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Abstract 

This thesis is a survey of isogeny and isomorphism of elliptic curves. We first intro-

duce the reader to elliptic curves, and show that the points of an elliptic curve form 

a group. We then deal with isogeny and isomorphism of elliptic curves, and analyze 

the properties thereof. There are also many examples, both throughout the thesis, 

as well as in the penultimate chapter, to give the reader a clearer understanding of 

elliptic curves. 

This thesis is intended to be accessible to the reader with little or no knowl-

edge of elliptic curves, and assumes only that the reader has a basic mathematical 

background. While some readers may be more familiar with affine models of elliptic 

curves, we prefer to consider them only projectively because from the perspective of 

algebraic geometry, we believe that that is the proper way of discussing them. 
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Chapter 1 

Introduction and Motivation 

This thesis is an exposition of algebraic curves and function fields with special 

reference to elliptic curves. Elliptic curves are of interest for several reasons. One 

justification for their study is that they are used in cryptographic implementations. 

While this has put them in the limelight in recent years, it is not our primary 

motivation for studying them. On the contrary, we believe elliptic curves are worth 

studying for aesthetic reasons alone. They are imbued with a natural group structure 

which is found on very few algebraic curves. 

The study of elliptic curves is also of use in finding solutions of certain diophantine 

equations. Given an equation of an elliptic curve, for instance, the equation y2 = 

X3 + 17, and two known points on the curve, one can generate other points on the 

curve through point addition. 

Another example is the proof of Fermat's Last Theorem (FLT) which makes use 

of the Taniyama-Shimura-Weil (TSW) theorem relating elliptic curves and modular 

forms. Recall that FLT states that for n € N, n ≥ 3, there do not exist a, b, c E N 

such that a + btm = ctm and abc 0 0. The TSW conjecture asserts that all elliptic 

curves over Q are modular. Serre conjectured in [21] that if there is such a solution 

(a, b, c, n) which contradicts FLT, then the elliptic curve y2 = x(x - aP)(x + b1') (for 

p some prime divisor of m) is non-modular. (See also [8].) Ribet later proved Serre's 

conjecture in [19], which effectively established that the TSW conjecture implies 
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FLT. Wiles and Taylor proved a special case of TSW in [26] and [28] which was 

sufficient to prove FLT. The TSW was finally proven in its entirety in [3]. 

In addition, some current cryptosystems are based on elliptic curves. Their security 

depends on the presumed difficulty of the elliptic curve discrete log problem. Briefly, 

given a finite cyclic group G with generator g, and some element h E C, one would 

like to find the exponent e = log9 h, called the discrete log of h to the base g, such 

that ge = h. In the case of elliptic curves, the group is additive, so if P, Q are points 

on E with Q E< P >, the cyclic subgroup generated by P, then the goal is to 

find m E N such that nP = Q. On some elliptic curves, the discrete log problem 

may be difficult, especially if P generates a large cyclic subgroup of the group of 

points on the curve, while on others, it may be tractable. The purpose of finding 

an isogeny, therefore, is to map points on a " harder" curve to those on an " easier" 

curve, where it is less difficult to solve the discrete log problem. For if E is a " hard" 

elliptic curve generated as an additive group by P, and E' an " easy" elliptic curve, 

and if a E -* E' is a non-trivial isogeny, then for any Q E E, logp(Q) is equal 

to log (p) (a(Q)), which is easier to find. The United States National Institute for 

Standards and Technology (NIST) recommends certain " hard" elliptic curves for 

cryptographic implementation. For details, see [17]. 

Our goal is to give a relatively self-contained treatment of the subject of isomor-

phism and isogeny of elliptic curves. This thesis endeavours to bring together much 

of the material on the subject into one cohesive, readable unit. Above all, we attempt 

to give a complete account of isogeny and the theory thereof, which is ostensibly lack-

ing in the current literature. The comprehensive handling of the curve-function field 
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duality, as well as the many examples, also distinguish this thesis from many other 

bodies of work on the subject. In particular, Chapter 6 gives numerous examples 

relating point counting of elliptic curves over finite fields to isogeny and isomorphism 

of these curves. 

The thesis is organized as follows. The second chapter consists of background 

material on algebraic curves and function fields. The third chapter deals with maps of 

curves and their function fields. In Chapter 4, we define elliptic curves and carefully 

establish the abelian group structure, while the fifth chapter is devoted entirely to 

isogeny. The sixth chapter gives some practical basis to the preceding chapters. 

To be more precise, we look at elliptic curves over finite fields of three different 

characteristics (2,3 and 11). In each case, we determine the Weierstrass curves in a 

given isomorphism class, and classify the isomorphism and isogeny subclasses thereof 

by using the theory and techniques developed in the first five chapters. The final 

chapter consists of some concluding remarks and a statement of open problems. 



Chapter 2 

Curves and Function Fields 

This chapter lays the groundwork for our study of elliptic curves. We introduce 

projective space, general algebraic curves and the function fields thereof. In some 

treatments of elliptic curves, projective space is not discussed at all; on the other 

hand, we choose to adopt the projective (rather than affine) point of view for the 

bulk of this thesis. Our reason for doing so is that this approach is more natural, and 

leads the reader to a clearer understanding of elliptic curves. Additionally, an elliptic 

curve is really a subset of the projective plane and so, presenting it as a subset of 

the affine plane gives an incomplete picture of the curve. 

2.1 Projective Space 

Prior to our exposition of elliptic curves, it is necessary to introduce a few concepts 

central to their theory. Throughout this thesis,. let K be a field, K its algebraic 

closure. We write .t< = .t\{O} and K>< = K\{O} 

Definition 2.1.1 Let n be a positive integer. Affine n-space over K, written ATh(K), 

is the set 1(a17 a2)'** , a,) a,,...  an E .k}. Elements of affine n-space over k are 

called (affine) points. Affine n-space over K, written A'(K), is the subset of An(k) 

consisting of points with coordinates in K. We call the set A2(k) the affine plane 

over K. 

Example 2.1.2 Let K = Q. Then A2() = x 'I, called the affine plane over Q. 

4 
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Definition 2.1.3 Let f(x, y) E k[x, y] be a polynomial. We call a set of the form 

{ (xo, yo) E : f(xo, yo) = O} an affine plane curve over k and write f 

f(x) y) = 0 for short to denote this set. Elements of this set are called points on f 

and the curve f is called the locus of f(x,y). 

Example 2.1.4 Let  = C; let f(x,y) = y2—x3. Then  is an affine complex plane 

curve. The point (, 1), where C is a cube root of unity, is a point on this curve. 

Definition 2.1.5 Consider the following equivalence relation on the set A'(K)>< 

of non-zero elements in affine (n + 1)-space over 1?: 

Let [x0 x1 : : x] denote the equivalence class of(xo, XI, ... ,x) E A''(k)\{0} 

and let 1F'() denote the set of such equivalence classes as (x0,... , x,) ranges over 

A'(R) \ {0}; thus, 

p'() := {[x0 : x1 : ... :xn]I(xo,xi,... ,x) EA''(K)\{0}}. 

We call P''(I) projective n-space over k and its elements are called (projective) 

points. We define projective n-space over K to be the subset of p(k) of equivalence 

classes with a representative having coordinates in K, and denote it by 1(K). 

Note that [x0 : : x,} E F7(K) does not imply that Xi E K for all i. It simply 

means that the class has a representative with this property. 

Definition 2.1.6 For n = 2, p2 (k) is called the projective plane over J. 
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Example 2.1.7 If K = Q, then [1: 2: 3] = [/: /: \/T] E p2(Q) since 

(\//,V'i) = 

Definition 2.1.8 Let a, b, c E 1, at least one nonzero. A line in 1F2(.) is a set of 

the form 

£ = {[x0 Yo zo] E IP'2()I ax0 + byo + cz0 = O}. 

We write for short 

£: ax+by+cz=O. 

Definition 2.1.9 The line £ z = 0 is called the line at infinity in P2(]?), and 

denoted £. 

2.2 Irreducible Projective Plane Curves 

In this section, we relate homogeneous polynomials and subsets of the projective 

plane. In particular, we will see that such subsets are completely determined by their 

irreducible factors. 

Definition 2.2.1 Let f(x,y,z) E ![x,y,z]. The polynomial f(x,y,z) is said to be 

irreducible if f(x,y,z) = g(x, y, z)h(x, y, z) (with g(x, y, z), h(x, y, z) E .k[x,y,z]) 

implies g(x,y,z) or h(x,y,z) is a unit in !([x,y,z]. 

Example 2.2.2 The polynomial f(x, y, z) = x3 + y3 - 1729z3 E I[x, y, z] is irre-

ducible if and only if the characteristic of K is not equal to 3, 7, 13 or 19. 
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Proof. Suppose f (x, y, z) = g(x, y, z)h(x, y, z), with g(x,y,z),h(x,y,z) E P([x,y,z]. 

If f(x, y, z) factors non-trivially, then it must factor as a product of homogeneous 

polynomials whose degrees sum to the degree of f(x, y, z), in this case 3. For if d1 is 

the degree of the highest degree term of g(x, y, z) and d2 that of the lowest degree; 

and if d3 is the degree of the highest degree term of h(x, y, z) and d4 of the lowest, 

then d1 + d3 = d2 + d4 = 3, which forces d1 = d2, d3 = d4. Since the degree of 

f(x, y, z) is 3, this means that it must factor as the product of linear and quadratic 

homogeneous polynomials. Suppose this was the case. Then 

x3 + y3 - 1729z = (a0x2 + a1y2 + a2z2 + a3xy + a4xz + a5yz) (box + b1y + b2z) 

for a0, a1, a2, a3, a4, a5, b0, b1, b2 E .t. This yields the following system of equations: 

a0b0 = 1 (2.1) 

a1b1 = 1 (2.2) 

a2b2 = —1729 (2.3) 

a0b1 + a3b0 = 0 (2.4) 

a0b2 + a4b0 = 0 (2.5) 

aibo+a3b1 = 0 (2.6) 

a2b0 + a4b2 = 0 (2.7) 

a1b2+a5b1 = 0 (2.8) 

a2b1+a5b2 = 0 (2.9) 

a3b2 + a4b1 + a5b0 = 0. (2.10) 

First, observe that equations 2.1 through 2.3 imply that a0, a1, a2, b0, b1, b2 are all 

non-zero and the remaining equations imply that a3, a4 and a5 are also non-zero. We 
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can express all coefficients in terms of a0. Equations 2.4 and 2.6 force a = a, i.e. 

a1 = ua0, where u is a cube root of unity. To see this, note that multiplying equation 

2 —a2 2 —a 2.4 by a0 gives a3 = —a 0b1 = -. Likewise, equation 2.6 gives a3 = —a 1b0 = 
ao 

Therefore, b1 = L2 and a3 = —u2a0. Using the same line of reasoning, equation ao 

2.5 forces b2 = —a4b = and equation 2.7 forces a2 = —a0a4b2 = 
a0 Since 

a2b2 = —1729, this means that = —1729 so a4 = (v1729)ao, v a cube root 
ao 

b —1729 - —v1729111  of unity, and a2 = (v21729*)ao, 2 = -- - . Finally, equation 2.8 forces 

a5 = = —ab2 = u2v1729 ao. 

The first 9 equalities hold when substituting these values for a0,••• , a5, b0, b1, b2. 

However, the final expression a3b2 + a4b1 + a5b0 evaluates to 3u2v1729*. If char(K) = 

3, this expression is equal to 0. Similarly, since 1729 = 7 * 13 * 19, it is equal to 0 

when the characteristic of K is 7,13 or 19. Otherwise, this expression is non-zero. 

Hence, the polynomial x3 + y3 - 1729z3 is irreducible over any field of characteristic 

not equal to 3,7, 13 or 19. 

Definition 2.2.3 An affine plane curve C over [C is a subset of A2(k) of the form 

{(x0)Yo) E A2 (k) C(xo,yo) = 0} 

for some polynomial C(x, y) E [C[x, y]. 

Definition 2.2.4 An irreducible projective plane curve C over K is a subset of 

2([C) of the form 

{[xo : 1/0 : z0] E 2([C) I C(xo, yo, zo) = 0} 
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for some irreducible homogeneous polynomial C(x, y, z) E K[x, y, z]. We write C 

C(x, y, z) = 0 for short. Elements of C are called points on the curve C and C is 

called the locus of the polynomial C(x, y, z). 

Example 2.2.5 Assume the characteristic of K is not 3, 7, 13, or 19 and let 

C(x,y,z) = x3 + y3 - 1729z3. Since C(x,y,z) E k[x,y,z] is irreducible, as shown 

in the proof of Example the locus C C 1P2(K) of C(x, y, z) is an irreducible 

projective plane curve over K. 

Removing a finite number of points from an irreducible projective plane curve, 

we get a bijective correspondence between the remaining points and the points of an 

affine plane curve, as the next lemma shows. 

Lemma 2.2.6 The points of an irreducible projective plane curve C: C(x, y, z) = 0, 

minus the points on the line at infinity, are in bijective correspondence with the points 

on the affine plane curve Caff: Caff(X v) = 0, where 0 aft(' ) = C(, Yz , 1), X = lz 

and p = Y. The correspondence is given by [xo : I/o : 1] —+ (XO, yo). 

Proof. Suppose that [x0 : I/o: 1] E C \ 4. Then C(xo, yo, 1) = 0. Thus, C(xoio1) 
Id 

0, so Caff(xo,yo) = 0, since by definition, Caff(,Y7) = C( I = C(x,y,z) Like-
zz  

wise, if Caff(xo,yo) = 0, then C(xoyo,1) = 0, so [x0 : I/o : 1] E C \4. That the 

correspondence is bijective is clear. 0 

Definition 2.2.7 Let C(x, y, z) E k[x, y, z] be irreducible and let C C P2(J) be the 

locus of C(x, y, z). The irreducible projective plane curve C is defined over K if there 

exists C'(x, y, z) E K[x, y, z] such that the locus of the image of C(x, y, z) under the 
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inclusion K[x, y, z] -* fC[x, y, z] equals C. We write C/K when C c P2(k) is 

defined over K. 

Example 2.2.8 The curve C: \/ x3 + / y3 - 1729',/z3 = 0 over Q is defined over 

Q because the locus C C p2 (0) of C(x, y, z) = \/ x + /y3 - 1729'z3 E [x, y, z] 

is equal to the locus C' of C'(x, y, z) = x3 + y3 - 1729z3 E Q[x, y, z]. 

Definition 2.2.9 Let f(x, y, z) E k[x, y, z] be a homogeneous polynomial. We de-

fine V(f(x,y,z)) to be the set {[x0 : Yo zo] € p2 (k) : f(xo, yo, zo) = 0}. 

An irreducible projective plane curve C is a subset of the projective plane of 

the form V(f(x, y, z)), for f(x, y, z) E R[x, y, z] some irreducible homogeneous poly-

nomial. The example just given shows that this polynomial need not be unique; in 

other words, the set C can be equal to V(f'(x, y, z)) for some f'(x, y, z) 54 f(x, y, z) E 

Y, z}, However, the polynomials f'(x, y, z) for which C = V(f'(x, y, z)) are quite 

limited, as the next theorem shows; namely, they are all multiples of f(x, y, z) in 

.l[x,y, z]. 

Theorem 2.2.10 (Nullstellensatz for irreducible projective plane curves) Let 

f(x, y, z) E .k[x, y, z] be an irreducible homogeneous polynomial and let (f (x, y, z)) be 

the principal R[x, y, z]-ideal generated by f(x, y, z). If g(x, y, z) € !([x, y, z] is a ho-

mogeneous polynomial such that g(xo, yo, z0) = 0 for all [x0 : Yo : zo] E V(f(x, y, z)), 

then g(x,y,z) € (f(x,y,z)), i.e. f(x,y,z) divides g(x,y,z). 

Proof. See [4, Theorem 2, 11.4.3]. El 
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Corollary 2.2.11 Let C : C(x, y, z) = 0 be an irreducible projective plane curve. 

If C = {[x0 : yo : z0] € 1P2(R) : C'(xo, yo, zo) = 0} for some irreducible homo-

geneous polynomial C'(x,y,z) E i?[x,y,z], then C'(x,y,z) = kC(x,y,z), where 

k E R[x,y,z]*, the group of units of .f([x,y,z], i.e. k E K><. 

Proof. By the Nullstellensatz, C(x, y, z) divides C'(x, y, z) and C'(x, y, z) divides 

C(x,y,z). In other words, C'(x,y,z) = kC(x,y,z) for some k E .k[x,y,z]*, because 

C'(x, y, z) is irreducible. 0 

Observe that the locus of any homogeneous polynomial in K[x, y, z] is com-

pletely determined by its irreducible factors. Hence, for any polynomial C(x, y, z) E 

1?[x,y,z], V(C(x,y,z)) = V(C(x,y,z)) for all n EN. In Chapter 3 we will see - 

via Bézout's theorem - that the loci of two homogeneous polynomials are equal if 

and only if the polynomials have the same irreducible factors. 

Henceforth, for convenience, when we speak of a curve, we will be speaking only 

of an irreducible projective plane curve over the algebraically closed field .t. 

Definition 2.2.12 Let C be a curve defined over K. We denote by C(K) the subset 

C fl IP2(K) of C. A point P E C in C(K) is called a K-rational point. 

Example 2.2.13 Let C C 1P2() be the curve C : x3 + y3 - 1729z3 = 0. [12: 1: 1] 

is a Q-rational point on C since [12: 1: 1] E p2 (Q) and 

12 3 + i - 1729 (1)3 = 1728 + 1 - 1729 = 0, 

so [12: 1: 1] E C. 
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Proposition 2.2.14 Let C = V(C(x,y,z)) = V(C'(x,y,z)) be a curve, where 

C(x, y, z) and C'(x, y, z) E FC[x, y, z] are distinct irreducible homogeneous polyno-

mials. Let P E C. Then 

5C'(xilZ)() = o &C(xYZ) (P) = 0 
0x 

t9C'(x, y, z) (P) = DC(x, y, z) (P) = 

ay ay 
Y, Z)() = c9C(x, y, z) (P) = 0. 

9z 0z 

Proof. By Corollary 2.2.11, C'(x,y,z) = kC(x,y,z) for some k E K><. The result 

now follows since 

aC'(;y,z) - k0 X, 1  

- ax 
5C'(x,y,z) -   

ay - ay 
5C'(x,y,z) -   

az - az 

0 

Definition 2.2.15 For a curve C : C(x, y, z) = 0, we say that C is singular at a 

point P E C if the partial derivatives at P are all 0, i.e. 

DC(x, y, z) (p) -  8C(x, y, z) (p\ - 8C(x, y, z) (p ) 0 
49X " '9y " ' - 

In this case, we say that P is a singular point. A curve with no singular points is 

called non-singular or smooth; otherwise, it is called singular. 

Remark 2.2.16 The fact that singularity is a well-defined notion follows immedi-

ately from the preceding proposition, as well as Corollary In other words, 
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singularity does not depend on the model of the curve used (i.e. the polynomial for 

which we take the curve C to be the locus). 

Example 2.2.17 Let C/IF2 be the curve which is the locus of the polynomial y2z—x3 

(i.e. C: y2z - x3 = 0) over IF2, where IF2 is the finite field of 2 elements. Then C is 

singular because it has a singular point at [0 0 : 1], for 

5C(x, y, z) - 3x2 
ax - 

= 

OC(x,y,z) - 2 
yz ay - 

=0 

OC(x,y,z) - 2 

8z - 

and all three of these partial derivatives are 0 at [0 0 : 1]. 

Having introduced the partial derivatives of a curve, we may now introduce the 

notion of the tangent line to a point on a curve. Such a definition will be indispensable 

in our treatment of elliptic curves in the third chapter and beyond. 

Definition 2.2.18 Let C be a curve and P a point on C. The tangent line to C at 

P is the line 

OC(x, y) z)  (P) + DC(x)y, Z) (P)y + aC(x, y, z) (P)z = 0. 
az 

Example 2.2.19 Consider our favourite curve, C : x3 + y3 - 1729z3 = 0, over a 

field of characteristic not equal to .9,7,13, or 19, which we introduced in Example 
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2.2.2. If P = [x0 z0] is a point on C, then the tangent line to C at P is given 

by the equation 

because 

xx+yy — 1729zz= 0, 

= 3x2 

3y2 

= —5187z2, 

so dividing the partial derivatives by 5 gives Equation 2.11. 

(2.11) 

Remark 2.2.20 It should be clear that a point P on a curve C will always lie on the 

tangent line to C at P. For if C is the locus of an nth degree irreducible homogeneous 

polynomial C(x, y, z), then £p(P) = nC(P) = 0. 

2.3 The Coordinate Ring and Function Field 

In this section, we introduce the function field of a curve. An understanding of 

the function field of a curve is key to an understanding of the curve itself, because 

a function field essentially determines the curve, in the sense that if two curves 

have the same function field (up to isomorphism), then their points are in bijective 

correspondence. 

Proposition 2.3.1 Let C be a curve and suppose that 

C = V(C(x,y,z)) = V(C'(x,y,z)), 
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where C(x, y, z) 0 C'(x, y, z) are irreducible homogeneous polynomials in .t?[x, y, z]. 

Further, suppose that f(x,y,z),g(x,y,z) E f([x,y,z]. Then 

f(x, y, z) + (C(x, y, z)) = g(x, y, z) + (C(x, y, z)) 

in the factor ring I?[x, y, z]/(C(x, y, z)) if and only if 

f(x,y,z)+(C'(x,y,z)) = g(x,y,z)+(C'(x,y,z)) 

in the factor ring 1[x,y,z]/(C'(x,y,z)). 

Proof. If f(x, y, z)+(C(x, y, z)) = g(x, y, z)+(C(x, y, z)), then f(x, y, z)—g(x, y, z) E 

(C(x,y,z)), i.e. f(x,y,z) - g(x,y,z) = h(x,y,z)C(x,y,z) for some h(x,y,z) 

.fC[x,y,z]. By Corollary 2.2. 11, f(x,y,z) - g(x,y,z) = kh(x,y,z)C'(x,y,z), for 

some k E R'x, so f(x,y,z) + (C'(x,y,z)) = g(x,y,z) + (C'(x,y,z)). The proof of 

the converse is analogous. El 

Definition 2.3.2 Let C be a curve. The coordinate ring [([C] of C is the ring of 

all polynomials in [([x, y, z] modulo (C(x, y, z)), where (C(x, y, z)) is the principal 

[([x,y,z] -ideal generated by C(x,y,z), i.e. the factor ring [([x,y,z]/(C(x,y,z)). If 

C(x) y, z) E K[x, y, z], then K[C] is the subring K[x, y, z]/(C(x, y, z)) of [([C] where 

here, (C(x,y,z)) is the principal K[x,y,z] -ideal generated by C(x,y,z). 

Remark 2.3.3 By Proposition 2.3.1, the coordinate ring is well-defined since it is 

independent of the model of the curve used (i.e. which polynomial we take to be 

C(x, y, z)). Moreover, [([C] is an integral domain because C(x, y, z) is irreducible in 

[([x,y, z]. 
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Lemma 2.3.4 Let C : C(x, y, z) = 0 be a curve and consider the set consisting of 

quotients of homogeneous polynomials f(x, y, z), g(x, y, z) in .t[x, y, z} such 

that g(x, y, z) (C(x, y, z)) and either f(x, y, z) and g(x, y, z) have the same degree 

or f(x, y, z) is the 0 polynomial. Define the relation '--' on this set by  I x,y,z  

if f(x,y,z)g'(x,y,z) - f'(x, y, z)g(x, y, z) E (C(x,y,z)). Then r'. is an equivalence 

relation. 

Proof. For the sake of brevity, denote by f and g the polynomials f(x, y, z) and 

g(x, y, z), respectively. Once again, the equivalence is well-defined because it is 

independent of the model used for the curve. For if C = V(C'(x, y, z)), where 

C'(x,y,z) 0 C(x,y,z), then fg' - f'g E (C(x,y,z)) if and only if fg' - f'g E 

(C' (x, y, z)), by Corollary 2.2.11. The relation is clearly reflexive and symmetric. 

Transitivity follows as well: if and .' , then 

9 9fg f g — - (fg' - f'g)g" + (f'g" - g'f")g  
— 

and since [(fg' - f'g)g" + (f'g" - g'f")g] E (C(x, y, z)) and g' is not in (C(x, y, z)), 

fg" - f"g E (C(x,y,z)), so -' . U 

Example 2.3.5 Let C : x3 + y3 - 1729z3 = 0 over Q. Then x2—rc2y+y2 1Z since 
x+y 

(x2 - zy + y2)(x + y) - (Z2) (1729z) E (C(x, y, z)). Similarly, x3+y3-1729z3 '-- , since 
y2 

[(x3 + y3 - 1729Z3) (y2) - (0)(x3)] E (C(x, y, z)). 

Henceforth, we will only use upper case letters such as C and E to denote affine 

or projective plane curves. Since there will be no ambiguity, we will, for instance, 

sometimes use f or g to denote f(x, y, z) and g(x, y, z), respectively, as in the proof 

of Lemma 2.3.4. 
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Proposition 2.3.6 Let C be a curve and denote by K(C) the set of equivalence 

classes under the equivalence described in Lemma 2.3.4. Then k(C) is a field, where 

multiplication of the class of L by that of gives the class of , and addition of 
99 

the classes of and gives the class of f /'g  

Proof. Multiplication is well-defined. To see this, note that if -' then 

because 

f f /I 

99 // 
ft f/I 

g' 9" 

fg1f"g'1 - f'gf1'g" = f'19"(fg' - f'g) E (C(x, y, 

since by assumption, 

fg' — f'g E (C(x,y,z)). 

Similarly, addition is well-defined. Commutativity, distributivity and associativity 

clearly hold in [((C) for both addition and multiplication. The additive identity is 

just the class of C(a,,y,z) where d is the degree of C(x, y, z), for + C(x,y,z)  
g(x,y,z) Zd 

  for any quotient The multiplicative identity is the class of the constant g(x,y,z) 

quotient 1 = . The additive inverse of the class of " is just the class of  g(x,y,z) g(x,y,z) 

since +   C(x,y,z) Finally, for any non-zero quotient g(x,y  i.e. 
g(xyz) zd z )' 

f(x) y, z) 0 (C(x, y, z)), the multiplicative inverse is just the class of   o f(,y,z) 

Remark 2.3.7 It should be apparent why we needed to include quotients of the form 

g C(x, y, z) in the set of Lemma 2.3.4, and not merely quotients of homogeneous 

polynomials of the same degree. For consider 1, f and g non-constant. The additive 

inverse of the class of I is the class of L• Adding these together gives fg—fg = 

This is not a quotient of homogeneous polynomials of the same degree, so the 
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set of quotients of homogeneous polynomials of the same degree is not closed under 

addition. If we did not define the equivalence relation for quotients of the form 2, 

then addition of certain classes would not be well-defined - because for a suitable 

choice of elements in these classes (such as 1 and above), their sum would'not 

reside in an equivalence class. 

Definition 2.3.8 The field k(C) is called the function field of C. Elements of.t?(C) 

are called rational functions, 

We call elements of k(C) rational functions for the following reason. If L is 

a quotient of homogeneous polynomials of the same degree, we can regard L as a 

function from p2(k) to R. If '-'.' , for another quotient , then (P) = (P) 

at all points P on C where both g(P) and g'(P) are non-zero. In other words, each 

nonzero equivalence class consists of quotients of homogeneous polynomials of the 

same degree which are equal as rational functions on the curve C, when restricted 

to all but finitely many points on C (where the denominators of both quotients are 

non-zero). One may think of the constant functions as the elements of .f1f and the 

non-constant functions as those elements which are transcendental over [C. 

Proposition 2.3.9 Denote by X E [([C] the image of x € [([x, y, z] under the 

quotient map [([x,y,z} -* [([C], i.e. X = x + (C(x,y,z)), and similarly, Y the 

image of y and Z the image of z. Then [((C) is the set of quotients  ', 

where f(x, y, z) and g(x, y, z) are homogeneous polynomials, g(x, y, z) 0 (C(x, y, z)), 

and f(x, y, z) and g(x, y, z) have the same degree if f(x, y, z) 0 0. Furthermore, 

f(X,Y,Z) is the equivalence class of f(x,y,z) , - X,Y,Z) 
g(x,y,z)' and g(XYZ) f(X,Y,Z) g' f'( (X,Y,Z) if and only if g(X,Y,Z) 

f(X, Y, Z)g'(X, Y Z) — f'(X, Y, Z)g(X, Y Z) = 0 € [([C]. 
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Proof. Suppose    Then f(x, y, z)g'(x, y, z) - f'(x, y, z)g(x, y, z) E 

(C(x,y,z)), so C(x,y,z) I f (x, y, z)g'(x, y, z) - f'(x, y, z)g(x, y, z) and hence 

f(X, Y, Z)g'(X, Y, Z) - f'(X, Y, Z)g(X, Y, Z) = 0. 

Conversely, if f(X,Y,Z) = f'(X,Y,Z) then 
g(X,Y,Z) g'(X,Y,Z)' 

f(X,Z)g'(X,Y,Z) - f'(X,Y,Z)g(X,Y,Z) = 0€ R[C], 

so C(x,y,z) I f (x, y, z)g'(x, y, z) - f'(x,y,z)g(x,y,z). Thus, f(x,y,z)g'(x,y,z) - 

f'(x,y,z)g(x,y,z) E (C(x,y,z)) and 

f(x,y,z) f'(;y,z)  

g(x)y,z) g'(x)y,z) 

11 

Remark 2.3.10 Note that need not in general be a quotient of homogeneous 

polynomials in X, Y, Z of the same degree. Consider, for instance, the curve C 

y2z—x3—O Then 

x 

Y 

x + (C(x,y,z))  

y+(C(x,y,z)) 

y2z—x3+x+(C(x,y,z))  

y+(C(x,y,z)) 

Y 

(In fact, the numerator of the latter quotient is not even a homogeneous polyno-

mial in X, Y, Z.) Nevertheless, we can - and will - always write elements of the 

function field as quotients of the form ', where f(X, Y Z) and g(X, Y Z) are 

homogeneous in X, Y, Z, and of the same degree when f(X, Y Z) 0 0. 
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For the remainder of this thesis, if C C(x, y, z) = 0 is a curve, let X, Y and Z 

be as in Proposition 2.3.9, so that Xx z) K(C) denotes the equivalence class of 

(In general, we will use the upper case U to denote the residue class of lower 

case u, i.e. U = u± (C(u,v,w)).) 

Definition 2.3.11 We denote by K(C) the subset of K(C) consisting of equiva-

lence classes containing a quotient f(x'!', where f(x, y, z), g(x, y, z) € K[x, y, z]. 

Elements of K(C) are called rational functions defined over K. 

Proposition 2.3.12 The set K(C) is a subfield of K(C). 

Proof. K(C) clearly contains both 0 and 1. It suffices, then, to show that K(C) is 

closed under addition, multiplication and inverses. If hi,') and E K(C), 
gi(X,Y,Z) 

then the sum fj',3)g2,Y +f2 ,Y,291(X,Y,Z) i gi(X Z)g2 s clearly also in K(C). Similarly, the Y, (X,Y,Z)  

product   must be in K(C). If E K(C), then   and 
gi (X,Y,Z)g2(X,YZ) g(X,Y,Z) 

g(X,Y,Z)  
f(X,Y,Z) are in K(C). 0 

Note that   E K(C) does not necessarily imply that f(x, y, z), g(x, y) z) E g(X,Y,Z) 

K[x, y, z], as the next example shows. 

Example 2.3.13 Consider C/Q : x3 + y3 - 1729z3 = 0. Then € K(C), since 

X  the class of E. 

The next result gives a precise characterization of function fields of curves. We 

will use this fact throughout the rest of this thesis. 

Proposition 2.3.14 Let C : C(x,y,z) = 0 be a curve and let a = X  and b 

Then R(C) = [((a, b). In particular, [((C) is a finitely generated extension of[( of 

transcendence degree one. 
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Proof. It is easily seen that any quotient of homogeneous polynomials  where 

f and g are of the same degree, can be expressed as a rational function in I and 

. Therefore,   is a rational function of a and b. Furthermore, a and b are 

algebraically dependent because C(a, b, 1) = 0. Since a is transcendental over K, the 

transcendence degree of k(C) over .tC is 1. 0 

Remark 2.3.15 The generating set in the proposition above is not unique. That is, 

= k(, ) and P(C) = 1((, ), since 1(a, b) = .k(, ) = .k(, ). 

2.4 Valuation Theory and Orders 

We now recall some facts regarding valuation theory. Subsequently, we discuss the 

local ring of a smooth curve at a point. While it may not be immediately apparent 

why we need the local ring, it will become obvious in the section on divisors at the 

beginning of Chapter 4. 

Definition 2.4.1 Let K be a field. A discrete valuation on K is a function v 

K - p 7Z U oo with the following properties: 

1. v(ab) = v(a)+v(b) 

. v(a+b) ≥ min{v(a),v(b)} 

3. v is surjective 

4. v(a)=oo.a=0. 

By convention, we define oo + v(a) to be oo whence v(0) = v(0 * a) = v(0) + v(a). 
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Proposition 2.4.2 The set 

= {a E K I v(a) ≥ O} 

is a subring of K with identity. 

Proof. Since v(0) = oo, we have 0 E R, so we need only show that R contains 1, is 

closed under addition, multiplication and additive inverses. Note that from property 

(1) above, v(1) = v(1 * 1) = v(1) + v(1), so v(1) = 0 and 1 E R. Applying this 

same property again, we find that R is closed under multiplication and property (2) 

gives us closure under addition. Finally, by property (1), we find that 0 = v(1) = 

* (- 1)) = v(-1) + v(-1) = 2v(-1), from which we conclude that v(-1) = 0. 

Thus, for any a E R, v(—a) = v(-1)+v(a) = v(a) ≥ 0. Hence, —a E Rv and R is 

closed under additive inverses. El 

Definition 2.4.3 The ring R is called the valuation ring of v. 

Proposition 2.4.4 Let v be a discrete valuation on a field K. Then for all a E K, 

either a E R or a' E R. 

Proof. Applying property (1) from Definition 2.4.1, we find that 0 = v(1) = 

v(aa') = v(a) + v(a'). Hence, either v(a) ≥ 0 or v(a') ≥ 0. 0 

In fact, the valuation ring R,, of a discrete valuation v is a principal ideal domain 

with a unique maximal ideal, as the next proposition states. 

Proposition 2.4.5 Let v : K -* Z U oo be a disciete valuation on a field K, 

with discrete valuation ring R,. Then R is a principal ideal domain with a unique 
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maximal ideal M. The ideal M is the set 

Mv{aEKIv(a)> 0}. 

Furthermore, if Mv = (t), with (t) the principal R,-ideal generated by an element 

t E R,, then every non-zero R,-ideal is of the form (t'2) for some n E Z. 

Proof. See [6, Proposition 5, Section 16.2]. D 

Definition 2.4.6 A generator t of Mv at the end of Proposition 2.4.5 is called a 

uniformizing parameter for v. 

Proposition 2.4.7 Let C be a smooth curve and P E C. Then the set 

= {f E k(C) If = ,h(P) 0,8 E k(C) 

is a ring with identity. 

Proof. This set clearly contains 0 and 1. We need only establish closure under 

addition, multiplication and additive inverses. If f, f' € fC(C)p such that f 

, f' = , with h(P) 0 0, h'(P) 0 0, then obviously f + f' and ff' are in [(C)p, 

since h(P)h'(P) 0 0. Likewise, -f = E R(C)p. 

Remark 2.4.8 If 9 E k(C), it does not follow that h(P) 0. It simply means 

that there exists JL E k(C) such that h'(P) 0 0 and = 

Definition 2.4.9 The ring k(C)p is called the local ring of C at P. 

Definition 2.4.10 Let C be a smooth curve and P € C. Define Mp to be the set 

Mp{fE1((C)pIf(P)0}. 
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Example 2.4.11 Consider C/Q : y2z - - z3 = 0, p = [0 1: 0] E C, and let 

£1,2 be the lines 

£1:z = 0 

= 0. 

Then = = '-z'  since z X 2 (Y2 - Z2)(Z) - (X)(X2) = Y2Z - - Z3 = 0. 

Now y22 (P) = = 0, .s Mp. The function field of C is i(a, './a + 1), 

where a = and \/a + 1 = Z. The local ring (C)p of C at P is and 

MP ()O(C)p. 

Proposition 2.4.12 The set Mp is a K(C)p-ideal. 

Proof. The set Mp contains 0 and is obviously closed under addition and additive 

inverses. Hence, Mp is an additive subgroup of R(C)p. Moreover, if f E Mp and 

r E K(C)p then it follows that fr E M, so Mp is an ideal in k(C)p. 

Not coincidentally, Mp is a maximal .t(C)p-ideal, which is easily seen, since 

R(C)plMp is a field isomorphic to k, with the isomorphism given by 

f+Mp—f(P). 

This motivates the following proposition. 

Proposition 2.4.13 Let C be a smooth curve and P E C. For any f E  

define ordp(f) , called the order of f at P, by 

ordp(f) = 
max{dIfEM} zffE(C)p 

—max{d 1 E M} otherwise. 
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The value ordp(0) is defined to be oo. Then the function ordp is a discrete valuation 

on .k(C) with discrete valuation ring R(C)p, whose unique maximal ideal is M. 

Proof. See [24, Proposition 1.1.7], [2, Proposition 9.2]. 0 

Note that for any f, g E [((C), ordp(f) = —ordp() and ordp(fg) = ordp(f) + 

ordp (g). We will exploit this fact at the outset of Chapter 4. 

Definition 2.4.14 Let f E [((C)><, P a point on C and d = ordp(f). If d> 0, we 

say that f has a zero of order d at P; if d < 0, we say that f has a pole of order —d 

at P. 

We will see later that a non-zero rational function can only have finitely many 

zeros and poles. 

Proposition 2.4.15 Let C be a curve and  E [((C)><. Then 

ordp(f) = 0. 
PEC,ordp(f)./O 

Proof. See [18, Theorem 11.3]. 0 

Example 2.4.16 Recall the curve C/Q : y2z - x3 - z3 = 0 from Example 24.11. 

Then the rational function has zeros at the points 

Pi = [0:1:0] 

P2 = [0:1:1] 

P3 = [0:1:—i] 
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and poles at the points 

P4 = [1:0:—i] 

P5 =  

P6 = 

where is a primitive cube root of unity. We have ordp1 () = ordp2 () = ordp3 () = 

1 and ordp4() = ordp5() = ordp6() = —1, so 

ordP () = 3•i+3•—i=0. 
PEC,ordp()O 



Chapter 3 

Rational maps 

In this chapter, we examine relationships between curves defined over the same 

field. In particular, we establish the duality between function field embeddings and 

maps of curves before moving on to isomorphism and a short discussion of separa-

bility. Unless otherwise stated, we continue to let K be a field and K its algebraic 

closure. 

3.1 Field Homomorphisms 

This section deals with homomorphisms of function fields. Prior to this, we remind 

the reader of an elementary fact. 

Lemma 3.1.1 A ring homomorphism between fields is either injective or trivial. 

Proof. If E and F are fields and F: E - F is a homomorphism, then ker(F) is 

an E-ideal, so aE C ker(F) for any a E ker(F). But if a 0 0, aE = E and so the 

homomorphism must be identically zero. Furthermore, if r is non-zero then it must 

be injective, because F(a) = F(b), a 0 b implies F(a - b) = 0, so ker(F) o {0}. 0 

Remark 3.1.2 Since we will only consider function field homomorphisms which fix 

1?, we will be dealing exclusively with non-trivial (i.e. non-zero) homomorphisms. In 

light of Proposition 2.8.1.4, it follows that for curves C1, C2, such a homomorphism 

from K(C2) into k(C1) is completely determined by its action on and .j, since 

27 
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R(C2) = k(4). (This holds if C2 : w = 0. If not, them and are 

undefined, since = = 0 E K(C2). In this case: 

K(C2) = 

which is to say that .k(40) is a purely transcendental extension of K. As a matter of 

fact, the function field of any line can easily be shown to be such an extension field.) 

The next result will be of use later on. 

Proposition 3.1.3 -Let C and C2 be curves and let F : [((C2) -+ [((C1) be a 

[(-homomorphism of function fields. Then [((Ci)/F([((C2)) is a finite extension of 

fields. 

Proof. .k(C1) is a finitely generated transcendental extension of .1? of transcendence 

degree one. For k(Cl) is transcendental over [( while E [((C1) is algebraic 

over [((i) and every function in [((C1) is a rational function of and L. (One 

can derive a polynomial in [((i.) [t] for which is a root from the equation defining 

the curve C1.) Since F is a non-zero [(-homomorphism, every non-constant ratio-

nal function F(, ) € [((C2) is mapped by r to a non-constant rational function 

G(4 , ) E [((C1). That is, F([((C2)) is a transcendental extension of [( of tran-

scendence degree one contained in [((C1). [((C1) is also algebraic over 

since an element of [((C1) being transcendental over r(k(C2)) would imply that 

[((C1) has transcendence degree 2 over [(. The result now follows, because [((C1) 

is a finitely generated algebraic extension of F([((C2)). 0 
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Definition 3.1.4 Let F .t?(C2) - f k(C1) be a k-homomorphism of function 

fields of curvesC1 : Ci(x,y,z)=O,C2:C2(u,v,w)=O. IfC2 I?, the set RC C1 

is defined to be the set of P E C1 such that there exist homogeneous polynomials 

'yi(X, Y Z), -y2(X, Y, Z), 3(X, Y, Z) E [([C1] of the same degree for which 

r( U - y1(X,Y,Z) 
W) - 'y3(X,Z) 

F1-- 1 - 72(X,YZ)  
T  

and at least one of 'yi, -/2,,y3 is non-zero at P, i.e. 7j(Xo, yo, z0) 54 0, for some 

i, 1 < i < 3. If C2 = then Rr is the set of P E C1 such that there exist 

homogeneous polynomials 71(X, Y, Z), 72(X, Y, Z) E [([C1] of the same degree for 

which 

- 'yi(X,YZ)  

'NV) - 'y2(X,Y,Z) 

and 71(P) 51 0 or72(P) 0 0. 

In order to simplify the exposition during the rest of this chapter, we will often 

implicitly assume that the curve C2 (CI) is not 4, so that the rational functions 

and (respectively , ) are defined. All of the major results contained herein 

generalize to curves whose function fields are purely transcendental (such as lines 

and conics). 

Proposition 3.1.5 Switching W and V or W and U in Definition 3.1. 4 leaves the 

set Rr unchanged. 

Proof. Recall that we saw at the end of Section 2.2 that [((C2) = k(, ) = 

U  so r completely determined by F(), F() (and also, by F(), F(-)). 
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In the former case ' = yi(X,Y,Z) r1'" - y3(X,Y,Z) Thus, P E Rr if and only if 
VI (2(X,Y,Z)' 'V) - 

there exist y1(X, Y; Z), y2(X, Y, Z), 'y3(X, Y; Z) E [([C1] for which 

r(u - 'yi(X,Y,Z)  
V ) - 

- 73(X,YZ) 

V ) - 

and at least one of 'Y1,72,73 is non-zero at P, i.e. yj(xo, yo, Zo) 0, for some i,1 ≤ 

i ≤ 3. The third case with 'y1 (X, Y, Z) in the denominator (i.e. [((C2) = i?(, )) 

is the exact analogue of the first two. 0 

Example 3.1.6 Let 

Cl: y2z - - xz2 = 0, 

C2 : v2w—u3-j-4uw2 = 0, 

be curves over any field. The map of function fields F : [((C2) - p k(Cl) determined 

by 

r( U"\ y2 
W 7 

(V's YZ2 X2Y  

'W) X2Z 

is a k-homomorphism. To show this, we need to show that r defined above gives a 

well-defined embedding of [((C2) into [((C1). Note that since F(), r() E [((C1), 

the image k(F(),F()) of [((C2) under r is contained in [((C1). It suffices, 

then, to show that r is well-defined, i.e. that r takes 0 in [((C2) to 0 in [((C1). For 

if f, f' are two different representatives of the same equivalence class in [((C2) (i.e. 

f ' f'), then F(0) = 0 if and only if F(f - f') = 0, or equivalently F(f) = F(f'). 
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This follows from the fact that f ' f' if and only if f '' twU, V w ' --  fi'U w' wV )' SO 

V\\ ) F(f(, )) = F(f'(, )) if and only if 0 = F(f(, ) - fi ' U , w) = F(0). 

Given that 

UV 
= r (C2 ( , , 1)) 

= C2 (F () , r () , 1), 
where the second equality follows from the fact that r preserves addition and multi-

plication, we need only show that C2(F(), r(), 1) = 0: 

(Y2 YZ2—X2Y 

X2Z 

y62 + X6Y2 + 2X4Y2Z2 + X2Y2Z4  

X6Z2 
y2 - - xz2 —Y4z - x3y2 - xY2z2 

X3 x3z2 

=0, 

so r is indeed well-defined. Moreover, F U (w) =  22-  and F (wV ) = 

transcendental over k and algebraically dependent via the relation 

(y2 YZ2—X2Y  
X2Z 

sok(C2)=!(L r_1y2 Yz2_x2Y  
'Sw' w) - ) 

We now show that [0 : 1: 0] E Rp: 

- XY2 

\w) X 

F (V" - 2XYZ—Y3 
W X3 

X2Z are 
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since 2 = and (YZ2—X2Y)(X3)—(2XYZ—Y3)(X2Z) = (X2Y)(Y2Z—X3— 

XZ2) = 0 E [([C1]. Hence, [0: 1: 0] E Rr because 'yi(X, Y Z) = XY2, -/2 (X, Y, Z) = 

2XYZ - Y3, y3 (X, Y, Z) = X3, and -y2 (0, 1,0) = —10 0. 

Proposition 3.1.7 Let F, C1 and C2 be as in Definition 3.1.4. The complement of 

Rr in C1 (the set {P E C1 I P Rr}) is finite. 

Proof. This is a consequence of Bézout's theorem, which we will encounter in Section 

4.1. Briefly, this theorem states that the loci of two relatively prime homogeneous 

polynomials have only finitely many points in common. Given that 

'y1(X, Y, Z)  

'Y3 (X, Y, Z) 

72 (X, Y, Z)  

73 (X, Y, Z)' 

it follows that there are only finitely many points P E C1 for which -y3 (P) = 0, since 

73(X,Y,Z) 0 in [([C1] and C1(x,y,z) is irreducible, so Ci(x,y,z) and 73(x,y,z) 

are coprime in [([x, y, z]. 0 

3.2 Rational Maps 

In this section, we define a rational map of curves. We will also see that a 

homomorphism of function fields from [((C2) into [((C1) induces a rational map 

from the curve C1 to the curve C2. 

Theorem 3.2.1 Let C1 : C1(x,y,'z) = 0,C2 : C2(u,v,w) = 0 be curves with func-

tion fields [((C1) and [((C2) and suppose that F : [((C2) -+ [((C1) is a [(-

homomorphism of function fields. For each P E Rr, let 71,p (X, Y Z), 72,P (X, Y Z) 
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and 'y3,p(X, Y Z) E [([C1] be such that 

F () - '11,(X, y, Z)  
- 

F (;) - 'y2,p(X, Y, Z)  
- 

and at least one of yi,p, 72,P and y,p is non-zero at P. Then F induces a map of 

curves F# : Rr 9 C1 -* C2, given by 

[F() (P) : F() (P) :11 if'y3,p(P) o 0 

{F()(P) : 1: F()(P)] if 'y2,p(P) 0 

[1: F() (P) : F(1 ) (P)] if'yi,p(P) o 0 

for all P E R. 

Proof. First, we show that such a map is well-defined. Observe that ',p, 

and need not be unique. We need to show that F# (P) is independent of the 

representation chosen for F() and F(). To that end, suppose that 

F (u - ,81,p(X,YZ)  
kW ) - i33,p(X,Z) 

r(V"\ fi2,p(X,Z)  
- /33,p(X, Y, Z)' 

where as usual, /3,p, /32,p and /3,p E [([C1] are homogeneous polynomials in X, Y 

and Z of the same degree such that at least one is non-zero at P. Without loss of 

generality, suppose that 'y3,p(P) and 3,p(P) are both non-zero - that is, suppose 

that there are two different representatives and  for F() which are 

both defined at P. Then 

(P) = (P) 
•_y3,P 133,P 
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because 

- 

'Y3,P - 

in P((C). Consequently, F()(P) is well-defined and the same argument tells us 

that F()(P) is also well-defined. 

Next, we need to show that if P falls under two or more of the three cases in the 

definition of r#, all relevant maps take the point P to the same point in P2(.k). We 

will only cover one case, namely, the case 'y21p(P) 0, 'y3,p(P) 0 0, since the other 

two cases can be proven analogously. Since F is a field homomorphism, r(@ = 

nfUW\_pfU\pfW\ dF 1 
j - 'SW) an - so 

[r(,',)(P):i: r(W)(P)] = [r(')(P)r(,W)(P) :i:r () (F)] 
= F() (P)[F () (F): F() (P) :1] 

- [() n. r (,,V) ).]. 
It now remains to show that the image of 1710 is a subset of 02. Let d2 the degree 

of 02(x,y,z), let P = [x0 : Yo : z0] E Rr, with 'Y1,P,f2,P,'y3,P as above, and without 

loss of generality, let z0 0. We only consider the case y3,p (F) 4 0. (The other two 

cases can be proven in an analogous manner). We need to show that F# (P) E 02, 
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i.e. C2(F#(P)) = 0. Then since C2(, - - 02(U,V,W) Wd2 = 0 e we have 

C2 (F# (P)) 

where the second equality follows from the fact that r is a K-homomorphism. J 

Observe that if r is given by 

F lu 

F1' 

then since 

'yi(X, Y Z)  

Z) 

-Y2 (X, Y, Z)  

-Y3 (X, Y, Z)' 

C2(1(X,Z),72(X,Y,Z),73(x,z)) - 

y3(X,Z)d2 - 

(C2 ) 72(X,YZ)  

1) 

we must have 

C2(71(x,y,z),'y2(x,y,z),'y3(x,y,z)) = Ci(x,y,z)f(x,y,z) 
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for some f(x,y,z) E 1?[x,y,z]. 

Proposition 3.2.2 Let F !(C2) - f k(C1) be a K-homomorphism of function 

fields. Then rO is non-constant. 

Proof. Suppose F# is constant, i.e. F#(P) = [u0 vo wo] for some [uo : v0 w0] E 

C2, and without loss of generality, let w0 54 0. From the definition of r#, we must 

have 

Then from 

- U0 

kW ) WO 

= (uo uo 
woJ WO 

and the fact that r is injective, we must have -- = YA 
W WQ SO C2 (U, v, w) I (wou - uow) 

and C2 is a line. Using the same reasoning, we find that C2 (u, v, w) I (wov - vow) as 

well. However, this means that w0u - u0w and w0v - vow are associates in R[u, v, w] 

- a contradiction. Hence, rO is non-constant. 0 

Example 3.2.3 Consider the curves 

Ci/K:y2z—x3—xz2 = 0 

C2/K:v2w—u3+4uw2 = 0. 
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The .k-homomorphism of function fields F: R(c2) - k(CI) from Example 3.1.6 

given by 

- 2XYZ—Y3 

X3 

induces a non-constant map of curves r# which is given by 

r#(P)= { 2xoyüzo—y 03 Lxo 

12xoyozo—yo'   - ' 01 . z . --  0 o•i•o2oyozo—y - .  

We see that r# is defined for all P € C1 for which x0 0 0 or x0 = 0 and yo 0 0, 

i.e. everywhere except at P = [0 : 0 : 1]. Therefore, C \ {[0 : 0 : 1}} c Rr. In fact, 

[0 : 0 : 1] also belongs to Rr, as we will see in Chapter 5, so Rr = C1. 

if xo 0 0 

In light of the fact that r(L) F() are just quotients of homogeneous poly-

nomials of the same degree, we may express the map ro induced by r strictly in 

terms of homogeneous polynomials in the ring k[C1]. For if F(*) =  and 

=   then multiplying out by 73(X, Y, Z) gives the same map of curves. 

That is, the map r# takes the point [x0 : yo : z0] E C1 to ['y1 (x0, yo, z0) : 'y2 (x0, yo, z0) 

'y3(xo, yo, zo)] e C2. 

Example 3.2.4 Consider the k-homomorphism F: k(C2) —* k(01) of function 

fields from Example 3. 2. 3, given by 

2XYZ - 

X3 
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By Example 3. 2.3, the map F# : Rr —* C2 induced by r is given by 

F(P) = 

rJ4 : 2xoyozo—y8X0 X0 : if xo 0 0 

I  xoy2 x  
o— vo 2xoyozo—uj = [0 : 1: 0] if P = [0 : 1: 0], 2xoyoz : 1 

which, after clearing denominators, yields the map 

F#(P) = [xoy : 2x0y0z0 — y : 

forP [0:0:1]. 

This naturally motivates a definition of a map of curves which is not related to 

function field homomorphisms. 

Definition 3.2.5 Let C1, C2 be curves and let fl, f2,f3 in k[C1] be homogeneous 

polynomials such that all nonzero fi have the same degree and fi 0 0 E k[C1] for 

some i = 1) 2,3. Set U, = {P E C1 I f(P) 0 0 for some i = 1, 2,31. Then a map 

of the form f: Uf —+ C2 given by 

f(P) = [fl (P) : f2 (P) : f3 (P)] 

is said to be a partial map. 

Remark 3.2.6 Note that by Bézout's Theorem, the set Uf in Definition 3.2.5 is a 

cofinite subset of C1. 

Definition 3.2.7 Let f : Uf —* C2, g : Ug —+ C2 be partial maps of curves C1, C2 

given by 

f(P) = [f1(P) : f2 (P) : f3 (P)] 

g(P) = [gi(P) : g2(P) : 93(P)]. 
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Then f and g are said to be equivalent, written f g, if f(P) = g(P) for all 

PE Uf fl U9. 

Lemma 3.2.8 Let f, g be partial maps of curves C1, C2 as in Definition 3.2.7. Then 

fg if and only if forl≤i,j≤3, 

f(x,y,z)g(x,y,z)— f(x,y,z)g(x,y,z) E (Ci(x,y,z)). 

Proof. Suppose that f t-' g. If fi = gi= 0 for some i, assume without loss of 

generality that i = 3. Then fi.q3 - fai = f293 - f392 = 0 E (Cl (x, y, z)). Clearly, 

we must have fi 0 0 or f2 0 0. Suppose f2 0 0. Then we must have 92 0 0 also, 

so for all but finitely many P E C1, f2 (P) 0 0, 92(P) 0 0. Hence, for all but finitely 

many P E C1, % = and we conclude (by the irreducibility of C, (x, y, z) 

and Bézout's Theorem) that flg2 - f291 E (C(x, y, z)). On the other hand, suppose 

0 for all i, so 9i 0 0 for all i. Then for all but finitely many P E C1, f(P) 0 0 

and g(P) 0 0 for 1 ≤ i ≤ 3. Hence, for all but finitely many P E C1, 

f(P) - g(P) 

f(P) 

for 1 ≤ i ≤ 3. Thus, the homogeneous polynomials C, (x, y, z) and f(x, y, Z)gj(X, y, z)— 

f(x, y, Z)gj(X, y, z) have infinitely many common zeros, from which we again con-

clude that 

f(x,y,z)g(x,y,z)— f(x,y,z)g(x,y,z) E (Ci(x,y,z)). 

Conversely, suppose that for 1 ≤ i, ≤ 3, 

f(x,y,z)g(x,y,z) - f(x,y,z)g(x,y,z) E (Ci(x,y,z)). 
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If f, = 0 for some i, assume without loss of generality that i = 3. From the equations 

0 E K[C1] = f192 - f291 (2.1) 

= f193 - f'i (2.2) 

= f293 - f392, (2.3) 

we see that f193 = f293 = 0. If f2 = 0, we must have fi 0 0 so 93 = 0, from which we 

deduce that 92 = 0 and g 0. Similarly, if fi = 0, then f2 0 0, so 91 = 0 and 92 0. 

If f', f2 0 0, we find that g3 = 0, so if 92 = 0, 91 0 and flg2 - f2gl = - f2gl 0 

- a contradiction. Therefore, if fl, f2 0 we must have 91,92 0 0. In all cases 

(1 ≤ i ≤ 3), we find that fi = 0 if and only if gi = 0. Therefore, for all 1 ≤ i ≤ 3, 

= for some j, for all but finitely many P E C. Moreover, if 11(P) = 0 and 

g(P) 0 0 for some P, we see from Equations 2.1-2.3 that f(P) = 0 for 1 ≤ i ≤ 3 

— that is, PUf. 

Lemma 3.2.9 The relation is an equivalence relation. 

Proof. Reflexivity and symmetry are obvious. Transitivity follows from the fact 

that a finite intersection of cofinite subsets of a set is again a cofinite subset. E 

Definition 3.2.10 Let C1, C2 be curves and let R denote the set of partial maps f: 

Uf - C2 from 01 into C2. We denote by RatR(Cl, C2) the set of equivalence classes 

under the equivalence relation of Definition 3.2.7. An element of Rat jj-(C1, C2) is 

called a rational map from C to C2. 

Definition 3.2.11 Let 'y be a rational map of curves C1, C2. Then 'y is regular at 

PE C1 ifPE Uf for some partial map fEy. 
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Example 3.2.12 Consider the circle C/Q x2 + y2 = z2 and the line at infinity 

w = 0, and the partial map f : U1 -* £ given by f([xo : Yo zo]) = 

[yo : xo - z0 : 0]. Then Uf = C \ { [1: 0 : 1] }. The map g : U9 - 4 given by 

g([xo : Yo zo]) = [xo+zo : — Yo : 0] is equivalent to f because (x+z) (x—z) — (—y) (y) = 

x2 + y2 - z2 E (C(x,y,z)). Therefore, since U. = C \ {[1 0 : — 1]}, we have 

U1 U U9 = C, and the class y of f, g is regular on all of C. 

Given a rational map 'y, we can give an alternate characterization of 'y as an 

extended map of curves, as the next proposition demonstrates. 

Proposition 3.2.13 Let C1, C2 be curves and let 'y E RatR(Cl, C2). Then the map 

given by 7(P) = f(P) for all f E 'y for which P € U1 gives a well-defined map of 

curves whose domain is the set 

U U1, 
fey 

which we denote by U. 

Proof. Let P E C1 and let f, 9 E y such that P E Uf fl U9. Suppose without loss of 

generality that f3 (P) 0 0 and 92 (P) 0 0. Then 

[fl(P) : f2(P) f3(P)] - 1f'() f2(P) • 
- Lf3(P) 

ff2(P)gi(P) f2 (P) 12(P)93(P)  

[f3(P)g2(P) f3 (P) 13(P)92(P) 

= 91 (P) . 1 93(P)  
92(P) 92(P) 

[gi(P) g2(P) 9(P)] 

We can multiply the second line above by to get the third for the following 
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reason. Since 

f≥ f 
13 12 
12 93 

f3 92 

as rational functions on C1, and since 13(P)92(P) 0 0 (i.e. 

must have 12(P)93(P) 0 0. Hence, f2  - 0 
f3(P)7 

is defined at P), we 
1392 

For the remainder of this thesis, we will usually regard a rational map 'y as the 

map of curves described in Proposition 3.2.13, rather than as an equivalence class 

of partial maps. Furthermore, for a rational map y, when we write y(P) = 1(P) = 

[11(P) f(P) : 13(P)], we will mean that f E y, i.e. f is a partial map residing in 

the equivalence class 'y with U1 9 U. In some cases, we may write 'y(P) = [-/I (P) 

72(P) 'y3 (P)}. In these instances, we mean that "j ranges over fi for i = 1,2,3 for 

all f E y; that is, 'y, can be taken to be f, for i = 1,2,3 when P E U1. 

For any k-homomorphism of function fields F, F# is a rational map from some 

cofinite subset of C1 into C2. The following definition addresses this. 

Definition 3.2.14 Let F k(C2) -+ k(CI) be a k-homomorphism of function 

fields. Then ro is called the rational map induced by F. 

Remark 3.2.15 Observe that Definition 3.. .10 does not preclude constant rational 

maps. However, we saw in Proposition 3.2.2 that constant rational maps do not arise 

as rational maps induced by function field K-homomorphisms. 
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The next proposition gives a necessary and sufficient condition for a point P to 

be in Rr for a K-homomorphism F. 

Proposition 3.2.16 Let C1, C2 be curves, F: K(C2) —+ 1?(C1) a K-homomorphism 

of function fields, and F# the rational map induced by r given by 

r' (P) = [71(P) : -y2 (P) : 

for homogeneous polynomials 7i, -y2, -/3 E .1? [C1]. Then for all P E C1, P Rr if and 

only if r# is regular at P. 

Proof. Suppose P E Rr. Then F() = ' ' WI F(-.' = OL2 and since P E Rr, there exist 
7 •7 

2, 33 of the same degree such that r' U = F( V  ) = and (P) 0 for some W) 03 ' \W 03 

i E { 1, 2, 3}. (It follows that F() = = " This means that 'Yi,@j - = 0 E 
Y2 02 

R[Cl] for i,j E { 1, 2,31, E (Ci(x,y,z)). 

By Lemma 3.2.8, the partial maps 'y,,8 given by 

-y(P) = ['yi(P):-y2(P):y3(P)] 

9(P) = [/31(P):82(P):83(P)] 

are equivalent, so 6 E F# with P E Up. Thus, r# is regular at P. 

Conversely, suppose ro is regular at P; that is, there exists a partial map /3 E F# 

such that P E Up. Then we conclude again by Lemma 3.2.8 that 'yj(X, y, z)/3  (x, y, z)— 

'yj(x,y,z)/3j(x,y,z) E (Cj(x,y,z)), so ^/j 16i = for i,j E {1,2,3}. Since F() = 

F"--") = it follows that P E Rr. 
'3 'W 'ye' 

0 

Corollary 3.2.17 The domain of r# in Proposition 32.16 is Rr, i.e. Ur# = Rr. 
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Example 3.2.18 Consider the rational map ro, : R - p C2 induced by the K-

homomorphism from Example 3.1.6, for the curves 

C1 :y2z—x3—xz2 = 0 

C2 : v2w - u3 + 4uw2 = 0, 

and given by F#(P) = [yzo : yoz - xy0 : xz0], if P [0 : 1: 0], [0 : 0 : 1], i.e. 

C \ {[0 : 1 : 01, [0 : 0 : 1]} Then for the partial map g([xo : Yo : z0]) = 

[x0yg : 2x0y0z0 - yg : x], we find that g E F# and [0 : 1: 0] E U9, so r# is regular 

at [0 : 1: 0]. Similarly, 

r() - g1(X,Z) 
- 93(x,Y;z) 

XY2 

-  
--

F() - g2(X,Z) 
- g3(X,Z) 

2XYZ - 

X3 

and 92(0, 1, 0) = — 10 0, so [0:1:0] E Rr. 

Although the rational map from the previous example is actually regular every-

where, the set Rr is not always equal to the curve C1, as we will soon see. 

Proposition 3.2.19 Let C1 : Ci(x,y,z) = 0,C2 : C2(u,v,w) = 0 be curves and let 

r: ./(C2) - p .k(C1) be a FC-homomorphism of function fields. Then for all singular 

P E R, r#(P) is singular. 

Proof. Let P be a singular point on C1, and let F#([xo : yo : z0]) be given by 

yo, zo) : 'y2(xo, yo) zo) : 'y3 (x0, yo) z0)] as usual. Then from the fact that 

C2('yl(x,y,z),'y2(x,y,z),'y3(x,y)z)) = C1(x,y,z)f(x,y,z), 
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for some f(x,y,z) E fC[x,y,z], we have: 

5C2(u,v,w) — 3C2('yi(x,y,z),'y2(x,y,z),'y3(x,y,z))8x 

ax au = (ac, (xYz)f( ) + Ci(x,Y,z) ax au* °') 

Hence, 

5C2(u,v, W) (F(P)) 
au 

(5C1(xY Z) (p)f(p) + Cl(P)'' a 5x (P))au (P). 

Since &Cl(xvz)ex (p) C1 (P) = 0, t9c2vw)ou (F#(p)) = 0 and it can similarly shown 

that aC2(UVlW)(r#(p)) - 8C2 o(u,v,w) (Fo(p)) = 0, so p#(p) is singular. o 

Example 3.2.20 Consider the curves 

CA: y2z—x3-8xz2 = 0 

02/Q : v2w2 - 2u4 + w4 = 0, 

with a [C-homomorphism F: [C(C1) —+ [C(C) given by 

(X) — 2(VW + 2U2 — W2)  
- (U_W)2 

(Y) - 8UVW — 4VW2 + 8U3 — 4W3 
— (U— W)3 

Then F# : Rr — C1 is given by 

r# quo vo : wo}) = [2(vowo+2u—w)(uo—.wo) : 8uovowo-4vow-i-8ug-4w : (uo—wo)3]. 

A quick check confirms that C2 \ {[0 : 1: 0], [1: —1: 1]} El Rr. However, [0 : 1: 0] 

is the only singular point of C2. The curve C1 is easily seen to be non-singular, so 

[0: 1: 0] cannot lie in Rr. Thus, Rr 9 C2 \ {[0: 1: 0]}. 
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On the other hand, the converse is not true: Non-singular points can be mapped 

to singular points, as the next example shows. 

Example 3.2.21 Consider the same two curves from the previous example and the 

R-homomorphism F': (C2) -* F(C1) given by 

IP/ (U - Y- 2X- 8Z  
W ) - Y-4X+8Z 

rt (V ) -  24X2 + 48YZ - 16XZ - 64Z2 

W = (Y_4X+8z)2 

so that (F') : C1 - C2 is given by 

(r')#([xo : Yo : zo]) 

= [(yo - 2x0 - 8z0)(yo - 4x0 + 8z0) : y02 - 24x + 48y0z0 - 16x0z0 - 64z2: 

(yo —4x0+8z0)2]. 

Then (F')#([xo : 4x0 — 8 : 1]) = [0 : 1: 0], where xo is a root of x3 - 16x2 + 72x — 64. 

(Note that Ci(xo,4x0-8,1) = —x+16x-72xo+64= 0, so [cco : 4x0-8 : 1] E C1.) 

We just saw that [0: 1: 0] E C2 is singular. 

Definition 3.2.22 Let C1, C2 be curves and let F : Rr - 4  C2 be a rational map 

induced by a [(-homomorphism F : [((C) - 4  [((C1). Then F is said to be defined 

over K if there exist homogeneous polynomials yi(X, Y, Z), -y2 (X, Y, Z), 'y3 (X, Y, Z) E 

K[C1] of the same degree such that 

r(:fl\ 'yi(X,YZ)  
W) - 

(-K- 'y2(X,Z)  
W) - y3(X,Z) 
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Example 3.2.23 Consider the curves and field homomorphism from Example 32.18, 

with =Q. Then 

r#(p) = [V'xoy 2V'xoyozo - 

for P 0 [0 : 0: 1]. But F# is defined over Q, because this is the same map of points 

as F# : Rr - C2, given by 

fl# (P) = [x0y : 2x0y0z0 - y : 

for P[0:0:1}, i.e. 

xY2 

x3 

2XYZ -  Y3  

X3 

3.3 Isomorphism 

In this section, we deal with isomorphism of curves, an important topic vis--vis the 

last three chapters of this thesis. The meaning of isomorphism of curves is different 

from that of rings or fields. However, we will see that isomorphism of curves is tied 

to that of fields, just as non-constant rational maps are tied to K-homomorphisms 

of function fields. First, we introduce a related notion. 

Definition 3.3.1 Let 'y be a rational map of curves Cl; C2. If is regular at P for 

all P E C1, we call 'y a morphism and write : C1 - p C2. 

The next theorem gives an important result for non-constant morphisms. 
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Proposition 3.3.2 Let C and C2 be curves. A non-constant morphism 7 = ['yr 

'Y2 : 731 from C1 to C2 is surjective. 

Proof. See [18, Corollary 8.10]. 0 

The following provides an example of a morphism of curves whose defining homo-

geneous polynomials each have degree three. 

Example 3.3.3 Let 

Ci/Q:x3+y3-27z3 = 0 

02/Q: 3u2w - 3vw2 + w3 - 27u3 = 0 

be curves defined over the rational numbers. The map c : 02 - p C1 given by 

c([uo : vo wo]) = [VO : w0 - v0 : uo] 

is a rational map because 

v + (wo - vo)3 - 27u = 3vw0 - 3v0w + w - 27 ug = 0 

for all [u0 : v0 : w0] E 02, and it is a morphism because ce is regular at all points 

[u0 : v0 wo] E 02. 

The following fact will be useful later: Let 03 be given by 

03/Q: 108s2t+t3— 108r3 = 0. 

Then the map 

/3([uo : v0 w0]) = [6u0 : 2v0 - w0 6w0] 

is a morphism from C2 to C3 defined over Q. 



49 

Checking that this is a rational map amounts to substituting the values 6u0, 2v0 - 

w0 and 6w0 for r, s and t, respectively, in the equation for C3, and verifying that 

C3 (6u0, 2v0 - w0, 6w0) = 0 for all [uo : v0 : wo] E C2. This rational map must be a 

morphism because 0 is regular at all points [u0 : v0 : wo] on C2. 

Lemma 3.3.4 Let be a non-constant rational map of curves C1, C2, and let C1 be 

smooth. Then y is a morphism. 

Proof. See [24, Proposition 11.2.1]. 11 

Definition 3.3.5 Let C1, C2 be curves over some algebraically closed field k and 

a : C1 - f C2 a non-constant rational map. If a' : C2 - C1 is a rational map 

such that a 0 a' and a' o a, where defined, give the identity maps on C2 and C1, 

respectively, then we say that C1 and C2 are birationally equivalent and we denote 

a' by a' 

Example 3.3.6 Consider again the curves 

Ci/Q:y2z—x3-8xz2=0 

C2/(Q: v2w2 - 2u4 + W4 = 0 

from Example 3..2O and the maps ro : Rr - Ci, (F')# Rn -* C2 given by 

F#([uo v0 : wo]) 

= [2(vowo + 2u - w)(uo - wo) 8u0v0w0 - 4v0w + 8u - 4w : (u0 - wo)3] 

(F')#([xo : y : z0]) 

= [(yo - 2x0 - 8z0)(yo - 4x0 + 8z0) : y - 24x + 48yoz0 - 16x0z0 - 64z2: 

(yo - 4x0 + 8z0)2]. 
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Then 

v0 : wo]) 

= [uowo(4v0w0 + 32u0w0 - 20w - 8u)2 vowo(4v0w0 + 32u0w0 

w(4vowo + 32u0w0 - 20w - 8u)2] 

= [uo :vo:wo], 

and it can similarly be shown that r# o (F')([xo : Yo : z0]) = [x0 Yo : so C1 and 

C2 are birationally equivalent. 

- 20w - 8u)2 

Observe that while (r')# = (r#)-' in the previous example, the map r# is not 

a morphism, since C2 is singular at [0 1 : 0] while C1 is non-singular. The next 

definition addresses this point. 

Definition 3.3.7 Let C1, C2 be curves over some algebraically closed field K and 

a C1 -* C2, a' : C2 -) C1 as in Definition 8.3.5. If a, a are morphisms 

then we say that C1 and C2 are isomorphic and we write C1 C2 . We call a (and 

a') an isomorphism. The curves C1 and C2 are isomorphic over K (Cl K C2) if 

a, a 1 are morphisms defined over K. 

Example 3.3.8 Consider once more the circle C/Q x2 + y2 = z2 and the line at 

infinity £/Q w = 0 from Example 3..12 and the rational map 8: U -+ C given 

by 13([uo : v0 wo]) = [u - v : —2u0v0 : u + v]. The map is clearly a morphism, 

and one may verify via simple algebra that ,8 and the morphism 'y : C - £ given 

by 

7(P) = 
f f(P) 

g(P) ifP[1:0:-1], 
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with f, g given by 

f([xo :yo :zo]) = [YO :xo—zo :O} 

Yo zoj) = [x0 + zo : — Yo : 0], 

are inverses of each other, hence 6 = 'y' and the circle and the line at infinity (in 

fact all lines) are isomorphic to one another. 

Example 3.3.9 Consider again the curves C1 : x3+y3 — 27z3 = 0, C2 3u2w--3v2+ 

w3 - 27u3 = 0 and C3 : 108s2t + t3 - 108r3 = 0 and the morphisms a C2 C1 

and /3: 02 - p C3 from Example 3.3.3 given by 

a([uo : v0 : wo]) = [vo : w0—v0 :uo] 

f3([uo : v0 : wo]) = [6u0 2v0 — w0 6w0] 

Then a and /3 are isomorphisms over Q via a : C1 - p C2 and /3' : 03 - 4 C2 

given by 

a'([xo : ho : zo]) = [zo : xo : x0 + Yo] 

t0]) = [2r0 : 6s0 + t0 : 2t0}. 

In fact, 

o a([no : v0 : w0]) 

a o a'([xo : ho : zo]) 

= a" ([vo : w0 — vo : u0]) 

[uo : v0 : V0 + (WO — vo)] 

[uo :vo :WO] 

= a([zo:xo:xo+yo]) 

= [x0 : (x0+ YO) —x0 :zo] 

= [xo:yo:zo]. 
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Likewise, 

o /3([uo : v0 : wo}) = /3'([6u0 : 2v0 - w0 6w0]) 

= [l2uo : 6(2v0 - wo) + 6w0 : 2(6w0)] 

= [12u0: 12v0+: 12w0] 

= [uo:vo:wo] 

o /3'([ro so : to]) = /3([2r0 : 6s0 + to : 2t0]) 

= [6(2r0) : 2(6s + to) - 2t0 6(2t0)] 

= [12r0 : l2so : l2to] 

= [ro:so: to] . 

Therefore, C and C3 are isomorphic over Q via ,8 o a' C - 03 and a o,6-1 

Remark 3.3.10 Observe that the isomorphisms a and a' from Example 8.8.9 can 

alternately be expressed in terms of invertible matrices. To be exact: 

1 0" 

VO : wo]) = 0 —1 1 Fuo : v0 : w0]T 

1 0 0  

and 

a'([xo : Yo : z0]) = 1 0 0 [x0 : Yo : zo]T. 

1 Oj 

Here, we regard [u0 vo wo] and [x0 Yo : zo] as row vectors. 
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Proposition 3.3.11 Let A E GL3(i?) and C a curve. Then the image of the curve 

C under the map aA C -* p2(.), where aA(P) = AP, is a curve C' to which C 

is isomorphic, i.e. aA : C -* C' is an isomorphism with inverse aA-1. 

Proof. Since A is invertible, aA is regular on all of C, and aA is given by linear 

homogeneous polynomials, so it is a morphism. Furthermore, c : C' - p C is 

given by aA-1(Q) = A-' Q. Composing the two morphisms gives 

aA-1 0aA(P) = A'AP = (A'A)P = I3P = P 

aAo aA-1 (Q) = AA'Q = (AA')Q = I3Q Q 

and aA is an isomorphism, as required. 1J 

Two isomorphic curves defined over a given field need not be isomorphic over this 

same field, as the following example illustrates. 

Example 3.3.12 Taking K = F13, consider the two curves 

C1/F13 : y2z = x3 + 7xz2 + 3z3, 

C2/F13 : V2  = u3 + 5uw2 + 11w3. 

Then 

a: [x0 : ZO} -* [6x0 r-3 YO zo], 

is an isomorphism from C1 to C2 with inverse 

[uo v0 wo] -+ [lluo r3v0 : 

where r2 = 11. 



54 

Since 11 is a quadratic non-residue modulo 13, the isomorphism is not defined 

over IF13. 

Theorem 3.3.13 Isomorphism induces an equivalence relation on the set of curves 

defined over a given field. 

Proof. Every purve is isomorphic to itself via the identity map. Symmetry is obvious 

since the inverse of an isomorphism is again an isomorphism. The composition of 

two morphisms gives another morphism, such that the composition of the inverse 

morphisms gives the inverse of the first composition. 

3.4 The Category Theoretic Perspective 

Up to this point, we showed that a k-homomorphism implies the existence of a 

non-constant rational map. It is possible to go the other way. Given a non-constant 

rational map, there is a k-homomorphism of the corresponding function fields (in 

the opposite direction) which corresponds to this map. That is, the map of curves 

is in fact a non-constant rational map induced by a suitable k-homomorphism, and 

there is a 1-to-1 correspondence between the non-constant rational maps of curves 

(if such exist) and the k-homomorphisms of their function fields, as we will see. 

Definition 3.4.1 Let 'y be a non-constant rational map of curves Ci, C2, given by 

yo ': zo]) = ['y1(xo,yo,zo) y2(xo,yo,zo) : 'y3(x0,y0,z0)], for homogeneous 

polynomials 71,,y2, -y3 E k[C1]. Then we define : k(C2) - p k(C1) by 

' * (U'\ - 

\W) - y3(X,Z) 

* - 'y2(X,Y,Z) 
' - 
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and extend y* canonically to k(C2) so that 'y preserves addition and multiplication. 

Proposition 3.4.2 Let be a non-constant rational map of curves C1, C2. Then 'y 

is a k-homomorphism of function fields. 

Proof. y obviously fixes 1?. Suppose y is given by 

7(P) = ['71(P) : 72(P) : 

where yl, 72,73 E k[C1] are homogeneous polynomials of the same degree. Then 

*1 'yj(X,Y,Z) V - y2(X,Y,Z) 
7 '. Uw) --  x,Y,z) and (w) - (x,Y,z)' Clearly, 7*(k(C2)) k(01). From the 

discussion in Example 3.1.6, it suffices to show y*(o) = 0 to establish that 

well-defined. We have 

= 7* (a2 ( U v ')) 
02(7*(w) (V\ - ' 

2   ('Y1 (X 'Y'Z) 
'y2(X,Y,Z)  

-y3(X,Y,Z)"y3(X,Y,Z)' ) 
C2('y1(X, Y, Z),72 (X, Y, Z),'y3(X, Y, Z))  

'y3(X,Y,Z)d2d3 

where d2 is the degree of 02(x, y, z) and d3 is the degree of the homogeneous poly-

nomials yi(x,y,z),'y2(x,y,z),'y3(x,y,z). Now C2('y1(P),'y2(P),'y3(P)) = 0 for all P 

at which 'y is regular, because ['y1(P) : 'y2(P) 'y3(P)] E 02 for all P where 'y is 

regular; in the event that 'y is not regular at P, we have 'yi(P) = -y2 (P) = -y3 (P) = 0 

and C2(0, 0, 0) = 0. Since C2('yi(P),'y2(P),'ys(P)) = 0 for all points P on the curve 

C1, we may conclude (by the irreducibility of C1(x, y, z) and Bézout's Theorem) 

that 02('yi(x,y,z),'y2(x,y,z),'y3(x,y,z)) E (Cl (x,y,z)). Hence, 'Y* (0) = 0 and 7* 15 

well-defined, as required. 11 

7* is 
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Example 3.4.3 Consider again the curves from Example 8.1.6: 

Ci:y2z—x3—xz2 = 0 

C2 v2w - u3 + 4uw2 = 0, 

and the rational map 'y from Example 3.2.18 given by y(P) = f(P) = [ygz0 : yOZ02 - 

xy0 : xzo] E C2 for all P E Uf C U7. Then y' R(C2) -* !(C1) is given by 

y2 

X2 

YZ2 - X2Y 

X2Z 

This map of function fields may look very familiar to the reader. (See Example 

3.1.6.) This is not a coincidence, as the next few results reveal. 

Theorem 3.4.4 Let F : i(C2) - f R(Cl) be a .t?-homomorphism of function 

fields. Then (F#)* = F. 

Proof. This follows directly from the definitions of # and For F# : Rr - p C2 is 

given by 

where 

F#([xo Yo : zo]) = ['yi(xo, yo, zo) : 'y2(xo, yo, zo) 'y3(xo, yo, zo)J, 

r (U) - 'yi(X,YZ)  

- 

F() - 'y2(X,Y,Z)  
- 

D 
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Proposition 3.4.5 Let C1 and C2 be curves and let F: [((C2) - p [((C1) be a 

homomorphism. Then there exists a unique non-constant rational map 'y such that 

Proof. We have already established existence: Simply define 'y = F. Then = 

(F#)* = F by Theorem 3.4.4 and therefore (7*) = F# = 'y. It thus only remains to 

prove uniqueness. Suppose fi is another rational map such that = F and write 

7(P) = f(P) 

= [f1(P) : f2 (P) : f3 (P) 

,8(P) = g(P) 

= [g1(P) : g2(P) : 

where fE-y,gE3. Then 

That is, for 1 ≤ i,j 

91(X, Y, Z)  

93(X, Y, Z) 

92(X, 1', Z)  

93 (X, Y, Z) 

, (U) 
F "nj 

- f1(X,Y,Z)  

- f3(X,Z) 

- G) 

— f2(X,YZ) 

- f3(X,Z) 

<3 f(X,Y,Z) d g(X,Y,Z)  
- f(x,Y,z) an   are equal as rational functions on the 

curve C1. By Lemma 3.2.8, we may conclude that f r'-' g, so = . 0 
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Theorem 3.4.6 Let 'y be a non-constant rational map of curves 01, 02. Then 

(7*)# = 7 

Proof. Set F = 'y'. By Theorem 3.4.4, 

r = (F 

= ((7*)#)* 

Also, by Proposition 3.4.5, y is the unique rational map with 'y = F, so ( y*)# = 7.0 

Proposition 3.4.7 Let a be a non-constant rational map of curves Ci, 02 and /3 a 

non-constant rational map of curves C2, Q3. Then (/3 o a)K = a* 

Proof. This follows from the definition of The homomorphism (f3oa) * : K(03) — f 

0 [((Ci) takes f3i(c1(X,Y,Z),a2(X,Y,Z),c3(X,YZ)) The homomorphism /3* E [((03) t 133(ai(XYZ)a2(xYz)c3(xYz))• 

[((03) — + [((Ca) takes A to pi(U,V,W) while a* takes -. to   and 
133(U,V,W) W as(X,Y,Z) 

Composing a* with /3* gives: 2(X,Y,Z)  
cs(X,Y,Z) 

a* o,0* (') 

A ( O(l(X,Y,Z) O2(X,YZ) 1 
cs(X,Y,Z)' c(X,Y,Z)'  

çoi(X,Y,Z) c2(X,Y,Z) 1 
t'A 3\o3(X,Y,Z)' a3(X,Y,Z)' 

/31 (al (X, Y , Z), a2 (X, Y, Z), a3 (X, Y , Z))  

1', Z), 02 (X, Y, Z), a3 (X, Y, Z)) 

(/3oa)* (p). 

V 
W to 

The proof for 12 is completely analogous. 0 
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To what extent is a curve C over a field k determined by its function field k(c)? 

We just saw that curves and their function fields are closely related. To be more 

precise, isomorphism of function fields of curves (over a given field) induces an equiv-

alence relation on the set of curves over this field and vice versa, as the following 

theorem states. 

Theorem 3.4.8 Let C1 and C2 be smooth curves. Then K(C1) 1?(C) if and only 

c1-C2. 

Proof. Assume ](C1) FC(C2). Then there exists r k(C2) 

with 71,72,'Y3 

71 (X, Y, Z)  

'Y3 (X, Y, Z) 

72(X, Y, Z)  

'Y3 (X, Y, Z) 

)i(U,V,W)  

A3(U,V,W) 

A2(U,V,W)  

- p J(C1) such that 

homogeneous polynomials of the same degree and 

mogeneous polynomials of the same degree. Then 

('yi(X,YZ)  

73 (X, Y, Z) 

F—' ('y2(X,Z)  
Z) 

F (A1(U,w)  

3(U, V, W) F (A2(U, V, W)  
A3 (U, V, W) bz

f 
N
 I
 
 

A,, A2, A3 also ho-
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Thus, for all P = [x0 Yo : zo] E C1 and Q = [u0 : vo wo] E C2, 

F#([xo : Yo : zo]) = ['yi(xo, Yo, zo) : 72 (x0, Yo, zo) 7 (xo, yo, z0)] 

(F')([uo : vo : w0]) = [Ai('uo, vo, WO) A2(uo, vo, w0) : A3(uo, vo, w0)]. 

We claim that r# : C1 - p C2 is an isomorphism with inverse (F')#. We must 

show that for all P = [x0 : Yo : z0} E C1, (F i)#(F(P)) = P and for all Q = [u0 

vo : w0] E C2, F#((F1)#(Q)) = Q. Now 

- r(A'(Uvw)) 
Z - A3(U,V,W) 

\ fT'fU\' kW nIV\ )' /\1L W)  

= A3(F() r(V) 1) 

A ('yj(X,Y,Z) y2(X,Y,Z)  
1'-j3(X,Y,Z)' 1'3(X,Y,Z)' 

A 1yi(X,Y,Z) Y2(X,Y,Z)  
3 ys(X,Y,z)' y3(X,Y,Z)' 

A1(71(X, Y, Z),'y2(X, Y, Z),73(X, Y, Z))  

A3(71(X,Y, Z),'y2(X, Y, Z),73(X, Y, Z)) 

Similarly, 

Y - A2('y1(X,Y, Z),'y2(X, Y, Z),'y3(X,Y, Z))  

- A3(-yi(X,Y,Z),72(X,Y,Z),-y3(X,Y,Z)) 

From Lemma 3.2.8, it follows that for all [x0 : Yo : z0] E 

[x0 : Yo : zo] = [Al ('yi(xo, YO, zo),'y2(xo, YO, zo),73(xo, YO, zo)) 

A2('yi(xo, YO, zo),'y2(xo, YO, z0),'y3(xo, YO, zo)) 

A3('yi(xo, Yo, z0), 'y2 (x0, Yo, zo), 'y3 (x0, Yo, zo))], 

s (r—')(r(P)) = P. By the same reasoning, F((F_l)#(Q)) = Q. Furthermore, 

we know from Lemma 3.3.4 that r# and (F')# are morphisms, since both C1 and 

C2 are smooth. Thus, (F') = (F#)' and C1 C2. 
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Conversely, suppose that C and C2 are isomorphic via Y : C1 -+ C2 and  

C2 -* C1 and let 'y and y4 be given by 

7(P) = [7i(P) : : 

= [Al (Q) : A3(Q)]. 

Then y* R(C2) -* k(CI) and (y_l)* : [((C1) -+ are K-embeddings of 

function fields. We claim that is an isomorphism, with (y*)_l = (yl)* To prove 

this, we need to show that 

I' 
tS
I'
-<
 

We only establish the first equality, since the other three can be proven analogously. 

From the definitions of and ( y_l)*, we see that 

* (X)) -  A1(71(X,Y, Z),y2(X,Y, Z),73(X,Y, Z)) 
_1*  - A3(71(X,Y, Z),72(X,Y, Z),73(X,Y, Z)) 

But for all P = [x0 : zo] E C1, we have 

[x0 : Yo z0] = [.\i('yi (x0) Yo) z0), -y2(x0, Yo, zo), 'y (x0, Yo) zo)) 

A2('71(xo, YO, zo),-y2(xo, YO) zo),'y3(xo, YO, zo)) 

YO, z0), 'y2(x0, Yo, z0), 'y3 (x0, Yo, zo))]. 
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Since for all but finitely many P e 01, zo 0 0, it follows that for all but finitely 

many P E C1, 

= .X1(y1(xo, YO, zo),'y2(xo, YO, zo),73(xo, YO, zo))  

zo .X3('yi(xo, Yo, zo), 'y2 (x0, I/o, zo), -y3 (x0, I/o, zo)) 

This means that the rational functions and A1(1(X,Y,Z),-y2(X,Y,Z),-y3(X,Y,Z)) are equal 
A3('yi(X,Y,Z),y2(X,Y,Z)çya(X,Y,Z)) 

as rational functions on some cofinite subset of C1. Hence, 

X - ).i('yi(X, Z), -y2(X, Y; Z), 'y3(X, 1', Z))  

Z - A3(71(X,YZ), 2(X,Z),73(X,Z)) 

and thus, is an isomorphism, as claimed. 0 

Remark 3.4.9 Note that we can establish a weaker result by removing the condition 

that Ci and 02 above be smooth. In this case, isomorphism of function fields of all 

curves induces an equivalence relation on the curves themselves; the equivalence class 

of a curve is the set of curves to which it is birationally equivalent. 

We are now almost ready to establish the most important result of this chapter, 

an equivalence of categories which relates curves and function fields. Just prior to 

doing this, however, we require two more definitions. 

Definition 3.4.10 Let S denote the set of non-constant rational maps of curves 

over P. We say that a : Ci - 02 and ,6 U,6 g 03 - 04 are similar, if C 

and 03 are birationally equivalent and 02 are 04 are birationally equivalent. 

Lemma 3.4.11 Similarity of rational maps is an equivalence relation. 

Proof. This is clear from the definition of similarity, since birational equivalence of 

curves is an equivalence relation. 0 
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There is an analogous notion of similarity for function fields, which we now define. 

Definition 3.4.12 Let T denote the set of K-homomorphisms of function fields 

(i.e. k-homomorphisms of transcendence degree one extensions of K). Recall that 

we saw in Proposition 2.3.14 that every function field is of the form K(a, b), with 

a, b algebraically dependent. We say that two such homomorphisms F1 : K(ai, b1) 

k(as,b3) —4k(a4,b4) are similar if k(ai,bi) k(as,b3) and k(a2,b2) 

F((a4, b4). 

Lemma 3.4.13 Similarity of function field k-homomorphisms is an equivalence re-

lation. 

Proof. Again, this is clear, since isomorphism of fields is an equivalence relation. 0 

Theorem 3.4.14 Let A be the category whose objects are equivalence classes of 

curves over R modulo birational equivalence, and whose maps are equivalence classes 

of non-constant rational maps modulo similarity. (In other words, maps take bira-

tional equivalence classes of curves to birational equivalence classes of curves.) Let B 

be the category whose objects are equivalence classes of transcendence degree one ex-

tensions of 1ff modulo isomorphism of fields, and whose maps are equivalence classes 

of k-homomorphisms modulo similarity. (The maps on B take isomorphism classes 

of function fields to isomorphism classes of function fields.) Then A and B are 
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equivalent via the functors F1 : A -* B and F2 : B -+ A, which are given by: 

Fi(class of C) = class of k(C) 

Fi(class of y) = class of y' 

F2(class of K(a,b)) = class of C 

F2(class of F) = class of F#, 

where C is obtained in the third line above in the following way. We know that a 

and b are algebraically dependent over R; let C(x, y) be the unique monic irreducible 

polynomial E k[x,y] such that C(a,b) = 0, and let d be the degree of C(x,y). 

Then we set C to be the locus of the irreducible homogeneous polynomial z'1C(, ). 

Additionally, F1 and F2 are contravariant. 

Proof. We first observe that F1 and F2 are well-defined by Remark 3.4.9. Specif-

ically, two curves are in the same birational equivalence class if and only if their 

function fields are in the same isomorphism class. By the same token, two rational 

maps y, /9 are in the same similarity class if and only if .y* and 3* reside in the same 

similarity class. The contravariance of the functors F1, F2 was established earlier in 

this chapter: see Theorem 3.2.1 and Proposition 3.4.2. It is clear that the identi-

ties in both categories are maps in their respective categories. Likewise, it is clear 

that composition of maps in each category, where defined, gives another map in that 

category. Finally, it suffices to show that F2 = Fr', i.e. that F2 o F1 = IdA and 

F1 o F2 = IdB. For maps, this is just a consequence of Theorems 3.4.4, 3.4.6 and 
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Proposition 3.4.5. More formally: 

F2 o F, (class of "j') = F2 (class of y*) 

= class of (,y*) 10 

= class of 'y 

Flo F2(class of F) = Fi(class of F#) 

= class of (F#)* 

= class of F. 

For objects, it is clear that F2 and F1 are inverses of each other. Hence, F1 is a 

full-and-faithful (bijective) contravariant functor with inverse F2. D 

Remark 3.4.15 It should be clear to the reader why it is necessary to take the 

objects to be all curves modulo birational equivalence rather than only smooth curves 

modulo isomorphism. Recall the curves C1, C2 of Example 3.3.6. The curve C1 is 

smooth, while C2 is not, yet they are birationally equivalent. This example illustrates 

that by choosing different generators for our function field, we encounter difficulty 

if we restrict ourselves to smooth curves in the categorical treatment above. To wit, 

suppose we are given a function field k(ai, b1) such that the curve C obtained from 

k(ai, b1) as described in Theorem 3.4.LI is a smooth curve. On the other hand, by 

choosing different generators a2, b2 for the same field, it could happen that we obtain 

a curve C which is singular (yet which is birationally equivalent to C). 
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3.5 Separability 

In this section, we remind the reader of some facts regarding separability. We will 

need these facts in Chapter 5. 

Definition 3.5.1 Let K/F be a finite extension of fields. We define the separable 

degree of K/F, written [K : F]3, to be the number of F-automorphisms of K, that 

is, the number of isomorphisms from K to K, with fixed field F. 

Example 3.5.2 Consider the extension 1F(p,)/]F73, p 3 (mod 4) a prime, and i a 

root of the irreducible polynomial x2 + 1 E ]F[x]. Then the only JF-automorphisms 

of 1F() are the automorphisms determined by and p. '-+ —p.. Hence, the 

separable degree of this extension is 2, the same as the degree []F(p.) : F7,]. 

In Section 5.2, we will see an example of an extension K/F where [K: F]8 = 1 

[K:F]. 

Remark 3.5.3 Observe that the separable degree of an extension is bounded above 

by the degree of the extension (and below by 1, since the identity map is an F-

automorphism) because an F-automorphism must take an element to one of its con-

jugates, and there are at most [K : F] distinct conjugates. In the case where the 

fields have characteristic 0, the separable degree and the degree always coincide. 

Definition 3.5.4 Let C1, C2 be curves and 'y: C1 -+ C2 a rational map. Then 'y is 

said to be separable if the separable degree of k(Ci)/ y*(k(C2)) is equal to the degree 

of this extension, i.e. [.t(C1) : y*(.t(C2))]s = [k(Cl) : .y*(.(C2))]. We denote this 

degree by 7, . If 'y is not separable, it is said to be inseparable. 
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Theorem 3.5.5 Let C1 and C2 be smooth curves and let y C1 -* C2 be a non-

constant rational map. Then for all but finitely many Q E C2, l'y'(Q)I = 

Proof. See [24, Proposition II.2.6.(b)]. 



Chapter 4 

Elliptic Curves 

In this chapter, we at last introduce elliptic curves. We will need to establish 

that they have the inherent (additive) group structure which we alluded to previ-

ously. This property will follow from the fact that an elliptic curve is the locus of 

an irreducible cubic. Unless otherwise stated, let K and .1? be as in the previous 

chapters. 

4.1 Weierstrass Curves 

The goal of this section is to give a brief overview of Weierstrass curves, and to 

examine some of their properties. For a more comprehensive treatment, see [24, 

111.1]. 

Definition 4.1.1 A Weierstrass curve is an irreducible projective plane curve de-

scribed by a third degree homogeneous equation of the form 

E : y 2 z + a1xyz + a3yz2 = x3 + a2x2z + a4xz2 + a6 Z37  

where a1, a2, a3, a4, a6 Ek. The above equation is called a Weierstrass equation and 

E is said to be in Weierstrass form. 

Remark 4.1.2 The coefficients are labelled in such a way for the following reason. 

Define an additive weight function wt on each term of (1.1) such that 

wt(ajxmyThz3_m) = i + m wt(x) + n wt(y) + (3 - m - n) . wt(z). 

68 
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If we set wt(x) = 2, wt(y) = 3, and wt(z) = 0, then wt(axmyThzs_m_n) = 6 for each 

term in (1.1). For example, the coefficient of the y2z term is 1, so we set a0 = 1, so 

i=0,m=0,n=2,3—m—n=1, andwegeti+2m+3n=0+0•2+2•3=6. 

Example 4.1.3 The curve E : y 2 z - x3 - xz2 = 0 over any field is a Weierstrass 

curve. 

Lemma 4.1.4 If char(K) 0 2, the Weierstrass curve E given in Equation Li is 

isomorphic to the curve 

v 2 w = 4u3 + b2u2w + 2b4uw2 + b6w3, 

where 

b2 = a+4a2 

= 2a4+a1a3 (1.2) 

b6 = a+4a6. 

Proof. Consider the morphism a: E - p B' given by 

a([xo yo z0]) = [x0 2Yo + a1x0 + a3z0 : zo], 

with inverse a-1 : B' -* B given by 

a 1([uo : v0 wo]) = [2'uo : v0 - a1u0 - a3w0 : 2w0]. 

Suppose that [x0 Yo zo] is any point on E and [u0 : vo wo] is any point on B'. 

One must first check that E'(xo, 2yo + a1x0 + a3z0, z0) = 0 and E(2u0, vo - a1u0 - 
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a3w0, 2w0) = 0: 

E'(xo, 2y0 + a1x0 + a3z0, z0) 

= (2y0 + a1x0 + a3z0)2z0 - 4xg - b2xz0 - 2b4x0z - b6z 

= 4yzo + axz0 + az + 4a1x0y0z0 + 4a3yoz + 2a1a3x0z - 4xg - b2r4z0 

—2b4x0z - b6z 03 

= 4(yzo + a1x0y0z0 + a3yoz - - a2xz0 - a4x0z - a6z) 

=0. 

A similar computation reveals that the same holds in the opposite direction: 

E(2u0, vo - a1u0 - a3w0, 2w0) 

= (vo - a1u0 - a3w0)22w0 + ai(2u0)(vo - a1u0 - a3w0)2w0 

+a3(vo - a1u0 - a3w0)(2w0)2 - (2u0)3 - a2(2u0)22w0 - a4(2u0)(2w0)2 

—a6(2w0)3 

= (2vwo + 2auw0 + 2awg - 4a1u0v0w0 - 4a3v0w + 4aia3uow) 

+(4a1u0v0w0 - 4auw0 - 4aias'uow) + (4asvow - 4a1a3u0w - 4aw) 

—8ug - 8a2uwo - 8a4uow - 8a6wg 

= 2[vwa - (a + 4a2)wo - (a + 4a6)w - (2a1a3 + 4a4)uow - 4ug] 

= 2(vwo - b2uw0 - b6w - 2b4u0w - 4u) 

=0. 

It is not difficult to see that both rational maps a and a' are regular everywhere. 
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The rational map c is not regular at some point [x0 yo : z0} E E if and only if 

= 0 

2y0+aixo+a3z0 0 

zo = 0. 

But the three preceding conditions hold only when x0 = yo= zo = 0. By the same 

token, c 1 is not regular at some point [u0 WO] E E' if and only if 

2'u0 = 0 

V0 - au - a3w0 

2w0 

=0 

=0. 

Again, the previous conditions hold only for u0 = v0 = w0 = 0. Composing the 

two morphisms with one another gives the identity on both curves, so the curves are 

indeed isomorphic. 

Remark 4.1.5 If char(K) 0 2, we can write E' in the form 

E': (v')2w = u3 + C2U2 tu + c4uw2 + C6 W3, 

where v' = and 

4 

2 
b6 

4. 

El 
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Lemma 4.1.6 If char(K) 0 2 and char(K) =A 3, then E' is isomorphic to 

E": s 2 = r3 + Art2 + Bt3, 

where 

A— b4 b2 
248 

B - 14 b2b4 b6 
- 864 24 4 

Proof. Consider the rational maps : E' -+ E" given by 

([uo vo wo]) = [12u0 + b2w0 : 6v0 : l2wo], 

with inverse : E" -* E' given by 

so to]) = [12r0 - b2t0 24s0 : l2to]. 

Let [uo : v0 : w0] be any point on E' and let [ro : s0 t0] be any point on E". Then 

E"(12u0 + b2w0, 6v0, l2wo) 

= (6v0)212w0 - (12'uo + b2w0)3 - 

- ( 14 - b2 b4 + (12wo) 
864 24 4) 

= 432v w0 - 1728ug - 432b2uw0 - 36bu0w - bw + (36b - 864b4)uow 

+(314 - 72b2b4)wg + (-2b + 72b2b4 - 432bo)w 

= 432vw0 - 1728ug - 432b2uw0 - 864b4u0w - 432b6w 

= 432(vwo - 4ug - b2uw0 - 2b4u0w - b6w) 

=0. 

lb4 b'\ 
- (12u0 + b2w0)(l2wo)2 
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Similarly, 

E'(12r0 - b2t0, 24so, 12t0) 

= (24s0)212t0 - 4(12r0 - b2t0)3 - b2(12r0 - b2t0)212t0 - 2b4(12r0 - b2t0)(12t0)2 

—b6(12t0)3 

= 6912st0 - 6912r + 1728b2rt0 - 144br0t + 4btg - 1728b2rt0 + 288br0t 

—12btg - 3456b4r0t + 288b2b4tg - 1728b6t 

= 6912st0 - 6912r - (3456b4 - 144b)rot - (8b - 288b2b4 + 1728b6)tg 

6912 [st 2 ) 
lb4 b 

= 
2 48 0 

= 6912(sto - r - Ar0t - Bt) 

=0. 

/ b32b2b4 b6'\ 3] 

864 24 4 0 

Both maps are clearly defined everywhere, so they are morphisms, and they are in 

fact isomorphisms since /3 o 10'([ro : SO : to]) = [144r0 : 144so : 144t0] = [ro : so : to] 

for any point [ro : s0 : to] on E", and /3 o 18([uo : vo : w0]) = [144u0 : 144v0 

144w0] = [uo v0 : wo] for any point [u0 : vo : wo] on E'. 0 

We now describe two other interesting quantities associated with Weierstrass 

curves. 

Definition 4.1.7 (i)The discriminant A (E) of a Weierstrass curve E as in (1.1) is 

given by 

= —bb8 - 8b - 27b + 9b2b4b6, 

where b2, b4, b6 are given as in (1.) and 

b8 = aa6 + 4a2a6 - a1a3a4 + a2a - a. 
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(ii)If E is smooth, then the j-invariant j(E) is given by 

j(E) = (b - 24b4 )3/(E). 

Often, we will simply write A in place of i(E) or j in place of j(E), when the 

Weierstrass curve E we are speaking of is clear from the context. 

Theorem 4.1.8 A Weierstrass curve is non-singular if and only if its discriminant 

is non-zero. 

Proof. See [24, Proposition III.1.4.(a)]. 0 

Example 4.1.9 The Weierstrass curve E y2z - = 0 over any field is singular 

since L(E) = 0. 

4.2 Elliptic Curves 

We now define an elliptic curve. As the following definition demonstrates, an 

elliptic curve is not merely determined by its set of points; it is the extra condition 

(the basepoint) which gives the elliptic curve its group structure, as we will see later. 

Definition 4.2.1 An elliptic curve is a pair (E, OE), where E is a smooth, irre-

ducible projective plane curve which is isomorphic to a smooth Weierstrass curve 

(called a Weierstrass model of E) and QE is a point on E. ° E is called the base-

point of the curve E. 

We will sometimes just write E in place of (E, OE), especially when QE is clear 

from the context. (We will return to this point in Section 4.4.) 
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Example 4.2.2 The curve C3/Q : 108s2t - 108r3 + t3 = 0 from Example 3.8.3, 

taken together with 0c3 = [0 : 1: 0], is an elliptic curve. 

Theorem 4.2.3 Two elliptic curves are isomorphic (over K) if and only if their 

Weierstrass models have the same j-invariant. 

Proof. In Chapter 5, we will see that every isomorphism of elliptic curves in Weier-

strass form has a certain form. This form preserves j-invariants. See [24, Proposition 

III.1.4.(b)]. 

This is a useful test for isomorphism, as we will see in the Chapter 5 examples. 

The next theorem has far-reaching consequences for the rest of this thesis. It 

enables us to endow an elliptic curve with a natural group structure, where point 

addition is a morphism. 

Theorem 4.2.4 Every elliptic curve is the locus of a smooth, irreducible cubic pro-

jective plane curve. Conversely, every smooth, irreducible cubic projective plane 

curve is the locus of an elliptic curve. 

Proof. For the proof of the first statement, see [18, Theorems 12.5,13.1]. For the 

converse, see [24, Proposition III.3.1.(a)]. 

4.3 Bézout's Theorem 

In the previous section, we saw that an elliptic curve is a smooth irreducible cubic 

curve. We now establish the number of common points of two curves which are the 
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loci of relatively prime homogeneous polynomials, specifically when the aforemen-

tioned polynomials are cubic and linear, respectively. This will prepare much of the 

work needed to show that an elliptic curve carries the structure of an additive abelian 

group. 

Definition 4.3.1 Let £: ax + by + cz = 0 be a line, C a projective plane curve and 

n the degree of C(x, y, z). We define the intersection multiplicity ice(P) of C, £ at 

P = [x0 : I/o : zo] as follows. Suppose first that £ 0 £. If b 0 0, ic,e([xo : Yo : 1]) is 

the multiplicity of x0 as a root of C(x, 1). If b = 0 then a 0 0 and ic,€([xo 

I/o : 1]) is the multiplicity of yo 'as a root of C(=—', y, 1). Furthermore, 

ic,([Xo : I/o : 0]) = n - E io,€([xo : I/o : 1]). 
[zo:yo1]ECfle 

Finally, if £ = 4, then i01 ([xo : 1: 0]) is the multiplicity of xo 

C(x,1,0) and 

as a root of 

ic,([l: 0:0]) = n— E  ia([x0 :1:0]). 

Ixo:1:OIEOfl& 

Example 4.3.2 Consider the curve C/Q: x3 + y3 - 1729z3 = 0. The tangent line 

to C at P = [1: —1: 0] is the line £p x + y 0. Applying the definition of 

intersection multiplicity, we find that C(x, —x, 1) = x3 + (—x)3 - 1729 = —1729. 

Since this constant polynomial has no roots, there are no other points of intersection 

of £p and C, so the intersection multiplicity of C and £p at [1: — 1: 0] is 3— 0 = 3. 

The next theorem is the foundation of everything that follows. It allows us to 

define an abelian group structure on an elliptic curve. 
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Theorem 4.3.3 (]3ézout) Let C1 and C2 be irreducible projective plane curves of 

degree m and n, respectively, such that Ci 0 C2 (so C, (x, y, z) and C2 (x, y, z) are 

relatively prime). Then C1 and C2 intersect in at least one point and in at most mn 

points. 

We will not prove Bézout's theorem, but rather a special case which will suffice 

for our purposes. For a proof of the more general case, see [13, Theorem 2.18]. 

Proposition 4.3.4 A line £ C P2(K) and a curve C intersect in at most n points, 

where n is the degree of C(x,y,z). 

Proof. Given the preceding discussion of coordinate systems, we may assume with-

out loss of generality that £ is the line at infinity. (Recall that this is the line 

to,, z = 0.) For there exists an isomorphism aA from C to another curve C' given 

by a non-singular matrix A in GL3(k) which takes the line £ to £. (See Proposition 

3.3.11.) If £ is given by 

£:ax+by+cz=0, 

let B be any non-singular matrix such that 

[a b c]B = [0 0 1], 

and set A = B'. Then we see that for any P E C fl £, the point aA(P) is on 
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since: 

o = [a bc]PT 

= ([a b c]A_l)APT 

= ([a b c]B)APT 

= [0 0 1]APT 

= [0 0 1][aA (P)}T. 

Similarly, if Q E C' fl £, then aA-1(Q) E C fl £. In other words, P E £ if and only 

if aA(P) E £. Since aA is an isomorphism, it gives a bijection between the points 

of C and C'. Thus, we see that C and £ intersect in the same number of points as 

C' and 4. Therefore, c fl £ is the locus of the polynomial C'(x, y, 0), which is 

homogeneous and of degree n, but in two variables rather than three. There are two 

cases. 

Case 1: C'(x, y, 0) contains an x1 term with a non-zero coefficient. Then clearly, 

the point [1: 0 : 0] does not lie on c, fl 4. On the other hand, C'(x, 1, 0) E 

is an nth degree polynomial in the variable x, so it has n. (not necessarily distinct) 

roots in k (because .1? is algebraically closed). For each root x, 1 ≤ i ≤ n, [x  

0] E C'fl40. 

Case 2: The coefficient of xm in C'(x,y,O) is 0. In this case, let d < n be the 

largest value d such that the coefficient of xdyn_d in C'(x, y, 0) is non-zero. Then 

C'(x, 1,0) E 1?[x] is a dth degree polynomial which has roots x, 1 ≤ i < d. Again, 

for each root x, [x : 1: 0] E C' fl £. The point [1: 0 : 0] also belongs to C' fl 4. 

Therefore, there are d + 1 points of intersection. 0 
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4.4 The Group of Points of an Elliptic Curve 

In this section, we define a group structure on the points of an elliptic curve 

(E, GE). Before we proceed, however, we require the following result. 

Lemma 4.4.1 Let (E, GE) be an elliptic curve and P = [x0 Yo zo] a point on E 

with tangent line £p to E at P. Then Ep intersects the curve E in at most 2 distinct 

points. Moreover, the intersection multiplicity of £p and E at P is at least 2. 

Proof. We establish the result for elliptic curves in Weierstrass form. (The general 

case can be similarly shown since E is given by a cubic equation by Theorem 4.2.4.) 

The only point P = [xb Yo : zo] with z0 = 0 that lies on B is P = [0 1: 0]. Then 

= 4. Since the intersection of E(x, y, z) and £p is the curve x3 = 0, we see that 

the intersection multiplicity at P is 3, and £p and B intersect in only one point, the 

point P. Adding the intersection multiplicities of all points of intersection of 4 and 

B gives 3. 

Now let P = [x0 : Yo : zo] with z0 0 0, so we may assume that z0 = 1. We break 

the rest of the proof down into three cases. 

Case 1: Char(K) = 2. Then the tangent line at B to P is the line 

£p: (aiyo + x + a4)x + (aixo + a3)y + (y + a1x0y0 + a2x + a6)z = 0. 

Observe that if a1x0+a3 = 0, then the tangent line has equation x+x0z = 0. This line 

intersects the curve B at the point [0: 1: 0] and by assumption at P = [xo : Yo : 1]. 

Substituting x = x0 in B, we find that the only solution of the equation 

2 + a1x0y + a3y = xg + a2x y + a4x0 + a6 
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is yo, since the right-hand side is by definition equal to y + a1x0y0 + a1y0 = y + 

yo(aixo + a3) = y, and the left-hand side simplifies to y2. Hence, the only points of 

intersection are the points [0 : 1: 0], with intersection multiplicity 1, and [x0 : Yo 1]., 

with intersection multiplicity 2. Note that 1 + 2 = 3. 

For the case where a1x0 + a3 0 0, we substitute z = 1 into the equation for £p to 

get the equation 

= (alyo+x+a4"\y+alxoyo+a2x+ae  a1xo+a3 ) a1x0+a3 

Substituting the value of the right hand side above for y in the equation for E, we 

get a cubic equation in x: 

((aiyo + 4+a4  

a1x+a 

y02  

a1x0 + a3 

(( alYo+ x-i-a4'\+ 
+aix a1x0 + a3 ) 

((aio+x-i-a4" x+ 
+a3 a1x0 + a3 ) 

) 
y02  a1x0y0 + a24 + a6 

a1x0 + a3 

Yo + a1xy + a2 X2 + aG  

a1x0 + a3 

2 

) 
) = x3 -i-a2x2+a4x-i-a6. 

Adding the left-hand side to the right, we get an equation of the form f(x) = 0. The 

coefficient of x2 is equal to 

a2ax + a2a32 + ay + x + a + axoyo + ax + aa4x0 + aa3yo + a1a3x + a1a3a4  

ax+a 

This simplifies to 

aa6 + a2a + x + a x + a1a3 + a1a3a4  

ax+a 

The coefficient of x is equal to 

a1a4x0 + a3a4 + a1y + ax0y0 + a1a2x + a1a6 + a1a3y0 + a3x + a3a4  

a1x0+a3 
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which simplifies to 

aj.x + a3x 
=x. 

a1x0 + a3 

The constant term is equal to 

YO axy + ax + a + a1a3xoy + aa3xyo + a1a2a3xg + a1a3a6x0 + ay  

+a1axoyo + a2ax + aa6 + aa6x + aa6  

ax+a 

The numerator of this coefficient further simplifies to 

+axy + ax+ a + (aa3xyo+a1 axoy0+a1 a3x 

+a1a2a3x + a1a3a4x + a1a3a6x0) + a1a3X7J0 + a1a2a3xg + a1a3a6x0 + (aiaxoyo + ay0 

+a2ax + aa4x0 + aa6) + a1ax0y0 + a2ax + aa6x 

which is equal to 

x8+ (aiaxoyo +ay0+a2ax +aa4xo+aa6) +ax+a1a3x+a1a3a4x +ay0 +aa4xo 

+aa6 + a1axoyo + aa6x, 

so the constant term is equal to 

xg + a2a4 + ax + a1a3x + a1a3a4x + aa6x 

afr+a 

It remains to show that x0 is at least a double root of the cubic polynomial 

3 + (aa6 + a2a + x + a + a1a3x + a1a3a4) 2 + 
ax + a 

+ a2ax + ax + a1a3x + a1a3a4x + aa6x 

ax+a 
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This polynomial factors as 

(x2 + x) (x + aa6 + a2a + x + a + a1a3x + a1a3a4  
ax 2 + a 

so x0 is a double root of this polynomial. Thus, £p and E intersect at P = [x0 Yo: 1] 

with multiplicity 2, and at P' = [x1 : 1] with multiplicity 1, where 

aa6 + a2a + x + a x + a1a3 + a1a3a4  

ax + a 

- (alyo+x+a4\ y+aixoyo+a2x+ao  
Yi - I IXi+ 

\ a1x0+a3 ,1 a1x0+a3 

X1 = 

Case 2: Char(K) = 3. In this case, the Weierstrass curve is isomorphic to 

E : y2z = x3 + a2x2z + a4xz2 + a6z3, 

and the isomorphism given in Lemma 4.1.4 does not change the number of points of 

intersection or the intersection multiplicities, since the isomorphism is a linear map. 

As before, we consider the tangent line to B at a point P = [x0 Yo : 1]. The tangent 

line at this point is given by the equation 

(a2x0 + 2a4)x + (2y0)y + (y + 2a2x + a4x0)z = 0. 

If Yo = 0, then the equation of the tangent line is given by x - x0z = 0. This line 

once again intersects B in the points [0 : 1: 0] and P. Setting z = 1, x = x0 in B, 

we see that the only root of the equation 

Y  x + a2x + a4x0 + a6 

is y = yo = 0, because the right-hand side is by definition equal to y = 0, 50 

intersects B at P = [x0 0 : 1] with multiplicity 2 and at [0: 1: 0] with multiplicity 

1. 
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Now suppose that I/o 0 0. Then setting z = 1 as in the characteristic 2 case, we 

see that x and y satisfy the relation 

= (2a2x0 + a4".) + 2y + a2x + 2a4x0  

2yo 2Yo 

As before, we want to show that x0 is a double root of 

((2a2x0 + a4" + 2y + a2x + 2a4x0)2 = x3 + a2x2 + a4x + a6, \ 2y / 2Yo 

that is, that x0 is a double root of the equation 

2a 2X2+ 2a2a4x0 + 2a + a2yo' 2+ (a2XOy02 + 2a 2X3 +2a2a4x + 2axo' 

Yo ,/ Yo 

2yg + 2a2xy + a4x0y + 2a4 + 2a2a4xg + 2ar 2 24 + a6y0 = 0. 

I/o2 

The constant coefficient can be rewritten as 

2(y + a2xy + 2a4xoy + ax + a2a4xg + ax + 2a6y)  
2 

I/o 

2(y(y + a2x + 2a4x0) + ax + a2a4x + a4  2x20 + 2a6y)  
2 

I/o 

2(y(x + 2a2x + a6) + ax + a2a4xg + a42x0 + 2a6y) 
2 

I/o 

2xgy + a2xy + 2a4 + 2a2a4xg + 2ax  
2 

I/o 

The polynomial 

+ 2a 2X2+ 2a2a4x0 + 2a + a2y" 2 + (a2xoY + 2axg + 2a2a4x + 2ax0"1 

I/o / \. Yo 

2xgy + a2xy + 2ax + 2a2a4x + 222 ax 

I/o2 

factors as 

(x2 + x0x + x) ( + 2ax + 2a2a4x0 + 2a + a2yg + 2xoY) 
y02 
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so x0 is a double root, as required. Hence, £p intersects E at the point P with 

multiplicity 2, and at the point [x1 : 1] with multiplicity 1, where 

2ax 2 + 2a2a4x0 + 2a + a2y + 2xoy  

Yo2 
f'2a2x0 + a4'\ 2y 2 + a2x + 2a4x0  

Jxi+ 
\ 2y0 J 2Y0 

Case 3: Finally, we cover the case where the characteristic of k is not 2 or 3. In 

this case, we may assume from Lemma 4.1.6 that E is given by the equation 

E : y2z = x3 + Axz2 + Bz3, 

because the transformation is linear and thus once again does not affect intersection 

multiplicities. The tangent line at a point P = [x0 Yo: 1] is given by the equation 

(-3x - A)x + (2Y0)Y + (y - 2Axo - 3B)z = 0. 

If Yo = 0, the equation of the tangent line is x - x0z = 0. The proof that this line 

intersects the curve E in only two points is identical to the proof of the characteristic 

2 and 3 cases, so we omit it. 

Suppose, then, that Yo 0 0 and set z = 1. Then x and y are related via 

(3x+ A + —YO +2Axo+3B  

\ 2y ) 2Yo 

which we choose to write as 

(3X2+ A —xg + Ax0 + 2B  
Y jx+ 

2Yo 

As in the previous two cases, we will prove that x0 is a double root of the equation 

((3x+A  

Y 2y 

—xg+Axo+2B\ 2 ) =x3+Ax+B, 
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i.e. of the equation 

(9x + 6Ax + A2'\ 2+(4AY + 6xg - 6Axg - 12Bx + 2Axg - 2A 2x0 -  4AB) 
)x  2 

+ 4By -  xg + 2Ax + 4Bx - A2x - 4ABx0 - 4B2 

4y02 

- ( 9x + 6Ax + A2) 2 0  X 2 

- 4Yo ( 4A(xg + Ax0 + B) + 6xg -  6Axg - 12Bx + 2Ax - 2A 2x0 -  4AB) 

4Yo2 

4B(xg + Ax0 + B) - xg + 2Ax + 4Bxg - A' X2 -  4ABx0 -  4B2 
+ 

4y02 

- ( 9x + 6Ax + A2) 2 0  X 2 

- 4Yo 

+ ( 6x - 12Bx + 2A2x0  
4y 

8B -  xg + 2Ax - A2 x2 + 0  
4y 

+ 

= (x2 - 2x0x + x) ( + 8xoy - 9x0 - 6A x -  A2) 
4y 

and x0 is once again a double root. El 

Since a line in projective space has degree one and an elliptic curve has degree 

three, by Bézout's Theorem, the elliptic curve will intersect the given line in three 

points, when the points are counted with their intersection multiplicities. This is 

important. The fact that the line and curve intersect in three points means that 

one can define an additive identity as well as a group law without ambiguity. First, 

define the basepoint QE to be the additive identity. The rest is given by the following 

definition. 
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Definition 4.4.2 Let (E, OE) be an elliptic curve. The following three properties 

fully describe point addition on the curve E. 

• —P is defined as the third point of intersection of E and the line through P 

and QE. 

• If P 0 Q, P + Q = —R, where R is the third point of intersection of E and 

the line through P and Q. 

• In the event that P = Q, P + Q is defined to be—R, where R is the third point 

of intersection of E and the tangent line at P. 

The formulae for point addition on a Weierstrass curve with basepoint QE = [0 

1 : 0] are as follows: 

[x0 : yo : 1] + [x0 : Yo : 1] 

= [m2 + a1mb - (a2 + 2x0)b2 : mb(xo - x2) - yob  - (aix2 + a3)b2 : 

and if (x0, y0) 0 (xi,yi): 

[x0 : yo: 1]+[xi :yi :11 

= [6 + ai561— (a2 + x0 + x1)6 : 6261(xo - x2) - Yo - (aix2 + a3)6 : 

I' 61= 
62= YiYO-

The following figure gives the reader a pictorial idea of point addition. 
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Figure 4.1: Point Addition 

—R=P+Q 
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It is not difficult to see that if we have an irreducible projective plane curve C 

which is isomorphic to a smooth Weierstrass curve, we can make C into an elliptic 

curve (E = C, OE) by letting ° E be some arbitrary point P on the curve C. By 

convention, the chosen point ° E of a Weierstrass curve is the point [0: 1: 0] because 

it is always a point on the curve, regardless of the coefficients of the equation of the 

curve or the underlying field. We will therefore not state the basepoint whenever the 

curve is in Weierstrass form and simply assume that °E = [0 : 1: 0]. The Weierstrass 

form is just one 'model', however, and the next example shows an elliptic curve with 

a different model and basepoint. 

Example 4.4.3 E/Q x3 + y3 = 1729z3 (with basepoint [1: — 1: 0]) is an elliptic 

curve because it is isomorphic to the curve E'/Q : u3 + v3 = 270, which itself was 

shown in Example 8.8.9 to be isomorphic to the Weierstrass curve E"/Q: 108s2t = 

108r3 - t3. The isomorphism from E to E' is given by 

c([xo:yo:zo])= [xO : yo : 1117- 2 1 zo 

with inverse 

luc-1 ([uo : v0 : w0]): V0 :  3 WO 

We claim that for any point P = [x0 Yo zO] on E above, —P = [Yo : xo : zo]. The 

assertion is that [x0 : Yo zo] + [Yo : x : z0] = [1: — 1 : 0]. It suffices to show that the 

three points are collinear. The line 

ax + ay + cz = 0 

where (a, c) = (1, 0), if x0 + Yo = 0 and (a, c) -  ZO( XO+YO I i), otherwise, contains all 

three points, so the three points are indeed collinear. Applying the definition of point 
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addition to the 2 points [10 : 9 : 1] and [12: 1: 1] on E yields 

[10 :9:1]+[12 :1:1]=[-37 :46 :3] 

since [46 : —37 : 3] is the third point of intersection of the line through P and Q, 

which has equation 4x + y - 49z = 0. 

Theorem 4.4.4 Let (E, QE) be an elliptic curve and let A and B be points on E. 

Then there is an isomorphism (of curves) i- : B - p B which takes A to B. 

Proof. Let Q = B - A E E. Then r(P) = P + Q is clearly an isomorphism of 

curves which takes A to B. El 

Remark 4.4.5 Note that '1 is not unique. Regarding B just as a curve for a moment, 

there are infinitely many points P E B which, taken as the basepoint, make B into 

an elliptic curve. Therefore, there are infinitely many possible values of Q = B - 

A - since —A is different for different values of OB - and so infinitely many 

isomorphisms of curves that take A to B. 

Definition 4.4.6 Let B be an elliptic curve. The subset of those points defined over 

(i.e. with coordinates in) the subfield K of k is denoted by E(K) 

Example 4.4.7 Consider B/IF11 given by 

B : y2Z = x3 + xz2 + 2z3. 

B(IF11) = {[0 : 1:0],[1: 2: 1],[1 : 9: 1],[2: 1:1], 

[2: 10: 1],[4:2: 1],[4:9: 1],[5:0: 1], 

[6 : 2 : 1], [6 : 9 : i], [7 : 0: 1], [8 : 4: 1], 

[8:7: 1],[9:5: 1],[9:6: 1],[10:0: 1]}. 
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Theorem 4.4.8 Let (E, O—R) be an elliptic curve over k with °E € E(K). Then 

the points on E form an additive abeliam group and E(K) is a subgroup thereof. 

Proof. The identity is ° E, and the commutative property, closure and the existence 

of inverses clearly hold. Associativity requires somewhat more effort (we show this 

in Proposition 5.1.19). 0 

The structure and order of the subgroup E(K) of E(K) of K-rational points are of 

particular interest, especially as they pertain to K = ]Fq, the finite field of q elements. 

The following two theorems give information about this. 

Theorem 4.4.9 (Hasse) Let E be an elliptic curve over a finite field ]Fq. Then 

E(1Fq)q+l_t, where 

ti ≤ 

Proof. See [7, Theorem 3.61]. 0 

Theorem 4.4.10 (Riick) For E an elliptic curve over a finite field lFq, there exist 

m,n EN with 

E(Il'q) Zn X Zn 

such that m I n and m I q - 1. 

Proof. See [7, Theorem 3.76]. 

Example 4.4.11 Consider again BIFI, given by 

E : y2z = x3 + xz2 + 2z3. 

0 
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Then we see from Example 4.4.7 that IE(]Fii)I = 16, so E(711) Z16 or E(IF11) 

Z2 X Z8 or E(F11) Z4 X 7L4. The group E(1F11) has S points of order 2 (which one can 

verify from the point addition formulae - they are [5 : 0 1], [7 : 0 : 1], [10 0 : 1]) 

while Z16 has but one, so E(1F11) cannot be isomorphic to Z16. Since 4 t 10, we 

conclude that E(1F11) Z2 X Z. Additionally, we find that the value t from Theorem 

4.4.9 is 11+1-16=-4, so ItI=4<2.v'iT. 



Chapter 5 

Isogeny 

This chapter is devoted to isogeny. According to the definition of isogeny, it would 

seem that an isogeny is just a particular type of morphism. However, an isogeny is 

much more than that. An isogeny is a very special type of morphism, given that it is 

a morphism not just between any curves, but rather, between elliptic curves. Recall 

that such curves have a natural group structure embedded within them. As we will 

soon see, the isogenies thereof also have special properties. Amongst other things, 

isogenies are group homomorphisms. As always, let K be a field with algebraic 

closure K. 

5.1 Divisors 

We begin with a discussion of divisors. Divisors facilitate an understanding of 

elliptic curves. They enable one to establish the associative law in the group of points 

of an elliptic curve in a clean fashion, without resorting to tedious calculations. 

Definition 5.1.1 Let E be an elliptic curve. The divisor group Div(E) of E is the 

abelian group of finite formal sums of points of E. Elements of Div(E) are called 

divisors and take the form 

PEE 

where flp E Z and flp = 0 for all but finitely many P E E. 

92 
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Remark 5.1.2 In other words, a divisor D can be interpreted as a function D 

E -) with finite support given by D(P) = Thp for all P E E. 

Example 5.1.3 Let E be an elliptic curve and let P, Q E E. Then 2(P) + (- 1)(Q) 

is a divisor. 

Remark 5.1.4 The divisor above is not to be confused with the point R = P + P — Q 

on the curve E. 

Definition 5.1.5 Let E be an elliptic curve. The degree of a divisor 

PEE 

is the sum 

and is denoted by deg(D). 

n (P) E Div(E) 

flp 

PEE 

Example 5.1.6 For P any point on an elliptic curve B, the degree of (P) - (QE) is 

0. Likewise, the degree of the divisor 2(P)+(- 1)(Q) from Example 5. 1.3 is 2-1 = 1. 

Definition 5.1.7 Let Div(E) be the divisor group of an elliptic curve B. We denote 

by Div°(E) the subset of Div(E) consisting of divisors of degree 0. 

Note that Div°(E) is actually a subgroup of Div(E), since the degree zero divisors 

are closed under addition and inverses, and Div0 (B) contains the zero divisor. 

Remark 5.1.8 The degree map deg Div(E) -* Z is a group homomorphism 

whose kernel is Div0 (B). 
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The next definition deals with the order of a rational function f at a point P on 

the curve E. Recall that we introduced this notion in Proposition 2.4.13. 

Lemma 5.1.9 Let E be an elliptic curve and let f € K(E)><. Then the function 

E -* Z defined by P - p ordp(f) is a divisor. 

Proof. It suffices to show that this function is zero for all but finitely many points 

P E E. By definition, f = is just a quotient of homogeneous polynomials g, h 

of the same degree in X, Y, Z. The claim now follows, since by J3ézout's theorem, 

g(i) y, z) and h(x, y, z) can each intersect E(x, y, z) in only finitely many points, and 

thus, there are only finitely many P E E such that g(P) = 0 or h(P) = 0, i.e. for 

which ordp(f) 0 0. D 

Definition 5.1.10 Let E be an elliptic curve and f E !C(E)'. We denote by div(f) 

the divisor PEE ordp(f)(P). 

Example 5.1.11 Let f be the image of k E R>< under the inclusion map .i?>< + 

.t?(E)><. Then div(f) 0 = >JPEEO(P), since ordp(f) = 0 for any point PEE. 

Definition 5.1.12 Let E be an elliptic curve. We say that a divisor D is a principal 

divisor if D = div(f) for some f E 

Definition 5.1.13 Let E be an elliptic curve. Two divisors D1, D2 are said to be 

linearly equivalent, written D1 D2, if D1 - D2 is a principal divisor. 

Proposition 5.1.14 The relation ' is an equivalence relation. 
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Proof. The relation is clearly reflexive, since 0 = div(f), for any constant rational 

function f € R(E)I. The relation is symmetric, because D1 - = div(f) implies 

- D1 = div(), so D2 i-' D1. Finally, the relation is transitive, since 

D1—D3 = (D1—D2)-i-(D2—D3) 

= > ordp(f)(P)+ 

= ) ordp(fg)(P) 
PEE 

= div(fg). 

PEE P'EE 

ordpi (g) (F') 

D 

Proposition 5.1.15 The set of principal divisors is a subgroup of Div°(E). 

Proof. The fact that the degree of a principal divisor is 0 follows from Proposition 

2.4.15. Adding div(f) to div(g) gives div(fg) - this gives closure. The (additive) 

inverse of div(f) is div(). 13 

Definition 5.1.16 We denote by Pic°(E) the factor group of Div°(E) modulo the 

subgroup of principal divisors, or equivalently, the group of divisor classes under 

linear equivalence. The group Pie° (B) is called the Picard group of B. 

Henceforth, we will use the notation D to denote the divisor class of a divisor 

D E Div°(E). 

Lemma 5.1.17 Let E Pic°(E). Then there exists a unique point P on B such 

that (F) - (QE) E D. 

Proof. See [24, Proposition 111.3.4(a)]. 11 
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Corollary 5.1.18 The map 0 E -* Pic°(E) given by P -* (P) - (02) is a 

bijection with inverse 0 : Pic°(E) -* E given by D -) P, where P is the unique 

point such that (P) - (OE) = D. 

We now come to one of the most important results of this thesis. We show, 

among other things, that the points of an elliptic curve are associative under point 

addition and hence really do form an abelian group. 

Proposition 5.1.19 Let 0 : E -) Pic(E) be the bijection given in Corollary 

5.1.18. Then 0 preserves addition on E, so E is an additive abelian group and 0 is 

a group isomorphism. 

Proof. Let F, Q E E. We claim that O(P + Q) = 0(P) + 0(Q). Now 0(P + Q) = 

(P + Q) - (OE) and 0(P)+ 0(Q) = (P) - (0E)+(Q) - (02) = (F) + (Q) - 2(OE). 

Hence, we need to show that (P + Q) - (02) = (P) + (Q) - 2(02). In other words, 

we need to show that (P + Q) - (F) - (Q) + (02) is principal, i.e. of the form di(f), 

for some f E .k(E)<. Let £j be the line through P + Q, —(P + Q) and 02, and £2 

the line through F, Q and - (P + Q). Consider the rational function  Then 

£j intersects E in exactly the three points P + Q, —(P + Q) and 02. Similarly, £2 

intersects E only in the three points F', Q and —(P + Q). There are several cases to 

consider. We show only two cases, since the others can be established similarly. 

Case 1: Suppose that P + Q, —(P + Q), ° E, P and Q are distinct. Then el MYA  

has order 1 at P + Q and ° E, order 1 - 1 = 0 at —(P + Q) and order -1 at P and 

Q. So 

div (4(x,z)\ £2(X,Y,Z)) = (P+Q) - (P) - (Q) + (02). 
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Case 2: Suppose that P Q, —(P+Q) and QE are again distinct, but that P+Q = 

—(P+Q). Then 4 = £P+Q, the tangent line toE at P+Q. Thus, has order 

2 - 1 = 1 at P + Q, order 1 at OE and order -1 at P and Q. (See [18, Proposition 

4.6] for details.) Once again, we see that 

div( 1 ) =(P+Q)—(P)—(Q)+(OE). 

In all other cases, we come to the same conclusion - that 

(div 
4(X,Z)\ 
  = (P+ Q) - (P) - (Q) + (OE), 

(which may simplify if, for instance, P = Q) and we omit the proofs of these cases. 

Now that we have proved that 0 preserves addition, it remains to show that the 

points of E form an additive abelian group which is isomorphic to PO (E). We 

proved all but the associative law in the previous chapter. For associativity, consider 

that 

0((P+Q)+R) = 0(P+Q)+0(R) 

= (0(P)+0(Q))+0(R) 

= 0(P) + (0(Q) + 0(R)) 

0(P)-FO(Q+R) 

= 

where the third equality follows from the fact that Pic(E) is a group and thus 

associative. The result follows, since 0 is one-to-one (from Lemma 5.1.17). 0 
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5.2 Isogeny 

We have now come to the topic that is central to our entire discussion: isogeny. 

We begin by defining an isogeny of elliptic curves, give examples and analyze some 

of the properties of isogenies. 

Definition 5.2.1 Let E1 and E2 be elliptic curves defined over K. An isogeny 

a : E1 -* E2 is a morphism such that a(OE1) = ° E2, where ° Ej and ° E2 are the 

basepoints of B1 and E2, respectively. An isogeny which is defined over K is called 

a K-isogeny. 

Remark 5.2.2 If E1 and E2 are elliptic curves defined over K, an isogeny from B1 

to E2 need not be a K-isogeny, as the following example shows. 

Example 5.2.3 Taking K = F, consider the elliptic curves we saw previously in 

Example 3.3.12: 

E1/F13 : y2z = x3 + 7xz2 + 3z3, 

E2/F13 : v2w = u3 + 5uw2 + 11w3. 

The isomorphism from B1 to E2 from that example, given by 

a : [x0 Yo : zo] - [6x0 : r-3 Yo: zo], 

where r2 = 11, is in fact an isogeny, since a([O : 1 : 0]) = [6 * 0 : r 3 * 1: 0] = [0 : 1: 

0]. However, it is not an F13 -isogeny, since B1 has 13 points over IF13 while E2 has 

15 points over IF13 (see Theorem 5.2.16). 
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The requirement that the map takes the identity to the identity does not seem 

restrictive. However, this has major ramifications as the following theorem shows. 

Theorem 5.2.4 Let E1 and E2 be elliptic curves defined over K. An isogeny a 

- E2 is a group homomorphism from E1 to E2. 

Proof. By Proposition 5.1.19, E1 is isomorphic to Pic°(Ei) and E2 is isomorphic 

to Pic°(E2). Consider the 7L-linear map a, Div(El) -) Div(E) given by 

>np(P) l pE np(a(P)). 

Then a is a group homomorphism. The map a can also be shown to preserve 

linear equivalence (see [24, Proposition 11.3.6(d)]) - thus, a can be extended to a 

homomorphism from Pie°(Ei) to Pic°(E2). If we denote by O : P21 - Pico(El) 

the isomorphism from P21 to Pie0 (B1) and by 92 : E2 - Pie° (B2) the isomorphism 

from E2 to Pie°(E2), then we see that 02 1 o a o 91(P) = a(P) for all P on B1. 

Since a is the composition of three group homomorphisms, a must also be a group 

homomorphism. 

We now give three examples of isogenies, two of them from a curve B to itself. 

Definition 5.2.5 Let B be an elliptic curve. Define the multiplication-by-M map 

[m] : E -* E, where m E Z, by 

M[P] = 

P+...+P ifrn>O 

—[—rn]P if m<O 

OE ifrn=O 



100 

Proposition 5.2.6 For all m E Z, [m] is an isogeny. 

Proof. The fact that [m] is given by homogeneous polynomials of the same degree 

follows from the point addition formulae in Section 4.4. (We only gave the point 

addition formulae for Weierstrass curves; nonetheless, such formulae can be derived 

for any elliptic curve.) The map [m] is obviously a morphism, since it is defined at 

all points P E E. It suffices, then, to show that [m] takes QE to OE. Since we clearly 

have OE + °E = ° E, it follows by induction on m, for m> 0, that adding ° E to 

itself m times gives ° E• In the second case, we see that — [—m]OE = = ° E• 0 

Example 5.2.7 Let E/Q : x3 + y3 = 1729z3 and P = [x0 : yo z0} any point on 

E. Then [2]P = —R, where —R is the point [—yo(4 + 17294) : x0(yg + 17294) 

- y)]. Note that the tangent line to E at P is the line 

xx+yy — 17294z=0, 

as we saw in Example . P.19, and the point 

R = [xo(y + 17294) —yo(xg + 17294) : zo(xg - 

certainly lies on this line and the curve E, so R is the second point of intersection 

ofp and E - in other words, —R = 2[P]. (Recall that we saw in Example 4.4.3 

that the inverse of [x0 : yo : zo] is the point [Yo : x0 : zo].) For instance, 

2([10 : 9: 1]) = [-24561 : 24580 : 271]. 

Example 5.2.8 Take E1 = (Cl /Q : x3 + y3 - 27z3 = 0, [1: — 1: 0]), E2 = (C2/Q: 

3u2w - 3vw2 + w3 - 27u3 = 0, [0 : 1: 0]) and E3 = (C3/Q : 108s2t + t3 - 108r3 = 
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0, [0: 1: 0]) to be the curves from Example 3.3.3 and a : E2 — p El, fi : E2 -* E3 

the maps from the same example, given by 

a([uo : v0 : wo]) = [vo : w0—v0 : uo] 

/3 ([uo : v0 : wo]) = [6u0 : 2v0 - w0 : 6w0] 

Then a is an isomorphism with inverse a' : E1 - E2 given by 

a'([xo : Yo : zo]) = [zo : x0 : xo + yo]. 

Consequently, the morphism /3 o a 1 : E1 -* E3 given by 

/3 o a'([xo : Yo : zo]) = [6z0 : x0 - Yo : 6(xo + yo)], 

is an isogeny, since it maps [1: —1: 0] to [0 : 1: 0]. 

Proposition 5.2.9 Let (B, OE) be any elliptic curve defined over a finite field lFq, 

such that ° E E E(IFq). Then the Frobenius map ço : E - B given by ço([xo : Yo 

z0]) = [x : y0 : zg] is an isogeny which fixes E(1Fq) pointwise. 

Proof. W certainly is a morphism from B to E, since E(x, yq, z) = E(x, y, z) 

(because E is by assumption defined over }Fq). Let [x0 : Yo : zo] E E(1Fq), so that we 

may assume without loss of generality that x0, yo, zo E lFq. Since the group of units 

1F of lFq has cardinality q - 1, we know that the order of each element of FqI divides 

q - 1, whence x = x, yg = Yo, 4= z0. The fact that ço takes QE to ° E follows from 

0EEEFq). 0 

Now if q is a non-zero isogeny with corresponding function field K-homomorphism 

q, then *(J(C2)) is a subfield of R(C1), and k(Ci)/q5*(R(C2)) is a finite extension 

by Proposition 3.1.3. This motivates the following definition. 
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Definition 5.2.10 Let E1, E2 be elliptic curves and let 0 : E1 -+ E2 be an isogemy. 

If 0 is non-zero, we define the degree of q to be the degree of the finite extension 

.f((Ei)/cb*(k(E2)) and denote it by deg(q) . By convention, deg[0] is set to be 0. 

Theorem 5.2.11 The degree of the Frobenius map is q. 

Proof. We need to show that [],(E) : co*(1q(E))] = q. Denote as before by the 

equivalence class of 1i in ]'q(E) and by 1 the equivalence class of Y. Set a = and 

b = and recall from Proposition 2.3.14 that 1'q (E) = F. (a, b). Then *(a) = 

and *(b) = b', so co*(lq(E)) = ig(a',b'). Now [ig(a, b) : ]q(a'1)] = 2,[ q(a) 

1q(a')] = q and [1!'q (a, b) : 1P, (a)] = 2. 'q(a1, b) is a subfield of ig(a, b), so applying 

the tower law for finite field extensions gives [] q (a, b) : 1'q (au, ba)] = q, as required. El 

Proposition 5.2.12 The degree of the multiplication-by-m map [m] is m2. 

Proof. See [5, Lemma 7.2]. 0 

Theorem 5.2.13 Let a : E1 -* E2, :E2 - E3 be isogenies (all three curves over 

the same field). Then deg8 o a) = deg(3) deg(a). 

Proof. By Definition 5.2.10, deg(/3oa) = [k(E1) : (130a)*(R(E3))] . Since (/30a)* = 

a*o13* (from Proposition 3.4.7), this means that [](E1) : (80a)*(1?(E3))] = [](E1) 

a*(/3*(]((E3)))} It only remains to apply the tower law for finite extensions: 

[R(E1) : a*8*(.k(E)))] = [.k(E1) : Il (E2)][. (E2) : 

The value of the first term in the product is deg(a), since 

[.k(E1) : .k(E2)] = [.k(E1) : a*(.t?(E2))][a*(.t?(E2)) : 
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[K(El) : a*(J?(E2))] = deg(a) and [a*(P(E2)) : k(E2)] = 1 (because & is injec-

tive). Similarly, the value of the second term is deg(16) because 

[1(E2) : a*(13*(.k(E )))] = [1(E) *((E))][3*(k(E)) : 

[K(E2) /3*(1?(E3))] = deg(3) and [/3*(R.(E3)) a*8*(R(Es)))] = 1 (3* is also an 

injection). Hence, deg(3 o a) = deg(a) deg(fl). 0 

We conclude this section with an important result on the number of points which 

are mapped to ° E by an isogeny. 

Proposition 5.2.14 Let q E1 - p E2 be an isogeny of elliptic curves. Them 

I1(Q)I = ç?, for all Q E E2. In particular, ker(q)I = I'(OE)I = 

Proof. We saw in Theorem 3.5.5 that for all but finitely many points Q 

I1(Q)I = I8 Fix Q, Q' E E2 and let Q' = Q + R. Since 0 is a morphism, 

by Proposition 3.3.2 there exists P' E E1 such that O(PI) = R. Then for each 

P E E1 with q(P) = Q, we have q!(P + P') = Q + R = Q', because 0 is a group 

homomorphism by Theorem 5.2.4. This shows that I1(Q')l ≥ I'(Q)l. Using the 

same argument, we can show that q'(Q')j ≤ I'(Q)I. It follows that every point 

Q E E2 must have çb poinbs in its inverse image. Setting Q = QE gives the result 

on ker(q). 0 

Lemma 5.2.15 Let E be an elliptic curve over a finite field Fq of characteristic p; 

and ço the Frobenius map on E. Them the map [m] + [m]ço is separable if and only if 

p{m. 

Proof. See [24, Corollary 111.5.5]. 0 
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When K = lFq a finite field, the Fq rational points of an elliptic curve form a finite 

group by Theorem 4.4.8. The following theorem relates orders of these groups to 

isogeny. 

Theorem 5.2.16 Let E1, E2 be elliptic curves over a finite field ]Fq. Then there 

exists an 1Fq-isogeny q: E1 - p E2 if and only if E1(Fq) = IE2(lFq). 

Proof. If such an F.-isogeny 0 :  E2 exists, and cal is the Frobenius map on El 

and c02 the Frobenius map on E2, then o ([1]— = ([1]— w2)°q5, since 4 is defined 

over lFq. Hence, from Theorem 5.2.13, deg([1] — wi) = deg([1] — ca2). Since both [1] — 

and [1] - p2 are separable by Lemma 5.2.15, it follows from Proposition 5.2.14 that 

both curves have the same number of F.-rational points, because ker(a)I = deg(a) 

for any separable map a (Proposition 5.2.14), and Ei(1Fq) = ker([1] - çoi), E2(JFq) = 

ker([1] - W2). For the proof of the converse, see [25]. 0 

5.3 The Dual Isogeny 

It is natural to ask if the existence of an isogeny from an elliptic curve B1 tb 

another, E2, gives any information about the existence (or lack thereof) of isogenies 

from E2 to B1. In fact, it does, as the next theorem indicates. 

Theorem 5.3.1 If j : B1 -+ E2 is a non-constant isogeny of degree m, then there 

exists a unique isogeny : E2 — B1 such that o 0 = [m] on E1. 

Proof. See [24, Theorem 111.6.1]. 0 
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The proof of the existence is non-trivial - in fact, it is beyond the scope of this 

thesis. 

Definition 5.3.2 Let B1 -* E2 be an isogeny. Then the isogeny q in Theorem 

5.3.1 is called the dual isogeny. 

Theorem 5.3.3 (Properties of the dual isogeny) Let q B1 -* E2,1@ : B1 -+ 

E2, : E2 -* E3 be non-zero isogenies of elliptic curves B1, E2, B3 over some field 

K. Then 

1. bOq=qot,, 

. 

3. deg() = deg(q), 

Proof. For 1, we want to show that ( o o (0 o q) = {m][n], where m = deg(q) 

and n=deg('). We have 

( 0 0 (0 0 = o[n]o 

= [n]oo 

= [n]o[m] 

= [mn], 

where the second equality follows from the fact that 0 is a group homomorphism. 

Given that the dual is unique, this proves 1. For the proof of 2, see [5, Appendix C]. 

Since deg( 0 q) = deg([m]) = m2 by Proposition 5.2.12, we can deduce by Theorem 
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5.2.13 that deg() = m as well. This proves 3. Finally, we need to show that = 

Observe that 

(o)o = o(o) 

= o[m] 

= [m]o, 

where the third equality follows from the fact that q is a group homomorphism. 

Therefore, (q o - [m]) o 0 = [0], and by Theorem 5.2.13, we conclude that (0 o - 

[m]) = [0] or = [0]. By assumption, ' [0], so we must have [m] = [deg()]. 

But by definition, is the unique isogeny from E1 to E2 such that o = [deg()] = 

[m]. Hence, we conclude that  

Corollary 5.3.4 Let mE Z,m 0 0. Then [m] = [m]. 

Proof. Since [m] o [m] = [m2] = [deg([m])] by Proposition 5.2.12, we conclude from 

the uniqueness of [m] that [m] = [m]. 0 

Corollary 5.3.5 Let 0 : E1 - E2 be an isogeny with dual isogeny , so o = 

[deg(q)] on E1. Then q o = [deg(q)] on E2. 

Proof. This is immediate from the proof of property 4 of Theorem 5.3.3. 0 

Example 5.3.6 Recall the isogeny a: E1 -* E2 introduced in Example 5..3 given 

by 

a : [x0 : I/o : zo] -* [6x0 : r 3y0 : 

where 

E1/F13 : y2z = x3 + 7xz2 + 3z3, 
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E2/1F13 V2  = u3 + 5uw2 + 11w3. 

Then the dual isogeny & : E2 - + E1 is given by 

yo zo]) = [11w0 r3y0 : zo]. 

Composing the two isogenies a, & gives the identity map. This means that a is in 

fact an isomorphism, a' = &, and deg(a) = 1. 

Proposition 5.3.7 Let q5 E1 —+ E2 be a non-constant isogeny. Then 0 is an 

isomorphism if and only if deg(q) = 1, in which case = q4. 

Proof. Let o 0 = [m], with m = deg(q5). Suppose 0 is an isomorphism. Then 

m = 1. Since q5' o q = [1] on E1, and o 0 = [m] = [1] on E1, we conclude 

by uniqueness of the dual isogeny that = q5'. Conversely, if deg(q5) = 1, then 

in = 1, so o 0 = [1] on E1 and 0 o q5 = [1] on E2 by Corollary 5.3.5. Thus, 0 is an 

isomorphism with inverse q5' = . 0 

5.4 Isogeny Classes 

We saw in Chapter 3 that isomorphism induces an equivalence relation on the set 

of elliptic curves defined over some field R. The same holds in fact for isogeny. 

Theorem 5.4.1 Define the relation on the set of elliptic curves over K by E1 

E2 if there exists a non-constant isogeny (Over PC) q : E1 — E2. Then is an 

equivalence relation on the set of elliptic curves over K. 

Proof. Certainly, the reflexive property is satisfied because the identity map from 

an elliptic curve to itself is always a PC-isogeny. Transitivity also holds because the 
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composition of K-isogenies is again a 1?-isogeny. Finally, if E1 r'. E2, then there 

exists a 1?-isogeny q : E1 - p E2. Hence, E2 's.' B1 via the dual isogeny by 

Theorem 5.3.1 and we have symmetry. 0 

Definition 5.4.2 Let B be an elliptic curve over K. Then the isogeny class of B is 

the set 

{E'/1IEE'}. 

If B B', then E and E' are said to be isogenous. If B B' via q : E  

and : B' -+ E, with q, 0 defined over a subfield K of K, then B, B' are said 

to be K-isogenous, and the K-isogeny class of B is the set of E' over K which are 

K-isogenous to B. 

It is natural to ask which elliptic curves are isogenous to a given elliptic curve. In 

general, this is a difficult question. 

In the case of finite fields, we know from Theorem 5.2.16 that it is sufficient 

to find some extension field (of the ground field) over which both curves have the 

same number of points. At the same time, this approach cannot establish when two 

curves are not isogenous over some extension field - this would entail checking every 

extension field, of which there are infinitely many. 

Of course, in the event that the curves in question are isogenous, it remains to 

find an isogeny from one curve to the other, which can be difficult. If two curves are 

isogenous, other questions arise: how many isogenies are there from one curve to the 

other? Are there finitely many? And what degrees do these isogenies have? These 

questions are addressed in [1] and [20]. 
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Isomorphism is also an equivalence relation. While an isogeny need not be an 

isomorphism, or vice versa, the two are closely related if we restrict ourselves to 

Weierstrass curves. 

Lemma 5.4.3 Every isomorphism between elliptic curves in Weierstrass form is of 

the form [x0 : Yo : zo] i-* [u2x0-i-rzo : u3yo+u25x0-i-tzo : z0] where  E R*' r, s,t E K. 

Proof. See [24, Proposition III.3.1.(b)]. 0 

Clearly, then, any isomorphism of Weierstrass curves takes [0: 1: 0] to [0 : 1: 0] 

and is thus an isogeny of degree 1. Now an isogeny is a group homomorphism by 

Theorem 5.2.4, which yields the following. 

Corollary 5.4.4 Every isomorphism between elliptic curves in Weierstrass form is 

an isogeny and thus an isomorphism of the groups of points. 



110 

The following diagram illustrates the relationship between isogeny and isomor-

phism of elliptic curves E1, E2 in Weierstrass form over a finite field IF'q: 

Thm. 5.2.16 

IF'q - isogenous IEi(]Fq)I = IE2(lFq)I 

Cor.5.4.4 ft 

lFq - isomorphic #> Ei(1F) E(1Fg) 

JL- Cor.5.4.4 

isomorphic 

Cor. 5.4.4 J}. 

isogenous => group homomorphism E1 —p 

Thm. 5.2.4 

Remark 5.4.5 If the groups of 1Fq-rational points of two elliptic curves are isomor-

phic, the curves need not be isomorphic over lFq or indeed isomo'phic at all. 

Example 5.4.6 Consider the curves 

E1/F11 : y2z = x3 + xz2 

E2/1F11 : y2z = x3 + 2z3. 

Both curves have twelve points over IF11, and it is easily verified that E1(F11) 

E2(IF11) Z12. Yet j(E1) = 10 j(E2) = 0, so E1 and E2 are not isomorphic as 

curves by Theorem 

The example above also constitutes an example of two curves which are Fq-

isogenous (and therefore isogenous) but not isomorphic (and therefore not IFq-isomorphic 
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either). For an example of curves which are isomorphic, but not isomorphic over the 

ground field IF'q, see Example 5.2.3. 

Now suppose that two elliptic curves in Weierstrass form over a finite field are 

isomorphic (and therefore isogenous). We would like to determine the smallest field 

over which the curves are isomorphic as well as the smallest field over which they are 

isogenous. Clearly, the latter is a subfield of the former. If it is a proper subfield, 

then the isogeny must have degree 2 or higher by Proposition 5.3.7. 

Determining whether the curves are isogenous over some finite field is equivalent 

to counting the number of points over that field (Theorem 5.2.16), which can be 

difficult if the field is large. Finding the smallest field over which they are isomorphic 

is less time-consuming. Due to the explicit form of the isomorphism given in Lemma 

5.4.3, it is quite easy to compute the minimal field over which the isomorphism is 

defined. To rule out an extension field for isomorphism, one can also check the 

group structure of the curves' groups of points over the extension field - this is 

more involved, however, especially if the finite field and thus the groups of points 

are large. 

5.5 The Endomorphism Ring 

In this final section, we briefly discuss the set of all isogenies from a curve E to 

itself. In fact, these isogenies form a ring. For a more detailed analysis, see [24, 

111.9]. 

Definition 5.5.1 Let E, E1, E2 be elliptic curves with the latter two defined over the 
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same field. Denote by Isog(Ei, E2) the set of isogenies from E1 to E2, by End(E) 

the set of isogenies from E to itself, Isogic(Ei, E2) the set of K-isogenies from E1 

to E2, and EndK (E) the set of K-isogenies from E to itself. 

Theorem 5.5.2 Let E be any elliptic curve over some field K. End(E) is a ring 

with identity and no zero divisors, therefore, End(E) is a torsion-free 7L-module, 

with the addition law induced by addition on the curve and multiplication given by 

composition. 

Proof. The additive identity is the multiplication-by-0 map while the multiplicative 

identity is the multiplication-by-1 map. There are no zero divisors, for if q, 0 are 

two non-zero isogenies then deg (qo) = deg (çb) deg (' b) 0 0. We omit the verification 

of the other properties - this is quite straightforward but tedious. 0 

Proposition 5.5.3 Let E be any elliptic curve. Then all the multiplication-by-rn 

maps are distinct, i.e. if m, n E Z with rn 0 n, then [rn] 0 [n]. 

Proof. It suffices to show that [rn] = [n] if and only if m = n. One direction is 

trivial. Conversely, suppose that [m] = [n]. Then from Proposition 5.2.12, we know 

that deg([rn]) = m2 = deg([n]) = n2. Hence, n = ±m. If m = 0 then n = 0. 

Suppose that m 0 0 and m = —m. Since [—rn] = - [m], this means that [m] = - [m], 

or [m} + [m] = [2m] = 0. But then deg([2m]) = 4m2 = 0, contradicting the fact that 

m 0 0. Hence, m = n, as required. 0 

Corollary 5.5.4 Z is a subring of End(E) for all elliptic curves E. 



113 

Proof. Consider the ring homomorphism 7L -* End(E) given by m E- [m]. From 

Proposition 5.5.3, we know that this map is injective. Hence, the rational integers 

can be embedded into End(E). 0 

Definition 5.5.5 If Z is a proper subring of End(E), then End(E) is said to have 

complex multiplication. 

Example 5.5.6 For K = lFq of characteristic p with q an odd power of p, and E 

defined over K with QE E E(K), End(E) admits complex multiplication via the 

Frobenius map W. Clearly, ço is not equal to [0], nor can it be the multiplication- b y-

1 map because it is the identity only for 1Fq-rational points. If m 0 0, 1 and m is 

coprime to p, consider that by Lemma 5.2.15, [m] is separable, so [m] has a non-

trivial kernel (i.e. deg3([m]) = m2 and Iker([m])I = m2 > 1) by Proposition 5.2.14, 

whereas ker()I = 1, since W(P) = QE if and only if P = QE. If p divides m, then 

we still cannot have ço = [m], since deg() = q 0 deg([m]) = m2, as q is an odd 

power of p (therefore not a perfect square). 

We now investigate the possible structure of End(E). There are in fact only three 

different types of endomorphism ring and we will discuss these shortly. 

Definition 5.5.7 Let R be a finitely generated Q-algebra. An order in R is a subring 

of R which is finitely generated as a Z-module and contains a Q-basis of R. 

We will give two examples of an order in an algebra, but first, we give examples 

of two such algebras. 
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Definition 5.5.8 Let D0 E Z be squarefree. A quadratic field is an extension field 

of Q of the form 

= {r + s\/Do Ir, SE Q}. 

If D0 <0, we call Q(\/D) an imaginary quadratic field, otherwise a real quadratic 

field. 

Definition 5.5.9 Associated with a quadratic field Q(/) is the fundamental dis-

criminant Ao given by 

D0 ifDo 1 mod 4 
Lo= 

4D0 otherwise. 

Example 5.5.10 Consider D0 = —1. Then Lo = —4 and Q(VD) = Q(i), where 

i E C,i2 = —1. 

Definition 5.5.11 Let Q(VD) be a quadratic field. The ring of integers of Q(/D), 

written O, is the subring { E Q(/) 3f (x) = x2 + ax + b E Z[x], f(a) = 0} of 

Q(\/D). Elements of OAO are called algebraic integers. 

Theorem 5.5.12 Let Q(\/D) be a quadratic field The ring of integers 

takes the form O = Z[w 0] = {r + sw 0 jr, s E Z}, whereWAO 

- 2 1+v/Dl if D0 1 mod 4 

\/D otherwise. 

of Q(/D) 

Proof. If = a + b/D E Q(\/D) is an algebraic integer, then is a root of the 

monic quadratic polynomial 

(x - (a + b/Do))(x - (a - bi/D0)) = x2 - 2ax + a2 - b2D0 E Q[x]. 
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This polynomial resides in Z[x} if and only if a is of the form a, n E Z, and a2 - b2D0 

is an integer. In the case D0 1 mod 4, a2 - b2D0 is equal to 

n2-4b2D0 

4 

This is an integer if and only if m2 - 4b2D0 0 (mod 4). Since n E Z, 4b2D0 must 

also be an integer, i.e. b must be of the form !, m Z. Then = + m h1 ' 

with n2—'2Do E Z. This proves that m, n must have the same parity, so E Z. 

Therefore, 0 A0 Z['']. In addition, it is easily seen that Z['+VIDO] O, so we 

have Z[1} = 0 Ao The case D0 2,3 mod 4 can be proven in similar fashion. 

Example 5.5.13 If D0 = —3 then o = D0, w 0  2 - '" and 

Z  + i-,/3-] 
oIo = 

= Z[e]. 

Lemma 5.5.14 Let Q(\/D) be an imaginary quadratic field with fundamental dis-

criminant iso. The orders in Q(\/D) are exactly the subrings of the form Z[nw 0], 

where n E Z. 

Proof. See [23, Proposition 4.11]. 0 

A quadratic field is an example of a Q-algebra. In this case, an order in a field 

Q(\/D) is a subring of Q(/b) which is a Z-module of rank 2, for which the smallest 

field containing it and Q is Q(/D). 
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Example 5.5.15 Consider again the imaginary quadratic field Q(\/) from the 

previous example. Here, w ,,=   The subring Z[2w 0] = Z [1+i\/] is an order 

in Q(/). It has rank 2 as a 7L-module and it contains \/, so the smallest field 

containing Q and this ring is Q(\/). Alternatively, we see that Z[2w] is of the 

form given in Lemma 5.5.14. 

Definition 5.5.16 A quaternion algebra is a (non-commutative) ring of the form 

Q[i,j] = Q + Qi + Qj + Qij, where i2 = j2 = —1, ii = —ji, and i,j commute with 

the elements of Q. 

An order in a quaternion algebra is analogous to an order in a quadratic field. If 

R is a quaternion algebra, an order in R is a subring of R which has rank at most 4 

as a Z-module and contains a Q-basis of R. 

Example 5.5.17 The subring Z[i+j, i—i] is an order in Q[i,j], because it has rank 

4 and contains 2i, 2j and 2ji, which form a Q-basis for Q[i, j]. 

Theorem 5.5.18 Let E be an elliptic curve over some field. End(E) is isomorphic 

to one of the following: Z; an order in an imaginary quadratic field; or an order in 

a quaternion algebra. 

Proof. See [24, Corollary 111.9.4]. E 

Example 5.5.19 Consider the elliptic curve E/Q: x3 + y3 = 1729z3 with basepoint 

[1: — 1: 0]. 
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The isogeny q E - p E given by cb([xo : y : zo]) = [x0 : zo], where e is a 

root of x2 + x + 1, is a cube root of unity in End(E) (i.e. q.'3 = [1]). End(E) is of the 

form 

End(E) = {[a] + [b] 0 0 1 a, b E Z}, 

so 

I-1+i\/l 
End(E) z 2 2 

with the ring isomorphism given by 

[a]+[b]oçb—a-i-.b 2 

Remark 5.5.20 Note the importance of the definition that an isogeny maps OB to 

°E• For the previous example, consider the map ço defined by ço([xo : Yo zo]) = 

[x0 : zo]. cc is also a morphism which is a cube root of unity but it is 

not an isogeny because it does not map [1: —1: 0] to [1: —1: 0] but rather to 

o]=[1:—e:o]. 



Chapter 6 

Isomorphism and Isogeny for Small Non-zero 

Characteristic 

In this chapter, we explore isomorphism and isogeny of elliptic curves in Weier-

strass form over certain finite fields. Specifically, each of our examples covers one of 

the three cases for the form of the Weierstrass equation (char(K) = 2, char(K) = 3 

and char(K) 0 2,3) given in Definition 4.1.1 and Lemmata 4.1.4 and 4.1.6. In the 

opening section, we classify the isogeny and isomorphism classes of all non-singular 

Weierstrass curves over IF2. In the other two sections, we examine the non-singular 

Weierstrass curve E0.: y2z = x + xz2 over the finite field IFq, for q = 3 and q = 11. 

More accurately, we look at those Weierstrass curves which are defined over IFq and 

which reside in the 'q-isomorphism class of E0, searching for isogenies and isomor-

phisms of curves in this class. In the process, we apply much of the theory from 

earlier chapters in classifying the aforementioned isomorphism class. 

6.1 The case K = F2 

Over 72, there are 32 Weierstrass curves. Of these, half are singular and half non-

singular, with 8 of the latter curves having j-invariant 0 and the other half having 

j-invariant 1. The curves with j-invariant 0 are: 

118 
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E0: y2z+yz2 = x3, 

E1: y2z+yz2 x3 + z3  

E2: y 2 + yz2 = x3 + xz2, 

E3: y2z+yz2 = x3 +xz2 +z3, 

E4: Y 2 + yz2 = x3 + x2z, 

E5: y2z + yz2 = x3 + x2z + ., 

E6: Y 2 + yz2 = x3 + x2z + xz2, 

y2z + yz2 = x3 + x 2z + xz2 +z 3. 

Using the form of an isomorphism of Weierstrass curves given in Lemma 5.4.3, we 

can easily compute the (smallest) field over which any two of these curves with the 

same j-invariant are isomorphic. For instance, an isomorphism from E0 to E1, being 

of the form [u2x0 + rzo : u3y0 + u2sx0 + tz0 : z0], requires substituting {u2x0 + rz0 

u3y0 + u2sx0 + tz0 : z0] for (x, y, z) in the equation of B1 which gives 

1)z = 0. 

This is true for all [x0 Yo zo] E B0 only if the equation above is a multiple of 

Eo(xo, Yo, zo) = yz0 +yo4 + xg which, when comparing coefficients and dividing out 
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by u6, gives the system of four equations 

r3-i-t2-i-t+1 = 0 

u 4s2 + u 4r = 0 

u 2s + u 2r2 = 0 

= 1, 

which over IF2 has a unique solution r = s = t = u = 1. Using this technique, we 

find that the F2-isomorphism classes are as follows: 

{E0, E1, E6, E7} 

{E2,E4} 

{E3,E5}. 

Passing to IF4, the isomorphism-classes of E2 and E3 merge into one. For an 

isomorphism between these two curves, the corresponding system of equations is 

r3+r+t2+t+1 =0 

U4s2+u4r =0 

2++1 = U4 

u3 = 1, 

which has the solution r s = 0, u = 1, t E IF4 a root of x2 +x+ 1. (Another solution 

is r = s = u = 1) t2+t+1 = 0.) It is not until we reach IF256, however, that all 8 curves 

reside in the same isomorphism class. The same line of reasoning as above yields the 

isomorphism from E0 to E3 given by [x0 + s2z0 : Yo + sx0 + tz0 : zo], s E IF16 a root 

of x4 + x + 1 and t E F256 a root of the irreducible quadratic x2 + x + s3 + 1 IF [xj. 



121 

Figure 6.1: Isomorphism (and isogeny) classes of Weierstrass curves over F2 with 
j-invariant 0 

IF256 
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The question is then whether there exists any smaller field over which the four 

curves E0 - E3 have the same number of points as one of the other four curves. If 

this is the case, then there must be an isogeny of second degree or higher between 

the curves in question (since they could not be isomorphic over this field). 

This problem aptly demonstrates the power of the Hasse bound given in Theorem 

4.4.9. For rather than calculate the number of points of each F2-isogeny class of 

curve over each extension field from IF8 up to IF128, we can in some cases avoid such a 

computation. To see this, note that IEo(IF4)I = 9 and E2(IF4)I = IE3(1F4)I = 5. Now 

E(F4) is a subgroup of E(F16) for all i. So if, for instance, E0 and E2 are to have 

the same number of points over Fla, it follows that they must both have a multiple 

of lcm(5,9)=45 points over Fla. But the Hasse bound limits the number of points to 

the interval [9,25]. Using the same argument, one finds that P20 does not have the 

same number of points over IF64 as either of the other curves P21 and E3. One can 

count points over IF8, IF32 and IF128 to verify that E0 is not isogenous to the other 

curves over these fields either. Therefore, the K-isogeny classes are the same as the 

K-isomorphism classes for all K C- IF256. 
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The Weierstrass curves over IF2 with j-invariant 1 are as follows: 

E8: y2z + xyz = x3 + z3, 

Eg: y2z+xyz = x3+xz2, 

E10 : y2z + xyz = x3 + x2z + z3, 

El y2z + xyz = X + x 2z + xz2, 

E12 : y2z+ xyz +yz2 = x3+z3, 

E13 : y2z+xyz+yz2 x3+xz2+z3, 

E14 : y2z + xyz + yz2 = x3 + x2z, 

E15 : y2z+ xyz +yz2 = x3+x2z+xz2. 

There are two F2-isomorphism, classes here, namely: 

{E8, E9, E14, E15} 

{ E10, E11, E12, E13 1-

Over IF4, all the curves are isomorphic, and the F2-isogeny classes are the same as 

the IF2-isomorphism classes. 
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Figure 6.2: Isomorphism (and isogeny) classes of Weierstrass curves over IF2 with 
j-invariant 1 
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6.2 The case K = 

Moving on to characteristic 3, we find that the form of the isomorphism simplifies. 

To be more specific, since E(x, y, z) does not contain an xyz or yz2 term, each 

isomorphism takes the form IU2x0 + rz0 u3y0 : z0], with u E K* and r E K. We 

will also discover that there are some curves which are isogenous over F37 for some 

m E N, but isomorphic only over a larger field. In other words, there is some higher 

degree (deg ≥ 2) isogeny over the smaller field. 

Consider first all elliptic curves defined over JF3 which are isomorphic to 

y2z = x5 + xz2. 

Note that 5(Eo) = 0. They are 

E1: Y2  

E2: y2  

E3: y2z 

E4: Y 2 

= x3 + xz2 + z3, 

= x3 + xz2 + 22, 

= x3 + 2xz2, 

= x3 + 2xz2 + z3, 

E5 ,: Y2  = x3+2z2+2z3. 

Calculating the values of u, r as before, we find that the 1F3-isomorphism classes 

are 

{E0, E1, E2} 

{E3} 

{E4} 

{E5}. 
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If we pass to the next field IF9, we find that the system of equations for the 

isomorphism between E0 and E3 is 

U4 =2 

r3+r = 0, 

for which r = 0, u = p + 2, p a root of the irreducible equation x2 + 1 = 0, is a 

solution. Hence, the isomorphism (over IF9) is [px0 : (2p + 2)yo : zo]. In fact, the four 

F3-isomorphism classes combine into 2 over IF9. They are: 

{Eo, E1, E2, E3} 

{E4,E5}. 

The F27-isomorphism classes are: 

{E0, E1, E2} 

{E3, E4, E5}. 

At this point, we stop. We could continue with the isomorphism classes over IF81, IF243, 

etc. but this is not necessary. It turns out that the lowest field over which all six 

curves are isomorphic is IF36 = IF729. We mention this fact because it will be important 

later on to compare the lowest field of isomorphism of two curves with the lowest 

field of isogeny thereof, which we do shortly. The isomorphism classes are pictorially 

represented in Figure 6.3. 
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Figure 6.3: Isomorphism classes of Weierstrass curves over 1?3 with j-invariant 0 

IF729 
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Counting points over IF3, we find that curves E0 through E3 have 4 points each, so 

they are all F3-isogenous by Theorem 5.2.16. This is the first case where two curves 

(.øo and E3) are isogenous over a proper subfield (namely IF3) of the smallest field 

over which they are isomorphic (namely IF9). We could also have deduced this from 

the fact that E0(F3) and'E3(IF3) are not isomorphic as groups. The curves E4 and 

E5 have 7 points and 1 point over IF3, respectively, so they are not F3-isogenous to 

one another or to any of E0 - E3. 

One isogeny from E0 to E3 is [zoy yo(z + 2x) : xzo}. (This is just the rational 

map r# from Example 3.2.3, with E0 = (Cl, [0 : 1: 0]), E3 = (C2, [0 : 1: 0]), and 

K = IF3.) This map of curves is clearly regular at all points except possibly [0: 1 : 0] 

and [0 : 0 : 1]. In fact, we showed in Example 3.1.6 that the map is regular at 

[0 : 1: 0], since [xoy : 2x0y0z6 + 2y : x] is regular at [0 : 1: 0]. 

We have yet to establish that the map is regular at [0 : 0 : 1]. Although we know 

from Lemma 3,3.4, since E0 is smooth, that the map must be regular at [0 : 0 : 1], 

we will explicitly show that, this map is regular at [0 : 0 : 1]. 

So how does one find an alternate 'representative' of the rational map, which 

demonstrates regularity at this point? There is no obvious method. However, noting 

that the partial map given above is given by third degree homogeneous polynomials 

defined over IF'3, one might ascertain that the missing representative is also of this 

form. Given that there are only finitely many possibilities for such a triple of homo-

geneous polynomials, one may determine by exhaustive search whether the solution 

(if it exists) is of this form. Omitting the tedious labour required of finding this 
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representative, we observe that the map [xy0 + yoz : 4 + z04 + 2xoy : xoyozo] is a 

map from E0 to E3 which is defined at [0: 0: 1] (and maps this point to [0 : 1: 0]). 

As for the other curves, E4 and E5 each have 7 points over F9, so they are IF9-

isogenous. 

Passing to IF27 completes the picture: here, all six curves are isogenous (they have 

28 points each). Once again, E0 is F27-isogenous to E4 and E5 while not being 

isomorphic to either of them in any proper subfield of IF27. An isogeny in this case is 

not so difficult to find: We compose the second degree isogeny from E0 to E3 with 

the IF27-isomorphism from E3 to E4 to get a second degree isogeny from E0 to E4. 

We could also construct the sixth degree isogeny [zgyg + uxgz : y (4 + 24) : 4], 

where o E IF27 is a root of the irreducible polynomial x3 + x + 1 E IF3 [x]. This isogeny 

is obtained by composing the second degree isogeny from E0 to E3 with the third 

degree Frobenius map from E3 to itself with the isomorphism (over IF27) from E3 

to E4. (In fact, we can construct isogenies of arbitrarily large degree by repeatedly 

composing any isogeny with the Frobenius map.) 

Figure 6.4: Isogny classes of Weierstrass curves over IF3 with j-invariant 0 
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Table 6.1 lists isomorphisms from Ej to E (0 ≤ i, j 5) over various extension 

fields of IF3, where p2+1 = 0, u+cT+i = 0. Subsequent tables give the isomorphisms 

in various isomorphism subclasses, where the isomorphisms go from Ej in the left-

hand column to E in the top row. 

Table 6.1: Various Isomorphisms 
a1 [xo+zo:yo:zo} 
a2 [x0 + 2z0 : Yo : z0} 
a3 [2pxo : (p + 2)y : zo] 
a4 [2px0+zo : (p+2)yo : zo] 
a5 [pxo: (2p + 2)yo : zo] 
a6 [pxo + 2pz0 : (p + l)yo : zo] 
a7 [pxo+pzo: (p+ l)yo : Zo] 
C18 [2px0 + 2z0 : (p + 2)yo : zo] 
a9 [2x0 : 2PYO : zo] 
a10 [2x0 : PYo : zo] 

Cell [xo + 0Z0 : yo : zo] 
a12 [XO + 2ozo : I/o : zo] 
a13 [2px0 + p0z0 : (2p + l)yo : zo] 
a14 [2px0 +.(po + 1)zo : (2p + i)yo : zo] 

Q15 [2px0 + 2poz0 : (2p + l)yo : z0] 
a16 [2px0 + (2po + 1)zo: (2p + l)yo : zo] 
a17 [2px0 + (po + 2)zo : (2p + i)yo : z0] 

a18 [2px0 + (2po + 2)zo : (2p + i)yo : z0] 
a19 [pxo + oz0: (2p + 2)yo : zo] 
a20 [pxo + 2o-zo: (2p + 2)yo : zo] 
a21 [pxo + (2p + o-)--o : (2p + 2)yo : z0] 
a22 [pxo + (2p + 2o-)zo : (2p + 2)y : z0] 
a23 [pxo +(p+a)zo: (2p+2)yo : zo] 
a24 [pxo + (p + 2o)zo: (2p + 2)yo : z0] 



131 

Table 6.2: Isomorphisms in the 1F3-class of E0 
E0 E1 E2 

E0 Id a1 a2 
E1 a2 Id a1 
E2 a1 a2 Id 

Table 6.3: Isomorphisms in the 1F9-class of E0 
E0 E1 E2 E3 

E0 Id ai a2 a5 

E1 a2 Id a1 a5 
E2 al a2 Id a7 
E3 a3 a4 as Id 

Table 6.4: Isomorphisms in the 1F-class of E4 
E4 E5 

E4 Id a9 
E5 a10 Id 

Table 6.5: Isomorphisms in the F27-class of P20 
E0 E1 E2 

E0 Id a1 a2 

E1 a2 Id a1 
E2 a1 a2 Id 

Table 6.6: Isomorphisms in the 1F27-class of E3 
E3 E4 E5 

E3 Id all a12 
E4 a12 Id all 
E5 all a12 Id 
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Table 6.7: Isomorphisms in the 1F729-class of E0 
E0 E1 E2 E3 E4 E5 

E0 Id a1 a2 a5 a19 a20 
E1 a2 Id a1 a6 a21 a22 
E2 al a2 Id a7 a23 a24 

E3 a3 a4 a8 Id Cell a12 

E4 a13 a14 Ce17 a12 Id all 
E5 a15 a16 a18 a11 a12 Id 
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6.3 The case K = F11 

Finally, we consider the same curve, E0 y 2 z = x3 + xz2, this time over the field 

IF'11; in this case, j(BO) = 1. The only curves over F11 with j-invariant 1 are those 

of the form Ea : y2z = x3 + axz2, where a E IF'. All curves of this form have 12 

IF11-rational points, so they all reside in the same F11-isogeny class. A quick check 

shows that those curves of the form Er : y2z = x3 + rxz2, r a quadratic residue 

modulo 11, have one point of order 2; those of the form E y2z x3 + nxz2, n a 

quadratic non-residue modulo 11, have three such points. It follows from Theorem 

4.4.10 that Er(IF') Z12 and E(IF'11) Z2 x 6, so that the F11-isogeny class of 

E0 = E1 (i.e. a = 1) contains two IFii-isomorphism classes. 

Figure 6.5: Isomorphism classes of Weierstrass curves over IF11 with j-invariant 1 

IF121 
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We would therefore like to find IF,,-isogenies to link the two isomorphism classes. 

We can do this in the following way. Consider Ba and E7a (which lid in different 

1F11-isomorphism classes since 7 is a quadratic non-residue modulo 11). Then the 

map 0 : Ba B7a given by 

q5([xo zo]) = [yz0 : yo(1Ox + az) : xzo] 

is a second degree isogeny with dual q : E7a + Ba given by 

v0 w0]) = [3vwo : vo(4u + 5aw) uwo]. 

(For a = 1, the isogeny q is just the rational map r# from Example 3.2.18.) One 

can thus form a second degree isogeny from a curve Br to B - or vice versa - by 

composing the second degree 1F11-isogeny from Br to E7, with an 1F11-isomorphism 

from E7, to E. 



Chapter 7 

Conclusion 

7.1 A Summary of Isogeny 

Recall that we introduced general algebraic curves and function fields in Chapter 

2. We then discussed the duality of projective algebraic curves and function fields 

(transcendence degree one extensions of given fields), and of non-constant rational 

maps of curves and K-homomorphisms of function fields. 

We then gave an exposition of elliptic curves, a special type of curve, and estab-

lished the group structure of an elliptic curve. Subsequently, we discussed isomor-

phism and isogeny and documented their many interesting properties. In particular, 

we demonstrated that isogeny is a group homomorphism and that both isomorphism 

and isogeny induce equivalence relations on the set of elliptic curves over a given 

field. 

We concluded with several computational examples which illustrated the theory 

developed in previous chapters. These examples served not only to illuminate the 

relationship between isogeny and isomorphism, but also underlined some of the prob-

lems which one encounters when attempting to deal with these notions in practice. 

135 
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7.2 Open Problems 

Inspite of all that is known about isogeny, there remain several open problems. 

We remind the reader of the most salient ones discussed. 

Given two curves over a finite field TFq, there is no easy way of determining whether 

they are in the same (1q_) isogeny class. Of course, one can conclusively determine 

that they are, either by finding an explicit isogeny or by finding an extension field 

over which both curves have the same number of points. However, proving that they 

reside in separate isogeny classes amounts to proving that they do not have the same 

number of points over any finite extension field of lFq. 

Sometimes, it is not enough to have determined that two curves are isogenous. In 

the case where the goal is to reduce the discrete log problem on a " hard" elliptic 

curve E to the discrete log problem on an " easy" curve B', as described in Chapter 

1, it is necessary to find an actual isogeny from B to B'. There is no known method, 

given two isogenous curves, to quickly produce an isogeny between the two; while 

it could be of use to determine, for instance, the number of ]Fq-isogenies between 

two isogenous curves, and the degrees of all such isogenies, there is also no known 

method for achieving either of these tasks. 

Nonetheless, much is known about isogeny and isomorphism classes. For an elliptic 

curve B in Weierstrass form, Schoof gives an explicit formula N(t) for the number 

of Fq4somorphism classes in the lFq-isogeny class of B. (See [20], in particular, [20, 

Section 4], for details.) For example, in the case of the curve El IF,, y2z = x3 + xz2 

given in the final section of Chapter 6, IE(F11) I = 12, 50 that the value t given in 
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Theorem 4.4.9 is 0. There are 20 nonsingular Weierstrass curves over F11 with t = 0 

(i.e. with 12 points over IF11 ), and we have N(0) = 4. Denoting by QR11 the set of 

all quadratic residues modulo 11, and by QN11 the set of all quadratic non-residues 

modulo 11, one finds that the four isogeny classes are: 

11= {Er:y2z=x3+rxz2IrEQRii} 

12 = {E : y2z = x' + nxz2 I n € QN11} 

13 ={Er : y2z=x3+r'z3 r' E QR11} 

14 = {E':y2z=x3+n'z3 rEQNi1 }. 

Achter and Cunningham also give the number of IFq-isomorphism classes of elliptic 

curves over F. in the ]Fq-isogeny class of a given curve over lFq as part of a more 

general result in [1]. 

One final problem which we have not yet mentioned is the problem of point count-

ing. In all the examples of elliptic curves over finite fields given in this thesis, the 

orders of the groups of IFq-rational points were very small. While such examples are 

well-suited to illustrating certain principles and theorems, they are unsuitable for 

real world applications, since elliptic curve cryptosystems are built on groups which 

are extremely large (e.g. q = 2155 or q = 2160). Counting the number of points of an 

elliptic curve over, say, IF2512 is much harder than counting the number of points of 

a curve over, say, F11 or IF13. It is also much more difficult to determine the group 

structure on these larger, cryptographically interesting curves, since there are many 

more possibilities. 
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To conclude, many open problems remain, and elliptic curves continue to present 

a subject of study that is interesting both from the point of view of mathematics 

and real world applications. 
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(E, OE) elliptic curve, 74 

(P) divisor (P), 92 
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C/K curve C defined over K, 10 
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tive plane curve, 9 

Div°(E) divisor 0 subgroup of Div(E), 
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E Weierstrass curve, 68 
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Rr domain of r#, 29 

R valuation ring of v, 22 
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X residue class of x in k[C, 18 
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27 
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a non-constant rational map, 58 
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