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ABSTRACT

This thesis investigates the measurement of fractional-order parameters that describe the

electrical impedance of tissues and devices without requiring direct impedance measure-

ments. Concepts from fractional calculus are imported to develop fractional circuit theory

and derive the voltage and current excited step responses and magnitude responses of the

single-dispersion Cole impedance model which is widely used in biomedicine and biol-

ogy. Using these responses a numerical graph-fitting and non-linear least squares fitting

routine have been applied to MATLAB simulations to assess the accuracy of this approach

to extract the fractional impedance parameters that describe this model. Experimentally

collected data from fruit tissues and ideal Cole models validate these methods.

These fractional calculus concepts are further applied to develop the circuit theory to

describe the current excited step response and magnitude response of the double-dispersion

Cole impedance model. MATLAB and PSPICE simulations of assess the accuracy of this

approach to extract the fractional impedance parameters that describe this model. Experi-

mentally collected data from the current-excited step response and voltage excited magni-

tude response of apples validates these methods.

Finally, the fractional circuit theory is applied to develop the expression for the voltage-

excited step-response of a fractional model for a supercapacitor which is then used with

non-linear least squares method extract the impedance parameters that characterize the

model. This method is validated experimentally using results collected from low capac-

ity supercapacitors with manufacturer ratings of 0.33 F, 1 F, and 1.5 F and high capacity

supercapacitors with 1500 F and 3000 F manufacturer ratings.
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CHAPTER 1

INTRODUCTION

1.1 Fractional Calculus

Fractional calculus, the branch of mathematics regarding differentiations and integrations

to non-integer orders, is a field that is over 300 years old [1]. Its origins dating back

to a correspondence from 1695 between Leibniz and L’Hopital, with L’Hopital inquiring

about Leibniz’s notation, dny
dxn , and the meaning if n = 1/2, and a reply from Leibniz, "It

will lead to a paradox, a paradox from which one day useful consequences will be drawn,

because there are no useless paradoxes" [2]. Time has proven Leibniz quite the prophet

as the applications of these fractional derivatives and integrals has seen explosive growth

in many fields of science and engineering during the past few decades. These applications

are in fields that include materials theory [3–5], bioengineering [6], control theory [7, 8],

electromagnetics [9], power electronics [10], integrator [11, 12] and differentiator circuits

[13], oscillators [14], multivibrator circuits [15], and filter theory [16–18] with potentially

many others [19, 20].

A fractional derivative of order a , with lower terminal a, is given by the Caputo deriva-

tive [21] as

aDa
t f (t) =

1
G(n�a)

Z t

a

f (n)(t)
(t � t)a+1�n dt (1.1)

where G(·) is the gamma function and n� 1  a  n. Though other definitions of the
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fractional derivative exist such as the Riemann-Liouville definition [1] given by

aDa
t f (t) =

dn

dtn

2

4 1
G(n�a)

tZ

a

f (t)
(t � t)a+1�n dt

3

5 (1.2)

or the Grünwald-Letnikov definition given by

aDa f (x) = lim
h!0

1
ha

[ x�a
h ]

Â
m=0

(�1)m G(a +1)
m!G(a �m+1)

f (x�mh) (1.3)

While there are no physical analogies to fractional derivatives and integrals like slope or

area under a curve they can begin to be visualized by examining integer-order derivatives

of sinusoidal functions and generalizing them to the fractional order. Take for example

the function f (x) = cos(x) given as a solid line in Fig. 1.1. Differentiating f (x) yields

d f/dx = sin(x) which can also be represented in terms of the cosine function as d f/dx =

cos(x� p/2), given in Fig. 1.1 as a dashed line. Taking the second derivative of f (x)

yields d2 f/dx2 = �cos(x) = cos(x� p), and further generalizing this process to the nth

order yields
dn

dxn cos(x) = cos
⇣

x�n
p
2

⌘
(1.4)

where n is an integer. Therefore the integer order derivatives cause a phase shift of n ·p/2

rad/s or n ·90� to the cosine function. Following this logic, if the order n is expanded to the

set of real numbers, then the phase shift introduced to the cosine function by the fractional

derivative is no longer limited to multiples of 90�. Therefore, a fractional derivative of

order n = 0.5, that is d0.5 f (x)/dx0.5 yields a phase shift of 45� to the cosine function, given

in Fig. 1.1 as black circles. Now, while the fractional derivatives of other functions cannot

be calculated as simply or intuitively as the sine and cosine functions, this special case

provides an intuitive entry point to fractional calculus and fractional derivatives.
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Figure 1.1: First order and 1/2 order derivatives of the function f (x) = cos(x).

1.1.1 Fractional Laplace Transform Operator

In the design and analysis of electronic circuits the Laplace transform is a very useful

tool, transforming the circuit from the time domain to the frequency domain. With this

transformation the analysis of circuits can be conducted algebraically rather than by solving

differential equations. This transformation when applied to a time domain function, f (t),

is given by

L { f (t)}= F(s) =
Z •

0�
f (t)e�stdt

where F(s) is the transformed function in the frequency domain and s is the Laplace trans-

form operator. Applying this transformation to the standard circuit elements of a capacitor,

resistor, and inductor, with zero initial conditions, yields their impedance characteristics in

the frequency domain described as

ZC(s) =
1

sC
ZR(s) = R

ZL(s) = sL
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where ZC,R,L are the impedance of the capacitor, resistor, and inductor, respectively, in the

frequency domain. While the Laplace transform operator in circuit analysis has tradition-

ally been raised to an integer order, it is mathematically valid to raise to a non-integer order,

sa , where n�1 < a < n, effectively representing a fractional-order system. Applying the

Laplace transform to the fractional derivative of (1.1) with lower terminal a = 0 yields

L {0Da
t f (t)}= saF(s)�

n�1

Â
k=0

sa�k�1 f (k)(0) (1.5)

Note, that we use the Caputo definition of a fractional derivative over other approaches

because the initial conditions for this definition take the same form as the more famil-

iar integer-order differential equations. Therefore, it becomes possible to define a general

fractance device with impedance proportional to sa [22] where the traditional circuit ele-

ments are special cases of the general device when the order is �1, 0, and 1 for a capacitor,

resistor, and inductor, respectively. Another special case of the general fractance device

is referred to as a Constant Phase Element (CPE), with impedance ZCPE = 1/( jw)aC or

1/saC in the s-domain, where C is the pseudo-capacitance with units F/s1�a and 0  a  1

the order. These units were originally proposed in [23] where [s] is the unit of time not to

be confused with s, the Laplace transform operator. However, throughout this work we will

refer to the units of the CPE as [F] for simplicity. The name of CPEs are in reference to

the phase angle, fCPE , which is independent of frequency and dependent only on the order

given as fCPE = ap/2. While a 2 ¬ is mathematically possible, the values from exper-

imentally collected data are typically in the range of 0 < a < 1. For reference, the bode

plots of sa when a = 0.2, 0.4, 0.6, 0.8, and 1 are given in Fig. 1.2. These devices have

also been called fractional capacitors, in reference to their order that takes a value between

the traditional circuit elements of a resistor and capacitor. It is for this reason that we use a

capacitor as the schematic representation of CPEs in this work. The use of fractional-order

elements in different fields of electrical engineering is steadily increasing including:
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Figure 1.2: Bode plots of sa when a = 0.2, 0.4, 0.6, 0.8, and 1.

• Modelling RF inductors with a frequency dependent resistor that varies by
p

f [24];

• Modelling the losses of coils using a fractional impedance [25];

• Generalizing the Smith chart to the fractional domain for plotting and matching frac-

tional impedances in the RF and microwave regime [26];

• Expanding the freedom and versatility of electric circuits by introducing fractional

orders [27, 28];

• Generalizing the integer-order cable model of the neuron system to the fractional

domain [29].

1.2 Fractional Models and Applications

Constant phase elements have shown numerous applications in the field of bioimpedance,

which measures the passive electrical properties of biological materials. These measure-

ments give information about the electrochemical processes in tissues and can be used to

characterize the tissue or monitor for physiological changes [30]. There are many fractional

models currently used in literature to model biological tissues, electrode-tissue interfaces,
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(a)

(b)

Figure 1.3: Theoretical (a) single dispersion and (b) double dispersion Cole impedance
models.

respiratory impedance, and supercapacitors with many diverse applications.

1.2.1 Cole Impedance Models

The most famous and well known fractional model is the Cole impedance model, intro-

duced by Kenneth Cole in 1940 [31]. This model is used for characterizing biological

tissues and biochemical materials. In literature, this model has also been commonly re-

ferred to as the Cole-Cole model or Cole-Cole impedance model. However, the Cole-Cole

model is actually a similar model introduced by the Cole brothers in 1941 regarding di-

electric permittivity [32]. Therefore, care needs to be taken when describing the model

to prevent confusion between work with dielectric permittivity and impedance. The Cole

model, shown in Fig. 1.3(a), is composed of three hypothetical circuit elements. A high-

frequency resistor R•, a resistor R1 and a CPE. The impedance of this model is then given

by

Z(s) = R• +
R1

1+ sa1R1C1
= Z0+ jZ00 (1.6)
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Noting that sa = ( jw)a = wa [cos(ap/2)+ j sin(ap/2)]. This model has become very

popular because of its simplicity and good fit with measured data, illustrating the behaviour

of impedance as a function of frequency. However, while this model is effective at repre-

senting experimentally collected bioimpedance data, it does not provide an explanation of

the underlying mechanisms. Physiologically, the resistances in this model are contributed

by the numerous intracellular, extracellular, and cellular membrane resistances within the

tissue; with capacitance contributed by the membrane capacitances of the numerous tissue

cells. The parameter a is a dimensionless quantity though it is possible to regard it in sev-

eral ways, including, as a distribution of relaxation times caused by the heterogeneity of

cell sizes and shapes, a measure of the deviation from an ideal capacitor in the equivalent

circuit, or as a measure of physical processes like the Warburg diffusion [30].

Now, while these models do not provide an explanation of the underlying mechanisms

there has been a large and expanding body of research regarding their use in many diverse

fields of biology and biomedicine. The single dispersion model and its parameters have

been investigated for applications in biomedicine that include:

• Characterizing muscle, liver, lung, and spleen tissues excised from sheep [33];

• Estimating the hemocrit value or total volume of red blood cells in a sample of human

blood [34] or assessing the quality of red blood cell suspensions under storage [35];

• Monitoring tissue ischemia, the condition of insufficient oxygen and nutrient supply,

from pH value estimated from the impedance parameters [36];

• Monitoring intra/extra-cellular volume or detecting tissue structural alterations through

the a parameter, also referred to as the bioimpedance width [37];

• Monitoring the hydration process of patients during hemodialysis as a potential indi-

cator of hypotension crisis [38];
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• Accurate modelling of different types of human skulls for simulation of their proper-

ties for bioelectric related research [39];

• Usefulness of the impedance parameters for estimating tissue response to chronic

microelectrode arrays [40];

• Detection of occlusal non-caviated carious for dentistry [41];

• Body composition analysis for total body water, extracellular fluid content, intracel-

lular fluid content, and fat mass [42].

Many investigations regarding the Cole parameters and their relation to cancerous tissues

have been conducted with applications that include:

• Aiding in the diagnosis of cervical cancer in women [43];

• Classifier based diagnostic tool for healthy and cancerous hepatic tissue in humans

[44];

• Identifying cancer [45] and the features of surrounding areas in breast tissue [46];

• Minimally invasive detection of bladder cancer [47];

• As a diagnostic and prognostic factor for survival in cancer patients [48].

An expanded model, the double dispersion Cole model, is used to accurately represent

the impedance over a larger frequency range or for more complex materials. This model,

shown in Fig. 1.3(b), is composed of an additional parallel combination of a resistor and

CPE in series with the single dispersion Cole model with total impedance given by

Z(s) = R• +
R1

1+ sa1R1C1
+

R2

1+ sa2R2C2
(1.7)

The double dispersion Cole model and its parameters have been investigated for applica-

tions in:
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• Characterizing intestinal tissue excised from sheep [33];

• Monitoring necrosis of human tumor xenografts during and/or after hyperthermia

treatment [49];

• Investigating age-related changes of human dentine to create non-destructive test

methods applied to early caries and micro-leakage identification [50].

1.2.2 Fractional Plant Models

Fractional impedance models are not only important in biomedicine but have shown useful

applications in biology, specifically in regards to plant physiology. The single dispersion

Cole model and its parameters having been investigated for:

• Characterizing the tissues of different fruits and vegetables including apples, apricots

[51], plumbs [52], potatoes, kiwis [51,53], garlic, tomatoes, and pears; with potential

to measure the maturity or give an estimate of lifespan for storage purposes [54];

• Relationship between the rooting ability and Cole parameters of shoots and leaves of

olive cuttings [55];

• Effects of drying and freezing-thawing treatments on eggplant pulp samples [56];

• Non-destructive method for detection of incipient mould development on wood sur-

faces [57];

• Fit the impedance data collected from the bark and wood of current and one year old

Scots pine shoots [58].

In [58] the single dispersion Cole model provided a more accurate fit with experimental data

than two other integer circuit models for bark and wood, even when both integer models

had more parameters (5 and 9, respectively) than the fractional model (3). For comparison,

the integer order models are given in Figs. 1.4(a) and (b). This study concluded that the
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(a)

(b)

Figure 1.4: Lumped circuits for modelling (a) bark and (b) wood to compare against a
fractional circuit model.

fractional model is better suited to model tissues with numerous types of cells with different

sizes and morphologically different structures [58]. The double dispersion Cole model has

also been investigated as an indicator of frost hardiness in Scots pine shoots [59].

The Cole impedance models are not the only fractional impedance models useful in

matching the impedance data collected from plant tissues. The model, shown in Fig. 1.5,

is composed of three resistors and three CPEs with impedance given by

Z(s) = R• +
R1

1+ sa1R1C1
+

R2

1+ sa2R2C2
+

1
sa3C3

(1.8)

is used to fit the impedance data collected from root/stem/electrode interface of willows to

monitor the root growth through the change in the impedance parameters [60]. This method

was investigated as a method of measuring root growth with the resistances (R1 + R2)

showing the highest correlation with the root fresh mass. This study also concluded that

the speed and non-destructive nature of the measurements warranted further study on the
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Figure 1.5: Fractional impedance model to fit root/stem/electrode interface of willows
grown to monitor root growth.

Figure 1.6: Fractional order model to analyze moisture gradients of wood.

effects of soil type, moisture content, and electrode position on the impedance parameters.

The model given in Fig. 1.6 composed of two CPEs and a resistor with impedance

given by

Z(s) =
1

sa1C1
+

R2

1+ sa2R2C2
(1.9)

is used to fit the impedance data collected from a wood sample to estimate the internal mois-

ture gradients [61]. For this study, a portable device with applications to optimize wood

drying, condition surveys of wood buildings and construction, and estimates of pulpwood

moisture gradients was developed [61]. This portable device as well as others developed to

extract the Cole parameters from plants and trees without requiring the use of an impedance

analyzer [62, 63] creates the potential for extensive field studies in wood research not pos-

sible using traditional laboratory equipment.

1.2.3 Electrode Tissue Interface Model

Modeling the electrode-tissue interface is important for all systems involving biopotential

recordings and stimulations. This is even more important for pacemakers because device
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(a)

(b)

Figure 1.7: (a) Tissue-electrode circuit model for a unit surface area and (b) simplified
distributed fractional order model.

failures are often the result of properties of the electrode-tissue interface rather than com-

ponent failure intrinsic to the device [64] with reported failures by commercial devices

highlighting the need for more accurate models to ensure patient safety [65]. An equiva-

lent fractional order circuit model of the electrode-tissue interface in living hearts proposed

in [64], is shown in Fig. 1.7(a), that describes the impedance for a unit surface area. This

model was derived from experimentally collected data from perfused living rat hearts and

is composed of 6 elements to describe the behaviour of the tissue-electrode interface where

RB is the bulk tissue resistance, Ra1 and Ra2 are the electrode access resistances, q is the

electrochemical charge transfer resistance, C is the dipole layer capacitance, and ZD is

a spatially confined Warburg impedance (CPE with a = 0.5). It was recently proposed

in [65] that the experimental data of the model in Fig. 1.7(a) could also be represented

by the fractional order model given in Fig. 1.7(b); reducing the model to 3 elements, a

resistance in series with two CPEs with impedance given by the expression

Z(s) = R• +
1

saC1
+

1
sbC2

(1.10)

Though in reducing the electrode-tissue interface from that shown in Fig. 1.7(a) to that

in Fig. 1.7(b) we lose the physiological description of each contributing element of the

impedance though the simplified model provides a good fit to the experimental data. Frac-

tional models are also useful in simulations of the electrode-tissue interface and are relevant
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Figure 1.8: Fractional order impedance model of the respiratory system of humans
proposed.

to biosensors, chronic indwelling electrodes, and cardiac pacemakers [64–66].

1.2.4 Fractional Respiratory Model

Fractional order models have been shown useful in modeling the mechanical impedance of

the respiratory system in dogs [67], cats [68], and humans [69]. An electrical equivalent

representation of the mechanical impedance of the human respiratory system, given in Fig.

1.8, is composed of series connection of 3 elements. The impedance of this system is given

by the expression

Z(s) = R+ saL+
1

sbC
(1.11)

where R is a Newtonian resistance, L the inertance, and C the compliance. This model

is unique in that it introduces a fractional element, with impedance ZL = saL, different

than the CPE’s previously described. Where the order of the previous CPE’s places them

between the traditional elements of a resistor and capacitor, the order of this element places

it between a resistor and inductor. It is for this reason that we use an inductor as the

schematic representation of this element in Fig. 1.8 and could also refer to this element as

a fractional inductor.

This model has been verified in both frequency and time domains to reasonably fit the

experimentally collected data using the forced oscillation technique to measure the respi-

ratory impedance. These impedance parameters are potentially useful in tuning controllers

to deliver the reference pressure value and obtain optimal ventilation for a patient requiring

minimal breathing effort yielding improvements to ventilatory assisting devices [69].

It has been shown in [70] that changes in the mechanical properties of lung parenchyma
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can be detected in the impedance parameters between healthy patients and those with

chronic pulmonary disease. This model is able to capture the viscoelastic changes of soft

tissues in the lungs. It has further been shown in [71] that the fractional order behaviour ob-

served in the respiratory input impedance is dependent on not only the tissue viscoelasticity,

but also on the intrinsic geometry and morphology of the respiratory tree. The fractional

model of Fig. 1.8 has also been used to investigate the respiratory mechanics in total liquid

ventilation [72]. With the fractional values acknowledged to best explain the frequency-

dependence of the input impedance with useful applications for the design of a pressure

controller for total liquid ventilators and monitoring patient respiratory parameters during

treatment.

1.2.5 Fractional Supercapacitor Models

Supercapacitors also referred to as ultracapacitors or electric double layer capacitors, are

high energy storage devices with many practical uses in energy storage for wind tur-

bines [73], photovoltaic systems [74, 75], energy harvesting [76], hybrid and electric vehi-

cles [77], and biomedical sensors [78]. Traditionally, these capacitors have been modelled

using RC networks to describe their behaviour over wide frequency bands, with larger fre-

quency bands requiring a greater number of parameters [79]. However, recent work has

employed the concept of fractional impedances to model and describe the behaviour of

these components [80, 81]. These fractional models have been developed to describe the

impedance in low and medium frequencies [82, 83], long-term transients [84], and step

response characteristics [85, 86] of supercapacitors; showing much better fit with exper-

imental data over their integer order counterparts and requiring fewer model parameters.

A very simple fractional-order supercapacitor model, shown in Fig. 1.9, is composed



15

Figure 1.9: Theoretical fractional impedance model of a supercapacitor.

of a series resistor, Rs, and CPE. The impedance of this fractional model is given by

Zc(s) = Rs +
1

Casa (1.12)

This model is a simplification of the model derived from the porous electrode behaviour of

supercapacitors and represents the low and high frequency behaviour of the supercapacitors

when a = 1 and a = 0.5, respectively [87]. This model has been used in [82] to model

the impedance in the frequency range from 10 mHz to 1000 Hz and [83] in the frequency

range 50 mHz to 215 mHz with a ⇡ 1 and 450 mHz to 100 Hz with a ⇡ 0.5. This model

has been selected over other fractional models because of its simplicity and good fit with

experimental data at low and high frequencies. Using this model, supercapacitors belong

to a family of devices known as fractional capacitors, of which traditional capacitors are

a small subset, possessing fractional impedances. Now, while all capacitors have been

shown to possess fractional characteristics [23] and should be modelled with an impedance

Z(s) = 1/saCa , the value of a is very near to 1 for commercially available low-value

capacitors. There has been much work to realize low-value fractional capacitors using

photolithographic manufacturing [3,88] and electrolyte processes [89,90] with applications

in controls [8], oscillators [14,15], power electronics [10], and analog filter design [18,91].

Typically, the impedance parameters of capacitors are measured using equipment such

as LCR meters. However, these pieces of equipment operate on the assumption that the

circuit element can be modelled using integer order impedances which yields incorrect

results when trying to measure fractional impedances. As a result, the determination of

the fractional parameters to describe supercapacitors has required direct measurement of
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Figure 1.10: Impedance loci used to graphically extract the single dispersion Cole
impedance parameters.

the impedance [83] or frequency response [86] requiring either an impedance or network

analyzer. Therefore, there exists a need for both equipment and techniques to measure the

fractional characteristics of a circuit element directly.

1.3 Extraction Methods

To characterize a particular tissue or material requires the determination of the fractional

impedance parameters that completely describe the impedance behaviour as a function of

frequency. For example, using the single or double dispersion Cole models this requires the

determination of the four (R•, R1, C, a) or seven (R•, R1, R2, C1, C2, a1, a2) parameters,

respectively. Early methods extracted the parameters graphically from an impedance plot

relating the imaginary impedance, Z00, to the real impedance, Z0. An example impedance

loci used to extract the single dispersion Cole impedance parameters is shown in Fig. 1.10.

From the circular arc the theoretical low frequency resistance, Ro, and high frequency re-

sistance, R•, can be directly measured (see Fig. 1.10) where R1 = Ro �R•. The order,

a , can be calculated from the measured angle fCPE through the relation fCPE = ap/2.

While the frequency at which |Z00| has its maximum is equal to 1/t and the dispersion time

constant is given as t = [(Ro �R•)C]1/a , enabling the calculation of C with the previously

measured parameters (Ro, R•, a). The double dispersion Cole parameters can be extracted

in a similar fashion, with two circular arcs appearing in the impedance loci as a result of
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the two dispersions.

With the rise of computers and very powerful numerical fitting software such as LEVM

/ LEVMW [92] and MATLAB [93], the majority of parameters are now estimated using

non-linear least squares routines fitting experimental data to the desired model. Parameters

are selected such that the least squares error between the experimental data and estimated

response are minimized. While these fitting processes were initially applied to impedance

data, research has been expanded to extract the parameters without requiring direct mea-

surement of the impedance. Instead, parameters are extracted only from the real part of

the impedance (Z0) [94, 95], the imaginary (Z00), or the modulus [42, 95] components of

the impedance. Methods without requiring fitting routines have also been investigated to

extract the parameters from the magnitude response [51,52] and the time domain response

to a triangle-wave current input [96].

1.4 Research Objectives

Fractional order circuit models provide a better fit for experimentally collected impedance

data of both biological tissues and supercapacitors over their integer-order counterparts.

These fractional models, while lacking in providing a explanation of the underlying mech-

anisms responsible for producing their behaviour, are still very useful showing a wide ar-

ray of applications in biomedicine and biology. The practical application of these mod-

els warrants significant continued research into not only their use as prognostic and di-

agnostic tools, but also into techniques for their measurement. Traditionally, to collect

the impedance data requires an impedance analyzer which is expensive and not portable,

though portable hardware to accomplish this same task has been reported in [47,61,97,98].

However, these instruments use direct measurements of the impedance. By implement-

ing indirect measurement techniques there is the potential to further decrease the cost of

instruments by reducing the amount of required hardware; with potential to significantly

reduce the barriers to conduct research especially with regards to real-time monitoring with
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portable devices [99].

This research is dedicated to the investigation of alternative methods to extract frac-

tional impedance characteristics from biological tissues and supercapacitors without re-

quiring direct impedance measurements. This is accomplished by using concepts from

fractional calculus to further the development of fractional circuit theory and model the

responses of these materials in the time and frequency domains. Leading to the develop-

ment of methods to extract the fractional impedance parameters indirectly from the step

and magnitude responses of the materials or devices.

1.5 Thesis Overview

This thesis is divided into three areas of research focus regarding the extraction of fractional

impedance parameters, without requiring direct impedance measurements, from fractional

circuit models. These three fractional models are the single and double dispersion Cole

impedance models applied to biological tissues and a fractional model applied to superca-

pacitors.

Chapter 2 applies concepts from fractional calculus to develop the fractional circuit the-

ory required to model the current and voltage excited step response and magnitude response

of the single-dispersion Cole impedance model. From the step-excited responses a numer-

ical curve fitting method is developed and applied to extract the impedance parameters that

describe this model. To further overcome the accuracy limitations, which are highlighted in

MATLAB simulations, a non-linear least squares method is applied to the current and volt-

age excited step responses with the improvements verified from experimentally collected

fruit tissue datasets. Finally, the least-squares method is applied to the magnitude response

of this model to again improve the accuracy with results verified in simulation and from

experimental data collected from fruit tissues.

Chapter 3 extends the circuit theory introduced in Chapter 2 to the double-dispersion

Cole impedance model. Fractional calculus is applied to develop the fractional circuit
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theory to model the current-excited step response and magnitude response of this fractional

impedance model. Using these models, non-linear least squares methods are applied to

both frequency and time domain datasets of the double dispersion Cole impedance model

to extract the fractional impedance parameters that characterize this model. The extractions

are validated by both simulations and experimentally collected results from fruit tissues.

Chapter 4 presents the impact of using integer-order techniques to measure a CPE or

supercapacitor and how parameters extracted with these methods inaccurately represent the

transient characteristics of these devices. Fractional circuit theory is applied to a fractional-

impedance supercapacitor model to describe the voltage-excited step response of this de-

vice. Using this fractional model a non-linear least squares method is applied to extract the

fractional impedance parameters that accurately describe their transient behaviour. This

process is verified using experimentally collected step responses from both low and high

capacity supercapacitors.

Chapter 5 concludes the thesis and suggests possibilities for future research based off

of the direction of this work.
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CHAPTER 2

SINGLE DISPERSION COLE IMPEDANCE MODEL

Figure 2.1: Theoretical single-dispersion Cole impedance model.

The single-dispersion Cole impedance model shown in Fig. 2.1, previously introduced

in Section 1.2.1, has been extensively used in both biology and biomedicine to charac-

terize and investigate biological tissues for many diverse applications. This model has an

impedance given by

Z(s) = R• +
R1

1+ saR1C
(2.1)

Typically, when characterizing a tissue using this model the impedance parameters (R•,R1,

a , C) are extracted from the impedance data directly measured using an impedance ana-

lyzer. This requires hardware to apply a sinusoidal input signal at various frequencies to

excite the tissue and the measurement of the magnitude and phase of the corresponding

response for further data processing. However, it is possible to extract these same param-

eters without requiring direct impedance measurements. In this chapter indirect methods

to extract the impedance parameters from the voltage and current excited step responses

and the magnitude response of the single-dispersion Cole impedance model are presented.

For these methods the underlying circuit theory and process are presented and validated
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Figure 2.2: Theoretical circuits to apply a (a) voltage-step and (b) curent-step input to the
single dispersion Cole impedance model.

by both simulations and experimentally collected results from both ideal circuits and fruit

tissues.

2.1 Numerical Extraction from Step Response

In [100] we presented a method to numerically extract the single dispersion Cole impedance

model parameters from collected step response dataset without requiring direct measure-

ment of the impedance. Two simple circuits that can be used to obtain the step responses of

the Cole impedance model to either a voltage or current step-input are given in Figs. 2.2(a)

and (b), respectively.

It can be shown that the transfer function of Fig. 2.2(a) assuming zero initial conditions

is
Vo(s)
Vin(s)

=
sa R•

R+R•

sa + R+R•+R1
CR1(R+R•)

+

R•+R1
CR1(R+R•)

sa + R+R•+R1
CR1(R+R•)

(2.2)
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which if Vin(s) is a step function of magnitude Vcc, that is Vin(s) = Vcc/s , (2.2) becomes

Vo(s) = Vcc

"
sa�1 R•

R+R•

sa + R+R•+R1
CR1(R+R•)

+
s�1 R•+R1

CR1(R+R•)

sa + R+R•+R1
CR1(R+R•)

#
(2.3)

Applying the Laplace transform formula for the Mittag-Leffler function [21]

L

(
k!sa�b

(sa ⌥a)k+1

)
= tak+b�1E(k)

a,b (±ata) (2.4)

on (2.3) yields a time domain equation of the form,

vo(t)=Vcc


R•

R+R•
Ea,1

✓
�ta R+R• +R1

CR1(R+R•)

◆
+

R• +R1

CR1(R+R•)
taEa,a+1

✓
�ta R+R• +R1

CR1(R+R•)

◆�

(2.5)

where vo(t) is the time domain expression of the output voltage and Ea,b (·) is the two-term

Mittag-Leffler function defined as [21]

Ea,b =
•

Â
k=0

zk

G(ak+b )
(2.6)

where G(·) is the gamma function. Applying this same procedure to the circuit of Fig.

2.2(b), when Iin(s) is a step function of magnitude Icc, yields the time domain expression

of the output voltage due to a step current input given by

vo(t) = Icc


R•Ea,1

✓
�ta

R1C

◆
+

R• +R1

CR1
taEa,a+1

✓
�ta

R1C

◆�
(2.7)

2.1.1 Comparison to Step Response when a = 1

From the definition of the two-term Mittag-Leffler function we can determine the time-

domain expressions from (2.5) and (2.7) at the boundary between traditional and fractional



23

calculus, that is the case when a = 1. Knowing that

E1,1(z) = ez (2.8)

E1,2(z) =
ez �1

z
(2.9)

and substituting both (2.8) and (2.9) into (2.5) and (2.7) we obtain the more familiar expres-

sions for the case when a = 1. The expression for the output voltage of the step-voltage

excited circuit of Fig. 2.2(a) can be shown as

vo(t) =
Vcc

R+R• +R1


R• +

R1

R+R•

✓
R• +R

✓
1� e�t R+R•+R1

CR1(R+R•)

◆◆�
(2.10)

and the output voltage of the step-current excited circuit of Fig. 2.2(b) can be shown as

vo(t) = Icc

h
R• +R1

⇣
1� e

�t
CR1

⌘i
(2.11)

For further verification we compare MATLAB simulations of (2.5) and (2.7) when a = 1

to (2.10) and (2.11), respectively. Using a MATLAB script to calculate the Mittag-Leffler

function [101] the time domain output voltages for both the step-voltage and step-current

excited circuits are shown in Figs. 2.3(a) and (b), respectively. For these simulations the

values of all resistors were set to 1 kW with a capacitor of 1 µF with step inputs of 1 V

and 1 mA for the voltage and current excited responses, respectively. Figure 2.3(a) clearly

indicates that the waveforms generated by (2.5) for a = 1 and (2.10), shown as black circles

and solid lines, are in perfect agreement. With those same results reflected in Fig. 2.3(b)

for the waveforms using (2.7) for a = 1 and (2.11) shown as a dashed and solid lines,

respectively. Verifying in simulation that the expressions derived from fractional calculus

with the Mittag-Leffler functions are equivalent to those derived with traditional calculus

when a = 1.
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Figure 2.3: Comparison of MATLAB simulated output voltage of step (a) voltage-excited
and (b) current-excited Cole impedance when a = 1 using Mittag-Leffler functions and

traditional expressions, shown as black circles and solid lines, respectively.

2.1.2 Extraction from Voltage-Excited Step Response

With expressions to describe the step response of the voltage excited Cole impedance of

Fig. 2.2(a) using (2.5), it is possible to use properties of the step-responses to extract the

impedance parameters that describe the model. First, at times both very soon and very far
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after the step is applied notice that

vo(0+) = lim
t!0+

vo(t) =
R•

R+R•
Vcc (2.12)

vo(•) = lim
t!•

vo(t) =
R• +R1

R+R• +R1
Vcc (2.13)

Equations (2.12) and (2.13) show that the output voltage at times very near and very far

from the input step are independent of the charging time related to C and a and only

dependent on the voltage divider networks created by R, R•, and R1. This is verified when

we observe the step response in Fig. 2.3(a) where it can be observed that for times less

than 10 µs the step voltage approaches 0.5 V and for times above 10 ms it approaches 0.66

V, which knowing R = R• = R1 = 1 kW and Vcc = 1 V, exactly match those predicted by

(2.12) and (2.13). Therefore, by measuring vo(t) at times very near and very long after the

voltage step is applied, we can use the relationships of (2.12) and (2.13) to calculate the

values of R• and R1 in the Cole impedance knowing R and Vcc.

Another property of the step response of (2.5) that is useful for the extraction is that

the slope of the rise time, when plotted on a log time scale, is independent of C for a fixed

R•, R1 and R, showing a dependency on only the value of a . This slope m, with units of

V/decade, is calculated as

m =
V90% �V10%

log10

⇣
tV90%
tV10%

⌘ (2.14)

where V90% and V10% are the voltages at 90% and 10%, respectively, of the total rise time

of the step response of (2.5) and tV90% and tV10% are their corresponding times after the step

input was applied. The numerically calculated slopes using (2.14) for the step responses

simulated with (2.5) for values of a from 0.2 to 1.0 in steps of 0.2 while varying C from

0.001 µF to 1 µF in decade steps are given in Table 2.1. For all of these calculations the

values were fixed such that R = R• = R1 = 1 kW with an input step of 1 V. For each value

of a we note that the calculated slope is the same regardless of the value of C. This change

of slope for resistor values of 1 kW, a 1 µF capacitor, and 1 V step for values of a from
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C (µF) a
0.2 0.4 0.6 0.8 1.0

1 9.4276 4.5380 2.8226 1.9000 1.3395
0.1 9.4276 4.5380 2.8226 1.9000 1.3395

0.01 9.4276 4.5380 2.8226 1.9000 1.3395
0.001 9.4276 4.5380 2.8226 1.9000 1.3395

Table 2.1: Numerically calculated slopes in V/decade using (2.14) for values of a from
0.2 to 1.0 in steps of 0.2 while varying C from 0.001 µF to 1 µF in decade steps with

R = R• = R1 = 1 kW and an input step of 1 V.
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Figure 2.4: Comparison of slope of the step response of Fig. 2.2(a) for varying values of
a from 0.6 to 1.0 in steps of 0.1 with R = R• = R1 = 1 kW and C = 1 µF, respectively.

0.6 to 1.0 in steps of 0.1 is presented in Fig. 2.4. From this figure, note that the slope of

each simulated step response increases with the value of a reinforcing that this slope is

independent of C and dependent on a for fixed R, R•, and R1. Therefore, by measuring the

slope of the step response over its 10%�90% rise time, knowing R and having previously

determined R• and R1, we can extract the value of a by comparing the collected dataset to

a simulated step response while varying a until the slope of the rise time of the simulation

matches the collected data.

Finally, the last step response property useful in extracting the last impedance parame-

ter, C, is that the position of the rise time is dependent on C for fixed values of R, R•, R1

and a . Therefore, the value of C acts as a time scaling factor shifting the position of this
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Figure 2.5: Comparison of location of VM of the step response of Fig. 2.2(a) for varying
values of C from 0.001 µF to 1 µF in decade steps with fixed resistors and a values of 1

kW and 0.8, respectively.

rise time to higher or lower times with a determining the slope of the rise time for fixed

R, R•, and R1. From Fig. 2.5, with fixed values of a = 0.8 and R = R• = R1 = 1 kW,

decreasing C results in decreasing the location of the rise time without changing the slope.

By comparing the midpoint voltage, that is the voltage that is half-way between the lower

and upper limits, calculated as

VM =
R2 +3RR• +2R2

• +R•R1

2(R+R•)(R+R• +R1)
Vcc (2.15)

observe that tVM decreases with decreasing C. From Fig. 2.5 each step response has a slope,

calculated using (2.14), of 1.9 V/decade while tVM decreases from 68.928 µs to 3.8761 µs,

0.21797 µs, and 12.257 ns when decreasing the capacitance from 1 µF to 0.1 µF, 0.01

µF, and 0.001 µF, respectively. How a change in C impacts the location of tVM is further

quantified by observing that this shift per capacitance is linear when calculated as

DTM =

log10

✓
tVM2
tVM1

◆

log10

⇣
C2
C1

⌘ (2.16)
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Capacitance Midpoint Voltage Midpoint Time Shift Constant
C (µF) VM (V) tVM (s) DTM

1 0.5833 6.8928⇥10�5 0.125
0.1 0.5833 3.8761⇥10�6 0.125

0.01 0.5833 2.1797⇥10�7 0.125
0.001 0.5833 1.2257⇥10�8 -

Table 2.2: Numerical calculation of VM, tVM , and DTM using (2.5) while varying values of
C for a = 0.8 and R = R• = R1 = 1 kW.

where tVM1,2
are the midpoint voltage times for any two step responses with fixed a , R,

R•, and R1 where tVM2
> tVM1

to maintain a positive value, and C1,2 are the corresponding

capacitances of each step response. A comparison of the numerically calculated VM, tVM ,

and DTM values for each simulated step response in Fig. 2.5 are given in Table 2.2. Note that

DTM for each row is calculated using the values in that current row and one immediately

below, but could also be calculated using a row and any row below it yielding the same

DTM. Having previously extracted the other Cole impedance parameters, C is extracted by

calculating DTM from two simulated step responses using known capacitances, C1 and C2

where C2 > C1 and the previously extracted impedance parameters. Then, knowing DTM,

C is calculated in two steps

n =
log10 (tVm/tC1)

DTM
(2.17)

C = C1 ·10n (2.18)

where tVm is the closest sampled time above the midpoint voltage Vm from the collected step

response and tC1 is the time from the simulated step response using the known capacitance

C1 at the same voltage of tVM . Note, since it would be very difficult to ensure that the

step response is sampled at exactly VM we can use the first sampled value above VM in

the calculation, as long as we use this same voltage value and corresponding time when

comparing against the simulated step response.
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Fruit
ExtractedValue

RelativeError(%)

R• (kW) R1 (kW) a C (nF)

Apricot 1 0.406 12.488 0.739 63
�7.08⇥10�9 7.55⇥10�4 �4.34⇥10�5 5.28⇥10�4

Apple 1 2.72 26.915 0.633 122
�7.34⇥10�8 �7.34⇥10�3 �1.57⇥10�3 1.60⇥10�2

Kiwi 1 0.260 4.765 0.669 265
�6.70⇥10�8 2.15⇥10�3 �6.64⇥10�4 7.05⇥10�3

Potato 1 0.323 6.805 0.731 98
�8.28⇥10�9 6.86⇥10�4 �1.23⇥10�4 1.43⇥10�3

Table 2.3: Numerically extracted Cole impedance parameters and relative errors from
simulated step responses using previously extracted fruit parameters.

In summary, the useful properties for the impedance parameter extraction from this

investigation of the voltage-excited step response are:

1. Lower and upper voltage limits depend on only R, R•, and R1;

2. Slope of the rise time on a log scale is dependent only on a;

3. Position in time of the midpoint voltage is dependent only on C.

Using these properties the impedance parameters R•, R1, C, and a can be extracted from a

collected dataset using those regions of the step response described above that are depen-

dent on only a single parameter to extract that parameter. The pseudo-algorithm to extract

these parameters is shown in Fig. 2.6.

2.1.3 Extraction from Ideal Simulated Datasets

Implementing in MATLAB the process described in Section 2.1.2, and shown in Fig. 2.6,

the impedance parameters from simulated step response datasets were extracted when the

impedance parameters of fruits previously extracted in [51] were used. The extracted values

as well as their relative errors when compared to the values presented in [51] are given in

Table 2.3. For the simulated step responses R = 1 kW and Vcc = 5 V. The simulated dataset

using the theoretical impedance parameters for Apricot 1 [51] is given in Fig. 2.7 as a solid
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Figure 2.6: Psuedo-algorithm to numerically extract the Cole impedance parameters from
the step response data.

line. From this dataset R• was calculated using a value of vo(t) when t < 0.1 ns, the region

where vo(t) is very close to its lower limit. Rearranging (2.12) to the form

R• =
vo(0+)R

Vcc � vo(0+)
(2.19)
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and using vo(0)⇡ vo(0.5011 ps) = 1.4438 V yields R• = 0.406 kW. Next, R1 is calculated

by rearranging (2.13) to the form

R1 =
vo(•)(R+R•)�VccR•

Vcc � vo(•)
(2.20)

and using vo(•) ⇡ vo(100 s) = 4.6401 V, the region where vo(t) is very close to its up-

per limit, we calculate R1 = 12.488 kW. Next, using the slope calculated with (2.14), 1.202

V/decade, the value of a was numerically determined to be 0.739. Now, two step responses

using C1 = 1 nF and C2 = 10 nF with the previously extracted R•, R1, and a are generated

and sampled at the first value greater than VM = 3.042 V in the dataset. These sampled

values are taken at 3.1207 V at times of 7.3312 ns and 0.16533 µs for C1 and C2, respec-

tively. Using these collected values DTM is calculated with (2.16) yielding 1.3532. With

DTM and vo(1.9953µs) = 3.1207 V from the generated dataset in Fig. 2.7 we determine C,

using (2.18) as C = 63 nF. All of these extracted values show very good agreement with

the theoretical values, with very small relative errors, given in Table 2.3. The step response

using these extracted values is given in Fig. 2.7 as black circles showing perfect agreement

with the simulated dataset given as the solid line. This verifies that we can extract all the

impedance parameters (R•, R1, a , and C) numerically from the simulated step-response

data using the proposed process in Section 2.1.2.

2.1.4 PSPICE and Experimental Results

Building on the extraction of the impedance parameters from ideal datasets, we extract the

Cole impedance parameters from the circuit of Fig. 2.2(a) implemented with a standard

capacitor (a = 1) and R = 1 kW in both PSPICE and realized with discrete components.

The impedance parameters used in the PSPICE simulation are given in Table 2.4. For this

transient simulation a step voltage of 5 V with a rise time of 5 ns, pulse width of 1 ms,

and period of 2 ms was applied. The output voltage, vo(t), collected from 10 ns to 1 ms is
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Figure 2.7: MATLAB simulated step responses using theoretical and extracted Cole
impedance parameters of an apricot as a solid line and black circles, respectively, with

R = 1 kW and Vcc = 5 V.

Impedance Parameters
R• (kW) R1 (kW) a C (nF)

PSPICE 1.786 25.475 1.000 40.75
Extracted 1.786 25.460 1.000 40.79

Relative Error (%) �6.88⇥10�3 5.82⇥10�2 2.38⇥10�5 �8.88⇥10�2

Table 2.4: Theoretical and numerically extracted Cole impedance parameters with
relative errors from PSPICE simulated step response for an ideal capacitor (a = 1).

shown in Fig. 2.8 as a solid line. The same algorithm implemented in MATLAB and pre-

viously applied to the ideal datasets was applied to the PSPICE dataset with the extracted

parameters, as well as their relative errors, are given in Table 2.4. Again, the numerically

extracted Cole impedance parameters show very close agreement with the theoretical val-

ues. Using the extracted parameters from Table 2.4, the step response of the circuit was

simulated using (2.5), shown in Fig. 2.8 as a dashed line. It shows near perfect agree-

ment with the PSPICE simulated results, further verifying that the algorithm can be used

to extract the Cole parameters from step response data.

Finally the Cole impedance of Fig. 2.2(a) was realized using the components listed

in Table 2.5 with R = 0.996 kW. Using this experimental setup a voltage pulse with 20

ns edge times, 500 ms pulse width, and period of 1 s generated by an Agilent 33250A
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Figure 2.8: PSPICE and MATLAB simulated step responses using theoretical and
numerically extracted Cole impedance parameters as solid and dashed lines, respectively,

with R = 1 kW and Vcc = 5 V.

Impedance Parameters
R• (kW) R1 (kW) a C (nF)

Measured 1.742 31.99 1.000 47
Extracted 1.796 34.73 1.000 45

Relative Error (%) �3.138 �8.595 2.22⇥10�14 4.243

Table 2.5: Measured and numerically extracted Cole impedance parameters with relative
errors from experimentally collected step response.

waveform generator was applied to the circuit under test. The resulting response of the

circuit was collected using a Tektronix 745D digital oscilloscope with maximum sampling

rate of 2 GS/s and averaging 20 collected samples is given in Fig. 2.9(b) as the solid line

labeled vo. Averaging was used to reduce the noise in the collected waveform in order to

achieve more accurate impedance parameters through the numerical extraction. The MAT-

LAB algorithm was applied to the experimentally collected dataset in Fig. 2.9(b), with

the numerically extracted Cole impedance parameters given in Table 2.5 along with their

relative errors compared to the measured component values. Comparing the measured and

extracted values we find that they are relatively close, with less than ±10% error for all

components. Two main sources of error that contribute to the extracted parameters de-

viating from the measured values more than in simulation are noise and non-ideal vin(t).
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Figure 2.9: Experimental and MATLAB simulated step responses using numerically
extracted Cole impedance parameters as solid and dashed lines, respectively, with

R = 0.996 kW and Vcc = 5 V.

Even though averaging was used to reduce the noise on the measured output voltage, we

still see some noise contribution in Fig. 2.9(b) contributing errors to all of the impedance

parameters. Also, vin(t) in Fig. 2.9(b) is not a perfect 5 V signal, as was the case in both

the MATLAB and PSPICE simulations, which introduces error into both the calculated R•

and R1 values and later a and C in subsequent calculations. Nevertheless, the step response

simulated using (2.5) and the extracted parameters, shown in Fig. 2.9(b) as the dashed line,

shows good agreement with the experimentally collected response. This confirms that the

process described in Section 2.1.2 can be implemented and successfully used to numeri-

cally extract the Cole impedance parameters (R•, R1, a , and C) from the experimentally

collected step response of the circuit in Fig. 2.2(a).

2.1.5 Limitations

There are two serious limitations introduced by both the signal generator and oscilloscope

when measuring the voltage excited step response of the Cole impedance test circuit in Fig.

2.2(a). First, note that the voltage-excited step response in Fig. 2.10 exhibits 3 distinct

regions: 1) at very low times, when the CPE is uncharged, a constant voltage results from
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Figure 2.10: Lower divider, charging, and upper divider regions common to all step
responses of the circuit in Fig. 2.2.

the voltage divider formed by R and R•, 2) the increasing voltage region when the CPE

is charging, and 3) at high times, another constant voltage region from the voltage divider

network of R, R•, and R1 when the CPE is fully charged. When applying a step input

to the circuit, the rise time of this generated signal must be fast enough that it reaches its

steady state value before the capacitor begins to charge, that is while it is still in Region 1.

Otherwise, if the signal reaches its steady state value during the charging region, Region 2,

it will not be possible to capture an accurate value of the Region 1 voltage divider. Without

this value it is impossible to calculate an accurate value of R•. The same is true when

measuring this step response using an oscilloscope, which must sample the output voltage

quickly enough to provide a value within Region 1, or else introduce significant error into

the extracted R• value which propagates into all further calculations.

With the numerical extraction of the impedance parameters requiring a value in Region

1, it becomes important to know what impacts the location in time of Region 2. From Sec-

tion 2.1.2 we previously noted that both a and C impact the location in time and duration of

Region 2. With the length of the Region 2 increasing with decreasing a while the location

decreases in time with decreasing C. Therefore, lower values of both a and C require much

faster signal generators and oscilloscopes to be able to capture the three distinct regions of
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Figure 2.11: Minimum sampling time required for R• extraction within 5% for
0.5  a  1 and 1 pF C  1 µF when R = R• = R1 = 1 kW.

the step response. A simulation showing the minimum time to keep the calculated value

of R• within 5% of its value is shown in Fig. 2.11. This figure was generated for fixed

R = R• = R1 = 1 kW while varying C from 1 pF to 1 µF and a from 0.5 to 1. Therefore,

the signal generator must have a rise time and the oscilloscope a sampling time equal to or

lower than this value in order for the numerical extraction to give an R• value within 5%.

2.2 Least Squares Extraction from Step Response

It is clear that the measurement of vo (0) and vo (•) has a significant impact on the accuracy

of the extracted Cole impedance parameters. Since their exact values cannot be measured

from a response that does not extend from t = 0 to t = •, their measured values will only

ever be an approximation. These approximate values introduce errors into the extracted R•

and R1 that propagate into the extracted a and C; which require accurate R• and R1 values

for their calculation. For example, the effect of these errors on the extracted parameters

from (2.5) simulated with R = R• = R1 = 1 kW, a = 0.75, C = 100 nF, Vcc = 5 V, and the

output voltage sampled at times vo (0)⇡ vo(1 ps), vo(1 ns), and vo(1 µs), respectively, are

given in Table 2.6.
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vo(0) Relative Error (%)
measured after R• R1 a C

1 ps 0.00109 0.000383 0.00140 �0.00114
1 ns 0.193 �1.92 0.456 �2.71
1 µs 29.1 �29.1 33.3 �78.6

Table 2.6: Relative errors of parameters extracte from simulated step responses for
different measured values of vo(0).

As the error in the vo(0) value increases due to measurements being made farther in

time from the ideal t = 0, the errors of the extracted parameters get significantly larger with

the largest effect seen in the error of the extracted C value reaching an error of �78.6%

when the output voltage used in the calculation was vo(0)⇡ vo(1 µs). This highlights how

sensitive this extraction process is to the accuracy of the value collected to approximate

vo(0); which serves as the foundation for the extraction of all further impedance parameters.

The problem becomes worse with lower a and C values, which decrease both the rise time

and location of the midpoint voltage [100], which increases the hardware complexity by

requiring a high precision step input generator.

The limitation of the direct extraction method can be overcome using a non-linear least

squares fitting (NLSF) method, which we initially proposed in [102]. Fitting routines to

extract fractional information from time-domain responses have also been previously em-

ployed for general experimental data [103] and for the fractional behaviour of nested and

ladder circuits [104]. The non-linear least squares fitting used in this work is a numerical

method that attempts to solve the problem

min
x

k T (x)� ydata k2
2 = min

x

n

Â
i=1

(T (x)i � ydatai)
2 (2.21)

s.t. x > 0

where x is the vector of impedance parameters (R•, R1, a , C), T (x) is the time domain

step response (2.5) calculated using x, ydata is the collected step response to fit to (2.5),

T (x)i and ydatai are the simulated response and collected response at time ti, and n is
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the total number of data points in the collected step response. This routine aims to find

the impedance parameters that would ideally reduce the least squares error to zero. The

accuracy of the parameters extracted from the collected dataset using the NLSF method is

not limited by the accuracy of R• and R1, determined by 2 datapoints in the direct method,

because every collected datapoint is used to find the parameters that result in the best fit.

This fitting was implemented in MATLAB using the lsqcurvefit function to estimate the

parameters using the trust-region-reflective algorithm [105]. To begin, the NLSF method

requires an initial guess, x0, to apply and iteratively solve towards a solution x⇤. Using the

default settings in MATLAB, the solver will quit its search if any of these conditions are

satisfied:

1. The number of function evaluations exceeds 100 · m, where m is the number of

impedance parameters in x;

2. The number of iterations of the algorithm exceeds 400;

3. The change in the value of x is less than 1⇥10�6;

4. The change in the function value is less than 1⇥10�6.

After quitting due to meeting any of the ending criteria the solver returns a possible solu-

tion.

2.2.1 Voltage Excited Step Response

Both the direct and NLSF methods were applied to the ideal step responses of the circuit

in Fig. 2.2(a), given by (2.5), using fruit impedance parameters from [51] with R = 1 kW.

These MATLAB simulations were carried out for a 1 µs to 1 s time set with the relative

errors using each method compared to the ideal impedance parameters given in Table 2.7.

From these results the NLSF shows up to 5 orders of magnitude less error than the direct

method. Therefore, a high level of accuracy can be maintained using the NLSF method
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Fruit Absolute Relative Error (%)
⇥NLSF

Direct
⇤

R• R1 a C

Apple 1.93⇥10�3 1.23⇥10�4 1.60⇥10�3 1.15⇥10�2

1.78⇥102 5.77⇥100 3.38⇥101 8.76⇥101

Apricot 1.38⇥10�3 3.40⇥10�4 3.54⇥10�3 1.87⇥10�2

5.74⇥101 5.71⇥100 3.18⇥101 7.52⇥101

Kiwi 1.82⇥100 9.98⇥10�2 9.00⇥10�3 1.00⇥10�1

8.02⇥102 4.38⇥101 4.77⇥101 8.18⇥101

Potatoe 7.08⇥10�3 2.93⇥10�4 8.80⇥10�4 6.97⇥10�3

3.42⇥102 1.62⇥100 3.68⇥101 8.57⇥101

Table 2.7: Absolute relative errors from simulated responses of fruit tissues from 1 µs to
1 s.

while relaxing the hardware requirements since it is enough to gather data over 6 decades

(from 1 µs to 1 s). Recall from Table 2.6 that this is not possible with the direct extraction

method.

The Cole impedance of Fig. 2.2(a) was realized using discrete components R = 1.007

kW, R• = 1.753 kW, R1 = 32 kW, C = 1 µF, and a = 1. Using this setup a voltage step input

of 5 V was applied using a Agilent 33250A waveform generator. A pulse with 15 ns edge

time, 500 ms pulse width, and period of 1 s was generated and applied to the circuit under

test with the resulting response measured using a Tektronix 745D digital oscilloscope. The

collected step response is shown in Fig. 2.12 as the solid line. The NLSF was applied

to the experimentally collected dataset with relative errors of (4.91, 7.11, 3.46 ⇥ 10�7,

2.22⇥10�6)% for (R•, R1, a , C), respectively. The response simulated using the estimated

parameters (dashed line in Fig. 2.12) shows very good agreement with the experimentally

collected response.

To further verify the NLSF method, the circuit of Fig. 2.2(a) was implemented using

an apple and a tomato as the Cole impedances with R = 1.007 kW. The values extracted

from the step response, collected from 1 µs to 500 ms, from both fruits are given in Table

2.8. The collected step response of the circuit realized with the apple and tomato are shown

in Figs. 2.13(a) and (b), respectively, as solid lines with the MATLAB simulated response
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Figure 2.12: Experimental (solid) and MATLAB simulated (dashed) step responses of
Fig. 2.2(a) when (R•, R1, a , C)=(1.753 kW, 32 kW, 1, 1 µF).

Fruit Impedance Parameters
R• (kW) R1 (kW) a C (nF)

Apple 2.206 29.88 0.8814 4.769
Tomato 0.0246 19.64 0.6145 372.5

Table 2.8: NLSF extrace Cole impedance parameters from experimentally collected step
responses of fruit.

using the NLSF estimated parameters shown as dashed lines.

2.2.2 Current Excited Step Response

A simplified expression for the time domain output voltage, vo(t), of the Cole impedance

induced by a current-step of amplitude Icc, as shown in the circuit given in Fig. 2.2(b),

compared to (2.7) given in Section 2.1 was presented in [106] and [107]. The s�domain

expression of the output voltage when the input current step has an amplitude of Icc, that is

Iin(s) = Icc/s is given by

Vo(s) =
Icc

s


R• +

R1

1+ saR1C

�

=
Icc

s


R• +

1/C
sa +1/R1C

�
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Figure 2.13: Experimental (solid) and MATLAB simulated (dashed) step responses using
an (a) apple and (b) tomato in the circuit of Fig. 2.2(a).

= Icc


R•
s

+
1
C
· s�1

sa +1/R1C

�
(2.22)

Applying the Laplace transform formula for the Mittag-Leffler function given by (2.4) to

(2.22) yields the time domain expression of the output voltage given by

vo(t) = Icc


R• +

ta

C
Ea,a+1

✓
�ta

RC

◆�
(2.23)

This simplification reduces the number of Mittag-Leffler terms from two to one for the

simulation of each step response. The derivations of (2.7) and (2.23) are presented in



42

Appendix B to confirm their equivalency, as well as detail the advantages of using (2.23)

over (2.7).

A MATLAB simulated example of (2.23) when R• = 406 W, R1 = 12.894 kW, C =

62.34 nF, a = 0.739, and Icc = 0.1 mA is given in Fig. 2.14 as a solid line. From this

step-response we note that there are three distinct regions common to the step response of

all single-dispersion Cole impedance models to a current step input: 1) at very low times,

when the CPE is uncharged, a constant voltage results from the current applied to R•,

2) the increasing voltage region when the CPE is charging, and 3) at high times, another

constant voltage region results from the current applied to R• +R1; when the CPEs are

fully charged.

Similar to the voltage-excited step response, the impedance parameters can be extracted

from the current-excited step response by applying a NLSF to fit the collected data to (2.23).

Initial guesses to use in the solver can be estimated from (2.23), noting that at t = 0 and

t = • the voltage will be vo(0) = IccR• and v0(•) = Icc(R•+R1). Since the collected step

response will not extend from t = 0 to t =• but is instead finite in the range 0< t1 < tn <•,

where t1 and tn are the smallest and largest time datapoints, respectively, boundaries when

generating R• and R1 for the initial guesses can be generated such that

R•  vo(t1)
Icc

(2.24)

R1 � vo(tn)
Icc

�R• (2.25)

Finally the range of values reported in the literature are used to create the bounds to generate

the initial guesses such that 0  a  1 and 0.1 nFC  1 mF.

2.2.2.1 Simulation Results

Previously, when extracting the impedance parameters from the ideal voltage-excited step

response only a single initial guess was applied to the solver yielding accurate results. How-
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Noise (%) Relative Error (%)
R• R1 C a

0.5 0.480 0.033 0.693 0.095
1.0 1.07 0.062 1.43 0.20
2.0 1.94 0.132 2.85 0.40

Table 2.9: Average relative error of impedance parameters extracted from 100 MATLAB
simulations of the single dispersion step response with 0.5%, 1%, and 2% random noise.

ever, the addition of noise to an ideal dataset increases the likelihood of the solver finding a

local minima that satisfies the ending criteria of the solver without being the global solution.

One method to overcome this problem is to run the solver multiple times, each time using

a new randomly generated x0. With the intent that one or more of the randomly generated

initial guesses will be close in proximity to the global solution and return it as the solution

when the ending criteria are met. Therefore, by solving (2.21) from each x0 and selecting

the solution set that yields the lowest least squares error increases the likelihood of finding

the global solution. The accuracy of extracting the single dispersion impedance parameters

from step response data using this approach is assessed by extracting the parameters from

100 MATLAB simulations of (2.23) with random noise levels of 0.5%, 1%, and 2% with 5

applied initial guesses. For all simulations, the datasets were generated from t1 = 0.1 µs to

tn = 10 s with 50 logarithmically spaced datapoints using impedance parameters R• = 406

W, R1 = 12.894 kW, C = 62.34 nF, a = 0.739, previously extracted from an apricot [51],

to an input step of Icc = 0.1 mA. The impact of increasing levels of noise in the collected

step response dataset on the relative errors of the extracted parameters are given in Table

2.9; with errors less than 3% for all parameters at all levels of random noise. The level

of noise has the greatest impact on the extraction of the C parameter. An example of a

simulated dataset with 2% noise (solid line) compared to the simulation using the extracted

parameters (circles) is given in Fig. 2.14. From this dataset the output voltages at 0.1 µs

and 10 s are vo(0.1 µs) = 0.0524 V and vo(10 s) = 1.2813 V, respectively. Therefore, from

(2.24) and (2.25) the boundaries for the generation of the initial guesses are R•  524 W
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Figure 2.14: MATLAB simulated step responses of single dispersion Cole impedance
model excited by a step current of 0.1 mA when R• = 406 W, R1 = 12.894 kW, C = 62.34

nF, and a = 0.739. Ideal simulations with 0.5% noise are given as a solid line with the
simulations using the extracted parameters given as circles.

and R1 � 12.289 kW. Applying the NLSF with 5 initial guesses yields relative errors of

[0.223, 0.077, 2.67, 0.264]% for [R•, R1, C, a], respectively. The simulated dataset us-

ing the extracted parameters shows less than 1.3% relative error with the simulated noisy

dataset over the entire time scale.

2.2.2.2 Experimental Results

The AD844 is a current-mode operational amplifier that can be operated as a second-

generation current conveyor [108] when configured as shown in Fig. 2.15. In this configu-

ration, when an input voltage-step of amplitude Vcc is applied it is converted to a current-

step of amplitude Icc =Vcc/(R+Ri) where Ri is the internal resistance of the AD844, and is

approximately 50 W. Using this circuit a voltage-step was applied to the AD844 by an Ag-

ilent 33250A signal generator to create a step-current of Icc = 1V/(9.92kW+ 50W) ⇡ 0.1

mA which was applied to 2 apples, used as the Cole impedances in Fig. 2.15. The re-

sponses, vo(t), collected using a Tektronix 745D digital oscilloscope, composed of 51 log-

arithmically spaced datapoints from 0.2 µs to 0.07s, are given in Fig. 2.16(a) as solid and

dashed lines. From the experimental step responses parameters of [R•, R1, C, a] were
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Figure 2.15: Test circuit to apply a current-step input to a single dispersion Cole
impedance with the AD844 operating as a current conveyor.

extracted as [4.64 kW, 42.9 kW, 69.1 nF, 0.646] and [6.99 kW, 50.3 kW, 38.1 nF, 0.701]

for apple 1 and 2, respectively. The MATLAB simulated responses using these parame-

ters are given in Fig. 2.16(a) as black circles. These simulated responses show very good

agreement with the experimental results, with the relative errors between the experimental

and simulated datapoints given in Fig. 2.16(b) as solid and dashed lines for apple 1 and

apple 2, respectively. The simulated results show less than 2% relative error over the entire

collected datasets.

2.3 Least Squares Extraction from Magnitude Response

In [51] and [52] a Cole impedance is used as a component in the extraction circuits, shown

in Figs. 2.17(a) and (b), respectively, exhibiting the frequency responses described by

T1(s) =
Vo(s)
Vin(s)

=
1

G1

1+(ts)a

1+ G2
G1
(ts)a

(2.26)

T2(s) =
Vo(s)
Vin(s)

=�G1 +G2(ts)a

1+(ts)a (2.27)
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Figure 2.16: (a) Experimentally collected step responses of apple 1 (solid) and apple 2
(dashed) compared to MATLAB simulated responses using extracted impedance

parameters (black circles) and (b) absolute relative errors of apple 1 and 2 simulated
responses compared to the experimental.

where T1(s) and T2(s) are the filter and integrator transfer functions, respectively. G1,2 are

the low and high frequency gains, respectively, related to Ro and R• through the relations

G1,2 = 1+
Ro,•
RL

(2.28)

G1,2 =
Ro,•
RL

(2.29)

where (2.28) and (2.29) are the gains for the filter and integrator circuits, respectively. From

the collected frequency responses Ro and R• can be extracted knowing G1,2 and RL. While
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Figure 2.17: Circuits for (a) filter and (b) integrator extraction of the Cole model
parameters.

Parameter Filter Integrator

a G1�2G2p
G1G2

p
G1G2(G1�2G2)

G2
1�2G2

2

b G1(3G1�4G2)
(G1�2G2)2

|T
�

jw3dB

�
| 1p

2G2

G1p
2

|T
�

jwfmax
�
| 1p

G1G2

p
G1G2

Table 2.10: Parameters from (2.30) for the filter and integrator circuits of Fig. 2.17(a) and
(b), respectively.

a is found numerically through the solution of the equation

✓
w3dB

wfmax

◆a
= a

 r
b+ cos(ap)

2
± cos

⇣ap
2

⌘!
(2.30)

where w3dB is the frequency at which |T ( jw) | is �3 dB below its maximum value, wfmax

is the frequency at which the phase angle exhibits a maximum value, and both a and b are

products of the low and high frequency gains. The values of these parameters in (2.30) for

the filter and integrator circuits are given in Table 2.10. Next, knowing a , G1,2, and wfmax,
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t is found from

t =
1

wfmax

 r
G1

G2

!1/a

(2.31)

These methods combine calculations from direct measurements and a constrained opti-

mization routine for the extraction of the impedance parameters. However, the use of direct

measurements introduces significant error into the extracted impedance parameters.

2.3.1 Effects of Low and High Frequency Gain Errors

In [109] direct measurements of G1,2 from the frequency response were shown to have a

significant impact on the accuracy of the extracted impedance parameters. Since their exact

values cannot be measured from a frequency response that does not extend from w = 0

to w = •, it is important to understand how their errors will contribute to the extracted

impedance parameters. The sensitivities of Ro and R• to G1 and G2, respectively, are given

by

SRo,R•
G1,G2

=
G1,2

1�G1,2
(2.32)

SRo,R•
G1,G2

= 1 (2.33)

where (2.32) and (2.33) are the sensitivities for the filter and integrator circuits, respec-

tively. Errors in G1,2 impact both a and t which require |T ( jw3dB)| and |T ( jwfmax)|,

both functions of G1,2, to determine w3dB and wfmax for their calculation. The filter circuit

variabilities for |T ( jw3dB)| and |T ( jwfmax)| to G1,2 are given by

d|T ( jw3dB)|
|T ( jw3dB)|

= S|T ( jw3dB)|
G1

dG1

G1
+S|T ( jw3dB)|

G2

dG2

G2
(2.34)

= �dG2

G2
(2.35)

d|T ( jwfmax)|
|T ( jwfmax)|

= S|T ( jwfmax)|
G1

dG1

G1
+S|T ( jwfmax)|

G2

dG2

G2
(2.36)

= �
✓

1
2

dG1

G1
+

1
2

dG2

G2

◆
(2.37)
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The variabilities of the integrator circuit to |T ( jw3dB)| and |T ( jwfmax)| are equal in mag-

nitude to (2.34) and (2.36), respectively, but with opposite sign. Errors in |T ( jw3dB)| and

|T ( jwfmax)| result in w3dB and wfmax errors, since these frequencies are extracted from

incorrect magnitudes. The errors in w3dB and wfmax then contribute to errors in a when

numerically calculated from (2.30). This further contributes error to t calculated using

(2.31) whose variability to G1,2, wfmax, and a is given by

dt
t

= St
G1

dG1

G1
+St

G2

dG2

G2
+St

wfmax

dwfmax

wfmax
+St

a
da
a

(2.38)

=
1

2a

✓
dG1

G1
� dG2

G2

◆
�

dwfmax

wfmax
�

ln
⇣

G1
G2

⌘

2a
da
a

(2.39)

With the errors of wfmax and a previously shown to be a result of G1,2 errors, then the

entire error contributed to t in (2.39) can be traced to errors in G1,2.

The filter circuit errors contributed by a finite frequency response to G1 and G2 will

always be positive and negative, respectively, because |T ( jw1) |> |T (0) | and |T ( jw2) |<

|T (•) | where 0 < w1 < w2 < •. The opposite is true for the integrator circuit, which

exhibits a low pass frequency response, where |T ( jw1) |< |T (0) | and |T ( jw2) |> |T (•) |.

Therefore, the effect of errors introduced by G1,2 on the extracted w3dB, wfmax, a and t

from the circuit of Fig. 2.17(a) for low and high frequency errors from 0 to ±3.5% and

⌥3.5%, respectively, are shown in Fig. 2.18(a). Those errors from the circuit of Fig.

2.17(b) are shown in Fig. 2.18(b). These relative errors were computed from a MATLAB

simulated frequency response of (2.26) and (2.27), respectively, using the known Cole

parameters of an apricot (Ro = 12.894 kW, R• = 0.4057 kW, a = 0.739, t = 62.34 µs) [51]

and RL = 1 kW. The ±3.5% and ⌥3.5% error in G1 and G2, respectively, correspond to

using a frequency response from 101 Hz to 1.49 MHz for the filter circuit and 93 Hz to

7.92 MHz for the integrator. To minimize the sampling error of a discrete dataset wfmax

and w3dB were calculated from |T ( jwfmax)| and |T ( jw3dB)|, respectively, simulated to have

relative errors of less than 10�12% from the values predicted using the measured G1,2. From
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Figure 2.18: Effect of relative errors of (a) G1 and �G2 (filter circuit) and (b) �G1 and
G2 (integrator circuit) up to 3.5% on relative errors of extracted w3dB, wfmax, a and t

from simulated frequency response using known impedance parameters of an apricot and
load resistor RL = 1 kW.

Fig. 2.18 we observe that w3dB is the parameter most impacted by errors in G1,2 reaching

maximum errors of 11.72% and �13.56% for the filter and integrator circuits, respectively.

Compared to [7.99,�0.13,�2.36]% and [8.75,�0.10,�1.91]% for
⇥
t,wfmax,a

⇤
from the

filter and integrator circuits, respectively, when the error in G1 and G2 was ±3.5% and

⌥3.5%, respectively. Note, that the error of wfmax is very close to zero for the entire range

since the errors of G1 and G2 are equal in magnitude but opposite in sign, which using

(2.36) predicts no |T
�

jwfmax
�
| error and therefore no extracted wfmax error.
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2.3.2 Least Squares Extraction Method

The limitation of the direct extraction method on the accuracy of the low and high frequency

gain measurements can be overcome by using a NLSF method, similar to that previously

described in Section 2.2 for the step-response extraction method. Modifying (2.21) for the

magnitude response extraction requires that x is the vector of impedance parameters (G1,

G2, a , t), T (x) is the transfer function (2.26) or (2.27) calculated using x, ydata is the

collected frequency response to fit to (2.26) or (2.27), T (x)i and ydatai are the simulated

response and collected response at frequency wi, and n is the total number of data points in

the collected frequency response. The accuracy of the parameters extracted from the col-

lected dataset using the NLSF method is not limited by the accuracy of G1,2, determined

by 2 datapoints in the direct method, because every collected datapoint is used in the op-

timization routine to find the parameters within a constrained set that results in the best

fit.

2.3.2.1 Simulation Results

Both the direct extraction and NLSF methods were applied to the ideal frequency response

of the filter circuit in Fig. 2.17(a), given in (2.26), using fruit impedance parameters

from [51] with RL = 1 kW. These MATLAB simulations were from 100 Hz to 5 MHz

with 201 logarithmically spaced datapoints. The relative errors of the extracted impedance

parameters (G1, G2, a , t) from ideal are given in Table 2.11. The relative errors of the

parameters extracted using the NLSF are 2 to 4 orders of magnitude more accurate than the

those extracted with the direct method. Similar results were also obtained when applying

the NLSF extraction method to ideal frequency responses of the integrator circuit in Fig.

2.17(b). The ideal MATLAB simulated frequency response of an apricot compared to those

simulated using the NLSF and direct method impedance parameters, when the direct mea-

surements have 3.5% G1 and �3.5% G2 errors, are shown in Fig. 2.19. From this figure

the NLSF parameters show much closer agreement with the ideal dataset than the direct ex-
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Fruit Relative Error (%)
⇥Direct

NLSF
⇤

G1 G2 a t

Apricot 3.46 �1.36 �1.10 6.92
1.35⇥10�3 �6.49⇥10�4 �8.51⇥10�4 3.68⇥10�3

Apple 9.43 �2.20 �2.72 21.45
1.46⇥10�2 �3.85⇥10�3 �9.89⇥10�3 5.08⇥10�2

Kiwi 3.82 �1.47 �1.86 9.40
1.42⇥10�3 �9.83⇥10�4 �1.84⇥10�3 4.88⇥10�3

Potato 2.67 �1.08 �1.07 5.68
5.05⇥10�3 �2.21⇥10�3 �5.42⇥10�3 1.66⇥10�2

Table 2.11: Relative extracted errors from direct and NLSF methods applied to simulated
apricot, apple, kiwi and potato frequency responses in the circuit of Fig. 2.17(a) .

103
10

4
10

5
10

6
−18

−16

−14

−12

−10

−8

−6

−4

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

−2

Figure 2.19: Simulated frequency responses using parameters extracted using non-linear
fitting (black circles) and direct methods (dashed) from an ideal frequency response using

known apricot parameters (solid).

traction method; which shows deviations from the ideal at both low and high frequencies.

The low frequency deviations begin at approximately 1 kHz reaching a maximum deviation

of 0.1998 dB at 101 Hz with the high frequency deviation beginning at approximately 100

kHz reaching a maximum deviation of 0.1984 dB at 1.49 MHz.

The impact of noise on the parameter extractions was investigated by applying both

direct and NLSF extraction methods to 1000 MATLAB simulated frequency responses of

(2.26) from 100 Hz to 5 MHz with 201 datapoints using the impedance parameters of an

apricot and load resistor of 1 kW, with randomly generated white Gaussian noise with a



53

10
2

10
3

10
4

10
5

10
6−25

−20

−15

−10

−5

0

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

Figure 2.20: Simulated frequency responses using parameters extracted using non-linear
fitting (black circles) and direct methods (dashed) from an ideal frequency response using

known apricot parameters with white gaussian noise (solid).

signal-to-noise ratio (SNR) of 10 dB added to each frequency response. With mean rela-

tive errors of the extracted impedance parameters (G1, G2, a , and t) for the direct method

and NLSF of (4.15, 3.18, 4.58, 12.66)% and (0.686, 0.475, 0.614, 2.19)%, respectively.

The relative errors of the parameters extracted using the NLSF show 1 order of magnitude

less error than the direct method. A comparison of simulations using impedance param-

eters extracted from a single noisy dataset are shown in Fig. 2.20, with the least squares

simulation (black circles) showing much better agreement with the apricot data (solid line)

over the direct extraction simulation (dashed line).

2.3.2.2 Experimental Results

To verify the MATLAB simulations of (2.26) the circuit given in Fig. 2.17(a) was imple-

mented using apricots and an apple as the Cole impedance terminated with RL = 1 kW and

using an OP27 op amp (8 MHz gain bandwidth product) as the unity gain buffer. This test

circuit is detailed in Fig. 2.21. The frequency response of these circuits was measured by a

HP4395A network analyzer over the frequency band from 100 Hz to 5 MHz with a total of

201 points collected for each response. The extracted impedance parameters for each fruit

are given in Table 2.12. To compare how well each method fits the experimental data the
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Figure 2.21: Test circuit to collect the magnitude response of a single-dispersion Cole
impedance.

Fruit Impedance Parameters
⇥Direct

NLSF
⇤

G1 G2 a t (µs)

Apricot 1 13.89 1.406 0.8656 31.34
14.40 1.363 0.8008 42.18

Apricot 2 11.54 1.347 0.8280 36.11
11.16 1.330 0.7739 40.70

Apple 30.64 3.720 0.7422 58.31
32.22 3.776 0.7462 58.85

Table 2.12: Impedance parameters extracted with direct and NLSF methods from
experimentally collected apricot and apple frequency responses in the circuit of Fig.

2.17(a) .

least squares error of the simulated response for both methods (for all fruits) was calculated

as

e =
n

Â
i=1

(yi � xi)
2 (2.40)

where yi and xi are the experimental and simulated data, respectively, at frequency wi and

n is the total number of data points in the collected frequency response. Using this cri-

teria on the simulated datasets from the direct method yields errors of 45.35, 43.94, and

44.42 for apricots 1, 2, and the apple, respectively, with reductions to 3.583, 3.935, and

22.81, respectively, using the NLSF. For each fruit the NLSF method extracts impedance

parameters that match the experimental results much more accurately than those extracted

with the filter method which is reflected in the lower least squares errors. A comparison
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Figure 2.22: Simulated frequency responses using parameters extracted using non-linear
fitting (black circles) and direct methods (dashed) from experimentally collected

frequency response of an apricot (solid) as the Cole impedance in the circuit of Fig.
2.17(a) with RL = 1 kW.

of (2.26) simulated using both sets of impedance parameters for Apricot 1 from Table 2.12

to the experimentally extracted frequency response is shown in Fig. 2.22. We clearly see

that the response using the NLSF parameters, shown as a dashed line, shows near perfect

agreement with the experimental data, shown as a solid line. While the response using the

direct extraction parameters, shown as a dotted line, shows significant deviation from 600

Hz to 6 kHz when compared to the experimental.

2.4 Contribution

In conclusion, this chapter has presented methods of extracting the single-dispersion Cole

impedance model parameters from the voltage and current excited step response and mag-

nitude response, without requiring any direct impedance measurements. The summary of

the results in this chapter are presented below:

• A numerical curve-fitting approach applied to the voltage-excited step response was

presented and applied to ideal simulated data and experimental data using an ideal

Cole model built using a traditional capacitor (a = 1). In simulation, the extracted

results showed less than 0.01% relative error from the ideal datasets while the ex-



56

tracted values from the experimental results showed less than 8.6% relative error for

all parameters. This work was peer-reviewed and published in [100].

• A non-linear least squares method was presented and applied to the voltage-excited

step response of the single-dispersion Cole impedance model to overcome potential

accuracy limitations imposed by the precision of the test-hardware. Experimental

results collected from an ideal Cole model (with a = 1) show less than 7.2% relative

error for all parameters while requiring a smaller collected dataset than the numerical

curve-fitting method. Simulations using the parameters extracted from the experi-

mental results collected from an apple and tomato show very good agreement with

each other using the non-linear least-squares method. This work was peer reviewed

and published in [102].

• The non-linear least squares method was applied to the current-excited step response

of the single-dispersion Cole impedance model to verify the presented fractional

circuit theory. Simulations using the parameters extracted from experimental re-

sults collected from apples show less than 2% relative error over the entire collected

dataset. This work was peer reviewed and presented in [106] and [107].

• The sensitivity of an indirect extraction method from the magnitude response of the

single-dispersion Cole impedance model is presented, with its limitations overcome

by the application of a non-linear least squares method. This improved accuracy is

verified applying the method to experimentally collected magnitude responses of two

apricots and an apple, showing a much better fit using the non-linear least squares

parameters. This work was peer reviewed and presented in [109].
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CHAPTER 3

DOUBLE DISPERSION COLE IMPEDANCE MODEL

Figure 3.1: Theoretical double-dispersion Cole impedance model.

The double-dispersion Cole impedance model shown in Fig. 3.1, previously introduced

in Section 1.2.1, is an expansion of the single-dispersion model used to accurately represent

impedance over a larger frequency range or for more complex materials. This model has

an impedance given by

Z(s) = R• +
R1

1+ sa1R1C1
+

R2

1+ sa2R2C2
(3.1)

Characterising a tissue or material using this model requires extracting the seven impedance

parameters (R•,R1, R2, a1, a2, C1, C2) to describe the model. Like the single dispersion

models, these parameters have typically been extracted from the impedance data directly

measured using an impedance analyzer. However, it is possible to extend the methods

introduced in Chapter 2 for the single-dispersion Cole impedance parameters to extract the

double-dispersion parameters without requiring direct impedance measurements. In this

chapter indirect methods to extract the impedance parameters from the current excited step

response and the magnitude response of the double-dispersion Cole impedance model using
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Figure 3.2: Theoretical circuit to apply a step-current input to the double-dispersion Cole
impedance model.

non-linear least squares processes are presented. For these methods the underlying circuit

theory and process are presented and validated by both simulations and experimentally

collected results from fruit tissues.

3.1 Least Squares Extraction from Current Excited Step Response

In Section 2.2.2 a simplified expression for the output current of the single-dispersion Cole-

impedance model was presented analyzing the current through the model. In [107] this

method is extended to the double-dispersion model with current step of amplitude Icc ap-

plied to the theoretical model of the double-dispersion Cole impedance, with the simple

application circuit given in Fig. 3.2. The s�domain expression of the output voltage when

the input current step has an amplitude of Icc, that is Iin(s) = Icc/s is given by

Vo(s) =
Icc

s


R• +

R1

1+ sa1R1C1
+

R2

1+ sa2R2C2

�

=
Icc

s


R• +

1/C1

sa1 +1/R1C1
+

1/C2

sa2 +1/R2C2

�

= Icc


R•
s

+
1

C1
· s�1

sa1 +1/R1C1
+

1
C2

· s�1

sa1 +1/R2C2

�
(3.2)
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Figure 3.3: MATLAB simulated step response double dispersion Cole impedance model
excited by a step current of 0.1 mA when R• = 406 W, R1 = 12.894 kW, R2 = 2.5 kW,

C1 = 62.34 nF, C2 = 100 µF, a1 = 0.739, a2 = 0.55. Ideal simulations with 0.5% noise
are given as a solid line with the simulations using the extracted parameters given as

circles.

Applying the Laplace transform formula for the Mittag-Leffler function given by (2.4) to

(3.2) yields the time domain expression of the output voltage given by

vo(t) = Icc


R• +

ta1

C1
Ea1,a1+1

✓
�ta1

R1C1

◆
+

ta2

C2
Ea2,a2+1

✓
�ta2

R2C2

◆�
(3.3)

A MATLAB simulated example of (3.3) when R• = 406 W, R1 = 12.894 kW, R2 = 2.5 kW,

C1 = 62.34 nF, C2 = 100 µF, a1 = 0.739, a2 = 0.55, and Icc = 0.1 mA is given in Fig. 3.3 as

a solid line. From this step-response we note that there are three distinct regions common to

the step response of all double-dispersion Cole impedance models to a current step input: 1)

at very low times, when the CPEs are uncharged, a constant voltage results from the current

applied to R•, 2) the increasing voltage region when the CPEs are charging, and 3) at high

times, another constant voltage region results from the current applied to R• +R1 +R2;

when the CPEs are fully charged. The response of the double dispersion Cole impedance

in Fig. 3.3 is very similar to the single dispersion model, though the behaviour in Region 2

is more complex resulting from the charging of two CPEs.
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The NLSF method, previously described in Section 2.2 for the step-response extraction

method of the single-dispersion model can be modified and applied to the step-response

extraction of the double dispersion model. The general NLSF method is repeated here:

min
x

k T (x)� ydata k2
2 = min

x

n

Â
i=1

(T (x)i � ydatai)
2

s.t. x > 0

The extraction of the double-dispersion parameters requires that x is the vector of impedance

parameters (R•,R1, R2, a1, a2, C1, C2), T (x) is step response (3.3) calculated using x, ydata

is the collected step response to fit to (3.3), T (x)i and ydatai are the simulated response and

collected response at time ti, and n is the total number of data points in the collected re-

sponse.

Similar to the single dispersion model, initial guesses to solve for the impedance pa-

rameters from the step response dataset can be generated with knowledge of (3.3) that at

t = 0 and t = • the voltage will be vo(0) = IccR• and v0(•) = Icc(R•+R1+R2). Since the

collected step response will not extend from t = 0 to t = • but is instead finite in the range

0 < t1 < tn < •, where t1 and tn are the smallest and largest time datapoints, respectively.

Therefore, the values collected will only be an approximation of their ideal counterparts

and can be used as boundaries when generating R• and R1,2 for the initial guesses such that

characteristics of the step response given by (3.3) can be used to generate initial guesses

for the NLSF. The boundary for R• for the double dispersion Cole impedance is the same

as that for the single dispersion given by (2.24), though now R1,2 must be generated such

that

R•  vo(t1)
Icc

(3.4)

R1 +R2 � vo(tn)
Icc

�R• (3.5)
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Figure 3.4: Evolution of the average relative error of 100 MATLAB simulations with 15
randomly generated initial guesses applied to the NLSF of the double dispersion step

response datasets with impedance parameters R• = 406 W, R1 = 12.894 kW, R2 = 2.5 kW,
C1 = 62.34 nF, C2 = 100 µF, a1 = 0.739, a2 = 0.55 and 0.5% random noise.

Finally the range of values reported in the literature are used to create the bounds to generate

the initial guesses such that 0  a  1 and 0.1 nFC1  1 mF.

3.1.1 Simulation Results

The accuracy of extracting the double dispersion impedance parameters from the step re-

sponse data is assessed by extracting the parameters from 100 MATLAB simulations of

(3.3) with random noise levels of 0.5%, 1%, and 2%. For all simulations, the datasets were

generated from 0.1 µs to 30 s with 50 logarithmically spaced datapoints using impedance

parameters R• = 406 W, R1 = 12.894 kW, R2 = 2.5 kW, C1 = 62.34 nF, C2 = 100 µF,

a1 = 0.739, a2 = 0.55 to an input step of Icc = 0.1 mA. To maintain the same level of

accuracy (when the range of values that the solution lies within is much larger) the num-

ber of initial guesses are increased from 5 to 15 when applying the NLSF to the double

dispersion datasets over the single dispersion datasets. The impact of the number of ini-

tial guesses is clear showing a significant decrease in the relative error of each parameter

between the 1st and 15th applied initial guesses, shown in Fig. 3.4. Note, that the lines in
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Noise (%) Relative Error (%)
R• R1 R2 C1 C2 a1 a2

0.5 1.22 0.304 2.07 3.20 5.40 0.300 3.18
1.0 2.30 0.660 3.83 5.47 6.40 0.573 5.28
2.0 2.99 1.18 7.17 14.8 9.60 1.11 9.25

Table 3.1: Average relative error of impedance parameters extracted from 100 MATLAB
simulations of the double dispersion step response with 0.5%, 1%, and 2% random noise.

Fig. 3.4 are used to visually track the trend between each datapoint and are not a represen-

tation of the average relative error between these initial guesses (which is not possible to

represent since the initial guesses can only ever take positive integer values). After solv-

ing using the first initial guess the extracted parameters show relative errors of [54.7, 9.16,

635, 8831, 9.73⇥ 107, 8.38, 29.1]% for [R•, R1, R2, a1, a2, C1, C2], respectively, with

reductions to [1.22, 0.304, 2.07, 3.20, 5.40, 0.300, 3.18]% after the application of 7 initial

guesses with no significant decrease in the error after this point. The use of multiple ini-

tial guesses shows reductions from 1 to 7 orders of magnitude for the relative error over

the single initial guess and verifies the increased number of initial guesses to maintain the

accuracy. The impact of the increasing levels of noise on the relative errors of extracted

parameters are given in Table 3.1. Although the noise has a larger impact on the extraction

of the double-dispersion parameters than the single-dispersion parameters, it shows less

than 5.5% average relative error when the noise is 0.5% for all parameters. The level of

noise has the greatest impact on the extraction of the C1,2 and a2 parameters with errors

of 14.8%, 9.6%, and 9.25% when there is 2% noise in the dataset. An example of a sim-

ulated dataset with 0.5% noise (solid line) compared to the simulation using the extracted

parameters (circles) is given in Fig.3.3. From this dataset the datapoints collected at 0.1

µs and 30 s are vo(0.1 µs) = 0.0524 V and vo(30 s) = 1.533 V, respectively. Therefore,

from (3.4) and (3.5) the boundaries for the generation of the initial guesses are R•  524

W and R1+R2 � 14.808 kW. Applying 15 initial guesses to the NLSF yields relative errors

of [0.563, 0.049, 1.06, 0.589, 2.93, 0.093, 1.62]% for [R•, R1, R2, C1, C2, a1, a2], respec-
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Figure 3.5: Test circuit to apply a current-step input to a double dispersion Cole
impedance with the AD844 operating as a current conveyor.

tively. The simulated dataset using the extracted parameters shows less than 0.45% relative

error with the simulated noisy dataset over the entire time scale.

3.1.2 Experimental Results

Using the same experimental setup described in Section 2.2.2, a current-step input was

applied to 2 apples used as the double-dispersion Cole impedances in the test circuit shown

in Fig. 3.5. In this configuration, when an input voltage-step of amplitude Vcc is applied

it is converted to a current-step of amplitude Icc = Vcc/(R+Ri) where Ri is the internal

resistance of the AD844, and is approximately 50 W. Using this circuit a voltage-step

was applied to the AD844 by an Agilent 33250A signal generator to create a step-current

of Icc = 1V/(9.92kW+ 50W) = 0.1 mA. The voltage responses, vo(t), collected using a

Tektronix 745D digital oscilloscope from t = 0.2 µs to t = 10 s with 72 logarithmically

spaced datapoints are given in Fig. 3.6(a) and Fig.3.7(a) for apple 1 and 2, respectively, as

solid lines. The parameters extracted using both the single and double dispersion models
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Figure 3.6: (a) Experimental step response of Apple 1 compared to simulated responses
using extracted single (rectangles) and double (black circles) dispersion parameters and

(b) absolute relative errors.

Fruit/Model R• (W) R1 (W) R2 (W) C1 (F) C2 (F) a1 a2

Apple 1 Single 5.55k 55.1k - 92.6n - 0.6009 -
Double 7.38k 66.5k 48.4k 219.3µ 25.8n 0.3755 0.7448

Apple 2 Single 2.28k 60.3k - 240.3n - 0.4793 -
Double 5.60k 61.5k 46.1k 86.0µ 38.5n 0.2097 0.6899

Table 3.2: Single and double dispersion impedance parameters extracted from step
responses of apples 1 and 2 using NLSF.

in the NLSF for both apple 1 and 2 are given in Table 3.2. The MATLAB simulated

responses using the single and double dispersion parameters are given in Fig. 3.6(b) and

Fig. 3.7(b) as squares and black circles, respectively. The simulations using the double
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Figure 3.7: (a) Experimental step response of Apple 2 compared to simulated responses
using extracted single (rectangles) and double (black circles) dispersion parameters and

(b) absolute relative errors.

dispersion parameters shows good agreement with the experimental results with less than

2% and 1% relative error for apple 1 and 2, respectively, over the entire dataset. The single

dispersion parameters show much higher relative errors reaching maximums of almost 10%

at 10 s. The single dispersion is not able to accurately fit the response above 0.1 s due to

the emergence of the second dispersion.

3.2 Least Squares Extraction from Magnitude Response

In Section 2.3 the transfer function of the single-dispersion Cole-impedance model as an

element in a simple filter circuit was presented. Here, this method is extended to the double-
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Cole Impedance
Model

+

Figure 3.8: Theoeretical circuit for the collection of the magnitude response of the double
dispersion Cole impedance.

Coefficient Values

X0
wa1+a2 cos

⇣
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2

⌘
+ wa1

C2R2
cos
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2
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+ 1

C1C2R1R2
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⌘
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2
�
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sin
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2
�
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2

⌘
+wa1 R0+R2+RL
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cos
�a1p

2
�

+wa2 R0+R1+RL
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cos
�a2p
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�
+ R0+R1+R2+RL

C1C2R1R2(R0+RL)
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wa1+a2 sin

⇣
(a1+a2)p

2

⌘
+wa1 R0+R2+RL

C2R2(R0+RL)
sin
�a1p

2
�

+wa2 R0+R1+RL
C1R1(R0+RL)

sin
�a2p

2
�

Table 3.3: Magnitude response coefficients of the circuit in Fig. 3.8 given by (3.7).

dispersion Cole impedance model used as a component in the circuit given in Fig. 3.8. The

transfer function of this circuit is given by

T (s) =
Vo(s)
Vin(s)

=
RL

R• +RL
·

sa1+a2 + sa1 1
C2R2

+ sa2 1
C1R1

+ 1
C1C2R1R2

sa1+a2 + sa1 R•+R2+RL
C2R2(R•+RL

+ sa2 R•+R1+RL
C1R1(R•+RL)

+ R•+R1+R2+RL
C1C2R1R2(R•+RL

)
(3.6)

with the magnitude response given by

|T ( jw)|= RL

R0 +RL
·

q
X2

0 +X2
1q

X2
2 +X2

3

(3.7)

where the values of the coefficients X0, X1, X2, and X3 are given in Table 3.3. A MATLAB

simulated ideal response of (3.7) when [R•, R1, R2, a1, a2, C1, C2]=[885 W, 899 W, 626 W,

0.5414, 0.7653, 19 nF, 5.1 µF] and RL = 500 W is given in Fig. 3.9 as a solid line. For this

circuit the magnitude response can be adjusted by changing the value of RL resulting in an

increase or decrease of the range without impacting the trend. Therefore, it is possible to

adjust RL such that the response falls within the most sensitive input range of the collection

circuit. The shift in magnitude response when RL = 100 W, 200 W, and 500 W is also given
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Figure 3.9: MATLAB simulated magnitude response of (3.7) when [R•, R1, R2, a1, a2,
C1, C2]=[885 W, 899 W, 626 W, 0.5414, 0.7653, 19 nF, 5.1 µF] and RL = 100 W, 200 W,

and 500 W.

in Fig. 3.9. Note, that as RL increases the magnitude range that the response falls within

also rises.

The NLSF method, previously described in Section 2.2 for the step-response extraction

method can be applied to the magnitude response of the double-dispersion Cole impedance

by modifying (2.21) such that x is the vector of impedance parameters (R•,R1, R2, a1,

a2, C1, C2), T (x) is the transfer function (3.7) calculated using x, ydata is the collected

frequency response to fit to (3.7), T (x)i and ydatai are the simulated response and collected

response at frequency wi, and n is the total number of data points in the collected frequency

response.

Again, characteristics of the magnitude response can be used to create boundaries for

the generation of the initial guesses to increase the likelihood that they are close to the

solution of the NLSF. We note from (3.7) that at w = 0 and w = • the magnitude will

be |T (0)| = RL/(R• +R1 +R2 +RL) and T |(•)| = RL/(R• +RL). Since the collected

magnitude response will not extend from w = 0 to w = • but is instead finite in the range

0 < w1 < wn < • the values collected will only be an approximation of their ideal coun-

terparts. As such, we can use them as boundaries when generating R•, R1, and R2 for the
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initial guesses such that

R•  RL(1� |T (wn)|)
|T (wn)|

(3.8)

R1 +R2 � RL � |T (w1)|(R• +RL)

|T (w1)|
(3.9)

where w1 and wn are the lowest and highest frequency datapoints, respectively, of the col-

lected magnitude response. Finally, the range of values reported in literature are used to

create the bounds to generate the other initial guesses such that 0.5  a1,2  1 and 0.1 nF

C1,2  1 mF.

3.2.1 MATLAB Simulation Results

The accuracy of extracting the double dispersion impedance parameters from the magni-

tude response data is assessed by extracting the parameters from 100 MATLAB simulations

of (3.7) with increasing levels of Gaussian white noise with Signal-to-Noise (SNR) rations

from 30 dB to 80 dB in 10 dB steps. For all simulations, the datasets were generated

from 10 Hz to 25 MHz with 50 logarithmically spaced datapoints using impedance param-

eters R• = 42.9 W, R1 = 71.6 W, R2 = 16.5 W, a1 = 0.507, a2 = 0.766, C1 = 3.086 µF,

C2 = 89.29 µF which were previously extracted from sheep intestinal tissue in [33]. The

evolution of the mean error for each parameter while the NLSF applies 20 initial guesses

to the magnitude data are shown in Fig. 3.10. The impact of the number of initial guesses

is clear showing a significant decrease in the relative error of each parameter between the

1st and 20th applied initial guesses. After solving using the first initial guess the extracted

parameters show relative errors of [57, 43, 5518, 150, 227, 1.05⇥ 107, 6.66⇥ 105]% for

[R•, R1, R2, a1, a2, C1, C2], respectively, with reductions to [0.165, 0.135, 0.215, 0.133,

0.213, 0.872, 1.18]% after the application of 13 initial guesses with no significant decrease

in the error after this point. Note, that the lines in Fig. 3.10 are used to visually track the

trend between each datapoint and are not a representation of the average relative error be-
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Figure 3.10: Evolution of the average relative error of 100 MATLAB simulations with 20
randomly generated initial guesses applied to the NLSF of the magnitude datasets with

impedance parameters R• = 42.9 W, R1 = 71.6 W, R2 = 16.5 W, a1 = 0.507, a2 = 0.766,
C1 = 3.086 µF, C2 = 89.29 µF and 60 dB SNR Gaussian white noise.

SNR (dB) Relative Error (%)
R• R1 R2 a1 a2 C1 C2

30 4.92 3.84 6.25 3.54 5.88 23.6 34.9
40 1.29 1.09 2.06 1.04 1.88 7.02 10.1
50 0.453 0.366 0.641 0.358 0.598 2.44 3.23
60 0.165 0.135 0.215 0.133 0.213 0.872 1.18
70 0.049 0.039 0.063 0.036 0.060 0.240 0.330
80 0.013 0.010 0.017 0.009 0.017 0.062 0.098

Table 3.4: Average relative error of double dispersion Cole impedance parameters
extracted from 100 MATLAB simulations of (3.7) with 30 dB to 80 dB SNR Gaussian

white noise.

tween these initial guesses (which is not possible to represent since the initial guesses can

only ever take positive integer values). The use of multiple initial guesses shows reductions

in relative errors from 3 to 7 orders of magnitude over the single initial guess. The impact

of increasing noise levels on the relative error of the extracted parameters are given in Ta-

ble 3.4. When the SNR of the noise decreases to 40 dB there is a significant increase in

the relative error of the extracted parameters with all showing larger than 1% relative error

compared to the ideal values. The increased noise has the greatest impact on the extraction

of the C1,2 parameters.
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Figure 3.11: MATLAB simulated (a) magnitude and (b) error plots of a double dispersion
Cole impeance (solid) with impedance paramters R• = 42.9 W, R1 = 71.6 W, R2 = 16.5

W, a1 = 0.507, a2 = 0.766, C1 = 3.086 µF, C2 = 89.29 µF when RL = 100 W with 60 dB
SNR Guassian white noise compared to the response using the extracted parameters

(circles).

An example of a simulated dataset with 60 dB SNR (solid line) compared to simula-

tions using the extracted parameters (circles) is given in Fig. 3.11(a). From this dataset

the datapoints collected at 10 Hz and 25 MHz are |T (10 Hz)| = �7.263 dB= 0.633 and

|T (25 MHz)| = �3.9827 dB= 0.4334, respectively. Therefore, from (3.8) and (3.9) the

boundaries for the generation of the initial guesses are R•  58.17 W and R1 +R2 � 72.58

W. Applying the NLSF with 20 initial guesses yields relative errors of [0.025, 0.029, 0.204,
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0.008, 0.273, 0.095, 1.73]% for [R•, R1, R2, a1, a2, C1, C2], respectively. The simulated

dataset using the extracted parameters shows less than 0.05% relative error with the simu-

lated noisy dataset over the entire frequency range and is shown in Fig. 3.11(b).

The impedance parameters previously extracted from simulations were within a small

range of resistance values (R < 100 W); though it is still possible to extract the impedance

parameters from datasets generated with resistances from a larger range. However, to main-

tain the same level of accuracy for the larger range it is necessary to increase the number of

applied initial guesses. The evolution of the mean error for impedance parameter while the

NLSF applies 60 initial guesses to 100 magnitude datasets generated such that R•,1,2  1

kW, 0.5  a1,2  1, 0.1 nFC1,2  1 mF with 60 dB SNR Gaussian white noise are shown

in Fig. 3.12(a). An example simulated dataset with parameters [R•, R1, R2, a1, a2, C1,

C2]=[885 W, 899 W, 626 W, 0.5414, 0.7653, 19 nF, 5.1 µF], RL = 100 W, and 60 dB SNR

Gaussian white noise (solid) compared to simulations using the extracted parameters is

given in Fig. 3.12(b). Applying the NLSF with 60 initial guesses yields relative errors of

[5.44, 5.37, 0.02, 0.36, 0.06, 7.21, 0.36]% for [R•, R1, R2, a1, a2, C1, C2], respectively.

This same process can be scaled up to extract the parameters from even larger ranges of

impedance values by increasing the number of applied initial guesses to the datasets.

3.2.2 PSPICE Simulation Results

Although there is currently much progress regarding the realization of constant phase el-

ements (or fractional order capacitors) [3, 88–90] there are no commercial devices using

these processes available to implement these circuits. Until commercial devices with the

desired characteristics become available, integer order approximations must be used to re-

alize fractional circuits. There are many methods to create an approximation of sa that

include Continued Fraction Expansions (CFEs) as well as rational approximation meth-

ods [7]. These methods present a large array of approximations with the accuracy and ap-

proximated frequency band increasing as the order of the approximation increases. Here,
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Figure 3.12: (a) Evolution of the average relative error of 100 MATLAB simulations with
60 randomly generated initial guesses applied to the NLSF with magnitude datasets

randomly generated such that R•,1,2  1 kW, 0.5  a1,2  1, 0.1 nFC1,2  1 mF with 60
dB SNR Gaussian white and (b) simulated dataset with parameters [R•, R1, R2, a1, a2, C1,
C2]=[885 W, 899 W, 626 W, 0.5414, 0.7653, 19 nF, 5.1 µF], RL = 100 W and 60 dB SNR
Gaussian white noise (solid) compared to simulations using extracted parameters (circles).

a CFE method [110] was selected to model the fractional order capacitors for PSPICE

simulations. Collecting twenty terms of the CFE yields a 10th order approximation of the

fractional capacitor that can physically realized using the RC ladder network in Fig. 3.13(a)

when n = 10. The component values required to realize 10th order approximated CPE with

values C = 3.086 µF, a = 0.507 and C = 89.29 µF, a = 0.766 centered at f = 60 kHz
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Figure 3.13: (a) RC ladder structure to realize a nth order integer approximation of a CPE
and (b) the error of 10th order approximated fractional capacitors with values C = 3.086
µF, a = 0.507 (solid) and C = 89.29 µF, a = 0.766 (dashed) centered at f = 60 kHz.

are given in Table 3.5. The full details regarding the design of this approximated CPE are

given in Appendix C. The absolute magnitude error of the approximations compared to the

ideal are given in Fig. 3.13(b). Both approximations show less than 0.1 dB over 3 decades

but show larger deviations in the frequency bands from 100 Hz to 1410 Hz and 2.4 MHz

to 25 MHz; reaching maximums of 1.182 dB at 379 Hz and 9.52 MHz for C = 3.086 µF,

a = 0.507 and 1.246 dB at 265 Hz and 13.4 MHz for C = 89.29 µF, a = 0.766.

The circuit in Fig. 3.8 with a double-dispersion Cole impedance (R• = 42.9 W, R1 =

71.6 W, R2 = 16.5 W, a1 = 0.507, a2 = 0.766, C1 = 3.086 µF, C2 = 89.29 µF) and RL =

100 W with the CPEs approximated by 10th order RC ladders using the component values

in Table 3.5 was simulated in PSPICE using an OPA655 (400 MHz unity gain bandwidth)

operational amplifier. This simulated circuit is given in Fig. 3.14. This PSPICE simulation

was conducted from 100 Hz to 25 MHz using 55 logarithmically spaced datapoints is given
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n

Approximated CPE Component Values
C = 3.086 µF C = 89.29 µF

a = 0.507 a = 0.766
Rn (W) Cn(F) Rn (W) Cn(F)

0 21.9 - 3.88m -
1 45.8 1.33n 15.5m 4.89µ
2 49.5 5.12n 23.6m 12.2µ
3 56.0 11.0n 33.5m 20.2µ
4 67.0 18.5n 48.2m 27.8µ
5 85.4 26.8n 72.7m 34.0µ
6 118.7 35.2n 120m 37.8µ
7 185.5 43.0n 227m 38.6µ
8 349.7 49.4n 546m 35.7µ
9 951.8 53.7n 2.21 28.4µ

10 8681 55.3n 89.2 12.5µ

Table 3.5: Values to realize 10th order approximated fractional capacitors with values
C = 3.086 µF, a = 0.507 and C = 89.29 µF, a = 0.766 centered at f = 60 kHz.

+

-

OPA6553

2

6

+5 V

-5 V

7

4+

Figure 3.14: Circuit simulated in PSPICE to collect the magnitude response of a
double-dispersion Cole impedance parameters implemented using RC ladder

approximations of the CPEs.

in Fig. 3.15(a). From the PSPICE simulated response parameters of [R•, R1, R2, a1, a2, C1,

C2] were extracted as [50.3 W, 62.3 W, 17.5 W, 0.588, 0.769, 11.12 µF, 63.53 µF] using 20

initial guesses with the NLSF. Compared to the ideal parameters the extracted parameters
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Figure 3.15: (a) Simulated ideal (solid), PSPICE (dashed) magnitude responses when
(R• = 42.9 W, R1 = 71.6 W, R2 = 16.5 W, a1 = 0.507, a2 = 0.766, C1 = 3.086 µF,

C2 = 89.29 µF) and RL = 100 W compared to the simulated response using the extracted
parameters (circles) and (b) relative errors of the PSPICE simulation compared to the ideal
(squares) and simulated response using the extracted parameters compared to the PSPICE

response (circles).

show relative errors of [17.1, 13.1, 6.09, 16.0, 0.33, 64.0, 28.9]%, respectively. The much

larger relative errors of the PSPICE simulation compared to the MATLAB simulations is

attributed to the deviations introduced using the approximations of the fractional capacitors.

These approximations combined with the non-idealities introduced by the OPA655 result

in deviations greater than 0.75% above 4 MHz reaching a maximum of 3.14% at 25.1 MHz.

Note though, that the response using the extracted parameters shows a very good fit with
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Figure 3.16: Experimental circuit to collect the magnitude response of a
double-dispersion Cole impedance parameters using apples as the Cole impedance model.

the PSPICE response showing less than 0.5% error until 1 MHz and less than 2% error over

the entire response. The relative errors of the PSPICE response compared to the ideal and

the response using the extracted parameters compared to the PSPICE response are given in

Fig. 3.15(b) as squares and circles, respectively.

3.2.3 Experimental Results

To validate the extraction method the magnitude response of the circuit in Fig. 3.16 was

collected when apples were used as the double dispersion Cole impedances. This magni-

tude response was collected using an Agilent 54622D mixed signal oscilloscope when a1

V peak- to-peak sinusoidal waveform with frequencies from 100 mHz to 1 MHz, in 64 log-

arithmic steps, was applied by a Agilent 33250A. In the experimental setup a OPA275 op

amp with 9 MHz gain bandwidth product was used to buffer the output voltage, vo, when

RL = 497 W . Note that RL was selected such that the lowest fre- quency measurement

(at 0.1 Hz) would be greater than 1 mV (the minimum value measurable by the Agilent

54622D). From the experimental magnitude responses parameters [R•, R1, R2, C1, C2, a1,

a1] were extracted as [371 W, 5.28 kW, 58.6 kW, 112 nF, 24.2 µF, 0.768, 0.762] and [327

W, 5.56 kW, 16.8 kW, 95.6 nF, 49.2 µF, 0.778, 0.638] for apple 1 and 2, respectively, using

the NLSF with 30 applied initial guesses. The MATLAB simulated responses using these
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Figure 3.17: Experimentally collected step responses of (a) apple 1 (solid) and (b) apple 2
(dashed) compared to MATLAB simulated responses using extracted impedance

parameters (circles and squares) and (c) relative errors of apple 1 (circles) and 2 (squares)
simulated responses compared to the experimental.
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parameters are given in Fig. 3.17(a) and (b) as circles and squares, respectively. These sim-

ulated responses show excellent agreement with the experimental results, with the relative

errors between the experimental and simulated datapoints given in Fig. 3.17(c) as solid and

dashed lines for apple 1 and apple 2, respectively. The simulated results show less than 3%

relative error over the entire collected datasets.

3.3 Contribution

In conclusion, this chapter has presented methods of extracting the double-dispersion Cole

impedance model parameters from the current excited step response and magnitude re-

sponse, without requiring any direct impedance measurements. The summary of the results

in this chapter are presented below:

• A non-linear least squares method was applied to the current step response of the

double-dispersion Cole impedance model. The application of multiple initial guesses

to the numerical solver was introduced to overcome accuracy limitations resulting

from potential local solutions. Using MATLAB simulations, this method shows less

than 5.5% average relative error when the noise is 0.5% for all parameters. This was

further validated experimentally using results collected from an apples which showed

less than 2% error over the entire step response between simulations of the extracted

parameters and the experimental results. This work was peer reviewed and published

in [107].

• A non-linear least squares method was applied to the magnitude response of the

double-dispersion Cole impedance model. The application of multiple initial guesses

to the numerical solver was introduced to overcome accuracy limitations resulting

from potential local solutions. Using MATLAB simulations, this method shows less

than 1.2% average relative error for all parameters when the noise had a Signal-to-

Noise ratio of 60 dB. This was further validated in PSPICE using approximations of
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the constant phase elements which showed less than 2% error over the entire magni-

tude response between simulations of the extracted parameters and the experimental

results.
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CHAPTER 4

FRACTIONAL SUPERCAPACITOR IMPEDANCE MODEL

Figure 4.1: Theoretical fractional impedance model of a supercapacitor.

The fractional supercapacitor model shown in Fig. 4.1, previously introduced in Section

1.2.5, has been used to represent the low and high frequency behaviour of the supercapaci-

tors when a = 1 and a = 0.5, respectively [87]. The impedance of this fractional model is

given by

Zc(s) = Rs +
1

Casa (4.1)

and has been used in [82] to model the impedance in the frequency range from 10 mHz to

1000 Hz and [83] in the frequency range 50 mHz to 215 mHz with a ⇡ 1 and 450 mHz to

100 Hz with a ⇡ 0.5. This model has been selected over other fractional models because

of its simplicity and good fit with experimental data at low and high frequencies. Mea-

surement of the fractional impedance parameters that characterize this model (Rs, Ca , a)

has required direct measurement of the impedance [83] or frequency response [86] requir-

ing either an impedance or network analyzer. In this chapter an indirect method to extract

the impedance parameters from the voltage excited step response of the fractional super-

capacitor model using non-linear least squares process is presented. For these methods

the underlying circuit theory and process are presented and validated by both simulations
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(a)

(b)

Figure 4.2: (a) Parallel and (b) series connection of n fractional capacitors.

and experimentally collected results from low and high capacity supercapacitors. It should

be noted that throughout this chapter the pseudo-capacitance (Ca) units of the fractional

supercapacitor model will be described as F/s1�a , previously introduced in Section 1.2.5.

This is done to prevent confusion between comparisons of the fractional and integer order

models whose units of capacitance and pseudo-capacitance, respectively, cannot be directly

compared.

4.1 Fractional Capacitors

Traditional capacitors with order a = 1 can be combined in parallel and series as shown in

Figs. 4.2(a) and (b), respectively, with the resulting capacitance calculated using the well

known formulas

Cp =
n

Â
i=1

Ci (4.2)

1
Cs

=
n

Â
i=1

1
Ci

(4.3)

where Cp and Cs are the parallel and series equivalent capacitance, respectively, and n is the

total number of connected capacitors. However when the capacitors have varying orders

we cannot use (4.2) and (4.3) to determine an equivalent capacitance but must look at the

equivalent impedance instead. Then the impedance of n connected fractional capacitors in



82

+

N

Supercapacitor
model

Figure 4.3: Wien bridge circuit to determine the capacitance of series resistance of a
capacitor.

parallel and series becomes

Zp(w) =
1

Ân
i=1 waiCi

⇥
cos
�aip

2
�
+ j sin

�aip
2
�⇤ (4.4)

Zs(w) =
n

Â
i=1

1
waiCi

⇥
cos
�aip

2
�
+ j sin

�aip
2
�⇤ (4.5)

where Zp(w) and Zs(w) are the equivalent parallel and series impedance, respectively.

The order of each element has a significant effect on the impedance of each fractional

capacitor and cannot be neglected when creating an equivalent impedance. It should be

noted though, that (4.4) and (4.5) can be simplified to (4.2) and (4.3), respectively, when the

orders of all parallel or series capacitors are equal and the resulting equivalent capacitance

shares that same order. With fractional capacitors requiring updated equations to determine

the equivalent impedance of parallel and series elements it follows that the techniques to

measure these quantities also require updating to the fractional domain.

4.1.1 Measurement with a Wien Bridge

The Wien bridge, shown in Fig. 4.3, is a circuit to measure an unknown capacitance and

series resistance by balancing them with a branch of known impedance at a fixed frequency.
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To balance this circuit at a fixed frequency, the components Cx and Rx are adjusted until

the impedance of each branch is equal. When balanced, the unknown quantities, Ca and Rs

can be found by solving the equations

CaRs =
1

w2RxCx
(4.6)

Rs = Rx

✓
1� Cx

Ca

◆
(4.7)

where w is the frequency at which the impedances are balanced. However, these expres-

sions are based on the assumption that a = 1. If we generalize these balanced equations to

the fractional domain they become

CaRs =
sin
�ap

2
�
�wRxCx cos

�ap
2
�

wa+1RxCx
(4.8)

Rs = Rx

 
1�

Cxw1�a sin
�ap

2
�

Ca
�

cos
�ap

2
�

waCaRx

!
(4.9)

Now, if we measure a supercapacitor in the traditional Wien bridge circuit, the values

calculated will not be an accurate representation of the element because the true order

is neglected. For example, if fractional capacitors with orders a = 0.25, 0.5, 0.75, and

1 are balanced in the Wien bridge at w = 1000 rad/s when Cx = 1 nF and Rx = 10 kW

the unknown quantities will be calculated as Ca = 10 µF and Rs = 1000 W using (4.6)

and (4.7). However, solving (4.8) and (4.9) numerically when the order is known yields

the capacitances and series resistance given in Table 4.1. From these values it is clear

that using the integer order Wien bridge equations greatly underestimates the value of the

fractional capacitor, with the true capacitance two orders of magnitude higher than that

calculated with (4.6) and (4.7) for orders less than 0.5. This difference is a natural result of

the change in impedance introduced by the order of the fractional capacitor. Therefore, it

is not possible to use a traditional Wien bridge circuit to measure the fractional impedance

parameters that describe fractional capacitors and new techniques are required for their
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a = 1 a = 0.75 a = 0.5 a = 0.25
Ca (µF) 10.0 52.0 223.6 680.6
Rs (W) 9999 9958 9899 9758

Table 4.1: Theoretical extractions of capacitance and series resistance of a fractional
capacitor in a classic Wien Bridge circuit.

Supercapacitor
model+

-

V 

0 V
 t = 0

cc

Figure 4.4: Circuit to apply a step-voltage input to the fractional model of a
supercapacitor.

correct measurement.

4.2 Charging and Discharging of Supercapacitors

Accurately using supercapacitors in circuits and systems requires both accurate impedance

models and expressions for their charging and discharging characteristics. A simple circuit

that can be used to obtain the voltage excited step response of a supercapacitor, when

modelled as a fractional impedance, is shown in Fig. 4.4. Using the Caputo definition of a

fractional derivative, given by (1.1) the output voltage in the s-domain, Vo(s), of Fig. 4.4

with an initial voltage, v(0), on the capacitor when Vin(s) is a step function of magnitude

Vcc, that is Vin(s) = Vcc/s is given by

Vo(s) =

Vcc
s

1
Ca (R+Rs)

+ Vcc
s sa Rs

Ca (R+Rs)
+ v(0)sa�1 R

Ca (R+Rs)

sa + 1
Ca (R+Rs)

(4.10)

=
1

R+Rs


Vcc

Ca
· s�1

sa +1/Ca(R+Rs)
+VccRs

sa�1

sa +1/Ca(R+Rs)
(4.11)

+v(0)R
sa�1

sa +1/Ca(R+Rs)

�
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Applying the Laplace transform formula for the Mittag-Leffler function given by (2.4) to

(4.11) yields the time domain expression of the output voltage given by

vo(t) =
1

R+Rs


Vcc

Ca
taEa,a+1

✓
�ta

Ca(R+Rs)

◆
+(VccRs + v(0)R)Ea,1

✓
�ta

Ca(R+Rs)

◆�

(4.12)

which when there are zero initial conditions (v(0) = 0 V) becomes

vo(t) =
Vcc

R+Rs


ta

Ca
Ea,a+1

✓
�ta

C(R+Rs)

◆
+RsEa,1

✓
�ta

Ca(R+Rs)

◆�
(4.13)

From the definition of the two-term Mittag-Leffler function we can determine the time-

domain expressions with zero initial conditions from (4.13) for the case using standard

capacitors, that is when a = 1. Substituting both (2.8) and (2.9) into (4.13) we obtain the

more familiar expression

vo(t) = Vcc


1� R

R+Rs
e

�t
(R+Rs)Ca

�
(4.14)

However, supercapacitors do not behave like standard capacitors and hence the output volt-

age vo(t) is accurately given by (4.13) and not by (4.14). MATLAB simulations of (4.13)

for a = 0.25, 0.5, 0.75, and 1 using the Mittag-Leffler MATLAB function supplied by [101]

to an accuracy of 10�9 for each datapoint, when Ca = 1 F, Rs = 30 W, R = 180 W, and

Vcc = 5 V are given in Fig. 4.5. Note that the value of a has a significant impact on the

charging of the quadripole, with lower values of a reducing the rate at which the super-

capacitor charges. To verify that the simulated fractional and integer order time domain

expressions are equivalent for the case when a = 1, both (4.13) and (4.14) are plotted in

Fig. 4.5 as a solid line and circles, respectively, showing perfect agreement with each other.

Similarly, it can be shown that the time-domain expression for the discharging of the
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Figure 4.5: MATLAB simulations of the charging of Fig. 4.4 using (4.13) for a = 0.25,
0.5, 0.75, and 1 when Ca = 1 F, Rs = 30 W, R = 180 W, Vcc = 5 V.

supercapacitor in Fig. 4.4 with initial voltage, v(0), when vin(t) = 0 is given by

vo(t) = v(0)
R

(R+Rs)
Ea,1

✓
�ta

Ca(R+Rs)

◆
(4.15)

which when substituting (2.8) into (4.15) for the case when a = 1 yields the familiar ex-

pression

vo(t) = v(0)
R

R+Rs
e

�t
Ca (R+Rs) (4.16)

Using the fractional charging and discharging expressions for a supercapacitor in Fig. 4.4

given by (4.13) and (4.15), we can completely describe the behaviour of a supercapacitor

to a step response voltage input.

4.3 Simulation Results

The NLSF method, previously described in Section 2.2 for the step-response extraction

method of the single-dispersion model can be modified and applied to the step-response
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extraction of the double dispersion model. The general NLSF method is repeated here:

min
x

k T (x)� ydata k2
2 = min

x

n

Â
i=1

(T (x)i � ydatai)
2

s.t. x > 0

The extraction of the supercapacitor fractional-order parameters requires that x is the vec-

tor of impedance parameters (Ca , Rs, a), T (x) is the time domain step response (4.13)

calculated using x, ydata is the collected step response to fit to (4.13), T (x)i and ydatai are

the simulated response and collected response at time ti, and n is the total number of data

points in the collected step response.

The impact of noise on the extractions was investigated by applying the NLSF routine

to 1000 MATLAB simulated step responses of (4.13) from t = 0 to 30 s with 50 linearly

spaced datapoints for supercapacitors of orders a = 0.5, 0.75, and 1 when Ca = 1 F/s1�a ,

Rs = 30 W, R = 180 W, Vcc = 5 V, and v(0) = 0 V. Randomly generated white Gaussian

noise with Signal-to-Noise ratios (SNR) of 40 dB to 80 dB in 5 dB steps are added to each

response. The average relative error of the 1000 estimated impedance parameters (Ca , Rs,

a) for each value of a and SNR are given in Fig. 4.6. This figure displays an overall trend

of increasing parameter accuracy with increasing SNR for all orders showing less than 2%

error when the noise SNR is greater than 60 dB. Note that the a = 1 cases have the least

error, regardless of the noise level, which results from using the initial point, x0 = [1 F/s1�a ,

30 W, 1] in the NLSF. The routine is more likely to solve for an accurate value when x0 is

close to the solution. Though overall these results demonstrate that even in the presence of

noise, the NLSF method can accurately extract the fractional impedance parameters from

a step response dataset.

Four MATLAB simulations of step responses with 60 dB SNR Gaussian white noise

and the simulated responses using the extracted parameters are shown in Fig. 4.7 as dots

and squares, respectively, for a = 0.25, 0.5, 0.75, and 1. The estimated parameters from



88

40 45 50 55 60 65 70 75 80

10
−2

10
−1

10
0

10
1

Signal−to−Noise Ratio (dB)

R
el

at
iv

e 
E

rr
o
r 

(%
)

 

 

Error

Error

Error

:

:

:

Figure 4.6: Average relative error of extracted parameters from 1000 MATLAB simulated
step responses when Ca = 1 F/s1�a , Rs = 30 W, and a = 0.5, 0.75, and 1 with 40 to 80 dB

SNR Gaussian white noise.
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Figure 4.7: MATLAB simulated step responses with 60 dB SNR Gaussian white noise
(dots) and simulated response using estimated parameters (squares) for a = 0.25, 0.5,

0.75, and 1 when Ca = 1 F/s1�a , Rs = 30 W.

these individual noisy datasets have (1.27, 0.039, 0.665)%, (�2.02, �0.077, �1.50)%,

(�1.84, �0.080, �0.995)%, and (0.256, �0.0001, 0.191)% relative error for (Ca , Rs, a)

compared to the ideal values when a = 0.25, 0.5, 0.75, and 1, respectively.
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Figure 4.8: (a) Test circuit and (b) physical implementation to apply a step-voltage input
to a supercapacitor to collect the output step response.

4.4 Experimental Results

To verify the estimation method the circuit of Fig. 4.8(a) was implemented on a breadboard,

shown in Fig. 4.8(b), using an Agilent 33250A waveform generator to apply a pulse with

20 µs edge times and 30 s period to the OPA 544 op amp configured as a unity gain buffer.

The impact of the edge time can be neglected due to the much larger 30 s time-scale of

the collected charging region. This buffered input, v̂in(t), was applied to a supercapacitor

through a 178.6 W resistor. The buffered step input and charging of a 1 F supercapacitor,

collected using a Tektronix 745D digital oscilloscope sampling at a rate of 25 S/s, shown in

Fig. 4.9, confirms that the op amp is operating in its linear region. As the input step does not

introduce any high frequency artifacts the sampling rate is adequate to capture the charging
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Figure 4.9: Buffered step input v̂in(t) (solid) and charging supercapacitor (dashed)
waveforms to validate that the OPA544 op amp is operating in its linear region.

and discharging characteristics for the NLSF. Note the asymmetrical charging response of

the 1 F supercapacitor in Fig. 4.9 supporting the results that charge and discharge cycles

vary due to irreversible processes and internal resistance [111]. The step responses of six

0.33, 1, and 1.5 F supercapacitors, 2 each from Panasonic, Elna, and Cooper-Bussmann

(with all part numbers given in Table 4.2) were collected from the test setup shown in Fig.

4.8(b). The complete set of step responses for the 0.33, 1, and 1.5 F supercapacitors are

shown in Figs. 4.10(a), (b), and (c), respectively. Applying the NLSF to each of the

collected responses in Fig. 4.10 yields the parameters given in Tables 4.3(a), (b), and (c).

The pseudo-capacitances extracted for the fractional model show a significant deviation

from the rated capacitances supplied by the manufacturers because the manufacturer values

represent the nominal capacity where our extracted values are to represent the transient

behaviour. Therefore, a direct comparison between these parameters cannot be made as

they are describing different behaviours of the supercapacitors.

Each of the 3 brands, for all 3 capacitances show similar values to each other, even

though each have potentially different manufacturing processes. Of significant note is the

fractional order having mean values of a = 0.56, 0.56, and 0.53 for the 0.33, 1, and 1.5
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Figure 4.10: Experimentally collected step responses of (a) 0.33, (b) 1, and (c) 1.5 F
Panasonic, Elna, and Cooper-Bussmann brand supercapacitors.
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Brand Part Number
0.33 F 1 F 1.5 F

Panasonic EEC-S0HD334V EEC-S5R5105 EEC-S5R5155

Elna DXJ-5R5V334U DX-5R5105U DB-5R5D155T

Cooper-Bussmann KR-5R5V334-R KR-5R5V105-R KR-5R5V155-R

Table 4.2: Manufacturer part numbers for 0.33, 1, and 1.5 F rated supercapaciors from
Panasonic, Elna, and Cooper-Bussmann.

F supercapacitors, respectively. Therefore, in the time scale from 0.2 s to 30 s the high

frequency simplification of the porous supercapacitor model to (4.1) with a ⇡ 0.5 is a

very good fit. The MATLAB simulation of (4.13) using the estimated parameters of the

1 F, Panasonic(1) supercapacitor in Table 4.3(b) compared to the experimentally collected

step response are shown in Fig. 4.11 as black circles and a solid line, respectively. The

simulation using the estimated parameters shows a very good fit with the experimental

data, with less than 3% relative error over the entire response validating that the extracted

fractional parameters do correctly describe the supercapacitor step response in this time

scale. For comparison, the parameters from the step response were also extracted using

the NLSF assuming a = 1 which yields parameters Ca = 0.645 F and Rs = 21.43 W, the

simulated response using these parameters are given in Fig. 4.11 as a dashed line. This

response shows a significant error compared to the experimental data reaching a maximum
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Brand 0.33 F Rated Capacitance
Ca (F/s1�a ) Rs (W) a

Panasonic(1) 0.035 28.8 0.536
Panasonic(2) 0.036 28.6 0.544

Elna(1) 0.028 23.7 0.494
Elna(2) 0.029 28.4 0.516

Cooper(1) 0.060 24.6 0.620
Cooper(2) 0.061 24.4 0.623

(a)

Brand 1 F Rated Capacitance
Ca (F/s1�a ) Rs (W) a

Panasonic(1) 0.131 8.33 0.553
Panasonic(2) 0.127 7.79 0.551

Elna(1) 0.096 6.68 0.542
Elna(2) 0.092 5.81 0.529

Cooper(1) 0.148 10.1 0.579
Cooper(2) 0.146 10.6 0.577

(b)

Brand 1.5 F Rated Capacitance
Ca (F/s1�a ) Rs (W) a

Panasonic(1) 0.155 5.87 0.540
Panasonic(2) 0.146 5.43 0.529

Elna(1) 0.128 10.1 0.517
Elna(2) 0.114 8.68 0.496

Cooper(1) 0.166 6.68 0.537
Cooper(2) 0.646 6.46 0.555

(c)

Table 4.3: Fractional parameters extracted using NLSF method from supercapacitors with
(a) 0.33, (b) 1, and (c) 1.5 F rated capacitance.

of 61% at 0.3316 s, confirming that the fractional model given by (4.1) provides a more

accurate fit of the experimental data than its integer order counterpart. The relative errors

of the simulated step responses using the estimated parameters in Table 4.3 compared to

the experimental results of Fig. 4.10 are given in Fig. 4.12. From these figures, it is clear

that all simulated responses using the estimated parameters show very good agreement with

the experimental results with maximum errors less than 3% for all responses of the 0.33,

1, and 1.5 F supercapacitors. The majority of simulated datapoints using the estimated

parameters show less than 0.3% relative error over the entire dataset with the maximum
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Figure 4.11: Experimentally collected step response of the 1 F, Panasonic(1)
supercapacitor (solid) and the MATLAB simulated response using the estimated fractional

(black circles) and integer (dashed) parameters.

errors occurring at times less than 1 s.

4.4.1 1 F Supercapacitor Comparison

The need for manufacturers to begin using and marketing their supercapacitors having frac-

tional characteristics becomes more apparent when comparing supercapacitors with the

same rated capacitance but different part numbers from the same manufacturer. For exam-

ple, the step responses of 3 different 1 F rated supercapacitors from Cooper-Bussmann hav-

ing part numbers KR-5R5V105-R, PM-5R0V105-R, and PB-5R0V105-R, collected from

the circuit in Fig. 4.8 to an input step of 5 V are given in Fig. 4.13(a). For compari-

son, a photo of the three types of supercapacitors are given in Fig. 4.13(b). Previously,

it was shown that the KR-5R5V105-R supercapacitors possessed fractional parameters of

approximately Ca ⇡ 0.1 F/s1�a , Rs ⇡ 10 W, and a ⇡ 0.53. However, the NLSF extraction

process applied to the step responses of the PM and PB supercapacitors yields parameters

(Ca , Rs, a) = (0.8726 F/s1�a , 0.4650 W, 0.9717) and (0.6893 F/s1�a , 0.0728 W, 0.9724),

respectively. The PM and PB models possess parameters very close to those expected by
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Figure 4.12: Absolute relative error of the (a) 0.33, (b) 1, and (c) 1.5 F simulated step
responses using the estimated parameters in Table 4.3 compared to the experimental

results of Fig. 4.10.
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Figure 4.13: (a) Step responses collected from (b) 1 F rated capacitors from
Cooper-Bussmann with part numbers KR-5R5V105-R, PM-5R0V105-R, and

PB-5R0V105-R as solid, circle, and square lines, respectively, and

normal capacitors with an order very close to 1 and capacitance value within the expected

tolerances. However, the order of the KR model (a ⇡ 0.53) is only half as large as the PB

and PM models (a ⇡ 1). However, all three supercapacitor models are marketed with a 1

F rated capacitance even though the KR model has very different charging characteristics

than both the PM and PB models. In this time scale, the transient behaviour of the PM and

PB models are accurately represented with the low-frequency simplification of the porous

model while the KR model is accurately represented by the high-frequency simplification.

Therefore, it would be beneficial of manufacturers to adopt fractional models and report
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Figure 4.14: Experimental step responses collected from 0.33 F Panasonic supercapacitor
from initial voltages of v(0) = 0.5 V to 4 V in 0.5 V steps when Vcc = 5 V.

over which time-scales they are accurate when describing supercapacitor specifications to

reflect their transient characteristics.

Regarding Fig. 4.13, the KR supercapacitors appear to have a larger initial voltage

than both PB and PM models even though all components were discharged for 15 minutes

before testing. This apparent initial voltage results from the large series resistance of the

KR model that forms a voltage divider, Rs/(R+Rs), and results in the voltage jump when

a step input is initially applied.

4.4.2 Voltage Dependence

The capacitance of supercapacitors has been shown in [111] to depend on the state of

charge resulting from the nonlinear response of the molecules at the electrode-electrolyte

interface. This behaviour impacts the fractional impedance parameters extracted from the

step response of the supercapacitors. The step responses of a 330 mF Panasonic superca-

pacitor from initial voltages of 0.5 V to 4 V in 0.5 V steps to an input of Vcc = 5 V are

given in Fig. 4.14. Applying the NLSF to each waveform yields the fractional parameters

given in Table 4.4. From the extracted impedance parameters there is a trend of decreas-
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v(0) Ca (mF/s1�a ) Rs (W) a
0.5 V 35.7 34.9 0.536
1 V 36.1 31.2 0.538

1.5 V 35.3 34.2 0.527
2 V 35.8 29.6 0.529

2.5 V 33.6 33.9 0.514
3 V 32.0 29.2 0.497

3.5 V 31.5 35.8 0.499
4 V 31.9 39.8 0.516

Table 4.4: Fractional impedance parameters extracted from 330 mF panasonic
supercapacitor from initial voltages of 0.5 V to 4 V in 0.5 V steps.

ing Ca and a as the initial voltage increases. The impact of the inaccuracies introduced

in modelling the transient characteristics without accounting for the voltage dependence

are highlighted in Fig. 4.15 with the experimental and simulated waveforms of a 330 mF

Panasonic supercapacitor shown as solid and dashed lines, respectively. The simulated

charging and discharging regions use the fractional parameters (Ca , Rs, a) = (35 mF/s1�a ,

28.8 W, 0.536) and (14 mF/s1�a , 15.56 W, 0.499), respectively, extracted from the initially

collected charge and discharge responses in Section 4.4. The initial charging region from 0

s to 10 s shows very good agreement with the simulation, but major errors are introduced

between experimental and simulated waveforms in the first discharging region from 10 s to

15 s. This results from the discharging parameters having been extracted after the superca-

pacitor was charged for 30 s before its discharge which yielded a different initial voltage

than that at 10 s in Fig. 4.15. This different initial voltage requires modification of the

parameters for this region as a result of their voltage dependence. Without this modifica-

tion errors are introduced which propagate to subsequent charging and discharging regions

and results in the deviations of the simulations from the experimental results. Therefore, to

accurately model the transient characteristics in all charge situations, the fractional model

must be expanded to account for the dependence of the fractional parameters on the state

of charge and voltage. The voltage dependency of the fractional impedance parameters

that describe the transient behaviour of supercapacitors warrants future investigation, but is
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Figure 4.15: Experimental (solid) and simulated (dashed) response to voltage pulses
collected from 0.33 F Panasonic supercapacitor.

outside the scope of the main argument presented in this work.

4.4.3 High Capacity Supercapacitors

Supercapacitors with very high capacities are available with rated capacitances upwards of

a thousand farads. Two such components are the BCAP1500-P270-K05 and BCAP3000-

P270-K05 supercapacitors from Maxwell Technologies Inc., given in Fig. 4.16, with rated

capacitances of 1500 and 3000 F, respectively. To extract the fractional parameters of these

components a voltage step of 2.5 V was applied to each supercapacitor using the circuit

given in Fig. 4.4 when R = 0.52 W. In this test-setup, fully described in Appendix C, a

HP3631A DC power supply was used to generate the step-input with required output cur-

rent. The relatively slow input step of approximately 300 ms can be neglected due to the

much larger 90 s time-scale of the collected dataset. These collected responses are shown

in Fig. 4.17 as solid lines. Applying the NLSF extraction process on the BCAP1500-

P270-K05 and BCAP3000-P270-K05 datasets yields fractional parameters of (Ca , Rs,

a) = (1003.6 F, 0.0179 W, 0.9783) and (2095.9 F, 0.0223 W, 0.9857), respectively. The

MATLAB simulated step response using the extracted fractional parameters shows very
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Figure 4.16: BCAP1500-P270-K05 and BCAP3000-P270-K05 supercapacitors from
Maxwell Technologies Inc. with rated capacitances of 1500 and 3000 F, respectively.
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Figure 4.17: Experimental step responses collected from 1500 F (BCAP1500-P270-K05)
and 3000 F (BCAP3000-P270-K05) rated capacitors from Maxwell Technologies (solid)

compared to MATLAB simulated responses using extracted fractional parameters
(circles).
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good agreement with the experimental results with less than 0.2% relative error over the

entire collected dataset. These simulated responses are given in Fig. 4.17 as circles. These

parameters are within the same range as those extracted in [86] and confirm that these su-

percapacitors behave very closely to the traditional integer order (a = 1) capacitor model

and are accurately modelled using the low-frequency simplification of the porous model

over this limited time scale.

4.5 Fractional Multivibrator

A free-running multivibrator circuit has been previously investigated in [15] examining the

effect of using a fractional order capacitor in a single op amp circuit, demonstrating that the

fractional order capacitor has the ability to increase the oscillator frequency significantly

while using reasonable time constants. However, the physical realization of this circuit

in [15] required the use of an approximated fractional capacitor using a RC ladder circuit.

Having shown in the previous section that supercapacitors exhibit fractional behaviour in

the time domain with an order of approximately 0.5, we employ a supercapacitor in the

multivibrator circuit shown in Fig. 4.18 to confirm its fractional behaviour. This circuit

utilizes a single supply voltage because the supercapacitor can only accept positive volt-

ages, therefore this circuit will charge and discharge to 2/3 Vcc and 1/3 Vcc, respectively,

at the inverting terminal of the op amp, v�(t), at which time the output, vo(t) will toggle

from Vcc to 0 or vice versa. To predict the oscillator frequency requires accurate modelling

of v�(t) based on the charging and discharging of the supercapacitor. The expressions for

these cycles are given by

v�C (t) =
Vcc

Ca(R+Rs)
taEa,a+1

✓
�ta

Ca(R+Rs)

◆
+


VccR+ v(0)R

R+Rs

�
Ea,1

✓
�ta

Ca(R+Rs)

◆

(4.17)

v�D(t) =
R

R+Rs
v(0)Ea,1

✓
�ta

Ca(R+Rs)

◆
(4.18)
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Figure 4.18: (a) Theoretical and (b) physically implemented fractional multivibrator
circuit using a supercapacitor as the fractional element.

where v�C (t) and v�D(t) are the charging and discharging expressions, respectively, and v(0)

is the initial voltage stored on the supercapacitor for that cycle. However, as a result of

the series resistance, Rs, of the supercapacitors the initial voltage is not the same as the

transition voltages, 2/3 Vcc and 1/3 Vcc, of typical multivibrators as a result of the voltage

divider formed by R and Rs. Therefore, to correctly predict the oscillation frequency and

simulate this circuit requires the true voltage on the fractional capacitor for each charge and
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Figure 4.19: MATLAB simulated response of the multivibrator waveforms v�(t) (solid)
and vc(t) (dashed) using the extracted fractional parameters of 1 F, Panasonic(2)

supercapacitor when Vcc = 5 V.

discharge cycle. The expressions for the voltage on the supercapacitor, shown as vc(t) in

Fig. 4.18, during the charge and discharge cycles are given as

vC
c (t) =

Vcc

Ca(R+Rs)
taEa,a+1

✓
�ta

Ca(R+Rs)

◆
+ v(0)Ea,1

✓
�ta

Ca(R+Rs)

◆
(4.19)

vD
c (t) = v(0)Ea,1

✓
�ta

Ca(R+Rs)

◆
(4.20)

where vC
c (t) and vD

c (t) are the voltages during the charging and discharging cycles, respec-

tively.

MATLAB simulations of v�(t) and vc(t) using (4.17) and (4.18), respectively, where

the initial voltage for the charging/discharging cycle is determined by the previous dis-

charge/charge cycle using (4.20) and (4.19) are given in Fig. 4.19 using the extracted

fractional parameters of the 1 F, Panasonic(2) supercapacitor when Vcc = 5 V and R = 15

W. We measure an oscillation frequency of 10.98 Hz. For comparison, this simulation was

conducted with values Ca = 1 F, Rs = 7.79 W, and a = 1, which are the manufacturer’s

rated values, yielding an oscillation frequency of 0.854 Hz. Therefore, using the fractional
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Figure 4.20: Experimental waveforms vo(t) and v�(t) using the 1 F, Panasonic(2)
supercapacitor collected from the multivibrator circuit of Fig. 4.18.

impedance parameters, which shows a lower pseudo-capacitance and order, results in an

oscillation frequency two orders of magnitude higher than predicted by an integer-order

model.

The multivibrator circuit in Fig. 4.18(a) was implemented using a TLV4112 op amp

with R1 = R2 = R3 = 1 kW, R = 15.1 W, and Vcc = 5 V with the physical realization

given in Fig. 4.18(b). The voltages at the non-inverting terminal, v�(t), and output, vo(t),

collected using a Agilent 54622D mixed signal oscilloscope when the 1 F, Panasonic(2)

supercapacitor was used are given in Fig. 4.20. From the waveforms we observe that the

multivibrator oscillates at a frequency of 13.85 Hz closer to the value of 10.98 Hz predicted

by the MATLAB simulations using the fractional parameters than 0.854 Hz predicted by

the integer parameters. Highlighting that the nominal capacitance supplied by manufactur-

ers is not capable of explaining the measured oscillation frequency. While the extracted

parameters showed less than 3% error with the experimental step responses in Section 4.4

the predicted oscillation frequency shows an error of 20.7%. This larger error is attributed

to using the extracted parameters from an initial voltage v(0) = 0 V, even though the stored

voltage in the multivibrator circuit will be higher as mentioned in Section 4.4.2, this re-

quires further investigation. Also, the same parameters were used for both charging and
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discharging cycles even though the supercapacitors were shown not to possess identical

charge and discharge cycles in Fig. 4.9.

4.6 Contribution

In conclusion, this chapter has presented methods of extracting the fractional impedance

parameters that accurately represent the transient characteristics of a supercapacitor from

the voltage excited step response without requiring any direct impedance measurements.

The summary of the results in this chapter are presented below:

• The voltage-excited step-response of a fractional model for a supercapacitor is pre-

sented with a non-linear least squares method applied to extract the impedance pa-

rameters that characterize the model. Using MATLAB simulations, this method

shows less than 2% average relative error when the noise had a Signal-to-Noise ratio

of 60 dB or greater;

• The non-linear least squares method was validated experimentally using results col-

lected from low capacity supercapacitors with manufacturer ratings of 0.33 F, 1 F,

and 1.5 F and high capacity supercapacitors with 1500 F and 3000 F manufacturer

ratings. The experimental datasets and those simulated using the extracted parame-

ters show less than 3% relative error for all supercapacitors;

• The fractional time-domain behaviour of the supercapacitors was also highlighted

using a supercapacitor in a multivibrator circuit. Using this circuit, the oscillation

frequency of the fractional model simulated in MATLAB shows much closer agree-

ment with the experimental results than that predicted by the integer parameters.

These results have been peer reviewed and published in [112, 113].
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

Throughout this work the extraction of fractional-impedance parameters without requir-

ing direct impedance measurements has been investigated. This work has been applied to

the single and double dispersion Cole impedance models used extensively in biology and

biomedicine and a fractional model applied to supercapacitors.

Concepts from fractional calculus were imported to develop the circuit theory and de-

rive the current and voltage excited step responses and magnitude responses of the single-

dispersion Cole impedance model. From the step-excited responses a numerical curve fit-

ting method was developed and applied to extract the impedance parameters that describe

this model. To further overcome the accuracy limitations, which are highlighted in MAT-

LAB simulations, a non-linear least squares method is applied to the current and voltage

excited step responses with the improvements verified from experimentally collected fruit

tissue datasets. The sensitivity of an indirect magnitude extraction method was analyzed

with its limitations overcome by the application of a non-linear least squares method. This

improved accuracy is verified applying the method to experimentally collected magnitude

responses of two apricots and an apple, showing a much better fit using the non-linear least

squares parameters.

The concepts from fractional calculus are further applied to the double dispersion Cole

impedance model to develop expressions for the current-excited step response and mag-

nitude response of this fractional impedance model. Using these models, non-linear least
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squares methods are applied to both frequency and time domain datasets of the double

dispersion Cole impedance model to extract the fractional impedance parameters that char-

acterize this model. The extractions are validated by PSPICE simulations for the magnitude

response and experimentally collected results from fruit tissues for the current-excited step

response.

The impact of using integer-order model techniques to measure a CPE or supercapac-

itor and how parameters extracted with these methods inaccurately represent the transient

characteristics of these devices was analyzed. Fractional circuit theory was applied to a

fractional-impedance model applied to supercapacitors to describe the voltage-excited step

response of this device. Using this fractional model a non-linear least squares method was

applied to the voltage induced step response of supercapacitors to extract the fractional

impedance parameters that accurately describe their transient behaviour. This process was

verified using experimentally collected step responses from both low and high capacity

supercapacitors.

5.2 Contribution

The contributions of this thesis have been to two areas of electrical engineering: circuit

theory and signal processing. The first major contribution is the continued development

of fractional circuit theory by importing concepts from fractional calculus into circuits

and systems. Using this fractional circuit theory expressions for the current and voltage

excited step responses and magnitude responses of fractional impedance models have been

developed. This continued development is especially important as fractional devices are

very close to becoming commercially available, though without the development of the

circuit theory regarding their use the benefits they offer will not be immediately available.

The second major contribution of this thesis is the application of signal processing

methods to extract the impedance parameters that characterize fractional impedance models

without requiring direct impedance measurements. Numerical graph fitting methods and
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non-linear least squares fittings have been applied to the step responses of the single and

double dispersion impedance models and a fractional supercapacitor model to extract the

impedance parameters that characterize these models. The non-linear least-squares fitting

has also been applied to the magnitude response of the single and double dispersion Cole

impedance model parameters to also extract their impedance parameters.

5.3 Future Work

The continued development of this work shows many interesting applications to continue

to explore that include:

• Continued import of fractional calculus into circuit theory to explore possible benefits

offered by the fractional-domain generalization of traditional integer order circuits;

• The development of inexpensive and portable instruments that apply the non-linear

least squares method to extract the impedance parameters of connected tissues of de-

vices for impedance spectroscopy without requiring direct impedance measurements;

• The investigation of the relationship between the extracted single and double dis-

persion Cole impedance parameters of fruit tissues to monitor for health, storage

viability, or other physiological changes and their physical mechanisms;

• The investigation and comparison of the fractional-impedance parameters extracted

using the various indirect methods;

• The development of voltage and time-dependent fractional models to completely de-

scribe the behaviour of fruits, vegetables, and supercapacitors long-term transient-

time behaviour.
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APPENDIX A

EXTRACTION OF IMPEDANCE PARAMETERS IN MATLAB

Included in this appendix are samples of MATLAB code used for the extraction of the frac-

tional impedance parameters that describe the single and double dispersion Cole impedance

models for biological tissues as well as the fractional model used to represent supercapaci-

tors.

A.1 Cole Impedance Models

A.1.1 Voltage-Excited Single Dispersion Step Response Numerical Extraction

1 % File: SingleColeVoltageStepNumerical.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % The following code has been used for the extraction of
6 % the single�dispersion Cole impedance parameters from
7 % simulated datasets of a Cole impedance to a voltage�input
8 % step.
9 clear all;

10 close all;
11

12 % Setting the theoretical Cole impedance model values
13 Rinf = 1e3;
14 R1 = 1e3;
15 C = 1e�6;
16 alpha = 0.75;
17 SingleColeParameters = [Rinf R1 C alpha];
18

19 % Set simulation parameters
20 Vcc = 5; % Step�input amplitude
21 R = 1e3;
22 E = 9; % Mittag�Leffler simulation accuracy
23



124

24 % Simulating step response to use for future extraction
25 t = logspace(�10, 2, 100);
26 z = �(R+Rinf+R1)/C/R1/(R+Rinf)*t.^alpha;
27 vo1=Vcc*(Rinf+R1)/C/R1/(R+Rinf)*t.^alpha.*mlf(alpha,alpha+1,z,E);
28 vo2 = Vcc*Rinf/(R+Rinf).*mlf(alpha,1,z,E);
29 IdealVo = vo1 + vo2;
30 semilogx(t, IdealVo), hold on;
31

32 % Calculating lower and upper values to use in rise time calculations
33 Lower = Vcc*(Rinf/(R+Rinf));
34 Rise = Vcc*(R*R1/(R+Rinf)/(R+Rinf+R1));
35 upper = Lower+ones(size(t))*0.90*Rise;
36 lower = Lower+ones(size(t))*0.10*Rise;
37

38 % Calculating the experimentally derived values of Rinf and R1
39 Rinf = IdealVo(1)*R/(Vcc�IdealVo(1));
40 R = (IdealVo(length(IdealVo))*R+IdealVo(length(IdealVo))*Rinf� ...

Vcc*Rinf)/(�IdealVo(length(IdealVo))+Vcc);
41

42 % Determining the rise voltages
43 Lower = IdealVo(1);
44 Upper = IdealVo(length(IdealVo));
45 Rise = Upper�Lower;
46 Middle = Lower+Rise/2;
47

48

49 % Calculating the 10% and 90% times and voltages from the
50 % experimental data
51 for i=1:1:length(IdealVo)
52 if( IdealVo(i) > Lower+0.1*Rise)
53 v1x = IdealVo(i);
54 t1x = t(i);
55 break;
56 end
57 end
58

59 for j=i:1:length(IdealVo)
60 if( IdealVo(j) > Lower+0.9*Rise)
61 v2x = IdealVo(j);
62 t2x = t(j);
63 break;
64 end
65 end
66

67 % Calculating the slope based on the rise times and voltages
68 mx = (v2x�v1x)/(log10(t2x)�log10(t1x));
69

70 C2 = 1e�9; alpha2 = 0.5; alphaC = 0.5/2;
71 vError = 10e�9; ErrorLast = 10;
72 iteration = 0;
73 change = alpha2/2;
74

75 % Determining the value of alpha by modifying the alpha of a
76 % simulated step response using the calculated Rinf and R1 until
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77 % the simulation and experimental slopes are equal
78 t = logspace(�20, 2, 100);
79 while(1)
80

81 tNew = t;
82 v1s = 5; v2s = 0;
83 while( abs(v1x�v1s)/v1x > vError)
84 z = �(R+Rinf+R)/C2/R/(R+Rinf)*tNew.^alpha2;
85 part1= Vcc*(Rinf+R)/C2/R/(R+Rinf)*tNew.^alpha2.* ...

mlf(alpha2, alpha2+1, z, E);
86 part2 = Vcc*Rinf/(R+Rinf).*mlf(alpha2, 1, z, E);
87 ExtractedVo = part1 + part2;
88

89 for i=1:1:length(ExtractedVo)
90 if( ExtractedVo(i) > v1x)
91 v1s = ExtractedVo(i);
92 t1s = tNew(i);
93 break;
94 end
95 end
96 tNew = linspace(tNew(i�1), tNew(i));
97 end
98

99 tNew = t;
100 while( abs(v2x�v2s)/v2x > vError)
101 z = �(R+Rinf+R)/C2/R/(R+Rinf)*tNew.^alpha2;
102 part1= Vcc*(Rinf+R)/C2/R/(R+Rinf)*tNew.^alpha2.* ...

mlf(alpha2, alpha2+1, z, E);
103 part2 = Vcc*Rinf/(R+Rinf).*mlf(alpha2, 1, z, E);
104 ExtractedVo = part1 + part2;
105

106 for i=1:1:length(ExtractedVo)
107 if( ExtractedVo(i) > v2x)
108 v2s = ExtractedVo(i);
109 t2s = tNew(i);
110 break;
111 end
112 end
113 tNew = linspace(tNew(i�1), tNew(i));
114 end
115

116 ms = (v2s�v1s)/(log10(t2s)�log10(t1s));
117 Error = (mx�ms)/mx;
118 if(abs(ErrorLast) > abs(Error))
119 ErrorLast = Error;
120 AlphaError = alpha2;
121 end
122

123 if(abs(Error) < 1e�6 || iteration>20)
124 break;
125 else
126 alphaLast = alpha2;
127 if(Error > 0)
128 alpha2 = alpha2 + change;
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129 else
130 alpha2 = alpha2 � change;
131 end
132 change = abs(alphaLast � alpha2)/2;
133 end
134 iteration = iteration + 1;
135 end
136

137 % Determing the required times to calculate the time shift
138 % constant
139 C2 = C2*10;
140 tNew = t;
141 v3s = 5;
142 while( abs(v1x�v3s)/v1x > vError)
143 z = �(R+Rinf+R)/C2/R/(R+Rinf)*tNew.^alpha2;
144 part1= Vcc*(Rinf+R)/C2/R/(R+Rinf)*tNew.^alpha2.* ...

mlf(alpha2, alpha2+1, z, E);
145 part2 = Vcc*Rinf/(R+Rinf).*mlf(alpha2, 1, z, E);
146 ExtractedVo = part1 + part2;
147

148 for i=1:1:length(ExtractedVo)
149 if( ExtractedVo(i) > v1x)
150 v3s = ExtractedVo(i);
151 t3s = tNew(i);
152 break;
153 end
154 end
155 tNew = linspace(tNew(i�1), tNew(i));
156 end
157

158 % Extracting the Capacitance based on the determined time shift
159 % constant
160 decDiv = log10(t3s/t1s);
161 n = log10(t1x/t1s)/decDiv;
162 C2 = (1e�9)*10^n;
163

164 % Calculate step response using extracted parameters
165 z = �(R+Rinf+R)/C2/R/(R+Rinf)*t.^alpha2;
166 part1= Vcc*(Rinf+R)/C2/R/(R+Rinf)*t.^alpha2.* mlf(alpha2, ...

alpha2+1, z, E);
167 part2 = Vcc*Rinf/(R+Rinf).*mlf(alpha2, 1, z, E);
168 ExtractedVo = part1 + part2;
169

170 SingleColeExtracted = [Rinf R1 C2 alpha2];
171 RelativeErrors = abs(SingleColeParameters� SingleColeExtracted)./ ...

SingleColeParameters*100;
172 semilogx(t, ExtractedVo, 'o'); xlabel('Time (s)'); ...

ylabel('Voltage (V)');

Listing A.1: MATLAB code for the generation of the voltage-excited step response of
the single-dispersion Cole impedance model and the numerical extraction of its

parameters
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A.1.2 Voltage-Excited Single Dispersion Step Response NLSF Extraction

1 % Function: SingleColeVoltageStepResponseRun.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % This script will generate the output response of a
6 % voltage�excited single�dispersion Cole impedance and
7 % extract the parameters from that generated response using
8 % a least�squares fitting after adding Guassian white noise
9 clear all;

10 close all;
11

12 % Set single�dispersion Cole impedance parameters
13 Rinf = 1e3;
14 R1 = 1e3;
15 C = 1e�6;
16 alpha = 0.75;
17 SingleColeParameters = [Rinf R1 C alpha];
18

19 global E Vcc R
20 Vcc = 5; % Set voltage�step ampltidue (Vcc)
21 E = 9; % Set Mittag�Leffler simulation accuracy (E)
22 R = 1e3;
23

24 t = logspace(�6, 1, 50); % Set length in time of simulation
25

26 % Generate ideal step response
27 IdealStepResponse = SingleColeVoltageStepResponse( ...

SingleColeParameters, t);
28 % Add 60 dB Gaussian white noise to ideal step response
29 NoiseStepResponse = awgn(IdealStepResponse, 60);
30

31 % Configure the optimset for use with lsqcurvefit
32 options = optimset('lsqcurvefit');
33 % Set lower and upper bounds for optimization routine
34 lb = [0 0 0 0];
35 ub = [inf inf inf inf];
36

37 % Generate upper and lower boundaries for creation of initial
38 % guesses
39 v0 = NoiseStepResponse(1);
40 vinf = NoiseStepResponse(length(NoiseStepResponse));
41

42 RinfGuess = v0*R/(Vcc�v0);
43 R1Guess = (vinf*(R+Rinf)�Vcc*Rinf)/(Vcc�v0);
44 lb2 = [0 R1Guess 1e�10 0];
45 ub2 = [RinfGuess 10e3 1e�3 1];
46

47 % Generate initial guesses to be applied to the non�linear least
48 % squares fitting
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49 Guesses = 5;
50 x0 = zeros(Guesses, length(SingleColeParameters));
51 for i = 1:1:Guesses
52 x0(i,1) = RinfGuess;
53 x0(i,2) = R1Guess;
54 x0(i,3) = lb2(3) + (ub2(3)�lb2(3)).*rand(1);
55 x0(i,4) = lb2(4) + (ub2(4)�lb2(4)).*rand(1);
56 end
57

58 % Apply the non�linear least squares fitting to the noisy
59 % step response
60 SingleLSE = inf;
61 for m = 1:1:Guesses
62 [sParam, sError] = lsqcurvefit(@SingleColeVoltageStepResponse ...

,x0(m,:),t,NoiseStepResponse,lb,ub,options);
63 if(sError<SingleLSE)
64 SingleLSE = sError;
65 SingleColeExtracted = sParam;
66 end
67 end
68

69 RelativeErrors = abs(SingleColeParameters�SingleColeExtracted)./ ...
SingleColeParameters*100;

70 semilogx(t, SingleColeVoltageStepResponse(SingleColeParameters,t) ...
,t,SingleColeVoltageStepResponse(SingleColeExtracted,t),'o');

71 xlabel('Time (s)'); ylabel('Voltage (V)');

Listing A.2: MATLAB code for the generation of the voltage-excited step response of
the single-dispersion Cole impedance model and the extraction of its parameters

1 % Function: SingleColeCurrentStepResponse.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % Funciton to generate the step response of a current�
6 % excited single dispersion Cole impedance model
7 function output = SingleColeCurrentStepResponse(ColeImpedance, t)
8 global Icc E
9 Rinf = ColeImpedance(1);

10 R1 = ColeImpedance(2);
11 C = ColeImpedance(3);
12 alpha = ColeImpedance(4);
13

14 z = �t.^alpha/R1/C;
15 output = Icc*(Rinf+t.^alpha/C.*mlf(alpha, alpha+1, z, E));
16 end

Listing A.3: MATLAB function to generate voltage excited step response of a
single-dispersion Cole impedance
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A.1.3 Current-Excited Single-Dispersion Step Response NLSF Extraction

1 % Function: SingleColeCurrentStepResponseRun.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % This script will generate the output response of a
6 % current�excited single�dispersion Cole impedance and
7 % extract the parameters from that generated response using
8 % a least�squares fitting after adding Guassian white noise
9 clear all;

10 close all;
11

12 % Set single�dispersion Cole impedance parameters
13 Rinf = 1e3;
14 R1 = 1e3;
15 C = 1e�6;
16 alpha = 0.75;
17 SingleColeParameters = [Rinf R1 C alpha];
18

19 global E Icc
20 Icc = 1e�4; % Set current�step ampltidue (Icc)
21 E = 9; % Set Mittag�Leffler simulation accuracy (E)
22

23 t = logspace(�6, 1, 50); % Set length in time of simulation
24

25 % Generate ideal step response
26 IdealStepResponse = SingleColeCurrentStepResponse( ...

SingleColeParameters, t);
27 % Add 60 dB Gaussian white noise to ideal step response
28 NoiseStepResponse = awgn(IdealStepResponse, 60);
29

30 % Configure the optimset for use with lsqcurvefit
31 options = optimset('lsqcurvefit');
32 % Set lower and upper bounds for optimization routine
33 lb = [0 0 0 0];
34 ub = [inf inf inf inf];
35

36 % Generate upper and lower boundaries for creation of initial
37 % guesses
38 RinfGuess = NoiseStepResponse(1)/Icc;
39 R1Guess = NoiseStepResponse(length(t))/Icc�RinfGuess;
40 lb2 = [0 R1Guess 1e�10 0];
41 ub2 = [RinfGuess 10e3 1e�3 1];
42

43 % Generate initial guesses to be applied to the non�linear least
44 % squares fitting
45 Guesses = 5;
46 x0 = zeros(Guesses, length(SingleColeParameters));
47 for i = 1:1:Guesses
48 x0(i,1) = RinfGuess;
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49 x0(i,2) = R1Guess;
50 x0(i,3) = lb2(3) + (ub2(3)�lb2(3)).*rand(1);
51 x0(i,4) = lb2(4) + (ub2(4)�lb2(4)).*rand(1);
52 end
53

54 % Apply the non�linear least squares fitting to the noisy
55 % step response
56 SingleLSE = inf;
57 for m = 1:1:Guesses
58 [sParam, sError] = lsqcurvefit(@SingleColeCurrentStepResponse ...

,x0(m,:),t,NoiseStepResponse,lb,ub,options);
59 if(sError<SingleLSE)
60 SingleLSE = sError;
61 SingleColeExtracted = sParam;
62 end
63 end
64

65 RelativeErrors = abs(SingleColeParameters� SingleColeExtracted)./ ...
SingleColeParameters*100;

66 semilogx(t, IdealStepResponse, t, SingleColeCurrentStepResponse( ...
SingleColeExtracted,t),'o');

67 xlabel('Time (s)'); ylabel('Voltage (V)');

Listing A.4: MATLAB code for the generation of the current-excited step response of
the single-dispersion Cole impedance model and the extraction of its parameters

1 % Function: SingleColeCurrentStepResponse.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % Funciton to generate the step response of a current�
6 % excited single dispersion Cole impedance model
7 function output = SingleColeCurrentStepResponse(ColeImpedance, t)
8 global Icc E
9 Rinf = ColeImpedance(1);

10 R1 = ColeImpedance(2);
11 C = ColeImpedance(3);
12 alpha = ColeImpedance(4);
13

14 z = �t.^alpha/R1/C;
15 output = Icc*(Rinf+t.^alpha/C.*mlf(alpha, alpha+1, z, E));
16 end

Listing A.5: MATLAB function to generate current excited step response of a
single-dispersion Cole impedance
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A.1.4 Current-Excited Double-Dispersion Step Response NLSF Extraction

1 % Function: DoubleColeCurrentStepResponseRun.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % This script will generate the output response of a
6 % current�excited double�dispersion Cole impedance and
7 % extract the parameters from that generated response using
8 % a least�squares fitting after adding random noise
9 clear all;

10 close all;
11

12 % Set doubles�dispersion Cole impedance parameters
13 Rinf = 400;
14 R1 = 12e3;
15 R2 = 2.5e3;
16 C1 = 62e�9;
17 C2 = 100e�6;
18 alpha1 = 0.75;
19 alpha2 = 0.55;
20

21 DoubleColeParameters = [Rinf R1 R2 C1 C2 alpha1 alpha2];
22

23 t = logspace(�7, log10(30), 50);
24 global Icc E;
25 Icc = 1e�4;
26 E = 9;
27 Guesses = 15;
28

29 % Generate ideal step response
30 z1 = �t.^alpha1/R1/C1;
31 z2 = �t.^alpha2/R2/C2;
32 IdealStep=DoubleColeCurrentStepResponse(DoubleColeParameters,t);
33 NoiseStep=IdealStep +IdealStep.*(�0.0025+0.005*rand( ...

size(IdealStep)));
34

35 % Configure the optimset for use with lsqcurvefit
36 options = optimset('MaxFunEvals', 3000, 'Display', 'off', ...

'TolFun', 1e�9, 'TolX', 1e�9);
37 % Set lower and upper bounds for optimization routine
38 lb = [0 0 0 0 0 0 0];
39 ub = [inf inf inf inf inf inf inf];
40

41 % Generate upper and lower boundaries for creation of initial
42 % guesses
43 RinfGuess = NoiseStep(1)/Icc;
44 R12Guess = NoiseStep(length(t))/Icc�RinfGuess;
45 x0 = zeros(Guesses, length(DoubleColeParameters));
46 lb2 = [0 0 0 1e�12 1e�12 0 0];
47 ub2 = [RinfGuess 2*R12Guess 2*R12Guess 1e�3 1e�3 1 1];



132

48

49 x0(1,:) = lb2 + (ub2�lb2).*rand(1, length(DoubleColeParameters));
50

51 while(x0(1,2)+x0(1,3)<R12Guess)
52 x0(1,2) = lb2(2)+(ub2(2)�lb2(2)).*rand(1);
53 x0(1,3) = lb2(3)+(ub2(3)�lb2(3)).*rand(1);
54 end
55

56 DoubleLSE = inf;
57

58 % Extracting impedance parameters using least squdares curve
59 % fitting
60 for m = 1:1:Guesses
61 [FitParams, FitError] = lsqcurvefit( ...

@DoubleColeCurrentStepResponse,x0(m,:),t,NoiseStep,lb,ub, ...
options);

62

63 if(m<Guesses)
64 if(FitError < DoubleLSE)
65 x0(m+1,:) = FitParams;
66 else
67 x0(m+1,:) =lb2 + (ub2�lb2).*rand(1, ...

length(DoubleColeParameters));
68

69 while(x0(m+1,2)+x0(m+1,3)<R12Guess)
70 x0(m+1,2) = lb2(2)+(ub2(2)�lb2(2)).*rand(1);
71 x0(m+1,3) = lb2(3)+(ub2(3)�lb2(3)).*rand(1);
72 end
73 end
74 end
75

76 if(FitError < DoubleLSE)
77 DoubleColeExtracted = FitParams;
78 DoubleLSE = FitError;
79 end
80

81 BestFitParameters = DoubleColeExtracted;
82 Errors1 = abs(DoubleColeParameters�BestFitParameters) ...

./DoubleColeParameters*100;
83 BestFitParameters2 = size(BestFitParameters);
84 BestFitParameters2(1) = BestFitParameters(1);
85 BestFitParameters2(2) = BestFitParameters(3);
86 BestFitParameters2(3) = BestFitParameters(2);
87 BestFitParameters2(4) = BestFitParameters(5);
88 BestFitParameters2(5) = BestFitParameters(4);
89 BestFitParameters2(6) = BestFitParameters(7);
90 BestFitParameters2(7) = BestFitParameters(6);
91 Errors2 = abs(DoubleColeParameters�BestFitParameters2) ...

./DoubleColeParameters*100;
92 if(mean(abs(Errors1))<mean(abs(Errors2)))
93 DoubleColeExtracted = BestFitParameters;
94 else
95 DoubleColeExtracted = BestFitParameters2;
96 end
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97 end
98 SingleErrors = abs(DoubleColeParameters�DoubleColeExtracted) ...

./DoubleColeParameters*100;
99 semilogx(t, IdealStep, t, DoubleColeCurrentStepResponse( ...

DoubleColeExtracted,t), 'o');
100 xlabel('Time (s)'); ylabel('Voltage (V)');

Listing A.6: MATLAB code for the generation of the current-excited step response of
the double-dispersion Cole impedance model and the extraction of its parameters

1 % Function: DoubleColeCurrentStepResponse.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % Funciton to generate the step response of a current�
6 % excited double dispersion Cole impedance model
7 function output = DoubleColeCurrentStepResponse(ColeImpedance, t)
8 global Icc E
9 Rinf = ColeImpedance(1);

10 R1 = ColeImpedance(2);
11 R2 = ColeImpedance(3);
12 C1 = ColeImpedance(4);
13 C2 = ColeImpedance(5);
14 alpha1 = ColeImpedance(6);
15 alpha2 = ColeImpedance(7);
16

17 z1 = �t.^alpha1/R1/C1;
18 z2 = �t.^alpha2/R2/C2;
19 output = Icc*(Rinf+t.^alpha1/C1.*mlf(alpha1, alpha1+1, z1, E) ...

+t.^alpha2/C2.*mlf(alpha2, alpha2+1, z2, E));
20 end

Listing A.7: MATLAB function to generate current excited step response of a
double-dispersion Cole impedance
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A.1.5 Magnitude Single-Dispersion NLSF Extraction

1 % Script: SingleColeMagnitudeRun.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % this script simulates the magnitude response of an filter
6 % circuit using a Cole�Cole impedance. From this magnitude
7 % response, it will extract the parameters using an non�
8 % linear least squares optimization routine and a direct
9 % extraction method to compare the accuracies of the

10 % extracted parameters to the ideal values for both methods
11 clear all;
12 close all;
13 % Setup frequency vectors (100 Hz �> 5 MHz)
14 f = logspace(2, log10(5e6), 50);
15 w = 2*pi*f;
16 s = 1i*w;
17 RL = 1e3;
18

19 % Cole�Cole impedance parameters to use [Ro Rinfnity alpha tau]
20 Ro = 12.894e3;
21 Rinf = 0.406e3;
22 alpha = 0.739;
23 tau = 62.34e�6;
24

25 % Setting ideal gains for filter circuit transfer function from
26 % impedance parameters
27 G1 = 1+Ro/RL;
28 G2 = 1+Rinf/RL;
29 SingleColeParameters = [G1 G2 tau alpha];
30

31 % Calculating magnitude response of filter circuit from transfer
32 % function
33 IdealMag = SingleColeMagnitude(SingleColeParameters, w);
34 semilogx(f, IdealMag);
35 NoiseMag = awgn(IdealMag, 60);
36

37 % initial conditions for optimization routine
38 G1guess = 1/NoiseMag(1);
39 G2guess = 1/NoiseMag(length(NoiseMag));
40

41 x0 = [G1guess G2guess 0.75 1e�6];
42 %configure the optimset for use with lsqcurvefit
43 options = optimset('lsqcurvefit');
44

45 % lower and upper bounds for optimization routine
46 lb = [0 0 0 0];
47 ub = [inf inf inf inf];
48 % Extracting impedance parameters using least squdares curve fitting
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49 [SingleColeExtracted,error] = lsqcurvefit(@SingleColeMagnitude,x0 ...
,w,NoiseMag,lb,ub,options);

50 % Errors of LSQ extracted parameters compared to ideal values
51 RelativeError=(SingleColeParameters�SingleColeExtracted) ...

./SingleColeParameters*100;
52 % Plot ideal response vs. extracted response for comparison
53 semilogx(f,NoiseMag,f,SingleColeMagnitude(SingleColeExtracted, ...

w),'o');

Listing A.8: MATLAB code for the generation of the magnitude response of the
single-dispersion Cole impedance model and the extraction of its parameters

1 % Script: SingleColeMagnitudeRun.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % this script simulates the magnitude response of an filter
6 % circuit using a Cole�Cole impedance. From this magnitude
7 % response, it will extract the parameters using an non�
8 % linear least squares optimization routine and a direct
9 % extraction method to compare the accuracies of the

10 % extracted parameters to the ideal values for both methods
11 clear all;
12 close all;
13 % Setup frequency vectors (100 Hz �> 5 MHz)
14 f = logspace(2, log10(5e6), 50);
15 w = 2*pi*f;
16 s = 1i*w;
17 RL = 1e3;
18

19 % Cole�Cole impedance parameters to use [Ro Rinfnity alpha tau]
20 Ro = 12.894e3;
21 Rinf = 0.406e3;
22 alpha = 0.739;
23 tau = 62.34e�6;
24

25 % Setting ideal gains for filter circuit transfer function from
26 % impedance parameters
27 G1 = 1+Ro/RL;
28 G2 = 1+Rinf/RL;
29 SingleColeParameters = [G1 G2 tau alpha];
30

31 % Calculating magnitude response of filter circuit from transfer
32 % function
33 IdealMag = SingleColeMagnitude(SingleColeParameters, w);
34 semilogx(f, IdealMag);
35 NoiseMag = awgn(IdealMag, 60);
36

37 % initial conditions for optimization routine
38 G1guess = 1/NoiseMag(1);
39 G2guess = 1/NoiseMag(length(NoiseMag));
40
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41 x0 = [G1guess G2guess 0.75 1e�6];
42 %configure the optimset for use with lsqcurvefit
43 options = optimset('lsqcurvefit');
44

45 % lower and upper bounds for optimization routine
46 lb = [0 0 0 0];
47 ub = [inf inf inf inf];
48 % Extracting impedance parameters using least squdares curve fitting
49 [SingleColeExtracted,error] = lsqcurvefit(@SingleColeMagnitude,x0 ...

,w,NoiseMag,lb,ub,options);
50 % Errors of LSQ extracted parameters compared to ideal values
51 RelativeError=(SingleColeParameters�SingleColeExtracted) ...

./SingleColeParameters*100;
52 % Plot ideal response vs. extracted response for comparison
53 semilogx(f,NoiseMag,f,SingleColeMagnitude(SingleColeExtracted, ...

w),'o');

Listing A.9: MATLAB function to generate the magnitude response of a
single-dispersion Cole impedance

A.1.6 Magnitude Double-Dispersion NLSF Extraction

1 % File: DoubleColeMagnitudeResponseRun
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Descprition
5 % Purpose of this script is to apply a non�linear least
6 % squares fitting routine on simulated frequency responses
7 % of the Double Dispersion Cole�Cole impedance model, to
8 % extract the 7 parameters that characterize it
9 clear all;

10 close all;
11

12 global RL
13 RL = 100;
14

15 % Set up frequency vectors
16 f = logspace(1, log10(25e6), 50);
17 w = 2*pi*f;
18 s = 1i*w;
19

20 % Set double�dispersion Cole impedance parameters
21 Rinf = 885;
22 R1 = 889;
23 R2 = 626;
24 alpha1 = 0.5414;
25 alpha2 = 0.7653;
26 C1 = 19e�9;
27 C2 = 5.1e�6;
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28 DoubleColeParameters = [Rinf R1 R2 alpha1 alpha2 C1 C2];
29

30 % Set number of initial conditions
31 initialConditions = zeros(50, 7);
32 [R, C] = size(initialConditions);
33

34 % Set upper and lower bounds for optimization routine
35 lb2 = [0 0 0 0 0 0 0];
36 ub2 = [inf inf inf inf inf inf inf];
37

38 % Generate ideal step response
39 IdealMag = DoubleColeMagnitudeResponse(DoubleColeParameters,w);
40 NoiseMag = awgn(IdealMag, 60);
41

42 Mag0 = NoiseMag(1);
43 MagInf = NoiseMag(length(NoiseMag));
44 voInfinity = 10^(MagInf/20);
45 voZero = 10^(Mag0/20);
46

47 RinfGuess = RL*(1�voInfinity)/voInfinity;
48 R12Guess = (RL�voZero*(RinfGuess+RL))/voZero;
49

50 lb = [0 0 0 0.5 0.5 1e�9 1e�9];
51 ub = [RinfGuess 2*R12Guess 2*R12Guess 1 1 1e�3 1e�3];
52

53 % Randomly generate values for alpha1, alpha2, C1, and C2 between
54 % the upper and lower bounds
55 for i = 1:1:C
56 initialConditions(:,i) = lb(i) + (ub(i)�lb(i)).*rand(R,1);
57 end
58

59 for i=1:1:R
60 R1 = initialConditions(i,2);
61 R2 = initialConditions(i,3);
62

63 while(R1 + R2 < R12Guess)
64 R1 = lb(2) + (ub(2)�lb(2))*rand(1,1);
65 R2 = lb(3) + (ub(3)�lb(3))*rand(1,1);
66 end
67 initialConditions(i,1) = RinfGuess;
68 initialConditions(i,2) = R1;
69 initialConditions(i,3) = R2;
70 end
71

72 % Apply the non�linear least squares fitting to the noisy
73 % step response
74 options = optimset('lsqcurvefit');
75 MinError = inf;
76 for i = 1:1:R
77 [newParameters,error] = lsqcurvefit( ...

@DoubleColeMagnitudeResponse,initialConditions(i,:),w,NoiseMag,lb2,ub2, ...
options);

78 if(error<MinError)
79 DoubleColeExtracted = newParameters;
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80 MinError = error;
81 end
82 end
83

84 % Vector to quickly visually compare values
85 Errors1 = (DoubleColeExtracted�DoubleColeParameters) ...

./DoubleColeParameters*100;
86 BestFitParameters2 = size(DoubleColeExtracted);
87 BestFitParameters2(1) = DoubleColeExtracted(1);
88 BestFitParameters2(2) = DoubleColeExtracted(3);
89 BestFitParameters2(3) = DoubleColeExtracted(2);
90 BestFitParameters2(4) = DoubleColeExtracted(5);
91 BestFitParameters2(5) = DoubleColeExtracted(4);
92 BestFitParameters2(6) = DoubleColeExtracted(7);
93 BestFitParameters2(7) = DoubleColeExtracted(6);
94 Errors2 = (BestFitParameters2�DoubleColeParameters) ...

./DoubleColeParameters*100;
95 if(mean(abs(Errors1))<mean(abs(Errors2)))
96 ErrorsParameters = Errors1;
97 else
98 DoubleColeExtracted = BestFitParameters2;
99 ErrorsParameters = Errors2;

100 end
101

102 RelativeError = abs(DoubleColeParameters�DoubleColeExtracted)./ ...
DoubleColeParameters*100;

103 semilogx(f, NoiseMag, f, DoubleColeMagnitudeResponse( ...
DoubleColeExtracted,w), 'o');

Listing A.10: MATLAB code for the generation of the magnitude response of the
double-dispersion Cole impedance model and the extraction of its parameters

1 % Function: DoubleColeMagnitudeResponse.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % Funciton to generate the magnitude response of the
6 % double�dispersion Cole impedance model
7 function output = DoubleColeMagnitudeResponse(ColeImpedance,w)
8 global RL
9

10 Rinf = ColeImpedance(1);
11 R1 = ColeImpedance(2);
12 R2 = ColeImpedance(3);
13 alpha1 = ColeImpedance(4);
14 alpha2 = ColeImpedance(5);
15 C1 = ColeImpedance(6);
16 C2 = ColeImpedance(7);
17

18 X0 = (w.^(alpha1+alpha2)*cos((alpha1+alpha2)*pi/2)+ ...
w.^alpha1/C2/R2*cos(alpha1*pi/2)+ ...
w.^alpha2/C1/R1*cos(alpha2*pi/2)+1/C1/C2/R1/R2);
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19 X1 = (w.^(alpha1+alpha2)*sin((alpha1+alpha2)*pi/2)+ ...
w.^alpha1/C2/R2*sin(alpha1*pi/2)+ ...
w.^alpha2/C1/R1*sin(alpha2*pi/2));

20 X2 = (w.^(alpha1+alpha2)*cos((alpha1+alpha2)*pi/2)+ ...
w.^alpha1*(Rinf+R2+RL)/C2/R2/(Rinf+RL)*cos(alpha1*pi/2)+ ...
w.^alpha2*(Rinf+R1+RL)/C1/R1/(Rinf+RL)*cos(alpha2*pi/2)+ ...
(Rinf+R1+R2+RL)/C1/C2/R1/R2/(Rinf+RL));

21 X3 = (w.^(alpha1+alpha2)*sin((alpha1+alpha2)*pi/2)+ ...
w.^alpha1*(Rinf+R2+RL)/C2/R2/(Rinf+RL)*sin(alpha1*pi/2)+ ...
w.^alpha2*(Rinf+R1+RL)/C1/R1/(Rinf+RL)*sin(alpha2*pi/2));

22 output = 20*log10(RL/(Rinf+RL)*sqrt(X0.^2+X1.^2)./ ...
(sqrt(X2.^2+X3.^2)));

23 end

Listing A.11: MATLAB function to generate the magnitude response of a
double-dispersion Cole impedance

A.2 Supercapacitor Model

A.2.1 Voltage-Excited Step Response NLSF Extraction

1 % Function: FractionalSupercapVoltageStepRun.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % This script will generate the output response of a
6 % voltage�excited fractional supercapacitor impedance model
7 % and extract the parameters from that generated response
8 % using a least�squares fitting after adding Guassian white
9 % noise

10 clear all;
11 close all;
12

13 % Set fractional supercapacitor impedance parameters
14 Rs = 5;
15 C = 0.01;
16 alpha = 0.5;
17 SupercapParameters = [C Rs alpha];
18

19 global E Vcc R
20 Vcc = 5; % Set voltage�step ampltidue (Vcc)
21 E = 9; % Set Mittag�Leffler simulation accuracy (E)
22 R = 180;
23

24 t = logspace(�6, 3, 50); % Set length in time of simulation
25

26 % Generate ideal step response
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27 IdealStepResponse = FractionalSupercapVoltageStep( ...
SupercapParameters, t);

28 % Add 60 dB Gaussian white noise to ideal step response
29 NoiseStepResponse = awgn(IdealStepResponse, 60);
30

31 % Configure the optimset for use with lsqcurvefit
32 options = optimset('lsqcurvefit');
33 % Set lower and upper bounds for optimization routine
34 lb = [0 0 0];
35 ub = [inf inf inf];
36

37 v0 = NoiseStepResponse(1);
38 RsGuess = v0*R/(Vcc�v0);
39 x0 = [RsGuess 30 0.75];
40

41 % Apply the non�linear least squares fitting to the noisy
42 % step response
43 [SuperCapExtracted, sError] = lsqcurvefit( ...

@FractionalSupercapVoltageStep,x0,t,NoiseStepResponse,lb,ub, ...
options);

44

45 RelativeErrors = abs(SupercapParameters�SuperCapExtracted)./ ...
SupercapParameters*100;

46 semilogx(t, FractionalSupercapVoltageStep(SupercapParameters,t),t ...
,FractionalSupercapVoltageStep(SuperCapExtracted,t),'o');

47 xlabel('Time (s)'); ylabel('Voltage (V)');

Listing A.12: MATLAB code for the generation of the voltage-excited step response
of the fractional supercapacitor impedance model and the extraction of its parameters

1 % Function: FractionalSupercapVoltageStep.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % Funciton to generate the step response of a voltage�
6 % excited fractional supercapacitor impedance model
7 function output = FractionalSupercapVoltageStep(ColeImpedance, t)
8 global R Vcc E
9 C = ColeImpedance(1);

10 Rs = ColeImpedance(2);
11 alpha = ColeImpedance(3);
12

13 z = �t.^alpha/(R+Rs)/C;
14 output = Vcc/(R+Rs)*(t.^alpha/C.*mlf(alpha, alpha+1,z,E)+ ...

Rs*mlf(alpha,1,z,E));
15 end

Listing A.13: MATLAB function to generate voltage excited step response of a
fractional supercapacitor impedance
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SIMPLIFIED CURRENT-EXCITED STEP-RESPONSE DERIVATION

I 

0 A
 t = 0

cc

 

Figure B.1: Theoretical circuit to apply a step-current input to the single-dispersion Cole
impedance model.

The initial analysis presented in [100] analyzed the response of the output voltage response

of the single-dispersion Cole impedance, given in Fig. B.1, to an input step current of

amplitude Icc by applying a nodal analysis in the s-domain, yielding the expression
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From (B.1) the derivation in [100] continues as:
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which yields the output-voltage expression presented in Section 2.1 by (2.7). Using this

expression required simulation of two Mittag-Leffler terms to generate each step response.

Though a simplified expression of the output voltage to the current-step excitation was

presented in [106] which requires the simulation of only a single Mittag-Leffler term to

generate the step response. This expression presented in Section 2.2.2 by (2.23) can also

be derived from (B.1) by continuing as:
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MATLAB simulations of (B.2) and (B.3) when Icc = 1 mA, R• = R1 = 1 kW, C = 1 µF and

a is varied from 0.5 to 1 are given in Fig. B.2 as solid lines and black circles, respectively,

showing perfect agreement with each other. By simplifying the step-response expression

we can significantly reduce the simulation time of the step response. The time required

to simulate 1000 instances of (B.2) and (B.3) when R• = R1 = 1 kW, C = 1 µF and a =
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Figure B.2: MATLAB simulations of (B.2) and (B.3) when R• = R1 = 1 kW, C = 1 µF
and a is varied from 0.5 to 1 as solid lines and black circles, respectively.

0.5 from t = 0.1 µs to 1 s with 25 logarithmically spaced datapoints with Mittag-Leffler

accuracy of 10�7 required 34.11 s and 22.19 s, respectively. Showing a decrease of 34.9%

in execution time using (B.2) over (B.3) which will also decrease the time required to

extract the Cole impedance parameters from a collected step response dataset using a NLSF

which requires numerous simulations of the step response.

B.1 MATLAB Simulated Extractions

The accuracy and time required to extract the Cole impedance parameters using both (B.2)

and (B.3) in the non-linear least squares fitting applied to MATLAB simulated step re-

sponses of an apricot (R• = 406 W, R1 = 12.49 kW, C = 62.34 nF, a = 0.739) [51]. For

these simulations an input-step of 0.1 mA was set while varying both the accuracy of the

simulated Mittag-Leffler function and the number of initial conditions. When applying

non-linear least squares fitting, the solver has the best chance to determine the absolute

minimum if the supplied initial condition (x0) is close to the solution set. We can estimate

initial conditions of R• ⇡ vo(1µs)/Icc and R1 ⇡ vo(1s)/Icc�R• from the collected dataset

and randomly generating values such that 0.1 nF  C  1 mF and0.5  a  1, selected
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Mittag-Leffler (R•,R1,C,a)AverageError
AverageSolvingTime(s)

Accuracy 1 Initial Condition 5 Initial Conditions
(10�x%) (B.3) (B.2) (B.3) (B.2)

x = 7
(�4.25, 0.10, (�4.61, 0.11, (0.06, 0.0001, (0.04, 0.0008,
�9.28, 1.04) �10.2, 1.13) �0.19, 0.02) �0.28, 0.03)

3.10 4.95 13.11 20.90

x = 5
(�9.33, 0.33, (�8.55, 0.31, (�0.72, 0.03, (�1.22, 0.05,

10.1, 1.02) �9.19, 0.93) �3.37, 0.39) �3.94, 0.46)
1.25 2.18 5.08 9.67

Table B.1: Average relative errors and extraction times of impedance parameters using
(B.3) and (B.2) from 1000 MATLAB simulated step responses of an apricot with 50 dB

SNR Gaussian white noise.

based on reported values in literature. However, these random guesses for C and a may

not be very close to the solution and yield instead a local minimum and not the absolute

minimum. With this in mind multiple initial conditions were applied to the solver to find a

more accurate result.

For example, 1 and 5 initial conditions are supplied to the solver for 1000 simulations

of the apricot step response with 50 dB SNR Gaussian white noise and Mittag-Leffler accu-

racies of 10�x where x = 7 and 5. The average error of the extracted impedance parameters

(R•, R1, C, a) and the extraction time for each set of initial conditions and Mittag-Leffler

accuracies are given in Table B.1. For these MATLAB simulations, the datasets consisted

of 25 logarithmically spaced datapoints from 1 ns to 1 s and were executed on a 2.4 GHz

Core 2 Duo iMac running MATLAB 7.12.0. From the results in Table B.1, the accuracy of

the extracted parameters increases with increasing number of initial conditions and increas-

ing accuracy of the simulated Mittag-Leffler function. The average accuracy increases by

an order of magnitude when we increase from 1 to 5 initial conditions. Of significant note

is the reduction in time required to extract the impedance parameters using (B.3) over (B.2)

with negligible impact on the accuracy. From the simulations we see average decreases of

37.3% to 47.4% in the extraction time using(B.3) over (B.2). Confirming the significant

decrease in execution time required to extract the impedance parameters by reducing the
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Figure B.3: MATLAB simulated step response of (B.3) using an apricot parameters
(R• = 406 W, R1 = 12.49 kW, C = 62.34 nF, a = 0.739) with 50 dB SNR Gaussian white

noise and using extracted parameters as a solid line and black circles, respectively.

number of Mittag-Leffler terms in the step response model for data-fitting. A sample sim-

ulated apricot step response with the added noise is given as a solid line in Fig. B.3 with

the simulated response using the extracted parameters using (B.3) given as black circles.

Using 10 initial conditions and Mittag-Leffler accuracy of 10�7, the extracted impedance

parameters have relative errors of (R•, R1, C, a) = (�1.31, 0.08, 3.31, �0.278)% com-

pared to the ideal and were extracted in 21.9 s. Using (B.2) for the extraction yielded

similar relative errors but required 33.8 s, showing a reduction of 35.2% in the extraction

time for this case. The accuracy differences between (B.2) and (B.3) likely result from

slight numerical differences introduced between simulations requiring two and one simu-

lation of the Mittag-Leffler function, respectively, as well as the optimization routine itself.

The lsqcurvefit function requires a gradient which, if not provided, is estimated via finite

differences which could yield different results and contribute to the deviations between the

extracted parameters using the least squares fitting.



APPENDIX C

APPROXIMATED CONSTANT PHASE ELEMENT

While fractional order circuit models show a significant number of applications in biomedicine

and biology there are a lack of simulation tools to aid in the simulation of fractional or-

der systems. Fractional circuit models are not currently supported by circuit simulation

software packages and instead require integer order approximations typically realized us-

ing RC ladder topologies [114, 115]. There are many methods to realize approximations

of CPEs that include Continued Fraction Expansions (CFEs) and rational approximation

methods [7]. In this work, a CFE method [110] was selected to model the CPEs for PSPICE

simulations which begins with the CFE of (1+ x)a given by

(1+ x)a =
1

1� ax
1+ (1+a)x

2+ (1�a)x

3+ (2+a)x

2+(2�a)x
5+...

(C.1)

which after substituting x = s�1 into (C.1) realizes an approximation of sa , with the order

determined by the number of terms that are collected. For example, collecting 8 terms of

(C.1) when a =�0.5 yields

1
s0.5 ⇡ s4 +36s3 +126s2 +84s+9

9s4 +84s3 +126s2 +36s+1
(C.2)

⇡ 1
9
+

0.2291313787
s+0.03109120413

+
0.2962962975

s+0.3333333333
+

1.899696037
s+7.548632170

+
0.5378392488

s+1.420276625
(C.3)
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Figure C.1: RC ladder structure to realize a nth order integer approximation of a CPE
with pseudo-capacitance Ca .

Note that this creates an approximation of the CPE centered around the frequency 1 rad/s.

Next, using the approximation of (C.3) the fractional Laplace transform operator can be

physically realized using the RC ladder network in Fig. C.1. The impedance of this RC

ladder network is

Z = R0 +
1/C1

s+ 1
R1C1

+
1/C2

s+ 1
R2C2

+ . . .+
1/Cn

s+ 1
RnCn

(C.4)

The resistor and capacitor values for the RC ladder in Fig. C.1 can be determined through

equating terms of (C.3) to (C.4). Then an approximate CPE with any desired capacitance,

Ca , centered around any frequency, wc, can be designed by applying magnitude and fre-

quency scaling factors to the component values in the ladder realization. The resistor and

capacitor values become

Rs = R · km (C.5)

Cs =
C

k f km
(C.6)

where Rs and Cs are the scaled resistor and capacitor values, R and C are the unscaled

resistor and capacitor values, km = 1
Ca wa

c
is the magnitude scaling factor (where Ca is the

CPE pseudo-capacitance) and k f = wc is the frequency scaling factor. The component

values required for the 4th order approximation of the CPE with capacitance of 12.6 µF

and order of a = 0.5 using the RC ladder network in Fig. C.1, shifted to a center frequency

of 1 kHz, are given in Table C.1. The magnitude and phase of the ideal (solid line) and

4th order approximated (dashed) CPE with pseudo-capacitance 12.6 µF and order a = 0.5,
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n 0 1 2 3 4
Rn (W) 111.1 251.7 378.7 888.9 7369.7
Cn (nF) - 68.9 296 537 695

Table C.1: Component values to realize 4th order approximations of fractional order
capacitors with a center frequency of 1 kHz.
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Figure C.2: Magnitude and phase response of the approximated fractional order capacitor
(dashed) compared to the ideal (solid) with capacitance of 12.6 µF and order a = 0.5

after scaling to a center frequency of fc = 1 kHz.

shifted to a center frequency of fc =
wc
2p = 1 kHz, are presented in Fig. C.2. From this

figure we observe that the approximation is very good over almost 4 decades, from 200 Hz

to 70 kHz, for the magnitude and almost 2 decades, from 200 Hz to 6 kHz, for the phase.

In these regions, the deviation of the approximation from ideal does not exceed 1.23 dB

and 0.23� for the magnitude and phase, respectively. The MATLAB script that generated

the CPE approximation and component values to realize it with the RC ladder circuit is

given in Program Listing C.1. This script requires that MATLAB is configured to use the

MAPLE symbolic engine as it is a further generalization of a previously designed MAPLE

script that realized the CPE.
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1 % File: CPEscriptInitial.m
2 % Author: Todd Freeborn
3 % Email: todd.freeborn@gmail.com
4 % Description:
5 % To convert Dr. Maundy's MAPLE script that computes the
6 % resistor and capacitor values of a distributed RC tree to
7 % approximate a Constant Phase Element (CPE) to a Matlab
8 % script.
9 clear all;

10 close all;
11 % Set the parameters for the RC ladder that is to be built
12 alpha = 0.5;
13 C = 12.6e�6;
14 order = 4;
15 fo = 1e3;
16

17 % Values to be used in scaling the approximation
18 wo = 2*pi*fo;
19 kf = wo;
20 km = 1/C/(wo^alpha);
21 n = order*2;
22

23 % Direct conversion of Maple code to be executed using the MAPLE
24 % symbolic engine inside MATLAB (note: this requires the MAPLE
25 % symbolic engine to be incorporated with MATLAB)
26 s = sym('s'); x = sym('x'); b = sym('beta');
27

28 maple('with(numtheory):');
29 out1 = maple('cfrac', (1+x)^b, x, n, 'simple');
30 out1 = subs(out1, x, s�1);
31

32 sa_h = maple('cfrac', out1);
33 total = sa_h;
34 total = maple('normal', total, 'expanded');
35 total = maple('sort', total, s, 'descending');
36 s_alpha = collect(total, s);
37

38 s_alpha = subs(s_alpha, b, �alpha);
39 s_alpha = maple('normal', s_alpha);
40 s_alpha = maple('simplify', s_alpha);
41

42 num = maple('numer', s_alpha);
43 num = maple('collect',num, s);
44

45 % Conversion of the coefficients calculated in MAPLE to double
46 % values that can be turned into vectors for use in MATLAB
47 mainCoeff = maple('coeff', num, s, order);
48 coeff = zeros(order+1, 1);
49 for i = 1:1:length(coeff);
50 coeff(i) = maple('coeff', num, s, i�1)/mainCoeff;
51 end
52 coeff(order+1, 1) = 1;
53 numTest = ones(1, order+1); denTest = ones(1, order+1);
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54 for i = 1:1:length(numTest)
55 denTest(1,i) = coeff(i);
56 numTest(1,i) = coeff(length(numTest)+1�i);
57 end
58

59 % Calculating the residues of the approximated expression
60 [R, P, K] = residue(numTest, denTest);
61 Rin = K*km;
62

63 % Calculating the required capacitor and resistor values to build
64 % approximated CPE
65 Cap = zeros(size(R)); Res = zeros(size(R));
66 for i = 1:1:length(R)
67 Cap(i) = 1/R(i)/kf/km;
68 Res(i) = �R(i)/P(i)*km;
69 end
70

71 exponent = 0;
72 while( fo > 1)
73 exponent = exponent + 1;
74 fo = fo/10;
75 end
76 f = logspace(exponent�4, exponent+4, 201);
77 w = 2*pi*f; s = 1i*w;
78 Z = Rin;
79 for i= 1:1:length(R)
80 Z = Z + (1/Cap(i))./(s+1/Res(i)/Cap(i));
81 end
82

83 % Plotting the ideal FC vs. the approximated
84 Ideal = 1./(s.^alpha)/C;
85 magIdeal = 20*log10(abs(Ideal)); magApprox = 20*log10(abs(Z));
86

87 phaseIdeal = 180/pi*unwrap(angle(Ideal));
88 phaseApprox = 180/pi*unwrap(angle(Z));
89

90 subplot(2,1,1); semilogx(f, magIdeal, f, magApprox, '��');
91 title('Impedance Magnitude of Ideal and Approximated FC');
92 ylabel('Magnitude Impedance (dB)'); xlabel('Frequency (Hz)');
93 subplot(2,1,2); semilogx(f, phaseIdeal, f, phaseApprox, '��');
94 title('Impedance Phase of Ideal and Approximated FC');
95 ylabel('Impedance Phase (degrees)'); xlabel('Frequency (Hz)');
96 values = [Rin; Res; Cap];

Listing C.1: MATLAB code for the generation of the approximated CPE by an RC
ladder structure.



APPENDIX D

SUPERCAPACITOR STEP-RESPONSE TEST CIRCUITS

To test the high capacity supercapacitors required the design and manufacture of a custom

test fixture resulting from their terminals being aluminum which is not easily soldered. In

this design, two printed circuit boards (PCBs) were used to contact both the positive and

negative terminals of the supercapacitors with electrical connections then easily made to

test equipment with peripheral hardware on the PCBs. The design files for these two boards

are given in Fig. D.1(a) with the manufactured boards (sponsored by AP Circuits) given

in Fig. D.1(b). This board implements the circuit shown Fig. 4.4 allowing a step input to

be applied directly from a DC power supply with high current output to the supercapacitor

through a resistor with high power rating. This direct, rather than buffered, connection was

done to apply a current upwards of 5 A to the supercapacitors.

The two PCBs were held in contact with the supercapacitor terminals by using elastic

bands to apply pressure from each board to the terminals which provided a secure connec-

tion for the tests and provided flexibility to change supercapacitors which had significantly

different heights based on the capacity. Four 1
4” wooden dowels were used to stabilize the

PCBs around the supercapacitor. This test fixture connected to a HP3631A DC power sup-

ply is given in Fig. D.2. The components and part numbers to populate the test PCBs and

their descriptions are given in Table D.1.
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J1 J2

High Capacity SuperCapacitor Test Jig (Bottom) v1.0
Todd Freeborn (tjfreebo@ucalgary.ca)
December 2012

J1 J2

J3

J4

High Capacity SuperCapacitor Test Jig (Top) v1.0
Todd Freeborn (tjfreebo@ucalgary.ca)
December 2012

GND

JP4JP5

R1

R2

JP1

JP2

(a)

(b)

Figure D.1: (a) Designed and (b) manufactured PCBs to build high capacity
supercapacitor step-response test fixture.

Designator Digi-Key P/N Description

J1 J576-ND Red, horizontal, insulated
mini-jack connector

J2 J575-ND White, horizontal, insulated
mini-jack connector

J3, J4 J577-ND Black, horizontal, insulated
mini-jack connector

JP1, JP2, 929647-09-04-EU-ND 4-position, 0.1”, straight,
JP3, JP4 breakaway connector
R1, R2 PWR221T-30-1R00F-ND 1 W, ±1%, 30 W resistor

Table D.1: Components, part-numbers, and descriptions of components to populate high
capacity supercapacitor test PCBs.
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Figure D.2: BCAP1500-P270-K05 supercapacitor from Maxwell Technologies Inc.
installed between the high capacity supercapacitor test PCBs.


