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Abstract  

Drug repositioning is increasingly attracting much attention from pharmaceutical 

community to tackle the problem of long term development in drug discovery. The complex 

nature of human diseases, for example cancer, poses major challenges in pharmaceutical 

industry nowadays. With the increasing amount of research conducted to understand 

associations between drugs and diseases, a new direction of research has come to light. 

Thanks to the development of high-throughput technologies to generate tremendous 

amount of data and to the web-based systems to store and organize the generated data, 

drug repositioning has become cost and time effective.  

Since biomolecular interactions and omics-data integration has had success in drug 

development, we have been motivated to develop a new paradigm that integrates data 

from three major sources to predict novel therapeutic drug indications. Microarray data, 

biomedical text mining data and biomolecular interactions are all integrated to predict 

ranked lists of genes based on their relevance to a particular drug’s or disease’s molecular 

action. These ranked lists of genes are used as raw input for building a disease-drug 

connectivity map based on enrichment statistical measure. This integrative paradigm was 

able to report a sensitivity improvement of 18% and 26% in comparison with using text-

mining and microarray data, respectively, independently. In addition, this paradigm was 

able to predict many clinically validated disease-drug associations that could not be 

captured with using microarray or text mining data independently.  

The robustness of the integrative paradigm has been further investigated to predict 

functional miRNA-disease associations. In here, disease-gene associations from microarray 
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experiments and text mining together with miRNA-gene associations from computational 

predictions and protein networks have been integrated to build miRNA-disease 

associations. The findings of the proposed model were validated against gold standard 

datasets using ROC analysis and results were promising (AUC = 0.81). The proposed 

integrated approach allowed us to reconstruct functional associations between miRNAs 

and human diseases and to uncover functional roles of newly discovered miRNAs 
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Chapter 1: The Need for Bio-Data 
Integration and Mining 

 

Many traditional methods have been proposed in order to diagnose and treat diseases. 

Despite of all researches and methods proposed in order to optimize their treatment, 

Cancer and other incurable diseases in all of their forms are worldwide and increasing 

rapidly. Mainly there are five standard methods for cancer and other incurable diseases 

treatment; surgery, chemotherapy, radiation therapy, immunotherapy and biologic therapy. 

Even though new concepts, new methods, and new approaches have been introduced for 

treatment, the mainstay of incurable diseases chemotherapy remains with systemic anti-

causative agents that interfere with cellular DNA functionality. Therefore, it was a crucial 

step to study and analyze the gene-gene, gene-drug and gene-disease interactions in order 

to better understand the toxic effect of a drug on cancer cells and analyze the ability of that 

drug to treat diseases. The introduction of new technologies and new computational 

algorithms combined with our understanding of human genome has dramatically and 

superiorly improved the research in human diseases especially cancer.  

1.1. Introduction  

 

Many years ago the successfulness of a specific drug was based on its ability to generate 

desired changes in the physiological states of animals without paying any attention to the 

biochemical reactions this drug might introduce. Similarly, diseases were all diagnosed by 

looking at specific symptoms that disease might trigger.  Later on, the development of 
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many methods that enable the isolation and the study of individual cells and molecules 

have shifted the understanding of drugs/diseases from being at physiological level to more 

accurate molecular level.  

Recently and after the introduction of the genome sequencing project that provides 

complete list of genes and gene’s products, drug discovery and disease diagnosis processes 

have been revolutionized. More specifically, this project has enabled a better 

understanding for drugs and diseases mode of actions by discovering the genes or proteins 

that play a major in their molecular action. These genes have become tempting targets for 

many pharmaceutical companies. In addition, this tempting area of science has become one 

of the most well studied and interesting research areas in many labs worldwide.  

1.2. Problem Definition and Motivation  
 

The rapidly evolving researches in the biomedical fields have made a huge amount of 

biological data hidden in the web in many formats that can be classified into three major 

categories: (i) Microarray gene expression profiles. (ii) Text published papers. (iii) Gene-

Gene, Gene-Disease, and Gene-Drug interaction databases.  

The availability of such rich amount of biological data has shed the light on utilizing 

computer science techniques and algorithms to mine data and infer biomedical knowledge. 

High-throughput microarray technology, biological databases and text-mining data 

integration process is a very powerful technique that can provide a closer insight to many 

biological problems including drug repositioning or predicting disease-miRNA interactions. 
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Drug repositioning (also known as drug re-profiling or re-tasking) can be simply 

defined as a technique that seeks investigation of new therapeutic applications for already 

approved drugs or drug candidates that have not succeeded in advanced clinical trials for 

reasons other than safety [1]. The process of drug repositioning offers several advantages 

over the traditional drug development including; reduced development costs and shorter 

paths to approval [2]. The costly and laborious traditional paradigm takes about 15 years 

and almost $1 billion to test, to validate and to launch a new drug to the market [3].  

Accurate prediction for Disease-miRNA interaction is also very vital in medical 

research. MiRNAs are new key players in the disease paradigm demonstrating roles in 

several human diseases. The functional association between miRNAs and diseases remains 

largely unclear and far from complete. With the advent of high-throughput functional 

genomics techniques, it is now possible to infer functional association between diseases 

and biological molecules by integrating disparate biological information. 

Out of the different methods proposed to integrate biological data, two are known to 

be most popularly used in this field; (i) build a list of differentially expressed gene using 

microarray data and then use the text-mining techniques to prioritize this list of genes in 

relevance to a particular disease (ii) build a set of relationships between different 

biological entities (genes, diseases or drugs) using text-mining techniques and validate 

these associations by resorting to microarray data. According to our knowledge, there is 

was not any method that has been proposed to integrate the ranked list of genes obtained 

from high-throughput technology with the ranked list of genes obtained from text-mining 

for the purpose of knowledge discovery. More specifically there was not any method that 
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was able to provide a paradigm that integrates text-mining, microarray data and biological 

networks for the purpose of drug or disease understanding. Therefore, I have been 

motivated to build a framework that integrates these three data sources into a single 

paradigm for the hope of getting more accurate results than using any of them 

independently.  

1.3. Contribution  
 

In this thesis I tackle the great demand in integrating biological data from different sources 

to elicit better knowledge regarding drug discovery. I have two major contributions in this 

thesis by providing two different integrative paradigms for drug-repositioning and disease-

miRNA prediction. These two paradigms utilize the power of text-mining methods in 

discovering hidden or indirect relationships, the power of microarrays in providing a 

global view of drugs/diseases molecular effects and the power of gene network in 

understanding the functional and behavioral correlation between genes.  

For drug repositioning, an unsupervised statistical procedure (Gene Set Enrichment 

Analysis) was employed to predict drug-disease associations. Unlike other methods that 

always use this technique on microarray data, the proposed framework integrates data 

from three sources namely; microarray, text-mining and biological networks and employed 

this technique on the newly generated data. In brief, a ranked list of genes for every single 

drug and every single disease was built by using microarray expression data. Later on, 

another ranked list of genes for every single drug and every single disease was built by 

using text-mining together with gene network biology. Noting that text-mining based 

ranked list of genes has never been done before. Finally the ranked lists for each entity 
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have been integrated into one and representative ranked list that have been used to build 

the drug-disease connectivity map using enrichment analysis statistical measure. A flow 

diagram for the proposed methodology is provided in chapter 3, Figure 3.2.       

For disease-miRNA interactions prediction, two disease-gene interaction networks 

and a miRNA-gene interaction network were combined and used as input to a regularized 

logistic regression model. The disease-gene interaction networks have been built utilizing 

both microarray and text-mining data. The miRNA-gene interaction network has been built 

using microarray data and biological network. Therefore three sources of biological data 

were integrated into a single paradigm to predict disease-miRNA interactions. A flow 

diagram for the proposed methodology is provided in chapter 7, Figure 7.1. 

The two integrative approaches mentioned here are novel and are implemented for 

the first time in computational biology field. Results from both approaches showed that 

integrating data from different sources can improve the accuracy of prediction.   

1.4. Organization of the Thesis 
 

Since this thesis targets researchers with computer science and biology background, it has 

been designed in a way to be self-contained and easy to understand without any need for a 

strong background in the computational biology field. Therefore, the rest of this thesis is 

organized as follows.  

In chapter two I discuss in details all the necessary biological terms and concepts 

that have been used in this thesis. Furthermore, I discuss in details and provide the 

reasoning for using all computational algorithms implemented in this thesis. More 
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precisely, I discuss all data mining tools and techniques that have been used for biological 

predictions namely; differentially expressed genes, clustering, classification, regression 

modeling, text mining and gene set enrichment measure.  

Since the main focus of this thesis is on drug repositioning, I discuss all methods that 

have been used for drug repositioning in chapter three. These methods can be categorized 

into structure based, microarray based, text-mining based and integration based 

approaches.  

In chapter four, I discuss the data collection procedure and sources, data 

normalization algorithms and data preprocessing steps.  

In chapter five, I discuss all statistical measures and techniques that have been 

used in order to build drug-disease connectivity map. More precisely, I discuss the process 

of generating ranked list of genes both from microarray and text-mining and the process of 

utilizing gene set enrichment analysis to obtain drug-disease connectivity map.  

In chapter six, I discuss in details the results that were obtained from drug 

repositioning approach. In addition, I provide a detailed biological analysis for some of the 

predicted associations. Finally I provide some limitations of my work and potential for 

future work direction.  

In chapter seven, I explain in details the procedure for disease-miRNA interaction 

prediction. More precisely, I provide a descriptive introduction for disease-miRNA 

problem, and then follow by describing the methodology in details. Finally I describe the 

obtained results with computational and biological discussion.   
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In chapter eight, I provide a conclusion and future remarks for the integrative 

paradigm proposed in this thesis.  
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Chapter 2: Computational Biology, a 
Tempting Field for Green Drug 

Development 

 

2.1. Biological Introduction  
 

Although there are over 30 million types of organisms ranging in complexity from bacteria 

to human, they all use the same basic materials and mechanisms to be able to survive and 

adapt on this planet. More specifically, all living organisms on this planet are composed of 

one or more cells that compose the basic unit of structure and function in an organism. In 

order for a cell to function properly, the organelles within each cell have to collaborate, 

communicate and interact within very complex processes. This complicated system is 

basically driven genetically by three major macromolecules deoxyribonucleic acid, 

ribonucleic acid and protein.    

2.1.1. Deoxyribonucleic Acid (DNA) 

 

DNA is the basic and the most important genetic material within each cell in all organisms. 

These very long chains of codes are stored in an organelle called nucleus. Four basic units 

or nucleotides are combined together in a very long and repeated sequence to build out the 

DNA molecules and these are; Adenine, Guanine, Cytosine and Thymine. DNA is double-

stranded by which, each nucleotide must be bound to a complementary nucleotide to 

formulate what is called base pairs. The length of DNA strand varies from one organism to 

another. For example, there are 3 billion base pairs in the human genome and 12 million 
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base pairs in yeast. Noteworthy that a genome consists of the entire set of chromosomes 

that in particular compromises a series of DNA molecules. Each of these DNA molecules 

contains many genes [4]. In details, the gene is the hereditary unit found on a chromosome 

where a chromosome is a linear DNA molecule. A genome is a term that is used to 

represent all genes regarding a particular organism. In other words, biological information 

contained in a genome is encoded by its DNA and is divided into discrete units called genes 

[4].   

2.1.2. Ribonucleic Acid (RNA) 

 

RNA is very similar to DNA in that, it is a chain of nucleotides with a particular direction. 

However, it is typically found as single-stranded molecules and replaces uracil with 

thymine nucleotide. The most important RNA molecule is the messenger RNA (mRNA) that 

is created from genes that code for proteins during transcription. This mRNA is used to 

carry the genetic information encoded in the DNA to the ribosome, the protein assembly 

machinery. The mRNA is then used by the ribosome as a template to synthesize the protein 

that is encoded by the gene.  

2.1.3. Protein 

 

Proteins are the basic building blocks of nearly all molecular machinery of an organism. 

Proteins are made up from long chains of 20 distinct amino acids. It is the duty of genes in 

the DNA to specify the order of amino acids in a particular protein and thus defining the 

protein shape and function.   
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2.1.4. Genetic Circuits  

 

Genes encoded in DNA are used as templates to synthesize mRNA through the process of 

transcription. These mRNA molecules work as templates that carry necessary information 

for the purpose of protein synthesis in a process called translation as shown in Figure 2.1. 

These genes and proteins are interacting with each other in a complex network that 

precisely controls the amount of production of a gene product (protein) and it can also 

modify the product after it is made. In fact, genes include not only coding sequences that 

specify structure and function of proteins, but also regulatory sequences that control the 

rate of transcription for that gene. These regulatory sequences are very sensitive to a 

protein category called transcription factors (TF). If any of these TF binds to the regulatory 

sequences a consequent action like activation or repression of transcription process might 

result in. This is because TF can either attract or rebel DNA polymerase II that is in charge 

of activating the transcription process.   
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severe to moderate changes in one or even hundreds of genes might result in from 

changes in any of the following: (i) DNA chemical structure or TF binding sites (ii) external 

factors that might affect the activity of TF via activation or inhibition such as drugs, 

chemicals, temperature and light [5]  (iii) or mutations that might lead to change in DNA or 

TF chemical structure or other proteins manufacturing process. This is due to the fact that 

Figure 2.1 an overview of transcription and translation 

This figure shows the whole process of protein manufacturing starting from DNA to ribosome. The process 

starts in the nucleus when DNA strand works as a template to build mRNA molecule in a process called 

transcription. The mRNA molecule will move out the nucleus to cytoplasm where it binds to protein assembly 

machinery called the ribosome. In here, mRNA will work as a template that carries instructions to guide 

ribosome in building proteins with the right amino acids ordering in a process called translation. Adopted from 

National Human Genome Research Institute. 
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genes are regulating each other in a complex network; thereby a small change in a single 

gene expression might result in systematic change in the expression of many other genes.  

2.2. Microarrays Data Mining  
 

For the purpose of understanding the whole molecular effect of a drug or a disease it was 

necessary to take a global view of biological processes that require simultaneous 

monitoring for cellular gene expression. DNA microarrays technology provides a simple 

and natural yet systematic and comprehensive vehicle for exploring the genome. Indeed 

simultaneous examination of thousands of proteins and genes in a single experiment has 

led to a renewed interest in discovering novel biomarkers for cancer [6]. Adding to its 

capability of performing parallel analyses as opposed to serial analysis run by older 

technologies, these technologies provided the ability to discover cancer biomarkers with all 

of its forms DNA, mRNA, and proteins. Microarray technology is carried out by hybridizing 

complementary DNA (cDNA) to an immobilized DNA template. DNA microarrays can be 

used to measure changes in expression levels between control and sample groups. In other 

words, it can measure the level of expression for every single gene between two biological 

states leaving a big room for medical, statistical, computational and mathematical analysis. 

Microarray technology has been widely used to provide insights into cancer classification 

including leukemia [7], breast cancer [8] and colon cancer [9]. In addition, it has been also 

used to study drug’s mechanism of action on many diseases including cancer cell lines [10] 

[2].  

Even though microarray expression data has a great importance in class discovery 

and knowledge retrieval, it is considered as one of the really huge and highly 
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dimensionalized data. Even the expression data from a single microarray experiment 

requires computational tools for analysis. A common task for analyzing microarray data is 

to determine which genes are differentially expressed across two tissue samples or 

samples obtained under two experimental conditions (drug treated versus control or 

disease sample versus healthy sample). Two color microarrays are typically with cDNA 

prepared from the two samples to be compared, whereas one color microarrays provide 

intensity data for each probe indicating relative levels of hybridization with labeled target. 

Noteworthy that the pre-processed microarray data is often noisy and not normally 

distributed [11]. Therefore, several statistical and data mining methods have been 

proposed to normalize, analyze and infer knowledge from it.   

2.2.1. Determining Differentially Expressed Genes 

 

Determining differentially expressed genes is one of the most important statistical 

measures for microarray data analysis. Differentially expressed genes are a set of genes 

that are known to have a significant shift in their expression when comparing samples from 

two different biological states. These set of genes can give better insight into the molecular 

changes involved in tumor progression or even drug mode of action.  

Many statistical, machine learning and data mining methods have been proposed to 

identify the set of differentially expressed genes. Data mining methods are mostly 

dependent on defining the entropy level for every single gene and then extract the most 

informative set of genes. For example Singular Value Decomposition (SVD) [12], 

Unsupervised Feature Filtering (UFF) [13] and Principle Component Analysis (PCA) have 

been all used to extract the most informative genes out of a set of genes. Statistical method 
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tends to define a differential expression score for every single gene individually. Since in 

this thesis, the purpose of finding differentially expressed genes was to define similarity 

between biological entities based on ranked lists of genes, a statistical method that can 

assign a score for every single gene was used. This assigned score describes the differential 

expression between two biological states.   

2.2.1.1. Singular Value Decomposition  

 

Let X denote microarray expression profiles matrix of size N x M such that N represents the 

number of genes and M represents the number of samples. So the xij entry represents the 

expression level of the ith gene in the jth sample. Therefore, each gene gi would be 

represented by an M-dimensional vector and each sample sj would be represented by an N-

dimensional vector. The equation for singular value decomposition would be given as 

X=USVT such that U is an M x M matrix, S is an N x N diagonal matrix and VT is an N x N 

matrix. The columns of U are called the left singular vectors and form an orthonormal basis 

for sample expression profiles. The rows of VT contain elements of the right singular 

vectors and form an orthonormal basis for the gene transcriptional responses. Finally the 

elements of S are nonzero on the diagonal and are called the singular values. The order of 

singular vectors is determined by high-to-low sorting of singular values, with the highest 

singular values in the upper left index of the S matrix. SVD is usually computed by first 

computing VT and S according to the following equation XTX=VSTSVT and computing U 

according to the following equation XV=US. 
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The diagonal entries of S are s1 ………. sn such that si represents the singular value for 

gene gi. According to Alter et al. [14] the relative importance pi for gene gi is computed 

according the following:  

 

And the Shanon entropy of the data for the matrix XMxN is calculated as:  
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Finally the proposed method of Varshavsky et al. [13] suggested defining the contribution 

of every single gene using the leave-one-out strategy. Therefore, the contribution of gene gi, 

Conti, is computed according the following equation:  

 )()( )1(  NMxMxNi XEXECont  Equation 2.3 

 

Such that X Mx(N-1) is the expression matrix excluding the expression vector of gene gi. Thus 

assume having the Cont for all genes. Let c be the average of all these scores and let d be the 

standard deviation for these scores. Then the level of contribution of gene gi is decided 

upon according to the following:  

1- If Conti > c+d, then gene gi has a high contribution.  

2- If c+d > Conti > c-d, then gene gi has an average contribution.  

3- If Conti<c-d, then gene gi has a low contribution.  
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2.2.1.2. Statistical Methods 

 

Many statistical measures have been proposed for the purpose of inferring the most 

concise and informative set of genes. The output from these measures is a score that is 

assigned for every single gene indicating its relative change, or differential expression, 

between two states. The more positive is the score, the more likelihood that the 

corresponding gene has been overexpressed in comparison with the control sample. The 

more negative is the score, the more likelihood that the corresponding gene has been 

down-regulated in comparison with the control sample. Some researchers consider taking 

a cut-off for the set of over-expressed and down-regulated genes for further analysis [15] 

[10] [2]. This set of overexpressed together with the set of down-regulated genes are called 

the signature for that particular drug or disease. On the other hand, researchers might 

consider ranking genes from the most positively expressed to the most negatively 

expressed in relevant to a particular biological entity and run rank based comparison 

analysis between these entities [10] [15].      

 

 Statistical methods for inferring the set of differentially expressed genes range in 

their complexity from just considering the fold change to more complex methods that 

consider different parameters for the purpose of improving accuracy. For instance, DeRisi J 

et al. [16] Identified differentially expressed genes using 3-fold for log ratio of expression 

levels. Later on, it has been shown by [17] that considering log ratio cut-off is not sufficient 

to extract the informative genes. This is because in microarray experiments most genes will 

show expression ratio close to 1 thus it is considered to be un-appropriate. 
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 Other statistical approaches have been proposed to model some distributional 

properties of gene expression. Long AD et al. [18] used the traditional T-test based on 

Bayesian estimate of variance among replicates with normally distributed expression 

measurement. Dudoit S et al. [19] used the non-parametric t-test with an adjusted p-value. 

Finally and the most popularly used method, Significant Analysis of Microarray (SAM), has 

been proposed [20].   

SAM uses the concept of permutation of repeated measurement to estimate the 

False Discovery Rate (FDR). The major advantage of SAM over other methods is that it 

added a positive constant to minimize the coefficient of variation and thus alleviating the 

problem of giving low variances among replicates with low expressed genes. That is 

because low variances will result in high differentially expressed value in case of using 

traditional t-test. SAM assigns a score that is based on changes related to standard 

deviation of repeated measurements for that gene. This score represents the importance of 

expression change for that gene related to the sample of interest. High positive score 

indicates that the gene has been up-regulated after treatment with that drug or upon 

comparison between healthy and diseased sample. High negative score indicates that the 

gene has been down-regulated after treatment with that drug or upon comparison between 

healthy and diseased sample. An overview for these and other statistical measurements can 

be found in [21].  

 After obtaining the ranked list of genes many computational algorithms can be used 

to further analyze and understand the molecular nature of a drug or a disease including 

clustering, classification, gene-set enrichment analysis and regression modeling.  
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2.2.2. Clustering  

 

Clustering can be simply defined as the process of grouping data objects belonging to the 

same class into one cluster and separate them from other data objects belonging to 

different classes. Clustering analysis has been widely used in many applications such as 

biology, business intelligence, image pattern recognition, web based systems …etc. Cluster 

analysis is a very valuable mining tool that enables understanding data distribution, data 

characteristics and considering set of clusters for further analysis. Furthermore, clustering 

serves as a preprocessing technique for other data mining tools, such as feature selection 

and classification [22]. This is because a cluster is a collection of data objects that are 

similar to one another within the cluster and dissimilar to objects in other clusters, thus a 

cluster can be considered as an implicit class for these objects [22]. Generally speaking, 

clustering methods can be classified into four major categories; partitioning methods, 

hierarchical methods, density based methods and Grid based methods. Out of these, k-

mean clustering and hierarchical clustering methods are the most popularly used in the 

field of bioinformatics [23]. Therefore, in the following section I discuss proximity 

measurements to define similarities between objects, k-mean clustering, and hierarchical 

clustering.  Finally I shed the light on the reason of choosing hierarchical clustering over k-

mean clustering in this study.  

2.2.2.1. Proximity Measurements for Data Objects  

 

Since all data objects can be represented by numerical vectors, proximity measurement 

measures the distance between data objects to be clustered. Thus most clustering 

algorithms start by finding distances between objects using a proximity function 
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implemented on the corresponding vectors.  Assume having two data objects X (x1……xp) 

and Y (y1……yp) where p represents the number of features,  then the distance is measured 

on the corresponding vectors X  Y according to one of the following distance measures; 

Euclidean distance, Manhattan distance, Mahalanobis distance, Pearson correlation or any 

other measure.   

Euclidean distance tends to measure the difference between two objects rather than 

measuring the actual patterns between different objects. Thus it is preferable to 

standardize each vector by zero mean and variance before starting the clustering process. 

The Euclidean distance between X  Y  can be measured according to the following formula: 
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To address the issue of measuring the similarities between the shapes of two 

expression patterns, Pearson correlation has been proposed. Pearson correlation between 

X  Y  can be computed according to the following formula:  
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Pearson’s correlation coefficient has been widely used and has proven to be an 

effective similarity measure for various bioinformatics researches [24] [25]. But it has been 

shown later that Pearson correlation might be biased towards some fake similarities and 
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yield false positives [26] . More specifically, if two patterns have a common peak at a single 

feature, then the correlation might be dominated by this feature, although the patterns at 

the remaining features are dissimilar. This has shed the light to an improved measure 

called Jackknife correlation [26]. Jakknife correlation considers measuring the Pearson 

correlation in a leave-one-out fashion, leaves one feature out each time, then takes the 

minimum among those to be Jakknife similarity. Mathematically, Jakknife correlation 

between  X  Y  is computed according to the following formula:  

 ))((min)(
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i
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YXPearsonYXJakknife
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  Equation 2.6 

 

Where iYXPearson )( is Pearson correlation between object X and Y  excluding feature i. 

Jakknife similarity measure was used in this thesis to run clustering algorithm. 

2.2.2.2. K-Means Clustering  

 

Given a dataset D with n objects, k-mean clustering needs a predefined number of clusters, 

k, to form a partitioning algorithm that splits objects into k <=n partitions. The output of 

this algorithm will be a set of clusters C1,……., Ck such that Ci ⊆ D and Ci ∩ Cj=Φ for (1<= i, j 

<=k). Noteworthy that the major objective of k-mean algorithm is to increase the intra-

cluster similarity (minimize distance between objects within the same cluster) and 

decrease inter-cluster similarity (maximize distance between objects in different clusters). 

K-mean clustering algorithm steps are described in the following formulation:  

Input:  

k: the number of clusters, D: dataset containing n objects 

Output:  
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set of clusters C1, ……., Ck such that Ci ⊆ D and Ci ∩ Cj=Φ for (1<= i, j <=k) 

Algorithm:  

1- Start by heuristically picking k different centroids where each centroid would be considered as 
a specific cluster representative.     

2- Compute the distance between objects in D and all the selected centroids.  
3- Assign each object to the closest centroid.  
4- Re-compute the new centroid by taking the mean of all objects belonging to the same cluster.  
5- Repeat step 2 through 4 until no change happens in the centroid values.  

 

Finally the quality of cluster Ci can be measured by the within cluster variation, that is the 

sum of squared difference between centroid ci and all other objects belonging to cluster Ci. 

Thus the total error for a specific run A for a clustering algorithm would be computed 

according to the following formula:  
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 Where b represents the number of objects in cluster Ci and ci represents the centroid of 

cluster Ci.  

2.2.2.3. Hierarchical Clustering  

 

In contrast to k-mean clustering, hierarchical clustering partitions data into groups at 

different levels leading to hierarchy or a tree. This organization is very useful when 

clustering is used for data summarization and visualization. Generally speaking, 

hierarchical clustering method can be either in bottom-up or top-down fashion and 

therefore it can be categorized as agglomerative or divisive approach, respectively. In 

agglomerative hierarchical clustering, every single object would be represented by a 

cluster at the beginning. After computing a distance matrix between these clusters, the 
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single-object clusters merge in a hierarchical way until they form a single cluster that 

contains all objects. In each time a merge occurs between two clusters, they would be 

replaced by a representative cluster that is the mean (or any other appropriate measure 

min, max, average … etc.) of the original two clusters. On the other hand, the divisive 

hierarchical clustering starts by having a single cluster that contains all objects and then 

divide it into smaller subclusters in a recursive way. The algorithm will terminate when 

subclusters at the lowest level are coherent enough (that is objects are very similar to each 

other) or when these subclusters contain at most a single object.  

The distance between clusters is computed in each run to find closest clusters and 

merge them accordingly. Let Ci and Cj be two clusters that have means mi and mj, 

respectively, and have number of objects ni and nj, respectively. Then the distance between 

cluster Ci and Cj can be computed according to one of the following measures:  
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As been mentioned in [22], the minimum and the maximum measures represent 

extremes when measuring the distance between clusters. More precisely, the minimum 

considers the two closest points and the maximum considers the two distant points in two 
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clusters to evaluate the distance. On the other hand, the average distance can be considered 

as a compromise between these two measures and it is advantageous in a way that it is not 

sensitive to outliers and noise as the minimum and maximum measures might be.  

 In microarray analysis the aim of clustering process is to find genes that are 

coexpressed together or genes that share the same expression patterns after drug 

treatment in a process called gene based clustering. In this case genes are considered as the 

objects and samples are considered as the features. Another important issue is to find cell 

lines or samples that share same expression patterns after being treated with drugs where 

this process called sample based clustering. In this case samples under different drug 

treatment are considered objects and genes are considered features. Hierarchical 

clustering [27] , K-means clustering [28] and many other algorithms that have been 

reviewed in [29] were all used to analyze biological data. 

Since the purpose of clustering in this thesis was to visualize the drug-disease 

connectivity map that resulted from the integrative paradigm, hierarchical clustering with 

the average distance measure, to find distance between clusters, was used in this thesis.      

2.2.3. Classification  

 

Classification is the process of predicting labels or numeric values for data of interest. It 

first starts by a learning step where a classification model is constructed and then a 

classification step to predict class labels for given data. In the learning step, the 

classification algorithm builds a classifier by analyzing and learning a pattern in the 

training data that is made up of set of tuples and associated class label.  
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Different classification methods from statistical and machine learning area have 

been applied to improve inferring biomedical and pharmacogenomics knowledge. These 

algorithms basically start by extracting the most informative genes in a process called 

feature selection and thus improving cancer classification. After selecting the informative 

genes, classification algorithms can play a major role in revealing the most informative 

biomarkers that can even sub-classify different types of tumors or different compound 

treatments. In this section I discuss some of the most commonly used classification 

algorithms; Decision tree classifier, Naïve Bayes classifier and Regression models.  

2.2.3.1. Decision Tree classifier  

 

Decision Tree classifier is represented by flow chart like tree structure where each internal 

node denote a test on attribute, branch represents outcome of the test and leaf node holds 

class label. Given a new data object, we can track its attribute on the tree until we make a 

decision about its class label. An example of decision tree classifier is shown in figure 2.2.  

The main issue with decision tree classifier is with selecting a tree induction 

algorithm that is time efficient and accurate using the training tuples. Many algorithms 

have been proposed to induce decision tree; Iterative Dichotomiser (ID3), C4.5 and 

classification and regression trees (CART). These algorithms follow a top-down recursive 

divide and conquer technique to induce the decision tree. More specifically, these 

algorithms apply attribute selection method to find the best splitting criterion or the 

attribute to split at specific level in the tree. This splitting attribute is the one that provides 

the best way to separate or partition the tuples in D into individual classes. 
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Figure 2.2: Example of Decision Tree Classifier 

This figure shows an example of decision tree classifier where the classification attribute is buys 

computer. Having any new customer with specific attributes, we can track the tree and predict a 

yes/no answer for the concept buys-computer. Adopted from [22] 

 

 

 

 

 

 

 

 

 

Let D be set of data and let us suppose that the class label attribute has m distinct 

classes Ci for i=1, ……… m (in the previous example m=2, that is yes or no). Let Ci,D be set of 

tuples of class Ci in D and let the attribute A has n distinct values aj for j=1,……….. n. Then 

according to Information Gain algorithm the attribute with maximum Information Gain is 

selected.  Information Gain is computed in two steps. First it computes the expected 

information needed to classify a tuple according to the following 
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Then it computes the information needed using Attribute A as splitting attribute according 

to the following   
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Finally the information gain obtained with using attribute A is computed according to the 

following  

 )()()( DInfoDInfoAGain A  Equation 2.10 

 

The only problem with using this score is that some attribute might have n-distinct 

values for n-tuples. Then the information gain prefers to split using this attribute and thus 

splitting each tuple independently. This will result in a maximal Gain (A) but this is bias and 

does not represent what we seek for. Therefore, Gain Ratio algorithm has been used to 

create a new score that tackle this problem. Gain Ration is computed in two steps. First it 

computes the information to be generated by splitting dataset D into n partitions according 

to the n distinct values for attribute A according to the following  
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Then it selects the attribute with the maximum Gain Ratio that is computed according to 

the following 
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2.2.3.2. Naïve Bayesian Classification  

 

Bayes classifier is a statistical classifier that can predict the probability that a given tuple 

belongs to a particular class. The term Naïve came from the fact that, this algorithm does 

not consider the dependency between different attributes, if there is any. Suppose having m 

different classes Cj for j=1….. m. Let )( XCiP denotes the probability that tuple X belongs to 

class Ci, then Naïve Bayesian classifier predicts that tuple X belongs to class Ci if and only if 

)()( XCjPXCiP  for j =1……..m such that ji   Where )( XCiP is computed according to 

the following  
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Note that P(X) is constant for all classes and it would not affect the final decision, 

therefore the problem is reduced to a maximization problem for the term )(*)( CiPCiXP . 

Finally it is really important to note that )( CixjP represents the probability of having value 
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xj for attribute Aj in class Ci in dataset D, and this will result in two cases depending on the 

data type of attribute Aj. If Aj is categorical (discrete value) then )( CixjP represents the 

number of tuples of class Ci in D having xj for attribute Aj divided by the number of tuples in 

class Ci in D. On the other hand, if Aj is continuous, then it must have Gaussian distribution 

with mean M and standard deviation S that is 
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Then  

 ),,()( CiCi SMxjGCixjP   Equation 2.17 

  

2.2.3.3. Regression Modeling  

 

Regression modeling is one of the most powerful machine learning techniques that is been 

used for predictions. In this section I discuss Univariate Linear Regression, Multivariate 

Linear Regression and Regularized Logistic Regression. Finally I highlight the reasons for 

using Regularized Logistic Regression as a prediction algorithm in this thesis.  

2.2.3.3.1. Univariate Linear Regression (ULR) 

 

Linear regression in general is used to predict some real valued output for prediction 

attribute given the right value for this attribute in the training tuples.  In ULR, there is only 

a single input feature, let us say x, a prediction attribute, let us say y and m training 

samples. Let (x(i), y(i)) denote the ith training example. Then ULR tries to find a linear line in 
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the two dimensional plane that best describes the data. More specifically it defines the 

following linear function to fit the training examples 

 xxH 10)(    Equation 2.18 

 

where β0 and β1 are model parameters. The main issue in ULR is to choose β0 and β1 so that 

H(x) is close to y for training examples (x, y). In other words, the problem can be described 

as a minimization problem that minimizes the distance between the prediction hypothesis 

and other y’s in the training samples. Therefore the cost function J (β0, β1) that needs to be 

minimized and is defined as follows 

 



m

i

ii yxH
m

J
1

2)()( ))((
2

1
)1,0(   Equation 2.19 

 

Gradient Descent optimization algorithm can solve this problem very efficiently 

according to the following procedure:  

1- Start with any random value for β0 and β1 

2- Keep changing β0 and β1 until reaching the minimum score.  

This is to say, gradient descent start with a specific point on the function J (β0, β1) and keep 

on going down gradually until reaching the minimum. Note that, in some applications 

starting at different points will result in many local minimums, but the good thing about the 

cost function of regression models is that it is always convex in shape, thus result in only a 

global minimum. The optimization procedure utilizing gradient descent is summarized in 

the following algorithm: 
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Repeat until convergence for j=0 and j=1 { 
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The new assignments for β0 and β1 have been obtained after taking the first derivative for 

the cost function J (β0, β1) on β0 and β1, respectively. Note that α is called the learning step 

or the step size that varies from being too small (moving small steps towards minimum) to 

being too large (moving large steps that may fail to converge or even diverge).  

2.2.3.3.2.  Multivariate Linear Regression (MLR) 

 

MLR applies the same concept and technique that ULR does. The only difference is with 

having n variables (Multivariate) instead of a single variable. the regression model will be 

summarized according to the following  

 nnxxxxH  .............)( 22110   Equation 2.20 

 

Accordingly, the gradient descent would be represented with the following algorithm 

Repeat until convergence for j=1……………..n { 
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Note that β can also be found by using linear algebra (or normal equation) technique. That 

is to say, the vector β ∈ℝn+1 can be found according to the following expression β = (XTX)-

1XTy where X represents the data matrix, y represents the prediction attribute.     

2.2.3.3.3. Logistic Regression  

 

In linear regression, after finding the parameters vector β, one can implement the following 

formula to find a prediction for new feature x, H(x)= βTX. Again the predicted value here is a 

real (continuous) score for specific prediction attribute. Sometimes, as in this thesis, the 

interest would be in finding a probability that a certain data object belongs to specific class 

Ci. Here where logistic regression becomes in use. That is to say, instead of predicting a 

continuous score, logistic regression finds the probability that a certain data object belongs 

to the positive class. In order to satisfy this need, logistic regression defines a new 

prediction hypothesis that is H(x)= g(βTX) where g(z)=1/(1+e-z) is called the sigmoid (or 

logistic) function. Therefore the new prediction hypothesis H(x) would be  
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Thus the new prediction score ranges from 0 to 1. A nice property about this function is 

that whenever βTX>0 then H(x) would be more than or equals to 0.5 and thus one can 

predict x to be in the positive class. On the other hand, if βTX<0 then H(x) would be less than 

or equal to 0.5 and one can predict that data object x to be in the negative class. Another 

interesting property about logistic regression is that, unlike linear regression, it can define 
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non-linear decision boundaries enabling for defining more accurate decision boundaries 

between the two classes.  

Finally it is worth mentioning that logistic regression has a new definition for the 

cost function. This is because considering the same cost function (the square difference 

between H(x) and y) defined earlier for linear regression would not result in a convex 

shape (because of having a different definition for H(x)) and thus it is not guaranteed that 

the algorithm would converge to global minimum. Therefore, the cost function for logistic 

regression is defined as follows  
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where  
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Thus the cost function can be rewritten as 

 







 



m

i

iiii xHyxHy
m

J
1

)()()()( )(1log()1()(log
1

)(  Equation 2.24 

 

Again, parameters β can be computed using gradient descent algorithm by keep on 

updating βj for j=1……n simultaneously.  
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2.2.3.3.4. Regularized Regression  

 

For some application for regression models, especially when data contains large number of 

features, the resulted model might have the problem of over-fitting. Over-fitting problem 

can be described as fitting the training set very well to the level of producing high variance 

and making it hard for the model to generalize for new examples. On the other extreme, 

sometimes the model will result in under-fitting where the model is not robust enough to 

fit the training data very well. Figure 2.3 shows an example for a model with under-fitting, 

just right model and a model with over-fitting for the same training samples.  

Since the whole model is built based on parameter values in vector β, a penalty can be 

added to avoid having large scores of β and consequently avoiding the problem of over-

fitting. Therefore, this penalty (regularization parameter) would control the trade-off 

between fitting data very well and keeping parameters small. So the cost function for 

regularized logistic regression can be re-written as  
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Accordingly, the gradient descent algorithm for this function can be re-written as  
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In this thesis, logistic regression model was used for various reasons. First of all, the 

purpose of using machine learning algorithm in this thesis was to find a probabilistic 

measure that a data point belongs to a certain classifier. Therefore, out of the different 

methods discussed above, Naïve Bayesian classifier and logistic regression are the best to 

fit into this kind of problems. The reason for choosing Logistic regression over Naïve 

Bayesian classifier is the assumption of completely independent features in Naïve Bayesian 

classifier. Noteworthy that logistic regression is consistent with Naïve Bayesian classifier 

with this property but it is not rigidly tied to it. More precisely, logistic regression uses the 

conditional likelihood maximization algorithm that adjusts its parameters to maximize the 

fit to data; even if they were inconsistent with Naïve Bayes parameter estimates. Another 

reason is that it has been shown in a published work [30] that in several data sets logistic 

Figure 2.3 Under-fitting, Just-Right and Over-fitting 

This figure shows three examples of three different regression models applied on the same data set. These models 

represent under-fitting, Just-Right and Over-fitting from left to right respectively. Adopted from [105] 
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regression outperforms Naïve Bayes classifier when many training examples are available 

(and that was the case in this thesis).   

2.2.4. Gene Set Enrichment Analysis  

 

Even though clustering and classification have made a great contribution in the medical 

and pharmacogenomics fields, these methods are still based only on selecting a set of over-

expressed and a set of down-regulated genes to drive the model. Choosing such a set of 

genes to discern telltale biological clues is not without drawbacks [31]. As discussed in [31]  

some of the limitations that might rise are: (i) Sometimes the relative differences between 

two biological states are modest relative to microarray technology noise and thus produce 

no gene above the statistical significance threshold, (ii) Alternatively, sometimes a very 

long list of genes might satisfy the significance requirements making the biological 

interpretation a daunting task, (iii) Finally, the distressingly lack of consistency of the 

ranked list of genes for the same biological system between different labs.  

To tackle these limitations a method called Gene Set Enrichment Analysis (GSEA) 

has been proposed [31]. GSEA evaluates microarray data at the level of gene sets. These 

gene sets are to be defined based on prior knowledge which can be either from using the 

coexpression experiments or by obtaining them from databases or mining biomedical texts. 

As shown in Figure 2.4, assume that we have a ranked list of genes A or B where the genes 

have been rank-ordered according to their differential expression from the most up-

regulated at the top to the most down-regulated at the bottom. In addition, assume that 

there is a set of genes S that represents the query signature and contains a set of up-

regulated genes and a set of down-regulated genes based on prior knowledge. Then the 
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major contribution of GSEA is to determine whether the up-regulated query genes in the 

set S tend to occur toward the top of the list A and down-regulated genes in the set S tend 

to occur toward the bottom of the list A thus indicating high positive connectivity or vice 

versa indicating high negative connectivity. A zero connectivity score is assigned where the 

enrichment scores for the up- and down- regulated genes have the same sign indicating 

that the genes in the signature S are randomly scattered throughout the ranked list A. This 

method has become one of the most popularly used methods in drug mode of action 

discovery, cancer biomarkers detection and other phenotypic pathway analysis.  

 

2.3. Biomedical Text-Mining  
 

Text mining (TM) is an interdisciplinary field that combines knowledge amongst data 

mining, computational statistics and computer science [32]. Many techniques are being 

implemented in TM field including ontology, taxonomy creation, clustering, classification 

and document summarization [32]. Therefore the general idea for text-mining is to 

transform a bag of words or data objects into a structured data format based on term 

frequency and subsequently apply data mining techniques to infer knowledge. The major 

challenge for TM is the fact that texts, from computer point of view, are unstructured 

information that needs preprocessing and normalization techniques in order to be 

computationally meaningful data.  
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Figure 2.4: Gene Set Enrichment Analysis Overview  

This figure shows an overview for the whole GSEA concept. Panel A shows a set of genes ranked from the most 

positively relevant to the most negatively relevant to a particular phenotype (drug, disease or any others) in 

addition to a set of genes S with their location regarding the ranked list of genes (A and B). Panel B shows a plot of 

the running sum for S in the data set including the maximum deviation from zero which represents the actual 

enrichment score. Leading edge subset represents a set of genes that contributed more in improving the positivity 

of the enrichment score. Adopted from [15] 
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In general, biomedical TM can be defined as the computational discovery of new, 

previously unknown information, by automatically extracting information from different 

written resources [33]. TM integrates a broad spectrum of heterogeneous data sources and 

thus providing tools for analyzing, extracting and visualizing information, with the aim of 

helping researchers to transform biomedical data into usable information and knowledge 

[34]. Generally speaking TM consists of two major steps: information retrieval (IR) and 

information extraction (IE) [35] where each of which has its own role in achieving accurate 

and consistent text mining results.  

2.3.1. Information Retrieval 

 

The process of TM starts with IR that finds abstracts related to specific biological entities of 

interest. These entities can be genes, proteins, chemical compounds or diseases. There are 

two very common searching approaches in IR [36]: (i) rule-based or knowledge-based; and 

(ii) statistical or machine learning based. The rule based approach uses patterns that rely 

on basic biological insights or by encapsulating representative relationships between 

entities in what’s called frames. An example of such a frame <Drug A activate Protein C>. 

The statistical approach uses syntactic parse trees which can be decision based to classify 

related biomedical literature. More precisely, it builds decision tree using a set of training 

documents and then classify documents accordingly as being described in previous section.  

2.3.2. Information Extraction  

 

IE aims to extract pre-defined types of facts or relationships between biological entities. IE 

can roughly be divided into two approaches as well [36]: (i) co-occurrences based 
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approach, which identifies entities that co-occur within the text; and (ii) Natural language 

processing (NLP) based approach where the syntax (the orderly manner in which words 

are put together to form phrases and sentences) and semantics (the meaning that is 

implied by words and sentences) are combined together for more accurate predictions. As 

explained in [33] the NLP starts by taking the text to identify sentence and work 

boundaries, and a part of speech tag (noun or verb) is assigned to each word.  A syntax tree 

is then derived for each sentence to delineate noun phrases and represent their 

interrelationships. Simple dictionaries are subsequently used to semantically tag the 

relevant biological entities. Finally, a rule set is used to extract relationships on the basis of 

the syntax tree and the semantic labels.  

Noting that, co-occurrence methods tend to give better recall but worse precision 

than NLP methods [37] [38]. Therefore, those are assumed to be well suited as parts of 

exploratory tools because of their ability to identify relationships of almost any type of 

entities [39]. In addition, co-occurrence methods can also be used to extract a specific type 

of relationships such as activation, inhibition, phosphorylation and others. This is basically 

done by combining the entities together with the keywords in a customized text-

categorization system to identify the relevant abstracts or sentences [40] [41]. A drawback 

of these methods is that they have difficulties distinguishing between direct and indirect 

relationships (for example, whether a gene is directly or indirectly activated by a particular 

drug) [33].  
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2.3.3. Beyond NLP and Co-occurrences  

 

Even though co-occurrence and NLP have important contribution in knowledge discovery, 

more computational analysis still needs to be done for better understanding. Many 

methods have been proposed to go deeper in TM and infer some indirect relationships [42] 

[43]. Note that, all of these methods are predicting indirect relationships using co-

occurrences in a naïve way. For example if we want to investigate an indirect relationship 

between gene A and gene C then the method would first find the set of genes B that are 

related to gene A, then it will find the set of genes X related to gene B and finally predict a 

relationship between gene A and gene C if: i).  gene C ⊆ set of genes X ii). gene C ⊈ set of 

genes B. Furthermore, NLP-based IE for text-mining have not been popularly used because 

there is only few NLP systems that are able to accurately extract sufficient large number of 

direct relationships that allow for indirect relationships inferring. This is happening due to 

the fact that there is no full-text access to all published papers and some results might have 

been assumed as trivial and no one has ever published them [33]. Consequently, one can 

conclude that text-mining performance can be improved by integrating other sources of 

data that is not necessarily available in the text.  

2.4. Biological Data Integration  
 

Data mining approaches that integrate text-mining with other biological data sources do 

not only have the potential to predict indirect relationships, but they have the potential to 

make biological discoveries, to understand biological pathways, to interpret many genetic 

behaviors and to unveil new drug indications that are irretrievable with using text-mining 

approaches independently.  
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2.4.1. Gene List Decryption Based 

 

Most attempts to integrate text-mining with other biological data sources are performed 

either with the goal of enriching the list of up-regulated or down-regulated genes obtained 

from microarray. This is done because the list of up-regulated or down-regulated genes is 

very cryptic and requires lots of filtering and interpretation in order to be useful for 

knowledge discovery [44]. Therefore these methods were focusing on eliciting some 

correlation between these genes in order to understand the biological meaning of these 

differentially expressed genes in what’s called Gene Ontology. 

 Another attempt to understand the biological meaning of this list by using text-

mining was directed toward pathway analysis and/or regulatory network analysis. 

Pathway analysis mainly focuses on the functional, regulatory and physical interaction 

between genes instead of just summarizing a list of genes into some Gene Ontology terms. 

These attempts are basically based on mapping differentially expressed genes derived from 

microarray experiments onto precompiled pathways derived by manually analyze the 

literature [45]. KEGG database is one of the most popularly used tools for pathway analysis 

purposes.  Noting that, some tools like STRING [46] defines some algorithms to rank these 

pathways according to their relevancy to the gene list, because large genes list might 

produce large number of pathways as well. These pathways can be interconnected to build 

what’s called gene-regulatory network both by using microarray data source and text-

mining data source and combine them to result in a combined score represent the 

interaction between those genes [46]. 
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2.4.2. Gene Network Based 
 

Because of its robustness, networks formalize the major and the initial step for text and 

data integration. There are several valuable and exploratory tools that are being used to 

build protein networks based on text-mining and high-throughput experiments [46] [47]. 

In addition, some authors used networks to integrate different data sources to provide 

insights into the molecular basis of a disease. For instance, a literature-based protein 

networks can be integrated with genetic-linkage and gene-expression data to identify some 

marker genes for a disease, based on their interaction with genes that are already known to 

have a role in that disease (seed genes) [48]. The resulting molecular networks can be 

searched for sub-networks that may harbor disease-relevant genes and thus a better 

understanding for the disease pathophysiology. This can be done by using close nodes from 

graph theory.  

2.5. Drug Repositioning  
 

The repositioning of drugs, already approved for human use, mitigates the costs and risks 

associated with early stages of drug development and offers shorter routes to approval for 

therapeutic indications [2]. As the Nobel laureate and the pharmacologist James Black said, 

“The most fruitful basis for the discovery of a new drug is to start with an old drug.” 

Pharmaceutical companies save up to 40% of the overall cost of launching a drug to 

market by skipping many toxicological and pharmacokinetics assessments tests [3]. Many 

examples have shown the successfulness of drug repositioning include, the indication of 

retinoic acid for acute pro-myelocytic leukemia [49], the indication of thalidomide for 
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severe erythema nodosum leprosum  [49], the indication of cimetidine for lung 

adenocarcinoma [2] and the indication of miltefosine for the treatment of visceral 

leishmaniasis [50].  

To summarize, high-throughput microarray technology, biological databases and 

text-mining data integration process is a very powerful technique that can provide a closer 

insight into many biological problems including drug repositioning. Out of the different 

method proposed to integrate them, two methods are known to be most popularly used in 

that field [45]: (i) build a list of differentially expressed gene using microarray data and 

then use the text-mining techniques to prioritize this list of genes in regard to a particular 

disease, finally build the gene-regulatory network or run pathway analysis (ii) build a set of 

relationships between different biological entities (genes, diseases or drugs) using text-

mining techniques and validate these associations by resorting to microarray data. 

According to our knowledge, there is not any method that has been proposed to integrate 

the ranked list of genes obtained from high-throughput technology with the ranked list of 

genes obtained from text-mining for the purpose of knowledge discovery.  
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Chapter 3: Computational Techniques 
for Drug-Repositioning 

 

From the introduction we realized that with the huge amount of researches that are being 

done on disease and drug discovery, a huge amount of biomedical information are now 

stored in the web either as microarray data, scientific papers or databases. Since then, the 

prevailing approach to drug repositioning becomes based on utilizing these valuable data 

sources in screening libraries of lead compounds or diseases against biological targets of 

interest. This approach fits to the concept of molecular connectivity map which starts to 

gain a huge popularity in computational sciences. In computational biology, connectivity 

map can be defined as using a statistical measure in order to find positively or negatively 

connected biological entities (drugs, diseases or genes) based on specific features [10]. 

Noteworthy, that this important bio-computational concept have been used to build 

associations based on different data sources and different frameworks.  

For example Lamb et al. [10] built in a connectivity map to associate small 

molecules, genes and diseases using gene expression signature as their data source and 

enrichment set analysis as their statistical measure. From the other hand, Li J et al. [51] 

built in a connectivity map to associate disease related genes with drugs using molecular 

interaction networks and PubMed abstracts as their data source and regularized log-odds 

function as their statistical measure.    

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Li%20J%22%5BAuthor%5D
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3.1. Computational Methods for Drug Repositioning  
 

Generally speaking, many attempts have been proposed in the field of 

computational biology for the purpose of drug/disease or drug/target prediction and 

prioritization based on a particular connectivity score. In this section, I discuss some of the 

most popularly used ones: similarity based, microarray based, text-mining based and data 

integration based approaches. 

3.1.1. Similarity Based Drug-Disease Prediction (Chemogenomic Approach) 

 

Most approaches that fall in this category were developed to integrate many similarity 

measures to predict new drug-target or drug-disease associations. Drug-drug similarity, 

protein-protein similarity and disease-disease similarity are all integrated with a drug-

protein interaction network or drug-disease interaction network in order to predict new 

drug-protein or drug-disease associations  [52] [53] [54].    

Gottlieb et al. [55] developed a new approach “PREDICT” that can directly predict 

drug-disease associations including both FDA approved drugs and other molecules in the 

experimental phase. The algorithm works in three phases: (i) building five drug-drug 

similarity measures and 2 disease-disease similarity measures; (ii) building a classification 

features and subsequent learning classification rule that can distinguish between true and 

false drug-disease associations by using these similarity measures; and (iii) applying a 

logistic regression classifier to predict any new possible drug-disease associations. Thus for 

a given drug-disease association from the gold standard, the authors computed an 

association score by considering all the other known drug-disease association. Let K denote 
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the set of known drug-disease associations. Given an-unknown association between drug 

dri and disease dsj (dri, dsj), the algorithm would compute a prediction score using the 

following formula  
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Equation 3.1 

 

Noteworthy that the similarity scores were all normalized to be in the range between zero 

and one. The similarity measures that have been used in this work are: 

For drugs  

(i) Chemical Similarity: This is based on the Jaccard score between the drug’s 

fingerprints, that is, the ratio between the intersection and the union when 

considering each fingerprint as a set of elements.  

(ii) Side effect based: This is based on the Jaccard score between text-mining curated 

known or predicted side effects. 

(iii) Target sequence based: Based on Smith-Waterman sequence alignment score 

between different drug targets.  

(iv) Target Closeness in Protein-Protein interaction network (PPIN): This is based on 

the shortest path distance between each pair of drug targets in the protein-

protein network. Distances were transformed to similarity values based on the 

following formula: 
),(

),(
pjpibD

ji eAppS


      Where S(pi, pj) represents the 

similarity measure; D (pi, pj) is the shortest path between these proteins in the 

PPI network; and (A and b) are constants that need an expert knowledge. 
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According to the author’s cross validation experiment A can have a default value 

of e * 0.9 and b can have a value of 1.  

(v) GO based: This is based on the gene ontology similarity of drug targets.  

 

For Diseases 

(i) Phenotype similarity: text-mining based phenotype detection for diseases. These 

phenotypes have been extracted using OMIM database.  

(ii) Semantic phenotypic similarity: This one is based on the hierarchical structure 

of the HPO [56] database that map ontology nodes with OMIM diseases to 

construct a semantic similarity score. 

(iii) Genetic Based: This one is based on the Jaccard score between different disease’s 

signatures.  

Even though this technique attained high sensitivity and specificity in cross-validation 

experiments but it is not without limitations. Firstly, the proposed method used 5 different 

drug similarity measures and 3 different disease similarity measures. This will make it hard 

to include a drug without having its chemical structure, its side effects, its target’s 

sequence, its target (PPIN) and its target’s gene ontology. The same thing is applicable to 

diseases. Furthermore this method does not consider the similarity between drug’s 

molecular actions. It only considers the known targets for drugs to define similarities. 

Sometimes there might be hidden or unknown drug targets that are not considered in this 

study. In addition it might be the case that some drug-target information has been 

published in papers but without having them entered into drug-target databases that the 
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authors used. Finally this method does not map between the up/down regulated genes for 

drugs and diseases. This might result in a bias since drugs trigger its action on target genes 

and have a consequence effect on other off-target genes.  

3.1.2. Microarray Based Approaches  

 

From the moment microarray gene expression profiling was unleashed on the world it was 

obvious that biomedical research was going to change [57]. Gene expression microarrays 

have been regularly and broadly applied in clinical studies of human diseases. Comparative 

gene expression analysis of benign and malignant tumors, peripheral and secondary 

organs, mutated and un-mutated, chromosome trans-located and original are all used to 

study the molecular pathophysiology of a disease or diagnostic marker [7] [8] [9]. 

Microarrays have been also used to discover the molecular effect of drug compounds [10] 

[58] [2].  

Lamb et al [10] studied 164 distinct small molecule and perturbagens that have 

been selected to represent a broad range of toxicological effect. These expression profiles 

include U.S. Food and Drug Administration (FDA)- approved drugs, experimental drugs and 

other bioactive molecules. The authors created a reference gene-expression profiles by 

using a nonparametric fashion. Each profile was compared to its corresponding control by 

using z-score then all genes were ranked according to their differential expression relative 

to the control from the most up-regulated genes on the top to the most down-regulated 

genes on the bottom. Later on, the authors used a nonparametric, rank-based pattern 

matching strategy based on the Kolmogorov-Smirnov static which has been formalized in 

GSEA [31]. Once a researcher has a query signature, the system will work by finding the 
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similarity to each of the reference expression profiles in the data set. This similarity is 

basically trying to find whether each up-regulated query genes tend to appear near the top 

of the list and down-regulated query genes near the bottom (positive connectivity) or vice 

versa (negative connectivity), yielding a connectivity score ranging from +1 to -1.     

Noteworthy that the resulted high positive associated instances are having very 

similar mode of action to the instance from which the query signature is obtained. On the 

other hand, the resulted high negative associated instances are counteracting the effect of 

the instance from which the query signature is obtained. Therefore, if the query signature 

is referring to a disease, then all the negatively connected instances will be considered for 

further treatment investigation. The authors biologically validated that such approaches 

can be used to better understand the molecular mechanism of compounds i.e. identification 

of gedunin (triterpenoid natural product purified from medicinal plants) as an HSP90 

inhibitor. Figure 3.1 shows the whole process starting from having a query signature for a 

particular disease or drug ending by suggesting a list of drug that can be used to treat that 

particular disease.  

One drawback of this approach was their finding that signatures were conserved 

across cell types and settings, the thing that did not allow the exact understanding of the 

molecular effect of a specific drug or disease. 
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Figure 3.1  General Framework for the Connectivity Map Project 

This figure shows the whole framework for the connectivity map project. This framework needs to have a drug 

specific ranked list of genes called reference database and a query signature contains an up-tag and down-tag set of 

genes.  Once the signature gets dropped into the database, the system will compute the enrichment score between 

this signature and the ranked lists in the reference database. Finally the drugs will be ranked from the most positively 

enriched (indicating similarity) to the most negatively enriched (indicating dissimilarity). Adopted from [10].  

 

To tackle this problem F. Iorio et al. [15] reported another interesting work by 

using the same data in [10] for the purpose of building drug-drug network and identifying 

drug communities. The authors computed for each drug a “consensus” synthetic 

transcriptional response summarizing the transcriptional effect of the drug across multiple 

treatments on different cell lines and/or at different dosages. To do so, the authors sought 

to run a rank-merging procedure that first compares the ranked lists obtained from the 

same drug treatment using the Spearman’s Footrule similarity measure [59]. The algorithm 

then merges the two lists that are most similar to each other (the ranked lists with lowest 



51 
 

distance measure), following the Borda Merging Method [60]. This will result in a single 

ranked list that replaces the original two lists. This procedure keep on running in a 

hierarchical way until only one and representative ranked list remains to represent each 

drug. Mathematical description and an example of this procedure are provided in chapter 

4.   

This approach helped in capturing the consensus transcriptional response of a 

compound across different experimental settings and thus reducing non relevant effects 

due to toxicity, dosage and cell line. After obtaining a single and representative ranked list 

for each drug the authors defined a distance measure between every drug and all the other 

drugs based on GSEA. To find the distance between drug A and drug B the authors first 

considered the most 250 up-regulated genes (up250) and the most 250 down-regulated 

genes (down250) once from drug A ranked list and once from drug B ranked list. Then to 

find the enrichment score of these up/down tag from one drug (let’s say A) regarding the 

ranked list of the other (let’s say B) the authors used the following formula 
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  Equation 3.2 

 

Where TESA,B is the total enrichment score of the up-tag and down-tag signature from drug 

A regarding the ranked list of drug B. ESB is the enrichment score of either the up-tag or the 

down-tag of drug A regarding the ranked list of drug B. Noting that ESB ranges from -1 to 

+1. The closer the up/down tag is to the top, the closer is the value to +1. The closer the 

up/down tag is to the bottom, the closer is the value to -1.  
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TESA,B quantifies how much the genes in up250 are at the top of the ranked list of B and 

how much the genes in down250 are at the bottom of the ranked list of B. The closer these 

two statements are to the truth; the closer to zero is the value of TES.  After that they 

computed the TESB,A in the same way as it is not necessary that TESA,B= TESB,A. Finally the 

average distance between two drugs (DA,B) would be computed according to the following 
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  Equation 3.3 

 

This distance measure was the input for a community builder algorithm in order to 

construct drug communities.  

Another two interesting examples that used GSEA to build a direct drug-disease 

connection were the methods developed in [58] and [2]. Sirota M et al. [2] developed a 

framework where they extracted microarray expression profiles for 100 diseases including 

several human cancer cell lines. The authors then defined a signature (a set of significantly 

up-regulated genes and significantly down-regulated genes) for each of the 100 diseases 

using SAM method [20]. Then they statistically compared each of the disease signatures to 

each of the reference ranked list of genes developed in the Connectivity map project [10]. 

The authors computed an enrichment score for every pairing of drug and disease where +1 

indicates similar correlation of signatures and -1 indicates opposite signature. In other 

words, -1 enrichment score represents a contradicting behavior between the drug effect 

and the disease pathophysiology and thus there would be a paramount potential for this 

drug to treat that particular disease. To evaluate significance, the authors generated 100 

random drug ranked lists and measured their enrichment with each disease signature. 
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These randomly generated scores have been compared with actual enrichment scores for 

evaluation purposes. Biological validation has been applied on some of their results for 

example; the prediction of cimetidine as a candidate therapeutic in the treatment of lung 

adenocarcinoma. A drawback of this approach was diminishing or diluting the effect for a 

compound that has inconsistent effects on different cell lines.  

Using microarray data only would not clarify whether drug performance on a 

specific cell line (breast cancer that has been extensively used to measure transcriptional 

response of drugs in Connectivity Map) is relevant to all types of diseases [6]. In addition, 

relying on gene microarray data alone may fail to match disease and drug effects that are 

not manifested at the gene expression level [31]. Therefore, it was necessary to integrate 

microarrays with other data sources that can build associations between different 

biological entities to improve results. Many methods have been proposed in the field of 

text-mining that were able to build associations between biological entities in a score based 

ranking scheme that represent the likelihood of associations between these biomolecules. 

Most of these methods are discussed in the next section. 

3.2. Text-Mining Based Approaches  
 

TM approach has shown many successful stories in this field. As we discussed in the 

introduction, TM consists of two major steps, information retrieval (IR) and information 

extraction (IE) [35]. IR will try to find literature or abstracts related to a particular 

drug/disease/or gene specified by the user. IE is then used to tabulate the relevant entities 

or knowledge from the retrieved documents either based on the co-occurrence or by using 

natural language processing. Text mining approach has been widely used to connect 
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diseases, drugs and genes to build a connectivity map or a network between those entities 

[61] [43] [51].  

3.2.1. Regularized Log Odds Function Based TM 

 

Li J. et al. [51] proposed a computational framework to develop a disease specific drug-

protein connectivity map by integrating molecular interaction network mining and text 

mining techniques. The basic idea was to generate a list of disease-related proteins and a 

list of disease related drugs as two-attribute dimension for drug-target map. The proposed 

paradigm starts by incorporating disease-specific seed genes/proteins derived from prior 

knowledge which can be either from OMIM database, expert knowledge or a set of 

differentially expressed genes from microarray expression profiles. This seed of genes is 

improved by expanding and re-ranking them in the functional context through 

reprioritizing them in disease-related molecular interaction networks. For this reason, a 

protein-protein interaction database has been used to include all direct neighbors of seed 

genes. Then they reconstructed the molecular interaction networks between those proteins 

by just considering the extended list of the seed list proteins. The relevancy of every single 

protein has been determined by using the resulted protein-protein network according the 

following formula:  

 ))),(ln()),((ln(*)(  

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Where pi and pj are proteins belonging to the disease related interaction network NET. k is 

an empirical constant (k=2 in their study). Conf(pi, pj) is the confidence of the interaction 

between protein pi and pj. N(pi, pj)= 1 if pi interacts with pj and equals to zero otherwise. 
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Noting that, this parameter will assign a score for every gene indicating the likelihood of 

their association to a particular disease. After obtaining this ranked list the authors 

extracted all the abstracts that have mentioned any of these proteins. Using these abstracts 

they have computed an enrichment score between drugs and proteins according to the 

following formula 

 )*ln()*ln(   DPDPDP AbstAbstNAbstEnrichment  Equation 3.5 

 

Where AbstDP is the total number of abstracts where drug D and protein P have been co-

mentioned. AbstP and AbstD are the total number of abstracts in which protein P and drug D 

have been mentioned respectively. N is the total number of abstracts collected regarding a 

particular disease.  is a constant that have been added to avoid out-of-bound errors when 

either one of AbstDP,  AbstP or AbstD is equal to zero.  

A major limitation of this approach is that the scoring function is based on the 

connectedness of genes, where non-seed genes were not considered. This has shed the light 

to the conclusion that their results were biased toward seed genes. In fact, out of the top 

scored 20 genes, 19 were related to seed genes and only one was a novel prediction [61]. 

Trying to tackle this problem, Ozgür A et al. [61] developed different centrality measures 

based paradigm to prioritize genes without being biased toward the seed genes. This 

approach is discussed in next section.  

3.2.2.  Patterns Recognition based TM  

 

Another interesting approach that uses the concept of ranking biological entities regarding 

an association score based on text mining is PolySearch. Cheng D et al. [43] developed this 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ozg%C3%BCr%20A%22%5BAuthor%5D
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web-based text mining system for extracting relationships between human diseases, gene, 

mutations, drugs and metabolites. PolySearch displays links and ranks text, as well as 

sequence data in multiple forms and formats. A distinguished feature of PolySearch over 

other biomedical text mining tools is the fact that it exploits the presence of many other 

biological databases to improve the results.  

PolySearch employs a text ranking scheme to score the most relevant sentences and 

abstracts that associate query terms, association words and database terms. This ranking 

scheme is based on a pattern recognition system that was defined by the authors. A central 

premise to their ranking strategy was the assumption that the greater the frequency of co-

mentioning of two biological entities, the more significant is the association. In details, 

Polysearch identifies four different sentences R1, R2, R2 and R4 to compute the association 

score between the query word, the association word and the database word. R4 sentence is 

a sentence that contains one of the database terms (that is not necessarily related to the 

query word). R3 sentence is a sentence that has one of the database terms and the query 

word. R2 and R1sentences contain one of the database terms, one of the query terms and at 

least one association word. The only difference between R1 and R2 is that R1 has to pass 

one of the three patterns identified by the authors namely; compact patterns, general 

patterns and relaxed patterns. A brief description for every one of them is listed here:  

 Compact patterns: An association word (activate, inhibit, activation, inhibition …. 

etc.) and the required word (drug, disease, gene …. etc.) must be within 10 words of 

the query word from the user. Noting that a stop word such as “that”, “which”, 

“whereas” or “no” cannot be within this pattern.  
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  General patterns: All the mentioned words must be within 15 words of the query 

word where a stop word cannot be within this pattern. 

  Relaxed patterns: All the mentioned words must be within 40 words of the query 

word where stop words can be within this pattern.  

Finally R1 sentences will be given a value of 50, R2 sentences will be given a value of 25, R3 

sentences will be given a value of 5 and finally R4 sentences will be given a value of 1. All of 

these will be used to compute the Polysearch Relevancy Index (PRI) by simply taking the 

sum of these scores.  

Just like relying on microarrays alone, relying on text mining tools is not without 

some limitations. For example PolySearch uses a relatively simple dictionary approach to 

identify biological or biomedical associations. This means PolySearch cannot identify novel 

or newly named diseases, genes, or drugs. In addition, PolySearch only considers parsing 

published papers leaving no room for utilizing other data sources like microarrays or 

biological networks. Similarly, the authors in [51] suggested further improvements to their 

text mining approach by integrating experimental gene expression or protein expression 

data as their method had a paramount bias toward the initial seed genes.  

3.3.  Integrating Biomedical Text-Mining with Network Biology 

Different algorithms have been proposed in order to filter out un-necessary false positive 

genes and prioritize more important genes related to a particular disease or drug. That was 

a crucial step in order to decrease the amount of noise and lack of accuracy of the co-

occurrences based approaches in text-mining.  For the same particular reason it was 



58 
 

necessary to consider the fact that biological networks have been found to be comparable 

with communication social networks [62]. For example biological and communication 

networks share the scale-freeness property suggesting the necessity of exploiting social 

network analysis algorithms in studying and analyzing biological networks. Therefore, 

most attempts to integrate biological data were based on the concept of integrating a 

protein-protein interaction network together with a list of genes that can be extracted 

either from a text or is based on an expert point of view [51] [61] [63].  

Ozgür A et al. [61] developed a framework to alleviate the problem of being biased 

toward the initial seed genes. They integrated a text-mining curated protein-protein 

network that is related to a particular disease with social network analysis centrality 

measures to predict unknown disease-gene associations. To build the text-mining based 

protein-protein network the authors started by extracting a list of seed genes that is related 

to a particular disease from OMIM database. Then they used sentences parsing in order to 

build syntactic parse tree represents the syntactic constituent structure of a sentence. This 

tree has been used later to build a dependency tree that captures the semantic 

relationships between words belonging to a particular sentence. Dependency parses of the 

sentences that contain at least two seed or neighbor genes were extracted and the shortest 

path distances between genes were measured. Finally support vector machine classifier 

has been used to predict possible gene interactions. After building the disease specific 

protein-protein network the authors considered all the seed genes in addition to their 

neighbors for further analysis. Finally to prioritize genes related to a particular disease 

they have used degree, eigenvector, betweenness and closeness network centrality metrics. 

A brief description of every one of these metrics is provided here:  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ozg%C3%BCr%20A%22%5BAuthor%5D
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 Degree Centrality: It measures the number of nodes that are connected to a 

particular node. Nodes with higher degree centrality are more important.  

 Eigenvector Centrality: It measures how important is the node by measuring the 

importance of its neighbor nodes and not only counting the number of its 

neighbors. A node is more central if it is connected to many central nodes.  

 Closeness Centrality: It measures how close a particular node is to other nodes in 

the network. The smaller the distance to other nodes the higher its centrality is.  

 Betweenness Centrality: It measures how important is a particular node in 

keeping the network connected. In other words, it can be described as the number 

of shortest paths between pairs of nodes that run through the node of interest.    

The possible limitation for this approach is again the high dependency on published 

work. The authors only considered the protein-protein interactions that have been parsed 

from literature. Indeed there are many biologically validated protein-protein interaction 

networks that are available and might have also been involved in the study. Therefore, even 

with this integrative paradigm, information from microarrays and biological networks are 

not fully utilized to improve performance. Accordingly, our systematic approach is based 

on integrating text-mining, microarray expression profiles and biological network in a 

single paradigm with equal contribution from each data source to the final prediction 

score.  
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3.5. Contribution in More Details  
 

From all the mentioned above I sought that there is a great demand to integrate biological 

data from different resources to elicit better knowledge. More precisely, using microarray 

data only would not clarify whether drug performance on a specific cell line (say breast 

cancer) is relevant to all types of diseases. In addition, relying on gene microarray data may 

fail to match diseases and drugs that are not manifested at the gene expression level. In the 

suggested approach, these problems were tackled by integrating information from text-

mining that extract drug effect without any bias towards a specific cell line. On the other 

hand, using the text-mining based approaches is limited to find knowledge from published 

papers and leaving no room for utilizing other data sources like microarrays or biological 

networks that might result in some implicit predictions. In the suggested approach, these 

problems were tackled by integrating information from microarray data and biological 

networks. Finally the states of art integrative approaches are highly dependent on 

published work. For instance, biologically validated protein-protein interaction network 

and microarray data are not fully utilized to improve performance. Accordingly, the 

suggested approach is based on integrating text-mining, microarray expression profiles 

and biological network with a significant contribution of each data source to the final 

predictions.  

A ranked list of genes for each drug and each disease was first generated by using 

microarray expression data. Then another ranked list of genes for each drug and each 

disease were computed by using text-mining together with biomolecular network. The 
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ranked lists for each entity have been integrated into one and representative ranked list 

that have been used to build the drug-disease connectivity map based on enrichment 

statistical measure. As shown in Figure 3.2, the framework is divided into three phases 

where each phase is subdivided into many steps. Phase 1 majorly functions in defining the 

initial set of genes, phase 2 majorly functions in data collection, preprocessing and ranked 

lists building phase 3 majorly functions in enrichment computing and analysis. 

Phase 1 is subdivided into two major steps. In step1, genes that are biologically 

validated to be targets to the set of drugs and/or involved in the pathophysiology of the set 

of diseases were extracted. These genes formulated the seed genes for the suggested 

framework. In step 2, other genes that are functionally related to these genes were 

included by using a functional protein-protein network.  

Phase 2 is subdivided into three major steps. In step 1 microarray expression 

profiles, which are related to the set of diseases and drugs, have been extracted. In addition, 

the ranked list of genes for disease’s and drug’s samples were computed by simply 

comparing the control samples with the diseased or drug treated samples.  These genes 

have been ranked from the most up-regulated (at the top) to the most down-regulated (at 

the bottom). These ranked lists represent the microarray based ranked lists for drugs and 

diseases. In step 2 natural language processing was used to query the PubMed abstracts 

and found the co-occurrences between each gene and each disease or drug. More precisely, 

a set of keywords that represent an activation relationship and a set of keywords that 

represent an inhibition relationship were used together with biological entities to build co-

occurrences matrices. A relevancy score was computed to check whether there is an 
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activation or inhibition relationship between each gene and each drug or disease. 

According to their relevancy scores, genes were ranked from the most positively relevant 

(at the top) to the most negatively relevant (at the bottom). In step 3 pertinency scores for 

genes that had zero relevancy score with any drug or disease were computed. In other 

words, for each drug or disease, genes with zero relevancy scores were extracted and 

checked to determine whether they are correlated more with the up-regulated or the 

down-regulated genes related to that drug or disease.  By the end of this step, two ranked 

lists of genes for each drug and each disease were available for further analysis.  

Phase 3 is subdivided into two major steps. In step 1 each biological entity, drugs 

or disease, were represented by a single and representative ranked list of genes by 

combining its two computed ranked lists (microarray based and text-mining/network 

based) using Borda Merging method. In step 2 enrichment score between the up/down tag 

of each disease versus the ranked list of every single drug we found the enrichment score 

between the up/down tag of each disease versus the ranked list of each drug were 

computed. These scores were filtered by excluding all the un-significant connections and 

finally the performance was computed by comparing with a gold standard.  

  The data sources used in this study and the rationale behind using them are 

discussed in chapter 4.  
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In here, phase 1 starts by extracting all genes related to our set of drugs and diseases. These genes will be further extended by 

including other functionally related genes using a protein-protein interaction network to result in an extended list of genes. Phase 2 

starts by extracting the microarray data for drugs and diseases in addition to extracting the co-occurrences of these entities with 

genes and specified keywords using PubMed. This data will be further analyzed to result in a microarray and a text mining based 

ranked list of genes for each drug and each disease. In phase 3 the text-mining based and the microarray based ranked lists will be 

merged and an enrichment score will be computed between the up/down tags for each disease versus the ranked lists of drugs.  

 

Figure 3.2 Three Phase’s Flow Diagram of the Proposed Paradigm 
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Chapter 4: Data Collection, 
Normalization and Preprocessing 

 

Since the proposed approach was totally dependent on data with its different forms, this 

chapter was designed to discuss in details the process of collecting, preprocessing and 

normalizing this huge amount of data. This chapter describes all different databases that 

have been used to generate data including gene list, microarray gene expression profiles, 

text mining co-occurrences, and gene-gene network. In addition, this chapter describes all 

normalization algorithms and preprocessing steps that have been used for the purpose of 

generating the closest results to the truth. Finally this chapter digs deeper to indicate the 

scientific reason beyond choosing every single algorithm or any processing step. 

4.1. Generating Gene Lists 
 

For the purpose of generating the gene list to consider in this analysis we have reviewed 

some concepts regarding drugs and their targets in published literature. We started from a 

position where we wanted to understand the definition for each of them and therefore 

make our decision.   

A drug can be defined as a chemical substance that, when absorbed into the body of 

a living organism, alters normal bodily function through directly or indirectly affecting 

biomolecules called targets. Drug targets are biomolecules that are inhibited, activated or 

modulated upon drug inhalation, drug exposure, drug injection or oral administration of a 

drug. The efficiency or the ability of a drug or any other therapeutic substance in accessing 
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a target or changing its normal behavior is called the druggability of that particular target. 

Many experiments have been conducted for the purpose of studying the druggability of 

human genome. 

 In an experiment to quantitatively assess the druggability of human genome a 

conceivable results indicated that there is only 10% of druggable genes in human genome, 

10% are involved in disease’s pathophysiology and only 5% are both druggable and 

relevant to disease [64]. Therefore, genes that are related to drug’s mode of action or 

disease’s pathophysiology were included in this study.  This saves processing time and 

memory by excluding irrelevant genes from further analysis. Excluding irrelevant genes 

results in a clearer picture about drugs or diseases molecular action by getting rid of noise 

that might result from these genes. Finally to guarantee that there is no much information 

lost, other functionally related genes were included thereby reflecting better 

understanding for drug mode of action or disease pathophysiology. Later in chapter 6, the 

results show that including this list of gene would not really affect the performance of the 

predictive paradigm when compared to including the whole list of genes.  

To generate drug related genes, drugbank.xml file was downloaded from the 

DrugBank database [65]. A simple Java Xml Parser was used in order to extract all the 

targets that are related to the drug set. Similarly all disease related genes were extracted 

from OMIM database [66]. Finally homo_sapiens.interactions.txt file was downloaded from 

Reactome database [67]  to extract all the other genes that are functionally related to the 

seed list of genes. Therefore, I ended up having 2741 genes as pre-final list of genes. Out of 

these 2741, only 2379 genes, that have a corresponding probe-set in microarray platform 
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from which microarray data were extracted, were considered in further analysis. Later in 

the text, this set of genes (the 2379 genes) will be annotated as “Final list of genes”. 

4.2.  Microarray Data  
 

Microarray expression profiles in addition to statistical measures for its meta-analysis are 

increasing dramatically. For the purpose of satisfying the best knowledge retrieval strategy 

many facts must be taken in consideration. First of all, a researcher might consider that 

microarray expression profiles are available in multiple platforms using disparate 

technologies. Second of all, it would be important to consider that microarray expression 

profiles are accumulating in public repositories from different laboratories. This would 

raise an important point before using data directly; different laboratories means different 

platforms to generate data and most importantly different normalization algorithms to 

process data. Many experimental results have shown that result’s bias and inconsistency 

might result in incase any of these consideration has been underestimated in the analysis.  

4.2.1.  Disease’s Microarray Expression Profiles  

 

4.2.1.1.  Data Collection  

 

Before start generating expression profiles, it has been considered that the consistency of 

data sets generated using different platforms has been addressed previously and the 

results were confounding and conflicting [68]. For further assessment, Severgnini M et al. 

[68] designed a standardized strategy to compare transcriptional responses of cell lines 

using two different platforms. The chosen platforms have been selected from similar 

technologies where both of them have the same protocol and use the same chemical 
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substances to end up with microarray expression profiles. The results have clearly stated 

that using microarrays from different platforms will be platform-specific due to many 

experimental factors including; target preparation and processing, probe design, signal 

generation and others. This would need a lot of sequence analysis and standardization 

methods for the purpose of improving comparability between different platforms.  

To obtain expression profiles for set of diseases, it was crucial to consider a 

comprehensive database that store expression profiles covering diverse set of diseases and 

thereby Gene Expression Omnibus (GEO) was considered. GEO is a public repository that 

archives and freely distributes microarray, next generation sequencing and other forms of 

high-throughput functional genomic data submitted by the scientific community [69].  

At the beginning, a list of diseases that include almost all types of tumors in addition 

to other diseases like Diabetes Mellitus, Skeletal Muscle Disorder and Congenital Disorders 

was considered in the study. To avoid any possible bias that might result from using 

different platforms; only microarray experiments that have been scanned using Affymetrix 

Human Genome U133A Array platform (GPL96) were considered. The rationale behind this 

is because the largest source of drug’s microarray expression profiles uses GPL96 to 

generate data. 24 different diseases including 13 types of cancer have been considered for 

further analysis. Disease’s names, brief description, their microarray GEO accession 

numbers are all provided in Table 4.1.  Noteworthy that, GEO offers the opportunity to 

either extract the raw data files (un-normalized) or the previously normalized data files. 

Accordingly, raw data files (CLE files) for each experiment were extracted for the purpose 

of considering one normalization algorithm to process these data sets.  
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Table 4.1  shows disease’s names, GEO number and title of the disease expression profiles we extracted from GEO  

Disease Name GEO Accession Experiment Title  

Lung cancer GSE10072 
Gene expression signature of cigarette smoking and its role in lung 

adenocarcinoma development and survival 

Anemia GSE16334 
Expression data from normal and Fanconi anemia low density bone marrow 

cells 

Breast cancer GSE15852 Expression data from human breast tumors and their paired normal tissues 

Leukemia GSE22529 Gene expression profiles in CLL 

Nevus GSE3189 
Novel genes associated with malignant melanoma but not benign 

melanocytic lesions 

Melanoma GSE3189 
Novel genes associated with malignant melanoma but not benign 

melanocytic lesions 

Rheumatoid arthritis GSE12021 
Identification of inter-individual and gene-specific variances in mRNA 

expression profiles in the RA SM 

Osteoarthritis GSE12021 
Identification of inter-individual and gene-specific variances in mRNA 

expression profiles in the RA SM 

Osteoporosis GSE7429 Gene Expression of Circulating B Lymphocytes for Osteoporosis 

Ovarian cancer GSE6008 Human ovarian tumors and normal ovaries 

Prostate cancer GSE8218 Gene expression data from prostate cancer samples 

Sarcoma GSE21122 
Whole-transcript expression data for soft-tissue sarcoma tumors and control 

normal fat specimens 

Follicular thyroid carcinoma GSE27155 Human thyroid adenomas, carcinomas, and normals 

Papillary thyroid carcinomas GSE27155 Human thyroid adenomas, carcinomas, and normals 

Diabetes mellitus GSE25724 Expression data from type 2 diabetic and non-diabetic isolated human islets 

Liver cancer GSE2109 Expression Project for Oncology (expO) 

Colon cancer GSE2109 Expression Project for Oncology (expO) 

Congenital disorder GSE8440 
Expression data from Congenital disorders of Glycosylation type-1 patients 

(CDG-I) 

Glioblastoma GSE2485 Gene expression of pseudopalisading cells in human glioblastoma 

Huntington's disease GSE1751 Human blood expression for Huntington's disease versus control 

Hutchinson–Gilford Progeria Syndrome GSE3860 
Comparison of Hutchinson–Gilford Progeria Syndrome fibroblast cell lines to 

control fibroblast cell lines 

Polycystic ovary syndrome GSE5090 PCOS patients vs control subjects 

Duchenne muscular dystrophy GSE3307 Comparative profiling in 13 muscle disease groups 

Muscular Dystrophies GSE3307 Comparative profiling in 13 muscle disease groups 
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4.2.1.2.  Data Normalization  

 

In microarray technology, an mRNA molecule or a gene is represented on an array by a 

probe set composed of 10-20 probe pairs. Each probe pair is composed of a perfect match 

(PM) probe, a section of the mRNA molecule of interest, and a mismatch (MM) probe that is 

created by changing the middle base of the PM with the intention of measuring non-specific 

binding [70]. 

  After scanning the arrays hybridized to labeled RNA samples of interest (drug, 

disease, and control), intensity values PMij and MMij are recorded for arrays i=1,….m and 

probe pairs j=1,….,n for any given probe set. To define a measure of expression 

representing the amount mRNA species it is necessary to summarize probe intensities for 

each probe set. Many model-based approaches have been proposed to normalize and 

better represent the microarray expression data. Noting that, the outputs from these 

approaches are highly disparate as shown in Figure 4.1. Therefore, one can consider using 

a single normalization algorithm in case of running a systematic analysis that includes 

different data files from different laboratories. Many studies suggest that subtracting MM as 

a way of correcting for non-specific binding is not the best way to normalize microarray 

expression data. Empirical results demonstrate that mathematical subtraction does not 

translate to biological subtraction. In fact, MMs are found to be a mixture of probes for 

which (i) the intensities are largely due to non-specific binding and background noise and 

(ii) the intensities include transcript signal just like the PMs.  Log scale robust multi-array 

analysis (RMA) was one of the most robust models [70]. 
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RMA [70] assumes that each array has a common mean background level and it 

adjusts PM intensities to remove background effect using a transformation function. Then it 

normalizes the arrays using quintile normalization algorithm. Finally the expression 

measure for each probe set will be background-adjusted, normalized and log transformed. 

PM intensities follow a linear additive model 

 ijajeiPMijT )(  Equation 4.1 

 

For i=1…..m (number of arrays), j=1….n (number of probe-pairs) and z=1…..p (number of 

probe-sets). Where aj is log scale affinity effect for probes j=1…….J, ei representing the log 

scales expression level on arrays i=1…….I, and 𝜀ij representing an independent identically 

distributed error term with mean zero.   

In this thesis, RMA normalization algorithm has been used in order to normalize the 

microarray data. This is because RMA has been proven to have the lowest False Discovery 

Rate, among all other normalization algorithms, when it comes to predicting differentially 

expressed genes [70]. The CLE files from each experiment have been normalized 

independently using RMAExpress software (http://rmaexpress.bmbolstad.com/). After 

normalization, the expression intensities for genes included in the final list of genes were 

extracted. The average intensities for genes that are represented with more than one 

corresponding probe set were computed to represent the expression value for that gene. 

 

http://rmaexpress.bmbolstad.com/
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This figure shows the fold change estimates of gene expression for a data normalized with three different 

normalization algorithms. Circles and squares represent genes demonstrating 2 to 3 fold change. (Adopted from 

[70]) 

Figure 4.1: Differentially Expressed Genes Using Different Normalization 

Algorithms 
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4.2.2.  Drug’s Microarray Expression Profiles  

 

The Connectivity Map (CMap) [10] project was one of the richest projects regarding the 

availability and diversity of drug treated microarray expression profiles. In addition, most 

of the experiments have been done using the GPL96 platform indicating better 

comparability with the disease’s microarray expression profiles. The CMap website 

(http://www.broad.mit.edu/cmap/) contains a collection of genome-wide transcriptional 

expression data for different cells that have been treated with different drugs at different 

concentrations. As of January 10th/2012 CMap website was having a collection of 6100 

ranked list of genes that are related to 1309 unique compounds. To obtain the drug’s 

microarray based ranked list “rankMatrix.txt” data file was downloaded with its associated 

annotation file “cmap_instance_02.xls” from CMap website. Probe-sets ranks related to 

each chemical instance were extracted and again the rank for each gene was computed by 

averaging the ranks for all corresponding probe-sets. Finally for each drug, the gene rank 

score was normalized to be from 1 to 2379.  

4.3.  Generating Text Mining Data  
 

For the purpose of running text mining experiment, it was crucial to consider a 

comprehensive database that almost covers and stores all papers in the biomedical field. 

The reason beyond that is the need to find all possible co-occurrences between drugs, 

diseases and genes to formularize an idea about the connectivity between them. All the 

required properties that can best fit the model were found in PubMed database.  
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PubMed is a service of the US National Library of Medicine that provides access to 

abstracts for medical, nursing, dental, veterinary, health care and preclinical sciences 

journals. Furthermore, PubMed provides many services that make it easier to run 

systematic analysis, for example: (i) it provides a web service that enables users to 

automatically run queries on their server, and (ii) it provides a service to automatically 

include all synonyms for the entered biological entities. This property is with no doubt a 

very distinct property because biological entities tend to have different synonyms and 

publications do not consider a common name for a particular entity.     

4.3.1.  Obtaining the Drug-Gene and Disease-Gene Co-occurrences  

 

Using PubMed I searched for the co-occurrences between two entities and a keyword at a 

time. More specifically, each query contains a drug or a disease, a gene and a keyword. 

These keywords were divided into two major sets; a set of keywords representing 

activation relationship between drug/disease and a gene (activate; agonist; cofactor; 

synthesis; trigger; induce) and another set representing inhibition relationship between a 

drug/disease and a gene (antagonist; block; deactivate; inactivate; inhibit; suppress). In a 

previous study these keywords have been curated manually and validated to have a role in 

reflecting association relationships between different biological entities [43]. This step has 

resulted in two lists of occurrences between the mentioned entities once with activation 

relationships and once with inhibition relationships.  

Noteworthy, that all synonyms that are suggested by PubMed were considered 

while querying the database. For example when considering the abstracts that contain 

topoisomerase I gene, prostate cancer and an activation keyword, the entered query would 
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be “Top1 AND prostate cancer AND activation AND Homo Sapiens” and in PubMed it would 

be “Top1[All Fields] AND ("prostatic neoplasms"[MeSH Terms] OR ("prostatic"[All Fields] 

AND "neoplasms"[All Fields]) OR "prostatic neoplasms"[All Fields] OR ("prostate"[All 

Fields] AND "cancer"[All Fields]) OR "prostate cancer"[All Fields]) AND activation[All 

Fields] AND ("humans"[MeSH Terms] OR "humans"[All Fields] OR ("homo"[All Fields] AND 

"sapiens"[All Fields]) OR "homo sapiens"[All Fields])”.  

4.3.2.  Obtaining the Gene-Gene Network  

 

Since there were few gaps in the ranked list of genes obtained from text mining, a gene-

gene network was used to fill out these gaps. For this purpose, it was important to consider 

a comprehensive database that has high sensitivity in detecting these gene-gene 

interactions; thereby STRING database [46] was used.  

STRING is a database and a web-tool dedicated to protein-protein interactions, 

including both physical and functional interactions. STRING is a meta-resource database 

that weights and integrates information from numerous sources. It uses many 

experimental repositories, computational prediction methods and biomedical text 

collection and augments those into a single confidence score. As a text mining source, 

STRING parses a large body of scientific texts and all abstracts from PubMed. The authors 

searched for statistically significant co-occurrences of gene names, and used Natural 

Language Processing to included possible semantically related genes.   

In this thesis, the final list of genes were dropped in STRING database and text mining 

based interactions with confidence score >0.5 were considered. This confidence score has 
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been defined by the authors [46] as being the minimum score to be considered as high 

confidence based on intensive experimentations and cross validation analysis.  
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Chapter 5: Building the Connectivity 
Map 

For the purpose of building the connectivity map using GSEA, it was crucial to build ranked 

list of genes based on their relevancy to a particular disease or drug. This chapter describes 

the process of obtaining the microarray based and text mining based ranked list of genes 

for drugs and diseases. In addition, it describes the rank merging method that have been 

used in order to integrated the text-mining based and the microarray based ranked list of 

genes for every single entity.  Furthermore, this chapter discusses in details and with 

mathematical explanation the GSEA. It also describes all possible combinations and 

experiments done in order to generate different connectivity maps for the purpose of 

comparing performances of these combinations. Finally this chapter describes the process 

of performance evaluation with a detailed description for process of generating the gold 

standard.  

5.1. Obtaining Microarray Based Ranked Lists  
 

As mentioned in chapter 2, microarray needs to have a set of replicas representing query 

samples and a set of replicas representing control sample. Many statistical measurements 

have been proposed in order to compare the expression value for every single gene in two 

biological conditions and finally results in a score to represent the level of differential 

expression for that gene. Because microarray data for drugs and diseases have been 

generated from two different sources in two different forms, it was unfortunate to use two 

different methods to generate the ranked lists for those drugs and diseases.  
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5.1.1.  Obtaining the Microarray based Ranked List of Genes for each Drug 

 

Drug treated microarray data was available in the form of ranked lists of genes instead of 

query/control samples traditional data form. The authors in CMap project [10] have 

already compared each profile to its corresponding control by using z-score. Therefore, all 

genes were ranked according to their differential expression relative to the control from 

the most up-regulated on the top to the most down-regulated on the bottom and posted the 

ranks in their website as described in previous chapter.    

Having 6100 expression profiles for 1309 compounds indicates the availability, in average, 

of 5 expression profiles to represent each compound. Therefore, it was necessary to use an 

effective and an already validated method to merge these profiles and get a single and 

representative ranked list for each compound. For this purpose, a previously described 

merging technique in [15] was used. This hierarchical merging procedure that is explained 

in figure 5.1 started by measuring the Spearman’s Footrule similarity measure [59] 

between all the instances belonging to one drug according to the following formula: 

 

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),(),(),(  Equation 5.1 

 

Where m represents the number of probe-sets, x and y represent two different instances 

that belong to a single drug, r(i,x) represents the rank of gene i  in instance x and r(i,y) 

represents the rank of gene i  in instance y.      
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Figure 5.1 Example on Gene Ranked Lists Merging 

This figure shows an example of merging different ranked lists belonging to a particular instance using Borda 

merging method. In step one the algorithm will compute the Spearman’s Footrule Measure. Then the algorithm 

would start by merging the two closest ranked lists using Borda Merging method. The algorithm will keep on 

running in a hierarchical way until one and representative ranked list remain to replace that drug. 
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Then the method merges the two lists that are the most similar to each other in a 

hierarchical way following the Borda Merging Method. For each gene i, a score pi was 

computed from merging instance x and instance y according to the following 

 )()( yrixripi   Equation 5.2 

                                                                                                                                                                                                                                              

where r represents a previously defined function that has been considered as a summation 

function. Finally all genes have been ranked according to their pi value in an ascending 

order.  

5.1.2. Obtaining the Microarray based Ranked List of Genes for each Disease 

 

To obtain the ranked list of genes (according to their differential expression) for each 

disease, SAM statistical measure was used [20]. SAM identifies genes with significant 

changes between healthy and diseased samples by assimilating a set of gene-specific t-

tests. Each gene is assigned a score that depends on the ratio between the change in that 

gene expression and the standard deviation across the repeated measurement for that 

gene. Later on, genes with a score greater than specific threshold are selected as being 

potentially significant. The relative difference score d(i) is computed for every single gene 

according to the following formula 

 
sois
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)(  Equation 5.3 

 

Where )(ihx and )(idx are the average levels of expression for gene i  in the healthy and the 

diseased samples, respectively, )(is  is the standard deviation of repeated expression 

measurements for gene i  and finally so is a positive constant that has been added to ensure 
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that the variance of d(i) is independent on the value of gene expression. Using this score, all 

the genes have been ranked from the most positive (at the top) to the most negative (at the 

bottom).  

5.2.  Obtaining Text-Mining Based Ranked Lists of Genes 
 

In chapter 4, the process of generating three different co-occurrences matrices was 

described. These three matrices were used to build text-mining based ranked list of genes. 

The first two matrices have been generated by querying PubMed for co-occurrences 

between a drug/disease, a gene and activation keywords. The second two matrices have 

been generated by querying PubMed for co-occurrences between a drug/disease, a gene 

and inhibition keywords.  The same have been applied for the third two matrices but with 

finding co-occurrences without using any keyword.  

Further analysis and normalization techniques have been applied on these matrices 

to get the desired ranked lists of genes. All of that have been done based on the assumption 

that if a gene co-occurs more frequently with a drug/disease and activation keywords then 

it is more probable that this drug/disease triggers activation action on that gene. On the 

other hand, if a gene co-occurs more frequently with a drug/disease and inhibition 

keywords then it is more probable that this drug/disease triggers inhibition action on that 

gene. The reason for integrating these ranked lists with microarray ranked lists is based on 

the assumption that building a ranked list of genes from other source (text mining in this 

case) might have the potential of filtering and reprioritizing the microarray based ranked 

lists. Meanwhile microarray based ranked lists might have the potential of filtering and 

reprioritizing the text mining based ranked lists. This will indeed result in integrated 
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ranked lists that contain information from both sources for the purpose of getting better 

accuracy measures.   

5.2.1.  Generating In-Complete Ranked Lists of Genes   

 

Because searching for co-occurrences is vulnerable to false positives, co-occurrences 

between drugs/diseases and genes without using any keyword were also generated. This is 

to make a more precise idea about the general co-appearance of those entities together. 

Later on, relevancy score was computed to make a final judgment about the relationship 

between disease/drug and a gene.  

The rest of this section explains the role of finding the relationship between drugs 

and genes; meanwhile it is important to consider that the same technique has been applied 

for finding the relationship between diseases and genes. Assume that AC (i, j) and IN (i, j) 

represent two matrices with i genes and j drugs obtained by using activation and inhibition 

keywords respectively. Assume that GE (i, j) represents a matrix with i genes and j drugs 

obtained by finding the co-occurrences without using any keyword. Then the relevancy 

score (RE) between gene x and drug y is obtained according to the following 
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yxRE   Equation 5.4 

 

Noting that, this score was used to investigate whether the gene is more enriched to that 

drug with the activation keywords or the inhibition keywords. After making a judgment by 

using this formula, another parameter was added to give the priority for genes with more 
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co-occurrences with a particular drug to move to extremes (either to get more positive RE 

score or more negative RE score). Thus the normalized relevancy score (NRE) would be  

  ),(),( yxREyxNRE  Equation 5.5 
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negative and equals to zero otherwise. This normalized score has been used to compute 

pertinency score for genes with zero relevancy scores regarding any drug or disease as 

shown in the next step.  

5.2.2.  Integrating Network Biology for Complete Ranked List of Genes 

Generation 
 

The co-occurrences based text mining approach, used here, has resulted in zero co-

occurrences for some genes in relevant to particular drugs or diseases. That is to say, some 

genes have never been published in literature with some drugs or diseases. Accordingly, 

these genes were having zero relevancy scores with those drugs or diseases. To assign a 

score for these genes, it was crucial to consider if those are related to over-expressed genes 

or downregulated genes, in relevant to a particular drug/disease, by exploiting the concept 

of network biology. This network was extracted from STRING database where gene lists 

represents the nodes and an edge links two genes if they have an interaction confidence 

with more than 0.5.  

To check whether genes with zero NRE are more correlated with overexpressed or 

down-regulated genes, a pertinency score (PS) was computed. This score is computed 



83 
 

based on the correlation of that gene with the positively relevant genes, negatively relevant 

genes and their non-zero relevancy scores. Therefore, the pertinency score PS(x, y) for gene 

x in terms of drug/disease y is computed according to the following formula:  
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Where gene x is any gene that has zero relevancy score with drug/disease y, n represents 

the number of positively relevant genes in terms of drug/disease y, m represents the 

number of negatively relevant genes in terms of drug/disease y, Corr (x,i) is the weight of 

the edge in the gene-gene network obtained from STRING database between gene x and 

gene i, NRE(i,y) is the normalized relevancy score of gene i in terms of drug/disease y and 

 is a positive constant that is equal to 

Noteworthy that, because PS for genes with non-zero relevancy scores was set to 

NRE, parameter was added to guarantee that genes with zero relevancy scores would not 

take more positive or negative PS than genes with non-zero relevancy scores. In other 

words, the priority to move to extremes was given for genes with non-zero NRE. This 

process has been repeated in an iterative way for 5 times until all genes obtained a non-

zero PS. Finally all genes have been ranked according to their PS.  

Pertinency score ranges in its value from a high positive score but with less 

positivity than the minimum positive NRE to a high negative score but with less negativity 

than the maximum negative NRE. High positive and high negative scores indicate a better 

probability for a particular gene to be positively or negatively, respectively, relevant to a 
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particular drug or disease. Figure 5.2 shows the different parameters that can play a role 

in finding a pertinency score for genes with zero NRE.  In addition, it shows three possible 

scenarios where pertinency score for a particular gene z might be high negative, high 

positive or close to zero in relevant to drug A, drug B, and drug C respectively. The two 

major parameters that affect the pertinency score for gene z are its weighted correlation 

with positively relevant or negatively relevant nodes in addition to their non-zero 

relevancy scores. Up to this point two ranked lists, microarray based and text-mining based 

lists, were available for each drug and each disease. 

5.3. Obtaining Integrated Based Ranked Lists  
 

After finding the microarray based and the text mining based ranked lists, they were 

merged in a representative ranked list of genes for drugs and diseases. Borda merging 

procedure was implemented using two functions; the geometric mean and the arithmetic 

mean. 

5.3.1. Geometric Mean  

 

The geometric mean is a type of mean or average, which indicates the central tendency or 

typical value of a set of numbers computed by taking the nth root of the cross product of n 

numbers. For each drug and disease we computed a score for each gene that is equal to 

geometric mean of both scores; the text mining based and the microarray based, according 

to the following formula 

 ScoreTextScoreMicMeanGeo _*__   Equation 5.7 

 

http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Average
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This figure shows different parameters and scenarios in defining a pertinency score for genes with zero relevancies related to 

a particular drug/disease. In the three cases, d nodes represent genes that have been found to be negatively relevant; u nodes 

represent genes that have been found to be positively relevant and z node represents a gene that has been found to have a 

zero relevancy. Red and green nodes represent the genes that have been found to be positively or negatively relevant, 

respectively, and they are directly interacting with gene z based on STRING database. Noting that, the two major parameters 

that affect the pertinency score for gene z are; its weighted correlation with u nodes or d nodes in addition to their non-zero 

relevancy scores with a particular drug. The more correlated is gene z with u nodes, and the more u’s are positively relevant 

to a particular drug the more chance that gene z will have a positive pertinency score with that drug. The more correlated is 

gene z with d nodes and the more d nodes are negatively relevant to a particular drug the more chance gene z will have a 

negative pertinency score with that drug. Then from the example above we assumed that gene z would most probably have 

high negative score, high positive score or a close to zero score regarding drug A, drug B or drug C respectively.    

Figure 5.2. Three Possible Scenarios for Pertinency Score Value 

Together with Parameters Affecting this Value. 
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5.3.2. Arithmetic Mean  

 

The arithmetic mean is a type of mean or average, which indicates the central tendency of a 

collection of numbers taken as the sum of the numbers divided by the size of the collection. 

For each drug and disease we computed a score for each gene that is equal to arithmetic 

mean of both scores; the text mining based and the microarray based, according to the 

following formula 
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
  Equation 5.8 

 

Finally all genes have been ranked according to their Arith_Mean score.  

 

5.4.  Computing Enrichment Scores  
 

To connect drugs and diseases based on the final ranked list of genes in both of them; a 

modified version of GSEA, previously described in [2], was used. More specifically, the 

enrichment score between a specific disease signature composed of up-tag and down-tag 

and a ranked list of genes for a drug were computed. For each tag (up or down), 

enrichment score (ENS) was computed by computing two variables esup and esdown 

independently.  

For simplicity I will be talking about computing esup and the exact same thing has 

been applied to esdown. In addition, I will explaining the rule of finding the connection 

between one disease signature and one drug ranked list of genes and the same is applicable 
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for global connectivity measurements. Let n be the total number of genes in the reference 

drug ranked list (in our case n=2379 or n=22283), let s be the number of genes in the 

selected up-tag disease signature and let S represents the set of up-tag genes (in our case 

s=25 or s=250). First a vector V of the position (1….. n) of each gene in the disease signature 

in regards the ranked list of a drug is constructed.  Those values were sorted in an 

ascending order such that V(j) is the position of gene j where gene j ∈ S for j =1, 2, …. s. Then 

two parameters 
upa  and 

upb are computed as the following 
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Later on, the following was considered to compute esup:  

If 
upa > 

upb , then esup is set to
upa . Else esup is set to -

upb .  

As mentioned earlier, esdown is computed in the same way to end up having esup and esdown 

for each disease signature against a ranked list of genes belonging to a particular drug. 

Finally ENS is set to zero if esup and esdown have the same algebraic sign, otherwise ENS= esup 

- esdown. See supplementary material in [10] for more details.  

5.5.  Performance Analysis  
 

After building the initial connectivity map, it was crucial to investigate two major metrics to 

analyze the performance of the proposed paradigm. Firstly, it was important to compute 
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the significance of the obtained associations and get rid of insignificant ones. Secondly, it 

was important to compare prediction results with real life gold standard to check whether 

results were or were not consistent with some already approved and well known 

associations.  

For the first task, one sample t-test was used to check whether the predicted 

association scores are significantly higher or significantly lower than randomly generated 

scores. For the second task, a gold standard of previously known drug-disease associations 

was collected and compared with the set of the predicted associations to compute some 

performance measures that are described later in this chapter.  

5.5.1.  Random Samples Generation 

 

To run the one sample t-test and thus determine the significance of the observed 

associations it was necessary to compute some randomly generated associations and 

compare them with the observed ones. For this reason, 200 random disease signatures 

were generated each of 50 genes length. This has been done by randomly selecting 50 

genes from the whole set of genes and the process was repeated for 200 times. In each run, 

25 genes were randomly selected to represent the set of up-regulated genes and the other 

25 were representing the set of down-regulated genes. Enrichment scores have been 

computed for each randomly generated up/down tag versus the ranked lists of drugs. 

Therefore, each drug was having a set of 200 randomly generated enrichment scores 

(RGES) with the randomly generated signatures. The RGES relevant to each particular drug 

were tested for normality and all of these were satisfying normal distributions.    
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5.5.2.  Significance Analysis   

 

One sample t-test has been used to test for the significance of association and to check 

whether the observed association score was significantly higher or lower than the 

randomly generated scores. The reason for choosing t-test but not z-test is that because the 

variance of the population is not known. Several steps have been done in order to obtain 

the results and conclusions for t-test for every single association score.  

5.5.2.1. Null (HO) and the Alternative hypothesis (H1) 

 

H0: μobserved= μrandom 

H1: μobserved≠ μrandom 

Because the purpose of the test was to check if the randomly generated scores are 

significantly different than observed scores.  

5.5.2.2. State the decision rule  

 

In this step, α was set to 0.05 and degree of freedom was set to n-1 where n represents the 

number of randomly generated samples (200 in this case). Critical value was computed 

using the value of α together with the degrees of freedom. Noteworthy that the confidence 

interval is computed according to the following formula  
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Where μrandom represents the average of the randomly generated score, s represents the 

standard deviation of the randomly generated scores and n represents the number of 

randomly generated samples. Thus if the t-score for a particular prediction score is greater 

than the positive critical value or is less than the negative critical value, then the null 

hypothesis is rejected and the prediction score is assumed to be significant. 

Mathematically, the null hypothesis is rejected where 
1,

2
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n
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Where μobserved represents the actual association score, μrandom represents the average of the 

randomly generated score, s represents the standard deviation of the randomly generated 

scores and n represents the number of randomly generated samples.  

5.5.3.  Extracting Gold Standard  

 

In this thesis, the performance of the proposed paradigm was tested at two different levels 

where each of which was having its own gold standard.  

In the first level, I wanted to show that using integrated ranked list of genes, as 

input to GSEA, would output better results than considering ranked lists of genes from 

microarray or text-mining independently. Furthermore, I wanted to investigate the effect of 

considering subset of genes in this analysis rather than considering the whole set of genes.   

For this purpose two different data sources were used to build the gold standard. 

The first was PolySearch (http://wishart.biology.ualberta.ca/polysearch/index.htm) 
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[43] because it computes a relevancy score that does not only rely on co-occurrences but it 

defines a pattern recognition system instead. From PolySearch, connections with non-zero 

relevancy scores were obtained by simply inputting disease’s names one by one in the 

server and retrieve all related drugs from that tool. In here, the automated disease 

synonyms function was on for all diseases. Finally, all drugs with corresponding synonym 

in the drug list, in this study, were considered. To avoid being biased toward text-mining 

approach, another set of associations that have been previously used by Gottlieb A et al 

[55], were included. The authors used the drug-disease associations that are stored in the 

registry of federally and privately supported clinical trials (RFPSCT) conducted around the 

world (http://clinicaltrials.gov/).   

In the second level, I wanted to compare the proposed paradigm with one 

approach from each of the previously mentioned categories for drug repositioning. More 

precisely, I wanted to compare the proposed method with a text-mining based approach, a 

microarray based approach and a similarity based approach.  

For this purpose, the proposed method was compared with PolySearch [43], 

ConnectivityMap [10] and PREDICT [55] since those are one of the most robust methods in 

text-mining, microarray and similarity based categories, respectively. The gold standard 

was built according the following scenario. Let PS, CM and PR denote three different drug-

disease association sets that were generated using PolySearch, ConnectivityMap and 

PREDICT methods, respectively. Let G= {PS} ∪ {CM} ∪ {PR} and let GX denote the set G 

excluding set X. Therefore the proposed paradigm was compared with PolySearch, 

http://clinicaltrials.gov/
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ConnectivityMap and PREDICT, independently, using three different gold standards; GPS, 

GCM and GPR, respectively.   

Noteworthy that in both levels, the gold standard should not be mistaken for true 

confirmed drugs with therapeutic or toxicological values. Instead, it provides an unbiased 

disease-drug associations list for performance evaluation purposes only.   

5.5.4.  Performance Measures  

 

Finally after considering significant connections, the predicted set of associations was 

compared with the gold standard using different performance test measures. Before 

introducing these measurements, it is worthy introducing several terms that are commonly 

used along with these measurements namely; true positive (TP), true negative (TN), false 

negative (FN), and false positive (FP). Let us assume that MT represents the set of 

associations predicted using the suggested model that is going to be compared with gold 

standard G.  Then, if an association (Dri, DsJ) ∈ MT ∧ (Dri, DsJ) ∈ G then it is considered to be 

TP. Similarly, if an association (Dri, DsJ) ⋶ MT ∧ (Dri, DsJ) ⋶ G then the test result is TN. Both 

TP and TN suggest a consistent result between the gold standard and the proposed 

paradigm. However, if (Dri, DsJ) ∈ MT ∧ (Dri, DsJ) ⋶ G, then the association is a FP. 

Conversely, if (Dri, DsJ) ⋶ MT ∧ (Dri, DsJ) ∈ G then the association is a FN. Both FP and FN 

indicates that the test results are opposite to the actual set of associations. 

Using these terms, performance measurements were done according to the 

following: (1) Sensitivity: is the percent of correctly identified drug-disease connections 

and equal to (TP/ (TP + FN)). Sensitivity of 1 means that each association in the gold 

standard was correctly identified as so in the prediction algorithm. (2) Specificity: is the 
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percent of correctly identified non drug-disease connections and equals to (TN/ (TN+ FP)). 

A specificity of 1 means that every association that is not in the gold standard, was 

correctly predicted to be so in the prediction algorithm. (3) Accuracy: is the proportion of 

correctly predicted drug-disease associations and equal to (TP + TN)/ (TP + TN + FP + FN). 

An accuracy of 1 means that all predicted associations are actually in the gold standard and 

all the non-predicted associations are actually not in the gold standard. (4) Precision: is 

the probability of correct positive drug-disease predictions and equals to (TP/ (TP + FP)). A 

precision of 1 means that every association predicted by the algorithm, does actually 

belongs to the gold standard.      

Results for these performance measures and further biological discussion of the 

obtained results are discussed in chapter 6.   
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Chapter 6: Results and Discussion 

The enrichment technique discussed in chapter 5 takes a set of overexpressed genes (up-

tag), a set of down-regulated genes (down-tag) and finds the enrichment score between 

these signatures and the ranked list of genes for the set of drugs as shown in figure 3.2. A 

high negative score between a specific drug and a specific disease indicates that this drug 

might be used for the treatment of that disease. From the other hand, a high positive score 

indicates that both the drug and the disease share the same molecular action and thus this 

drug might have the same pathological effect of that disease.  

6.1. Evaluating the Connectivity Map  
 

Four different connectivity maps were generated using the enrichment analysis measure. 

The first two have been generated by using the microarray based drug ranked gene lists 

with the microarray based disease signatures once by using the 2379 genes and once by 

using the whole set of 22283 probe-sets namely; Mic_2379 and Mic_22283 respectively. 

The third one has been generated by using the text mining based drug ranked gene lists 

with the text mining based disease signatures namely Text-Mining. The forth one has been 

generated using arithmetic mean since it outperformed the geo-metric mean one.  Results 

are shown in Figure 6.1.   

As indicated previously, 2%-4% of the gene list was enough to represent the up-tag 

and the down-tag [15] [10] and thus we decided to use most 25 up-regulated genes as up-

tag and the most 25 down-regulated genes as down-tag. To further assess the usability of 

this percentage, this experiment was repeated on different lengths from (15-50) in an 
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interval of 5. The results show that considering more than this percentage would result in 

high false positive rate. On the other hand, considering less than this percentage would 

result in very small number of predictive associations.  

Many things can be inferred by looking at Figure 6.1. First of all it has been found 

that all methods that have been used to build the connectivity map have reported a low 

precision or positive predictive score value. This might be due to two reasons. The first is 

the unsupervised nature of the GSEA that tends to build unrealistic associations between 

biological entities. The second might be related to the nature of the gold standard obtained 

in this experiment. Firstly, the gold standard was not big enough to report the actual 

associations between the 406 drugs and the 24 diseases in the dataset. Secondly, the gold 

standard came from two different sources that have totally different nature than the GSEA. 

Accordingly the false positives were way higher than the true positives even with one of 

the most popularly used methods; the microarray expression profiles based method.   

6.2. Comparing Different Connectivity Maps 
 

Figure 6.1 shows that using just a sub-set of genes that are related to the set of drugs and 

diseases does not really harm microarray performance results. For instance, the 

connectivity map that has been generated using just 2379 genes shows comparable 

performances with the one that has been generated using the whole expression profiles 

with 22283 probe-sets. Indeed Mic_2379 shows better sensitivity and specificity when 

compared to Mic_22283.  
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Figure 6.1 Performance results for four different connectivity maps 

 This figure shows the Sensitivity, Specificity, Precision and Accuracy for four different methods that have been used to 

generate drug-disease connectivity map. In here Mic_2379 and Mic_22283 represents connectivity maps that have been 

generated using microarray data only once by considering 2379 genes and once by considering the 22283 probe-sets. Text-

Mining represents the connectivity map that has been generated using text-mining only. Arith_Integ represents the 

connectivity maps that have been generated using a Borda merged ranked lists that integrate both the text-mining and the 

microarray based ranked lists respectively.       
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On the other hand, Figure 6.1 shows that the connectivity map with the best sensitivity 

measure is the one that has been generated by using an integrated rank list of genes. The 

arithmetic mean integrated reported a sensitivity score of 80% whereas Mic_2379, 

Mic_22283 and Text-Mining reported sensitivity scores of 58%, 54.5% and 62%, 

respectively. Furthermore the integrated ranked list based method has reported better 

precision, specificity and accuracy scores when being compared with other methods. This 

indicates the superiority of the proposed paradigm in predicting drug-disease associations.  

6.3. Comparing Different Algorithms for Drug-Repositioning 
 

In the second part of this analysis, the proposed approach was compared with a text-

mining based, microarray-based and similarity based approaches. More precisely, the 

proposed paradigm was compared with PolySearch [43], ConnectivityMap [10] and 

PREDICT [55]. To make the comparison fair, a unique gold standard was generated for each 

comparison as being described in section 5.5.3.  Receiver Operator Characteristic (ROC) 

curve was used to assess the performance for each technique. That is because it shows the 

trade-off between True Positive Rate and False Positive Rate and therefore reflects a better 

measure to evaluate different methods. For each disease, the predicted associations and the 

prediction scores together with the corresponding gold standard for that disease were 

used as an input to ROC. Table 6.1 shows the ROC score for heuristically selected cancer 

diseases namely; breast cancer, colon cancer, liver cancer, lung cancer and prostate cancer. 

In addition, it shows the average ROC score for all diseases using different methodologies.   
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Table 6.1 shows that the proposed methodology scored better ROC than all other 

methodology. This indicates the robustness of the proposed methodology in detecting 

different associations using any of the existed approaches. For instance, although all these 

methodologies scored very well when compared with other gold standards, it is obvious 

that these methodologies failed to detect other associations predicted by other data 

sources. For example, PREDICT [55] reported an AUC score of 0.9 when the authors 

evaluated their predictions with a gold standard that has been extracted from RFPSCT but 

failed to predict associations that resulted from PolySearch and ConnectivityMap. The 

integrative paradigm on the other hand, was able to score well in detecting different 

associations from different data sources. This suggests that using an integrative paradigm 

Table 6.1: ROC scores using different methodologies 

                               ROC Score 

Disease 

ROC for comparison 1 ROC for comparison 2 ROC for comparison 3 

Integrative 

Approach 

Connectivity 

Map 

Integrative 

Approach 

PolySearch Integrative 

Approach  

PREDICT 

Breast Cancer 
0.882 0.55 0.72 0.66 0.75 0.52 

Colon Cancer  
0.91 0.58 0.82 0.8 0.84 0.52 

Liver Cancer 
0.89 0.61 0.77 0.74 0.77 NA 

Lung Cancer 
0.87 0.54 0.81 0.5 0.78 NA 

Ovarian Cancer 
0.82 0.5 0.76 0.58 0.81 NA 

Prostate Cancer 
0.83 0.6 0.74 0.6 0.78 0.6 

All Diseases  
0.87 0.61 0.76 0.6 0.75 0.6 



99 
 

that integrates different data sources might have the ability to unveil hidden associations 

that might not be discovered using these data sources independently.  

6.4. Microarray un-predicted Associations   
 

To further investigate the robustness of our method in improving sensitivity we have 

checked the true associations that have been detected using our proposed approach but 

not with using microarray based approach. Table 6.2 lists some of the most negatively 

enriched associations of those together with their enrichment scores and p-values. Finally 

these associations were tested for biological validation using DrugBank database [65].  

Table 6.2 shows the fact that some of the highly negatively enriched associations 

were available in the gold standard. In addition it shows that some of those negatively 

enriched associations have been validated in DrugBank database. Noteworthy that these 

associations have been predicted using the integrative approach but not with using 

microarray data independently. This suggests that using microarray data independently 

might miss some information and thus miss many important associations between 

biological entities. Furthermore, it suggests that these associations can be considered as an 

attempting target for drug repositioning. This is because most of these associations are not 

yet validated in DrugBank database but they have some experimental validation curated 

from text (some of these associations are discussed in the biological analysis and validation 

section).  

 



100 
 

Table 6.2: shows some of the negatively enriched associations that have been detected using our integration based 

approach but not with using microarray data only based approach. 

 

Drug Disease Integrated 

Based 

Enrichment 

Integrated 

Based 

P-value 

Polysearch 

Relevancy 

Score 

Validation in 

Drug Bank 

Dexamethasone Anemia -0.7310 2.67*10-110 80 No 

Enalapril 
Muscular 

Dystrophies 
-0.7036 2.77*10-106 18 No 

Lovastatin Nevus -0.6900 1.42*10-106 31 No 

Mifepristone 
Polycystic ovary 

syndrome 
-0.6770 2.96*10-104 308 No 

Enalapril 

Duchenne 

muscular 

dystrophy 

-0.64657 7.31*10-100 85 No 

Ganciclovir 
Congenital 

disorder 
-0.5378 7.22*10-81 10 No 

Thalidomide Diabetes Mellitus -0.4370 7.03*10-71 12 No 

Sirolimus Leukemia -0.6116 1.44*10-99 236 No 

Etoposide Leukemia -0.5573 1.42*10-84 588 Yes 

Doxorubicin Leukemia -0.4308 1.30*10-74 1325 No 

Methotrexate Leukemia -0.4977 2.4*10-82 658 No 

Cyclosporine Anemia -0.535 4.39*10-93 225 No 

Dacarbazine 

 
Melanoma -0.4273 2.1*10-75 3163 Yes 

Flutamide 

 
Breast Cancer -0.5129 5.66*10-87 0 No 

Flutamide 

 
Prostate Cancer -0.4179 3.0510-73 1392 Yes 

Desipramine Colon Cancer -0.3732 8.71*10-58 87 No 
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6.5. Microarray Predicted Associations    
 

In addition to investigating associations that are only predicted using the integrative 

approach, we have investigated the presence of some associations that have been reported 

both by using our approach and microarray based approach. The associations together 

with their enrichment scores, p-values and their validation status are reported in table 6.3. 

Table 6.3 provides some of the very interesting results that indicate a complementary 

relationship between the integrative approach and the microarray based approach for the 

purpose of increasing confidence about a particular association.  

On the other hand the associations reported in Table 6.3 provide an idea about the 

robustness of the proposed method in discovering knowledge that can be contradicting 

with reality when using microarray independently. For instance some of the reported 

associations in Table 6.3 show positive associations in case of microarray based 

approaches whereas they show negative associations when using the integrative approach. 

This contradiction can be misleading and confusing especially that we have manually 

checked and validated that all associations in Table 6.3 are more of having a drug-disease 

treatment relationship but not drug-disease side effect relationships (some of these 

associations are discussed in the Discussion section). This in other words indicates that 

these associations are better to have negative enrichment scores but not positive 

enrichment scores. 
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Finally it is important to note that although some of these associations were 

negatively enriched, when using microarray data independently, the integrative approach 

was able to provide more negative enrichment score, smaller p-value and thus more 

confidence about ties of these biological entities.    

 

Table 6.3 shows some of negatively enriched associations that have been detected using integrative approach and microarray 

based approach. 

 

Disease Drug Integ_Based

_En 

Mic_Based_

En 

Integ_Bas

ed 

P-value 

Mic_Based 

P-value 

Polysearc

h RE 

Validatio

n in Drug 

Bank 

Diabetes 

Mellitus 
Ethambutol -0.58916 0.2748 2.72*10-95 7.91*10-48 10 No 

Rheumatoi

d Arthritis 

Amitriptyli

ne 
-0.5518 0.2446 1.03*10-92 1.46*10-34 80 No 

Ovarian 

Cancer 

Amitriptyli

ne 
-0.5070 -0.2094 1.48*10-86 9.23*10-35 118 No 

Prostate 

Cancer 

Mitoxantro

ne 
-0.5435 -0.2591 2.14*10-95 5.84*10-48 1004 No 

Rheumatoi

d Arthritis 
Tacrolimus -0.5226 0.2369 3.69*10-89 4.66*10-36 1576 No 

Huntingto

n’s Disease 

Daunorubic

in 
-0.5153 -0.5681 2.59*10-89 1.12*10-96 117 No 

Lung 

Cancer 

Daunorubic

in 
-0.4486 -0.2240 3.52*10-79 4.59*10-37 0 No 

Anemia 
Albendazol

e 
-0.4307 0.2792 1.47*10-70 1.46*10-40 152 No 

Rheumatoi

d Arthritis 

Triamcinolo

ne 
-0.4366 -0.1975 1.95*10-70 3.52*10-27 176 No 

Diabetes 

Mellitus 
Imatinib -0.3795 -0.2787 2.30*10-55 1.06*10-36 86 No 
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6.6.  Discussion   
 

Getting inspired from the fact that the repositioning of drugs that has already been 

approved to have a safe human use mitigates the costs and risks associated with the early 

stages of drug development [3], we have proposed a novel approach for drug repositioning. 

Drug repositioning became one of the most important areas of research regarding its 

importance in adopting new therapeutic indications by exploiting the rigorous and already 

existing safety tests required by different agencies. In this thesis, a novel integrative 

framework was suggested for the purpose of drug repositioning. The framework designed 

in a way that exploit the biomedical knowledge stored in microarray expression profiles, 

biomedical literature and network biology for the purpose of predicting new indications for 

already marketed drugs. This completely unsupervised paradigm was able to record the 

best sensitivity measure when compared with using text-mining or microarray data 

independently. In addition this paradigm shows a great superiority when compared with 

different state of art methods that use other data sources to make predictions. This 

suggests that the proposed paradigm was able to provide a more comprehensive drug-

disease association prediction when compared with other methods.  

As previously discussed we have reported some important and negatively enriched 

associations that have not been predicted when using microarray data independently (see 

Table 6.2). Furthermore, it was interesting that some of the negatively enriched 

associations predicted by our approach are found to have some biological sense when 

manually curate the literature. These associations have been found to be positively 

enriched when using microarray data independently (see Table 6.2). This indicates the 
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powerfulness of the proposed integrative method in inferring and predicting novel 

knowledge. To further assess the comprehensiveness of the resulting associations, we have 

checked the association scores between entities in Table 6.3 in other connectivity maps 

described in chapter 5. 

6.6.1.  Biological Analysis for Associations in Table 6.2 

 

Cortisones and hydrocortisones are naturally occurring glucocorticoids that are used as a 

replacement therapy in adrenocortical deficiency states. Dexamethasone which is assumed 

to be the synthetic analog for these compounds is an-anti-inflammatory agent that works 

as a glucocorticoid agonist by simply binding to specific cytoplasmic glucocorticoid 

receptors [65]. Dexamethasone has been widely used to relieve inflammation, treat certain 

forms of arthritis, skin, kidney, eye, severe allergies and other disorders. According to the 

proposed approach, Dexamethasone was predicted to have potential effect in Anemia 

disease management as it is highly negatively enriched with this disease.  

Indeed several studies have reported this indication previously for this compound. 

For instance Bernini JC  et al. [71] have done a study on two groups of children where the 

children in one group have been treated with Dexamethasone and others were treated with 

placebo. The authors found that Dexamethasone treated group showed a significant 

shorter stay in hospital, prevention of clinical deterioration and a reduced need for blood 

transfusions. These results have led to the conclusion that intravenous Dexamethasone has 

a beneficial effect on children with sickle cell disease with mild to moderate severe chest 

syndrome. On the other hand Gupta N et al. [72] ran an experiment on 8 different patients 

having Anemia and/or Leukemia for two years combined treatment with Rituximab, 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bernini%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=9787142
http://www.ncbi.nlm.nih.gov/pubmed?term=Gupta%20N%5BAuthor%5D&cauthor=true&cauthor_uid=12357362
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Cyclophosphamide and Dexamethasone. The results suggest that this combination should 

be considered in the management of this particular disease. Furthermore Hatano K et al. 

[73] have done a very recent study on 72 patients with prostate cancer and they found that 

a low dose combination of Docetaxel, Estramustine and Dexamethasone is active and 

tolerable with beneficial effects on Anemia and bone pain in patients with prostate cancer.  

Enalapril is an angiotensin-converting enzyme (ACE) inhibitor drug. It is mainly 

used for the treatment of essential or renovascular hypertension and symptomatic 

congestive heart failure [65]. According to the proposed paradigm, Enalapril was predicted 

to have high negative enrichment with Muscular Dystrophies and Duchene muscular 

dystrophy diseases. Navigating in literature, these associations were found to have 

biological sense. For instance Cozzoli A et al. [74] did an experiment on mdx mouse model 

to study the effect of Enalapril on Dystrophies recovery. Enalapril was found to cause a 

dose-dependent increase in fore limb strength where the highest dose has led to a 

complete recovery in comparison with the control model. This suggests the ability of 

Enalapril in blunting some muscular functional impairment that might result from 

angiotensin activation of pro-inflammatory pathways.  Ramaciotti C et al. [75] did another 

experiment on 50 patients to study the effect of Enalapril on Duchenne muscular 

dystrophy. The results reported that 43% of patients were able to respond to Enalapril and 

get recovery.  

Flutamide is a non-steroidal anti-androgen compound that has a potent rule in the 

management of locally confined stage B2-C and stage D2 metastatic carcinoma of the 

prostate [65]. Based on our paradigm Flutamide was found to have a high negative 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hatano%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22688162
http://www.ncbi.nlm.nih.gov/pubmed?term=Cozzoli%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21689754
http://www.ncbi.nlm.nih.gov/pubmed?term=Ramaciotti%20C%5BAuthor%5D&cauthor=true&cauthor_uid=16950195
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enrichment with prostate cancer indicating the robustness of our approach in detecting 

such associations. In addition Flutamide has been found to have a high negative enrichment 

with breast cancer. Many papers in literature have validated the anti-neoplastic effect of 

Flutamide on estrogen receptor negative subtype of breast cancer. For instance Naderi A 

and Liu J [76] investigated the therapeutic effects of persistent ERK phosphorylation in 

combination with AR inhibition using Flutamide. The results demonstrate a significant 

reduction in breast cancer cell viability and growth indicating its promising effect in 

management apocrine breast cancer. A similar finding has been reported by Naderi A and 

Hughes-Davies L [77] which demonstrates that a combined treatment with Flutamide 

together with ErbB2 pathway inhibition can be effective in reducing breast cancer cell 

viability.     

Sirolimus or Rapamycin is a macrolide compound obtained from Streptomyces 

hygroscopicus that works as a potent immunosuppressant for organ transplant rejection 

and possesses both antifungal and antineoplastic properties. According to our findings 

Sirolimus is highly negatively enriched with Leukemia. A very recent study has 

demonstrated the effect of Sirolimus derivative (Everolimus) in a combined treatment with 

all-trans retinoic acid (ATRA) on acute myeloid leukemia (AML) [78]. The results showed 

growth inhibition and apoptosis in AML cell lines. Another recent study has showed that a 

combined treatment of Rapamycin and Dexamethasone in cell lines and xengraft model of 

leukemia cell lines showed a significantly greater apoptosis and cell cycle arrest in some 

cell lines [79]. Those were not the only studies mentioning the role of Rapamycin in 

inducing leukemia cell apoptosis. Indeed many other studies have mentioned and validated 

this therapeutic indication clinically [80].        

http://www.ncbi.nlm.nih.gov/pubmed?term=Naderi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20605569
http://www.ncbi.nlm.nih.gov/pubmed?term=Liu%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20605569
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6.6.2.  Biological Analysis for Associations in 6.3 

 

One of the negatively enriched associations reported in table 6.3 is the Amitriptyline drug 

with rheumatoid arthritis (RA) disease. Noting that, this association was positively 

enriched in case of using microarray data independently. Therefore, we reviewed literature 

to check whether amitriptyline can really counteract the RA effect or it works in parallel 

with its pathophysiology. Amitriptyline is a tertiary amine tricyclic antidepressant that is 

used for treatment of depression, chronic pain, irritable bowel syndrome and many other 

diseases [65]. Bird H and Broggini M  [81] did a study on 191 patients with RA to check 

the effect of Amitriptyline and another drug. The results showed that Amitriptyline was 

effective in treatment of depression with improvements in RA associated pain and 

disability. On the other hand Frank RG et al [82] did another experiment on 47 patients 

with RA and they realized that Amitriptyline was the most effective drug in reducing pain. 

The authors suggested using a moderate dose of Amitriptyline as an adjunct drug for the 

treatment of pain in both depressed and non-depressed patients with RA.  

Tacrolimus also shared a similar story with Amitriptyline where it has a high 

negative and a high positive enrichment score with RA using the proposed method and 

microarray, respectively. Tacrolimus is an immunosuppressive antibiotic whose main first 

use was to reduce patient’s immune system and thus reducing the risk of liver 

transplantation rejection [65]. Later on, its usage has been extended to include many other 

organ transplantations. According to our paradigm Tacrolimus can play a major rule in RA 

management. In literature, Tacrolimus were found to be significantly effective for 

suppressing the activity of AR which makes it a promising candidate for this disease’s 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bird%20H%5BAuthor%5D&cauthor=true&cauthor_uid=11128665
http://www.ncbi.nlm.nih.gov/pubmed?term=Broggini%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11128665
http://www.ncbi.nlm.nih.gov/pubmed?term=Frank%20RG%5BAuthor%5D&cauthor=true&cauthor_uid=3236298
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treatment [83] [84]. In another experiment of 123 patients, a combination of Tacrolimus 

with other antirheumatic drugs has been found to have a significant effect in RA 

management when compared with using antirheumatic drugs only [85]. These very 

interesting findings suggested that using of Tacrolimus in patients with inadequate 

response to antirheumatic drugs is useful and could became one of the most promising 

options for those patients. 

Mitoxantrone is a DNA-reactive agent that interferes with DNA and RNA and 

assumed to be a potent inhibitor of topoisomerase II. This compound has an anti-neoplastic 

properties and it is used for the treatment of secondary progressive, progressive relapsing 

remitting multiple sclerosis [65]. In one of the experiment, Mitoxantrone was found to be 

able to induce Fas receptor expression on primary prostate cancer cell lines which 

translated into enhancement of apoptosis of all cancer cell lines treated [86]. Furthermore 

Mitoxantrone has shown potential effect as an anti-neoplastic compound when combined 

with other drugs.  For instance Pinto AC et al. [87] found that a combined treatment of 

Mitoxantrone with Imatinib can significantly induce tumor growth inhibition. In addition, it 

has been found that Mitoxantrone in combination with prednisone can work as second-line 

chemotherapy in Docetaxel-refractory patients [88]. The survival rate was prolonged and 

the side effects were completely low for such a combination.      

6.6.3.  Analysis of Different Experiments  

 

From all previously mentioned examples we realize that even though microarray data has 

an enormous contribution to drug discovery, integrating biological data from other sources 

might improve its efficiency. Indeed we found that depending on one source of information 
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might not only lose some information but it can also result in associations that contradict 

with reality.  

To further analyze this property we sought to study the prediction scores for 

associations in table 6.3 using six different connectivity maps (see figure 6.2). Arith_Integ, 

Geo_Integ, Mic_22238 and Text-Mining were discussed previously in chapter 4. Arith_Text 

and Arith_Mic22238 were generated by taking the average enrichment score between 

Arith_Integ from a side and Mic_22238 and Text-Mining from the other side, respectively. 

To facilitate the comparison between these connectivity maps different HeatMaps were 

generated where each blue square represents a negative enrichment score and each red 

square represents a positive enrichment score. In addition, green, black and yellow dots 

were added to tell if a specific association is true positive and consistent with reality, true 

positive and contradicting with reality or false negative, respectively. These colored dots 

were only added to the associations in table 6.3. Noteworthy that true positive or false 

negative judgment were given based on the gold standard whereas contradicting or being 

consistent with reality judgment were given through manually navigating PubMed 

abstracts.  

Starting from the integration based connectivity map, Geo_Integ connectivity map 

was able to capture 70% (green dots) of the associations with 0% black dots. This indicates 

the robustness of Geo_Integ in detecting these associations but with a less sensitivity than 

Arith_Integ. Mic_22283 was able to detect 100% of the associations but 40% of them were 

black dots and thus contradicting with reality. On the other hand Arith_Mic_22283 was able 

to predict 60% of the associations with 0% black dots. We argue that Arith_Mic_22283 
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performs better than Mic_22283 as the former could not detect 40% of the associations but 

the later resulted in 40% misleading associations. This is another proof to indicate the 

great demand for data integration with all of its form. In other words, although a simple 

averaging scheme to generate Arith_Mic_22283, Arith_Mic_22283 was able to result in 

more accurate associations in addition to its power in improving sensitivity when 

compared with Mic_22283 (see figure 6.2).  

On the other hand, Text-Mining was able to detect 50% of associations where 60% 

of them were black dots. This suggests that neither the predicted associations nor gold 

standard was biased toward Text-Mining. In addition it might indicate that the robustness 

of the integration based connectivity maps (Arith_Integ and Geo_Integ) came from the 

complementary relationship between the microarrays based ranked gene lists and the 

Text-mining based ranked gene lists. This strongly supports the assumption that the 

ranked gene list from either source can correct or at least modify the ranked gene list from 

the other source. 

Arith_Text was able to detect 60% of the associations with 0% black dots. This is the 

exact same result that has been obtained with Arith_Mic_22283. Both results are found to 

be obviously superior than the results obtained with using text mining or microarray data 

independently (Text-Mining or Mic_22283 respectively). Note that the whole connectivity 

map for Arith_Integ is provided in figure 6.3. 
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Figure 6.2 HeatMaps for the enrichment scores between biological entities mentioned in table 6.3. 

This figure shows the enrichment score between different biological entities mentioned in table 6.3. These 

association scores are based on the previously described different paradigms for getting different connectivity maps. 

The scores have been curated and converted to Heat Maps to facilitate the comparison process. A deep blue color 

indicates high negative enrichment whereas a deep red color indicates high positive enrichment. Green, black and 

yellow dots have been added to indicate whether a particular association is true positive and consistent with reality, 

true positive and contradict with reality or a false negative respectively.   
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6.6.4. Exploring the Whole Connectivity Map 

 

To improve the usability of the results, a visualized version of the predicted associations 

was generated as a HeatMap. A researcher can have a look at any disease of interest and 

find the corresponding enrichment score with the studied drugs. Spotfire TIBCO software 

(http://spotfire.tibco.com/) was used for the purpose of visualizing the whole connectivity 

map.  Noting that, including the whole connectivity map in one HeatMap (HM) would not 

result in good visualization nor would it give clear labeling. Therefore, the connectivity 

map was split into four different HMs. Two-dimensional Hierarchical clustering with 

average linked measure was used to cluster related diseases and drugs for each set.   

http://spotfire.tibco.com/
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Figure 6.3 Whole HeatMap for the Computed Connectivity Map 
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This figure shows the whole connectivity map for all drugs and diseases in this study. Blue rectangle represents a strong negative 

association whereas a red rectangle represents strong positive association. In here, drugs are arranged in rows whereas diseases are in 

columns. Symbols have been used to represent diseases names according to the following: Lu.C= lung cancer, AN=anemia, B.C= breast 

cancer, LE=leukemia, NE=nevus, ME=melanoma, RA=rheumatoid arthritis, OSTA= osteoarthritis, OSTP= osteoporosis, O.C= ovarian 

cancer, P.C= prostate cancer, SA= sarcoma, F.T.C=follicular thyroid carcinoma, P.T.C=papillary thyroid carcinoma, D.M=diabetes mellitus, 

Li.C=liver cancer, C.C= colon cancer, C.D=congenital disorder, GL= Glioblastoma, H.D=huntington’s diseases, H.G.S=Hutchinson-Gilford 

syndrome, P.O.S=polycystic ovary syndrome, D.M.D= Duchenne muscular dystrophy, M.D= muscular dystrophies.   
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6.6.5.  Work Limitations  

 

Finally it is reminding worthy that although of the interesting results obtained using this 

integration scheme, the methodology is not without caveats. First of all, other biological 

information from different sources and databases can be integrated and further improve 

the results. For example gene to phenotypes analysis can be used to further filter and re-

prioritize genes related to a particular disease or drug. In addition, integrating other 

biological entities that can play a rule in drug or a disease molecular action, like metabolic 

network analysis or miRNA-gene interaction, might also improve the results. Second of all, 

one can consider a more complex framework to prioritize genes from the most over-

expressed to the most down-regulated using text mining based approach. For instance, 

further improvement can be achieved by going beyond prioritization method that is based 

on co-occurrences and simple natural language processing. For example, identifying a 

framework that is able to extract abstracts and analyze them both syntactically and 

semantically might decrease the false positives when predicting a positive or a negative 

relevancy score between a gene and a drug or a disease. Noteworthy that such a framework 

might need to compromise between complexity that might result in more accurate results 

and simplicity that might result in computationally less intensive operations.  
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Chapter 7: Applying Integration Concept 
for the Construction of Functional 
miRNA-Disease Interaction Using 

Regression Model 

To further investigate the comprehensiveness of the biological data integration approach in 

predicting novel associations, the model was applied for constructing functional miRNA-

disease interactions. The main reason to apply this approach on such data is the growing 

body of evidence associating microRNAs (miRNAs) with human diseases, in addition to the 

large amount of high-throughput data on diseases and miRNAs. miRNAs are new key 

players in the disease paradigm demonstrating roles in several human diseases. The 

functional association between miRNAs and diseases remains largely unclear and far from 

complete. With the advent of high-throughput functional genomics techniques, it is now 

possible to infer functional association between diseases and biological molecules by 

integrating disparate biological information. 

7.1. Background  
 

MicroRNAs (miRNAs) are small RNA molecules that regulate genes by triggering target 

degradation or translational repression [89]. miRNAs play a key role in diverse biological 

processes including differentiation, cell cycle and apoptosis [90]. About 3% of the human 

genes encode for miRNAs, each miRNA is estimated to regulate hundreds of genes, and 

over 50% of the human protein-coding genes are regulated by miRNAs. Computational 

predictions estimated that there are around 1,700 miRNAs in human genome [91]. This 

makes miRNAs one of the most abundant classes of regulatory genes in humans.  
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MicroRNAs expression is altered in several diseases including cancer and thus it is 

very likely that alteration in miRNA expression could lead to human diseases [92]. Several 

studies have investigated the role of miRNAs in cancer using mRNA and miRNA expression 

profiling [89] and suggest that most diseases are attributed to more than one miRNA that 

affect hundreds of genes. 

There are several lines of evidence suggesting functional association between 

cancers and miRNAs. First, miRNAs are shown to control cell proliferation and apoptosis 

[90]. Thus their dysregulation may contribute to proliferative disease. In addition, several 

miRNAs showed to act as tumor suppressor or oncogenes [93]. Second, genome-wide 

association studies demonstrated that most human miRNAs are located at fragile sites in 

the genome or regions that are commonly altered or amplified in human cancer [94].  

Mutation of miRNAs, dysfunction of miRNA biogenesis and dysregulation of miRNAs and 

their targets may result in various diseases.  

The question still remains how miRNA alteration might cause a disease. All these 

evidences support the strong necessities in understanding the functional association 

between miRNAs and diseases. Many studies have produced large number of miRNA-

disease associations and showed that the mechanisms of miRNAs involved in diseases are 

very complex. Uncovering disease-miRNA associations will help pharmaceutical 

community to understand the underlying mechanisms in diseases and thus narrow down 

the search pace for new therapeutic targets. This would result in better insights into the 

functional role of newly discovered miRNAs in certain diseases.  
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Disease gene signatures bear a signature of regulatory activity of miRNAs as it is 

anticipated that the collective effect of miRNAs may lead to dramatic changes in the 

expression of their targets that may lead to diseases. Although integrating bioinformatics 

approaches with miRNA expression data can predict miRNAs deregulated in certain 

diseases, only very few miRNAs have been functionally validated in disease context, and the 

underlying mechanisms of why and how miRNAs become deregulated are unknown. Better 

understanding of the regulatory role of miRNAs in cancer development and progression 

requires exploring their cooperative influence on target genes context.  

Characterizing the effect of miRNA on target-context protein partners gained 

considerable body of attention in the past few years. Protein degree in PPI networks 

showed to be correlated with the number of targeting miRNAs [95]. Topological features of 

proteins in PPI showed to be useful to eliminate false discoveries in miRNA-target 

prediction algorithms [95]. These observations shed light on the influence of miRNAs on 

the PPI subnetwork involving the targets and highlight the importance of considering 

target protein partners when searching for functional miRNA-disease interactions. 

To summarize the contribution of this chapter, a logistic regression model was used 

to identify miRNAs whose target’s protein contexts are enriched in disease gene signatures. 

The model was applied to identify diseases-miRNA associations by integrating disease gene 

signatures extracted from microarray experiments and PubMed abstracts, with miRNA-

gene interactions resulting from integrating predicted miRNA-gene interactions and their 

influence on target protein context. This integrative approach has enabled the prediction of 

functional association between miRNAs and diseases. The results of the model were 

validated against a miRNA-disease interactions gold standard using ROC analysis. Finally, 
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more analysis has been done on newly identified miRNAs in prostate cancer and 

characterizes their functional role.  

7.2. Materials and Methods  
 

In this section, I describe how the miRNA-target and disease-gene networks were 

constructed and preprocessed as input to the proposed regression model. First, the steps to 

define gene-disease and miRNA-target interaction networks to define signatures for each 

disease and miRNA respectively are described. The regression model used to associate 

miRNAs with disease is then explained. Finally, validation steps to validate the predicted 

results from the proposed model are discussed. The whole framework used in this study is 

shown in figure 7.1.  

7.2.1.  Identification of Disease-Gene Signature 

 

Gene-disease interactions were retrieved from two independent sources. The first source 

was microarray expression profiles related to 24 diseases including 13 cancers from Gene 

Expression Omnibus. That was the same data used to build the drug-disease connectivity 

map. All preprocessing and normalization steps were discussed in chapter 4.  

The second source of data was PubMed publications. But instead of using the proposed 

text-mining approach, discussed in chapter 4, PolySearch [43] web server was used to 

generate data. The reason choosing PolySearch, but not our proposed text-mining 

technique, is that PolySearch employs text ranking scheme to score relevant sentences and 

thus it could result more accurate results since it has access to sentences as being 

described in chapter 3.  
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Figure 7.1: General Framework for disease-miRNA interaction 

predictions 

Four major steps to construct functional disease-miRNA associations. First, disease-gene interactions that 
were constructed by integrating disease signatures from microarray gene expression data and from 
PubMed abstracts. Second, miRNA-gene associations were constructed by integrating computationally 
predicted miRNA-target interactions and protein networks. The aim of integrating protein networks is to 
reduce noisiness in the predicted data. Proteins that are not targeted by a miRNA but their partners are, 
are considered as indirect miRNA-target association. Third step is to process the two inputs (gene-disease 
and miRNA-gene) as input to the regression model. The final step is to evaluate the predicted results 
against gold standard miRNA-target interactions data 
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Default keywords that were manually curated in [43] were used to relate diseases 

with genes. The number of abstracts was set to 10,000 and thus obtaining results for the 

most 10,000 relevant abstracts. For this experiment, we heuristically considered all genes 

with non-zero relevancy score. 720 genes of relevance to the set of diseases were extracted. 

Finally the union of the two gene sets (from microarray and text-mining) was considered to 

build a bipartite graph DiseaseSig between genes and diseases. 

7.2.2.  Constructing miRNA-target Interactions  

 

Human miRNA-target computational predictions were taken from TargetScan 5.1 [96] 

which showed to outperform all other miRNA-target prediction methods [97]. These 

interactions are direct interactions between miRNAs and their targets. Another set of non-

direction miRNA-target interactions was considered, by considering direct neighbors of 

target proteins in PPI network. Undirectional functional protein interactions, or PPI, were 

extracted from Reactome [98] , which includes proteins physically interacting, proteins 

sharing biological function and regulatory interactions. Proteins that are not targeted by 

miRNAs but at least five of their neighbors are targeted by miRNAs, were considered 

indirectly influenced by miRNAs. In this study, both direct and indirect miRNA-target 

interactions (NetmiR) were combined and used it as input to regression model. 

 

7.2.3.  Logistic Regression Model  

 

Regularized Logistic Regression was used to predict miRNA-Disease functional 

interactions. Disease-gene (DiseaseSig) and miRNA-gene (NetmiR) interactions have been 
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used as response and predicted variables, respectively, as input to the regression model. 

Let DiseaseSig represent the gene signature of a particular disease, NetmiR(i) be the miRNA-

target influence profile a specific miRNA(i) for i=1…..m. let miR-Dis is the gold standard for 

miRNA-Disease functional interactions. Then the logistic regression’s cost function in 

relevant to a particular disease dis(z) can be written as   
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Where y(i,z) is 1 if miRNA(i)-dis(z) pair ∈ miR-Dis and zero otherwise, and  
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Therefore the whole cost function can be re-written as  
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Further details about logistic regression and solving its cost function are provided in 

chapter 2.  

7.2.4. Evaluating the Performance of Regression Model 

 

The predicted disease-miRNA interactions of the regression model were validated against a 

gold standard of disease-miRNA associations manually extracted from miR2disease and 

HMDD databases [99]. The gold standard network contains 743 interactions between the 

24 disease and 305 miRNAs. Area under curve (AUC) is used to assess the performance of 
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the proposed model and compare it with other results. The purpose of this step was to 

show that integrating multiple data sources, microarrays and PubMed abstracts, to define 

disease gene signatures and integrating the influence of miRNAs on the target protein 

context is valuable to uncover disease-miRNA interactions. MiRNAs associated with 

prostate cancer were further analyzed and prediction results were validated using two 

independent prostate miRNA profiling studies. The aim was to assess the diagnostic and 

prognostic value of the new predictions of the method.  

7.3.  Results and Discussion  
 

7.3.1.  Constructing miRNA-target and disease-gene networks 

 

MiRNA-target network and gene-disease network were first constructed to be used as 

predicted and response variables, respectively, as input to the regression model. MiRNA-

target network was constructed by integrating results from TargetScan and protein 

interactions. This study only focused on genes that are targeted by a miRNA and interact 

with proteins at the protein level. 3,235 genes were obtained and found to be targeted by 

305 miRNAs. To build disease gene interactions, disease gene signature from microarray 

data (1942) and PubMed abstracts (720) were combined and considered in this analysis. 

This combination resulted in a set of 2,061 genes across 24 diseases. Finally the 

intersection between the 3235 and 2061 gene lists were considered leading to a new list of 

658 genes. 
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7.3.2.  Regression is able to identify miRNAs from downregulated gene sets  

 

The performance of the proposed paradigm was assessed by using several gene lists 

reported by recently published studies that used microarray analysis to reveal genes 

whose expression is affected by pre-miRNA treatment. For example, in [100] LNCaP cell 

lines were treated with pre-miRNA (pre-miR-1, pre-miR206, and pre-miR27b) and 

downregulated genes were identified using differential gene expression analysis. The 

downregulated gene lists that were used as DiseaseSig and NetMiR were used to evaluate 

the performance of the regression model to identify the influential miRNAs after treatment. 

MiRNA prediction scores from the regression model were used to assess the enrichment of 

miRNAs’ targets in the gene set. 

In the pre-miR-1 downregulated genes, the regression model ranked miRNA-1 first 

with the highest coefficient value. In the pre-miR-206 downregulated genes, the regression 

model showed that miR-1 and miRNA-206 have the highest prediction scores of the 

downregulated genes. In the downregulated genes after miR-27b treatment, the model 

showed that miRNA-9 has the highest prediction score and miRNA-27b ranked second. 

Enrichment results of the proposed model were compared with Fisher test and 

hypergeometric test and a miRNA enrichment tool Geneset2miRNA [101]. The results of 

the proposed method demonstrated that it is able to infer correct miRNAs from gene lists 

downregulated after pre-miRNA treatment and it can better infer the influential miRNAs. 

 

These findings show that integrating the influence of miRNA on the protein context 

of the target improves miRNA enrichment analysis and demonstrated effectiveness for 

using regression to predict miRNA-disease functional associations.  
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7.3.3.  Reconstructing miRNA-disease functional association 

 

After demonstrating that regression model has successfully identified miRNAs from 

downregulated gene lists post to miRNA treatment, regression model was applied to 

identify miRNAs associated with diseases using miRNA-target and disease-gene networks. 

In this section, I discuss the network generated using combined microarray and abstracts 

disease gene signature with PPI based miRNA target network. The proposed model 

generated 741 interactions between the 24 diseases and the 365 miRNAs. 364 interactions 

were common with the gold standard, 157 were in the gold standard and missed by the 

proposed model, and 220 were identified by the model and not in the gold standard 

(Figure 7.2). 37 new interactions were predicted between miRNAs and prostate cancer. 

Further diagnostic and prognostic characterizations of the 37 prostate miRNAs were 

conducted. 
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Figure 7.2: Predicted disease-miRNA functional association 

Predicted miRNA-disease interactions using regression model. Combined microarray and abstract disease gene 

signature were used as response variable with PPI-based miRNA-target signatures as predicted variable. We 

mapped all the common interactions between the predicted interactions and the gold standard data. We also 

showed the novel interaction predicted by our model and the interactions missed by our model. Results showed 

that results are biased to cancer diseases (prostate, breast, ovary, glioblastoma, melanoma as they have more 

complete gene signatures. 
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7.3.4.  Assessing the performance of the proposed method 

 

The performance of the regression model was evaluated on a gold standard miRNA-disease 

interactions obtained from miR2Disease database that contains experimentally verified 

miRNA-disease associations [99].  

 

740 interactions between the 24 diseases and the miRNAs were extracted. The 

performance of the model was evaluated using several combinations. We first used the 

microarray gene signature-disease network vs miRNA-target network obtained from 

TargetScan to predict miRNA-disease associations. We then combined disease gene 

signature from PubMed with the microarray gene signature vs the targetscan miRNA target 

network. In the third test, we used the combined microarray and text signature vs 

TargetScan and PPI based miRNA-target network. The goal of this step was to assess if 

including more disease signatures and miRNA targets would increase the performance of 

the model. The last combination is to use PITA miRNA-target algorithm instead of 

TargetScan to assess the performance of the model when changing the input data sets. The 

model returns miRNA-disease association values that ranged from 0 to 1.  

ROC curve analysis was conducted to assess the performance of the model against 

different network construction strategies. ROC curves for prostate cancer (Figure 7.3) 

showed that integrating disease signature from abstracts increased the performance of the 

model, and integrating indirect miRNA-target association increased the performance of the 

model even more. ROC curve analysis was also conducted on six other cancer diseases and 

found consistent results in all the diseases (Figure 7.4). 
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Figure 7.3: Comparative analysis using different integrative biology approaches to 

predict miRNA-prostate cancer interactions 

ROC curve analysis of prostate cancer using three different inputs to the regression model. ROC curve of 
integrating microarray and abstract based disease gene signature with PPI-based miRNA target showed AUC 
of 0.81.  
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Figure 7.4: Comparative analysis using different integrative biology approaches 

Area under curve values using different inputs in different cancer types. We compared the ROC results from different 
combinations of inputs. Integrating multiple data to define disease gene signatures and including protein networks to 
define miRNA signature improves the accuracy of the model. Different miRNA-target interaction data leads to different 
results. This is due to the completeness of miRNA-target interactions 
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The reason to focus on these cancer diseases, is the fact that they have the highest 

number of miRNAs associated with them. AUC results from the proposed regression model 

were compared with results obtained using Fisher test and found that regression performs 

better than Fisher test-based (miRNA-target, disease-gene). This suggests that the 

performance of the regression model is robust and can be adapted to different networks. 

7.3.5.  Discussion  

 
Over recent years, miRNAs have emerged as major players in the complex networks of gene 

regulation and have been implicated in various aspects of human diseases. Deciphering 

functional associations between miRNAs and diseases is a major step toward 

understanding the underlying patterns governing miRNA disease associations. In addition, 

it gives better insights into the functional role of miRNAs in disease development. The 

accumulated data on miRNA expression levels in tumors demonstrate that miRNAs are 

promising diagnostic candidates to distinguish different tumors and different subtypes of 

tumors as well as to predict their clinical behavior. The observations supported the role of 

miRNAs as either prognostic and/or diagnostic markers. miRNAs have therapeutic 

applications by which disease-causing miRNAs could be antagonized or functional miRNAs 

could be restored. 

Regression modeling demonstrated promise to construct miRNA-target networks 

[102]. Motivated by this work, logistic regression model was used in order to predict 

functional associations between miRNAs and diseases based on gene signatures of each. 

Since there is an explosion of disease microarray data, it was used to define a signature for 

each disease.  
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To assess the noisiness in the disease signature, disease-gene signatures from 

PubMed abstracts were used to generate signature that cover wider spectrum of genes. For 

the miRNA-gene network, only genes that are interacting with other proteins or genes and 

are directly or indirectly influenced by the miRNAs were considered. This is because these 

genes are anticipated to have higher influence on disease progression compared to genes 

that are targeted by miRNAs and not propagating their influence on the protein network. 

 

We first evaluated the performance of regression as a miRNA enrichment analysis 

method as a proof of concept. Regression successfully identified miRNAs from 

downregulated genes after miRNA treatment. The performance was further evaluated on 

disease -miRNA interaction networks. Disease-miRNA association network was extracted 

from miR2Disease and HMDD that contain manually curated database for microRNA 

deregulation in human diseases. ROC curve analysis showed that integrating microarray 

and text abstracts to define disease signature gives better performance compared to using 

the signatures separately. Similarly, integrating miRNAs’ indirect influence on genes to 

define miRNA target signature demonstrated better performance compared to using the 

direct influence alone. This suggests that refining signatures is a key step for accurate 

regression modeling.  

Two key issues might be having big effect on the accuracy of the model. The first one 

is the completeness and noisiness in the disease and miRNA signature. The more complete 

and refined the signature is, the more accurate the model is. Since microarray disease gene 

signature might harbor many off target genes that are irrelevant to the disease, more 

robust disease gene signature that is based on integrating more evidences is essential for 
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the success of the modeling process. Similarly, incomplete miRNA-target interactions 

showed to affect the performance of the model. Using miRNA-target interactions from PITA 

showed less accuracy compared with TargetScan results. This suggests that miRNa-target 

data plays critical role in regression modeling to predict functional associations between 

miRNAs and diseases. 

The second issue is the gold standard data. Gold standard data was biased toward 

certain diseases like prostate cancer, breast cancer, and glioblastoma that have around 

hundred associated miRNAs. However, other diseases like sarcoma and colon cancer are 

associated with very few miRNAs like let-miR-7a and miR-21, respectively. This has big 

impact on false discovery rates and thus AUC performance measure. A more curated 

miRNA-disease interactions network is required to have more accurate performance 

evaluation. Unfortunately, a complete manually curated miRNA-disease database is not 

available. Therefore miR2Disease and HMDD were combined to trade-off the 

incompleteness in the used miRNA-target interactions. 

 

 

 

 

 

 



133 
 

Chapter 8: Conclusion and Future Work 

 

8.1. Conclusion 
 

Predicting functional associations between diseases and drugs using omic-data integration 

is valuable and promising to reveal biological mechanisms underlying diseases and drugs 

mode of action. Utilizing freely available data sources, two models with different statistical 

measures were built. The first uses enrichment analysis statistical measure to build 

associations between drugs and diseases, whereas the second uses regression model to 

predict miRNA-diseases functional associations. Both models were based on biological data 

integration and have shown better performance when integrating multiple data sources of 

different nature.  

For the first model, I showed that merging the concepts of microarray technology, 

text-mining and network biology using computational biology techniques for the purpose 

of drug repositioning, have the potential to speed up drug discovery and testing processes. 

In this thesis, I tackle the great demand in integrating biological data from different sources 

to elicit better knowledge regarding drug discovery. The power of text-mining methods in 

discovering hidden or indirect relationships, the power of microarrays in providing a 

global view of drugs/diseases molecular effects and the power of gene network in 

understanding the functional and behavioral correlation between genes were all utilized to 

build a novel integrative paradigm for drug repositioning. The proposed paradigm was able 



134 
 

to predict many associations that could not be detected when using microarray or text-

mining data independently.  

In addition, motivated by the fact that uncovering miRNA-disease functional 

association is a key step to understand disease development, another integrative approach 

was built to predict such associations. The integrative approach showed that integrating 

disease signature from microarray data and PubMed abstract with miRNA target 

interactions, to build miRNA-disease functional associations, showed promise to uncover 

significant associations between diseases and miRNAs. Regression model demonstrated 

effectiveness for miRNA enrichment analysis. Integrating multiple data sources and 

biological networks to define more accurate disease and miRNA signature uncovered novel 

biological associations between miRNAs and disease. Newly predicted miRNAs associated 

with prostate cancer showed diagnostic and prognostic potential. This concludes that the 

proposed model gives more insight into disease and functional role of miRNAs in disease 

development. 

8.2.  Future Work  
 

For future work, I will consider integrating other information sources for the hope that 

more information with further improve the results. For example gene to phenotypes 

analysis can be used to further filter and repriotize genes related to a particular disease or 

drug. Furthermore, since we are dealing with a biological system (cellular system) it is 

most probably that all biological entities inside are interacting. Thus I will try to build a 

more comprehensive integrative approach that uses metabolic network analysis and 

miRNA-gene interaction to predict a more extensive drug-disease connectivity map.  
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As I mentioned in the limitations section, further improvements can be done on the 

text-mining technique. I will be working on developing a more comprehensive framework 

to prioritize genes that goes beyond co-occurrences and simple NLP based approaches. 

More accurately, I will be working on a framework that is able to extract abstracts and 

analyze them both syntactically and semantically to extract more accurate drug-gene and 

disease-gene associations. Noteworthy that such a framework might need to balance 

between complexity that might result in more accurate results and simplicity that might 

result in computationally less intensive operations.  

Finally I will improve the system by utilizing social networks measures and 

techniques. Since biological networks are very similar to social networks in their 

properties, different centrality measures (degree, closeness, betweenness and eigenvector) 

might uncover some really valuable information in predicting drug-disease associations.  
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