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Abstract

Verification of Multi-Agent Systems (MAS) is vital since it results in reducing design

costs. Agent UML (AUML) is a methodology for MAS design that is an extension of

Unified Modeling Language (UML). Although UML is used for object-oriented designs,

AUML can handle the interactions among agents to deal with agent-based designs. In this

thesis, AUML is employed for designing MASs and a set of conversion rules is proposed

to convert AUML notations into UML diagrams to be used for MAS verification. Emer-

gent behaviour is a critical problem in MASs that leads to unexpected behaviours due to

the assumptions of behaviour model synthesis, i.e. overgeneralization. The main contri-

butions of this thesis are: 1) Designing multi-agent systems using AUML methodology

and preparing scenarios for verification. 2) Developing a component-level approach for

verifying multi-agent systems preventing overgeneralization. 3) Proposing a system-level

algorithm to obtain comprehensive system behaviour analysis.
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Chapter 1

Introduction

With the increasing size of the problems encountered in industrial applications, demands

for Multi-Agent Systems (MASs) have been increased. This enables the engineers to

benefit from a set of computing resource components instead of a single one. In multi-

agent systems, several agents communicate to each other to perform the desired system

actions and behaviours. In agent-based software systems, agents have individual control,

know their conditions and can deal with themselves and other agents [1].

Today, MASs have become very popular in industrial applications. Existing faults in

the design of industrial MASs can result in costly failures. Detecting and removing these

faults in early design stages of MASs is more effective than detecting them during and

after implementation stages. In order to reduce the design costs, verification of multi-

agent systems is performed. In the verification procedure, MAS behaviours are verified

against the unwanted runtime behaviours. Therefore, in this thesis, the main focus is

developing a comprehensive method for verification of multi-agent systems.

The rest of this chapter is organized as follows: In Section 1.1, the problem defini-

tion and motivations of doing this research are presented. In Section 1.2, the research

objectives of this thesis are given, which is followed by research methodology discussed

in Section 1.3. Contributions of this work are clarified in the Section 1.4. Finally, in

Section 1.5, the organization of this thesis is explained.
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1.1 Motivation

Due to the popularity of Multi-Agent Systems (MASs), designing MASs has become a

main task of software engineering. Since in most applications the reliability of MASs is a

major concern, verification of MAS behaviours is a critical step of design in order to detect

unexpected failures. Most of the existing system verification methodologies are defined

using the widely accepted Unified Modeling Language (UML) [2]. Considering that UML

is proposed for object-oriented software system design, fundamental differences between

objects and agents make UML not sufficient for designing the interactions between agents

in MAS design. Therefore, this shortcoming should be addressed in MAS verification

tools.

Existing unexpected system behaviours in MAS make the system unreliable and un-

predictable. To verify MASs against these unexpected behaviours, several techniques

have been developed [3–5]. In [5], a component-level approach is proposed to verify the

behaviour of MASs by creating state machines for each agent (component) of MAS. In

this approach, there are some assumptions for behaviour model synthesis that results in

time consuming unnecessary actions. Therefore, this approach should be enhanced to

address this issue.

On the other hand, the existing component-level verification techniques analyse the

behaviours of each agent individually but cannot consider the behaviour of the whole

system at the same time. Even though the unexpected behaviours of individual agents

can be caught by component-level techniques, lack of analysis of system-level behaviours

may result in neglecting a portion of unexpected behaviours that occur due to agent inter-

actions. Therefore, developing a system-level approach for MAS verification is necessary

to provide a thorough behaviour analysis.
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1.2 Research Objectives

The main focus of this research is providing a comprehensive method for verification of

multi-agent systems. The milestones of this work are as follows:

• Designing Multi-Agent Systems (MASs) using the extended Agent UML [6] in order

to represent the interactions among system agents properly.

• Proposing a set of conversion rules to convert AUML sequence diagrams to UML

sequence diagrams to be used for verification.

• Verifying MASs by proposing a component-level approach to analyse system re-

quirements and catch unexpected system behaviours.

• Preventing unnecessary actions in component-level verification, which is called over-

generalization, to save time and memory.

• Providing a comprehensive behaviour model using labeled transition systems.

• Developing a system-level approach for MAS verification using behaviour model

synthesis.

• Detecting unexpected behaviour in early stages of MAS design at system level.

1.3 Methodology

One of the common problems in designing software systems is defining software require-

ments and characteristics in order to reach software systems’ goals. Several factors such

as stakeholders and size of the systems can have significant effects on this problem. In

order to have a complete software system design, scenarios are used to clearly describe
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requirements of the systems. Therefore, the behaviour of the software systems can be de-

scribed using several scenarios. Scenarios are widely used for large-scale software systems

with several components such as Multi-Agent Systems (MASs).

Scenarios are usually produced by UML. UML is designed for object-oriented software

engineering. Considering that there are not many common features between objects and

agents, UML cannot handle the interactions among the agents. In this thesis, in order

to overcome this problem, AUML formalism [6], i.e. an agent-based extension of widely

accepted UML, is employed to define the agent interactions in MAS. However, most

of the existing verification techniques, e.g. [3, 5], are developed based on UML. In this

thesis, once the scenarios are produced using AUML formalism, a set of conversion rules

are proposed to convert AUML sequence diagrams to UML sequence diagrams in order

to prepare scenarios for MAS verification procedure.

A component-level verification method is proposed in [5] to verify multi-agent systems.

The behaviours of the system are analysed by verifying individual agent behaviours.

This task is performed by synthesising state machines from scenarios. In this method,

state machines are produced for each agent of different scenarios. Then, identical states

of different state machines are identified and merged in order to detect the unwanted

runtime behaviours for each agent of the MAS. One of the shortcomings of this method

is overgenralization that happens due to the assumptions in behaviour model synthesis.

Considering that not all the identical states are causes of unwanted behaviours, merging

all the identical states of state machines leads to overgeneralization. Therefore, in order

to deal with this problem, a set of criteria is presented in this thesis to determine which

identical states result in unwanted behaviours and should be merged.

On the other hand, the component-level verification methods can only model the

behaviours of each agent at a time. Therefore, the behaviours of the whole system that

are defined by interactions between agents may be neglected. In this thesis, a system-
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level MAS verification algorithm is proposed to model the whole system simultaneously

and catch all the unwanted system behaviours. Labled Transition Systems (LTSs) are

utilized instead of state machines to produce a system-level behaviour model. Finally,

the resultant LTSs are verified to catch unexpected behaviours of the MAS. All the

proposed methods of this thesis are validated by presenting a case study of a real-time

fleet management system. This joint case study project has been negotiated with the

Encom Wireless [7] and City of Calgary [8] to design, implement and evaluate a multi-

agent simulation system for Commercial Vehicle Enforcement. In this thesis, a small

scale prototype of this project is focused as a proof of concept which will be explained in

Section 4.3.

1.4 Contributions

The main focus of this research is creating a comprehensive framework for verification

of multi-agent systems using behaviour model synthesis. A brief summary of this thesis

is shown in Figure 1.1. As shown in this figure, the specific area of this thesis are

marked by red rectangles. Several tools such as Message Sequence Charts (MSC) and

Sequence Diagrams (SD) exist to represent scenario specifications. Also, Component-level

Emergent Behaviour Detection (CEBD), System-level Emergent Behaviour Detection

(SEBD) and Model-based Detection and Testing of Multi-agent systems (MDTM) are

the possible outputs of behaviour modeling based on the requests.

In this thesis, the Sequence Diagrams (SDs) are considered as the inputs to behaviour

modeling because of their abilities to visualize system specifications in a time order. The

component-level and system-level approaches are performed for analysing MAS require-

ments. The component-level approach is proposed to analyse the behaviours of the

system while preventing overgeneralization. Furthermore, in order to have a comprehen-
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Figure 1.1: Demonstration of thesis outline

sive method for analysing system behaviours, a system-level MAS verification algorithm

is proposed. Therefore, the unexpected behaviours that are caught by Component-level

Emergent Behaviour Detection (CEBD) and System-level Emergent Behaviour Detection

(SEBD) are considered as outputs of this work.

The main contributions of this thesis are listed as follows:

• Designing Multi-Agent Systems (MASs) using AUML formalism.

• Proposal of a set of conversion rules to convert AUML notations to UML sequence

diagrams to be used in verification procedure.
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• Developing a component-level MAS verification approach that prevents overgener-

alization.

• Applying labeled transition systems for synthesizing a comprehensive behaviour

model.

• Proposal of a system-level algorithm for verification of MASs.

• Validating the proposed methods by presenting a case study of real-time fleet man-

agement system.

Publications Related to This Thesis:

• S. Mireslami, M. Moshirpour, B. H. Far, ”Detecting Emergent Behavior in Dis-

tributed Systems Caused by Overgeneralization”, In Proceedings of the Interna-

tional Conference on Software Engineering and Knowledge Engineering (SEKE

2012), San Francisco Bay, USA, July 1-3, 2012, pp 70-73.

• S. Mireslami, B. H. Far, ”Automated Verification of AUML Based Multi-Agent

System Design”, In Proceedings of the IEEE Canadian Conference on Electrical

and Computer Engineering (CCECE 2013), Regina, Saskatchewan, Canada, May

5-8, 2013, pp 1-4.

• S. Mireslami, B. H. Far, ”A System-Level Approach for Model-Based Verifica-

tion of Distributed Software Systems”, In press to be published in Proceedings of

IEEE International Conference on Systems, Man, and Cybernetics (SMC 2013),

Manchester, UK, October 13-16, 2013, 6 Pages.

Other Publication:

• M. Moshirpour, S. Mireslami, R. Alhajj, B. H. Far, ”Automated Ontology Con-

struction from Scenario Based Software Requirements Using Clustering Techniques”,
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In Proceedings of the IEEE International Conference on Information Reuse and In-

tegration (IRI 2012), Las Vegas, USA, August 2012, pp 541-547.

1.5 Thesis Outline

In this thesis, several methods are proposed for synthesis of behaviour model for multi-

agent systems in order to catch unexpected system behaviours. In Chapter 2, the back-

ground information for Agent UML is presented. The related works of Multi-Agent

Systems (MAS) verification are discussed in Chapter 3. In Chapter 4, to design the

interactions among agents, AUML formalism is employed and a set of conversion rules is

proposed to produce UML sequence diagrams from AUML notations. Chapter 5 presents

a proposed component-level technique for MAS verification by synthesis of behaviour

models from scenarios in order to detect emergent behaviours while preventing overgen-

eralization. In Chapter 6, to obtain a system-level behaviour model for system analysis,

an approach using labeled transition systems is proposed. Finally, conclusions and future

work are presented in Chapter 7.
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Chapter 2

Background: Agent UML

2.1 Introduction

In this chapter, the preliminaries and background information related to the design of

Multi-Agent Systems (MAS) are provided. In addition, the background for scenario-

based specifications, distributed systems, multi-agent systems, Unified Modeling Lan-

guage (UML) and Agent Unified Modeling Language (AUML) are presented.

The rest of this chapter is organized as follows: In Section 2.2, scenario-based specifi-

cations are introduced along with sequence charts. Distributed systems are introduced in

Section 2.3. The background for multi-agent systems is described in Section 2.4. Further-

more, this chapter provides a background for unified modeing language and agent unified

modeling language in Sections 2.5 and 2.6, respectively, for designing object-oriented and

agent-based designs. Finally, the chapter is summarized in Section 2.7.

2.2 Scenario-Based Specifications

Using scenario-based specifications is a popular approach to represent software system

requirements. In order to show the objectives of a system, interactions among the users

(e.g. programmers, designers, and engineers) are defined by scenarios. Scenarios give

software designers details of interactions among the components to enable a comprehen-

sive system implementation [9].

Scenarios are usually represented by an array of messages that show the behaviours

of the system. The sequence charts that are defined in the Unified Modeling Language

(UML) are known and approved representations to demonstrate scenarios [10]. Message
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Figure 2.1: An example sequence chart

Sequence Charts (MSCs) and Sequence Diagrams (SDs) are popular types of sequence

charts which are commonly utilized for representing the software systems [11]. Interna-

tional Telecommunication Union (ITU) has already standardized MSCs [12] while SDs

are standardized by Object Management Group (OMG) [2].

Each scenario includes several system components that are major processes of the

software system. In sequence charts, these system components are shown by rectangles

with vertical lines. The interactions among the system components are represented by

passing messages between them. In sequence charts, arrows are used to indicate mes-

sages. The messages are organized in a top down order meaning that a message that is

represented at the top of the sequence chart is sent before all the messages that come

after [10].

In Figure 2.1, a simplified example of sequence chart is shown. As shown in this

figure, the system represented in this example includes three components that are shown

by C1, C2 and C3. These components interact with each other by passing messages m1,

m2 and m3. Since the order of messages is top down, first, message m1 is sent which is
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followed by m2 and m3. It should be noted that these details are valid for both MSCs

and SDs.

2.3 Distributed Systems

Distributed systems are composed of interacting components that are parts of a single

network. For a software system to attain its objectives, these components communi-

cate with each other. Designing distributed systems is a complicated task [5], since the

system components take actions independently while they may be affected by the other

components’ actions.

As in most applications there is no central controller in distributed systems, compo-

nents should have the ability to coordinate their activities. However, system components

of a distributed system execute in concurrent processes. Therefore, component inde-

pendency and concurrency are the characteristics of these systems [5, 13]. Operating

systems and ATM are two examples of distributed systems with centralized controllers

and Peer-to-Peer (P2P) systems are examples of distributed systems without centralized

controller [13].

2.4 Multi-Agent Systems

Multi-Agent Systems (MAS) have become very popular today. Industrial demands for

agent-based software engineering have significantly increased in the past years. This

demand increase is due to the increasing trend of the complexity of the problems encoun-

tered in the industry [14].

MASs include several interacting agents in a network. Agents are autonomous and

interactive software entities that act both alone and with other agents. In addition,

these agents know their conditions and the intended effects of their actions, hence, take
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responsibility for their needs [1].

Considering that agents are autonomous, MASs are recognized as self-organized sys-

tems that can handle complex problems, i.e. problems that cannot be addressed using

an individual agent. Therefore, MASs are employed for designing large-scale distributed

software systems. Typical applications of MASs are in design and modeling of social

systems and online trading [6].

In order to enable the development of MASs, Agent Oriented Software Engineering

(AOSE) techniques are developed. AOSE techniques are new methods for representing,

analysing and designing a software system. Multi-agent Software Engineering (MaSE) [1]

and Agent Unified Modeling Language (AUML) [15] are two well-known methodologies

among others used for designing multi-agent systems that will be described in the fol-

lowing sections.

2.5 Unified Modeling Language

In order to represent and model software systems in a standard way, Unified Modeling

Language (UML) has been defined in 1990s [16]. Designing large-scale software systems

is a challenging task. Since all the details of a software system should be considered in

the design stage in order to meet the requirements, it is very important to perform a

detailed system modeling. Modeling a software system gives a manageable abstraction

of the actual system [17].

UML is a language for modeling software systems which is defined to provide a com-

prehensive system model. Major parts of UML are sets of semantic notations that make

UML an effective language for modeling object-oriented software systems. Considering

that cooperation of component modeling, data modeling and object modeling creates

UML, it can be utilized for system development and implementation [16]. International



13

organization for standardization has accepted UML as a standard language for modeling

industrial software systems [17].

UML includes several types of diagrams such as Use Case, Activity, Class, Object,

Sequence, Communication, Timing, Interaction Overview, Composite Structure, Compo-

nent, Package, State Machine and Deployment diagrams [16]. Deciding which diagrams

to use is the task of software developers based on the type of system applications. In order

to find the most appropriate UML diagrams to model a software system, these diagrams

are classified into five categories: logical view, process view, development view, physi-

cal view and use case view [16]. These categories are described briefly in the following

paragraph.

The diagrams in the logical view category are used to visualize the software systems

to help achieve a complete development. Sequence diagrams are examples of logical

view category. The diagrams that are in the process view category are used to visualize

the processes happening within the system. Activity diagrams are examples of process

view category. In order to show communication between system components, the dia-

grams in the development view category are utilized. Component and package diagrams

are subsets of this category. To design software system, the diagrams in the physical

view category are used. These diagrams connect the system abstraction to the deployed

system. This set contains deployment diagrams. Use case view category helps the de-

velopment process represent the system behaviour and actions. This category includes

overview and use case diagrams. In the following subsections, the most popular UML

diagrams are described briefly.

2.5.1 Sequence Diagrams

Interaction diagrams are often used to model software systems by representing the inter-

actions among different components of the systems. Since it is very beneficial to represent
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the order of interactions in a simple way, Sequence Diagrams (SD) are the most popular

types of interaction diagrams. The interactions among different components of a software

system can be expressed using sequence diagrams [17].

Sequence diagrams represent the interactions among objects in the order of time.

Therefore, in these diagrams, only the time when an interaction (i.e. event) starts is

represented and the duration of interactions and events is not considered. Sequence

diagrams also include all the system components also known as system participants.

In sequence diagrams, system components are represented using rectangles with cor-

responding lifelines. Lifelines are shown using vertical lines. In these diagrams, the time

increases in a top-down order. Events in the sequence diagrams are considered as the

points when an interaction may occur. The interactions among system components are

represented by messages and are shown using horizontal arrows. The direction of a mes-

sage is from the component that wants to send that message to the component that will

receive it. Furthermore, action bars are shown by vertical rectangles in sequence dia-

grams. These bars are used to represent the period of time when a component is active,

i.e. sends or receives messages [16].

In Figure 2.2, an example sequence diagram is shown. In this diagram, there exist

four system components which are named ”User”, ”Server”, ”Selector” and ”Interface”.

These system components interact with each other by passing messages such as ”Send

Location of User”.

In this thesis, sequence diagrams are used to represent system specifications. Consid-

ering that in this research a visualized software system model is needed to show different

components of the system and interactions among them, sequence diagrams are very ben-

eficial. In addition, sequence diagrams provide a time order of the events in a software

system and enable the system designers to perform timing analysis for the system.
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Figure 2.2: An example sequence diagram

2.5.2 Communication Diagrams

Communication diagram expresses the communications among system components. It

indicates which components should be connected to enable the necessary interactions in

the system. Since sequence diagrams and communication diagrams are similar, choosing

the appropriate diagram is usually based on the required information and is the decision

of system designer. In the applications where the order of passing messages should

be considered, sequence diagrams are utilized. On the other hand, the communication

diagrams can be used if it is desired to to represent the connections among different parts

of the system [16].

Communication diagrams include all the system components, communication mes-

sages and communication links. System components are shown by rectangles that con-

tain the name of the components and classes. In communication diagrams, arrows are

used to represent communication messages. The direction of messages is from sender to

the receiver. To connect two components, a communication link is used which is shown

using a single line [16].
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Figure 2.3: An example communication diagram

Since components can be placed anywhere in the communication diagrams, these

diagrams are usually known as free-form diagrams [17]. Therefore, in order to show the

order of messages, a label is assigned to each single message. The procedure of labeling

messages starts by assigning number 1 to the first message and continues incrementally

until all messages are labeled. A message is considered as a nested message when it can

be only activated by another message. In fact, activation of a nested message depends on

occurrence of another message. The label of a nested message includes both the number

of the activating message and the number of the nested message which are separated by

a dot. Foe example, if nested message with number 5 is activated by a message with

number 1, its label will be ”1.5”.

Figure 2.3 represents an example of communication diagram. This diagram includes

four system components that are ”User”, ”Server”, ”Selector” and ”Interface”. The

interactions among these participants are shown using the links (black lines). In addition,

the order of messages are represented using their numbers while they are shown using

arrows. As an example, the message labled as ”1.2” that corresponds to message ”Time

informing” in sequence diagram of Figure 2.2 is a nested message that is activated by
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the message with label ”1”.

2.5.3 Timing Diagrams

Timing diagrams are utilized when time representation is needed for modeling software

systems. These diagrams are considered as appropriate UML diagrams, when it is desired

to put time restriction for system modeling. For example, a timing diagram is used when

a designer aims to indicate that a message is required to take place in a certain period of

time. Timing diagrams are employed to represent the behaviours of objects in a requested

time interval. This time information cannot be provided using the other UML diagrams.

All the information about the duration of events and their send and receive times is

provided using timing diagrams [16].

A timing diagram includes all system components, states, times and messages. In the

left side of the timing diagram, the names of the components appear vertically. There are

several states in timing diagrams where system components take part. The related states

corresponding to each component are placed close to it. The time order is represented in

an increasing order from left to the right of a timing diagram. In different time intervals,

system components can be in different states. In addition, in timing diagrams, messages

are used to represent when a system component changes its state. These messages are

shown by arrows that connect the current state of each component to the next state [17].

In Figure 2.4, an example of a timing diagram is represented. As it can be seen,

this timing diagram includes two system components. There exist four states for the

component ”Participant 1” and three states for the component ”Participant 2”. In this

diagram, two messages are used to show the interactions among the system components.

For example, ”Message 1” connects the State 2 of ”Participant 1” to the State 2 of

”Participant 2”. This message is sent by ”Participant 1” at time ”1t” and received at

time ”2t” by participant 2.
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Figure 2.4: An example timing diagram

2.5.4 Interaction Overview Diagrams

In order to implement a software system, several interactions need to happen. To have

a high-level view of these interactions for modeling a system, interaction overview dia-

grams are utilized. Interaction overview diagrams may include all the diagrams that are

explained in previous sections such as sequence diagrams and timing diagrams. Based

on the required information for modeling a software system, different UML diagrams are

combined and represented in a single interaction overview diagram [17].

In interaction overview diagrams, the names of system components appear in the

lifeline section. The interaction overview diagram starts with an initial node shown

using a filled circle and ends with a final node which is shown by a circle with a filled

inner circle [16].

An example interaction overview diagram is shown in Figure 2.5. This diagram

includes two other UML diagrams: a sequence diagram and a communication diagram.

There exist four system components in this diagram which are named ”User”, ”Server”,
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Figure 2.5: An example interaction overview diagram
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”Selector” and ”Interface”. These components are expressed in the lifeline located at the

top left hand side of the diagram.

2.5.5 State Machine Diagrams

In order to model the software system behaviour, state machine diagrams are employed.

State machines represent the behaviour of system by focusing on the states of the software

system. System behaviour is analysed by considering changes in the states [16].

States and transitions are used to represent state machine diagrams. States are shown

by circles. Arrows are used to express transitions that show changes in the states of the

system. When the transition enters any state, it becomes active and once the transition

goes out, the state becomes inactive. The changes in the system states is resulted from

system events. Events are shown as labels on top of the transition arrows. Initial states

of the state machine diagrams are shown using two concentric circles and the final states

are shown using two concentric circles with a filled outer circle [16].

Figure 2.6: An example state machine diagram

An example state machine diagram, shown in Figure 2.6, is used to model the be-

haviour of a single system component. This diagram includes three events that are ”Time

Informing”, ”Select Nearest Branch [1 Day]” and ”Find It”. To show how component’s

states change, transitions are used. These transitions are labeled by the name of events

that activate them.
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2.6 Agent Unified Modeling Language (AUML)

Industrial demands for Agent-Oriented Software Engineering (AOSE) have significantly

increased in the past decades. Since life-cycle of software design can be completely done

using agent-based techniques, AOSE is becoming more accepted for software design in

industrial applications. Using agent-based software development formalism results in

saving costs including time and money required for a software project [15]. Agent-based

methodologies can address the industrial problems that cannot be handled using only a

single agent.

In order to reduce the risk of developing an agent-based system, extension of existing

tools is required. Object-oriented software systems are generally similar to agent-based

systems. Therefore, providing an extension of the trusted methods that are used to design

object-oriented software systems can help have an appropriate and comprehensive agent-

based development formalism. Agent Unified Modeling Language (AUML) is a formalism

for agent-based software development that is an extension of the widely accepted UML.

AUML handles the interactions among agents by extending UML in order to address the

challenges in dealing with agent-based designs [18].

Developing agent-based systems by extending UML is suggested by the Foundation

for Intelligent Physical Agents (FIPA) and Object Management Group (OMG). AUML

represents several agent-based design approaches such as an Agent Interaction Proto-

col (AIP). In AIP, interactions among agents are shown with the order of messages.

Therefore, AUML can be well understood and utilized for analysing agent-based soft-

ware systems [6].

Considering that agents are autonomous and interactive, they can act independently

or with other agents. While outside control is needed for objects to execute their methods,

agents know their conditions and intended effects of their actions, hence take responsibil-
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ity for their needs. However, lack of common features between objects and agents makes

UML insufficient for multi-agent system (MAS) designs. In order to show communica-

tion between agents in MASs, interaction protocols are utilized. Therefore, three levels

of AUML formalism are performed to express the protocol structures in order to show

interactions among agents in multi-agent systems [19]. These levels are described in the

following subsections.

2.6.1 AUML: First Level

In the first level of AUML formalism, to show any type of interactions among system

agents, agent interaction protocols are used. Templates and packages are employed as

parts of the well-understood UML for protocol representation [6].

In UML, packages and components are used to group the behaviour and structure

of the object-oriented systems. For implementing a software system, its classes should

be combined using system components. Each component is produced to combine several

classes in order to achieve certain goals. Then, packages are used to group the system

components. In addition, behaviour diagrams can be grouped using packages. For each

sequence diagram, packages are defined based on the available data and requirements.

However, users sometimes do not need all the packages. Therefore, only some particular

packages are used according to the users’ requests [19].

Figure 2.7 represents an example of producing packages for a car dealership. The

customer may not need to know all the available information at the same time. Therefore,

two packages, ”Sale” and ”Repair”, are produced in this example. Based on the required

information, both packages or just one of them may be used. For instance, if the customer

needs to book an appointment for repairing his/her car, it is only required to use ”Repair”

package. Note that as it can be seen in this example, system components can be part of

several packages at the same time. In this example, component ”Customer Service” is
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Figure 2.7: Producing AUML packages for a car dealership

included in both ”Sale” and ”Repair” packages.

Packages for AIP are considered as templates in UML. Templates are shown by dotted

boxes placed in the upper right portion of the sequence diagrams. A template includes

three rows. In the first row, the roles of system components are indicated. System

constraints are presented in the second row. Finally, the communications among agents,

i.e. messages, are expressed in the third row [15].

In Figure 2.8, a template for the car dealership example presented in Figure 2.7 is

shown. The first row of the template includes the system components, i.e. agents. The

second row includes the constraint for the car dealership example which is finding a repair

appointment in less than two days. The interactions among the system components are

shown in the third row.
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Figure 2.8: Template for ”Car Dealership” diagram

2.6.2 AUML: Second Level

The second level of AUML formalism represents the interactions among the system com-

ponents. Similar to UML, in AUML, sequence diagrams are used to show the interactions

among the agents. The sequence diagrams focus on the order of message passing. There-

fore, in AUML, to show the interactions among agents, some extensions are added in

addition to UML. One of these extensions is the definition of ”role” that is used to cat-

egorize the agents based on their behaviour. Defining roles leads to decrease in the size

of interaction diagrams [20].

In AUML sequence diagrams, agents are shown using rectangles. The name and

role of each agent are written in the format, agent:name/role:class, in its corresponding

rectangle [15]. For example, for the agent ”Finance” in Figure 2.7 with the role of

”Employee” and a class of ”person”, the format of the agent rectangle box will be written

as Finance/Employee: person.
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Figure 2.9: AUML Concurrent Interaction Notations

Considering that object-oriented approaches cannot handle the concurrent interac-

tions, in AUML formalism , UML sequence diagrams are extended by adding several

notations for representing concurrent agent interactions. These interactions are shown

by arrows that are labeled with Communication Act (CA). These notations are shown

in Figure 2.9. In Figure 2.9(a), the notations indicate that all the messages are sent con-

currently. When a decision needs to be made to determine which messages are allowed

to be sent, the notations in Figure 2.9(b) are utilized. Note that using these notations

one or more messages can be sent simultaneously. When more than one message are sent

simultaneously, the communications among agents are considered to be concurrent [20].

Finally, if only one message is allowed to be sent at a time, the notations in Figure 2.9(c)

will be used.

Collaboration diagrams are other types of AUML diagrams. The goal of collaboration

diagrams is showing the relations between the agents. Although, sequence diagrams and

collaboration diagrams are similar semantically, in collaboration diagrams, agents are

not located in a specific way and the order of interactions are numbered top down. The

domain experts usually make the decision to use sequence diagrams or collaboration

diagrams based on how understandable they are in that specific application. Each agent
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may have several roles in the collaboration diagram that are represented by dotted arrows

[19].

Activity diagrams are used to provide a simplified representation of the behaviour

models. In these diagrams, actions along with the events that trigger them are presented.

Activity diagrams provide visual representation of software systems in a simple way.

Asynchronous and concurrent messages can be expressed by activity diagrams. Activity

diagrams in AUML are shown using rectangles that have a pentagon in the upper left

hand side. The name of each protocol is written in a pentagon that is prefixed by sd. [20].

To show the behaviour of the software system, statechart is employed. It includes

agents’ states and messages that show when these states change. The main concentration

of a statechart is on the interactions among agents [15].

In the second level of AUML, the interactions between agents are represented. There-

fore, based on the type of multi-agent systems and required information, each of the above

diagrams can be used.

2.6.3 AUML: Third Level

Interactions within an agent, intra-agent interactions, are represented in the third level

of AUML formalism. In order to express intra-agent behaviour, each of the diagrams

discussed in the second level, i.e. sequence diagram, collaboration diagram, activity

diagram and statechart can be used. The decision on using which diagram is made based

on the role of agent, required information and designer’s preference.

2.6.4 AUML Notations For Multi-Agent System Design

Considering that Agent UML is an extension of the accepted UML, AUML includes

all UML notations. Also, there are several extended notations for AUML in order to

deal with agent interactions [20]. These extended notations are described briefly in the
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following.

Role: The interactions among agents can be represented by defining roles for agents.

Defining roles for each agent helps model complex software systems. So, showing interac-

tions among roles can reduce the size of modeling diagrams. To provide a representation

of agent roles, activity diagrams are utilized. In activity diagrams, system events are

connected to their related roles [21].

Constraint: Constraint shows which conditions should be hold in order to perform

appropriate actions. There are two types of constraints in AUML: blocking/nonblocking

constraints and timing constraints. These constraints are presented in square brackets on

the top of messages. Lifeline avoids to take part in interactions when blocking constraints

happen. The blocking constrains are shown by ”�blocking�”. However, nonblocking

constraint does not stop any execution. It only avoids sending and receiving message

with invalid constraints. Furthermore, to show the delay among two messages, timing

constraints are used.

Continuation: Continuation is defined to show an intermediate point in a Com-

binedFragment or a control flow. CombinedFragment is employed in both UML and

AUML diagrams to show possible traces. Based on system specifications, several op-

erations can happen. These operations are shown as InteractionOperators which are

presented in the upper left side of a rounded rectangle. There are several types of In-

teractionOperator for CombinedFragment such as loop, parallel, break, assertion and

alternative [21]. Continuation is represented by a rounded rectangle that includes the

related CombinedFragement name. CombinedFragment notations can appear before and

after the label name. Continuation is indicated as a filled triangle in the CombinedFrag-

ment notation [22].

InteractionOccurrence: When an interaction diagram internally calls another in-

teraction diagram, it is called InteractionOccurrence. The interaction diagram continues
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after the called interactions end. The name of the called interaction diagram should be

written in a rectangle. This rectangle includes a pentagon labeled with ”ref” [21].

Gate: To associate the inner messages of an interaction diagram with messages that

are part of another interaction diagram, a connection point named gate is used in AUML.

Gate can be in sending or receiving points of a message [22].

Action: Action is denoted in order to show how an agent should interact with

another agent. All agent activities for sending and receiving messages are defined by

action. Message sender knows the content of a message while the agent that receives

the message does not have any idea about message’s content. Action is represented by a

rounded rectangle which is linked to the message that activates it [22].

2.7 Summary

In this chapter, the preliminaries for the design of multi-agent systems are presented.

Scenario-based specifications, distributed systems and multi-agent systems are introduced

to provide a basis for the contributions of this thesis. The unified modeling language

is described as a well-known language for object-oriented software design. Finally, an

extension of UML, AUML, for enabling a comprehensive agent-based design is described

in detail along with the extended notations specific to agent-based designs.
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Chapter 3

Related Works

3.1 Introduction

In this chapter, the related works of Multi-Agent Systems (MAS) verification are dis-

cussed. Considering that employing several agents simultaneously can provide a more

effective software system, industrial demands of MASs are growing over the years. With

these increasing demands, verifying and monitoring the behaviour of the agent-based

software systems with low cost has become a major step of the design. Bringing MASs

to the main stream of commercial software development can be performed by verify-

ing the system behaviour against the unwanted runtime behaviours, i.e. emergent be-

haviours [23–25]. Detecting and removing these behaviours in design stages help reduce

the deployment costs significantly [26]. Verification of MASs can be performed using

both component-level [25] and system-level approaches [24,27].

There exist model-based techniques for software verification using UML [5]. How-

ever, these are not adequate for agent-based software system verification. In order to

handle this problem, several approaches are presented for designing MASs. The model-

ing elements of these methods are partially different from the UML constructs to handle

interactions among agents [4, 28–31]. Verifying MASs can be performed using UML,

AUML, Multi-agent Software Engineering (MaSE), Message Sequence Graph (MSG),

high-level Message Sequence Charts (hMSC) and non-local branching choice. Each of

these methodologies will be described in this chapter.

The rest of this chapter is organized as follows: In Section 3.2, the model checking

approach for MAS verification is described. MAS verification using MaSE methodology
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is presented in Section 3.3. In Section 3.4, the verification of MASs using several design

methodologies is discussed. Finally, in Section 3.5, the chapter is summarized.

3.2 Verification of Multi-Agent Systems Using Model Checking Approach

Model checking provides a comprehensive system model for checking multi-agent system

specifications. There exist two types of model checking approaches for verification of

multi-agent systems that are described in the following paragraphs.

The first type of model checking, which is known as MAS model checking, focuses on

the agent characteristics in MASs. Therefore, in order to deal with MAS, several agent-

related logics are added. The Beliefs, Desires and Intentions (BDI) model of agents is

considered in this type of model checking [32]. In this type, logic languages are used for

MAS verification. In fact, BDI cannot be defined for MAS verification without using

logic languages. The focus of model checking methodologies is representing the software

system model rather than their implementations. A set of states are used to represent

agent conditions in the MAS model checking. Agent actions are defined in order to

represent how the state of each agent changes to obtain its goals. In [32], a technique is

proposed to formulate the objectives of software systems.

MASs are very large-scale software systems with large number of agents and inter-

actions. In these systems, agents can be added any time in the middle of the design

stage. This can result in a rapid increase in the number states that each agent can have.

Since all the states of all agents should be considered during verification, verification of

large-scale MASs using the model checking approaches is a complicated task [33,34].

In [32], in order to use model checking for MASs, first, system requirements are

defined using logic languages. Then, several rules are assumed to form the system spec-

ifications. Finally, the model checking approach checks if the system specifications are



31

valid. Although this approach can deal with large-scale software systems, it cannot sup-

port all the agent characteristics. This is because by increasing the number of agents, the

number of states significantly grows that may lead to state space explosion. Therefore,

some characteristics of the agents should be ignored to manage the MAS verification. In

addition, model checking techniques can be used for verifying system implementation as

well as the system design [35].

The second type of model checking approaches is designed to check if software systems

meet their requirements and detect the possible problems such as deadlocks. Detecting

deadlocks is necessary since they do not allow software systems to be implemented com-

pletely and correctly. In addition, this model checking approach is one of the popular

automated methodologies for verifying multi-agent software systems [36]. Model checking

can be used to model the behaviour of software systems and interactions among agents

as well as verifying MASs to detect the possible problems. Model checking follows the

accepted structures of software system designs and use logic languages and finite state

machines [37].

MAS verification using model checking ensures that the required properties of software

systems are achieved. Designers give software specifications as the expected behaviour

of the system and compare the implemented system executions against them to verify

system performance. Since the second type of model checking approaches analyses sys-

tem behaviour and detects the system faults, they are considered as effective verification

methodologies. Although the model checking approaches are known as powerful verifi-

cation methods, considering all system states to show the behaviour of system agents

makes them time consuming [38, 39]. The MAS verification technique proposed in this

thesis, is categorized as the second type of model checking approaches which is used to

detect the exact causes of system faults in the design stage to reduce deployment costs.
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3.3 Verification Using Multi-agent Software Engineering Methodology

Multi-agent Software Engineering (MaSE) methodology is one of the widely accepted

methods for representing agent-based system architectures and the interactions among

agents. MaSE methodology is generated upon several UML diagrams. Since objects

cannot handle interactions among agents, MaSE considers agents as objects that use

communications, i.e. messages, for interacting with the other agents [4].

MaSE can be used to design and analyse agent-based software systems. Designing

agent-based systems using MaSE is performed in four levels. First level is creating agent

classes. In the second level, communications among system agents are constructed. Col-

lecting agent classes and designing the system are performed in the third and fourth

levels, respectively. MaSE has a comprehensive system analysis that includes three inter-

nal steps. In the first step of this analysis, the main goals of the system are determined.

In the second step, the use cases of the system are employed. Finally, in the third step,

the system goals are improved and refined [40].

Agents are the most important constructs of MAS. Therefore, in order to represent

the system goals and agents’ classes, specific roles are defined for agents. Agents in MASs

are linked to their roles using MaSE task diagrams. Then, for each agent role, tasks are

defined. These tasks, which are shown by task diagrams, provide the ability to complete

and achieve the related goals of agents. Since MaSE is developed based on UML, UML

state machine diagrams are utilized for representing MaSE task diagrams. In addition,

the control flow diagram is used to show the goals and achievements [4].

Sequence diagrams are well-known interaction diagrams that can represent the inter-

actions among the agents in MASs. Therefore, most of the existing MAS verification

techniques use sequence diagrams [4, 5, 24]. In sequence diagrams, to show the commu-

nications among system agents, roles and agents are expressed by lifelines. Considering
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that MaSE does not include sequence diagrams, in order to have a comprehensive MAS

analysis, sequence diagrams can be produced according to the MaSE design information.

Agent classes and role diagrams available in design and analysis phases of MaSE pro-

vide these required information by representing agent communications or the interactions

among roles of agents. Therefore, a verification technique that uses MaSE methodology

for analysing MASs in order to catch unwanted runtime behaviours is proposed in [4].

In [4], the agent sequence diagrams are produced by converting role class diagrams

of MaSE to agent sequence diagrams. By grouping the related roles of each agent and

considering the messages between each pair of agents, the agent sequence diagrams are

produced. In these agent sequence diagrams, lifelines represent agents and the messages

between them are recognized as new agent communications. In order to catch software

system goals using MaSE, corresponding roles of agent classes are used. The activities

and communications among roles are considered as MaSE tasks and are represented using

state machine diagrams [41]. The behaviours of agents can also be modeled using UML

state machine diagrams. These behaviours are shown by indicating the interactions of

each agent with the agent that activates it. Therefore, in order to analyse the system

behaviours, the task diagrams of MaSE are converted to UML state machine diagrams in

[41]. State machine diagrams are produced using UML notations instead of the conditions

in MaSE task diagrams.

In [4], several resources, i.e. agent roles, are dedicated to the agents in MaSE task

diagrams. In this method, specific resources should be allocated to each agent. Although

agents can request for several resources, they can only hold one resource at a time. If

all the requested resources are provided for an agent, agent task can be accomplished.

Therefore, an agent is called to be a deadlock in MAS if at least one of its requested

resources is already held by another task diagram run which means that agent’s tasks

can not be performed.
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3.4 Verification of Multi-Agent Systems Using Message Sequence Charts,

Message Sequence Graphs and high-level Message Sequence Charts

In order to describe and analyse software system behaviours and requirements, several

methodologies are proposed. Scenario-based specifications are the systematic approaches

for representing MAS requirements. The interactions among system agents can be defined

by several scenarios in the scenario-based specifications. These scenarios represent the

behaviours of software systems. Message Sequence Charts (MSC) are categorized as a

type of the scenario-based specifications that can be used to represent software system

behaviours. Each MSC is used to describe one scenario, i.e. partial behaviour of software

system. In [5, 27,42], MSCs are utilized to perform MAS verification.

In spite of MSCs, Message Sequence Graphs (MSG) and high-level Message Sequence

Charts (hMSC) focus on representing several scenarios simultaneously [30]. MSGs are

considered as system models that include several different analyses. MSGs are utilized

as graphical representations for showing how different message sequence charts are con-

nected. MSGs and hMSCs are usually considered to have similar capabilities and short-

comings and most researchers consider them equal [43]. In message sequence graphs,

several MSCs are connected to each other in order to provide an analysis of a multi-

agent system. These graphs include several nodes and arcs. Each node represents a

single MSC and the arcs represent the interactions among them. High-level message se-

quence charts are similar to MSGs but are often used to handle relatively large analyses.

In addition, hMSCs contain nodes that can represent both MSCs or MSGs.

In [30,44,45], two different synchronous and asynchronous models are used to perform

verification for MAS with multiple scenarios represented by a MSG. In this MSG, several

message sequence charts are combined using several actions such as concatenation. The

techniques proposed in [30, 44] determine if the considered MAS is weak or safe realiz-
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able. This is performed by understanding the conditions of software system based on

its implementations. If the MAS implementation is deadlock free, it is considered as a

safe realizable system. Otherwise, it is known to be weak realizable. Since in one MSG,

several MSCs are combined, designing asynchronous MASs using MSGs is a difficult

task [30]. In addition, this method is not an automated technique and its precision of

MAS verification is not clearly known [28].

In [46,47], the problems that may happen as a result of the differences between MSC

specifications and system implementations are presented. For instance, one of these prob-

lems occurs when the system agents do not interact with the same speed. Therefore, the

expected communications cannot be occurred at the expected time. Another problem

happen when different approaches are used for implementing MSC specifications. This

problem is called ”non-local branching choice” and may cause deadlocks in MAS be-

haviour. In [46], it is proposed to address these problems by analysing the messages

that are passed between system components, i.e. agents. This algorithm is implemented

in a tool, called MESA, for checking non-local branching choice and analysing MSC

specifications [46, 47]. However, there is no implementation for model checker of MSC

specifications using MESA provided by the authors.

In [48,49], an automated algorithm for producing UML statecharts from system sce-

narios is proposed. Going from scenarios to statecharts is a challenging procedure [48].

One of these challenges happens when several independent scenarios are connected to

each other. Another challenge is the existence of same states in different scenarios. Fi-

nally, since this procedure is usually performed by the designer, it is not very precise.

In order to address these problems, some semantic information are added to the

domain theory in [49]. In this work, an automated algorithm is proposed to obtain

statecharts from scenarios that are usually defined by sequence diagrams. By going

from scenario to statecharts, verifying agent-based systems can be performed completely.
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Statecharts enable the designers to define agent behaviours [49]. The algorithm first

converts sequence diagrams into statecharts by labeling each sequence diagram with

state vectors. Object constraint language [50] is used to represent the conditions before

and after each state. Then, the algorithm identifies the states with the same properties

according to the object constraint language specifications in different system scenarios.

Finally, one statechart is provided by combining same states of different scenarios into

one state.

Presenting multi-agent systems using behaviour models is an economical approach

that can model the systems precisely. Since behaviour modeling is a complex methodol-

ogy, it takes a longer time for the designers to perform. Therefore, several methodologies

are proposed to provide behaviour models [51,52]. These automated techniques are shown

to be effective in analysing system agents [52]. As each scenario indicates specific partial

system behaviours, in order to analyse the whole system behaviours, all the scenarios are

considered at the same time [53]. However, considering all the behaviours of the agents

simultaneously can cause unexpected system faults [31].

In [31, 54], MSCs and hMSCs are used to synthesize system behaviour models. An

algorithm, called labeled tarnsition system analyzer, is proposed to perform system be-

haviour analysis automatically in [54]. This automated algorithm uses behavioural model

specifications to analyse system behaviours. This technique is claimed to be effective in

detecting the negative scenarios, i.e. scenarios that are not expected by system specifi-

cations. However, no case study is presented to demonstrate its effectiveness.

In [29], for detecting unexpected software system behaviours that are not considered

in system scenarios, non-local branching choice is used. In [55], it is shown that when

several agents can send the first messages in different scenarios of non-local choice, the

resultant behaviour is not a desired system behaviour.

In order to analyse the system component behaviour, model-based specifications are
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used. Model-based testing clarifies the test sequences by test cases for implementations

[29]. Considering that scenarios are incomplete specifications, using state machines can

provide a complete specification. Therefore, in [29,55], in order to convert scenarios and

state machines to test sequences, TeStor algorithm is proposed.

To produce sequence of events for improving model-based testing, component-based

software system verification is proposed in [56]. This verification method verifies the

properties of software architectures. System executions are obtained in the first level of

this methodology. Then, these executions are converted to message sequence charts for

component-based software architecture verification using model checker methodologies.

Although this methodology is claimed to be effective in verifying MAS, there is no case

study provided.

Considering several system components at the same time makes the behaviour anal-

ysis complicated [57,58]. This problem can be solved for one system component (agent)

without considering message lablels. However, when more than one component are con-

sidered, the problem becomes complicated [59,60]. Since MSCs cannot deal with testing

specifications, MSGs can provide detection of unexpected specifications [61].

In [28, 61], a technique is proposed to prepare MSG specifications and analyse the

software system specifications using MSGs. This methodology is considered as a com-

prehensive MSG tool for system specification analysis. It can also handle the problems

of model checking and unexpected system behaviours. This method is implemented for

MSGs while the application for MSCs is not presented.

Agent UML (AUML) is extended over UML to describe interactions among agents in

MASs. MASs can be represented by different AUML diagrams. Since most of the existing

MAS verification techniques are designed based on UML, some of these AUML diagrams

may cause problems in the verification procedure [62]. In [63], a formal methodology is

proposed for representing agent interactions of MASs. This methodology converts the
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interactions among agents described by AUML to object-oriented language Maude [62,

63]. Then, a tool is proposed to use Maude language to verify and model the concurrent

system specifications. In [64], a complete description of agent communications is provided

using Maude language and model checking is applied for verifying software systems [64].

The disadvantage of this technique is however lack of verification of the resultant Maude

descriptions.

Collecting software system requirements is an important step in developing software

systems. Scenario-based specifications are used to gather distributed system require-

ments. Since there is no central control in most distributed systems (similar to multi-

agent systems), scenarios are used to show interactions among system components [24].

An automated methodology is proposed in [25] to detect unexpected behaviours in the

components of distributed systems. This method utilizes scenario-based specifications

to analyse system requirements. Since scenarios represent some information about local

components, modeling the behaviours of distributed systems using scenarios is a compli-

cated step. Therefore, in [24, 25], a technique is proposed for analysing the behaviours

of system components by converting scenario specifications to state machines. When

the sizes of software systems increase, analysing them manually cannot follow the design

procedure to detect unwanted runtime behaviours [65].

In [42, 66], for detecting the sources of unexpected behaviours, an automated algo-

rithm is proposed. This algorithm produces the statecharts for each system component

in each different scenarios. Then, all the statecharts corresponding to each system com-

ponent are merged to obtain a single statechart. In the next step, the similar states in

these statecharts are identified and called identical states. In [67], the existence of these

identical states in the statecharts is shown to be the source of unexpected behaviours in

distributed systems [67]. Therefore, the authors proposed a technique for detecting and

removing the identical states automatically. This technique has two shortcomings: (i)
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This technique is a component-level approach meaning that it analyses the behaviours of

system components individually and the behaviours are not modeled when considering

the distributed system as a whole. (ii) This technique catches all the identical states

in the statecharts of different components. However, as it will be discussed in Chapter

5, not all the identical states cause unexpected behaviour and merging all the identical

states may cause overgenralization issue.

When employing a component-level approach for software system verification, some

unexpected behaviours and system scenarios may be ignored. This is because in the

component-level approaches, the behaviours of each component are considered separately.

Therefore, the unexpected behaviours that happen as a result of communications be-

tween the system components cannot be detected. In order to synthesize a system-level

behaviour model for distributed systems, all the scenarios should be combined [27, 65].

In [27], a method is proposed to combine all the behaviours of system components in

different scenarios in order to represent the whole system behaviours.

The first step of this method is producing statecharts for each of the system compo-

nents. Then, the statecharts corresponding to one component are connected and identical

states are identified. Finally, system behaviours are verified by merging these identical

states to catch unexpected system behaviours [27]. However, there is no case study pre-

sented in [27] to demonstrate the effectiveness of this method. In addition, merging all

the identical states in the statecharts may result in new unexpected behaviours caused

by overgeneralization.

3.5 Summary

In this chapter, the related works for verifying multi-agent systems are represented. Ver-

ifying MASs can be performed using different verification methodologies such as model
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checking approaches. Different verification techniques are discussed for MASs and dis-

tributed systems designed by unified modeling language, agent unified modeling language,

message sequence charts, message sequence graphs, high-level message sequence charts

and non-local branching choice methodologies. These different techniques are described

and compared in terms of effectiveness and accuracy. Since most of these techniques

are component-level approaches, they may fail to provide a comprehensive verification.

In addition, the assumptions used in synthesis of behaviour models may produce new

unexpected behaviours caused by overgeneralization. These two shortcomings will be

discussed and addressed in the following chapters.
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Chapter 4

Multi-Agent System Design Using AUML

4.1 Introduction

Several methodologies are proposed for design of Multi-Agent Systems (MAS) [1, 6, 19].

UML is an accepted object-oriented language for analysing system components. In several

works, using UML for MAS design has been investigated. The common shortcoming

of these works is that UML cannot support the interactions among agents. In order

to deal with this problem, AUML formalism which is an extended version of UML is

proposed [15]. In this chapter, AUML formalism is utilized to design the interactions

among agents. The aim of this research is to perform MAS verification using AUML.

Since most of the existing techniques for software verifications are proposed based on

UML [4, 5], in this chapter, a set of conversion rules are proposed to convert AUML

designs to UML notations in order to prepare them for verification.

The rest of this chapter is organized as follows: In Section 4.2, the Agent Unified

Modeling Language (AUML) is presented for MAS design. An industrial case study is

defined in Section 4.3 to describe the procedure of AUML formalism for designing multi-

agent systems. In Section 4.4, Agent Unified Modeling Language (AUML) formalism

steps are presented and applied to the case study. The proposed method to convert

AUML sequence diagrams to UML sequence diagrams to be used for MAS verification is

represented in Section 4.5. Finally, this chapter is summarized in Section 4.6.
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4.2 Agent Unified Modeling Language (AUML)

In order to reduce the risks in modern industrial applications, Multi-Agent System (MAS)

design methodologies are vital. Reducing risks can be achieved by proposing effective

tools and extending accepted methods to take advantage of the existing methods [15]. For

denoting agent interaction protocols in multi-agent systems, several modeling techniques

are proposed [15,28,30].

The Unified Modeling Language (UML) is a known and approved representation

for object-oriented software development [23, 24]. However, lack of common features

between objects and agents makes UML not sufficient for MAS design applications. In

[6, 15, 19], Agent UML (AUML) is proposed to address the challenges in agent-based

software methodologies. AUML is extended over UML due to the increasing acceptance

of UML for object-oriented software development.

Agents conform and collaborate to each other by exchanging information in a typical

MAS. This information exchange is performed based on interaction protocols which are

extracted from communication protocols used in MASs. Since setting up these protocols

is a fundamental task in MAS design, the first step of AMUL is dedicated to defining

interaction protocols [19].

AUML formalism effectively shows the flow of information between agents. This

process ranges from planning and analysis to design of system structure and maintenance

[15]. Considering that UML sequence diagrams are the most commonly used techniques

for synthesis of behaviour models, in this research, a technique is proposed to convert

AUML notations into the UML sequence diagrams. UML sequence diagrams include

Message Sequence Charts (MSC) and message sequence diagrams that represent the

agents as system components, and the interactions between them as messages.

In the following sections, the AUML steps are performed for indicating agents’ in-
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teractions. In order to better illustrate this procedure, first, a multi-agent system case

study is introduced and then, it is designed using AUML formalism.

4.3 Multi-Agent System Case Study

In order to better demonstrate the procedure of AUML formalism, an industrial case

study of a multi-agent system called Real-Time Fleet Management System is considered.

This joint case study project has been negotiated with the Encom Wireless and City of

Calgary to design, implement and evaluate a multi-agent simulation system for Com-

mercial Vehicle Enforcement. In this thesis, a small scale prototype of this project is

focused as a proof of concept. The specifications of this multi-agent system case study

are described in the following subsections.

4.3.1 Goals

The objective of real-time fleet management system is to provide minimum delivery time

by considering several different conditions which influence it. Authentic sensors such as

location, weather and traffic condition sensors are needed for computing the accurate

delivery time. Moreover, to forecast and update the delivery time, a dynamic timing

model is used. Informing the customers by updating web page and sending text messages

are the other features of the real-time fleet management system. Furthermore, to achieve

customer satisfaction, a dynamic, user friendly and secure web interface is employed.

4.3.2 System Agents

Real-time fleet management system consists of several components (agents). ”Weather

Rec.” is a sensor that collects the information about the weather condition. ”Traffic

Rec.” agent collects the information about the traffic using the traffic cameras located

at the intersections. The third sensor is ”GPS Rec.” which collects information about
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the location of the delivery cars. These three agents only interact with a single agent

which is called ”Radio”. ”Radio” agent acts as an information station that collects all

the external world information and sends them to another system agent named ”Server”

upon request.

”User” agent includes an interface with the customer that starts a delivery request by

sending the customer location to the ”Server”. ”Server” agent’s main task is to calculate

the delivery time. However, it first interacts with ”Selector” agent to locate the closest

available branch. ”Web Interface” and ”SMS” (Short Message Service) agents interact

with the customers to inform them about the delivery time.

4.3.3 System Functions

Considering that real-time fleet management system is a multi-agent system, all of its

agents work independently and take responsibility for their tasks while there is no central

controller. However, they interact with each other to transmit the necessary information

in order to achieve the goal of minimizing delivery time and updating the customers in

a fast and user friendly manner.

For real-time fleet management system, there exist several different scenarios to show

how agents interact with each other to obtain minimum delivery time. One of these

scenarios is considered in this chapter for representing different steps of designing MASs

using AUML methodlogy. In the following chapters, the other scenarios are also consid-

ered.

4.4 Agent Unified Modeling Language (AUML) Formalism Steps

In this section, the steps of AUML formalism are discussed in detail and performed for

the considered case study, real-time fleet management system. In Figure 4.1, the goal

of real-time fleet management system is shown with hierarchical model. As presented in
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Figure 4.1: Goal hierarchical model

this figure, ”Updating web page”, ”Select all data” and ”Sending SMS” are considered

as sub-goals that are requirements for calculating minimum delivery time and informing

customers.

There are three levels for designing multi-agent systems using AUML formalism: In

the first level, packages and templates are provided. In the second level, that is called

inter-agent representation, the interactions among agents are expressed. Finally, in the

third level, the internal agent processing is shown, i.e. intra-agent representation [18]. To

better illustrate how the AUML formalism is performed, these three levels are represented
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in detail in the following:

Level 1: Components and packages are defined by UML in order to denote object-

oriented structures. The purpose of defining component is to combine classes to achieve

the goals of software systems [15]. In order to group the components of the system,

packages are used. For each scenario, packages are defined based on data and requests.

However, sometimes not all the packages are demanded by users. Therefore, only some

particular packages are used according to the users’ requests.

Figure 4.2: Producing packages for AUML sequence diagram

In Figure 4.2, for the real-time fleet management system case study, three packages
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are produced: ”Estimating Time”, ”Data Gathering” and ”Informing Customer”. For

example, customers may not need to know about how data are gathered for estimating

time and only need to know about the delivery time. Therefore, ”Data Gathering”

package is not needed by the customers in this example.

Figure 4.3: Producing roles for AUML sequence diagram

Level 2: In order to show the interactions between the agents, interaction diagrams

are used. Sequence diagrams, collaboration diagrams, activity diagrams and statecharts

are used for describing the interactions among agents [15]. The sequence diagrams focus

on the order of message passing. Since UML is designed for object-oriented designs, it is
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not adequate for representing the agent interactions because of lack of common features

between objects and agents. Therefore, in AUML, it is proposed to extend UML to show

the interactions among agents. One of these extensions is ”role” that is used to categorize

agents based on their behaviour. Defining roles leads to decrease in the size of interaction

diagrams [19].

In Figure 4.3, the roles are produced for the case study of real-time fleet management

system. In this example, Weather Rec., Traffic Rec. and GPS Rec. agents are combined

into ”Data Collector” role while Web Interface and SMS agents are combined into ”Inter-

face” role. There exist several other AUML extensions that will be discussed in Section

4.5.

Figure 4.4: AUML collaboration diagram
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The goal of collaboration diagrams is showing the relations between the agents. Al-

though sequence diagrams and collaboration diagrams are similar semantically, in col-

laboration diagrams, agents are not placed in a specific way and the interactions are

numbered in a top-down order. The domain experts usually make the decision to use

sequence diagrams or collaboration diagrams based on their capabilities in their specific

applications [18].

The collaboration diagram for the real-time fleet management system case study is

shown in Figure 4.4. Since the agents’ locations are chosen arbitrarily, numbers are

added to messages to show the order of interactions among agents. First, the initial

message is added to the collaboration diagram and labeled 1. Then, the messages that

come after, i.e. nested messages, are numbered using the label of the first message and

the number of the nested message separated by a dot. For example, in Figure 4.4, the

collaboration diagram starts with message 1 which is the ”send location of user” (see

Figure 4.3) and its following messages are considered as nested messages. For instance,

the message ”estimate time” (see Figure 4.3) is a nested message for message 1 and is

shown by 1.1.

Activity diagrams are one of the simple diagrams in UML because of the similarity

between their symbols and flowchart notations. By using activity diagrams, the process

of achieving goals is defined in an understandable way. Activity diagrams are used to

provide a simplified representation of the behaviour model. In these diagrams, agent

actions and the events that trigger them are presented [15,18].

As shown in Figure 4.5, the activity diagram is started with an initial point shown by

a filled circle and is terminated by a final node shown by two concentric circles where the

inner one is a filled circle. The agents are shown in between the initial and final nodes.

In order to show the interactions between the agents, arrowed edges are used [16].

State machine diagrams are represented by statecharts. The statecharts do not rep-
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Figure 4.5: AUML activity diagram

resent the interactions among agents. The main focus of statecharts are the agents. As

shown in Figure 4.6, states are denoted by circles. In order to connect the states, directed

lines are used.

Since in the real-time fleet management system two agents ”Server” and ”Radio” are

the most interactive agents, statecharts are produced for them. In Figures 4.6 and 4.7,

these statecharts are shown for ”Server” and ”Radio”, respectively. However, statecharts

for the other components can be produced in a similar way.

Level 3: At the final level of AUML formalism, the internal processes in each agent
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Figure 4.6: State machine for agent ”Server”

Figure 4.7: State machine for agent ”Radio”

are described. Each of the diagrams discussed in level 2 can be used to show the inter-

actions that occur in a specific agent. Usually in order to represent the internal agent

(intra-agent) processing, UML statecharts are used [15].

Verification of multi-agent systems is the goal of this thesis. Since interactions among

agents are important to model system behaviour, AUML sequence diagrams are more

effective than the other AUML diagrams. Also, AUML sequence diagram of the provided

case study, shown in Figure 4.3, is considered for validation of the proposed algorithm.
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4.5 The Proposed Method to Convert AUML Sequence Diagrams to

UML Sequence Diagrams

In [25,65], an effective technique for MAS verification is proposed which is based on con-

verting scenario specifications to state machines. This technique is shown to be effective

in verification process automation of UML scenario specifications. However, in [25], the

scenarios are expected as the algorithm input and no methodology is proposed for pro-

ducing MAS scenarios. In this research, this crucial step is also considered and AUML

formalism is used to provide comprehensive agent-based designs. The resultant AUML

scenario specifications will be used as the input of MAS verification process.

Considering that UML is a well-accepted design language, most of the existing verifi-

cation tools, e.g. [4,25,65], are designed for UML sequence diagrams. The UML diagrams

produced using UML are not however adequate for MAS designs. In this work, AUML

formalism is employed to prepare AUML sequence diagrams that are able to represent

agent-based designs appropriately. However, in order to maintain the flexibility of the

verification technique, in this thesis, a set of conversion rules are proposed to convert

these AUML sequence diagrams to UML sequence diagrams. These proposed conversion

rules are used to convert the AUML extensions to the accepted UML notations. The

resultant UML sequence diagrams, that are indirectly produced by AUML formalism,

not only consider all the aspects of agent-based designs but also can be verified using the

existing MAS verification techniques.

In order to convert the AUML sequence diagrams to UML sequence diagrams, a set

of conversion rules, presented in Table 4.1, is proposed. Since AUML is an extension to

UML, all the UML notations existing in the AUML sequence diagrams do not need to be

converted. For example, combined fragment and termination which are used in AUML

sequence diagrams to show the interactions among the agents are accepted UML notations
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Table 4.1: The proposed conversion rules from AUML to UML.
AUML Extended Notations In UML Sequence Diagrams

InteractionOccurrence Add requested agents and messages
between them to the caller diagram

Gate Message between two partial scenarios
in high level MSC

Continuation:
1. Same agent 1. Add messages to itself

2. Other agent in the same scenario 2. Add messages to the other agent
3. Other agent in another scenario 3. Add messages to the other scenario

Constraint:
1. Blocking/nonblocking 1. Add messages in order to

show conditions
2. Timing Constraint 2. Considering as ”ref” fragment

that refers to a timing diagram
Action Add message to itself

and do not need to be converted. However, there are some differences between AUML

and UML sequence diagrams which are called extended notations [21]. Considering that

these extended notations are only defined for AUML to represent the agent interactions,

the conversion rules are defined for them in Table 4.1 and are explained in the following

subsections.

4.5.1 InteractionOccurrence

When an interaction diagram calls another interaction diagram, it is called InteractionOc-

currence [22]. The InteractionOccurrence is represented by a rectangle labled by ”ref” in

AUML sequence diagrams. The name of InteractionOccurrence is written in this rectan-

gle. To deal with InteractionOccurrence in UML sequence diagrams, the called interaction

diagram is added as a set of agents and messages to the caller interaction diagram. These

agents are only added when InteractionOccurrence happens and may terminate after the

call. Figure 4.8 represents an example for converting InteractionOccurrence in AUML

sequence diagram, shown by ”ref” rectangle, into accepted UML notations. In this ex-
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Figure 4.8: Example for conversion of InteractionOccurrence

ample, the called agent ”Z
′
” and its corresponding messages ”c” and ”d” are added to

the UML sequence diagram in order to deal with InteractionOccurrence.

4.5.2 Gate

To associate the inner messages of the current interaction diagram with messages that

are in another interaction diagram, a connection point named Gate is introduced in

AUML [21]. Therefore, it is proposed to convert Gate to a message that connects two

partial scenarios in the high-level message sequence charts. It should be mentioned

that connecting two partial scenarios in high-level message sequence chart is one of the

popular approaches for modeling multi-agent systems [30]. In Figures 4.9 and 4.10, an

example for converting Gate in AUML sequence diagram to the accepted UML notations

is presented. In this example, Gate is added to represent that the message ”f” in AUML

sequence diagram in Figure 4.9(a) is associated to the message ”u” in AUML sequence

diagram in Figure 4.9(b). To convert AUML Gate to the accepted notations in UML

sequence diagrams, the message ”f” should be connected to message ”u”. Therefore,

in Figure 4.10, these messages are connected to each other by using an extra message

”Connected Message” that connects two partial high-level message sequence charts.
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Figure 4.9: Example of Gate in AUML sequence diagram

Figure 4.10: Gate converted to an extra message in UML sequence diagram
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Figure 4.11: Example for Continuation for one agent

4.5.3 Continuation

Continuation is defined to show an intermediate point in a CombinedFragment or a

control flow [22]. There are three types of continuation: continuation for only one agent,

continuation between two agents in the same scenario and continuation between two

agents in different scenarios. To deal with the continuation in UML sequence diagrams,

it is proposed to convert it to messages from an agent to itself for the first type, messages

between two agents in the same scenario for the second type and messages between two

agents in two different scenarios for the third type. Figure 4.11 represents an example for

continuation for one agent. In this example, the continuation is represented for message

”a” of agent ”Y” in the left hand side AUML sequence diagram. This continuation

is converted to the message ”d” from agent ”Y” to itself in the right hand side UML

sequence diagram.

In Figure 4.12, the continuation for two agents in the same scenario is presented. In

the left hand side AUML diagram, the continuation is used between two agents ”Y” and

”Z”. According to the proposed conversion rules, in the right hand side UML diagram,

the continuation is converted to message ”e”.

Figure 4.13 presents continuation for two agents in two different scenarios. As shown
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Figure 4.12: Example for Continuation for two agents in same scenario

Figure 4.13: Example for Continuation for two agents in two different scenarios

in the AUML diagram (left hand side diagram), the continuation is between agents ”Y”

and ”A” in scenarios ”(a)” and ”(b)”, respectively. Since in this example continuation

represents an intermediate point in the control flow between two scenarios, a message

”E” is used to convert AUML sequence diagrams to UML sequence diagrams.

4.5.4 Constraints

Two types of constraints, blocking/nonblocking and timing constraints, are defined to

show conditions that should hold for an event to happen [22]. Nonblocking constraints

just affect a certain event and do not affect the other agents and following messages.
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On the other hand, the blocking constraints may stop the other agents and following

messages if the constraint does not hold. In this work, it is proposed to convert these

AUML constraints to one or more messages in UML sequence diagrams that determine

which messages and agents can perform actions. AUML timing constraints set a time

interval in which an event can happen. Therefore, these AUML timing constraints are

converted to reference operators in UML sequence diagrams in order to call the UML

timing diagrams.

Figure 4.14: Example for blocking constraint

Figure 4.15: Example for nonblocking constraint

In Figures 4.14 and 4.15, the blocking and nonblocking constraints ”[F]” for message

”b” are shown, respectively. The only difference between representing blocking constraint
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and nonblocking constraint is a notation ”�blocking�” on the top of message ”b[F]”.

In this example, if the blocking constraint ”[F]” in Figure 4.14 does not hold, not only

message ”b” cannot be sent but also the following message ”c” cannot be sent. However,

the nonblocking constraint in Figure 4.15 only prevents message ”b” while the following

message ”c” can be sent even if the constraint does not hold. In order to convert AUML

sequence diagrams to UML sequence diagrams, these constraints are converted to mes-

sages ”F
′
” and ”F” in right hand side diagrams of Figures 4.14 and 4.15, respectively.

Note that the blocking and nonblocking type of the constraint is reflected in the content

of the converted message in the UML sequence diagrams.

Figure 4.16 represents an example for timing constraint. Timing constraint in this

example indicates that the event corresponding to message ”b” should happen in a 24

hour interval. In order to convert AUML sequence diagrams (left hand side of Figure

4.16) to UML sequence diagrams (right hand side of Figure 4.16), this constraint is

considered as a reference fragment that refers to a UML timing diagram.

Figure 4.16: Example for timing constraint

4.5.5 Action

In AUML, action is denoted to show how an agent should interact with another agent [21].

In this work, it is proposed to convert action in AUML sequence diagrams to a message
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from the agent to itself based on the content of the action in UML sequence diagrams.

In Figure 4.17, action ”D” is shown for message ”c” sent by agent ”X” in the left

hand side AUML sequence diagram. This action is converted to message ”C
′
” sent by

agent ”X” to itself in the right hand side UML sequence diagram.

Figure 4.17: Example for action notation

4.5.6 Applying the proposed conversion rules to the multi-agent system case study

To show the effectiveness of the proposed conversion rules, the case study of real-time

fleet management system is considered. In Figure 4.3, the AUML sequence diagram for

this case study is shown which is produced using AUML formalism. In this figure, the

extended AUML notations are marked by red, blue and green ellipsoids. This AUML

sequence diagram comprehensively models the interactions among the agents. The pro-

posed conversion rules are then employed to generate the UML sequence diagram of this

case study as shown in Figure 4.18 where the extended AUML notations are converted

to accepted UML notations. For an example, in Figure 4.3 (AUML sequence diagram),

”selecting” diagram, shown by a red ellipsoid, is an InteractionOccurance and is shown

by a reference fragment. In Figure 4.18 (UML sequence diagram), this InteractionOccu-

rance is replaced by the ”Branch Information” agent and its related messages added to

the UML sequence diagram, marked by a red circle.
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In Figure 4.3 (AUML sequence diagram), the nonblocking constraint ”1 Day” is en-

forced, marked by green ellipsoid. According to the proposed conversion rules, this con-

straint is converted to the message ”Delivery Time Less Than 1 Day”, marked by green

ellipsoid, in the corresponding UML sequence diagram shown in Figure 4.18. Finally,

in Figure 4.18 (UML sequence diagram), the message ”Update Selected Data”, marked

by a blue ellipsoid, is used to replace action ”Update All data with Message content” in

Figure 4.3 (AUML sequence diagram) that is surrounded by a blue ellipsoid.

The resultant UML sequence diagram in Figure 4.18 is resulted from converting an

AUML sequence diagram and is indirectly produced using AUML formalism. Therefore,

this UML sequence diagram not only considers all the aspects of agent-based designs but

also can be verified using the existing MAS verification techniques.

4.6 Summary

Several methodologies are proposed to address the increasing requests for multi-agent

system designs. In AUML formalism, the interactions among agents are defined as an

extension to UML since UML is originally designed for object-oriented software develop-

ment. Considering that most of the accepted MAS verification techniques are based on

UML sequence diagrams, scenarios that are produced using AUML formalism should be

converted to UML. In this work, AUML is used to design MAS and a set of conversion

rules are proposed to convert AUML diagrams into UML. The resultant UML sequence

diagrams can handle the interactions among agents and can be used for MAS verification.

This proposed technique is validated by applying to a real-world case study.



62

Figure 4.18: Converted UML sequence diagram for real-time fleet management system
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Chapter 5

Detecting Emergent Behaviour in Multi-Agent Systems Caused

by Overgeneralization

5.1 Introduction

As the demands for agent-based software engineering increase, reducing the risk of mal-

functions throughout Multi-Agent System (MAS) design methodologies has become a

vital task. Detecting and addressing the unexpected failures in early design stage of

MASs can be cost effective. Behaviours of MAS must be verified against the unwanted

runtime behaviours, i.e. emergent behaviours. Emergent behaviours are the unexpected

behaviours that happen due to the partial nature of scenarios. In other words, since sev-

eral scenarios are used to describe behaviours of a multi-agent system, some behaviours

(emergent behaviours) may happen that are not expected by the scenario specifications

and should be detected in the verification procedure.

Emergent behaviours are usually divided into two categories: The first category in-

cludes the emergent behaviours that occur due to the incompleteness of scenarios, i.e.

system specifications. The second category contains the emergent behaviours that happen

as a result of synthesis of behaviour models, i.e. overgeneralization. In fact, overgeneral-

ization occurs because of the assumptions in the process of behaviour model synthesis.

The methods for detecting emergent behaviours are studied in Chapter 3. However,

only a few works [3, 25] have targeted the overgeneralization problem. In this research,

a technique is proposed for MAS verification by synthesis of behaviour models from

scenarios in order to detect emergent behaviours. The proposed technique is shown to be

effective in preventing overgeneralization in the behaviour model synthesis. To validate
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the proposed technique, a case study of real-time fleet management system is employed

for experimentation. It is shown that the proposed technique is effective in detecting the

emergent behaviours that are caused by overgeneralization in the scenario specifications

of the MAS case study.

The rest of this chapter is organized as follows: In Section 5.2, the emergent be-

haviours in multi-agent systems are introduced and the shortcomings of different exist-

ing methods for detecting them are discussed. An industrial case study is considered

in Section 5.3 to illustrate the procedure of synthesis of behaviour models. In Section

5.4, a method is proposed for MAS verification which prevents the emergent behaviours

while overgeneralization is addressed. Finally, in Section 5.5, a summary of the chapter

is given.

5.2 Emergent Behaviour in MASs

The specifications of multi-agent systems are usually demonstrated by scenarios because

of their explicit nature. Scenarios show system agents and messages that are sent between

them. Scenarios are generally shown using Message Sequence Charts (MSCs) or message

sequence diagrams [10]. The behaviours of the individual agents and the whole system

can be represented using the scenarios. Sequence diagrams are not however enough

for analysis of the software system behaviours. A popular approach for analysing the

behaviour of system agents is going from scenarios to state machines which is also known

as synthesis of behaviour models. State machines that are shown using UML statecharts

are used as effective tools for synthesis of behaviour models from scenarios [48, 68]. In

this procedure, each agent is considered as a process with several possible states. All the

messages that are sent and received by this agent are considered in the corresponding

state machine as transitions between the states [3].
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State machines are used in order to explicitly model the system behaviours in [25].

One state machine is designed for each agent in each certain scenario of the MAS, where

all the interacted messages of that agent are included. Blending all the scenarios used

for describing the MAS is necessary since it provides a comprehensive overview of the

system behaviour.

Two methods are proposed for combining the scenarios: state identification and

scenario composition using high-level message sequence graphs. In state identifica-

tion [3, 48, 69], the agents of the scenarios are first modeled with different states in the

state machines. Then, for each agent, similar states are identified in a set of scenarios.

These similar states are combined in different state machines to enable the scenarios to

merge. In [10], another approach for merging scenarios is proposed where scenarios are

split to smaller parts with lower complexity. Then, high-level message sequence graphs

are used to blend the smaller sequence of behaviours since they are simpler to manage.

Merging all similar states to achieve only one state machine for each agent in all

scenarios is proposed in [3] in order to improve the synthesis of behaviour models. This

technique is shown to be effective in detecting emergent behaviours that are produced

as a result of the assumptions in behaviour model synthesis. However, the relationships

between scenarios are rather ambiguously defined.

In [25], a technique to identify the identical states that may cause emergent behaviours

is proposed and a method to address emergent behaviours by merging identical states

is presented. This results in detecting the emergent behaviours due to the presence of

identical states. However, although identical states are the potential causes of emergent

behaviours, not all identical states may lead to emergent behaviours. The shortcom-

ings of this technique are: first, all identical states are merged for combining the state

machines, and overgeneralization is inevitable; and second, it relies on the designer to

determine which states may cause emergent behaviour. Considering that ad-hoc methods



66

Figure 5.1: Scenario S1 of real-time fleet management system case study

are not reliable and are time consuming for large scale systems, in this research, a tech-

nique is devised to distinguish the identical states that cause emergent behaviours and a

new technique is proposed to replace the ad-hoc methodology in [25] into an automated

method.

In order to validate the proposed techniques, the real-time fleet management system

case study, defined in chapter 4, is used. In this chapter, in order to show the real-

time fleet management system behaviours, several scenarios are utilized. In the following

paragraphs, these scenarios are presented:
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In Figure 5.1, scenario S1 of the real-time fleet management system is shown. The

goal of this system is estimating delivery time and informing the customer. In this sce-

nario, agent ”Server” receives the location of customer from agent ”User”. Agent ”Data

Collector” gathers all the weather, traffic and location data from the sensors and sends

them to the agent ”Radio”. ”Radio” sends all these data to the agent ”Server”. Then,

based on these information ”Server” estimates delivery time and informs the customer

by updating web page and sending a text message (SMS).

Figure 5.2: Scenario S2 of real-time fleet management system case study

The second scenario of the real-time fleet management system S2 is shown in Figure
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5.2. This scenario considers a special case where agent ”Server” does not receive any

information about the location of the delivery vehicle. To deal with this issue, ”Server”

asks agent ”Radio” about location of the vehicle in order to accurately estimate delivery

time and inform customer.

Figure 5.3: Scenario S3 of real-time fleet management system case study

Figure 5.3 shows another scenario, S3, representing partial behaviours of the real-time

fleet management system. In this scenario, the customer intends to know an estimate

of the time it takes to receive any order. Therefore, agent ”Server” collects all the

information about weather, traffic and location from agent ”Data Collector”, estimates
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the delivery time based on them and updates the web page.

Figure 5.4: Scenario S4 of real-time fleet management system case study

In the next scenario, S4, shown in Figure 5.4, agent ”user” sends message ”Inquiry” to

inquire about the availability of a specific product and request for a rough estimate of the

delivery time. Therefore, ”Server” interacts with agent ”Selector” to find the branches

with availability and roughly estimates the minimum delivery time without considering

more detailed information such as weather and traffic data. Finally, the customer is

informed by updating the web page.

The scenarios discussed above describe a set of partial behaviours of the case study.
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These scenarios will be verified in the following sections to detect the unwanted emergent

behaviours that are not expected by the designer.

5.3 Behaviour Models

Detecting and addressing faults of a system, such as emergent behaviours, in the early

design stages result in significant savings in the design costs. Scenarios are useful tools

for describing the system behaviours and can be used to detect the possible emergent

behaviours. Considering that each scenario describes a certain part of system behaviours,

a set of scenarios is required to provide an appropriate model. Therefore, any faults

such as incompleteness or conflict in the scenarios can cause fatal errors in the system

performance.

This demonstrates the importance of designing an automatic method to deal with

these defects. In this thesis, first, the process of converting the scenarios into the cor-

responding state machines based on the definitions given in [25] is performed. These

definitions are then applied to the real-time fleet management system case study to val-

idate their effectiveness.

As proposed in [25, 27], for each sequence diagram, Finite State Machines (FSMs)

are built for any agent. Each state has two attributes: 1) The label of the state which

is shown as the state index. 2) The state value that will be discussed in the following

Definitions of this section. In Figures 5.5, 5.6, 5.7 and 5.8, the finite state machines are

modeled for the agent ”Server” of all the scenarios discussed in Section 5.2. For example,

in Figure 5.5, q0, qi, qf are the initial state, the ith state and the final state of the agent

”Server” in scenario S1, respectively. For the rest of agents in these scenarios, state

machines can be formed in a similar way.

In the next stage, a certain value is assigned to each state of the finite state machine of
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Figure 5.5: Finite state machine for agent ”Server” of scenario S1

Figure 5.6: Finite state machine for agent ”Server” of scenario S2

Figure 5.7: Finite state machine for agent ”Server” of scenario S3
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Figure 5.8: Finite state machine for agent ”Server” of scenario S4

each agent. This technique, originally proposed in [25], is performed using the definitions

presented in the following paragraphs and is effective to quantify the states.

Definition 1: If agent i needs the result of message m|i[j] for doing m|i[k], then

message m|i[j] is a semantical cause for message m|i[k] and is shown by m|i[j]
se−→ m|i[k],

where m|i[j] represents the jth message interacted by the agent i of scenario m.

The semantical causality is a feature of the system which does not change and is not

affected by the decisions of the domain expert. As an example, in Figure 5.1, the message

”Send Data” is a semantical cause for occurrence of the message ”Estimate Time”. Each

state of an agent is defined by considering the messages that are semantical causes for

the messages that come after that state. The semantical causality is resulted from the

domain knowledge and indicates that the agent needs a message to construct another

message. According to this definition, the domain theory is defined as:

Definition 2: For a set of message sequence diagrams M , the domain theory Di for

each agent i is defined as: if m|i[j]
se−→ m|i[k] , then the pair (m|i[j],m|i[k]) is in the

domain theory Di.

According to Definition 2, (”Send Data” , ”Estimate Time”) from Figure 5.1 is in

the domain theory. Having different behaviours results in producing various behaviour

models for a single agent. However, choosing between these models is impossible as they

cannot be compared. Therefore, this definition is used to define a method for quantifying

the states. In [25], it is proposed to use the invariant characteristics of the system to find

a unique way of calculating the state values. This technique is described in the following:
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Definition 3: A finite state machine for agent i in scenario m is shown with tuple

Am
i =

(
Sm,Σm, σm, qm0 , q

m
f

)
where Sm is a finite set of states, Σm is the alphabet that is

the set of all messages, σm is the transition relation, qm0 is the initial state and qmf is the

final state. In this finite state machine, for the final state qmf , the state value is calculated

as vi|(qmf ) = m|i[f − 1], and for 0 < k < f , the state value is defined as follows:

1. vi|(qmk ) = m|i[k− 1]vi|(qmj ), if there exist some j and l such that j is the maximum

index that m|i[j − 1]
se−→ m|i[l], 0 < j < k, k ≤ l < f .

2. vi|(qmk ) = m|i[k − 1] if case 1 does not hold but m|i[k − 1]
se−→ m|i[r], for some

k ≤ r < f .

3. vi|(qmk ) = 1, if none of the above cases holds.

The state value of qmk is related to message that comes before it. For case 1, the semantical

cause is m|i[j−1], 0 < j < k. For case 2, m|i[k−1] is the only semantical cause. Finally,

there is not any semantical cause for case 3. According to Definition 3, the order of

messages is utilized to achieve state values which is necessary to differentiate between

the states in scenarios. The state values that are found using Definition 3 are effective

for analysing the system behaviours. After constructing the finite state machines from

various scenarios, in order to clearly analyse the system behaviours, the state machines

for each agent are blended. Therefore, the concept of identical states is defined as:

Definition 4: For each agent i, two states qmj and qnk from two scenarios m and n

(m can be equal to n) are identical states if:

• j = k and for 0 ≤ l < j: m|i[l] = n|i[l].

or

• vi(qmj ) = vi(q
n
k ).
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Figure 5.9: Blending finite state machines for agent ”Server” of S1 and S2

In the example presented in Figure 5.9, the finite state machines of scenarios S1

and S2 are blended where the states are assigned with the appropriate state values.

Note that the values of the initial and final states are supposed to be 1. To show the

procedure of assigning state value, the value of identical state qS1,S2

6 is calculated as

vServer

(
qS1,S2

6

)
= (Send Data)× vServer

(
qS1,S2

5

)
.

The presence of identical states in the behaviour models may result in emergent

behaviour since the agent may be confused while performing the next message. Therefore,

dealing with these issues is an important challenge in analysing the behaviour models.
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Figure 5.10: Merging the identical states of finite state machines for agent ”Server” of
scenarios S1 and S2

Once the identical states are found, the finite state machines are merged. This is done

by merging the found identical states in the behaviour models. In Figure 5.9, emergent

behaviour occurs for agent ”Server” as a result of identical states qS1,S2

0 , qS1,S2

1 , qS1,S2

2 ,

qS1,S2

3 , qS1,S2

4 , qS1,S2

5 and qS1,S2

6 of scenarios S1 and S2. These identical states are then

merged in order to remedy the occurrence of emergent behaviour as shown in Figure

5.10.

According to this figure, merging identical states can detect the emergent behaviours
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Figure 5.11: Blending finite state machines for agent ”Server” of scenarios S3 and S4

in MAS designs. However, as will be discussed in the following section, not all the

identical states cause emergent behaviours and merging all the identical states is not

desired.

5.4 The Proposed Technique for Detecting Emergent Behaviour Caused

by Overgeneralization

As discussed in the previous section, having identical states may lead to the occurrence

of emergent behaviours. To address this issue, it is proposed in [25] to merge different

state machines by merging their identical states. This prevents the emergent behaviours

which happen due to the synthesis of behaviour models.

This method however requires more consideration since it merges all the identical

states without considering whether they really produce any emergent behaviours or not.

This is an important issue since merging the identical states that do not produce any

emergent behaviours results in overgeneralization in the behaviour models. Furthermore,

merging all the identical states takes too much time and memory which is unnecessary.

To better illustrate this issue, in Figure 5.11, an example is considered where the

finite state machines for the scenarios S3 and S4 are blended. The states are then as-

signed by the values found based on Definition 3 and the identical states are found



77

Figure 5.12: Merging identical states in finite state machines for agent ”Server” of sce-
narios S3 and S4

based on Definition 4. To show the procedure of assigning state value, the values

of states qS3
3 , q

S4
4 are calculated as vServer

(
qS3
3

)
= (Estimate Time) × vServer

(
qS3
1

)
and

vServer
(
qS4
4

)
= (Estimate Time) × vServer

(
qS4
1

)
. Based on these state values, in the finite

state machines of scenarios S3 and S4, shown in Figure 5.11, states qS3
3 and qS4

4 are identi-

cal states which are supposed to result in emergent behaviour according to the technique

proposed in [25]. However, when these states are identified and merged in Figure 5.12, it

can be seen that these identical states do not lead to emergent behaviours since the agent

”Server” never gets confused in performing the order of messages. Therefore, merging

such identical states is not necessary.

Since most of the existing approaches merge all of the identical states, they result in

over-generalized state machines. In this work, a set of criteria is presented to check the

identical states and identify the ones that actually result in emergent behaviours. These

criteria are defined in the following definition:

Definition 5: The agent i in scenario m has emergent behaviour in state qmj , if there

exists a scenario n (m and n can be equal) and a state qnk , such that qmj and qnk are

identical states and one of the following holds:

1. m|i[j] 6= n|i[k] = i!l(c) where l is an agent and i!l(c) represents a message with



78

content c sent from i to l.

2. m|i[j] 6= n|i[k] = i?l(c) where l is an agent and i?l(c) represents a message with

content c received by i from l. Also, agent l sends a message with content c to

agent i (l!i(c)) such that agent i does not receive this message before the event of

m|i[j] in scenario m and by removing this event, agent l can still send l!i(c).

3. State qnk is the final state of scenario n and m|i[j] = i!l(c) is a send message for

agent i.

4. Case 2 holds except that by removing the event of m|i[j] in scenario m, agent l

cannot send l!i(c) any more. Then, there exists event e and w for agent l such that

the event of m|i[j] is syntactical cause for m|l[e]. Then, two states qme−1 and qnw−1

are identical states and emergent behaviour for agent l has occurred.

Only the identical states that meet the criteria in Definition 5 result in emergent be-

haviours and should be merged. Therefore, it is unnecessary to merge the other identical

states in the scenarios. These criteria can be used in an automated algorithm which

performs synthesis of behaviour models while preventing the emergent behaviours which

occur as a result of converting the scenarios to the state machines.

To prove the effectiveness of the above criteria, the finite state machines for agent

”Server” in scenarios S3 and S4 are shown in Figure 5.11. In this example, after assigning

the state values, the identical states are found to be qS3
3 and qS4

4 . However, these states

do not lead to emergent behaviour since none of the four cases in Definition 5 holds. The

reason is that in all the cases of Definition 5, the events that come after the identical

states should be interacting messages with different contents while in this example, the

event, ”Updating Web Page”, is the same in both scenarios. Therefore, even though

these states are identical, the agent ”Server” is not confused about the next action to

take. To better illustrate this issue, the identical states are merged and the resulting
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state machines are presented in Figure 5.12. It can be seen that merging the states does

not prevent any emergent behaviour and is not necessary.

5.5 Summary

It has been reported in the literature that detecting unwanted behaviour during the design

phase is about 20 times cheaper than finding them during the deployment phase [26,70].

However, many of the existing methodologies that are utilized to analyse system require-

ments and design documents introduce a certain amount of overhead to the software

development lifecycle [42]. This chapter provides a systematic approach to analyse sys-

tem requirements for defects, while saving on overhead by providing the opportunity to

the designers for replacing ad-hoc methodologies with automated ones. In this work, af-

ter studying the shortcomings of the existing methods for detecting emergent behaviours,

a new method is developed for behaviour model synthesis and emergent behaviour detec-

tion while preventing overgeneralization. The proposed method includes a set of criteria

that enables the designer to detect and address the emergent behaviours and prevent

unnecessary actions. Therefore, it is beneficial in reducing design costs and time.
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Chapter 6

A System-Level Approach for Model-Based Verification of

Multi-Agent Systems

6.1 Introduction

A major challenge in design of Multi-Agent Systems (MASs) is predicting and avoiding

unexpected behaviours at the run time. Detecting those behaviours after the system

is implemented can be very costly and detecting them during design and implementa-

tion stages is a cost effective alternative. Therefore, model-based verification at early

design stages is an important step in designing MASs. Most of the existing verification

techniques analyse system behaviour by going from specifications to state machines that

model system behaviours. However, these methods are tailored to individual agents sep-

arately and do not consider the whole system simultaneously. Although those methods

are shown to be effective in detecting unexpected behaviour for each agent, they fail to

detect the unexpected behaviour that occurs due to the agent interactions. In this chap-

ter, a system-level approach is proposed that produces a system-level behaviour model

to analyse the system. To consider the interactions among system agents, a method is

proposed to combine the behaviour models of interacting agents. A case study, real-time

fleet management system, is presented to validate the efficiency of the proposed algo-

rithm in detecting the implied scenarios (unexpected system behaviours) for multi-agent

systems.

The rest of this chapter is organized as follows: In Section 6.2, the shortcomings

of the component-level verification of multi-agent systems is presented. The proposed

algorithm is explained in Section 6.3 for verifying MAS using a system-level approach.
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In Section 6.4, a case study is considered to describe and validate the procedure of the

proposed system-level verification algorithm. In Section 6.5, the proposed system-level

verification algorithm is applied to the case study of real-time fleet management system.

Finally, the chapter is summarized in Section 6.6.

6.2 Component-Level MAS Verification

Multi-agent systems are composed of system components, i.e.agents, and their inter-

actions. In order to represent MAS specifications, scenarios that include agents and

interaction messages among the agents are used. Message Sequence Charts (MSCs) and

Sequence Diagrams (SDs) are popular tools for demonstrating scenarios of MASs [12].

Analysing the behaviours of MASs during design phase is performed to reduce the

failures that may happen during deployment. This results in reduction of the overall

costs. In order to detect unexpected behaviours in the design phase, two approaches for

synthesis of behaviour models exist: component-level [25], and system-level approaches

[27].

In the component-level approach, the behaviour of an individual agent is analysed by

synthesizing its behaviour models from scenarios and creating state machines for each

scenario in which that agent is involved [25]. In this approach, unexpected behaviours

that may appear are usually called emergent behaviours. There are two methods to

detect emergent behaviour. The first method compares behaviour models and scenario

specifications and identifies emergent behaviours by merging identical states in different

state machines of a single agent. [25]. The second method, proposed in Chapter 5,

focuses on overgeneralization, which is a side effect of generalizing instance behaviour in

scenarios. In Chapter 5, a component-level algorithm is proposed to address the emergent

behaviours in the scenario specifications.



82

Although detecting and fixing the emergent behaviours of all the agents can poten-

tially prevent major failures of the MASs, this procedure is incomplete since the behaviour

resulted from interactions between the agents is not fully considered. There may be

some scenarios as a result of these interactions that are not part of system specifications

and cannot be detected using component-level approaches. In fact, component-level ap-

proaches can only deal with a portion of the unexpected system behaviours, i.e. emergent

behaviours, since the behaviours of the whole system are not considered simultaneously.

In order to handle this issue, system-level verification is studied. The current system-level

verification techniques always require a designer to keep track of several variables and

make final decisions [27]. Therefore, in this chapter, to verify system-level behaviours, a

system-level algorithm is proposed to deal with the interactions among agents.

In this chapter, labeled transition system is used to combine behaviour models of all

the agents in all the scenario specifications to produce a comprehensive behaviour model

of the whole system. This comprehensive behaviour model will be validated against

system’s properties and will provide feedback for correcting the system specifications,

i.e. scenarios. This will address the shortcomings of the component-level techniques that

focus on behaviour analysis of individual agents. In this chapter, an algorithm is proposed

to detect unexpected system behaviours. The proposed algorithm is then validated using

a case study of real-time fleet management system. This algorithm can also be used in an

automated framework to replace the existing ad-hoc system-level verification techniques.

6.3 A System-Level Verification Algorithm

In order to analyse if the implementations of a MAS are completely the same as the

expected system behaviours, the concept of safe realizability is defined [27]. In system-

level verification, the unexpected behaviours of the system after implementation are
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called implied scenarios that should be detected in design stage. To show that a system

is safe realizable, the non-deterministic behaviours of the agents which result in implied

scenarios should be caught. In the following, an algorithm is proposed to show whether

the system is safe realizable or not. This proposed algorithm, Algorithm SV, that consists

of four levels is presented in Figure 6.1. This algorithm addresses the shortcomings of

the existing component-level techniques in detecting implied scenarios that happen due

to the dynamic inter-agent interactions.

Algorithm SV: System-level Verification

Inputs: Scenarios, m ∈M
Output: Implied scenarios
1. Constructing concurrent automata for all agents in all scenarios m ∈M
2. Obtaining LTSi for agent i by connecting all the concurrent automata Ai

3. Connecting LTSs of pairs of interacting agents to obtain system-level
behaviour model

4. Determine the safe realizability of the system

Figure 6.1: High-level algorithm for system-level verification

The inputs to Algorithm SV are the scenarios describing the behaviour of MAS. The

algorithm outputs are the implied scenarios that are not expected behaviours and should

be considered to correct the system specifications. In Step 1 of the proposed Algorithm

SV, in order to model the behaviours of the system agents, state machines are created

for all agents in each scenario m ∈ M . Each state machine represents the behaviour of

one agent in a single scenario. Therefore, all these state machines should be executed

simultaneously to provide a realistic behaviour model. Then, a concurrent automaton is

defined as below:

Concurrent automata: Considering asynchronous message passing among agents,

a behaviour model for agent i can be described by an automaton Ai over the alphabet

Σi with the following elements:

1. A set Qi of states
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2. A transition relation δi ⊆ Qi × Σi → Qi, which includes all states qj ∈ Qi that are

accessible from states qk ∈ Qi with messages σk ∈ Σi

3. An initial state q0 ∈ Qi

4. A set Fi ⊆ Qi of accepting states

where alphabet Σi is the order of messages for agent i.

After producing state machines for all agents in all the scenarios m ∈ M , automata

Ai for a specific agent i in all the scenarios should be connected. This way, a path,

i.e. an order of states and messages, is obtained. By connecting the state machines

corresponding to several scenarios m ∈ M , an acceptable path is obtained which is a

path of states and messages that ends in a defined state or can be an infinite path.

To overcome the shortcoming of state machines in dealing with infinite paths, Labeled

Transition Systems (LTSs) [31] are developed which can deal with both finite and infinite

paths.

Labeled Transition System: Over the alphabet Σi, a Labeled Transition System

for agent i is determined as:

1. A set Qi of states

2. A transition relation δi ⊆ Qi × Σi → Qi

3. An initial state q0 ∈ Qi

4. A set Fi ⊆ Qi of accepting states which can be empty

To obtain an LTSi for agent i, in Step 2 of Algorithm SV, all the state machines of

automaton Ai are connected so that the acceptable state of Ai for scenario m is connected

to the initial state of the next scenario n with ε-transitions. These ε-transitions are state
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transitions with no content that are used to connect different state machines. The ε-

transitions indicate which states of the second state machine are potentially accessible

from the final state of the first one. Then, ε-transitions will be eliminated and the LTSi

for agent i is completely formed.

Considering that the verification cost and time are limited, it is not efficient to consider

all the paths in the LTS. Therefore, from all these paths, only paths with shortest length,

i.e. paths without any repetitive sequence of states, are considered because they have

all the information needed to detect implied scenarios. These are called basic paths [27].

Basic paths are defined as follows:

Basic paths of LTS: Considering p = q0w0q1w1 . . . wkqk as a path of LTSi for agent

i where wj is a word in alphabet Σi that represents an order of messages. Then, p is a

basic path if it ends in an acceptable state and does not go repeatedly over any loop or

the following conditions hold:

1. p does not go repeatedly over any loop

2. For all accessible states qk+1 from qk, we have qk+1 ∈ {q0, q1, . . . , qk}

3. qk−1wkqk is not repeated in p

4. p is not a part of another path in LTSi for agent i

By removing all the states from a path, an execution is achieved. Therefore, the

execution of path p = q0w0q1w1...wkqk is shown as w0w1...wk. Each LTS may contain

one or more paths and several executions. A path that is derived from another path by

repeating an order of states and messages is called a derived path and its execution is

named a derived execution.

Step 3 of Algorithm SV is modeling the interactions between the agents, i.e. obtaining

a system-level behaviour model. To model these relations and interactions, the agents
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that interact with the others by sending or receiving at least one message should be

found. In order to combine LTSi and LTSj of the two agents i, message sender, and

j, message receiver, all the paths in their LTSs are considered. Again, repeated and

derived paths can be ignored to decrease verification runtime as they are covered by the

basic paths. Then, each basic path of LTSi of agent i that sends a message to agent j

should be connected with a τ -transition to all the basic paths of LTSj. τ -transitions are

semantically equivalent to the ε-transitions but are used to connect two LTSs. Finally,

τ -transitions are removed to finalize the system-level behaviour model.

In Step 4 of Algorithm SV, to determine the safe realizability of the MAS, the results of

system implementation are checked to find the implied scenarios. Therefore, all expected

paths of the system are considered as the system language that is shown by L. In other

words, system language includes all the expected system behaviours. On the other hand,

all the paths that are achieved by connecting LTSs of the interacting agents represent

the system implementation. If the system implementation and the system language L

are exactly the same, the MAS is a safe realizable system. Otherwise, system has implied

scenarios that need to be addressed. The paths that are in system implementation but

not in the L are the culprits.

In the next section, to illustrate the procedure of the proposed algorithm and its

effectiveness, an MAS case study is presented for experimentation.

6.4 Case Study Scenarios

In order to show differences between the existing component-level approaches and the

proposed system-level algorithm for analysing system behaviours, a case study called

Real-Time Fleet Management System, devised in Chapter 4, is used. For real-time fleet

management system, there exist several different scenarios to show how agents interact
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Figure 6.2: Scenario S1 describing partial behaviours of real-time fleet management sys-
tem case study

with each other in order to obtain system goals. Three of these scenarios are considered in

this chapter for validating the proposed system-level verification algorithm. This system

is a multi-agent system since the system agents are autonomous and interactive which

take responsibility for their actions. Agents interact to obtain the system goal which is

minimizing delivery time and updating the customers.

In Figure 6.2, the first scenario, S1, is considered where agent ”Server” receives the

location of customer from agent ”User” and asks agent ”Selector” to find the nearest

branch based on customer location. Then, agent ”Radio” selects the data, i.e. weather,
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Figure 6.3: Scenario S2 describing partial behaviours of real-time fleet management sys-
tem case study

traffic and location data, that influence delivery time and sends them to ”Server”. After

estimating the exact delivery time, the customer is informed by updating web page and

sending text message.

The second scenario, S2, is presented in Figure 6.3. This scenario considers a special

case where agent ”Selector” cannot find the nearest branch in the given delivery time. To

deal with this issue, agent ”Server” should change the period of expected delivery time

in order to let the agent ”Selector” to find an available branch. Therefore, as it is seen

in Figure 6.3, once the agent ”Selector” is unable to find a branch in the given delivery
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time, agent ”Server” finds the closest time period and asks agent ”Selector” to find an

available branch in the new time period.

Figure 6.4: Scenario S3 describing partial behaviours of real-time fleet management sys-
tem case study

In Figure 6.4, the third scenario, S3, which describes partial behaviours of the real-

time fleet management system, is given. This scenario includes the same behaviours as

scenario S1 but the difference is in the order of messages. ”Radio” agent collects all the

data influencing the delivery time from ”GPS Rec.”, ”Weather Rec.” and ”Traffic Rec.”

agents. However, the difference is in the order of receiving data from these agents which

is different from the one in scenario S1 shown in Figure 6.2.
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These three scenarios describe the partial behaviours of the case study. These will be

used to demonstrate the effectiveness of the proposed system-level verification algorithm

in the following section in order to detect the implied scenarios of the system that are

considered as unwanted system behaviours.

6.5 Applying the Proposed System-Level Verification Algorithm to the

Case Study

In order to synthesize the behaviour models of the whole system, a system-level algo-

rithm, Algorithm SV, is proposed in Section 6.3 which considers the agents’ interactions

comprehensively. Following Algorithm SV, in Step 1, for all system agents, concurrent

automata are produced. Then, following Step 2, all the concurrent automata for each

Figure 6.5: LTS for agent ”Server”
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agent are connected using ε-transitions (shown by e move in Figures 6.5 and 6.6) to ob-

tain a Labeled Transition System (LTS). The LTSs for two major agents ”Server” and

”Radio” are shown in Figures 6.5 and 6.6. LTSs for the rest of the agents are developed

similarly.

Figure 6.6: LTS for agent ”Radio”

After creating LTSs for all the agents, basic paths are obtained. Then, in Figures 6.7

and 6.8, the refined LTSs for agents ”Server” and ”Radio” are presented by removing

ε-transitions, repeated states and their messages which gives the basic paths. Since these

basic paths cover all the other paths, they are enough to detect implied scenarios. This

is done by assigning state values and merging identical states. To show the procedure of

assigning state values, the value of identical state q3 for agent ”Server”, which is equal in

all the scenarios, is calculated as vServer (q3) = (Time Informing)×vServer (q1). In addition,

the value of identical state q1 for agent ”Radio”, which is equal in all the scenarios, is

calculated as vRadio (q1) = (Start & Give a location)× 1.
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Figure 6.7: Final LTS for ”Server”

Figure 6.8: Final LTS for ”Radio”
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As shown in Figures 6.7and 6.8, there are two basic paths for each LTS. In Step 3 of

the proposed Algorithm SV, to achieve system-level behaviour model, these basic paths

of LTSs of interacting agents are connected by τ -transitions. Since ”Server” agent sends

a message with the content of ”Start and Give a location” to ”Radio” agent, the basic

paths of ”Server” agent will be connected to the basic paths of ”Radio” agent using τ -

transitions (shown by T move in Figures 6.9, 6.10, 6.11 and 6.12). Since in this example,

there are two basic paths for each agent, four paths are generated by connecting the basic

paths. These connected paths are shown in Figures 6.9, 6.10, 6.11 and 6.12.

By removing the τ -transitions from the connected paths shown in Figures 6.9, 6.10,

6.11 and 6.12, four paths are obtained. These paths represent the system-level behaviour

model of the real-time fleet management system. To find out if the system is safe realiz-

able, these connected paths should be compared with the expected paths. The connected

paths shown in Figures 6.9, 6.10 and 6.11 are exactly the same as the paths that are ex-

pected by the scenario specifications described in Section 6.4.

The first path shown in Figure 6.9 is a part of scenario S1. The second path shown

in Figure 6.10 represents a part of scenario S2. Furthermore, the third path that is

presented in Figure 6.11 is a part of scenario S3. However, the fourth path presented in

Figure 6.12 is not part of any of the three scenarios specifications describing the expected

behaviours of the case study. Therefore, this path is resulted from an implied scenario

of the system since it is not expected to occur by the scenario specifications.

For better illustration, the corresponding scenario for this implied scenario is pre-

sented in Figure 6.13. As it can be seen in Figure 6.13, for ”Server” agent, the order of

messages is the same as scenario S2 but the order of the messages for ”Radio” agent is

the same as scenario S3. It should be noted that although the order of messages passed

between other agents is the same as the expected scenarios, the interactions between

agents ”Server” and ”Radio” results in an unexpected scenario. Detecting this implied
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Figure 6.9: First connected path resulting from connecting LTSs of ”Server” and ”Radio”
agents

scenario indicates that the system is not safe realizable.

The existing component-level verification techniques model the system behaviour for

a single component, i.e. agent, at a time. Therefore, they are not able to detect this

implied scenario. This is because in this implied scenario, if the agent’s behaviours are

considered individually (i.e. component-level verification), this implied scenario will be

verified to be expected behaviour by the scenario specifications. However, the interactions

between these agents produce the behaviours that are not expected by the system. These

unexpected behaviours can only be detected using a system-level approach such as the

one proposed in this thesis. Therefore, system-level verification is a major step in the

design of multi-agent systems.

The proposed algorithm is implemented automatically since there is no need for de-

signer intervention in any of its proposed steps. Thus, this method can be implemented

as a fully automated tool that gets scenarios specifications of a multi-agent system as the

inputs and verifies the system for implied scenarios.
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Figure 6.10: Second connected path resulting from connecting LTSs of ”Server” and
”Radio” agents

Figure 6.11: Third connected path resulting from connecting LTSs of ”Server” and ”Ra-
dio” agents
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Figure 6.12: Fourth connected path resulting from connecting LTSs of ”Server” and
”Radio” agents

6.6 Summary

Verification of multi-agent systems in early design stages has become more important

since it can be several times cheaper than finding the unexpected system behaviours in

the deployment phase [26,70].

In this chapter, a system-level verification algorithm is proposed that evaluates the

input system requirements and determines if the system is safe realizable, i.e. there is

no unwanted system behaviour that may occur in the implementation stage of the multi-

agent system. By performing system-level verification, the unexpected behaviours that

occur due to the interactions between system agents are detected and addressed. This

algorithm can be used in an automated syntax checker to verify the system requirements

automatically and replace the existing ad-hoc methodologies that always need the de-

signer to make major decisions. This algorithm is validated by presenting a case study

of a real-time fleet management system.
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Figure 6.13: The detected implied scenario, S4
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Chapter 7

Conclusion and Future Work

7.1 Summary and Contributions

Recently, due to the growth of demands for multi-agent systems (MASs), several design

methodologies are proposed. Detecting unexpected behaviours of the MASs in early de-

sign stages is a vital task. Unified Modeling Language (UML) is one of the methodologies

proposed for object-oriented software design. Since UML is developed to define the ob-

ject characteristics, it cannot support agents and interactions among them. Therefore,

in this thesis, to comprehensively represent the agent interactions, an extension of UML

called AUML is employed for MAS design. Considering that UML sequence diagrams

are accepted representation tools for software system verification, in this thesis, a set of

conversion rules is proposed to provide UML sequence diagrams from AUML notations.

Therefore, the UML diagrams that are converted using the proposed conversion rules

thoroughly represent the interactions among agents of MASs. In order to show the effec-

tiveness of the proposed method, an industrial case study of a real-time fleet management

system is presented.

Verification of MASs in early design stages to detect unexpected software system

behaviours is significantly cheaper than verifying them during implementation stages

[26,70]. Although there exist several techniques for synthesis of behaviour models, most

of them are ad-hoc methods that need the designers to make final decisions [42]. In

this thesis, in order to analyse the behaviours of multi-agent systems automatically,

a systematic component-level approach is proposed to catch emergent behaviours. This

method synthesizes a behaviour model for each agent of the system and detects emergent
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behaviours. This method also prevents overgeneralization by presenting a set of criteria

to catch unexpected behaviours while preventing unnecessary actions.

Some unexpected behaviours of the system, i.e. implied scenarios, may occur as a

result of interactions among agents in MASs. These unexpected behaviours are neglected

in component-level verification since it considers the behaviours of one single agent at a

time. Then, in this thesis, a system-level algorithm is proposed for providing a compre-

hensive MAS verification technique. The proposed system-level verification algorithm,

Algorithm SV, which is validated by presenting a case study of real-time fleet man-

agement system, can be used to verify the requirements of system automatically using

labeled transitions systems.

In the following, the main contributions of this thesis are presented:

• Designing of multi-agent systems using AUML.

• Proposing a set of conversion rules to produce UML sequence diagrams from AUML

notations.

• Preventing overgeneralization by developing a component-level approach.

• Applying labeled transition systems for synthesizing system-level behaviour models.

• Proposing a system-level algorithm for verification of multi-agent systems.

• Validating the proposed methods by presenting a case study of real-time fleet man-

agement system.

7.2 Future Work

The proposed method verifies MAS designs by converting AUML notations to UML

sequence diagrams based on the proposed conversion rules. The future work may be
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proposal of a MAS verification method that performs verification on AUML sequence

diagrams directly. In addition, in this thesis, a new method is developed for synthesis

of behaviour models to detect emergent behaviours while preventing overgeneralization.

The future work can be combining the proposed algorithm with a syntax checker to

provide a comprehensive automated tool. Such automated tool can be employed to

perform both verification and testing for multi-agent systems.

The proposed system-level algorithm is generic and can handle systems whose spec-

ifications are defined by AUML. There is a need to tailor the algorithm to the artifacts

produced based on certain design methodologies for MASs such as MaSE. Therefore,

the future work is performing system-level verification for the MASs that are designed

using other methodologies. Another future direction of this work is implementing all the

proposed methods in a unique tool to perform a complete procedure of MAS design and

verification.
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