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Abstract


A numerically based program TAVRT (Tilted Anisotropic Viscoelastic Reflection 

and Transmission), which calculates scattering coefficients for generally anisotropic 

media with arbitrary tilt, is tested for isotropic, VTI and monoclinic anisotropic 

media. The results agree with those of the scattering coefficients calculated via an­

alytical formulae found in the literature. TAVRT is also tested for the HTI case 

and the results are in good agreement with those calculated using the Seismic Unix 

program program refRealAziHTI (Rüger, 2001; Stockwell, 1997) which computes 

the exact scattering coefficients numerically for interfaces between two HTI media 

having the same symmetry plane. 

Formulae for SH-wave scattering coefficients for an interface between two tilted 

VTI media with angles ϕ1 and ϕ2 about the x2-axis have been derived and their 

results matched very well those of TAVRT. 

The program TAVRT can be used to have more confidence about new derived 

exact and approximate scattering coefficient and group velocity formulae. It can be 

also used to study more complex anisotropic media. 

For tilted VTI media, it is found that the scattering coefficients vary with tilt, but 

are unaffected by the sign of the tilt angle of the lower medium, i.e., the scattering 

coefficient for an interface between two tilted VTI media with angles ϕ1 and ϕ2 and 

the scattering coefficient for an interface between two tilted VTI media with angles 
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ϕ1 and −ϕ2 are equal. 

For tilted VTI media at pre-critical angles of incidence, the magnitude of the 

reflection coefficient is inversely proportional to the absolute value of the tilt angle 

of the upper medium. The magnitude of the transmission coefficient is directly pro­

portional to the absolute value of the tilt angle of the upper medium. 

In general, the angle of incidence and the angle of reflection are different for tilted 

VTI media. 
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Chapter 1 

Introduction 

1.1 Background 

The kinetic and dynamic properties of wave propagation in anisotropic media 

have been the subject of many publications (Daley and Hron (1977), Thomsen (1986), 

Graebner (1992), Rüger (2001), Carcione (2001), Tsvankin (2005)). However these 

publications focus on simple anisotropic models such as vertical transverse isotropy 

(VTI) and horizontal transverse isotropy (HTI), because of their simplicity and abun­

dance in nature. Unfortunately, simple models become invalid for more complicated 

anisotropic media such as tilted transverse isotropy (TTI) and thin layered media 

with a multi-fracture orientation system. Consequently the study of more complex 

anisotropic models becomes necessary. 

1.2 Objectives of the Thesis 

In 2001, Professor E.S. Krebes developed a theory and a code for the numer­

ical calculation of scattering coefficients at a flat interface between two generally 

anisotropic media (with up to 21 medium parameters) that can be oriented (tilted) 

in any arbitrary direction. He called the program TAVRT which stands for “Tilted 

Anisotropic Viscoelastic Reflection and Transmission”. Despite its name, TAVRT 

does not yet treat the viscoelastic case as it stands. Because TAVRT has not yet 
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2 

been fully tested, the main objective of the thesis is to test the validity of TAVRT 

program by comparing its results with the results of, as many as possible, existing 

scattering coefficients analytical formulae. 

1.3 Structure of the Thesis 

The thesis is composed of seven chapters. Chapter 1 introduces and gives the 

motivation and objectives of this research. Chapter 2 is devoted to providing some 

background material on wave propagation in anisotropic, homogeneous and elastic 

media. Chapter 3 treats the analytical solution of the scattering coefficient problem 

in anisotropic media, used to validate the results obtained numerically by TAVRT. 

Chapter 4 presents the theory behind the TAVRT code. Chapter 5 presents the 

derivation of analytical formulae for the reflection and transmission coefficients of an 

SH-wave propagating in a VTI medium tilted with an angle ϕ about the x2-axis. It 

then investigates the effect of the tilt on the scattering coefficients. Chapter 6 com­

pares the numerical results obtained by TAVRT and those obtained via the formula 

based scattering coefficients. The comparison is done for isotropic, VTI, tilted VTI, 

and monoclinic media. For HTI media, the comparison is done between the results 

obtained by the program TAVRT and those obtained by the Seismic Unix program 

refRealAziHTI (Rüger, 2001; Stockwell, 1997). Finally, chapter 7 concludes the 

present research and gives some recommendations for future work. 

1.4 Contributions of the Thesis 

The contributions of this thesis are: 
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•	 A presentation of the daunting theory of the scattering coefficient computa­

tion in generally anisotropic (with up to 21 medium parameters) and oriented 

(tilted) in any arbitrary direction in an easy way. 

•	 A derivation of SH-wave scattering coefficients formulae for an interface be­

tween two tilted VTI media with angles ϕ1 and ϕ2 about the x2-axis. 

•	 Checked and re-derived the theory behind TAVRT. 

Modifications of TAVRT: • 

- Converted TAVRT into a MATLAB function 

- The coordinate transformation of the stiffness matrix is done now outside 

TAVRT 

- The input parameters were all over the code and now they are passed as 

input function arguments 

•	 Implementation of codes to calculate the : 

- Exact scattering coefficients for interfaces between two isotropic media 

- Exact scattering coefficients for interfaces between two VTI media 

- Exact SH reflection and transmission coefficients for interfaces between two 

tilted VTI media with angles ϕ1 and ϕ2 about the x2-axis 

•	 The conversion of the Seismic Unix program refRealAziHTI (Rüger, 2001; 

Stockwell, 1997) to MATLAB. 



4 

•	 Investigated the effect of tilt on the SH reflection and transmission coefficients 

for interfaces between two tilted VTI media with angles ϕ1 and ϕ2 about the 

x2-axis. 

•	 The testing of TAVRT for isotropic, VTI, tilted VTI, HTI and monoclinic 

media. 

•	 Chapters 1 to 4 are mostly a review of known material while chapters 5 and 6 

are essentially new. 



Chapter 2 

Review of Anisotropic Wave Propagation 

In general, anisotropy is the dependence of the physical properties of a medium 

on the direction. Thomsen (2002) defined seismic anisotropy as “the dependence of 

seismic velocity upon angle”. This is a simple but yet accurate definition of seismic 

anisotropy. A seismic wave produced by a point source travels through different 

directions of an anisotropic medium with different velocities which produces a non-

spherical wavefront. 

Heterogeneity is the dependence of the physical properties of a medium on the 

position. Heterogeneity on the small scale (smaller than the seismic wavelength) 

appears as anisotropy on the large scale (Thomsen, 2002). 

Anisotropy can be caused by the preferred orientation of anisotropic mineral 

grains or the preferred orientation of the shapes of isotropic minerals. It can be 

also caused by a stack of isotropic layers having thicknesses smaller than the seismic 

wavelength, in which case the stack of layers can be treated as a single anisotropic 

medium (Backus, 1962) . Another common cause of anisotropy is the existence of 

fractures and cracks (Thomsen, 1986) in a material. 

This chapter is devoted to providing some background material on wave propa­

gation in anisotropic, homogeneous and elastic media. The main idea of this chapter 

is that, for anisotropic, homogeneous and elastic media, the direction of the wave 

vector and the direction of energy flow (the ray direction) do not coincide, which 

means that the phase velocity is generally different from the energy velocity. The 

5




6 

energy velocity vector is identical to the group velocity vector and has the same 

direction as the energy flux vector. 

2.1 Equation of Motion and Hooke’s Law 

The equation of motion for a general anisotropic and heterogenous medium comes 

from the application of Newton’s second law to a volume element ΔV within a 

continuum (Krebes, 2001) . It is given by 

∂σij ∂2ui 

∂xj 
+ fi = ρ 

∂t2 
, i = 1, 2, 3 (2.1) 

where σij is the stress tensor, x1, x2 and x3 are the cartesian coordinates, 

f = (f1, f2, f3) is the body force, ρ is the density and u = (u1, u2, u3) is the dis­

placement vector. The summation convention is used in equation 2.1 and in the 

remainder of the thesis, i.e., if a term contains a doubly-repeated index, then a sum 

is performed over that index (unless otherwise indicated). 

Notice that the equation of motion (2.1) depends on two unknowns: the stress 

tensor σij and the displacement u. Therefore, to solve it for the displacement u, we 

need to find a relation that links the two unknowns. It is reasonable to consider the 

stress resulting from a seismic wave experiment to be small, which allows us to treat 

sedimentary rock as a linear elastic material. Under this condition, the relationship 

between the stress and strain is linear and is given by the generalized Hooke law 

σij = cijklekl i, j = 1, 2, 3 (2.2) 
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where cijkl is the fourth-order stiffness tensor and ekl is the second-order strain tensor. 

The stress σij produces the strain ekl. The dimensions of stress are force per unit 

area. The strain ekl describes the change of shape of a medium under stress and is 

defined by 
1 ∂uk ∂ul 

ekl = + (2.3) 
2 ∂xl ∂xk 

The stress and strain tensors are symmetric, i.e., σij = σji and ekl = elk. Another 

convenient form of Hooke’s law is given as follows (Krebes, 2001): 

∂ul ∂uk
σij = cijkl = cijkl i, j = 1, 2, 3 (2.4) 

∂xk ∂xl 

Hooke’s law given by equation 2.2 holds for the general case of a linearly elastic, 

heterogenous and anisotropic medium but doesn’t hold for a dissipative (anelastic) 

medium (Krebes, 2001). 

Replacing the stress tensor in the equation of motion 2.1 by its definition given 

in equation 2.4, we obtain the equation of motion for a generally anisotropic, elastic 

and homogeneous medium: 

∂2uk ∂2ui 
cijkl + fi = ρ (2.5) 

∂xj ∂xl ∂t2 
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2.2 Conservation of Energy 

We can derive a conservation of energy for the equation of motion of equation 2.1 

by taking its dot product with the velocity vector u̇ (Krebes, 2001), and we have 

∂σij ∂K 
u̇i + fiu̇i = (2.6) 

∂xj ∂t 

where K is known as the kinetic energy density and is defined as follows: 

1 �∂ui 
�2 

K = ρ (2.7) 
2 ∂t 

Applying the rule for the differentiation of a product, we can write the first term 

of the left hand side of equation 2.6 as follows: 

∂σij ∂ � � ∂u̇i 

∂xj 
u̇i = 

∂xj 
σij u̇i − σij 

∂xj 
(2.8) 

Letting “, j” denote partial differentiation with respect to xj , the last term in 

equation 2.8, can be written as follows: 

1� � 1� � 1 � � 
σij u̇i,j = σij u̇i,j + σij u̇i,j = σij u̇i,j + σji u̇j,i = σij u̇i,j + u̇j,i = σij ėij (2.9) 

2 2 2 

where the symmetry of the stress tensor was used in the next-to-last step. Substi­

tuting equations 2.8 and 2.9 into equation 2.6, we get: 

∂K ∂W ∂u 
∂t 

+ 
∂t 

= −� · I + f · 
∂t 

(2.10) 
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where I is the intensity, or the energy flux vector, given as follows: 

∂ui
Ij = −σij (2.11) 

∂t 

and W is the potential energy density or the strain energy density, given implicitly 

as follows: 
∂W ∂eij

= σij (2.12) 
∂t ∂t 

The effects of body forces, e.g., gravity, on the propagation of seismic waves is 

usually negligible, hence we can write equation 2.10 as follows: 

∂E 
= −� · I (2.13) 

∂t 

where E = K + W is the total energy density. Equation 2.13 is usually known as 

the equation of the continuity for the energy density (Krebes, 2001). 

2.3 Strain Energy Density 

So far, we have not given an explicit general formula for the strain energy density 

W . All we know is its rate of change given by equation 2.12. Assume that the strain 

energy density W is a function of all the strain components as follows (Krebes, 2001): 

W = W e11, e12, · · · , e33 (2.14) 
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Applying the chain rule we have:


∂W ∂W ∂e11 ∂W ∂e12 ∂W ∂e33 ∂W ∂eij 

∂t 
= 
∂e11 ∂t 

+ 
∂e12 ∂t 

+ · · · + 
∂e33 ∂t 

= 
∂eij ∂t 

(2.15) 

From equations 2.12 and 2.15 we have 

∂eij ∂W ∂eij
σij = (2.16) 

∂t ∂eij ∂t 

For equation 2.16 to be true for all possible stress-strain fields, we must have 

∂W 
σij = , i, j = 1, 2, 3 (2.17) 

∂eij 

To get a better insight on equation 2.17, we make the analogy with the notion 

of basic physics that states that the force is derived from the potential energy. In 

the context of elasticity theory we say that the stress tensor σij is derived from the 

potential energy density W . 

Substituting equation 2.2 into equation 2.17, we get 

∂W 
= cijklekl, i, j = 1, 2, 3 (2.18) 

∂eij 

The explicit form of the strain energy density W can be obtained by integrating 

both sides of equation 2.18: 
1 

W = cijklekleij (2.19) 
2 
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or

1 

W = e T Ce (2.20) 
2 

where C and e are defined in equations 2.23 and 2.27 below. 

2.4 Symmetry of Stiffness Tensor 

The second-order stress and strain tensors σij and ekl have 32 = 9 components 

each, but only 6 of them are independent. This is due to the fact that σij and ekl 

are symmetric, which means that σij = σji and ekl = elk. 

The stiffness tensor cijkl has the following symmetry properties: 

cijkl = cjikl, because σij = σji 

cijkl = cijlk, because eij = eij (2.21) 
cijkl = cklij , because ∂2W/∂eij ∂ekl = ∂2W/∂ekl∂eij 

The second-order stiffness tensor cijkl has 34 = 81 components, but because of 

the stiffness tensor symmetries, only 21 of them are independent. Therefore, only 21 

medium parameters are required to describe the most general anisotropic medium, 

and we can represent the stiffness tensor cijkl by the following 6×6 symmetric matrix: 

⎞⎛ 

c =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


c1111 c1122 c1133 c1123 c1113 c1112 

c1122 c2222 c2233 c2223 c2213 c2212 

c1133 c2233 c3333 c3323 c3313 c3312 

c1123 c2223 c3323 c2323 c2313 c2312 

c1113 c2213 c1113 c2313 c1313 c1312 

c1112 c2212 c3312 c2312 c1312 c1212 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


(2.22)


By using the well known Voigt notation which relates each element cijkl of the 
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Table 2.1: Voigt Notation 

ij m 

11 1 
22 2 
33 3 
23 4 
13 5 
12 6 

stiffness tensor to the cmn of the 6 × 6 stiffness matrix (see table , we can rewrite 

equation 2.22 as follows 

⎞⎛ 

C
=


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


c11 c12 c13 c14 c15 c16 

c12 c22 c23 c24 c25 c26 

c13 c23 c33 c34 c35 c36 

c14 c24 c34 c44 c45 c46 

c15 c25 c15 c45 c55 c56 

c16 c26 c36 c46 c56 c66 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


(2.23)


where cij = cji and equation 2.2 can be rewritten as 

⎞⎛⎞⎛⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎝


σ11 

σ22 

σ33 

σ23 

σ13 

⎟⎟⎟⎟⎟⎟⎟⎟⎠


=


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


c11 c12 c13 c14 c15 c16 

c12 c22 c23 c24 c25 c26 

c13 c23 c33 c34 c35 c36 

c14 c24 c34 c44 c45 c46 

c15 c25 c15 c45 c55 c56 

c16 c26 c36 c46 c56 c66 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


e11 

e22 

e33 

2e23 

2e13 

2e12 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


(2.24)


σ12 
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or in a concise way as


σ = Ce (2.25) 

where σ and e are defined as follows: 

σ = (σ1, σ2, σ3, σ4, σ5, σ6)
T = (σ11, σ22, σ33, σ23, σ13, σ12)

T (2.26) 

e = (e1, e2, e3, e4, e5, e6)
T = (e11, e22, e33, 2e23, 2e13, 2e12)

T (2.27) 

The stiffness matrix given by equation 2.23 represents the most general anisotropic 

model which is known as the triclinic model. 

So far, triclinic models have not been used in seismological applications, because 

of the large number of independent parameters (Tsvankin, 2005) and because no 

geophysical survey can measure all these parameters (Thomsen, 2002). 

The simplest stiffness matrix is the one for isotropic symmetry. While isotropic 

symmetry is very useful for understanding wave propagation, it fails to describe all 

the effects we see in the data we record (Thomsen, 2002). The stiffness matrix for 

isotropy contains only two independent elastic parameters, λ and µ, the well known 

Lamé constants, and is given by 

⎞⎛ 

C(iso) =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


λ + 2µ λ λ 0 0 0 
λ λ + 2µ λ 0 0 0 
λ λ λ + 2µ 0 0 0 
0 0 0 µ 0 0 
0 0 0 0 µ 0 
0 0 0 0 0 µ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


(2.28)


A more realistic but yet simple anisotropy model is the transversely isotropic (TI)
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symmetry known also as hexagonal symmetry or polar symmetry. This type of 

anisotropy has only one axis of rotational symmetry. It is called vertical transverse 

isotropy (VTI) when the axis of symmetry is vertical (with respect to the Earth’s sur­

face), horizontal transverse isotropy (HTI) when the axis of symmetry is horizontal 

and tilted transverse isotropy (TTI) when the axis of symmetry is tilted. 

The TI stiffness matrix has the same form as the isotropic stiffness matrix but 

(in terms of the locations of the zero and non-zero elements) has five independent 

elastic parameters and is given, for the case of a VTI medium, by (Tsvankin, 2005) 

⎞⎛ 

c11 c11 − 2c66 c13 0 0 0 
c11 − 2c66 c11 c13 0 0 0 

c13 c13 c33 0 0 0 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

= 

and for the case of HTI medium, by (Tsvankin, 2005) 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


C(vti) (2.29)
0 0 0 c55 0 0 
0 0 0 0 c55 0 
0 0 0 0 0 c66 

⎞⎛ 

c11 c13 c13 0 0 0 
c13 c33 c33 − 2c44 0 0 0 
c13 c33 − 2c44 c33 0 0 0 
0 0 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

= 

Thomsen (1986) suggested replacing the five independent elastic parameters for 

a VTI medium with two vertical velocities and three dimensionless anisotropy para­

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


C(hti) (2.30)
0 c44 0 0 
0 0 0 0 c55 0 
0 0 0 0 0 c55 
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meters, defined by 

VP 0 ≡ c33/ρ 

VS0 ≡ c55/ρ 

� ≡ (c11 − c33)/(2c33) (2.31) 

γ ≡ (c66 − c55)/(2c55)


δ ≡ ((c13 + c55)2 − (c33 − c55)2)/(2c33(c33 − c55))


where VP 0 and VS0 are the vertical P wave and S wave velocities. 

The most realistic simple anisotropy model is the orthorhombic symmetry model 

(Bakulin et al., 2000b). An orthorhombic medium is characterized by three mutually 

orthogonal planes of symmetry. For example, an orthorhombic medium can be used 

to model a set of thin horizontal layers with a set of parallel vertical fractures, and in 

this case one of the symmetry planes is horizontal and the other two are parallel and 

perpendicular to the fractures. The medium coordinate system has the symmetry 

planes as coordinate planes. If we choose the cartesian coordinate system to coincide 

with the medium coordinate system, the stiffness matrix will have nine independent 

parameters, as follows (Tsvankin, 2005) 

⎞⎛ 

C(ort) =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


c11 c12 c13 0 0 0 
c12 c22 c23 0 0 0 
c13 c23 c33 0 0 0 
0 0 0 c44 0 0 
0 0 0 0 c55 0 
0 0 0 0 0 c66 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


(2.32)


A symmetry model with one plane of mirror symmetry is known as the monoclinic 

system. Such a system can be formed, for example, by two systems of parallel vertical 
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fractures, making between them an angle other than 0◦ or 90◦. A monoclinic medium 

with x1 − x3 plane of symmetry has the following form for the stiffness matrix: 

⎞⎛ 

C(mnc) =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


c11 c12 c13 0 c15 0 
c12 c22 c23 0 c25 0 
c13 c23 c33 0 c35 0 
0 0 0 c44 0 c46 

c15 c25 c35 0 c55 0 
0 0 0 c46 0 c66 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


(2.33)


It is necessary to be able to define how the stiffness matrix transforms in an 

arbitrary cartesian coordinate system. 

Let C be the stiffness matrix of a given medium, in the medium coordinate 

system (x1, x2, x3), and let C � be the stiffness matrix of the same medium but in a 

different coordinate system (x�1, x
�
2, x

�
3). It can be shown that (Mavko et al., 2003; 

Carcione, 2001) 

C � = MCMT (2.34) 

where ⎞⎛ 

M =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


2 2 2a11 a12 a13 2a12a13 2a13a11 2a11a12 

a21
2 a22

2 a23
2 2a22a23 2a23a21 2a21a22 

a31
2 a32

2 a33
2 2a32a33 2a33a31 2a31a32 

a21a31 a22a32 a23a33 a22a33 + a23a32 a21a33 + a23a31 a22a31 + a21a32 

a31a11 a32a12 a33a13 a12a33 + a13a32 a13a31 + a11a33 a11a32 + a12a31 

a11a21 a12a22 a13a23 a12a23 + a13a22 a13a21 + a11a23 a11a22 + a12a21 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


(2.35) 

where aij are the direction cosines defined as the cosine of the angle between the 

x�i-axis and the xj -axis. 
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2.5 Stability Conditions of Elastic Parameters 

The strain energy density W provides the only constraints on the elastic parame­

ters cijkl (Slawinski, 2003). These constraints, known also as the stability conditions, 

guarantee that the medium is stable; i.e., remains undeformed if energy is not ex­

pended. 

We can write the strain energy density W of equation 2.19, in a concise way, as 

follows 
1� � 

W = e T C e (2.36) 
2 

where C is the stiffness matrix given in equation 2.23 and e is the strain vector 

shown in equation 2.27 (Slawinski, 2003). 

Generally, the energy is positive unless the material is undeformed, in which case 

the strain energy density is null. This means that we have the following stability 

condition 
1 
2 

� 
e T C e 

� 
> 0 for all e, with e �= 0 (2.37) 

Equation 2.37 means that for the medium to be stable, the stiffness matrix C 

should be positive-definite. 

2.6 Christoffel Equation 

Consider the plane wave 

u = U e iω(s·x−t) = U e i(k·x−ω t) (2.38) 
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as a trial solution for equation 2.1, where U = (U1, U2, U3) is the polarization vector, 

ω is the angular frequency and s and k are the slowness and wavenumber vectors 

defined by 

s = 
n 
v 

and k = 
ω 
v 

n (2.39) 

where n is a unit vector in the direction of s and k, i.e. the direction of wave 

propagation, and v is the velocity of wave propagation, also known as the phase 

velocity. 

The time derivative of the displacement vector, i.e. the particle velocity, is given 

as follows: 

u̇ = ∂tu = −i ω u (2.40) 

which means that the following replacement can be made in mathematical manipu­

lations involving plane harmonic waves: 

∂t → −i ω (2.41) 

The spatial derivative of the displacement vector is given as follows: 

∂j u = i k nj u = i ω sj u, j = 1, 2, 3 (2.42) 

which means that the following replacement can be made in mathematical manipu­

lations involving plane harmonic waves: 

∂j → i k nj , j = 1, 2, 3 (2.43) 
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Let D be the differential-operator matrix defined as follows (Carcione, 2001): 

⎞⎛ ⎜⎜⎜⎜⎝


∂1 0 0 0 ∂3 ∂2 

0 ∂2 0 ∂3 0 ∂1 

0 0 ∂3 ∂2 ∂1 0 

⎟⎟⎟⎟⎠

D =
 (2.44)


The differential-operator matrix D can be replaced by (Carcione, 2001):


⎞⎛ 
n1 0 0 0 n3 n2 

0 n2 0 n3 0 n1 

⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎠

D i k
 = i k L (2.45)
→


0 0 n3 n2 n1 0 

or by:
 ⎞⎛ ⎜⎜⎜⎜⎝


s1 0 0 0 s3 s2 

0 s2 0 s3 0 s1 

⎟⎟⎟⎟⎠

D i ω
 = i w S (2.46)
→


0 0 s3 s2 s1 0 

From equations 2.3 and 2.27, the strain vector e can be rewritten as: 

e = DT u (2.47) 

Using the differential-operator matrix D, the equation of motion 2.1 becomes 

Dσ + f = ρ∂t 
2 u (2.48) 

Combining equations 2.25, 2.47 and 2.48 we obtain 

D C
 DT u + f = ρ∂t 
2 u
 (2.49)
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Substituting equations 2.41 and 2.45 into equation 2.49 and dropping the body force 

f we obtain 

k2Gu = ρω2 u (2.50) 

where 

G = LCLT (2.51) 

is known as the Christoffel matrix. 

From equation 2.39 and 2.50 we obtain the so-called Christoffel equation 

G − ρv2I(3) U = 0 (2.52) 

where I(3) is the 3 × 3 identity matrix. 

The Christoffel matrix G can also be rewritten as follows 

Gik = cijklnj nl (2.53) 

Note that, from the symmetry properties of the stiffness tensor, we have: 

Gik = cijklnj nl = cklij nlnj = Gki (2.54) 

which means that Christoffel matrix G is symmetric. In addition, Christoffel matrix 

G is positive-definite (Tsvankin, 2005). 

Note that equation 2.52 is an eigenvalue equation with eigenvalue ρv2 and eigen­

vector U for the symmetric 3 × 3 matrix G, and because the Christoffel matrix G 
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is positive definite, the eigenvalues are real and positive.


To find the different eigenvalues, we need to solve the characteristic function


G − ρv2I(3) = 0 (2.55)


Equation 2.55, known as the dispersion relation, is a third degree polynomial in 

the variable ρv2 and has three possible real and positive solutions. This means that 

to each direction of the slowness s, there are three values for ρv2 . One corresponds 

to the P-wave and the other two to the S-waves. To find the eigenvectors U we need 

to substitute the eigenvalues in equation 2.52. 

Because the Christoffel matrix G is real and symmetric, the corresponding eigen­

vectors are mutually orthogonal, but they are not necessarily parallel or perpendic­

ular to the slowness s. Thus, in general, there are no pure longitudinal and shear 

waves in anisotropic media. This is why we usually call the fast mode, ”quasi-P” 

(qP ) and the two slower modes ”quasi-S1 ” (qS1) and ”quasi-S2 ” (qS2) (Tsvankin, 

2005). 

In the case the Christoffel matrix is non-singular (rank two) we get three distinct 

eigenvalues (ρv1
2 =� ρv2

2 =� ρv3
2). To each of the eigenvalues corresponds a distinct 

polarization direction. In the case the Christoffel matrix is singular with rank one, 

two of the eigenvalues are equal (ρv1
2 = ρv2

2 =� ρv3
2). In this case of degeneracy, the 

eigenvectors corresponding to the eigenvalues ρv1
2 and ρv2

2 do not have uniquely de­

termined directions within a plane. The eigenvector corresponding to the eigenvalue 

ρv3
2, is perpendicular to the plane containing the other two eigenvectors. In the case 

the Christoffel matrix is singular with rank zero, all the eigenvalues are identical 
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(ρv
21 = ρv
22 = ρv
23). In this case, all the eigenvectors are not uniquely determined.


2.7 Energy Velocity 

The energy velocity vector V E represents the velocity at which energy propagates 

and may be defined as the ratio of the mean energy flux vector I to the mean total 

energy E , as follows: 
I I 

V E = � � = � � � � (2.56) 
E K + W 

To calculate the energy velocity, we need to calculate the mean of the energy 

flux and the total energy. For the complex vectors a, b, A and B and the arbitrary 

symmetric matrix D, where 

a(x, t) = A(x)e±iωt and b(x, t) = B(x)e±iωt (2.57) 

the mean over a period T has the following properties: 

� � � � �� 1 � � 
Re a T Re b = Re a T b∗ (2.58) 

2 

� � � � � � �� 1 � � 
Re a T Re D Re a = Re a T Da∗ (2.59) 

2 � � � � � � �� 1 � � 
Re a T Im D Re a = Im a T Da∗ (2.60) 

2 

where the asterisk denotes the complex conjugate (Carcione, 2001). 

Applying equation 2.58 to the energy flux I defined by equation 2.11, we get: 

� � � � 1 � � 1 � � 
Ij = − Re(σij)Re( ̇ui) = −

2
Re σij u̇i 

∗ = −
2
Re cijkluk,l u̇i 

∗ (2.61) 
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The particle displacement u is given by equation 2.38, namely 

u = U e iω(s·x−t) = U eiω(s·x−t) d (2.62) 

where U = U d, U is the amplitude of the wave and d is the unit polarization 

vector. Hence, 

1
 iω(s·x−t)dki ω U
∗ e−iω(s∗ ·x−t)di 

∗Ij = − Re cijkli ω U sl e 
2 

1 
ω2|U |2 e−2ω Im(s)·x cijkl Re sldkd

∗ 
i (2.63) =


2 

or � 
I

� 1


= 
2 
ω2|U |2 e−2ω Im(s)·x Re H∗CST d (2.64) 

⎛ ⎞where


⎜⎜⎜⎜⎝


d1 0 0 0 d3 d2 

0 d2 0 d3 0 d1 

⎟⎟⎟⎟⎠

H
=
 (2.65)


0 0 d3 d2 d1 0


If we exclude evanescent waves, and assume d to be real, then we obtain:


1 
ω2 U 2Ij cijklsldkdi (2.66) |
 |
= 

2 

or

1

ω2 U 2 HCST dI
 (2.67)
|
 |
= 

2 

Applying equation 2.59 to the strain energy density W defined by equation 2.20,
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we get: � � 1� � 1 � � 
W = Re(e T )CRe(e) = Re e T Ce∗ (2.68) 

2 4


From equations 2.46 and 2.47, we have


e = DT u = i ω ST u (2.69) 

Substituting equation 2.69 in 2.68 and using equation 2.62, we obtain: 

� 
W 
� 

= 
1
Re 
� 
i ω U eiω(s·x−t) 

� 
ST d 

�T 
C(−i) ω U∗ e−iω(s∗ ·x−t)SH d∗ 

� 

4 

= 
4

1 
ω2|U |2 e−2ω Im(s)·x Re dT SCSH d∗ (2.70) 

If we exclude evanescent waves, and assume d to be real, then we obtain: 

� � 1 
W =

4 
ρω2|U |2 (2.71) 

The kinetic energy density K defined by equation 2.7, can be written in matrix 

form as follows: � � 1 TK = ρu̇ u̇ (2.72) 
2 

Applying equation 2.58 to the kinetic energy density K, we obtain: 

� � � � � � 
K =

1 
ρ Re(u̇T )Re( u̇) =

1 
ρ Re u̇T u̇∗ (2.73) 

2 4 
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Substituting equation 2.62 in 2.73, we obtain: 

� � 1 � � 
K = ρ Re − iωU eiω(s·x−t)dT iωU∗ e−iω(s∗ ·x−t)d∗ 

4 

= 
1

4 
ρω2|U |2 e−2ω Im(s)·x Re 

� 
dT d∗ 

� 
(2.74) 

If we exclude evanescent waves, and assume d to be real, then we obtain: 

� � 1 � � 
K =

4 
ρω2|U |2 = W (2.75) 

Hence, the energy velocity vector is 

2 Re H∗CST d 
VE = � � � � (2.76) 

ρ Re dT d∗ + Re dT SCSH d∗ 

If we exclude evanescent waves, and assume d to be real, then, from equations 2.67, 

2.71, and 2.75, we obtain: 

I � � 
VE = � � = ρ−1 HCST d (2.77) 

2 K 

Note that, Because K is a scalar and I = 2 K VE , VE and I have the 

same direction. 

2.8 Group Velocity 

In anisotropic, homogenous and elastic media, the phase velocity differs in general 

from the group velocity. The group velocity is of primary importance in the kinematic 
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Figure 2.1: Group versus phase velocity 

analysis of seismic anisotropy. It is a vector whose magnitude is the wave speed 

along the raypath and whose direction is aligned with the source-receiver direction 

as shown in figure 2.1. In isotropic, homogenous and elastic media the group velocity 

and phase velocity are identical. In the most general form, the group velocity vector 

can be defined as (Carcione, 2001; Tsvankin, 2005) 

∂ω ∂ω ∂ω 
VG = i1 + i2 + i3 (2.78) 

∂k1 ∂k2 ∂k3 

where k1, k2 and k3 are the components of the wave vector k, ω is the angular 

frequency, and i1, i2 and i3 are the the unit coordinate vectors. 
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From the Christoffel equation 2.50, we have 

k2Gikuk = ρω2 ui (2.79) 

Substituting the Christoffel matrix 2.53 into 2.79, we obtain 

k2 cijklnj nluk = ρω2 ui (2.80) 

From equations 2.39 and 2.62, equation 2.80 becomes 

cijklkj kldk = ρω2di (2.81) 

Differentiating both terms of equation 2.81 with respect to kn, we get 

cijkl 

� 
kl 
∂kj 

∂kn 
+ kj 

∂kl 

∂kn 

� 
dk = 2ρω 

∂ω 
∂kn 

di (2.82) 

Note that ∂kj /∂kn = δkn. Multiplying the above equation by di and summing over 

i gives 
∂ω 

cijkl klδjn + kj δln dkdi = 2ρω 
∂kn 

didi (2.83) 

If we exclude evanescent waves, and assume d to be real, we have didi = 1 (as di is a 

unit vector). Now we expand and perform the sums involving the Kronecker delta. 

For the first delta, we sum over j, and for the second, we sum over l. This gives 

∂ω 
cinklkldkdi + cijknkj dkdi = 2ρω 

∂kn 
(2.84) 
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We now show that the second term on the left is the same as the first term on the 

left. First, since j is just a dummy summation index, we can replace it with l (as l 

appears nowhere else in the second term). The second term on the left then becomes 

cilknkldkdi (2.85) 

Similarly, we can switch the i and the k as they are also just dummy summation 

indices. This gives 

cklinkldidk (2.86) 

Next, we use one of the symmetries of the stress tensor, giving 

cinklkldidk (2.87) 

Note that this is now the same as the first term on the left in equation 2.84 above 

(didk = dkdi). We also replace kl with ωsl. Therefore, we obtain 

∂ω 
2cinklωsldidk = 2ρω (2.88) 

∂kn 

Cancelling the 2ω from both sides, gives 

∂ω 
cinklsldidk = ρ (2.89) 

∂kn 
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Finally, this reduces to 

1 ∂ω 
cinklsldidk = n = 1, 2, 3 (2.90) 
ρ ∂kn 

We can replace n with j now, as n is a free index. This gives 

1 ∂ω 
cijklsldidk = j = 1, 2, 3 (2.91) 
ρ ∂kj 

Hence, the group velocity is 

∂ω 1 
VGj = = cijklsldidk j = 1, 2, 3 (2.92) 

∂kj ρ 

or 

VG = ρ−1 HCST d (2.93) 

Note from equations 2.77 and 2.93, that the energy velocity and the group velocity 

are identical for anisotropic, homogeneous and elastic media. 



Chapter 3 

Analytical Solution of Scattering Coefficients 

Problem 

The scattering coefficient problem in anisotropic media can be found in Daley 

and Hron (1977), Graebner (1992), Rüger (2001) and Carcione (2001). In this chap­

ter we are interested in the analytical solution of the scattering coefficient problem 

in anisotropic media, which will be used later to validate the results obtained nu­

merically in chapter 6. In the first section, we give the solution of the Christoffel 

equation for isotropic as well as VTI media. In the second section, we review exact 

scattering formulae for isotropic, VTI and Monoclinic media. 

3.1 Solution of the Christoffel Equation 

In this section, we are interested in finding the phase velocity and the polarization 

of body waves in a given medium, which can be obtained by solving the eigenvalue 

problem of equation 2.52. 

3.1.1 Isotropic Media 

The Christoffel matrix for isotropic media is given as follows: 

30 
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Figure 3.1: Unit vector n for a wave propagating in the x1 − x3 plane 

G11 = (λ + 2µ)n1
2 + µ(n2

2 + n2
3), 

G12 = (λ + µ)n1n2, 
G13 = (λ + µ)n1n3, (3.1) 

G22 = µ(n1
2 + n3

2) + (λ + 2µ)n2
2 , 

G23 = (λ + µ)n2n3, 
G33 = µ(n1

2 + n2
2) + (λ + 2µ)n3

2 . 

For propagation in the x1 − x3 plane (without loss of generality), n2 = 0, n = 

(sin θ, 0, cos θ) (see figure 3.1) and the Christoffel equation can be given as follows: 

⎞⎛⎞⎛ 
G11 − ρv2 0 G13 

0 
U1 

U2 
⎜⎝


⎜⎝

⎟⎠


⎟⎠
= 0 (3.2)
G22 − ρv2 0

0 G33 − ρv2G13 U3 
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where 

G11 = (λ + 2µ) sin2 θ + µ cos2 θ 
G13 = (λ + µ) sin θ cos θ (3.3) 

G22 = µ 
G33 = µ sin2 θ + (λ + 2µ) cos2 θ 

We obtain two uncoupled dispersion relations, 

µρv2 = 0, 
µ(λ + 2µ) − (3µ + λ)ρv2 + ρ2v4 = 0 

(3.4) 

which gives the phase velocities 

v1 = µ/ρ 

v2 = µ/ρ (3.5) 

v3 = (λ + 2µ)/ρ 

Replacing the phase velocities (eigenvalues) in equation 3.2, we obtain the corre­

sponding normalized polarization vectors (eigenvectors) (see figure 3.2). 

U (1) = (0, 1, 0)T 

U (2) = (cos θ, 0, − sin θ)T (3.6) 
U (3) = (sin θ, 0, cos θ)T 

The first wave has a polarization given by U (1) = (0, 1, 0)T , which is normal 

to the x1 − x3 plane. Hence, this solution describes a pure shear wave, known as 

an SH-wave. The H denotes a horizontal polarization. The coupled solutions have 

in-plane polarizations as we can see in figure 3.2. The wave with the polarization 

U (2) = (cos θ, 0, − sin θ)T describes a pure shear wave, know as an SV-wave. The V 
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Figure 3.2: Eigenvectors of the Christoffel matrix for a wave propagating in x1 − x3 

plane in an isotropic medium 

denotes a vertical polarization (but it has also a non-vanishing in-plane horizontal 

component). The wave with the polarization U (3) = (sin θ, 0, cos θ)T describes a pure 

P-wave because it is polarized in the wave propagation direction. 

From equation 3.5, notice that v1, the velocity of the SH-wave, is equal to v2, the 

velocity of SV-wave. This is referred to as a shear-wave singularity in the language 

of wave propagation and degeneracy or singularity in the language of mathematics. 

3.1.2 VTI Media 

In this section, we are going to consider wave propagation in the x1 −x3 plane, be­

cause for VTI media all planes containing the symmetry axis are equivalent (Tsvankin, 

2005). Hence, the Christoffel equation is given as follows: 



�
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⎞⎛⎞⎛ 
G11 − ρv2 0 G13 

0 
U1 

U2 
⎜⎝


⎜⎝

⎟⎠


⎟⎠
= 0 (3.7)
G22 − ρv2 0

0 G33 − ρv2G13 U3

where 

G11 = c11 sin
2 θ + c55 cos2 θ 

G13 = (c13 + c55) sin θ cos θ 
G22 = c66 sin

2 θ + c55 cos2 θ 
(3.8) 

G33 = c55 sin
2 θ + c33 cos2 θ 

which gives us two uncoupled dispersion relations (Carcione, 2001), 

c66 sin
2 θ + c55 cos2 θ − ρv2 = 0, 

(c11 sin
2 θ + c55 cos2 θ − ρv2)(c33 cos2 θ + c55 sin

2 θ − ρv2) − (c13 + c55)2 sin2 θ cos2 θ = 0 

(3.9) 

The solution of equation 3.9 will give the following phase velocities 

(c66 sin
2 θ + c55 cos2 θ)/ρv1(θ) = 

v2(θ) = (c11 sin
2 θ + c33 cos2 θ + c55 − C)/(2ρ) (3.10) 

v3(θ) = (c11 sin
2 θ + c33 cos2 θ + c55 + C)/(2ρ) 

where C = [(c11 − c55) sin2 θ + (c55 − c33) cos2 θ]2 + 4[(c13 + c55) sin θ cos θ]2 (Car­

cione, 2001). 

Replacing the phase velocity v1 in equation 3.7, we obtain the normalized polar­

ization vector 

U (1) = (0, 1, 0)T (3.11) 

which describes a horizontally polarized pure shear wave, i.e. SH-wave. Note that 
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the first dispersion relation in equation 3.9, can be rewritten as 

sin2 θ/v1
2 cos2 θ/v1

2 

+ = 1 (3.12) 
ρ/c66 ρ/c55 

which means that the slowness curve for an SH-wave is an an ellipse with semi-axis 

ρ/c66 in the horizontal direction and ρ/c55 in the vertical direction (Carcione, 2001). 

The normalized polarizations for the two coupled waves with velocities v2 and v3 

can be given from equation 3.7 as follows 

U (2) = (G33 − ρv2
2)/(G11 + G33 − 2ρv2

2), 0, (G11 − ρv2
2)/(G11 + G33 − 2ρv2

2) 

U (3) = (G33 − ρv2
2)/(G11 + G33 − 2ρv3

2), 0, (G11 − ρv3
2)/(G11 + G33 − 2ρv3

2) 

(3.13) 

where v2 and v3 are defined in 3.10 and G is the Christoffel matrix as defined in 

equation 3.7 (Carcione, 2001). 

The phase velocities for the special case where the wave propagates along the 

x3-axis, can be easily found by substituting with θ = 0 in equation 3.10, 

v1(θ = 0) = c55/ρ 

v2(θ = 0) = c55/ρ (3.14) 

v3(θ = 0) = c33/ρ 

and the polarization vectors can be found by substituting θ = 0 in 3.14, 

U (1) = (0, 1, 0)T 

U (2) = (1, 0, 0)T (3.15) 
U (3) = (0, 0, 1)T 
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which means that for the polarization vector U (2) = (1, 0, 0)T we have a pure shear 

SV-wave with a horizontal in-plane polarization and for the polarization vector 

U (3) = (0, 0, 1)T we have a pure P-wave polarized in the direction of propagation. 

Notice from equation 3.14, that the SV- and SH-waves have the same vertical 

velocity, meaning that we have a shear-wave singularity for θ = 0. 

The phase velocities for the special case where the wave propagates along the 

x1-axis, can be easily found by substituting θ = 90o in equation 3.10, 

v1(θ = 90o) = c66/ρ 

v2(θ = 90o) = c55/ρ (3.16) 

v3(θ = 90o) = c11/ρ 

and the polarization vectors can be found by substituting θ = 90o in 3.14, 

U (1) = (0, 1, 0)T 

U (2) = (0, 0, 1)T (3.17) 
U (3) = (1, 0, 0)T 

which means that for the polarization vector U (2) = (0, 0, 1)T we have a pure shear 

SV-wave with a vertical in-plane polarization and for the polarization vector U (3) = 

(1, 0, 0)T we have a pure P-wave polarized in the direction of propagation. The x1−x2 

plane of a VTI medium is a plane of isotropy and equations 3.16 and 3.17 are valid 

for any wave propagation direction in the horizontal plane. Notice from equation 

3.16, that the velocities of the SV- and SH-waves are different, which produces what 

is known as shear-wave splitting (Tsvankin, 2005). 

For waves traveling with oblique propagation angles, the polarization directions 
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are no longer parallel and perpendicular to the wave propagation direction for the 

P- and SV-waves respectively, which means that the waves are no longer pure waves 

and instead we call them quasi-P (qP) and quasi-SV (qSV). 

3.2 Scattering Coefficients of Plane Waves 

In this section, we are interested in finding the scattering coefficients resulting 

from a plane wave of the form 2.38 propagating in the x1 −x3 plane, incident from an 

upper medium on a plane boundary between two elastic media. The sign convention 

adopted in this work is the one used by Aki and Richards (1980), which chooses the 

directions of the polarization vectors so that their horizontal components are in the 

same direction as the horizontal slowness component (Rüger, 2001). 

The computation of reflection and transmission coefficients is based on two phys­

ical principles known as the kinematic and dynamic boundary conditions. The kine­

matic boundary conditions state that the sum of displacements are equal across the 

interface and the dynamic boundary conditions state that the sum of stress com­

ponents are equal across the interface. These are sometimes referred to as welded-

contact boundary conditions. 

3.2.1 Isotropic Media 

An incident P-wave propagating in the x1 − x3 plane, will generate two trans­

mitted and two reflected waves upon arrival into the plane interface (x3 = 0) (see 

figure 3.3). The upper medium is isotropic and is defined by its P-wave propagation 

velocity α1, S-wave propagation velocity β1 and density ρ1. The lower medium is 
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isotropic and is defined by its P-wave propagation velocity α2, S-wave propagation 

velocity β2 and density ρ2. The angles θ1, ϕ1, θ2, and ϕ2 are the angles between the 

P-wave and S-wave propagation direction and the x3-axis for the upper and lower 

media, respectively. The particle displacement of the incident P-wave with unit 

amplitude, is given as follows 

⎞⎛ 
sin θ1 

= UP
I 

cos θ1 

The two generated reflected waves are given as follows 

⎜⎝ 
⎟⎠
I iω((sin θ1/α1) x1+(cos θ1/α1) x3−t) (3.18) 0
u
 e
P 

⎞⎛ 
sin θ1 

0

⎜⎝


⎟⎠
R = UP
R e
iω((sin θ1/α1) x1−(cos θ1/α1) x3−t) (3.19) u
P 

− cos θ1 

cos ϕ1 

⎞⎛ ⎜⎝

⎟⎠
R = US

R iω((sin ϕ1/β1) x1−(cos ϕ1/β1) x3−t) (3.20) 0
u
 e
S 

⎜⎝ 

sin ϕ1 

where UP
I is the the amplitude of the incident P-wave, and UP

R and US
R are the 

amplitudes of the reflected P-wave and S-wave, respectively. 

The two generated transmitted waves are given as follows 

= UP
T 

⎞⎛ 
sin θ2 ⎟⎠
T iω((sin θ2/α2) x1+(cos θ2/α2) x3−t) (3.21) 0
u
 e
P 

cos θ2 
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⎞⎛ ⎜⎝

cos ϕ2 

0

⎟⎠
e
iω((sin ϕ2/β2) x1+(cos ϕ2/β2) x3−t) (3.22) T = US

T u
S 

− sin ϕ2 

where UP
T and US

T are the amplitudes of the transmitted P-wave and S-wave, respec­

tively. 

For welded-contact, the kinematic and dynamic boundary conditions are written 

as follows: 
I R R T TuP + uP + uS = uP + uS (3.23) 

(ΣI
P + ΣR

P + ΣR
S ) n = (ΣP

T + ΣT
S ) n· · 

where n is a unit vector normal to the interface and Σ is defined as follows: 

⎞⎛ 

Σ =


⎜⎜⎜⎜⎝


σ11 σ12 σ13 

σ12 σ22 σ23 

σ13 σ23 σ33 

⎟⎟⎟⎟⎠

(3.24)


Equations 3.23 will produce a system of four equations and four unknowns, i.e. 

the reflection and transmission coefficients. The scattering coefficients for the P-wave 

incident from the upper medium are (Aki and Richards, 1980; Krebes, 2001): 

RPP = UP
R/UP

I = [(bξ1 − cξ2)F − (a + dξ1η2)Hp
2]D−1 

RPS = US
R/UP

I = −2ξ1p(α1/β1)(ab + cdξ2η2)D
−1 

(3.25) 
TPP = UP

T /UP
I = 2ρ1ξ1(α1/α2)FD

−1 

TPS = US
T /UP

I = 2ρ1ξ1(α1/β2)pF D−1 
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⎞ 

where 

a = γ2 − γ1, b = γ2 + χ1p, c = γ1 + χ2p, d = 2(ρ2β2
2 − ρ1β

2),1 

χi = 2ρiβi 
2p, γi = ρi(1 − 2βi 

2p2), ξi = cos θi/αi, ηi = cos ϕi/βi, i = 1, 2 (3.26) 
E = bξ1 + cξ2, F = bη1 + cη2, G = a − dξ1η2, H = a − dξ2η1, 

D = EF + GHp2 

Aki and Richards (1980) derived expressions for all reflection and transmission 

coefficients in isotropic media and they presented the solution in the following con­

venient matrix from: 

MR = N (3.27) 

where 

= 
⎜⎜⎜⎝ 

⎜⎜⎜⎝ 
= 

⎞⎛ 
−α1p − cos ϕ1 α2p cos ϕ2 

cos θ1 −β1p cos θ2 −β2p 
ρ1β1(1 − 2β2 

⎟⎟⎟⎠

M
 ,


ρ2β2(1 − 2β2 

−ρ1α1(1 − 2β1
2p2) 2ρ1β1

2p cos ϕ1 ρ2α2(1 − 2β2
2p2) −2ρ2β2

2p cos ϕ2 

(3.28) 

2ρ1β1
2p cos θ1 

2) 2ρ2β2
2p cos θ2 

2)1 p 2 p

⎛

α1p cos ϕ1 −α2p − cos ϕ2 

cos θ1 −β1p cos θ2 −β2p 
ρ1β1(1 − 2β2 

⎟⎟⎟⎠

N


ρ2β2(1 − 2β2 

ρ1α1(1 − 2β1
2p2) −2ρ1β1

2p cos ϕ1 −ρ2α2(1 − 2β2
2p2) 2ρ2β2

2p cos ϕ2 

(3.29) 

2ρ1β1
2p cos θ1 

2) 2ρ2β2
2p cos θ2 

2)1 p 2 p

and
 ⎞⎛ ⎜⎜⎜⎝


P ̀ P ́ S ̀ P ́ P ́ P ́ S ́ P ́


P ̀ S ́ S ̀ S ́ P ́ S ́ S ́ S ́


P ̀ P ̀ S ̀ P ̀ P ́ P ̀ S ́ P ̀


P ̀ S ̀ S ̀ S ̀ P ́ S ̀ S ́ S ̀


⎟⎟⎟⎠

R =
 (3.30)


The notations “̀ ” and “́ ” represent downgoing and upgoing waves respectively.


Hence, for example, S ́ P ̀ represent the reflection coefficient of a P-wave resulting
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from an S-wave incident from the lower medium. 

3.2.2 VTI Media 

The analytic solution of the scattering coefficients problem for VTI media was 

studied in great detail by many authors (e.g. Daley and Hron (1977), Graebner 

(1992) and Rüger (2001)). 

The following is a summary of Graebner’s (1992) solution of the scattering coeffi­

cients problem for VTI media, which was described in Rüger (2001). The scattering �T 
coefficients given by the vector R = RP , RPS , TP , TPS , resulting from a P-wave 

propagating in the x1 − x3 plane can be obtained by solving the following linear 

system: 

MR = b (3.31) 

where 

⎞⎛ T ⎜⎜⎜⎜⎜⎜⎜⎝


l
(1) 

p l
(1)
c
(1) 

+ q(1) 
m

(1)
c
(1) 

m
(1) 

c
(1) (1) 

l
(1) 

+ pm(1)
)α α 13 α α 33 α 55 (qα α α 

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
mβ pmβ c13 − qβ lβ c33 −lβ c55 (qβ mβ − p lβ ) 

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)−lα −(p lα c13 + qα mα c33 ) mα c55 (qα lα + pmα ) 

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) −mβ −(pmβ c13 − qβ lβ c33 ) −lβ c55 (qβ mβ − plβ ) 

⎟⎟⎟⎟⎟⎟⎟⎠


M
=
 (3.32)


(Note that there is a typo in the elements mij in Rüger (2001).) 

and 

b =

�T 

l(1) (1) (1) (1) (1) (1) (1) (1) l(1) (1) 
α , p lα 

(1)c13 + qα mα c33 ,mα , c55 (qα α + pmα ) (3.33)
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with 

lα = (a33 qα 
2 + a55 p2 − 1)/(a11 p2 + a55 qα 

2 − 1 + a33 qα 
2 + a55 p2 − 1) 

mα = (a11 p2 + a55 qα 
2 − 1)/(a11 p2 + a55 qα 

2 − 1 + a33 qα 
2 + a55 p2 − 1) � (3.34) 

lβ = (a11 p2 + a55 qβ 
2 − 1)/(a11 p2 + a55 qβ 

2 − 1 + a33 qβ 
2 + a55 p2 − 1) 

mβ = (a33 q2 + a55 p2 − 1)/(a11 p2 + a55 qβ 
2 − 1 + a33 q2 + a55 p2 − 1)β β 

where qα and qβ are the vertical slowness of the P-wave and S-wave respectively. 

3.2.3 Monoclinic Media 

The scattering coefficient problem becomes simpler if we restrict ourselves to the 

case where the incidence plane coincides with the symmetry plane of the upper and 

lower media, because an incident qP-wave or qSV-wave will generate reflected and 

transmitted qP and qSV-waves, and an incident SH-wave will generate reflected and 

transmitted SH-waves. Carcione (2001), provided analytic formulae for reflected and 

transmitted SH-waves resulting from an incident SH-wave traveling in the plane of 

symmetry of a monoclinic medium, as follows: 

Z(1) − Z(2) 2Z(1) 

R = 
Z(1) + Z(2) 

, T = 
Z(1) + Z(2) 

(3.35) 

where 

Z(i) 

� 

ρ(i) (i) 
� 

(i) (i) � (i)�2 
� 

2= ± c44 − c44 c66 − c46 s1, i = 1, 2 (3.36) 

The index i in equation 3.36 is the index of the medium. The + sign in equa­

tion 3.36 corresponds to downward propagating waves and the − sign corresponds to 

upward propagating waves. The horizontal slowness s1 is equal for all waves (Snell’s 
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law) and can be given as a function of the incidence angle θI and the phase velocity 

v as follows: 

s1 = sin θI /v(θI ) (3.37) 

where 
1� � 

v(θ) = c44 cos2 θ + c66 sin
2 θ + c46 sin(2θ ) (3.38) 

ρ 
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Figure 3.3: Scattering coefficients generated from a P-wave propagating in the x1 −x3 

plane of an isotropic medium. The thick lines indicate the unit vectors for each wave 
mode 



Chapter 4 

Numerical Solution of Scattering Coefficients 

Problem 

In this chapter we present the theory behind the program TAVRT which stands 

for “Tilted Anisotropic Viscoelastic Reflection and Transmission”. The theory be­

hind TAVRT as well as the code was developed by Professor Edward S. Krebes. 

Despite its name, TAVRT does not yet treat the viscoelastic case as it stands. It has 

also not yet been fully tested (and modified if necessary) for all possible anisotropic 

cases. 

4.1 Scattering Coefficients for Generally Anisotropic Media 

Let us consider a plane wave of the form given by equation 2.38, incident from an 

anisotropic upper (lower) medium on a plane horizontal boundary to an anisotropic 

lower (upper) medium. The incident wave will generate three transmitted and three 

reflected waves. Each medium can be generally anisotropic (with up to 21 medium 

parameters) and can be oriented (tilted) in any arbitrary direction. Note that there 

are six different possibilities for the incident wave: the incident wave can be either in 

the upper medium or in the lower medium and it can be either qP-wave, qSV-wave or 

qSH-wave. We will set up the problem by incorporating all possible incident waves, 

to save ourselves some work. To solve the system for a given incident wave, we set 

the amplitude of the remaining incident waves to zero. 

45 
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The particle displacement u for each wave has the form given by equation 2.38, 

namely: 

u = U e iω(s·x−t) = U eiω(s·x−t) d (4.1) 

where U = U d, is the polarization vector, U is the amplitude of the wave and 

d is the unit polarization vector. Each wave has a different amplitude U , unit 

polarization direction d and slowness s. The naming convention for the different 

waves is according to figure 4.1. 

For welded contact, the boundary conditions are the continuity of the displace­

ment and stress across the interface: 

4� 
(−1)i u

(i) 
+ u(i) 

+ u(i) 
= 0 (4.2) qP qSV qSH 

i=1 

4

(−1)i Σ
(i) 

+ Σ(i) 
+ Σ(i) 

n = 0 (4.3) qP qSV qSH · 
i=1 

where n = (0, 0, 1)T is a unit vector normal to the interface and Σ is defined as 

follows: 

⎞⎛ ⎜⎜⎜⎜⎝


σ11 σ12 σ13 

σ12 σ22 σ23 

σ13 σ23 σ33 

⎟⎟⎟⎟⎠

Σ =
 (4.4)
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Figure 4.1: Reflection and transmission of an incident qP, qSV or qSH-wave from 
the upper or lower medium in a generally anisotropic medium 

Equation 4.3 only involves σ13, σ23 and σ33, because 

⎞⎛⎞⎛⎞⎛ 

Σ
·
n =


⎜⎜⎜⎜⎝


σ11 σ12 σ13 

σ12 σ22 σ23 

⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎠


0


0


⎟⎟⎟⎟⎠

=


⎜⎜⎜⎜⎝


σ13 

σ23 

⎟⎟⎟⎟⎠

(4.5)


σ13 σ23 σ33 1 σ33 
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with


σi3 = ci3kl iωsluk, i = 1, 2, 3 (4.6) 

Snell’s law implies that all slowness vectors lie in the plane formed by the slowness 

vector of the incident wave and the normal to the interface which means, in our case 

(figure 4.1), that s2 = 0 for all waves. Moreover, the projections of the slowness 

vectors on the interface coincide, which means in our case, that 

(1) (2) (3) (4) (1) (2) (3)
s = s = s = s = s = s = s = 1 qP 1 qP 1 qP 1 qP 1 qSV 1 qSV 1 qSV 

(4.7) 
(4) (1) (2) (3) (4)
s1 qSV = s1 qSH = s1 qSH = s1 qSH = s1 qSH ≡ s1 

This is just Snell’s law. From equation 4.6 and Snell‘s law (with s2 = 0), we can 

write the tangential stress components as follows: 

σi = iωUhi, i = 3, 4, 5 (4.8) 

where σ3, σ4 and σ5 are the third, fourth and fifth elements of the stress column 

vector (2.26), and where 

hi = ci1s1d1 + ci3s3d3 + ci4s3d2 + ci5(s1d3 + s3d1) + ci6s1d2 (4.9) 

Note that the complex exponential is not present in equation 4.8 because it cancels 

out when Snell’s law is applied at the interface. Together, equations 4.2 and 4.3 will 
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produce the following system of six equations: 

⎧ ⎪⎨
�4 (i) (i) (i)
(−1)i = 0, k = 1, 2, 3
+ u
 + u
u
 k qSH 

(−1)i σ
(i) 

+ σ(i) 
+ σ(i) 

= 0, l = 3, 4, 5l qP l qSV l qSH 

k qP k qSV i=1
(4.10)
�4⎪⎩


i=1

where σi is defined in equation 4.8.


From equations 4.7 and 4.8, the system of equations 4.10 becomes:


⎧ ⎪⎨
�4 (i) (i) (i) (i) (i) (i)
(−1)i U
 d
 + U
 d
 + U
 d
 = 0, k = 1, 2, 3
qP qSV qSH k qP k qSV k qSH i=1

(4.11)
�4⎪⎩
 (−1)i U
(i)
h

(i) 
+ U (i) 

h
(i) 

+ U (i) 
h

(i) 
= 0, l = 3, 4, 5qP l qP qSV l qSV qSH l qSH i=1

which can be written more explicitly as follows: 

where 

⎛ 

A x = B y 

⎞ ⎛ 

(4.12) 

⎞ 
(3) (3) (3) (4) (4) (4) (3)

d d−d
 −d
 −d
 d
 U
1 qP 1 qSV 1 qSH 1 qP 1 qSV 1 qSH qP 

A =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


(3) (3) (3) (4) (4) (4)
d d

(3) 
qSV −d
 −d
 −d
 d
 U
2 qP 2 qSV 2 qSH 2 qP 2 qSV 2 qSH 

(3) (3) (3) (4) (4) (4)
d d

(3) 
qSH −d
 −d
 −d
 d
 U
3 qP 3 qSV 3 qSH 3 qP 3 qSV 3 qSH 

, x =

(3) (3) (3) (4) (4) (4)

h h U
(4) 
qP 

U
(4) 
qSV 

−h
 −h
 −h
 h
1 qP 1 qSV 1 qSH 1 qP 1 qSV 1 qSH 

(3) (3) (3) (4) (4) (4)
h h−h
 −h
 −h
 h
2 qP 2 qSV 2 qSH 2 qP 2 qSV 2 qSH 

(3) (3) (3) (4) (4) (4) (4)−h3 qP −h3 qSV −h3 qSH h3 qP h3 qSV h3 qSH UqSH 

(4.13) 
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⎞⎛⎞⎛ 
d

(1) 
d

(1) (1) (2) (2) (2) (1) 
d
 U
1 qSH −d
1 qP −d1 qSV −d
1 qSH 1 qP 1 qSV 

d

qP ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


(1) (1) (1) (2) (2) (2)
d

(1) 
qSV d
 −d
2 qP −d2 qSV −d
 U
2 qP 2 qSV 2 qSH 2 qSH 

d
(1) 

d
(1) (1) (2) (2) (2) (1) 

qSH d
 −d
3 qP −d3 qSV −d
 U
3 qP 3 qSV 3 qSH 3 qSH 
B =
 , y =


h
(1) 

h
(1) (1) (2) (2) (2) 

U
(2) 
qP h
 −h
 −h
 −h
1 qP 1 qSV 1 qSH 1 qP 1 qSV 1 qSH 

hh h −h −h −h U2 qP 2 qSV 2 qSH 2 qP 2 qSV 2 qSH qSV 

h
(1) 
3 qP h

(1) 
3 qSV h

(1) 
3 qSH −h(2) 

3 qP −h(2) 
3 qSV −h(2) 

3 qSH U
(2) 
qSH 

(4.14) 

(1) (1) (1) (2) (2) (2) (2) 

For example, for an incident P-wave from the upper medium, the array y will be 

given as follows: 

y = (1, 0, 0, 0, 0, 0)T (4.15) 

and the right hand side of equation 4.12, namely B y, will be given as follows: 

(1) (1) (1) (1) (1) (1)
B y = (d1 qP , d2 qP , d3 qP , h1 qP , h2 qP , h3 qP )

T (4.16) 

�T
(3) (3) (3) (4) (4) (4)

The scattering coefficients given by the vector x = U
 , U
 , U
 , U
 , U
 , U
qP qSV qSH qP qSV qSH 

resulting from an incident P-wave from the upper medium, can be obtained by solv­

ing the following linear system: 
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⎞⎛⎞⎛⎞⎛ 
(3) (3) (3) (4) (4) (4) (3) (1) 

d d−d
 −d
 −d
 d
 U
 d
1 qP 1 qSV 1 qSH 1 qP 1 qSV 1 qSH qP 1 qP ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


(3) (3) (3) (4) (4) (4)
d d

(3) 
qSV 

(1) 
2 qP −d
 −d
 −d
 d
 U
 d
2 qP 2 qSV 2 qSH 2 qP 2 qSV 2 qSH 

(3) (3) (3) (4) (4) (4)
d d

(3) 
qSH 

(1) 
3 qP −d
 −d
 −d
 d
 U
 d
3 qP 3 qSV 3 qSH 3 qP 3 qSV 3 qSH 

=

(3) (3) (3) (4) (4) (4)

h h U
(4) 
qP 

U
(4) 
qSV 

(1) 
1 qP −h
 −h
 −h
 h
 h
1 qP 1 qSV 1 qSH 1 qP 1 qSV 1 qSH 

(3) (3) (3) (4) (4) (4)
h h

(1) 
2 qP −h
 −h
 −h
 h
 h
2 qP 2 qSV 2 qSH 2 qP 2 qSV 2 qSH 

(3) (3) (3) (4) (4) (4) (4) (1) −h3 qP −h3 qSV −h3 qSH h3 qP h3 qSV h3 qSH UqSH h3 qP 

(4.17) 

4.2 Arbitrary Tilt Angles 

The TAVRT program handles anisotropic media with arbitrary tilt angles. One 

of the most common ways of describing 3D rotations is by using Euler’s angles (φ, 

θ, ψ) (Goldstein, 1980). Starting from the cartesian coordinate system (x1, x2, x3), 

the first rotation is a rotation about the x3-axis by the angle φ. Denoting the new 

coordinate system by (x�1, x
�
2, x

�
3), the second rotation is a rotation about the x�2 ­

axis (the line of nodes) by the angle θ. Denoting the new coordinate system by 

(x��1, x
��
2, x

��
3), the third rotation is a rotation about the x��3-axis by the angle ψ. The 

new coordinate system is denoted by (x���1 , x
���

3 ) (see figure 4.2). 2 , x
���

Notice that Euler’s angles (φ, θ, ψ) described here to specify the rotation of 

the coordinate system (x���1 , x
���
2 , x

���
3 ) relative to the coordinate system (x1, x2, x3), can 

be found with variations in the literature. Note that we have used the x�2-axis as 

the second axis of rotation and the line of nodes, unlike Goldstein (1980) who uses 

x�1-axis. 
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Figure 4.2: The definition of the Euler angles (φ, θ, ψ) that relate the un-tilted 
coordinate system (x���, y���, z���) to the tilted coordinate system (x, y, z) 

TAVRT assumes that the stiffness matrix C��� for the medium is known in the 

(x���1 , x
���

3 ) system and computes the stiffness matrix C in the (x1, x2, x3) system. 2 , x
���

Figure 4.3 was produced by TAVRT. It depicts the comparison between P1P1 

scattering coefficient versus angle of incidence of a VTI over isotropic interface and 

P1P1 scattering coefficient versus angle of incidence of a tilted VTI over isotropic 

interface. The tilt is given by the following Euler angles: (φ = 15o, θ = 30o, ψ = 45o). 

The model parameters are given in table 4.1. 



��
 ��

��
 ��
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Table 4.1: Model parameters used for constructing figure 4.3 

Parameter Upper Medium Lower Medium


VP 0 3.00 3.50 
VS0 2.00 2.70 
ρ 2.50 2.70 
� 0.10 0.00 
δ 0.10 0.00 
γ 0.10 0.00 

3Velocities in km/s and density in g/cm

4.3 Solution of the Christoffel Equation 

4.3.1 Calculation of Vertical Slownesses 

The vertical slowness s3 components for each wave can be obtained by solving 

the dispersion relation (2.55), which can be rewritten, using equations 2.39 and 2.53, 

as follows: 

cijklsj sl − ρδij = 0 (4.18)


or


SCST − ρI(3) = 0 (4.19)


where
 ⎞⎛ 
s1 0 0 0 s3 0 
0 0 0 s3 0 s1 

⎜⎝

⎟⎠
S
=
 (4.20)


0 0 s3 0 s1 0 
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Figure 4.3: A comparison between P1P1 scattering coefficient versus angle of inci­
dence of a VTI over isotropic interface and P1P1 scattering coefficient versus angle 
of incidence of a tilted (φ = 30o, θ = 30o, ψ = 45o) VTI over isotropic interface. The 
model parameters are given in table 4.1. 

Equation 4.19 is a sixth degree polynomial of s3 and by solving it we get 6 solu­

tions: 3 upgoing qP, qSV and qSH waves and 3 downgoing qP, qSV and qSH waves. 

The distinction between upgoing and downgoing waves is based on the rule that the 

energy flux vector I should be pointing towards the incidence medium for a reflected 

wave and to the transmission medium for a transmitted wave (Carcione, 2001). To 
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calculate the energy flux vector I, we need first to calculate the unit polarization 

vector d as we can see from equation 2.63. The solutions of the dispersion rela­

tion (4.19) can be either real or complex. The sign of the imaginary part of the 

complex solutions should be chosen so that the amplitude decays exponentially with 

distance (Carcione, 2001). These types of waves are known as evanescent waves. 

An evanescent wave has an energy flux vector I parallel to the interface (Carcione, 

2001). 

4.3.2 Degeneracy 

If two or more of the 6 vertical slownesses s3 obtained in section 4.3.1 are the 

same, degeneracy exists. For example, the isotropic case is degenerate for all input 

ray parameter values (the qSH and qSV wave speeds are the same) and the VTI 

case is degenerate at ray parameter s1 = 0 (the qSH and qSV vertical wave speeds 

are the same). The program checks for degeneracy and skips the computations for 

scattering coefficients for ray parameter (s1) values resulting in degenerate s3 values. 

4.3.3 Calculation of Unit Polarization Vectors 

The Christoffel equation (2.52) can be rewritten, using equations 2.39 and 2.53, 

as follows: 

S ĈST − I(3) U = 0 (4.21) 

where Ĉ is the density-normalized stiffness matrix. 

For each value of the vertical slownesses s3 obtained in section 4.3.1, we solve 

the eigenvector problem of equation 4.21. We obtain three eigenvalues and eigen­
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vectors. In theory, the only correct eigenvalue is 1 and the other eigenvalues need 

to be rejected because they correspond to other wave types with the same slowness 

direction. We select the eigenvector that corresponds to the eigenvalue equal to 1. 

The unit polarization vector d can be then obtained by normalizing the eigenvector 

U . Notice that the sign of the polarization vectors have not been specified yet and 

to do this we need to calculate the energy flux vector. 

4.4 Wave Types Determination 

We have seen in section 4.3.1 that by solving the dispersion relation (4.18), we 

get six solutions for the vertical component of the slowness s3. In this section, we 

are interested in determining the wave types corresponding to each vertical slowness 

value among the six possible solutions. 

The six solutions of equation 4.19 correspond to an upgoing and a downgoing qP­

wave, an upgoing and a downgoing qSV-wave, and an upgoing and a downgoing qSH­

wave. The qP-waves are characterized by having the closest unit polarization vectors 

to the slowness vector and hence they have the highest cosine of the angle between 

the unit polarization and the slowness vectors. The qSV-waves are characterized 

by having the closest unit polarization vectors to the normal to the slowness vector 

and hence they have the highest cosine of the angle between the unit polarization 

and the normal to the slowness vectors. The qSH-waves are characterized by having 

the closest unit polarization vectors to the x2-axis and hence they have the highest 

cosine of the angle between the unit polarization vector and the x2-axis. 

The energy flux vector can be calculated using equation 2.63. It is clear from this 
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Figure 4.4: Mean Energy Flux Vector I 

equation that even with a wrong sign for the polarization vector we get the correct 

energy flux vector. The energy flux vector has in general an x2 component, i.e., it is 

not always in the x1 − x3 plane (see figure 4.4). 

Let ϕx1−x3 be the angle in the x1 −x3 plane made by the x1 − x3 projection of the 

mean energy flux vector(see figure 4.4). An upgoing wave would have an angle ϕx1−x3 

between −π/2 and π/2, a downgoing wave would have an angle ϕx1−x3 between π/2 

and 3π/2 and an evanescent wave would have an angle ϕx1−x3 equal to −π/2 or π/2 

(see figure 4.5). 

The sign of the polarization vector of qP-wave is chosen so that the cosine of 
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Figure 4.5: Distinguishing Upgoing, Downgoing and Evanescent Waves 

the angle between the unit polarization and the slowness vectors is positive (see 

figure 4.6). 

The sign of the polarization vector of qSV-wave is chosen so that the cross product 

of the slowness with the polarization vector has a positive (negative) x2 component 

for waves with upgoing (downgoing) energy flux. This rule assumes that the x3 axis 

is pointing upwards (see figure 4.7). 

The sign of the polarization vector of qSH-wave is chosen so that it has a negative 

x2 component if the x3 axis is pointing upwards and a positive x2 component if the 

x3 axis is pointing downwards. 
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Figure 4.6: qP-Wave Unit Vector Sign Determination 

4.5 True Incidence Angles Check 

If the phase angle corresponding to a given ray parameter (s1) for an incident 

wave is between −90o and 90o but the ray angle (or energy angle) is not, then the 

wave is not really an incident wave, and the given ray parameter value (or phase 

angle of incidence) should not be included in the plots of the scattering coefficients 

for that incident wave. At the same time, if the phase angle is not between −90o 

and 90o, but the ray angle is within it, then the wave is a true incident wave, and 

should be included in the plots. The program computes which ray parameter values 

correspond to true incident waves, so that the proper plots can be produced. 
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Figure 4.7: qSV-Wave Unit Vector Sign Determination 

4.6 TAVRT Algorithm 

The main steps involved in TAVRT program can be summarized in the flowchart 

given in figure 4.9. 

4.7 Outputs 

In addition to the scattering coefficients, the program outputs: 

•	 The vertical component of the slowness s3 for all twelve waves (see figure 4.1) 

corresponding to three downgoing waves (qP, qSV and qSH) in medium 1 
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Figure 4.8: qSH-Wave Unit Vector Sign Determination 

representing incident waves, three upgoing waves (qP, qSV and qSH) in medium 

2 representing incident waves, three upgoing waves (qP, qSV and qSH) in 

medium 1 and three downgoing waves in medium 2 representing scattered 

waves. 

•	 The energy velocity (ray or group velocity) vector as well as its magnitude. 

•	 The angle, in degrees, that the energy velocity makes with the x1 − x3-plane, 

i.e., the angle between the energy velocity and its projection onto the x1 − x3 ­

plane. 
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Figure 4.9: TAVRT Flowchart
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•	 The angle, in degrees, made in the x1 −x3-plane by the projection of the energy 

velocity onto the x1 − x3-plane. 

•	 The phase angle in degrees. 

•	 The magnitude of the phase velocity. 

•	 The phase-energy angle, i.e., the angle, in degrees, between the phase velocity 

and the energy velocity. 

•	 The components of the complex unit polarization vector (which gives the di­

rection of particle motion). 

Using these outputs, one can produce, for example, the following plots: 

•	 Any one of the scattering coefficients versus phase angle. 

•	 Any one of the scattering coefficients versus the x1 −x3 projection of the energy 

(ray or group) angle. 

•	 The slowness diagram which is the cross-plot of the horizontal component of 

the slowness s1 and the vertical component of the slowness s3. 

•	 A 3D plot of a scattering coefficient versus the ray direction. The vertical axis 

would be the amplitude axis, and the two horizontal axes would be the two 

angles required to specify the ray direction (which does not necessarily lie in 

the x1 − x3-plane) 
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4.8 Graphical User Interface (GUI) 

In order to facilitate the testing of TAVRT program I created a graphical user 

interface (GUI) (see figure 4.10) with the following main capabilities: 

1. The media parameters can be entered for a given experiment either by filling 

the stiffness matrices or by entering Thomsen’s parameters, then computing 

the corresponding stiffness matrices. 

2. Experiments can be imported and exported. 

3. The upper and/or lower stiffness matrix can be rotated, flipped or cleared. 

4. The magnitude	 and phase spectra of a given scattering coefficients can be 

displayed versus ray parameter or phase angle. 

5. The media parameters can be modified to eliminate degeneracy. 
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Figure 4.10: TAVRT GUI




Chapter 5


Investigation of the Effect of Tilt on the


Scattering Coefficients


In this chapter we are going to investigate the effect of tilt on the scattering 

coefficients of an SH-wave propagating in a VTI-medium. We first start by deriving 

analytical formulae for the reflection and transmission coefficients of an SH-wave 

propagating on a VTI medium tilted with an angle ϕ about the x2-axis (see fig­

ure 5.1). We then give some examples to help understand the effect of tilt on the 

SH-wave reflection and transmission coefficients. 

5.1 Stiffness Matrix for Tilted VTI Media 

A VTI medium refers to a medium represented by the stiffness matrix given by 

equation 2.29, with the symmetry axis along the x3-axis. By performing a rotation 

with an angle ϕ about the x2-axis of the coordinate system, the medium becomes 

tilted VTI as can be seen in figure 5.1. From equation 2.35, the corresponding 

transformation matrix is given by 

⎞⎛ 

M
=


⎜⎜⎜⎜⎜⎜⎜⎝


cos2 ϕ 0 sin2 ϕ 0 − sin 2ϕ 0 
0 1 0 0 0 0 

sin2 ϕ 0 cos2 ϕ 0 sin 2ϕ 0 
0 0 0 cos ϕ 0 sin ϕ 

1 1sin 2ϕ 0 sin 2ϕ 0 cos 2ϕ 0
2 −

2 
0 0 0 − sin ϕ 0 cos ϕ 

66 

⎟⎟⎟⎟⎟⎟⎟⎠


(5.1)
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Figure 5.1: Tilted VTI medium with an angle ϕ about the x2-axis 

Using equation 5.1, the stiffness matrix in the new system is given by 

⎞⎛ 

C � =


⎜⎜⎜⎜⎜⎜⎜⎝


c�11 c�12 c�13 0 c15
� 0 

c�12 c�22 c�23 0 c25
� 0 

c�13 c�23 c�33 0 c35
� 0 

0 0 0 c�44 0 c�46 

c�15 c�25 c�35 0 c55
� 0 

0 0 0 c�46 0 c�66 

⎟⎟⎟⎟⎟⎟⎟⎠


(5.2)
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where 

c�11 = (c11 + c33 − 2c13) cos4 ϕ + 2(c13 − c33) cos2 ϕ − c55 cos2 2ϕ + c33 + c55


c�12 = (c11 − c13 − 2c66) cos2 ϕ + c13


c�13 = (2c13 − c11 − c33�) cos4 ϕ + (c11 + c33 − 2c13) cos2 ϕ + c55 cos2 2ϕ +�c13 − c55


c� = 1 sin 2ϕ (c11 − 2c13 + c33) cos2 ϕ − 2c55 cos 2ϕ + c13 − c33
15 2 
c�22 = c11 

c�23 = (c13 − c11 + 2c66) cos2 ϕ + c11 − 2c66 

c�25 = −
2
1 (c13 − c11 + 2c66) sin 2ϕ 

c�33 = (c11 + c33 − 2c�13) cos4 ϕ + 2(c13 − c11) cos2 ϕ − 2c55 cos2 2ϕ + c11�+ c55 

c�35 = −
2
1 sin 2ϕ (c11 − 2c13 + c33) cos2 ϕ − 2c55 cos 2ϕ − c11 + c13 

c�44 = (c55 − c66) cos2 ϕ + c66 = c55 cos2 ϕ + c66 sin
2 ϕ � c�46 = (c66 − c55) sin ϕ cos ϕ � 

c�55 = 
4
1 (2c13 − c11 − c33 + 4c55) cos2 2ϕ + c11 − 2c13 + c33 

c�66 = (c66 − c55) cos2 ϕ + c55 

(5.3) 

I have checked that these are correct by comparing them with the numerical 

results from TAVRT. 

5.2 Solution of the Christoffel Equation for Tilted VTI Me­

dia 

The Christoffel equation for a tilted VTI medium can be given as follows: 

⎛	 ⎞⎛ ⎞ 
G�

11 − ρv2 G�
12 G�

13 U1
�⎜	 ⎟⎜ ⎟ ⎝	 G�

12 G�
22 − ρv2 G�

23 ⎠⎝ U2
� ⎠ = 0 (5.4) 

G�
13 G�

23 G�
33 − ρv2 U3

�
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where 

G�
11 = c�11n

�2
1 + c�66n

�2
2 + c55

� n�23 + 2c�15n
�
1n

�
3 

G�
22 = c�66n

�
1
2 + c�22n

�
2
2 + c�44n

�
3
2 + 2c�46n

�
1n

�
3 

G�
33 = c�55n

�
1
2 + c�44n

�
2
2 + c�33n

�
3
2 + 2c�35n

�
1n

�
3 (5.5) 

G�
23 = (c�44 + c�23)n

�
2n

�
3 + (c�25 + c�46)n

�
1n

�
2 

G�
13 = c�15n

�
1
2 + c�46n

�2
2 + c�35n

�
3
2 + (c�13 + c�55)c35

� n�1n
�
3


G�
12 = (c�46 + c�25)n

�
2n

�
3 + (c�12 + c�66)n

�
1n

�
2


For propagation in the x1 − x3-plane (n�2 = 0), the stiffness matrix becomes


⎞⎛⎞⎛ 
G�

11 − ρv2 0 G�
13 

0 
U1

�

U2
�⎜⎝


⎜⎝

⎟⎠


⎟⎠
= 0 (5.6)
G�
22 − ρv2 0


G�
13 0 G�

33 − ρv2 U3
�

where 

G�
11 = c�11n

�2
1 + 2c�15n

�
1n

�
3 

G�
22 = c�66n

�2
1 + c�44n

�2
3 + 2c�46n

�
1n

�
3 

G�
33 = c�55n

�2
1 + c�33n

�
3
2 + 2c�35n

�
1n

�
3 (5.7) 

G�
23 = 0 

G� = c� + (c�13 + c�55)c
�

13 15n
�
1
2 + c�35n

�2
3 35n

�
1n

�
3 

G�
12 = 0


We obtain the following two uncoupled dispersion relations:


G�
22 − ρv2 = 0, (5.8) 

(G�
11 − ρv2)(G�

33 − ρv2) − G�2 
13 = 0 

From equation 5.6, we can see that the first equation of 5.8 has a displacement 

u� = (0, u�2, 0)T , which describes a horizontally polarized pure shear wave, i.e. SH-

wave. The phase velocity of the SH-wave can be given as follows: 

1

c�66n

�2
1 + c�44n�

2
3 + 2c�46n

�
1n�3 (5.9) v =


ρ


where n�1 = sin θ and n�3 = cos θ. 
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For the case of no tilt (ϕ = 0), equation 5.9 becomes 

� 
1� � 

v = c66 sin
2 θ + c55 cos2 θ (5.10) 

ρ 

since c�66 = = c55, and c� = 0 for ϕ = 0, which is, as expected, identical to c66, c�44 46 

the phase velocity of an SH-wave traveling in a VTI medium (3.10). 

The first equation of 5.8 can be rewritten as follows: 

c�44s
�2
3 + 2c�46s

�
1s

�
3 + c�66s

�2
1 − ρ = 0 (5.11) 

Solving equation 5.11 for s�3, we get 2 solutions: 

s�3
(1) = 1 − c�46s

�
1 + c�46

2 s�21 − c�44(c
�
66s

�
1
2 − ρ)

c�44 � � � (5.12) 
s�3

(2) = 
c
1 
� − c�46s

�
1 − c�46

2 s�21 − c�44(c
�
66s

�
1
2 − ρ) 

44 

For an x3-axis pointing downward, the solution s�3
(1) corresponds to downward 

propagating waves while the solution s�3
(2) corresponds to upward propagating waves. 

5.3 Scattering Coefficients for Tilted VTI Media 

The particle displacement of the incident, reflected and transmitted SH-waves 

propagating in a tilted VTI medium can be written as (see figure 5.2) 

I 
3 x

�
3−t) 

u�R 
2 = Reiω(s�1x�

1+s�

u�I 
2 = eiω(s�1x�

1+s�

R 
3 x�

3−t) (5.13) 

u�T 
2 = Teiω(s�1x�

1+s�T 
3 x

�
3−t) 
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Figure 5.2: Scattering Coefficients of an SH wave. The positive direction of particle 
motion is the positive x�2 direction (out of the page). 

where R and T are the reflection and transmission coefficients, respectively. 

From the stress-strain relation (2.2), we have the x�2 component of the stress of 

the incident, reflected and transmitted SH-waves in a tilted VTI medium can be 

written as 

σ�I = iωu�I (1)s�1 + c� (1)s�I 
3)23 2(c

�
2321 2323 

σ�R = iωu�R (1)s�1 + c� (1)s�R) (5.14) 
23 2 (c

�
2321 2323 3 

σ�T (2) (2)s�T 
23 = iωu�T 

2 (c
�
2321 s�1 + c�2323 3 ) 
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or 

σ�I 
4 = iωu�I 

2(c
�
46

(1)s�1 + c�44
(1)s�3

I ) 

σ�R 
4 = iωu�R 

2 (c
�
46

(1)s�1 + c�44
(1)s�R 

3 ) (5.15) 

σ�T 
4 = iωu�T 

2 (c
�
46

(2)s�1 + c�44
(2)s�T 

3 ) 

using Voigt notation. 

The boundary conditions states that u�2 and σ�4 are continuous across the bound­

ary (x�3 = 0), i.e., 

=u�I 
2 + u�R 

2 x�
3=0 

u�T 
2 x�

3=0 � � � � (5.16) 
σ�I 

4 + σ�R 
4 x�

3=0 
= σ�T 

4 x�
3=0 

Substituting equations 5.13 and 5.15 into equation 5.16, we get 

T = 1 + R 
(5.17) 

ZT T = ZI + ZRR 

where Z = c�46s
�
1 + c�44s

�
3.


The system of equations 5.17, has the following solution:


ZI − ZT ZI − ZR 

R = , T = (5.18) 
ZT − ZR ZT − ZR 

The dispersion relation can be given for the incident wave as follows 

c�44s
�I 
3

2 
+ 2c�46s

�
1s

�I 
3 + c�66s

�
1
2 − ρ = 0 (5.19) 
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and it can be given for the reflected wave as follows 

c�44s
�R 
3 

2 
3 + c�66s

�2+ 2c�46s
�
1s

�R 
1 − ρ = 0 (5.20) 

Subtracting equation 5.20 from equation 5.19, we get 

2c�46s
�
1(s

�I 
3 3 33 − s�R) + c�44(s

�I 2 − s�R 2
) = 0 (5.21) 

In general, (s�I 
3 − s�R) = 0, then equation 5.21 becomes �3 

2c�46s
�
1 + c�44 3(s�

I 
3 + s�R) = 0 (5.22) 

which means that 

ZR = −ZI 

and hence the reflection and transmission coefficients become 

(5.23) 

R = , 
ZI − ZT 

ZI + ZT 
T = 

2ZI 

ZI + ZT 
(5.24) 

The angle of incidence can be defined as follows: 

θi = arctan 

� � 
s�1 

s�I 
3 

(5.25) 
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and because the incident wave propagates downwards, we have 

s�1
θi = arctan � � � (5.26) 

1 2 − c�46s�1 + c�46 s
�2
1 − c�44(c

�
66s

�
1
2 − ρ)

c�44 

The angle of reflection can be defined as follows: 

s�1
θr = arctan (5.27) 

s�R 
3 

and because the reflected wave propagates upwards, we have 

s�1
θr = arctan � � � (5.28) 

1 2 − c�46s�1 − c�46 s
�2
1 − c�44(c

�
66s

�
1
2 − ρ)

c�44 

In general, equations 5.27 and 5.28 are not equal, i.e., the angle of incidence is 

not equal to the angle of reflection in tilted VTI media. 

5.4 Ray Angle 

True incidence angles correspond to ray (group) angles between −90 and 90o 

and only the phase angles corresponding to these angles should be used for plotting 

scattering coefficients. For a ray (group) angle between −90 and 90o, the phase angle 

could be outside of this range and vice versa. 

We have seen from section 2.8, that the energy velocity and the group velocity 

are identical for anisotropic, homogeneous and elastic media. We have seen also from 

section 2.8, that the energy velocity and the mean energy density I , have the same 

direction. Hence to calculate the ray angle, we need to calculate the the mean energy 
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density I . Using equation 2.67, the mean energy density for a tilted VTI medium 

can be given as follows 

� � 1 2 
� �T 

I =
2 
ω2|U | s�1c

�
66 + s�3c

�
46, 0, s

�
1c

�
46 + s�3c

�
44 (5.29) 

From equation 5.29, the ray angle can be defined as follows 

s�1c
�
46 + s�3c

�
44φ = arctan (5.30) 

s�1c
�
66 + s�3c

�
46 

5.5 Examples 

In this section we are going to give some examples to illustrate the effect of tilt 

on the scattering coefficients of an SH-wave propagating in a VTI-medium. 

Based on the theory developed in this chapter, I implemented a program that cal­

culates explicitly the exact SH reflection and transmission coefficients for interfaces 

between two tilted VTI media with angles ϕ1 and ϕ2 about the x2-axis (figure 5.1). 

Figures 5.3 and 5.4 show the SH-wave reflection and transmission coefficients, 

respectively, as a function of incidence and tilt angles for a boundary between a 

tilted VTI medium and an isotropic medium. The tilt is measured with respect to 

the x2-axis in the clockwise direction. The model parameters are given in table 5.1. 

From figures 5.3 and 5.4, we can see that the reflection and transmission coef­

ficients vary with tilt. Figures 5.5 and 5.6 are a zoom in of figures 5.3 and 5.4, 

respectively. From figure 5.5 we can see that the magnitude of the reflection coef­

ficient decrease with increasing tilt angle and from figure 5.6 we can see that the 

magnitude of the transmission coefficient increase with increasing tilt angle. 
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Table 5.1: Model parameters used for constructing figures 5.3 through ?? 

Parameter Upper Medium Lower Medium


VP 0 3.00 3.50 
VS0 2.00 2.70 
ρ 2.50 2.70 
� 0.10 0.00 
δ 0.10 0.00 
γ 0.10 0.00 

3Velocities in km/s and density in g/cm

Figure 5.3: H1H1 Scattering Coefficient vs. Incidence Angle and Tilt. Upper 
Medium is Tilted VTI and Lower Medium is Isotropic. The model parameters are 
given in table 5.1. 
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Figure 5.4: H1H2 Scattering Coefficient vs. Incidence Angle and Tilt. Upper 
Medium is Tilted VTI and Lower Medium is Isotropic. The model parameters are 
given in table 5.1. 

Figure 5.5: Zoom in of figure 5.3.
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Figure 5.6: Zoom in of figure 5.4. 

Notice from figures 5.3 and 5.4, that the angles of incidence (phase angles) beyond 

85o and tilt angles −30o and −60o correspond to non-physical rays. To confirm this, 

we plot the ray angle versus phase angle in figure 5.7, from which we can see that, in 

fact, the corresponding ray angles are greater than 90o and the corresponding rays 

are non-physical. 

Figures 5.8 and 5.9 show the SH-wave reflection and transmission coefficients, 

respectively, as a function of incidence and tilt angles for a boundary between two 

tilted VTI media. The tilt is measured with respect to the x2-axis in the clockwise 

direction. The model parameters are given in table 5.2. 

From figures 5.8 and 5.9, we can see that the reflection and transmission coeffi­

cients are unaffected by the sign of the tilt angle of the lower medium. Notice that 

in both figures, only reflection and transmission coefficients for physical rays have 
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Figure 5.7: Ray vs. Phase Angle. Upper Medium is Tilted VTI and Lower Medium 
is Isotropic. The model parameters are given in table 5.1. 

Table 5.2: Model parameters used for constructing figures 5.8 and 5.9 

Parameter Upper Medium Lower Medium


VP 0 3.00 3.50 
VS0 2.00 2.70 
ρ 2.50 2.70 
� 0.10 0.20 
δ 0.10 0.20 
γ 0.10 0.20 

Velocities in km/s and density in g/cm3 
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Figure 5.8: H1H1 Scattering Coefficient vs. Incidence Angle and Tilt. Both Media 
are Tilted VTI. The model parameters are given in table 5.2. 

Figure 5.9: H1H2 Scattering Coefficient vs. Incidence Angle and Tilt. Both Media 
are Tilted VTI. The model parameters are given in table 5.2. 
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been plotted. 



Chapter 6 

Comparison Between Numerical and Formula 

Based Scattering Coefficients 

In this chapter I am going to compare between numerical (TAVRT) and formula 

based scattering coefficients. The comparison is done for isotropic, VTI, tilted VTI, 

and monoclinic media. 

For HTI media, the comparison is done between the results obtained by the pro­

gram TAVRT and those obtained by the Seismic Unix program 

refRealAziHTI (Rüger, 2001; Stockwell, 1997) which computes the exact scatter­

ing coefficients numerically for interfaces between two HTI media having the same 

symmetry plane. 

The program TAVRT does not include degenerate cases, when the shear wave 

speeds of the media involved are the same in a given direction. The code simply skips 

these angles which do not cause problems as they are few and sparse. Interpolation 

will suffice to fill in these gaps in the reflection and transmission coefficient curves. 

One other possible solution is to slightly change some appropriate medium parame­

ters without changing the general behavior of the medium to avoid the degeneracy. 

6.1 Isotropic Media 

Isotropic media are degenerate for all input ray parameter values and to make 

TAVRT work we need to modify the medium parameters so that the medium becomes 

82
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Table 6.1: Model parameters used for constructing figures 6.1 through 6.16 

Parameter Upper Medium Lower Medium


VP 2.50 3.60 
VS 1.40 2.08 
ρ 2.00 2.00 

Velocities in km/s and density in g/cm3 

slightly anisotropic to eliminate the degeneracy. This can be achieved by replacing 

Thomsen parameters �, δ and γ by a small number, say 0.003 instead of zero, for 

example. 

Based on section 3.2.1, I implemented a program that calculates the exact scat­

tering coefficients for interfaces between two isotropic media. Figures 6.1 through 

6.16 show the comparison between the scattering coefficients obtained by the for­

mula based program and the numerical program (TAVRT). The model parameters 

are given in table 6.1. 

From these figures we can see that the scattering coefficients calculated explicitly 

based on formulae agree very well with the numerical results computed with TAVRT. 

6.2 VTI Media 

VTI media are degenerate in the vertical direction (p = 0), because the qSH and 

qSV wave speeds are the same. To remove the degeneracy, we need to modify slightly 
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Figure 6.1: P1P1 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 

Figure 6.2: P1P2 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 
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Figure 6.3: P1V1 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 

Figure 6.4: P1V2 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 
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Figure 6.5: P2P1 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 

Figure 6.6: P2P2 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 
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Figure 6.7: P2V1 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 

Figure 6.8: P2V2 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 
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Figure 6.9: V1P1 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 

Figure 6.10: V1P2 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 
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Figure 6.11: V1V1 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 

Figure 6.12: V1V2 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 
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Figure 6.13: V2P1 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 

Figure 6.14: V2P2 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 
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Figure 6.15: V2V1 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 

Figure 6.16: V2V2 scattering coefficient versus angle of incidence of an 
isotropic/isotropic interface. The model parameters are given in table 6.1. 
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Table 6.2: Model parameters used for constructing figures 6.17 through 6.20 

Parameter Upper Medium Lower Medium


VP 0 3.30 4.20 
VS0 1.70 2.70 
ρ 2.35 2.49 
� 0.10 0.00 
δ 0.10 0.00 

Velocities in km/s and density in g/cm3 

some appropriate medium parameters so that the medium is nearly the same but 

more anisotropic. For example, we can replace c55 with, say c55 × 1.001. 

Based on section 3.2.2, I implemented a program that calculates the exact scat­

tering coefficients for interfaces between two VTI media. Figures 6.17 through 6.20 

depict the comparison between the scattering coefficients obtained by the formula 

based program and the numerical program (TAVRT). The model parameters are 

given in table 6.2. 

From these figures we can see that the scattering coefficients calculated based on 

formulae agree very well with the numerical results computed with TAVRT. 

6.3 Tilted VTI Media 

Based on chapter 5, I implemented a program that calculates the exact SH reflec­

tion and transmission coefficients for interfaces between two tilted VTI media with 
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Figure 6.17: P1P1 scattering coefficient versus angle of incidence of a VTI/isotropic 
interface. The model parameters are given in table 6.2. 

Figure 6.18: P1P2 scattering coefficient versus angle of incidence of a VTI/isotropic 
interface. The model parameters are given in table 6.2. 
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Figure 6.19: P1V1 scattering coefficient versus angle of incidence of a VTI/isotropic 
interface. The model parameters are given in table 6.2. 

Figure 6.20: P1V2 scattering coefficient versus angle of incidence of a VTI/isotropic 
interface. The model parameters are given in table 6.2. 
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Table 6.3: Model parameters used for constructing figures 6.21 through 6.28 

Parameter Upper Medium Lower Medium


VP 0 3.00 3.50 
VS0 2.00 2.70 
ρ 2.50 2.70 
� 0.10 0.00 
δ 0.10 0.00 
γ 0.10 0.00 

3Velocities in km/s and density in g/cm

angles ϕ1 and ϕ2 about the x2-axis (figure 5.1). Figures 6.21 through 6.28 depict 

the comparison between the scattering coefficients obtained by the formula based 

program and the numerical program (TAVRT). The model parameters are given in 

table 6.3. 

From these figures we can see that the scattering coefficients calculated based on 

formulae agree very well with the numerical results computed with TAVRT. 

6.4 HTI Media 

In this section I am going to compare the results obtained numerically by the 

program TAVRT with the results obtained numerically by the Seismic Unix pro­

gram refRealAziHTI (Rüger, 2001; Stockwell, 1997) that calculates the exact scat­

tering coefficients for a boundary between to HTI media having the same symmetry 

axis direction. For a given incident wave mode, phase angle, and azimuth angle, 
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Figure 6.21: H1H1 scattering coefficient versus angle of incidence of a tilted (0o) VTI 
over isotropic interface. The model parameters are given in table 6.3. 

Figure 6.22: H1H2 scattering coefficient versus angle of incidence of a tilted (0o) VTI 
over isotropic interface. The model parameters are given in table 6.3. 
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Figure 6.23: H1H1 scattering coefficient versus angle of incidence of a tilted (30o) 
VTI over isotropic interface. The model parameters are given in table 6.3. 

Figure 6.24: H1H2 scattering coefficient versus angle of incidence of a tilted (30o) 
VTI over isotropic interface. The model parameters are given in table 6.3. 
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Figure 6.25: H1H1 scattering coefficient versus angle of incidence of a tilted (60o) 
VTI over isotropic interface. The model parameters are given in table 6.3. 

Figure 6.26: H1H2 scattering coefficient versus angle of incidence of a tilted (60o) 
VTI over isotropic interface. The model parameters are given in table 6.3. 
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Figure 6.27: H1H1 scattering coefficient versus angle of incidence of a tilted (90o) 
VTI over isotropic interface. The model parameters are given in table 6.3. 

Figure 6.28: H1H2 scattering coefficient versus angle of incidence of a tilted (90o) 
VTI over isotropic interface. The model parameters are given in table 6.3. 
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Table 6.4: Model parameters used for constructing figure 6.29 

Parameter Upper Medium Lower Medium


VP 0 2.260 2.370 
VS0 1.428 1.360 
ρ 2.600 2.700 
� 0.000 0.050 
δ 0.000 0.020 
γ 0.000 0.100 

3Velocities in km/s and density in g/cm

refRealAziHTI starts by computing the phase velocity and the horizontal slowness. 

Then the Christoffel equation is used to determine the vertical slowness components 

which will be sorted to determine the different wave modes. The next step of the 

algorithm would be to calculate the polarization vectors. The final step would be to 

solve the system resulting from applying the welded contact boundary conditions to 

the interface for the scattering coefficients. 

Figures 6.29 depicts the P-wave reflection coefficient as a function of incidence 

and azimuthal angles of an isotropic/HTI interface obtained by refRealAziHTI and 

by TAVRT. The model parameters are given in table 6.4. 

From figure 6.29 we can see that the scattering coefficient calculated based on 

the two numerical programs refRealAziHTI and TAVRT agree very well with each 

other. 
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Figure 6.29: H1H1 scattering coefficient of an isotropic/HTI interface. The model 
parameters are given in table 6.4. 

6.5 Monoclinic Media 

Based on section 3.2.3, I implemented a program that calculates the exact SH-

wave scattering coefficients for interfaces between two monoclinic media. Figures 6.30 

and 6.31 depict the comparison between the scattering coefficients obtained by the 

formula based program and the numerical program (TAVRT). The model parameters 

are given in table 6.5. 

From these figures we can see that the scattering coefficients calculated based on 

formulae agree very well with the numerical results computed with TAVRT. 
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Figure 6.30: H1H1 scattering coefficient of an isotropic/monoclinic interface. The 
model parameters are given in table 6.5. 

Figure 6.31: H1H2 scattering coefficient of an isotropic/monoclinic interface. The 
model parameters are given in table 6.5. 
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Table 6.5: Model parameters used for constructing figures 6.30 and 6.31


Parameter Upper Medium Lower Medium


c44 10.00 11.00 
c46 0.00 -7.00 
c66 10.00 22.00 
ρ 2.500 2.700 

Stiffness elements in GPa and density in g/cm3 



Chapter 7 

Conclusion and Possible Extensions 

7.1 Conclusion 

The program TAVRT was tested for isotropic, VTI and monoclinic anisotropic 

media. The results matched very well the results of the scattering coefficients for­

mulae found in the literature. TAVRT was also tested for the HTI case and the results 

matched very well the results of the Seismic Unix program 

refRealAziHTI (Rüger, 2001; Stockwell, 1997) which computes the exact scatter­

ing coefficients numerically for interfaces between two HTI media having the same 

symmetry plane. 

The results of the derived SH-wave scattering coefficients formulae for an interface 

between two tilted VTI media with angles ϕ1 and ϕ2 about the x2-axis (figure 5.1) 

matched very well the results of the program TAVRT. 

The program TAVRT can be used to check the validity of new derived exact and 

approximate scattering coefficients and group velocity formulae. It can also be used 

to analyze very complex anisotropic media. 

For tilted VTI media, the scattering coefficients vary with tilt, but they are unaf­

fected by the sign of the tilt angle of the lower medium, i.e., the scattering coefficients 
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for an interface between two tilted VTI media with angles ϕ1 and ϕ2 and the scat­

tering coefficients for an interface between two tilted VTI media with angles ϕ1 and 

−ϕ2 are equal. 

For tilted VTI media, and pre-critical angle of incidence, the magnitude of the 

reflection coefficient decreases as the absolute value of the tilt angle of the upper 

medium ϕ1 increases and the magnitude of the transmission coefficient increases as 

the absolute value of the tilt angle of the upper medium ϕ1 increases. 

In general, the angle of incidence and the angle of reflection are different for tilted 

VTI media. 

7.2 Possible Extensions 

The program TAVRT has some provisions to treat the anelastic (viscoelastic) 

case for dissipative media, but is not fully developed. More work is needed to make 

it fully operational. 

Although, slightly modifying the medium parameters, to avoid degeneracy works 

well, a more rigorous mathematical investigation is desirable to overcome the prob­

lem. 

Currently, TAVRT expects horizontal slowness values s1 as input and can be 

extended to accept phase and ray angles of incidence as well. However, phase and 

ray angles that correspond to the horizontal slowness values s1 are computed in the 

program, and can be used to make plots of scattering coefficients against phase or 
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ray angles. 

Scattering coefficients formulae for arbitrary tilt angles (not only about the x2 ­

axis) can be derived for the SH-wave propagating in tilted VTI media as well as 

deriving scattering formulae for a P-wave and SV-wave propagating in tilted VTI 

media. 
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Appendix A


Calculation of Vertical Slownesses


In this appendix I present explicitly the sixth degree polynomial of s3. Equa­

tion 4.19 of the main text, can be rewritten as follows: 

SAST − I(3) = 0 (A.1)


where A is the density normalized stiffness matrix.


Using MATLAB’s symbolic math, the sixth degree polynomial of s3 is


A + B s3 + C s2
3 + D s3

3 + E s4
3 + F s3

5 + Gs6
3 = 0 (A.2) 

where 

A = 35
2 c44 + 2 ∗ c34 c35 c45 − c33 c45

2 − c34
2 c55 + c33 c44 c55−c


B = 2 ∗ − c15 c34
2 + c14 c34 c35 + c15 c33 c44 − c13 c35 c44 − c14 c33 c45 

2+c13 c34 c45 + c35 c36 c45 − c35 c46 − c34 c36 c55 + c33 c46 c55 

+c34 c35 c56 − c33 c45 c56 s1 
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C = c 2 
35
2 − c33 c44 + c45

2 − (c33 + c44) c5534 + c 

+ − c14
2 c33 − c11 c34

2 + 2 ∗ c16 c34 c35 − 4 ∗ c15 c34 c36 

−c13
2 c44 + c11 c33 c44 + 2 ∗ c15 c35 c44 − 2 ∗ c16 c33 c45 

−2 ∗ c15 c34 c45 + 2 ∗ c13 c36 c45 + 2 ∗ c13 c45
2 + 4 ∗ c15 c33 c46 

−4 ∗ c13 c35 c46 − c36
2 c55 − 2 ∗ c13 c44 c55 + 2 ∗ c13 c34 c56 

+2 ∗ c35 c36 c56 − c33 c 
2 + 2 ∗ c14 (c35 (c36 − c45)56 

+c34 (c13 + c55) − c33 c56) − c35
2 c66 + c33 c55 c66 s 

2
1 

D = c35 (c13 − c44) − c15 (c33 + c44) + c34 (c36 + c45)2 ∗ 

−c46 (c33 + c55) + c45 (c14 + c56) s1 − 2 c14
2 c35 

2+c11 c34 c36 − c16 c35 c36 + c15 c36 − c11 c35 c44 

2+c11 c34 c45 + c16 c35 c45 + c15 c36 c45 + c13 c46 

−c11 c33 c46 − 2 ∗ c15 c35 c46 − c16 c34 c55 + c16 c33 c56 

+c15 c34 c56 + c14 (c16 c33 − c15 c34 − c13 (c36 + c45) 

−c36 c55 + c35 c56) − c15 c33 c66 + c13 (−c16 c34 + c15 c44 

+2 ∗ c46 c55 − (c36 + 2 ∗ c45) c56 + c35 c66) s 
3 
1 
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E = c33 + c44 + c55 + c 2 2
14 − 2 ∗ c15 c35 − c11 (c33 + c44)13 + c 

+2 ∗ c16 c45 + (c36 + c45)
2 − 4 ∗ (c15 + c35) c46 + 2 ∗ c13 c55 

−c44 c55 + 2 ∗ (c14 + c34) c56 + c56
2 − (c33 + c55) c66 s 

2 
1 

+ − c16
2 c33 − c11 c36

2 − c15
2 c44 − 2 ∗ c11 c36 c45 

2 2−c11 c45 − 4 ∗ c13 c15 c46 + 4 ∗ c11 c35 c46 − c14 c55 

+c11 c44 c55 − 2 ∗ c11 c34 c56 − 2 ∗ c15 c36 c56 + 2 ∗ c13 c 
2 
56 

+2 ∗ c14 (c15 (c36 + c45) + c13 c56) + 2 ∗ c16 (c15 c34 

+c13 (c36 + c45) + c36 c55 − c35 (2 c14 + c56)) − c 2 
13 c66 

+c11 c33 c66 + 2 ∗ c15 c35 c66 − 2 ∗ c13 c55 c66 s 
4 
1 

F = 2 ∗ c15 + c35 + c46 s1 

+2 ∗ c13 c15 + c14 c16 − c11 (c35 + c46) − c46 c55 

+(c16 + c36 + c45) c56 − (c15 + c35) c66 s 
3 
1 

+2 ∗ − c16
2 c35 − c15

2 c46 + c16 (c15 (c36 + c45) − c14 c55 

+c13 c56) + c15 (c14 c56 − c13 c66) + c11 (c46 c55 

−(c36 + c45) c56 + c35 c66) s1
5 

G = −1 + c11 + c55 + c66 s 
2
1 

+ c15
2 + c16

2 − c11 c55 + c56
2 − (c11 + c55) c66 s1

4 

+ 16
2 c55 + 2 ∗ c15 c16 c56 − c11 c 

2 2 s 6− c 56 − c15 c66 + c11 c55 c66 1 


