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Abstract 

In an effort to overcome the distance limits of quantum key distribution (QKD), entan-

glement swapping is used as a fundamental building block in quantum relays and quan-

tum repeaters. Although entanglement swapping enables any distance to be achieved in 

principle, experimental realization suffers from imperfect sources of entangled pairs and 

detectors. 

Here, I incorporate the multi-photon nature of the source and imperfect detectors into a 

model of entanglement swapping. Specifically, I calculate the resultant entangled state 

given two parametric down conversion (PDC) sources where one mode of each PDC 

source meets at a beam splitter and is subjected to photon counting by inefficient detec-

tors. I then calculate the entanglement fidelity of this resultant state. 

In •addition, detectors used in quantum optical experiments occasionally produce dark 

counts and do not always detect incoming photons. These imperfections need to be taken 

into account when performing calculations involving such detectors. I have developed a 

thermal detector model that predicts the click probability for an inefficient detector sub-

ject to dark counts. 
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Chapter 1 

Introduction 

Long distance quantum communication technology may one day enable secure commu-

nication around the globe. Quantum relays and the entanglement swapping operations 

they employ can extend the reach of quantum optical communication toward that goal. 

This thesis is motivated by the desire to design quantum key distribution experiments for 

maximum secure key generation rate. The design of experiments must incorporate the 

imperfect photon sources and imperfect detectors available for quantum key distribution 

(QKD) deployment today. In this thesis I explore the limiting effects of imperfect sources 

and detectors on entanglement swapping. I extend a previous challenge to the security of 

quantum key distribution protocols using imperfect sources in quantum relay systems N-

1. 1 Motivation 

A number of research labs around the world are busy developing the worlds first quantum 

computers. Such computers will have the capability to factor large numbers in a short 

amount of time. Most classic cryptographic systems in use today, such as the RSA (Ron 

Rivest, Adi Shamir, and Leonard Adleman, 1977) public-key algorithm, rely on the fact 

that it is difficult for classical computers to factor large numbers. When the first quan-

tum computers come into use, or a new algorithm for factoring numbers is developed for 

classical computers, this type of cryptographic system will be broken and our transmitted 

and stored information will no longer be secure. 

The two basic types of cryptographic systems are symmetric or private key systems, 

1 



2 

and asymmetric or public key systems [2]. In symmetric key systems, such as the Ad-

vanced Encryption Standard (AES) cipher, the sender and receiver of the message are 

required to have the same key available to them. It is used for both the encryption and 

the decryption process. The main problem with this type of system is the distribution 

of the key to the two parties who wish to communicate. 

In asymmetric cryptographic algorithms such as RSA, each party has a public key and a 

private key. Messages are encrypted with the public key and decrypted with the private 

key. The public key does not need to be secret, but can be given to whomever would like 

to communicate with you. You keep your private key secret. To send a message to Bob, 

Alice finds and verifies Bob's public key, encrypts her message with it and sends it to 

Bob. Bob then uses his private key to decrypt the message. Asymmetric cryptographic 

systems are more flexible since they don't require the preliminary exchange of a secret 

key between Alice and Bob for their secret communication. However, the distribution of 

the private keys to Alice and Bob by an established public key authority remains. Asym-

metric key systems are slower and the keys are larger than in symmetric key systems [2]. 

The only provably secure cryptosystem is the Vernam cypher, or one-time pad, which is 

a symmetric key algorithm. This algorithm requires as much key material as information 

to be encrypted. The problem of distributing the symmetric key securely for such a 

system is one that quantum key distribution addresses [3]. 

We rely on secure communication in many facets of our lives, from online banking to 

trusting medical institutions with our most private information. Not only do we want 

current communication with our bank to be secure, we want our sensitive medical in-

formation to remain secure for years to come. We do not want someone who intercepts 
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encrypted information today to be able to decode it next year. The need to secure infor-

mation over many years makes quantum cryptography a desirable application to pursue 

now, in advance of a quantum computer capable of factoring numbers efficiently. 

1.2 Background 

The first applications considered for the century old field of quantum mechanics center 

around security and cryptography. In the late 1960s, Wiesner proposed a method of 

securing money from counterfeiting using the laws of quantum mechanics, specifically 

the uncertainty principle. This work, known as "Quantum Money", was not published 

until 1983 [4]. At that point it gave rise to the subsequent quantum key distribution idea 

upon which much of the current work in quantum communication is based. 

The first proposal for quantum key distribution came from Brassard and Bennett in 

1984 [5]. The protocol is known as BB84, and is based on the idea of conjugate coding 

put forth by Wiesner. BB84 is still the most widely used protocol in QKD experiments. 

In 1996, Mayers provided the first proof of the information-theoretic security of the BB84 

protocol. A further proof was provided by Lo and Chau in 1998, and a relatively simple 

proof in 2000 by Shor and Preskill [6] based on entanglement distillation seemed to satisfy 

everyone as to the security of BB84. These proofs considered the theoretic ideal of the 

protocol without consideration for the imperfections present in implementations. 

The main components of quantum key distribution are: a source of photons, single 

photons or entangled pairs of single photons, a transmission medium such as fibre or free 

space, and detectors. Each have their own imperfections, which cause the overall scheme 

to fall short of its theoretical capability in terms of the rate at which it can create secure 
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key material for secure communication. 

1.2.1 Spontaneous Parametric Down-conversion 

In 1970, Burnham and Weinberg [7] demonstrated spontaneous parametric down conver-

sion (SPDC) as a way to create an entangled photon pair. Such a pair can be used as 

a single photon source by detecting one photon of the pair, and then knowing that its 

partner was created at the same time. 

In 1991, Ekert proposed a method of secure communication based on Bell's theorem, 

utilizing the quantum mechanical fundamental property of entanglement [8]. He con-

siders a source that emits pairs of spin- particles in a singlet state (i/r)). The two 

particles fly off to Alice and Bob where they are detected by analyzers aligned randomly 

in either of two orthogonal bases. Each measurement results in a spin up or spin down 

outcome. After Alice and Bob reveal which basis they measured in and keep only those 

where they both measured in the one, they have a set of correlated bits. These bits can 

then be used as a key for symmetric key secret communication. 

Subsequently in 1992, Bennett, Brassard and Mermin proposed a protocol known as 

BBM92 [9], which uses entangled pairs of photons to allow Alice and Bob to similarly 

collect a sequence of highly correlated qubits from which they can distill a secret key. 

This is the protocol I consider in my motivation for this thesis. 

All methods currently available for photon generation, especially at the higher rates 

desirable for QKD, have a non-zero probability of creating pulses containing more than 

one photon. The possibility of a multi-photon pulse rather than a perfect single photon 
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is not only evident in attenuated laser sources such as those used for BB84, but also in 

pair sources such as parametric down conversion. Parametric down conversion (PDC) is 

achieved by pumping a laser field into a crystal with a nonlinearity [10]. Photons 

passing through the crystal can decay into a pair of identical or non-identical photons. 

Photon pairs created with the same polarization are the ones I consider. 

Multi-photon emissions from the source must be taken into account when analyzing 

entanglement swapping. When multi-photon events occur, it is possible that one of the 

two photons involved in the swap is actually from a different pair and the entangle-

ment required for a successful swap is absent altogether. This type of occurrence leads 

to errors in entanglement swapping and limits fidelity of an extended swapping operation. 

1.2.2 The problem of distance 

Photons carry information at the speed of light through free space or down a fibre optic 

cable, but they are easily absorbed and thus lost along the way. Loss of photons during 

transmission is easily accounted for with a simple factor on the transmission success 

probability 

= 10-0110 ) (1.1) 

where t is the transmission coefficient or probability of successful transmission, 1 is the 

distance traveled and /3 is the loss coefficient of the transmission medium in units of 

dB [1]. The issue then is how to extend the reach of photons as information carriers. In 

a typical fibre optic cable /3 = 0.25dB km' for 1550nm light, which gives us a range 

of less than 100km. Loss in fibre is wavelength dependent because it is due to Rayleigh 

backscattering, the scattering of light by particles much smaller than the wavelength of 

the light. For distances larger than 100km, the probability that the photon would arrive 
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at the detector becomes smaller than the probability of a dark count at that detector. 

At that point it is no longer possible to communicate as the noise of the communication 

(the dark counts) is greater than the signal. 

In 1998, Briegel et al. considered a quantum repeater based on entanglement purifi-

cation to extend the reach of entangled pairs of photons [11]. The distance to be covered 

is broken into segments and entanglement is distributed to the ends of each segment. 

Entanglement purification [12] is performed, and Bell measurements are carried out to 

swap the entanglement to the outer ends of the chain. Such a quantum repeater requires 

quantum memory to store the results of the intermediate entanglement swapping opera-

tions. 

To avoid the need for quantum memory, the idea of a quantum relay has been explored 

by a number of groups including Collins et al. in 2005 [13]. The distance to be covered 

is again broken into segments and entanglement is swapped at Bell measurement nodes 

until the two end nodes share entanglement. In the absence of quantum memory, all of 

the entanglement swapping operations must succeed at the same time. This represents a 

large scale coincidence requirement that may take many tries. Each time one of the Bell 

measurements carrying out the entangling operation fails, the entire string of operations 

must be restarted. This inefficiency reduces the number of times entanglement is success-

fully distributed to the end nodes and thus the rate at which operations can be performed 

using the entanglement as a commodity. An entanglement-based QKD protocol, such as 

BBM92 for example, can be used to distill a key between two distant endpoints without 

a single photon having to cover the entire distance. The low probability of success in a 

long relay however, limits the bit rate possible for such a scheme. 
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1.2.3 Limits of Detection 

In addition to the multi-photon nature of the probabilistic PDC sources, errors are also 

introduced into entanglement swapping by imperfect detectors. Here I study the limits 

of entanglement swapping due to detector limitations. 

Generating entanglement swapping at rates useful for quantum key distribution relies 

on fast and accurate detection of single photons. Characteristics of detectors that limit 

its usefulness for QKD are low efficiency, high dark counts, significant time jitter and 

high dead times. As well, if the detectors only operate at cryogenic temperatures, their 

use may be limited [14]. 

An ideal single photon detector would be a photon-number discriminating detector. Such 

a detector would click when a single photon is incident and it would be able to indicate 

how many photons were incident during a given detection event. In contrast, single pho-

ton detectors today click when at least one single photon strikes their detection surface. 

They cannot discriminate whether one, two or more photons hit the detector during that 

one detection window. Such detectors are referred to as threshold detectors [15]. 

Detectors are also imperfect in that sometimes a single photon will not trigger a de-

tection event. A detector's efficiency q represents the probability that it will click when 

a photon impacts it. 

An additional characteristic of a detector is its dead time, referring to the time required 

for the detector to become ready to detect again after firing. If the detector is not ready 

to receive a new photon from a previous event, it will miss detecting the current incident 

photon. The lower the dead time, the higher the repetition rate and the greater the 
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communication rate supportable by the detector [14]. Although I do not consider dead 

time in my calculations, I note that larger dead times will reduce the overall rate at which 

entanglement can be swapped between two end nodes. 

Detectors will sometimes register a click when no source photon was incident upon it. 

These events are known as dark counts and represent the noise of the detector. A de-

tector's dark count rate d represents the probability per time slot that a detector will 

register a click when no source photon struck it. It may be that a spurious photon (a 

photon that enters the detector but was not an intended signal photon) triggered the 

event, or it may be that an echo cascade occurred in the detector from a previous event. 

In either case, such a detection count is erroneous from the point of view of counting 

only photons incident from the source. In this thesis I develop a model for a detector 

that incorporates dark counts. I do not utilize this model in the entanglement swapping 

calculations that follow. 

For use with time sensitive applications such as entanglement swapping, a detector must 

also have a small time jitter [14]. Time jitter refers to the time it takes for the detector to 

signal a click after receiving a photon. This time difference must be as small as possible 

to accurately coordinate expected and actual arrival times of photons. I do not consider 

time jitter in my calculations. 

Avalanche photodiodes (APD) are semiconductor-based photon detectors that can ef-

ficiently detect single photons at close-to-room temperature and are thus a good choice 

for QKD [14]. They use a strong electric field to accelerate the electrons flowing in the 

semiconductor. Different semiconductor material is used for detecting different wave-

lengths to optimize this effect. When a single photon hits the detector, an avalanche of 
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electrons is generated that readily triggers a signal or "click", indicating the arrival of 

the photon. 

A popular detector in experiments today is an InGaAs (Indium Gallium Arsenide) 

avalanche photo-diode (APD) [16]. This detector operates well for 1550nm light, which 

is the standard for fibre optic cable transmission. It has around 10% efficiency q, a 10 

probability of a dark count per nanosecond gate, a 10MHz repetition rate and 500ps 

jitter [17]. I consider this kind of detector in my calculations. 

1.3 Summary 

Motivated by the desire for long distance quantum communication, I consider the neces-

sary components of sources of entanglement, detectors and entanglement swapping op-

erations. The imperfect devices we have available for experimentation today will reduce 

the fidelity of entanglement between the end nodes of a quantum relay. I focus on the 

entanglement swapping operation in this thesis. However, I first present a detector model 

that enables the determination of dark count probability for an arbitrary coherent source. 



Chapter 2 

Detector Model 

The InGaAs APD detectors currently used in experiments are threshold detectors. This 

means that they indicate a photon detection if one or more photons impact the detection 

area. The detector cannot distinguish between one, two or more photons striking its 

detection surface. Additionally, the detector has an efficiency in that it does not always 

click when a photon impacts the detection area. This efficiency can be measured exper-

imentally and associated with the detector in subsequent calculations. 

Current APDs also exhibit dark counts, which are detection events that were not trig-

gered by incoming source photons. The dark count probability or background rate of a 

detector can be measured before that detector is incorporated into an experiment so that 

the effect of these events can be taken into account. Such characterization has to be per-

formed on every detector employed in the experiment for accurate overall compensation 

of the effect. 

Here I model such an imperfect detector by adding a beam splitter in front of a the-

oretical perfect detector. This beam splitter causes the interference of the coherent input 

signal state with a thermal state, representing the dark counts and the random errors 

that occur. The detection probabilities produced by this theoretical model of an imper-

fect detector agree with those derived from an experimentally motivated model while 

providing a useful generalization. 

10 
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2.1 Experimentally Motivated Detector Model 

I begin by developing an experimentally motivated model of a detector by logical progres-

sion of detection considerations. This model forms a comparison point for my subsequent 

thermal detector model for the pulsed coherent source used to construct it. 

The probability that no click is registered due to n photons incident on a detector with 

efficiency 77 is given by (1 - The probability of a click due to n photons is then given 

by 

p= 1— (1—i). (2.1) 

If we consider the possibility of dark counts, then the experimentally motivated proba-

bility to get a click, given n photons are incident on the detector, is 

PB Pn(l - d)+(1—p)d+pd 

=p(1—d)+d, 

where d is the probability of a dark count. 

(2.2) 

The number of photons per pulse from a chopped continuous wave laser is given by 

the Poisson distribution [18]. If the mean number of photons in the source distribution 

is ?&9 the probability to get a click in the detector due to source photons or dark counts 
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is given by 

_(1_ii)(1_d)+d) 

';fl \ 

(1—)(1—d) n! )-\ + e_no 

—e 

00 

n=O 

- 

00 fl ) 00 / .fl\ 

-I' 
. ri!1 

n=O \ / 

00 

=e-=e'-'A'8088 - eTh° E ((1 -  ,)nE)  + e 8d2 ((1 - 

\ n! 

n=O 
00 

=1+(d— 1)e ((1 _)n) 
n=O 

=1 + (d - 

=1 + (d - 1)e. 

Let us now see how this expression differs in the thermal detector model. 

2.2 Thermal Detector Model 

(2.3) 

I now develop a model for imperfect detectors that incorporates multi-photon pulses 

from the source and dark count contributions based on a thermal distribution of photons. 

Other derivations of similar models are explored in [19] and [20]. Although the derivation 

is different, the models are the same in that they use a thermal mode to represent the 

dark counts of the detector. 

To develop the model, I begin by determining the detector efficiency 77 . Blocking the 

thermal mode (mode b) and sending exactly one photon into the input mode (mode a) 
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- Thermal state, providing the 
dark count probabilities. 

/ 
Absorption 

Perfect 
Detector 

Beamsplitter with 
transmittance r 

Figure 2.1: Imperfect detector (D) with efficiency j and dark counts provided by the 
thermal state at mode b. The input state I is inserted at mode a. The perfect detector 
is a unit efficiency photo-detector. 

will allow this determination: 

I1)alO)b = âtivac) (2.4) 

The beam splitter represents a linear optical transformation of the input state given by 

the matrix [21]: 

B = 
cos 0 eiO sin 0 

sin 0 cos 0 
(2.5) 

Here, Cos  0 represents the probability of transmittance and sin  0 represents the prob-

ability of reflection at the beam splitter. Setting the transmission of the beam splitter 

to be i and disregarding the phase induced on reflection (since the photons are detected 

right away and this phase will be lost) we have: 

B = (2.6) 
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and 

Bt= —1— 
(2.7) 

Thus the beam splitter transforms the raising operators and likewise the lowering oper-

ators as 

(2.8) 
bt) 

The single photon input state with the thermal mode blocked off is then modified by the 

beam splitter as 

11)alO)b =&tlO) 

= (V?—Ialt - \/1 qt) 0) 

=V'I1)aI0)b - \/TI0)aI1)b. (2.9) 

With probability 77 the single source-photon is detected, giving 77 as the detection effi-

ciency. The state resulting from the incidence of a single signal-photon and no thermal-

mode photons is 

/I1)I0) + VI - 7710) 11). (2.10) 

The probability of a detection event with our non-counting perfect detector in the model 

is then 

Pdct = 

00 

ii=1 

InXml 01 P 'q-11)10) + V'l - I0)l1)) 

= I! v/I1)I0) 112 

=11. 

2 

(2.11) 

As a second step in developing the model I block the input mode to determine the 
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background or dark count rate. The thermal state can be written as [21] 

00 

where 

PT = (1— q) 
n=O 

qfl flfl, (2.12) 

q=e kBT (2.13) 

Here T and likewise q represent a non-physical temperature that reflects the strength 

of the thermal source and incorporates all the possible sources of dark counts for the 

detector. The prefactor of (1 - q) is required since PT is a density matrix and as such 

must have a unit trace. 

Note that writing the thermal state as a combination of In)(nI terms gives the impres-

sion that I have photon-number resolving detectors. I proceed in this way for now and 

then project down to a two-dimensional space representing a click/no-click detector as 

{IO)(Ol, >I In)(nl} later. Recalling that 
tn 

In) = 

the thermal state can be written as 

PT =(1 - q) 
00 

n=O 

btn \/;T > 01 

=(1— q) \' ¶ (tIo)(oIn) 
L..j m! ' 
n= 

(2.14) 

(2.15) 
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The overall state prior to interaction with the beam splitter including vacuum from the 

source mode and the thermal state is then: 

P10)a(OI®PT 
00 

=(1 - q) (tn10 O)a,b(0, 01 bn  
n=O 

=(1 - q) (10, O)a,ô(O, 01 + q (btio, O)a,b(O, oi) 

+ç (bt2 10, 0) a,b (0, 01b2) +o(q3)) . (2.16) 

Transforming the operators according to Eq. (2.8) results in: 

P, =(1— q)(IO,0)a/,bF(0,0I 

+ q(\/1— halt + v' tt) 10, 0)a',b'(O, 01 (s/i - ha' +  

+  +  10, 0)al,b'(O,Ol (s/i - ha' + 

+ Q(q3)) 

=(1— q)(I0,0)aI,b(0,0I 

+ q (,\/I - halt + git) 0, 0)a/,b' (0,01 (V, - 77ã1 + 

+ ((I - ?7) 't2 +nb,t2 + 2i(1 - ii)â't't) 10, 0)a/,b' (0,01 

((1 _h)a12 +h212 +2\/h(1 — h)â'') 

±Q(q3)) 

=(1 - q) (lo, 0).',b'(0, 01 

+ q((1 - h)ll 0)a',b'(l, 01 + 97 10, 1)a',b'(O, 11 

+ \,/77(1-77)11,0)a/,b'(O,lI + \/?7(177)10,1)a/,b'(l,Ol) 

+ q2 (2 (1 - 77)2 12, 0)al,b'(2, 01 + 277210, 2)a/,b'(0, 21 + 277(1 -77)11) 1)a',b'(l, ii) 

+O(q3)). (2.17) 
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Tracing over the b mode, I project onto the state with no photons in the a mode to 

determine the probability of a dark count. I find that the probability of zero dark counts 

is (1 - q) (1 + qr + (q)2 + (q)3 + (qi)4 + 0(q5)). Recognizing the geometric series, the 

probability of zero dark counts is Thus, the probability of a dark count predicted 

by the thermal detector model is given by 

d= (1—'ii)q  
1— qi 

(2.18) 

Checking some limits of the dark count probability shows that when = 1, the prob-

ability of a dark count is zero as expected. As the strength of the thermal mode goes 

to infinity, q goes to . one, and the probability of a dark count goes to one. Any dark 

count probability can be modeled for any detector efficiency between zero and one by 

choosing an appropriate thermal mode strength as shown in (Fig. 2.2). 

d 

71=0.9 

71=0.99 

Figure 2.2: The probability of a dark count d for various detector efficiencies 7] over the 
full range in intensity of the thermal mode q. 

It is important to remember that the thermal temperature and likewise q in the model 

are not related to a physical temperature. Since the thermal mode is made to arrive at 

the ideal detector via the beam splitter, the usual intuition that higher thermal radiation 

would lead to more dark counts does not hold. The message depicted in (Fig. 2.2) is 

that the model works for any detector efficiency and any dark count probability. 
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The third step in developing the thermal detector model is to use a coherent state 

XTS ) ( XTS 

d2/3 e 1 hITT 

JOT  IflXflI 

/ 
n 

nT 

M 

Figure 2.3: Imperfect detector with efficiency 77, a coherent state input and dark counts 
provided by the thermal mode. The perfect detector has m photons incident on it, and 
n photons are absorbed or lost. 

as the input mode similar to what is being used in experiments (Fig. 2.3). A general co-

herent state is given by a) = IIaIe), I set the phase to zero and set jal = \/, where 

ñ5 is the mean photon number of the source. The input state going into the detector is 

then assumed to be given by 

Pi. = k/)WI ®PT• 

A beam splitter transforms coherent states as 

U3Ia)a®I/3)b =Ice osO+/35m0)a®I—asin0+/3c050)b, 

(2.19) 

(2.20) 
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where a is as defined above, and 3 is as defined in PT. The output state following the 

beam splitter then becomes 

Pout UBPinU 

= f L n \W ir fit 

= fde FF 
J 'ir ñ 

(2.21) 

The resulting probability of m photons contributing to a detection event and n photons 

being lost is given by 

P.n =(m, n'lpoutjm, n) 

—J 
td23e fit 

=(m,nl I - - I\/+ v'(' — )i+ /(' — I 
J ir t 

I - %/(i— )n + /8X—v'(1— n) n, + m, n) 
-LgJ I ?It =  (mI\/+ \/(1—),8)(\/+ \/(1— 77) 8Im) 

(nj - \/(1 - )n8 + /fi)(—/(1 - )n8 + //3l) 

2 Ii, 1,61ne  j 
d/3e nim!n! ir ilt 

The last expression follows since 

and 

giving 

  2m  12n 

— /(1— 

R/) - 

00 ()m 

=e2 

M= 

00 

(/I=e 2 L.  ';;j (nI, 
n= 

(mI\/)=e2   

(2.22) 
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and 

(nI\/) = ed' (')  

Disregarding the lost photons for the time being, I calculate the probability of m photons 

incident on the perfect detector of the model by tracing over all the lost photons. 

00 

Pm = E P. 

2n 

fd_/3e IiI 

m!J 'it fit 

2 e_ td/3'e t 

2 

n!  

\/+  'ii)/9 exp - - 7l)u2]. (2.23) 

The probability of a detection event or "click" in the detector is then given by 

PT=1PO 

C_Z3 f I\/+   (2.24) 
M=1 m! 

Recalling that °° 1 m! = ex - 1, I have m=  

e f /! n  e  
t . 'it 

I3I2+Iv8_\/(1_?1)fj2+Iv1+vT,3I2 - e_! II2+I8_/(1_?7)i 2) 

t I 
(2.25) 

PT 

Now considering that 

- (i - )n2 = (,/n so. - (i - )n5) (Vn,8 - (1 - Is) 

=I/3I2 -   
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I have 

klv — \/(i77)fl 2 + _  = jjs +ii. 

Substituting this back into Eq. (2.24) and recalling that (3 +,8*) = 2Re/3, I have 

e_ñs I d 
PT =  t  (e_11P12+ns+112 - fit 

?r nt 

6—ñs (ens ! d2/3 = fit  üt . _II2+7iIPI2_2\/?1(1_??)nsReC(1_7)ns)) 
—e —e 7r 

1 d2/3 _i2!. e ñ5 P d2/3 tIpI2+IpI2_2VI(1_)nsRe$ tf it —e (2.26) 

Recalling that /3 = /3r + i0i so that 1/312 = (/3r + i/31) (6, - i,6) = /3? +,6i2, the first integral 

can be written as 

Now 

! [00 •LA 2 2 F-00 e- c. 
fit J-00 \/F  \/F 

ax2 J P00 (n—i)!! 6-xdx - n 4/ — , n even 
o 211 a ya 

(2 n+1(n — 1))! 
- ,n odd. 

ha 2 

Here we have Xn = 1 so n = 0 and a so that 

d213r .2 
e At =  

2/F 

and the first integral above becomes 

(227) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

Returning to my expression for the probability of a click using the thermal detector model 
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I have 

PT =1 nt e — 71ns &/3 e - !.i I9I2+?lIf3i2_2\/,l(1_?l)nsRe/3 
  — 
nt f  7r  

00  
=1 n t e_flñ8 df3 f°° d131 _?+P?)+?l(?+/3?)2\/?l(1l)ñsr —e 

—00 77 77—r 

,7fj. foo d/31 +7'612 . (2.32) Or p+8_27(1ij) spr  e n 

Looking at the second integral, I note that it is a gaussian with Xn = 1 so n = 0: 

JO °° e _ax2 dx  = 

The second integral above then becomes 

(2.33) 

I00 d131 e nt ')' 2  Y ir 
00 1+fh  77 nt 

Returning to the first integral above: 

1 

\/fltfl) 

= '1+ fit - ñt77 

1  
(2.34) 

I00 diflr !Ø+712\/?1(1_fl)ñs/r = 
° d/9r 

—00 f. V, t 

Then since 

_ax2+bxd 
—00 

71 b2 
_e4a 
a 

(2.35) 

(2.36) 
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with a= 
nt 

-  77  and b = —2\,/(1 - j),Tt the last integral becomes 

1 ir b2 
= 

a 
 exp [477 (1_i)s]  n—--- ) L k - 

Ft 1+fit ) - 

The probability of a click for the thermal model detector is then given by: 

e 1+(1- 71)fit 

PT=1 

e.  fit 

=1 

C_17Th8 

(2.37) 

(2.38) 

I now compare this click probability to that produced by the experimentally motivated 

model as given in Eq. (2.3). The mean photon number in the thermal mode is given by: 

-h 
Then, since q = q = 

PT=l 
1+(1—)ñ 

=1_e8 (1—q  \ 
,/ exP   

— 77q 1— q 

1 
= 

nt t = and recalling that d =   
1—q' 

- - 

e1+(1_n)nts Ijfls 

(2.39) 

(2.40) 

Expressing PT in terms of dark count probabilities rather than thermal mode intensity 

for direct comparison with Eq. (2.3) gives: 

PT = 1 + (d - 
(2.41) 
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To compare the click probabilities predicted by the two models for the full range of dark 

counts, fixed detector efficiencies and source mode intensities, refer to Figs. 2.4, 2.5, 

2.6, and 2.7. The two models differ most notably for large detector efficiencies and large 

signal mode intensity. For reasonable experimental values of fL5 = 0.24, d = 10 and 

77 = 0.1 [22], they have click probabilities within 0.001% of each other. This deviation 

is much less than the detector inefficiency of 90%. 

ij-s=1 
1 

0.9 

0.8 

P0.7 

0.6 
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0 0.2 0.4 0.6 

d 
0.8 I 

Figure 2.4: Click probabilities P for the experimentally motivated model PE and the 
thermal model PT for dark count probabilities d, detector efficiency 77, and mean number 
of photons in the source mode ñ. 

2.3 Summary 

The thermal detector model developed in this section provides a simplification to models 

that include separate loss and dark count modes. By combining photon loss and detector 

efficiency on the beam splitter, we have created a simpler model than one which treats 

those modes separately. This model allows for simpler calculation with fewer modes at 
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Figure 2.5: Click probabilities P for the experimentally motivated model PE and the 
thermal model PT for dark count probabilities d, detector efficiency q, and mean number 
of photons in the source mode ü. 

very small cost to accuracy. In comparing the click probability predictions of this model 

with an experimentally motivated one, I find that deviation becomes significant as the 

detector efficiency and the source strength increase. Agreement between the two models 

is within 0.001% at the efficiencies and source strengths in use today. This is a very small 

component of overall errors and inefficiencies of quantum detectors. 

In this section I have described a simple framework for predicting detector clicks for 

various input distributions, while taking the multi-photon nature of imperfect signal 

sources and dark counts into consideration. Detector performance is a fundamental as-

pect of any quantum communication operation including entanglement swapping. 
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Figure 2.6: Click probabilities P for the experimentally motivated model FE and the 
thermal model PT for dark count probabilities d, detector efficiency 77, and mean number 
of photons in the source mode ft. . 
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Figure 2.7: Click probabilities P for the experimentally motivated model PE and the 
thermal model PT for dark count probabilities d, detector efficiency q, and mean number 
of photons in the source mode ñ. 



Chapter 3 

Entanglement Swapping With Perfect Two-Photon Sources 

Ideal entanglement swapping would have ideal photon-pair sources as inputs, as well as 

ideal Bell measurements. Although such ideal components are not available, I calculate 

the resultant state of an entanglement swapping operation resulting from perfect para-

metric down conversion sources and perfect detectors in this chapter. This exploration 

of the ideal case will allow me then to consider the effects of imperfections in the next 

chapter. 

In order to overcome the distance limits of quantun key distribution (QKD), entangle-

ment swapping [23] is used as a fundamental building block in creating quantum relays 

and quantum repeaters. Entanglement swapping allows us to entangle two modes at any 

distance in principle. Imperfections in all aspects of the system are what limit achievable 

distance between entangled modes using this method. 

Physically separated, Alice and Bob can distill a shared secret key from a successful 

entanglement swapping operation. They do this by randomly choosing one of two pub-

licly agreed upon non-orthogonal bases to measure any incoming photons, and publicly 

announcing their basis choice. When they choose the same basis for measurement, they 

will have perfectly correlated values in their measured sequence, provided the photons 

emitted by the sources were perfectly correlated. The values obtained when different 

bases were chosen are simply discarded. The sequence of measurement results remaining 

following additional compression for privacy amplification forms their shared key. The 

complete protocol is known as BBM92 [9]. 

27 
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Figure 3.1: Entanglement swapping with two parametric down conversion sources 
(PDCs). One mode of each entangled pair source meets at a balanced beam splitter 
(B). Its outputs denoted by c' and b' are directed to polarizing beam splitters (PBS) and 
then detected at four detectors: one for the H and one for the V polarizations of each of 
the c' and b' modes. The readout of the detectors is denoted (qrst) with q the number 
of photons detected in mode c, r the number of photons detected in mode c, s the 
number of photons detected in mode b' and t the number of photons detected in mode 
b. The ordering of modes in qrst is dictated by the behavior of the polarizing beam 
splitter, which allows the horizontal polarization to transmit and reflects the vertical 
polarization. 

3.1 Ideal Source Entanglement Swap 

A maximally entangled pair of photons can be represented by a Bell state [3]: 

100+111)  
(3.1) 

The two opposing states 0) and Ii) could equally be represented by horizontal or vertical 

polarization in a given spatial mode 

•72 (6A+ atdii) jo). (3.2) 

Given two ideal parametric down conversion sources that produce perfectly entangled 

pairs, with exactly one photon in each mode of the pair, the resultant state in four 

modes would be 

I1d1) = 1 (a, + at,,) 10) ® (ad + 4d) 0). (3.3) 
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A beam splitter produces operator conversions as [3] 

and 

( t\ ( 
bH I 1 

CH) 1 1 

/ bt 

A/t at ) 
bt I b 

at _ It ,., t I 
H ) \/ 11) \ CH ) 

(3.4) 

(3.5) 

By interaction of the b and c modes on the beam splitter(Fig. 3), the state of the system 

is transformed as 

Iid2) 

+ âtod - 4â4d - - atod - at )2) o. 

1 1 
(at (Ut - + at (4t - a) 1072 "72= ) 

7'2= (7'2= 
722 V+6v 

= (ahb/Ht - aa + 44 - ato) Io 

+ + + ôdi) o) 
(at (•t)2 d + aodi, + a44 + - âuid 

- a (6,t _ - + + at ()2 

(3.6) 

I now project this state onto the subspaces corresponding to the different possible suc-

cessful Bell state measurements. A successful entanglement swap represents the transfer 

of entanglement from between the a and b modes and the c and d modes to the a and d 

modes, with the photons in the b and c modes destroyed by detection. The resulting state 
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present in the a and d modes is one of the maximally entangled Bell states as follows: 

(0Iôâl'jd2) = (—&td_Vt- atdl) Io 

= —  IW) 

(0ICHbrIWjd2) = (—a' + âtd) 10) 

(0IC /bIWjd2) = (atci - at dl) io 

=I -) 

(0l44dWid2) = (ax, 

4 

+atd) 10 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

A four-fold coincidence is required to prove a successful entanglement swap: two specific 

detectors in the b' and c' modes and one in each of the a and d modes (Fig. 3.1). By 

causing interference of the middle two modes of this four photon state on a beam splitter, 

we are able to transfer entanglement to the outermost photons in the chain, thereby 

creating a quantum relay. Such a quantum relay can extend the distance at which two 

photons can be entangled. Given that we require photons to be entangled at large 

distances in order to perform quantum key distribution utilizing the BBM92 protocol at 

large distances, we can see how this relay will be useful. 

3.2 Summary 

An ideal quantum relay is composed of ideal parametric down conversion sources, ideal 

beam splitters and ideal detectors. With these components, entanglement can theoret-

ically be perfectly transferred to the endmost nodes of a relay configuration allowing 
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PDc PDc 

Figure 3.2: The full entanglement swapping operation shows a Bell measurement on 
modes b' and c' followed by detection of the a and d modes. The polarization rotators 
(PR) allow for the observation of certain four-fold coincidences for different rotation 
angles. The four-fold coincidence rates in turn determine the visibility and hence the 
fidelity of the entanglement swapping operation. 

subsequent quantum communication operations to be implemented with perfect entan-

glement as a resource. Optical Bell state measurements can distinguish half of the Bell 

states, so that they have an efficiency of 50% maximum. In addition, we must deal with 

a number of imperfections, which I consider in the next chapter. 



Chapter 4 

Entanglement Swapping With Imperfect Two Photon Sources 

Since ideal sources and detectors are not available for experiment, the entanglement 

swapping operation presented in the previous chapter must be modified to take into ac-

count various imperfections. In this chapter I consider imperfection in the source and the 

detector. I calculate the resultant state of an entanglement swapping operation resulting 

from parametric down conversion sources and detectors that are inefficient, but without 

taking dark counts into consideration. 

Where two entangled pair sources are required to work together such as in the entangle-

ment swapping operation the added issue of timing needs to be considered. Since the two 

photons that meet at the beam splitter for the Bell state measurement must intethct, 

they must arrive at the same time. Such precise timing for the pump lasers is a challenge 

when the sources are separated by significant distance. I will not consider this issue in 

this thesis. 

4.1 Multi-photon Sources 

Experimental realization is very different from theoretical models of quantum relays [13] 

due to imperfect sources of entangled pairs. Rather than assuming ideal single and single-

pair photon sources, I model the sources as distributions in agreement with their faint 

pulse or parametric down conversion origins. 

32 
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In PDC a x'2 non-linear crystal is pumped by a strong laser and photons passing through 
the crystal emerge as two down-converted photons with some probability. As shown 

in [24], the PDC process can be described mathematically by 

T('y)Ivac) = exp (4 + vac). (4.1) 

Each pump-field photon can decay into a pair of of entangled photons. If two PDC crys-

tals are combined with their axes orthogonal to each other, then polarization-entangled 

pairs are generated: 

l) = etv') 0). (4.2) 

The parameter x2 can be viewed as the brightness of the source as larger values of x2 

result in more photon pairs being created. I shall refer to x as the source efficiency. 

For entanglement swapping we require two PDC sources. The state prepared by two 

PDC sources configured to produce polarization-entangled pairs with efficiency x is given 

as 

Wi) = ctx bt \b X(Ôdi.i+aii4i) 0). (4.3) 

I approximate the exponentials using their series expansions so that each of the four 

terms of 1W1) expands as 

1+ SX (a + aHbH) - (a + aHbH) +. 

The next step is to normally order the operators with the following rules. 

âât = 1 + âa 

(atlbtl + aHbH) = H H + 1 + atHaH + b.IbH + 4 IaH14.IbH 

(4.4) 

(4.5) 

(4.6) 

The last three terms in this last equation have no effect on the vacuum state and simi-

larly for other expansions so that we are left with each of the four exponentials of 'Fi) 
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represented as follows: 

= 1 + 

—ç(a+i) 

- -- (at3 bt3 + 5à  b) 

+ (&t'bt' + 14â +5) 

+ (&t5btl + 30â + 61â) 

- (at6bt6 +55a+331a+61) 

(4.7) 

Combining the b and c modes on a 50 : 50 beam splitter translates the modes as 

- 

UH - 

- vv - 

'1 - 

CH - 

- 
- 

Passing the input state T, through the beam splitter while considering the raising op-

erator rule àt 0) = !In), I then collect terms for each detector event. The resultant 
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state can be written as 

1W2) = (i - 2X2 + 7X 4 X6 + O(X8) 
3 45 ) 10 

I / '73 
+ ix â—+ 15 +O(x7))a 

2 4 4 
- x - x + + O(XI)) d) 0) 

(4.8) 

At this point I am assuming I have photon counting detectors that can determine the 

number of photons causing the detection event. Detecting the four modes that have 

interacted at the beam splitter, we get a four-tuple of integers representing the number 

of photons detected at each of the four detectors. Given an actual detector readout 

(qrst), I infer what an ideal four-tuple of detectors would have yielded. An ideal set 

of detectors would have yielded a readout of (ijkl) with probability P(ijklqrst), given 

an actual detector readout of (qrst). Given an ideal readout of (ijkl), I calculate the 

resultant pure state jjjk1) by a projection measurement on 

''ijkl) -  (liikl)b'c'(iikll ® had) 1W2)  
- 11 (liikl)b'c'(iikll 0 lad) 1W2) 11 

(4.9) 
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The resultant mixed state given the readout (qrst) at the inefficient detectors is 

Pqr8t = P(ijkl qr.st) I fijki) ('7?ijkt I. (4.10) 
ijkl 

Given the actual detector readout (qrst), I sum over all the ideal four-tuple detector 

combinations and their probabilities, that could have resulted in the actual measurement. 

The quantities I need are the P(ijklqrst) and I can infer these values using Bayes' 

Rule, which allows us to compute "backward probabilities" P(xly) given the "forward 

probabilities" P(ylx) as [25] 

- P(x)P(ylx)  
P(xly)— P(y) 

In this case I have 

(4.11) 

P(ijklqr.st) = P(qrstlijkl)P(ijkl)  (4.12) 
i'j'k'1' P(qrsti'j'k'l') P(i'j'k'l') 

Here P(i'j'k'l') = 11  (Ii'j'k'l')bc'(i'j'k'l'I ® lad) 02) 112 and the P(ijkl) are the perfect 

detection probabilities. For example, utilizing mathematica, the perfect detection prob-

ability for modes c and b' is 

P(1010) =11 (I 1010)b'c'(101OI 0 lad) I2)II2 

- 16 6 768 + O()9. (4.13) 

For the P(qrstijk1) values, I note that since the detectors are all independent of each 

other, I can write 

P(qrstijkl) = P(qi)P(rj)P(sk)P(tl). (4.14) 
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Since the photon is either detected or not, each of the individual probabilities in P(qrstijkl) 

can be obtained from the Bernoulli distribution [21] 

(rn)(1 - )mThP(m). (4.15) 

Here P(m) is the probability that m photons were incident, n is the number of photons 

detected, and m is the number of photons in the incoming mode. In my case, I have for 

example 

P(qi) = q!(i — q)j (1 - 
(4.16) 

This is the probability that an imperfect detector with efficiencyq would detect q pho-

tons, given that a perfect detector would detect i, or that i photons were incoming. 

I work within a truncated space such that for a PDC source of efficiency x probabilities 

of °(x7) and higher are ignored. This space is large enough to allow me to predict failures 

in entanglement swapping due to multi-photon events. The largest probability of such 

an event occurring is °(x6). 

The state often post-selected in entangled state selection experiments is the singlet state, 

so I examine it here. As we saw in Chapter three, this state would result from a single 

photon detection event in each of modes c'H and b' or vice versa. Recalling the naming 

convention for qrst, this represents a sequence of 1010 or 0101: 

Pioio = 
ijkt 

P(ijkll 1010) Vkjjkj) ('1'ijkll. (4.17) 

The possible values for ijkl in a successful swap (requires at least two photons), if I 

allow for loss but not dark counts and limit the overall state in the four modes to three 

photons, are (1010), (1011), (1110), (2010), and (1020). I must sum over these possible 

states, weighted by the probability of their occurrence, to arrive at the mixed state 



38 

resulting from the 1010 detection at the beam splitter: 

P1010 = .P(ijkll 1010) I1'ijk1) (IijkiI 
ijkl 

=P(1010I1010)I io1o)( 1010I 

+ P(1011I1010)I 1oj1 )( 1o11I 

+ P(1110l1010)I( llol)(I iiiol 

+ P(2010l1010)I 2oo1 )( 2o1oI 

+ P(1020l101o)l ioo2)( 1o2oI + O( 7). (4.18) 

Given my previously calculated conditional probabilities for these possibilities and my 

sixth order approximation, the un-normalized states remaining in modes a and d are 

( x2 
Iioio)un = (- - +  45 

916 + O(x8)) 11100 

+ (—e 916 
+ 1 + O(x8)) Iolo1 

+ (x2 91 6 ------+ 45 +O(x8))I1010) 
2 3  

+ (_c + 91 + O(x8)) 10011. 
3 45 

Here the subscript "un" Indicates that this is as yet an un-normalized state. Normaliza-

tion must be maintained in the quantum state over these optical processes. 

i2 =2 

+2 

  o(x 8) 

23 45 

_ç+4x4 91X60(S) 3 45 
2 

4 l6) 
= 6 76 8 2912'° 331124'2 + O('4) (4.20) 

+ 5 135 + 2025 
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This gives us a normalization factor for the Iioo) state of the square root of the last 

expression as 

III)II = x2 -  8X 4  + 1826 + O('3), (4.21) 
45 

resulting in 

I ioio) = 

(4.22) 

Two of these terms are due to two photon pairs emanating from one source and none 

from the other. I have to post-select this situation out as it would not lead to a suc-

cessful entanglement swap even with ideal sources and detectors. This post-section is 

accomplished by projecting onto a subspace corresponding to the situation where there 

is at least one photon in each of modes a and d. After re-normalizing again I have the 

final state for this component of Piolo up to the eighth order in x 

I'1)1010) ((D10101 = —10101)(01011 + —11010)(10101. (4.23) 

Once all five of these relevant states are summed, I have the final expression for the state 

shared in modes a and d following the detection of modes b' and c'. Prior to post-selection, 
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the full state is as follows: 

P1010 = P(1010 411010) (11100)(11001 + 10101)(01011 + 11010)(10101 + 10011)(00111) 

+ P(bohhlbobo) (I2100)(21001 + I0102) (0102l + !2010)(20101 + 10012) (00121) 
4 

+ P( 111011010) (1 1200) (12001 + I0201X0201I + 11020)(10201 + 10021) (00211) 
4 

+ P(201011010) [1 (11101) (11011 + I1011) (1011I) 

+ (2100)(2100I + 10102)(01021 + 2010) (20101 + 10012) (0012 

+ P(102011010) (IlilO)(il101 + 0111) (01111) 

+ (I 1200) (1200I + I0201X0201I + 11020)(10201 + 10021) (0021D] 

+ O( 7). (4.24) 

I confirm the accuracy of these calculations by verifying that the resultant state is a 

density operator. It must be non-negative and have a trace of 1. The state is non-

negative by inspection and 

Tr(P1010) = 1 - O( 7). (4.25) 

Thus I have calculated the resultant entangled state given two parametric down con-

version (PDC) sources, where one mode of each PDC meets at a beam splitter and is 

subjected to photon counting by inefficient detectors. This state contains terms that do 

not have photons in both the a and d modes and that would clearly not result in an 

entangled state. To continue, I must post-select on getting detection in both the a and 

d modes. To see why this is necessary, I can consider the fidelity between an ideal single 

photon-pair entangled source and the l'1) state. 

I) (IHV) - IVH)) 

1 
(11010) - 10101)) 

= 7 
(4.26) 
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Remembering that ijkl represent modes aHavdvdH we have 

and 

Iioio) = (11100) - 0101) + 1010) - 0011)), 

1 1 1 

(4.27) 

(4.28) 

This indicates that l'ioio) is a completely mixed state. However, if I post-select on 

detecting something in each of the a and d modes, then after re-normalization 

Iioio) = (11010) - 0101)). : 1 (4.29) 

This is the entangled state I am trying to produce and that would result in a fidelity of 

1. 

Thus, to determine the entanglement present in the resultant p1010 state, I calculate 

the fidelity [3] between the post-selected resultant state and the maximally entangled 

state that would have resulted from a single photon source. 

f(I) pqrst) = /(lpqrstIWj 

(IpqrstI) =(Wl 
ijkl 

P(ijkl Iqrst) I ijkl) (Jijk1I W) 

P(ijklqrst) (W I'1iik1) (ji I W) 
ijkl 

P(ijklqrst) I (W -I (1 2 

ijkl 

(4.30) 

(4.31) 
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The state I am looking at after post-selection and re-normalization then becomes the 

following. 

P(1010 
211010) (10101)(01011 + 11010)(10101) 

+ P(101111010) (10102)(01021 + 12010X20101) 
2 

+ P(111011010) (1 0201 )(02011 + 11020)(10201) 2 

+ P(201011010) (11101)(11011 + 11011)(10111 + 10102)(01021 + 12010)(20101) 
4 

+  P(102011010) (1 1110)(11101 + I0111X0111I + 10201)(02011 + 11020)(10201) 
4 

(4.32) 

(WIpioio I1!) = P(1010I1010) 

f(IW),pioio) = /P(101oI1010) 

(4.33) 

(4.34) 

For example with 97 = 0.1 and x = iO, f(Wj,pioio) = v'0.999995 = 0.999997. The 

detector efficiencyq is part of the conditional probability as was described in Eq. (4.15), 

and since my expression for P is dependent on x, this fidelity is not exactly one. 

The entanglement present in the final state in modes a and d decreases with source 

efficiency as there are more multi-photon pairs generated, leading to error (Fig. 4.1). 

Multi-photon pairs lead to error as it is possible that the two photons interacting at the 

beam splitter come from different pairs than those detected at modes a and d. In such a 

case, the detector clicks would indicate four-fold coincidence, when in fact, entanglement 

swapping had not taken place. 
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Figure 4.1: Fidelity (F) of entanglement swapping for Pioio against the source strength 

X. 

4.2 Summary 

I have calculated the shared state remaining at the two end nodes after an entanglement 

swapping operation to sixth order in the efficiency of the parametric down conversion 

sources. I have further calculated the fidelity of entanglement of this state with the Wj 

state. The fidelity of entanglement of the final shared photon pair of such a relay is 

of fundamental importance when this entanglement is subsequently utilized in a further 

quantum operation such as quantum key distribution. This analysis has not taken into 

account the effect of dark counts at the detectors. Analysis including dark counts was 

completed by Artur Scherer subsequent to this work in [26], which I briefly describe in 

the next chapter. 



Chapter 5 

Conclusions and Outlook 

The thermal detector model I have developed here provides a framework to take into ac-

count dark count attributes and input distributions from a variety of sources. This will 

provide flexibility and consistency in quantum key rate calculations as various sources 

are utilized in experiment. 

The impact of imperfect components, including sources and detectors, must be mod-

eled in order to understand the potential of the experiment under design. Incorrect 

assumptions about the number of photons present in an input pulse lead to incorrect 

conclusions about the security of a quantum key exchange. In the case of the BB84 

protocol, multi-photon events from the source can lead to a successful photon number 

splitting attack. In such an attack, the adversary takes one of the identical photons while 

the other is used in quantum key distillation. The adversary then has one bit of the key 

after listening to the public discussion during key distillation. In the case of the BBM92 

protocol, multi-photon events lead to higher error rates, and subsequently lower secure 

key generation rates. 

The magnitude of the problem of multi-photon events from the source for the BBM92 

protocol is of the order of x6 where x is the efficiency of the source. A term of the order 

of x6 represents the situation where there are three pairs of photons in the relay rather 

than the ideal two. Two pairs have emanated from one source and one from the other. 

In this situation, detector clicks may indicate a successful swap when that was not the 

case. 
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5.1 Closed Form Solution 

The lowest order in source efficiency for which multi-photon sources causes errors for 

entanglement swapping is x6, and my perturbative work of the previous chapter looked 

at the entanglement swap to that level of accuracy. My colleague Artur Scherer sub-

sequently re-examined the mathematics involved in the issue and found a closed form 

solution that includes all multi-photon contributions from the parametric down conver-

sion sources [26]. This formulation allows for simpler calculations and incorporation of 

the dark count model. 

The closed form expression for I1k1) in Eq. (4.10) is 

1  
/i!j!k!1! ) ( d, \/ ) ) al +     ) Ivac) 

1  i j k I 

()i+i+k+Li!j!k!l! (i) /j\ (k\ /l\ 
tt=O u=O O A=O 

X  (j)V+i ( t (jv )i+t__AH t) j+'-v-n lvac). (5.1) 

Evaluating Iioio) using this formula reproduces Eq. (4.27) to within an overall phase. 

The closed form expression for the corresponding probability of the hypothetical ideal 

measurement readout (ijkl) is 

p(ijkl) [tanhx] 2(i+j+k+I) 8 (5.2) 

cosh x 
Expanding this expression to sixth order in x for comparison with my perturbative 

method, I find for example 

p(1O1O)=4_ 16X 6 76X 8 _ 1—+O(x), (5.3) 
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in perfect agreement with Eq. (4.13). 

5.2 Incorporating Dark Counts 

Most experimental analyses discuss the visibility of an entanglement swap rather than 

the fidelity: 

= - Rmin  

Rm. + RM1 
(5.4) 

where RM, and Rmin are the maximum and minimum coincidence rates between four 

detectors in a successful entanglement swap. For a single qubit state, visibility relates to 

fidelity as V = 2F - 1 [22]. For a two qubit state, the relation is V = 

The work I have presented here has been taken further by my co-author Artur Scherer [26]. 

Once dark counts at the detectors are taken into account, the visibility of the entangle-

ment swap versus efficiency of the source x initially rapidly rises and then falls off (Fig. 

5.2). For a two qubit state such as we have here, fidelity ranges from 0.25 to 1 while 

visibility ranges from 0 to 1. In Fig. 5.2 it is clear that at low values of source efficiency, 

dark counts dominate and destroy the visibility of the swap. Once source rates are ap-

preciably larger than dark count rates, the visibility rises quickly. Maximum visibility 

occurs at a relatively low source efficiency below 102. This is due to the detrimental 

effect of multiple pairs being generated from the source as source intensity grows. 
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Figure 5.1: Visibility of entanglement swap against the source efficiency x with a variety 
of detector efficiencies and dark count rates ranging from 1 x iO to 3 x 1O. 

5.3 Effect on Key Rate 

When employing entanglement swapping operations to quantum key distribution, poor 

visibility of the swap affects the rate at which secret key bits can be generated. The 

secret key rate decreases proportionally to the binary entropy of the quantum bit error 

rate (QBER) as 

11 
R•ec =  X2X277 (1 - Kh2(QBER) - h2(QBER)). (5.5) 

One factor of one half is due to key sifting: Alice and Bob discard all bits where they did 

not measure in the same basis. The another factor of one half is due to the fact that the 

optical beam splitter is only 50% efficient. The two separate values for x2 allow for two 

sources of different efficiency. The two separate values of 2 allow for different detector 

efficiencies at the end nodes as compared to the Bell state measurement, recalling that a 

four-fold coincidence is required. K is a factor related to error correction, the first binary 

entropy (h2) term is for error correction and the second is for privacy amplification. For 
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each bit of error, the bits in the final key string have to be either corrected or discarded, 

both of which result in shorter final key strings and thus lower key generation rate. 

The quantum bit error rate is related to visibility as QBER= 1 2 V [14]. Thus, the 

greater the visibility, the lower the quantum bit error rate. Redefining fidelity as F = 

= ( Pqrstlj, gives a relation of QBER = 1-2F However, since the source and 

detector efficiencies have significant impact on the overall secret key rate as detailed in 

Eq. (5.5), it is insufficient to simply maximize visibility or fidelity to achieve maximum 

key rate. 

5.4 Summary 

The methods provided in this thesis provide base components needed to develop a model 

that will determine the best source efficiency to employ in an entanglement swapping sys-

tem to ensure maximal entanglement in the final modes. My efforts have been expanded 

upon by my fellow researcher Artur Scherer to develop such a model. Maximizing entan-

glement fidelity or visibility may be only one of the factors that need to be considered for 

the application of interest. However, as a fundamental resource in a number of quantum 

processes, maximizing entanglement fidelity will surely be of interest. 
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