conducted. The disturbances are a 0.1 p.u. step increase in torque reference applied
at 1.02s and then removed after 53s. The disturbance is large enough to cause the
system to operate in a nonlinear region. Power angle response without PSS, with
CPSS and with RNN PSS is shown in Fig. 4.8 and voltage response with RNN PSS
and CPSS is shown in Fig. 4.9. Since RNN PSS can adapt its response to the change

of the environment, it provides better damping effect than the fixed parameter CPSS.
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4.5.3 Voltage Reference Change Test

In this test, the initial operating condition is 0.70 p.u. power and 0.85 pf lag. A 0.03
p-u. step increase in exciter reference voltage is applied at t = 1.02s and removed
after 5s. The power angle response is shown in Fig. 4.10. It is clear that ANN PSS

has a better damping effect than CPSS.
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Figure 4.10. Response to a 0.03p.u. step increase in exciter reference voltage and
return to initial condition. P, = 0.7pu, pf= 0.85 lag



4.5.4 Leading Power Factor Test

In order to absorb the capacitive charging current in a high voltage power system,
a generator may be required to operate at leading power factor. Under this cir-
cumstance, the stability margin of the generator is reduced compared to the normal
operating condition. Therefore, it is difficult for the controller to keep the generator

stable when disturbance happens.

The behavior of the ANN PSS is also studied under leading power factor condition
with 0.25 p.u. power and 0.90 pf lead. A 0.10 p.u. change in input torque reference is
applied at 1.02s and removed after 5s. The results given in Fig. 4.11 show that with

the RNN PSS, the system goes to the new operating point quickly.

4.5.5 Transient Test

With the system operating at a power of 0.90 p.u. and 0.85 pf lag, a transient test was
conducted to study the performance of the proposed ANN PSS. In the test, a three
phase to ground short circuit fault was applied at the middle of one transmission line,
the faulted line was cleared 530ms later, and then after 3.93s successfully reclosed.
The power angle response and controller output are shown in Figs. 4.12 and 4.13,
respectively. The terminal voltage response with RNN PSS and CPSS is shown
in Fig. 4.14. The output of RNN PSS is smoother than CPSS, and the RNN PSS
suppressed the oscillations more efficiently than the CPSS. The system with the RNN
PSS goes to the new stable state quickly. This is very helpful in the enhancement of

the disturbance tolerance ability of the system.
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Table 4.1. Dynamic Stability Limit

Open (without PSS) | with CPSS | with RNN PSS
Max. Power(p.u.) 1.787 3.050 3.227
Max. Rotor Angle(rad) 1.108 2.004 2.096

4.5.6 Different Sampling Period

With the system operating at a power of 0.3 p.u. and 0.9 pf lead, a 0.20 p.u. change
in input torque reference is applied at 2s. The RNN PSS is operated under different
sampling periods: 25ms, 30ms and 35ms. The results given in Fig. 4.15 show that

under different sampling periods, RNN PSS still can provide satisfactory result.

4.5.7 Dynamic Stability Margin Test

The ANN PSS not only improves the generator’s transient behavior, but also enhances
its dvnamic stability properties. In this section, a test was conducted to demonstrate
the effect of the proposed RNN PSS on the dynamic stability margin.

With the system initially operating at 0.95 p.u. power and 0.90 pf lag, the input
torque reference was increased gradually from the initial value. The dynamic sta-
bility margin is described as the maximum power output at which the system losses
synchronism. The results for the system without stabilizer (Open), with CPSS, and
with RNN PSS are listed in Table 4.1. The results show that the dynamic stability

margin of the generator is increased with the RNN PSS.
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4.5.8 Weight Variation

For the proposed RNN PSS, the weights of both the RNN identifier and the RNN
controller are updated on-line. The variation of the sum of the RNN identifier weights
squared and the variation of the sum of the RNN controller weights squared is shown
in Figs. 4.16 and 4.17, respectively. The test case is the same as described in Section

4.3.5.
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Figure 4.16. Variation of identifier weights in response to a2 3 phase short circuit at
the middle of one transmission line. P. = 0.90pu, p.f.=0.85 lag
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4.6 Summary
In this chapter, the performance of an adaptive PSS based on recurrent neural net-
works is investigated in a single machine-infinite bus power system.

The proposed stabilizer has the following advantages:

e The RNN PSS is not designed for a fixed operating point. The ANN PSS is
trained on a wide range of generator operating conditions. With the learning
ability of neural networks, the ANN PSS can performance well for a wide range

of operating condition.
e During the design procedure, the generator model is not linearized.

e The parameters (i.e., the weights of the neural networks) of the controller are
updated on line. Therefore, the controller can track changes in operating con-

ditions.

e In this control architecture . no reference model is needed. Since for the neural
network tracker, the inputs are the outputs of neural network controller and
plant, its weights are tuned based on the derivative of the tracker output and
plant output. For the neural network controller, the inputs are the outputs of
the plant. Its weights are tuned based on the derivative of plant output and

desired output.

The simulation results show that compared to the conventional PSS, the proposed
PSS has a better damping ability for different operating conditions and disturbances.

It also improves the dynamic stability properties of the generator.
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CHAPTER 5

RNN PSS SIMULATION STUDIES IN
MULTIMACHINE SYSTEM

5.1 Introduction

Today, the large-scale power system interconnections make electric energy genera-
tion and transmission more economical and reliable. However, at the same time, the
multiple interconnections also make the power system much more vulnerable to in-
stabilityv. One of the instability problems is the multi-mode oscillations at very low
frequencies. Once started, they could continue for a while and then disappear, or
continue to grow, causing interconnected system separation.

The simulation studies in Chapter 4 demonstrate that properly trained RNN PSS
can provide an effective damping of the power system [97]. These studies are con-
ducted in the single-machine infinite-bus environment. In this environment, there
are no multi-mode oscillations. To verify the damping ability of the new PSS, the
performance of the new PSS should be investigated in a multimachine power system.
[98] [99] [100] [101] [102] [103]

The effectiveness of the RNN PSS to damp multi-mode oscillations in a multi-
machine power system is investigated in this chapter. A five machine power system
is used in these studies. Speed deviation Aw and accelerating power AP, are selected
as input signals to the RNN PSS. Simulation results of the RNN PSS are compared
with those of the CPSS. and the coordination ability of the RNN PSS with other
RNN PSSs and CPSSs is also investigated.
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5.2 Multimode oscillations in Multimachine System

In a multimachine power system. there are three major modes of oscillations:

Local Mode this refers to oscillations occuring in plant transients, stemming from
generator rotors oscillating relative to the combined equivalent inertia of the
svstem. This is also described as the generator swinging relative to an infinite
bus formed by the combined equivalent inertia external to a particular genera-
tor. as shown in Chapter 4. Frequency magnitudes are directly related to the
equivalent rotational inertia of the generator and the prime mover, and to the
svnchronous torque coefficient linking the generator to the fixed voltage bus.

Local mode oscillations are in the range of 0.8 to 2 H-.

Inter-Machine Mode this describes frequencies related to closely coupled genera-
tors swinging relative to each other. This can occur at a plant that has a diverse
mix of generators and controllers or at neighboring plants that are linked with
inter-ties such that the machines are relatively closely coupled. Inter-machine
frequencies are related to the equivalent machine inertias of the closely coupled

generator groups and are in the range of 0.3 to 1.0 A=

Inter-Area Mode these frequencies stem from coherent groups of generators in one
area swinging relative to a number of other coherent groups in other areas.
Inter-Area frequencies are in the range of 0.1 to 0.7 Hz and these frequencies

may overlap with frequencies described under the other two definitions.

5.3 Multimachine System Model

5.3.1 Configuration of a Five Machine Power System

A five-machine power system without infinite bus, shown in Fig. 5.1 , is used for
simulation studies in this chapter. In this system, Generators #1, #2 and #4 have

much larger generating capacities than Generators #3 and #5. All five generators
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are equipped with governors, AVRs and exciters. The whole system can be viewed
as a combination of two areas connected through a tie transimission line between
bus #6 and bus #7. Generators #1 and #4 form one area, and generators #2, #3
and #5 form another one. Parameters of all generators, transmission lines, loads and
operaiing conditions are given in Appendix B. Under normal operating condition,
each area serves its local load and is almost fully loaded with a small load flow over

the tie line.

5.3.2 Multi-Mode Oscillation in the System

When a disturbance happens in this system, the multi-mode oscillations will arise
because of the different inertias of the generators and the topology of the system.

A 0.1 p.u. step decrease in the mechanical input torque reference of generator #3
is applied at 1 s, and returns to the original level at 10 s. Without any PSS installed
in the system, the following obeservation can be made from the system responses to

this disturbance in Fig. 5.2:

o The speed difference between generator #2 and generator #3 exhibits the local

mode oscillation at a frequency of about 1.3 H=.

o The speed difference between generator #1 and generator #2 shows mainly the

inter-area mode oscillation with a frequency about 0.65 H-.

e The speed difference between generator #1 and generator #3 displays the com-

bination of local mode and inter-area mode.
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5.4 RNN PSS Design in Multimachine System

5.4.1 RNN PSS Structure

The structure of the RNN PSS for this study is shown in Fig. 5.3. For the neural-

identifier, the input vector is:
[Aw(k),...,Aw(k —m),APe(k),....,APe(k —n),Usnnc(k): - - - Uznnc(k — p)] (5.1)

where Aw(k), APe(k) and Uznnc(k) are the generator speed deviation, accelerating
power and the PSS signal, respectively, at the k-th time step. The output is APe(k+
1), the predicted accelerating power, at time step (k+1). Then the performance index

of the RNN identifier is :

Ji(k) =

l\)l»—l

—[APe(k) — APe(k)]? (5.2)
The weights in the RNN identifier are updated as below:
W,(k) - W{(k‘ - 1) et n,-VWKJ;(k) (53)

where W;(k) is the matrix of neural identifier weights at instant k, Vi, J;(k) is the
instantaneous gradient, 7; is the learning rate for the neural-identifier.

For the neural-controller, the input vector is,
[Aw(k), ..., Aw(k —m),APe(k),...,APe(k — n)] (5.4)

The output is Uznnc(k), the PSS control signal at time step k. The performance index

of the neural controller is:
1 o
J(k) = —)-[APe(L) APey(k)|* (5.3)

where A Pey(k) is the desired accelerating power at time step k. In this study, it is

set to be zero. The weights in the neural-controller are updated as below:

W (k) = We(k — 1) = n.Vw, Je(k) (5.6)
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where W (k) is the matrix of neural controller weights at instant k, V. J.(k) is the
instantaneous gradient, 7). is the learning rate for neural-controller.

For both the neural identifier and controller, n = 3 and m = 3. For the neural
identifier, p equals 3. The hidden neurons are 7 and 5 for the identifier and controller,
respectively. All inputs to the identifier and the controller are scaled in the range of

1, +1].

5.4.2 Training of RNN PSS

The training procedure is the same as in the Chapter 4. There are two stages for
training. At first, both the neural identifier and the controller are trained off-line.
The training data covers a wide range of the generating unit operating condition, the
active power output ranging from 0.1 pu to 1.0 pw; the power factor ranging from
0.8 lead to 0.8 lag. The disturbances to the system include voltage reference step
change, input torque step change and three phase to ground fault. After the off-line
training is finished, the weights of the identifier and the controller will be updated

on-line using the algorithm described in Chapter 4.

5.5 Simulation Studies

5.5.1 RNN PSS installed on one generator

For five generator units in the system, only generator unit #3 is installed with the
proposed RNN PSS. The system operating condition is the same as in the previous
section with the same disturbance. The accelerating power and the speed deviation
of generator #3 are sampled at the sampling period of 30 ms. The system responses
are shown in Fig. 5.4 and Fig. 5.5. The RNN PSS on generator #3 can provide
satisfactory damping to the local oscillation mode in Aws — Aws. However, it has
little influence on the inter-area oscillation between generator #1 and #2. This is

because the rated capacity of generator #3 is much smaller than that of generators
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#1 and #2. Generator #3 does not have enough power to control the inter-area
oscillation between generators #1 and #2.

To compare the performance of the proposed RNN PSS and conventional PSS

(CPSS), a CPSS with the following transfer function is installed on generator #3:

U (.S) — R STs 1+ ST1 1 +ST3
pss =

s AP.(s
1+sT51+sTh1 4Ty (s)

~~
(S]]
h
~1

St

The parameters of the CPSS are tuned carefully so that the CPSS has almost the

same performance as the RNN PSS.

R, =10T1=73=03,T =7, =0.10.T5 = 0.4

The responses with CPSS installed on generator #3 are also shown in Fig. 5.4 and

Fig. 5.5.

5.5.2 RNN PSS installed on three generators

In the previous test, the results show that it is not enough to install one RNN PSS to
damp both local and inter-area modes of oscillation. Two RNN PSSs with the same
initial off-line training weights are installed on generators #1 and #2. The RNN PSS
on generator #3 was kept as the previous study. The operating condition and the
disturbance are the same as in the previous test. The system responses are shown in
Fig. 5.6 and Fig. 5.7. It is very clear that both modes of oscillations are damped out
very effectively.

In a seperate test, with one CPSS installed on generator #3, additional CPSSs
are installed on generators #1 and #2 to damp the inter-area modes of oscillation.
However, their parameters are retuned from CPSS on generator #3. The following

parameters are set for the CPSS on generator #1 and #2.

K;=10,T1=73=03.T2 =7, =0.10,75 =04
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The responses of the system with CPSS installed on generators #1, #2 and #3

are also shown in the Fig. 5.6 and Fig. 5.7.
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5.5.3 Coordination Between RNIN PSS and CPSS

For the proposed RNN PSS, both of its input signals are local signals. The RNN
PSS will coordinate itself with other PSSs based on the signals it received. On the
other hand, the advanced PSSs wouldn’t replace all the CPSSs being operated in the
svstem at the same time. Therefore, the effect of the RNN PSSs and CPSSs working
together needs to be investigated. In this test, the proposed RNN PSSs are installed
on generators #1 and #3: CPSSs with proper parameters are installed on generators
#3 #4 and #5. The operating condition is the same as in the previous tests. A
0.2 p.u. step decrease in the mechanical input torque reference of generator #3 is
applied at 1 s, and return to the original level at 10 s. The system responses are
shown in Fig. 5.8 and Fig. 5.9. The results demonstrate that two types of PSSs can

work cooperatively to damp oscillations in the system.

5.5.4 Three Phase to Ground Fault Test

In the previous tests, the type of disturbance is input torque step change. In this
test, a three phase to ground fault is applied at the middle of one transmission line
between buses #3 and #6 at 1 s and the faulty line is removed 100 ms later. At
10 s, the faulty line is restored successfully. The proposed RNN PSSs are installed
on generators #1, #2 and #3. The system responses are shown in Fig. 5.10 and
Fig. 5.11. The results with CPSSs installed on the same generators are also shown
in the same figures. From the system responses, it can be concluded that the CPSS
can damp the oscillations caused by such a large disturbance, however, the proposed

RNN PSS has a better performance.
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5.5.5 New Operating Condition Test

For a power system, its operating condition is changing from time to time. To test
the behaviour of the proposed RNN PSS under a different situation, the operating
point of the power system is changed to a new point in which the load of the power
svstem is 50% of the previous one, the active and re-active power output of all the
generators are decreased. The data information of new operating condition is given

in Appendix B.

First, a 0.15 p.u. step decrease in the mechanical input torque reference of gen-
erator #3 is applied at 1 s, and returned to the original level at 10 s. The studies
are conducted under three different situations: no PSS installed on any generator;
RNN PSSs installed on generators #1, #2 and #3; CPSSs installed on generators
#1. #2 and #3. The system responses are shown in Fig. 5.12 and Fig. 5.13. It can be
seen that the RNN PSS can provide a better performance under the new operating

condition.

Second, a three phase to ground fault as described in Section 5.5.4 is applied
to the system. The system responses with no PSS installed;: RNN PSSs installed
on generators #1, #2 and #3; CPSSs installed on generators #1, #2 and #3 are
shown in Fig. 5.14 and Fig. 3.15. Again, the results clearly demonstrate that RNN
PSS can damp the oscillations more effectively than the CPSS. This is because the
proposed RNN PSS is an adaptive controller which can track the changes in the
power system, whereas the CPSS is a fixed parameter controller designed based on

the system linearized at one operating point.
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5.6 Summary
In this chapter, the effectiveness of an RNN PSS to damp multi-mode oscillations in
a five machine power system is investigated. The structure of the RNN PSS is the
same as that developed in Chapter 4. The generator accelerating power and speed
deviation are used as the input signals to the RNN PSS. However, to remove the DC
value of the speed deviation, a washout filter is employved in speed deviation signal
loop. The RNN PSS was trained over a wide operating range of the generating unit
with various disturbances.

Simulation studies show that to damp the oscillations in multi-machine system, it
depends on not only the PSS but also on the location at which the PSS is installed
and the coordination of the PSSs. The proposed RNN PSS can provide satisfactory
results if correctly installed and can cooperate with other RNN PSSs or CPSSs.

Until now, it is demonstrated that the proposed RNN PSS can effectively damp
the oscillations both in single machine and multi-machine systems. These studies are
based on computer simulation. In the next chapter, the performance of the proposed

RNN PSS will be investigated in the real-time environment.
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CHAPTER 6

LABORATORY IMPLEMENTATION OF RNN
PSS AND EXPERIMENTAL RESULTS

6.1 Introduction

Computer simulation studies in the previous chapters have demonstrated that the
proposed RNN PSS has a very good damping ability for both the single mode os-
cillation in the single-machine infinite bus system and the multi-mode oscillations in
the multi-machine system. In these studies, the power system is represented by a se-
lected mathematical model. However, not all the features of a real power system can
be accurately modeled by a mathematical model, also the operating conditions of the
physical systems are not ideal and there exists noise. The performance of the RNN
PSS should be invesigated in a physical environment of a power system. However, the
practical and economical way is to do the testing on a scaled physical power system
model in the laboratory environment. Scaled physical models, which can simulate
the behaviour of the actual plant in the laboratory environment, are extensively used

-

in the universities and research laboratories to test new control schemes [104] [105]
[106] [107] [LO8] {109].

Several laboratory experiments about neural network PSS are reported in recent
vears. A PSS based on multilayer perceptron network was implemented in [110]. A
Fuzzy Logic PSS based on neural network was studied in [111]. Both research results
demonstrated that properly trained PSS based on a neural network can also provide
satisfactory performance.

In this chapter, implementation and testing of the RNN PSS in a scaled physical
power system environment is reported. The RNN PSS is developed on a TMS320C30
Digital Signal Processor mounted on a HOST PC. A digital conventional PSS was
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also implemented in the same physical environment. The experimental results of

RNN PSS and CPSS are discussed.

6.2 Physical Model of a Power System

Schematic of a power system model for ANN PSS implementation test is shown in
Fig. 6.1 and its parameters are listed in Appendix C. The model is used to simulate
a single-machine infinite-bus power system.

A 3 kVA, 220 V, 3-phase synchronous micro-alternator driven by a separately
excited DC machine is acting as the generating unit. A time constant regulator (TCR)
is used to set the effective field time constant of the micro-alternator to simulate the
time constant of a large generator. With TCR, the effective field time constant of the
micro-alternator can be set as large as 10s.

The transmission line in the physical model simulates a 500 kV, 300 km, double
circuit transmission line. Each circuit consists of 6 II sections connected in series.
Each II section represents a 50 km length of the actual transmission line. To simulate
the fault conditions on the transmission line, three circuit breakers are installed on
one transmission line, two at each end of the line and one in the middle.

An ABB AVR implemented on a PHSC2 Programming Logic Controller (PLC)
is used as the micro-alternator AVR. Three phase ac terminal voltages and currents
are stepped down, rectified and filtered with a cut-off frequency of 8 Hz to form DC
signals to be fed to the PLC. Based on these signals, the PLC calculates the field
control signal which is output to the TCR, and the active power signal P, which 1s
the input signal for the PSS.

Various disturbances can be applied to this system model to investigate the per-
formance of the proposed RNN PSS. By adjusting the voltage reference setting of
the AVR, the generator terminal voltage can be stepped up or down. By changing

the field current of the DC motor, the active power output of the micro-alternator
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can be changed. By setting the operation sequence of three circuit breakers on the

transmission line, three-phase to ground fault can be simulated.

6.3 RNN PSS Implementation

6.3.1 Real Time Digital Control Environment

The structure of a Real Time Digital Control Environment is shown in Fig. 6.2. The
ABB PHSC2 System acts as the AVR of the micro-alternator. The core of the digital
control system is a TMS320C30 system board supplied by SPECTRUM Signal Pro-
cessing Inc. [112] [113] The board has a TMS320C30 Digital Signal Processsor (DSP)
[114] [115] [116]. It can be operated at 33.3 MHz clock. It is also provided with 8KB
on-chip RAM and 32KB on-chip ROM. The board contains a complete "analog I/0O
subsystem”. There are two separate channels, each containing its own sample/hold
amplifier, A/D, D/A, and analog filters on input and ouput. The sampling rates can
be up to 200 kHz.

The P, signal required by the DSP board is calculated in the PLC based on 3 phase
voltage and current sample sigals. The DSP board receives the P, signal through A/D
channel and stores in the dual access ram (DARAM). The control algotithm loaded
on DSP board will read the data in DARAM and calculate the control signal Upss.
Then the U, is sent out through the D/A channel to the PLC. The PLC adds the

7»ss signal to the voltage reference signal. The combined signal goes through the
PLC block to generate the field control signal to the TCR.

The input switch box is used for several purposes. First, it is used to switch on
or off the PSS application to the generating system. Second it can set the internal
reference voltage to be stepped up or down. Finally, it is used to apply reference

voltage disturbances.
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6.3.2 Software Structure

The software required for the real-time cortrol environment and design of digital
controllers is developed through TMS320 floating-point C compiler [115] [116], as-
sembler and linker. The C compiler can translate standard ANSI C programs into
TMS320C3x/C4x assembly language source. Later. the assembler translates assem-
bly language source files into machine language Common Object File Format (COFF)
object files. Finally the linker combines object files into executable object module.
The software implementation of the RNN PSS has two parts. The first one is a
Man Machine Interface (MMI). It runs on the HOST PC. The flow chart of the MMI
is shown in Fig. 6.3. The second one is the core of RNN PSS. It includes the control
algorithm of the RNN PSS. The second part of the code is loaded to the DSP board
by MMI during initializing procedure, and runs on the DSP board. The flow chart of
this program is shown in Fig. 6.4. The two programs communicate with each other
using interrupt method, and exchange data through DARAM on the DSP board.

In the real-time operation. the tasks for the module running on HOST PC are:

initialize the variable address for PC-DSP communication,

download the second module from HOST PC to DSP board memory,

read the parameters of controller from data file,

send the data to DARAM and starts the control action,

e receive sample and control data from DSP board, displays and saves data.
The tasks for the module running on the DSP board are:

e initialize the address for DSP-PC communication,

e receive controller parameters from PC,
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set the timer for sampling,
read sample data from input channel,
calculate control signal,

send results to DARAM and output channel.

C starT )
i

Initialize Dual Access Ram on DSP
for PC-DSP data commmunication

I

Read parameters of neural
network from disk file

i

Initialize man-machine interface

i

Download COFF file to DSP board

i

Start DSP board

+

Download parameters to DARAM

>

Read sampled data, PSS output,
and NN weights from DARAM

s

Plot sampled data and PSS
output ont the screen

+

Save sampled data, PSS output,
and NN weights to disk file

Figure 6.3. Schematic diagram of HOST PC flow chart
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Figure 6.4. Schematic diagram of DSP flow chart.
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6.4 RNN PSS Structure and Training

6.4.1 RINN PSS Structure

The structure of the RNN PSS for this study is shown in Fig. 6.5. There are two
recurrent neural networks in this architecture which function as neural identifier and
neural controller, respectively.

For the neural-identifier, the input vector is:
[AL/(K), ..., Aw'(k—m), APe(k),...,APe(k —n), Usnnc(k), - - - : Uannc(k — p)] (6.1)

where Aw’(k), APe(k) and Uznne(k) are the integral of the generator accelerating
power. accelerating power and the PSS signal, respectively at the k-th time step. The
output is APe(k + 1), the predicted accelerating power at time step (k+1).

For the neural-controller, the input vector is,
(AW (k),....,Au'(k —m),APe(k),....APe(k —n)] (6.2)

The output is Uznne(k), the PSS control signal at time step k. For both the neural
identifier and controller, n = 3 and m = 3. For the neural identifier, p equals 3. The
hidden neurons are 7 and 5 for the identifier and controller, respectively. Both the
identifier and the controller each have one output neuron. Therefore, for the neural
identifier, there are 12 input neurons, 7 hidden neurons and one output neuron; for
the neural controller, there are 8 input neurons, 5 hidden neurons and one output
neuron. All inputs to the identifier and the controller are scaled in the range of [-1,
+1].

The size of neural networks for both the identifier and the controller is relatively
small. It will need less computation time each sampling period, which is very impor-

tant for the real-time implementation.
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6.4.2 Training of RNIN PSS

The training procedure is the same as in Chapter 4. There are two stages for training.
At first, both neural identifier and controller are trained off-line. The training data
covers a wide range of the generating unit operating condition, the active power
output ranging from 0.1 pu to 1.0 pu: the power factor ranging from 0.8 lead to 0.8
lag. Disturbances to the system include voltage reference step change, input torque
step change and three phase to ground fault. After the off-line training is finished,
weights of the identifier and the controller will be updated on-line using the algorithm
described in Chapter 4.

By using on-line update method, it makes it possible for the proposed RNN PSS to
track the dynamic character of the power system and provide better damping effect

to the oscillations of the power system.

6.5 Implementation of CPSS
To compare the performance of the RNN PSS with the conventional PSS | a CPSS

with the following transfer function [117] was implemented in the same environment.

STs ) 1+$T1 1+ST3
1+sT5 1+sTy 1457,

U(s) = K - -AP(s) (6.3)

The CPSS transfer function was discretized to be implemented on the DSP. The
parameters of the CPSS were tuned for a particular operating point of the system

described in section 6.6.1. The sampling rate for the CPSS is 100 H=.
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6.6 RNN PSS Laboratory Test Results and Discussion
To investigate the behaviour of the proposed RNN PSS, various studies with different
disturbances under different operating conditions were conducted. All the experimen-
tal data was stored on HOST PC for further analysis. The time axis was adjusted
so that the disturbance seems to happen at the desired time point. The sampling
frequency for the adaptive control system is set at 25 H=.
The inherent damping of the physical power system model is very high. To better
evaluate the performance of the CPSS and the RNN PSS, the system inherent damp-
ing ratio was decreased by using only one of the double transmission lines in all tests

except in the three phase to ground fault test.

6.6.1 CPSS Tuning

In order to make a reasonable comparison between the CPSS and the RNN PSS, the
parameters of the CPSS are carefully tuned under a specific operating condition so
that it provides almost the same performance. The following operating condition is
set: active power is 0.74 pu and power factor is 0.90 pu lag. A 0.15 pu step decrease
in the input torque reference was applied at 3.5 s and removed at 11.5 s. The CPSS

parameters are set as follows:
A’s = 60. T1 = T3 = 0.13; Tg = T4 = 0.075s

The generating unit active power deviation responses with CPSS and with RNN
PSS are shown in Fig. 6.6. It can be observed that if CPSS has been tuned properly,
it also provides effective damping to system oscillations at designed operating point.

In the following tests, the CPSS parameters will be kept constant.
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6.6.2 Voltage Reference Step Change

With the system operating at 0.88 pu active power and 0.85 pf lag, a 4.5% step
decrease in voltage reference is applied at 3 s. At 15 s. the change in the voltage
reference was removed . The generator active power deviation responses with RNN
PSS and without PSS (NO PSS) are shown in Fig. 6.7. Since the system stability
margin decreases as the reference voltage drops for a certain active power output, the
oscillations last for 5 s without any PSS, and only last for 3 s with the RNN PSS. The
generating unit active power deviation response and the supplementary control signals
of RNN PSS and CPSS are shown in Figs. 6.8 and 6.9, respectively. Both the RNN
PSS and the CPSS provide effective damping in this case, however, the swing magni-

tude of active power deviation with the RNN PSS is smaller than that with the CPSS.

To further test the performance of the RNN PSS, the operating condition is changed
to 0.50 pu active power and 0.95 pflag. A 5% step increase in voltage reference is
applied at 3 s. At 15 s, the change in the voltage reference was removed . The gener-
ator active power deviation responses of RNN PSS and CPSS are shown in Fig. 6.10.
Even though the operating coadition is quite different from the previous one, the

RNN PSS still provides better damping than the CPSS.
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6.6.3 Input Torque Reference Step Change

To test the RNN PSS behaviour under different types of disturbance, with the system
operating at 0.90 pu active power and 0.95 pflead, 2 0.10 pu step decrease in the input
torque reference is applied at 2.5 s and removed at 11 s. The comparison of the RNN
PSS and the CPSS performance is shown in Fig. 6.11. The stability margin at the
leading power factor is reduced, the RNN PSS still can provide a satisfactory response.
Especially, when an increase of 0.10 pu input torque was applied at 11 s, the active
power deviation oscillation under CPSS was clearly larger than that under RNN PSS.

With the system operating at 0.50 pu active power and 0.90 pflag, a 0.20 pu step
decrease in the input torque reference is applied at 4 s and removed at 11.5 s. The
comparison of the RNN PSS and the CPSS is shown in Fig. 6.12. The power system
becomes more stable at this light load condition. Since the disturbance is larger than
the previous one, both RNN PSS and CPSS still need about 2 cycles to reach the
stable state. However, the RNN PSS provide a better control effect.

In the third test, with the system operating at 0.90 pu active power and 0.90 pf
lag, a 0.25 pu step increase in input torque reference is applied at 3 s. At 13 s, the
change in the voltage reference was removed . The generator active power deviation
responses of RNN PSS and CPSS are shown in Fig. 6.13. Again, the RNN PSS

produces much better result in response to the disturbance.

6.6.4 Three Phase to Ground Fault Test

To investigate the performance of the RNN PSS under transient conditions, a three
phase to ground fault was applied with the system operating at the following point:
0.90 pu power, power factor 0.90 leg. The three phase to ground fault was set in the
middle of one transmission line at 4.2 s. The circuit breakers at both ends of the

faulted line were tripped 100 ms later. An unsuccessful reclosure attempt was made
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600 ms after the line was cleared and the line was opened again 100 ms later. The

second reclosure was successfully made at 14 s and the system returned to the initial
operating condition.

The system responses with the RNN PSS and the CPSS under above conditions are

shown in Fig. 6.14. Both RNN PSS and CPSS can maintain the system stable under

the transient condition, and the first swings of both are almost the same. However,

for the following swings, the RNN PSS can provide a better damping effect.

6.6.5 Dynamic Stability Test

One of the functions of a power system stabilizer is to increase the system dynamic
stability margin. Usually with a properly designed PSS in operation, a system can
operate at a load level at which it will be unstable without a PSS in operation.

In this test, the generating unit initially operated at a stable condition with the
RNN PSS in operation. At initial stage, the operating condition was active power P =
1.10 pu and power factor = 0.90 lag. The load was then gradually increased until the
active power P reached 1.22 pu and the load increase was stopped. At 4 s, the RNN
PSS was replaced by CPSS. From Fig. 6.13, it can be observed that the RNN PSS can
maintain the system stable at P = 1.22 pu. However, when CPSS is in operation, the
system began to oscillate automatically and tended to lose synchronism without any
external disturbance. This means that CPSS can’t maintain system stable under this
operating condition. When the RNN PSS was switched back at 18 s, the oscillations
began to decrease, and the system came back to stable condition.

Figure 6.15 clearly demonstrates that the proposed RNN PSS can improve the
svstem dynamic stability margin compared to the CPSS. Hence it is possible for the

system to operate at a heavier load level.



Active Power Deviation p.u,

136

04 T T T

02r

o
-
T

(=]

|
o
-

|
o
N

T

RNN
~---  CPSS

8 10 12 14 16 18 20

Time s

Figure 6.14. System Response with RNN PSS and CPSS for three-phase short circuit

test at p = 0.90 pu, pf = 0.90 lag



Active Power Deviation p.u.

0.025

0.02

T

0.015

0.01

0.005

-0.005

-0.01

-0.015

-0.02

-0.025
0

10 15
Time s

Figure 6.15. Dynamic Stability Test

20 25



138
6.7 Summary
Real-time implementation of the RNN PSS is described in this chapter. A simple
power system is modeled by a micro-alternator driven by a DC motor and a double
circu;it transmission line linking the alternator to the city voltage bus. The RNN PSS
is implemented in a real-time digital control environment which include a 80386 PC,
TMS320C30 DSP and an ABB PHSC system.

Active power deviation and its integral are used as input signals of the RNN PSS.
The RNN PSS is trained off-line and its weights later updated during application.
Experimental results of the RNN PSS are compared with those of the CPSS. It is
demonstrated that for the CPSS at its designed operating point, it can achieve almost
the same performance as the RNN PSS. However, as the operating condition shifts
to a new point, the RNN PSS gives better damping effect than the CPSS for power
system oscillations. Finally, the RNN PSS also improves the dynamic stability of the

svstem.
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CHAPTER 7

CONCLUSIONS AND FUTHER STUDIES

7.1 Conclusions

With the developmeni of large scale electric power systems and the increasing demand
for power supply, how to enhance the stabilty of growing power systems has attracted
the interest of many researchers. Considerable efforts have been devoted to find
suitable methods to improve the stability of power systems. Power System Stabilizer
(PSS) has been proved to be a very effective and economic device to improve power
svstem stabilitty on low-frequency oscillations.

The PSS designed by classical control theory has been successfully applied in power
svstems. However, since it has fixed parameters based on a selected linear system
model, it does not have the abilty to adapt to the variety of power system operation
conditions. Therefore, it is very difficult for a conventional PSS to maintain fully
satisfactory performance under various operating conditions. As the power system
is a non-linear dynamic system, the stabilizer should be able to adapt itself to the
varving system to provide consistent damping effect.

This dissertation is devoted to the design and developemnt of an adaptive power
svstem stabilizer based on recurrent neural networks. Contributions have been made
to the stages of RNN PSS theoretical design, simulation investigations and real-time
implementation studies.

First, the basic element of neural network, neuron, is briefly described. Three
learning paradigms and four learning rules are discussed. The structures of multilayer
perceptron, Hopfield network, real-time recurrent neural network and Kohonen self-
organizing map are also discussed. The learning algorithms related to these neural

networks are reviewed. For its ability to deal with time varying input or output
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through its own natural temporal operation, the recurrent neural network is selected
for PSS design. The real time recurrent learning algorithm is employed to train the
neural network.

There are two recurrent neural networks in the proposed control system architec-
ture; a neural identifier and a neural controller. Both neural networks are first trained
off-line using data from the full working range of the generator with various distur-
bances. Then the weights of neural networks are updated on-line. The two neural
networks operate with different time stages in a sample period. At first, the weights
of the neural identifier will be updated according to the error between the output of
the plant and the identifier. Then the weights of neural controller will be modified
based on the error between the neural identifier output and the desired system output
( which is zero in this study). At second stage, neural identifier acts as a channel to
back propagate the error to the neural controller with its weights fixed. The output
of the neural controller is sent to the generating unit as PSS control signal and to
the neural identifier for the next step identification. The purpose of adaptive iden-
tification is to adapt the model over time to reflect any changes which occur in the
dynamic characteristics of the power system. On the other hand, the design of the
RNN PSS is not based on a selected operating condition of power system. All the
input and output variables of the neural network are measurable for the generating
unit. no internal state variables of the generating unit are required.

The behaviour of the proposed RNN PSS is investigated in the single-machine
infinite bus system through computer simulation. Various operating conditions such
as lightly loaded to heavily loaded, lagging power factor to leading power factor are
applied. Different disturbances such as input torque step change, reference voltage
step change and 3 phase to ground fault are also tested. At the same time, all the
simulation cases are also studied based on a conventional PSS. Simulation results

show that the proposed RNN PSS can provide satisfactory damping effect to the
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power system oscillations over a wide operating range. and significantly improve the
svstem stability.

In a multi-machine power svstem. there are multi-mode oscillations due to the
different inertia of interconnected generator units and weak connection between them.
The performance of the proposed RNN PSS in a 5 machine power system is also
investigated in this dissertation. The simulation results show that the RNN PSS can
not only damp the specific mode of oscillation mainly related to the generating unit
on which the RNN PSS is applied, but also cooperate with other RNN PSSs or CPSSs
to damp the local and inter-area oscillations.

The final stage of the RNN PSS research is to implement and test the performance
of RNN PSS in a real laboratory-scale model. By using ABB PHSC2 Programmable
Logic Controller , a 80386 PC, a TMS320C320C30 DSP board, a real time digital
control system has been set up for this purpose. With a physical model of a power
svstem. an excellent testing environment is set up for real time study of novel PSS
design. The proposed RNN PSS has been implemented in this environment and
tested under various conditions. A digital CPSS is also implemented in the same
environment for comparison. The experimental results not only show that RNN PSS
can provide a good performance in damping power system low frequency oscillation
and increase the system dynamic stability margin, but also demonstrate that proposed
RNN PSS is pratical in the sense that it is feasible to install RNN PSS by using
commonly available computer hardware.

Research in this dissertation demonstrates that the proposed RNN PSS has many
promising features that the conventional PSS lacks. From practical view, the proposed
RNN PSS is feasible since it can provide satifactory performance when implemented

with ordinary hardware.



7.2 Future Studies

Applications of neural networks for power system stabilization control have been

reported since early nineties. Based on the research of this dissertation, the following

topics are recommanded for further research:

(S

. For training the neural networks, most of the algorithms applied in the PSS

design are focused on the adjustment of the weights of the neural network.
The structure of neural network, i.e. the number of lavers and the neurons in
each layer, is decided by trial and error method. However, the performance of
the neural network is decided not only by its weights but also by its structure.
How to apply an algorithm which can consider weight adjustment and structure

modification together is an interesting topic.

. Generally, the neural network based controller can act as a multi-input multi-

output controller. The PSS is just a part of excitation control system for the
generating unit. To improve the performance of the excitation control system
extending ANN technique in PSS design to excitation control system design will

be worth studying.

. At present, most neural networks in PSS design use supervised learning algo-

rithms, and the results are satisfactory. On the other hand, very little attention
has been paid to the application of reinforcement learning method in PSS de-
sign. The reinforcement learning is suitable for a control system in which the
most appropriate control actions may not be known. The reinforcement learning

has been successfully applied in process control, it is worth looking into.

. Other artificial intelligence (AI) techniques such as expert systems, fuzzy logic,

genetic algorithms etc. are also intended to tackle highly complex, non-linear

problems beyond the capability of conventional methods or too costly or time
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consuming for them. ANN and these AI techniques both have their own strengths
and weaknesses. In PSS design, how to combine ANN with other AI techniques
through building on their strengths and offseting their weaknesses to get a better

PSS will also be worth investigating.
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APPENDIX A

SINGLE-MACHINE POWER SYSTEM

1. Generator

8 = Wow

. W - f

& = ﬁ(Tm +9+ K8 -T.)
A = Vgt raia+ wo(w + 1)Aq

Ay = Vgt Taiq —wo(w + 1)Ag

/-\f = ef - T‘fif
Akd = —Tirdlkd
Akg = —Tkqlkg

M = (Lma+la)ia + Limatra + Limaty
Md = Lmatq + Lidiea + Limdty

Af = Lmaiq + Lmdira + Lsiys

Ay = (Lmg+la)ia+ Lmglig

Akg = Lmqiq+quikq

2. Transmission network

Tg = vpSING + Telg — Telg

Vg = UpCOSS + Telg + Tely

3. IEEE standard type ST1A AVR and exciter model, Fig.A.1.
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Figure A.l. Schematic diagram of AVR and exciter model
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4. Governor transfer function

b .
g=la+ 1 +5T915
5. IEEE standard PSS1A type conventional PSS, Fig.A.2.

Vstmax

Ao =
1

"14sTy| | LAstAS?| | (14sT)(14sT)

Vpss

Vstmin el
Figure A.2. Schematic diagram of PSS1A type CPSS

6. Parameters used in the simulation studies
re = 0.007 ry = 0.00089 riq =0.023
ree = 0.023 24 =0.743 zg =1.24
Tme =1.126 zm,=0.626 =zy=1.33
g = 1.1500 zxq=0.625 H =60
Kq¢=0.0 re =0.05 z. =03
Re =00 Xc=0.0 K¢ =10.08

Tc=1.0 Te = 10.0 Ter =0.0



T, = 0.0
Tr =10
Visery = —999

Vaivrn = —999

Voer = —999
a=-0.00133
T, =025

T, =0.08

A; =0.0
Vsrmry = —0.1
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T4 =0.0 K4 =190.0
AKp =0.05 Tr = 0.04
Viseax =999 Vasrax =999

Vemax =999  Veayrrn = —999

Voer =999

b=-0.17

T> = 0.08 I3 =0.25

T5 = 4.85 Ts = 0.005
A2 =10.0 K, =0.12

Vstmax =0.1

All resistances and reactances are in per unif and time constants in seconds.



APPENDIX B

MULTI-MACHINE POWER SYSTEM

1. Generator model

0 = wow

. = W i~
& = sm(Tmtg+Kd-T)

r I\, ’
€7 = ef—(Ta—Tg)la— €g
" _ ’ ! " "o [/
Tdoe, g - [eq - (xd - CL'd)’Ld - eq] T Tdoelq
" m . ”
Te's = (zq—z5)iq— €

2. Generator parameters

G1 G2 Gs Gy Gs
Xz 0.1026 0.1026 1.0260 1.0260 1.0260
X, 0.0658 0.0658 0.6580 0.0658 0.6380
X, 0.0339 0.0339 0.3390 0.0339 0.3390
X7 0.0269 0.0269 0.2690 0.0269 0.2690
X7 0.0335 0.0335 0.3350 0.0335 0.3350
T;, 03670 0.3670 0.3670 0.3670 0.3670
T# 0.0314 0.0314 0.0314 0.0314 0.0314
T,, 0.0623 0.0623 0.0623 0.0623 0.0623

H 20.000 20.000 3.0000 20.000 3.0000



3. Parameters of AVR and simplified ST1A exciters

w3

T

Gy

G,

Gs

0.0400 0.0400 0.0400 0

190.00 190.00 190.00 1

0.0800 0.0800 0.0800 0

10.000 10.000 10.000

1.0000 1.0000 1.0000 1.0000

10.000

G4 Gs

.0400 0.0400

90.00 190.00

.0800 0.0800

10.000

1.0000

The output of all exciters is limited within -6.7 to 7.8 p.u.

4. Governor parameters

Gy Ga Gs
T, 0.2500 0.2500 0.2500
a —0.00133 -0.00133 —0.00133
b —0.01530 —0.0150 —0.0150
5. Transmission line parameters
BusNo. R, X
1—-7 0.00435 0.01067
2 —6 0.00213 0.00468
3—6 0.01002 0.03122
3—6 0.01002 0.03122
4 -8 0.00524 0.01184
5—6 0.00711 0.02331
6 —7 0.04032 0.12785
7—8 0.01724 0.04153

G4
0.2500
—0.00133

—0.0150

B./2
0.01536
0.0404
0.03204

0.03204

0.06014

Gs
0.2500
—0.00133

—0.0150
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6. Operating condition #1:
G, G, Gs Gs Gs
P(pu) 5.1076 8.3835 0.8055 8.5670 0.8501
Q(pu) 6.8019 4.3836 0.4353 4.6686 0.2264
V(pu) 1.0750 1.0500 1.0250 1.0750 1.0250
d(rad) 0.0000 0.3167 0.2975 0.1174 0.3051

Loads in admittances in pu:

Li=75—350 L,=85—-350 L3=7.0—734.5
7. Operating condition #2:
Gy G. Gs Ga Gs
P(pu) 3.1558 3.8835 0.4055 4.0670 0.4501
Q(pu) 2.9260 1.4638 0.4331 2.1905 0.2574
V(pu) 1.0500 1.0300 1.0250 1.0500 1.0250
é(rad) 0.0000 0.1051 0.0943 0.0361 0.0907

Loads in admittances in pu:

Ly =3.755 — 325 L,=425—-325 L3=35—32.23
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APPENDIX C

PHYSICAL MODEL POWER SYSTEM

1. The parameters of micro-alternator:
T =12 =12 r;=0.0026 r,=0.0026
Tmg = 1.129 zpmg =1.129 z4g =1.25 ZTrg = 1.25
Tk = 0.0083 1, =0.0083 zy=127 r;=0.000747
H =475
2. The parameters of each w-section of transmission line:
R = 0.036 X = 0.0706 B = 18.779

3. The parameter of the CPSS
K,=-0.5 T)=T15=0.1 T,=T7,=0.08





