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Abstract 

This thesis deals with blending-function methods, finite element 

methods, and some aspects of the interplay between them. In chapter two 

blending-function methods are introduced and asymptotic error bounds for 

blending-function interpolation are obtained for the case in which the 

blending functions are polynomials. The finite element method is described 

in chapter three, and in chapter four it is shown how blending-function 

methods can be used in the construction of finite elements. Error bounds 

for finite element interpolation and approximation are proven in chapter 

five by two different approaches. The first approach uses the theory of 

noninteger order Sobolev spaces to predict nonintegèr (as well as integer) 

powers of convergence, e.g. O(h½), where h is a mesh parameter. This 

approach does not allow the estimation of the constants appearing in the 

error bounds, whereas the second approach does. However, the second approach 

gives only integer powers of convergence. 

The key theorems for all of the error bounds of this thesis are the 

Sobolev lemma and the Bramble-Hilbert lemma, or variants thereof. To 

obtain noninteger rates of convergence the Bramble-Hubert lemma must be 

generalized to noninteger Sobolev spaces. This generalization has been 

carried out in chapter one. It is noted that the Bramble-Hilbert lemma 

applies to operators as well as functionals. This observation allows some 

simplification in the proofs of error bounds. Also given in chapter one 

are variants of the Sobolev lemma and the Bramble-Hilbert lemma appropriate 

to blending-function methods. 

- 



In chapter six some numerical results are tabulated, and they are seen 

to agree with the theoretical results. The äomparative èost of running 

various finite element programs is discussed. 
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CHAPTER ONE 

INTRODUCTION, NOTATION, AND SOME BASIC THEOREMS 

(1.1) Introduction  

The finite element method was originated almost twenty years ago by 

structural engineers as a method of structural analysis. As is usually 

the case, a lack of mathematical foundations for the procedure did not 

stop the engineers from using it and getting good results. After about 

ten years, when it, had been realized that the finite element method is 

essentially a Ritz-Galerkin procedure, interest in the method spread to 

the mathematical community, and work was begun on securing the mathematical 

foundations of the method. Much work has been done by both engineers and 

mathematicians, and an , extensive finite element literature now exists. Two 

good general references are the books [24] by O.C. Zienkicwicz (an engineer) 

and I21] by Strang and Fix (two mathematicians). Many further references 

can be found in each of these works. 

From the mathematical standpoint the finite element 'method is a family' 

of procedures fornumerically solving differential equations. (In this 

thesis only elliptic partial differential equations will be considered.)' 

Assuming that the problem is defined on some region n in the plane, 

is divided into small triangular or rectangular "elements", and the solution 

of the equation is approximated by a function whose restriction to each 

element is a polynomial of low degree. It is the piecewise polynomial 

nature of the approximating functions which distinguishes the finite element 

method from other"Ritz type procedures. A short introduction to the 

mathematical version of the finite element method is given in chapter three. 
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Blending-function methods are a more recent development and are less 

well-known. The theory was originated in 1964 by S.A. Coons [8] and has 

been advanced by Gordon, Hall, Barnhill, Birkhoff, Mansfield, and others. 

Blending-function methods area class of methods for interpolating curves 

and surfaces. For example, if a continuous function V is defined on the 

boundary of some rectangle, blending-function methods can be used to define 

a "blended interpolant" q on the entire rectangle such that q equals v on 

the boundary of the rectangle. Of course, if v itself is defined through-

out the rectangle, iE is still possible to define q. In this case q is 

an approximant of ,V which interpolates v at the boundary and is completely 

determined by the boundary values of V. A good introduction to blending-

function methods is Gordon's article Liii. However, enough information 

on blending-function methods for an understanding of this thesis is given 

in section 2.1 below. 

Gordon and Hall [i2] have given asymptotic bounds for the error 

between a function and its blended interpolant. It is assumed that the 

function being interpolated has a number of continuous derivatives, and 

the error is measured in the supremum norm. In this thesis (chapter two) 

similar error bounds are given in which the function has weak derivatives, 

and the error is measured in various Sobolev norms. 

After the introduction to finite e1eents in chapter three, various 

finite element schemes are constructed in chapter four by the use of blending-

function methods. The elements constructed are Adini's rectangle (f], a 

number of C1 elements, and an element for three-dimensional problems. Gordon 

and Hall [12j 4nd Barnhill and Gregory [3] have also used blending-function 
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methods to construct finite elements. 

In chapter five are presented two methods for deriving bounds for the 

error between the exact solution and the finite element solution of an 

elliptic boundary value problem. The first method is essentially the 

method of Bramble, and Zlamal [6], but here we have generalized the result 

by considering noninteger Sobolev spaces. An example is given to show 

the practical value of making such a generalization. 

The bounds obtained by the first method are asymptotic error bounds 

containing a constant C, the value of which is generally unknown. The 

second method produces bounds of the same type in which the constants can 

be estimated. This method applies only to those elements which can be 

constructed by blending-function methods as in chapter four. 

All of the error bounds of this thesis have been obtained by the use 

of the Sobolev lemma 1211 , and the Bramble-Hubert lemma E21, 41 or 

variants of these theorems. In chapter one these two well-known theorems 

are stated so that they can readily be compared with their respective 

variants, which are stated and proved. Also, a proof of the Bramble-

Hilbert lemma for noninteger Sobolev spaces is given. 

In chapter six numerical results are given for comparison with the 

theoretical results. The comparative cost of running various finite 

element programs is discussed. 

(1.2) Notation; Definition of Sobolev Spaces  

Let Q be a bounded domain in Euclidean n-space e and let u be a 
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a smooth real-valued function on Q. By Du we will mean- xi --,  

Given a=( ..,cL), where are nonnegative integers, we define 

the ath derivative -of u to be D D1D2...D"u. (The -order in which the 

factors D appear.in this expression is irrelevant if u is sufficiently 

smooth.) The order of a is We shall'call a a multiinteger. 

The sum of two multiintegers a and is The multi-

integers can be partially ordered by the relation a if and only if 

a. 5 13, i=l,...,n. If a S , then -a can be defined in the obvious 

manner. In sum, the multiintegers form a partially-ordered, commutative 

semigroup. 

Given a multiinteger , will denote the set of functions u on 

(the clbsure of ) such that for all a S 0, Da  exists and is continuous 

on . With the norm 

(3 (••) 

11 U11 max max IDau(x)I 
xc 

is a complete space. Given a nonnegative integr rn we define 

to be the space of all functions u on 2 such that for all a with lal 5 m, 

DaU exists and is continuous on 2. G() is complete with respect to the 

norm 

The space 

hull = max max DaU() j. 
- 

laism xc1 

is defined to be the intersection of. the spaces 

m co-
i.e. C () = fl C (a). We define C0() to be the space of functions 

rn=00  

uCC(i) for which there exists a compact set K in Q such that () = 0 

for all not in K. 

We shall define iaeal< derivatives as in:Ei0j'. A function u on a is 
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said to have a weak cLth derivative V if for all 

= (l)II VO 

The weak derivative is at least as general as the classical derivative. 

That is, if u has a continuous cth derivative D'u, then u has a weak cth 

derivative V, and vDu. This can be seen by performing ki integrations 

by parts to obtain. 

fVD4(Du)+. 

The weak derivative is the same as the distributional derivative and is 

also sometimes known as the generalized derivative. Throughout this thesis 

the same notation will be used for weak derivatives as for classical 

derivatives. This should cause no confusion. 

Let 15 p.5 °o, and let B be a niultiinteger. The space is 

defined to be the set of all functions UCL() such that. for c' S 8, Du 

exists in the weak sense and is in L (c2). We equip with the norm 
p 

.11 U118 = f IDuI 

max IIDuIlL (2 
a58 

'p 
if p 

if p 

<• 03 

With this norm is a complete space. Except inthe :'.case p = , the 

completeness depends on the fact that weak derivatives are admitted. 

We also introduce the Sobolev space (a). This i tie space of 

all functions ucL(2) such that for all a satisfying IaI 5 m, DaU exists 

in the weak sense and is in L(2). () is 'a Banach. space with the norm 

hullm,p = I fI DauIP] h1P i f p 
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huh Co = max hIDuhIL (Q) = 

IcIsin 00 

Throughout this chapter and the next chapter 'expressions involving 

the index p, where 1 5 p 5 Co, will occur. In most cases a separate 

expression is needed for the case p = Co • We have just seen two examples. 

From now on the expression for the case p = Co will not be explicitly 

stated but can 1e inferred from the expression for the case p < Co • For 

" example, H k c I will mean max x if p = Co, and will mean 1a:55 Ul 

Note that W ° (2) is just £(c). Accordingly, the 

will be used to denote the L norm. We have 
p 

I hIDuhI 'P 
c5F3 o,pj 

I IIDÜhI h/p 

Uc1n 

notation 

Co 
The Sobolev space is defined to be the completion of 

in W(m)(I). The space m2) should be viewed as the set of functions 

(in) ' in W () which'satisfy in a generalized sense the Dirichlet boundary 
P k 

conditions - 0 on DO, k0,... ,m-1, where n is an outward normal to 

the boundary of,' c. The justification for this point of view is that if 

a function u is' in W(m)(l) and also is sufficiently differentiable in 

the classical sense", then u belongs to in)() if and only if u satisfies 

the Dirichiet boundary conditions. See [10], page 39. . , 

The case p=2.merits special attention. (is a Hilbert space 

with the inner'-product ' 
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(U, V) = D'uLfV. 

Denoting the L2 inner product by we have 

(UV)m = (Du,Dv) 0. 
IaIm 

The space is 
'(m) 

usually denoted simply W (S2), and its norm is 

denoted Similar remarks apply to the spaces )() and W(c2). The 

notation ? 7(Q) = W() and H2) = is often seen in the literature. 

As was indicated in the, introductory section, it is. possible to define 

Sobolev spaces (SX for noninteger values of s. We now define these 

spaces for 1 (See [21, Lli, and [13j.) First suppose 0<8 = < 1. 

Consider the sëminorm 

(1.2.1) 
U 
a 
l dxdyp il/p r Iu(x) — u(y) j  
I'c •c 11n +pa llx-y 

We define W() to be the space of all functions u cL2) such that 

< ° We equip W(c) with the norm 

(1.2.2) lull = (llull + P )"P 

It can be shown that W(2) is complete by using the same arguments as 

are used in showing.that L(c) is complete. 

For s > 1 we write s = inI-ci, where in is a positive integer and 0< a < 1. 

We define a senthiorm 

(1.2.3) 

I• by S 'p 

lul = 11)°l p 
s,p (1al=M 

w(c) is defined to be the space of all u c W(m)(Q) such that 

An appropriate-norm for W(c) is 

I ul S p < . 
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(1.2.4) 

is complete. 

lull (Ilull ± U1P )/P 
8,p m,p 8,p 

As an illustration we shall consider a simple example. Let n1, p=2, 

and Q=(-1,l). Let U be the Heaviside function 

Ii ifrO 

10 ifx<0. 

This function is in: W(0)  = L2(_l,l) but not in WO) (_l,i) (See [26J 31 

section 110). We shall verify that u is in W ° (-1,l) if and only if a <½. 

B) 

2 11 2 
u = I I u(t) - u(s)  dtd. 

It - 

We must show that this integral is finite if and only if .c < ½. Clearly 

Iu(t) - u(s)I 2 1 if s and t have opposite signs, and 1u(t) - u(s)I2 =0 

otherwise. Thus 

2 0 .1  1 dtds + 10  1 dtds. IuI =1 
ci 1 0 (t_s )l+2 ci 0 1( t) l+20 

Either one of these integrals converges if'and onlyif the other does. We 

shall examine the first integral. For fixed 8 

1 dt = ( _ ) 2 

I. i+za -2a 
0 (ts) 

tl 

t=0 I 

(_8 _2ci  

We must integrate this expression from -1 to 0 with respect to s. The 

integral 10 (1s)-2ds converges for all ci, so ci < if and only if 

fo (-S) - 2'Jds converges. •This integral, in turn, converges if and only if 

ci < ½. Thus u is in W(0) if and only if ci < ½. 

A different (but equivalent) approach to nonintga order' Sobolev spaces 
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can be found in [16:] and [13]. From this approach 1t1s easily seen that 

if 3 < t, then hV&L (Q) .s w )(Q) with compact, embedding. That is, the 

embedding operator I:W(t)()   W(c) given by lu 'u is a compact 

operator. This fact is needed in the proof of the Bramble-Hubert lemma 

for noninteger (as well as integer) order Sobolev spaces. 

We close this,, section with one last notational convention about Sobolev 

spaces. Situations will arise in which two domains 1 and.Q2 are being 

considered simultaneously. In these situations we will use notation such 

as IHImp ,21  and to distinguish .the norms onW )(ç1) and 

(1.3) The Sobolév Lemma and a Variant  

The Sobolev Lemma says that any function which has weak derivatives 

of high enough order is bounded and continuous. This theorem is an indis-

pensible tool for proving error bounds for weakly differentiable functions. 

In this section we shall state the Sobolev lemma and state and prove a 

modified version which is more appropriate for blending-function methods 

than is thestandard version. 

In order to prove the.Sobolev lemma one must make certain regularity 

assumptions about the domain Q. Authors vary on the assumptions made. 

Indeed, the vaation is considerable and is a source of cbnfusion- To 

keep the situation simple: let us assume that 2 is a convex polyhedron. 

In the one application of the Sobolev lemma in this thesis, is the unit 

square.  

Theorem 1.3.1 (Sobolev Lemma): Suppose 1 5 p <°° coidm >., Then 

and there is a constant C such that for all u  W M19 
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max Iu(x)I 5 CIuII m,p 
For a proof which holds for integer values of m see [io}, page 22. 

A proof which holds also for noninteger m, :but which is restricted to the 

case p=2, is given in [16] ; pages 45-46. 

The Sobolev lemma has an obvious corollary, which will be considered 

to be part of the Sobolev lemma. 

Corollary 1.3.2: Spose m > -+j. Then W(2)c ), and there is a 

constant C such that for all u E W(c), 

max max Iclsj IDu(x) 5 CII  m,p 

Before stating' and proving the modified version of the Sobolev lemma 

we must state a. density theorem which will be used in the proof. A domain 

is said to be star-shaped if there is a point xO in ' 'uch that for every 

x0 and ose<1,:the point x0 + e(x—x0) lies in (the interior of) Q. 

Theorem 1.3.3: Lt 1 5 p < ° and suppose 0 is a bounded ,star-shaped domain. 

Then for any rnultiinteger a, C(?) is dense in W() w.ith'respct to the 

norm 

For a proof see [26], page 328. The theorem remains true with C(c), 

and III replaced by Cm(Th, W(m)(), and IHI ,where m is any 
P , p m,p 

ronnegàtive integer.' The assumption that 0 be star-shaped can be relaxed 

considerably ([20]., page 355). 

A domain c in P satisfies cube condition if there is a positive real 

number  such that for each xe2 there is a cube K = La.',a.+r' lying in 
1 

such that x is' one of the vertices of K. The modified. Sobolev lemma is 



valid for bounded, star-shaped domains satisfying cube condition. Admittedly 

this is a very restrictive set of conditions. However, the one domain on 

which we intend to apply the theorem is the unit hypercube, which does satisfy 

the conditions. 

Theorem 1.3.4 (Modified Sobolev Lemma): Let Q be a bounded, star-shaped 

domain in in satisfying cube condition with constant r, let 1 5 p 5 

and let n be the multiinteger (1,l,...,l). Then W(c) C C(?), and for all 

U C 

(1.3.1) 

where 

max I U(X) I 5MIIuJI TI 5'p XCQ 

r (n)rJIPp 

Proof:* For simplicity of notation we will prove only the case n2. Let 

t = (t1t2) £ . Without loss of generality the cube K [t 1,t 1+r]x[t2,t2+rJ 

lies within S. As a first step we shall assume that 1 5 p <oo and show 

that inequality (1.3.1) holds for all functions 4C'1(). Let g(x) = 1-. 

Then by the fundamental theorem of calculus 

(1.3.2) (t) = r 
1 ax, 

11r 11 (Xt)] 

Letting (t) denote the integrand in (1.3.2) we have 
1 

(1.3.3) t2+r r -t   gfx 2 2I (t ,x2)] dx 
2. x2L r 

*the author thanks Dr. D.R. Westbrook for simplifying this proof. 
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We combine (1.3.2) and (1.3.3) to get 

(1.3.4) 1 m2-t2 
(t) <'D 2Jg( r r 

Let I denote the integrand in (1.3.4). Then 

1 , (2-t 2 1 r 

dx. 

1X1_t $ (X •'Xd -;g1x2t21çx1-t1r 1 r jD14(x 1 x2) r 
x2-t2 1 x1-t 1 x2-t2 x1-t 1 

+ g( r ]'( r )D2•(x,,X,) + g( r I ( r g ]DiD2 (x i,x2). 

We apply H$1der's inequality to this last expression and use the bounds 

Ig(x)I 1 and g'(X) 1 to obtain 

(1.3.5) 

r 2 i 0 N (-, 
i 1 

hip Pl[ ID(xix2)iP]. 
L 

Remembering that I is the integrand in (1.3.4), we apply ll6lder's inequality 

to (1.3.4) and use (1.3.5) to get 

p-i lip 

i(t)I 5 (vol (X)} ( IIIPdx] 
p-1  

i/p 
5 2) p1 2 (1   P 1Kli] 0(] JPiJ [OJ 

5n 

The constant in the inequality is just the constant M which appears in the 

statement of the theorem. Therefore 

I(t)iM X I IDIP] l/p 5MJlfl TI 3,P . 
•a:5TI  K 

Noting that t was arbitrary we have 

(1.3.6) max I(t)i 5M11411 
tcc n,p 

V 

This proves that (1.3.1) holds for all in C'(Q). 
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Now suppose ucW (), where 1 p < . We are to show that u is continuous 

on Q and satisfies (1.3.1). :More precisely, we shall show that u is equal 

almost evrjwherè (a.e.) to a function cC(c), and 4 satisfies. (1.3.1). 

By theorem 1.3.3 C() is dense in W(c), so there isasequence (c) of 
P ti 

functions in C"1(c) which converges to u in the norm of W(c). In particular 

is a Cauchy sequence in W(c2) and, as each satisfies (1.3.6), 

(4j) must also be a Cauchy sequence in As C. is. complete, (si) 
converges uniformly to some in C. Because ? is bounded, uniform 

convergence implies Ei convergence. Thus in - L(2). On the other 

hand, in' (ç), and WTI convergence also implies'L convergence. 

Hence (4j) converges to both u and inL(). . This, imp.lies.that u 
P. 

a.6. Inequality (1.3.1), which holds for each 4,now follows for by 

continuity. 

Finally we consider the case p. Suppose ucW()'. Then, as 9 is 00 

bounded, ueW(c) for 1 5 q < . Therefore, as has a]..ready been proven, 

ucC(). Inequality (1.3-1) is now trivial. II 

Theorem 1.3.4, like the Sobolev lemma, has an obvious corollary. 

Corollary 1.3.5: Let Q be a bounded3 star-skcçed domain satisfying cube 

condition.. Let 1 5 p 5 o,, let n = (1,... ,1), and let be a multiinteger 

such that nS Then W) C C), and for all 

max max Du() I 5 Mil U11 

where M is as intheorem 1.3.4. 
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'(1.4) The Bramble-Hubert Lemma  

The Bramble-Hilbert lenña'is a useful tool for-proving error bounds 

in general. This theorem' was popularized' in the West by J.H. Bramble and 

S.R. Hubert in their 1970 paper' [4]. Similar results have appeared in 

the Soviet literature.' An example is the theorem which is proved' on page 

354 of V. I. Smirnov's book [20]. This result was brought to my attention 

by Dr.. Lois Mansfield. 

Before we ca state the Bramble-Hubert lenmia we must define a semi-

norm on W(m)(c). Let 

(1 al 
m hI 'p}1/P ., 

Here the sum is taken over all multiintegers with order éxàctly m, whereas 

in the norm m,p. the sum also includes those c with order less than M. 

As in the case of the Sobolev' lemma' some restrictions on the domain 

are required. Th& one major theorem upon which the Bramble-Hubert lemma 

depends is the compact embedding theorem, the theorem which says that if 

1<2 then 2 () C (Q) with compact embedding. Various forms of 

this theorem are. given in [10], [20], and [16], 'among other sources. The 

Bramble-Hilbert lemma holds on any domain for which, the compact embedding 

theorem is valid. In particular, it holds if Q is ,a convex polyhedron. 

Theorem 1.4.1. (Bramble-Hilbert Lemma): Let A be a bounded linear operator 

with domain (Q) (1 5 p < 00) and range in a normed.: linear space (Y- , 11' 11). 

(Thus there ecistá a constant IIAII such that lfAull 5 IIA11.IIi4I for all 

ucW(Q).) Suppose that A annihilates all polynomials' of degree less 

than s. Then there is a constant C, depending on s and p but not on A,, 
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such that for all ucW(5) (a), 
p 

IlAull 5 CIIAII I l 
3 'p 

The original statement of the theorem referred to a functional F rather 

than an operator A. 'The switch to an operator makes the theorem easier 

to apply and does not in any way affect the proof.of the- theorem. 

Bramble and Hubert proved the result for integervalues of S. The 

'result also holds for nonintegér values of s if we take the seminorm • s,p 

to be the one given by (1.2.3). Here we present a p±oo'f of the ñotiinteger 

case. The proof of the integer case is similar. 

We begin by; introducing some notation. Let a m+, where in is a 

nonnegative integer and 0 <a <1. Let P dente the space of polynomials 

of degree less than or equal to in, and let V be the space 

V = {ucW(c)l .çDu=O (Vc)Icl5m}. 

The theorem follows from two lemmas. 

Lemma 1.4.2:  W () P 

Lemma 1.4.3: There is a constant C such that for all VFV, llvll ' s clvi 8,p 3,p 

The constant C appearing here is the same C as in the tatem6nt of the 

Bramble-HilbértlelBifla. Before proving the two lemmas we show how the 

Bramble-Hubert lemma follows from them. 

Proof of Theorem 1.4.1: We are given a bounded linear operator,A:W(c≥)Y 

which annihilates, all polynomials of degree less than a. That is, Ap=O 

for all p in P,. Given ucW(c) we can write up+v,wherè pSP and vV, 

by lemma 1.4.2.. We have Au=Av, so lIAulI. 1IAv 5 IIAIIPIIVII 
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Therefore, by lemma 1.4.3, 

(1.4.2) Il Aull CIiAjI lvi s,p 
This is almost the assertion of the Bramble-hubert lemma. We èan complete 

the proof by showing that lvi s,p = iui8,p . Recall that., 

IV  = iDaV ip 

ii=m 

where s = n*a and 

lDla,p = 12 L 
lDav(x) - DaV(Y)iP dxdyl 

lix - jjfl4P 

Since D a P is aconstant if iaim, we have iDav(x) - D%(y)l = iVaU(X) Dau(y)i, 

so iDaVI, = lDuI and therefore lvi3,, = iuI3,. Combining this 

with (1.4.2) we get iiAuil 5 CiiAliiui3, which is the assertion of the 

Bramble-Hubert lemma. 11 

Proof of Lemma 1.4.2: We are to show that W(11) = PEDV. First we 

establish the fact that Pm flV = (0). This is equivalent to showing that 

if CP and JDaP= 0 for all a such that Ial in, then p=O. It is a 

simple matter to prove this by induction on in. There is no need to include 

the argument here. 

We now prove that W(c) = P + V. The dimeithion of the space P i 
n 

p m in 

the number of monomials x° = 1•[ G, such that a +...+a in. That is, 
1 fl 

it is just the number of multiintegers a such that ial 5m. Call this 

number k. Define a linear transformation T:P + Rk' by 

Tp = (J•D, 

where a,3,...,y àrè the k multiintegèrs of order not exceeding in. By the 

previous paragaraph T is one-to-one. Therefore, as dim(P) = k = dim(Rk), 

T is also onto. Thus, for any constants C (lai5ln), therá is a unique 
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P6Pm such that c JDp for all ml m. In particular, given 

there Is a unique such that J Du = Dp for all such that I I n. 
Letting v = u-p we have 0 if so VEV. Thus u p+v, where 

and vcV.' This proves that W(c) = Pm+V• II 

Proof of Lemma 1.4.3: We are to prove the existence of' a constant C such 

that lvii SW CvJ SW for all vcV. Assume that no such.C'exists. Then 

there exists a sequence (v.) of functions from V such that 

ll.11 s,p > ilv.I j=12,3... a S,P 

We may assume that IivIi 3, = 1 for all j. By the compact embedding theorem 

the sequence (v.) has a subsequence (w.) = (v. ) which converges in the 

norm of In Particular llwj_Wkflm,p + 0 a i,k + . •Note also 

that 

< (i)'iiv.li3, = 

Thus,, +.O as i + . Therefore 

llWjWkli , , '(11WW<i.lPM ,p + Iw —Wk l )l/P 

(11wi  -w krn,p - (1wi Is,p + lwkl S,p)PJ 

as i ,k + . Thus (w1) is a Cauchy sequence in the complete 'space 

and therefore -(w1) converges to some w in 

We shall prove that w is in Pm• 

Therefore, as ''s;p (where s = m+) e that lDWIap = 0 

for all c such that jai = M. By definition' of 1.1 
CY PP 

° = IDwV' = I lLfw(y) 1P' 
cy,p 11  

Therefore, for almost all y in , 

ID°w(x) -  =J 

First of all, Iwl' = limlw.I = 0. 
0 3 j+03 
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Let yo be one value of y such that this integral is zero. Then, for almost 

all xinQ, 

O - IDw(x) -  

ii 7a 

Therefore Daw(X) = Dw(y 0) for almost all x, and Du is (equivalent to) 

a constant function. This is true for.all c#- such that ictj=m, so w must 
be a polynomial of degree at most m, i.e.WePm. 

On the other hand, weD, for w is the limit of the sequence w) of 

functions in V and, as is eaily verified, V is a closed subspace of 

Therefore, by lemma 1.4.2, W=O. But this 

that iiwiic,p -• = Limiiw.Ii = 1.11 

contradicts the fact 

(1.5) A Variant of the Bramble-Hubert Lemma - 

As in the case of the Sobolev lemma, there is a variant of the Bramble-

Hubert lemma which is more appropriate for blending-function methods. 

We shall approaèh this theorem via a series of lemmas.. 

Let 2 be a bounded domain in ?, and let 1 5 p 5 . We define linear 

operators Si :L (c)-* L() i=l,... ,n, by Su = D.u, where the domain of 

S. is 
2-

V(S) = {ueL()I 3 weak D.ucI(c)}. 
It is easy to show that S is a closed operator. 

Lemma 1.5.1: S has a c1osed, bijective restriction T. 
11 

Proof: Let B = Ii [a..,b . be a box which contains . Given feE (1) we 
j=j a a p 

can extend f to all of B by setting f equal to zero on B\. Define a 

function U,. on B by. 
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X. 
u(x1,... x) = f(x1,. .. ,x)dt. 

This integral is defined for.all i,... in 

except on a setZ. of measure zero. Let Z = La.1- ,b.]xZ.. Then Z has 
1- 1 1-

measure zero in B and the integral (1.5.1) is well defined for all x outside 

of Z. 

Clearly D.U.=  f in the weak sense, and therefOre Su = f. We define 

a linear operator A:L(2) - L(S) by Af = It is easy to calculate 

from (1.5.1) that A is bounded (in fact, compact) and evrrwherè defined. 

If we can show, that A is one-to-one, it will fo11ow. that. TA is a 

closed, biject±ve restriction of 

To prove that A is one-to-one we must show that if:ujIç2 = 0 then fr0 

cz.c. if then u=O on all of B because f=O on B\. Thus 

(1.5.2) 0 

for all 1 E 

Let B. = j11 and fix = e Let 

S' be the set Of all t. c such that 

By (1.5.2) Shás Lebesgue measure zero, rn1(S) = 0. Let S be the set of 

all x in B such that f(x) 4 0. Then, by definition,. the measure of S is 

ma (S) = IBm (S')dIr = 0. 
•1 x 

Thus f=O a.e. This proves that A is One-to-one.II 

Lemma 1.5.2: The operators T1,...,T which were constructed in the proof 

of lenvna 1.5.1 commute with one another. 

Proof: We defined T by T = A 1 where 

Af(x1,..,x) 
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By Fubini's theorem A1,...,A commute. It follows that their inverses 

T 1 '... 'T n conunute.11 

Lemma 1.5.3: Let B if [a.,b.] be any box containing Q. Then for all 
a=i a a 

u in the domain of T., 
71 

11 ull (b.—a.)lIT.ulj•2 
o,P - 

i= l,.. . ,n. 

Proof: This is equivalent to saying that llAll b_a, which can be 
11 

verified by applying Holder's inequality to (1.5.1) and integrating.iI 

Let y be a multiinteger, and define S1 to be the operator given by 

S u = D1u, where the domain of S is 

V(S) = {ucL()l 3 weak D1ucL(Q)}. 

Lemma 1.5.4:  

Proof: Let T 
I 

immaterial. 

Lemma 1.5.5:  

S has a restriction T which is closed and bijective. 
- I 

= t T.1- . By lemma 1.5.2 the order of the 
i=l ' 

T clearly has the desired properties.Ij 

Let T be as defined in the proof of the previous lemma. 

Th en for all u in the domain of 

lull (b.-a.)1i IT ull 
i=1 •Z- 1- 1 oP 

Proof: Apply lemma 1.5.3 repeatedly.Ij 

factors T is 

We are now prepared to state and prove the modified Bramble-Hubert 



- 21 - 

IIAulI BIIAII IiñuII , 

where ( j_cj P i/P 
B= 1R (b-a,) 

If Q is the unit hypercube (1, then B (+i)] ]'p 

Proof: Let ucW(Q). Since T is surjective (lemma 1.5.4), there exists 

v in the domain of T such that Tv = Du. We have D(u-V) = 0, so 

A(u-v) = 0. Thus 

(1.5.3) IAuII IkvII v 

Let c. Then, as the operators T commute (lemma 1.5.2), T TcT• 

Therefore TaV is n the domain of Applying lemma 1.5.5 with u replaced 

by Tv and y replaced by 3-c, we have 

IIDvll r o,p [fl (b_a) jI1Dv! 0 

Th is holds for all c$, so 

Ilvil r IIDvI 
= 

r r 
j n (b-a) X5  ii]P}lP. IIDvI O,p 

Combining this last inequality with 1.5.3 and recalling that Dv = Du 

we have 

llAuI BIIAINlIDuIIo, 

which is the assertion of the theorem. 

[n 
If then b-al for.alli, so (bi-aj) . 01i] 

rn 
Hence B = I n• (+1) I 

Li='.'] 

n 

j=1 1. 
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It is interesting to note that the only hypothesis on S1 in theorem 

1.5.6 is that Q be bounded Therèàre ào regularity conditions whatsoever. 

The proof of theorem 1.5.6 is constructive ànd:allows us to compute 

a specific constant B. By contrast, the standard Bramble-Uilbert lenüua 

gives us no idea of the size of the constant C appearing in that theorem. 



CHAPTER TWO 

ERROR BOUNDS FOR BLENDING-FUNCTION METHODS 

(2.1) Blending-Function Interpolation  

In this chapter' blending-function methods are introduced',, some of 

their elementary properties are established, and asymptotic error bounds 

for blending-function interpolation are obtained. Blending-function 

methods are a class of methods of generating functions (blended interpolants) 

which' interpolate curves, or surfaces rather than points. The nature of 

a blended interpolant depends on the "blending functioi" used. In this 

thesis we shall consider only two-point Hermite polynomials as blending 

functions. Other possible choices of blending functions are Lagrange 

polynomials; splines, trigonometric polynomials, etc. The readeris referred 

to Gordon's very general discussion of blending-function methods liii. The 

decision to consider only Harmite polynomial blending functions in this 

thesis was dictated by a desire to keep the notation simple. The proofs 

given here can be applied to any blending-function scheme in which the 

blending functions are polynomials. Thus, for example, the methods of 

this chapter can be applied to Lagrange polynomial blending functions. 

The error bounds of Gordon and Hall [12] mentioned in the introduction 

are stated for the case of Lagrange polynomial blending functions but could 

also be applied to other cases. The error bounds of L12J are applicable 

to continuously differentiable functions, whereas the main results given 

here apply to weakly differentiable functions. Error bounds for continuously 

differentiable functions are also given here. 

- 23. - 
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The technique for obtaining error bounds is fundamentally the same as 

that used by Bramble ànd.Zlamal [6]. Where they have used the Sobolev 

lemma and the Bramble-Hubert lemma, we shall use the variants of these 

theorems which were presented in chapter one. 

The developments of this chapter are stated for planar regions, but 

the entire theory carries over to n-space for arbitrary n. We tick to 

the special case n=2 for simplicity of presentation. 

We begin the technical discussion by introducing the blending functions 

themselves, the two-point Hermite jolynomials. Let'k be a positive integer 

which will remain fixed throughout this chapter. Define 2k polynomials 

as follows: 

Let pi and q, i0,...,k-1, be the unique polynomials of degree 

less than 2k such that 

(2.1.1) P (0) = Sij = q(1)71 

p(l) = o = q )(o) 
,j=O,l,... ,k-l. 

Let U be the open unit square in P?2. We use the blending fundtions 

(k-1,O) 
to define an operator P1 on C (U) by 

(2.1.2) Pu(xx) = I [D, (O,x )p/x,)+L•u(l,x )q. 
j=0 2 1 2 j . 1)] 

It is clear from (2.1.2) that if ucc (k-1 9i) CU) for some i, then 

P1ucC0 (U). Also from the properties (2.1.1), P1u interpolates u and 

its first k-i normal derivatives along the sides x1=O and x1 1 of U. In 

fact, for each x2, P1u (as a function of x1) is the unique polynomial of 

degree less than 27< which interpolates u and its first k-1 derivatives (with 
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respect to x1) at the endpoints x1=O and xl. Therefore, if P1 is applied 

to P1u'we will get back the same polynomial again. This holds for each 

so Pu = P1u. That is, P1 is a projector. The range of is 

2- 31 1the set of functions VCC(2l<O)CU) such that for each fixedx 6 [O,1], v is 
2  

a polynomial in x1 of degree less than 2k. Equivalently, the range of 

P1 is the set of all VeC(2k O) CU) such that D(2k,O)v Dv = 0. The 

range of a projector Q is exactly the space of elements v such that Qvv. 

We say that Q preserves or is exact for such functions. Thus P1 is exact 

for the set {vcC(2k,O)()ID(2kO)v = o}. 

The operator P2, the "mirror image" of P, is defined on 

by 
k-i 

(2.1.3) P2u(x1,x2 j=0 ) = [u(x 1 O).(x2) + u(x ,l)q (x )1. 
2 1 j 2] 

Clearly P 2 u interpolates u and its first k-1 normal derivatives on the 

sides x2=O and x2=l of U. P2 is a projector which preserves all 

such that D 0 ,2 v = 0. 

If uEclk_l)(U), then P1P2u and P 2 P 1 u are defined and equal. A 

direct computation shows that 

(2.i.&) P1P2u = P2F1u = 

k-i k-i 
[ (" j) u(l,0)qiD i)u(oo)P.(x)P.(x)+ D  (x )p.(x) 

1 ê 2 i=0 j=0 

+ + 

It is clear from this representation that P1P2ucC 00 (u). 

,(k-1,k-l) - 

We define another projector on - (U) by either of the two 
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equivalent definitions 

(2.1.5) 11 2 1 

I - p = (r-p 1) (I-P2). 

Because P1 and P2 coniinute,P is a projector. Pu is called the blended 

interpolant of U. Theoiem2.1.lbelbw gives the justification for the 

use of the term "interpolant." The error projector E is defined 'by EI-P. 

If we define Ej=I-P 1 and E2=I-P2, thenE = E1E2 = E'2E1. 

Theorem 2.1.l Given ucC "'(U), Pu is completely deternnned by the 

boundary values of ii and its first k-i normal derivatives. Pu interpolates 

these values of u. 

Proof: An inspection of (2.1.2)., (2.1.3), and (2.1.4) shows that Pu is 

determined by the boundary values of u and its first k-i normal derivatives. 

To prove that u interpolates these values we must show that along the sides 

x=0 and 

(2.1.7) tIEu = 0 

and along the sides x2 O and xl, 

(2.1.8) EfEu 0 j=0,...,k-1. 

We shall prove (2.1.7). An analogous argument proves (2.1,8). Let v=E2u. 

Then Eu = E1v. We know that P1v interpolates v and its first k-i normal 

derivatives along the sides and x1=1. This means 

DE 1v = 0 j=0,...,k-1 

along these sides. This, together with the fact that Eu= Ev, proves 

(2.1. 7).11 

Theorem 2.1.2:. . Let 0 be a multiinteger satisfying (k,k) 5(2k.,2k). 

Suppose uEW(U) and Du = 0. Then Eu=O,, i.e. u is preserved by P. 
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Proof: Starting with the equation DuO and performing integrations 

we see that U is of the form. 

u (x , '2 = + • pj (r 
1O 

where jcWY(O;1) jO,.. 1-1, and jO,...-l. 'Letting 

v(x 1,x2) 

aO 

z-1 
w(x,x) 

we have u=v+w, E1vO, and E w=O, Thus Eu = Ev + Eli) = E2E1v + E1E2W O.I 

Theorem 2:1.2 indicates that it may be possible to apply the modified 

Bramble-Hubert lemma (theorem 1.5.6) to the operator. E or, more generally, 

DE. Theorem 1.5.6 requires that D°E be bounded in some. sense. The 

boundedness of DEis proven in the following section.. 

Before proceeding to the next section we examine two special cases 

which will be.üsed in the construction of finite elements. Consider the 

case k=l. The blending functions are the linear polynomials p0(x) = l-x 

and q0(x) = x. .. The function P1u(a 1,x2) interpolates linearly from u(O,x2) 

across to u(l, 2) ,for each x.. P1P2u is the unique bilinear function which 

interpolates u atthe four corners of U Pu is determined by and interpolates 

the boundary values of u. E1-P annihilatesall functions ucW,2'2 (U) such 

that D 2'2' u=O. Among such u are.äll monomials of the form x14, where 

either il or ji.• We state the following corollary for future reference. 

Corollary 2.1.3: Let k=l. Then i) the, blended interpolant Pu is completely 
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determined by the boundary values of u and interpolates u on the boundary 

of U,, ayid ii) P preserves all mononnals of the. form x 4  5 , where il or 

j51. In particular., ? preserves all cubic polynomials. 

Now consider the base k2.. In this case the'.bleding fuxthtions are 

cubic polynomials. 'For example 4 () = 3x2-2x.3 and q1(x) = x3 x2. For 

each fixed r3,, P 2 u, is the unique cubic polynomial in x.which interpolates 

u and its first derivative (with resec to at the endpoints x2=O and 

x2=l. 'Pu is determined by and interolales the boundary values of u and 

its normal derivative. The error operator ET annihilates' all uET 4'4 (U) 

such that D 4'4? u= ' O. Thus  annihilates all monomials: of the form x X17, 

where i53 or 

Corollary 2.1.4: Let k=2. Then i) the blended interpolant Pu is conrpletely 

determined by the boundary values of u and its normal derivative. Pu inter-

polates u and its normal derivative on the boundary of'u, and ii) P preserves 

all monomials of the form 4,, where i53 or j53. In particular,, P preserves 

all polynomials of degree seven or less. 

(2.2) Boundedàess of the Error Operator  

In order to' get a bound for DE we obtain bo 11 unds for DI, DP1, DP 2V 

and DaP1P2. These will yield a bound for DOE, as E = I-P1-P2+P 1P. The 

use of the modified Sobolev' lenna (theorem 1.3.4). will be :demonstrated in 

this section. 'We assume throughout that 1 5 p 5 . The rnultiinteger 

will be denbted'b'y n. 

Lemma 2.2.1: Let a be any multiinteger,, Then for all ucW(U) 

llDuII : <MI1ufI 
oP 

where M is as in theoem' l3.4 

(1,1) 
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Proof: This lemma is trivial because Ml in the ease under' consideration. II 

Lemma- 2.2.2:. Let c be, any multiinteger. Then 

S C M11741 'p 

where M is as in theorem 1.3.4, and 

k-i 

C max I p (x) I 
1- oSx5l j0 a 

V 
P . 

(c+i,k)  UCW (u) 

+ Iq 1(x) I] j=1,2.. 

Proof: We shall prove only the first inequality. Let ucW2+l)(U). 

Then, by the corollary to the modified Soboiev lenüua (corollary 1.3.5), 

UCCl,a2)() so,P 1u is well defined and contained' in C °°'2(ii) C C"(77). 

Applying D to equation (2.1.2) we have 

DP1u(x1 '2 

Thus 

=..I Il [D , 2)U(O'X2 )P •(Idcr1) 

5 max 
xU 

OSj5k-1 

It follows from corollary 

max 
xcU 

Osjsk-1 

+ 2)q 1 (xi)] 

ID'2u()I! .(IP?'1)I + Iq1)(xl)I }] . 
[j=O 

1.3.5 that 

JD'a2)u(x )J 5 MIJU JI 
(k,c 2+l) ,p 

so IDP 1U( 1 1OX 2 )-1 CMIIuII(k , 2+l) • Now take pth powers, integrate the 

left hand side over U, and take pth roots to finish the proof.II 

Lemma 2.2.3  Let be a multiinteger. Then for all 

IIDP P' ull S C u" 
1 2 O,p 12 MII  

where 
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k-i k-i 
max 

(x1,x2)Ui0 j=0 
1- ( Iq1)(x1)IJ{lp22)I + l2 2 }j. 

The proof is similar to; that of lemma' 2.2.2,. the representation 

(2.1.4) being used. 

Theorem 2.2.4 Lt c and 0 be multiintegerè satisfying,c+ri 5 and 

(k,k)5. Then for all ucW(U), 

(2.2.1) I1DEuII S CMIIuIt 
0 31 c sop 

where  =l+C +C +C . 

a : 1 

Proof: From the, hypotheses we have ä+n5, (k,a2+1) s , .( 1+l,k) s 

and (k,k)5, so by the last three lemmas, 

lDcUII S MIIuII 0 op 
o,p 

IIDP1uII 5 C MIIuII O,p c1 ,p 

IIDP2uI 5 C MIluII 
O,p c ,p 

lIDaP1P2U II 0 s C Milull al2 'P 

Application of the triangle inequality to D'Eu = D°u-DP1u-tP2u+DP1P2u 

and addition of these four inequalities gives (2.2.1),11 . 

Thoreia 2.2.5: Let c and s be mult-Lintegers satisfying atnSa and 

(k,k) S sS (2k,2k). Then for all ueW(U), 

(2.2.2) IDEuII 0 S BC aMIIDujI 0 
Vp 

where B is as in. theorem 1.5.63 C is as in theorem 2.2.43.andM is as in 

theorem 1.3.4. 

Proof: Let A:W(U) -- E(u) be the operator given by Au = DEu. By 

theorem' 2.2.4 A is bounded. By theOrem' 2.1.2 'Au=O whenvèr' Du=0. There-

fore we èan apply thebiem l.5.6 'to 'obtain (2.2.2),Ij ' 
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(2.3) Sobolev Space Error Bounds  

Let R = (a 1,b 1)x'(a2,b 2 )be a rectangle in the' iOp lane. Leth 

and h2 = h2-a2. 

(2.3.1) 

The affine 'transformation 

is a one-to-one mapping of LI in the plane 

i=1,2 

onto R in thaw-plane. Thee 

is an obvious correspondence between functions u defined on' and functions 

ü defined on R. Thi correspondence is given by wheè 7i(w 1,w2)=u(x 1,x2 ). 

Here (w 1,w2) and (x1, 2) are linked by (2.3.1). Obviously ü retains the'' 

eüential properties of u, and vice versa. For instance, ueW(LI) if.and 

only if ücW(R). 

The projector P on C _1k-1)(ty) induces a projector P on c <11 () 

by Pu Z. It is easy to seethatP retains the Imporant characteristics 

of P. Specifically; theorems 2.1.1 and 2.1.2 hold for P. We define an 

error projector,E by Eu Clearly .'Eu = . 

We shall establish an asymptotic bound for the L norm of DaEu. In 

order to do this we shall first establish the link between' the àorm of D% 

in L(U) and the nrm of D a D in L(R) for any vcW(U). Then we shall use 

the bound (2.2.2) on D Eu to establish the asymptotic bound for D Eu. 

a jal V a tat 
In the following lemma D V means , and D , means   

a a a1 a 
11 22 W 1 w22 

Lemma 2.3.1: Let T be the Jacobic'i of the trca'isfornation (2.3,1), and 

let a be any multiinteger. Then for all VCWa(U), 

' (2.3.2) 5; , IIV!i op, hJ"IID9IIQ;PR.' 
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Proof: The differentiation formula 

Dv (x 1,x2) h2D (w 1 ,w 

is easily verified. Taking pth powèrs, integrating, and taking pth roots, 

we get (2.3.2).jI 

Theoiem 2.3.2: Let c. and 13 be multintegers satisfying a-I-n S 

(k,k) 5 13 5 (2k,27). Then for all 

llDEuII0 S BCMh 1 'h 2I(D 13ül (2.3.3) 

where B, C and M are as in theorems 1.5.6, 2.2.4, and l.3. 1f, respectively. 

Proof: By (2.3.2) with v replaced by Eu, 

IID'EuII0 ,p ,R ,U 

and by (2.3.2) with v replaced by ,u and a replaced by 13 

tID13 uII = h'1h'2,•-l1pjj DN•jj 3,p 3,R' o,p,U 

We now sandwich inequality (2.2.2) between thesg two lines to obtain (2.3.3),II 

Theorem 2.3.3: Let.h = max{h 1,h2} and suppose h51. Let m be a nonnegative 

integer less than' 2k and let 13 be a multiinteger satisfying G,k)5135(2k,2k) 

and (m,m)+n513. Then for all ücW(R), 

(2.3.4) lluII 5 BC I13I_mjID13 
m,p m o,p 

1/ 
where, C =  . B, C and m are as in theorems, 1.5,6, 2.2.4, 

m I I a I L CI&P 
and 1.3.4 respectively. 

Proof: Let a be such that lcIn. Theñ.+fl513, so (2.3.3) holds. Therefore 

IIDEüIl 0 S BCh1 131—I 'p 

S BCaMhl13ImID13iIIo 
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as hi and IoJm. Taking pth powers, summing overall c. such that H5 in, 

and taking pthroots, we bbtàin. (2.3.7+).fl 

(2.4) Error Bounds for Continuously Differentiable Functions'  

The 'procedure whih has beeàusedto obtain Sobolevspaceerior bounds 

can be üsed.alsó.to obtaineri'or boundsfdrcoi-itinuously differentiable 

functions. If we are willing to work with èontinuously differentiable 

functions we do not ha -e to use a Sobolev lemma type hebem and the proofs 

are correspondingly ethier . It is also possible to 'relax somebf the 

hypotheses. 

The modified Bramble-Hubert lemma (thebrem l.56)±s still required 

and remains true with replaced by C(?i) and replaced by 

Indeed the proofs of some of the lemmas leading up to theorem 1.5.6 

are technically simpler in this case. 

Theorem 2.l.2holds with W(c2) replaced by C(). The constraint on 

can be relaxed to (k-1,k-l) 5 5 (2k,2k). 

Theorems 2.2.4, 2.2.5, 2.3.2,. and 2.3.3 have the following counterparts. 

Theorem 2.4.1: Let c. and be any multi-z-ntegers satisfying c'5$ and 

(k-1,k-l)I3. Then for all ucC(7J), 

IIDuII0,00 c!IuII 

where C is as in theorem 2.2.4. 

Theorem 2.4.2: Let c and be multiintgers satisfying and 

(k1,k-l) (2k.,2k). Then for all ueC(U), 

IIDEuII <BC IiDuIL: 
• 0,00 
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where B' and C are as in theorems 1.5.6 and 2.2.4, respectively. 

Thebrem 2.4.3: Let" c'. and 5 be.multiintegerssatisfy-nga5 and 

(k-1,k --1) S S (2k,,2k). Then for allüdR), 

IIDEu - II 0, S BCh 1—c1 1 h22—c D Ü 211IL Q, 

Ihere B and C are as in theorems 1. 5.6 and 2.2., respectively. 

Theorem 2.4.4: Let m be anonnegative integer less than or equal to 2k, 

and let a be a rnzltiinteger satisfying (k-1,k-1) 5 0 S (2k.,2k) and (m,m)513 

Then for all ' 

lIE14Im,co S BChl l mIIi , 

where 13 and C are, as in theorems 1.5.6 and 2.3.3, respectively. 



CHAPTER THREE 

(3.1) Elliptic Boundary ValueProbléms  

Thi , whièh •contains no new materia1 id included in order to 

establish a genèràl framework to be üsedin the hapter which follow. 

The most common application of the finite èlèmènt method is th& àumerical 

solution of elliptic boundary value prob1em. Therèfbre,we begin with a 

description of problem of this type. 

Let be a bounded domain in J?2. For convenience we èhall make some 

changes in notation. Points in R will be denoted (x,y) rathe than (v1,o). 

Du 
For the derivatives of a function u we will use notation such as u for 

and u for axy - 9yx 

The simplest example of an elliptic boundary value problem is the 

Dirichlet problem for Poisson's equation. Given a function f in some 

appropriate function space on 0 we seek a function u in some other function 

space such that 

-Au = f on Q 

u = 0 on 39 

where A is the Laplacian: Au = u+u. For our purposes it is desirable 

to transform this problem into a genèràlized form. If we multiply both,! 

sides of equation (3.11) by an arbitrary function 1PEC0 CO () and integrate 

by parts on the left side, we Obtain the èqüation 

(3.1.3) J(up + = Jfi VPeC0(). 

- 35 - 
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Define a bilinear form a(.,') by. 

(3.1.4) a(u,v). 

and recall that we have agreed' to denbte the £2 inner product by 

Also, note that, as c 00 (2) is dense in 1 (cO, (3.L3)holds for.all functions 

'Equation (3.1.3) can now be i"ewiitten'as 

(3.1.5) a(u,v) f,!') 0 v 
This is the enèràlized form.of (3.1.1). 'Thebilinear form ,.)is well 

(1) 
defined for u and v. in W (2), whereas Au is not well defined unless • is 

twice differentiable.' Thus (3.1.5) admits a larger class of functions as 

potential solutions than does (3.1.1). We enëràlize the boundary condition 

(3.1.2) by requiring that the solution u lie in &'(q) rather than the 

larger space w1 th). The generalized Dirichlet problem is to find 

such that (3.1.5) holds. The given function f is assumed to be in E2(SI). 

The form a(•,•) is obviously bounded on 1 (c2). That is, 

(3.1.6) Ja(u,v) IIuII 1.IIvII 1 V 

A less obvious fact is that a(.,.) is strongly elliptic on 1)()• By 

this we mean that there is a constant c.>O such that 

a(v,v) ? cIIvlI V (3.1.7) 

This inequality is a consequence of Friedrichs' inequality, a statement and 

proof of which can be found in the article [23] by the author of-this thesis. 

See'also 17]. Note that (3.1.7) holds only on 1 (c2), not on W 1 (c2). 

For example, the,, function v(,y) 1 does not satisfy (3.1.7) 

A conseqüenèe of (3.1.6), (3.1.7), and the symmetry of the form a(',•) 

is that a(•,•) 'is an innerproduct on l)(ç) equivalent to the standard 
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inner product (•'•)i• The functional L(V) = (f,v) 0 is a bounded linear 

functional on the Hubert spac t1 (). Therefbre,by aclassical theorem 

of F. Riesz ([181, page 80), there is a unique function such that 

a(u,v) = L(v) = (f,v) 0 forall 

problem has a unique solution. 

Thus, the genèràlized Dirichlet 

We now propose a more general problem which retains the essential 

features of the generalized Dirichlet problem. Letm be a nonnegative 

r w(m) integer, and let. V be a closed subspace of W(m) () containing (a). 

Suppose that there exists a symmetric bilinear form a(.,.) which is bounded 

and strongly elliptic on V. Thus, there exist constants M and c'>0 such 

that 

(3.1.8) Ia(u,V)lMIIuIImJIVIIm V u,vV 

(3.1.9) a(v,v) V VEV. 

Let £ be a bounded linear functional on V. The general elliptic boundary 

value problem is to find uV such that 

(3.1.10) a(u,v) = £(v) V VF-V. 

By the previously cited theorem of F. Riesz, (3.1.10) has a unique solution 

in V. 

In specific realizations of the elliptic boundary value problem the 

integer m is determined by the order of the equation to be solved. Given 

an equation of order 2m.we work in the Sobolev space W(m)(Q). The spate 

V is determined by the boundary conditions. If the boundary conditions 

for the problem are the Dirichlet boundary conditions - 0 on 
an 

k = 0,... ,m-1, we take V = (Q). At the other extreme is the Neumann 

problem for which there are no eseñtia1 boundary conditions. In this case 
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we take V = m) 

The framework propo'se'd 'her;-- is far from the ñiost genèràl possible 

framewbrk for elliptic boundary value--problems. For instance, one might 

consider nonsynimetric forms a(','). See Cea [7j and Friedman: [10]. Also, 

we are considering heie only hoindgènèoüs problems. Nonhoñtogenèoüàproblem 

are onsideredin Lions and Magenès. [16]-

(3.2) Pinite.Elemn Saces  

The finite. alèmèn method offers a meaàs of numerically solving (3.1.'10). 

* 
The approximate solution u * is taken from a finite dimensional space T/ of 

functions of a special type. To construct a space of "trial functions" 

we first partition the domain 0 into triangular or quadrilateral elements. 

(In this thesis we will concentrate on rectangular elements.) A finite 

dimensional space S of bivariate functions, usually polynomials, is prescribed.' 

A finite element space V * satisfies three conditions: For each function 

* * * 
V V i) the restriction of V to each element coincides with a member 

of 5, ii) V satisfies certain specified conditions at the interelement 

boundaries, and iii) V satisfies specified conditions at the boundary of 

Q. 

As anillustration we shall consider a specific example. Suppose 

Q is a rectangle with sides parallel to the coordinate axes. We draw a 

grid of horizontal and vertical lines, partitioning into small rectangular 

elements. The §pace S is defined to be the four-dimeñiona1 space of bi-

linear polynomials a+lxc+cy+dxy, and 17* is defined to be he space of functions 

* * 
V such that i) the restriction of V to each element coincides with a 

* . * 
bilinear polynomial, ii). V is continuous throughout. Q, and iii) V is 
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zero on the boundary of Q. The meaning of condition ii) is that the bilinear 

functions which define v * on two adjacenelemens must be equal at the 

interèlèinën boundary. 

A bilinear polynomial is completely determined by its values at the 

* * 
four. corners of a.rec±angle. Therefore a function 'v elf is uniquely deter-

minedby its values at the joiñts ofinterection of the lines of the grid. 

This is a statement of uniqueness. Simple àrgumeñts show that the related 

question of existence is also true,' For any values which we might assign 

* * 
to the intersection points of the grid there exists a function v in V 

which takes on the prescribed value at each intersection point. This is 

not quite true. The value zero must be specified at those intersection 

points which lie on the boundary of 2. Otherwise the boundary condition 

will not be satisfied. 

The points of intersection of the grid lines will be referred to as 

nods. A function,v * elf * is uniquely determined by its nodal values. More 

specifically, v* * is completely determined on each element by its values at 

the nodes associated with that element. 

* 
Clearly the dimension of V is exactly the number of nodes in the 

* 
interior of 2. A useful basis for V is the set of functions which have 

the value one atone interior node and zero at all other nodes. A basis 

function of this type is identically zero outside bf the patch of four 

elements surrounding the bne àode at which the function is not zero. 

We now consider 'a second example. Again q is divided into small 

rectangular ;elèmènts,butthTh time is defined to be the space bf:all 
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polynomials of the form p(x,y) + ax 3y + hxy 3, where P (x, y) is a cubic poly-

nomial and a and b are real numbers *. We define V to be the set of functions 

* * 

v such that i) the restrctjon of v to each element coincides with a 

polynomial in S, ii) v is continuous throughout 2 and C1 at the inter-

section points of the grid, and iii) v is zero on the boundary of Q. 

The space S is twelve-dimenional, and it can be shown that a function 

scS is uniquely detèrminedby the values, , and s at the four corners 

of a rectangle. (This will be proven in section 4.1). Thus a function 

vcV is completely' determined by the values of v v, and at the 

points of intersection of the lines of the grid. Again these points will 

be called nodes, but in this case they are trzp1e nodes and will be viewed 

as three separate nodes in certain contexts. The values of v * , v * , and 

v at the nodes will be called the nodal va1u9s of V. Every function of 

* 

V is completely determined by its nodal values. Conversely it can be shown 

that, as in the previous example, for any prescribed nodal values compatible 

with the boundary conditions there exists a function in V * which takes on 

those nodal values. Thus the dimension of V * is just the number of nodes 

(counting triple nodes as three nodes) which are unaffected by the boundary 

conditions. An important basis for V * is the set of functions which have 

one nodal value equal to one and all other nodal values zero. This basis 

is "local" in that each basis function is identically zero except on the 

elements associated with the node to which that function corresponds. 

So far the term "element" has bee1i used to refer to the small rectangular 

regions into which a domain has been partitioned. From this point on "element" 
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will.also be usedin.an extendedsense to mean a particular finite.element 

scheme such as the two which have just beei described. The èlèmènt of the 

first example is known as the bilinear element. 1t is called 'a fourdegree-

of-freedom elèmènt because the pace g of bilinea±' polynomials is, four-

dimensional. The èlèmènt of the second example, a twale degee-bf-freedbm 

element, is known asAdini's rectangle [1. 

We now return to the genèràl discussion. We have postulated' a space 

* 
V which is made up of functions which are piecewise.polynomlals from some 

finite-dimensional space S', and which satisfy some sort of interelement 

continuity conditions and boundary conditions. The continuity condition 

need not be as strict as the requirement that the functions be continuous 

along all of each interelement boundary. For example, there are elements 

for which continuity is attained only at the midpoint of each interelement 

boundary. However, in the two examples considered above we did, in fact, 

have continuity along the interelement boundaries. As is well known (2Oj, 

page 327), this implies that V C W 1 (ç). Similarly, since the members 

* 
of V (in the two examples) are zero on the boundary of c, the even stronger 

inclusion V c holds. This inclusion indicates that the two elements 

which we have considered might be useful for the solution of the generalized 

Dirichiet' problem (3.1.5), as &(1)() 'is the space in which this problem 

has been posed. More genèràlly, if we wish to solve tha.elliptic boundary 

value . problem' (3.1.10), whih has beeàposed'in the apace V, we might' like 

to use an element which satisfies 'the inclusion V c V. Indeed, it might 

seem that this inclusion is essential to the success of the procedure. In 

* 
fact it is not. Elements which fail.to satisfy the inclusion V C V are 
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called nonconforming-elements. Nonconforming.elèments'are.widely used and 

of ten give good results.' ̀Thetheoi'y of nonconforming .elèmènts is discussed 

in the chapter on'"váriationâl'crimes't' in Strang and Fix [21]. This thesis 

will consider on13i conforming:e1ments', i.e. .élèmènts whih àtisfy the'' 

inclusion V * C  V. The bilinear.element and Adini's rectangle are conforming 

elements for the' eneràlized' Dirichlèt' problem' and second-order' problemC 

in general. 'However', thesèèlèmènts are nonconforming for fourth-order 

problems, which require the inclusion V C V C 

Both of the examples which have been' considered feature "nodes" such 

* * ' ,' 

that any function V eV is completely determined , on each element by its 

nodal values at the ñodes'associated'with thatelèmènt. 'Additionally, for 

any specified set of nodal values there is a function in It which takes on 

these nodal values. Finite element schemes having these properties are 

called nodal finite elements and are the subject of the nodal finite element 

method. Every nodal finiteelement space has a-"local" basis consisting 

of functions which have one nodal value equal to one and all other nodal 

values zero. In this thesis only nodal finite element schemes will be 

considered. 

A nodal finite.element scheme is completely defined once the-placement 

of the nodes on a typical element (say the unit square U) has been specified 

and the polynomial space S has been' defined The' Cpace S 'must be èompatible 

with 

be a 

lent 

the choice of nodes': For each specified' set' of nodal values' there must 

unique' function in S whih takes' on the' given' nodal values'. An equiva-

statement of the compatibility condition is that for each sufficiently 
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smooth function U OU LI there exists a unique, polynomial q in S such that 

q and U have the same nodal values. The map U + q defines a lineai:''pro-

jection operator Q q. As the range of Q is g, Q and the placement of 

the nodes determine the finite èlemènt scheme. In chapter four ,a number 

of elements will be constructed. In each case the' construction will consist 

of specifying the nodes 'and constructing the projector Q. 

(3.3) Th& 'inite.tlement Solution  

* 
Having determined the nature of the spaces 'V which we will be considering, 

* * 
we now address the problem of selecting an approximate. solution u eV of the 

elliptic problem (3.1.10). A reaonable procedure 'ôiould be to select that 

* * 
function u fvom V which is in some sense closest to the exact solution U. 

In the finite element method we take as our measure of closeness the energy 

norm, the norm induced by the inner product a(",•). This norm is equivalent 

to the Sobolev norm IHIIm on the Hubert space V. According to the elementary 

theory, of Hilbert space there is a unique u eV which is closest to the 

exact solution u in the sense that 

a(u_u*,u_u*)½ 1-2 

V*EV 

* 
and u is characterized by the fact that the 

* 
gonal to V . That is 

* 
(3.3.1) a(u-u * ,v ) = 0 

* 
error function u-u is ortho-

V v* cv* 

Combining (3.3.1) with (3.1.10) we arrive at a characterization of u which 

does' not involve the' unknown function U: 

(3.3.2) a(u*,v*) = LW) V v*cV*. 

* 
Thus u is the Ritz-Galerkin approximation to u. 
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We now consider the-problem of solving (3.3.2). It is assumed that 

V is a nodal finite èlèmènt space. We number 'the nodes and define 'p. to 
* a 

be the unique basis function of V whose jth nodal value is one and whose 

other nodal values are zero. Problem (3.3.2). is equivalent to 

* 
(3.3.3) a(u  

a a 
* * * 

where d is the dimension of V . The function u is of the form u = 

where cd are keal coefficients to be detèriuined Thus(3.33) can 

be rewitten as a d><d matrix equation 

(3. 3.4) d 
= L() j=l,..;. 

The 6oef±iciant matrix K(a(P.,p.)). 16 called' the § tiffness matrix. It 

is a Gram matrix based on lineaily independent functions and is therefore 

symmetric and positive definite. These properties are obviously important 

to solving (3.3.4), but the real advantage of the finite element method 

lies in the "localness" of the basis functions. The suport of tj. is 

restricted to the elements immediately surrounding the jth. node. Therefore 

a(''.,P.) will be zero unless one of the elements has both the jth and jth 

nodes associated with it. Also, those off-diagonal entries a@I.,P.) which 

are not zero tend to be smaller than the main-diagonal entries. In other 

words, the functions 1P1,...,lIld are "nearly orthogonal". In consequence 

the stiffness matrix K is sparse and well-conditioned, and (3.3.4) can 

be solved' inexpensivelr and accurately. 'For a discussion of the condition 

of the stiffnes matrix see 'Strang and Fix [21]. 

We can most easily take advantage bf the parseneü of K by taking 

care in numbering the nodes. It is possible to number the nodes in such 
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a way that the ñonzeroelemènts of K are onfined to.a narrow band of 

diagonals on eithefr' side of the main. diagonal. A matrix .whoè ñonzerb. 

entries' are.iesricted to èuch a band is called'a band matrix. 'Its' band 

width is the' àumber' of'diagonàls beteeñ' (and including) the'highest and 

lowest diagonals containing nonzero ènries 'By keeping. the band width 

small we can significantly reduce the äomputer' time and storage iequirements 

for solving (3.3.4). 



CHAPTER FOUR 

THE USE OF BLENDING-FUNCTION METHODS IN THE 
CONSTRUCTION OF FINITE ELEMENT SCHEMES 

(4.1) Adini ts Rectangle  

Blending-function methods, in the form in whibh thewerèresènted 

in chapter two, are of no immediate use in numerical analysis because the 

blended interolant of a function U depends on an infinity of data associated 

with U. In order to make blending-function methods useful' numerically it 

is necessary to carry out a further discretization to obtain an interolant 

which is deterininedby finitely many data. The end product ofsuch a 

discretization is a finite element. Gordon and Hall [12]. and Barnhill and 

Gregory [] have produced finite elements in this manner. In this chapter 

we use blending-function methods to construct one well known element and 

several others which are evidently new. We begin by showing that Adini's 

rectangle, which was introduced in chapter three, can be arrived at by 

means of blending-function methods. 

Let U denote, as before, the open unit square. Let u be a once con-

tinuously differentiable function on U, and suppose we are given the values 

of u, and u at the four corners of U. We Chall construct a polynomial 

q=Qu which interpolates these twelve uodal values and is completely deter-

minedby them. Define valong the'bottom edge {(,y)'Ox1, yO} ofUby 

v(x,O)=s(x), whèiès(x) is the üniquecubic polynomial satisfying the inter-

polatory conditions 

s(0) u(O,O) s(i) = u(l,O). 

s'(0) = u(0,0) s'(l) = u(l,O). 

- 46 - 
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Similarly, define v along the right edge of U by v(l,y)r(y), where (y) 

is the unique cubic polynomial satisfying 

r(0) = u(l,O) r(l) = u(l,l) 

r'(0) = u(l )O) r(l) =u(l,l). 

Define V along the other two edges 'of U in an analogous manner. 'Obviously 

V interjolates the nodal values of u. Note that this process preseries 

bicubic polynomials (polynomials of the form c ê .XlYa ) in the ense 

that if u is a bicubic polynomial then V=ulau. 

The secbnd step of the construction must now be obvious, Define the 

interpolant q-Qu to be the.blended interolant PV, 

q = Qu PV 

where P is the blended interpolating operator based on linear blending 

functions. The important properties of this operator are summarized in 

corollary 2.1.3. One of these properties is that PV is completely determined 

by the boundary values of V. Thus q is well defined by (4.1.1). 

This stage of the construction preserves all monomials of the form 

x 1'y dl where either il or j51. That is, if V=inIU, where in is a monomial 

of the prescribed form, then Pvm. P is linear, so.all linear combinations 

of these monomials are preserved. 

The interpolant q has the desired interpolatory properties: q is PV, 

which nterjolates (the boundary values of) V, which in turn interpolates 

the nodal values of U. Thusq interpolates 'the twelve àodal values of u. 

Likewise q is completely determined by these nodal values 

Both tages of the onàtruCtionare1ineai, so the bperàtorQ which 
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has been implicitly defined by the construction is linear. Q isalso.clearly 

a projector. Thei-èfbra.heiange of Q isexàctly theetof'functions which 

are preseried' by Q. It is easily verified' that the äubic polynomials and 

the monomials x3  and ry 3 are preserved in both tages.' of the Construction. 

Thus they are resCrvedby Q. The span of theee jolynomials is a twele-

dimenional space. 'The'dimenion of the iange of Q cannotexCeedtwel'qe 

because Qu is detèrminedby twelre jaramet6rg associated with it. 'Therèf öre 

the range of Q must be Cxàctly the Cpace spanned' by x3 y, xy 3, and the Cubic 

polynomials. 

We have specified a set of twelde àodes, the same ñodes'as for Adini's 

rectangle, and we have constructed an irterpolating projector Q whose range 

S is the space of polynomials on which Adini's rectangle is based. Thus 

we have constructed Adini's rectangle. In the process we have fulfilled 

a promise made in chapter three. It has been shown that for any'specified 

set of nodal values there is a unique 8ES which interpolates these values. 

Existence is guaranteed by the construction. Uniqueness follows from 

existence because the dimension of S is the same as the number of nodes. 

There is one other point worth discussing. The original definition 

of Adini's rectangle given in chapter three does not involve the concept 

of nodes. The trial space was defined to be the set' of functions which 

are elemCntwise memberg of the polynomial space S, which are Continuous 

from one Clement to the àext, and which satisfy appropriate boundary con-

ditions. The'àlterhate characterization in terms of nodes was then stated 

without -proof. It was stated that for any given set ofnodal values con-
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sistent with the boundary conditions, there is a unique, v*cf whièh inter-

polates' thee values. Thi.is equivalent to saying that for eaèh ucC 1() 

* 
which satisfies the boundary , conditions there is a unique .'v cv which has 

the ame nodal values as U. The üniquenes is obvious: the:iestriction 

of V to 

values' of 

an.element e haè to be the iiniquescSwhih lnterjolátes the nodal 

U1  'Thu v = whe1e Qe is just the' interpolating 

projector Q scaled to the'; element e. The uestion of existene will haqe 

been answered in the affirmative once it has been' shown that the' unique' 

function V defined by Q(uI) (for all elements e) is continuous 

at the interelement boundaries and satisfies the boundary conditions. 

We shall demonstrate interelement continuity. Let ei and e2 be two 

elements having a common edge. The interpolant v*I Q6 (u ) was defined 
el l lel 

along the common edge to be the unique cubic polynomial determined by four 

nodal values. The interpolant V*Ig = Qg (ul ) was defined along the same 
2' 2 e2 

edge to be the unique cubic pblynomial determined by the same four nodal 

values. Thus V*I e and VJ are equal at the element boundary, and v is 

continuous throughout . The proof that V satisfies the boundary conditions 

is similar. 

(4.2) C1 Elements  

In chapter' three we considered a second-order problem as a model problem. 

For second-order problems it is convenient to work in the space 

Any finite element scheme which features interelement continuity is con-

forming in the sense that the trial space V lies' within W 1 (c). Such 

elements are balled' C0 elements. 
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For fourth-order elliptic problems the conformity condition is 

* (2) . * (2). 
V C VC hi (c). The condition V . W () issatisfied if and only -if 

* * 
every v sV is onèe èontinuously differé±iiableglobàlly. Elemènts satisfying 

this condition are called C1 elements. In thi seètion we üse.blending-

function methods to construct three C1.elèmènts. We 6ould take a much more 

general approach and define large:classesof CX elements at one stroke.' it 

is this author's opinion that a few specific constructions are worth as 

much. 

One other remark is in order here. We have introduced C1 elements on 

the grounds that they are useful for solving fourth-order problems. Obviously 

C1 elements can be used to solve second-order problems as well. 

The construction of C elements can be carried out as follows. For 

each ucC2(U) we define functions v and V (= normal derivative of v) on 

the boundary of II such that V and Vn are determined by a finite number of 

nodal values associated with U, and V and V interpolate these nodal values. 

We then define the interpolant q=Qu by q=Pv, where P is the blended inter-

polating operator based on Hermite cubic blending functions. The important 

properties of P are summarized in corollary 2.1.4. One of the properties 

is that PV is determined by the boundary values of V and its normal deri-

vative, so the definition qPv makes sense even though only the boundary 

values of V and V have been defined. Also PV interpolates v and v, so 

q interpolates' the ±iodal values' of U. 

The first step in defining a specific nodal finiteelèmènt is the 

determination of the nodes. As a prelüdetothisfirst step it is worth-
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while to examine one of this,author's unsuccesful'attemts at.elèmènt 

construction and .therèby discover'a pitfallwhièh iuust'beàvoided. 'In an 

attempt to construct a C':elemant' with as few' nodes' as posàible,'I chose 

the same twe1e ñodès' as for' Admits , rectangle u, u , and u at the' four' 
-. '. X., y, -. 

corner of U. 'The'function vwas defined' on the'boundary of Uin the' game' 

manner' as for Adini' s rectangle. 'The' hormal derivative 'V was defined' on' 

(say) the' bottom edge of Ti by v(x,O) = v(xO) = r(, whe'è r(x) is the' 

unique linear polynomial such that 

r(0) = u(O,O) (l) = (l,O). 

Similarly v was defined on the left edge Of T by v(0y) = v(°y) = 

where s(y) is the unique' linear polynomial such that 

8(0) = u(O,O) (l) = u(O,l). 

The interpolant q=Qu was defined to be the,blended interpolant of v based 

on Hermite cubic blending functions. 

On attempting to determine the elamentary properties of this element 

I immediately encountered what appeared to be contradictions. After some 

thought I discovered the root of the problem. On one hand V(rO) 

so V (0,0) = r'(0). On the other hand V (O,y) = s(y), so V (0,0) = s'(0). 
y.c ' ' XY 

In general r'(0)5 s'(0), so v XY (0,O) 0 v YX (OO). This inequality destroys 

the coimnutativity of P and P 2 (see (2.1.2),, (2.1.3), (2.1.4), withk=2), 

and consequently the interpolatory properties' of P are lost. 

'The obvious way to avoid this pitfall is to include the corner values 

of U XY = U YX as nodes and define V in such a way that V XY =V YX =U XY at the 

corners of 77. 'Other'problems may occurunless the corner'values'of u, u, 
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and u are included as nodal values. For example, suppose Yke define 

v(x,O)= r(r) and v(Oy). v(O,y)= 8(y), wherer and s are èerain 

specified polynomials. 'The±i r(0).= V(O,O) and s(0) v(O,O). To have 

r'(0). 8(0) would be fatal. We avoid hipossibility by. including 

u(O,O) as a, nodal value and defining r() and s(y) 

r, (0) = u(O,O) = s(0). 

in such a way that 

We are now committed to haing at leagt sixteen nodes, namely u, U. 

U and u at the four. corners of U. It is possible to construct anelèment 
y xy ,. 

having just thgse ixteen nodes using the method proposed here. Thig 

element is just.the jroduct two-point Herinite.élèmènt, whièh äan be bbtained 

by a simpler construction. We shall not discuss this.elgment in detail. 

Having determined 'the minimum number of nodes which we are willing 

to tolerate, we might now ask what is the maximum number of nodes from 

which we can benefit. In order to obtain a high rate-of convergence an 

element should be exact for-all polynomials of as high a degree as possible. 

By corollary 2.1.4, the blending-function stage of our construction preserves 

all polynomials of degree seven or less but not all polynomials of degree 

eight. The monomial xy 4 is not preserved' by P. Therefore we might profit 

by furnishing enough nodes to make the first stage of the èonstruction exact 

for seventh degree polynomials. A C1 element which preserves seventh degree 

polynomials can be äonstructedby the method proposed h&re with 44 nodes, 

a number" which seenig a bit high. 

We shall deribe three elgments whih lie beteen' the two extremes. 

We bgin with. an e1emen which is exact for untic polynomials.' Suppose 
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we take as nodes the Values. 0 and u at the corners, as well as 
yy... 

and U. Define V. along .the' bottom edge of (Jby v(x,O) r(, 

r(r) is the' üniquejuiiitic polynomIal such -that 

r(0) = u(O,O) r(l) = u(l,,O) 

r'(0) = u(O,O). r'(l) = u(l,O) 

r" u (0).= (O,O). rt!(l) = u,(l,O). 

Define V in an analogous manner on the' bthei' three sides. 

U, U 

where 

Row should Vn be defined? If the. element is to preserve 4uintic poly-

nomials, 7) must be a quartic polynomial along each edge. 'In order' to 

define V as a quartic-polynomial we introduce four -new nodes-- the normal 

derivatives at the midpoints of the four sides of 7J. These are 

u(l,½), u(½l) and u(O,½). Define Vn on the bottom edge Of U by 

v(x,O) = v(rO) = s(r), where s(x) is the unique quartic polynomial such 

that 

s(0) = u(OO) s(½) = u(½O) s(l) = u(1O) 

s'(0) u(O,O) s'(l) u(lO). 

Define v analogously on the other sides of U. The definitions of v and 

are consistent in that the pitfalls mentioned above have been avoided. 

We can now complete the construction by defining q-Qu-Pv,,where P is the, 

hermite cubic.blended interpolating operator. 

The 28 degree-of-freedom (d.o.f.) element which we have just constructed 

is clearly a C1 .element. For suppose è and e are twoelëmènts having a 

common side r•' Let V* be any function in the' trial space V, and let 

and Then8 1 and S 2 aredèfined'on r to be 4uintic poly-

nomials whiCh are both' detèrined' by' the game' interpolation'. scheñiC' and 
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which interpolate the same nodal values. Thus on 1. By similar 

reasoning th&normal derivatives of s1 and son rare equal. Thus v is 
2. 

once continuously differentiable at the: element boüàdary. 

In order to really "know" an.elemènt it isáecessary to determine 

the i3pace S ofpQlynomialspresèrvedby the lntarjolating projector Q. 

Theiefbre we àhall now determine S. 'The: element has been' constructed in 

such a way that S contains.all quintic polynomials. The ... dimenaion of the 

space of quintic polynomials is-21', whereas the' dimenion of S is 28. There-

fore there are seven other lineaily independent polynomials in S. The first 

stage of the construction preserves any biquintic polynomial whose normal 

derivative is quartic along each side of the boundary of U. In particular 

the first stage preserves all biquartic polynomials. The second stage of 

the construction preserves (according to corollary 2.1.4) every monomial 

of the, form x'yê,.where either i3 or j3. Therefore the monomials 

33 24 43 34 x y , a' y , a' y , and a' y are monomials of degree greater than five which 

lie in S. This leaves only two more linearly independent polynomials in 

S to be determined. The two remaining polynomials turn out to be x5(3y 2-2y 3) 

and (3a'2-2a'.3)y5. ,We shall verify that ip(a',y) = x5(3y 2-2y 3) is in S. Since 

'P is cubic in y, it is preserved in the blending-function (second) stage 

of the construction. As for the first stage, the function values of 'tP are 

preserved on the boundary of U because I) is biquintic. For the normal 

derivatives we have on the v 4 2 3 ertical sides P(x,y) = ii (a',y) = 5x (3y -2y ), 

which is (less than) quartic in y and is therefOre preserved. On the 

horizontal sides'we have ip(x,y) = *(x) = 6x5(y-y2'), which is not quartic 

in X. However, for y=O or y=lwe have (x,y)O,.ihiOh iscertainly quartic. 
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This proves that 'P €& By symmetry the polynomial (3-2) y5 is also in S.. 

The next element whiCh we Chall construct is a 24: d.o.e. C' 'elCmCnt 

which is exact for all quartic but not:all quintic polynomials. For our , 

24 nodal valueswe take 'u, is is., is u , and u atthefour.corners. 
& y xx' xy yy 

We define vonthebouidary.of Ue*àctly as fortherèviou:elCmCflt. That 

is we define von (for instance)  the' right edge bfby = r(y, whekd 

(Y) is the unique uintic polynomial such that 

r(0) = u(l,O) 

rt (0) = u(lO) 

(0) = u(lO) 
YY 

r(l) = u(l,l) 

(1) =U. (1,1) 

yy.. 

The definition of vn for this element differs from that of the previous 

element in that here we dispense with the midside nodes and require that 

be cubic. Specifically, we define Valong (say) the bottom edge of U 

by V(X,O) = V(xO) s(cc), where s(x) is the unique cubic polynomial such 

that 

s(0) = u(00) s(l) =.u(l0) 

u(0 O) s!(l) = u(1,0). 

This completes the first stage of the construction. The second stage is, 

of course, the same as in the construction of the 28d.o.f. element. 

The 24 d.o.f. :elCment clearly preserves.all quartic polynomials, for 

quartic polynomials have cubic normal derivatives. There are fifteen linearly 

independent quartic polynomials. The bthe1' nine linealy independent poly-

nomials which are preserved by this.elCment are I) the bicubicsx3y2 , x2y3, 

and x3y3, ii) x5 'and y5, and Iii) xL1(3y.2y3), x5 (&j-2y.), (x2-2x3)y'+, 
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aLid Ox 2-2x3)y . 

The avingof fournodesin thi.elèmènt as comjare4to the jrvious. 

element has a greater effect than one might at first suspect. Suppose we 

have a large grid of.elgmnts. Theñthetotài.number'of edesis:almost 

twice the àumbér of vertices',, -and the tatio àppróaèhe two as the'-grid is 

made finer. Thefbre the total saving in nodes realized by discarding 

the midside nodes is almost as great as would be oten .by eliminating two 

nodes at each vertex. 

The third C1 element which we shall construct is a 20. d.o.f. .élment 

which is exact for quartic polynomials. The nodal zalues for thiselement 

are u, u, and u at the ertices, and the function value ,U at the 
XY 

midpoints of the sides. Define t'.along (for example) the left edge of U 

by v(0,y) = r(y), where r(y) is the unique quartic polynomial such that 

.r(0) = u(0,0) r(½) = u(0,½) r(1)- = ü(0,1) 

= u(OO) r(l)=u(Ol). 

Define to be a cubic polynomial exactly as for the 24 d.o.f. element. 

The second stage of the construction is exactly as it was for the other 

two C1 elements. 

The space S of polynomials presèrzedby this.elèment is the space 

spanned by the quartic polynomials and xy 2, x2y3, X 3y3, x'(3y2-2y.3), and 

2 3 L 
(3a -2x. )y 

The saving in total degreeof freedbm realizedby using this element 

as compared to the 24. d.o.f. .elèmènt is.small. The effect of '.,eliminating 
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two nodes at each vertex.inthe 20.d.o.f..element is.almostoffsetby the 

addition of onè'iuidsidehode.. 

We conclude this section by mentibningtheosibility ofmixing 

rectangular and triangular.elëmènts in a given problem In many problem, 

such as problems in whièh theboundary is apolygon'with änglesothei'hañ 

right angles, it might be üsefül to use rectangular elèmènts in the interior 

of the domain and triangular:elaman'ts neai thebouidary. Both the28d.of 

element and the 24. d.o.f. élemen't'are goodcandidates for such mixing. 

There is a well-known.21. d.o.f. C1 element [25] having the nodal parameters 

U, u, ui,,, u, u, and u at th& 4.rerticesof each triangle and Un at 

the midpoint of each side. This nodal configuration is the same as that 

of the 28 d.o.f. rectangular elenent, so the two elements could share a 

common side. The 21 d.o.f. element is exact for quintic polynomials, as 

is the 28. d.o.f. element. The two elements are, in a word, compatible. 

The 24 d.o.f. element also has a triangular counterpart -- the 18 d.o.f. 

element gotten from the .21 d. o.f. triangle by discarding those trial functions 

whose normal derivatives on the element boundaries are not cubic. This 

measure eliminates the need for the midside nodes and gives rise to a C1 

element which is exact for quartic polynomials and is compatible iqith the 

24 d.o.f. rectangular.element. 

(4.3) An.Elemèn't for ThráeDimanional Prob1em  

To demonstrate the possibility of using.blending-function methods in 

the construction of elements for three-dimensional problems we shall construct 

e 
a three-dimensional 1tbrickshaed C.: element hiCh resèrth:cubic polynOmials. 
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We Lake as a standard "brick" the unit cube 06(9,1) 3 For nodal parameters 

we take u, u, u, and u atthe' eight, vertices' of . U. 

will have 32 degrees of'freedom. 

Thus the: älèment 

Given uCC'(V) we are to èonatruct an interjolant qQu depänding only 

on the nodal values of u. 'The èonstructionwill be arried out in three' 

stages The first stage èonàists of d'efining a funètion v on the edges' 

of U whièh interpolates' the nodal parameters of U. 'Define on (for example) 

the' edge {(x,y,z)j 01, y=z=0} byVx,0,0)p(X), whee'p(x) is the'ünique 

cubic polynomial such that 

p(0) u(0,0,0) p(l) = u(l,0,O) 

P, (0) = Uc,,,(00 O) p'(l) = u(l,O,O). 

Define V along the other' eleven' edges in an analogous' manner. This completes 

the first stage of the construction. This stage is exact for tricubic 

polynomials, i.e. linear combinations of monomials "of the form 

where i, j, and k are.all less than or equal to thre. 

The second phase of the construction consists of defining a function 

w on the faces of j which interpolates v.along the edges. Define' w on 

each face to be the blended interpolant of V based on linear blending 

functions. Recall (corollary 2.1.3) that this operation preserves those 

monomials which are linear (or constant) in at least one of the variables. 

Thus the monomial x i Y i z is preserved on the faces: z0 and z=l if i51 or 

j . ' l. Similarly, i j k v y z is presered on ' the faces yO and y1 if 5l or 

k'--1, and on the faces'xO and x=lif j51 or kl. It follows that the monomial 

ijk. '. 

x y z is preserved onall faces -by the second stage of the construction 

if at leaCt' two of",j,.and kare less thaiior'eqüal to àne.' 



- 59 - 

Note that the first two.stagescould have beaii'described'asone: we 

define won (for example).the.façe Oby.coi'isider1ng theàoda1 values' 

u, u , and u at the fourvertices'assbc1atedw1th this face and taking 
x y.. 

w to be the' Adini's rectangle interolànt of the'ñodàl values. 

The thiid'and final phae of the orthtruètioà is the defInition of 

the interpolant q=QuthroughoütU.. Define q to be the three-dimensional 

blended interpolant of w based onlinear blending'futictions. That is, 

q=Pw, wheè P is defined' by 

P P1P2P3 12 P 1P zp 3 

or, equivalently, 

(I-P) = (I-P (I-P 2 (I-P 3) 

and i'1, P2, and P3 are given by 

P1w(x,y,z) = w(O,y,)(l-x) + w(l,y,z)x 

w(,O,z)(l-y.) +w(r,l',)y 
P2w(x,y,z)  

P3w(x,y,z) w(,y,O)(l-z)+ w(;y,l). 

The theory of three-dimensional.blending-functipn methods is no different 

from thetwo-dimensional theory. The blended interpolant Pw is completely 

determined by the values of w on the faces '(i.e. on the boundary) of U, and 

Pw interpolates (the boundary values of) w. This phase of the construction 

preserves those monomials x i y i z for which at least one of i, j, and k is 

less than or equal to one. All of these monomials were preserved in the 

second stage as well. 

To determine the pace , of polynomials whih are. preserved by this 

elèmnt we must determine which olynomia1sare:preser4edbyall three 
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stages of the construction. The first stage preserves tricubic polynomials, 

and the second and third.stages presèrveill monomials which are of first 

i j k 
degree in two of their three variables. Thus;a1l monomials x,y z for 

which i, i, k 3 and two ofi, i, and k are les thañor equal to one are . 

preserved mall three'tagesoftheeonstructiofl. A quick count shows 

that there are 32.such monomials, exactly the dimeionofS. The±'èfbrè 

S is the space generated by theè 32 monomials. Contained in S are:àll of 

the cubic polynomials but -not, forexample, the quartic monomials x and 



CHAPTER FIVE 

ERROR BOUNDS FOR FINITE ELEMENT METHODS 

(5.1) Introduction  

In this chapter eror boundsfor finite':èlèmènt méthodàareöbtained 

by two different approaches The irst approach is esCentially that of 

Bramble and. Ziamal [6. Here iqe Obtain some aimplification by applying 

the Bramble-Hubert lenña to linear operàtorà with range in E2(U) rathei 

than to linear functionàls. Also we utilize. fraCtional' (i.etioninteger) 

order Sobolev spaces to obtain a more genèràl result. Aside from being 

aesthetically pleasing, the increased generality has practical' importance, 

as will be shown by means of an example. This approach can be applied to 

arbitrary nodal finite elements, not just those which can be constructed 

using blending-function methods. Our treatment of the subject is correspond-

ingly general. 

The second approach uses the one-variable versions of the Sobolev and 

Bramble-Hilbert lemmas together with the error bounds already obtained for 

blending-function methods to derive finite element error bounds. This 

approach applies only to elements which can be constructed by the.methods 

of chapter four.. Its advantage over the first approach is that in this 

case it is possible to estimate the constants appearing in the error bounds. 

The second approach is more involved than the first, and rather than striving 

for great generality, we present complete proofs only, for Adini's rectangle. 

We also indicatethe procedure to be. followed toobtain error bounds -for the 

24. d.o.f. element constructed. in. chater four.. ThiC .procèdüré. Can be applied 
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to the other C1,elements.as well. 

The two âpproaèhes have much iii. common, and we shall cover their. common 

points beforeèxàmining thei sepàratelj in ááctionà 5.2 'and 5.3, reseciv'ely. 

In this chapter we return to the notation of chapters one and two in 

that points in aplane bill be denOted' = (x , 1 2 1 2 ) and w = (w ,w ), rathex 

than (x,y). 

Let' 0 be a bounded domain in the to-plane hoe' boundary is a polygon 

with sides parallel' to the èoordinate axes. Let' m be a positive integer' 

(which bill remain fixed throughout this chapter) and let" V be' a' complete 

subspace of W(M) ().which contains m)()• 'Let'a(•,.,) be  symmetric bi-

linear form which is bounded and strongly elliptic on V. Thus there exist 

positive constants M and c#. such that 

Ia(u,v)I MIIuIIIIVII V u,VcV 

a(v,v) ? cVII2 V Vtf. 

Given a bounded, linear functional L on V we wish' to solve numerically the 

elliptic problem 

(5.1.3) ' a(u,v) = L(v) V vei/. 

In section 3.1 it'was shown that (5.1.3) has a unique.solution ucV. 

Ther'e are infiniteljr many ways of partitioning 0 into rectangular 

elements by drawing grids of horizontal and vertical lines'. To eaèh 

pattition II weassign two numbers, hh(It) and g=g11).. The"ñorwi, h,.of the 

partition is the maximum of the lengths of all sides' of':all:elements in the 

partition, and g is the corresponding minimums' We.pick anumbeibl' and 
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consider only those partitions for whichh/g sb. In other words ) we èonsider 

only thosepartitionà for.whith the.vàriation in sizá and shape bf the 

elèmènts isnot toogreat. 'We shall:also require, that h not' exceed one. 

We are primarily interested' in what happens as h tends to zero.' 

We select a nodal finite.elementscheine.' Foreaähpartitionii the'' 

finite-element schemegives rise toa finiteelement subspace V c V. 

is a unique .j. cIT such that 

Ther 

* 
(5.1.4) a(u*,v *) v *) v v * v 

We ehall obtain asymptotic bounds for jJuu*JI 'as the esh àorm h te' nds' o 

zerb. 

* . * 
In section 3.3 it was seen that u is' the ünique.elèment of V which 

is closest to u with respect to the energy norm a(- ,-)  Theèfbre 

a(u_u*,u_u*) 5 a(u-Q'u,u-Q'u) 

where Vu is the unique function in V * which interpolates the nodal values 

'of u. From this inequality and inequalities' (5.1.1) and (5.1.2). we conclude 

that 

(5.1.5) IIu_u*Ii, S IIu-Q.'uII. 

Thus, in order to estimate IIU_U*IIm it suffices to estimate 

The estimate will be obtained in an element-by-element manner. That 

is, for eauhelement .R we will get'.a bound for lju_QtuflR. 'We will then 

sumupthesè bounds to obtain an estimate for IIU1UIIrn• To obtain a 

bound for IJU••Q'UII R we shall set' up.an af fine map betweenR and the unit 

square.U,.as in section 2.3.. 'We ahall.thea'obain.a bound for'the':èror 

betqeeñ' a ftInction'v ori"U and its: flnite':èlèmènt interolnt QV, and use 
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this bound together with the af fine map to get a bound for U-Q'u on R. The 

two approaches which we shall consider differ only in the way in which bounds 

for v-Qv on (fare obtained. 

Suppose the dimensions of R are hf<h2, and the lower left corner of R 

is at the point (a 1,a2). Then the affine transformation 

(5.1.6) w. = hx + a i=l,2 

maps -0 in the x-plane onto R in the w-plane. As in section 2.3 there is an 

obvious one-to-one correspondence between functions p defined on U and 

functions V defined on R. We associate the function'D with v, where 

3(w 1,w2) = v(x1,x2). 

here for the case p=2. 

Lemma 5.1.1: 1.etJ he the Jacobic,yi of the transformation (5.1.6), and let 

c. be any multiinteger. Then for all vcW(U) 

= h 1h 2J_½ IIDci.4lOR 

IcI 
Here Dvmeanà  ' ' and D means 

1 2 ci 2 
2 W 1 W2 

(5.2) Error Bounds for Fractional Sobolev Spaces  

We begin the first approach to error bounds by proving another lemma 

about the transformation from U to R. Let S be any positive real number, 

and recall the definition of the seminormJ.I5 = II S where 
,2  

is any bounded domain. If 8 is an integer the seminorm is defined by 

Otherwise it is defined by (1.2.3) together with (1.2.1). Recall 

that h1 5 h and h2 5 h, where h1x h2 are the dimensions of R, and h is the 

norm of the partition under consideration. Recall also the definitions of 

g and b. We have b. 
9,. 
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Lemma 5.2.1: Let J be. the. Jacobicoi of the. transformation '(5.1.6), and let 

(8). 
s be any.positi...ve'nwnber. Then.for all veW,. (U), 

(5.2 1) ' II3, 

where Cl if s is = integer, and Cb½. otherise. 

Proof: First supposes is an integer.. By lemma'5.1.1'wehave,for':all c#. 

such that 

= h 2a  1hZJhIlDQIJ2 .h2J'I}DftR. 

Thus' 

lvi 2 = ' IIDcvU s,U 
h2 J 1 iiDvil2 = h28J h i3i Z 

Ics' ' . 8, 

This proves (5.2.1) if 8 is an integer. 

Now suppose s is not an integer, and let ss' + a, where s' is an 

integer and O<cr<l. Then by (1.2.3) 

I v 2 
s,U IIs,1 ,U 

and ''s,R is given by an analogous equation. Thus it suffices to prove 

that 

(5.2.2) 

for all 

lDaviaU bh25J_1IDi,R 

c'. such that II=s'.. Let X(1,X2) and y=(y 1,y 2) be two points in 

U, and let W(W1,W 2) and Z(Z 1 ,Z2) be their respective images in R under 

the 'transformation (5.1.6). Recalling definition. (1.2.1), 

(5.2.3) , ID a  2 U =  IDV() - Dv(y)I2• 

Iix-.yiI+ 
We shall estimate separately each of the factors of the integiand in (5.2.3). 

First,by..th&èhain rule for differèn.tiàtion, 
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(5.2.4) IDV(x) - Dv(y)I 2.= .h 1h 2ID 3(th) - D 3(B)I 2 

5.h2 lDat'(w) - D3(z)I2. 

2 
To estimate the term IIx-.yll 2± we hall assume; withoüt loss of genèràlity, 

that h1 i2. 

h 211w-z11 2. 2-

(5.2.'5) 

Finally 

(5.2.6) 

Then I1x-y112 (x1-y) 2 + (x2-y2)2 = 2 W.1_z 1)2+ ç 2(W 2_z2)2 

Thu 

2±2a 2-2 2+2 
11X-:-Y 11 h2- IPw-zI 

dzdy = J 2dzod. 

Applying (5.2.4), (5.2.5), and (5.26) to (5.23),we et 

(5.2.7) Dvl 2 < h26 h2+2 J_2IDI 2 
2 

2-i h2 h 
It is clear that Jhh. Therefore h J = - - b so by (5.2.7) 1 2 2 h1 g 

IDvI2 s <bh≥8J 1 D1 2 
cr,U 1 tcs,R' 

This is just (5.2.2) ..11 

> 

We shall make use of this lemma as soon as we have obtained bounds for 

v-Qv on U, where q-Qv is, as in previous. sections, the finite element 

interpolant of V. Let k denote the number of degrees of freedom of the 

element under consideration. Then there exist points ..,x1< (generally 

not distinct) in (I and formal differential operators such that 

(5.28) (X i = Dv(r) il,...,k. 

As before, S will denote the range of Q, the space of polynomials preserved 

by the element. qis the üniqueinemberof S satisfying the interpolatory 

conditions (5.2.8). Let'sl,....,sk be the üniqueiuembers of S such that 



-. 67 - 

The functions sl,...,sk form.a canonical basis for S.. By the üniquenèss 

of interjolation it iseay to-verify that 

k 
q(x) = D° q( )à .(x). 

il 
In view of (5.2.8) we can rewrite thi6 expression as 

(5.2.9) 
k 

Qv(x) = D v(r!')s(x). 
i=l • 

We hall use this represèntation'of Q to obtainerror'bounds for V-Qv. 

Thebreni5.2.2:. Let dmax Ic'I where ct'.,....,ci< are as in (5.2.8) and 

(5.2.9). Let be -a multiintger, and let s be a positive Jreat number 

satisfying s and d+l<zs. Then there exists a constant C such that for 

all 

(5.2.10) IID(V—Qv)II0 ,, CIIvII3,. 

Proof: First we show that Qv is well defined if vcw'(u). For this it is 

sufficient that the derivatives D V(Xi) appearing in (5.2.8) be well defined. 

This will certainly be the case if VcCd(U), where d=maxIcJ. But by the 

corollary of the Sobolev lemma (corollary 1.3.2) with pn=2,. w(8) (U) C CCkm. 
Thus Qv is well defined for all veW(U). 

The hypothesis Icts implies immediately that IDvIJ llvil 
0, a,U 

the theorem will be proven if we can show that there is a constant C' such 

that IIil'QvIi 0 5 cJvJI . From (5.2.9) we have 
,U s,U 

Therefore 

DQv(x) = D c- v(x i )D cs.(x). 
i=l 

k 
IIDQvII IID°à.lI max JD v(x)J. 

0, i=1 1 0, U1l<i51< 

Thus 
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The bum-on the.right'.hañd side bf this inequality isindepèndentof V. We 

denbte. it,C 1. By coràllary1.3.Z ',(Sobolev1lemna)' with '.fl2,l  the' max term. 

is bounded' by' C2IIv8'1, whee.C2 is.indeptiden't of' V. 

C1C11v1I3 'This proves' the' thebrem. II'' 

'Thug, IjDQVII 
0, 

The degree 'of a finite lèmnt scheme is the' largest' integèr j such 

that the polynomial space S asèociated with 'the scheme contains all poly-

nomials of degree i or less. 'Thuan elèmènt is of degreej if and only 

if it is exact for all polynomials of degree'j or less but'.not all polynomials 

of degiee j+l. ' 

Theorem 5.2.3: Let c, d3 and s be as in the previous theorem. Thus 

d = maxIc'I and d+l<s. Suppose that the element wider consideration 

is of degree t-1,, and suppose s5t. Then thre ests' a constant C such. 

that for all vcW() (U) 

(5.2.11) , ,  

Proof: Define a linear operator A:W(U) L2 (U)by"Av=D(v-Qv). By 

theorem 5.2.2 A is a bounded linear operator defined on all of 

Since Qvv for all vS, and S contains all polynomials of degree less than 

s, A annihilates all polynomials of degree less than ,s. ' Therefore, by the 

Bramble-Hilbert-lemma (theorem 1.4.1), there exists a constant C such that 

(5.2.11) holds.II 

A consequence of the hypotheses of theorem 5.2.3 , is the inequality . 

d+1<t. Therefore this theorem' is applicable' to only those èlemènts for 

which d+l'czt., (For .n-dimensional elements the corresponding inequality is 

d+ < t.) However,,this,restriction does "not cause'äny'prob1em. 'This 
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author has never'. enounterèd. an element whih 'fails' to.satisfy d + < t. 

In particular, eah bf the' alemens. mentioned' in thi this satisfies' the 

inequality, as' can be èüily cheked'. 

Having obtained' error bounds on U, we' apply 1enunas.5. 1.1 'and 5.2 .l:to 

translate the' resüits onto the' èlèmènt R. 'Recall that U is mapped' onto ' 

by the àf fine transformation (5.1.6) 

W. = h.x. + a. 
1-

A one-to-one correspondence beteeñ' fuictions v on U and functions on R 

is given by (w 1,w2) = v(v1,x2). 

1=1,2.. 

Let Q' denbte,' as befbre,' the' 'finite 

element interpolating projector on functions on 2 (or their restrictions 

to R.) One can easily verify that if qQV then' =Q'. 

Theorem 5.2.4: Let a be a real number satisfying d±1<e'_<t3 where,d=maxIcI 

(cf. (5.2.8)) and t-1 is the degree of the element. Ltc' bea multiinteger 

such that Then there exists a constant C such' that for all 

(5.2.12), JD3 - 110  $ s—IcJj1 

PrOof: Let W denote v—Qv. Then obviously z -Q''. Applying lemma 5.1.1 

with V replaced by W = v—Qv, we obtain 

(5.2.13) 
11V k - Q'),IIoR = hi h2 Y11D - Q.v) 

Recall that we have assumed the existence of a constant b such that 

h h 
7i7 :5 - b ('v=1,2).. 

- 

applied to (5.2.13) imply 

(5.2.14) 

Therefore h"1 < bh 1 (1=1,2).. These inequalities 

IID— Q')'IIoR bH h I JIDa (V - 

Combining this inequality with inequalities'. (5.2.11) and (5.2.1) we get' 
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(5.2.12). (Clearly the letter C has beeia used to denote different constants 

in different places.)ii 

Theorem 5.2.5: Let s be a real number satisfying d+l<s_<t where d=maxIcI 

(cf. (5.2.8)) and t-1 is the degree of the element. Suppose also that in<s. 

(Recall that m is the order of the Sobolev space in which the EUiptic 

problem is defined.) Then there exists a constant C such that for all 

(5.2.15) Q'll m,R s,R 

Proof: From theorem 5.2.4 we have, for all c such that IcIn, 

lID - '"o,R Ch8HIIIS 31 R. 

The subscript c has been affixed to the constant to emphasize the constant's 

dependence on c. By definition 

- - r o ,- 2 liv - Q,; 11 2 R L lID Cv - Q v)II0 R 

so 

(5.2.16) 
- II - Q' ii I c2h2(3_kI)lIvI 2 S,R. m,R 

We have assumed that h51. (This is the one point at which this assumption 

is used.) Therefore h2(8 jI) h2(5_m) for all c such that 

follows from this and (5.2.16) that 

Letting C2 = 

ii - Q'II2 2)h2(sm)II 
m,R Ii I s ,R 

iIm .) 

(X Cçj2 and taking square roots we get (5.2.15).Ji 
kl_<m 

It 

In order to use theorem 5.2.5 to predict convergence as h tends to zero, 

we must have s>m, as is obvious from (5.2.15). 'This requirement, together' 
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with the hypothesi st, forces theinequality rn<t. This iseqüivalent to 

Mt-1 because both in andt areintegèr. :Theinterretationof  this ineqüal-

ity is that, in brder to. guarantee convergence bf the ffinite èlèmànt method 

for an ellipticprobleiuin wm1(c) (e.g. a 2im-th order elliptic differential 

equation), one must use an elèmènt of • degree at least m.. 'This is a well 

known criterion. 

We ñQW present the main thebem of thia section. 

Thebrem 5.2.6i Lets be. any. real number satisfying d-fl<s5t where d=maxI 

(cf. (5.2.8)) and t-1 is the degree of the element. 8uppose also that m<s. 

Let  C be the constant of theorem 5.2.5. Then for all vcW(c), 

(5.2i7) 11V - QV!i,ç 5 

Proof: 2 is the union of rectangular elements R il .. TherefOre 

Jv  -Q'vII= IIv - Q'v112 , 1- m,P 

If s is an integer the similar equation 

(5.2.18) 
i 

1v1 2 = flVl 2  
i 

holds, so (5.2.17)can be gotten by squaring (5.2.15), summing overall 

elements R., and taking square roots. 

If s is not an integer (5.2.18) is not valid. However, we shall 

demonstrate the validity of 

(5.2.19) vi 2 flv1 2 l s,R 

which is sufficient to imply (5.2.17). 
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Recall that 

vI 2 IDaVI2 
3Q = IaIs' Cr 

where s=s'+c, s' is an integer, and O<i<l. Therefore, to prove (5.2.19) 

it suffices to show that 

I DO'v 12 > X IDavI,R 

for all a satisfying al=s'. But, letting 

lDav(w) -  DaV(Z)I  
I = I(w,z) - 

2+2aw-z 2+2 

.11 we have jDavI 2 = fJIc7i,dz = J) Idi1,d R. Idwdz = X I D aVI 2 

The following table shows the values of d and t-1 and the allowable 

values of S in theorem 5.2.6 for the two-dimensional elements considered 

in this thesis. 

Table 5.1:  Parameters for Theorem 5.2.6. 

Element d t-1 S 

Bilinear 0 1 l<S2 

Adini's Rectangle 1 3 2<s4 

20 d.o.f. and 24 d.o.f. 2 4 3<s5 

28 d.o.f. 2 5 

Suppose for example that we are using Adini's rectangle to solve a second-

order problem (m=l), and we know that the actual solution u is four times 

weakly differentiable, i.e. uEW 4 (Q). Then, according to theorem 5.2.6, 

inequality (5.1.5), and table 5.1, the finite element solution u converges 

to the actual solution at the rate 0(h 3) as the mesh norm h tends to zero, 
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the error being measured with respect to the norm 

Bramble and Hilbert [5] have shown in the case in which S is an integer 

that it is sometimes possible (depending on the element) to strengthen 

inequality (5.2.17). We demonstrate this by means of an example. Suppose 

we wish to solve the generalized Dirichiet problem using the bilinear 

element. By table 5.1 the admissible values of S are 1<352. We are inter-

ested in the case in which s is an integer, so we take s=2. Inequality 

(5.2.17) now takes the form 

(5.2.20) 

IIv-Q' vU 1 5 CzlvI2 = Ci(JJD(20)vIp + IID 1'1 vII + 

This inequality was obtained by utilizing the fact that the bilinear element 

is an element of degree one. That is, it preserves the monomials l,x ], 

and x2. Nowhere was the fact that x2is preserved used. According to 

theorem 2 of [5] , the fact that xix2 is preserved implies that (5.2.20) can 

be replaced by the stronger assertion 

IIi,Q?vII i S C(IID(2, o) vI2 
10 + lD(O2vjJ)½. 

Similar improvements can be made for the other elements considered in this 

thesis. 

We conclude this section with the promised example showing the value 

of considering noninteger Sobolev spaces. We consider the problem of the 

bending of a thin clamped plate under a point load at the point x. The 

solution is the unique uc 2 (Q) satisfying 

a(u,V) = £(v) v V60(2) (Q) 

where (see Landau and Lifshitz [15]) 
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a(u,v) = J [iuzv + (l-a)(2D1D2uD1D2v DuDv D2uD2v)] 

and £(v) = cv(x0). Here A is the Laplacian, a is Poisson's ratio [15], 

and c is a constant representing the force of the load. The boundary 

conditions on a clamped plate are uJ = 0. Thus the solution is 
ao 

required to be in 

The linear functional L is a distribution [16] and corresponds to the 

"generalized function" c(S(x), where (S is Dirac's "(S-function" concentrated 

at the point x0. By performing two integrations by parts on a(u,v) we see 

that the solution is satisfies the differential equation A2U = Co in the 

distributional sense. 

By the Sobolev lemma (theorem 1.3.1) £ is a bounded linear functional 

on W() for any s>1. If we define W(2) to be the dual space of 

then £eW(t)(c) for all t<-l. By a very general theorem in the 

book of Lions and Magenes ([16], pages 188-189) - the solution u has four 

(s) 
(2m) more derivatives than L. Thus ucW () for all s<3. However, 

14Wc3 (There is a gap in the mathematics here. The theorem which 

has just been cited has as an hypothesis that the domain Q has a 6mooth 

boundary, whereas the domains, considered in this thesis have corners. This 

author doubts that' this is a serious problem, especially for convex domains 

Suppose we wish to solve this problem numerically by the finite element 

method. We select an element of at least second degree, i.e. t-l2. By 

theorem 5.2.6 and the ellipticity of the problem we have 



- 75 - 

IIu_u* IJ 2 Clju -Q'ull $Ch 2 IuI3 

provided that We know that usw 2 (c), but. uW 3 (), so we cannot 

predict convergence if we consider only integer order Sobolev spaces. 

However, if we consider noninteger Sobolev spaces we can predict nearly 

0(h) convergence because UEW(2) for all 8(3. 

(5.3) Error Bounds with Computable Constants  

In this section the second approach to finite element error bounds is 

presented. Suppose that the situation is as stated in section 5.1.. We know 

that to get a bound on IIu_u* it suffices..to bound IIUQ'UIImi where u is 

the actual solution of (5.1.3), u is the finite element solution, and Q'u 

is the finite element interpolant of u. Bounds on tIuQ'UII are, in turn, 

derived from bounds on &C-Qu on the unit square U, where u is any sufficiently 

smooth function. on U, and Qu is its interpolant. 

As stated in section 5.1, we shall consider the case of Adini's rectangle 

in detail. For any ucC 1(TJ) let q=Qu denote the Adini's rectangle inter-

po1art of U. Thus q is the unique member of S such that u=q, D1u-D 1q, and 

D u=D2q at the corners of 71, where S is the 12-dimensional polynomial space 

generated by the cubic polynomials and the monomials x 3 X and a]x. In 

chapter four it was seen that the projector Q can be constructed using 

blending-functionmethods. Let us. recall the construction explicitly. We 

first defined a function V around the perimeter of U. v was defined on 

(for. example) the bottom edge of 71 to be the unique cubic polynomial V(X 1,O) 

=p(X 1) such that 
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• p(0) = u(O,O) 

p'(0) = D1u(O,O) 

P(l) u(l,O) 

p'(l) = D1u(l,O). 

Let p0,p 1,q 0,and q1 be the unique cubic polynomials such 

(5.3.1) 

Then clearly 

(0) = o.. = q (1) 
pi q(i) i,j=O,l. 

= 0 = q0'(0) 

= (D'1U(O,O)Pi (xd + 
j=o 

we define projectors S1 and S2 by 

if. 
+ Dju(l,x2)qj (x,)] 

4- 

(5-3 -4) 

Su(x 

that 

j=0 

Then clearly v(r1,0) -S 1u(x 1,0) and v(x 1,l) 1u( 1,l). Also v(O,x2) 

= S2u(O, 2) d7)(1, 2) = 82u(l,x2). 

Having defined V around the perimeter of Ti, we then defined q=Qu to 

be the blended interpolant of 

(53.3) H 

where P is defined by 

(5.3.4) 

and P and P are given by 

P1v(x 1,x2) 

P2v(x1,x2) 

V based on linear 

Qu = PV 

P = P1 + P2 - 

blending functions. Thus 

= v(O,r2)(1- 1) + v(l,r2) 1 

= 1,0)(1_2) + v(x,l) .21 

Clearly P1 t' is completely determined by V(O, 2) and V(1,x2). It was seen 

above that V(j,x,) = 52u(j,x2) (i=O,l), so P1v = P1S2u. Similarly P2vP2S1u 
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P1P2V is determined by the values of V at -the corners of U. V interpolates 

U at the corners of V, so P1P2v PPu. We èan therefore rewite (5.3.3) 

and (5.3.4) as 

(5.3.5) Qu = P1S2u + P2S1u -P 1P2u. . 

A straightforward computation shows that P1 commutes with S and P2 commutes 

with S1. Thus (5.3.5) can be rewritten as 

(5.3.6) Qu = S2P1u + S1P2u- P1P2u 

• (cf. [12], page • 117, equation (20)). Our aim is to obtain bounds on 

•u-Qu (I-Q)u. We already have bounds on (I-P)u (theorem,2.2.5 with k=1), 

so it will suffice to derive bounds for (p-Q)u. By (5.3.4) and (5.3.6), 

(5.3.7) (P-Q)u = (I-52)P1u + (I-51)P2u 

(cf. [121, page 117, (19)). We therefore begin by obtaining bounds for 

(I-S2)v and (I-S 1)v for sufficiently smooth functions V on T. 

Lemma 5.3.1: Let, i and s be integers with isa and 2as4. Then 

IID(I—S1)vD S Si B IID"° vII 0 V 

IID(i—S2  SB 
0 31- 0 

,here B . (s+l) ig (1+K.(5/2)) and 
SI -

K (fl[ lPjI ci X)I 

Here.p.,q. are .,defined by (5.3.1). 

Proof: We shall prove (5.3.8). By (5.3.2). 

v 

1 
(i) 

DS 1v@,x) = (17v(O,x2)p 1- (x 1) +.l7v(1, 2)q (x i)). 

j=O 
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Therefore 

(5.3.10) 

IDS 1v(x1,c2)! (lPc( 1)l + Ij (i) (x)I) 
j=0 

max {IDu(o,x2) , I17u(1,x2) I 
j=0,l 

By corollary 1.3.5 (modified Sobolev lemma) with nland p2 we have 

(5.3.11) max {IDv(0,a2)I,ILtv(l,x2)I} 
j--0,l 

(5}½[ 2_ 2 dx 1(2 ID1v(x1,2)I2+. IDv(xi*x2)I}1] 

Substituting (5.3.11) into (5.3.10), squaring both sides of the inequality, 

integrating with respect to x and x2, and taking square roots, we get 

' (21 
½ IDS 1VII0 (5)½x1& 0(IIvii 2 + 11D1V11 02 + IID1 2vII02j =  )' XIIVIJ(20). 

It follows immediae1y that for any integer a2, IID 1 I0 S (.21]4K Ilvil 11 (8O). 

Also, it is trivially true that for any i, IIDjv0 IvII(80) Therefore, 

by the triangle inequality, 

(5.3.12) 

if ifs and 2., 

jJD(I-S1)vI0 (i + (½ 12) KJjvJJ iJ (8,0)' 

By the construction of S1, S1v=v for all v which are cubic in x, for 

each fixed x2. Thus S1v=v if D 4'0 v = 0. This implies that D(I..-S 1)v=0 

if D' 4'0 v=0. For 8=2,3, or 4 and i5s define a linear, operator 

A:W °̀ (U) + L2 (U) by AV = D(I-S1)v. By (5.3.12). A is bounded, and we 

have seen that A annihilates all V for which D'° v=0. Therefore, applying 

the modified Bramble-Hilbert lemma (theorem 1.5.6) with = (8 ,0) and P2 

we have, for i5s and 254, . 

'ltD1j(1-S1)v11 0 s (8+l)½(1+(.-)K)UD(80) VII O , 
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for all vEw(8 O)(u).lj 

Lemma 5.3.2: Let ct(a1,c 2) be a multiiñteger and let s=2,3, or 

for all ucW S 

(5.3.13) 
IID(IS1)PuII0 B M (5}½(JID (8'0)  u 2 2 ½ 2 110 + IID(81)uII} if a1 . 

For all 

(5.3.14) 
IIDa(I_SZ)P1U II B M (-f] ID°'uI+ JD(1 8)uJI} if 

0 sc 2 c1 
a7 <S. 

Then. 

Here M is given'by M =1, M.2, and M.0 for i?2.. B is as defined in 
cij 0 I  

lemma 5.3.1. 

Proof: We shall prove (5.3.13). It is easy to show that D. commutes with 

1-S i. Thus D-(I-S 1)P2u D1(I_S 1)DOI 2P2u, and it follows from lemma 5.3.1 

that 

IID(I—S1)P2uII 0 

Therefore we will be done if we can show that 

(5.3.15) IID(P 2)PzuII o Mj!2]!' (jjD (s'O)ujj 2  + IIDult). 

Recall that P is given by 
2 11 

= u( 1,O)(l-x2),+ u(a 1,l)x2. 

Therefore 

D(82)P2u( 1,x2) = D u(x1 ,O)D 2(i_ 2) + ,D u(x1 ,1)D 2a2. 

It follows that S 

Ma max {Iu(xi3O)l ,ILP u(x,1)!}. 

We apply corollary 1.3.5 (modified Sobolev lemma) with.n1 and p2 to get 
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(5.3.17) 

max{ !Du(xi3O)l,ID8u(x,l)I}5(.) [. (IDux1x2)I + ID2Du(x1,x2)I ] 2j 
Substituting (5.3.17) into (5.3.16), squaring, integrating, and taking 

square roots, we get (5.3.15).lJ 

Theorem 5.3.3: Let s2,3, or 4, and let c be a multiinteger such that 

cS(s 3 s). Then for all fl 

IID(P-Q)uII F IIID'°u + IID(81)u } o sc 

19 
+ Gscd (IID(o ,8)u II2 + IJD(18)uIJ) 

where F = B M (5/2)½ and G B M (5/2)½. 
8C i 2 8C SC 2 C1 

Proof: This theorem is an immediate consequence of lemma 5.3.2 and the 

representation (5.3.7). II 

To simplify matters we take 84 from now on. F and G will denote 

the constants F4 and G4 defined in the statement of theorem 5.3.3. 

Theorem 5.3.4: Let c=(0,0), (1,0), or (Q,l). Let N=30 if k1=0 ItT =45 

if lal=i. Then for all uEW 4'1 (U) fl W 1'(U) fl 

IID(I-Q)uI 0 $ NIID 2'2 uII 0 

1½ 
+ F fD4'0ufJ :+ IID4'1uIIa ( 0 o 2j 

½ 
+ Ga(D °'4 ulJ + JID 1'4 uIioj 

Proof: By theorem 2.2.5 with E1-P, k1, =(2,2), and r2 

1!D(I-P)uII 0 NC, ID 2'2 uII. 

Theorem 5.3.4 now follows from the representation D (I-Q) = D (I-F) + D (P-Q) 

and theorem 5.3.3.!! 
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Now let R bea typical element, as in section 5.1.. Suppose R has the 

dimensions h1Xh2 with h5h (i=l,2)., and R is connected to U by the af fine 

transformation (5.1.6). There is a number , independent of R, such that 

h $b 

Theorem 5.3.5:  

in theorem 5.3. 

(5.3.18) 

Let c(0,0), (1,0), or (0,1), and let N Fa and G be as 

4.. Then for all cW 4'1 (R) n w(1,4 R) fl .W(212) (R), 

IlD(I*Q')flo,R :: blalh4Hal [N ID 2'2 II 
a o,R 

• Fa(IID(40II2 +h2jlD(4l z O,R ull o,RJ 

½-
+ Ga(IID(04)UII2 + h2IlDCIT4 12 O,R UII o,Rj 

Proof: Apply lemma 5.1.1 to each term.lj 

The appearance of the fifth order derivatives.D 4'1 .• and D 1'4 is a 

weakness of the theory. It should be possible to eliminate them. At least 

their influence becomes small as h tends to zero. 

Theorem 5.3.6: Theorem 5.3.5 remains true with R replaced by Q. 

Proof: 2 is the union of elements Rj. We square (5.3.18), sum over all 

elements R., a±idtáke square roots to get the desired result.II 

I 2i . . 1 

Theorem 5.3.7: Let F F1 , G--[I  G , and N=(495O). Then fOr 
aI$i. 

all uCW 4'1 (c)ñ, W 1'4 () fl W 2'2 (c), 

(5.3.19) ilu-Q'u11 1 < bh3[NIID(22)uII0 

+ F(IlD 4'° utf + h2jID 

* G[JD(9 4) uI, 2 h2 ID 
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Proof: According to the previous, theorem, (5.3.18) holds with R replaced 

by . We square (5.3.18), sum on c, and take square roots to get (5.3.19). 

The inequality h:5 1 (or .at least h$b) is required. 

The constants N, F, and G can be readily computed with the aid of a 

calculator. We have N 70.36 and F = G 29.19. These constants are 

undoubtedly far from optimal, but they do indicate at least that the constants 

which appear in finite element error-bounds are hot so large as to make the 

error bounds worthless frpm a practical standpoint. 

We now consider the problem of obtaining erior bounds for the 24 d.o,f. 

elèmènt definecl'in chapter four. We hall pursue-the'.-problem only to the 

point of producing a representation analogous to (5.3.7).,, 

Let us recall' in detail the construction of this elèmènt. Given 

ucC2(U) we defined the finite element interpolant qQuin'.two stages. The 

first stage involved defining functions v 'and Vn on the boundary of U to 

represent the boundary values of q and its normal derivative, respectively. 

Recall thatV(X 1,0) (for instance) was defined to be the unique quintic 

polynomial p(x 1) V(x 1,0) such that 

u(0,0) 

pt (0) = Du(O,O) 

p'v(0) = D2u(0,0) 

Let 2'., t. 
a a 

P (l) = u(l,0) 

p'(l')' D1u(1O)' 

p"(l) = D2u(10) 

(j0,l,2)be the unique quintic polynomials satisfying 

= ... = 

a  

= 0 = t5 )(o) 
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If we define operators Ti and T2 by 

= 0 Hi + T u(x ,x ) 
1 12 

then, as is easily seen, 

(5.3.20) 

(D•u (xi 3. 0) r - (x 2 ) + l7 U(X1 l);j (X2.)} 

v(x 1,k) = T1u(x1,k) 

v(k,a 2)= T2u(k,x2) 
k,i. 

The normal derivative v( 1,O) was defined to be the unique cubic 

polynomial m(a 1) V(c1,O) such that 

m(0) = D2u(0,0) m(l) = D2u(l,0) 

m'(0) = D1D2u(0,0) ml(l) = D1D2u(l,O). 

Let S and S2 be the operators defined by (5.3.2). Then 

(5.3.21) •V(X] ,1≤) D2v(x1,k) S1D2u(x1,k) = D2S1u(o1,k) k=O,1. 

v(k,x2) _=_ D1v(k,x1) S2D1u(k,,2) D1S2u(k,th2) 

Once we have defined the boundary values of v and v, we define q to 

be the blendedinterpolant of v based on Hermite cubic blending functions. 

Thus 

(5.3.22) 

where S1 and are defined by (5.3.2). It is convenient to write S, as a 

q = Qu = Sv = S1v +S2v - S1S2v 

sum S, =  S10 +S , where 

S IOU (x 11X2 = u(O,x2)p 0( 1) + u(l, 2)q. 

S1 u(x1,x) = D1u(O,x2)p(x1)+ 1 (1 2)q 1( 1). 

The operator s2 has an analogous decomposition S = 20 +521. By (5.3.20) 
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we have 

S10v = S10T2u 

By (5.3.21) we have 

= S20T1u. 

S11v = S S U  2l' = S21S1u. 

Also S1S2v = S1S.2u, as S1S2u is determined by the corner values of U, 

Uy , and U and V interpolates these Values'of U. Theièfbre (5.3.22) can 
XY 

be rewritten as 

Qu = S10v + S11v + S20  + S21v - S1S2V' 

= S10T2u + S11S2u + S 0T1u + S21Su.- S1S2u. 

It is easy to check that each-pair of operators in the above i3iim.commutes. 

For instance S10T2u = T2S, 10 u. Therfore4ean subtract this sum from the' 

sum Su= S10u ± S11u + S20u + S21u - S1S2u to obtain 

(S-.Q) u = (-T-T2)S u + (I-S )S u + (I-T )S u - (I-S )S U. 
10 2 11 1 20 1 21 

This expression can be used to obtain bounds for S-Q in the same iqay that 

(5.3.7) was used to obtain bounds for P-Q for the Adini element. Bounds 

for u-Qu = (I-Q)u are then gotten by writing I-Q (I-S) + (S-Q) and using 

the bound for (I-S)u provided by theorem 2.2.5 with E = 1-S, k=2, 3,3) 

and p=2. " ' 



CHAPTER SIX 

NUMERICAL RESULTS 

(6.1) Finite E1emnt Programs'' 

The subroutines of a finite èlèmènt program fall into four. categories 

depending on their function. The' categories are preprocessing, assembly 

of the matrix equation (3.3.4), solution of the matrix equation, and inter-

pretation of the solution. We shall consider these points one by one. 

The main tasks involved in preprocessing'are the subdivision of the 

given domain into elements, the numbering of the elements, and the numbering 

of the nodes. The preprocessing programs which this author has written 

are rather primitive. The domain c is assumed to be a rectangle, and the 

program reads in data telling how many rows and columns.of elements there 

will be and where the horizontal and vertical mesh lines which define the 

elements are to be placed. The elements are ±iumbered from left to. right 

starting at the bottom of the rectangular domain. The main task is the 

numbering, of the nodes. There are two numbering schemes. One is local 

and is determined by the element type. For a given d degree-of-freedom 

finite element scheme, each element has d nodes associated with it, and 

we number these-nodes locally. The job of the preprocessing program is 

to give each node a number in the global numbering scheme. The nodes, 

like the elements, are numbered from left to. right, starting at the bottom 

of the domain. The global number of the ith node of the ith element is 

stored in the (j,i). entry of a two-dimensional integer array named NODE. 

(The programs are written' in FORTRAN.) Thus, if the jth node of the ith 

element is the kth node globally, we have NODE (J,I) = L For nodes on 

-85-
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the boundary of the domain which are forced by boundary conditions to be 

zero,, we set NODE (J,I) = 0. The boundary conditions can be altered by 

changing two short subroutines. 

After the nodes have been numbered, the program reports the total 

number n of nodes unaffected by the boundary conditions. The order of 

the matrix equations to be solved is n. 

The final task of the preprocessing program is to compute a band 

parameter which indicates the band width of the stiffness matrix which 

will be generated. The band parameter is not exactly the same as the band 

width, which was defined at the end of chapter three. The band parameter 

is the number of diagonals from the main diagonal to the last nonzero 

diagonal (in either direction, since the stiffness matrix is symmetric). 

Thus the band width is one less than twice the band parameter. 

The second phase of the finite element program is the assembly of 

the matrix equation. We shall first consider the assembly of the stiffness 

matrix K. The (i ,j) entry of K is a(P ,.), where *. is the basis function 

whose ith nodal value (in the global numbering scheme) is one and whose 
o 

other nodal values are zero, and a( .,-).is a symmetric, bounded, strongly 

elliptic bilinear form. Let us assume for definiteness that a(,) 

given by (cf. (3.1.4)) 

(6.2.2) a(uv) = I Cu v + u v ) 
XX yy 

is 

(Here we have returned to the x,y notation of chapters three and four. 

We will use this notation from now on.) Let e1,...,e3 be the elements 

into which 0 has been partitioned, and define ar() by 



- 87 - 

ar(u,v)J ar (uXvX +uyvy) 

Then 

a(u,v) = r1 

The stiffness matrix is evaluated on an element by elemnt basis. The 

integrals a1(**) are evaluated' for all i and j, then the integrals 

are evaluated,, and so on. Most of these integrals will be zero 

trivially by the localness of the basis functions. Those integrals which 

are not zero are added to the appropriate entry of the stiffness matrix 

array, which was originally set' equal to zero. The integrals 

(6.2.2) . ar(.,1I).) = f (. p. +  
0 e r 0x y 0y 

are integrals of polynomials and can therefore be integrated analytically. 

However, it is convenient to integrate by numerical quadrature [i4], L22] 

instead. For rectangular elements, product Gauss quadrature rules are the 

obvious choice.'. This author has used them exclusively. The integrals 

(6.1.2) can be evaluated exactly by a quadrature formula of sufficiently 

high degree, but this can prove expensive for elements of high degree. 

'It is better to "cheat" and use a lower-degree formula. iThis is one of 

the "variational crimes" discussed by Strang and. Fix [21]. In section 

6.3 we shall discuss the specific quadrature rules used for various elements. 

Because the stiffness matrix K is symmetric, only the main diagonal 

and the lower half, of K need be stored. In fact, if the band parameter 

of K is m, only m diagonals need be stored. If the order of K is fl, and 

the in relevant diagonals of K are stored one after the other in a one-

dimensional array, the storage requirement is only nm - n(m-l). 
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The load vector, i.e.; the right haàd side of the matrix equation, 

must also be computed. The entries of the load vector are generally of 

the form 

= (f,*j) 0 = 

and can be evaluated by numerical quadrature in an element-by-element 

manner. 

The matrix equation, once assembled, is solved by the Choleski or 

square root method [9]. In thTh method a lower' triangular matrix G such 

that K =GGT is computed The' matrix equation is then solved by forward 

elimination and back substitution. 'The'matrix G inherits the band structure 

of K, so G takes no more storage space than does'K. The order of computa-

tion of the entries of G is such that once 0.. has been computed, the 
vj 

value of K. is no longer needed. 'Thus-it is possible to store G over 

K. 

In practice there is some overlap between the matrix assembly phase 

and, the equation solving phase of the program. Once the stiffness matrix 

has been computed, it is immediately decomposed into 7G21. G is stored where 

K was; K is lost. In practice there may be more than one load vector. We 

may wish to solve several equations GGTx = y" . The first load vector is 

computed, the forward elimination and back substitution are carried out, 

'and' the first solution vector is obtained. This process 'stores the solution 

vector over the load vector but' does not destroy G. Once a solution vector 

is obtained, the Interpretive subroutines are called, and the solution is 

translated into 'usable data, which is printed out. Only after the solution 
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has been interpretèd.is the àext load .vector computed. 

The interpretive phase of the problem is the least clear cut and 

most difficult phase. There are many ,possibilities, the simplest of which 

is to merely print out the solution vector. This is not a total loss, as 

the ith entry of the solution vector is just the ith nodal value of the 

finite element solution. That is, it is the actual value of the finite 

element solution or one of its derivatives at a specific point. 'The 

obvious next step is to write a subroutine hibh evaluates the finite 

element solution' and/or certain of its derivatives' at points other than 

the nodes. This procedure is not very satisfactory because it causes the 

generation of •great tables of numbers which are not easily interpreted. 

A better idea is to display the data graphically with the aid of a plotter. 

I have done none of this (except print out the solution vector), as 

my main intenti'onwas to measure the error in the Sobolèv norm and deter-

mine whether the rates of convergence predicted in chapter five are 

attained in practice. Accordingly, I have chosen problems whose actual 

solution is known and can be programmed. For such problems it is possible 

to calculate the Sobolev norm of the error between the' actual solution 

and the finite element solution. The program which I have written evaluates 

the norm of the error by numerically integrating over each element using 

the 5x5 product Gauss. rule. This rule gives exact integrals for poly-

nomials of degree as high as nine in each variable -and can be expected to 

give accurate results for smooth functions. Accurate results will certainly 

be obtained on fine meshes, as the tate of convergence 

as h + 0, where k is the mesh norm. 

of the rule is Q(h10) 
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There is one other subroutine iqhi6h has not been mentioned. This 

routine should be classified as a preprocessor, even though it is called 

at the end of the rogram. Its function is to refine theñ1esh by inserting 

new mesh lines midway between the existing mesh lines, thus halving the 

mesh norm h and quadrupling the number of elements. Once the refinement 

is carried out s' the entire program is run again. 

(6.2) Confirmation of rates of Convergence  

The model problem which we shall consider is the Dirichlet problem 

for Poisson's equation: 

(6.2.1) -thu = f on 

u0 on 

where 9 is the unit square. Two load functions 

f1(x,y) = (6r-l0)(jz-y 3-ij 2-y) + (x3-5x2+4,) (12y 2-6y+2) 

f2(,y) =e(sinrx[(2ir2-l)ysinity-2 rco ry] - 2ryäosirsiniry) 

will be considered. The respective olutions of (6.2.1) are 

= (x 3_5x2+4x)(yyZ4yy) 

U 2 (x ,y) = (esinir) (y sin71y). 

I have implemented three elements -- the bilinear element, Adini's 

rectangle, and the 24 d.o.f. element constructed in chapter four. Each 

of these elements has been used to calculate approximate solutions of (6.2.1) 

for the two load functions f1 and f2, using a variety of mesh sizes. The 

programs wererunon the CDC 6400 computer of the University of Calgary 

Data Centre. 
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Tables 6.1 through 6.4 below indicate the Sobolev norm IIu_u*II i of 

the differànce betweeà the actual solution u and the finite èlèment 

solution u for the three èlèmènts. 0n1y regular meshes with square 

elements were used, so each mesh is uniquely determined by its mesh norm 

h. To give an Idea of thacale of the functions involved, the approximate 

norms of the solutions U1 and u2 are 

IIu1II 1 .714 

Iiu2I,I 1 2.276 . 

From theorem 5.2.6 and table 5.1we expect convergence at the rate 0(h) 

for the,bilinear'elemènt. This expectation is confirmed by the data in 

tables 6.1 and 6.2. 

Table 6.1:  

Table 6.2:  

Bilinear Element 

mesh 
rm 

functios 

.5 .25. .125. .0625load  

fj •412 •207 •103 .0516 

i'2 1.52 .717 .355 .177, 

IIu_u*il Bilinear Element 

mesh 

load norm 

functio \  

.2 .1 .05 

f1 .165 .0826. ' .04l3 

.571 .283 .142 
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With Adini ts rectangle we expect o(i3) convergence by theorem 5.2.6 

and table 5.1, or by. thebrèm 5.3.7. Table 6.3 iàdicates that this rate 

of converenbe is attained. 

Table 6.3:  IIu_u*II 1 i. AdIni's Rectangle 

mesh 
orm 

load 
function 

.5 5 .125 

.903x10 1 .i224O .163x10 2. 

.429. .538x10 1 .75OxiLO 2 

The 24 d.o.f. element should give O(h) 

indicates that it'does. 

Table 6.4: IIu_u*II i, 24 d.o.f. Element 

convergence. Table 6.4 

Xunctio 

5 .25. 

.220x10 2 .ii4iO 3 

"2 
•209x10 1 .981x10 3 

(6.3) Comparative Cost of Running the Programs  

Comparing two different finite element programs is difficult because 

the relative significance of the various phases of the program is different 

for elements of low degree than for elements of high degree. For example, 

the time required for the assembly of the stiffness matrix is virtually 
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negligible for the bilinear element, wherea it is significant for the 

other two elements. Theièàre three' reasons for this. The first is that 

in the element-by--element process by whichT the stiffness matrix is assembled, 

the humber of integrals a(j ,,p.) to be evaluated' in each element is 

(d+l) , where d is the number' of degrees' of freedom of the element. Thus 

the number of integ1'als to be evàluated'in each element grows quadratically 

with d. The second reason is that each of the function evaluations required 

for numerical quadrature takes comparativelr little time for a low-degree 

element. This is because low-degree polynomials can be evaluated more 

quickly than can high-degree'polynomials. Specifically, a typical function 

evaluation for the' bilinear elèmènt requires one multiplication, whereas 

a function evaluation for Mini's rectangle or the 24 d.o.f. element requires 

about four or eight multiplications, respectively. The third reason is 

that a quadrature rule of low degree can be used to evaluate the integrals 

for low-degree 'elements. Thus only a few function evaluations are needed 

to evaluate each integral. For example, for the bilinear element the 2X2 

product Gauss rule'integrates the integrals ar (4,j,P.)'='f (4. p. +  
a er 1"x 7x 1"y êy 

exactly. In fact, the lXl rule gives results which a're'almost as good. The 

rate of convergence is still 0(h), as predicted by Strang and Fix [21]. 

'However, the reduction of cost realized in changing from the four-point 

rule to the one-point rule is insignificant. It was this observation 

which convinced this author that the assembly time of the stiffness matrix 

for the bilinear element is negligible. The same is nqttruefor the two 

more complex' elements. In the case of Adini's rectangle costs can be cut 

considerably by 'using the 3x3 Gauss rule rather' than the. 4x4 rule which 

would be required to calculate the integrals exactly. 'The results obtained 
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using 3x3 quadrature àrehs goodas those iven by the 4x4 rule. On the 

other hand, the results gotten using 2x2 quadrature •erè poor. A similar 

situation holds for the 24: d.o.f. élàmènt. In this case the 6x6 rule 

would be needed to integate the terms exactly. This is out of the question; 

thirty-six points are too many. It was found that the 4x4 and 5x5 rules 

give equally good results, whereas the 3x3 rule gives 'poor results. The 

cost of running the program is reduced considerably if the 4x4 rule is 

used instead of the 5x5 rule. Interestingly, the theory of [21] predicts 

that the use of the 4x4 rule instead of the 5x5 rule will, cause a reduction 

in the rate of convergence from 0(h) to 0(h 3). This worsening of the 

convergence rate was not observed. 

So far it appears that the low-degree elements have the upper hand, 

but we have not yet taken into account the fact that to attain a given 

accuracy a much finer mesh is required for a low-degree element than for 

a high-degree elinent. The use of a coarser mesh for high-degree elements 

partially compensates for the slowness of the stiffness matrix assembly. 

Other benefits are derived from the fact that the stiffness matrix is of 

relatively low order if the mesh is coarse. We shall consider a specific 

example. From tables 6.2 and 6.3 we see that even with a mesh norm of 

h=.05 the bilinear element gives worse solutions than does Adini's rectangle 

with h=.25. The sliffness matrix for the bilinear element with h.05 is 

of order 361 with a band parameter of 21. By contrast, the stiffness 

matrix for Adini's rectangle with h=.25. is of order 39 with band parameter 

17. As was mentioned previously, the storage requirement for the stiffness 

matrix is nm -n(m-l), or roughly nm, wh&ré n is its order and m is its 
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band parameter. For the bilinear element nm = 7581, whereas for Adini's 

rectangle im = 663. 

Storage space is not th& only problèm. Obviously a large matrix 

equation takes longer to solve thaà a small matrix equation. The most 

significant step is the decom position K=GGT. Thi decomposition involves 

aboutnm2 multiplications []• Thus thedecbinposition time for Adini's 

rectangle in the example ünderconsideràtion is only about -seven percent 

the decomposition time for the bilineafr element. 

Having established the fact that it is difficult to compare finite 

element programs by analyzing the subroutines, we must resort to a very 

crude method of comparison: we èompare the actual cost of running the 

programs. It happens that the run in which the data of table 6.2 was 

compiled cost just slightly more than th& run for table 6.3, which, in turn, 

cost just a bit mare than did the run for table 6.4. 'In each case the 

bulk of the time was spent on the most refined mesh. The results of table 6.4 

(24 d.o.f. element) are significantly better than those of table 6.3 (Adini's 

rectangle), which are much better than those of table 6.2 (bilinear element). 

On this basis we can conclude that the 24,d.o.f. element. is best for the 

given problems, and the bilinear element is worst. We should be extremely 

cautious about concluding that the 24 d.o.f. element is better than the 

others. We have considered only one problem with two sets of data. In 

both cases' the data and th& solutions are smooth. The lower-degree elements 

might fare better in a competition in whith there are singularities in the 

data. 
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(6.4) Pointwise Approximation  

In section 6.l'it was noted that the solution vector of the finite 

element matrix equation (3.3.4) gives the iiodâl values of the finite 

elèmènt solution. Some -6f this information has beeji' compiled in tables 

6.5 through 6.7. All data in these tables.' pertains to the load function 

fl and the corresponding solution u1. In view' of the conclusions drawn 

in the previous section, the 'only surprise in these tables is the 

relatively poor showing of the 24 d.o.f. élèmènt in table 6.6. 

Table 6.5: Estimated and Actual Values of U1. 

Bilinear 
Elemëitt, 
h0625' 

Adini's 
Rectangle 
h.125 

24 d.o.f. 
Element 
h.25 

Actual 
Value 

(¼,¼) .1405 .140088 .140079 .140076 

(½,¼) .1748 .174325 .174318 .174316 

.1217 .121406 .121398 .121401 

(¼,½) .2204 ' .219750 .219730 .219727 

(½,½) .2743 .273455 .273440 .273438 

(•,½) .1910 .190444 .190432 .190430 

(¼,-) .2068 .206045 .205997 .205994 

(M) .2572 .256389 .256350 .256348 

Q,%) ' .1792 .178560 .178530 .178528. 
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Table 6.6:  

Table 6.7:  

Estimated and Actual Values of 

\point Rectangle 

Adini's- 24.d.of 
Elemnt 
li=;25"' 

Actual 
Value 

(¼,¼> 3615'.336O7 .33618 

(½,¼) -.04986 -.C4979 -.04805 

04,¼) - . 36115 ' -.36096 -.36108 

(¼,½) .52729 .52721 .52734 

(½,½) -.07822 -.07811 -.07813 

(,½) -.56652 -.56625 -.56641 

(¼,) .49430 .49427 .49438 

(½,%) -.07344 -.07323 -.07324 

M:,¼) -.53124 -.53087 -.53101 

Estimated and Actual Values of Du 

\p\oint \ 

Adini's 
Rectangle 
h=.125 

24 d.o.f. 
Element 

Actual 
Value 

(¼,¼) .43950 ' .43947 , 43945 

(½,¼) .54691 .54689 .54688 

(.¼) .38089 .38086 .38087 

(¼,½) .17619 .17578 .17578 

(½,½) .21910 .21875 .21875 

(k,½) .15261 .15234 .15234 

(¼,•) -.35095 -.35158 -.35156 

(½,¼) - . 43697 -.43752 -.43750 

-.30428 -.30470 -.30469 
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