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1 What’s going on in neural nets and machine learning

1.1 About the neural net conference

Brian Gaines gave a synopsis of the first international conference on neural nets, held in San Diego,
in June 1987, organized by IEEE. This, the first fully recursive conference (see A1), almost didn’t
happen. Response to the call for papers was very slim, but the deadline was extended, and the
conference did take place with over 2000 in attendance, and some 300 papers presented.

1.1.1 Best keynote address

Carver Mead presented a paper, “Silicon Models of Neural Computation®, which in Brian’s opinion
was the best of the invited papers. Mead has designed CMOS circuits, operating in the analog
region, which simulate visual retinas. This device gives a complete retina on a chip. The paper
addressed three aspects of the retina:

1. What does a biological system do?
2. What does a silicon system do?

3. Why did the retina evolve as it did?

1.1.2 Stochastic computing

Brian and John Cleary both presented papers on stochastic computing, an area in which there has
been little interest during the past 18-20 years. They noted a renewed interest in this topic, with
work underway at a number of centers.

1.1.3 Commercial exhibition

Although there are few fully parallel neural net machines, the commercial exhibit featured numerous
simulations for conventional machines: mainframes, micros and lisp-machines. PC’s are really too
slow, so a number of vendors proposed accelerator cards to be used in conjunction with their
simulators. Brian suggested that with such systems, researchers could put together a neural net
system “overnight”, and speculated that some of the work presented at the conference may have
come about through this methodology. One of the simulators, MacBrain(c), has been ordered for
KSI (see A2).

1.1.4 Conclusions

The conference provided no clear sense of direction, and no front runners. However, some major
researchers did not present at the conference.

The study of neural nets seems to be “taking off” again, after a lapse of 20 years. (Now is the
time to join the effort - see A3S.) There was some speculation for renewed interest in the area,
including the notion of turn-over of those controlling research laboratories and funding agencies. It
was suggested that Minsky and Papert’s book on perceptrons had left no easy problems to solve,
putting a damper on work in the area.

Currently, neural nets are somewhat isolated from other areas of computing. There was very
little talk about actual applications; researchers were concerned mainly with learning algorithms
and convergence properties.



The real highlight of the conference was Carver Mead’s analog retina on a chip, but this was
the only analog device discussed. The only really new results to come out of the last 20 years are
new learning algorithms.

1.2 Overview of papers presented at the neural net conference
1.2.1 Theory

John Cleary noted that the theoretical papers at the conference involved proofs of convergence
and stability properties of neural nets. Many were demonstrations that if the net had a certain
property it is guaranteed to converge to a solution. He wondered whether these were even the
right questions. Perhaps we don’t know enough about neural nets yet to ask the right questions.
Unstable systems exist in nature, such as the olfactory system in rabbits, which cannot be stable
if the rabbit is to survive.

1.2.2 Hardware

There were two types of hardware presented at the conference; John also included some other
possibilities.

1. Conventional floating point.

These were the majority at the conference. They are very expensive and slow for practical
tasks, but, unlike integer systems, they do provide the precision often needed for the small
weight increments used in learning algorithms. Hinton has looked at the amount of precision
required, and found that 3 bits were not enough, but 5 were, provided there was sufficient
noise in the system. There was some discussion about why precision could be traded off for
noise in such a system. If a system converges to a wrong conclusion, noise may move it away
from that point far enough that it can converge to a different point.

2. Analog circuit (Carver Mead)

These circuits operate in the analog region, under 1 volt. No learning is possible on this
system, as the weights cannot be stored long enough. Connections are local, which is fine for
the retina application, but won’t be able to handle all cases, some of which require longer
distance connections.

3. Optical computing

This looks promising, but we need better transducers. Those available currently are too slow,
and too expensive to manufacture - indeed they cannot be mass produced reliably. Such
systems are naturally noisy and parallel, so they may be good for neural nets.

4. CCD was mentioned as another promising possibility.

1.2.3 Software and applications

There were many papers on hand printing recognitions systems, and some on applications in vision,
language, and speech. There were no huge breakthroughs. An advance in hardware is needed before
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more difficult applications are addressed. Many papers left out the vital parameters which were
adjusted to make the systems they described work. This would make it difficult to reproduce the
results.

1.2.4 General comments

In this conference, attention was directed to the internal characteristics of nets, rather than directed
outward to useful applications. Talk concentrated on convergence and stability, with little talk of
time complexity, or of comparisons to traditional digital computers. There is no meta-theory
for nets, such as software engineering principles: time required to learn, feasibility of practical
applications, etc. Work is still concentrated on small examples that can be done as well or better
on standard digital machines.

Carver Mead’s system is very different from what has been thought of as nets in the past - it
may very well spawn a whole new area of research.

1.3 Overview of the 4th International Workshop on Machine Learning

Peter Andreae gave a synopsis of machine learning from a “mainline AI” perspective, having just
come from the workshop held at the University of California at Irvine in June. He began with an
overview of the various techniques used in machine learning, then went into more detail on the two
major ones, and finished with a list of problems for future research.

1.3.1 Imntroduction

1. Similarity based learning (SBL)

In similarity based learning (SBL), the system is presented with many examples and learns
by finding a similarity the examples share, and uses this to form a generalization.

2. Explanation based learning (EBL)

In explanation based learning, the system has built-in domain knowledge which it uses to
generalize from a single example by constructing an explanation of the important properties
of the example in terms of its initial knowledge.

3. Analogy

Learning by analogy has been used in the areas of theorem proving, problem solving, planning,
design, story understanding, and teaching. Unfortunately, there seems to be no theory on
which to base this work.

4. Discovery

The use of such highly connotative words is suspect. In BACON, for example, the work is
not well substantiated, and might more accurately be described as “heuristic curve fitting”.
Peter though that the work done by Kokar in this field was good (see the Machine Learning
journal, volume 1 number 4).



1.3.2

. World modeling

Ron Rivest presented a paper in the workshop describing a system which could find regu-
larities in an application with a very large number of states, provided the transitions were
deterministic. This also included a complexity analysis.

. Theory
. Formal induction

. Soar

This is a very large system from Carnegie Mellon University which claims to be able to do
many things.

. Connectionist architectures

Similarity based learning in detail

There are many established techniques which fit into this area:

1.

Quinlan’s ID3

This system builds decision trees from examples identified as attribute-value pairs. Recent
additions to ID3 include noise handling by tree pruning, the use of soft thresholds in the trees
to deal with probabilistic data, and the formation of rules from trees. ID3 is now commercially
available for Expert Systems. Furthermore, there are large data bases of examples from
which ID3 has successfully created decision trees, which people are sharing for research and
experimental purposes.

. Mitchell’s Version Space

This system uses positive and negative examples to determine a concept description, which
can later be used to decide if a new instance is in the concept. The algorithm eliminates
candidate descriptions as new examples are given. Peter explained its operation using a
diagram with two concentric circles: the outer circle representing the boundary between
overgeneral descriptions (on the outside) and acceptable descriptions; and the inner circle
separating too specific descriptions (inside) from the acceptable ones. A positive example
eliminates some of the previously acceptable descriptions as too specific, enlarging the inner
circle. On the other hand, a negative example may show that some of the descriptions which
were acceptable before the example are too general, causing the outer circle to shrink (so as
to exclude the overgeneralizations). So descriptions outside the outer circle are too general,
those inside the inner circle are too specific, and we don’t know yet about those in the ring
between the circles. If this ring ever contains only a single description, then that is the
description of the concept.

The conference contained a paper analyzing the complexity of the algorithm as a function of
the description language. Attribute-value pairs and their conjunctions are fairly easy to deal
with. When some disjunction is added things get more complicated. Fully general languages,
relating parts and their attributes, cannot yet be dealt with by the version space algorithm.
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3. Michalski’s generalization heuristics

Michalski has a list of generalization heuristics, organised into two categories: selective heuris-
tics make use of the descriptions given in the examples, while constructive heuristics require
grouping of aspects not present in the descriptions given. Some examples of selective heuristics
are: “drop an attribute”, and “extend a value range”.

4. Prototypes

This is one of the new ideas to come from the conference. For example, consider learning
about chairs from particular chairs. The techniques consist of doing “lazy generalization” or
“generalization on the fly® by seeing how good a partial match you can get. This requires a
more complex representation language.

5. Get a core generalization

Core generalizations are used together with interpretation rules applied “on the fly”. For
example, the concept “toy chair” would use knowledge about toys and the general description
of a chair and combine the two. Knowledge about toys guides the matcher, which can relax
constraints as it goes.

1.3.3 Explanation based learning in detail

1. Mitchell’s LEXII

This is a problem solving system which learns better rules by working backwards through a
trace of rules used to solve a given problem. It recognizes when the use of certain rules was
a good idea and forms a new rule stating the reason. This method requires much domain
knowledge, and has the ability to operationalize declarative knowledge.
2. Winston’s cups
As with LEXII, this work requires a large amount of background knowledge. Given a general
description of a cup, and a functional description, Winston’s method learns more about cups.
3. Pazzani

Pazzani has used a combination of SBL and EBL in story understanding. The method involves
using SBL on a set of instances to get causal relations, which are then used to do EBL in
new stories. This is a good first step towards some kind of “sustained learning”, where that
which has been learned is used to learn more.

1.3.4 Problems for future work

1. Relating structural, functional and behavioral descriptions

Structure and behavior can be observed, but we must infer the goals of a system from our
observations.

2. Explanation based learning systems

Require a large amount of complex knowledge to learn some simple things. Is this a good
idea?

3. Some problems not addressed at the workshop include:
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(a) retrieval of relevant knowledge from existing knowledge bases
(b) indexing new knowledge into a knowledge base
(c) learning of new knowledge representations

(d) automatically choosing the right knowledge representation for a domain in question.

1.4 Discussion of the current state of the art in neural nets and machine
learning

The workshop reconvened for discussion of several questions, prepared by Ian and an ad hoc com-
mittee during the lunch break. Two things quickly became evident. First, the discussion generated
more questions than answers; and second, the participants seated on the left side of the room took
an active, verbal role in the discussion, while those on the right side of the room produced vivid
mental images which they declined to articulate.

1.4.1 What is “learning”?

This question began as an attempt to define a number of terms, but only the first of these, “learn-
ing”, was actually discussed before time ran out. Maurice suggested that learning is “an increase
in knowledge over time as a result of some internal processes”.

The group quickly generalized this to read “a change in knowledge over time”, and this first
attempt at a definition turned out also to be the last. Ian added the work “knowledge” to the list
of terms, and the group’s attention turned to the nature of that which is to be learned.

Several participants suggested some examples of things to be learned in quick succession: tasks,
text, multiplication tables, problem solving; the group drew a distinction between rote learning and
understanding. (Ian added the word “understanding” to the list.) A suggestion that a machine
learner must take an active role in the learning process lead to a discussion of machine learning
versus human learning.

Someone remarked that learning appears to be one of those human activities to which many
people apply the rule “if you can explain how a machine does X, then it isn’t REALLY doing X",
Besides the difficulty of answering the “what is” question of learning, it appears that the how”
may lead to a paradox: are we “exploring unexplored territory”?

This, together with time running out, perhaps, lead to the question: “do we really have to
define learning?” If not how would we know whether we had achieved learning or not? David Hill
wondered if we could accept a change in behavior or performance as being indicative of learning.

1.4.2 What are the goals of Machine Learning?

As the group turned its attention to this new question, the ideas came very quickly. A machine
learning system should be able to think for itself, acquire knowledge, in short, do whatever it is
people are doing when the say they are learning. Perhaps in frustration someone suggested that
it should be able to define learning. Maurice wanted it to improve its explanatory powers without
further input from the outside world, to mull over its knowledge as it were. We extended this to
include changes in behavior and self-adaptation. And why limit its access to external inputs? It
should know enough to know when (and how) to inquire of the outside world.
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At this point, Ian interrupted, saying that he was really more interested in the goals of the
people studying machine learning.

Peter said his interests included the principles of generalization, and the notion of instructable
robots, useable by non-programmers. Such robots would accept goals, instruction, examples, and
advice from their users (owners? colleagues? friends?) and apply these to the solution of problems.

Someone else wanted to learn more about human intelligence; another joked “it’s a job”; another
wanted to become famous - “you mean notorious” rejoined yet another. Others were interested
in the transfer of knowledge from one domain to another. This seems a worthwhile aim, given
Martin’s law that you can’t learn something unless you already nearly know it.

lIan admitted that he was working in the area because “it’s fun”, the most interesting place to
be at the moment. He would like to have autonomous systems. Bruce MacDonald joined in at this
point with his wish that everyone could have access to the power of computers and robots. Debbie
agreed, and introduced the notion of “domestic robots”, to do housework. Brian Gaines pointed
out the difficulties of getting people to accept such devices, saying that at the very least Asimov’s
laws would have to be guaranteed, giving “sani-robots”.

Speculation ran high, with discussions of how such robots would be given requests, and whether
they would be considered “people”. Would they respond only to direct orders, or would they
understand oblique comments and wishes (“do we want a fairy godmother?” scoffed Bruce M).
Brian Gaines broke in with great energy, exclaiming that a serious moral issue was involved. He
drew a vertical line, labelling the top “machine”, the bottom *people”, and asked whether we were
dragging computers down to the level of people, or people up towards the level of machines. His
interest in machine learning is that it involves interesting things, including the development of
autonomous systems.

1.4.3 What functionality should a Machine Learning system have?

We first attempted to characterize machine learning systems, as knowledge acquistion boxes, nat-
ural language understanders, knowledge support systems, adaptive components to CAL systems
(student models), autonomous entities, instructable robots. The discussion included military com-
puters that help pilots shoot down planes, and the military’s interest in autonomous land vehicles.
Someone suggested that from a scientific viewpoints, we should be able to elucidate the principles
underlying machine learning.

This led to the question “what should a machine learning system be like to use?” We agreed that
they should give assistance in their own use - learning machines in the programmer’s workbench.
Brian G. suggested that what we were after could be subsumed by the notion of “instructable
systems”. These systems would receive problems, tasks, and goals to work with. They would
accept advice, hints, or examples, and solve problems, with their performance improving over time.
This is really the teaching versus programming distinction, so that instructable systems would
occupy the high end of the continuum which includes fourth generation languages.

1.44 Can we hope to understand neural nets (in terms of concepts we already have)?

We distinguished non-distributive neural nets, with localized representations of concepts, which
we can understand better than distributed neural nets, where the representation of concepts is
distributed across the net.

It is possible to understand at different levels: the node or connection level, the algorithmic
level, or at the level of emulating the brain. Bruce M. elaborated an analogy with physics and
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understanding the movement of heat from a warm room to a cooler one, which can be understood
at the level of Schroedinger’s equations, the gas laws, or by common-sense knowledge about warm
and cold air masses.

Someone commented that neural nets are good engineering, but not science because we cannot
fully understand them. Peter said that he did not care how a neural net is physically implemented,
but only how the algorithm is constructed and how it is working.

Brian Gaines showed a slide comparing Information Technology and Neural Nets (see C2), and
noted that most of the neural nets conference concentrated on the two lowest boxes on the slide:
implementation in VLSI, and neurons, connections, and learning algorithms. In contrast to this,
our discussion here has concentrated on the next four higher boxes: training techniques through
learning as the fundamental nature of neural nets. Furthermore, it seems that goal-directedness
and integration are basic problems with neural nets.

It was felt that work in the field over the next few years should eventually result in the de-
velopment of theories. This in spite of the fact that currently those working with neural nets can
develop abilities that they cannot explain. Someone expressed the concern that the critical nature
of representation is outside of the net itself.

1.4.5 Can we understand other learning algorithms in terms of neural nets?

It would be interesting to characterize machine learning algorithms by their input output functional
specifications, viewing them as black boxes.

Bruce M. suggested that version space could be done on a marker passing machine, such as Netl,
(Fahlman, S. 1982. Three flavors of parallelism. Proc. 4th National Conf. CSCSI. Saskatoon. 230-
235) by sending markers to represent generalizations over a lattice from the top and the bottom.
Where they met on the lattice would identify the concept learned.

A paper in the neural nets conference showed language syntax learning using a net of constraints.
We could view nets in terms of constraint satisfaction.

1.4.6 Methodological issues

Should we work with problems looking for a mechanism (to solve them), or rather study mechanisms
by looking for problems they can solve? Hopefully theories will be formulated as researchers become
familiar with interesting mechanisms. (“Interesting® was one of the words we never got around to
defining in the first question of the afternoon.) One participant suggested that the question was
really contrasting goal-directed research with “having fun”. Another suggested a third alternative:
understanding neural nets as devices. The consensus reached was that some people are working
from each viewpoint, and that hopefully they will meet somewhere in the middle.

Bruce M. outlined John Andreae’s strategy: work with a promising low-level mechanism, dis-
cover tasks it cannot perform, and augment it so that it can perform the new tasks without
sacrificing the ability to do the old tasks.

It is very useful to have some grand goal in mind (even if it is an unreachable one) to guide
research. The discussion ended for the day at this point, but it is interesting to note that we
returned to this idea again at the end of the second afternoon.



2 Machine learning Projects; System integration

3.1 From MARVIN to ALVIN
3.1.1 Whatis MARVIN?

Brent Krawchuk presented his work on a reconstruction of MARVIN, a program originally written
by Claude Summut (Sammut, C. and Banerji, R. 1983. Hierarchical memories: an aid to concept
learning. Proc. International Machine Learning Workshop. 74-80. Allerton House, Monticello,
11, June 22-24) and an extension of his own design, ALVIN. MARVIN differs from other learning
systems in its application of knowledge about concepts it has already learned to the learning of new
concepts. Thus it is hoped that MARVIN may be able to exhibit sustained learning. Knowledge
about concepts is represented as Prolog clauses.

A general learning system: MARVIN is a general learning system which learns from exam-
ples and by experimentation. After receiving a positive example from the trainer, MARVIN uses
Similarity-Based Learning techniques to form a hypothesis about the target concept. MARVIN
then presents an example consistent with the hypothesis, and relies upon the trainer to verify or
refute the hypothesis.

Example: learning about swimmers: As MARVIN is given (positive) examples, it builds its
representation of the target concept. Whenever possible, it attempts to generalize. For example,
suppose that MARVIN already has the concept fish, including flying fish, cod, and trout (see D4).
Upon learning that trout is a swimmer, MARVIN will form a hypothesis by generalizing to all fish
being swimmers. To verify this hypothetical generalization, MARVIN will present an example to
the trainer, asking, in effect, “is cod a swimmer?”. MARVIN will continue generalizing as long
as the trainer agrees that the example presented is indeed a swimmer. On the other hand, if the
experiment fails, MARVIN will stop generalizing and assume that it has learned the concept, or
choose a different generalization, if possible.

The trainer may then give a further positive example. Suppose the trainer asserts that a whale
is a swimmer (see D4). MARVIN will then expand the concept by creating the disjuncts: A is a
swimmer if A is a fish, or if A is a whale. If MARVIN possessed concepts more general than whale,
if would again attempt to generalize.

Crucial objects: When selecting an object to present to test a hypothetical generalization, MAR-
VIN chooses a “crucial” object. For example, suppose the trainer is teaching the concept “whimsy”®,
and has given zero as an example. The currently accepted generalization will be that A is a whimsy
if A is equal to zero. Suppose at some later time that MARVIN is considering the possibility that
A is a whimsy if A is a digit (digit being a concept it already knows). MARVIN would choose a
crucial object to present to the trainer as a possible example of a whimsy.

The choice of a crucial object is constrained by three rules (see D5):

1. A crucial object must be covered by the trial generalization. In our example, any of the digits
0-9 would qualify. The objects dog, cat, etc. would not.

2. A crucial object must not be in the currently accepted generalization. This rule eliminates
zero itself as a possible example.



3. A crucial object must not be in danger of being part of the target concept for reasons other
than being in the generalization to be tested. If MARVIN already knew the concept bit, for
instance, the digit 1 would be eliminated by this rule.

So, in this example, MARVIN would choose one of the digits 2-9 to present to the trainer.

2.1.2 Problems with MARVIN

When MARVIN's knowledge of a domain is rich enough, it may be impossible to find a crucial
object. For instance, if MARVIN had concepts of even and odd digits, rule (3) would eliminate all
digits from consideration as crucial objects for the digit generalization.

The trainer must have a tree structure of the knowledge in mind so that the choosing of crucial
objects will lead MARVIN to the desired concepts. This places too great a load on the trainer, who
must present the examples in a bottom-up order.

For example, suppose MARVIN knew about digits and bits, and the trainer wished to teach
the concept prdiv6 (prime divisors of 6), giving 2 as the first positive example. The crucial objects
are 3-9 in this case, 5o MARVIN would choose one of these to test the generalization to digit. Of
course, MARVIN should not be allowed to generalize to digit, so if MARVIN happens to choose a
digit from 4-9, all is well. On the other hand, if MARVIN chooses 3, the trainer must tell a white
lie, saying that 3 is not an example of the concept prdivé (even though it really isl).

It is not so much that the trainer has to lie, but rather that the trainer must answer an implicit
question. MARVIN asks “is 3 an example of prdiv6”, but also shows the generalization from
which the crucial object 3 was chosen. The trainer must not answer the question as asked, but
must instead answer the implied question: is the generalization valid? Otherwise, MARVIN will
overgeneralize (see D6), and since the trainer cannot give negative examples, there will be no way
to convince MARVIN to give up the generalization.

People tend to think of concepts in a more general, partially ordered, structure rather than in
a strictly hierarchical structure. For example, rather than consider bit to be a subclass of digit, we
tend to think of bit as being a separate concept altogether (see D7). If MARVIN could structure
its knowledge in this manner and also do away with the need for white lies, then the trainer would
require less specific knowledge of the concept to be learned. Unfortunately, the use of a partial
ordering structure does not, in itself, preclude the need for “white lies”.

As a further example of the increased flexibility of partially ordered structures, consider adding
the notion of swimming to a hierarchical concept bird (see D8). If birds has two subclasses, flight-
less and aerial, then adding swimming requires the introduction of the adhoc subclasses “swimming
aerial birds” and “swimming flightless birds”. With a more general structure, the notion of swim-
ming can be added to the previously learned concepts without interfering with them in any way.

2.1.3 ALVIN to the rescue

ALVIN is Brent’s answer to some of the limitations of MARVIN. It represents concepts in a par-
tially ordered structure, thus simplifying the constraints on the trainer’s own representation of the
knowledge, and avoiding the “lie”.

ALVIN is like MARVIN in the sense that it attempts to generalize from positive examples,
and seeks to validate its generalizations by presenting an example to the trainer. The essential
difference occurs in the choice of the example to present. If a crucial object does exist in the more
general concept that ALVIN is attempting to validate ALVIN will present that object. Otherwise
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a significant object will be chosen. A significant object is one which satisfies MARVIN's rule (1)
and (2), but not (3); that is, it may be an element of a concept other than the one being validated
(see D9).

When a significant object is presented and rejected, ALVIN the hypothesis being tested is
rejected. If, on the other hand, the object is accepted, then ALVIN investigates further by a
recursive application of its generalization algorithm to the significant object. Supposing that this
results in a valid generalization, ALVIN will store it a8 a disjunct, and continue to explore its
original hypothesis.

S

2.1.4 Advantages of ALVIN

ALVIN represents its concept knowledge using a more general data structure, resulting in a re-
duced burden on the human trainer. ALVIN can work in more complex domains and more complex
knowledge structures (see D10). It can learn multiple disjuncts in response to the presentation of
a single object by the trainer (see D10 through D13). Finally, Brent has introduced the notion of
significant objects for use when there are no crucial objects.

2.2 Some complexity results for the Version Space algorithm

Mathew Ling presented results from his study of version space, an algorithm due to Mitchell
(Mitchell, T.M. 1982. Generalization as Search. Artificial Intelligence, 18, 203-226). He began
with a brief review of the algorithm, referring back to an earlier presentation which is reconstructed
here.

2.2.1 What is Version Space?

Version Space is a concept learning system which applies to areas for which three entities can
be clearly defined: a domain, a description language, and a specificity ordering on the possible
descriptions. It then defines data structures, and performs algorithms, based on these entities:

1. the domain is a finite collection of distinct objects.

Consider, for example, the set of ordered pairs, or points in the real plane, for instance ( 3,

5).

2. the description language specifies a set, possibly infinite, of descriptions, each of which rep-
resents (describes) a subset of the domain.

A very simple description language over the set of ordered pairs would contain the descriptions
“r=¢" “z<y, ‘> ¢, ‘c<=¢, “2>=y", and “z: y”, where x and y are the x-
coordinate and the y-coordinate, respectively, and “z : y” means that x and y are comparable,
but we don’t wish to be more specific. The description “z : y” thus describes all possible
points on the plane, while “z = y” describes only those points whose two coordinates are
equal.

Then the ordered pair ( 3, 5) fits all of the descriptions: “z < y”, “z <= y”, and “g y.
Notice that the three descriptions of ( 3, 5) are arranged in order from most specific to most
general.
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3. the specificity ordering recognizes that some descriptions are more specific than others.

In the example (see E9), the area of the plane described by “z <= y” is a subset of the area
describe by “z : y* (the entire plane). This makes “z <= y” more specific than “z : y".

This is actually a partial ordering, since there are some pairs of descriptions which are unre-
lated in it. For example, “z < y” is neither more nor less specific than “r > ¢”.

It is possible to show the ordering of all the descriptions in a lattice with each description
written above, and connected to, those which are more specific.

The concept to be learned is a subset of the domain of objects. Version Space considers the
concept to be learned when it has found a set of descriptions which together describe all of that
subset and nothing else. The lattice of descriptions is the space through which Version Space
searches to find the descriptions of the concept to be learned. Rather than represent the entire
lattice (which may have infinite depth, or breadth, or both), the version space algorithm uses two
sets of descriptions: the G set is the set of descriptions which are as general as possible with respect
to the examples which have been presented; the S set is the set of descriptions which are as specific
as possible, consistent with the examples presented.

When an example is presented, it is matched with the descriptions. A positive instance will
result in the removal from G of any description that does not cover the instance; then the descrip-
tions in S will be replaced by a more general set of descriptions - just enough more general to cover
the new instance as well. If the instance is negative, then any description in S which covers it is
dropped, and the descriptions in G are replaced by more specific ones - just enough more general
to exclude the new instance.

2.2.2 Different kinds of search spaces
Mathew distinguished three varieties of search space, for which he has some complexity results.

1. In a hierarchical search space, the descriptions are organized in a tree structure by the speci-
ficity relation (see E6).

2. In a Boolean search space, each description is the subset of objects (see E8).

3. In an attributive search space, each object is represented by a list of attribute-value pairs.
Mathew restricted the discussion to those spaces for which the attributes form a hierarchy
(see ET).

2.2.3 Results

For each of these kinds of search space, Mathew discussed the size of the S and G sets, and the
number of training examples required for the version space algorithm to find the concept.

In a tree-structured space, both G and S must contain exactly one description. G will begin by
containing the root node only, and S will contain the leaf which describes the first positive example.
As each additional example is presented, one of the sets will “move”: a positive example will cause
the description in S to generalize to include it, and S will move at least one position towards the
root of the tree; for a negative example, G will similarly move at least one position towards the
leaves. Thus, for a tree with L levels, version space may need as many as L. examples.

In attributive search spaces (assuming attribute hierarchies), the S set will always contain
exactly one description. The G set may contain more than one, unless Winston’s “near miss”
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technique is used for negative examples, limiting the expansion of the G set by not causing disjuncts.
In this case, the size of G will be one (compare E4 and E5). Given M attributes each with L levels,
version space will require ML examples to converge to a single description.

In a Boolean space, again the G and S sets are of size one. But now, version space will require
as many examples as there are objects in the domain.

The results are summarized in a table (see E2).

2.2.4 Observations and questions

1. The number of examples needed for convergence does not depend on the number of descrip-
tions in the search space, but rather on its structure.

2. What will happen to the size of G when the size of S is two or larger? For this to happen,
version space must be operating in a non-hierarchical space.

3. What will happen to the size of G when the values of an attribute are not in a hierarchy, so
that there is no unique generalization?

4. Could some other set be used as a boundary within the search space, other than S and G?

5. Would it be possible to modify the version space algorithm so that it would expand the de-
scription language when the Version Space collapses?

2.3 Reconstructing Noddy

David Pauli described his reconstruction of Noddy, originally written by Peter Andreae as a PhD
thesis. (Andreae, P.M. Justified Generalization: acquiring procedures from examples. PhD Thesis,
Department of Electrical Engineering and Computer Science, MIT.)

2.3.1 Description of Noddy

Noddy learns robot procedures from traces of procedure execution.

Noddy processes traces incrementally to refine a “current generalization procedure”, which may
be the result of generalizations made from previous traces. As new traces are encountered they are
generalized with this current procedure if possible.

2.3.2 How Noddy Works

Noddy makes use of explicit, pre-programmed, generalization hierarchies and information about
mathematical and set operators. Events in a procedure trace are represented as nodes in a directed
graph. Noddy attempts to generalize by adopting a conservative policy which attacks the problem
in three stages: the skeleton matching stage, the propagation stage, and the final stage of functional
induction.

Skeleton Matching Stage No generalization takes place in this stage; instead Noddy searches
for “key events” in both the procedure and the trace. If a pair of key events are unique within their
respective structures, and match exactly, they are considered to match.

13

S S e e - R e P AT . T S 18 RN S GRS AT I



Propagation Stage This stage examines events which are different but whose predecessor or
successor events have been matched in the skeleton matching stage and attempts to unify the
descriptors within these events. Unification of the descriptors is done using the generalization
hierarchies and succeeds if two descriptors bave a common predecessor in the hierarchy.

Generalizations made in this way are termed first level generalizations because they can have
no functional parameters. Any loops or branches present will be recognized and made explicit in
the grouping process which completes the propagation stage (see F3 and F4).

Functional Induction Stage This stage constitutes the second level of generalization and is
only undertaken when parallel segments have been found between the procedure and the trace.
Parallel segments have the following features:

1. they have the same start and end events,
2. they contain the same number of events,
3. the corresponding conditions match, and
4. the corresponding actions are of the same type.

This second level of generalization uses much more powerful generalization techniques - hence
more expensive ones - and involves searching for functional dependencies of actions upon earlier
patterns. Functional induction involves finding an earlier pattern component upon which the actions
may depend and a function that will relate the pattern component to the action. Noddy maintains
a list of past values of patterns and action parameters in order to conduct this search.

Candidate functions for relating previous patterns to actions are chosen from a list of pre-defined
operators. A single operator is applied to the domain values (from the condition part of the event
- ie. input values) and returns range values (from the action part of the event - ie. output values).
If the range values do not match those from the action, Noddy iteratively applies any appropriate
operators to the domain and range values and searches for a connecting operator which returns
the new range values when applied to the new domain values. This has the effect of building up
an expression from both ends of the data. The resulting expression will be the composition of the
inverses of the operators applied to the range values, the connecting operator and the operators
applied to the domain values.

The choice of operators is constrained by the type of the input and output values (eg. positions,
angles, etc.).

If the current output values equal their associated input values, then no connecting operator
i8 necessary and the gap is simply removed, but, if there is a binary operator that when applied
to each input/output pair produces a constant value, the gap is filled by that operator’s inverse
applied to the constant and the input value. A constant found in the above way is referred to
as a new constant and only one is allowed per expression. Other constants, referred to as known
constants, can also exist in the expressions. These constants have predetermined values which may
be relevant to the functional dependency. For example:

0.5 in move 0.5@-90
versus
move 05@-45 (see F5).
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2.3.3 An Implementation in Prolog

While the original Noddy was written in Lisp, David’s reconstruction is written in Prolog. One
of the major differences is the knowledge representation, as David’s Noddy uses explicit typing for
the operators and the domain and range values.

Implementing Noddy in Prolog meant that inverse operators did not need to be explicitly de-
fined, rather they are inherent in Prolog since it is bidirectional. Inverses are achieved by permuting
the arguments to a functor.

A drawback for the Prolog implementation was that some information about inverse operators
was lost, such as the commutative property of addition - thus generating redundant expressions,
eg. (plus 2 3) (plus 3 2).

The representation of the built up expression in Prolog required the use of uninstantiated vari-
ables to keep track of inputs and outputs to the gap - nothing like this was necessary in the Lisp
implementation.

2.4 Architecture of a Knowledge Acquisition System

Maurice Sharp, assisted by Bruce Thompson, presented the architecture of the KITTEN system,
which they are developing here on the Apollo systems. This is a descendant of the PLANET suite of
programs available on the Apple. The system consists of an integrated knowledge base, analytical
tools, and conversational tools (see G1).

2.4.1 Grid elicitation

One of the conversational tools, which has been implemented, elicits a grid of personal constructs
from an expert. This program prompts the user for a purpose and a list of elements, entities in the
expert’s domain. Then it proceeds to find distinctions between elements by presenting them three
at a time and requiring the expert to explain how two of these differ from the third.

The expert makes explanations of distinction by naming two poles of a new construct, giving
a continuum between two extremes, and by then rating each of the elements according to this
construct, typically on a scale of one to five.

The system automatically computes matches: entities which have been similarly rated on all
constructs, or constructs which appear to be equivalent, though redundantly named. The expert
breaks these matches by adding distinctions or elements.

2.4.2 Grid analysis tools

PRINGRID displays the elements in a two dimensional space, based on the most salient constructs.

SOCIOGRID combines the grids of several experts. This allows the modeling of understanding
and agreement. If expert A can, from B’s perspective, place the elements on B’s constructs the
way B did, then A understands B. Placing the elements from his or her own perspective, A can
agree with B.

The ENTAIL program analyzes the grid to determine which pole names entail which other pole
names, with truth, probability, and uncertainty reduction values. These entailments become rules
which can be used in an expert system shell.
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TEXAN is a domain organizer. Its purpose is to locate clusters of words in text, called knowledge
islands. These words are often usable as element names, to prime the grid elicitation process.

2.4.3 Current work

Maurice and Bruce are currently working on the knowledge base, using an object-oriented approach,
and object-attribute-value triples. Peter pointed out that this is a subset of first-order predicate
calculus, with only binary relations (the attribute relating object and value).

3.5 Machine Learning in Wellington

Peter Andreae described his work with instructable robots. Such robots would accept at least
goals, advice, and examples, and actually execute a task. They will contain domain knowledge,
and abilities in geometric reasoning, planning, and generalization.

Peter’s main interests in this project are the generalization of structured descriptions, partic-
ularly procedures with parameterized commands, iteration; and syntactic justification for general-
ization.

The overall approach is one of incremental learning, so that a usable generalization (procedure)
is available at each stage. Only positive examples of procedure execution traces are provided to the
system, which doesn’t remember each of them explicitly, but incorporates them into the current
general procedure. Minimal use is made of backtracking, so that possible mistakes must be avoided.
Peter hopes to avoid exhaustive searching, and to use minimal domain knowledge.

2.5.1 0ld Noddy

This was Peter’s PhD project (MIT 1985). The program acquires procedures for a simple robot,
which works in a two dimensional space, is blind, but can sense position and contact with other
objects. Examples are traces of primitive commands with sensor values. This system can learn
procedures with loops, conditional branching, and generalized actions (see H1). To do this, it must
be able to infer branch points and conditions, and find functional dependencies.

A generalized procedure is formed by matching two procedure traces. This requires the inference
of branch points, with loops “falling out® (see H2). Another way of looking at this process is to
consider the two execution traces as alternatives, and then “push the OR’s” down (and up) merging
the traces at steps which match (see H3).

Noddy generalizes structure descriptions by:

1. finding correspondences between parts,

2. generalizing corresponding parts, either through attributes or relations with other parts, and

3. finding groups and substructures.
Why Noddy appears to work. Noddy exploits structure to find correspondences. It includes
builtin assumptions about the nature of procedures to constrain generalization (ex. procedures
must be executable, and hence deterministic). Noddy is efficient through the use of different levels

of generalization: it uses the simplest methods first, and more powerful (and expensive) methods
only when they are well justified. The context of the match justifies the use of stronger methods.

16



Limitations of the approach

1. Noddy has built in heuristics for generalized actions and conditions, so that it doesn’t do as
much learning as it might seem at first. The context measures are untested; he never checked
to see if spurious generalizations would be produced when using more powerful generalization
methods.

2. The procedures generated ware unstructured, and included only a limited class of loops. For
example, in counted loops, the loop increment could only be one.

3. Examples of execution traces are lists of commands rather than observed behavior.
4. The program contains “hacks” for finding seed events to begin the matching process.

5. It was only used to induce four simple procedures. Peter suggested that before starting work
on a problem, a researcher should have ten interesting instances of the problem in mind.

2.5.2 New Noddy: Big Ears and Mr. Plod

New Noddy is a robot moving in three dimensional space with compliant guarded motion (the
robot will move by applying force in a given direction, and act like a spring at right angles to
that motion). Examples are descriptions of behavior: segmented streams of sensor values and
timing information (see H4). It generates structured procedures, including tail and full recursion,
implemented as and/or trees. Parallel commands are allowed.

An example of a procedure that Noddy might learn is one to fill a pallet (see H5). Part of this
procedure is another one to drill holes (see H6). Once the drill holes procedure is learned, it would
become a part of the overall, fill pallet, procedure (see H7).

New Noddy will use a blackboard architecture, with explicit loop finding experts {see H8). It will
integrate many generalization experts, including correspondence proposers and critics, generalizers,
and installation experts and critics.

2.5.3 Other projects at Wellington
1. Inference of specifications from procedures, the inverse of program synthesis.
2. Investigation of qualitative geometric reasoning in two and three dimensions.
3. Generalization of visual descriptions, relating function to structure, and handling descriptions
with optional parts.
2.5.4 Discussion

What should Noddy do if it over-generalizes? Peter had avoided backtracking by making Noddy’s
decisions irrevocable, not because it was infeasible to store all examples and reconsider previous
decisions, but because it was not clear if backtracking could be done without exploding the search
space. Peter speculated that an interactive component added to Noddy might help. Brian Gaines
suggested that keeping interesting examples which caused structural changes would help the prob-
lem. Both of the above would allow backtracking to take place if Noddy did over-generalize.
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3.6 Discussion

3.6.1 MARVIN

What s MARVIN that we must lie to it? MARVIN makes a generalization on the basis of
one example, and it has no backtracking capability. It presents an example of the generalization
it would like to make, but along with the example, it shows a representation of the generalization.
When the trainer rejects the generalization, he may have to lie about the example.

Brian Gaines suggested that perhaps lying might be necessary to optimize training time. This
raised issues of “trust®, and “disillusionment”. Brian pointed out that all text books lie, because
they can’t enumerate all the exceptions.

What kind of generalisation does MARVIN do? In Michalski’s terms, MARVIN uses the
“climb hierarchy” and *“find common substructures” heuristics.

What kind of problems is it good for? Tiny. Brent sketched the steps necessary to teach
MARVIN the append function: teach letter(A), eqletterlist(A,B), concat, etc.
The group agreed that numerous improvements were needed. MARVIN’s strong point is the

synthesis of examples to test hypotheses.

2.6.2 Version Space

What kinds of problems is it good for? Version Space induces class descriptions for objects
describable with attribute-value pairs. It cannot deal with structural descriptions. Peter said that
he used some of the ideas from Version Space in Noddy, and that some knowledge acquisition
systems also incorporate ideas from Version Space.

What is induction, and is it used by Version Space? Brian Gaines gave an example of
the differences between induction, deduction and abduction from C.S. Peirce, the 19th century
philosopher.
World ---abduction-~-->

- |

| | induction(introduce universal

| \ quantifiers)

-==== deduction---

(introduce existential quantifiers)

Bruce MacDonald thought that Version space is doing induction because it sees some examples
of a concept and derives a generalization for all instances in the concept. Ian Witten thought that
Version space is not doing induction since it is forming a unique generalization. Brian Gaines felt
Version Space was not doing Induction because it does not search a complexity ordering.

A remark was then made that in reality conjunctions and disjunctions are used in Version space
to get away from complexity orderings. Another remark was then made that any inductive system
has a complexity ordering in it so that Version space is partially inductive and partially deductive.
At this point Bruce Macdonald said that maybe Version space is just inducing parameters.

Peter Andreae told us that Noddy deals with layers of complexity and when one layer collapses
Noddy goes to the next layer of complexity - this can be thought of as having layers of Version

spaces.
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2.6.3 Noddy

What kinds of functions can it induce? Since Noddy allows the introduction of at most
one new constant per input variable, it cannot induce general polynomials. It was suggested that
combinators might be used to replicate arguments. This would give a larger search space, but if
something in this space were found to be profitable several times, it could be “remembered” by
making it an operator. As an alternative one could allow “oracles”.

What kinds of functions can Bacon induce? Bacon looks for proportional relations and
monotonic relations. The group agreed that it was difficult to characterize the precise set of func-
tions inducible by Bacon. Someone pointed out that there is a danger of getting more information
in the function induced than is actually present in the original data. Methods of searching through
a space of polynomials, including linear regression, were briefly discussed.

What kinds of domains is it good for? Since Noddy induces procedures from examples, it
should be good for many things done everyday on a computer system, ex. updating a database,
etc. On the other hand, it would not be good at inducing an algorithm like quicksort, where it is
difficult to present the example traces.

2.6.4 Knowledge representation

This was subtitled “a diatribe by Peter Andreae®. Peter warned of the dangers of getting caught
up in notation (ex. semantic nets, frames, logic, etc.). Ontology is more important: one should
begin by identifying the entities one wishes to represent. There are many possible kinds of entities
which we might wish to distinguish: physical objects, actions, ideas, statements, events, relations,
and so on. We need to distinguish between atomic entities and classes of entities. We must also
consider the issue of indexing: how to relate or connect two separate facts.

Peter was just warming up when we ran out of time for this question.

2.6.5 CONCLUSION: What are we trying to do, and would we know when we
achieved it?7

We decided that we needed a big project, not necessarily doable, with a name and a catchy phrase.
Someone, building on Brian Gaines’ suggestion that humans are really a collection of hacks, pro-
posed HACK as an acronym for the big project. Maurice tried his hand at coming up with a
phrase for HACK, sarting with “Hopefully, use Al...”, and everyone liked the first word, at least.
Brian jokingly suggested the C might stand for Canadian, and that we might use our expretise
with robot arms to build a giant ore to catch and dismantle missiles. Perhaps HACK might stand
for “Hopefully, use Al to Create a Knowledge-based system”.

The notion of instructable systems came up again. Peter expressed it as the use of knowledge
acquisition techniques to capture an expert’s knowledge, then convert it into executable procedures.
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A Neural Net Conference
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IEEE First Annual International Conference on
Neural Networks

San Di June 1987

Finally massive—
some 300 papers, 1500-2000 registrants
Proceedings out in September, some 1800

Stochastic computing—
Gaines & Cleary papers

Commercial exhibition—
Range of net simulators on mainframes, micros & lisp-machines |
lerator cards for PCs

Overall—
no clear sense of direction, no front runners
many major researchers missing, Hinton, Smolensky

Conclusions—
neural net technology and applications taking off
it's open season, grab some action
how does this technology integrate with standard computing?
role of analog an digital?, role of stochastic computing?
applications techniques—equivalent of software engineering?
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INTERNATIONAL NEURAL NETWORK SOCIETY

Membership Application

Dr. Harold Szu

Naval Research Lab
Code 5756
Washington, D.C. 20375-5000, USA

The International Neural Network Soclety (INNS) Is an association of scientists, engineers, students
and others seeking to learn about and advance our understanding of the modelling of behavioral and
brain processes, and the application of neural modelling concepts to technological problems. INNS will
sponsor its first international meeting In 1988. INNS membership includes a subscription to NEURAL
NETWORKS, the officlal Journal of the society. ,

MEMBERSHIP FEES (1987-88) -
O Regular ($45.00 enclosed)

[ Student ($35.00 enclosed)
Payments cover 1987 and 1988.

Payment enclosed: [ Check (1 Money Order Amount $_.

Please charge my: (O American Express [J MasterCard [ VISA [J Diners Club

Account Number: - ; Expires,
Signature;
Naine __- -

Last First ML Title
Department | ‘ Institution

Employment: O University O Government (3 Industry [ Other

— over please —

A3




INTERNATIONAL NEURAL NETWORK SOCIETY
Membership Application

Mailing address

Clty State UP/Postal Code

Electronic mail address

Country

Telephone(s)

EDUCATION: Highest Degree : ' Date

University ____ Department

Check your principal areas of interest in neural networks.

{1 Vision and image processing

0 Speech and ianguage understanding

O Pattern recognition

(1 Associative learning and long-term memory

0 Self-organization

{J Cognitive information processing

O Cooperative and competitive network dynamics and short-term memory
O Sensory-motor control and robotics

0 Parallel distributed processing

0 Local circult and systems analyses of brain-behavior relationships

(3 Combinatorial optimization

O Electranic hardware

O Optical hardware

O Hybrid hardware

{ Virtual devices

0O Neurocomputers

O Other

Signature Date

Mail application with payment made payable to INNS to: Dr. Harold Szu,
Naval Research Lab, Code 5756,
Washington, D.C., 20375-5000, USA.
Telephone: (202) 767-1493, FAX: 202-767-4277,
E-Mail: ARPNET-Szu @ NRL3




B 1ID3 Counter-Example

24



From Brian Gaines
To Peter Andreae 8th July 1987

Counter-Example to Show that ID3 Information Reduction Heuristic
Does Not Generate Shortest Expected Decisions

I believe Ross has never claimed the information reduction criterion of 1D3 to be
more than a heuristic.

Intuitively it should have simple counter-examples because it is a search heuristic
that commits too early. Think of the problem as a search tree over possible decision

trees—the heuristic does not take account of the later stages of the decision tree it is
selecting.

My guess at a counter-example is to take a ‘nasty’ case that ID3 is pretty helpless at
and tack on a misleading ‘carrot* that sends it down the wrong path.

Let’s start with the exclusive-or function:-

Entity Attl Att2 Class
A 1 0 p
B 0 1 P
C 1 1 N
D 0 0 N

The entropy is 1.0. Neither attribute reduces it! 1D3 choses either first and then the
other second, landing up with a correct and best solution:

Attl
0 |
—Att2— —Att2—
0 1 0 1
N P P N
D B A C

The average number of decisions is 2.0

Now give ID3 a misleading attribute that is of no help at all to the problem.

Entity Attl Att2 Att3 Class
A 1 0 1 p
B 0 1 1 p
C 1 1 1 N
D 0 0 0 N

Bl



Att3 now reduces the entropy to -3/4 (1/3 log2(1/3)+2/3 log2(2/3))-1/4 (0) < 3/4 <
1, s0 ID3 choses it, but still has to use the old decision tree thereafter, landing up
with the correct but not as good solution:

Att3
0 1
N Attl
D 0 1
p —AU2——
B 0 1
P N
A C

The average number of decisions is 2.25

This is the smallest counter-example. There is clearly none for two entities. With
three, it is not possible to create an asymmetry for a carrot.

This should also be a counter-example for any tree-pruning algorithms derived
from an ID3 first pass, since it is the root of the tree that has to be removed.

The example is very dry and perhaps it should be distributed in a more interesting
context:

It came to pass that God offered Adam and Eve the opportunity to redeem their sin and return to the
Garden of Eden. “Thou shalt truly tell me the features of those who walk upright in the land”,
saith the Lord. “Adam, the man, has a long left leg and a lon g right leg, and walketh upright in my
sight. Eve, the woman, has a short left leg and a short right leg, and walketh upright in my sight.
Cain, the man, has a long left leg and a short right leg, and walketh crookedly in my sight.” Abel,
the man, has a short left leg and a long right leg, and walketh crookedly in my sight even while he
is sober. Now, telleth thou me, how one may decide who walketh upright such that the Devil
might not surpass thee in the timeliness of the truth.” Eve pondered and Adam wandered the
breadth of the land searching for the truth, or so he said. In the fullness of time they gathered
together and Eve said, “Adam darling, the left leg telleth nothing. The right leg telleth no more. A .
woman walketh upright. A man with a long left leg and a long right leg walketh upright.” Adam
replied, “So be it sweetie pie, I asked far and wide but none had the knowledge until I consulted
the Three Ides of Quin Lan, and they answered what thou has truly spoken.” This they
communicated to the Lord who sighed and saith, “Truly, hath the Apple blinded thee, even the

prunings of MacTwo, the sage of the West, could not open thine eyes.” Go forth and multiply for
the tree of decision is beyond thee.

It is a sad note to this tale that the French Revolution, ungodly as it was, with its proclamation of,
“Equality, fraternity and liberty!”, first offered the solution to this ancient problem—equality of
legs leads to uprighteous walk. This answer would have led to the fraternity of the Lord and the
liberty to walk in the Garden of Eden, now known as Palo Alto, unfortunately blighted by
semiconductor wastes but where the Apple of life still blooms.

Ry
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e

Principles

reflective analysis of net

Abstraction

integration of existing knowledge

N

Transfer

learning in related worlds

!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘R\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\K\I

Priming

direct instruction

Training

performance feedback

Coding

input & output encoding

Cl



Socially Organized Systems Integration a basic problem

Autonomous Activity Systems | Goal-direction a basic
. problem

| Inductive Inference Systems | Learning is fundamental
| nature of nets

Knowledge-Based Systems . Structural & functional
| differentiation

. Human-Computer Interaction | Interactive training,
| feedback from performance

Problem-Orientated Languages| Training techniques

Virtual Machine Architecture | Neurons, connections,
' learning algorithms

Electronic Device Technology | VLSI allowing large
| parallel systems

Information
Technology
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FROM MARVIN TO ALVIN

Presentation Outline For ML Symposium

B.J. Krawchuk

1. MARVIN

(a) general learning System
i. learning by example
ii. learning by experimentation
iii. relationship between student and teacher
iv. Cohen(1978); Banerji, Sammut (1981)
v. already-learned concepts can be used in future learning
vi. stores concepts as Prolog clauses
(b) Example: Learning Swimming

(¢) Crucial objects in Marvin
2. PROBLEMS

(a) Claim it works well for tree structures. (Hierarchical Concept Mem-
ory)
(b) hierarchical memory unnatural
i. awkward to use
ii. sub classes not really thought of as contained in the superclass
(bst < digst)
iii. attributes as subclasses
iv. learning in frame systems
(c) cannot maintain tree structure

1. tree maintenance not inherent in the algorithm
il. relies on trainer to teach in proper order

A. trainer must know structure of a concept beforehand (bad
order screws things up)

B. trainer must know everything that is to be taught

(d) Even if procedures to convert back into tree structure not even limit-
ing to tree structure works: overgeneralization and overspecialization



(e} Suppose we let Marvin work on partial orders: lying on the part of
the trainer must be done in order to lgarn

D o lye k4 a/k()/,,/p"/één/
3. ALVIN

(a) Krawchuk (1987)
(b) created to handle

1. partial orders, not just trees

ii. without lying

iti. side-effect: multiple-disjunct concepts can be learned without

problems

(c) Significant vs Crucial Objects
(d) Learning Two-Leggedness
(e) Applications

i. horn clauses ;e 2eleg

ii. nets and frame systems with multiple inheritance

Do



FROM MARVIN TO ALVIN

MARVIN
o general learning system
e learning by example

e learning by experimentation

9

relationship between student and teacher

o

Cohen(1978); Banerji, Sammut (1981)

o already-learned concepts can be used in future learn-
ing

<]

stores concepts as Prolog clauses

23



MARVIN: LEARNING SWIMMING

BEFORE

O

fish
0 L ® ® )
whale squirre! bat flying cod trout

fish

AIFTER
o

swimmer

/\,g
e

whale squirrel bat flying cod trout

fish

TWO DISJUNCTS CREATED:

swimmer(A) - eq(A,whale).

swimmer(A):- fish(A).

4



CONSTRUCTING CRUCIAL OBJECTS IN MARVIN

l. the object must be covered by the trial hypothesis
digit(A)

dog

10 cat

Il.the object must not be in the currently accepted generalization
digit(A)

eq(A,0)

I11. the object must not be in danger of being part of the target concept
for a reason that differs from the one currently being tested.
digit(A)

eq(A,0)

bit(A)




MARVIN OVERGENERALIZES ON THIS TREE

d!glt
O//\\
blt\7diV6
O O O O O O o O O
O 1 2 3 4 5 ¢ 8 9

D6




DOMAIN WITH TREE STRUCTURE

O
digit

o/\\\
bit

O ©O O O O O
0 5 6 7 8 9

O O O
2 3 4

_.LO/

DOMAIN WITH PARTIAL ORDER STRUCTURE

O O
bit digit

'S

OO0 —
~0
O
0
»0
010
®0
e
® 0
© 0



DOMAIN WITH TREE STRUCTURE

/N

aerial flightless
/ birds / birds
O O
swimming swimming
aerial birds flightless
birds
o ® ® e o hd
king  robin swallow penguin ostrich chicken

fisher

DOMAIN WITH PARTIAL ORDER STRUCTURE

O O

aerial flightless
O O
birds swimming
o 3 o LB [ 3 e
king robin swallow penguin ostrich chicken

fisher

3



CHOOSING CRUCIAL OR SIGNIFICANT OBJECTS IN ALVIN

l. the object must be covered by the trial hypothesis
digit(A)

dog

10 cat

Il. the object must not be in the currently accepted generalization

digit(A)

eq(A,0)

lll. the object should not be in danger of being part of the target concept
for a reason that differs from the one currently being tested. If it is in
danger, the object is called a SIGNIFICANT object. Objects which
are not in danger are called CRUCIAL objects.

digit(A)

eq(A,0) |




ANIMAL KINGDOM

{complex)

@)
flightless mammal?’\ /
v

bird S .
! LA l “\
\ ", §
‘|| ""H!.“‘.. ‘ " ‘ \l
] ) o ¢ e o
penguin ostrich chicken king robin swallow whale  flying ~ man  bat flying cod trout

fisher squirrel fish

Do



LEARNING TWO-LEGGEDNESS

An animal is two legged if

1) it is a man twolegged(A) - eq(A,man).
2) it is a bat twolegged(A) = cq(A,bat).
3) it is an example of a bird twolegged(A) :- bird(A).

Dl




POSSIBLE RIEASONS I'OR MAN’S TWO-LEGGEDNIESS

it is a mammal

it is a swimmer

it is a flyer

it is a swimming mammal

1t is a flying mammal

1t is a swimming and flying mammal
it is a flying and swimming animal
just because it is a man

Dl



EXAMPLE

man
whale X’

squirrel X

king fisher

robin

ostrich

flying fish X

bat

Learning T'wo-Legpedness: Suimniary

CURRENT GEMERALIZATION

MAMMAL

Swimming Mammal
Swimming and Flying Mammal
Flying Mammal

. Flying and Svwimming Mammal
SWIMMER

Swimming Mammal

Swimming and Flying Mammal
Swimming and Flying Animal
AERIAL BIRD

verified
BIRD
verified

FLYER
Flying Mammal
Flying and Svwimming Mammal
Flyer and Swimmer
Flying and Swimming Mammal

No more possible generalizations

MAMMAL

Flying Mammal
FLYER

Flying Mammal

D0 more possible generalizations

D3

no further gens possible

REFUTATION DIsJulcCT

vhale
vhale
only one object

squirrel

only one object
vhale

vhale

only one object

bird(A)

squirrel
squirrel

only one object
flying fish
only one object

eq(A, man)

vhale

squirrel
squirrel
squirrel

eq(A, bat)
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Reminder

A reminder of what is version space:

* a means of exploring the space of possible descriptions
e characteristics:

e Description ( or generalization ) language
* A partial ordering on descriptions

— more-general-than-or-equal-to
oS set — set of most specific descriptions
oG set - set of most general descriptions

Different kinds of search spaces

® Boolean Search Space
e Any subset of objects has a corresponding description
e Hierarchical Search Space
e descriptions forms a hierarchy
e Attributive Search Space
® an object is represented by attributes
e values of each attribute forms a hierarchy

Focus

o sizes of S and G sets
e number of examples for convergence to a single description

£l



Search Space || S| || G| | examples needed

Hierarchical 1 1 l
Attributive 1 1 Ixm
Boolean 1|1 | Q]

Observations

e If it is able to describe any combinations of the ob-
jects in the given universe. Teaching any concept
will require the teaching of the characteristic func-
tion of the concept, i.e., all objects in the universe
must be given as examples in learning the concept.

e Winston’s near-miss method is good because it lim-
its the expansion of the G set and it works best in
the hierachical environment.

o In the case of Hierarchical and Attribute Search
Space, we can see the “’depth’ of search space and
'width’ ( number of attributes rather than branch
factor ) gives an approximation of the number of
examples needed for convergence into a concept.

e Number of concepts in the search space does not
necessarily tell the number of searching needed. Search-
ing depends entirely on the structure of the space.

e As the complexity of the search space increases,

the number of examples needed for convergence in-
creases.

ER



Questions
e What will happen to |G | when | S |> 27

e What will happen to | G |when the values of an
attribute are not in a hierarchy ?

o Is there a possible of a set other than S and G, say
M?

e What about expansion of description language ?

£3



Script started on Mon Jul 6 09:33:33 1987

7 prolog eg

C-Prolog version 1.9

[ Restoring file eg 1

yes

I ?- d0(01,2,324,5)). ,
Version Space -- Released Version 2 ¢ 1987/06/0% )
1 Positive instances [large,blue,triangle]

S: (large,blue,triangle)

G: [size,colour,shapel

2 negative ‘instance: [small,red,triangle)

S: [large,blue,trianglel

G: [size,blue,shape])
{large,colour,shapel

3 Positive instance: [large,blue,circle)
S: [large,blue,shape]

G: [size,blue,shape]
{large,colour,shapel

4 negative instance: [small,blue,trianglel
S: ({large,blue,shapel
G: [large,colour,shape)

S Positive instance: [large,red,trianglel

S: [large{colour,shape]
G: [large,colour,shapel

e



yes

I ?- do(l1,4,5,2,3)).

Version Space -- Released Version 2 ( 19872/06/05 )
1 Positive instance: [large,blue,triangle]

S: (large,blue,triangle)

G (size,colour,shape]

4 negative instance: [small,bluo,trlanglo]

S [large,blue,trianglc]

G: (large,colour,shape]

J Positive instance: [large,red,triangle] Aééf”'

S: [large,colour,triangle]

G: (large,colour,shapel

2 negative instance: (small,red,triangle) <fES;”’—
e————

S: (large,colour,triangle)

G: [large,colour,shape)

3 Positive instance: {large,blue,circlel

S: (large,colour,shape]
G: [Targe,colour,shape]
yes
| ?-

[ Prolog execution halted ]
'/. .

script done on Mon Jul 4 09:34:54 1987

‘.
)

£S5



/\\

/// / A
/\ \/\/\\

Fig. A hierarchical search space



---------

[7r8 1,24 [?08]  [s,24

[y [Lb,4 [srl] [s,bi]
Fig. A aliributive search Space
object : [ size,colour, Shape]

Size colour ~ shape

arge small red blue riangle circle

Fig. Altributive hierarchies
0 £7



Q » jabg

{a,b}  {b,c) {c,a}

(o (e

I

Fig. A Boolean algebra search space

21
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x‘.j
x<=y
x 7=y
x< Yy
1%}
A
« x
1)9 E \\\
/\\y
?LK
x =4

S pec'u\C’\ city parJr',a( ord&rin@

S,
/\D:fj
/ﬂ:ﬂ\/\
X<y xX=y x>y
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RECON STRucTiNG  Nob DY

. DESCRuPT«oN OF NODDY
¢ FuncTion Inpuetion  AksoiTHM

;How Exrresﬁwm ar. Bult
o The Problem with Censtants
. cow\f)oﬁ;“'l;h of OFem'f-ors

o An IMPLEMENTATION N FRokos

b gl.Fr‘e,se‘n.{‘a.J‘w;\ 6/» Khm’tﬂlﬁt

— Inverse eperators
- aﬁumm bftuj

° Ke.r)rcuu.fu#w;a o{» ‘H\n.
’ Fnal armssu;w

f/
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THE TURTLE PROCEDURE

ove-until- contact toward (0,0

at (0,0) at (?, ?) contact 8
E3 stop E4 move 0, 5@ 8- 180D

at (? ?)
move 1@(68-90) ) >

E}
Siop

D)

START - Ef



Fur\\cmo:\( INDucT:oM

R

ove -until- contact -toward (0,0)
\ wePur \/AL((E§
E3 at (0,0) at (0, -3) contact 90°. gq( at(0,-3) contact 135
stop move05@_90 move 0, 5@ -45.

at (0, -3.5) al (35, -3.35)
ES move1@o®\E5' CAM@%)

OUTPUT VALUES

\4
‘Pam[;aﬂj accommodated Hurd hrace 17_&f9_r1 -F.mol(en mclucl-u;n

FS



Buibine THe Expression

ors”  op4™ oPz  opl
ouT /\4 2w 3P e 7 N ¢ N\ IN
Wl T2 INZ, INY

srpressien = (0P3 (oft ( gop (OPZ (0P1)))))

CLOSING THE GAP:

Ly I]( tach o{ the current sel of })04 values
azudb ds"  asso ciated mFu} valued  then
vemove Fhe 92p-

Z) l)r theve s 6 bina ro}or -H\J whea o
Yo cach in u+/ov4 '? ,)r‘oo(uczs a amR;
Value 'H'\m repface 'H\c a.f; WtHn ‘Htcd’
th

oFumLor'a (nvers Ff)hw' o 'the consghant
and 'H\c mru{' value .

e I{ (6P I, Out;) = Consfont Fhen
(00" Consbout In,) = Qud:

Fo



CONSTANTS

/\}nown Com:‘am‘a ~ aﬁowr as Cam/boneu/: m

comlbound Aatn {7 Pes

0_.3‘ meve 0.5 @ - 90
meve 0.5 (@ -45

/l/ta) &u«[aak - must be du('urcd ron clata

. 7,2 Fer Lx/ressr'eh

f7



COM POSITION OF OPERATORS
(out (3&{) IND

30.6@—%} o,ﬂ)-//s} | iqo, /35}

((a‘r/\ (Veck.cous 0.5 (SaF | IN)

News bt~ 90 —/{5 ¢ 2%, 135}

(veckeous 05 (— IN /80 ))

f8



EPRESENTATION ©F KNowLEDGE

Lip

Of)md-or Do VWJ.('V\ Q‘”‘{]C Inw.mi Inmsez.
veck-cons Crom, dir) vechor maq divechon
W«j (vechor) num veck-cons

d l.ru‘-c.on (veckor) eir veed. eons

Prb'ﬁ'.
Ofy,mnlar (vm‘r.cogs(M«aaCMoﬁ), d«'r(bir), Maa@ Dir)).
opembee (pos-cons (x(X), y (V) | pes(X,Y))).

knowr\ Cov\s;nn,(' l!".’ = 5"“!}

l\’nown eowshanl st ~ {\/((), Mﬂ(‘f)%



REPRESENTATION oF THE EXPRESSION

hspr (A In (<gaps> In))
(XA In ( pos-cens 2 (<gap> Tn)))
N In Cpos-cons Z (<gyp (f-part 1nd3))
(X In ( pes~cons Z Cminss (-pack Tn)))

\ Pro\osz
op ((Gap, pscons (2, In, 001)), Gap, 61,60, Tn , Och).
v
Q-ap : (foslwns(_) ¢I, In{), Ga()ﬂ
p (((Pos-cons (- ¢f, In), Gapl), pos-cons (2,60,04)), Gaf:i, ¢r,60, Inl ouf)
V
('mfi £ mmus(GI, GO)

NF ((« rm,wus (_‘ 61, Ind), minus (¢1, 60)), pas-cons (Z, Go, Du})), iy Oul)
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