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ABSTRACT:

Using the operations {+,—}, multiplication and division by constants {xz,/z}, floor opera-
tion, {{ ]} and indirect addressing, we compute GCD(z,y), z,y € [0, N] and find a,b € [0, N] such
that az + by = GCD(z,y) with operation complexity

log N
0 (log log N)

and space complexity O((log N)¢) for any constant 0 < ¢ < 1. The numbers that are produced in
the algorithms are less than maz(z,y). We also prove that using these operations our bound is
tight.

In the boolean model we prove that to obtain this upper bound we must use 2((log N)¢) space
for some constant e.

We also study the direct sum complexity of GCD and prove that GCD function does not satisfy
the direct sum conjecture and we study the operation complexity of computing GCD and LCM of

n numbers and find tight bounds for these problems.
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1. INTRODUCTION

Let Q be the rational field. A random access machine RAM(F) with S space and W word length is
a RAM with registers {M[i]};=1,.. s and accumulator A each of which can store an element with binary
representation of length W. The computation is directed by finite program P that consists instructions
Py, -+, P of the following type:( e € {1,---,5}).

(1) A—0, A Mle].

(2) Mle] — A.

(3) A— Ao Mle] where o € F is a function Q x Q — Q.

(4) IF < oA > THEN GOTO d; ELSE GOTO dy, where o € F is a function Q — {YES, NO}.

When € F then we also allowed indirect addressing:

(5) A — M{Mell, M[M[e]} — 4,

and when {C} € F where C C Q then we allowed
(6) A «— ¢ where c€ C.

We say that the program P; with the operations F' computes f : D — Q? over the domain D C Q" if the
execution of the program for the input ¢ = (M[1],---, M[r]) € D stops with output (M[1],--, M[s]) = f(z).
The operation complezity Compp(P;) of the program P; is the maximal number of steps of the above form
that are executed in Py over all possible inputs € D. The operation complexity of the function f over the
domain D is minp, Compp(Pys) over all programs P; that compute f over the domain D.

The set F can contain the following:

+,—, %,/ Arithmetic operations on Q

| |, mod Floor and modulu operations

AV~ ® Bitwise integer boolean operations

Rot,, Shi, Rotate and shift r times

log,,|| || log, z |. ||| is the length of the binary representation of z
oG o operation with second operand from G
|/G] Integer division by g € G

— Indirect addressing

> Comparisons <, >, =

= Equation =

E Any YES/NO question

Glay,---,a,] Constants from G depend on ay,-- -, ay.

Let Dy = [0, N] be the set of integers {0,---, N} and let GCD : Dy x Dy — Q be the greatest common
divisor function. For upper bound for computing the GCD function over the domain Dy x Dy we mention
two algorithms. The first is Buclidean algorithm, [AHU], [K], in RAM(+,—, x,/,| |,=) ot RAM (mod,=)
with space O(1), word length {[N|| = [logN| + 1 and operation complexity

O(log N).

The second algorithm with the same upper bound is established by Stein, [S], in the model RAM ({1}, +,
—, Shiy ,>) with space O(1) and word length ||N||.
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Few lower bounds are known for the GCD. Mansour-Shieber-Tiwari , [MST1], proved the lower bound
Q(log loglog N)

in the model RAM ({1},+,—,%,/,| ],<,>). (When we do not mention the word length and the space, we
assume them to be 00).

Other lower bounds established in [B2], [B3] and [B5] are: A lower bound Q(log N) in RAM(Q, +, —, X,

/,—,E) and
log N
& (loglog N)

in RAM(C,+,—, x,A,V,®,~, Shiy, +, E) where C is any set of constants with |C| < poly(log N).

2. NEW RESULTS

In this paper we prove the following results

Theorem i . Let 0 < ¢ <1 be a constant. Using F = {{1},+,—, xz, [/2}], +—, >}, we can compute
GCD(z,y), x,y € [0, N] by
log N
© (log logN)

operations with ||N|| word length and space O((log N)¢)).

Our algorithm is based on Stein algorithm. Stein algorithm first finds the maximal w such that
2¥|GCD(z,y) and then uses the following algorithm: (1) GCD(z,y) = GCD(x/2,y) if  is even and y
is odd, (2) GCD(z,y) = GCD(,y/2) if z is odd and y is even. (3) GCD(z,y) = GCD((z — y)/2,y) if =
and y are odd and y < z. (4) GCD(z,y) = GCD((y — ¢)/2,) if z and y are odd and < y. The operation
complexity of Stein algorithm is O(log N) since every operation reduce |[z|| + ||y|| by 1.

We observed that the first and last [loglog V| bits in the binary representation of £ and y uniquely
determine the first [loglog N| — O(logloglog N) operations in Stein algorithm. We save these information
and uses them to reduce [|z|| or ||yl| by |loglog N] — O(logloglog N) with O(1) steps. This give the upper
bound.

For a more stronger set of operations we have the same lower bound

Theorem ii . Using F = {Q,+,—,xq,/q,| J, <, >}, any program that computes GCD(z,y), &,y €
Q log N
loglog N

In the paper this lower bound is proved for a much more stronger model and for a much more weaker

[0, N] requires

operations.

problem. Our lower bound is based on Just-Meyer-Wigderson result. We extend their result and use the

extension result for the GCD function.
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We also prove
Theorem iii . Using F = {Q,+,—, xq,/q, | |, Shiz, Rotz,~,log, || ||, —, >} where A = {2,3,...}
with word length W = poly(log N'), any program that computes GCD(z,y), z,y € [0, N] requires

log N
& (]og log N)

It sometimes not convinent to people to use space more than O(number of inputs+ number of outputs),

operations.

i.e O(1) in the case of GCD. We prove that for some models, to obtain the above new upper bound we must
use (log N)¢ memory for some constant €., i.e

Theorem iv . Using {C,+,—,%,A,V,®,~,Shii, —, E}, |C| < min(S, poly(log N)) and space S, any
program that compute GCD(x,y), z,y € [0, N] requires

log N
min(log S,loglog N)

operations.
Therefore
(1) If S = 0(1) then we have Q(log N) lower bound for computing the GCD.
(2) To obtain the Q (]—o—lgﬁ’-ﬁg—N) lower bound we must use at least S = (log N)¢ space for some constant €.
In many applications we also need an algorithm that for ¢,y € [0, N] gives two numbers a,b € [0, N]
such that ax + by = GCD(,y). We extend Theorem ¢ and prove
Theorem v . Let 0 < € < 1 be a conslant. Using F = {{1},+,~—, xz, [/2], ~, >}, we can compute

a,b € [0, N] such that az + by = GCD(z,y) by

log N
© (o)
operations with {|N|| word length and space O((log N)°).

Obviously, the lower bound for GCD is also a lower bound for computing @ and &.

In the case where we need to compute GCD(zy,y1), - -, GCD(z, ;) it is not true that the operation
complexity of this problem is equal to ¢ times the operation complexity of computing one GCD. In this paper
we show that we can do better

Theorem vi . Using F = {{1},+,—, xz,|/2'|,<,>}, we can compute GCD(z1,y1), GCD(z3,y2)
oo+, GCD(zy,4t), t < N, z;,y: € [0,N] by

0 tlog N
loglog N + log ¢

operations with space O((tlog N)¢) for any constant 0 < e < 1.

We also prove that this bound is tight
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Theorem vii . Using F = {Q,+,—,xq,/q,| |, >}, any program that computes GCD(z1,y),
GCD(Z%y) y Ty GCD(Z':,y), t< N; Y € [O)N] 'r‘equi’res

0 tlog N
loglog N + logt

operations.

Sometimes we need to compute GCD(z1,41),--,GCD(x,y;) where z;,y; are given only after com-
puting GCD(z;_1,yi—1). In this case we usually build tables of resonable size M and use these tables to
accelerate the computation of the GCD. Since we usually has large enough #, we assume that the tables can
be built in small operation complexity and therefore we assume that the tables are given for free. We denote
by T(M) the set of all tables of size M. For computing the GCD with tables we have

Theorem viii . Using F = {{1},+, -, xz, |/2'], —,>,T(M)}, we can compute GCD(z,y), z,y €
[0,N] by

( log N )
loglog N + log M
operations.
We also prove that this bound is tight
Theorem ix . Using F = {Q,+,—,xq,/q;| |, <, > T(M)}, any program that computes GCD(z,y)
, &,y € [0, N] requires

log N
loglog N + log M
operations.
For computation of GC'D and LCM of many numbers we prove

Theorem x . Using {{1},+,—,%,/,| |, <, >} we can compute GCD(z1, 23, -, 2y), 1, %2, ,Tn €
[05 N] by
log N
O —=nunQ
(log]ogN +n>
Theorem xi . Using {+,—,%,/,| ],«,>} we can compute LCM(zy,---,z,), 21, -, 2, € [0, N] by
0 nlog N
loglog N +logn
Theorem xii . Using F = {Q,+,—, Xq,/q,| ], —, >}, any program that computes LCM(z1,---, z,),

Q nlog N
loglog N +logn / °

In the paper we prove more general results.

operations.

operations.

z1,-+, 2y € [0, N] requires

The paper is organized as follows: In section 3 we give a few words about the model. In section 4

we prove the upper bound in Theorem i. In section 5 we give an algorithm that computes a,b such that
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az + by = GCD(z,y) and prove Theorem v. In section 6 we prove the lower bounds in Theorems ii, iii and
iv. In section 7 we study the complexity of GCD using tables and prove Theorems viil and ix. In section 8
we define the ¢-Direct sum complexity of problems and study it for the GCD function and prove Theorem
vi and vii. In section 9 we study the operation complexity of computing GCD and LCM of n numbers and

prove Theorems x, xi and xii.

3. THE MODEL

The reson we define a RAM model with W word length and S space is that if we allow large word length
and space then we can factor every composite number n by operation complexity O(logn), [Sh], multiply
two n x n integer matrices by O(n?) operations, [BBF], sort n integer elements by O(n) operations, [KR],
[PS] , verify if GCD(z,y) = 1 by O(1) operations, [B5], compute e-accuracy of the square root of z by O(1)
operations [MST?2] and solve the membership problem of n integer elements by O(n) operations.

Our model read each input in one step and each operation is of 1 operation complexity, i.e we measure
the complexity under the worst-case complezity with uniform cost criterion where each RAM instruction
requires one unit of time and each register requires one unit of space. For probabilistic and deterministic,
sequential and parallel bit complexity of the GCD problem we refer the reader to [AHU], [BGH], [Mo], [Sc0],
[Sc1] and [Sc2].

With careful definition of indirect addressing in the polynomial computation model we also prove that
Euclidean GCD algorithm is not optimal for polynomial over finite fields, [B7].

Our algorithms in this paper is practical and indeed accelerate the computation of GCD. But it is still
an open problem if this upper bound can be established without indirect addressing. Valuable works done
in the literature to accelerate and analyse Euclidean GCD algorithm. For details see [BR], [Br], [BT], [C],
[D], [La], [Le], [Ma], [MG] and [YK].

4. UPPER BOUND FOR GCD

In this section we prove Theorem i.

Before we start we give some notations. The sets N,Z and Q denote the set of positive integers,
integers and rational numbers, respectively. For an integer z we denote by [z] = z,|z,_1] - -|z; the binary
representation of z, i.e, z = Y /-, 2;2°"!, [z]; ; is the number z;|z;_y|---|z; and ||| = n is the length of «.
For two integers z and y we write z|y if there exist an integer z such that y = zz and we write z¥||y if z¥|y
and z¥*+! Jy.

Let z and y be two n-bits numbers. To compute GCD(z,y) we first compute the least d = 2% such
that 2¥||GCD(z,y). The following algorithm take (z,y) as an input and output (2%, z’,y') where z’ or y' is
odd and GCD(z,y) = 2*GCD(',y).
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Algorithm A
Even_.GCD(z,y,d)

(1) Ifzor yis odd then {¢' —z, ¢ —y, d — 1, output (d,z’,y’), return }.
(2)co—2i—0,z~2/2 y—y/2, d2.
(3 ) while ¢;]z and ¢y do
{z—cx/ci, y—yle;, d—dxci, i—i+1l,¢; —ci_yxei_1}.
(4) Forj:=i—1to0do
{ If ¢j|x and cjly then { 2 — 2/e¢;, y — y/ej, d —dx ¢;}}.
()2 =z ¢~y
(6 ) output(d,z’,y'), return.

Lemma 1. We have
(i) GCD(z,y) =d GCD(z',y').
(it) d=2%||GCD(z,y).
(1ii) All the numbers that are produced in the algorithm are less than max(z, y).
(iv) The algorithm has operation complexity and space complezity O(log log(min(z, y))).
Proof . If we execute the algorithm for the inputs

g =2¥ 2y y=22 g S > > >0,

where Z or § is odd then we have: After executing step (3) we have
d:2><2>(22'~'22i1_1=22i1) cj:22j: j=1,'-',i1

and the maximal number that is produced at this step is 92" < min(z,y). In step (4) we execute the
instruction after the then for j = i, -- -, 4; and obtain d = 22"+ +2" Now (%)-(#77) are obvious.

Since 22" < min(z, y) we have i; < loglog min(z, y) which implies (iv). QO

This follows

Lemma 2. Using the operations RAM({1},+, -, Xz, | /2], =) we can compute d = 2*||GCD(z,y) by
operation complezity and space complezity O(loglog(min(z,y))) and word length || max(z, y)||.

Proof . The question c[z? is equivalent to the question z — c|z/c| = 0?7. The rest follows from
lemmal. O

We now assume that z or y is odd.

The following algorithm takes as inputs z1, z; and yi,y» the first and last k bits of [] and [y], respec-

tively, and computes integer numbers ay, 81, 71, @q, B2, v2 Where

X = 0111+/313/7 v = o + oy

Y1 T2
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are the numbers that are produced by executing k — O(log k) steps in Stein algorithm.

Algorithm B

Let 1, 22,41, Y2, a1, B1, 71, @2, B2, Y2, 11, 12 be integers where ||z1]], ||z, ly1]l, ||ly2]] < k.
PaT't-GOD(Il,xZ’yl)yQ)

M ore—=1, =0, 1=, 1L1«0ay—0, Bae=17v31,I30
(2") While |&2 — y2| > Iy + 13+ 2 and Iy + I3 < k do GCD_First_Last.
3 Ifea >l +l+2and yo >0 +13+2and Iy + 13 # k then
{y — max(y1,72), 01— o1 — Lag, f1 P = Lf2, 1 — 7}
(4") return.
GCD_First_Last
(1) If 2|z; then
{21 —21/2, ®y — |22/2], 71 — 271, l1 « I + 1, return}
(2) If 2|y, then
{1 = u/2, y2 = ly2/2], 72 — 272, Iz — I3 + 1, return}
(3) If z3 > y2 then {z; — H58 If z; <0 then 2, — 1 + 2%}, 25 [5%9-1]
v —max(y1,72), &1 — Zor — Loa, fi L — TP, 11— 2y, h — li+1, return}
(4) If 23 <y, then {y; — L35, Tfy; <0 then y; —yy + 2571, yp — [L2522]

v —max(y1,72), @2 — Ly — oy, P~ Ly — Lpi, 72 — 29, Iy — Iy + 1, return}

Lemma 3. Let x and y be two positive integers, where w > |||, |ly|| > 2k. Let
11 = [-'L']l,k; T21 = [w]w-k+1,w,

v =[Whe v21 = Woktr,w-

Let (z54,955, %4, 85,6, %, 4,4), © = 1,---,¢, § = 1,2 be the numbers that are produced from calling the
procedure Part GCD(z1,1,%2,1,%1,1,Y2,1) and 41, Bjet1, Viet1, § = 1,2 are the number produced after
ezecuting step (3'). Then

(1) e<k.

(i) GOD (nzthuy 22402} = GOD(z,y).

Y1, Y2,
(i)

a1,c418+B1,c41Y a2,c412+82, c41Y
Y1,e41 Y2,c41

Proof . It can be easily prove that each time we call GCD_First_Last, l; ; +l3; is increased by 1. By

|+

‘5w—k+1+ﬂ%@+1ﬂ.

the condition Iy + I < k in (2’), (i) follows. Also, when ly;, (1), is increased by 1 then ||z2,]], (|ly2,]), is

reduced by at least 1 and [y ; +13; is the number of times we use the procedure GCD_First_Last. Therefore
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with the condition in step (2') we have
lLii+10; <k, lit+lhi=i-1 (1)
Consider the following steps

Deze2/2, Q)y—y/2 B)e—(z-y)/2, @y (y—1)/2

Let (m),---,(m) be the steps that are executed for the input z1 1,221, ¥1,1,¥2,1 in GCD_First_Last. Let
zi, ¥, 1 = 1,-..,c be the sequence that is produced from executing (7,),---,(%,) for z; = z and y; = y. We
now prove the following by induction hypothesis:

(A) z;,y; are positive integers.

(B) Fori#c, =11 +1y; we have [z1]16-1 = [2i]1 51, Wil k- = Wil k-1
(C) z; = a1,iT+P1,iy v = ag ir+ﬂ21.'y.

- Y1,i » S V2,5
(D) GCD (a;,.ztf’l,.y’ ay .':':iﬂa,iy) = GC’D(:c.',y,') = GCD(z,y),
(B) |z — 29 Fzy;| < (i = 1)2w=Fk=1 4 gu-k lyi — 29 Fyy ;] < (i = 1)20 k=1 4 gu—Fk,

Fori=1,since 213 =[ehr, ya=Whp, s1=c, =y, 011 =1 B1 =0, 11 =1, az; =0,

P21 =1and 75,3 = 1, (A)-(D).follows. For (E) we have
|zy — 2’”"“:611[ = |[z]1 k] < 2°7F.

Assume that (A)-(E) are true for i. Observe that steps (3) and (4) are executed only when @1 ; and y; ;
are odd. Therefore, ) ;11,1 i4+1 are integers.
Since, by (B) and (1) we have [, ;]; = [z;]; and [y1,i]1 = [:]1 and since 2y ;41 = zyi/20t = (21;—y1;:)/2

or = (and so y i+1) are integers, we have

Tit1,Yi+1 are integers. (2)

Now for (E) we have four cases. If (7;41) = (1) then

Zip1 = Zif2, Yit1 = Uiy L1t = 215/2, Toipt = [€2i/2), Yiid1 = Vi, Yoie1 = Yo

Then for some A € {0,1} we have

z; — v-Fkg

|2ip1 — 2% Fagip| = |2i/2 - 2% [204/2]| = 7 21 4 pguhk-t

< (l-_l)2w—k-2+2w—k <i2w—k—1 +2w—k.

and

lvies — 2 Fyaipal = |y — 2 Fyol < (i - 1)29h1 g ov=k cguokol g gunk

The second case (m;41) = (2) is similar to the previous case.
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The third case is (7;+1) = (3). In this case we have

k
T — Y _ _Tii— Y1+ 62 | ®ei —yay _
Tit1 = T, Yit1 = Y, L1441 = T, Toi41 = T y Y41 = Yii, T24i41 = T2,

where § = 1 if and only if ;; — y1; < 0 and otherwise § = 0. Since z3; > ya; we have, for some X € {0,1}

Ti— Y _ qu-k V’z,:‘ — yz,i” _

T Y gu-rP2i—Y2i = A
) 2

2

|Zip1 — 29 F g 44| =

(i =24 F ) — (s — 29 Fyay)
- 2

+2w—k—1)‘ < (i_1)2w—k—1+2w—k+2w—k—l=i2w—k—1+2w-k.

and as before

lgitr = 2%~ Fygpa| < i207F1 2wk
The case (m;41) = (4) is similar to the last case. This follows
[igr = 2° " F 20 i00] <i27FTT 429y — 20 Ry <297k ounk, (3)
We now prove (B). By (3) we have
2° M (@gi41 — y241) — (2T 27T iy — s < 29 (@0ipn — vaigr) + (1297F gw=ktly (4)
Therefore whenever, [2341 — y2i41] 2 lii41 + l2i41 +2 = i + 2, see step (2') and (1), we have
Tip1 > Y1 A @240 > Y240

Therefore with (2) we have

Tit1, Yi+1 are positive integers.
Now by (B) and (1) it can be easily prove that for I = Iy ;41 i41 = l1; + 12 + 1 we have
[Tita)ie—1 = [Brae]ie—t, [Wirtlie—1 = [Yriva)te—1,

which implies (B).
For (C) we have the following cases. If (m;41) = (1) then ;41 = z;/2 and

Tit1 =

01,2+ P14y _ 412 + Prit1y

2714 V1,i+1 '
The case (m;41) = (2) where y;4; = y;/2 is similar to the previous. If (m;41) = (8) (or (4)) then z;,; =
(z; — yi)/2. Since 71; and 72, are power of two we have

a1,i®+f1y @z ittfay
T Toi | _ 2,41 + Poin1y

Tit1 =
2 Y2,i+1

For (D). Since GCD(z;,y;) = GCD(z,y) and z or y is odd, then z; or y; is odd. If ;41 = z;/2 or
Yi+1 = Yi/2 then since z; 4, and y; 41 are integers we have GCD(z; 41, yi41) = GCD(z;, y;) = GCD(z,y). If
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zip1 = (2i—¥i)/2 or yiy1 = (yi—2;)/2 then since z;4; and y;41 are integers we also have GCD(%i41, ¥i41) =
GCD(zi,y;) = GCD(z,y). This complete the proof of (A)-(E). (D) follows (is).

We now return to prove (iii). When the algorithm stops we have |20, —yao| <lj o+l +2<k+1
orlyc+1ly. =k Ifly .+ 13, =k then this means that ||z.|| + ||y.|| is k (bits) less that ||z|| + {|y||. Then
Loyl = Te, Yor1 = Ye and (ii7) follows. If Iy o + o o # k then

|172,c - yZ,ci < Il,c +I2,c +2 < k+1

Now two cases can happen. If 23, <li ¢+ 12+ 2 <k +1 then 2cqy = ., Y1 = Y. and then by (4) we
have

0<z, < 211;—-1:::132yc +(C~ 1)2w—k—1 +2w—k < (3k+3)2w—k—1 < 2w—k—1+|’log(3k+3ﬂ
and therefore

llzell < w -k — 1+ [log(3k + 3)].

Also since {y;} are positive we have ||y;|| < [|yl} and this follows (447).
fype <lic+lyc+2<k+1then

llyell <w —k — 1+ [log(3k +3)], |zl < [||-
Now if |zg.c, |y2,c] > l1,c +l2,c +2, then 241 = 2. — Ye, Yer1 = Y and by (4) we have
|Zes1] = l2e — ye| < 29 Flog,e — Yool + (¢ — 1)29™F 4 2v=k+1 <

(k‘ 4 1)2w—k + (k _ 1)2w-k + 2w—k+1 S (k + 1)2w—k+1

which implies that
loessll < w— k+ 1+ flog(k + 1)].

Since {y;} are positive we have ||y.11]| = |Jy.]| < |ly]| and (iii) follows. O
We now give upper bounds for the numbers that are produced in algorithm B.
Lemma 4. We have
(1) ;2 max(Y1,i,¥2,i) = Y2(r: mod 2),i = 2~ L.
(1) logl 1Biil < G=1,2,
Proof . By (1') in Part.GCD, (3) and (4i) are true for i = 1. Assume that (i) and (ii) are true for
i. If (my1) = (1) then (m) = (1) or (m) = (3) and therefore %; = v1; = max(y14,72:) = 2°~!. Then

Y41 = 2714, Yo,i41 = Yo,i and
Vil = Y41 = max(Yei41, Y2,i41) = 24

The case where (m;41) = (2) is similar to the previous case. If (mi41) = (3) then 1 ;41 = 2max(y1,i,72,:) = 2°,

Y2641 = 72, and then 3 = 7141 = 2°. The case where (m;41) = (4) is similar to the previous case.
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We now prove (iz). If (mi41) = (1) or (2) we have ajiy1 = aj; < 7;i < 7j,i+1 and so for By, If

(mi41) = (3) we have

Y Vi
loip1| = |[—a1; — 7_‘02,i <27 =141
i 2,4

Similar proof for fy ;41 and the case where (m;41) = (4). O

To proceed we need Stein algorithm that compute the GCD when z or y is odd.

Algorithm C
Stein. GCD(z,y,9)
While y # 0 do Stein(z,y).

g=z.
return.

Stein(z,y)

While 2|z do {z « /2, return }.

While 2|y do {y «— y/2, return }.

If £ > y then {2 — (z — y)/2} else {y — (y - z)/2}.

return.

We now give our GCD algorithm.

Let N be an integer and z,y € [0, N]. Let n = [N, 0 < 7 < %, e = 4r and k = k, = |rlogyn]. In
the algorithm we use a(), 3(),7() that has initial value nill”. (This can be done with indirect addressing
by O(1) steps).
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Algorithm D

GCD(z,y)
(1) Even.GCD(z,y,d).
(2) ¢ — max(lel, ol
(3) Ift < 2k then goto 9.
(4) o1 — [z, @2 = [2hokerk, 01— Wik, v2 = [Wleorsre
(5) If er(z122y1y2) = nill then

{Part.GCD, for j =1 to 2 do {a;(z12201y2) = o5, Bj(x1220192) = B5, 7j(T122y1y2) = 7; 1}

+61(%172y1¥2) @2(2122Y1Y2)T+Ba(T122Y1y2)y
(6 ) I e ax(xlzzy‘;fj(zzivzzylgz)lzy Y2 y‘] y — |2alzice 7;/(21‘f$2y21y31) 2Y1Y2 }
(7) If £ = 0 or y = 0 then { output(d(z + y)), stop}.

(8) Goto 3.
(9 ) Stein.GCD(z,y, g), output(dg).

Lemma 5. Algorithm D computes the GCD of z,y € [0,N] in O(log N/loglog N) opprations and
O((log N)¢) space and the numbers that are produced in the algorithm are less than or equal to N.

Proof . All the steps in the algorithm preserve the GCD of z and y. By lemma 3 steps (3)-(7) preserve
the GCD of z and y. Step (9) is Stien algorithm.

By lemma 2 step (1) has operation and space complexity O(loglog N).

In step (5) the instruction after the then is executed for at most 2** values z1, 29, y1,y2. By lemma 3

each execution requires O(k) operations. Therefore step (5) requires at most

O(k)2** < O(loglog(N)(log N)*") = 0 (1o§fogN ) ©)

operations. The space needed for step (5) is
6 x 2* <O((log N)"),
and by lemma 4 the numbers that are produced in step 5 are

aj(z122y192), Bj (21223192), % (T1229192) < 2% < (log N)/2, j=1,2. (6)

Therefore by lemma A.2, (6) can be computed by ||N|| word length.

Step (9) is executed only when ||z|| < 2k and ||y|} < 2k and therefore it requires operation complexity
O(k) = O(loglog N).

Now by lemma 3 the loop (3)-(8) reduce ||z|| + ||y|| by k¥ — 2 — [log k] . Therefore the number of times

we execute this loop is

=l +llwll _ ([ _log NV
~ k—0(logk) ~ ~ \loglogN /~
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In this loop each step has operation complexity O(1) except step (5) that totaly requires o (]O%’E%N) oper-
ations. This follows the result. (O
We now proof theorem i

Theorem 1. Let 0 < € < 1 be a constant. Using F = {{1},+,—, xz, |/2],>}, we can compute

GCD(z,y), z,y € [0,N] by
log N
0 (log IogN)

operations with log N word length and space O((log N)¢).

Proof . We can assume that N = max(z,y). For algorithm D we need n = ||N||, k = k, = |7 logy n|
and 7 = £. By the lemma A.1 in Appendix A, ||N{| can be computed in O(loglog N) operations and word
length log N. Also |log, n] can be computed by O(loglogn) = O(logloglog N) operations. Now we can
choose € = 1/2¢ and then |rlog,n| = ||log, n|/2!%2].

We will also need the constants w = 2@axUlzlllvl) 9l¥/4] 9k 92k and 4k + 6 which can be computed in
O(loglog N) operations with word length || N||. By lemma 2 step (1) uses F and ||N|| word length.

We change (2) and (3) by
(3") If z < 2% and y < 2% then goto 9.

We now change step (4) to:

(4) 21—z —2%2/2"], 1 y-2F|y/2),
@) W= w2, gy ofu] - Fla/el], s e ly/u) - 2 |y/w]
(4") If 25 = 0 and yo = 0 then {w — w/2¥/4 goto 4"}.
Since |k/4] = O(loglog N) the algorithm still has the same operation complexity.
In the same way we can prove

Corollary 1. Using F = {{1},+,—, xz, /2], —, >} we can compute GCD(z,y) in

log N
0 (log log N)

operations where N = max(z,y). Using F* = F U {mod} then the above bound is true for N = min(z,y).
Proof . The first bound is proved in Theorem 1. The second bound is true since we can compute first

z « z mod y where z > y and then compute GCD(y,z). O

5. EXTENDED GCD ALGORITHM

In this section we solve the extended GCD problem, i.e given z,y € [0, N]. Find integers a,b € [0, N]
such that az +by = GCD(z,y). Since our algorithm is based on Stien algorithm we first show how to extend
Stein algorithm to solve the extended GCD problem.

The input of the algorithm is z,y € [0, N] and the output is a, b such that az 4 by = GCD(z,y).
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Algorithm E
Extended_Stein(z,y,a,b)

1)ar =1, 10,711, a0, 821 721 de1
(2) While 2|z and 2|y do {z « z/2,y — y/2,d — 2d}.

(3) While 2|z do {z — /2,7, « 271}

(4) While 2|y do {y — y/2,72 «— 272}

(5) If >y then

{l‘ — 5,y — max(n1,72), o — %011 ~Lay, B~ B - %ﬂz, T - ?‘r}

Y2
else
{y — 555, y —max(y1,72), a2 — Loz — o, fr LBy — =P, 2 - 27}
(6) If y =0 then {a — a1,b « B1,c — 7, goto 8}

(7) Goto 3.
(8) While ¢ # 1 do {If 2|a and 2|
then {a — §,b— -%,c«—— £}

else {a« 4L b 222 ¢ £}}

(9) a —ad, b bd

Lemma 6. Let z,y be integers not both even. Let {xi,yi, i, Bji,Yjitiz1, 1y, j=1,2 e the numbers
that are produced in steps (3)-(6) with ¢y =z, y1 =y, aj1 = «;, Bi1 = Bi, i1 =7, j = 1,2, and let
{ai, bi, citiz1,....1, be the numbers that are produced in step (8). Then

(1) to <ty < l=ll +lyll - 1.

(i) z; = @1,i+01,iy = 222402y

Y1,i ! ¢ Y2,i
(iii) GCD(z,y) = GCD(i,%).

(i) v =max(ys, y2.4) = 270, logl, 184 < %56, 5= 1,2, 720, = 2771 <y,
(v) aiz + by = c; GCD(z,y).

Proof . By step (3)-(5) we have ||z;41]] + |[9i41(| < ll2:l| + [l3s]] — 1. This follows ¢; < [|2|| + [|y]] - 1.
(¢)-(443) with the first two inequality in (iv) follows exactly as in the proof of lemma 3 and 4. Therefore

Y2, = 2471 < zy. Since ¢; =714, < 72,1, = 2'171 and since ¢;41 = ¢;/2 we have
ty<ti—1.

This follows (7). Since ay = @y 4,,b1 = By, €1 =711, <271 and y;, = 0 we have

b
GCD(z,y) = GOD(ae,u,) = Lt il _ a2 thy,
Tt €1

Therefore a1z + b1y = ¢;GCD(z,y). To prove (v) we proceed by induction. Assume that a;z + by =
¢iGCD(z,y). If a; is even and ¥; is even then since ¢; is a power of 2 and not 1 we have Y+ %iy =&

which follows a; 112 + bi11y = ¢i41.
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If not both a; and b; are even then three cases can happen. (A) If z is odd and y is even then since ¢; is
even we have a; is even and therefore b; is odd. Then (a; + y)z + (b; — 2)y = ;GCD(z,y) and a; +y,b; — z
are even. Dividing the equation by 2 implies a;412 + b1y = ¢;11GCD(z,y). (B) The case where z is even
and y is odd is similar to the previous case. (C) If z and y are odd then since not both a; and b; are even
and since ¢; is even we must have a; and b; are odd. Then a; + y,b; — z are even and as before we have
ait+12 + biy1y = ci+1GCD(z, y). This follows (v). O

To find better bounds for «; j, 8; ;, ai, b; we give a more elegant treatment. We first prove that
l=ajp La1p < Loy, 0=PF112H52> > Py,

O=ag) >2a22> > 03y, 1=02) < PB22< - < Pay, (M)

We give the proof by induction. The above is true for i = 1. Now steps (3) and (4) do not change ; ;, 5; ;.
In the first step of (5) we have:

Y v
Q4] =~ — —Q2; > Q1
1, Yo,i

because ¥/v1,4,7/72, are 1 and power of 2 and az; < 0. The other follows in a similar manner.
Since, the last command that is executed in the algorithm in steps (3)-(5) is the command after the

else in step (5) we have

gy, = a1 = a1 < —Q1,1 = —0y4,.

Y2,t1-1 M,t-1

Doing this also for 33, we obtain
oz, =iy,  Pay 2 =Py, (8)
By lemma 6 and since y;, =0, &, = GCD(z,y) we have
a2+ B,y = aGCD(z,y), azy, &+ Pa,y=0
By steps (3)-(4) we have (;:I:) =T(}:) where

TeA:{(léQ _11/2)’<_11/2 122)’(162 ({)((1) 192)}

and therefore for v = 22=1 /¢, we have

(GC’D(:c,y)): Py (z)é A()
0 I AN 7NN

where A is a multiplication of A;; .1 4s;_9--- A1, A; € A. Since det(Ay,_1--- A1) = 7‘% we have oy 4, 824, —

Bi, a4, = 2171 /4. Then
(z) _ ( Bay, "7:31,t1> (GCD(-’B,Z/))
Y —Q2  YO1 0 ’
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which implies

— y Bay, = d
4 = TGCDE,y)’ " T GCD(z,y)
and by (8) we have
1< ary, = a) < —es 0< =By, = by < —— (9)
SO TS GDEy ST T T 2 GoDGE Y
We now prove that
0<a; <y, 0< =b; <z (10)

By induction. Assuming (10) is true for i, we have 0 < a;41 = Elzia Syor0<L gy =% <yand

0< =biy1 = _65” zorl<—biy = :25 < z. We proved

Lemma 7. We have

() l=anSap< Sy =0 S grpgyy, 0= a2 2e222 2 02n = —GopGy,

(#) 1=P21 < Pap < <Poy, =bi S gopmy, 0=Poi2f222 2 Pay, =~ 5CDEay’

If we execute the algorithm in the case where y = 2" and 2 = 2" 4+ 2"~1 4 ... 4 1 then it can be easily
shown that 71 ¢, = y*. This implies that 71, is not bounded by O(max(z, y)). To make the algorithm of || N||
word length, we have to handle v; ;. To do this, instead of saving v;; we save 71-(1) =7/, 7,(2) = 7i/72,i

and ¢;. The algorithm becomes
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Algorithm E/

Extended_Stein(z,y,a,b)
(A)ay =1, 8 =0, ¥ —1, ag =0, fp =1, vD — 1, d—1, t; — 0, 150
(2) While 2|z and 2|y do {2z — 2/2,y — y/2,d — 2d}
(3) While 2|z do {z «— £/2,7®) — 2¢y® #; —t; +1, h—2}
(4) While 2|y do {y — y/2,7") — 29ty —t3+1, h —1}
(5) If x>y then

{z — 5, o1 « Wy =7 Pay, fi — yVBy — 7By, t1 — max(ty,ts) +1, ¥ « 29
If h #2then {y() 1, ¥ 2, h2}}

else
{v = 55, a2 — 1 Pay —yWay, B — 7Dy —y VB, ty — max(ty, ta) + 1, ¥ 29D
If h # 1 then {y® 1, ¥y 2, h 1}}
(6) If y=0 then {a — a;,b— B, t — 11, goto 8}
(7) Goto 3.
(8) Fori:=1tot do {If 2|a and 2{b
then {a — £,b — %}

else {a — %-'1-, be— ”—Tx}}

(9) a —ad, b—bd

We now have
3,
Vii Rt taitiz, o, {0), 0 tidiza . 7 be the numbers that produced in steps (3)-(9) of Algorithm E'.
Then
(1)
(i) 76 =2, 720 = 22, Y = max(yrs,72) /716, 7D = max(ya, v2,0)/ 72,
(iii )

(w) vV <y 7P <.

, / ! /
Lemma 8. Let {zi, i, &), Bj,i, ¥jiti=1, 1, j=1,2, {00, 03, ¢i}iz1, 00 as in lemma 6. Let {z}, vy}, o} ;, B} ;,

[ S B -V oy )
T, =Zi, Y=Y, o ; = x4, [7)1,,' —ﬂl,h t=T, =T
' _ ’_ ! _ ot;
a; = a;, b; = b;, ¢, = 2.

The proof of lemma 8 is straightforward and will be omitted.

This lemma with lemma 7 and lemma A.2 in Appendix A follows

Theorem 2. Using F = {{1},+,—,Shi{; _1},>} we can compute GCD(z,y), z,y € [0,N] and
a,b € [0, N] such that az + by = GCD(z,y) by

O(log(N))

operations with || max(z, y)|| word length and space O(1).
To prove Theorem v we need two algorithms. The first algorithm take as an input z,y € [0, N] and
output «, 8,t such that az + fy = 2'GCD(xz,y) and the second take o, 3, as an input and output a,b such
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that ax+by = GCD(z,y). Both algorithms must has operation complexity O (m%’?%v)- The first algorithm
can be easily obtain from algorithms B,C and D by saving the sequences a; ;(z122y1¥2), Bi j (z122y152) and
t; = logvi j(x122y1y2) with the changes made in Algorithm E’. We need only the following

Lemma 9. Let {o;,B;,t;}j=1,2 be integers and v¥) = max(2",2%)/2%. Denote by

oz + +
L[alyﬂl)tlv‘y(l)aa?yﬂ2yt217(2)](z’y) = ( L 2t1ﬂ1y) a2x2t2ﬁ2y>
Then

Llon, B1, 11,7, a3, B2, 12,7 ] 0 Llos, B3, t3,7®), aa, s, ta, 7] =
LlyPasas + 7910, YParfs +7PBifs, ¢ + max(ts, ta), 1V,
Yazas + 7304, ¥Pazfs + 7By, t; + max(ts,ta), 72
Proof . Straightforward. QO

This lemma. follows

Lemma 10. Let z,y € [0, N]. Using F = {{1},+,—, xz, |/2'], <, >} we can compute «, € [0, N]
and t € [0,2log N] such that
az + By = 2)GCD(z,y)

with operation complexity O (TO—LEE)?—N), word length |[|N|| and space O((log N)¢) for any constant 0 < ¢ < 1.
We now give the second algorithm that execute step (5) in Algorithm E’ by O (%) operations.

We first use the following algorithm

Algorithm F
Let z1,y1,a1, b1 be integers such that (|z1]],||v1]], llaal], ]|o1]] < k.
Normalize_First(z1,y1,a1,b1,6,%)

(1)6—0, 91

(2) Fori:=1to k do

{ If 2|la; and 2[b; then {a; — &, by — &, ¢ —2¢}

else {ay — 2L by — BET S 54y, ¢ — )}

Now we have the following
Lemma 11. Let ax — by = 2'GCD(z,y), a,b,z,y > 0 and
a1 =[alik, bi=[bhx, z1=[ehs, =[x (*)

and let {ay 3,015,214, Y1,i,6i,%i }i=1.. k be the numbers produces in algorithm F. Then

a+6,~y b+6,1‘
v 0

< max(, y)
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are integers and

az—by= (ﬂ -:-bézy) T — (b-l,;[)&,:c) Yy= Qt*iGCD(x’y) (**)

Proof . From (¥*) it follows that the commands that are executed for a;,b;,z;,y; are the same

commands that will be executed if we replace ai1,by, 21,3 by a,b,2,y. Now assuming (**) is true for i it

can be easily prove by lemma 6 that is also true for i +1. (O

Now we give the algorithm that take as an input a, b,t such that az — by = 2°GCD(z,y) and output
A, B € [0, N] such that Az + By = GCD(z,y).

Let 0<e<1, A=, k= [Aloglog N], sy = [t/k] and s =t mod k.

Algorithm G
Normalize(a,b,t, A, B)
(1) Fori:=1tos; do

{2« [93]1,1;, Y1 — [y]1,k, ay [ah,k, by — [b]l,k
If 6(z1y1a1b1) = nill then {Normalize_First(z1,y1,a1,b1,6, %)

6(501910161) 6, ¢(f’31ylalb1) — ¢'}

a+6(z1y1a1b1)y b+6(z1y18101)z
4T Ylaiaty) be Y(z1y1a101) }

(2) Fori:=1 to s, do {If 2|a and 2]b

then {a «— £,b — %}

else {a — 4L b ey}

(3) A—a, B+b

The space needed for this algorithm is 2 x 2% < (log N)¢. Since s; = O (1—01%), s3 = O(loglog N) the

operation complexity of the algorithm is O (Flgﬂgog—jv). The constants 9(z1y1a1b1), §(z1y1a1b1) are bounded

by 2¥ = O((log N)*/*). Therefore by lemma A.2 the algorithm has word length ||N||. This follows

Theorem 3. Let 0 < € < 1 be a constant. Using F = {{1},+,—, xz, | /2|, <, >}, we can compute
a,b € [0, N} such that az + by = GCD(z,y) by

log N
0 (log log N)

operations with ||N|| word length and space O((log N)¢).

6. LOWER BOUNDS

In this section we prove lower bounds for GCD for several RAM models.
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Consider the following operations:

+,—, %,/ Arithmetic operations on Q

| |, mod Floor and modulu operations

AV, ~,Q® Bitwise integer boolean operations

Rot,, Shi, Rotate and shift » times

loge, || | [log, z |. ||z| is the length of the binary representation of x
oG o operation with second operand from G
l/G] Integer division by g € G

— Indirect addressing

> Comparisons <, >, =

= Equation =

E Any YES/NO question

Glay,---,a,] Constants from G depends on oy, - -, a,.

+, —, X,/ are the arithmetic operations on Q. |z] is the greatest integer that is not greater than z and
z mod y = £ —ylx/y|. For two integers « and y the boolean operations z Ay, zVy, z®y are bitwise and, or,
xor , respectively, of the binary representation of z and y. The complement ~ (z)is 1 —zp|l—2nyg| - [1— 24
where z,|2,_1|---|z; is the binary representation of z. Shi,(z) is |2/2"], i.e shift = bits to the right if » > 0
or ~r bits to the left if » < 0. When the RAM is of W word length and A = zy|zy_1|--- |21

Shi.(A) = { 0 [Olzw lzw -1 - - |zr42|zrpr >0

xW—TIzW—r—ll"'|.131|0I-~-|0 r<0
and
Rot,(A) = {xrlz,_1| e lzolzw |ew ot - 24 r>0
Tw_rlew_r_1|--|z1|zwlew 1] Jew_rp1 T <O

The operation og is x o g where g € G. A RAM(F) with =€ F can answer question 4 = 0?. If >¢ F
then the model can answer comparison questions A > 0?7, A = 07, ... and when E € F then the RAM
has unlimited power of answering YES/NO questions. When G[ay,---,a,] € F then any information we
need for the elements of G and the elements a1, - - -, @, is known and can be used in the computation. For
example computing GCD(z,y) when Q[y] € F means computing GCD(z,y) when we can use the elements
of Q and also any information on y. (All primes that divides y, any function f(y), etc.)

Let L C Q™. We say that the program P recognize L if P compute the function xr : Q® — {0, 1} where
xr(z) =1if and only if z € L. In [B3] we proved the following results for infinity sets L

Lemma 12. Let |L| = co. For any RAM(F) with finite number of operation |F| < oo and finite
number of constants |C| < oo such that Compp(xr) is finite, there exist finite subset L' C L such that

Compp(xr) = Compp(xr').

The connection between computing a function f and recognizing a set L is given in the following

Lemma 13. For any set A C D where D is the image of a function f we have

Compr(f) > Compp(xs-1(4)) — Compp(xa).
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Proof . A program that compute f(z) can be extended by Compr(xa) operations steps to verify if
f(z) € A. This follows the result. O

Definition 1. Let ¢ be an integer and let F[[H]] be all the functions that can be computed by H
operations in the model RAM (F) without indirect addressing.

Lemma 14. If RAM(F[[O(H)]], <) recognize a language L in t steps then RAM(F) can recognize L
in O(t(logt + H)) steps.

Proof . Indirect addressing in RAM can be organized as a binary search in a set of upto ¢ values
currently stored by the RAM . Therefore each access to the memory can be organized as O(logt) operations
without indirect addressing and each operation in F[[O(H)]] can be performed as O(H) operation in F.
Therefore, each step in RAM(F[[O(H)]], <) can be simulated by O(t(logt + H)) steps in RAM(F). O

For a program P we denote by T'(P) the computation tree correspond to P. We refer the reader who are
not familiar with computation trees to [B], [M2] and [Y]. Any computation tree that recognize I C Q™ can
be extended with a one operation that makes the functions in the leaves constants 0 and 1. This can be done
by just add to each leaf v of T'(P) the question vertex: IS f, = 07 where f, is the function that is computed
in v and add two new leaves for v a left leaf and a right leaf with constants function 0 and 1, respectively.
We call a leaf with constant 1 an accepied leaf. All over the paper we assume that the computation trees
that recognize a set L has constants 0 and 1 in their leaves.

Lemma 15. Let L CZ, |L| = N. If L contains no arithmetic progression of length k + 1 then each
program P in

RAM(G = Q[N],+,—,%x¢,/a,| |, F[[O(loglog N +1logk)]], <)

that recognize L has operation complezity

Q log N
loglog N + logk )

This lower bound is also true even if we do not count the operations {+,—, xg, /c}.

Allover the paper F denotes the set of operations of the RAM without indirect addressing.

Proof . Let P be a program that recognize L with operation complexity t. By lemma 14 there
exist a program P’ in RAM(G = Q[N],+,~, X¢,/a,| |) that recognize L with operation complexity
O(t(log t-+loglog N +log k)). Let T(P) be a computation tree that recognize L in O(t(log t+loglog N +log k))
operations. Let v be an accepted leaf in T(P) and C(v) be the set of all inputs that arrive at v. By the
results of Just-Meyer-Wigderson in [JMW] we have

|C(v)| < k100, (11)
As T has at most 20(t(0gt+loglog N+logh)) 4ccepted leafs, L has at most

2O(t(logt+loglogN+logk))kt+1tO(t) — kt+1t0(t)(k log N)O(t) (12)
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elements, which implies that N = |L] < k**1t9®)(klog N)O®). Solving this inequality proves the theorem.
In [JMW] it is shown that (11) depends only on the number of operation | | and (12) is depend only

on the operations {«—,>}. This follows that the bound is also true even if we do not count the operations

{+5_:XG1/G}- O
For the proof of our first main theorem we need the following lemma from the elementary number theory

Lemma 16. Let p; denote the k—th prime number. There exist constanis c,c’ such that
cklogk < pr < cklogk.

We now prove Theorem ii
Theorem 4. Let
L ={(z,y)| 2,y < N are relatively primes }.

Then any program in
RAM(G = Q[y7N]7 + XG)/Gr I. J,F[[O(loglog N)]], At} >)
that recognize L has operation complezity
log N
@ (log log N) )

Proof . Let P = Py,---, P, be a minimal program that recognize L. Let p;,ps,--- be the prime

numbers 2,3,5, ..., respectively, and let
M=p;---py, M<N, Mpry1 > N. (13)
By adding the condition z,y < M in the begging of P we make the program recognize
L' = {(z,y)| 2,y < M are relatively primes }.
We first estimate k, pr and M asymptoticaly. We have k! < p; ---pr = M < N which implies that for
some constant c;
k< ql—(;lg—ig—]v (14)
and therefore by lemma 16 there exist a constant ¢, such that
pr < calog N. (15)

Now we find lower bound for k. There exist a constant ¢’ such that

(d(k+1)log(k+ 1))**' > piti > p1o - pep1 >N
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which implies that there exist a constant cs such that

log N

—_— 1
e loglog N (16)

To estimate M we have by (13)

log N
1 CaTgtog N
M:pl...pkzk!>(C4 g N ) o

)

loglog N
for some constant c4. Also we need

log N

logN e fesm

= —1)--. —-D>k-1D> _— .

$00) = (5= ) (r =12 (= 12 (o)

We now substitute in the algorithm P, y = M and obtain an algorithm that recognize
L={z<M|GCD(z,M)=1}

by
RAM(G = N[N}, +,-,%g,/a, | |, F[[O(loglog(N))]], —, >).

Here we use lemma 15. Let A= {a4+Ab| A =0,---,1, a,b € Z} C L be an arithmetic progression of
length I + 1in L. Then we have GCD(a+ Ab,M) =1, X =0,..-,l. If p;|b for every i then b = M and
a < 0 which implies |A| < LIf there exist p;, fb then since the equation a + Ab = 0 mod p;, has a solution
Xo = (—a)b~! mod p;, < pi, we have p;,|GCD(a + Aob, M). Therefore by (15)

[+ 1< p, <pr < cylogN.
Then by lemma 15 and since |I:| = ¢(M) we have that the program P has operation complexity

0 log |L| _ :Q( log N ) 0
log (czlog N) +loglog | L| loglog N

Notice that by lemma 13 with A = {1} this lower bound is also true for computing GCD.

The next theorem shows that if we give a resonable bound on the word length then even if we assume
that log and || || (and many other function growth slowly with z) can be computed by 1 operation complexity

we still have the same lower bound.

Theorem 5. Using {G = Q[N,W,y],+,—, Xg,/a, | |, Shig, Rotg, ~,logn, || ||, =, >} with word length
W = poly(log N), any program that recognize

L={(z,y)|lz,y €[0,N], = andy are relatively primes }

log N
& (log log N)

requires
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operations.
Proof . As in the proof of Theorem 4 we make a reduction to L. We first simulate Shig, Rotg,~ by
O(1) operation complexity from RAM(Q[N,W],+,—, x¢,/q, | |, Fl[O(loglog N]], <, >). We have
|_AJ r>0
; — I L3 2
0= (e i 20
& +2%-r(A-27|4]) r>0
Rot.(A) = 2 ” s =
(4 {Lw’énJH‘ (4= 274 [ ]) v <0
and ~ (4) =2% —1- A.
We now prove logy, |} || € F[[O(loglog N)]]. We have: If W < (log N)? then
0 1<z<a

1 a<z<a®
llog, = = :

l_(lOga 2)(10g N)'SJ 2 ]_(bga 2)(log N)B_l <z< 2(logN)6

Now, to find the domain where z is belong to, we need a program with operation complexity (binary search)
O (log (| (log, 2)(log N)?|)) = O(loglog N).

Therefore, logy € F[[O(loglog N]]. Now since ||z]| = [log; x| + 1 we have also || || € F[[O(loglog N]]. By
theorem 4 the result follows. (O

Before we proceed we give some preliminary results from [B5]

Definition 2. Let {ny,---,ng,my,---,m;} C Q be set of rational numbers and F be a set of operations.

We denote by
AF,S({Tll,"',nk},{ml,"',mj})

the number of operations in F needed to compute the constants my, ---,m; using the constants ny, - -, ng
and space S.

Our main result in [B5] is

Lemma 17. Let f: D — Q/ be a function where D C QF. Then the operation complezity of f using
the constants C and space S is

ComPFu{e—,E}(f) 2 max AF,S({nly"'ink}Uca f(nlr“'vnk))
(ﬂl,“',ﬂk)ED

Lemma 18. Let C and F be a set of constants and a set of operations, respectively. Let T be a sel of

constants. If

|F| +|C] £ min(S, poly(log |T())

then there existt € T such that

Aps(Cyt) > Q ( log ] ) .

min(log S, loglog |T)
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Proof . We can assume that the constants in C are constant functions in F. This assumption does
not change the order of the operation complexity. We now count the number of programs of length I. The
i — th step in the program can be M[i;] «— M[iy] o M[ig] where o € F. We have 4y,is,13 € {1,-.-, S5} if
I > S, or iy,1,13 is chosen from [ locations in the memory if S < I. Therefore the number of programs of

length less than or equal to ! are at most |F|'(min(S,7))®. This number must be greater that |T|, i.e
|| (min(S, 1)* > |7

which implies that there exist ¢ € T such that

log |T|
Ars(Ct) 2120 (min(log S,loglog |T|)> - 0

Theorem 6. Using {C,+,—, x,A,V,®,~,Shiy, —, E}, |C| < min(S, poly(log N)) and space S, any
program that computes GCD(z,y), ¢,y € [0, N] requires

log N
min(log S,loglog N)
operations.
Therefore
(1) If S = O(1) then we have Q(log N) lower bound for computing GCD.
(2) To obtain the Q (Elg%gog—N) lower bound we must use at least (log N)¢ space for some constant e.
Proof . Let

T={t| t<N%  todd}, n:ElogNJ.

By lemma 18 there exist A € T such that

log N
n-1 _ n—-2 n—1 >
Ars({2 1,2°"2}UC mod 2! {4}) > Q (min(logS, Ioglogm> , (17)

where F = {+, -, x,A,V,®,~,Shi1}. Here C mod 2"~! = {¢ mod 2"~1|c € C}.
Let 1 < b < A be an integer such that

62" = 1( mod A).

Then 52" — 1 < ANY3 < N. Let
a; =b2" — 1, ay = A2".

We have az < ANY/3 < N and
GCD(ay,a3) = GCD(b2" - 1,2 A) = GCD(h2" — 1, A) = A.
By lemma 17 the operation complexity of computing GCD(a,b) , a,b € [0, N] is greater than

Aps({b2" —1,A2"} UC, {A}).
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Let P be a minimal program that computes A from the constants {$2" —1, A2" }UC using the operations
in F. We now define a new program P’ that computes each number in P modulo 27-!.
Given D' = D mod 2"~! and B’ = B mod 2"~! then (L :== L’ means L in P is converted to L’
in P’)
(1) (D+ B) mod 2"~} :== (D' + B') A (2"~ - 1).
(2) (D-B)mod 2*~! :==if D’ > B’ then we put (D'—B')A(2" "1 —1) otherwise we put (B'—=D')A(2"~!-1).
(3) (D x B) mod 2"t :== (D' x By A(2""! —1).
(4) (D A B)ymod 2°~! :== (D' A B').
(6) (D V B)mod 2°~!:== (D' v B).
(6) (D ® B)ymod 2"~!:== (D' @ B').
(T) ~ (D) mod 2"~1 :==~ (D).
(8) (Shiy D) mod 2*~! :==if the n bit of D is 0 then we write Shi;(D'), otherwise we write Shiy(D’)+2"~2,
Here we compute each number in the algorithm P modulo 2"~! by the operations F' and the constants
{27~2,27=1 _ 1}. Since the algorithm P uses the constants {b2" — 1, 42"} U C as an initial constants and

computes A, the new algorithm P’ uses
({62 — 1, 42"} U {2"72,2""1 — 1} UC) mod 2! = {21 — 1,22} UC mod 2"~}
as an initial constants and computes A mod 2°~! = A. By (17) we have for some constant

Compry(— g} (GCD) > Compp(P) > cCompp(P') >

log N
n-1_ 1 on __ n-1 > .
Arps({2 1,2" ~2}UCmed 277, {4}) 2 0 (min(log S,loglog N)> O

This lemma follows
Corollary 2. Using {C,+,—,x,A,V,®,~,Shiy,—,E}, |C| < min(S, poly(log N)) and space O(1),

Stein algorithm is optimal.

7. DIRECT SUM COMPLEXITY OF GCD

Let f: D — Q* be a function over the domain D C Q. The ¢-Direct sum complexity of f over the
domain D in RAM(F) is the minimal number of operations needed to compute f(z;), f(z2)---, f(x;) over

all (.’L‘l, . ',(L't) S Dt, ie
t-—DCompp(f)éCOmpF(f ) o & f) = Compr ((f,f, -+, 1)).

Obviously, Compp (®!_, f) < tCompr(f), but as we shall show in this small section, equation may not hold.
The definition of the t-Direct sum complexity can be found in [B1] and [B8] for the straight line model and
in [BBF] and [B6] for other models.
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Our main result in this section is

Theorem 7. Using F = {+,—,xz,|/2],—,>}, we can compute GCD(z1,41), GCD(22,y3) ,---,

GCD(xtyyt)r t< N; Ti, ¥ € [O,N] by
0 tlog N
loglog N + logt

operations with space O((tlog N)) for any constant 0 < e < 1.
Proof . We use the GCD algorithm with & = |7(loglog N + logt)|, 0 < € = 47 < 1 and compute
GCD(zi,yi), i=1,--.,t saving the arrays (), 8(), () with thier previous content in each call.
Before we prove that this bound is tight we give the following
Lemma 19. Let L; C N,i = 1,---,¢, |L;| = N;. If L; contain no arithmetic progression of length

o0 |-

k; + 1 then each

RAM (G = Q[N],+,_ny)/GyF

for Ly x Ly x -.- x L; has operation complezity

¢ .
Q - Zi:l log ]\1 —tl. (*)
log (Ei:l log Ni) + maxigig: log ki

This bound is also true even if we do not count the operations {+,—,%x¢,/c}.

Proof . Let M =1+ maxU!_,L; and
L={h+bLbM + . 4 LM* 2 | el i=1, .1}

We first prove the lower bound (*)(without —t) for L.
Let A,A+ D,---,A+ AD be an arithmetic progression of length A+ 1 in L. Since A € L we have

A=a;+asM? +... +a,M*, o€ L;.

Let 0< D=dy +dysM+dyM?>+ ...+ d,M*2 M >d; >0. Since A+iD e L, i=0,.--,X we have
(A+1iD) mod M? € L; and therefore

Ly 3 (a1 + idy) + (idy s M) mod M? < M. (18)

Then three cases can happen
(i) dis =0, dy # 0. In this case a; +id; < M and a; +idy € Ly,i =1,---,X. Then since L; cannot
contain arithmetic progression of length k; + 1 we have A < k; and therefore (*)(without ~t) follows for L.
(#) dys = M —1, dy #0. In this case (a; +id1) + i(M — 1)M mod M? = a; + idy — iM € L;. Here
again we have a; +4(dy — M) is an arithmetic progression of length A < k1, which implies (*)(without —t)
for L.
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(#it) dy = 0. In this case, (18) implies d;.5 = 0. Now the sequence |(A — a1)/M], (4 — a1)/M] +
D,---,|(A—a1)/M|+AD is arithmetic progression in Ly = {ly+IsM2+. ..+, M?*~* |l € L;, i = 2,--- 1}
and by induction we have (*)(without —t) .

Now since Iy, ---,l; can be computed from I; + 15 M? +. .. 4+ 1, M?~2 by t floor operations we obtain the
result (*)(with —t) for Ly x --- x L. QO

Now we prove the lower bound for ¢-Direct sum of GCD

Theorem 8. Lett = o(N) and
L ={(z1,22,-+,21,9)| GCD(21,y) = GCD(22,y) - = GCD(r,y) = 1} C [0, N]'*!
Then any program in
RAM(G = Qy, N, 1],+,-,%¢, /e, | |, F[[O(logt + loglog )], —,>)

that recognize L has operation complezity

Q tlog N
loglog N + logt )~

Proof . As in the proof of Theorem 4 , we substitute y = M = p;.--pr and we look at the set
L' x-‘ x L' where L' = {z] GCD(x, M) = 1}. Now we have (see proof of Theorem 4)

¢ log N t
log N ) STogTog

' "_
L x L= (csloglogN

and L' has no arithmetic progression of length c; log N. This with lemma 19 implies the result. (O

8. COMPLEXITY OF GCD WITH TABLES

When we need to compute GCD(z;,y;) for many z;,y; € [0, N] we can first build a table of the GCD
values of size N? and then compute the GCD in O(1) operations. The question we shall answer in this
section is: For large N, how much can tables of size M = o(N) accelerate the computation of GCD(z,y),
z,y € [0, N]. We denote by T(M) the set of all tables of size M.

In [B3] we prove that using RAM(+,—, x,/,«, E,T(N*)) the operation complexity of GCD(z,y),
z,y € [0,N] is ©(log N). In this section we prove

Theorem 9. Using F = {+,—, xz, /2], —,>,T(M)}, we can compute GCD(z,y), z,y € [0, N] by

log N
loglog N + log M
operations.

Therefore with tables of size N¢, where 0 < € < 1 is a constant, we can compute GCD(z,y) in O(1)

operations.
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Proof . We use the table of a; ;, 8; ;, 7,7 = 1,2 produced from algorithm B for 0 < 1, z9, 31, 32 < 2%,
where k£ = [i log MJ The size of each table is 2** < M and by lemma 3 using these constants we can reduce
the length of z and y by O(k) bits in O(1) operations. This implies that the operation complexity of GCD
using these tables is O (,lgg%) With the bound in Theorem 1 the result follows. (O

We also prove that this bound is tight

Theorem 10. Let

L= {(z,y)| ,y < N are relatively primes }.

Then any program in
RAM(G = Q[yvN]’+s_» X6, /6, |. J,F[[O(loglogN+logM}],<—,>,T(M))

that recognize L has operation complezity

log N
loglog N +logM /-~

Proof . The tables are functions fr : [l,M] — Q, 7 € Q™. Since Q is given in the model, every
function fr can be computed in logM operations without indirect addressing. Now as in the proof of
lemma 15, if ¢ is the operation complexity of L then there exist a program without tables and without
indirect addressing that recognize L with O(¢(logt + loglog N + log M)) operations. Now if we proceed

exactly as in the proof of lemma 15 we obtain the result. (O

9. GCD AND LCM OF MANY NUMBERS

In this section we study the operation complexity of computing GCD(zy, 23, - - -,z,) and LCM(zy, z,
y*+y Zn) Where 21,29, - -+, 2, € [0, N]. Obviously since LCM(z1,z3) = 2122/GCD(z1, z3) the upper bound
for GCD(21,x2) is also true for LCM(z1,%3). This property is not true for GCD of n numbers. We first
prove

Theorem 11. Using {+,-,x,/,| |,«,>} we can compute GCD(21,%9, -+, %p), T1, T2, -, Ty €
(0, N] by
log N
0 <1oglogN +”)

Proof . We use the following algorithm.

operations.

(1) i1, dy— 2, dy — 3
(2) Fori:=3tondo {dy — GCD(d,ds), dy — z; mod dy}
(3) Output(GCD(dy,d3))
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Obviously, this algorithm compute GCD(z1, - -,z,). Since by lemma 3 GCD(d;,d3) can be computed
by
|d1|| + llda|| — [|GCD(dy, da)|
log({|dy | + [|dal|)

operations for some constant ¢, the operation complexity of this algorithm is at most

+1

J

CHN” — IGCD(zy, z,)| c||GCD(2‘1,1'2)“ - “GCD(xl»fz,l‘a)”

+1+4 +14
g V] log [ V]
IGCD(z:, -, 2nsl| — GCD(as, - 2, IV < log N )
i= = —_— .
e Tog V] =gy T T O \oglogm ) ©

We do not know how to achieve this bound for LCM. The best bound we can prove for LCM is
Theorem 12. Using {+,~,x,/,| |,«,>} we can compute LCM(z1,---,2n), 21, -+, 2Zn € [0, N] by

0 nlog N
loglog N + log n

Proof . We do this by the following algorithm
(1) Build a table of a(), 8(),¥() of size (nlog N)¢, e < 1

operations.

(2) 21— 21, 29 — 22

(3) Fori:=3 tondo {2y — 2120/GCD*(21, 23), 7o — z;}

(4) Output(z129/GCD*(21, 22))
Here GCD*(z1, 22) = GCD(z; mod z3_, 2;) where z; > z3_;. With this algorithm the result follows ()
For lower bound, no technique is known that can prove tight bound for these problems using the

operations {+,—, x,/, | |,«,>} We shall prove this lower bound for the LCM problem in a weaker RAM

model

Theorem 13. Let
L={(z1,22, - -,z4)] LCM(zy,---,z,) = M} C [0, N]".
There exist M such that any program in
RAM(G = Q[N],+,-,xa,/a,| |, F[[O(loglog N +logn]}, —,>)
that recognize L has operation complezity
Q nlog N
loglog N +1logn/
Proof . Let M =p; .. py where M < N and Mpy41 > N. Let
L={(z1,-,2,)] GCD(xy,M) = ... = GCD(zn, M) = 1}

={(z1, -+, zn)] GCD(LCM (zy,---,3,), M) = 1}.
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Since L can be recognized by first computing y = LCM(z1,---,2,) and then verify if p;|ly, i = 1,- .-, k we
have that the operation complexity of LCM (z1,-- -, x,) is at least Compp(xr) — k.

By theorem 4 and since k < ¢ (%%) the result follows. O

Notice that when {x} C F we can recognize L in the proof of Theorem ? by O(n + k) operations and
word length O(n||N||). We first compute y = z; - -+, by n—1 operations and then verify if p;|y, s = 1,-- - k.

Therefore we cannot prove this lower bound when we also allow x.

Appendix A.

In this appendix we give two lemmas needed in the paper

Lemma A.l. Using {{1},+,—, xz,|/2!],>} we can compute {log, z| and ||z|| by
O(loglog z)

operations with word length ||z|| and space loglog z.
Proof .
Compuing d = [log, z|, ¢ > 2.

(6) co—2,i0, 2z [z/2],d—1, ]y~ 1.

(1) While > ¢; do {2z « |z/¢;|, d —d+1;, i —i+1, g1 =L+ 1, ciy1 — ¢ x¢;}

(i) For j:=i—1to0do {If 2 > ¢; then {z — |z/c;], d = d+1;}}
Computing d = ||z||
dellogyz]+1. O
Lemma A.2. Let ,8 € [1,V/N], &, € [0,N] and o, 8 < v = 2. Then

C:a:c+ﬂy

€[0,N]

can be computed by O(1) operations with word length || N||.
Proof . We have

(1) zo = l2/v], 21—z =722, 2 = ¥/7], 1 —y— 790

(2) co = aza+ PBya, ¢ — [(ax1+Pur)/v].

B)e—ci+te O
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