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Abstract 

This research presents an agile healthcare simulation modeling (AHSM) approach to 

support the full life cycle of decision-making for managing the operations of multi-unit 

healthcare systems (MUHSs) in a rapid and flexible manner.  The approach involves 

developing and maintaining simulation models at the unit level, and integrating the unit 

simulation models to address different decision problems at different levels of the MUHS. 

At the operational level, AHSM includes two stages: 1) Planning - identify the 

hierarchical structures of a MUHS and perform an architectural design of the overall SM 

studies; and 2) Executing - develop unit, subsystem and the overall MUHS simulation 

models. The existence of the MUHS hierarchical structures is supported by a conceptual 

model, nearly decomposable-complex adaptive systems (ND-CASs), which is introduced 

to represent and describe the operations of MUHSs.  

Following the introduction of the AHSM approach, a system decomposition technique 

based on principal component analysis (PCA) is proposed for identifying the hierarchical 

structures of MUHSs with a large number of units, and a neural network (NN) based 

simulation metamodeling technique is suggested to simplify and represent unit simulation 

models. In addition, a flexible model integration (FMI) approach is recommended to 

guide the use of different model integration approaches in the development of MUHS 

simulation models.  

The real-world potential of AHSM is demonstrated via three application examples.  
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Chapter 1  Introduction 

1.1  Introduction 

Healthcare systems are organizations of people, facilities and resources intended to 

deliver healthcare services to meet the health needs of target populations. In many western 

countries, healthcare systems are facing a crisis (Langabeer, 2008). On the one hand, 

populations are growing and aging which means that people are requiring more healthcare 

services, especially resource-intensive ones. On the other hand, as the major payers for 

healthcare expenditure, governments are trying to control the increase of healthcare 

spending in a time of global financial turmoil. In order to stay financially viable while 

delivering high quality healthcare services, healthcare organizations are under significant 

pressure to improve their operational efficiency. This leads to a great deal of attention 

from both academic and practitioner communities to the application of operations 

research (OR) tools in the field of healthcare operations management (Healthcare OM) to 

support decision-making at various levels. 

Healthcare OM is defined as “the analysis, design, planning, and control of all the steps 

necessary to provide a (healthcare) service for a client” (Vissers & Beech, 2005). 

Healthcare OM problems are similar in many ways to traditional problems in OM 

(Brandeau et al., 2004), including strategic planning problems such as design of services, 

design of healthcare supply chains, facility planning and design, process selection, 

equipment evaluation and selection, and capacity planning. Healthcare OM problems also 

include tactical and operational planning problems such as demand and capacity 
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forecasting, capacity management, scheduling and staff planning, job design, and 

management of healthcare supply chains. Healthcare managers must measure and manage 

system performance and quality, manage inventory (e.g. supplies, drugs, or blood), and 

assess the performance of healthcare technologies.  

However, healthcare has many unique characteristics when compared with other 

industries. Healthcare systems are intensely people-centred putting them among the most 

complex and dynamic systems in the world (Seila & Brailsford, 2009). Patients are 

people, healthcare services providers, e.g. nurses and physicians, are people, and 

healthcare managers and policy makers are people. The delivery process of healthcare 

services is the interaction between people, and is full of uncertainty because the condition 

of patients cannot be accurately predicted in advance, nor measured with certainty during 

the provision of care. There are many stakeholders involved in the operations of 

healthcare systems and they often have different or even conflicting views on how to 

operate the healthcare systems or evaluate the quality of healthcare services (Donabedian, 

1966).  

A typical healthcare system consists of many units. The term multi-unit healthcare system 

(MUHS) is used in this research as a generic term to represent any healthcare system 

consisting of two or more units. A unit in a MUHS is an independent entity providing a 

single service or a group of closely related services. For example, an emergency 

department (ED) or a group of EDs can be treated as a unit and the service managing the 

patient waiting lists can be treated as a unit as well (Langabeer, 2008). Though all the 

units in a MUHS need to work together to provide healthcare services, each unit also has 
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its own local and short-term priorities. The independent operations of each unit in a 

MUHS help create an environment that is less team-focused than in other industries. In 

addition, the operations of each unit in a MUHS and the MUHS as a whole must also deal 

with frequent changes that can happen at the organizational structure level and/or at the 

operational process level. All these factors can cause ambiguity in decision-making as 

necessary trade-offs need to be made between short-term/local and long-term/global 

priorities among the units.  

1.2  The Challenges of Simulation Modeling in Healthcare 

In the most generic sense, a model is a simplified representation of a system intended to 

help answers questions about the system (Kelton & Law, 2000). Modeling is the process 

of building, refining and analyzing that representation for greater insight and improved 

decision-making. Simulation is the manipulation of the inputs of a model to see how they 

affect the output measures of performance. A model to be studied by means of simulation 

is called a simulation model. Simulation modeling (SM) is the creation and use of 

simulation models to develop data as a basis for making various decisions. As shown in 

Figure 1-1, SM provides a virtual world as called by Schӧn (1983), for decision-makers to 

manage complex decision situations by focusing on the most important aspects while 

downplaying the less important ones. Given the dynamics and complexity of real systems, 

it can be very difficult if not impossible to solve many decision problems in the real 

world, which is represented in Figure 1-1 via the circle with the line through it. However, 

in the virtual world of models, a simulation model can be run to test different decision 
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alternatives and provide the conceptual solution, which can be used by decision-makers to 

make the final decision. 

 

Figure 1-1 The Real World and the Virtual World of Models 

SM is one of the most commonly used OR tools in healthcare and has been applied in the 

domain of healthcare for over four decades.  It is regarded by many as the “technique of 

choice” for decision support in the complex and fast changing healthcare environment 

(Davies & Davies, 1994). However, SM has not yet become an integral part of analysis 

before major decisions in healthcare are made (Seila & Brailsford, 2009). Many 

researchers have tried to address this issue from different perspectives including: the 

complexity of healthcare systems (Jun et al., 1999); the availability of SM methods 

(Eldabi et al., 2007; Brailsford et al., 2006); the need to understand the priority of 

healthcare managers (Smith, 1995); unit- or facility-specific simulation models and their 

low reuse rate (Jun et al., 1999; Gunal & Pidd, 2009); and the speed of developing 

simulation models (Wilson, 1981).  

The Decision Problem
Decision

Conceptual SolutionSimulation Model

Dynamics & 
Complexity

Real System

The Real World

The Virtual World of Models
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The author believes that the two most important factors affecting the prevalence of SM 

applications in healthcare are concerns with rapidity and flexibility. Rapidity means how 

quickly a simulation model can be developed to address the decision problem. Flexibility 

means the reusability of existing simulation models or of knowledge acquired in previous 

SM projects to address new decision problems. Depending on the nature and domain of 

the decision problems, the measurement and evaluation of the rapidity and flexibility of 

SM applications can vary. For unit-/facility-specific decision problems, once the 

simulation model has been developed to represent the operations of the unit/facility, it is 

feasible to update that simulation model to reflect changes in the operations of the 

unit/facility. So the SM rapidity and flexibility can be measured and evaluated by 

analyzing the features of the simulation model, i.e. does it adopt an open structure to 

incorporate changes? Does it have a friendly user interface to accommodate the needs of 

users with different levels of knowledge on SM? But for decision problems concerning 

multiple units, the possibility of reusing an existing MUHS simulation model is relatively 

smaller as new decision problems can concern a different set of units. There could be a 

significant amount of work to develop a MUHS simulation model from another MUHS 

simulation model. So the SM rapidity and flexibility in MUHSs should be measured and 

evaluated by focusing on the SM process rather than only on the features of the simulation 

models.  

As shown in Figure 1-2, current SM practices in healthcare do not provide the rapidity 

and flexibility required to support integrated decision-making for managing the operations 

of MUHSs. The unit- or facility-specific applications of healthcare SM (HSM) limit the 

flexibility of addressing various decision problems by reusing existing simulation models. 
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As a result, simulation models need to be developed from scratch almost every time when 

new decision problems occur, which in turn affects the rapidity with which SM can be 

used to address these decision problems. 

 

Figure 1-2 The Lack of Rapidity and Flexibility in the Current 

SM Practices in Healthcare 

1.3  Research Motivations, Tasks and Approaches 

This research is motivated to develop a HSM approach for improving the rapidity and 

flexibility of SM applications in MUHSs.  For the HSM approach to be successful, it 

needs to address both the short-term and long-term requirements of SM applications in 

healthcare. To understand these requirements, this research makes the following main 

assumptions regarding healthcare SM applications: 

Short-term 

1) Healthcare organizations will not have in-house resources for the development and 

maintenance of large-scale healthcare simulation models. 

Decision Problem#1
MUHS#1

Decision #1

Conceptual 
Solution #1

Decision Problem#2
MUHS#2

Simulation Model
MUHS#2 

Conceptual 
Solution #2

Decision #2

Simulation Model
MUHS#1 

Dynamics & 
Complexity

Dynamics & 
Complexity

Healthcare System

Lack of:
Rapidity & 
Flexibility
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2) Healthcare organizations will not invest money in developing or purchasing real-

time software systems simulating the operations of the whole healthcare system. 

3) The majority of SM applications in healthcare will still be unit-/facility-specific.  

4) Healthcare organizations will continue to focus on improving the efficiency of 

their operations. 

5) Senior management will have growing interest in SM applications in MUHSs, but 

is still hesitant to invest money in large-scale SM projects covering multiple units. 

Thus most of the SM applications in MUHSs will still be driven by specific 

decision problems. 

Long-term 

1) Healthcare organizations will still to focus on improving the efficiency of their 

operations. 

2) SM will become the essential supporting tool in making decisions concerning the 

operations of MUHSs. 

3) However, the majority of SM applications in healthcare will still be unit-/facility-

specific, supporting the daily operations of the units.  

Based on the above assumptions, one possible solution is to separate the development and 

maintenance of the unit simulation models from the use of these simulation models. The 

maintenance of the unit simulation models means updating the simulation models 

periodically to reflect the changes in the units.  
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Figure 1-3 Separating the Development and Maintenance of the Unit 

Simulation Models from the Use of these Models 

As shown in Figure 1-3, simulation models can be developed and maintained at the unit 

level. When new decision problems occur, these unit simulation models can be integrated 

to simulate the operations of the MUHS, within which the decision problems occur. 

Conceptually, the proposed solution is very simple and straightforward; however, there 

are two major challenges to operationalize this solution, as highlighted in Figure 1-4. The 

first one is how to map the real-world decision problem into the virtual world of models 

and decide which unit simulation models need to be developed or reused? The second one 

is once the unit simulation models have been identified, how can they be efficiently 

integrated together to represent the real-world decision problem?  
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Figure 1-4 Operationalization of the Proposed Solution 

This research is intended to tackle these two challenges with four planned research tasks. 

These research tasks and the corresponding research approaches are described as follows: 

Research Task #1: Literature Review 

The existing literature on related topics covered in this research is examined. The 

literature review is divided into two parts. The first deals with the complexity and 

dynamics of healthcare systems with a focus on the following two frequently quoted 

theories on complex systems: complex adaptive systems (CASs) and nearly decomposable 

(ND) systems. The second deals with various SM methods and their applications in 

healthcare.   

Decision Problem#1
MUHS#1

Decision #1

Conceptual 
Solution #1

Decision Problem#2
MUHS#2

Simulation Model
MUHS#2 

Conceptual 
Solution #2

Decision #2

Conceptual 
Model

MUHS#2

Simulation Model
MUHS#1 

Conceptual 
Model

MUHS#1
1

2

Unit 
Simulation 

Models



10  

 

Research Task #2: Develop a conceptual model to represent and describe the operations 

of MUHSs. This conceptual model is intended to serve as a bridge between the real world 

and the virtual world of models. 

Research Task #3: Develop a HSM approach to effectively support the full lifecycle of 

decision-making for managing the operations of MUHSs in a rapid and flexible manner. 

Research Task #4: Demonstrate the real-world potential of the proposed HSM approach 

via application examples  

1.4  Organization of the Dissertation 

The remainder of the dissertation is structured as follows: 

Chapter 2 reviews related literature on the complexity and dynamics of healthcare 

systems, the theories of CASs and ND systems, and different SM methods and their 

applications in healthcare. 

Chapter 3 introduces a conceptual model, nearly decomposable-complex adaptive systems 

(ND-CASs), to represent and describe the operations of MUHSs. The ND-CASs model is 

developed by integrating the key concepts from the theories of CASs and ND systems. Its 

potential benefits for supporting SM-based decision-making in MUHSs are also 

discussed. 

Chapter 4 presents an agile HSM (AHSM) approach for the development of MUHS 

simulation models in a rapid and flexible manner. 
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Chapter 5 discusses three techniques/approaches to support the implementation of AHSM:  

system decomposition; neural network (NN) based simulation metamodeling; and flexible 

model integration (FMI). 

Chapter 6 to 8 inclusive demonstrate the real-world potential of AHSM via three 

application examples. Chapter 6 shows how to decompose a MUHS into hierarchical 

layers of subsystems using the healthcare system in the Calgary Health Region (CHR) as 

an example. Chapter 7 uses an ED DES (discrete-event simulation) model as an example 

to show how to develop simulation metamodels by training NN models with the 

experimental outputs of the DES model. Chapter 8 demonstrates the application of the 

FMI approach with a focus on the underlying MMI approach in integrating multiple unit 

simulation models to develop the MUHS simulation model. The software packages used 

in the application examples are listed in Appendix A. 

Chapter 9 summarizes the key findings, contributions and limitations of the research, and 

also explores some future research opportunities. 
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Chapter 2  Literature Review 

2.1  Healthcare Systems as Complex Systems 

A system is defined as “a set or arrangement of things so related or connected as to form 

a unity or organic whole” (Webster’s New World Dictionary). The “things” in this 

definition may also be referred to as “elements” in other definitions. A complex system is 

a system consisting of a wide variety of elements which interact with each other in a 

nonlinear way. The study of complex systems can be referred to as complexity theory 

(McDaniel & Driebe, 2001). Complexity theory is not a single theory but instead it 

consists of a group of theories including CASs theory, ND systems theory, and quantum 

and chaos theory. 

Applications of complexity theory in healthcare started to emerge in the mid-1990s. For 

example, a series in Quality Management in Health Care examines clinical pathways as 

nonlinear and evolving systems (Sharp & Priesmeyer, 1995; Priesmeyer & Sharp, 1995; 

Priesmeyer et al., 1996). McDaniel (1997) and McDaniel & Driebe (2001) construct the 

leadership imperatives of healthcare executives from the perspective of quantum and 

chaos theory, and apply complexity theory to the process of management in healthcare 

delivery. Zimmerman et al. (1998) contribute a primer on complexity theory with nine 

management principles for leadership and management in healthcare systems. Begun & 

White (1999) use complexity theory to examine the inertial patterns in the nursing 

profession and their resistance to change. Marion & Bacon (2000) discuss the fitness of 

three eldercare organizations from the perspective of complexity theory, emphasizing that 
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organizations are embedded in larger systems. Dooley & Plsek (2001) use models of 

complex natural processes to explain the generation of medication errors in hospitals and 

conclude that the recommendations in the Institute of Medicine report (Kohn et al., 2000) 

fail to lead to significant organizational learning and improvement. In 2001, a series of 

articles in the BMJ (British Medical Journal) marks the official arrival of the “received 

interpretation” of complexity in healthcare (Paley, 2010). Almost all the authors who 

write on this topic later cite one or more articles in this series (Plsek & Greenhalgh, 2001; 

Wilson & Holt, 2001; Plsek & Wilson, 2001; Fraser & Greenhalgh, 2001). Since then, 

there has been a growing interest in applying complexity theory to healthcare systems 

(Dattee & Barlow, 2010). Healthcare systems are often referred to as “excellent examples 

of complex systems,” and should be studied as whole systems (Rowlands et al., 2005).  

Before the introduction of complexity theory to healthcare, the “machine” metaphor was 

dominant in thinking about healthcare systems (Begun et al., 2002), involving receiving 

inputs, transforming them, and producing outputs, such as improved health. This machine 

metaphor shapes beliefs on how the “system” can be studied and improved (Morgan, 

1997), i.e. break it into parts, and examine each part separately to understand its 

mechanics. If the system is not working as expected, then identify the problematic part 

and replace it. Yet, thinking of and operating healthcare systems as machines have not led 

to effective research and practice in healthcare. Healthcare delivery has failed repeatedly 

to achieve acceptable levels of satisfaction for both internal and external stakeholders 

(Begun et al., 2002). In the meantime, it is increasingly evident that healthcare systems do 

not meet the mechanistic expectations as suggested in the machine metaphor – they are 

much more complex and “messier” (Sibthorpe et al., 2004). As argued by Begun et al. 
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(2002), the introduction of complexity theory in healthcare broadens and deepens the 

scope of inquiry into healthcare systems and expands corresponding research methods.  

2.2  Theories of Complex Systems 

There are two frequently used theories on complex systems: the CASs theory and the ND 

systems theory. Both theories focus on certain aspects of complex systems, and their 

details are described in the following sections. 

2.2.1  The CASs Theory 

The CASs theory is one of the most popular complexity theories used in the study of 

complex systems (Sibthorpe et al., 2004). A CAS is defined as “being composed of 

populations of adaptive agents whose interactions result in complex nonlinear dynamics, 

the result of which are emergent system phenomena” (Brownlee, 2007). All CASs share 

some characteristics in common. The major ones include: dynamic, massively entangled, 

scale independent, transformative and emergent (Eoyang & Berkas, 1998). First, there are 

a large number of agents in a CAS. These agents are interconnected and open to external 

influences. As a result, changes in a CAS are constant and discontinuous, and a CAS 

exists in a state of dynamic flux (Briggs & Peat, 1989). Second, relationships in a CAS 

are complicated and enmeshed or “massively entangled” as described by Kontopoulos 

(1993). In a CAS, the adaptive agents and the variables describing those agents are large 

in number (Kelly, 1994). In addition to being numerous, variables and the interactions 

between the agents can be discontinuous and nonlinear. Some dimensions may lie 

dormant for a long period till they are sparked into action when some control parameters 
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reach critical values. Third, a CAS functions simultaneously at many different scales of 

organization (West & Deering, 1995). Individual agents take relatively independent 

actions, various grouping of agents emerge in the dynamical course of events, and the 

system as a whole exhibits identifiable behaviours. Behaviours in each of these domains 

are both similar to and different from behaviours of the others. Fourth, the agents in a 

CAS are open systems. They are transformed and transforming in their interactions. 

Agents do not simply adapt to the environment and each other. They co-evolve with each 

other and with the environment (McDaniel & Driebe, 2001). A CAS as a whole is also an 

open system, and transformation occurs across the system’s external boundaries. Both 

changes and stability can be generated in the system via the feedback loops. Fifth, a CAS 

has mechanisms for self-organization and emergence. Self-organization is defined as “a 

dynamical and adaptive process where systems acquire and maintain structure 

themselves, without external control” (De Wolf & Holvoet, 2005). The “structure” can be 

spatial, temporal or functional. “No external control” means the absence of manipulation, 

direction, interference or involvement from outside of the system. Emergence denotes the 

principle that the global properties defining higher order systems or “wholes” can in 

general not be reduced to the properties of the lower order subsystems or elements 

(Heylighen, 1989). Such irreducible properties are called emergent. 

De Wolf & Holvoet (2005) identified many characteristics of emergence through an 

extensive literature study. The most important ones are summarized as follows: 

1) Micro-macro Effect: A micro-macro effect refers to properties, behaviours, 

structures, or patterns that are situated at a higher macro-level and arise from 
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interactions at the lower micro-level of the system. The “level” mentioned refers to a 

particular viewpoint. The macro-level considers the system as a whole and micro-level 

considers the system from the viewpoint of the individual elements that make up the 

system. 

2) Radical Novelty: The global behaviours are novel w.r.t. (with regard to) the 

individual behaviours at the micro-level, i.e. the individuals at the micro-level have no 

explicit representation of the global behaviour. The global behaviours cannot be 

studied by physically taking a system apart and looking at the parts. However, they 

can be studied by looking at each of the elements in the context of the system as a 

whole. 

3) Coherence: Coherence refers to a logical and consistent correlation of elements. 

Emergent behaviour appears as an integrated whole that tends to maintain a certain 

sense of identity over time (i.e. a persistent pattern). 

4) Interacting Elements: The elements need to interact. Without interactions, 

interesting macro-level behaviours will never arise. 

5) Dynamical: Emergent behaviour arises as the system evolves over time. An example 

of such is the new kind of behaviour that becomes possible at a certain point in time. 

6) Decentralized Control: Decentralised control is using only local mechanisms to 

influence the global behaviour. There is no central control, i.e. no single part of the 

systems can direct the macro-level behaviour. This characteristic is a direct 

consequence of the radical novelty that is required for emergence. 

7) Two-way Link: There is a bidirectional link between the macro-level and the micro-

level. From the micro-level to the macro-level, the elements give rise to an emergent 
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structure. In the other direction, the emergent structure influences its elements. For 

example, path-formation with ants: the emergent path influences the movements of the 

micro-level ants because they follow the pheromones. 

8) Robustness and Flexibility: Emergent behaviour is relatively insensitive to 

perturbations or errors as no single element is “in charge”. The failure or replacement 

of a single element will decrease performance but will not cause a sudden loss of 

function. This flexibility means that the individual elements can be replaced, but the 

emergent structure can remain. 

2.2.2  The ND Systems Theory 

In his classic paper, ‘The Architecture of Complexity’, Simon (1962) proposes that 

hierarchy is a universal principle of the structure of complex systems as hierarchy is 

everywhere. Simon provides many examples of hierarchy in biological, physical, 

symbolic, and social systems. He emphasizes that hierarchy doesn’t need to imply top-

down relations of authority though he mentions organizations as examples of hierarchy. 

He also acknowledges that not all structures are hierarchical, giving the example of 

polymers, which are long chains of identical units, “However,” he says, “for present 

purpose we can simply regard such a structure as hierarchy with a span of one – the 

limiting case.”  

Simon argues that hierarchical systems share the ND property: they are organized into 

hierarchical layers of subsystems in such a way that interactions between elements 

belonging to the same subsystems are much more frequent and intensive than interactions 

between elements belonging to different subsystems. He calls these systems ND systems 
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and in a more recent article writes that a ND system “can be thought of as a boxes-within-

boxes hierarchy with an arbitrary number of levels. Its special characteristic is that 

equilibrating interactions within boxes at any level take place much more rapidly than the 

interactions between boxes at that same level, and similarly all the way to the top of the 

hierarchy” (Simon, 2002). Simon’s argument is based on a variation-and-selection view 

of natural (and artificial) evolution: elements are interconnected and combined by natural 

interactions (or, equivalently, by the trials of a problem-solver), which vary in frequency 

and intensity, thus creating a variety of assemblies. Of these assemblies, only those which 

are sufficiently stable will survive, the other assemblies will fall apart before they can 

undergo any further evolution. The stable assemblies can then again function as building 

blocks, to be combined into higher level assemblies, and so the process can repeat itself at 

ever higher levels, forming a set of hierarchically structured complex systems. Simon then 

uses this “evolutionary process” to explain that ND systems are more probable to emerge 

because of the existence of intermediate stages.  According to Simon, “if we begin with a 

population of systems of comparable complexity, some of which are ND and some of 

which are not, the ND systems will, on average, increase their fitness through 

evolutionary processes much faster than the remaining systems, and will soon come to 

dominate the entire population.”  

Simon’s ND systems theory has been used by many scholars in the design and analysis of 

complex systems in many fields. A recent check on Google Scholar shows that Simon’s 

1962 paper has been directly quoted by over 3,800 papers, some of which have been 

quoted by thousands of other papers. A main reason is that the analysis of the behaviour 

of a ND system can be subdivided, at least approximately, into the analysis of each of its 
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subsystems, combined with an aggregated analysis of their interactions. This is of 

profound value from a practical perspective as it offers an efficient approach to managing 

complexity in analyzing complex systems. 

One thing worth mentioning is that ND is not modularity though some scholars have 

noted that there is a close link between the two concepts (Egidi & Marengo, 2002). 

Modularity suggests complete decomposability and tends to provide a role for the “whole” 

merely as an aggregation of the elements. In contrast, ND preserves the vital role of 

overall identity for the system while allowing it to reap many of the benefits of 

modularity. In other words, ND emphasizes sustained organizational identity through 

continual changes both in the inner and outer environments.  

2.3  The Social Roles of Simulation Models 

Simulation models can be applied in different ways. Bayer et al. (2010) call these 

different applications of simulation models the social roles that simulation models can 

play. To analyze the social roles of simulation models, they develop a 2 x 2 framework as 

shown in Table 2-1. 
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Table 2-1 A Framework to Classify the Social Roles of Simulation Models 

  
Epistemic Object 

(Create Knowledge) 

Technical Object 
(Make Knowledge 

Available) 

Boundary Object 
(Facilitate Communications 

across boundaries) 

Learn as Group Express and Experiment 

Representative Object 
(Represent Reality) 

Explore Predict 

Along one dimension, simulation models can be classified as boundary objects and 

representative objects. Boundary objects are artefacts shared between communities of 

practice, which have their own specific informational codes (Carlile, 2002; Sapsed & 

Salter, 2004). Boundary objects can be used to address some of the difficulties of 

communicating and creating knowledge across disciplinary and organizational boundaries 

or between disparate stakeholders. Representative objects are artefacts to represent a 

reality whose existence is seen principally as a fact. Along the other dimension, 

simulation models can be classified as epistemic objects and technical objects. Epistemic 

objects are fluid and help to create knowledge, while technical objects are static and seen 

as basic tools to make knowledge available (Ewenstein & Whyte, 2009). 

These two dimensions therefore allow a classification of four types of social role for 

simulation models. As boundary objects, simulation models can be used as epistemic 

objects by stakeholders to create new knowledge as a group (“Learn as a Group”), or as 

technical objects to make knowledge available across the group by expressing the 

knowledge in a form accessible to others and enabling them to experiment with that 
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knowledge, i.e. showing what would happen under different scenarios (“Express and 

Experiment”). As representative objects for a reality, simulation models can be explored 

as management flight simulators (epistemic objects) to allow the users to learn 

(“Explore”), or as predictive tools (technical objects) allowing the user to draw on the 

knowledge embodied in the simulation models without the need to understand the 

relationships within the system (“Predict”). 

As pointed out by Bayer et al. (2010), these four types are idealized types. In practice, the 

social roles of simulation models can be a mixture of any of the four types as different 

stakeholders might have different views of the role of a simulation model. For instance, a 

client might want to develop a simulation model as a predictive tool while the modeling 

process might show that what is required would be to learn as a group. Further, over time 

the social role of a simulation model might change. For example, learning as a group can 

be followed by expressing the knowledge for others to experiment, which can be followed 

by the development of a predictive tool for other users or the development of a 

management flight simulator as a learning environment for other managers to explore. 

2.4  SM Methods 

2.4.1  Basic SM Methods 

There are three basic SM methods that have been applied in healthcare: DES, SD (system 

dynamics) and ABS (agent-based simulation) (Seila & Brailsford, 2009). Each of these 

basic SM methods represents a particular world view, which is defined as the overall 

perspective from which the system is seen and interpreted.  
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DES is the modeling of systems in which the state variables change only at a discrete set 

of points in time (Zeigler et al., 2000). DES is based on the concepts of entities, resources 

and block charts describing entity flow and resource sharing. Entities are objects which 

represent patients, clients, tasks, parts, documents, etc. They move through the blocks of 

the flowchart where they stay in queue, receive services, and seize and release resources.  

SD is “the study of information-feedback characteristics of industrial activity to show how 

organizational structure, amplification (in policies), and time delays (in decisions and 

actions) interact to influence the success of the enterprise” (Forrester, 1961). In SD, the 

real-world processes are represented in terms of stocks (e.g. stocks of material, 

knowledge, people or money), flows between these stocks, and information that 

determines the value of the flows. SD only works with aggregates, viewing the items in 

the same stock as indistinguishable (they do not have individuality). The primary 

assumption in SD is that the internal causal structure of a system determines its dynamic 

tendencies. Mathematically, an SD model is a system of integral equations (Sterman, 

2000). To approach a problem in SD style, one has to think in terms of global structural 

dependencies and describe the system behaviour as a number of interacting feedback 

loops, balancing or reinforcing, and delay structures.  

ABS is a relatively new approach to modeling complex systems (Macal & North, 2010). 

In an ABS model, natural entities i.e. human beings, animals, processes or systems are 

represented as agents that follow local behaviour rules to interact with each other and with 

the environment. The behaviours of the agents are defined using state charts. A state chart 

is a state machine adopted by the worldwide community and included as a part of the 
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standard UML (Unified Modeling Language) (Borshchev & Filippov, 2004). With state 

charts, one can graphically capture the different states of the agents, the transitions 

between these states, the events that trigger those transitions, the timing of transitions, and 

the actions that the agents take during their lifetime.  

Many scholars have compared DES, SD and ABS from different perspectives. On the 

comparison between DES and SD, Randers (1980) uses nine axes to represent the criteria 

for comparison: relevance (usefulness), transparency, mode reproduction ability, 

descriptive realism, insight generating capacity, point predictive ability, formal 

correspondence with data, fertility, and ease of enrichment. Writing from the perspective 

of an experienced SD modeler, Lane (2000) identifies conceptual differences between 

DES and SD in terms of the following eight categories: perspective, resolution, data 

sources, problem studied, model elements, human agents involved, clients’ perception 

about the model, and outputs. Brailsford & Hilton (2000) compare DES and SD in 

healthcare studies and identify the main technical distinctions using the following criteria: 

importance of variability, importance of tracking individuals, number of entities included 

in a typical study, system control mechanism, relative timescale, and purpose of the study. 

Sweetser (1999) provides a similar comparison focusing on the capacities of the two 

approaches. The criteria he uses include the role of the system structure in determining the 

performance, the engagement of mental models, system orientation, the role of computer 

simulation, and validity. Morecroft & Robinson (2008) provide an empirical comparison 

between DES and SD by developing an SD and DES model of the same problem 

situation. Their comparison focuses on the impacts of SD and DES on the representation 

and interpretation of phenomena from the real world. Chahal & Eldabi (2008a) provide a 
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comprehensive meta-comparison of DES and SD. They emphasize that it is important to 

understand from system, problem and methodology perspectives in order to choose a 

suitable SM method for the system under investigation 

On comparing SD and ABS, Parunak et al. (1998) provide a comparison between SD and 

ABS from both a high-level view and a practical view. The comparison on the high-level 

focuses on two areas: the fundamental relationships among entities that they model, and 

the level at which they focus their attention. The comparison from the practical view 

focuses on three areas: the underlying structure of a model, the naturalness of the 

representation of a system, and the verisimilitude of a straightforward representation. 

Scholl (2001) compares the application of SD and ABS in the explanation of the bullwhip 

effect in supply chain management. Sun & Cheng (2002) review the application of SD 

and ABS in many contexts such as smallpox transmission after a bioterrorist attack, the 

spreading dynamics of infectious disease, and compare the two approaches using the 

following criteria: computing resources required, individual characteristics being 

modeled, accurateness of the result, visibility of interaction among individuals, network 

structure for interaction, difficulty of model construction,  most appropriate domain of 

application, expression of relationships, and representation of time. Schieritz & Milling 

(2003) compare the primary “conceptual predispositions” underlying the two approaches 

using the following criteria: basic building block, unit of analysis, level of modeling, 

perspective (macro vs. micro), adaptation of structure, handling of time, mathematical 

formulation, and origin of dynamics. Wakeland et al. (2004) compare the application of 

SD and ABS in the study of cellular receptor dynamics in terms of overall approach, 

mathematics, ease of communications, research relevance, and educational potential.  



25  

 

Pugh (2006) and Yu et al. (2007) present a comparison between DES and ABS model 

characteristics. Pugh (2006) focuses on the use of DES and ABS to represent M/M/1 

queuing systems, while Yu et al. (2007) focus on the use of DES and ABS in the field of 

transportation.  A more recent comparison of DES and ABS is presented by Abdul (2011) 

on the use of DES and ABS to model human behaviour. 

A comparison of the three SM methods is presented by Lorenz & Jost (2006) and Owen et 

al. (2008). Their studies have sought to establish a framework to assist new simulation 

users in choosing the right SM methods. Lorenz & Jost (2006) focus on developing a 

framework for multi-method SM within social science, while Owen et al. (2008) focus on 

developing a framework for supply-chain practitioners. 

Table 2-2 shows a high-level summary of the comparison of DES, SD and ABS identified 

in the literature mentioned above. Detailed explanations are provided in the following 

paragraphs. 
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Table 2-2 Comparison of DES, SD and ABS 

Items DES SD ABS 

Perspective Macro Macro Micro 

System 

Orientation 

Focuses more on 

modeling the operation 

process of the system to 

be modeled 

Focuses more on 

system 

Focuses more on 

modeling individual 

behaviours 

System 

Behaviour 

Is the result of 

randomness and 

structure (model) 

Is the result of 

structure (model) 

Emerges as the result of 

interaction among 

agents 

System 

Representation 

Queues, activities and 

processes 

Levels, flows and 

causal feedback 

loops 

Agents, local rules and 

interactions 

Resolution of 

Models 

Flowchart blocks and 

Entities (passive 

objects) 

Stocks and flows 
Agents (Intelligent 

objects) 

Handling of 

Time 
Discrete Continuous Discrete 

Computer 

Animation 
High Low Medium 

Computational 

Demand 
High Low High 

Model 

Validation 

Emphasis on model 

structure and outputs 

Emphasis on model 

structure and 

engagement of the 

clients' mental 

models 

Emphasis on the local 

rules of each agent and 

the interactions among 

agents 

Organization 

Level 

Tactical & operational 

level 
Strategic level 

Strategic, tactical, & 

operational level 

Application 

Orientation 

Optimization, 

prediction and 

comparison 

Problem-solving and 

understanding 
Learning 
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DES takes a macro view and focuses on the modeling the operation process of the system 

to be modeled (Brailsford & Hilton, 2000; Chadal & Eldabi, 2008a). DES is based on the 

concept that the system behaviour is determined by randomness and the internal structure 

of the system (Sweetser, 1999; Morecroft & Robinson, 2006; Chadal & Eldabi, 2008a). In 

DES, systems are represented as queues, activities and processes with flowchart blocks 

and entities and their states change at discrete points in time (Morecroft & Robinson, 

2006; Chadal & Eldabi, 2008a). DES is inherent with high capabilities of computer 

animation where entities can be shown moving through the system. This helps in visual 

understanding of process flow (Chadal & Eldabi, 2008a). DES has a high demand on 

computing resources and the validation of a DES model focuses on the validity of its 

internal structure and model outputs (Brailsford & Hilton, 2000; Chadal & Eldabi, 2008a). 

The applications of DES are mainly focusing on the tactical and operational levels for the 

purpose of optimization, prediction, and comparison of different alternatives (Brailsford 

& Hilton, 2000; Lorenz & Jost, 2006; Owen et al., 2008). 

Like DES, SD also takes a macro view (Lane, 2000). However, SD focuses more on 

modeling the system (Chadal & Eldabi, 2008a). In SD, the system behaviour is viewed as 

the result of the feedback loop structure of the system (Brailsford & Hilton, 2000). In a 

SD model, the real world is represented as stocks (also known as levels), flows (also 

known as rates) and causal feedback loops (Morecroft & Robinson, 2008). Time in a SD 

model is handled by a discretization process where the time-step, dt, is usually chosen 

such that all the rates can be regarded as constant over the period dt (Brailsford & Hilton, 

2000). The animation of SD is limited to figures and graphs of model variables (Chahal & 
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Eldabi, 2008a). SD has a lower demand on computing resources (Brailsford & Hilton, 

2000). The validation of a SD model focuses on the validity of the structure and the 

mental models engaged in the model (Chahal & Eldabi, 2008a). The applications of SD 

models focus mainly on the strategic level, and the purpose of the model is to solve 

problems and gain understanding of the problem situation (Brailsford & Hilton, 2000; 

Lorenz & Jost, 2006; Owen et al., 2008). 

Unlike DES and SD, ABS takes a micro view and focuses on modeling individual 

behaviours (Schieritz & Milling, 2003; Abdul, 2011). From the perspective of ABS, the 

behaviour of the system emerges as the result of interacting agents (Wakeland et al., 

2004). In ABS, systems are represented as intelligent agents, with local rules, and 

interactions among the agents (Borshchev & Filippov, 2004; Pugh, 2006; Yu et al., 2007). 

In an ABS model, the changes of system state happen at discrete points of time (Sun & 

Cheng, 2002; Schieritz & Milling, 2003). ABS has a very good animation capability for 

showing the behaviour of individual agents and the change of system behaviour over time 

(Wakeland et al., 2004). ABS also has a high demand on computing resources (Sun & 

Cheng, 2002). The validation of an ABS model focuses on the validity of the local rules 

and the interactions among the agents. The application of ABS can be at any level, 

strategic, tactical or operational, and the main purpose of ABS model is to learn about the 

behaviour of the system (Borshchev & Filippov, 2004; Lorenz & Jost, 2006; Owen et al., 

2008). 



29  

 

2.4.2  Hybrid Simulation and Distributed Simulation 

In order to facilitate the simulation study of MUHSs, several authors have suggested the 

use of hybrid simulation approach. For example, Chahal & Eldabi (2008b) discuss the 

combination of simulation methods in the healthcare domain and propose three types of 

hybrid: (i) hierarchical mode, where there exist two distinct simulation models working 

off-line, for example, a DES model feeds an SD model; (ii) process environment, where 

there are again two distinct models but this time one includes the other, for example a 

DES model resides inside an SD model; and (iii) integrated mode, where there exists a 

single model in which multiple simulation methods work “inline”. Examples of the first 

and the second types of hybrid simulation exist, such as for DES and SD by Chahal & 

Eldabi (2008b) and Brailsford et al. (2010), and for DES and ABS by Leonard et al. 

(2006) and Vieira et al. (2010). There are no examples yet in the literature of the last type 

(Gunal, 2012). 

Distributed simulation (DS) is a technique for the development of large-scale simulation 

models. It can be defined as the distribution of the execution of a single run of a 

simulation program across multiple processors (Fujimoto, 1999 and 2003). To provide a 

standard DS approach, the IEEE 1516 standard, the High Level Architecture (HLA) 

(IEEE 1516, 2000), was published in 2000 (and updated in 2006). In the HLA, a 

distributed simulation is called a federation, and each individual simulator is referred to as 

a federate. A HLA Runtime Infrastructure (RTI) provides facilities to enable federates to 

interact with one another, as well as to control and manage the simulation.  



30  

 

The application of DS in healthcare is a very recent emergence, and there are only a 

couple of published papers on healthcare models built using DS. Brailsford et al. (2006) 

recommend DS using low cost CSPs (Commercial Simulation Packages) as a viable 

solution to model large-scale complex healthcare systems. Katsaliaki & Mustafee (2010) 

also investigate the viability of using DS to execute large and complex health care 

simulation models which help government take informed decisions. They find that 

compared with the standalone simulation, the DS approach decreases significantly the run 

time for large and complex models. However, they also find that the DS approach is only 

viable when: 1) the model can be divided into logical parts and the exchange of 

information between these parts occurs at constant time intervals; 2) the model is 

sufficiently large and complicated, such that executing the model over a single processor 

is excessively time consuming. 

2.5  HSM Applications 

2.5.1  Review of HSM Applications 

HSM is a very active area of research and practice, and its application has spanned over 

four decades. Many literature reviews on HSM exist already, including early reviews by 

Valinsky (1975), England & Roberts (1978), Smith-Daniels et al. (1988), and Lehaney & 

Hlupic (1995). More recent reviews include those by Jun et al. (1999), Fone et al. (2003), 

Jacobson et al. (2006), Gunal & Pidd (2009), Mustafee et al. (2010), and Mielczarek & 

Uzialko-Mydlikowska (2012). There are also many specialized topic reviews available, 

for example, Cooper et al. (2006) review the application of SM methods in the treatment 
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of coronary heart disease and Vanberkel et al. (2009) review healthcare models that 

encompass multiple units. 

The review conducted by Jun et al. (1999) is one of the recent reviews which takes a more 

comprehensive and systematic approach than is taken in some of the earlier reviews. The 

authors concentrate on DES applications to single clinics and to multi-facility health care 

clinics and create a broad taxonomy of articles describing DES models that address 

problems encountered by health care clinics during a period of about 30 years ending in 

1997. They distinguish between two main areas: (1) patient flow, which includes patient 

scheduling and admissions, patient routing and flow schemes, and scheduling and 

availability of resources; and (2) allocation of resources, including bed sizing and 

planning, room sizing and planning, and staff sizing and planning. Jacobson et al. (2006) 

build on the work of Jun et al. (1999) and provide new updates that had been reported 

from 1999 through 2006. Their analysis focuses on the same two areas as used in Jun et 

al. (1999). 

Fone et al. (2003) provide another systematic review of the literature on DES studies in 

healthcare between 1980 and 1999, most of which are covered in Jun et al. (1999). 

However, Fone et al. (2003) take a very different approach from the one used in Jun et al. 

(1999). Their review aims to assess the quality of the published HSM studies and to 

consider their influence on policy, rather than on operations. They enumerate five topic 

areas: 1) hospital scheduling and organization; 2) infection and communicable disease; 3) 

costs of illness and economic evaluation; 4) screening; and 5) miscellaneous.  
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Gunal & Pidd (2009) conduct a more recent review on DES studies in healthcare built on 

Jun et al. (1999) and Fone et al. (2003). This review focuses on papers published since 

2004 with an interest in performance modeling within hospitals. The authors classify the 

papers based on the application areas being focused on. The application areas identified 

include A&E (Accident & Emergency), inpatient facilities, outpatient clinics, other 

hospital units (operating rooms, critical care unit, laboratory, pharmacy, etc.), and whole 

hospital simulations. 

Mustafee et al. (2010) is one of the few papers reviewing the applications of multiple SM 

methods in healthcare. In this paper, the authors profile health care simulation literature 

published between 1970 and 2007 along two dimensions: 1) subject categories including 

operational research, health economics and pharmacokinetics; and 2) the application of 

four SM methods, namely, DES, MCS (Monte Carlo Simulation), SD, and ABS. A more 

recent but similar survey on the applications of computer simulation models in healthcare 

is conducted by Mielczarek & Uzialko-Mydlikowska (2012). The authors use the same 

two-dimension classification of SM applications in healthcare: 1) subject categories; and 

2) SM methods. Along the dimension of the subject categories, the authors distinguish 

between five major groups of simulation models applied in health services: 1) 

Epidemiology, health promotion, health policy (disease prevention); 2) health and care 

systems operation; 3) health and care systems design; 4) medical decision-making; and 5) 

extreme events planning. Along the dimension of SM methods, the authors choose to 

focus on DES, MCS and ABS.  
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2.5.2  SM Applications in the Study of MUHSs 

The literature reviewed in the previous section has a broad scope covering the 

applications of various SM methods in healthcare. In this section, relevant literature is 

reviewed with a specific focus: the applications of SM in the study of MUHSs. Simulation 

models of MUHSs are of strategic importance, however, the number of this type of 

simulation model is very limited (Jun et al., 1999; Gunal & Pidd, 2009).  

One very early DES study on a whole hospital was reported by Fetter & Thompson 

(1965). The objective of this work is to give a decision support tool to hospital 

administrators to predict the consequences of design changes and alternative policies with 

a special interest in maternity processes. Three independent models are created for the 

hospital subsystems: 1) maternity suite; 2) a surgical pavilion; and 3) an outpatient clinic. 

The maternity model is used to analyze patient load and bed occupancy. The surgical 

pavilion model is to support experiments with surgical schedules. Priorities are given to 

unscheduled surgeries, which are generated according to a probability distribution. The 

outpatient clinic model handles the schedule of doctors and generates detailed reports on a 

variety of measures including patient waiting times, and physician idle times. 

Hancock & Walter (1984) report a DES study which attempts to smooth the daily patient 

loads of 19 hospital departments by varying the admission days of urgent inpatient and 

outpatient loads. Given the variation in average load for each of the departments, the 

authors conclude that no one single policy can provide a stable workload for all 

departments, since each department has its own unique patient arrival patterns and 

treatment requirements.  
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Lowery (1992) develops a DES model to determine critical bed requirements by including 

all the units in a hospital’s critical care areas i.e. operating rooms, recovery units, 

intensive care units and intermediate care units. Her literature review shows that most 

models previously reported do not fully consider the interrelationships between different 

hospital units and few models have been validated using actual hospital performance data. 

Focusing on these deficiencies, she demonstrates improvements in her methodologies 

over previous models. 

Royston et al. (1999) report several applications of SD modeling to problems in the UK’s 

National Health System (NHS). One of the applications described in detail in the paper 

uses SD to develop a better understanding of the interactions between the emergency care 

system and the social care system including residential care, community care, and primary 

health care. The main benefit of the model is its use as a learning tool, but it does show 

that changes in resources such as beds or staffing have less impact than changes in 

behaviours affecting referral patterns, length of stay, or inter-sectoral flows. In this 

application, several modeling workshops were organized, and the participants found that 

the solution to a problem in one sector of the system may often lie in another sector of the 

system. 

Lane et al. (2000) develop a SD model to explore the relationships between waiting times 

in the emergency department (ED) and hospital bed closure. The result of the study shows 

that immediate impact of bed shortages is not seen in the ED, but is evident first in 

cancelled elective admissions, so that using ED waiting times to measure the effect of bed 

shortages is misleading. In fact, the model shows that it does not make sense to look at 
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any single measure in isolation as changes in one area can have unforeseen effects in 

other areas, thus a whole system approach is required. 

Brailsford et al. (2004) develop a SD model to study patient flows within the Nottingham 

Health Authority's emergency care system. The key finding of the model is that “the 

system is currently operating dangerously close to capacity." However, relatively small 

changes in one part of the system have significant impact elsewhere. For example, it is 

much better to prevent admissions through the use of a community diagnostic facility than 

it is to reduce length of stay and discharge patients early. 

Leonard et al. (2006) develop a combined SD and ABS model to simulate the interactions 

between the acute and aged care systems in Australia. The modeling approach is unique in 

its attempt to combine the high-level SD approach with the low-level ABS approach. The 

SD model is intended to capture the big picture structure of the “forest” while the agents 

act as the “trees” and flow through the model based on individualized behaviours. This 

model can be used to evaluate policies to address the effects of the aging population in 

Australia. Specifically, the authors propose policies to more quickly move patients from 

acute-care hospital beds to more appropriate long-term care resources.  

In Lane & Husemann (2008), the authors discuss a “hybrid approach” which they apply 

to modeling acute patient flows. The model depicts a map of a general acute care hospital 

in a qualitative manner only – due to time constraints, the authors do not quantify the 

model in any way. Rather, they use it to generate discussions surrounding patient flow and 

to aid in determining steps that could be taken to improve patient flow. It demonstrates 
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that patient flow through A&E is affected by factors such as ward capacity and staff 

availability. 

2.5.3  Major Conclusions 

After examining the existing literature we can summarize the major conclusions as 

follows:  

1) DES, SD and ABS are the most commonly used SM methods to model healthcare 

as a system. MCS is not good at modeling complex and large, multi-level decision 

healthcare systems but it is rather appropriate to make comparisons between 

specific health interventions (Barton et al., 2004; Katsaliaki & Mustafee, 2010).  

2) The majority of the HSM studies use DES, while applications of SD and ABS are 

relatively less common. There are two possible reasons to explain why DES is the 

most commonly preferred SM method in healthcare. The first one is due to the 

lengthy history of DES applications in healthcare. In comparison, it is only in the 

past several years that ABS began to be applied in healthcare. The second one is 

related to the special modeling needs of healthcare systems (Davies & Davies, 

1994/1995): the need for an individual patient focus, the importance of resource 

constraints, the primacy of clinical decision process, the power of animation and 

visualisation to communicate with the users, and more realistic representation 

without restrictive mathematical assumptions. In comparison with DES, the SD 

method is not well-suited to detailed modeling and copes rather badly with 

stochastic variation (Brailsford & Hilton, 2000).  
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3) Most of the SM studies in healthcare are unit-specific and there is a lack of 

simulation models of healthcare systems consisting of multiple units (Jun et al., 

1999; Gunal & Pidd, 2009; Mielczarek & Uzialko-Mydlikowska, 2012).  

4) The implementation of the results of the HSM studies is very rare. According to 

Wilson (1981), a possible reason is that simulation models cannot be developed 

quickly enough to meet the urgent needs of the decision-makers.  

5) Most of the healthcare simulation models are developed by academics for research 

and/or student projects, rather than consultants or management engineers doing 

routine analysis on the operations of healthcare systems (Seila & Brailsford, 

2009). This helps to explain why the implementation of HSM results is rare.  
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Chapter 3  Nearly Decomposable-Complex Adaptive Systems (ND-CASs) 

This chapter presents a conceptual model, ND-CASs, to represent and describe the 

operations of MUHSs. The ND-CASs model integrates the key concepts in the theories of 

CASs and ND systems and is developed from a theoretical perspective. However, in this 

research, the ND-CASs model is not intended to be regarded as a new theory of complex 

systems, rather, it is more appropriate for it to be treated as a conceptual tool helping 

smooth and speed up the SM-based decision-making process for managing operations of 

MUHSs.  

In the following section, the definition of a ND-CAS is introduced, and its main 

characteristics are discussed in Section 3.2. Section 3.3 discusses the applicability of 

using the ND-CASs model to represent and describe MUHSs. Its potential benefits for 

supporting SM-based decision-making in MUHSs are identified and described in Section 

3.4. 

3.1  Definition of ND-CASs 

ND-CASs are special cases of complex systems. They are defined in terms of system 

elements, inter-element interactions, system structure, and system evolution. 

System Elements 

The elements in a ND-CAS are represented as adaptive agents, a concept adopted from 

the CASs theory. The agents are not dividable and have to function as single entities. The 

agents are intelligent and can learn from each other and from the environment, and 
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through learning, they can adapt to local and global changes. Agents are diverse and have 

different information about the system, but none of them understands the system as a 

whole. Each agent has its own agenda and priorities but has the nature to adapt to the 

needs of other agents when possible. 

Inter-element Interactions 

In a ND-CAS, each agent is connected to some other agents. Information is exchanged via 

inter-agent connections, creating patterns of interactions. Information exchanged can be 

generic or specific. Generic information is the information about all the agents or a subset 

of agents in the ND-CAS. Specific information is the information only about the pair of 

connected agents. Inter-agent interactions are typically associated with the presence of 

feedback mechanisms in the system, through which agents learn from and adapt to each 

other. Agents are diverse, and so are the inter-agent interactions. An agent may only 

interact with a certain number of agents and has no interactions with other agents. It can 

interact with some agents with higher frequency and intensity than with other agents. 

System Structure 

The diversity of inter-agent interactions leads to the creation and maintenance of 

hierarchical structures at the whole system level such that the system can be divided into 

hierarchical layers of subsystems. The existence of hierarchical structures can be 

conceptual only and the term subsystem is used to represent a real or virtual entity existing 

within the intermediate layers of a ND-CAS. A subsystem consists of lower layer 

subsystems or agents and is also part of either a higher layer subsystem or of the ND-
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CAS. The hierarchical structures of the system have the ND property: interactions 

between agents belonging to same subsystems are of higher frequency and intensity than 

interactions between agents belonging to different subsystems.  

The inter-agent interactions are multidimensional. A ND-CAS can simultaneously exhibit 

multiple hierarchical structures viewed along different dimensions. But along a particular 

dimension, a ND-CAS only exhibits one hierarchical structure, and this structure is 

relatively stable; it does change over time but at a much slower pace when compared with 

the changes of interactions between subsystems and agents at the lower layers.  

System Evolution 

A ND-CAS evolves over time via a co-evolutionary process. This co-evolutionary process 

can be witnessed at three levels: the bottom, the top and the intermediate level. At the 

bottom level, agents coevolve with each other, in other words, they transform and are 

transformed by each other via inter-agent interactions. At the top level, the ND-CAS as a 

whole coevolves with other ND-CASs and with the environment. At the intermediate 

level, agents, inter-agent interactions and the system structure coevolve together. Changes 

in agents can affect the inter-agent interactions thus affecting the system structure, and in 

the other direction, changes in system structure can also affect the agents and the inter-

agent interactions.  
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3.2  Characteristics of ND-CASs  

In the definition of ND-CASs, a “pick and choose” approach is used to adopt concepts 

from the theories of CASs and ND systems. This is to ensure that the ND-CASs model 

can provide a more holistic representation and description of certain types of complex 

systems i.e. MUHSs than the theories of CASs and ND systems.  In the following 

sections, ND-CASs are compared with CASs and ND systems separately to explain their 

differences. 

3.2.1  ND-CASs vs. CASs 

In the definition of ND-CASs, the following two concepts are adopted from the CASs 

theory to describe the dynamics and structure of complex systems: 1) adaptive agents; and 

2) inter-agent interactions. According to the CASs theory, system elements in a CAS are 

represented as adaptive agents who interact with each other and with the environment. 

The inter-agent interactions can lead to self-organization resulting in the emergent 

structure at the whole system level. However, in the definition of ND-CASs, the concept 

of self-organization is dropped. Instead, a co-evolutionary process is adopted to explain 

the creation and maintenance of the hierarchical structures at the whole system level. The 

co-evolutionary process is an enhanced version of the evolutionary process used in the 

ND systems theory. Both self-organization and the evolutionary process focus on the 

origination of the system structures meaning how the system structures can emerge from 

within the system. Compared with them, the co-evolutionary process focuses on both the 

origination and the evolution of the system structures. A ND-CAS can start with a system 

structure by design, and this system structure can affect the inter-agent interactions, 
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which, in turn, can affect the system structure. This process will proceed until a stable 

hierarchical structure is formed at the whole system level. 

Both the ND-CASs model and the CASs theory can be used to explain the dynamics of 

complex systems and both recognize the importance of studying complex systems as a 

whole. However, the use of the ND-CASs model provides an additional solution to 

managing complexity in the study of complex systems in that with the ND property, the 

study of a ND-CAS can be simplified because it can be subdivided into separate studies of 

its subsystems, combined with an aggregated study of the interactions between the 

subsystems. 

3.2.2  ND-CASs vs. ND Systems 

In the definition of ND-CASs, the concept of the ND property is adopted from the ND 

systems theory. The benefits of the ND property have been explained in the previous 

subsection. 

The major difference between a ND-CAS and a ND system is the use of adaptive agents 

in a ND-CAS to represent the system elements. In the ND systems theory, the system 

elements have no intelligence and inter-element interactions are assumed as natural 

existence with different frequencies and intensities. In addition, the ND systems theory 

pays limited attention to the changes of elements, their interactions and the system 

structure (Agre, 2003). The ND systems theory recognizes the existence of external 

changes, which can disturb the balance of the system or equilibrium, but its discussion of 

how the system will react to these external changes stays at a very high-level: the ND 
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system will move quickly back to equilibrium. In the ND-CASs model, the use of the 

adaptive agents provides a much richer explanation on the impacts of changes and how 

the system will react.  

Changes in a ND-CAS can be external or internal. External changes come from outside of 

the system and include addition, deletion or modification of agents and the rules for inter-

agent interactions. Internal changes come from inside the system and include the changes 

of agents and/or their behaviours as they experiment and gain experience. Both external 

and internal changes can influence the system structure.  

The impacts of external and internal changes on the system structure can be analyzed 

from two perspectives. The first one is related to the property of a ND-CAS’ structure. 

Inter-agent interactions will always exhibit different frequencies and intensities. This is a 

fact independent of external or internal changes. Thus the system structure of a ND-CAS 

shares the ND property though the actual arrangements of the agents in the system 

structure can change. The second one is about the moment-to-moment changes of a ND-

CAS’ structure. For external changes, it takes time for the system to settle down as agents 

need to relearn and readjust themselves, and the result can be a quite different system 

structure. For internal changes, the impact on the system structure can be minimal. The 

frequency and/or intensity of inter-agent interactions can change due to the internal 

changes. However, the frequency and/or intensity change of inter-agent interactions will 

not affect the system structure unless the change is strong and persistent enough.  
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3.2.3  Characteristics of ND-CASs 

Based on the discussions in the previous two subsections, the characteristics of ND-CASs 

can be summarized as follows.  

1) ND-CASs are composed of adaptive agents, which are intelligent and interact with 

each other and with the environment. 

2) Inter-agent interactions are diverse and differ in frequency and intensity. 

3) At the whole system level, ND-CASs can exhibit multiple hierarchical structures 

along different dimensions. Viewed along a particular dimension, there is only one 

hierarchical structure which is relatively stable. Hierarchical structures have the 

ND property and can be designed or emerge from the inter-agent interactions.  

4) The hierarchical structures of ND-CASs can be maintained or adjusted via a co-

evolutionary process among the agents, inter-agent interactions and the 

hierarchical structures. Compared with the changes of interactions between 

subsystems and agents at the lower layers, the changes of the hierarchical 

structures happen at a much slower pace. External and internal changes in ND-

CASs can change the behaviour of agents and the inter-agent interactions, but they 

will not affect the hierarchical structures unless the changes are significant and 

persistent enough to change the system structures of the ND-CASs. 

3.3  MUHSs as ND-CASs 

A review of the characteristics of ND-CASs as outlined above suggests that MUHSs can 

be represented as ND-CASs.  
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First, there are different units included in a MUHS. These units are operated 

independently and can be represented as adaptive agents. For example, an ED is operated 

with its own procedures and operational goals. The management team of the ED can make 

their own decisions on staff planning and scheduling, process improvement and supplies 

management, and coordinate with other units, e.g. lab services and the hospitalist service. 

They can also evaluate the impacts of other units on the ED and make changes in the ED 

accordingly to deliver better services. For instance, to minimize the impact on the ED 

performance of the long boarding time of admitted ED patients to access beds in inpatient 

units, a fast track can be created to reduce the waiting times of those ED patients who are 

unlikely to be admitted.  

Second, the inter-unit interactions in a MUHS are diverse and of different frequency and 

intensity. The operations of MUHSs are patient-centric and the resources are organized to 

support the delivery of healthcare services to the patients. Units providing related services 

to the same group of patients tend to interact more frequently and intensively than units 

providing less or not related services. Related services can be upstream services, 

downstream services or supporting services. For example, an ED interacts more 

frequently and intensively with a hospital ward than with a family physician clinic 

because the hospital ward provides downstream services to the admitted patients in the 

ED, who will stay in the ED until inpatient beds in the hospital ward become available.  

Third, as explained above, the units in a MUHS do not interact with the same frequency 

and intensity. Viewed from the whole system level, certain hierarchical structures exist in 

the MUHS. One obvious example is the existence of hierarchical structure based on 
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geographical areas, e.g. provincial healthcare systems, regional healthcare systems, 

municipal healthcare system. Other structures include lines of formal authority, processes 

of patient handling and transfer, procedures, protocols and informal communication 

channels. These structures facilitate and direct information exchange between units in the 

MUHS and play a vital role in shaping the inter-unit interactions in the MUHS.  

Fourth, the hierarchical structures of the MUHS do not stay unchanged. Instead, they 

coevolve with the units and the inter-unit interactions. For example, the introduction of 

new services or technologies can change the way in which certain units are operated thus 

affecting the practices and processes of the whole MUHS. Though the changes inside or 

outside of the MUHS are consistent, the changes to the hierarchical structures of the 

MUHS happen at a much slower pace. For instance, an ED can adopt new processes to 

improve its operational efficiency but this change will have relatively little impact on the 

interactions between the ED and the hospital wards, thus having little impact on the 

hierarchical structures of the bigger healthcare system, of which the ED is a unit.  

3.4  Potential Benefits of the ND-CASs Model for Supporting Decision-making in 

MUHSs 

Representing MUHSs as ND-CASs offers many potential benefits for effectively 

supporting decision-making in MUHSs. The major ones are described as follows. 

1) Many MUHSs can be so complex that it is impossible or impractical to study them 

as a whole. With the ND-CASs model, granularity can be added to the study of 

these MUHSs. They can be studied by looking at each unit, subsystem, inter-unit 
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interaction and inter-subsystem interaction in the context of the system as a whole. 

This will make the study of these MUHSs possible and manageable. 

2) People tend to be biased by their operational domains. When dealing with decision 

problems concerning multiple units, it can be very challenging to have all the 

stakeholders involved develop the same level of understanding of the decision 

problem and work together to deal with this. The ND-CASs model can be used as 

a conceptual tool to explain how the MUHS works and how the decision problem 

can be possibly addressed. 

3) The hierarchical structures of a MUHS can be used in the design of the 

architecture of the MUHS simulation model. This model architecture can be 

further used as guidelines for developing new unit simulation models or reusing 

existing ones as well as for integrating unit and subsystem simulation models.  
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Chapter 4  An Agile HSM Approach 

In the previous chapter, ND-CAS is introduced as a conceptual model to represent and 

describe the operations of MUHSs, and its potential benefits for supporting decision-

making in MUHSs are also explored. From the perspective of HSM, the major benefit 

ND-CAS can offer is to divide the task of developing complex MUHS simulation models 

into smaller tasks. Develop unit simulation models first and then integrate them to build 

subsystem simulation models, which are further integrated to build higher layer 

subsystems simulation models or the MUHS simulation model. In this chapter, a HSM 

approach is introduced to take advantage of this benefit for improving the rapidity and 

flexibility of SM applications in healthcare. 

In the following section, three driving forces for achieving rapidity and flexibility in HSM 

are investigated. In Section 4.2, a SM lifecycle approach to decision-making in MUHSs is 

proposed. The AHSM approach is introduced in Section 4.3 and the value proposition of 

AHSM is provided in Section 4.4. In the last section, the scope and limitation of AHSM 

are discussed. 

4.1  Driving Forces for Achieving Rapidity and Flexibility in HSM 

In Chapter 1, we introduced the need for rapidity and flexibility in HSM in order to 

effectively support decision-making in MUHSs. Rapidity means how quickly a simulation 

model can be developed to address the decision problem. Flexibility means the reusability 

of existing simulation models to address new decision problems. Although rapidity and 

flexibility are required in any decision-making process, there are three driving forces in 
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healthcare making this requirement a necessity in SM-based decision-making. These three 

driving forces are: 1) the nature of decision problems in MUHSs; 2) the dynamics in the 

decision-making processes of MUHSs; and 3) the current practices of SM in healthcare. 

Each of the three is discussed in the following sections. 

4.1.1  The Nature of Decision Problems in MUHSs 

Given the complexity and dynamics in the operations of MUHSs, many decision 

problems in healthcare are not well defined, e.g. the problems related to healthcare service 

delivery or managing patient flows between different units (Eldabi et al., 2002). These 

problems contain interactions that are not well understood and are not easy to capture 

analytically, including the involvement of many stakeholders, who often have different 

interests and backgrounds. In these cases, understanding the decision problem is a 

problem by itself. 

Decision problems in MUHSs consist of numerous interrelated factors, which can 

influence each other (Liew & Sundaram, 2009). These factors must be represented in as 

simple a manner as possible so that decision-makers can understand and collaboratively 

discuss the problem and the MUHS.  

Decision problems in MUHSs do not exist in isolation and they are also interrelated. To 

effectively address a decision problem, decision-makers may need to recall an existing or 

previously addressed decision problem as reference (Fierbinteanu, 1999; Power & Sharda, 

2007).  
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4.1.2  Dynamics in the Decision-making Process of MUHSs 

Decision-making is an iterative process including several components, or decision-making 

functions, which are highly interrelated and interdependent. A typical decision-making 

process is illustrated in Figure 4-1 (Harrison, 1999) and can be described as follows: 

1) Setting Decision Objectives: Decision objectives constitute both the foundation and 

the end for decision-making. Attainment of the decision objectives is the ultimate 

measure of decision success. 

2) Searching for Alternatives: Alternatives result from a search, which is limited by 

time and money. 

 

Figure 4-1 Process of Decision-making (Harrison, 1999) 

3) Comparing and Evaluating Alternatives: There are usually three to five 

alternatives, and one of them is to do nothing. Alternatives are evaluated using criteria 

derived from the decision objectives. Evaluation should also include an anticipation of 

the likely outcome for each alternative and obstacles or difficulties at the time of 

implementation. 
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4) The Act of Choice: The choice of the final decision alternative is the culmination of 

the decision-making process, not all of it. The best choice is likely to result from the 

right approach and it should be the alternative most likely to result in the attainment of 

the decision objectives. 

5) Implementing Decisions: Implementation is an important step in the decision-making 

process. A successful decision must be an implemented decision. 

6) Follow-up and Control: Follow-up and control are essential to ensure that an 

implemented decision meets the objectives. Performance is measured by observing the 

implemented decision in relation to its standard derived from the decision objectives. 

Unacceptable variance from standard performance should trigger timely an 

appropriate corrective action (sub-process no.1). Corrective action may result in the 

implementation of another alternative (sub-process no. 2), which, if not successful, 

may result in a revision of the original decision objectives (sub-process no.3). 

SM can be used to play different roles in the decision-making process. At the very early 

stage of the decision-making process, SM can be used to support all the decision-makers 

involved to learn as a group to identify and understand the decision problem and set the 

decision objectives. Subsequently, SM can be used in the search for different decision 

alternatives and the evaluation of these decision alternatives. SM can also be used to 

predict the likely outcomes of the decision and communicate the decision and its likely 

outcomes to people involved in the implementation of the decision. During the 

implementation of the decision, SM can again be used to support learning as a group to 

identify any unacceptable variance from standard performance and trigger timely design 

and implementation of appropriate corrective actions. 



52  

 

Depending on the role SM is going to play, the requirements for any simulation models to 

be developed may differ. To support learning as a group, simulation models need to be 

easily changeable so that suggestions and experiments can be readily implemented and 

interactively explored. To evaluate different decision alternatives, simulation models need 

to focus on the precision of the model outputs and have to be developed to include the 

operational details of the units and their interactions. These simulation models tend to 

have limited capability for changes. 

In addition, as mentioned earlier, the decision-making process in MUHSs is highly 

dynamic, so SM cannot be used to play different roles in a predefined sequential order. 

Instead, SM must play variable roles in a rapidly changing manner.  

4.1.3  Current SM Practices in Healthcare 

As discussed in Section 2.5 of Chapter 2, most of the SM studies in healthcare are driven 

by specific decision problems and are usually one-time only. Also, there is a lack of 

simulation models of healthcare systems consisting of multiple units (Jun et al., 1999; 

Gunal & Pidd, 2009; Mielczarek & Uzialko-Mydlikowska, 2012). In their paper, Jun et al. 

(1999) conclude that “despite the upward trend of healthcare simulation studies … there 

is still a void in the literature focusing on complex integrated systems”. Cochran & Bharti 

(2006) concur with Jun et al. (1999) that the literature on healthcare simulation modeling 

(HSM) includes a great deal of “simulation models which vary enormously in complexity 

but are often unit-specific”.   
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Commenting on the unit-specific applications of HSM, Gunal & Pidd (2009) point out 

two potential problems. The first one is that “there is no general sense of the literature 

moving forwards, because many papers tend to be reports of rather similar work on 

rather similar problems.” The second one is that unit-specific models usually assume 

rather tight boundaries around the system elements being modeled. The authors argue that 

“there is a danger, when modeling a single unit, of ignoring what happens over the other 

side of the wall. That is, useful though they are, unit specific models and simulations may 

miss the big picture.” 

4.2  A SM Lifecycle Approach to Decision-making in MUHSs 

As a decision support tool, SM is intended to assist decision-makers in making decisions. 

There are several types of decision-makers involved in using SM and these decision-

makers progress as they develop more confidence (Dreyfus & Dreyfus, 1986), from 

inexperienced/naïve decision-makers, to average decision-makers/analysts, to experienced 

decision-makers/modelers (Bhrammanee & Wuwongse, 2008; Iyer et al., 2005; Sprague, 

1980). Each type of decision-maker has different needs. Some decision-makers may need 

more decisional and/or system usage guidance (Silver, 1991), while others may prefer to 

have minimal guidance. Some may want SM to take care of the entire decision-making 

process.  Others may want to intervene to a greater extent in designing the entire decision-

making process and the execution order to suit, or to a lesser extent in specifying a 

particular SM method. There are a variety of reasons as to why a human intervention is 

warranted and needed from the perspective of an experienced decision-maker (Beynon et 

al., 2002). However, it is interesting to note that a decision-maker’s interventions may 
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have an adverse effect on decision model selection and ultimately the decision outcome 

(Jiang & Klein, 2000). 

It is unreasonable and impractical to expect decision-makers to use a different SM method 

or a different simulation model for each decision. A decision-making process is not 

necessarily about concentrating on the decision itself, but should emphasise the ways in 

which decisions are made (Golub, 1997). Therefore, decision-makers should be able to 

choose an appropriate simulation model or SM method, and not be limited to only one 

simulation model or SM method (Draman et al., 2002; Geoffrion, 1987). 

Simon (1977) proposes a very decision-oriented approach to the decision-making-process 

in terms of intelligence, design, and choice. Overall, Simon sought a science of 

administrative behaviour and decision making. He abandoned the notion that decision-

makers seek to optimize, replacing it with the idea of satisficing: the idea that decision-

makers search for solutions that are good enough in the perceived circumstances, rather 

than optimal. Simon claimed that the search is “motivated by the existence of problems as 

indicated by gaps between performance and goals”. However, as Golub (1997) has 

suggested, decision-making is about the way in which we model the decision. Liew & 

Sundaram (2009) propose an approach to decision-making by integrating Simon's (1977) 

proposal with proposals from MS/OR modeling (Krishnan & Chari, 1993; Golub, 1997; 

Mathur & Solow, 1994). This approach attempts to support every phase and aspect of 

decisions and the SM lifecycle (Geoffrion, 1989b), and ensure that non-predetermined 

decision-making processes and interrelated decisions characteristics can be modeled. In 

this research, the approach proposed by Liew & Sundaram (2009) is modified to make it 
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more applicable to be used in the healthcare environment. The modified version is shown 

in Figure 4-2. 

As summarized in Figure 4-2, the SM lifecycle is cyclical and iterative, and enables 

continuous adjustment and refinement especially in terms of storing and retrieving 

simulation models. Despite the fact that the SM lifecycle progresses step-by-step in a 

cycle, it can return to any earlier step (not just the previous one), and can skip some steps 

in the later iteration if it has already gone through that particular step earlier on. Only the 

major pattern of steps is illustrated in Figure 4-2.  

 

Figure 4-2 Cyclical SM Lifecycle in Supporting Decision-making in MUHSs 

The SM lifecycle starts with understanding the decision problem and defining the 

modeling objectives. If a decision problem is clearly defined and understood, the 

modeling objective is to model that problem and seek for solutions. Otherwise, if the 
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decision problem is not well defined and understood, then the modeling objective is to 

model the operational environment of the decision problem for improved understanding. 

Once the modeling objective has been defined, a conceptual model is formulated to 

represent the decision problem or its operational environment. After the formulation of 

the conceptual model, relevant data are collected and a computerized simulation model is 

developed. It will be especially beneficial if this simulation model can be developed by 

reusing existing simulation models and this simulation model itself is storable and 

retrievable for later use and comparison. Once a simulation model is verified and 

validated, it can be run to generate different experimental results. A solution can be 

derived through analysing and investigating the experimental results. The derived solution 

is then reviewed and validated, and if it is considered unsatisfactory such information can 

be used to modify and reformulate the simulation model. 

4.3  The AHSM Approach 

The SM lifecycle approach provides a sound basis for the decision support and modeling 

framework so that SM can be used to play different roles in the decision-making process 

in a rapidly changing manner. In other words, in order to effectively support decision-

making in MUHSs, SM has to be implemented with both rapidity and flexibility. AHSM 

is developed to achieve this objective. 

AHSM is an SM approach focusing on the high level process for the use of SM in the 

decision-making process for managing the operations of MUHSs. The primary goal of 
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AHSM is to improve the rapidity and flexibility in the use of SM to effectively support 

decision-making in MUHSs. 

AHSM consists of two interleaved stages. The first stage is “Planning”, and its main 

objective is to identify the hierarchical structures of a MUHS and perform an architectural 

design of the overall SM studies. The major activities to be covered at this stage are the 

following ones shown in Figure 4-2: understanding of the (decision) problem, defining 

modeling objectives, (re)formulation of the (conceptual) model and the experimental 

design. The second stage is “Executing”, and its main objective is to develop unit, 

subsystem and the MUHS simulation models. The major activities to be covered at this 

stage are the remaining activities shown in Figure 4-2. 

Planning 

One major activity at this stage is to identify the hierarchical structure of the MUHS to be 

studied. This activity has two objectives. The first one is to help decision-makers involved 

in the decision-making process develop a global view of the decision problem and the 

surrounding environment so that they can share a common understanding on the nature of 

the decision problem and reach a high-level agreement on how to deal with the decision 

problem. The second objective is to assist in the architectural design of the overall SM 

study. 

For MUHSs with a large number of units, it can be a nontrivial task to identify their 

hierarchical structures and decompose them into hierarchical layers of subsystems. To 

deal with the decomposition problem in these cases, this research proposes a system 
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decomposition technique. The technical details of this approach will be provided in the 

next chapter. 

Once the hierarchical structure has been identified and the MUHS has been decomposed 

into hierarchical layers of subsystems, an architectural design of the overall SM study is 

performed. Results from this architectural design include 1) the objectives of all the 

simulation models to be developed; 2) the interfaces between different simulation models 

i.e. the ranges of the input/output parameters; 3) data required for the development and 

validation of each simulation models; and 4)the experimental design of the MUHS 

simulation model. 

Executing 

Following the architectural design of the overall SM study, detailed SM studies are 

conducted with two steps. The first one is the development of simulation models for each 

unit. One principle used at this step is to reuse any existing simulation models as much as 

possible. The second step is to integrate the unit simulation models to form new 

simulation models to represent the subsystems and the MUHS in a sequential order: unit 

simulation models are integrated first to build subsystem simulation models. Then 

subsystem simulation models are further integrated to build higher-level subsystem 

simulation models or the MUHS simulation model. The reason for this sequential 

development of simulation models is to eliminate the need to develop a complex MUHS 

simulation model with a single step as this can be too complex to be done within a 

realistic time window.  



59  

 

In order to further improve the rapidity and flexibility, a simulation metamodel-based 

integration approach is proposed in AHSM.  With this approach, each unit simulation 

model is run to generate experimental results, with the design of the experiments 

determined in the architectural design of the overall SM study. The experimental results 

are used to develop simulation metamodels represented using mathematical formulae, 

which can be implemented independently of the SM software package used to develop the 

original simulation model. These simulation metamodels are fast to run and can be used 

as building blocks in the development of the simulation models to represent the 

subsystems and the MUHS. Another advantage for using simulation metamodels is that it 

is easy to reuse the existing simulation models, which may have been developed using 

different SM methods or SM packages.  

4.4  The Value Proposition of AHSM 

The key values AHSM can bring to the SM-based decision-making process in MUHSs 

can be summarized as follows: 1) low complexity; 2) rapidity, 3) flexibility; and 4) 

improved engagement of stakeholders in the decision-making process in MUHSs.  

Low Complexity:   low complexity in conducting SM studies of MUHSs can be achieved 

by subdividing the MUHS into subsystems with smaller size, which can be modeled and 

studied separately and independently. Simulation metamodels, which are derived from the 

experimental results of the simulation models of the units in the MUHS, can be 

implemented without the requirement of a special software package. This can further 
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reduce the complexity of the development of the integrated simulation model to represent 

the MUHS to be studied. 

Rapidity: The unit simulation models can be developed in parallel. Changes in one unit 

of the MUHS can be dealt with separately without affecting the development of the 

simulation models of other units. The use of simulation metamodels to represent the unit 

simulation models can improve the speed for the run of the integrated simulation models 

representing the MUHS.  

Flexibility: the SM study of each unit can use separate SM methods and SM software 

packages. Depending on the requirements in the decision-making process, different 

simulation metamodels can be developed to represent the units for different purposes. 

This makes it possible to reuse the same unit simulation models for the development of 

different MUHS simulation models. 

Improved Stakeholder Engagement: the independent developments of the unit 

simulation models encourage the involvement of the people with unit-specific knowledge 

in the decision-making process of the MUHS. The development of unit simulation 

metamodels and the integration of these simulation metamodels to represent subsystems 

and the MUHS also encourage people from different units to interact with each other. 

This will also encourage the people involved to share ownership of the final decision and 

participate more actively in the implementation of the decision. 
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4.5  AHSM Scope and Limitations 

In order to fully realize the potential of AHSM, it is important to become aware of its 

scope and limitations. 

1) AHSM is not an approach designed only for the HSM community, rather, it is an 

approach developed to facilitate the communication, coordination and interaction 

among healthcare modelers, decision-makers and other stakeholders in the 

decision-making process of MUHSs. 

2) In order to realize its full potential, AHSM needs to be used in conjunction with 

many existing methods and techniques for SM studies of MUHSs. These methods 

and techniques include those for data collection and processing, model verification 

and validation, etc.  

3) AHSM is not a cookbook approach for developing simulation models of MUHSs; 

the application of AHSM does not need to follow the “all-or-none” principle. The 

ultimate goal of AHSM is to improve the rapidity and flexibility in the study of 

MUHSs, and if the use of one or more of the techniques supporting AHSM cannot 

serve this ultimate goal, their use should be re-evaluated.  

4) AHSM is not a silver bullet that will solve all decision problems in MUHSs. 

AHSM is developed to target those OM problems which involve multiple units 

and multiple decision-makers. An in-depth understanding of the inter-unit 

interactions is crucial for making the right and informed decisions for these 

problems.  
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5) AHSM is not developed for specific SM methods, since AHSM should work with 

any SM method including those not discussed explicitly in this research (e.g. 

MCS). 

6) AHSM is primarily developed for SM applications in MUHSs to deal with OM 

decision problems which are decomposable. Namely, the overall decision 

problems can be decomposed into smaller problems which can be dealt with by 

analyzing the operations of each unit and inter-unit/subsystem interactions.  If the 

decision problems are not decomposable, then the applicability of the AHSM 

approach can be compromised.  
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Chapter 5  AHSM Supporting Techniques/Approaches 

This chapter presents three types of technique or approach to support the implementation 

of AHSM. The first is a system decomposition technique whose objective is to identify 

the hierarchical structure of the MUHS to be studied and decompose the MUHS into 

hierarchical layers of subsystems. The second is a NN-based simulation metamodeling 

technique whose objective is to develop NN-based simulation metamodels to represent 

the simulation models of units or the subsystems of the MUHS. The third is a model 

integration approach for integrating the simulation models or simulation metamodels of 

the units to represent the subsystems and the overall MUHS. Details on each technique or 

approach are provided in the following sections. 

5.1  System Decomposition by Factor Analysis 

5.1.1  Overview 

As discussed in Chapter 3, a MUHS can be represented as a ND-CAS and decomposed 

into hierarchical layers of subsystems with interactions between units belonging to the 

same subsystems much more frequent and intense than those between units belonging to 

different subsystems. This is very beneficial for modeling a MUHS with large number of 

units, where the development of a single simulation model to represent the interactions 

between all the units in the MUHS can be impractical. With the ND-CASs model, either 

new simulation models are developed or previously developed simulation models are 

reused to represent each of the individual units. These unit simulation models are 

integrated together for the development of subsystem simulation models, which can be 
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further integrated for building simulation models of higher-level subsystems or the overall 

MUHS.  

However, the work in Chapter 3 only shows that a MUHS can be represented as ND-

CAS, it does not provide a solution to finding the exact hierarchical structure of a MUHS. 

When the number of units in a MUHS is small, e.g. 3 or less, the hierarchical structure of 

that MUHS can be very obvious, but with a large number of units, it can be a nontrivial 

task to identify the hierarchical structure. To deal with the decomposition problem for 

these MUHSs, a heuristic approach is proposed in this section. 

The proposed approach was first used by Bauer et al. (1985/1991) and Matthes (1988) for 

decomposing a DES model into smaller segments to ease model implementation. Based 

on graph theory (West, 2001), the authors developed a network representation (or graph) 

to represent the relationships between the components of the DES model. This graph, in 

turn, is systematically decomposed into sub-graphs by means of factor analytic methods, 

or principal component analysis (PCA) in particular. Components of the DES model 

belonging to the same sub-graphs are first interconnected together to form segments. 

These segments are further interconnected to form the whole DES model. From the 

implementation’s viewpoint, this approach is indeed an aggregation approach as it starts 

from the components at the lowest level and aggregates them together to form segments, 

each including multiple components. However, from a retrospective viewpoint, it can be 

regarded as a decomposition approach as the final structure has middle layers while the 

original structure has no middle layers.  
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Compared with those in Bauer et al. (1985/1991) and Matthes (1988), the way in which 

the decomposition is applied in this research differs in two ways.  First, it is used to 

decompose a MUHS instead the structure of a DES model. Second, in Bauer et al. 

(1985/1991) and Matthes (1988), the decomposition is only performed one step and the 

overall resulting structure only has three layers: components, segments and the whole. But 

in this research, the decomposition will be repeated until no additional layer in the 

structure can be identified. The MUHS will start with only one layer: the MUHS as a 

whole consisting of multiple units. After the first stage of decomposition, there are two 

possibilities: 1) no new middle layer is identified and the decomposition process stops, or 

2) A middle layer is identified and the MUHS becomes a three-layer system: the MUHS 

at the top layer (layer 3), the units at the bottom layer (layer 1) and the subsystems at the 

middle layer. For the second possibility, a further stage of decomposition is performed 

considering the subsystems as the basic elements of the MUHS. This process proceeds 

until no new layers can be identified. 

5.1.2  The Process of the Decomposition Approach 

The decomposition process includes the following steps (Bauer et al., 1985/1991; 

Matthes, 1988): 

1) Construct the graph of the system to be decomposed. 

2) Construct the matrices representing the graph. 

3) Calculate the pseudo-covariance (C) and pseudo-correlation (R) matrices. 

4) Perform PCA on the R matrix and determine the number of sub graphs. 

5) Determine the structure of each sub-graph. 
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6) Name each sub-graph. 

In the following paragraphs, each step is explained in detail using a relatively simple 

graph as an example. 

Step 1: Construct the graph of the system to be decomposed 

Based on the textbook definition by West (2001), the following is a definition of a graph: 

Definition: A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a 

relation that associates with each edge and two vertices (not necessarily distinct) which 

are called its endpoints (West, 2001:  Definition 1.1.2, p2). 

Additionally, a graph is drawn by setting each vertex at a point and signifying each edge 

by a line connecting the locations of its endpoints. The values assigned to the edges are 

the amount of information (e.g., number of inputs, attributes, etc.) being passed between 

vertices. A graph may be undirected, which means that the flow between the vertices can 

go both ways, or directed, where there is a distinct flow between vertices and it only goes 

one way. The arrow heads on the edges show the direction of information flow, 

specifically for directed graphs.  
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Figure 5-1 A Simple Graph (Bauer et al. 1985) 

Figure 5-1 depicts a simple graph used in Bauer et al. (1985). This graph can be 

represented as follows: 

G = {V(G), E(G), R(G)}                                            (Eq.  5-1) 

Where   

V(G) = {N1, N2, N3, N4, N5, N6, N7, N8, N9}, is the vertex set, 

E(G) = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12}, is the edge set, the value of each 

edge represents the directions of the information flow: 1 for unidirectional; 2 for 

bidirectional. 

R(G) = {eN1↔N2, eN1↔N3, eN2↔N3, eN1↔N4, eN4↔N7, eN7↔N1, eN4↔N5, eN4↔N6, eN5↔N6, eN7↔N8, eN7↔N9, 

eN8↔N9}, is the set of relations. 
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Step 2: Construct the matrices representing the graph 

A matrix is typically a clear and efficient manner of representing a graph for use in 

analysis. A graph can be represented in terms of its adjacency and/or incidence matrix. 

Fundamentally, the incidence matrix captures the vertex-to-edge relationships while the 

adjacency matrix captures the vertex-to-vertex relationships. Below is the formal 

definition: 

Definition: Let G be a loopless (multiple edges are allowed but loops are not) graph with 

vertex set V(G) = { ʋ1,…, ʋn} and edge set E(G) = {e1,..., em}. The adjacency matrix of 

G, written A(G), is the n-by-n matrix in which entry ai,j is the number of edges in G with 

endpoints { ʋi, ʋj}. The incidence matrix M(G) is the n-by-m matrix in which entry mi,j is 

1 if it is an endpoint of ej and otherwise is 0 [West, 2001:  Definition 1.1.7, p5-6]. 

The adjacency matrix A(G) = (ai,j) is therefore given by 

 
     {

                                        

                               

   (Eq.5-2) 

and the incidence matrix M(G) = (mi,j) of a graph is given by 

 
     {

                      
 

                    

                                                   

   (Eq.5-3) 

The adjacency and edge incidence matrices of the simple graph in Figure 5-1 are shown in 

Figure 5-2. 
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Figure 5-2 Adjacency and Incidence Matrices for the Simple Graph 

In addition, there is also an edge weighting matrix (W), which is an m-by-m matrix 

representing the edge values. The W matrix of the simple graph is shown in Figure 5-3. 

 

Figure 5-3 Edge Weighting Matrix for the Simple Graph 

Step 3: Calculate the pseudo-covariance (C) and pseudo-correlation (R) matrices 

Next in the process is to calculate the pseudo-covariance matrix C = MWM
T
, where M is 

the edge incidence matrix, W is the edge weighting matrix and M
T
 is the transpose of M.  

The command used in MATLAB® 2006 to calculate C matrix is:  >> C = M*W*M'. The 

calculated C matrix for the simple graph is shown in Figure 5-4. 

M(G)=

e1  e2  e3  e4  e5  e6  e7  e8  e9 e10 e11 e12

N1    1    0    1    0     0    0    0    0    0    1     1     0

N2    1    1    0    0     0    0    0    0    0    0     0     0

N3    0    1    1    0     0    0    0    0    0    0     0     0

N4    0    0    0    1     0    1    0    0    0    1     0     1

N5    0    0    0    1     0    1    0    0    0    0     0     0

N6    0    0    0    0     1    1    0    0    0    0     0     0

N7    0    0    0    0     0    0    1    1    0    0     1     1

N8    0    0    0    0     0    0    1    0    1    0     0     0

N9    0    0    0    0     0    0    0    1    1    0     0     0

N1  N2  N3  N4  N5  N6  N7  N8  N9

N1     0     1    1     1    0    0     0     0     0

N2     1     0    1     0    0    0     0     0     0

N3     1     1    0     0    0    0     0     0     0

N4     0     0    0     0    1    1     1     0     0

N5     0     0    0     1    0    1     0     0     0

N6     0     0    0     1    1    0     0     0     0

N7     1     0    0     0    0    0     0     1     1

N8     0     0    0     0    0    0     1     0     1

N9     0     0    0     0    0    0     1     1     0

A(G)=

W(G) =

e1  e2  e3  e4  e5  e6  e7  e8  e9 e10 e11 e12

e1      2    0    0    0    0    0    0    0    0    0     0     0

e2      0    2    0    0    0    0    0    0    0    0     0     0

e3      0    0    2    0    0    0    0    0    0    0     0     0

e4      0    0    0    2    0    0    0    0    0    0     0     0

e5      0    0    0    0    2    0    0    0    0    0     0     0

e6      0    0    0    0    0    2    0    0    0    0     0     0

e7      0    0    0    0    0    0    2    0    0    0     0     0

e8      0    0    0    0    0    0    0    2    0    0     0     0

e9      0    0    0    0    0    0    0    0    2    0     0     0

e10    0    0    0    0    0    0    0    0    0    1     0     0

e11    0    0    0    0    0    0    0    0    0    0     1     0

e12    0    0    0    0    0    0    0    0    0    0     0     1
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Figure 5-4 Pseudo-covariance (C) Matrix for the Simple Graph 

Since C in Figure 5-4 is symmetric (i.e., a matrix is equal to its transpose) and positive 

semi-definite (i.e., all of its principal minors ≥ 0), it can be converted to a pseudo-

correlation matrix R = D
T
CD, where D is the inverse square root of the diagonal matrix of 

C and D
T
 is the transpose of D. The D calculation is shown in Figure 5-5 with the 

corresponding simple graph D matrix.  

 

Figure 5-5 D Matrix for the Simple Graph 

The commands used in MATLAB® 2006 for the calculation of R matrix are as follows: 

1) >> DINV = sqrt(diag(C)) 

2) >>R = C./(DINV*DINV') 

The derived R matrix is shown in Figure 5-6. 

C(G) =

6    2    2    1    0    0    1    0    0

2    4    2    0    0    0    0    0    0

2    2    4    0    0    0    0    0    0

1    0    0    6    2    2    1    0    0

0    0    0    2    4    2    0    0    0

0    0    0    2    2    4    0    0    0

1    0    0    1    0    0    6    2    2

0    0    0    0    0    0    2    4    2

0    0    0    0    0    0    2    2    4

D(G) =

0.408    0        0          0         0        0        0        0        0

0       0.5      0          0         0        0        0        0        0

0        0       0.5        0         0        0        0        0        0

0        0        0       0.408      0       0        0        0        0

0        0        0          0        0.5      0        0        0        0

0        0        0          0         0      0.5       0        0        0

0        0        0          0         0        0     0.408    0        0

0        0        0          0         0        0        0      0.5       0

0        0        0          0         0        0        0        0       0.5

D =

.                                 

.                      0

.              

.               

.

0                         .

.

√cii

______1
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Figure 5-6 Pseudo-correlation (R) Matrix for the Simple Graph 

Step 4: Perform PCA on the R matrix and determine the number of sub-graphs 

Now that the association matrices have been derived, the next step is to assess the 

dimensionality of the graph. The dimensionality assessment is basically determining how 

many sub-graphs are present in the graph using PCA.  

PCA (also known as the Karhunen-Loève transformation) is a data reduction technique 

used to reduce a complex dataset to a lower dimension to expose the sometimes hidden, 

underlying structure of a high dimensional data (e.g., data with several features). The 

basic premise is to transform the original set of variables (features) into some smaller set 

of linear combinations that explain the most variance in the original dataset. The general 

PCA algorithm can be found in Dillon et al. (1984).  The command used in MATLAB® 

2006 to perform PCA on R matrix is: >> [LPR, ER, PR] = pcacov(R) and 

 LPR is a p-by-p matrix, with each column containing coefficients for one principal 

component. 

 ER is a vector containing the principal component variances, which are the 

eigenvalues of R. 

R(G) =

1        0.408        0.408        0.167       0            0        0.167       0           0

0.408        1            0.5              0           0            0           0           0           0

0.408       0.5            1               0           0            0           0           0           0

0.167        0              0               1        0.408     0.408    0.167       0           0

0            0              0           0.408        1           0.5         0           0           0

0            0              0           0.408       0.5          1           0           0           0

0.167        0              0           0.167        0            0           1        0.408    0.408

0            0              0              0            0            0        0.408        1        0.5

0            0              0              0            0            0        0.408       0.5        1
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 PR is a vector containing the percentage of the total variance explained by each 

principal component.  

Table 5-1 depicts the results of performing PCA on the pseudo-correlation matrix R using 

MATLAB® 2006. 

Table 5-1 Extracted Factors for the Simple Graph 

 

Once the eigenvalues are extracted from the R matrix, several decision criteria can be 

used to determine the number of factors (principal components) to be retained (Hair et al., 

2006: p119): 

 Latent Root Criterion: Factors with eigenvalues greater than 1.0. 

 Percentage of Variance Criterion: Enough factors to meet a specified percentage 

of variance explained. 

 Scree Test Criterion: Factors shown by the Scree test to have substantial amounts 

of common variance (i.e., factors before the inflection point). 

 A Priori Criterion: The researcher already knows how many factors to extract 

before undertaking the factor analysis. 

Factor Eigenvalue % of Variance
Cumulative

% of Variance

1 2.000 22.222 22.222

2 1.833 20.370 42.593

3 1.833 20.370 62.963

4 0.833 9.259 72.222

5 0.500 5.556 77.778

6 0.500 5.556 83.334

7 0.500 5.556 88.889

8 0.500 5.556 94.445

9 0.500 5.556 100.000
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As an important note, multiple decision criteria are often required to decide upon the 

number of factors to be retained. Based on the recommendations in Hair et al. (2006), the 

following procedure is used to determine the number of factors to be retained: 

Step a: use the Latent Root Criterion to decide the initial number of factors to be 

retained. 

Step b: calculate the total percentage of variance explained by the initial number of 

factors. 

Step c: verify whether the Percentage of Variance Criterion can be met. No absolute 

threshold has been adopted for all applications. In natural science, the threshold is usually 

95%, but in social science, where information is less precise, 60% is a commonly used 

number (Hair et al., 2006: page 120). The 60% threshold will be used in this research as 

the inter-unit and inter-subsystem interactions in MUHSs can measured along different 

dimensions and we usually only consider some of the most important ones related to the 

decision problem. 

Step d: If the Percentage of Variance Criterion is met, use the factors selected in step 1. 

Otherwise, keep adding more factors until the Percentage of Variance Criterion is met. 

In cases where there are many equally important factors with the same eigenvalue, the 

procedure will stop at the first factor where the Percentage of Variance Criterion is met. 

Based on the extracted eigenvalues in Table 5-1, three factors are retained because the 

eigenvalues of all the three factors are greater than 1.0, and the cumulative percent of 

variance, which can be explained by the three factors is 62.96% (>60%). 
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Step 5: Determine the structure of each sub-graph 

After determining the number of factors to be retained, the next step is to interpret the 

factors (sub-graphs) or determine the structure of each sub-graph. First, a PCA will be 

performed on the C matrix using the following MATLAB® 2006 command: 

>> [LPC] = pcacov(C) 

Like LPR in the PCA of R matrix, LPC is the loading matrix. Each column of LPC 

contains coefficients for one factor. Each coefficient (or called factor loading) illustrates 

the relation of the corresponding node to that factor: the greater the absolute value of the 

coefficient, the greater the linear correlation of the node to the factor. Squared factor 

loadings indicate what percentage of the variance in an original variable is explained by a 

factor. A node is said to load on a factor when the node has the highest loading on that 

factor. After the factor loading has been obtained, the initial results will be evaluated and 

a number of judgments are made in viewing and refining these results. The initial factor 

solutions achieve the objective of data reduction, but in most instances they will not 

provide information that offers the most adequate interpretation of the factors or features 

under examination. So an orthogonal factor rotation is often needed to simplify the factor 

structure. The objective of the orthogonal factor rotation is to simplify the rows and 

columns of the factor matrix to facilitate interpretation. In a factor matrix, columns 

represent factors, with each row corresponding to a node’s loading across the factors. By 

simplifying the rows, it means making as many values in each row as close to zero as 

possible (i.e., maximizing a variable’s loading on a single factor). By simplifying the 

columns, it means making as many values in each column as close to zero as possible 
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(i.e., making the number of high loadings as few as possible). The most popular rotation 

method is the VARIMAX rotation (Hair et al., 2006: p126), which centers on simplifying 

the columns of the factor matrix by maximizing the variance of a column of the factor 

matrix of the retained factors (Kaiser, 1958). The logic is that interpretation is easiest 

when the node-factor correlations are (1) close to either +1 or -1, thus indicating a clear 

positive or negative association between the nodes and the factor; or (2) close to 0, 

indicating a clear lack of association. This structure is fundamentally simple. 

Table 5-2 shows the unrotated factor loadings for the simple graph. 

Table 5-2 Unrotated Factor Loadings – C for the Simple Graph 

 

Not much can be interpreted from the unrotated factor loading. Table 5-3 shows the 

rotated factor loadings using the VARIMAX rotation method for the simple graph. The 

command for performing VARIMAX rotation (with three retained factors) to the factor 

loading matrix, LPC, is show as follows: 

>> Bvar= rotatefactors(LPC(:,1:3),'Method','Varimax') 

Bvar is the rotated factor matrix shown in Table 5-3. 

Node Factor 1 Factor 2 Factor 3

N1 -0.471 0.000 0.525

N2 -0.236 0.000 0.442

N3 -0.236 0.000 0.442

N4 -0.471 -0.454 -0.262

N5 -0.236 -0.383 -0.221

N6 -0.236 -0.383 -0.221

N7 -0.471 0.454 -0.262

N8 -0.236 0.383 -0.221

N9 -0.236 0.383 -0.221
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Table 5-3 VARIMAX Rotated Factor Matrix – C for the Simple Graph 

 

After examining Tables 5-3, we see nodes 1, 2 and 3 load on Factor 3, nodes 4, 5 and 6 

load on Factor 2, and nodes 7, 8 and 9 load on Factor 1. So we can say that there are three 

(3) principal graphs here (3 retained factors) and each is composed of the three nodes. 

Step 6: Name each sub-graph 

Typically, part of the PCA assessment is to evaluate how the nodes in the factors are 

related and thus producing a “naming” convention for the grouping, also known as the 

interpretability criterion. In this case, we only need to assess which nodes belong to what 

factor, since the graph is fairly generic and no specific names are assigned to the nodes. 

5.2  NN-based Simulation Metamodeling 

In AHSM, simulation models are recommended to be developed and maintained at the 

unit level so that they can be kept current to reflect changes in the real systems. It also 

improves the flexibility and reusability of simulation models to address different decision 

problems. However, there are two major issues in the implementation of the AHSM 

Node Factor 1 Factor 2 Factor 3

N1 -0.058 -0.058 0.701

N2 0.045 0.045 0.497

N3 0.045 0.045 0.497

N4 -0.058 -0.701 0.058

N5 0.045 -0.497 -0.045

N6 0.045 -0.497 -0.045

N7 -0.701 -0.058 0.058

N8 -0.497 0.045 -0.045

N9 -0.497 0.045 -0.045
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approach. The first one is that many unit simulation models may exist already and they 

were developed using various SM methods and/or SM software packages, simply due to 

historical reasons. The second one is that the unit simulation models can be very complex 

already with a lot of details included. Although certain SM methods and SM software 

packages can be recommended for future SM studies to improve the interoperability and 

standardization, it can be costly and impractical to update the existing simulation models 

to use new SM methods or SM software packages.  In order to make it easy to reuse these 

existing simulation models, simulation metamodeling is proposed in this section as a 

useful solution. 

5.2.1  Overview of Simulation Metamodeling 

Simulation metamodeling was first proposed by Blanning (1975) to obtain useful 

sensitivity information with a significant reduction in the computation time. Kleijnen 

(1975) suggested some statistical tools to lead metamodels into common use in stochastic 

simulation, and later (Kleijnen, 1979) proposed a definition of a simulation metamodel, 

which has been commonly used since then. This definition can be summarized as follows: 

Let Xj denote a factor j influencing the outputs of the real-world system (j =1, 2, ... , s), 

and let Y denote the response of the system. The relationship between the response 

variable Y and the inputs Xj of the system can be represented as: 

Y = f1 (X1, X2 , … , Xs )                        (Eq.  5-4) 

A simulation model is then an abstraction of the real system, in which we consider only a 

selected subset of the input variables {Xj,  j = 1,2, ... r} where r is significantly smaller 
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than the unknown s. The response of the simulation Y' is then defined as a function f2 of 

this subset and a vector of random numbers   representing the effect of the excluded 

inputs: 

Y’ = f2 (X1, X2, … , Xr,ѵ)                      (Eq.  5-5) 

A metamodel is now a further abstraction, in which we select a subset of the simulation 

input variables {Xj, j = 1,2, ... m, m <= r} and describe the system as 

Y” = f3 (X1, X2, … , Xm) + ɛ                     (Eq.  5-6) 

where ɛ denotes a fitting error, which has an expected value of zero. Figure 5-7 illustrates 

these levels of abstraction. 

 

Figure 5-7 The Concept of a Simulation Metamodel 

Simulation metamodeling has been used extensively as a post-analysis tool in 

manufacturing, agriculture, chemical engineering and other areas (Yu & Popplewell, 

1994). The advantages of metamodeling in post-simulation analysis are explored by 

Friedman & Pressman (1988). Among these are model simplification, enhanced 
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exploration and interpretation of the model, generalization to other models of the same 

type, sensitivity analysis, optimization, answering of inverse questions and better 

understanding of the studied system and the inter-relationships between system variables.  

A simulation metamodel provides a statistical summarization of simulation results, 

allowing some extrapolation from the simulated range of systems conditions, therefore its 

potential use  in many other applications areas has been explored by many authors. Starr 

(1991) reports a use of hybrid metamodels and simulation techniques for decision support. 

Similarly, Santos & Santos (2007) also recommend the reuse of a simulation metamodel 

as a building block in a large simulation model. In military applications, simulation 

metamodeling has been used as a technique to aggregate hierarchically lower-level 

models into the next higher-level model (Rodriguez, 2008). 

The most popular methods for constructing simulation metamodels have been based on 

response surface methodologies (RSM) using parametric regression model 

approximations. These methods are the topic of entire texts (Myers, 1976; Box & Draper, 

1987; Khuri & Cornc, 1987) and have been used successfully for performing sensitivity 

analysis within a limited region of the parameter space and determining solutions 

satisfying various constraints (Box & Draper, 1987).  However, they have not been used 

to perform global approximation of a simulation model because of their inability to 

provide a globally accurate fit to the response function (Myers et al., 1989). 

One alternative approach is to use an artificial neural network (ANN), usually called a 

“neural network” (NN). Pierreval & Huntsinger (1992) explore the potential use of NNs 

as a metamodeling tool for discrete-event and continuous simulation models. They 
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describe NN as a suitable metamodeling technique to represent a discrete-event job 

simulation model. In his early study on NNs, Hurrion (1992) develops a NN metamodel 

from a stochastic simulation of a coal depot. The NN is trained to predict the mean and 

the 99% confidence interval of the time the depot remains open. Badiru & Seiger (1993) 

use a NN as a simulation metamodel for economic analysis of risky projects. They 

develop a NN model to predict the potential returns from investment projects with 

stochastic parameters, e.g. initial investment, the rate of return, and the investment period. 

The metamodel developed can analyze the performance of potential future projects 

without re-running the time-consuming simulation. The authors carried out a similar study 

in 1998 (Badiru & Seiger, 1998). Experimenting with a simple investment project, they 

show that good predictive capability can be achieved by simplifying a simulation with a 

NN. Kilmer & Smith (1993) and Kilmer et al. (1994) experiment with an inventory 

problem, and also suggest NNs as metamodels for DES analysis. NNs perform better than 

first-order and second-order linear regression models when compared with these two 

traditional approaches (Kilmer & Smith, 1993). Hurrion (1998) experiments with three 

example problems: an M/M/s queue, a coal depot system and a flow shop system, and 

shows that NN metamodels produce more accurate responses than regression metamodels.  

Compared with RSM, NN has many unique characteristics but its use as a simulation 

metamodeling technique is a relatively recent development (Kilmer et al., 1994; Badiru & 

Seiger, 1998). Given the focus of this research, it is not practical to provide a 

comprehensive comparison between NN and RSM approaches for all possible 

applications related to the implementation of the AHSM approach. Instead, this research 

chooses to only use NN as the simulation metamodeling technique. However, this choice 
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does not intend to recommend NN as the only technique or the best technique for 

developing simulation metamodels.  Instead, the purpose is just to promote NN as another 

good candidate technique of simulation metamodeling and is a viable simulation 

metamodeling technique to support the implementation of the AHSM approach. 

5.2.2  NN Overview 

NN is a mathematical system that mimics the way in which the brain works. It consists of 

several highly interconnected computational elements, known as nodes, neurons, or 

perceptrons. There are various NN models and the most popular and commonly employed 

NN is the multilayered feed-forward NN (MFNN) (Kate & Jatinder, 2000). Other names 

for the MFNN are FANN (Feed-forward Artificial Neural Network), MLP (Multilayer 

perceptron) network, and back propagation (due to its learning algorithms) network. NNs 

are based on the generalized delta algorithm, which provides a method of updating the 

weights so that the errors are minimized (Bishop, 1995). An example of three-layer NN 

model architectures is shown in Figure 5-8.  

 

Figure 5-8 Three-layer NN Model Architecture 
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As shown in Figure 5-8, the first layer is called the input layer, and the last layer is known 

as the output layer. The number of nodes in the input layer corresponds to the number of 

independent variables, and the number of nodes in the output layer corresponds to the 

number of dependent variables. The layers of nodes in between the input and output 

layers are called hidden layers. Biases are weight values associated with individual nodes. 

Biases are determined by the iterative flow of training data through the network (i.e., 

biases are established during a training phase in which the network learns how to identify 

particular classes by their typical input data characteristics). 

Each node in a NN performs the following tasks: 

1) Signals are received from other nodes (X0, X1, …,Xd). 

2) Signals are multiplied by their corresponding weights (W0X0, W1X1, …,WdXd). 

3) Weighted signals are summed (Sum = W0X0 + W1X1 +…+ WdXd). 

4) The calculated sum is transformed by an activation function [F(Sum)]. 

5) The transformed sum is sent to other nodes (repeat 1-4 above).  

Some of the common activation functions are as follows (Sarle, 1994; Stern, 1996; 

Haykin, 1999): 

 Linear or identify: F(x) = x 

 Hyperbolic tangent: F(x) = tanh(x) 

 Threshold: F(x) = 0 if x<0, 1 otherwise 

 Gaussian: F(x) = x
(-x2/2)

 

 Logistic: F(x)=(1+e
-x

)
-1
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Typical activation functions used in the hidden layers of NNs are the hyperbolic tangent 

function or the logistic functions. This is typically followed by an output of linear 

activation nodes for prediction problems (Haykin, 1999). NNs often have one or more 

hidden layers, but generally, three-layer NNs (given adequate number of M nodes in the 

single hidden layer) are universal approximators (Hornik et al., 1989). 

Compared with conventional statistical procedures, NNs usually use more parameters, and 

are thus more susceptible to overtraining. The overtraining phenomenon is observed when 

the mean squared error of the NN continues to increase while the network performance is 

still improving in learning the training set. This is highly undesirable as it signifies that 

the NN cannot recognize unknown patterns and its generalization ability is hampered 

(Tzafestaset et al., 1996). A commonly used method in dealing with the overtraining 

phenomenon is to divide the data into a training set and a test set. The training set is used 

to fit the NN model, and the test set is used to evaluate the model’s performance. Alam et 

al. (2004) recommend the use of the RMSE (Root Mean Square Deviation) as the measure 

of performance for the NN due to its ability to incorporate a measure of both the variance 

and the square of the bias of the prediction errors. 

The NN is trained by repeatedly giving it examples from its training set.  A training set 

consists of an input vector paired with a corresponding output vector. Each example from 

the training set is offered to the NN and its output is calculated. The error between the 

calculated result and the real result is used to modify the matrix of weights between each 

layer in the network. The error adjustment is termed back propagation, which is a 

conceptually simple iterative gradient descent algorithm (Rumelhart et al., 1986). 
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In training NNs, the following three training parameters are required: learning rate, 

momentum, and training tolerance. Learning rate limits or multiplies the extent of weight 

changes in any given iteration. A high learning rate that reacts very quickly to input 

changes tends to make the network unstable. However, if the learning rate is lower than 

optimum, the NN will take a substantially longer time to learn. A consensus among 

researchers is that adaptive learning rates are preferred as they can stabilize and accelerate 

convergence to a desired solution (Looney, 1996). The momentum factor determines the 

proportion of the last weight change that is added to the new weight change. Low 

momentum often causes oscillation of weights and renders the network unstable, and 

learning is never completed. High momentum corresponds to a lack of flexibility and 

adaptability on the part of the NN. In general, the momentum factor should be less than 

one (unity) to stabilize back-propagation (Yu & Chen, 1997). The training tolerance factor 

specifies the margin of error allowable when NN outputs are compared to real outputs. A 

training tolerance of zero indicates that the NN outputs must exactly match the real 

outputs. A training tolerance close to zero can adversely affect the ability of the model to 

generalize, as a high degree of accuracy in the model is desired relative to training data. 

However, a high training tolerance factor is also not recommended, as it will result in 

inaccurate results because the specified accuracy is low (Kuo & Reitsch, 1995). In 

summary, balance must be achieved in specifying the training parameters for a NN. The 

training parameters are application specific and are usually determined by trial and error. 

5.2.3  The Steps in NN-based Simulation Metamodeling 

Figure 5-9 shows a set of steps in the development of NN-based simulation metamodels. 
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Figure 5-9 Steps in NN-based Simulation Metamodeling 

In this research, the Multilayer Perceptron (MLP) module of IBM SPSS® Neural 

Networks 19 is used for the training and testing of the NN models and will be used as 

reference in the following discussions. 

Step 1: Determine metamodeling purpose and scope: The purpose and scope of all the 

subsystem simulation models and metamodels should be decided in the Planning step of 

the AHSM approach, which involved decomposition of the MUHS into hierarchical layers 

of subsystems and the architectural design of the overall SM study of the MUHS. The 

purpose of the simulation metamodels of the units in the MUHS is to capture the 

behaviours of the units in response to inputs from other units or outside of the MUHS.  

The scope of the metamodel includes the input-output relationships to be included in the 

metamodel, the range of the metamodel inputs and the specified precision of the 

metamodel outputs compared with those of the original simulation models. The range of 

the metamodel inputs is determined with the consideration of the following two main 

factors: 1) the purpose of the simulation metamodel, and 2) the limitation of the original 

simulation model. An initial range of the metamodel inputs can be determined based on 

the purpose of the simulation metamodel. Then the original simulation model is run for 
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inputs at the lower and upper limits of the range to verify that it can properly represent the 

operations of the real systems within this range for the purpose of analysis. If the 

verification result is positive, the range of inputs is used for the development of the 

simulation metamodel. Otherwise, the original simulation model is modified to serve the 

purpose of the simulation metamodel.  

Step 2: Determine number of replications based on specified precision: Obtain the 

proper number of replications for the simulation model based on the specified precision 

for the outputs of the simulation model. The objective to be achieved at this step is to find 

the minimum number of replications so that the half length of the 95% confidence interval 

(CI) of the experimental results is less than the specified precision. There are two main 

factors to be considered when deciding the specified precision, which include: 1) the 

purpose of the simulation metamodel, and 2) the time required to run the simulation 

model.  

Step 3: Generate experimental data: Once the proper number of replications for the 

simulation model has been decided, the simulation model is run to generate experimental 

results.  In the simulation metamodeling process, this step may be repeated several times. 

At the beginning, only a small number of data points can be chosen for each input. For 

example, if there are three inputs of the simulation metamodel, we can only use three data 

points for each input: one data point at each end (lower and upper limit) and one in the 

middle. Then we need to run the original simulation model 3x3x3 = 27 times. If at later 

steps, we find that the simulation metamodel cannot accurately represent the original 
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simulation model with the performance target, which will be discussed later, we can come 

back to this step and generate additional experimental results. 

Step 4: Set up training and testing data: Partition the experimental data into two 

groups: one group is used to train the NN models and the other group is used to test the 

trained NN models. Both the training and testing data points should be evenly distributed 

across the input ranges of the simulation metamodel to maintain performance consistency 

of the simulation metamodel at any data point. As a rule of thumb, 20% to 30% of the 

data points are used as testing data. One important note to make here is that the test data 

set is designed to validate the trained NN models on interpolation rather than 

extrapolation. In other words, the trained NN models are used as a special “look-up” table 

to provide results of the given inputs within the domain of the experimental results 

generated from running the original simulation models. 

Step 5: Choose NN architectures: Choose the architectures of the NN models, which 

includes the following parameters: 1) number of hidden layers; 2) numbers of nodes on 

each hidden layer; 3) activation function on hidden layers; 4) activation function on 

output layer; and 5) method for rescaling input and output variables. In order to make it 

easy to train NN models and implement them once trained, the following default NN 

architectures in IBM SPSS® Neural Networks 19 are used in this research: 

 Number of hidden layers: 1 

 Number of nodes on each hidden layer: same as or dividable by the number 

of inputs 
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 Activation function on hidden layer: hyperbolic tangent 

 Activation function on output layer: identity 

 Method for rescaling input and output variables: standardized. 

Changes to the default NN architectures will only be considered when the trained NN 

models cannot meet the performance targets. 

Step 6: Decide NN training rules: Decide on the rules used to train the NN model. The 

following default training settings in IBM SPSS® Neural Networks 19 are used in this 

research: 

 Type of training:  

o Batch mode: Update the synaptic weights only after passing all training data 

records; that is, batch training uses information from all records in the training 

dataset. 

 Optimization algorithm:  

o Gradient descent 

 Training options:  

o Initial learning rate: 0.4  

o Momentum: 0.5  

o Interval center: 0  

o Interval offset: +/-0.5 

 Stopping rules: 

o Maximum steps without a decrease in error:  1000 
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o Maximum training time:    15 minutes 

o Maximum training epochs:  1,000 

o Minimum relative change in training error:  1.0e-4 

o Minimum relative change in training error ratio:  1.0e-3  

Step 7: NN training: Train the NN model using the training data sets and following the 

training rules described in Step 6. 

Step 8: Performance evaluation: Evaluate the performance of the NN model using the 

test data sets. 

Step 9: Satisfied? If the performance of the trained NN-based simulation metamodels 

meets expectations, then the simulation metamodeling process will end. Otherwise, 

choose different training rule following the steps below: 

a) Run the MLP module three times and get three trained NN models. Compare the 

sum of squares error and relative error for the training datasets of the three NN 

models in the model summaries. 

b) If the difference is over 10% between the three NN models, reduce the initial 

learning rate by 0.05 and repeat step a). Otherwise, go to next step. 

c) Compare the sum of squares error and relative error between the training datasets 

and the testing datasets for each NN model, if the difference is over 10%, increase 

momentum by 0.05 and go back to step a). Otherwise, go to next step. 
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d) Rerun the MLP module once and get a new trained NN model. If the performance 

of the NN model meets expectations, then stop the simulation metamodeling 

process. Otherwise, go to next step.  

e) Check the stopping rule used in the model summary, if the stopping rule used is 

maximum training time of 60 minutes, then end the process of choosing different 

training rules. 

f) Make the change to relax that rule. For example, if the stopping rule used in the 

model summary is 1000 consecutive steps with no decrease in error, then change 

the maximum steps without a decrease in error from 1000 to 10,000 and go back 

to step d). 

After we have tried different training rules, we need to go back to the previous steps to 

choose different NN architectures, different ways of partitioning the data into training/test 

groups, or collect more experimental data if the performances of the trained NN models 

are still not satisfactory. 

5.3  A Flexible Approach to Integrating Simulation Models 

In AHSM, a simulation model is developed to represent each unit in the MUHS to be 

studied. These unit simulation models are used to analyze the behaviour of the units in 

response to the inputs from other units or from outside of the MUHS. Unit simulation 

models are integrated to represent the subsystems and the subsystem simulation models 

are further integrated to represent the higher-level subsystems or the overall MUHS.  
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Conceptually, model integration sounds like a very simple and straightforward task; 

however, there are many challenges at the implementation level. First, unit simulation 

models may have been developed using different SM methods and SM software packages. 

These can be very complex models already and typically have not been developed to be 

integrated with other simulation models. Second, simply integrating the programming 

code of unit simulation models does not automatically create a simulation model to 

represent the combined operations of all the units. Much verification and validation work 

is required in the model integration process, introducing extra complexity into the 

development process of the MUHS simulation model. Third, the integrated simulation 

model representing the MUHS must not become too complex, otherwise it may defeat the 

purpose of the AHSM approach especially in terms of the flexibility necessary to address 

future decision problems.  

To address these challenges, different model integration approaches are reviewed in the 

following section, after which a FMI (flexible model integration) approach is proposed to 

address the different model integration requirements in the application of AHSM. 

5.3.1  Model Integration 

Model integration means different things to different people due to their different 

perspectives on what constitutes a model. Historically, there have been two main 

viewpoints on model and model integration, one from computer and information science 

and the other from operations research/management science, though the two have been 

gradually blending (Tang, 2002).  
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From the viewpoint of computer and information science, a model is defined as “a 

schematic description of a system, theory, or phenomenon that accounts for its known or 

inferred properties and may be used for further study of its characteristics” (Addanki et 

al., 1990). The main focus of model integration research from the computer and 

information science perspective is on addressing the technical issues that are relevant to 

model integration, i.e. conflict resolution and structural validity of the integrated models 

(Krishnan & Chari, 1993). Conflict resolution is a major part of model integration as the 

components of the models being integrated may have naming conflicts (an attribute 

named price means the price of the material in a manufacturing model while the same 

attribute means the sale price in a demand estimation model), granularity conflicts (a 

variable in a revenue forecasting model forecasts revenues by year while the budgeting 

model uses revenue forecasts by the quarter), or dimensional/units of measurement 

conflicts (one of the variables which measures sales volume does it in dollars, while the 

other measures it in terms of the number of units sold). Bradley & Clemence (1987) 

propose a type calculus for modeling languages with the specific objective of identifying 

conflicts. Krishnan et al. (1993) describe the use of types and type inferences in a 

language called ASCEND (Piela et al., 1992) to facilitate conflict resolution.  Bhargava et 

al. (1991) introduce a concept called quiddity which works in concert with dimensional 

information to detect conflicts in names, type, and dimension. 

Given the variety of changes to model structure during integration, how can one be certain 

that the structure that emerges upon integration is a valid model? The most promising 

development in answer to this question is the work of Geoffrion (1987) on structured 

modeling. Structured modeling is a formally specified notational framework for modeling 
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that was developed to address a variety of model development problems. A key feature of 

structured modeling is the ability to test if a given structure is a valid structured model. 

Another useful feature of structured modeling is its explicit representation of the inter-

relationships between model elements. This representation enables the impact of a change 

to a model object to be identified by tracing the dependencies between model elements. 

Geoffrion (1989a) describes a detailed manual procedure for integrating models specified 

in the SML language (Geoffrion, 1992a/b). 

From the viewpoint of OR/MS, a model is defined as “a computational representation 

having a specific real-world interpretation and providing the user with inferences about 

that world” (Elam & Lee, 1986). Model integration is used as a practical approach to 

thinking about “modeling in the large” to support model-based decision-making. Model 

integration research from this perspective focuses on operation and manipulation of 

models once they have been developed (Krishnan & Chari, 1993). Specifically, model 

integration has attracted significant considerations in the study and management of 

complex systems such as cancer biology (Patel & Nagl, 2011), and environmental 

decision support systems (Rizzoli et al., 1998; Argent, 2004). In complex systems 

research, the need for model integration is vital to understanding the very systems under 

study. It usually involves a large modeling community, each individual group within that 

community having their respective subsystem specialty, modeling methodology 

preferences and technological limitations, and each contributing to the literature a mass of 

knowledge in the form of models and simulations. These fields establish their own version 

of a modeling lifecycle, however, too often the majority of efforts are shelved or 
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forgotten, to the detriment of the research community: whole-system simulations fall short 

due to the lack of an integrating principle between modeling efforts.  

5.3.2  Model Integration Approaches 

There are three approaches to model integration: direct model integration (DMI); 

metamodel-based integration (MMI); and hybrid model integration (HMI). 

The Direct Model Integration (DMI) Approach 

Direct Model Integration (DMI) is an approach that directly combines the individual 

models (Meckesheimer, 2001). The DMI approach can be further distinguished between 

“deep” integration and “functional” integration (Geoffrion, 1989a). Others have made this 

same distinction using different terms; for example, Dolk & Kottemann (1993) call it 

definitional vs. procedural integration. Deep integration produces a single new model that 

combines two or more models. Functional integration, in distinction, does not yield a 

single new model. Instead, it leaves the individual models as they are and superimposes a 

computational agenda for coordinating calculations amongst them, typically directing 

certain models' outputs to other models' inputs while specifying the order of computations 

(portions of which may be left to automatic resolution at run-time). The computational 

agenda here, which of course must be defined formally, serves as the (only) definition of 

the functional integration. The HLA defined by IEEE is one example of the functional 

integration approach. 
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The Metamodel-based Integration (MMI) Approach 

In the MMI approach, simulation metamodels are developed to represent each simulation 

model using the techniques discussed in Section 5.2. These simulation metamodels, 

instead of the original models, are integrated. 

The Hybrid Model Integration (HMI) Approach 

The HMI approach is a mixture of the DMI and MMI approaches.  Using this approach, 

simulation metamodels are only developed to represent some of the simulation models, 

then these simulation metamodels, together with some of the original simulation models 

are integrated to construct the integrated simulation model.  Multiple criteria can be used 

to decide whether the original simulation model or the simulation metamodel should be 

used to represent a particular unit or subsystem. These criteria include: 1) the chosen SM 

method and/or SM software package for the MUHS simulation model; 2) the complexity 

of the simulation model; and 3) the decision problem. 

5.3.3  Unit Simulation Model Integration in AHSM  

Any of the three model integration approaches can be applied in the integration of unit 

and subsystem simulation models, but each approach has certain advantages and 

disadvantages. On the positive side, the DMI approach is very straightforward and can 

retain the operational details of the subsystems which are captured in the original 

simulation models, however, it has several disadvantages. First, the interfaces of the 

subsystem simulation models have to be designed to a common standard. Once the 

objective of the system model changes, the interfaces of the subsystem simulation models 



96  

 

may need to change and this will require the redesign of the interfaces of the subsystem 

simulation models. Second, the DMI approach usually requires the same 

computer/operating system platform or the same SM method and software package. 

Third, if some subsystem simulation models are already computationally expensive to 

run, the system model can be computationally prohibitive to run. Fourth, the DMI 

approach may result in overbuilt system simulation models as not all the features of the 

subsystem simulation models are needed, but removing the extra features of the 

subsystem simulation models can be very costly and time-consuming. 

The MMI approach has two advantages over the DMI approach: rapidity and flexibility. 

First, the simulation metamodels take much less time to run than the original simulation 

models, reducing the computational expense and allowing modelers to gain insight into 

the decision problems by evaluating and viewing decision alternatives much more 

quickly. This also encourages interactive sessions, in which modelers of different 

subsystem models can participate in the system level analysis. Second, with the MMI 

approach, a set of simulation metamodels can be generated and implemented. This will 

better manage the task of creating and managing different interface designs, because it 

reduces both the amount of custom coding as well as the complexity of the subsystem 

simulation models. This permits a greater variety of analysis to be implemented. 

However, the MMI approach also has some disadvantages. First, a simulation metamodel 

is required for each output variable, thus if there are many output variables in the 

subsystem simulation models, it will require many simulation metamodels to be 

developed. Second, the simulation metamodeling process will introduce errors for each 

individual metamodel which can accumulate and affect the accuracy of the system 
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simulation model. Third, simulation metamodels are only valid within the domain of 

experimental results generated from the run of the original simulation models. Finally, 

once the original simulation models change, the simulation metamodels will become 

invalid and new experimental results will have to be generated for the development of 

new simulation metamodels. 

The HMI approach is a trade-off solution between the DMI approach and the MMI 

approach, only applicable and efficient when some subsystem simulation models are 

simple enough to be integrated directly and/or when they are developed using the same 

SM method and SM software package as those for the development of the integrated 

simulation models. 

5.3.4  A FMI Approach for AHSM 

In order to maximize the advantages of the three model integration approaches while 

mitigating their disadvantages, a Flexible Model Integration (FMI) approach is proposed 

to support the implementation of AHSM. FMI is a procedural approach which outlines a 

framework for the use of different model integration approaches in AHSM. It includes the 

following five major steps: 

1) Make a list of the unit, subsystem and MUHS simulation models to be developed. 

To address a particular decision problem concerning a MUHS, the MUHS can be 

decomposed into hierarchical layers of subsystems, and subsequently the interactions 

among subsystems can be studied to address that decision problem. For MUHSs with a 

large number of units, the decomposition can be done using the technique proposed in 
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Section 5.1. Following the decomposition of the MUHS, a simulation model needs to be 

developed of each unit, after which these unit simulation models need to be integrated to 

represent subsystems. The integrated subsystem simulation models need to be further 

integrated to represent higher-level subsystems or the overall MUHS. Let’s assume a 

MUHS consisting of n units can be decomposed into an m-layer system, and we use Ki 

(for i=1 to m), to represent the number of units or subsystems at each layer. Then 

K1 = n, which is the total number of units at layer 1, 

Ki, (for i=2 to m-1) = the number of subsystems at each layer between 2 and m-1, 

and  

Km = 1, the MUHS at the top layer (layer m). 

This means that we will need to first develop n unit simulation models, then ∑   
   
    

integrated subsystem simulation models, and finally one integrated MUHS simulation 

model. Once the n unit simulation models have been developed, the development of the 

MUHS simulation model can be divided into m-1 steps, each step representing the 

development of subsystem simulation models or the overall MUHS simulation model by 

integrating a number of simulation models at the immediately lower layer. For example, 

the 1
st
 step after the development of the K1 unit simulation models is to develop the K2 

subsystem models at layer 2 of the hierarchical structure of the MUHS by integrating 

different unit simulation models.  The development of the subsystem simulation models 

within a particular layer can be done in parallel, but their integration to create the 

subsystem simulation models at the layer above has to be done in a sequential order. That 
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means a subsystem simulation model at a certain layer cannot be done unless all the 

required simulation models at the lower layer have been developed. 

2) Define the purpose and interface specification of each simulation model 

The purpose of each simulation model should be determined by the decision problem and 

criteria used to decompose the MUHS. For example, if the decision problem concerns 

patient flow within the MUHS, the unit simulation models should focus on simulating the 

operations of the units and assessing how the patient flows between the units can be 

affected by changes happening in the same or different units. Similarly, a subsystem 

simulation model should focus on simulating the interactions amongst units or subsystems 

at the lower layer, which represent the internal operations of that subsystem, and assessing 

how the patient flow via this subsystem can be affected by changes happening in the same 

or different subsystems. The interface specification of each simulation model should be in 

alignment with the criteria used to decompose the MUHS. Using the same example for 

the patient flow analysis, the major interface parameters of the simulation models will be 

the arrival/exit rates and waiting times of patients. 

3) Perform an inventory check to assess the reusability of each previously developed 

simulation model 

After the purposes of the simulation models have been decided, an inventory check should 

be done for all the previously developed simulation models, with the goal being to use or 

modify previously developed simulation models provided that this will take less time and 

effort than developing new simulation models from scratch. 
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The previously developed simulation models can fall into one of the following two 

categories: 1) simulation models representing individual units; and 2) simulation models 

representing two or more units (i.e. subsystem or MUHS models). For a previously 

developed unit simulation model, consider the following: 

 Use it if it can serve the purpose of the planned study, 

 Modify it if it takes less time and effort than developing a new simulation 

model from scratch, or 

 Drop it from consideration for the current decision problem. 

For a previously developed multi-unit simulation model, consider the following: 

 Use it represent the MUHS if it can serve the purpose of the planned study, 

 Use it to represent a subsystem if it can serve the purpose of the planned study, 

 Use it for the development and calibration of some unit simulation models if 

possible, or  

 Drop it from consideration for the current decision problem. 

For units with no previous simulation models developed, check what SM methods and 

software packages were used for the development of the existing simulation models of 

other units and try to use the same SM method or SM software package as long as there 

are no obvious disadvantages for using them. 

4) Decide the model integration approaches to be used for the development of the 

subsystem or MUHS simulation models 

Use the following principles for choosing the integration approach: 
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 For the integration of unit simulation models 

Use the DMI approach only when the unit simulation models are simple, and 

developed using the same SM method and SM software package, and do not 

require frequent updating. Otherwise, the MMI or HMI approaches should be 

used. 

 For the integration of subsystem simulation models 

Use MMI approach only when the integrated simulation model becomes too 

complex. Otherwise, the DMI or HMI approaches should be used. 

5) Develop or reuse unit simulation models for developing subsystem simulation 

models and the overall MUHS simulation model 

After all the preparation work mentioned in the previous steps has been finished, the 

process for developing and integrating simulation models will start. Major tasks at this 

step include: 

 Develop and validate new unit simulation models. 

 Modify and validate previously developed unit simulation models. 

 Develop and validate subsystem simulation models by integrating simulation 

models representing units or subsystems at the immediately lower layer. 

 Develop and validate the MUHS simulation model by integrating simulation 

models representing subsystems at the immediately lower layer.  
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Chapter 6  CHR Healthcare System Decomposition 

6.1  Introduction 

This chapter presents an application example of the system decomposition technique 

introduced in Section 5.1 of Chapter 5, using the healthcare system within the Calgary 

Health Region (CHR) in Alberta, Canada as the target MUHS to be decomposed. In order 

to avoid unnecessary details while maintaining the representativeness of the application 

example, a simplified version of the CHR healthcare system studied in a research project 

funded by the HQCA (Health Quality Council of Alberta) in 2009 is used (Rohleder et al., 

2009). The objective of that research project was to investigate patient flow problems 

within the CHR with a focus on the services affecting the operations of EDs within the 

CHR. The author was one of the researchers involved in this project. The CHR healthcare 

system studied in the HQCA research project consisted of the following eight (8) units: 

 Primary Care, 

 Urgent Care, 

 Emergency Departments (ED), 

 Outpatient Clinics and Consultants Services, 

 Surgery & Recovery, 

 Hospital Wards (HW), 

 Patient waiting services for outpatient clinics and consultants services, and 

 Patient waiting services for surgery and hospital wards. 
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The patient flows between the eight (8) units, which correspond to the CHR operations in 

2009, are shown in Figure 6-1.  

 

Figure 6-1 Patient Flow Diagram for the CHR Healthcare System 

There are two main reasons why the CHR healthcare system studied in the HQCA 

research project was chosen in this application example. The first one is because the CHR 

healthcare system is a typical MUHS with many service units interconnected with each 

other. The proposed system decomposition technique can be used to make the study of the 

CHR healthcare system more manageable. The second reason is because the HQCA 

research project can be used as a practical example to demonstrate how the system 
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decomposition technique might be able to help make some modeling and research tasks 

easier from a retrospective point of view. 

In the following sections, the system decomposition technique is applied in decomposing 

the CHR healthcare system into hierarchical layers of subsystems. Then the potential 

applications of the decomposition result in the HQCA project are explored. 

6.2  CHR Healthcare System Decomposition 

In this section, the steps described in Section 5.1 of Chapter 5 are followed in the 

decomposition of the CHR healthcare system. 

Step 1: Construct the graph of the system to be decomposed  

The first step when applying the system decomposition technique in this case is to 

construct a graph representation of the CHR healthcare system. This can be done via a 

direct translation from the patient flow diagram shown in Figure 6-1. The sources of the 

arriving patients and destinations of the discharged patients are not part of the CHR 

healthcare system, but they need to be included when constructing the graph 

representation of the CHR healthcare system. For the purpose of easy formatting, the 

following acronyms (Table 6-1), instead of the full names of the healthcare services or 

units, are used in the graph representation of the CHR healthcare system as shown in 

Figure 6-2. 
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Table 6-1 Acronyms used in the Graph Representation of the CHR Healthcare System 

Acronym Full Name or Explanation 

S1-4 Sources of arriving patients 

D1-5 Destinations of discharged patients 

P Primary Care 

U Urgent Care 

ED Emergency Departments 

OC Outpatient Clinics and Consultants Services 

SR Surgery & Recovery 

HW Hospital Wards 

CWL Patient Waiting Services for outpatient clinics and consultants services 

HWL Patient Waiting Services for surgery and hospital wards 

 

Figure 6-2 Graph Representation of the CHR Healthcare System (G1) 
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One important step in constructing the graph representation is to determine the value of 

the edges which represent the relationships between the nodes in the graph. In reality, 

there can be many different types of relationships between two nodes. For example, the 

relationship between the node ED (Emergency Departments) and HW (Hospital Wards) 

can be measured by directions of patient flow, patient volumes, waiting times, shared 

resources etc. Different measures can be chosen for analyzing a particular type of decision 

problem. In this chapter, the focus is on the patient flow analysis, so the values of the 

edges in the graph are determined with the consideration of the following two factors: 

1) The directions of the patient flow, and 

2) The dependency of the patient release from the upstream node on the availability of 

resources within the downstream node. 

Table 6-2 lists all the possible edge values and the corresponding inter-node relationships. 
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Table 6-2 Edge Values and Corresponding Inter-node Relationships 

Edge Value Corresponding Inter-node Relationships 

1 

1) Unidirectional patient flow, and 

2) Patient release is not dependent on the availability of downstream 

resources 

2 

1) Unidirectional patient flow, and 

2) Patient release is dependent on the availability of downstream 

resources 

2 

1) Bidirectional patient flow, and 

2) Patient release is not dependent on the availability of downstream 

resources 

3 

1) Bidirectional patient flow, and 

2) Patient releases from one or both nodes are dependent on the 

availability of downstream resources 

Here are some examples: 

1) The value of the edge e1 (between node S1 and node P) is 1 because the patient arrival 

is a unidirectional flow, and a patient’s seeking for primary care (leaving S1) is not 

dependent on whether the physicians in the primary care are available (busy) or not.  

2) The value of the edge e13 (between node ED and node HW) is 2 because the patient 

flow between ED and HW is unidirectional (from ED to HW only) and the admitted 

ED patients will stay in the ED until there are inpatient beds available in the HW. 
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3) The value of the edge e19 (between node OC and node HW) is 3 because patients 

visiting outpatient clinics (OC) can be admitted to hospital wards (HW), patients in 

hospital wards can also be discharged to outpatient clinics for final therapy, and 

patients will continue to stay in OC or HW if there are no spaces available in HW or 

OC. 

Step 2: Construct the matrices representing the graph 

After the graph representation has been constructed for the CHR healthcare system, the 

next step is to construct the matrices representing the graph. These matrices include the 

adjacency, incidence and edge weighting matrices, and they are shown in Figure 6-3 to 

Figure 6-5. 

 

Figure 6-3 Adjacency Matrix for the CHR Healthcare System 

  

S1 P D1 S2 U D2 S3 ED D3 CWL OC D4 S4 HWL SR HW D5 D6

S1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

D1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

U 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

D2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

ED 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

D3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CWL 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

OC 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0

D4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

HWL 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0

SR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

HW 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1

D5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A(G1) =
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Figure 6-4 Incidence Matrix for the CHR Healthcare System 

 

Figure 6-5 Edge Weighting Matrix for the CHR Healthcare System 

  

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24 e25

S1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

U 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ED 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

D3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

CWL 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

OC 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0

D4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

S4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

HWL 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0

SR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0

HW 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1

D5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

D6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

M(G1) =

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24 e25

e1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e7 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

e13 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

e14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

e15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

e16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

e17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

e18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

e19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

e20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

e21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

e22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

e23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

e24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

e25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

W(G1) =
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Step 3: Calculate the pseudo-covariance (C) and pseudo-correlation (R) matrices 

After constructing the three matrices in step 2, the next step is to calculate the pseudo-

covariance (C) and pseudo-correlation (R) matrices. The results are shown in Figure 6-6 

and Figure 6-7, respectively. 

 

Figure 6-6 Pseudo-covariance Matrix (C) for the CHR Healthcare System 

 

Figure 6-7 Pseudo-correlation Matrix (R) for the CHR Healthcare System 

  

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 4 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 5 1 0 2 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 2 0 1 10 1 1 1 0 0 1 0 2 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 1 0 5 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 2 9 1 0 1 1 3 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 1 7 2 2 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 2 5 2 0 0

0 0 0 0 0 0 0 2 0 0 3 0 0 2 2 12 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2

C(G1) =

1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.500 1.000 0.500 0.000 0.000 0.000 0.000 0.158 0.000 0.224 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.500 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.447 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.447 1.000 0.447 0.000 0.283 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.447 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.316 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.158 0.000 0.000 0.283 0.000 0.316 1.000 0.316 0.141 0.105 0.000 0.000 0.120 0.000 0.183 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.316 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.224 0.000 0.000 0.200 0.000 0.000 0.141 0.000 1.000 0.298 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.105 0.000 0.298 1.000 0.333 0.000 0.126 0.149 0.289 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333 1.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.378 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.120 0.000 0.000 0.126 0.000 0.378 1.000 0.338 0.218 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.149 0.000 0.000 0.338 1.000 0.258 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.183 0.000 0.000 0.289 0.000 0.000 0.218 0.258 1.000 0.289 0.408

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.289 1.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.408 0.000 1.000

R(G1) =
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Step 4: Perform PCA on the R matrix and determine the number of sub-graphs 

After the C and R matrices have been calculated, PCA is performed on the R matrix to 

extract factors in MATLAB® 2006. The extracted factors are shown in Table 6-3. 

Table 6-3 Extracted Factors (G1) 

 

Following the procedure specified in Subsection 5.1.2, six factors are initially extracted 

using the Latent Root Criterion. Then we check whether the selection of six factors can 

meet the Percentage of Variance Criterion. It fails as the total amount of variance 

explained by the first six factors is only 52.829%, which is less than 60%. We continue to 

add more factors. Factors 7 to 12 are equally important as they have the same eigenvalue 

Factor Eigenvalue % of Variance
Cumulative

% of Variance

1 2.000 11.111 11.111

2 1.775 9.860 20.971

3 1.676 9.312 30.282

4 1.372 7.621 37.904

5 1.355 7.526 45.430

6 1.332 7.399 52.829

7 1.000 5.556 58.385

8 1.000 5.556 63.940

9 1.000 5.556 69.496

10 1.000 5.556 75.051

11 1.000 5.556 80.607

12 1.000 5.556 86.163

13 0.616 3.423 89.585

14 0.591 3.281 92.866

15 0.469 2.603 95.469

16 0.338 1.877 97.346

17 0.299 1.659 99.005

18 0.179 0.995 100.000
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of 1, but we stop at factor 8 as it is the first factor to have a cumulative of variance 

explained over 60%. So the number of factors to be retained is eight (8). 

Step 5: Determine the structure of each sub-graph 

The next step is to perform PCA on matrix C and apply VARIMAX rotation to the first 

eight (8) factors. The rotated factor loadings are shown in Table 6-4. 

Table 6-4 VARIMAX Rotated Factor Matrix – C 

 

From Table 6-4, we can see that: 

 Nodes HW, D5 and D6 load on Factor 1, 

 Nodes S3, ED and D3 load on Factor 2, 

 Nodes OC and D4 load on Factor 3, 

 Nodes S4 and HWL load on Factor 4, 

Node Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8

S1 -0.003 -0.030 0.019 0.001 0.023 0.282 -0.002 -0.034

P 0.002 -0.011 -0.019 -0.001 -0.016 0.911 0.005 0.111

D1 -0.003 -0.030 0.019 0.001 0.023 0.282 -0.002 -0.034

S2 0.002 -0.052 0.017 0.003 0.241 0.021 -0.002 -0.030

U 0.003 -0.014 -0.019 -0.004 0.933 -0.020 0.007 0.100

D2 0.002 -0.052 0.017 0.003 0.241 0.021 -0.002 -0.030

S3 -0.021 0.128 -0.005 -0.016 -0.041 -0.022 0.007 -0.010

ED -0.001 0.975 0.010 0.033 0.047 0.031 -0.033 0.057

D3 -0.021 0.128 -0.005 -0.016 -0.041 -0.022 0.007 -0.010

CWL 0.050 -0.053 -0.082 0.008 -0.079 -0.080 0.001 0.975

OC -0.061 -0.015 0.975 -0.003 -0.003 -0.007 0.032 0.105

D4 -0.044 -0.006 0.159 -0.007 0.025 0.026 -0.020 -0.058

S4 -0.008 -0.026 -0.007 0.201 0.005 0.001 -0.063 0.004

HWL -0.034 -0.022 -0.003 0.973 -0.001 -0.001 0.117 -0.007

SR -0.126 0.025 -0.046 -0.107 -0.002 -0.002 0.976 0.007

HW 0.947 0.025 0.089 0.025 -0.001 0.005 0.153 -0.057

D5 0.107 -0.017 -0.022 -0.009 0.002 0.000 -0.017 0.005

D6 0.255 -0.048 -0.065 -0.011 0.002 -0.008 -0.063 0.033
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 Nodes S2, U and D2 load on Factor 5, 

 Nodes S1, P and D1 load on Factor 6, 

 Node SR loads on Factor 7, and 

 Node CWL loads on Factor 8. 

This result makes sense as the nodes representing the patient sources and destinations are 

highly related to their associated services. A graphic representation of the eight (8) sub-

graphs is provided in Figure 6-8. 

 

Figure 6-8 8-Subgraph Decomposition of the CHR Healthcare System 
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Step 6: Name each sub-graph 

The naming of the eight (8) sub-graphs is very straightforward. It can be done by using 

the same ones initially assigned (Table 6-5) as their loadings on the corresponding factors 

are very high (>90%).  

Table 6-5 Names of the 8 Sub-graphs 

Name Full Name or Explanation 

P Primary Care 

U Urgent Care 

ED Emergency Departments 

OC Outpatient Clinics and Consultants Services 

SR Surgery & Recovery 

HW Hospital Wards 

CWL Patient Waiting Services for outpatient clinics and consultants services 

HWL Patient Waiting Services for surgery and hospital wards 

6.3  CHR Healthcare System Further Decomposition 

In the previous section, the CHR healthcare system is decomposed into eight (8) 

subsystems (sub-graphs) using the system decomposition technique. In this section, the 

system decomposition is applied again to further decompose the CHR healthcare system 

into higher level subsystems, each consisting of some of the eight (8) subsystems 

identified in the previous section. In order to apply the same process as in the previous 

section, all the elements of each of the 8 subsystems are consolidated to a single node by 
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ignoring all the inter-element interactions within the subsystem and only keeping those 

interactions between this subsystem and other subsystems. The result is shown in Figure 

6-9 as the first step of the decomposition process. 

Step 1: Construct the graph of the system to be decomposed 

 

Figure 6-9 Graph of the CHR Healthcare System [Consolidated] (G2) 

Step 2: Construct the matrices representing the graph 

The adjacency, incidence and edge weighting matrices of the graph shown in Figure 6-9 

are presented in Figure 6-10. 
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Figure 6-10 Adjacency, Incidence and Edge Weighting Matrices [Consolidated] 

Step 3: Calculate the pseudo-covariance (C) and pseudo-correlation (R) matrices 

The calculated pseudo-covariance (C) and pseudo-correlation (R) matrices are shown in 

Figure 6-11.  

 

Figure 6-11 Pseudo-covariance and Pseudo-correlation Matrices [Consolidated] 

  

e3 e4 e7 e8 e10 e11 e12 e13 e15 e16 e17 e19 e21 e22 e23

e3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

e7 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

e8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

e10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

e11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

e12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

e13 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

e15 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

e16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

e17 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

e19 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

e21 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

e22 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

e23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

e3 e4 e7 e8 e10 e11 e12 e13 e15 e16 e17 e19 e21 e22 e23

P 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

U 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

ED 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0

CWL 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0

OC 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0

HWL 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0

SR 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

HW 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1

P U ED CWL OC HWL SR HW

P 0 0 1 1 0 0 0 0

U 0 0 1 1 0 0 0 0

ED 0 0 0 1 0 0 0 1

CWL 0 0 0 0 1 0 0 0

OC 0 0 1 0 0 1 1 1

HWL 0 0 1 0 0 0 1 1

SR 0 0 0 0 0 0 0 1

HW 0 0 0 0 1 0 0 0

M(G2) =A(G2) =

W(G2) =

2 0 1 1 0 0 0 0

0 3 2 1 0 0 0 0

1 2 8 1 1 1 0 2

1 1 1 5 2 0 0 0

0 0 1 2 8 1 1 3

0 0 1 0 1 6 2 2

0 0 0 0 1 2 5 2

0 0 2 0 3 2 2 9

R(G2) =C(G2) =

1.000 0.000 0.250 0.316 0.000 0.000 0.000 0.000

0.000 1.000 0.408 0.258 0.000 0.000 0.000 0.000

0.250 0.408 1.000 0.158 0.125 0.144 0.000 0.236

0.316 0.258 0.158 1.000 0.316 0.000 0.000 0.000

0.000 0.000 0.125 0.316 1.000 0.144 0.158 0.354

0.000 0.000 0.144 0.000 0.144 1.000 0.365 0.272

0.000 0.000 0.000 0.000 0.158 0.365 1.000 0.298

0.000 0.000 0.236 0.000 0.354 0.272 0.298 1.000
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Step 4: Perform PCA on the R matrix and determine the number of sub graphs 

After performing PCA on the R matrix, the extracted factors are shown in Table 6-6. 

Table 6-6 Extracted Factors (G2) 

 

Following the same procedure specified in Subsection 5.1.2, four factors are retained to 

meet the Percentage of Variance Criterion. 

Step 5: Determine the structure of each sub graph 

After performing a PCA on the C matrix, the factor loadings are calculated for the three 

retained factors using VARIMAX rotation method. The result is shown in Table 6-7. 

Table 6-7 Factor Loadings with VARIMAX Rotation 

 

Factor Eigenvalue % of Variance
Cumulative

% of Variance

1 2.000 25.000 25.000

2 1.578 19.728 45.065

3 1.102 13.773 57.565

4 0.978 12.229 68.905

5 0.842 10.522 79.542

6 0.650 8.122 88.221

7 0.479 5.985 95.254

8 0.371 4.640 100.000

Node Factor 1 Factor 2 Factor 3 Factor 4

P -0.065 0.168 0.058 0.008

U -0.065 0.351 0.016 -0.004

ED 0.217 0.867 -0.095 -0.042

CWL -0.290 0.264 0.533 0.026

OC 0.178 -0.079 0.837 -0.012

HWL -0.042 0.100 -0.035 0.810

SR 0.047 -0.086 0.032 0.584

HW 0.909 -0.061 0.031 0.028
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From Table 6-7, we can see that: 

 Node HW loads on Factor 1, 

 Nodes P, U and ED load on Factor 2, 

 Nodes CWL and OC load on Factor 3, and 

 Nodes HWL and SR load on Factor 4 

This means that the CHR healthcare system can be represented at the next layer as 

comprised of four subsystems. Figure 6-12 provides a graphic presentation of the 

decomposition result. 

 

Figure 6-12 4-Subsystem Decomposition of the CHR Healthcare System 

  

P

Urgent

Care

CWL

SR

Surgery & 

Recovery

e4 = 1

e8 = 1

U

Emergency 

Departments

ED

Primary

Care

HWL

Hospital 

Waiting List

Clinic 

Waiting List

OC

Outpatient 

Clinics

HW

Hospital 

wards

e3 = 1

e7 = 2 e13 = 2

e11 = 1

e10 = 1

e22 = 2e12 = 1

e16= 1

e21 = 2

e15 = 2

e17 = 1

e19 = 3

e23 = 2



119  

 

Step 6: Name each sub-graph 

Now, we need to produce new names to interpret the decomposed CHR healthcare 

subsystems.  

 The first subsystem includes only the hospital wards, so we call it “Hospital Wards 

Services” and it offers inpatient services to referred patients only. 

 The second subsystem includes primary care, urgent care and the emergency 

departments. We call this subsystem “Primary, Urgent and Emergency Care Services” 

and it opens to the public. 

 The third subsystem includes the clinic waiting list and the outpatient clinics. We call 

it “Outpatient Services” and it offers outpatient services to referred patients only. 

 The fourth subsystem includes surgery & recovery and the hospital waiting services. 

We call this subsystem “Hospital Waiting and Surgery Services”, and it provides 

services to referred patients only. 

After the decomposition is finished, an assessment needs to be done to decide whether 

further decomposition is necessary. In this example, there are only 4 subsystems left so 

there is no need to continue the decomposition process. 

From the above decomposition results, we can see that the CHR healthcare system can be 

represented as a three-layer system with details summarized in Table 6-8. 
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Table 6-8 Hierarchical Structure of the CHR Healthcare System 

Layer 3 

(The Whole System) 

Layer 2 

(Subsystems) 

Layer 1 

(Units) 

CHR Healthcare 

System  

Hospital Wards Services 1) Hospital wards 

Primary, Urgent and 

Emergency Care 

Services 

1) Primary care 

2) Urgent care 

3) Emergency departments 

Outpatient Services 
1) Outpatient waiting service 

2) Outpatient clinics 

Hospital Waiting and 

Surgery Services 

1) Hospital waiting service 

2) Surgery and recovery 

At the top layer (layer 3) sits the CHR healthcare system. At layer 2, there are four 

subsystems: 1) Hospital Wards Services, which are for referred patients only; 2) Primary, 

Urgent and Emergency Care Services, which open to the public; 3) Outpatient Services, 

which are offering outpatient services and only open to referred patients; and 4) Hospital 

Waiting and Surgery Services, which are only open to referred patients as well. Each 

subsystem at layer 2 consists of one or more units at layer 1: 1) Hospital Wards Services: 

Hospital wards; 2) Primary, Urgent and Emergency Care Services: Primary care, Urgent 

care and Emergency departments; 3) Outpatient Services: Outpatient waiting list and 

outpatient clinics; and 4) Hospital Waiting and Surgery Services: Hospital waiting 

services and surgery & recovery. Figure 6-13 shows a graphic representation of the 

hierarchical structure of the CHR healthcare system. 
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Figure 6-13 Hierarchical Structure of the CHR Healthcare system 

6.4  Benefits of the Identified Hierarchical Structure 

In the previous sections, we have shown how to use the system decomposition technique 

to identify the hierarchical structure of the CHR healthcare system. The identified 

hierarchical structure can benefit the SM study of patient flows within CHR healthcare 

system in a number of ways. The most important one is the use of this hierarchical 

structure as a guiding map in conducting various SM studies of the CHR healthcare 

system. This can be further elaborated from the following two perspectives: 1) developing 

new SM studies from scratch; and 2) enhancing reusability of existing simulation models. 
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6.4.1  Developing New SM Studies From Scratch 

For new SM studies of the CHR healthcare system, the identified hierarchical structure 

can be used to define the required tasks and their sequences. For example, simulation 

models can first be built to represent each of the eight healthcare service units shown in 

Figure 6-13. These simulation models can be developed, verified and validated 

independently as long as the inputs and outputs of the simulation models have captured all 

the inter-unit interactions. Moreover, the independent development of simulation models 

for individual units also increases the possibility for the reuse of existing simulation 

models. This can speed up the development process of the simulation models.  

Once the simulation models of the eight units have been developed, they can be integrated 

using DMI, MMI or HMI approaches to represent the subsystems at layer 2. These layer 2 

subsystem simulation models can again be verified and validated independently as long as 

they have captured all the interactions between the units at layer 1 of the CHR healthcare 

system. The layer 2 subsystem simulation models can be further integrated to represent 

the whole CHR healthcare system.  

This approach is very clear and logical making it easy to coordinate SM efforts for the 

study of MUHSs with a large number of units. With this approach, multiple unit and 

integrated simulation models instead of only one complex simulation model will be 

developed and maintained at the unit level for the study of a particular MUHS. This will 

make it easy to keep these simulation models current and increase their reusability in the 

future studies of the MUHS.   
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6.4.2  Enhancing Reusability of Existing Simulation Models 

The identified hierarchical structure of a MUHS can also provide a cost-effective solution 

to enhancing the reusability of existing simulation models of units of the MUHS. Very 

often, a single complex simulation model is developed for a MUHS with large number of 

units. This simulation model can be very powerful in the study of the MUHS with 

particular purposes but the model itself can be very difficult for people not involved in the 

development of the simulation model to understand. In many cases, these simulation 

models are used as black boxes once they are developed. It is usually very difficult to 

modify them for other purposes of study. 

With the identified hierarchical structure of a MUHS, the simulation model representing 

the MUHS can be more easily modified to improve its understandability. Here, we will 

use the CHR SD model as an example. This model was developed by Dr. David Cooke 

and is a very complex model populated with much data. The model can be used to test 

various management scenarios for improving patient flows within the CHR (Cooke et al. 

2008). With permission from Dr. Cooke, the author was allowed to use and modify the 

CHR SD model in this doctoral research. 

The author was involved in the analysis of the input data used in the CHR SD model, but 

was not involved in the development of the model itself. It took the author quite a while to 

become familiar with the details of the CHR SD model. Then the author realized that it 

could take others much longer time to understand this model if they do not have any 

exposure to the development of the CHR SD model. So the author decided to rebuild the 
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CHR SD model to make it easier to understand, and the identified hierarchical structure of 

the CHR healthcare system became very useful in that process. 

Below is the process the author followed in the rebuilding of the CHR SD model: 

1) Develop an SD model for each service/unit. The inflows and outflows of each SD 

model are determined following the hierarchical structure of the CHR healthcare 

system shown in Figure 6-13. For example, the EDs in the CHR have the 

following inflows and outflows: 

a. Inflows: walk in patients, elective patients from primary care, urgent care, 

outpatient clinics and hospital waiting list. 

b. Outflows: discharged to home and admitted to hospital wards. 

2) Run the original CHR SD model and get the stabilized inflow and outflow rates. 

These inflow rates are used to drive the individual SD models and the outflow 

rates are used to calibrate each SD model so that its outflow rates match the results 

from the running of the original CHR SD model. 

3) Integrate the individual SD models to build subsystem SD models representing the 

subsystems at layer 2. For example, integrate the SD models of primary care, 

urgent care and emergency care to represent the Primary, Urgent and Emergency 

Care Services subsystem SD model. Each subsystem SD model is run and 

calibrated using the inflow rates and outflow rates generated from running the 

original SD model. 
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4) Further integrate the subsystem SD models to develop the CHR SD model. The 

results from the running of the original CHR SD model are used to calibrate the 

integrated CHR SD model. 

The above process is very efficient as it makes it very easy to trouble-shoot problems in 

the process of model development. Following this process, the author only spent about a 

day rebuilding the CHR SD model, which has exactly the same features as the original 

CHR SD model. This example does show that the identified hierarchical structure of the 

CHR healthcare system helps to increase the possibility of reusing part of or the entire 

CHR SD model. The rebuilt CHR SD model has a modular structure with each module 

representing the operations of an individual service unit. In addition, there are also 11 

more SD models developed in the process of rebuilding the CHR SD model. These 11 SD 

models include: 

 Three layer 2 subsystem SD models, and 

 Eight unit SD models. 

The SD models at each layer can be run and validated independently within the content of 

the whole CHR healthcare system, but they can also be used to construct or update SD 

models representing subsystems at higher layer. This will speed up the development and 

updating of the integrated CHR SD model thus improving the rapidity of the SM study of 

the CHR healthcare system. More importantly, these SD models representing subsystems 

and units at different layers can be easily reused in future SM studies if only some of the 

units are involved. 
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6.5  Discussion and Conclusions 

In this chapter, the CHR healthcare system is used as an example for the application of the 

proposed system decomposition technique in Section 5.1 of Chapter 5. A graph is first 

constructed to represent the eight units and their interactions in the CHR healthcare 

system. This graph is converted into association matrices, which are factored using 

standard PCA routines in MATLAB® 2006. Each factor is equivalent to a subsystem and 

factor loading analysis is performed for each factor to determine the units included in each 

subsystem. This process will repeat until no further decomposition is needed. Based on 

the analysis result, the CHR healthcare system can be decomposed into a three-layer 

system. At the top layer (layer 3) is the CHR healthcare system. At layer 2, there are four 

subsystems: 1) Hospital Wards Services, which are for referred patients only; 2) Primary, 

Urgent and Emergency Care Services, which open to the public; 3) Outpatient Services, 

which are offering outpatient services and only open to referred patients; and 4) Hospital 

Waiting and Surgery Services, which are only open to referred patients. Each subsystem 

at layer 2 consists of one or more units at layer 1: 1) Hospital Wards Services: Hospital 

wards; 2) Primary, Urgent and Emergency Care Services: Primary care, Urgent care, 

and Emergency departments; 3) Outpatient Services: Outpatient waiting list and 

outpatient clinics; and 4) Hospital Waiting and Surgery Services: Hospital waiting 

services and surgery & recovery. 

This application example shows that the proposed system decomposition technique 

follows a logical procedure and is easy to use. The only subjective portions in this 

approach are the definition of units, the measures of the inter-unit interactions, and the 
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decision on how many factors to retain. This helps to minimize the impact of human error 

and personal bias from different stakeholders involved in SM studies of a MUHS. 

The identified hierarchical structure of a MUHS can be used as a guiding map for 

conducting various SM studies of that MUHS. For new SM studies starting from scratch, 

the hierarchical structure can be used as a common ground to bring all the stakeholders on 

the same page and determine the research tasks and their sequences so that simulation 

models can be developed independently within the content of the scope of the overall 

MUHS SM study. These independently developed SM model can be integrated to 

construct simulation models representing subsystems at the higher layer or the MUHS at 

the top. For existing SM studies of a MUHS, the hierarchical structure can be used to add 

modularity to the single complex simulation model to make it easier to understand. In 

addition, it can also be used to develop simulation models representing units or 

subsystems at lower layers, thus improving the reusability of the simulation models in 

future SM studies.  
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Chapter 7  Metamodeling of an ED DES Model 

7.1  Introduction 

In AHSM, simulation metamodeling is proposed as a technique to represent and simplify 

the unit simulation models of a MUHS. In this chapter, an application example is 

presented using the procedure introduced in Section 5.2 of Chapter 5, applied to a DES 

model of patient flow within the ED at the Foothills Medical Center (FMC) in the CHR 

that was developed in 2008 (Xu et al., 2008). 

In the following section, a brief overview is provided of the features of the original FMC 

ED DES model. The development of the NN-based simulation metamodels to represent 

the FMC ED DES model is introduced in Section 7.3. Major findings and conclusions 

from this application example are discussed in Section 7.4. 

7.2  The Original FMC ED DES Model 

The objectives of the FMC ED DES model are to identify patient flow problems in the 

FMC ED and provide a test environment for suggested improvement alternatives (Xu et 

al., 2008). The FMC ED in the Alberta, Canada is an emergency care facility handling 

over 70,000 patient visits annually.  The FMC ED is staffed with 10 emergency physician 

(EP) shifts per day.  It has a total of 53 ED treatment beds (ED beds), and 21 to 23 

treatment nurses on duty depending on the time of the day. The flow of patients through 

the FMC ED, represented in the FMC ED DES model is shown in Figure 7-1 and can be 

described as follows: 
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 Patients arrive and wait for triage. 

 Patients are triaged to determine their CTAS (Canadian Triage and Acuity Scale) 

score and the type of ED bed required. 

 Patients wait for ED beds or LWBS (Leave Without Being Seen). 

 Patients getting ED beds wait for ED nurse assessment. 

 ED nurse assessment determines a patient’s need for DI (Diagnostic Imaging) or lab 

tests. 

 Patients who need DI or lab tests take those tests and wait for the results to be made 

available. 

 Patients who do not need DI or lab tests and those with their DI or lab test results back 

wait for a 1
st
 EP assessment.  While waiting for 1

st
 EP assessment, some patients may 

choose LWBS. 

 First EP assessment resulting in a disposition decision of one of three types: discharge, 

take more lab tests, or recommended for admission. Some patients may LAMA 

(Leave Against Medical Advice) after the 1
st
 EP assessment. 

 Patients who need more DI or lab tests take those tests and wait for the results to be 

made available.  After their test results are back, they wait for EP reassessment. 

 EP reassessment resulting in a disposition decision of one of the three types noted 

earlier.  Patients who need more DI or lab tests will repeat the previous step. 
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Figure 7-1 Diagram of Patient Flow within the FMC ED 
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 Patients with admission recommended wait for assessments from a consulting 

physician. 

 Consulting physician assessment results in a decision to either discharge or admit the 

patient. 

 Patients admitted wait in the ED until inpatient beds are available in the main hospital 

wards. 

Data from the following sources are incorporated in the FMC ED DES model: 

 Over 30,000 patient records that included time stamps, acuity score, and other key 

pieces of information. 

 Information on EP activities from 20 shifts where EPs were “shadowed” by data 

collectors. 

 More than 37,000 DI records and 140,000 CLS (Calgary Lab Services) records were 

analyzed to estimate patient need for such testing and the test response times. 

The FMC ED DES model was developed in an iterative manner, through a number of 

intermediate versions, given the fact that the data highlighted above did not become 

available all at once.  Interim model results were reviewed by the research team, and 

presented to some FMC ED staff for comments. 

Some of the key features of the FMC ED DES model include: 

 Explicit modeling of EP capacity: includes details on the shift pattern that EPs work 

and on the tasks that they must deal with during a shift. 
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 Modeling of the contribution of DI and lab test delays to the length of stay (LoS) in 

the ED: includes details on patient need for these tests and on the test response time, 

so that their impact on LoS is explicitly modeled. 

 Modeling of LWBS patients using a NN model: recognizes that this is not a fixed 

percentage but rather it depends upon the wait times being experienced by patients. 

The FMC ED DES model was built using ARENA® 12.0 and was validated by 

comparing the simulation model’s output values to those collected from the operations of 

the FMC ED. Details on the model data and validation results can be found in Appendix 

B. 

The validated model can be used to identify bottlenecks in the FMC ED processes and test 

the impact of a variety of changes on the performance of the FMC ED, including (but not 

limited to) changes in the patient demand pattern, the EP staffing schedule, and the 

number of ED beds. Managerial questions such as the following can be answered by the 

model: 

 How will ED performance improve by expanding or changing accelerated treatment 

areas (e.g., sub-waiting rooms, rapid access zones)? 

 How will changes to EP hours or shifts affect patient waiting times? 

 If operational changes are made that improve ED treatment times or reduce delays, 

what is the overall impact on ED patient flow? 
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7.3  Development of NN-based Simulation Metamodels 

In this section, the steps mentioned in Chapter 5 (Figure 5-9) are followed to develop the 

NN-based simulation metamodels for the FMC ED DES model. 

Step 1: Determine metamodeling purpose and scope 

The metamodeling purpose and scope are determined based on the decision problems to 

be addressed. In this application example, let’s assume the purpose of metamodeling is to 

analyze the impact of the patient arrival volume and boarding time of admitted patients on 

the performance of the ED. The chosen performance indicators are as follows:  

 Time patients spend in the waiting room,  

 Percentage of patients who LWBS,  

 Time patients spend waiting for 1
st
 EP assessment after getting an ED bed (EP 

time), and 

 Work-up time, which is the duration between the 1
st
 EP assessment and the 

disposition decision made by the EP. The work-up time can be further 

differentiated between work-up time for patients, who are discharged by the EPs 

(Work-up time for non-consulted patients) and work-up time for patients, who are 

recommended for admission consult (Work-up time for consulted patients). 

Figure 7-2 shows the scope of the metamodeling.  
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Figure 7-2 Scope of the FMC ED DES Metamodel 

There are two inputs: 1) patient arrival rate, and 2) boarding time of admitted ED patients. 

For simplicity purpose, the two inputs of the metamodels are represented as a percentage 
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hours respectively when the FMC ED DES model was developed. The ED management 

team is now interested in the following ranges:  

1) Waiting room time:  0.5 to 5 hours 

2) Average boarding time: 3 to 6 hours 

As the average boarding time is a direct input to the simulation metamodel, it is easy to 

determine its range, which is 66% to 158%. To leave some margin, we extend the range 

of the average boarding time, and use the range of 60% to 160%.  

For the waiting room time, we need to run the original FMC ED DES model for different 

patient arrival rates to determine its range by starting with very high (180%) and very low 

(50%) then reducing/increasing them gradually. Each experimental run is with a 

replication length of 485 days including 120 days as the warm-up period. The replication 

length and the warm-up period are determined at the validation stage of the original FMC 

ED DES model to ensure the model has reached the steady state after the warm-up period. 

After several rounds of trials, we find the following range for the patient arrival rate: 

 80%:  0.45 hours waiting room time 

 150%:  5.20 hours waiting room time 

Then we check other outputs at the upper and lower limit of each input, and see whether 

the input ranges make senses. After we have obtained confirmation from this check, the 

ranges of the two inputs are decided as follows: 

1) Patient arrival rate:   80% to 150%  
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2) Average boarding time: 60% to 160% 

For the simulation metamodel, there are five types of outputs, and each of them is further 

divided into five outputs, one for a different CTAS score ranging from 1 to 5. As shown 

in Table 7-1, there will be 5 x 5 =25 outputs for each pair of inputs. 

Table 7-1 25 Outputs of the FMC ED DES Model 

 

Step 2: Determine number of replications based on specified precision 

Before running the FMC ED DES model to generate the data needed for building the 

simulation metamodels, it is necessary to determine the number of replications needed to 

gather the desired statistics. According to Law (2006:500), fixing the number of 

replications gives little to no control over the half-length of the CI; therefore, an analytical 

procedure (Banks et al., 2005:395) is performed to determine the number of replications 

for estimating the mean with a desired precision. Details on this analytical procedure are 

discussed in Appendix C. 
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The following specified precisions for the five performance indicators are used for 

determining the minimum number of replications: 

 Average Waiting Room Time (minutes):    2.5% 

 Average LWBS Patients %:      5% 

 Average EP Time (Minutes):      2.5% 

 Average Work-up Time for Consulted Patients:  2.5% 

 Average Work-up Time for Non-consulted Patients:  2.5% 

The analytical procedure is performed for each performance indicator to determine the 

minimum number of replications for that particular performance indicator, then the largest 

value amongst these minima is used as the minimum number of replications. Table 7-2 

shows the analysis result, and nine (9) replications are needed. 

Table 7-2 Minimum Number of Replications 

 

And Table 7-3 shows the specified precision of different performance indicators for nine 

485-day replications. 
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Table 7-3 Specified Precisions with Nine 485-day Replications 

 

Steps 3 & 4: Generate experimental data and set up training and testing data 

As discussed in Subsection 5.2.3, the generation of the experimental results is an iterative 

process with several rounds of trial-and-error. We will not describe the details here but 

only list the final results. 

To generate the training data for the NNs, the FMC ED DES model is run at the following 

values for each of the two inputs:  

1) Patient arrival rate:   15 values (80% to 150% with a step of 5%) 

2) Average boarding time: 6 values (60% to 160% with a step of 20%) 

This generates a total of 15 * 6 = 90 possible sets of input configurations. For each input 

configuration, the FMC ED DES model is run with nine (9) replications, each with a 

replication length of 485 days including 120 days as the warm-up period.  

For the generation of the test data for the NNs, the FMC ED DES model is run at the 

following values for each of the two inputs: 

1) Patient arrival rate:   6 values (82.5/97.5/107.5/117.5/132.5/147.5%) 

H

1 2 3 4 5 6 7 8 9 % of Ȳ Value R=9

Waiting Room Time Minute 97 103 100 104 107 101 101 105 100 102.1 2.92 2.5% 2.6 2.2

LWBS Patients % % 6.5 7.3 6.9 7.3 7.5 7.0 7.3 7.0 6.9 7.1 0.30 5.0% 0.4 0.2
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Target є Simulation Model 

Outputs
Unit

Replication, r
Ȳ S0



139  

 

2) Average boarding time: 5 values (70% to 150% with a step of 20%) 

This creates another total of 6 * 5 = 30 input configurations to generate the outputs of the 

test data. 

Both the training and test datasets are chosen to evenly cover the ranges of the two inputs. 

Figure 7-3 provides a graphic presentation of the training and test configuration data sets. 

 

Figure 7-3 Training/Test Data Set for NN-based Simulation Metamodeling 
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Other information on the architecture of the NN models includes: 

 Activation function:  

o Hyperbolic tangent for hidden layer; and identity for output layer 

 Rescaling of scale dependent variables:  

o standardized to be in the range (0-1) 

The numbers of nodes in the hidden layers is chosen to be the same as the number of 

inputs (Xu, 2010). For simplicity purpose, we call this architecture a 2-2-1 NN model. 

 

Figure 7-4 The 2-2-1 NN Architecture 

Each NN model will be trained for each of the 25 outputs. This means that a total 25NNs 

need to be trained, one for each output as determined in step 1. 

The final training rules used are determined following the steps mentioned in Subsection 
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o Gradient descent 

 Training options:  

o Initial learning rate: 0.2 

o Momentum: 0.9 

o Interval center: 0  

o Interval offset: +/-0.5 

 Stopping rules 

o Maximum steps without a decrease in error:  10,000 

o Maximum training time:    1 hour 

o Maximum training epochs:  1,000,000 

o Minimum relative change in training error:  1.0e-8 

o Minimum relative change in training error ratio:  1.0e-8 

Steps 7, 8 & 9: NN training, performance evaluation, and check of satisfaction 

The training rules specified above are used to train the NN models. After being trained, 

the measures listed in Table 7-4 are used to evaluate the performances of the 25 trained 

NNs. 
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Table 7-4 Performance Measures of the Trained NN Models 

 

In Table 7-4, MAPD means Mean Absolute Percent Deviation, and MAD means Mean 

Absolute Deviation. MAPD and MAD are defined as follows: 

Let: 

Vsim = The simulated value from the running of the simulation model 

VNN = The value predicted by the trained NN 

APD = Absolute Percent Deviation of VNN from Vsim 

AD = Absolute Deviation of VNN from Vsim 

Then: 

APD =|VNN -Vsim|/Vsim*100%              (Eq.  7-1) 

AD =|VNN -Vsim|                          (Eq.  7-2) 

And 

MAPD = ∑     
 
    /m                  (Eq.  7-3) 

MAD =∑    
 
    /m                   (Eq.  7-4) 

1 2 3 4 5

Waiting Room Time WR CTAS1 WR CTAS2 WR CTAS3 WR CTAS4 WR CTAS5 MAPD 2.5%

LWBS Patients %
LWBS WR 

CTAS1

LWBS WR 

CTAS2

LWBS WR 

CTAS3

LWBS WR 

CTAS4

LWBS WR 

CTAS5
MAD 0.25%

EP Time
EP Time 

CTAS1

EP Time 

CTAS2

EP Time 

CTAS3

EP Time 

CTAS4

EP Time 

CTAS5
MAPD 2.5%

Work-up Time for 

Consulted Patients

WU CNLT 

CTAS1

WU CNLT 

CTAS2

WU CNLT 

CTAS3

WU CNLT 

CTAS4

WU CNLT 

CTAS5
MAPD 2.5%

Work-up Time for Non-

consulted Patients

WU NoCNLT 

CTAS1

WU NoCNLT 

CTAS2

WU NoCNLT 

CTAS3

WU NoCNLT 

CTAS4

WU NoCNLT 

CTAS5
MAPD 2.5%

Performance 

Target

 Simulation Model 

Outputs

CTAS Score Performance 

Measure



143  

 

Where: 

m = number of data points in the training or test data set. 

MAD is used to evaluate the NNs for LWBS % as the LWBS values are very small in 

certain cases. All the other values are using MAPD. 

The five NNs for each performance indicator will use the same architecture, and they will 

be evaluated together. This is to simplify the implementation of NNs. 

Table 7-5 shows the evaluation results of the 25 trained 2-2-1 MM models. 

Table 7-5 Performance Evaluation of the 25 Trained 2-2-1 NN Models 

 

From Table 7-5, we can see that trained 2-2-1 NN models for the prediction of LWBS 

Patient % and EP Time fail to meet the performance target. So a more complex NN model 

is chosen to be trained for these two types of outputs. This means a total of 10 NNs need 
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to be retrained using the 25 training data sets. The architecture of this new NN, called a 2-

4-1 architecture, is shown in Figure 7-5. 

 

Figure 7-5 The 2-4-1 NN Architecture 

As shown in Figure 7-5, the new NN has a three-layer feed-forward structure consisting 

of: 

1) Input layer:  2 nodes 

2) Hidden layer:  4 nodes 

3) Output layer:  1 node 

The numbers of nodes in the hidden layers is chosen to be an integer times of the number 

of inputs (Xu, 2010). The performance evaluation of the ten (10) trained 2-4-1 NN models 

is shown in Table 7-6. 
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Table 7-6 Performance Evaluation of the 10 Trained 2-4-1 NN Models 

 

The parameters of the 25 trained NNs can be found in Appendix D. 

In any case where a 2-4-1 NNs still cannot meet the performance target, more complex 

NN architecture, i.e. 6 or more nodes on the hidden layer, can be used to continue the 

training until the performance targets can be met. 

7.4  Discussion and Conclusions 

This chapter provides an application example of using the NN-based simulation 

metamodeling technique for the development of simulation metamodels of the FMC ED 

DES model. In this application example, there are two inputs for the NN-based simulation 

metamodels: 1) average volume of arriving ED patients; and 2) boarding time of admitted 

ED patients. There are five types of output: 1) Time patients spend in the waiting room; 2) 

Percentage of LWBS patients; 3) EP time; 4) Work-up time for consulted patients; and 5) 

Work-up time for non-consulted patients. Each type of output is further divided into five 

outputs, one for each different CTAS score (1-5). The following three-layer feed-forward 

NN architecture is used for the initial training: 1) input layer: 2 nodes; 2) hidden layer: 2 

nodes; and 3) output layer: 1 node. 2.5% MAPD is used as the performance target for all 

1 2 3 4 5

Training Set 0.007% 0.084% 0.071% 0.159% 0.201% 0.25% Pass

Test Set 0.008% 0.091% 0.061% 0.169% 0.205% 0.25% Pass

Total 0.007% 0.086% 0.068% 0.164% 0.201% 0.25% Pass

Training Set 1.252% 0.834% 0.582% 0.435% 0.753% 2.50% Pass

Test Set 0.919% 0.449% 0.661% 0.507% 0.962% 2.50% Pass

Total 1.164% 0.710% 0.589% 0.437% 0.776% 2.50% Pass

PassLWBS Patients %

EP Time Pass

 Simulation 

Model Outputs
Data Sets

CTAS Score Perfromance 

Target

Evaluation 

(Individual)

Evaluation 

(Overall)
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the outputs except for the Percentage of LWBS patients, for which 0.25% MAD is used as 

the performance target. 

After being developed, the 15 NNs for the following three types of output can satisfy their 

performance targets using the 2-2-1 NN architecture: 1) Time patients spend in the 

waiting room; 2) Work-up time for consulted patients; and 3) Work-up time for non-

consulted patients. The other 10 NNs for the following two types of outputs can satisfy 

their performance targets using the 2-4-1 NN architecture: 1) Percentage of LWBS 

patients; and 2) EP time.  

The NN-based simulation metamodels are deterministic models meaning a fixed output is 

calculated given fixed inputs without the need to run the original simulation model. These 

metamodels can be implemented using mathematical formulae thus eliminating the need 

for the simulation software package used to develop and run the original simulation 

models. In addition, it takes much less time to run the simulation metamodels than the 

original simulation model to generate outputs with comparable experimental precision.  

There are two key findings from this application example. First, it shows that NN is a 

good candidate for developing simulation metamodels. Second, the NN-based 

metamodeling process is a trial-and-error process.  
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Chapter 8  An Integration Example of Simulation Models 

8.1  Introduction 

In AHSM, it is recommended that simulation models are developed and maintained at the 

unit level to keep them current. When decision problems occur in a MUHS, unit 

simulation models can be integrated to develop the MUHS simulation model. Depending 

on the complexity of the MUHS, the system decomposition technique demonstrated in 

Chapter 6 may be required to decompose the MUHS into hierarchical layers of 

subsystems. In this case, unit simulation models are first integrated to develop simulation 

models representing the subsystems at the lowest layer. Subsequently, these subsystem 

simulation models are integrated to represent subsystems at higher layers or the overall 

MUHS. As discussed in Section 5.3 of Chapter 5, there are three model integration 

approaches, each with its own advantages and disadvantages: DMI, MMI and HMI. In 

order to assist in choosing the appropriate approach for integrating unit and subsystem 

simulation models, a procedural FMI approach is proposed including five steps. The first 

four steps focus on the preparation work, including architectural design of the overall SM 

study, an inventory check of all the previously developed simulation models, and 

selection of the integration approach to be used. The last step focuses on the development, 

integration and validation of the unit, subsystem, and overall MUHS simulation models. 

In this chapter, we will use an example to demonstrate the application of the FMI 

approach with an emphasis on the last step, and a further focus on the application of the 

MMI approach. This is because the DMI approach has already been well covered by 



148  

 

many scholars (Geoffrion, 1989a; Dolk & Kottemann, 1993; Meckesheimer, 2001) and 

the HMI approach is a mixture of DMI and MMI.  

In this application example, we will first start with a simple MUHS consisting of only two 

units, for each of which a DES model has already been developed. We will demonstrate 

how the MMI approach can be used to integrate them to address decision problems 

concerning the two units. For comparison purpose, two integrated simulation models 

developed using the alternative DMI and HMI approaches are also presented. After the 

two-unit MUHS example, this chapter discusses the possibility of scaling up this example 

to integrate additional unit simulation models, e.g. CHR surgery and primary care 

simulation models.  

8.2  Background Information 

The MUHS chosen for this application example includes a portion of the CHR healthcare 

system described in Chapter 6, this being the following two units: 1) the FMC ED; and 2) 

the CHR HW. The high-level patient flows within the FMC ED and CHR HW are shown 

in Figure 8-1.  

 

Figure 8-1 High-level Patient Flows Within the FMC ED and the CHR HW 
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The patient-flow within the FMC ED has already been discussed in Section 7.2 of Chapter 

7, so only the patient flow within the CHR HW needs to be described here: 

 Admitted patients from the FMC ED stay in the FMC ED until inpatient beds 

become available in the CHR HW.  

 Patients transferred from other services to the CHR HW will wait for inpatient 

beds as well. 

 Each patient in the CHR HW will go through acute care once an inpatient bed is 

accessed. 

 After acute care, some patients are discharged and the occupied inpatient beds 

become available for new patients, while others move on to sub-acute care.  

 After the sub-acute care, some patients are discharged releasing an inpatient bed 

for new patients, while others begin to wait for an alternative level of care (ALC) 

space (frequently long-term care). 

 When an ALC space becomes available, the patient waiting for ALC leaves the 

CHR HW and the occupied inpatient bed becomes available for new patients. 

As shown in Figure 8-1, the CHR HW provides downstream services for admitted patients 

from the FMC ED, who will stay in the FMC ED until inpatient beds become available in 

the CHR HW, though the FMC ED and the CHR HW are operated independently. In 

addition to accepting patients admitted from the FMC ED, the CHR HW also accepts 

patients from other services, e.g. surgery or outpatient clinics. The operations of the FMC 

ED and the CHR HW are interconnected since the boarding time of the admitted patients 

from the FMC ED depends on the operation of the CHR HW, and the operations of the 
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FMC ED affect the total number of patients arriving to the CHR HW. The longer the 

boarding time of the admitted patients in the FMC ED, the slower the patient flow via the 

FMC ED as the beds in the FMC ED cannot be freed up to accept new patients. In the 

meantime, the slower the patient flow via the FMC ED, the smaller the number of patients 

admitted to the CHR HW and the shorter the boarding time for admitted patients from the 

FMC ED. In other words, the patient arrival rate from the FMC ED to the CHR HW and 

the boarding time of admitted patients from the FMC ED are unit performance measures 

which impact each other.  

There is a DES model, as introduced in Chapter 7, developed by the author in 2009 as part 

of a research project in which the author participated (Rohleder et al., 2009), to simulate 

the operations of the FMC ED. In the same research project, Drs. Paul Rogers and Tom 

Rohleder developed a DES model to simulate the operations of the hospitalist service in 

the FMC. Based on that DES model, a DES model was developed to simulate the 

operations of the CHR HW.  

In the FMC ED DES model, the boarding time of admitted ED patients is modeled via 

probability distributions derived from historical data. In the CHR HW DES model, the 

arrival rate of the ED patients to the CHR HW is also modeled as a probability 

distribution derived from historical data. By integrating these two DES models, it can 

provide a holistic view of the operations of both units, explicitly accounting for the 

dependency between these two parameters of the two-unit MUHS.  
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8.3  Development of the Integrated FMC ED & CHR HW Simulation Model Using 

the MMI Approach 

This section describes the process for developing the integrated FMC ED and CHR HW 

simulation model using the MMI approach. The process is composed of the following 

four steps: 

1) Perform architectural and detailed design of the integrated FMC ED & CHR HW 

simulation model. 

2) Develop simulation metamodels to represent the FMC ED and the CHR HW. 

3) Develop the integrated FMC ED & CHR HW simulation model. 

4) Verify the valid range of the integrated FMC ED & CHR HW simulation model. 

Details on each step are explained in the following subsections. 

8.3.1  Architectural and Detailed Design of the MUHS Simulation Model 

As in the development of any simulation models, the first step in the development of the 

integrated FMC ED & CHR HW simulation model is to determine the modeling 

objective.  

In this application example, we are particularly interested in understanding the impact of 

the arrival rate of patients to the FMC ED on the LoS of the admitted patients from the 

FMC ED to the CHR HW considering the interactions between the FMC ED and the CHR 

HW. Accordingly, the modeling objective is to explicitly model the interactions between 

the FMC ED and the CHR HW in addition to the operations of FMC ED. 
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After the modeling objective has been determined, we can start the architectural design of 

the integrated FMC ED & CHR HW simulation model. The objective of the architectural 

design is to design the architecture of the integrated FMC ED & CHR simulation model, 

outlining the major modules, and the inputs, outputs, and interfaces between the modules. 

The designed architecture should best support the achieving of the modeling objectives. 

The designed architecture of the integrated FMC ED & CHR HW simulation model is 

shown in Figure 8-2. It includes two modules: 

 The FMC ED module representing the operations of the FMC ED, and 

 The CHR HW module representing the operations of the CHR HW. 

 

Figure 8-2 Architecture of the Integrated FMC ED & CHR HW Simulation Model 
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 LoS in ED of admitted ED patients. 

The integrated model has one inter-module interface. It is bidirectional with arrows at 

both ends of the connection meaning there is information exchanged in both directions. 

The information exchanged over this interface includes: 

 Arrival rate of admitted ED patients to the CHR HW (from the FMC ED module 

to the CHR HW module), and 

 Boarding time of admitted ED patients (from the CHR HW module to the FMC 

ED module). 

After the architectural design, a detailed design needs to be performed for the integrated 

FMC ED & CHR HW simulation model. The detailed design defines: 

 The scope of the NN-based simulation metamodels to be developed, including the 

inputs and outputs of each simulation metamodel, and 

 The interconnections between the simulation metamodels. 

The detailed design of the integrated FMC ED & CHR HW simulation model is shown in 

Figure 8-3. 
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Figure 8-3 Detailed Design of the Integrated FMC ED & CHR 

HW Simulation Model 
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o Arrival rate of admitted ED patients to the CHR HW, and 

o Boarding time of admitted ED patients. 

In Figure 8-3, there is a pair of interface modules associated with each NN model to 

handle the translation of data format to/from the NN model. Details on the three NN-

based simulation metamodels and their interfaces are provided in next subsection. 

8.3.2  Development of the NN-based Simulation Metamodels 

In the detailed design of the integrated FMC ED & CHR HW simulation model, two NN-

based simulation metamodels are employed in the FMC ED module. One NN-based 

simulation metamodel is to handle the interactions with the CHR HW module and it has 

the following interfaces: 

 Two for inputs: 

o Patient arrival rate to the FMC ED, and 

o Boarding time of admitted ED patients. 

 One for output: 

o Arrival rate of admitted ED patients to the CHR HW, which is equal to the 

rate of admitted ED patients in the FMC ED. 

The other NN-based simulation metamodel is to calculate the LoS in the ED of admitted 

ED patients and it has the following interfaces: 

 Two for inputs (the same as for the other NN-based simulation metamodel): 

o Patient arrival rate to the FMC ED, and 
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o Boarding time of admitted ED patients. 

 One for output: 

o LoS in ED of admitted ED patients. 

There is only one NN-based simulation metamodel employed in the CHR HW module to 

handle the interactions with the FMC ED. It has the following interfaces: 

 One for input: 

o Arrival rate of admitted ED patients to the CHR HW.  

 One for output: 

o Boarding time of admitted ED patients. 

The three NN-based simulation metamodels are developed following the same procedure 

as described in Chapter 7. Details on the three NN-based simulation metamodels are 

summarized in Appendix E.  

8.3.3  Development of the Integrated FMC ED & CHR HW Simulation Model 

After the development of the three NN-based simulation metamodels, we need to 

integrate them together to develop the integrated FMC ED & CHR HW simulation model. 

At this stage, we need to make a decision on which SM method and software package is 

to be used. The NN models are deterministic and do not require any special software 

package to be implemented, however, in order to simulate the interactions between two 

NN models, we need a software package, which can support dynamic simulation.  
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In this application example, ARENA® 12.0 is used for the development of the integrated 

FMC ED and CHR HW simulation model using the DES method. The only reason why 

DES method and ARENA® 12.0 are chosen is because they were used in the 

development of the original FMC ED and CHR HW DES models and we also want to 

build other versions of the integrated FMC ED & CHR HW simulation model using DMI 

and HMI approaches. 

The integrated FMC ED and CHR HW DES model is a very simple model with its flow 

chart shown in Figure 8-4. In the model, parameters of the three NN models are stored in 

2-D array variables. 

 

Figure 8-4 Flow Chart of the Integrated FMC ED & CHR HW DES Model 
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As indicated in Figure 8-4, two processes are used in the integrated FMC ED & CHR HW 

DES model. Process 1 is used to calculate the patient arrival rate of admitted ED patients 

to the CHR HW with the following three steps:  

Step a: An event entity is created with a constant interval of a day at the Create Daily 

Event module. 

Step b: This event entity moves to the Assign module, Calculate Patient Arrival Rate 

from ED to HW, and triggers the calculation of the arrival rate of admitted ED patients to 

the CHR HW using the patient arrival rate to the FMC ED and the boarding time of 

admitted ED patients as inputs. Both the inputs and output are stored in variables.  

Step c: The event entity moves to the Dispose module, End Daily Event module, and is 

disposed. 

Process 2 is to simulate the patient flow of admitted ED patients based on the NN 

metamodels. This process includes 8 steps and includes some randomness.  

Step 1: At the Create Admitted ED Patients module, admitted ED patients are created 

following a Poisson process using the calculated arrival rate of admitted ED patients to 

the CHR HW in process 1 as the mean.  

Step 2: The patient entity moves to the Assign module, Calculate LoS in ED using NN, 

and triggers the calculation of this patient entity’s LoS in the FMC ED.  
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Step 3: The patient entity moves to the Delay module, Time Spent in the ED before 

Admission Decision, and is delayed for a period equal to the calculated LoS in the ED 

minus the current boarding time of admitted ED patients. 

Step 4: The patient entity moves to the Statistic module, Collect Patient Arrival Rate 

from ED to HW. This module collects statistics on the current patient arrival rate from the 

FMC ED to the CHR HW.  

Step 5: The patient entity moves to another Assign module, Calculate Boarding Time 

using NN, and triggers the calculation of the boarding time of the patient entity using the 

current patient arrival rate of admitted ED patients measured in Step 4. 

Step 6: The patient entity moves to another Delay module, Waiting for Inpatient Bed, and 

waits for a period equal to the calculated boarding time in Step 5. 

Step 7: The patient entity moves to another Statistic module, which collects statistics on 

LoS in ED of the admitted ED patients. 

Step 8: The patient entity moves to a Dispose module and is disposed. 

8.3.4  Valid Range of the Integrated Simulation Model 

As discussed in Section 5.3 of Chapter 5, simulation metamodels are only valid to 

represent the original simulation model within the domain of the generated experimental 

results. When developing integrated simulation models using the MMI or HMI 

approaches, it is important to understand the valid range of the integrated simulation 
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model, defined as the range within which the inputs of all the simulation metamodels 

included are valid.  

The valid ranges of the three NN-based simulation metamodels can be found in Appendix 

E and are summarize in Table 8-1. 

Table 8-1 Valid Ranges of the FMC ED & CHR HW Simulation Metamodels 

Simulation 

Metamodels 
Input Parameters Lower Limit Upper Limit 

The FMC ED 

Simulation 

Metamodels 

Arrival Rate of ED 

Patients 
80.0% 150.0% 

Boarding Time of 

Admitted ED Patients 
60.0% 160.0% 

The CHR HW 

Simulation 

Metamodel 

Arrival Rate of 

Admitted ED Patients 
70.0% 160.0% 

There is only one input to the integrated FMC ED & CHR HW DES model: arrival rate of 

ED patients. This input is also an input of the two FMC ED NN-based simulation 

metamodels and its valid range is from 80% to 150%. However, based on this 

information, we cannot conclude that the valid range of the integrated FMC ED & CHR 

HW DES model is also from 80% to 150% because the CHR HW simulation metamodel 

interacts with one of the FMC ED simulation metamodels creating a circle: one input of 

one simulation metamodel is the output of another simulation metamodel and vice versa. 

In order to determine the valid range of the integrated FMC ED & CHR HW DES model, 

a trial-and-error approach is used. First, the integrated DES model is run with a selected 
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range of test input. In this example, we choose the test range between 80% and 150% as 

this is the valid range for the FMC ED NN-based simulation metamodels. The following 

fifteen test inputs are used to run the integrated FMC ED & CHR HW DES model: 80% 

to 150% with a step of 5%. For each run, the inputs to all the simulation metamodels are 

collected and compared with their valid ranges. The experimental results are shown in 

Table 8-2. 

Table 8-2 Experimental Results of the Integrated FMC ED & 

CHR HW DES Model (MMI) 

 

The experimental results in Table 8-2 are examined for each test input to assess whether it 

is within the valid range of the integrated FMC ED & CHR HW DES model. For 

example, for the first test input, the two generated inputs of the three NN-based simulation 

metamodels are: 

 For the two FMC ED NN-based simulation metamodels:  

Test

Input

Arrival Rate of 

ED Patients

Boarding Time of 

Admitted ED Patients

Arrival Rate of 

Admitted ED Patients 
Valid?

1 80% 27.3% 85.2% No

2 85% 50.0% 88.3% No

3 90% 72.0% 92.7% Yes

4 95% 89.1% 97.2% Yes

5 100% 100.0% 100.0% Yes

6 105% 106.5% 101.2% Yes

7 110% 110.3% 103.8% Yes

8 115% 112.6% 104.1% Yes

9 120% 115.1% 103.1% Yes

10 125% 117.0% 104.8% Yes

11 130% 117.8% 102.1% Yes

12 135% 117.7% 105.6% Yes

13 140% 117.7% 106.3% Yes

14 145% 117.6% 104.7% Yes

15 150% 118.3% 103.5% Yes



162  

 

o Patient arrival rate: 80%, which is within its valid range of (80%, 150%), 

and  

o Boarding time of admitted ED patients: 27.3%, which is outside of its valid 

range of (70%, 160%).   

 For the CHR HW NN-bade simulation metamodel: 

o Arrival rate of admitted ED patients: 85.2%, which is within its valid range 

of (60%, 160%). 

So, the integrated FMC ED & CHR HW DES model is not valid for the first test input.  

The assessment results for the 15 test inputs are listed on the last column in Table 8-2. 

Based on the results, the estimated valid range of the integrated FMC ED & CHR HW 

DES model is from 90% to 150%.  If the valid range of the integrated FMC ED & CHR 

HW DES model is deemed too narrow, we will need to go back to increase the valid 

ranges of some of the NN-based simulation metamodels by generating more experimental 

data. In the example here, if we want to make the lower limit of the valid range less than 

90%, we need to rerun the original FMC ED DES model to generate experimental results 

with boarding time less than 60%. 

8.4  Development of the Integrated FMC ED & CHR HW DES Models Using the 

DMI and HMI Approaches 

For comparison purpose, two additional integrated FMC ED & CHR HW DES models are 

developed using the DMI and HMI approach. These two DES models are also developed 
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using ARENA® 12.0. In the following subsections, a high level summary is provided of 

each model. 

8.4.1  The DMI Approach 

With the DMI approach, the CHR HW DES model is used as an add-on module in the 

FMC ED DES model to replace the Delay module representing the boarding time of an 

admitted patient from the FMC ED. The entity representing an admitted ED patient is 

routed to the CHR HW module and waits for an inpatient bed. When an inpatient bed 

becomes available, the admitted ED patient entity is released from the occupied ED bed 

and moves to the acute care step in the CHR HW.  

Though the DMI approach seems to be very straightforward, its implementation is far 

more than just plug-and play. There is much tedious and detailed work to be done in the 

integration process compared with the MMI approach. Some major examples are listed as 

follows: 

Name conflicts: These two DES models were developed separately and there are many 

conflicts on the names used for variables, modules, tallies, etc. Thus, changes are required 

to avoid the conflicts. In this application example, we keep the FMC ED DES model 

unchanged as there are more variables and modules used in this DES model, and changes 

are all made to the CHR HW DES model.  

CRN (Common Random Numbers) planning: Similar to the name conflicts mentioned 

above, changes have been made to the CHR HW DES model to reassign some of the 

random number streams. 
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Master version of the simulation models: As changes have been made to the CHR HW 

DES model, we need to decide which version of the model should be treated as the master 

version of the CHR HW DES model: the modified one or the original one. In this 

application example, the modified version is treated as the master version. Any changes to 

the CHR HW module in the integrated FMC ED & CHR HW DES model are duplicated 

in the original CHR HW DES model. So basically each change has to be implemented 

twice. 

Experimental run time: With the same precision requirement, it takes much more time 

to run the integrated model than the FMC ED DES model and the CHR HW DES model. 

This is a painful and time consuming process for the verification of the integrated model. 

8.4.2  The HMI Approach 

With the HMI approach, we used the original FMC ED DES model and the NN 

metamodel developed using the experimental results of the CHR HW DES model. The 

NN metamodel uses the arrival rate of the ED patients as input and feeds the calculated 

boarding time of admitted ED patients to the FMC ED DES model. 

In the integrated FMC ED & CHR HW DES developed using the HMI approach, only the 

CHR HW NN-based simulation metamodel is used and its valid range is shown in Table 

8-1. The integrated FMC ED & CHR HW DES model is run for ten 485-day replications 

for the following 19 test inputs: 60% to 150% with a step of 5%. The experimental results 

are shown in Table 8-3. 
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Table 8-3 Experimental Results of the Integrated FMC ED 

& CHR HW DES Model (HMI) 

 

The experimental results are examined for each test input as discussed in Subsection 8.3.4 

to assess whether it is within the valid range of the integrated FMC ED & CHR HW DES 

model.  The assessment results for the 19 test inputs are listed on the last column in Table 

8-3. Based on the results, the estimated valid range of the integrated FMC ED & CHR 

HW DES model is from 70% to 150%. 

Test

Input

Arrival Rate of ED 

Patients

Arrival Rate of 

Admitted ED Patients 
Valid?

1 60% 63.7% No

2 65% 68.5% No

3 70% 75.7% Yes

4 75% 78.8% Yes

5 80% 82.4% Yes

6 85% 90.8% Yes

7 90% 94.2% Yes

8 95% 95.8% Yes

9 100% 100.0% Yes

10 105% 99.6% Yes

11 110% 100.8% Yes

12 115% 101.4% Yes

13 120% 103.7% Yes

14 125% 105.4% Yes

15 130% 105.1% Yes

16 135% 102.8% Yes

17 140% 105.2% Yes

18 145% 104.3% Yes

19 150% 103.9% Yes
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8.5  Comparison Between DMI, MMI and HMI  

8.5.1  Minimum Number of Replications of the Integrated Simulation Models 

After the three integrated FMC ED & CHR HW DES models have been developed, there 

is one piece of preparation work to be done before we can proceed to compare their 

outputs and performances, this being to determine the minimum numbers of replications 

to meet a certain specified precision in the experimental results.  

The precision of a simulation model is determined by the number and length of the 

replications used to generate the experimental results. In order to have a fair comparison 

between the outputs and performance of the three integrated FMC ED & CHR HW DES 

models, we need to first make sure that the same specified precision of the experimental 

results can be achieved with the proper number and length of the replications. In this 

application example, the following two outputs of the integrated FMC ED & CHR HW 

DES models are chosen with their specified precision shown below as well: 

 Average LoS of admitted ED patients from the FMC ED:   

o MAD = 5 minutes 

 Boarding time of admitted ED patients from the FMC ED:  

o MAD = 5 minutes 

The procedure described in Appendix C is used to determine the minimum number of 

replications to meet the specified precision listed above. A replication length of 485 days 

including a 120-day warm up period is chosen. Each integrated FMC ED & CHR HW 
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DES model is run with 10 replications. The calculated minimum numbers of replications 

for the three integrated FMC ED & CHR HW DES models are shown in Table 8-4.  

Table 8-4 Minimum Numbers of Replications with a 485-day Replication Length 

 

From Table 8-4, we can see that the minimum numbers of replications to meet the 5-

minute MAD for the integrated FMC ED & CHR HW DES models using different 

integration approaches are:  

 DMI approach:  14 

 MMI approach: 9 

 HMI approach: 10 

8.5.2  Experimental Run Times of the Integrated Simulation Models 

In this subsection, the experimental run times of the three integrated FMC ED & CHR 

HW DES models developed using the DMI, MMI and HMI approaches are compared by 

generating experimental results with the same specified precision and replication 

parameters as discussed in Subsection 8.5.1. 

1 2 3 4 5 6 7 8 9 10 % of Ȳ Value

DMI_LoS Admitted Minute 743 739 736 740 744 743 739 721 739 741 739 6.50 0.7% 5.0 6.50 10 8.7

DMI_Boarding Time Minute 208 195 204 202 196 210 206 188 205 218 203 8.37 2.5% 5.0 10.77 14 13.1

MMI_LoS Admitted Minute 740 737 745 743 749 747 735 737 747 730 741 6.22 0.7% 5.0 5.95 9 8.2

MMI_Boarding Time Minute 207 206 209 208 214 213 206 203 213 200 208 4.66 2.4% 5.0 3.34 6 5.7

HMI_LoS Admitted Minute 741 749 742 741 746 747 733 746 729 734 741 6.65 0.7% 5.0 6.80 10 9.1

HMI_Boarding Time Minute 212 211 212 207 202 213 196 208 199 209 207 6.01 2.4% 5.0 5.55 8 8.1

(t0.025,R-1S0/є)2 Simulation Model 

Outputs
Unit

Replication, r
Ȳ S0

Target є
(Z0.025S0/є)2 Min R
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ARENA® 12.0 is used for generating the experimental runs of the three integrated 

simulation models for the baseline scenario, which represents the operations of the FMC 

ED and the CHR HW in 2009. ARENA® 12.0 is run on a Lenovo (IBM) ThinkPad T60p 

with the following specifications 

 Processor:  Intel Core Duo processor T7200 (2GHz) 

 Memory:  512 MB 

 Operating system: Windows Vista Business 32-bit 

The experimental run times of the three integrated FMC ED & CHR HW models are 

summarized in Table 8-5.  

Table 8-5 Experimental Run Times 

 

The results in Table 8-5 show that it takes 55.3 minutes for each experimental run of the 

directly integrated FMC ED & CHR HW DES model. By using the HMI and MMI 

approaches, the time for each experimental run can be reduced by 32.2% and 97.1% to 

37.5 minutes and 1.62 minutes, respectively.  

Integration 

Approach

Replication 

Length

(Day) 

Minimum 

Number of 

Replications

Time for Each 

Replication

(Minute)

Time for Each 

Experimental Run

(Minute)

DMI 485 14 3.95 55.3

MMI 485 9 0.18 1.62

HMI 485 10 3.75 37.5
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8.5.3  Output Comparison of the Integrated FMC ED & CHR HW Simulation Models 

In this subsection, we compare the outputs from the experimental runs of the three 

integrated FMC ED & CHR HW DES models. In the comparison, the results for the DMI 

approach are used as a reference since the DMI approach directly integrates the unit 

simulation models and does not introduce errors.  This is to be compared with the other 

integration approaches (HMI and MMI) which do introduce additional errors due to the 

development of NN-based simulation metamodels from the experimental results of the 

individual simulation models. In practice, it is very rare to develop integrated simulation 

models using multiple integration approaches in parallel. The primary objective of this 

subsection is to examine the possible impact of the errors introduced in the simulation 

metamodeling process on the performance of the integrated simulation models developed 

using the HMI and MMI approaches.  

As discussed in subsections 8.3.4 and 8.4.2, the NN-based simulation metamodels used in 

the integrated FMC ED & CHR HW DES models developed using the MMI and HMI 

approaches are valid within the following ranges for the ED patient arrival rate: 

 MMI: 90% to 150% 

 HMI: 70% to 150% 

Thus, the narrower range, (90%, 150%), is chosen to ensure the NN-based simulation 

models used in both integrated FMC ED & CHR HW DES models are valid. The three 

integrated FMC ED & CHR HW DES models are run for the following thirteen ED 

patient arrival rates: 90% to 150% with a step of 5%. The replication parameters used in 



170  

 

generating the experimental runs of the three integrated DES models are those determined 

in Subsection 8.5.1. Statistics on the following two outputs are collected for each 

experimental run: 

 LoS in ED of admitted ED patients, and 

 Boarding time of admitted ED patients. 

LoS in ED of admitted ED patients 

The LoS in ED of admitted ED patients collected from the experimental runs of each 

integrated FMC ED & CHR HW DES model are shown in Figure 8-5. The vertical axis in 

this figure represents the percentage deviations of the results for the MMI and HMI 

approaches from the results for the DMI approach (shown as the reference line). The 

horizontal axis represents the ED patient arrival rate, which ranges from 90% to 150%. 

From Figure 8-5, we can see that: 

 The percentage deviation of the LoS of the admitted ED patients generated from 

running the FMC ED & CHR HW DES model developed using the HMI approach 

is between -2% and 0%, while the MAPD of all data points is 1.14%. 

 The percentage deviation of the LoS of the admitted ED patients generated from 

running the FMC ED & CHR HW DES model developed using the MMI approach 

is between -3.0% and 2.5%, while the MAPD of all data points is 2.17%. 
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Figure 8-5 LoS in ED of Admitted ED Patients 

Boarding Time of Admitted ED patients 

The boarding time of admitted ED patients generated from the experimental run of each 

integrated FMC ED & CHR HW DES model is shown in Figure 8-6. Like those in Figure 

8-5, the vertical axis represents the percentage deviations of the results for the MMI and 

HMI approaches from those for the DMI approach (shown as the reference line). The 

horizontal axis represents the ED patient arrival rate, which ranges from 90% to 150%. 

 

Figure 8-6 Boarding Time of Admitted ED Patients 
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From Figure 8-6, we can see that: 

 The percentage deviation of the boarding time of the admitted ED patients 

generated from running the FMC ED & CHR HW DES model developed using 

the HMI approach is between -4% and 1%, while the MAPD of all data points is 

2.04%. 

 The percentage deviation of the LoS of the admitted ED patients generated from 

running the FMC ED & CHR HW DES model developed using the MMI approach 

is between -4.0% and 2%, while the MAPD of all data points is 1.92%. 

As indicated in Appendix E, the precisions of both the FMC ED and CHR HW NN 

models are MAPD 2.5%, which can be met by the MAPDs of all the data points. 

However, the percentage deviations at certain data points go beyond the 2.5% MAPD and 

this can be due to the following reasons, which cause errors for the HMI and MMI 

approaches: 

1) Mismatch of information on the interface between a NN model and another NN 

model or simulation model. For example, when the CHR HW DES model is used 

to generate experimental results for training the CHR HW NN model, probability 

distribution is used for generating the admitted ED patient entities. Once the CHR 

HW NN model is integrated with FMD ED DES model or NN model, the arriving 

of the admitted ED patients may not follow exactly the same distribution. 

2) When multiple NN models are linked together, error propagation can happen so 

the error introduced by a NN model can be amplified by a sequent NN model. This 
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can be used to explain why for the predicted LoS of admitted ED patients, the 

performance for the MMI approach is worse than that for the HMI approach.   

3) NN models are deterministic. When it is connected to a simulation model, it can 

impact the effect of the randomness in the simulation model. This may be able to 

explain why for the predicted boarding time of admitted ED patients, the 

performance for the HMI approach is actually slightly worse than that for the MMI 

approach. 

Errors introduced in the simulation metamodeling process can affect the validity of the 

integrated simulation models developed using HMI or MMI approaches to represent the 

integrated simulation models developed using the DMI approach. Improving the accuracy 

of each individual NN models can help to improve the overall accuracy for the HMI or 

MMI. However, solely focusing on improving the validity for the HMI or MMI approach 

using the results for the DMI approach as references can be misleading as the ultimate 

objective for developing the integrated simulation models of the MUHS using HMI or 

MMI approach is to simulate the operations of the MUHS. The validation of the 

individual NN-based simulation metamodel should focus more on the trend of the input-

output relationships rather than the absolute values and the validation of the integrated 

simulation models developed using MMI or HMI approaches should be done using the 

system level data collected from the real system.  
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8.6  Integrating Three or More Unit Simulation Models Using the MMI Approach 

In the previous sections, we have demonstrated the development of the MUHS simulation 

model by integrating two unit simulation models using the MMI approach. In this section, 

we will further demonstrate how the MMI approach can be used for developing integrated 

simulation models for MUHSs with three or more units.  

Building upon the example discussed earlier, let’s assume the modeling objective has 

been revised as follows:   

We want to understand the impact of the population growth in the CHR on the 

performances of the FMC ED considering the following factors: 

 Interactions between the FMC ED and the CHR HW, 

 The increased patient volume from the CHR surgery operations to the CHR HW, 

and 

 The increased patient volume from the CHR primary care to the FMC ED. 

Compared with the modeling objective described in Section 8.3, this modeling objective 

has a larger scope thus requiring an integrated simulation model to represent a larger and 

more complex MUHS.  

According to this new modeling objective, the architecture of the new MUHS simulation 

model is designed with the result shown in Figure 8-7.  



175  

 

 

Figure 8-7 Architecture of the Integrated MUHS Simulation Model 

As shown in Figure 8-7, the integrated MUHS simulation model includes four modules: 

 The FMC ED module representing the operations of the FMC ED,  

 The CHR HW module representing the operations of the CHR HW, 

 The CHR surgery module representing the CHR surgery operations, and 

 The CHR primary care module representing the operations of the CHR primary 

care services. 

The integrated MUHS simulation model has one input: 

 Population 

and one or more outputs depending on the requirements of the decision-makers: 

 Waiting times of admitted, discharged and all ED patients in the waiting room, 

 LoS in ED of admitted, discharged and all ED patients,  
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 Percent of ED patients choosing LWBS in the waiting room, 

 etc. 

The integrated MUHS simulation model has three inter-module interfaces: 

 A bidirectional interface between the FMC ED module and CHR HW module, 

 A unidirectional interface between the CHR surgery module and the CHR HW 

module, and 

 A unidirectional interface between the CHR primary care module and the FMC 

ED module. 

In addition, the MUHS also requires a global interface module to translate the population 

size into the following arrival rates to different units: 

 Patient Arrival Rate to CHR Primary Care, 

 Patient Arrival Rate to CHR Surgery, 

 Arrival Rate of other Patients to the FMC ED, and 

 Arrival Rate of Other Patients to the CHR HW. 

Based on the architecture of the MUHS simulation model, a detailed design is performed 

and the result is shown in Figure 8-8. 
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Figure 8-8 Detailed Design of the Integrated Simulation Model 

As listed in Figure 8-8, the following NN-based simulation metamodels are required: 

 One NN model in the CHR HW module to handle the interaction with the FMC 

ED module, 

 One NN model in the CHR surgery module to generate inputs to the CHR HW 

module, 

 One NN model in the CHR primary care module to generate inputs to the FMC 

ED module, 

 One NN model in the FMC ED module to handle the interaction with the CHR 

HW module, and 
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 Multiple NN models in the FMC ED module to calculate different ED 

performance measures. It is also possible to use a NN model with multiple outputs 

(with a more complex architecture). 

The interfaces listed in Figure 8-8 include: 

 Four external interfaces as inputs: 

o Patient Arrival Rate to the CHR Primary Care, 

o Patient Arrival Rate to the CHR Surgery, 

o Arrival Rate of other Patients to the FMC ED, and 

o Arrival Rate of Other Patients to the CHR HW. 

 Several external interfaces as outputs: 

o The FMC ED Performance Measures (possibly multiple measures here). 

 Four internal interfaces: 

o Arrival rate of admitted ED patients to the CHR HW, 

o Boarding time of admitted ED patients, 

o Arrival Rate of Post-surgery Patients to The CHR HW, and 

o Arrival Rate of Patients to the FMC ED after Primary Care. 

Based on the detailed design, NN-based simulation metamodels can be developed 

following the same procedure as described in Chapter 7 and the integrated MUHS 

simulation model can be developed using the chosen SM method and SM software 

package as demonstrated in Subsection 8.3.3. The valid range of the integrated MUHS 

simulation model needs to be verified. Given the limited space in the dissertation, we will 



179  

 

not discuss the details on the development of the NN-based simulation metamodels and 

the integrated MUHS simulation model. 

8.7  Discussion and Conclusions 

In this chapter, an application example is used to demonstrate the application of the FMI 

approach in integrating unit simulation models with a focus on the MMI approach. The 

application example starts with a two-unit MUHS and then expands to include two more 

units, and provides some valuable insights on the application of the MMI approach. From 

the technical perspective, this example shows some advantages of the MMI approach 

when compared with the DMI and HMI approaches, including: 

1) It eliminates most of the operational details modeled in the unit simulation models 

and minimizes the complexity of the integrated simulation models.  

2) It significantly reduces the experimental run time of the integrated simulation 

models. 

3) It eliminates the need to deal with the name conflicts, CRN reassignment and other 

required modifications to the unit simulation models. 

4) The implementation of NN-based simulation metamodels does not require special 

software packages thus adding flexibility to the model integration process. 

However, this example also helps to uncover several disadvantages of the MMI approach, 

including: 
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1) The NN-based simulation metamodels are only valid within the domain of the 

experimental results used to develop these simulation metamodels. The valid 

range of an integrated MUHS simulation model developed using the MMI 

approach needs to be further checked.  

2) It introduces errors in the representation of the original simulation models, though 

these errors can be minimized by using appropriate simulation metamodeling 

techniques and paying special attention to the design of the experiments to run the 

unit simulation models. 

These advantages and disadvantages also apply to the HMI approach. 

However, the discussions in this chapter also point out that the application of the MMI or 

HMI approaches should not only focus on improving accuracy of the NN-based 

simulation metamodels using the DMI approach as reference. Instead, the validation of 

integrated simulation models, regardless whether they are developed using DMI, HMI or 

MMI approaches, should focus on whether they can properly represent the operations of 

the MUHS to be studied. 

From the perspective of the development process of the NN-based simulation metamodels 

and the integrated MUHS simulation model, this application example also yields a 

number of useful findings including: 

1) Proper upfront architectural design and detailed design are essential for the 

successful development of NN-based simulation metamodels and the integrated 

MUHS simulation model. 
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2) It is important to verify and become aware of the valid ranges of the integrated 

MUHS simulation models. 

3) Even with the MMI approach, it can become a complex project for the 

development of the integrated MUHS simulation model. This indirectly proves the 

value that the system decomposition technique can bring to the AHSM approach. 
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Chapter 9  Research Summary, Conclusions and Future Directions 

Much has been written in the healthcare literature on the urgency of improving the 

operational efficiency of healthcare organizations and the challenges in decision-making 

for managing the operations of healthcare systems, especially MUHSs. In order to deal 

with various decision problems in MUHSs, healthcare managers are in need of decision 

support tools which can help them model decision problems effectively and analyze them 

efficiently. SM is one of the most commonly used decision support tools in healthcare, 

with applications spanning over four decades, and it is regarded by many as the 

“technique of choice” to support decision-making in complex and fast changing 

healthcare environments. However, SM has not yet become an integral part of analysis 

before major decisions in healthcare are made. Further, most of the SM studies in 

healthcare are unit-specific and there is a lack of simulation models of healthcare systems 

consisting of multiple units. There are many contributing factors to the current status of 

SM applications in healthcare, amongst which are the following two that the author 

believes are the most important: rapidity and flexibility. Rapidity means how quickly a 

simulation model can be developed to address a decision problem while flexibility means 

the reusability of existing simulation models to address new decision problems. Current 

SM practices focusing on unit-specific applications lack the required rapidity and 

flexibility to effectively support decision-making in MUHSs. 

In order to improve the rapidity and flexibility of SM applications in healthcare, one 

possible solution is to separate the development and maintenance of the unit simulation 

models from the use of these simulation models.  Simulation models can be developed 
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and maintained at the unit level, and when a new decision problem occurs, these unit 

simulation models can be integrated to build an integrated simulation model of the overall 

MUHS within which the decision problem occurs. 

Conceptually, the proposed solution sounds simple and straightforward, but there are two 

major challenges to operationalize this solution. The first is how to map the real-world 

decision problem into the virtual world of models and decide which unit simulation 

models are to be developed or reused? The second is once the unit simulation models 

have been identified, how can they be efficiently integrated together to represent the real-

world decision problem?  

This research is motivated to tackle these two challenges and it is divided into the 

following four tasks:  

1) Review related literature, 

2) Develop a conceptual model to represent and describe the operations of MUHSs, 

3) Develop a HSM approach to effectively support decision-making in MUHSs, and  

4) Demonstrate the real-world potential of the proposed HSM approach via 

application examples. 

A summary of this research is provided in next section by briefly reviewing each of the 

above four research tasks. Discussion of and conclusions from this research are provided 

in Section 9.2. The novelty and major contributions of this research are discussed in 

Section 9.3, and the limitations of this work are summarized in Section 9.4. Finally, some 

possible directions for future research in this area are explored in Section 9.5. 
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9.1  Research Summary  

9.1.1  Literature Review 

Part 1: Complexity and Dynamics in Healthcare Systems and the CASs and ND 

Systems Theories 

This part of the research provides a high-level review of the applications of complexity 

theories in the study of healthcare systems. It is agreed by most scholars that the whole 

system approach is the most appropriate approach to studying healthcare systems. Two 

frequently used theories of complex systems are reviewed: the CASs theory and the ND 

systems theory. The CASs theory focuses on the dynamics of complex systems and argues 

that the dynamics are due to the interactions between independent elements, which are 

defined as “adaptive agents”.  The CASs theory emphasizes that complex systems should 

be studied as a whole and they are not easily manageable as no one is “in charge”. The 

ND systems theory focuses on the hierarchical structure of complex systems and argues 

that almost all complex systems exhibit hierarchical structures at the whole system level 

with the ND property: they can be divided into hierarchical layers of subsystems in such a 

way that interactions between elements belonging to same subsystem are much stronger 

than interactions between elements belonging to different subsystems. With the ND 

property, the study of a complex system can be simplified by subdividing the study of the 

whole system into studies of its subsystems combined with an aggregate study of the 

interactions between the subsystems.  
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Though their foci are different, the theories of CAS and ND systems agree on two 

fundamental features of complex systems: inter-element interactions and hierarchical 

structure at the whole system level. Both theories recognize the existence of inter-element 

interactions. The CASs theory defines the inter-element or inter-agent interactions as a 

process of learning from and adapting to each other. The ND systems theory assumes 

inter-element interactions as a natural existence, but insists that these inter-element 

interactions are not all of the same frequency and intensity.  Regarding the hierarchical 

structure of complex systems, the CASs theory argues that hierarchical structure is a 

natural emergence through a self-organization process while the ND systems theory 

argues that the hierarchical structure with the ND property is the most probable structure 

to emerge via an “evolutionary process” because of the existence of intermediate stages. 

Part 2: SM Methods and Their Applications in Healthcare 

This part of the research first reviews the four social roles that simulation models can play 

in the decision-making process: 1) learn as a group; 2) express and experiment; 3) 

explore; and 4) predict. Understanding these social roles can help in choosing the 

appropriate SM method and in building simulation models. Next the research provides a 

comparison between the three basic SM methods commonly used in healthcare: DES, SD 

and ABS. Results from the comparison can help understand the advantages and 

disadvantages of each SM method, and thus guide the use of them in properly modeling 

different decision problems. The research also reviews the hybrid simulation and 

distributed simulation approaches, which are recommended by some scholars in 
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healthcare SM. The technical issues that affect the use of various SM methods in 

simulating MUHSs are also discussed. 

At the end of this part of the research, a high-level literature review is provided on SM 

applications in healthcare with a focus on studying MUHSs. The main conclusions from 

the literature review can be summarized as follows. 

 The majority of HSM studies uses DES,  

 There is a lack of simulation models of healthcare systems consisting of multiple 

units, and 

 Most of the healthcare simulation models are developed by academics for research 

and/or student projects, rather than consultants or management engineers doing 

routine analysis on the operations of healthcare systems. This helps to explain why 

the implementation of HSM results is rare. 

9.1.2  ND-CASs: A Conceptual Model to Represent and Describe MUHSs 

The review and comparison of the CASs theory and the ND systems theory lead to the 

introduction of the ND-CASs model to represent and describe the operations of MUHSs. 

The ND-CASs model integrates the key concepts from the theories of CASs and ND 

systems and serves as a conceptual tool to help smooth and speed up the SM-based 

decision-making process for managing the operations of MUHSs. A ND-CAS is 

composed of adaptive agents, which are intelligent and interact with each other and with 

the environment. The inter-agent interactions are diverse and of differing frequency and 

intensity. At the whole system level, a ND-CAS can exhibit multiple hierarchical 
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structures along different dimensions, though viewed along a particular dimension, there 

is only one stable hierarchical structure. The hierarchical structures have the ND property 

and can be designed or can emerge from the inter-agent interactions. The hierarchical 

structures of a ND-CAS can be maintained and modified via a co-evolutionary process 

amongst the agents, inter-agent interaction and the hierarchical structure. Compared with 

the changes in interactions between subsystems and agents at the lower layers, the 

changes of the hierarchical structures happen at a much slower pace.  

Compared with the CASs theory or the ND systems theory, the ND-CASs model 

represents a more holistic view for the study of complex systems. With ND-CAS, the 

dynamics of complex systems can be represented and explained in terms of adaptive 

agents and their evolving interactions. The hierarchical structure at the whole system 

level, emerging via the co-evolutionary process, can help make the study of complex 

systems more manageable.  

MUHSs can be described and represented as ND-CASs, with adaptive agents representing 

the units in the MUHS and the inter-agent interactions characterizing the interconnections 

between the units. Each unit in a MUHS is operated independently with its own 

operational goals. Inter-unit interactions are determined by the needs of both units to 

deliver their own services and they vary in frequency and intensity, depending on the 

closeness of the relationship between specific units. Using ND-CASs to represent MUHSs 

brings some benefits for the study of MUHSs including: 

 First, the dynamics and complexity in the operations of MUHSs can be explained 

by the independent operations of each unit and their interactions. The inter-unit 
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interactions lead to the creation and adjustment of the hierarchical structures at the 

whole system level with layers of subsystems.  

 These hierarchical structures have the ND property so that the study of MUHSs 

can be divided into the studies of each unit and subsystem, combined with 

aggregated studies on the inter-unit/subsystem interactions. This can make the 

study of MUHSs, especially those with a large number of units, more manageable.  

 The ND-CASs model provides a simple representation of MUHSs focusing on 

both the independent operations of the units and the inter-unit interactions. Thus it 

can be used as a conceptual framework for the stakeholders involved in the 

decision-making process of MUHSs to develop a common understanding of the 

operations of MUHSs and relate the decision problems to the overall operations of 

the MUHSs as well as to the individual units and subsystems.  

 Once identified, the hierarchical structures of MUHSs can be used in the 

architectural design of the MUHS simulation model, which is of vital importance 

for planning and coordinating different activities in the development of the MUHS 

simulation model. They can also be used as guidelines for the development of new 

unit simulation models or for the evaluation of the reusability of the existing unit 

simulation models. 

9.1.3  AHSM: A HSM Approach for Rapid and Flexible Decision-Making in MUHSs 

In this part of the research, an AHSM approach is proposed for developing MUHS 

simulation models in a rapid and flexible manner to effectively support decision-making 

in MUHSs. The development of AHSM is propelled by three driving forces: 1) the 
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complexity of decision problems; 2) the dynamics of the decision-making process; and 3) 

the limitations of current SM practices in healthcare. AHSM is based on a cyclical 

lifecycle approach introduced to describe the SM process for modeling decision problems, 

and is intended to support the full lifecycle of decision-making in MUHSs. It is a high-

level SM approach to facilitate communications, coordination, and interactions between 

healthcare modelers, managers and other stakeholders in the decision-making process of 

MUHSs.  

AHSM includes two stages. The first stage is called “Planning” and its main objective is 

to identify the hierarchical structures of a MUHS and perform an architectural design of 

the overall SM study. The second stage is called “Executing” and its main objective is to 

develop unit, subsystem and the overall MUHS simulation models.  

To support the implementation of AHSM, the following three techniques/approaches are 

proposed in the research: 

 A PCA-base system decomposition technique to identify the hierarchical structure 

of a MUHS with a large number of units. 

 A NN-based simulation metamodeling technique to represent simulation models 

of the individual units in the MUHS using NN models.  

 A flexible model integration approach for integrating the simulation models, or 

simulation metamodels of the units, to represent the subsystems and the overall 

MUHSs.  
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AHSM offers a number of benefits for the effective support of decision-making in 

MUHSs, such as: 

 AHSM eliminates the need to develop a single complex simulation model to 

represent the overall MUHS.  

 Unit/subsystem simulation models can be developed independently and in-

parallel. This can speed up the model development process and greatly reduce the 

effort and time required to study MUHSs.  

 Increases the reusability of existing simulation models regardless of the SM 

method and/or SM software package used to develop these simulation models. 

 AHSM is robust to changes in MUHSs, so that changes in one or more units can 

be handled by adjusting the simulation models of these units independently. 

Changes at the whole system level, i.e. changes in the hierarchical structure, can 

be handled by rearranging the simulation models at the lower levels. This again 

improves the rapidity and flexibility of SM studies of MUHSs.  

9.1.4  AHSM Application Examples 

Three application examples are used to demonstrate the real-world potential of AHSM. 

The first example shows how to decompose the CHR healthcare system into hierarchical 

layers of subsystems. This application example shows that the proposed system 

decomposition technique follows a logical procedure and is easy to use. The only 

subjective portions in this approach are the definition of units, the measures of the inter-

unit interactions and the number of subsystems to be retained at each decomposition step. 

Once these are decided, whoever does the decomposition will get the same result. This 
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makes the decomposition result acceptable for all the stakeholders involved in the 

decision-making process so that they can have the same starting point on how to deal with 

the decision problems. 

The second application example demonstrates the development of NN-based simulation 

metamodels to represent an ED DES model. It clearly shows that NN is a good candidate 

for developing simulation metamodels.  

The third application example demonstrates the application of the FMI approach with a 

focus on the underlying MMI approach. The application example starts with a two-unit 

MUHS and then expands to include two more units. It confirms that the MMI approach 

and the FMI approach in general can make significant contributions to the successful 

implementation of the AHSM approach. It also shows that even with the MMI approach, 

the development of the integrated MUHS simulation model can become a somewhat 

complex project when the number of units in the MUHS increases. This indirectly proves 

the value that the system decomposition technique can bring to the AHSM approach.   

9.2  Major Conclusions 

Based on the research summary presented in the previous section, the major conclusions 

of this research can be summarized as follows: 

1) The ND-CASs model introduced in the research provides a simple representation of 

MUHSs for understanding and managing the complexity and dynamics in the 

operations of the MUHSs. Using the ND-CASs model, the dynamics and complexity 
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in the operations of MUHSs can be explained by the independent operations of each 

unit and their interactions, and the study of MUHSs can become more manageable by 

dividing the overall study of the MUHSs into isolated studies of each unit and 

subsystem, combined with aggregated studies on the inter-unit/subsystem interactions. 

The ND-CASs model can also help stakeholders involved in the decision-making 

process develop common understanding of the operations of the MUHSs and make the 

solutions of decision problems more relevant to the overall operations of the MUHSs 

as well as to the individual units and subsystems. This will smooth and speed up the 

decision-making process. In addition, the ND-CASs model can also be used to assist 

in designing the architecture of the MUHS simulation models and provides guidelines 

for the development of unit, subsystem and overall MUHS simulation models. 

2) The AHSM approach proposed in this research aims to improve the rapidity and 

flexibility for developing MUHS simulation models to effectively support decision-

making in MUHSs. The complexity of decision problems and the dynamics of the 

decision-making process in MUHSs, together with the limitations of current SM 

practices in healthcare, are the three driving forces for the introduction of the AHSM 

approach. AHSM is a high-level SM approach intended to support the full lifecycle of 

decision-making in MUHSs by facilitating communications, coordination and 

interactions between healthcare modelers, managers and other stakeholders in the 

decision-making process of MUHSs.  

3) The implementation of AHSM needs supporting techniques and approaches. Three 

major ones are proposed in this research. As a logical and low-complexity tool, the 

system decomposition technique can be used to decompose a MUHS with a large 
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number of units into layers of subsystems. As shown in Figure 9-1, the system 

decomposition technique can be viewed as an operational version of the ND-CASs 

model. The identified hierarchical structure of a MUHS can be used in the 

architectural design of the MUHS simulation model and serves as a guiding map for 

the development of unit and subsystem simulation models as well as the overall 

MUHS simulation model. The simulation metamodeling technique can be used to 

simplify the unit simulation models while retaining their main features using NNs. It 

can reduce the experimental run time of the simulation models and eliminate the need 

for special software package to run a particular simulation model. It can also add 

rapidity and flexibility to the model integration process when used with the MMI or 

HMI approach. Finally, a procedural FMI approach is proposed as a framework for 

selecting the appropriate approach for performing different model integration tasks for 

the development of the MUHS simulation models. 
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Figure 9-1 The Role of the ND-CASs Model and the 

System Decomposition Technique in AHSM 

9.3  Research Novelty and Contributions 

The novelty of this research comes from the introduction of the AHSM approach and the 

ND-CASs model into the field of healthcare simulation modeling. The novelty of AHSM 

resides in its intention to support the full lifecycle of decision-making for managing the 

operation of MUHS by facilitating communications, coordination and interactions 

between healthcare modelers, managers and other stakeholders in the decision-making 

process of MUHSs. Inspired by theories of systems, the AHSM approach views the SM 

application in MUHSs as an ongoing, multi-scale, multi-level and interconnected activity. 

This represents a different approach compared with those used in the current SM practices 

in healthcare, which focus on unit-/facility-specific and one-time only SM applications. 

Decision Problem#1
MUHS#1

Decision #1

Conceptual 
Solution #1

Decision Problem#2
MUHS#2

Simulation Model
MUHS#2 

Conceptual 
Solution #2

Decision #2

Conceptual 
Model

MUHS#2

Simulation Model
MUHS#1 

Conceptual 
Model

MUHS#1

ND-CAS &
System Decomposition Technique

AHSM

Simulation Metamodeling &
Flexible Model Integration

1

2

Unit 
Simulation 

Models



195  

 

The implementation of the AHSM approach is supported by several well-established 

techniques/approaches i.e. PCA, NN-based metamodeling and model integration. But 

what is new for these techniques/approaches in this research is their application in the 

domain of healthcare simulation modeling and their combination as a toolkit to support 

the implementation of the AHSM approach. 

The novelty of the ND-CASs model comes from the integration of the key concepts in the 

theories of CASs and ND systems. These two theories have been very successful for 

being used as standalone theories but it is in this research that they are used together to 

help in understanding and managing the complexity of MUHSs. 

The contributions of this research can be summarized as follows: 

The most important contribution of this research is the AHSM approach. AHSM offers 

the HSM community a solution and a toolkit for developing simulation models of MUHSs 

with a large number of units in a rapid and flexible manner. AHSM also provides 

healthcare organizations a framework for planning SM activities with a broad scope and 

from a long-term perspective, thus maximizing the return from the investment in SM 

activities.  

Yet, most of the claimed contributions of AHSM approach still exist in theory and they 

have not been fully demonstrated in the research. This is partially because AHSM is a 

process-oriented approach and it requires buy-ins from the healthcare organizations first 

for its implementation. In addition, it also takes a long time to realize and visualize its real 

effects. But at the technical level, this research does prove that the AHSM approach has 
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the capability to improve the SM applications in MUHSs by reusing existing unit 

simulation models. It can push ahead the current SM practices in healthcare without 

dramatic changes. As mentioned in early chapters of the research, the unit-/facility-

specific SM applications are not problems by themselves. But if healthcare organizations 

only focus on these SM applications, it will be a problem. The AHSM can definitely help 

senior managers in the healthcare organizations to steer away from that direction.  

Another important contribution of this research is the ND-CASs model, which is 

introduced to represent and describe the operations of MUHSs. The ND-CASs model is 

developed from a theoretical perspective and integrates the key concepts in the theories of 

CASs and ND systems to provide a more holistic representation and description of certain 

types of complex systems such as MUHSs. On the practical side, the HSM community 

can use the ND-CASs model as the theoretical foundation to better model MUHSs. For 

healthcare organizations, the ND-CASs model can serve as a conceptual platform for 

different stakeholders involved in the decision-making process of MUHSs to build a 

common understanding of decision problems and better relate them to the operations of 

the MUHSs as well as to the operations of the individual units to smooth and speed up the 

decision-making process. Part of the value the ND-CASs model has been demonstrated in 

the decomposition example of the CHR healthcare system. But its full value needs yet to 

be demonstrated in the real-world applications. 

One more contribution of this research is that the AHSM supporting techniques and 

approaches can be used separately as general purpose tools in HSM studies. For example, 

the system decomposition technique can be used to assist the modular design of 
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healthcare simulation models, and simulation metamodels can be implemented into 

EXCEL or other tools to help healthcare managers in making day-to-day decisions 

without the need to run the original simulation models.  

9.4  Research Limitations 

This research covers a variety of subtopics, for many of which there are few prior research 

studies to be used as reference. Given the limited space in this dissertation, it is 

impossible to address all the subtopics in detail and a trade-off between breadth and depth 

has been made for some of them. For example, while the AHSM approach is the main 

focus of this research, it has to be used in conjunction with many existing SM methods 

and techniques, e.g. those for data collection, model verification and validation. In this 

research, it is assumed that these SM methods and techniques can naturally work together 

with the AHSM approach. However, the research does not spend extra time investigating 

the possible challenges and opportunities that AHSM may have created for these SM 

methods and techniques and exploring the possibilities for the better use of them to 

support the AHSM approach. Another example is the SM methods discussed in the 

research. The review of literature on HSM applications focuses on five commonly used 

SM methods, but the DES method is primarily used in the application examples. The 

AHSM approach is definitely not designed only to support the DES method or the five 

SM methods covered in the literature review. Instead, AHSM is supposed to be neutral to 

underlying SM methods. However, this research does not explore the possibility of using 

other SM methods. There is one more example, which is the use of NN as the primary 

technique for developing simulation metamodels, though there are a number of other 
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alternative techniques, e.g. RSM and multiple regression techniques. Compared with other 

techniques, NN has many unique characteristics but its use as a simulation metamodeling 

technique is a recent development. The choice of using NN in this research is not to 

recommend NN as the only technique for developing simulation metamodels. Instead, the 

purpose is just to promote NN as another good candidate technique of simulation 

metamodeling. However, detailed comparisons between NN and other simulation 

metamodeling techniques are not explored in this research. 

9.5  Future Research Directions 

This research can be extended in at least the following two directions. First, further 

research can be conducted to improve the AHSM approach by addressing the limitations 

identified in the previous section. Possible research questions might include: 1) how can 

the existing SM methods and techniques be effectively integrated into the AHSM approach 

in the study of MUHSs?; 2) how to select SM methods in the study of MUHSs using the 

AHSM approach?; and 3) how to choose the appropriate simulation metamodeling 

techniques in the application of the AHSM approach in the study of MUHSs? 

Second, AHSM represents a new concept for applying SM in healthcare. To make it 

successful, future research is needed on a possible redefined decision-making process for 

managing the operations of MUHSs with AHSM playing a central role in that process. In 

the meantime, more AHSM-based and application-focused researches are required to 

prove the value that AHSM can deliver to support the making of operational decisions in 

MUHSs. 



199  

 

References 

Abdul Majid, M. (2011). Human behaviour modelling: an investigation using traditional 

discrete event and combined discrete event and agent-based simulation (Doctoral 

dissertation, University of Nottingham). 

Addanki, S., Cremonini, R. and Penberthy, J. S. (1990). Reasoning About Assumptions in 

Graphs of Models, in Readings in Qualitative Reasoning About Physical Systems 

(Weld, D.S. and J. de Kleer eds.), Morgan Kaufman, San Mateo, CA, 546-552. 

Alam, F. M., McNaught, K. R. and Ringrose,T. J. (2004). A comparison of experimental 

designs in the development of a neural network simulation metamodel. Simulation 

Modelling: Practice and Theory 12(7-8) 559-578. 

Argent, R. M. (2004). An overview of model integration for environmental applications—

components, frameworks and semantics. Environmental Modelling & Software, 19(3), 

219-234. 

Badiru, A.B. and Seiger, D.B. (1993). Neural network as a simulation metamodel in 

economic analysis of risky projects, Technical Report (Department of Industrial 

Engineering, University of Oklahoma). 

Badiru, A. and Siege, D.B. (1998). Neural network as a simulation metamodel in 

economic analysis of risky projects. European Journal of Operational Research 105, 

130-142. 

Banks, J., Carson II, J.S., Nelson, B.L. and Nicol, D.M. (2005). Discrete-event system 

simulation (4th ed.). Upper Saddle River, NJ: Prentice-Hall. 

Barton P, Bryan S. and Robinson S. (2004). Modelling in the economic evaluation of 

health care: selecting the appropriate approach. Journal of Health Services Research 

Policy; 9(2): 110-118. 

Bauer, K. W. Jr., Kochar, B. and Talavage, J. J. (1985). Simulation Model Decomposition 

by Factor Analysis. In: Proceedings of the 1985 Winter Simulation Conference (E D. 

Gantz, E Cl. Blais and E S. Solomon, eds.), (Dec. ll-13), 185-188. 



200  

 

Bauer, K.W. Jr., Kochar, B. and Talavage, J. J. (1991). Discrete Event Simulation Model 

Decomposition by Principal Components Analysis, ORSA Journal on Computing, 

3(1), pp. 23-32. 

Bayer, S., Bolt, T., Kapsali, M. and Brailsford, S.C. (2010). The social role of simulation 

models, International System Dynamics Conferences, Seoul, Korea. 

Begun, J.W. and White, K.R. (1999). The Profession of Nursing as a Complex Adaptive 

System: Strategies for Change. pp. 189-203 in J.J. Kronenfeld (ed.), Research in the 

Sociology of Health Care, vol. 16 (Greenwich, CN: JAI Press). 

Begun, J.W., Zimmerman B and Dooley K. (2002). Health care organizations as complex 

adaptive systems. In: Mick SS, Wyltenbach ME, eds. Advances in Health Care 

Organization Theory. San Francisco, Calif: Jossey-Bass: 253-288. 

Beynon, M., Rasmequan, S. and Russ, S. (2002). A new paradigm for computer-based 

decision support, Decision Support Systems 33 (2) 127-142. 

Bhargava, H. K., Kimbrough, S. and Krishnan R. (1991). Unique Names Violations: A 

Problem for Model Integration, ORSA Journal of Computing, Vol. 3, No. 2, 107-120. 

Bhrammanee, T. and Wuwongse, V. (2008). ODDM: a framework for model bases, 

Decision Support Systems 44 (3) 689-709. 

Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Clarendon Press, Oxford. 

Blanning, W. R. (1975). The construction and implementation of metamodels. Simulation, 

24-25 (6), 177-184. 

Borshchev, A. and Filippov, A. (2004). From system dynamics and discrete event to 

practical agent based modeling: Reasons, techniques, tools. In: Proceedings of the 22nd 

International Conference of the System Dynamics Society, July 25-29, 2004, p. 45. 

Box, G.E.P. and Draper, N.R. (1987). Empirical Model-building and Response Surfaces. 

Wiley, New York. 

Bradley, G. and Clemence R. (1987). A Type Calculus for Executable Modeling 

Languages, IMA Journal of Mathematics in Management, Vol. 1, No. 4, 277-291. 



201  

 

Brailsford, S.C. and Hilton, N.A. (2000). A comparison of discrete event simulation and 

system dynamics for modelling healthcare systems. In: Riley J (ed.) Proceedings from 

ORAHS 2000, Glasgow, Scotland, pp 18-39. 

Brailsford, S.C., Lattimer, V.A., Tarnaras, P. and Turnbull, J.C. (2004). Emergency and 

on-demand health care: modelling a large complex system. J Opn Res Soc 55(1): 34-

42. 

Brailsford, S.C., Katsaliaki, K., Mustafee, N. and Taylor, S. J. E. (2006). Modelling Very 

Large Complex Systems using Distributed Simulation: A Pilot Study in a Healthcare 

Setting. In Proceedings of the 2006 Operational Research Society Simulation 

Workshop (SW06), Leamington Spa, UK. pp. 257-262. 

Brailsford, S.C., Desai, S.M. and Viana J. (2010). Towards the Holy Grail, combining 

system dynamics and discrete-event simulation in healthcare. In Proceedings of the 

2010 Winter Simulation Conference (JOHANSSON BB, JAIN S, MONTOYA-

TORRES J, HUGAN J and YUCESAN E, eds.), IEEE, Baltimore, Maryland. 

Brandeau, M.L., Sainfort, F. and Pierskalla, W.P. (2004). Health care delivery: Current 

problems and future challenges, in Operations Research and Health Care: A Handbook 

of Methods and Applications (eds. Brandeau, Sainfort and Pierskalla). Kluwer 

Academic Publishers. Boston, MA, chap. 1. 

Briggs, J. and Peat, F. D. (1989). Turbulent Mirror: An Illustrated Guide to Chaos Theory 

and the Science of Wholeness. Harper & Row, New York. 

Brownlee, J. (2007). Complex Adaptive Systems, Complex Intelligent Systems 

Laboratory, Centre for Information Technology Research, Faculty of Information 

Communication Technology, Swinburne University of Technology: Melbourne, 

Australia. 

Carlile, P.R. (2002). A Pragmatic View of Knowledge and Boundaries: Boundary Objects 

in New Product Development, Organization Science, 13(4), pp. 442-455. 



202  

 

Chahal, K. and Eldabi, T. (2008a). System dynamics and discrete event simulation: A 

meta-comparison. In Operational Research Society Simulation Workshop (SW08). 

189-197. 

Chahal, K. and Eldabi, T. (2008b). Applicability of Hybrid Simulation to Different 

Models of Governance in UK Healthcare, Proceedings of the 2008 Winter Simulation 

Conference S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. 

Cochran, J. and Bharti, A. (2006). A multi-stage stochastic methodology for whole 

hospital bed planning under peak loading. International Journal of Industrial and 

Systems Engineering, 1(1):8-36. 

Cooke, D., Rohleder, T., Rogers, P. and Xu, S. (2008). System Dynamics Modeling for 

Health Care Capacity Planning, 34th Annual Conference on Operational Research 

Applied to Health Services, Toronto, ON, Canada. 

Cooper, K., Brailsford, S.C., Davies, R. and Raftery, J. (2006). A review of health care 

models for coronary heart disease interventions. Health Care Management Science; 9: 

311-324. 

Dattée, B. and Barlow, J. (2010). Complexity and whole-system change programmes. 

Journal of Health Services Research & Policy, 15, 19-25. 

Davies, R. and Davies, H. (1994). Modelling patient flows and resource provision in 

health systems. Omega 22:123-131. 

Davies, H.T.O. and Davies, R. (1995). Simulating health systems: Modelling problems 

and software solutions, European Journal of Operational Research 87: 35-44. 

De Wolf, T. and Holvoet, T., (2005). Emergence Versus Self-Organisation: Different 

Concepts but Promising When Combined, Engineering Self Organising Systems: 

Methodologies and Applications, Lecture Notes in Computer Science, Volume 3464, 

May 2005, pp. 1-15. 

Dillon, W. and Goldstein, M. (1984). Multivariate Analysis: Methods and Applications, 

Wiley, New York. 



203  

 

Dolk, D. and Kottemann, J. (1993). Model Integration and a Theory of Models, Decision 

Support Systems, 9:1, pp. 51-63. 

Donabedian, A. (1966). Evaluating the quality of medical care. Milbank Memorial Fund 

Quarterly; 44:166-206. 

Dooley, K. and Plsek, P. (2001). A Complex Systems Perspective on Medication Errors. 

Working Paper, Arizona State University. 

Draman, M., Altinel, İK., Bajgoric, N. and Tamer Unal, A. and Birgoren, B. (2002). A 

clone-based graphical modeler and mathematical model generator for optimal 

production planning in process industries, European Journal of Operational Research 

137 (3) 483-496. 

Dreyfus, H.L. and Dreyfus, S.E. (1986). Mind Over Machine: The Power of Human 

Intuition and Expertise in the Era of the Computer, Free Press, New York. 

Egidi M. & Marengo L. (2002). Cognition, institutions, near decomposability: rethinking 

Herbert Simon’s contribution, CEEL, Working Paper, 6-02. 

Elam, J. J. and Lee, R. M. (1986). Guest Editors’ Introduction, Decision Support Systems, 

special issue, Vol.2, No.1, 1-2. 

Eldabi, T., Irani, Z. and Paul, R.J. (2002). A proposed approach for modelling health-care 

systems for understanding. J Mng Med 16(4): 170-187. 

Eldabi, T., Paul, R. J. and Young T. (2007). Simulation modeling in healthcare: reviewing 

legacies and investigating futures, Journal of the Operations Research Society, Vol. 58, 

pp. 262-270. 

England, W. and Roberts, S. (1978). Applications of computer simulation in health care. 

In: Highland HJ, Hull LG and Neilsen NR (eds). Proceedings of the 1978 Winter 

Simulation Conference. Institute of Electrical and Electronics Engineers, Miami Beach, 

Florida, USA, 4-6 December, pp 665-676. 

Eoyang, G. and Berkas, T. (1998). Evaluation in Complex Adaptive System, in M. 

Lissack and H. Gunz (eds) Managing Complexity in Systems. Westport, CT: Quorum 

Books. 



204  

 

Ewenstein, B. and Whyte, J. (2009). Knowledge practices in design: The role of visual 

representations as 'Epistemic objects', Organization Studies, 30 (1), pp. 7-30. 

Fetter, R.B. and Thompson, J.D. (1965). The simulation of hospital systems. Opns Res 

13: 689-711. 

Fierbinteanu, C. (1999). A decision support systems generator for transportation demand 

forecasting implemented by constraint logic programming, Decision Support Systems 

26 (3) 179-194. 

Fone, D., Hollinghurst, S., Temple, M., Round, A., Lester, N., Weightman, A., et al. 

(2003). Systematic review of the use and value of computer simulation modelling in 

population health and health care delivery. J Publ Health Med; 25: 325-335. 

Forrester, J. W. (1961). Industrial Dynamics. Cambridge, Mass: MIT Press. 

Fraser, S.W. and Greenhalgh, T. (2001). Coping with complexity: educating for 

capability. BMJ;323:799-803. 

Friedman, L. W. and Pressman, I. (1988). The metamodel in simulation analysis: can it be 

trusted? Journal of the Operational Research Society, 39 (10), 939-948. 

Fujimoto, R.M. (1999). Parallel and Distributed Simulation Systems. John Wiley & Sons 

Inc., New York. 

Fujimoto, R.M. (2003). Distributed simulation systems. In Proceedings of the 2003 

Winter Simulation Conference, 124-134. 

Geoffrion, A.M., (1989a). Reusing Structured Models via Model Integration, Proceedings 

of Twenty-Second Annual Hawaii International Conference on the System Sciences, 

IEEE Computer Society, pp. 601-611. 

Geoffrion, A.M. (1989b). Computer-based modeling environments, European Journal of 

Operational Research 41 (1) 33-45. 

Geoffrion, A.M. (1992a). The SML Language for Structured Modeling: levels 1 and 2, 

Operations Research, Vol. 40: 1, pp. 38-57. 



205  

 

Geoffrion, A.M. (1992b). The SML Language for Structured Modeling: levels 3 and 4, 

Operations Research, Vol. 40:1, pp. 58-75. 

Geoffrion, A. M. (1987). An Introduction to Structured Modeling, Management Science, 

Vol.33, No.5, 547-588. 

Golub, A.L. (1997). Decision Analysis: An Integrated Approach, John Wiley & Sons, 

New York. 

Gunal, M. and Pidd, M. (2009). Discrete event simulation for performance modelling in 

healthcare: A review of the literature. Working paper. Department of Management 

Science, Lancaster University. 

Gunal, M. (2012). A guide for building hospital simulation models, Health Systems 1, 17-

25. 

Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E. and Tatham, R.L. (2006). 

Multivariate Data Analysis, 6th Ed., Prentice-Hall, Upper Saddle River, NJ. 

Hancock, W. and Walter, P. (1984). The use of admissions simulation to stabilize 

ancillary workloads. Simulation 43: 88-94. 

Harrison, E.F. (1999). The Managerial Decision-Making Process. Houghton Mifflin 

College Div. 

Haykin, S. (1999). Neural Networks: A comprehensive foundation. Upper Saddle River, 

N. J., Prentice Hall. 

Heylighen, F. (1989). Self-Organization, Emergence and the Architecture of Complexity, 

in: Proc. 1st Eur. Conf. on System Science, (AFCET, Paris), p. 23-32. 

Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer Feedforward Networks are 

Universal Approximators. Neural Networks, 2, pp. 359-366. 

Hurrion, R.D. (1992). Using a neural network to enhance the decision making quality of a 

visual interactive simulation model, Journal of the Operational Research Society 43 

333-341. 



206  

 

Hurrion, R.D. (1998). Visual interactive meta-simulation using neural networks, 

International Transactions in Operational Research 5 261-271. 

IEEE 1516. (2000). IEEE Standard for Modeling and Simulation (M&S) High Level 

Architecture (HLA). Institute of Electrical and Electronics Engineers. 

Iyer, B., Shankaranarayanan, G. and Lenard, M.L. (2005). Model management decision 

environment: a web service prototype for spreadsheet models, Decision Support 

Systems 40 (2) 283-304. 

Jacobson, S. H., Hall, S. N. and Swisher, J. R. (2006). Discrete-Event Simulation Of 

Health Care Systems. In R. W. Hall (Ed.), Patient Flow: Reducing Delay in Healthcare 

Delivery: Springer, 211-252. 

Jiang, J.J. and Klein, G. (2000). Side effects of decision guidance in decision support 

systems, Interacting with Computers 12 (5) 469-481. 

Jun, J.B., Jacobson, S.H. and Swisher, J.R. (1999). Application of discrete-event 

simulation in health care clinics: a survey. Journal of the Operational Research Society, 

50(2), 109-123. 

Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. 

Psychometrika, 23(3), pp. 187-200. 

Kate, A.S. and Jatinder, N.D.G. (2000). Neural networks in business: Techniques and 

applications for the operations researcher. Computers & Operations Research 

27(11,12): 1023. 

Katsaliaki, K. and Mustafee, N. (2010). Improving decision making in healthcare services 

through the use of existing simulation modelling tools and new technologies, 

Transforming Government: People, Process and Policy, Vol. 4 Iss: 2, pp.158 - 171. 

Kelly, K. (1994). Out of Control. Addison-Wesley, Reading, MA. 

Kelton, W.D. and Law., A.M. (2000). Simulation modeling and analysis. Boston, MA: 

McGraw Hill. 



207  

 

Khuri, A. and Cornc H.J.A. (1987). Response Surfaces, Designs and Analyses. New 

York: M. Dekker. 

Kilmer, R.A. and Smith, A.E. (1993). Using artificial neural networks to approximate a 

discrete event stochastic simulation model, in: C.H. Dagli, L.I. Burke, B.R. Fernandez, 

J. Ghosh (eds.), Intelligent Engineering Systems Through Artificial Neural Networks, 

vol. 3, ASME Press, New York, pp. 631-636. 

Kilmer, R.A., Smith, A.E. and Shuman, L.J. (1994). Neural networks as a metamodelling 

technique for discrete event stochastic simulation, in: C.H. Dagli, B.R. Fernandez, J. 

Gosh, R.T. Kumara (Eds.), Intelligent Engineering Systems Through Artificial Neural 

Networks, vol. 4, ASME Press, New York, pp. 1141-1146. 

Kleijnen, J.P.C. (1975). A comment on Blanning’s ‘‘metamodel for sensitivity analysis: 

The regression metamodel in simulation”. Interfaces 5 (3), 21-23. 

Kleijnen, J.P.C. (1979). Regression metamodels for generalising simulation results. IEEE 

Transactions on Systems, Man and Cybernetics. SMC-9 (2), 93-96. 

Kohn, L.T., Corrigan, J. and Donaldson, M.S. (eds.). (2000). To Err is Human: Building a 

Safer Health System (Washington, DC: National Academy Press). 

Kontopoulos, K.M. (1993). The Logics of Social Structure. Cambridge: Cambridge 

University Press. 

Krishnan, R. and Chari, K. (1993). Model management: survey, future research directions 

and a bibliography, ORSA CSTS Newsletter, 14 (1), pp. 1-22. 

Krishnan, R., Piela, P. and Westerberg, A. (1993). Reusing Mathematical Models in 

ASCEND, in Recent Developments in Decision Support Systems (Holsapple, C and A. 

Whinston eds.), NATO ASI Series, Springer-Verlag, 275-294. 

Kuo, C. and Reitsch, A. (1995). Neural networks vs. conventional methods of forecasting. 

Journal of Business Forecasting Methods and Systems, 14(4), 17-22. 

Lane, D.C., Monefeldt, C. and Rosenhead, J.V. (2000). Looking in the wrong place for 

healthcare improvements: a system dynamics study of an accident and emergency 

department. Journal of the Operational Research Society, 51, 518-531. 



208  

 

Lane D.C. (2000). You just don't understand me: modes of failure and success in the 

discourse between system dynamics and discrete event simulation, Working paper no. 

LSEOR 00.34, London School of Economics. 

Langabeer, J.R. (2008). Health care operations management: a quantitative approach. 

Boston: Jones and Bartlett Publishers. 

Lehaney, B. and Hlupic, V. (1995). Simulation modelling for resource allocation and 

planning in the health sector. J Roy Soc of Health 115: 382-385. 

Leonard, C. G., Gerald, A. B., Stephen, J. D. and Diane, M. G. (2006). Developing a 

policy simulator at the acute-aged care interface. Australian Health Review, 30(4), 450. 

Liew, A. and Sundaram, D. (2009). Flexible modelling and support of interrelated 

decisions. Decision Support Systems, 46(4), 786-802. 

Looney, C.G. (1996). Advance in feed-forward neural networks: Demystifying 

knowledge acquiring black boxes. IEEE Transaction on Knowledge and Data 

Engineering, 8, 211-226. 

Lorenz, T. and Jost, A. (2006). Towards an orientation framework in multiparadigm 

modeling. Proceedings of the System Dynamics Society Conference. Nijmegen, The 

Netherlands." 

Lowery, J.C. (1992). Simulation of a hospital's surgical suite and critical care area. In: 

Swain JJ, Goldsman D, Crain RC and Wilson JR (eds.). Proceedings of the 1992 

Winter Simulation Conference. Institute of Electrical and Electronics Engineers, 

Arlington, Virginia, USA, 13-16 December, pp1071-1078. 

Macal, C. and North, M. (2010). Tutorial on agent-based modelling and simulation. 

Journal of Simulation, 4(3):151-162. 

Marion, R. and Bacon, J. (2000). Organizational Extinction and Complex Systems. 

Emergence 1(4):71-96. 

Mathur, K. and Solow, D. (1994). Management Science: The Art of Decision Making, 

Prentice Hall, Englewood Cliffs, New Jersey. 



209  

 

Matthes, S. (1988). Discrete Event Simulation Model Decomposition, Master’s thesis, 

AFIT/GOR/ENS/88M Air Force Institute of Technology, Wright-Patterson AFB OH, 

Mar 1988. 

McDaniel, Jr., R.R. and Driebe, D.J. (2001). Complexity science and health care 

management. Adv Strat Manage; 2:11-36. 

McDaniel, Jr., R.R. (1997). Strategic Leadership: A View from Quantum and Chaos 

Theories. Health Care Management Review 22(1):21-37. 

Meckesheimer, M. (2001). A Framework for Metamodel-Based Design: Subsystem 

Metamodel Assessment and Implementation Issues, Ph.D. Dissertation, Industrial 

Engineering Dept., Pennsylvania State University, University Park, PA. 

Mielczarek, B. and Uzialko-Mydlikowska, J. (2012). Application of computer simulation 

modeling in the health care sector: a survey, SIMULATION vol. 88 no. 2 197-216. 

Morecroft, J.D.W. and Robinson, S. (2008). Explaining puzzling dynamics: comparing 

the use of system dynamics and discrete-event simulation, SD plus meeting, LSBU. 

Morgan, G. (1997). Images of Organization, second ed. (Thousand Oaks, CA: Sage). 

Mustafee, N., Katsaliaki, K. and Taylor., S. (2010). Profiling Literature in Healthcare 

Simulation. Simulation 86(8/9):543-558. 

Myers, R.H. (1976). Response Surface Methodology. Boston: Allyn and Bacon. 

Owen, C., Love, D. and Albores, P. (2008). Selection of Simulation Tools for Improving 

Supply Chain Performance. Proceedings of the 2008 OR Society Simulation Workshop 

199-207. 

Paley, J. (2010). The appropriation of complexity in health care. Journal of Health 

Services Research & Policy, 15(1): 59-61. 

Parunak, H.V.D., Savit, R. and Riolo, R.L. (1998). Agent-Based Modeling vs. Equation-

Based Modeling: A Case Study and Users' Guide. In Sichman, J.S., Conte, R. and 

Gilbert, N. (Eds.), Multi-Agent Systems and Agent-Based Simulation, Springer Verlag. 



210  

 

Patel, M. and Nagl, S. (2011). The Role of Model Integration in Complex Systems 

Research. SCS M&S Magazine, n1 (January). 

Piela, P., McKelvey, R. and Westerberg, A. (1992). An Introduction to ASCEND: Its 

Language and Interactive Environment, in the proceedings of the 25th Annual Hawaii 

International Conference on System Sciences, Vol. III, IEEE Computer Society Press, 

Los Alamitos, CA, 449-461. 

Pierreval, H. and Huntsinger, R.C. (1992). An investigation on neural network capabilities 

as simulation metamodels, in: Proceedings of the 1992 Summer Computer Simulation 

Conference, Society for Computer Simulation, San Diego, CA, pp. 413-417. 

Plsek, P. and Greenhalgh T.(2001). The challenge of complexity in health care. Br Med; 

323: 625-628. 

Power, D.J. and Sharda, R. (2007). Model-driven decision support systems: concepts and 

research directions, Decision Support Systems 43 (3) 1044-1061. 

Priesmeyer, H.R. and Sharp, L.F. (1995). Phase Plane Analysis: Applying Chaos Theory 

in Health Care. Quality Management in Health Care 4(1):62-70. 

Priesmeyer, H.R., Sharp, L.F., Wammack, L. and Mabrey, J.D. (1996). Chaos Theory and 

Clinical Pathways: A Practical Application. Quality Management in Health Care 4(4): 

63-72. 

Pugh, G. A. (2006). Agent-Based Simulation of Discrete-Event Systems , In Proceedings 

of the 2006 Illinois-Indiana and North Central Joint Section Conferences. 

Rizzoli, A. E., Davis, J. R. and Abel, D. J. (1998). Model and data integration and re-use 

in environmental decision support systems. Decision support systems, 24(2), 127-144. 

Rodriguez, J.F.D. (2008). Metamodeling Techniques to Aid in The Aggregation Process 

of Large Hierarchical Simulation Models, PhD Dissertation, Department of The Air 

Force, Air University, Wright-Patterson Air Force Base, Ohio. 

Rohleder R., Rogers P., Cooke D. and Xu, S. (2009). Emergency Department Simulation: 

A Report for The Calgary Health Region, Calgary, AB, Canada. 



211  

 

Rowlands, G., Sims, J. and Kerry, S. (2005). A lesson learnt: The importance of 

modelling in randomized controlled trials for complex interventions in primary care. 

Family Practice 22: 132-9. 

Royston, G., Dost, A., Townshend, J. and Turner, H. (1999). Using system dynamics to 

help develop and implement policies and programmes in health care in England. 

System Dynamics Review, 15(3), 293. 

Rumelhart, D.E., Hinton, G.E. and William, R.J. (1986). Learning internal representations 

by error propagation. In D.E. Rumelhart & J.L. McClelland (Eds.), Parallel distributed 

processing: Explorations in the microstructure of cognition (pp. 318-362). Cambridge, 

MA: MIT Press. 

Santos, M.I. and Santos, P.M. (2007). Simulation metamodels for modeling output 

distribution parameters. In: Henderson, S.G., Biller, B., Hsieh, M.-H., Shortle, J., Tew, 

J.D., Barton, R.R. (Eds.), Proceedings of the Winter Simulation Conference. IEEE, pp. 

910-918. 

Sapsed, J. and Salter, A. (2004). Postcards from the edge: local communities, global 

programs and boundary objects. Organization Studies. 25: 1515-1534. 

Sarle, W.S. (1994). Neural networks and statistical models. Proceedings of the SAS Users 

Group International Conference, pp. 1528-1550. 

Schieritz, N. and Milling, P.M. (2003). Modeling the Forest or Modeling the Trees - A 

Comparison of System Dynamics and Agent-Based Simulation, Eberlein, R.L. et al. 

(eds.), Proceedings of the 21st International Conference of the System Dynamics 

Society, New York City. 

Scholl, H.J. (2001). Looking across the fence: Comparing findings from SD modeling 

efforts with those of other modeling techniques, 19th Int. Conf. Syst. Dyn. Soc. 

Schӧn, D. A. (1983). The Reflective Practitioner, New York: Basic Books. 

Seila, A.F. and Brailsford, S. (2009). Opportunities and Challenges in Health Care 

Simulation - Advancing the Frontiers of Simulation - Springer. 



212  

 

Sharp, L.F. and Priesmeyer, H.R. (1995). Tutorial: Chaos Theory - A Primer for Health 

Care. Quality Management in Health Care 3(4): 71-86. 

Sibthorpe, B., Glasgow, N. and Longstaff, D. (2004). Complex Adaptive Systems: A 

Different Way of Thinking about Health Care Systems. Canberra: Australian Primary 

Care Research Institute, Australian National University (ANU). 

(http://www.anu.edu.au/aphcri/Publications/Background_paper_stream1.pdf). 

Silver, M.S. (1991). Decisional guidance for computer-based decision support, MIS 

Quarterly 15 (1) 105-122. 

Simon H.A. (1962). The Architecture of Complexity, Proceedings of the American 

Philosophical Society 106 p. 467-482. 

Simon, H. (1977). The New Science of Management Decision, Prentice-Hall, Englewood 

Cliffs, NJ. 

Smith, P. (1995). Large scale models and large scale thinking: The case of the health 

services. Omega 23(2): 145-157. 

Smith-Daniels, V.L., Schweikhart, S.B. and Smith-Daniels, D.E. (1988). Capacity 

management in health care services: Review and future research directions. Decis Sci 

19: 889-918. 

Sprague, R.J. (1980). A framework for the development of decision support systems, MIS 

Quarterly 4 (4) 1-26. 

Starr, P.J. (1991). Integration of simulation and analytical submodels for supporting 

manufacturing decisions. International Journal of Production Research, 29 (9), 1733-

1746. 

Sterman, J. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex 

World. Irwin/McGraw-Hill: New York. 

Stern, H.S. (1996). Neural networks in applied statistics, Technometrics, 38, 205-214. 



213  

 

Sun, Y. and Cheng, L. (2002). A Survey on Agent-Based modeling and Equation-based 

modeling, 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.9669&rep=rep1&type=pdf. 

Sweetser, A. (1999). A comparison of system dynamics and discrete event simulation, 

17th Int. Conf. of the System Dynamics Society, Wellington, New Zealand, pp.8. 

Tang, X. (2002). Model integration, J. of Systems Engineering, 16(5) 322-329. 

Tzafestas, S.G., Dalianis, P.J. and Anthopoulos, G. (1996). On the overtraining 

phenomenon of backpropagation neural networks. Mathematics and Computers in 

Simulation, 40, 507-521. 

Valinsky, D. (1975). Simulation. In L. J. Shuman, R. D. Speas Jr., & J. P. Young (Eds.), 

Operations Research in Health Care: A Critical Analysis. Baltimore: Johns Hopkins 

University Press, 114-176. 

Vanberkel, P.T., Boucherie, R.J., Hans, E.W., Hurink, J.L. and Litvak, N. (2009). A 

survey of health care models that encompass multiple departments. Working paper 

University of Twente. 

Vieira, I.T., Cheng, R.C.H., Harper, P.R. and De Senna, V. (2010). Small world network 

models of the dynamics of HIV infection. Annals of Operations Research 178(1), 173-

200. 

Vissers, J. and Beech R. (2005). Health operations management: patient flow logistics in 

health care. London: Routledge. 

Wakeland, W.W., Gallaher, E.J., Macovsky, L.M. and Aktipis, C.A. (2004). A 

Comparison of System Dynamics and Agent-Based Simulation Applied to the Study of 

Cellular Receptor Dynamics, hicss, vol. 3, pp.30086b, Proceedings of the 37th Annual 

Hawaii International Conference on System Sciences (HICSS'04) - Track 3. 

West, B. and Deering, B. (1995). The Lure of Modern Science: Fractal Thinking, World 

Scientific, River’s Edge, NJ. 

Wilson, T. and Holt, T. (2001). Complexity and clinical care. BMJ; 323:685-8. 



214  

 

Wilson, J.C.T. (1981). Implementation of computer simulation projects in health care. J 

Opl Res Soc 32: 825 -832. 

Xu, S., Rogers, P., Rohleder, T. and Cooke, D., (2008). Improving Emergency 

Department Physician Management via Computer Simulation, Proceedings of the 2008 

Industrial Engineering Research Conference, J. Fowler and S. Mason, eds, Vancouver, 

BC, Canada. 

Xu, S. (2010). Meta-modeling of An Emergency Department DES Model: A Neural 

Networks Approach, Proceedings of 2010 POMS Annual Conference. 

Yu, X.H. and Chen, G.A. (1997). Efficient backpropagation learning using optimal 

learning rate and momentum. Neural Networks, 10, 517-527. 

Yu, B. and Popplewell, K. (1994). Metamodels in manufacturing: a review. International 

Journal of Production Research 32(4): 787 - 796. 

Yu, T.T., Scanlan, J.P. and Wills, G.B. (2007). Agent-Based and Discrete-Event 

Modelling: A quantitative approach,. Proceedings of the 7th AIAA Aviation 

Technology, Integration and Operation Conference, ATIO. Belfast, Northern Ireland. 

Zeigler, B. P., Kim, T. G. and Praehofer, H. (2000). Theory of Modeling and Simulation, 

2nd Ed., New York, NY, Academic Press. 

Zimmerman, B., Lindberg, C. and Plsek, P. (1998). Edgeware: Insights from Complexity 

Science for Health Care Leaders (Irving, TX: VHA). 

 

 



215  

 

Appendix A  List of Software Packages 

ARENA® 12.0  

http://www.arenasimulation.com/Products_Products.aspx 

IBM® SPSS® Neural Networks   

http://www-01.ibm.com/software/analytics/spss/products/statistics/neural-

networks/ 

MATLAB® 2006 

http://www.mathworks.com/tagteam/70533_91199v01_MATLABDataSheet_v9.p

df?s_cid=ML2012_bb_datasheet 

Vensim® 6.5  

http://www.vensim.com/brochure.html 

 

  

http://www.arenasimulation.com/Products_Products.aspx
http://www-01.ibm.com/software/analytics/spss/products/statistics/neural-networks/
http://www-01.ibm.com/software/analytics/spss/products/statistics/neural-networks/
http://www.mathworks.com/tagteam/70533_91199v01_MATLABDataSheet_v9.pdf?s_cid=ML2012_bb_datasheet
http://www.mathworks.com/tagteam/70533_91199v01_MATLABDataSheet_v9.pdf?s_cid=ML2012_bb_datasheet
http://www.vensim.com/brochure.html
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Appendix B   FMC ED DES Model Data & Results 

B.1 FMC ED Resources 

In the FMC ED DES model, the following two key ED resources, ED beds and EPs, are 

modeled explicitly. The other resources are modeled implicitly (or in an approximate 

manner).  Additional details of the FMC ED DES model are described in the following 

paragraphs. 

ED Beds 

The FMC ED includes a main ED area and a Minor Emergency Treatment (MET) area to 

provide treatment to patients with minor injuries.  The main ED is open 24-hour-a-day 

while the MET area is open 16 hours every day (12:00AM to 2:00AM & 10:00AM to 

12:00AM).  The main ED has a fixed total of 45 treatment beds, which are allocated to the 

following three areas: (i) the trauma area with 3 beds; (ii) the monitored bed area with 16 

beds; and (iii) the non-monitored bed area with 26 beds. The MET area has 8 beds.  The 

model assumes that these beds are permanently available (i.e. it does not consider any 

temporary bed closures due to nurse staffing shortfalls). 

In the model, when patients have completed triage they will be directed to either a main 

ED bed or a MET bed (provided that MET is open).  Depending on the bed type to which 

they are directed, patients will wait either in the main ED waiting room or in the MET 

waiting room.  Table B-1 shows the ED bed allocation policy implemented in the model. 
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Table B-1 ED Bed Allocation Policy 

 

As shown in the above table, in the main ED, a patient directed to a trauma bed at triage 

can be placed in either a trauma bed or a monitored bed. A patient directed to a monitored 

bed at triage can be placed in either a monitored bed or a non-monitored bed. A patient 

directed to non-monitored beds at triage can only be placed in a non-monitored bed. A 

patient directed to a MET bed at triage can only be placed in a MET bed unless the MET 

area is closed. In that case, the patient will be moved to the main ED and wait for a non-

monitored bed. 

In the main ED, after stabilization, a trauma patient will be moved out of the trauma bed 

and switched to a monitored bed or non-monitored bed for further treatment. After 1
st
 EP 

assessment, some non-trauma patients in monitored beds will move to a non-monitored 

bed for further treatment in the main ED.  Table B-2 shows the bed reassignment policy 

implemented in the model. (e.g. after stabilization, 54.4% of trauma patients will be 

moved to monitored beds, and the other 45.6% will be moved to non-monitored beds). 

Table B-2 ED Bed Reassignment Policy 

 

Trauma Monitored Non-monitored MET

Trauma *1 2

Monitored 1 2

Non-Monitored 1

MET 2 1

Allocated ED Beds

Allocated Bed 

at Triage

* Priority

Trauma Monitored Non-Monitored

Trauma 54.4% 45.6%

Monitored 11.4%

To

From
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Emergency Physicians (EPs) 

The FMC ED is staffed with ten different EP shifts every day. One EP shift covers 7 

hours, and each of the other EP shifts covers 8 hours. Four of the nine EP 8-hour shifts are 

actually split-shifts wherein the EP spends the first 4 hours in the main ED, and the 

following 4 hours in the MET area. 

As shown in the Table B-3, 14 different EP shifts were defined in the model with 10 shifts 

for the main ED, and 4 shifts for the MET area (the 4 shifts in the MET area and their 

counterparts in the main ED with the same EP assigned covers 4 hours each).  

Table B-3 EP Shift Patterns 

 

After an EP working one of the split-shift moves from the main ED to the MET area, 

she/he will only pick new patients from the MET waiting room, but will continue to take 

care of her/his previous patients in the main ED. When an EP ends a shift, she/he will 

transfer her/his patients to another EP according to a pre-defined scheme. A patient can 

only be re-assessed by the EP who did the stabilization or 1
st
 assessment for the patient or 

by the EP to whom the patient has been handed over (when the original EP ends a shift).  

Area Shift No. Starting Time Ending Time Shift Duration Transfer to Comments

S1 6:00 AM 10:00 AM 4 S11 The first 4 hrs in the main ED, and the next 4 hours in MET

S2 7:00 AM 3:00 PM 8 S6

S3 10:00 AM 2:00 PM 4 S12 The first 4 hrs in the main ED, and the next 4 hours in MET

S4 11:00 AM 7:00 PM 8 S8

S5 2:00 PM 6:00 PM 4 S13 The first 4 hrs in the main ED, and the next 4 hours in MET

S6 3:00 PM 11:00 PM 8 S9

S7 6:00 PM 10:00 PM 4 S14 The first 4 hrs in the main ED, and the next 4 hours in MET

S8 7:00 PM 3:00 AM 8 S10

S9 10:00 PM 6:00 AM 8 S1

S10 12:00 AM 7:00 AM 7 S2

S11 10:00 AM 2:00 PM 4 S12

S12 2:00 PM 6:00 PM 4 S13

S13 6:00 PM 10:00 PM 4 S14

S14 10:00 PM 2:00 AM 4 S10

Main ED

MET
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The following six types of EP activity were identified during the shadowing of EPs: 

1) Stabilization for trauma patients; 

2) 1
st
 EP assessment; 

3) EP re-assessment after test results are known or after trial of therapy; 

4) EP discussion with MD consultants and/or other ED staff on the patient’s 

situation; 

5) EP involvement in the trial of therapy; 

6) EP dealing with other activities not related to the care of her/his patients, such as 

discussion with other EP on their patients, responding to pages from other ED 

staff, etc. 

Mean values and distributions of each EP activity were estimated from the EP activity 

observation and analysis with results shown in the Table B-4 (e.g. the 1
st
 EP assessment 

time in the main ED can be estimated using a Weibull distribution with a mean value of 

15.0 minutes). 
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Table B-4 Distribution of EP Activity Times 

 

To reduce the complexity of the model, activities 2) and 4) were combined, as were 

activities 3) and 5), resulting in four fundamental tasks that EPs have to deal with: 

stabilization; 1
st
 assessment (including discussions with other staff for a proportion of 

patients); reassessment (including involvement in trial of therapy for a proportion of 

patients); other tasks not related to care of patients officially under their care.  The 

proportion of patients needing EP involvement in discussions with other staff or in trial of 

therapy, determined from analysis of the data from the EP shadowing, are show in Table 

B-5 (e.g. for 59.8% of CTAS 3 patients in the main ED, EPs need to consult with MD 

consultants or other ED staff on the patient’s situation). 

Table B-5 Additional EP Task Probabilities (by Treatment 

Location and CTAS Score) 

 

Physician Time Type Mean (Minute) Probability Distribution

Stabilization 18.8 Weibull(20.75,1.29735)

1st Assessment in main ED 15.0 Weibull(16.22,2.24842)

1st Assessment in MET 10.3 Weibull(9.01,1.7367)

Re-assessment in main ED 4.9 Lognormal(4.69,4.82)

Re-assessment in MET 2.6 Lognormal(2.62,1.83)

Consultation in main ED 4.7 Lognormal(4.63,5.06)

Consultation in MET 2.3 Lognormal(2.30,1.70)

Trial of Therapy (CTAS1&2) 12.0 Exponential(12)

Trial of Therapy (CTAS3) 6.9 Weibull(7.21,1.41392)

Trial of Therapy (CTAS4&5) 8.3 Gamma(1.87,6.40446)

Other activities 3.5 Triangular(2,3.5,5)

Treatment Area Physician Activities CTAS 1 CTAS 2 CTAS 3 CTAS 4 CTAS 5 Total

EP & Other ED Staff Consultation 80.0% 64.6% 59.8% 54.2% 50.0% 61.7%

Patient Trial of Therapy 0.0% 10.2% 10.4% 4.2% 50.0% 9.9%

EP & Other ED Staff Consultation 80.0% 44.4% 46.5% 42.1% 60.0% 45.3%

Patient Trial of Therapy 0.0% 22.2% 18.6% 13.2% 20.0% 16.8%

Main ED

MET
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Within the model, EP task durations are randomly generated to match the results from the 

analysis of data from the EP shadowing, also considering the results in Table B-5.  For the 

direct patient-related tasks (stabilization, 1
st
 assessment, and reassessment), there are three 

corresponding queues in which patients wait until the EP is available.  The other EP tasks 

are considered to be of two types: 1) high priority (HP) activities; and 2) low priority (LP) 

activities.  For each EP, other tasks are generated according to the pattern described in 

Table B-6 (e.g. high priority activities arrive according to a Poisson process with an 

average rate of 2.35 tasks per hour). The durations of these other tasks are sampled from a 

triangular distribution with a minimum of 2 minutes, a maximum of 5 minutes, and a most 

likely value of 3.5 minutes.  [All numeric values are estimates based on the EP activity 

observation and analysis]. 

Table B-6 EP “Other” Task Details 

 

Allowing two classes of other tasks results in there being five different types of task that 

might be waiting for an EP when a previous task completed.  Table B-7 shows the rules 

implemented in the model whereby an EP chooses which type of task to do next.  These 

rules are our assumptions based on our understanding of the EP behaviour (these can 

easily be changed if desired). 

  

Arrival Rate (per EP per hour) Time Consumption (Minute)

Other Activity (high priority) 2.35 Triangular (2,3.5,5)

Other Activity (low priority) 3.3 Triangular (2,3.5,5)
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Table B-7 EP Task Priorities 

 

ED Nurses 

The following types of nurse are included in the model, though only in an approximate 

manner due to the lack of data on nurse tasks and task durations: 

1) EMS triage nurse: 1 always present; 

2) Walk in triage nurse: 1 always present; 

3) Trauma bed nurses: 3 always present (each responsible for one trauma bed); 

4) Monitored bed nurses: 8 always present (each responsible for two monitored 

beds); 

5) Non-monitored bed nurses: 6 always present (each responsible for 4 or 5 non-

monitored beds); and 

6) MET bed nurses: 2 always present (each responsible for four MET beds). 

All the nurses are assumed to be on duty 24 hours a day, and only those nurse activities 

directly related to the patient-flow are considered. Specifically, the two triage nurses will 

only do the triage, but they do back up each other for workload sharing.  For the ED bed 

nurses, only their initial assessment times when a new patient moves to an ED bed and the 

MD Activity Priority

Stabilization 1

Other activity (HP) 2

Reassessment 3

1st assessment 4

Other activity (LP) 4

Note:  The lower the numeric value, the higher the task priority

            HP: High Priority      LP: Low Priority
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finish up time prior to a patient’s departure from the ED are considered in the model. 

Their activity times in the model are estimates using a triangular distribution based on 

interviews with the FMC ED nurses and other staff (see Table B-8). 

Table B-8 Nurse Activity Time Distributions 

 

B.2 Operational Policies of the FMC ED 

This section will describe the general operational policies of the FMC ED that are 

implemented in the model.  

The Main ED and the MET Area 

The main ED and the MET area are modeled separately in the DES model with each 

having its own waiting room, treatment beds, nurses and EPs. When the MET area is 

closed, any remaining patients in the MET waiting room will be transferred to the main 

ED waiting room for non-monitored beds. Similarly, when the MET area is closed, any 

MET patients waiting for a 1
st
 EP assessment will be transferred to the queue waiting for 

1
st
 EP assessment in the main ED. However, any patients being treated in the MET area 

will continue to stay there to finish any remaining treatment prior to departure from the 

ED. These patients will be taken care of by an EP working in the main ED. 

  

ED Nruse Time Type Mean (Minute) Probability Distribution

Triage 8.0 Triangular(5,7,12)

Admitting 10.7 Triangular(7,10,15)

Initial Assessment 7.3 Triangular(5,7,10)

Finish Up 7.3 Triangular(5,7,10)



224  

 

Resource Allocation Priority 

Patients waiting for ED beds or for a 1
st
 EP assessment are prioritized based on their 

CTAS score and the bed type assigned at triage. Initially, a patient’s priority is set such 

that patients with a lower CTAS score have a higher priority, with ties broken based on 

ideal bed type (trauma, then monitored, then non-monitored) and on time of arrival. 

In order to avoid unreasonably long waiting times for patients with higher CTAS scores, a 

patient’s priority is changed if the waiting time becomes excessive.  For example, if a 

patient has been waiting for over one hour in a queue, the patient’s priority is changed to 

match that of a patient whose CTAS score is one less (waiting for the same bed type).  

Also a maximum waiting time threshold is defined so as to change the priority of any 

patient that has waited more than some defined threshold (currently this is defined to be 4 

hours) to that of a CTAS 1 patient needing a trauma bed. 

LWBS Patients 

In order to avoid overflowing the FMC ED with unrealistically high queues, a LWBS 

mechanism is implemented in the model to allow patients to LWBS when the waiting 

time in the waiting room becomes intolerably long.  Upon arrival in the ED, each patient 

entity is assigned a “waiting time tolerance” such that if the patient is still waiting when 

waiting time reaches this tolerance, the patient will LWBS.  This tolerance is randomly 

sampled using a NN model that considers both patient CTAS score and the hour of patient 

arrival (this NN model mimics a waiting time tolerance modeling approach developed by 
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Dr. Jason Scarlett of Alberta Health Services). Figure B-1 shows some examples of the 

patient LWBS behaviour from the waiting room. 

 

Figure B-1 Examples of Patients’ LWBS Behaviour 

The figure above shows that in general, CTAS 3 patients who arrive in the ED between 

2PM and 3PM have higher waiting room tolerance than the CTAS 3 patients who arrive 

in the ED between 7PM and 8PM, but have lower waiting room tolerance than CTAS 5 

patients who arrive in the ED between 2PM and 3PM. 

For modeling patients who choose to LWBS while waiting for a 1
st
 EP assessment in an 

ED bed, a fixed probability is applied to each CTAS patient group to determine which 

patients will choose to LWBS. The LWBS rates by CTAS score, which were derived from 

the patient record analysis, are shown in the Table B-9. (e.g. 2.13% of CTAS 3 patients, 

who have got an ED bed, will choose to LWBS). 
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Table B-9 Historical Rates of LWBS from a Bed by CTAS Score 

 

The time that patients who LWBS from a bed spend in that bed before leaving is sampled 

in the model from distributions based on historical data analysis (see Table B-10 for the 

distributions used). 

Table B-10 Parameters of Patients who LWBS from a Bed 

 

B.3 Model Input Data 

In addition to the model structural assumptions defined in the previous section, the 

model’s behaviour derives from the following input data parameters: 

Patient Arrival Pattern 

Patients arrive in the ED via one of the following two options: 1) by EMS (Emergency 

Medical Services); or 2) walk in. The patient arrival rate with either option varies 

significantly by hour of day, and less significantly by day of week. Figure B-2 shows the 

hourly arrival rates derived from the historical patient record analysis. 

CTAS 1 2 3 4 5

LWBS (%) 0.0% 0.6% 2.1% 3.4% 3.2%

CTAS 1 2 3 4 5

Waiting Time on ED 

beds before LWBS
0 Exponential(99.48) Weibull(102.81,0.93) Exponential(86.10) Weibull(75.22,1.0)
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Figure B-2 Patient Arrival Rates 

Patient Acuity 

The patient mix in terms of CTAS score is defined in Figure B-3 (e.g. CTAS 4 patients 

comprise 16.3% of all patients). 

 

Figure B-3 Patient Acuity 

The ED bed requirement (by CTAS) is defined in Table B-11 (e.g. 15.7% of CTAS 3 

patients require a monitored ED bed at triage when the MET area is closed). 

 

Hour of Day EMS Walk-in

0 2.54 3.61

1 1.90 2.69

2 1.89 2.29

3 2.00 2.02

4 1.33 1.59

5 1.25 1.91

6 1.23 2.47

7 1.46 3.45

8 2.04 5.75

9 2.76 7.13

10 3.15 6.99

11 3.63 7.32

12 3.49 7.29

13 3.62 7.22

14 3.78 7.09

15 3.54 6.76

16 3.48 6.20

17 3.74 5.96

18 3.65 6.15

19 3.16 6.65

20 3.29 6.26

21 3.16 6.42

22 2.86 5.88

23 2.98 4.50

Grand Total 65.93 123.60

Note: Hour 2 is from 2am to 3am

Patients' Hourly Arrival Rates
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Table B-11 Patient Bed Requirements 

 

DI, Lab Tests and Trial of Therapy 

In the model, no distinction is made between DI and lab tests. These are lumped together 

and considered simply as “tests”. To differentiate lab tests before and after 1
st
 EP 

assessment, the lab tests ordered before 1
st
 EP assessment are termed as “pre-lab tests”, 

and the lab tests ordered after 1
st
 EP assessment are termed as repeated lab tests. Table B-

12 shows the percentages of patients needing tests at different points (as well as trial of 

therapy after 1
st
 assessment), depending on whether the patient is being treated in the 

main ED or the MET area. The pre-lab tests and repeated lab tests rates came from the DI 

and CLS data analysis, and the trial of therapy rates came from the EP activity 

observation and analysis (e.g. 37.9% of CTAS 3 patients in the MET area need to take 

pre-lab tests, and none of CTAS 1 patient in either the main ED or the MET area needs 

trial of therapy). 

  

Trauma Monitored Non-Monitored Trauma Monitored Non-Monitored MET Beds

1 85.7% 10.9% 3.4% 86.2% 10.3% 1.6% 1.9%

2 19.8% 56.9% 23.3% 19.9% 47.0% 27.3% 5.8%

3 1.0% 15.7% 83.3% 1.4% 10.7% 55.0% 32.9%

4 0.1% 1.4% 98.5% 0.1% 0.5% 16.4% 83.0%

5 0.0% 0.6% 99.4% 0.0% 0.0% 10.6% 89.4%

Grand Total 7.6% 23.3% 69.2% 8.3% 19.5% 38.1% 34.1%

MET OpenMET Close
CTAS
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Table B-12 Patient Treatment Needs (Tests and Trial of Therapy) 

 

Need for Consultation and Admission 

Similar to the approach above for randomly generating patient test needs, the probability 

that a patient needs an admitting service consult, and the probability of being admitted 

following such a consult, depend on CTAS and on the treatment location (main versus 

MET).  The values used in the model are show in Table B-13 (e.g. for CTAS 3 patients in 

the main ED, 40.1% will need a consultant and 69.8% of these will need to be admitted to 

the main hospital). 

Table B-13 Patient Consult and Admission Rates 

 

Waiting Time for Consultants and Inpatient Beds 

Waiting time for MD (Medical Doctor) consultants and inpatients beds are derived from 

the analysis of historical patient records with the values used in the model shown in Table 

Main ED MET Main ED MET Main ED MET

1 17.6% 14.3% 54.4% 71.4% 0.0% 0.0%

2 23.2% 37.5% 74.4% 17.4% 10.2% 22.2%

3 31.4% 37.9% 61.5% 8.0% 10.4% 18.6%

4 21.4% 38.3% 32.7% 5.1% 4.2% 13.2%

5 22.3% 36.1% 17.0% 4.1% 50.0% 20.0%

Grand Total 27.0% 37.9% 64.4% 6.8% 10.24% 18.45%

Trial of Therapy
CTAS

Pre-lab Test Repeated LabTest

Consulted Admitted Consulted Admitted

1 78.4% 88.0% 0.0% 0.0%

2 54.0% 80.0% 28.6% 39.8%

3 40.1% 69.8% 15.0% 46.9%

4 21.0% 58.8% 8.3% 34.8%

5 10.5% 62.5% 7.2% 17.0%

Grand Total 46.3% 75.6% 11.9% 41.1%

Main ED MET
CTAS
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B-14 (e.g. the waiting times of CTAS 3 patients for an inpatient bed can be estimated 

using a gamma distribution with a mean of 243.4 minutes.) 

Table B-14 Patient Consult and Boarding Delay Distributions 

 

B.4 Model Verification and Validation 

After the model was built, a combination of techniques was used to verify and validate the 

model.  These techniques included ensuring that the patient went to the proper place and 

was treated by the appropriate personnel in the proper order and developing detailed 

model documents to be reviewed by other members of the research team.  Following this, 

data files created from pilot runs of the model were analyzed to ensure high face validity.  

After that, the simulation model and the results generated from pilot runs were compared 

to the historical data collected from the real ED’s operations.  The pilot run used for 

model validation involved 10 replications with a replication length of 485 days including 

a warm up period of 120 days (i.e. results are based on 10 simulated years of operation). 

Table B-15 shows the results from the pilot run and compares these with historical data 

from the real system. The results in Table B-15 show that the model results match well 

with those from the patient historical data analysis. 

CTAS 1 CTAS 2 CTAS 3 CTAS 4 CTAS 5

Waiting for Consultants Time

For admitted patients 119.7 214.6 251.0 196.1 179.9

For discharged patients 444.0 321.0 252.2 100.5 94.2

Waiting for InPt Beds Time 146.2 226.8 243.4 185.8 290.6

CTAS 1 CTAS 2 CTAS 3 CTAS 4 CTAS 5

Waiting for Consultants Time

For admitted patients Weibull(77.0,0.59) Weibull(180,0.75) Weibull(214,0.76) Weibull(107,0.52) Weibull(153,0.75)

For discharged patients Gamma(213.0,2.30) Weibull(323,1.01) Weibull(231,0.85) Weibull(56,0.53) Weibull(23,0.37)

Waiting for InPt Beds Time Exponential(146.16) Gamma(247.9,0.92) Gamma(219.08,1.11) Gamma(131.31,1.42) Lognormal(261,369.1)

Time Type
Mean (Minute)

Time Type
Probability Distribution
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Table B-15 Pilot Simulation Run Results Compared with Historical Data 

 

  

95% CI Low 95% CI High

Waiting Room Time Minute 103.5 99.5 103.9

EP Time Minute 79.2 78.7 82.4

Work up Time Minute 135.0 131.5 132.4

Consultation Time Minute 234.1 232.6 235.6

Boarding Time Minute 227.8 226.5 228.7

LoS Total Minute 458.7 456.7 464.2

LoS Admit Minute 754.0 751.2 761.8

LoS Discharge Minute 355.6 350.7 357.9

LWBS % Total 8.86% 8.61% 9.03%

CTAS1 LWBS WR% Percent 0.00% 0.00% 0.00%

CTAS2 LWBS WR% Percent 2.90% 2.62% 2.88%

CTAS3 LWBS WR% Percent 10.07% 9.57% 10.15%

CTAS4 LWBS WR% Percent 7.38% 7.16% 7.72%

CTAS5 LWBS WR% Percent 4.84% 4.23% 5.09%

LWBS WR% Total Percent 7.20% 6.86% 7.28%

CTAS1 LWBS Bed% Percent 0.00% 0.00% 0.00%

CTAS2 LWBS Bed% Percent 0.61% 0.54% 0.64%

CTAS3 LWBS Bed% Percent 2.13% 1.90% 1.98%

CTAS4 LWBS Bed% Percent 3.36% 3.12% 3.34%

CTAS5 LWBS Bed% Percent 3.21% 2.79% 3.41%

LWBS Bed% Total Percent 1.84% 1.73% 1.79%

Historical DataPerformance Indicators Unit
Simulation Result
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Appendix C  Confidence Intervals with Specified Precision 

The half-length H of a 100(1-α)% confidence interval (CI) for a mean θ, based on the t 

distribution, is given by (Banks et al., 2005:395, Eq. 11.12) 

H = tα/2, R-1

 

√ 
   ( Eq.  C-1 ) 

Where S is the sample standard deviation and R is the number of samples or number of 

replications in our case.  

Suppose that an error criterion є is specified, the following analytical procedure can be 

used to determine the number of replications for estimating the mean θ, which will be 

within the 100(1-α)% confidence interval. 

Assume that an initial sample of size R0 (R0 ≥ 2) independent replications has been 

generated. The R0 replications will be used to obtain an initial estimate S0 of the 

population standard deviation σ. To meet the half-length criterion, a sample size R must 

be chosen such that R ≥ R0 and 

H = tα/2, R-1

  

√ 
≤ є   (Eq.  C-2) 

Solving for R in Inequality (C-2) shows that R is the smallest integer satisfying R ≥ R0 

and 

R≥(
       ⁄   

 

)
 

(Eq.  C-3) 

Since tα/2, R-1≥ zα/2, an initial estimate for R is given by 
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R≥(
   ⁄   

 

)
 

(Eq.  C-4) 

Where zα/2 is the 100(1-α/2) percentage point of the standard normal distribution. After 

determining the final sample size, R, collect R-R0 additional observations (i.e. make R-R0 

additional replications, or start over and make R total replications) and calculate the half-

length of the 100(1-α)% CI for θ. If the confidence interval is too large, the procedure 

may be repeated, using Inequity (C-3), to determine an even larger sample size. 

Example C.1 

Suppose that it is desired to use the FMC ED DES model to estimate patients’ average 

time in the waiting room to within       minutes with probability 95%. An initial sample 

of size R0 =4 is taken, with the results given in Table C-1. For each run, the replication 

length is 485 days including a warm-up period of 120 days. 

Table C-1 Results of Four Independent Runs of the FMC ED DES Model 

Replication, r 1 2 3 4 

Waiting Room 

Time (Minute) 
97.44 102.94 100.47 104.35 

An initial estimate of the population standard deviation is S0= 3.0328. The error criterion 

is є = 2.53, and the confidence coefficient is 1-α = 0.95. From Inequality (C-4), the final 

sample size must be at least as large as 

(
         

 

)
  

  (
           

    
)

  

= 5.51 
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As the sample size has to be integer, so the smallest sample size has to be 6.  

Next, Inequity (C-3) can be used to test possible candidates (R =6, 7, 8,…) for final 

sample size, as shown in Table C-2. 

Table C-2 Results with Additional Independent Runs of the FMC ED DES Model 

R 6 7 8 9 

t0.025,R-1 2.57 2.45 2.36 2.31 

(t0.025,R-1s0/є)
2
 9.5 8.6 8.0 7.6 

Thus, R = 9 is the smallest integer satisfying Inequity (C-3), so R - R0= 9 – 4 = 5 

additional replications are needed. The results of the total 9 replications are shown in 

Table C-3. 

Table C-3 Results of Nine Independent Runs of the FMC ED DES Model 

Replication, 

r 
1 2 3 4 5 6 7 8 9 

Waiting 

Room Time 

(Minute) 

97.44 102.94 100.47 104.35 107.09 100.93 101.32 104.75 100.01 

With 9 replications, the estimated population standard deviation is s = 2.9232. The 95% 

confidence interval half-length can be calculated by (C-1) as: 

H = t0.025,8 * s/√  = 2.31*2.9232/√ = 2.25< 2.5 

So with 9 replications, the half-length H can be ensured to be as small as desired. 
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Appendix D  Parameters of FMC ED NN Models 

D.1 Waiting Room Time NNs 

 

Output Layer

H(1:1) H(1:2) WR_CTAS1

(Bias) -.092 -1.937

Patient Arrival Rate .919 1.163

Average Boarding Time .056 .020

(Bias) 1.401

H(1:1) .896

H(1:2) 1.671

Output Layer

H(1:1) H(1:2) WR_CTAS2

(Bias) -1.012 -.703

Patient Arrival Rate -1.662 .737

Average Boarding Time -.132 .024

(Bias) .308

H(1:1) -.667

H(1:2) 1.198

Output Layer

H(1:1) H(1:2) WR_CTAS3

(Bias) 1.120 .525

Patient Arrival Rate 1.794 -.715

Average Boarding Time .131 -.012

(Bias) .020

H(1:1) .804

H(1:2) -.883

Output Layer

H(1:1) H(1:2) WR_CTAS4

(Bias) -1.308 .566

Patient Arrival Rate -1.671 -.590

Average Boarding Time -.120 .026

(Bias) .059

H(1:1) -.869

H(1:2) -1.091

Output Layer

H(1:1) H(1:2) WR_CTAS5

(Bias) 1.068 .212

Patient Arrival Rate 1.575 -.351

Average Boarding Time .155 .007

(Bias) .158

H(1:1) .559

H(1:2) -1.989

Hidden Layer 1

Input Layer

Input Layer

Predicted

Hidden Layer 1

Predictor

Predicted

Predicted

Hidden Layer 1

Hidden Layer 1

Hidden Layer 1

Input Layer

Hidden Layer 1

Hidden Layer 1

Predictor

Hidden Layer 1

Input Layer

Predictor

Hidden Layer 1

Hidden Layer 1

Input Layer

Predictor

Predicted

Predictor

Predicted
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D.2 Work-up Time of Consulted Patients NNs 

 

Output Layer

H(1:1) H(1:2) WU_Consult_CTAS1

(Bias) .949 -.618

Patient Arrival Rate -.052 -.823

Average Boarding Time -.139 -.008

(Bias) .505

H(1:1) -1.588

H(1:2) -1.754

Output Layer

H(1:1) H(1:2) WU_Consult_CTAS2

(Bias) 1.016 -.488

Patient Arrival Rate -1.154 -1.060

Average Boarding Time -.122 -.315

(Bias) .206

H(1:1) -.856

H(1:2) -.806

Output Layer

H(1:1) H(1:2) WU_Consult_CTAS3

(Bias) -.344 -1.424

Patient Arrival Rate .435 -1.284

Average Boarding Time .199 -.068

(Bias) 2.554

H(1:1) 3.596

H(1:2) 2.634

Output Layer

H(1:1) H(1:2) WU_Consult_CTAS4

(Bias) -.276 .019

Patient Arrival Rate .890 -1.079

Average Boarding Time .089 .112

(Bias) -.082

H(1:1) -.715

H(1:2) .791

Output Layer

H(1:1) H(1:2) WU_Consult_CTAS5

(Bias) -.352 .054

Patient Arrival Rate -.726 .572

Average Boarding Time -.236 .153

(Bias) -.036

H(1:1) -.756

H(1:2) .536

Hidden Layer 1

Input Layer

Predicted

Predicted

Input Layer

Hidden Layer 1

Predictor

Hidden Layer 1

Hidden Layer 1

Predictor

Hidden Layer 1

Hidden Layer 1

Hidden Layer 1

Input Layer

Predictor

Predicted

Predicted

Predictor

Predicted

Hidden Layer 1

Input Layer

Input Layer

Hidden Layer 1

Hidden Layer 1Predictor
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D.3 Work-up Time of Non-consulted Patients NNs 

 

Output Layer

H(1:1) H(1:2) WU_NoConsult_CTAS1

(Bias) .078 -.646

Patient Arrival Rate -.408 -1.125

Average Boarding Time -.001 -.159

(Bias) -.283

H(1:1) -.820

H(1:2) -.971

Output Layer

H(1:1) H(1:2) WU_NoConsult_CTAS2

(Bias) .585 -.145

Patient Arrival Rate -.803 -.467

Average Boarding Time -.077 -.125

(Bias) .291

H(1:1) -1.116

H(1:2) -.959

Output Layer

H(1:1) H(1:2) WU_NoConsult_CTAS3

(Bias) 1.798 -.389

Patient Arrival Rate 2.007 .777

Average Boarding Time -.113 .153

(Bias) 1.299

H(1:1) -1.282

H(1:2) 2.567

Output Layer

H(1:1) H(1:2) WU_NoConsult_CTAS4

(Bias) -1.001 .561

Patient Arrival Rate 1.566 2.447

Average Boarding Time .027 .018

(Bias) -.214

H(1:1) -.786

H(1:2) -.549

Output Layer

H(1:1) H(1:2) WU_NoConsult_CTAS5

(Bias) .022 -.179

Patient Arrival Rate .383 .997

Average Boarding Time -.082 .135

(Bias) .170

H(1:1) .691

H(1:2) 1.149

Hidden Layer 1

Predicted

Hidden Layer 1

Hidden Layer 1

Input Layer

Hidden Layer 1

Hidden Layer 1

Input Layer

Predicted

Predicted

Predicted

Predicted

Hidden Layer 1

Hidden Layer 1

Input Layer

Hidden Layer 1

Input Layer

Predictor

Hidden Layer 1

Predictor

Hidden Layer 1

Predictor

Input Layer

Predictor

Predictor
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D.4 EP Time NNs 

 

Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) EPTime_CTAS1

(Bias) -1.425 2.058 -.158 -1.105

Patient Arrival Rate -.878 1.556 .160 -.079

Average Boarding Time .081 .145 -.280 .553

(Bias) -2.016

H(1:1) -.813

H(1:2) 1.460

H(1:3) .331

H(1:4) -.612

Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) EPTime_CTAS2

(Bias) -.707 .697 .771 -.773

Patient Arrival Rate .792 1.528 -.514 -1.159

Average Boarding Time .288 .222 .429 -.046

(Bias) -.942

H(1:1) -1.145

H(1:2) -2.141

H(1:3) -.927

H(1:4) -4.065

Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) EPTime_CTAS3

(Bias) .392 -1.489 -2.240 2.186

Patient Arrival Rate -.060 -1.313 -1.169 1.570

Average Boarding Time .245 -.022 -.500 -.206

(Bias) -.001

H(1:1) -2.958

H(1:2) -1.904

H(1:3) -.772

H(1:4) -1.041

Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) EPTime_CTAS4

(Bias) 1.043 -.751 1.300 -.471

Patient Arrival Rate 1.336 -1.504 .485 .320

Average Boarding Time .071 -.237 .378 -.257

(Bias) -.167

H(1:1) 1.462

H(1:2) .754

H(1:3) .636

H(1:4) 1.930

Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) EPTime_CTAS5

(Bias) .138 1.285 1.183 -.613

Patient Arrival Rate .732 .865 -.643 .255

Average Boarding Time -.193 .120 .369 .268

(Bias) -.296

H(1:1) .813

H(1:2) .984

H(1:3) -1.040

H(1:4) -.532

Predictor

Predicted

Hidden Layer 1

Predicted

Input Layer

Hidden Layer 1

Predicted

Predictor

Predicted

Hidden Layer 1

Input Layer

Input Layer

Hidden Layer 1

Predictor

Predicted

Input Layer

Hidden Layer 1

Hidden Layer 1

Hidden Layer 1

Hidden Layer 1

Predictor

Predictor

Input Layer

Hidden Layer 1

Hidden Layer 1
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D.5 LWBS NNs 

 

Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) LWBSRate_CTAS1

(Bias) -.401 -.473 -.402 .331

Patient Arrival Rate -.585 .618 .398 .042

Average Boarding Time .498 -.205 .459 -.556

(Bias) .135

H(1:1) -.432

H(1:2) .435

H(1:3) .614

H(1:4) -.052

Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) LWBSRate_CTAS2

(Bias) -.693 -.336 .537 -1.043

Patient Arrival Rate .759 -1.263 .803 .438

Average Boarding Time .026 -.065 .055 .389

(Bias) .790

H(1:1) 1.286

H(1:2) -.883

H(1:3) -.563

H(1:4) .249

Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) LWBSRate_CTAS3

(Bias) -.613 .479 -1.276 -.168

Patient Arrival Rate .627 -.511 -1.718 -.112

Average Boarding Time .103 .132 -.115 .045

(Bias) .473

H(1:1) .850

H(1:2) -.732

H(1:3) -.712

H(1:4) .870

Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) LWBSRate_CTAS4

(Bias) .111 -.219 -.734 -.257

Patient Arrival Rate .277 .334 .793 -1.331

Average Boarding Time -.016 -.024 -.029 -.073

(Bias) .360

H(1:1) -.365

H(1:2) -.114

H(1:3) .979

H(1:4) -.896

Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) LWBSRate_CTAS5

(Bias) .542 .569 .678 .503

Patient Arrival Rate -.596 1.416 -.631 -.056

Average Boarding Time -.099 .103 .087 -.246

(Bias) .478

H(1:1) -.568

H(1:2) .600

H(1:3) -.821

H(1:4) -.021

Input Layer

Hidden Layer 1Predictor

Predicted

Hidden Layer 1

Predictor

Hidden Layer 1

Predictor

Hidden Layer 1

Predictor

Predictor

Hidden Layer 1

Input Layer

Input Layer

Hidden Layer 1

Input Layer

Input Layer

Predicted

Hidden Layer 1

Hidden Layer 1

Predicted

Predicted

Hidden Layer 1

Predicted

Hidden Layer 1
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Appendix E  Simulation Metamodels for Chapter 8 

E.1 The CHR HW NN-based Simulation Metamodel 

Scope of the Simulation Metamodel  

 

Figure E-1 Scope of the CHR HW Simulation Metamodel 

Valid Range 

 Arrival Rate of Admitted ED Patients to the CHR HW: 70% to 160% 

Performance Target  

Table E-1 Performance Targets of the CHR HW NN-based Simulation Metamodel 

 

5 minutes MAD is about 2.5% MAPD when the boarding time of admitted ED patients is 

30 minutes or longer.  

Under Sub-acute Care 

Arrival Rate of Admitted ED 

Patients to the CHR HW

Boarding Time of 

Admitted ED Patients

Waiting for Inpatient Bed Under Acute Care

Input

Output

Wait for ALC

ALC:

Alternative

Level of Care

 Simulation Model Output Performance Measure Performance Target (Minute)

Boarding Time of 

Admitted ED Patients
MAD 5
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Architecture of the Final NN Model 

 

Figure E-2 Architecture of the CHR HW NN-based Simulation Metamodels 

Parameters of the Trained NN Model  

Table E-2 Parameters of the Trained 2-2-1 NN Model (CHR HW) 

 

Performance of the Final NN-based Simulation Metamodel  

Table E-3 Performance Evaluation of the 2-2-1 NN Model 

 

Hidden Layer Output LayerInput Layer

ED Patients’ Arrival Rate

Boarding Time of 
Admitted ED Patients

NN: 2-2-1

H(1:1)

H(1:2)

Bias 1Bias 0

Output Layer

H(1:1) H(1:2)
Boarding Time of 

Admitted ED Patients

(Bias) 1.928 .057

ED Patients Arrival Rate 3.004 1.506

(Bias) -.261

H(1:1) .662

H(1:2) .610

2-2-1 Architecture

Predictor

Predicted

Hidden Layer 1

Input Layer

Hidden Layer 1

 Simulation Model Output Data Sets Result (Min) Target (Min)
Evaluation 

(Individual)

Evaluation 

(Overall)

Training Set 1.762 5.00 Pass

Test Set 1.761 5.00 Pass

Total 1.761 5.00 Pass

ED_Boarding time Pass
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E.2 The FMC ED NN-based Simulation Metamodels 

Scope of the Simulation Metamodels  

 

Figure E-3 Scope of the FMC ED Simulation Metamodels 

Valid Ranges 

 Patient Arrival Rate: 80% to 150% 

 Boarding Time of admitted ED Patients: 60% to 160% 

Performance Target  

Table E-4 Performance Targets of the FMC ED NN-based Simulation Metamodels 

 

  

Treatment & 

Decision

Patient 

Arrival Rate

Triage & Wait

for ED Beds

Arrival Rate of 

Admitted ED Patients 

to the CHR HW

Nurse Assessment 

& Waiting for EP

Wait for 

Inpatient Beds

Admission 

Consultation

Boarding

Time

LoS of Admitted 

ED Patients

Inputs

Outputs

 Simulation Model Output Performance Measure Performance Target (%)

LoS of Admitted ED Patients MAPD 2.500

Arrival Rate of Admitted ED 

Patients to the CHR HW
MAPD 2.500
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Architecture of the Final NN Model 

 

Figure E-4 Architecture of the FMC ED NN-based Simulation Metamodels 

Parameters of the Trained NN Model  

Table E-5 Parameters of the Trained 2-2-1 NN Models (FMC ED) 

 

  

Hidden Layer Output LayerInput Layer

Patient Arrival Rate

Boarding Time of 
Admitted ED Patients

ED Performance Indicator

NN #1: 2-2-1

H(1:1)

H(1:2)

Bias 1Bias 0

Output Layer

H(1:1) H(1:2)
Arrival Rate of Admitted ED 

Patients to the CHR HW

(Bias) -1.945 .324

Patient Arrival Rate -1.210 .096

Boarding Time of Admitted ED Patients -.070 -.142

(Bias) -2.799

H(1:1) -2.855

H(1:2) 1.711

Output Layer

H(1:1) H(1:2) LoS of Admitted ED Patients

(Bias) -0.312 -1.293

Patient Arrival Rate -0.127 -2.083

Boarding Time of Admitted ED Patients -.120 -.043

(Bias) -1.541

H(1:1) -4.698

H(1:2) -0.441

Hidden Layer 1

Input Layer

Hidden Layer 1

Predictor

Predicted

Hidden Layer 1

2-2-1 Architecture

Input Layer

Predictor

Predicted

Hidden Layer 1
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Performance of the Final NN-based Simulation Metamodel  

Table E-6 Performance Evaluation of the 2-2-1 NN Model 

 

 

 Simulation Model Output Data Sets Result (%) Target (%)
Evaluation 

(Individual)

Evaluation 

(Overall)

Training Set 0.342 2.500 Pass

Test Set 0.436 2.500 Pass

Total 0.413 2.500 Pass

Training Set 0.160 2.500 Pass

Test Set 0.156 2.500 Pass

Total 0.157 2.500 Pass

LoS of Admitted ED Patients Pass

Arrival Rate of Admitted ED 

Patients to the CHR HW
Pass


