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Abstract

.

This thesis deals with blending-function methods, finite element
methods, and some aspects of the intefplay between them. In chapter two
blending-function methods arerintroduced'and asymptotic érror bounds for
blending~function interpolation are obtained for the case in which the
blending functions are polynomials. Tﬁe finite element method is described
in chapter three; and in chapter four it is shown how Blending-function
methods can be used in the construction of finite elements. Error bounds
for finite element interpolation and approximation are proven in chapter
five by two different apbroaches. The first approach uses the theory of
noninteger order Sobolev spaces to predict noninteger (as well as integgr)
powers of convergence, e.g. O(h%), where %, is a mesh parameter. This
approach does not allow the estimation of the constants appearing in the
error bounds, whereas the second épproach does. However, the second approach

gives only integer powers of convergence.

The key theorems for a;i of the error bounds of this thesis are the
Sobolev lemma and the Bramble-Hilbert lemma, or variants théreof. To
obtain noninteger rates of convergence the Bramble-Hilbert lemma must be
generalized to noninteger Sobolev spaces. This géneralization has been
carried out in chapter one. It is noted that the Bramble-Hilbert lemma
applies to operators as well as functionals. This observation allows some
simplification in the proofs of error bounds. Also given in chapter one
are variants of the Sobolev lemma and the Bramble—Hilbeft lemma appropriate

to blending-function methods.
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In chapter six some numerical results are tabulated, and they are seen
to agree with the theoretical results. The comparative cost of running

various finite element programs is discussed.
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CHAPTER ONE

INTRODUCTION, NOTATION, AND SOME BASIC THEOREMS

(1.1) Introduction

The finite element method was originated almoet twent§ years ago by
structural engineers as a method of structural analysis. ~As 1is usually
the case, a lack of mathematical foundations for the procecure di& not
stop the engineers from using it and getting good resulteck After about
ten years, when -it had been realized that the finlte element method is |
essentially a Ritz-Galerkin procedure, interest in the method epreadrto )
the mathematical community, and work was begun on securing the mathematical
foundations of the method. Much work has been done hy bcth engineers and
mathematicians, and an extensive finite element literature ncw exists. Two
good‘general references are the books [24) by 0.C. Zienkiewicz (an engineer)
and |?1] by Strang and Fix (two mathematicians). Many fnrther references

can be found in each of these works.

From the nathematical standpoint the finite element‘method is a family"
of procedures for}numerically solving differential equaticns. (In this
thesis only elliptic partial differential equations Will be considered.)’
Assuming that the problem is deflned on some region { in the plane, Y]
is divided into small triangular or rectangular "elements", and the solution
of the equation is approx1mated by a function whose restriction to each
element is a polynomial of low degree. It is the piecewise polynomial
nature of the approx1mating functlons which dlstlngulshes the finite element
method from otherlRitz type procedures. A short introduétion to the

mathematical version of the finite element method is given in chapter three.
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Blending-function methods are a more receﬁt development and are less
well-known. The theory was originated in 1964 by S.A. Coons [8] and has
been advanced by Gordoﬁ; Hall, Barnhill, Birkhoff, Mansfield, and others.
Blending—~function méfhodé are a class of methods for inteféolating curves
and surfaces. TFor:example, if a continuéus function v is defined on the
boundary of some rectangle, blending-function methods can be used to define
a "blended interpolant" ¢ on éhe entire rectangle such that g equals v on
the boundary of the rectangle.‘ Of course, if v itself is defined through-
out the rectangle, it is still possible té define 'q. In this case q is
an approximant'of‘v which iﬁterpolatesrv at the boundary and is completely
determined by the 5oundary values of v. A good introduction to blending-
function methods is Gordon's article [ii]. - However, enough information
on blending-function methods for aﬁ understanding of this thesis is given

in section 2.1 below.

Gordon and Hall [12] have given asymptotic bounds for the error
between a function and its blended interpolant. It is assumed that the
function being interpol;ted has a number of continuous derivatives, and
the error is measured in the supremum norm. In this thesis (chapter two)
similar error bounds are given in which the function has weak derivatives,

and the error is measured in various Sobolev norms.

After the introduction to finite elements in chapter three, various
finite element schemes are constructed in chapter four by the use of blending~-
function methods; . The elements constructed are Adini's rectangle Eﬁ], a
number of (! elemeﬁts, and an element for three-dimensional problems. Gordon

and Hall [12] and Barnhill and Gregory [3] have also used blending-function
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methods to construct finite elements.

In chapter five are presented two methods for deriving bounds for the
error between the exact solution and the finite element solution of an
elliptic boundary value problem. The first method is essentially the
method of Bramble and Zlamal [5], but here we have generalized the result
by considering noninteger Sobolev spaces. An example is given to show

the practical value of making such a generalization.

The bounds obtained by the first method are asymptotic error bounds
containing a constant ¢, the value of which is generally unknown. The-
second method produces bounds of the same type in which the constants can
be estimated. This method appliesronly to those elements which can be

constructed by blending-function methods as in chapter four.

All of the error bounds of this thesis have been obtained by the use
of the Sobolev lemma [21], and the Bramble-Hilbert lemma [21, 4] or
variants of these theorems. In chapter one these two well-known theorems
are stated so that they can readily be compared with their respective
variants, which are stated and proved. Also, a proof of the Bramble-

Hilbert lemma for noninteger Sobolev spaces is given.

In chapter six numerical results are given for comparison with the
theoretical results. The comparative cost of running various finite

element programs is discussed.

(1.2) Notation; Definition of Sobolev Spaces

Let  be a bounded domain in Euclidean n-space F' and let u be a
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' L ' 9 .
a smooth real-valued function on . By Diu we will mean'3§%3 N I,
L : - e A ’
1"°;’an)’ where al,...,an are nonnegatiye ihregers, we define

Given o=(0
the oth derivative of u to be D'u=Dy1032...D0Mu. (The‘order in which the
factors D appear in this expre331on is irrelevant 1f u is suff1c1ently
smooth. ) Therorder of o is |a|=a1+a2+...+an. We shall.call o a multiinteger.
The sum of two mulriintegers o and B is u+B=(a1+Bl,.{.?ah+Bn). The multi-
integers can be patrtially ordered by the relation o S'é if apd onl&,if 7

o < Bi’ i=l,...,m. If o =B, then B-a can be defined in- the obvious
manner. In sumn, the multiintegers form a partially-ordered, commutative

semigroup.

Given a multiinteger B, Ce(ﬁ) will denote the set of functions u on
Q (the closure of ) such that for all o = B, D% exists and is continuous
on Q. With the norm

HuH o = max max 0% () |
o< xef

C (Q) is a complete space. Given a nonnegative integer m We deflne Cm(Q)
to be the space of all functions u on Q such that for all o with |a| <= m,
p%u exists and is continuous on Q. Cm(ﬁ) is completepwith respect to the
norm | S

“u"m o = max  max lDau(x)l.
: ’ af=m xef

The space‘CP(ﬁ) is defined to be the intersection'pf;the spaces Cm(ﬁ),

i.e. Cp(ﬁ) = N Cm(ﬁ). We define C?(Q) to be .the space of functions
‘ m=1 ' '

wec” (@) for which there exists a compact set X in @ such that u(x) =

for all & not in K.

We shall define weak derivatives as in.[10]. A function u on Q is
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~said to have a weak oth derivative v if for all ¢eC (9)
fyup% = - plel Jy vé-

The weak derivative is at least as general as the classiéal derivative.
That is, if u haé é continuous oth derivative Dau, thén:y has a weak oth
derivative v, énd ﬁ=Dau. This can be seen by pérforﬁiﬁg |a| integrations
by parts to obtai;

L pate = vl p v,
‘The weak deri%ative is the same as the distributional dérivative and is
also sometimes kqb&n as the generalized derivative.‘-fh:oughout this thesis
the same notafion'will be used for weak derivatives as fqr classical

derivatives. This‘should cause no confusion.

let 1 =p = w,‘and let B be a multiinteger. The space WB(Q) is
defined to be the set of all functions ueL (®) such that for o = B p%u
exists in the weak sense and is in I?(Q). We equip Wb(ﬂ) with the norm
. _ o p|ilp . S
Nl = | 1 & D] ifp<e
) B’p aEB .

With this norm Wg(@) is a complete space. Except in“the;case p = w; the

completeness agpenﬁs on the fact that weak derivatives are admitted.

We also introduce the Sobolev space W(g)(Q). This is theﬁépace of
©all functions'uéLp(Q) such that for all a_satisfying;1d|~5 m, D% exists

in the weak sense and is in Lp(ﬂ). W(Z)(Q) is‘'a Banach,épace with the norm

S AL RS R

|o|=n



-6 -

lull = max 0% if p = =,
s ol=m Loo(Q) .

Throughout this chapter and the next chapter expressions involving
the index p, where 1 < p =, will occur. In most cases a separété
expression is neéded for the case p = =2, Ve have just seen two examples.
From now on thé'expression for the case p = « will not be explicitly
stated but can be inferred from the expression for theé .case p < ®, For

] |= [P)/P ol | Al
example, =g - will mean max lxal if p =, and J will mean 1
- : o=<B L P ' '
if p = =,
(0), e notati
Note that‘w,p () is just Lp(Q). Accordingly, the notation ”'”0
. . . ".‘ £}

will be used to denote the Lp norm. We have

: _ o |1/p
ol , L;an) “"o,p] |
Il = (l o p] e

The Sobolevspacebﬁ(g)(ﬂ) is defined to be the comfletion of C:(Q)
in W (@) Tﬁefs' # () should be viewed he set of functi
p . e space b () shou e viewed as the set of functions
in W(m)(Q) which -satisfy in a generalized sense the Dirichlet boundary
k . . ] i
conditions é—%-= 0 on 32, k=0,...,m~1, where n is an outward normal to .
m™ - B .
the boundary of Q. The justification for this point of view is that if
a function u is ‘in WSZ)(Q) and also is sufficiently differentiable in

the classical sense, then u belongs to ﬁ(g)(ﬂ) if and only if u satisfies

the Dirichlet bouhdary conditions. See [lQ], page 39. .

The case p=2ﬂmerits special attention. ﬁ(z)(ﬂ)'is a Hilbert space

with the inner“product
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() = Y [ D%,
m o Smgz

Denoting the [, inner product by (*,"),, we have

@), = 1 @%,0%).
ol=m

The space W( )(Q) is usually denoted simply W( )(Q), and 1ts norm is
denoted H‘Hm. Slmllar remarks apply to the spaces ﬁ( )(Q) and W (Q) The

notation Hm(Q) = W(é)(ﬂ) andlﬂgn) = ﬁ(m)(ﬂ) is often seen in the literatﬁre.

As was 1ndicated in the introductory sectlon it “is. possible to define
Sobolev spaces W(p)(Q) for nonlnteger values of s. We now define these
spaces for 1 < p<«. (See [21, [lg], and [lQJ ) First suppose 0<s=0<1.

Consider the seminorm

e | A 1/p
(1.2.1) |al = |7 |u(m) - u(y)‘pdx
[v) P QQ "m_y”n +po’ ]

We define W(;)(Q) to be the space of all functions u é‘Lé(Q) such that

lulo,p < = We eqﬁip W(g)(ﬂ) with the norm

1.2.2 c
2.2 B % (7 e

It can be shown that W(;)(Q) is complete by using the same arguments as

are used in showing that Lp(Q) is complete.

For s > 1 we write s = mto, where m is a positive integer and 0 < 0 < 1.

We define a seminorm |*|. _ by
: 8,p
B R e
- 2D m ,
(;)(Q) is deflned to be the space of .all u ¢ W(p)(Q) such that Iul ®,

An approprlate norm for W(p)(ﬂ) is
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' - P+ (wlP P
(1.2.4) R P (o L

W(;)(Q) is complete.

As an illustration we shall consider a simple example. Let n=1l, p=2,

and Q=(-1,1). Lét u be the Heaviside function

1 ifxz0

u(x)
0 if x < 0.

This function is in“W(O)(—l,l)

Lz(—l,l) but not in W(l?(?l,i) (Seg [2
section 1;0). ‘We shall verify that # is in W(a)(—l,l),if:and only if o

By (1.2.1),

2 , 2 .
ul2 = 1 Ll = w@)|? g
|t - 811+2o :

We must show that this integral is finite if and only if v < %. Clearl

o],

< Lk,

y

Iu(t) - u(s)l2 l if s and t have opposite signs, and—Iy(i) - u(s)i2 =-0

otherwise. Thus

2 1
e r A Kl

Either one of thesé integrals converges if ‘and only if the other does.
shall examine the first integral. TFor fixed s e (-1,0), .
= (t=s8) %7

fg ;'11+ic o ye)
(t—‘s)“ .

‘1;"=]_ 1_ . R
= o \~20 . -ZQ]
£=0 20{( s) (1-s) EE
We must integrate this expression from -lfto 0 with respect to g. The

integral fo (1~8) %0ds converges for all o, 80 ‘ulo < « if and only if
-1 L . . )

fo (—s)—zgds converges. ,This integral, in turn, converges if and only

—1 ] v . . . . '

6 < %. Thus u is in W(O)(Q) if and only if ¢ < %.

A differeﬁt:kbut equivalent) approach to nonintegér'order'Sobolev

We

if

‘spaces
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can be found in [16] and [131. From this approach it.is easily seen that
e ; K '

if 8 < #, then W(p )(Q) E_W(gg)(ﬂ) with compact embedding. That is, the

embedding operator I:W(pt)(ﬂ) > W(J;)(Q) given by Tu =;u is a compact

operator. This fact is needed in the proef of the‘Bramble—Hilbert lemma

for noninteger (as well as integer) order Sobolev spaces.

* We close this section with one last notational convention about Sobolev
spaces. Situations will arise in which two domains Qi and Q, are being
considered simultaneously. In these situations we w1ll use notation such

to distinguish the norms on W(m)(Q ) and W(m)(ﬂ )

as andr .
2,0y ﬂll Ilm’p,gz

(1.3) The Soboiev Lemma and a Variant

rrThe Sobolev-Lemma says that any function which has\%eak derivatives
of high enough order is bounded and contlnuous. Thisitﬁeorem is an indis-
pensible tool for prov1ng error bounds for weakly differentiable functions.
In this section we shall state the Sobolev lemma and state and prove a
modified versioe Whlch is more appropriate for blending—function methods

than is the.standard version.

In order tq ﬁrove the.Sobolev lemma one must make!eertein regularity
assumptions about ‘the domain Q. Authors vary oe the esssﬁetions made.
Indeed, the vafiatien is considerable and is a sourcejef‘COnfusipns To
keep the situation simple: let us assume that Q is a convex Poljhedron.

In the onewappiieation of the Sobolev lemma in this tﬁesis, ¢ is the unit "

square.

Theorem 1.3.1 (SéBolev Lemma): Suppose 1 <p < o and.m >-g- Then W(g) (9)5_0(?2')

and there is a cqﬁstant C such that for all u e Wg;)(ﬂ),
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max |u(x)| = cllull_ .
xef m,p

For a proof which holds for integer values of m see‘[10], page 22.
A proof which holds also for noninteger m, ‘but which is restricted to the

case p=2, is given in [16],;pages 45-46,

The Sobolevrlemma has an obvious corollary, which will be considered

to be part of the Sobolev 1emma.

Corollary 1.3.2: Suppose m > Z—9-+J' Then W(Zl) (SZ)C 6'7(_°) cmd there is a
. constant C such that for aZZ U € W(m) ),

max max

o .
l‘?‘lfj el | D" u(x) | = CIIuHm’p.

Before stating'and proving the modified version of‘the Sobolev lemma
we must state afdensity theorem which will be used in the .proof. A domain
Q is said to be étar—shoped if there is a point x, in Q“éﬁch that for every
xeQ and 0=6<1, the point x, + e(x-a: ) lies :m (the interior of)

Theorem 1.3.3: Let 1 =p < « and suppose Q ig a bounded star—-shaped domain.

Then for any multtznteger B, C (R) is dense m‘wp(sz) zq'z,thfr*esp,ect to the

gp”

For a proof see [20], page 328. The theorem remains true with CB(ﬁ),

ep

nonnegative integer;"The assumption that Q be star—shépedqoan be relaxed

replaced by @, W(Z)(Q), and "'”m p,.where m is any

considerably ([ﬁO], page 355).

A domain Q in ﬁn satisfies cube condition if there is a positive real
number r such that for each xeQ there is a cube K = .ﬁlfﬁ%,ai+1ﬂtlyingin
- ‘ . =] )

Q such that x is one of the vertices of K. The mQQifiédiSobolév lemma is
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valid for bounded, star-shaped domains satisfying cube condition. Admittedly
this is a very restrictive set of conditions. However, the one domain on
which we intend ‘to apply the theorem is the unit hypercube, which does satisfy

the conditions.

Theorem 1.3.4 (Modified Sobolev Lemma): Let Q be a bounded, star-shaped
domain in ' satisfying cube condition with constant r, let 1 =p ==,

and let n be the multiinteger (1,1,...,1). Then WS(Q)‘E c(@Q), and for all

n
W.(Q),
u e p( )
(1.3.1) max |u(x)| = Mllul
xefl nsP
_dP\p-1
where - o rnn (n] (1/ }p—l 5
) r '
J=0

22222:* For simplicity of notation we will prove only the case n=2. Let

t = (tl,tz) e Q. Without loss of generality the cube X = [tl,t1+r]X[t2,t2+yJ
lies within Q. As a first step we shall assume that 1 = p < « and show

that inequality (;.3.1) holds for all functions ¢80n(§). Let g(x) = l-x.

Then by the fundamentai theorem of calculus

(1.3.2) o(t) = _4il+rL£L_Fg(xl—tl
3x, r

]¢(xi,t2)]d¢1.
Letting wx (t) denote the integrand in (1.3.2) we have
. 1

(1.3.3) — tot+r .~ .
b)) = =[F2"F 3 27 %2)
) 4 axz[g( - ]lbxl(tl,xz)]dxz.

*The author thanks Dr. D.R. Westbrook for simplifying this proof.
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We combine (1.3.2) and (1.3.3) to get

(1.3.4)

2~ x_ -t
o(2) = LD, 9( zp z]Dl[g[ 1r l]d’(xl’xz)] dz.

Let I denote the integrand in (1.3.4). Then

x,—t x,-T x, -t . —T
1 2 7211 , (1 "1 1 2 "2 1 71
I= ;g'( v ];ﬁ ( r ]¢(x1,x2) +—r7g'( r ] g ( 7 ]qu’(‘”l’mz)

)=t 2=t x,~t @, ~t
v o2 2]—1—9'( 0,060, + g( 22 g [ ot e

r |r r r
We apply H6lder's inequality to this last expression and use the bounds
|g(x)| =1 and Ig'(x)l = 1 to obtain
d
(1.3.5) [P < [-§ (2] [1/]p-1 p—l[ T 0%, e )Ip}.
g=0 JIVE as=n 2
Remembering that I is the integrand in (1.3.4), we apply R&lder's inequality

to (1.3.4) and use (1.3.5) to get

: p-1 1/p
[6(2) |

< (vol (K)] p (5{ IIlpdx]
p-1
=L o, ; 11/
_dpy p : p
<ot P | TG Dy leer|
J=0 JIUr ) asn

The constant in the inequality is just the constant M which appears in the

statement of the theorem. Therefore

. Y
=M = .
le(®) | (aé‘fkll) 9] ] Mol o, g

o

Noting that ¢ was arbitrary we have

(1.3.6) max |¢(£)| =< M||¢]

v 0eC(R).
teQ n,>p A

This proves that (1.3.1) holds for all ¢ in A@.
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Now suppose uewg(af, where l=p<= We are to‘show that u is continuous
on § and satisfies (1.3.1). .More precisely, we shall show that u is equal
almost everywhere (a.e.) to a function ¢gC(§), and ¢ satisfiesi(l.3.l).

By theorem 1.3.3 Cn(Q) is dense in Wn(g), 80 there is a ~sequence (¢ .) of
functions in Cn(g) which converges to ¥ in the norm of Wn(ﬂ) In particular
~(¢ .) is a Cauchy sequence in Wn(Q) and, as each ¢ =4 satisfies (1.3.6),
(¢j) must also be a Cauchy sequence in C(Q). As C(Q) is complete, (¢g),
converges uniformly to some ¢ in c(Q). 'Because Q is bounded, uniform
convergence implies Lp convergenCe.' Thus ¢.+¢ in I, (9).7‘0n the other

hand, ¢‘+u in- W (Q), and Wg convergence also 1mplies Lp convergence.

. Hence (¢ ) converges to both u and ¢ in. L (Q) This implies that u=¢

a.e. Inequality (1.3.1), which holds for each ¢j,—nowrfollOWS for ¢ by

continuity.

Finally we consider the case p=x. Suppose ueW (Q) Then, as Q is
bounded, uaWQ(Q) for 1L =g < = Therefore as has already been proven,

ueC(Q). Inequality (1.3.1) is now trivial.”

Theorem 1.3. 4 like the Sobolev lemma, has an obvlous corollary.

Corollary 1.3.5:' Let 9 be a bounded, star—shaped domain satisfying cube

condition., Let 1 =p = =, let n = (L,...,1), and let B be a multiinteger

such that n S"BJ' Then WB(Q) c CBTn(ﬁ), and for all ueWS(Q),

.max max |D u(x)[ < Mllull
oc<6—n x2eQ .

wheré Mis as iﬁ'theorem 1.3.4.
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‘(1.4) The Bramble-Hilbert Lemma

The Bramble-Hilbert lemma is a useful toolrfor‘proving error bounds
in general. Thds‘theoremrwas popularized'in the West‘by J.H. Bramble and-
S.R. Hilbert in their 1970 paper'l}]. Similar resulte have appeared in
the Soviet 1itetature.' An example is the theorem‘whichhis;proved’on page
354 of V. I. Smitnov's book [20]. This result was brought to my attention

by Dr. Lois Mansfield.

Before we can state the Bramble—Hllbert lemma we must deflne a semi-

norm on W(Z)(Q) Let

(1.4.1) lul, np ( L 0% Il/p

|af=m
Here the sum is taken over all multiintegers Withorderexaetly m, whereas

in the norm H-Hm . the sum also includes those o with order less than m.
L 2l .

As in the case of the Sobolev lemma' some restrictionshon‘the domain
are required. ‘Thédone major theorem upon which the Bfamhie-Hilbert lemma
depends is the compact embedding theorem, the theorem Whlch says that if
81<8, then W(Z 2 (Q) < W(Z 1) (Q) with compact embedd:mg. . Varlous forms of
rthls theorem are_glven in [10], [ZOJ, and LlQ], among other sources. The
Bramble-Hilbert lemma holds on any domain for wh1ch~the compact embedding

theorem is valid; In particular, it holds if @ is a convex polyhedron.

Theorem 1.4.1. (Br_amble-—ﬁiibert Lemma): Let A be a bounded linear operator
with domain W(;)‘(Q.) (L = p< «) and range in a normed: Zinedr space (,|1).
(Thus there exiats a constant ||A|| such that fAu]l = IIA[[F-"Ilitrll for all
,usW(S)(Q) ) Suppose that A awmihilates all poZynomaZs of degree less

than s. Then there i8 a constant c, depend'mg on s cmd p but not on A,



such that for all uew(;)(ﬂ),

llasdl = clall|l

The original statement of the theorem referred to a functional F rather
than an operator A. 'The switch to an operator makes the theorem easier

to apply and does mot in any way affect the proof.of:the,theorem;

Bramble and Hilbert proved the result for integer values of s. The
result also holds for noninteger values of s if we take’the Seminorml-|8 p
to be the one‘given by (1.2.3). Here we present a proof of the noninteger

case. The proof of the integer case is similar.

We begin by introducing some notation. Let & =_mfo; where m is a
nOnnegativeinteger and 0 <o < 1. Let f denote the,spaee‘of polynomials
of degree 1ess than or equal to m, and let D be the space

D= {uew(s)(ﬂ)l,g D u*O (Va)lal_m}
~ The theorem foilows from two lemmas.

Lemma 1.4.2: " (S)(Q) = P ® 7.

Lemma 1.4.3: There is a constant C such that fbr aZZ veD, an 8, = Clvls

The constant C appearing here is the same C as in the statement of the
Bramble—Hilbert,lemma. Before proving the two lemmas we ghow how the

Bramble—Hllbert lemma follows from them

Proof of Theorem 1.4.1: We are glven a bounded 1inear operator Az W(p)(9)+y
whlch annihilates all polynomials of degree 1ess than s. That is, Ap—O
for allp 1n P . leen uew(;)(n) we can wrlte ufp+v, Where peP and vel,

by lemma:1.4;2.. We have Au= AV, s0 HAuH HAvH HAH HDH
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Therefore, by lemma 1.4.3,

L.4.2 aull = cllall-lv], .
(L.4.2) lawl = clall- o], ,

This is almost- the assertion of the Bramble-Hilbert lemma. We can complete

-the proof by sboWing ;hat Ivls,p = Iuls,p' 'Rgc?ll thaf{
1/p
loly , = | I 10%IF
8,p l°‘|=m G,»p
where ¢ = m+o and
|p%0@) = Do) [P i
|D0Lv| - f{z vxX) — v'y y
: , Q
7P lz - 5P |

Since Dap is a constant if |o|=m, we have |Dav(¢) - Dap(y)l = lDau(x)'— Dau(y)|,
so |D vlo’p = ID:ulo’p, and thgrgforg Ivls,p Iuls,p°, Combining this

with (1.4.2) we get |l4ufl = CHAH’luls p? which is the assertion of the
. . >

Proof of Lemma 1.4.2: We are to show that W(g)(ﬂ) = pmetl First we

Bramble-~-Hilbert lemma.

establish the fac@ thgt PmﬂD = (0). This is equivalent to showing that
if peP ~ and &iDapt= 0 for all a such that |a| < m, then p=0. It is a
simple matter to prove this by induction on m. There ié no need to include

the argument here. .,

We now prove that W(;)(Q) Pm +D. The dimension of the spaée Pm is

n o
O 2.% such that a,+...+0 < m. That is,
1=1"17 1 n

it is just the number of multiintegers o such that |a| =m. call this

the number of monomials‘xa =

number k. Define a linear transformation T:Pm > Bk by‘,
o, 8 :
Tp = QD Py [gDPsesg D)
where o,B8,...,y are the k¥ multiintegers of order notiexceéding;m. By the
previous paragafaph T is one—to-one. Therefore, as dim(Pm) =k = &im(ﬁk),

T is also onto. Thus, for any constants e, ([a]sm)“theré is a unique
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peP such that ¢y = j' D% p for all Ial =m. 1In particular, given ueW(S) Q)
there is a unlque pel’ such that f %u = f D% p for. all o such that IuISn
Letting v = u-p we have f 0% = 0 if Ial_m, so vel, Thus u = p+v, where
peP and vel. 'This proves that W(s) Q) = Pm-ﬂ), I

Proof of Lemma 1. 4 3:

We are to prove the existence of a constant ¢ such
that ||v||S p < Clvls p for all veD. Assume that no such.( exists. Then
b ) b .

there exists arsequence (vj) of functions from D such that

. > i v- .=12 3..0
5 ot o » > dlosls 5 g=1,2,
We may assume that ijlls p~ 1 for all j. By the compact embedding theorem
> .
the sequence (vj) has a subsequence (wi) = (vj .) which converges in the-

i
(m) - ' A —
norm of W p (Q)f In particular IIw,L wk”m,p > 0 as ¢,k ~ ». Note also

that )
|wil's,p ?.Ivjils,p< (Ji)—lllvjills’p = (j‘é)#?
Thus lwzls R +.0 as ¢ > «. Therefore
Ilu} wlly o= "(““’i"“’kl_lg,p + oz, [P p)1/119
A + g, )P 0

TA

(O

i's p
’ | (s)
as 7,k > . Thus _'(wi) is a Cauchy sequence in the complgtg space W v ),

: . s
and thereforer(wi) converges to some w in W( )(Q).

We shall prove ‘that w is in P . First of all, lwls ;p %-j;f:lw'bls,p = 0.
Therefore, as |w|§p = z |D wl (where s = mto) we see that |D w| p
for all o such that |0L[ = m. By deflnition‘ of | - |0,p’

= %P lDw(x) - %P
0= |Dw!0’, 9.6 _yl|n+p0 d"l’)dy.
Therefore, for almost all y in Q,
0=y |Pu@ - g .
ntpo

flaz: = yll
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Let y, be one value of y such that this integral is zero. Then, for almost

all x in Q,

0 = LD%o(x) - Daw(y0)|p
= g **P

‘Therefore D%u(x) = D%u(yo) for .almost all x, and p%u is (equivalent to)
" a constant function. This is true for.all ¢ such that lal=m, SO W must

be a polynomial of degree at most m, i.e. WeP,.

On the other hand, weD, for w is the limit of the sequence (wi) of
functions in D and, as is easily verified, D is a closed subspace of
W(;)(Q). Therefore, by lemma 1.4.2, w=0. But this contradicts the fact

that |lw = Limflw,; = 1.
loll = Limbogl, o, = 1.1

(L.5) A Variant of the Bramble-Hilbert Lemma

As in the case of the Sobolev lemma, there is a variant of the Bramble-
Hilbert lemma which is more appropriate for blending-function methods.

We shall approach this theorem via a series of lemmas.

Let Q@ be a bounded domain in ﬁn, and let 1 =p = », We define linear
operators Si:Lp(Q)’+ Lp(ﬂ), i=l,...,n, by Siu = Diu, where the domain of
S. is

7

0(s;) = {ueLp(Q)| 3 weak D?:ueﬂp(ﬂ)}.

It is easy to show that Si is a closed operator.

Lemma 1.5.1: S{ has a closed, bijective rvestriction T%.

‘ n _ .
Proof: Let g = T Laﬁ’ij be a box which contains Q. Given bep(Q) we
o=l -
d

can extend f to all of B by setting f equal to zero on B\Q. Define a

function #, on B by.
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- 1
(1.5.1) ui(xl,...,xn) = {;7, f(xl""’xi-l’ti’xi+l""’xn)dt"
This integral is definecl for.all‘ (xl,...,xq:_l, H_l,...,x ) in 0#1’ [_a . ]
except on a seth;I: of measure zero. Let Z = I:ai ’bi] X,Z,I;' Then Z has
measure zero in B and the integral (1.5.1) is well defined for all x outside

of Z.

Clearly Diui = f in the weak sense, and therefore S U, = f. We define

a linear operator A'z',:Lp(Q) > Lp(Q) by Aif = u7/|9 ‘It isfeasy to calculate
from (1.5.1) that 4 g is bounded (in fact, compact) and everywhere defined.
If we can show that A'i is one~to-one, it will follow',:t‘:hat,T,I:E-A%/ml is a

closed, bijecti‘v.e restriction of S'i'

To prove that A'L 1s one-to-one we must show that 1f uilﬁz = 0 then f=0
a.e. If uz'ﬂ :=f"0, then uiﬂo on all of B because f=0 on B\Q. Thus
(1.5.2) 0 j"Jc f(xl"”’x'i-l’ i’xi+l”'°’xn)dt’ qiniSbi :

o I *
for all (ac ,...,ac _1° 7/_{_1,...,:1: )e [j#[aj’b']l\zi'
= I |g
Let B. j#?l[ ] and fix & = (xl""’z—l’ ,H_l,...,x) eB\Z . Let
S be the set of all 1: € [a ,b ] such that f(:cl,..., 8 l,'[; 2Lz qse 00y )#0.
By (1.5.2) S:% has Lebesgue measure zero, le(Sa';) = ‘Let S be the set of
all x in B such that f(x) # 0. Then, by definition,.-'the measure of § is
mn(S) = jJ‘B@ ml(S&‘:)dzx: = 0.

Thus f=0 q.e. This proves that 4; is one~to-one. ||

Lemma 1.5.2: The operators Tiye..,T which were constructed in the proof
of IZemma 1.5.1 coinmute with one another.

Proof: We defined Ti by T. = Ai—l, Where

_— )
Aif(xf'”’xn) 7, f(x goeesds —l’t . 11+1""’xn)dt1l°
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By Fubini's theorem Al,...,An commute. It follows that their inverses

Tl""’Tn commute.| -
, n .
Lemma 1.5.3: Let B = | [aj,ij be any box containing Q. Then for all
J=1
u in the domain of Ti’
"u”o,p 5'(bi-ai)HTiuH0,p C1=1l,...,m.

Proof: This is equivalent to saying that “Ai” < bi_ai’ which can be

verified by applyihg HOlder's inequality to (1.5.1) and integrating.

lLet v be a multiinteger, and define SY to be the operator given by
Syu = DYu, where the domain of SY is

= Y
D(SY) {ueLp(Q)l E| wgak D uaLp(Q)}.

Lemma 1.5.4: SY has a restriction Z} which is closed and bijective.

Proof: Let TY = ,ﬁ iji. By lemma 1.5.2 the order of the factors Ti is
=1

immaterial. TY clearly has the desired properties. ||

Lemma 1.5.5: ILet TY be as defined in the proof of the previous lemma.

Then for all u in the domain of Ty,

< T w.—a)V T )
I|ullo’p 1121( ;e Yu”o’p

I

Proof: Apply lemma 1.5.3 repeatedly.

We are now prepared to state and prove the modified Bramble-Hilbert
lemma.

Theorem 1.5.6: Let 1 <p < =, let Q be a bounded domain in En, and let

A be a bounded linear operator with domain Wg(g) and range in some normed
d
that A annihilates every function ¢5WS(Q) such that DB¢ = 0. Then for all

linear space (Y,

). (Thus ||Au|| < “A”-”u”s,p for all uewg(g).) Suppose

N \
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B
W (Q
uc p( ) -
lazll = Bllafl- 1250 -
, T P
where : B0 P 1'/P
B=1{1) H(b-a)'L?'_ "
a=<f|i=1

If Q is the m?lt"hypercube U, then B ='[.%1(87:+1)] L/p
. 1=

Proof: Let uewg(ﬂ), Since TB is surjective (lemma 1,5;4), there exists

v in the domain?of TB such that TBU = DBu. We have DB(u;v) = 0, so
A(u~v) = 0. Thus |

(1.5.3) - laull = llavl = lAll-Iollg -

Let o=<B. Then as the operators T commute (1emma 1. 5 2) TB ‘ B—aTa'

Therefore Tav is ;n the domain of TB—a' Applying lemma 1 5 5 w1th u replaced

by Tav and y replaced by B~o, we have

B =0,
() n R AT
1, < [,ybi—aﬂ) Jnn olly e

This holds for all o=<f, so

- B.~a.1pyL1/p
1
Iollg L;Bn ol 7 = { oéBLZﬁl(bi—ai) : ” ool

'= B D v
Combining this last inequality with 1.5.3 and recalling that DBU = Du
- we have
laul) < Blall-10%dl;

which is the assertion of the theorem.

‘ : Bz—az p
If O=U, then b.—a.=1 for.all i, SO -z H (b .=a; ) = z 1= H (B L) .
. ) a<8

Hence B = tr{ (a. +1)] /p B

1=1 =B =1
p=1
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It is interesting to note that the only hypothesis on Q in theorem

1.5.6 is that Q be bounded.,. There are ho‘reghlarity conditions whatsoever.

The proof of theorem 1.5.6 is constructive and:allows us to compute
a specific constant B. By contrast, the standard Bramble-Hilbert lemma

gives us no idea of the size of the comstant C appearing in that theotrem.



CHAPTER TWO

ERROR BOUNDS FOR BLENDING-FUNCTION METHODS

(2.1) Blending-Function‘Interpolation

In this chapter blending~function methods are introduced, some of
their elementary properties are established, and asymptotic error bounds
for blending-function interpolation are obﬁained. Blending—function

‘ )
methods are a ciass of methods of generating functions (blended interpolants)
which interpolate curves or surfaces rather than peints. The nature of
a blended interpolant eenen&s on the "blending functions" used. In this
thesgis we shell eoneider only two-point Hermite polynomials as blending
functions. Other pessible choices of blending functions are Lagrange
polynomials, spllnes, trigonometric polynomials, etc. The reader is referred
to Gordon's very general discu331on of blending-function methods lllJ The
decision to consider only, Hermite polynomial blending functions in thlS
thesis was dictated by a desire to keep the notation simple. The proofs
given here can be applied to any blending—function schemedin which the

blending functions are polynomials.ﬂ Thus, for example, the methods of.

this chaptef can be applied to Lagrange pqunomial’blending functions.

The error bounds of Gorden and Hall [lZJ mentipned in the introduction
aie stated for the case of Lagrange polynomial Blending functions but could
also be applied to 6ther cases; The error bounns of [12] are applicable
to continuously differentiabie functions, whereas the main results given
here apply to weakly differentiable functions. rError bounds for continuously

differentiable functions are also given here.

- 23 -
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The technique for obtaining error bounds is fundamentally the same as
that used by Bramble and.Zlamal [6]. Where they have used the Sobolev
lemma and the Bramble-Hilbert lemma, we shall use the variants of these

theorems which were presented in chapter one.

The developments of this chapter are stated for planar regions, but
the entire theory carries over to n-space for arbitrary n. We stick to

the special case n=2 for simplicity of presentation.

We begin the technical discussion by introducing the blending functions
themselves, the two-point Hermite polynomials. Let k be a positive integer

which will remain fixed throughout this chapter. Define 2k polynomials

P ”"’pk—l’qo""’qk—l as follows:

0
Let p; and 9z 2=0,...,k=1, be the unique polynomials of degree

less than 2k such that

(2.1.1) P =5, = ¢ W

L)

: 1,5=0,1,... k-1.
péJ)(l) = 0

A

Let U be the open unit éqﬁare in k2. We use the blending functions
to define an operator Pl on C(k_l’o)(ﬁ) by

(2.1.2) kil

PLu@,,,) = [?{u(o,xz)pj(x1)+0{u(l,x2)qj(@1i].

J=0
. . k-1,1) = .
It is clear from (2.1.2) that if uel (U) for some 7, then
PluEC(m’t) (U). Also from the properties (2.1.1), Plu interpolates u and
its first k-1 normal derivatives along the sides xl=0 and z,=1 of U. 1In

fact, for each Xy, Pru (as a function of x;) is the unique polynomial of

degree'less than 2k which interpolates u and its first k-1 derivatives (with
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respect to X;) at the endpoints %,=0 and 2y=1. Therefore, if P1 is applied
to Plu\we will get back the same polynomial again. This holds for each
Z,, SO P%u = Pyu. That is, P; is a projgc&or. Thg range of P, is

the set of functions ng(Zk’O)(ﬁ) such that for each fixed“ng[b,l], v is

a polynomial in z, of degree’ less than 2k. Equivalently, the range of

P1 is the set of all veC(Zk’O)(v) such that D(Zk’o)v = Dikv = 0. The ’

range of a projector € is exactly the space of elements v such that Qv=v.
We say that @ preserves or is exact for such functions. Thus P, is exact

for the set {UEC(ZR’O)(ﬁ)]D(Zk’O)v = 0}.

The operator P,, the "mirror image" of P,, is defined on C<O’k—l)(ﬁ)
by
k=1 . .
(2.1.3)  Pyu(z,,z,) = jzo[biu(xl,O)Rj(xZ) + Diu(xl,l)qﬁ(xzi}.

Clearly qu interpolates u and its first k~1 normal derivatives on the

sides x,=0 and x,=1 of U. P, is a projector which preserves all

2

0,26) _

vecC%52%) 7y such that D 0.

(k—l,k—l)(ﬁ)’

If uel then Pleu and P2P1u are defined and equal. A

direct computation shows that

(2.1.4) P1Pou = P,P u =

T kfl p%)1,00,0)p. (2 )p . () + D9 u(1,00q. (& )p .(z )
i=0 j=0 | B A S e ULHEIq; R P 5T,

+ D(z,a)u(o,l)pi(xl)qj(xz) + D(i,J)u(l,l)qi(xl)qj(xzaJ.
It is clear from this representation that Pleuedw(U).

We define another projector on C(k_l’k_l)(ﬁ) by either of the two



equivalent defigitions

(2.1.5) . P=PPP, EP +P, -PP,

o I-p=(I-P)IP,).
Because P; and Pzicommute,'P is a projector. Pu is éalléd‘the blended
interpolant of a;.'Theotem'Z.l;l'belbw gives' the justifi;ation for thé
use of the term "interpolant." " The érror projector E‘is‘defined'by E=I-P.

If we defing E."1=I—P1 and E,=I-P,, thgn'E = E.E, = E,E,.
(k-1

Theorem 2.1.1: V!G«iven uectk=1k=1) (D), Pu is completely determined by the
boundary values o}‘ u and its first k—l‘normal derivatives. Pu interpolates
these values of u. ' Z |

.222221 An inspegtion of (2.1.2), (2.1.3),‘an& (2.1.4) Qhows that Py is
determined by .the boundary values of u and its firsf k-l normal derivatives.

To prove that u interpolates these values we must show that along the sides

;=0 and %=1,

(2.1.7) o D{Eu 0 520, ve s k=1

and along the sides x,=0 and x,=1,

It

(2.1.8) : DjZ:Eu 0 3=0, ... k-1.
We shall prove (2;1.7). An analogous argument proves (2.1.8). Let v=E2u.r
Then Eu = Elv. We.kpow that Plv interpolates v and its firsé k-i normal
dgrivatives along‘fhe sides x1=0 and x1=11 This means

D{Elv =0 ‘j=0,.343k—l
along thes? sidgs. This, Foggthgr'with fhg fact that Euf= Elv, provgs

2.1.7)]

Theorem'Z.l.Z:;:Let B be a multiinteger satisfying (k,k) = B =(2k,2k).

Suppose ueWﬁ(U} and 0Py = 0. Then Eu=0,.i.e. u is preserved by P.
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Proof: Starting'with the equation DBuFOIand performing JB] integrations
we see that u# is of the form. -

Bi-

L

1 . -l i
f % (,xz)xi + ';7.20%' (xl)é

u(x,,x,) =
. 1 b
2 0 °

wheré '¢jewl§32)‘(o,‘1),, §=0,..0;8,-1, and l;,J.ewlgﬁzl)(’o,l), §=0,..:36 1. ‘Letting

. By-1 .
V(®)s%,) = 'io % (xz)“‘ﬂl

Jn
Ba-l ;
w(@),%;) = JZO“‘J (“?1)”%

we have wu=vho, E1v=0, and Ew=0. Thus Eu = Ev + Ew = E B v + E1Ez"’ = 0.]

Theorem 2;1.2 indicates that it may be possible to apély the modified
Bramble~Hilbert lemma (theorem 1.5.6) to the operator E or, more generally,
D%E. Theorem 1.5.6 requires that D%E be bounded in some. sense. The

boundedness of D%E 1s proven in the following section.

Before proceeding to the next section we examiné two special caées

which'will beldéed in the construction of finite ele@énts. Considex the
case k=1. Thg.biending functions are thg lingar polf&omials po(m) = 1~z
and qo(x) = w.; Thé function P u(x;,%;) intgrpolatgs‘linéérly from u(O,xz)
across to u(l;xéi‘for each Z,. Pleu is the unique biliﬁear function which
interpolates ﬁ'aﬁ;the four corners of U: Pu is determined by and interpoiates
the boundary values of U, E=I-P annihilateslall functioné uswgf’z)(U) such

e @D o | '

that D Among such y are.all monomials of the form m€x%, where

either {<l or j<l. We state the following corollarx_for future reference.

Corollary 2.143:5,Let k=1l. Then <) the blended intarpoiant Pu is completely
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determined by the boundary values. of u and interpolates u on the boundary

of U, and.ii1) P preserves all monomials of the form ixi, where =1 or

Jsl. In particular, P preserves all cubic polynomials.

Now consider'ﬁhé case k=2,. 'In this case the ' blending functions are °

3_x2, 'For

cubic polynomj.ais. "For gx'amplg qa (x) = 3x2-223 e;.nd ql(aé) =
gach fixgd' Zy, fzzi is thg imiqug cubic polynomial in .'zc2 which inte.arpolaf:és'
u and i?:s firs‘t; der'iva_tive} (wif:h rt‘aspc.ac:t to :3(:2) at th? éf_r{dpoirits x2=0 and
x,=1. Pu is détérmined' by and interpolates’ thé' bounda;‘y 'va];u;.s' of u and
its normal defivativg. Thg error opc.ar'ator'E’ anpihilat;e:}é' all uewg*’ 4 )

such that D$**%)4=0. Thus E annihilates all monomials of the form xi:c‘; ,

where 1<3 or j<3.

Corollary 2.1.4;. Let k=2. Then ) the blended interpolant Pu is completely
determined by the boundary values of u and ite normal derivative. Pu inter-

polates u and its normal derivative on the boundary of-'?, and ii) P preserves
all monomials of the form xﬁﬁi, where 11.<_3‘ or g<3. In ;pa';rticuZar, P preserves

all polynomials of degree seven or less.

(2.2) Boundedhesé of the Error Operator

O
1° DP2,

~and D°P,P,. These will yield a bound for D, as E = _I—Pl-Pé+P1P;. The

. In order to get a bound for D%E we obtain bounds for "Do‘I, p%p

use of the modified Sobolev lemma (theorém‘ 1.3.4) will be demonstrated in
‘this section. ‘We assume throughout that 1 < p =< w, The multiinteger (1,1)

will be denoted by n.

Lgnﬁna 2.2.1: -Lgt o be any multiinteger, Then for all uéWa;n(U)

lID‘-’.‘ull0 p =Ml g

wher!’e M is as in theovem 1:3.4.
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Proof: This lemma is trivial because M=1 in the—éase‘under‘coﬁsideration.ﬂ

Lemma 2.2.2:. Let o be. any multiinteger. Then

o < (k0. +1)
IIQ Plullo’p =c, Mllull (k’ z‘”*) ,p v uaWp €)))
o. D < - (a +1 k)
“D,szHOsP "'CazMuu”(al+l,k),p‘ v ueWb | ()

where M 1s as in theorem 1.3.4, and

% osps1 |50

- C_ = max z lp(at)(x)l + quai)(x)l] 7=1,2.

: _ . = (ko +1)
Proof: We shall prove only the first inequality. Let u;W% 2 w.
Then, by the corollary to the modified Sobolev lemma (éorollary 1.3.5),

(k-1,0

uel )(U), so. P X is well defined and contained in C( » & )(U) < c® .

Applying p* tngqua;ion-(Z.l.Z) we have
D% u(m 2, ) = z [?(J’QZ)u(O,xz)pgal)(ml) + D(J’QZ}u(l;xz)qgal)(x i]

Thus

. el J=0
-0=g5<k~1

It follows from corollary 1.3.5 that

!DaPlu(xl,xz)I“ = max |D(J’ Z)u(w)[ Z (Ip(u )(x )I + |q(a1)(x1)|}]

) (jso‘z) < -
o el =M e
Ong_k-l
so ID P u(x ,x )| = =C, MHuH Now take pth powers, integrate the
1 (ky0,+1) ,p pth ntegrate the

left hand side qver U, and take pth roots to finish the proof.||

‘Lemma 2.2.3:¢ Let o be a multiinteger. Then for all ueW(kvk)(U),

w o .
“ ”D P P u”o p °‘1°‘2M"u" (k,k) P

where
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k=1 K=

max _ ) ) [(Ip,j)(xl)l +|q<§1)<xl)|],[|p§2)§x2>l + lq(gfz)(wz)l]J.

ouocz (%, xz)gﬂ’@:o J=0

The proof is similar to. that of lemma 2.2,2,. the representation

(2.1.4) being used.

Tﬁeééém'zfz-éé Let o and B be. multiintegers satzsfyzng a+n B and
(k ,k)SB. Then for all ueW Wy,

(2.2.1) I0%ally: , = cplluly

where ¢ = 1 +-C | +C +C .
Q. .‘0L1 qz (!1(12

Proof: From the;hypotheses we have o+n<g, (k,q2+l) < B, (&1+1,k) < B,

and (k,k)sB, so by the last three lemmas,

1%l op = Mg
10l = G 2l
IID“pzuII — Ca_lelull 8.p
10°P P ,ull . calalelun 80"

Application of the triangle inequality to D%y = Duu-DQPlu—D9P2u+DaP1P2u
and addition of these four inequalities gives (2.2. l) H

Theorem 2.2.5: . Let o and B be multiintegers sattsfyzng a+n<B and

(k,k) = B = (2k4,2k). Then for all ueW w,

(2.2.2) o D E’ul[o’p = BC‘aMllD ull

where B is as in theorem 1.5.6, C, is as in theovem 2.2.4, and M ies as in
theorem 1.3.4. |

Proofs Let Al W (U) > L €/)) be the operator given by Au = D@Eu. By
theorem 2.2.4 A is bounded. ‘By theorem 2,1.2 Au=0 Whenever DBy=g, There-

fore we can apply theorem' 1. 5.6 to-obtain (2.2.2).]
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(2.3) Sobolev Space Error Bounds- |

| Bet B2 (6,0))n(a b e rectangle fn thebrplane. et #y %by -,
and %, = b,-a,. 'The affine-transformetion' -
'(2.3(1) : = h.x. +'a. i=1,2
is a one—to—one mapping of U in the x-plane onto E in the w-plane. There '
is an obvious correspondence between functions U defined on U and -functions
% defined on R, 'This correspondence is given by u*»-ﬁ, where Uw,w,)=u(x,,x5).
Here Wy,0,) and (él,xz) are linked by (2.3.1). 'Obvioueiy I retains the -’
eséential properries'of u, and vice VerSa. 'For'instanceﬁ'uewﬁ(U) if,and;

only if ﬁewg(ﬁ);

The projector P on C(k_l’k-l)(ﬁ) induces a projector ? on C(k-l’k—l)(ﬁb
by Py = é&. IL is easy to seethatE’retains ‘the - important characteristics
of P. Specifically, theorems 2.1,1 and 2. l 2 hold for P. We define an

error projector E by Eﬁ = 3-P, Clearly-éﬁ = Eu.

We shall establish an asymptotic bound for the [ norﬁ of D%Eu. Inf
order to do this we shall first establish the link betieen the horm of D%
in L?(U) and the norm of D* in Lp(R) for any vewg(U). Then we shall use

the bound (Z.Zgﬁ) on D%y to establish the asymptotic bound for D%E%.

e lo] - o
In the following lemma 0% means aa va , and D*D means —EE__QE_.
' ' ' dy 13w, 2 L dwytaw,2

Lemma 2.3.1: Let J be the Jacobian of the transfbnnatton (2 3.1), and

let o be any muZtiznteger. Then for all veWb(U),

S ol = pOi02 ~Lipp o
(2.‘3.2) !lD'VUHO,p,U 7.7'1 )h2 ) f”D-U“O"p,R.V
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Proof: The diffefentiation formula

o =°‘19‘25‘
D ”erfxz) hlthz D ﬁ@ol,wz)

is easily verified. 'Taking pth powers, integrating, and taking pth roots,

we get (2.3.2).]

Theoteﬁ'2.3.2§" Let o and B be multiintegers satisfying oin = B and

(kk) < B = (2k,2k). Then for all aswgm),

: d“.. . 31—&1 32—(.12 Boant
(2.3.3) o Eullo’p = BC Muit T, 4D “"o,p
where B, Cos and M are as in theovems 1.5.6, 2.2.4; aid 1.3.4, respectively.

Proof: By (2.3.2): with v replaced by Eu, -
| o =0y, =0 1/Dy O 1
= 1 2
_llp EuIIO’p’R hy lh, 27 IIDEuIIo’p’U
and by (2.3.2) with v replaced by u and o replaced by 8;

. B -
N L A v L

0spsU 0,psR°
We now sandwich:ingquality (2.2.2) between these two lines to obtain'(2;3;3).u

Theorem 2.3.3: 'Lét.h = max{hysh,}, and suppose h=l. Let m:be a nonnegat'ihve

integer less than 2k, and let B be a multiinteger satisfying &k,k)=<B=(2k,2k)

and (m,m)+n=g. Theh fbi all ﬁeWﬁ(R),

(2.3.4) el |8]-my B

Ry : lIE’uIIm’p < BC, I 10" ul| 0,p

where C = X C: . B, C , and M are as in theorems 1.5.6, 2.2.4,
m loc]fm ¢4 [+ .

and 1.3.4 respectively.

Proof: Let o be such that Iqlsm. ‘Then’ o4n=<8, so (2.3.3) holds. Therefore

IA

"Rl - Bcaml Bl-|a| llb:sﬁllo o

1A

Bl=my Bay
se gl * 1Mol
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as h=l and |a|5m. Taking pth powers, summing over.all o such that b|5 m,

(2. 4) Error Bounds for Continuously Differentiable FunctiOns

The'brOcednre which has beeh'used'to obtain Sobolev'space'error'bounds
can be nsedialSO-to obtain-error bounds-forlcontinuonsly differentiable
functionst 'If we are willing to work with eontinuously:differentiable ’
functions we do not have to use a Sobolev lemma type theorem;'andithe'proofs
are correspondingly easier. 'It is.also possible to relak some’ of the

hypotheses.
The modified Bramble—Hilbert lemma (theorem 1.5. 6) is still required
and remains true With WB(Q) replaced’ by C @) and Il H 0\p replaced by
H-lo g. Indeed the proofs of some of the lemmas leading up to theorem 1.5.6
>
~are technically simpler in this case.

Theorem 2. l 2 ‘holds with WB(Q) replaced by 0 (9) The constraint on B

can be relaxed to (k-1,k-1) = B = (2k,2k).

Theorems 2.2.4, 2.2.5, 2.3.2, and 2.3.3 have the following counterparts.

Theorem 2.4.1: Let o and B be any multiintegers satisfying o<B and
(k-1,k-1)SB. Then for all uec® (@), |
IIDOLEMIIO,eo = Ca””“e,oo

where C 18 as in theorem 2.2.4.
“a ‘

Theorem 2.4.2: Let o and 8 be multiintegers satisfying dsB and

(k=1,k-1) < (zk 2ky. Then for all ueC® (T,

o B -
175l g, = BCGIIP-Hl g,
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where B and ¢, are as in theorems 1.5.6 and 2.2.4, respectively.

Thebiem 2:4.3i Let o and 8 be. multiintegers-satisfying 0B and

(k=1,k-1) =B = (2k,2k). Then for all ﬁeGB(E);
oo 8170, BomOgy B
Il = Boay Ty D o

Where B and Ca‘»ar'e as in theorems 1.5.6 and 2.2.4, respectively.

Theorem 2.4.4: - Let m be anomegative integer less than or equal to 2K,
and let B be a multiinteger satisfying (k-1,k-1) < B < (3k;2k) and (m,m)sB
Then for all nect @, | '

lal ., = 5o pl Bl .
s ]

where B and ¢, are as in theovems 1.5.6 and 2.3.3, respectively.



CHAPTER THREE

(3.1) .Elliptic Boundary Value Problems -

This chapter, which contains no new"matérial; ié'included'in order;to
establish a genéfél framework to be ﬁséd'iﬁ_thé'éhapgérs ﬁhiéh‘folloﬁ.
The most common application of the finite élémént méthda is the numerical
solution of .elliptic boundary valueproblems. 'Thetéfbre,:wé bégin with a

description of problems of this type.

Let Q@ be a boﬁnded domain in Rz. ‘For convenience e shall make some '

changes in notatioﬁ. Points in Bz will be denoted (x,y) fathet'than (wi,xz).

For the derivatives of a function u we will use notation such as u, for %%
and u f __?E_L_‘ = .—?.2_1_{
wy “°T dwoy  oydx’

The simplesﬁ example of an elliptic boundary value problem is.the
Dirichlet problém for Poisson's equgtibn. _Given a funétién fin some
aﬁpropriate fuﬁétiéﬁ space on 2 we seek a function u in soﬁe other function
space such that‘z |
(3.1.1) iy Ay = f on &

(3.1.2). o u=0 on 3R
wherg A is thg Lapiqcian: Ay = Uyt

vy
to transform ;his problem into a generalized form. If we multiply both -

. For our purposes it is desirable

sideé'of‘equationf(B.lJl) by an arbitrary function ¢€C§(9) and integrate
by pafté,on the left side, we obtain the equation

(3.1.3) : Iy gy, + % 0,) = fo Y VieCy (). B

- 35 -



- 36 -

Define a bilinear form a(-,s)'by.-

(3.1.4) o alu,v) = Aﬁ(uxvx'+,“y”y)«

and recéll‘that We'have_agreéd;to denbté th;a"L2 inner’ product by. (*,*),.
Also, note thaﬁ, as C?(Q)_is dénég in ﬁ(l)(gi; (3.1J3)'ho;dsﬂfor.all functions
veﬁ(l)(ﬂ). ‘Bquation (3.1.3) can now be tewtitteﬁ'és

(3.1.5) e = (hw), ¥ e @,

This is the generalized form.of (3.1.1). 'The bilinear férm a(-,;)'is well
defined for y and v in W<l)(n), whetéas Au is not well defined unless y is
twice differentiable. Thus (3.1.5) admits a larger class of funcﬁidns as
potential solutlons than does’ (3.1.1). 'We generalize the boundary condition
(3.1.2) by requiring that the solution 3 lie in ﬁ(l)(g)ﬁrather than the
larger space W(l)(ﬂ)- The generalized Dirichlet problem is to find ue¥ (@)

such that (3.1.5) holds. The given function f is assumed to be in LZ(Q).

The form aq(-,-) is obviously bounded on ﬁ(l)(ﬂ). That is,

(3.1.6) NaG| = ol ¥ uoer™ ).

A less obvious fact 1s that a(-,+) is strongly elliptic on ﬁ(l)(ﬂ). By

this we mean thatﬂtﬁere is a constant a>0 such that

(3.1.7) - a(v,w) = aHvHi Y veﬁ(l)(ﬂ).

This inequality is a consequence of Friedrichs' inequality, a statement and
proof 6f which can be found in the article [23] by the author of this thesis.

See.also [17].- Note that (3.1.7) holds only on ﬁ(l)(ﬂ), not on‘W(l)(Q).

For example, the function v(x,y) = 1 does not satisfy (3.1.7)

A consequence of (3.1.6), (3.1.7), and the symmetryrof the form a(-,-

is that a(o,J)“is an inner"product on W(l)(ﬂ) equivalent to the standard
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inner product (-,.);. The functional L(V) = (f,v)0 is a bounded linear
functional on the Hilbert space ﬁ(l)(ﬂ). 'Therefbre "by a.classical theorem
of F. Rlesz ([18], page 80), there is a unlque function uaﬁ( )(Q) such that
a(u,vy = L(v) = (f,v)o for.all veﬁ(l)(ﬂ) ‘Thus, the generelized Dirichlet

problem has a unique solution.

We now propose a more general problem’which retains the essential
features of the generallzed Dirichlet’ problem. ‘Let'm be a nonnegatlve
integer, and let V be a closed’ subspace of W( )(Q) containing ﬁ( )(Q)
Suppose that there exists a symmetric bilinear form a(.,.) which is bounded

and strongly elliptic on V. Thus, there exist constants ¥ and o>0 such

that
(3.1.8) [a(u,v)lSIVHuHmHva V u,veV
(3.1.9) a(v,v) = aHvH; Y vel.

Let L be a bounded linear functional on V. The general elliptic boundary
value problem is to find ueV such that

(3.1.10) a(u,v) = L(v) Y vel,

By the previously cited theorem of F. Riesz, (3.1.10) has a unique solution

in V.

In specific realizations of the elliptic boundary wvalue problem the
integer m is determined by the order of the equation to be solved. Given
‘ m
an equation of order 2m we work in the Sobolev space W( )(Q). The spate

V is determined by the boundary conditions. If the boundary conditions

k
for the problem are the Dirichlet boundary conditions E—% = 0 on 9%,
n
m
k=0, Jn-1, we take V = ﬁ( )(Q) At the other extreme is the Neumann

problem for which there are no essential boundary conditions. 'In this case
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we take V= W<m)(9).

The framework proposed here is far from the'most'générél possible °
framework for elliptic boundary value:problems. For instance, one might
congider nonsymmetric forms al*,*). 'Seé'Ce;'[Z] and Friédmaﬁ:[}OJ. :Also,
we are considering here only homdgénéous-problemé. :Nonhomogenéohécproblems
are bonsidered‘ih Liohs and MagenésI[}GJ. .

(3.2) 'Finite.Element Spaces:

The’finitg.eiémént method offers a'meaﬁs of numérically solving (3.1.10).
The approximate solution u% is taken from a finite &iménéionél space V* of
functions of a special type. To construct a space V* of "trial functions"
we first partition the domain @ into triangular or quadrilateral elements,
(In this thesis we will concentrate on rectangular elements.) A finite
dimensional spaée 8 of bivariate functions, usually polynomials, is prescribed.
A finite element space V* satisfies three conditions: rFor each funetion
v*ev"< i) the restriction of v* to each element coincides with a member
of 5, ii) v* satisfies certain specified conditions at the interelement
boundaries, and iii) v* satisfies specified conditions at thé boundary of

Qo

As an illustration we‘shall consider a specific example. 'Suppose
Q is a rectangle with sides parallel to the coordinate axes{ We draw a
grid of‘horizontalAand ver?ical lines, partitioning @ inté small rectangular
eléments. The space S is defined to be the four—dimeﬁéioﬁal space of bi-
lingar polynomials at+bxtcy+dey, and V* is defined to bé‘the‘épace of functions
v such that i)f Fhe restric;ion of o to each element coincides with a

] * C *
bilineatr polynomial, ii). ¥ is continuous.throughout. €, and 1ii) ¥ is
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zero on the boundary of Q. The meaning of condition 1ii) is that the bllinear
. ‘
functions which define v on two adjacent eleménts must be equal at the

interelement boundary.

A bilinear polynomial is completely detérﬁined'by'its values at the °
four. corners 6f érrectangle."Theréfbré a fqﬁctioﬂ'v*evﬁris uniquely deter-
mined by its values at Fhe‘poiﬁtS'of‘intéféectio& of the'liﬁés'of tﬁe*grid.
This is a stateﬁént of uniqueness. Simple égguﬁehts show that the related
question of existence is also true.” For any values which we might assign
to the intersegtion points of the grid there exists a function v* in V*
which takes on the prescribed value at each inﬁersection point. This is
not quite true. The value zero must be specified at those intersection
‘points which lie on the boundary of 9. Otherwise the boundary condifion

will not be satisfied.

The points of intersection of the grid lines will be referred to as
. k% ,
nodes. A function v eV is uniquely determined by its nodal values. More
* ‘
specifically, v is completely determined on each element by its values at

the nodes associated with that element.

Clearly the dimension of Vﬁ is exactly the number of nodes in the
interior of Q. A useful basis for V* is the set of functions which ha&e
the value: one atrdne interior node and zero at all other nodes. AA‘bgsis
function of thié #ype is identically zero outside of the patch of four

.elements surrounding the one node at which the function is not zero,

We how consider a second example. ‘Again  is divided into small

rectangular :elements, “but-this’ time'§ is defined to be the space of:all
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polynomials of the form p(x,y) + axd + bay 3, where p(x,y) is a cubic poly-
nomial and g and b are real numbéré. We define V# to be the set of functions
v* such that i) the'festriction of v* to éaéh élémént coincides with a
polynomial in S, ii) v* is continuous throughout Q“ and_ci at the inter—

section points of the ‘grid, and iii) »* is zero on. the boundary of Q.

The space S is twelve-dimensional, and it can be Shown that a function
seS is uniqugly dgtérmingd‘by thg Valugs's,sx, and sy at the four corners
of a rectangle. (This will be proven in section 4.1). Thus a function

k% ) ' ' | % % %

v eV 1is comglgtgly dgtermingd by the values of v , v e and v y at the
points of intersection of the lines of the grid. Again these points will
be called nodes, but in this case they are ¢riple nodes and will be viewed
as three separate nodgs in cgrtain contexts. The values of v*, v*x, and
v*y at the nodes will be called the nodal values of v*. Every function of
V* is completely determined by its nodal values. Conversely it can be shown
that, as in the previous example, for any prescribed nodal values compatible
with the boundary conditions there exists a function in V* which takes on
those nodal values. Thus the dimension of V* is just the number of nodes
(counting triple nodes as three nodes) which are unaffected by the boundary
conditions. An important basis for V* is the set of functions which have
one nodal value equal to one and all other nodal values zero. This basis

is "local"” in that each basis function is identically zero except on the

elements associated with the node to which that function corresponds.

So far the term "element" has been used to refer to the small rectangular

regions into which a domain has been partitioned. From this point on "element"
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will.also be used in.an extended sense to mean a particular finite . .element
schemé sSuch as the two.which have just'been'deséribed;-'Theielement of the"
first ex'ample is known as the' biZinear element. It is called a four degree-
of~-freedom . element because the space S of blllnear polynomlals is four-
dimensional. The,element of the second example, a twelve degree—of—freedom

element, is known as Adini's rectangle [1].

We now return to the general discussion. ﬁe have postulated a space
V* which is made up of functions which are piecewise,polynomials.from some
finite—dimensional space S, and which satisfy some sort of interelement
continuity conditions and boundary conditions. The contlnuity condition
need not be as strict as the requirement that the functions‘be continuous
along all of each interelement boundary. For example; there are.elements
for which continuity is attained only at the midpoint of each interelement
boundary. However; in the two examples considered above we did, in fact,
have continuity ‘along the interelement boundaries. As is well known ([2Q],
page 327), this iinplies that 7 c w1 (). Similarly, since the members
of V* (in the two examples) are zero on the boundary of @, the even stronger
inclusion V*'c 9(1)(9) holds. This inclusion indicatesrthat the two elements
which we have con51dered might be useful for the solution of the generalized
Dlrichlet problem (3.1.5), as ﬁ( )(Q) is the space in whlch this problem
has been posed. More generally, if we wish to solve the.elliptic boundary
value problem (3.1.10), which has been posed in the space vV, we mlght llke ‘
to use an element which satisfies the inclusion V c V. Indeed it might
seem’ that this inclusion is essential to the success of the procedure. In

. L ) ‘ - ® .
fact it is not. /Elements which fail. to satisfy the inclusion V" C V are
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called nonconforming.elements. Nonconfqrming.eléménts'are.widely used and
often'givé good fésﬁlts;"Thelthéory.of nonconforming.eléméﬁts.is discussed
in thé éhapter'on'"vériatioﬁél’é£imés"'iﬁ ééréﬁg aﬁd Fix [21]. ‘This thesis
will considér only confbrming:éléménts; i.e(iéléméﬂts which sa;isfy the ’
inclusion V#-E VL"fhe'bilineat.elémént énd Adiﬁi's ;éct;nglé‘ére conforming
elements for the'generalized'Dirichlét'probiem’and sgcbnd—ordér'problems

in general. However, these.elements are nonconforming for fourth-order

.
problems, which require the inclusion V C V C W(z)(ﬂ).

Both of the examples which have been considered feature "nodes" such
that any function v*eVﬁ is completely determined on each element by its
nodal values at the nodes associated with that:element. Additiomally, for
any specified set of nodal values there is a fuﬁction in V* which takes on
these nodal vaiues. Finite element schemes having these properties are
called nodal finite.elementskand are the subject of the nodal finite element
method. Everj nodal finite.element space has ar"loca}" basis consisting
of functions Whiéh have one nodal value equal to omne §nd all other nodal
values zero. In this thesis only nodal finite element schemes will be

considered.

A nodal finite.element scheme is completely definea once the.placement
of Fhe‘nodes'on a typical.element (say the unit squarefﬁ) has been specified
and the polynomiél space S has been’ defined.. The Space 5 must be compatible
with the choice of nodes: TFor each specified set of nodal values there must
be a unique  function in S which takes on thé'given'nodal values, An equiva-

lent statement of the compatibility condition is that for each sufficiently
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smooth functlon # on U there exists a unique.polynomial ¢ in S such that
. g and U have the same nodal values. The map % -+ q,definés'a lineatr pro-
jection operator Qu = q. As the range of ¢ is8 S, @ and the placeméent of
the nodes determine the’ finite element schemé."In chaptér four:a number
of elements will be constructed. 'In each case the construction Qill consist

of specifying the nodes and constructing the projector &.

Having determined’ the nature of the'épacés'V* which we will be considering,
we now address ;he problem of selecting an approximate solution u*eV* of the
elliptic problem (3.1.10). A reasonable procedure WQuldrﬁe to select that
function u* from V* which is in some sense closest to the exactﬂsolution U,

In the finite element method we take as our-measure of closeness the energy
norm, the norm induced by the inner product a(+,+). This norm is equivalent
to the Sobolev ﬁorﬁ ”.”m on the Hilbert space V. According to the elementary
theory of Hilbe;t space there is a unique u*eV* which islclosest tozthe

exact solution u in the sense that

4 L
alu=u* u~u*)=* = %nf*a(u—v*,u—v*)
eV )

and u* is characterized by the fact that the error function u—u* is ortho-
gonal to V*. That is

(3.3.1) ‘l a(u—u*,v*) = 0 v v*EV*.

Combining (3.3;1) wi;h (3.1.10) we arrive at a characterization of u* which
doéé‘not involve the unknown funetion u:

(3.3.2). a(w®,0*) = L% ¥ ver,

%
Thus u is the Ritz-Galerkin approximation to u.
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We now consider the.problem of solving (3.3.2). It is assumed that
V* is a nodal finitg élémén? spacg.' Wg humb%r'thg ﬁodgs'and d%fin% ﬂv to
be the unique basis function of v? whose jth nodal valué-is one and whose
other nodal values are zero. Problem  (3.3.2).1s equivalent to
(3.3.3) a(u*,wj) = L(wj) FLlye..sd J
wheté d is thg,diménéion of Vﬁ. ‘Thg function u# is of thé‘form u%=.zlai¢i,
whgré Gpyeees 0y are tgal cogfficignts to bg a§t§£mingdl 'Thus-(3.3J3; can
be rewritten as a dxd matrix equation
(3.3.4) d .

igl_“(“’i’“’ﬁ)“i = L(y)  geliedid

The éoefficignt matrix.K=(a(¢i,¢j))zié callgd“the'Stiffhess matrie. 1t
1s a Gram matrix based on linearly independent functions and is therefore
symmetric and positive definite. These properties are obviously important
to solving (3.3.4), but the real advantage of the finite element method |
lies 'in the "localness" of the basis functions. The support of wj is
restricted to the élements immediately surrounding the jth node. Therefore
a(¢i,¢j) will be zero unlgss one of thg glgmgnts has both thg ith and jth
nodes associated with it. .Also, those off-diagonal gntpies a(wi’wj) which
are not zero tend to be smaller than the main-diagonal entries. In other
words, thg functions wl,...,wd are "ngarly o?thogonal". In consequence
the stiffness ma;rix K is sparse and well-conditioned, and (3.3.4) can

be solved inexpensively and.accurately. For a discussion of the condition

of the stiffness matrix see Strang and Fix [2£].

We can most easily take advantage of the sparseness of X by taking

care in numbering the nodes. It is possible to number the hodes in such
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a way that the nonzero:elements of K are confined to.a na;row band of
diagonals on'éithét'side bflthé main.diagonal. A matrix,whOSé'honzérb.
entriés'ar;.reétrictéd‘to sﬁch a baﬁd is céllé&‘é band matrix. 'itS‘band
width 1is the'humbér"oé'diagonéls bétWeéh'(and iﬁclﬁdiné) éhé'highést and
lowest diagonalé containing noﬁzérb énEriés; ‘By kéepiﬁg.thé b;hd width -
small we can significantly reduce the COmputer:timé and storage requirements

for solving (3.3.4).



CHAPTER FOUR

THE USE OF BLENDING~-FUNCTION METHODS IN THE
CONSTRUCTION OF FINITE ELEMENT SCHEMES

(4.1) Adini's Rectangle -

Blending~function methods, in the’ form in which théyfwe;%'préséntgd'
in chapter two, are of no immediate use in numérical anélysis becéusé the'”
blended interpolant of a function u# depends on an infinity of data associaﬁed
with Y. In order to make blending-function methods usefhl«numefically it
is necessary to carry out-a further discretization to obtain an interpolant
which is determined by finitely many data. 'The'éﬁd product of such a
discretization is a finite elémént. Gordon and Hall [;erand Barnhill and
éregory [3] have produced finite elements in this manner. In this chapter
we use blending~function methods to construct one well known element and
several others whiéh are evidently mnew. We begin‘by shéwing that Adini's
rectangle, which was introduced in chapter three, can be arrived at by

means of blending-function methods.

Let U denote, as before, the open unit square. Let u be a once con-
tinuously différent;able function on U, and suppose we are given the values
of u, Uy and ?y at thg four corngrs of T. Wg shall congtrucF a polynomial
g=Qu which interbolétes'thesé twelve nodal values and iéicompletély deter~
mined by themL.'Define v.along the bottom edge'{(x,y)[0§w51, y=0} of U by
v(x,0)=s (x), where s(x) is the unique.cubic polynomial satisfying the inter-
polatory conditions

u(1,0).

u(0,0) s(1)

"s(‘O).

5'(0) = %,(0,0) 81(1)

1

ux(l,O).

- 46 —



- 47 ~

Similarly, define v along the right edge of U by v(1l,y)=r(y), where r(y)

is the unique.cubic polynomial satisfying

]
If

r(0) u(1,0) ‘»(1) u(l;l)

r' (0)

i
I

u. (1,0 r' (1 u‘.lrl.'

4, (1,0) M® = w@n.

Define » along the other two edges of U in an analogous manner.  Obviously
v interpolates’ the nodal values of u. Note that this process preserves’

bicubic polynomials (polynoﬁials of the form - &ijbtyg) in the sense

that if 3 is a bicubic polynomial then'v=ulau.

The second step of the construction must now be obvious. Define the
interpolant g=Qu to be the.blended interpolant Pv,
(4.1.1) q=@Qu=Pv
where P is the-blended interpolating operator based on linear blending
functions. The important properties of this operator are summarized in
corollary 2.1.3. One of these properties is that‘Pv is completely determined

by the boundary values of ¥. Thus g is well defined by (4.1.1).

This stage of the construction preserves all monomials of the form
i K ‘ . . . - '. . . - ] - .
x yJ, where either 2=l or J=<l. That is, if v=m|aZP where m is a monomial
of the prescribed form, then Pv=m. P is linear, so.all linear combinations

of these monomials are preserved.

The interpolant 'q has the desired interpolatory properties: g is Py,
which interpolates (the boundary values of) v, which in turn interpolates’
the nodal values of 4, Thus.q interpolates’ the twelve nodal values of u.

Likewise g is completely determined by these nodal values,

Both stages of the construction are linear, so the operator @ which



- 48 -

has been implicitly defined by the construction is linear; '@ is also.clearly
a projéctor. ‘Therefore.the' range of § is.exactly thefSet'of'functiqns which
are preserved by §. ‘It is éaéily vééifiéd‘that thé'éﬁbic polynomials and

the monomials m?y and wy3 are présérVed'in both étégesfof thé'éonstruction.
Thus. they are preserved by ¢. The span of thééé polynomiéls is a twelve-
dimensional space. 'The dimension of the'tangé of @ cannoﬁ‘éxéééd'twélVé '
because Qu is determined by twelve parametéés associétéd’with Ue 'Theééfbre )
the range of @ must be exactly the space SPannéd'by m%y, xy3, and the cubic

polynomials.

We have specified a set of twelve nodes, the same hodes'as:for Adini's
rectangle, and we have construcged an interpolating projector & whose range
S is the space of polynomials on which Adini's rectangle is based. Thus’
we have constructed Adini's rectangle. In the process we have fulfilled
a promise made in chapter three. It has been shown that fpr any specified
set of nodal values there is a unique 8€S which interpolates these val;es.
Existence is guarantee& by the construction.r Uniqueness follows from

existence because the dimension of S is the same as the number of nodes.

There is one other point worth discussing. The original definition
of Adini's rectangle given in chapter three does not involve the concept
of nodes. The trial space V* was defined to be the set’ of functions which
are elementwise members of the polynomial space S, which are continuous.
from one élémén# to‘the next, and which satisfy appropriate boundary con-
ditionms. Theﬁél;erﬁape characterization in terms of nodes was then stated

without.proof. It was stated that for any given set of nodal values con-
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sistent with the boundary conditions, there is a uniquellfsﬂ? which inter-
polates’ these values. This.is equivalent to saying that for each ueC }Q)
which satisfies the boundary conditions there is aiuniqde~v*evﬁ which has
the:eame nodal values‘as U, 'The'ﬁniquenese is obvious: the'restriction

of v* to an. element € has to be the unlque s€S which 1nterpolates the nodal
values of ul “Thus. U l = g= Q (ul ), Where Q is Just the 1nterpolat1ng
projector & scaled to the element e, The questlon of ex1stence will have
been answered in the affirmative once it has been’ shown that the unique.’
function V¥ defined by U*|e = Qe(u!e) (for.all elements e) is continuous

at the interelement boundaries and satisfies the boundary conditionms.

We shall demonstrate interelement continuity. Let e, and e, be two
elements having a common edge. The interpolant v*lel = Qe (ule ) was defined
along the common edge to be the unique cubic polyhomial'determined by four
nodal values. The interpolant v I = Q (u] ) was defined along the same
edge to be the unique cubic pblynomlal determlned by the same four nodal
values. Thus v*lel and v*lez are equal at the element boundary, and v* is
continuous throughout €. The proof that v* satisfies the boundary conditions

is similar.

(4.2) Cl Elements

In chapter three we con31dered a second—order problem as a model problem.'
For second—order problems 1t is convenlent to work in the space W( )(Q)
Any finite eléement scheme which features interelement continuity is con-
forming in the sense that the trial space V* lies within W(l)(ﬂ). "Such

elements are ‘c':alled:C'0 elements.
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For fourth—order elliptic problems the conformity condition is

*
V ¢ V¢ (2)(9) The condition V’ < W‘ )(9) is. satisfied if . and only-if

every v*eV is once continuously dlfferentiable globally. ;Elements satisfying
this condition are called ct elements. 'In this sectlon we use. blendlng—
funetion methods to construct three'C .eleménts. 'We CQuld take a much more
general approach and define large classes of Ck elements at one stroke. it

is this author's opinion that a few specific constructions are worth as

much.

One other remark is in order here. We have introduced C° elements on
the grounds that they are useful for solving fourth-order problems. Obviously

1
C” elements can be used to solve second-order problems as well.

The constructlon of 01 elements can be carried out as follows. For
each uecz(ﬁ) we define functions v and vn (= normal derivative of ») on
the boundary of U‘such that v and Y are determined by a finite number of
nodal values associated with %, and v and vn interpolate these nodal values.
We then define the interpolant g=Qu by q=Pv; where P is the blended inter-
polating operator based on Hermite cubic blending functions.: Theyimportant
properties of P'are sumnarized in corollary 2.l.4. One of the properties
is that Pv is determined by the boundary values of v and its normal deri-
vative, so the definition g=Pv makes sense even though only the boundary
values of ¥ and v, have been'definedL .Also Pv interpolates v and v,s 8O

q interpolates the nodal values of u.

The first step in defining a specific nodal finite.element is the

determination of the nodes. As a prelude to. this.first step it is worth-
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while to examine one of this.author's unsuccessful.attempts at.element
construction and .thereby discover a pitfall which must be’ avoided. 'In an
attempt to construct a ( :elemént with as few nodes as possible, I chose

the same twelve nodes as for Adini's.rectangle =— y, Uy and , at the four.
corners of U. The Function p was defined on the boundary of p in the same'

manner as for Adini's rectangle. 'The normal derivative v, was defined on

(say) the bottom gdge of T by vn(x,O) = Py(x,O) r(x), Whgfé r(x) is thg"

unique linear polynomial such that

]

r(0) = .uy(O,O)A r(1) uz;(l,o)-
Similarly v, was dgfingd'on th 1§fﬁ gdgg of U by vn(O,y) = vx(O,y) = s(y)s
where g(y) is the unique:linear polynomial such that
5(0) = 1,(0,0) s(1) = 2 (0,1).
The interpolant g=Qu was defined to be the.blended interpolant of v based

on Hermite cubic blending funetions.

On attempting to determine the elementary properties of this element
I immediatel& encountered what appeared to be contradictions. After some
thought I discovgrgd thg root of thg problgm. On one hand vy(m,O) = r(x),
so z%m(0,0) = ' (0). On thg othgr hand vx(O,y) = s(y), so vxy(0,0) = g'(0).
In ggneral r' (0) # 8'(0), so vmy(0,0) # vyx(0,0). This inequality dgstroys
the commutativity of Pl and P2 (sgg (2.1.2), (2.1.3), (2.1.4), with k=2),

and consequently the interpolatory properties of P are lost.

-The obvious . way to avoid this pitfall is to include the corner values

Uu = U ’ ; v i : = =
of wy = Yyx 38 nodgs and dgfing y, in such a way Fhat v ny “xy at thg
corners of U. ‘Other problems may occur.unless the corner values’ of Uy Ups
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" and uy are included as nodal valuesL For exemple, suppose We define
v(x,0) = 1(&9 and v (O,y) = 9 (0 y) = s(y), where zaand & are certaln
specified’ polynomials. Then P‘(O) = P (0 0 and s(0) = v (0 0) "To have
2"'(0) # 8(0) wculd be fatal. We avoid this possibllity by 1nc1uding

(0 0) as a nodal value and deflnlng r(2) end s(y) in such a way that
' (0) = 1,00,0) = 5(0).

We are ho&lcpmmitted'co having at leaéc sixteeh'nodes; nemely Us U,

,uy and uxy at the four.corneré of 7. 'Ic is possible to construct an:element
having just theée sixteen nodes using the method proposed’hefe.' This
element is just.the product two-point Hermite.element, which can be obtained

by a simpler’coﬁstruction. We shall not discuss this.element in detail.

Having determined the minimum.-number of nodes which we é;eVWilling
to tolerate, we might now ask what is che maximum number of nodes from
which we can becefit. In order to obtain a highkrate“of convergecce an
element shouldﬁbe exact for.all polynomiels cf as high a degfee as possible.
By corollary 2.lf4; fhe.Blending—function stage of our-construction preserves
all polynomials of degree seven or less but not all polynomials of degree
eight. The moncmial wuy4 is not preserved'by:P. Therefore we might profit
by furnishing enouéh nodes to make the first stage of therconstruction exact
for seventh degteeipolynomials. A Cl.elemeht which prese?Ves seventh degree
polynomiale can be constructed by the method proposed'hefe with 44 nodes,

a number which seems a bit high.

We shall describe three.elements which lie betieen’ the two extremes.

We‘begin‘with.an.element,which is.exact for .quintic.polynomials.' ‘Suppose
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we take as nodes the values 3 and y at the corners, as well as 4, u,

) UL Sxx yy - - - - . x
uy, and uxy' ‘Define 7. along.the bottom edge of T by v(x,0).= 7(x), where
r(%) is the uniquerquintic.polynomial such-that -

(0, 0) (1) = u(l,0) .

rr(O) = _
7(0) = #,(0,0). (1) = u(1,0)
1(0). = 1(0,0). PQ) = (1,00,

l

Define ? in an analogous- manner on the other three 31des.

How should v, be defined? If the' element is to presetve quintic poly-
nomials, ¥, must be a quartic polynomial along eaoh edge."In order'to
define v, as a quartic polynomial we introduce Four new nodes —— the normal
derivatives u.n at the mldpoints of the four sides of U° These are uy(%,O),
ux(l,%), uy(ﬁ,l), and um(O,é). Define v, on the bottom‘edge of U by
vn(x,O) = vy(x,O) = g(x), Where s(x) is the unique quartic polynomial such

that

It
it

: = %5
,uy(0,0) s () u, (%,0) s(1)

. (0,0) 8" (1)

s(oj
s'(0)

.uy(l,O)

l L]
Define v, analogously on the other sidesrof'ﬁ. The definitions of v and
‘vn are consistent in that the pitfalls mentioned above have been avoided.
We can now complete the construction by defining q?QuéPv,.where P is the

hermite cubic.blended interpolating operatot.

The 28 degree-of-freedom (d.o.f.).element which we have just constructed
is.clearly‘a ¢! element. For suppose él and e2 are two. elements having a
| | | 5 , e
common side r, Let »* be any funection in the’ trial space V , and let

slév%lel and §,=V! I ."Then'sl and s, are.defined'on I' to heZQuintic poly-

nomials which -are both determlned by the same interpolatlon scheme and

¢
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which interpolate the same nodal values. Thus. g=s, on I'. 'By similar
reasoning, the normal deriyatives of s]_and 8, on I' are equal. “Thus. ¢* is

once continuously differentiable at the'element boundary.

In order'to really "know" an.element itris.necessary tO'determine '
the space 8 of polynomials" preserved by: the 1nterpolat1ng prOJector &
Therefore we shall now determlne S, The element has been constructed in
space of quintic polynomials is.Zl; whereas the'dimenéion of S is 28. 'There-
fore there are Seven'other linearly independent polynomials in S. 'The first
stage of the construction preserves any biquintic polynomial whose normal
derivative is quartic along each side of the boundary of U. 1In particular,
the first stage preserves all biquartic polynomials. The second stage of
the construction preserves (according to corollary %{1:4) every monomial
of the form x?yj;ﬁwhere either =3 or jfBJ Therefore the monomials quz,
x3y3, xzy“, xuy3, and $3y4 are monomialsfof‘degree greater than five Which
lie in S.  This leaves only two more linearly indepenoent polynomials in
S to be determined; The two remaining polynomials turn out to be x5(3y2—2y3)
and (3x2—2x3)y5; ’We shall verify that y(x,y) = xs(By%—zyé) is in S. Since
¥ is cubic in y, it is preserved in theﬂblending-function‘(second) stage
of the construction. As for the first stage, the funCtion values of ¥ are
preserved on the houndary of U because ¥ is biquintic. kFor the normal
derivatives'we'have on the‘vertical sides'w (x,y) = ¢ (x,y) = $xq<3y2—2y3),
which is. (less than) quartic in y and is therefore preserved. On the
horizontal 31des we have w (x,y) = w Cx,y) = st(y-yz), Which is not quartic

in . However, for y 0 or y~l we have ¢ (x,y) 0, which is certalnly quartic.
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This proves thatﬁpefi By symmetry.the polynomial (3ag—2m3)y5 is also in S..

The next elément which We shall conétruct is a 24:d.o§fJ ¢! element
which is exact for all quartic but not all quintic polynomials. "For our:
24 nodal values we take Uy Uy uy, Up? udy’ and uyy at the four corners.
We define von the boundary of Zlexactly as for the previous element. That
is, we deflne v-on (for 1nstance) the rlght edge of U by z(l,yo = r{y), where '

ITBD is the’ unique\quintlc polynomial such. that -

#0) = u(1,0) A1) = 3(1,1)
#(0) = u (1,0 A = 5 @1,1)
| Y T
S A0) = u . (1,0) AT = 4 (1,1).
. yy yy

The definition of v, for this element differs from'that of the previous
element in that here we dispense with the midside nodes and require that
U, be cubic. Snecifically, we define vn,along (say) the bottom edge of U
by v,(%,0) = vy(@;O)_=‘s(x), where s(x) is the unique éubio polynomial such
that |
V s(0)

8'(0)

%,(0,0) s(1) uy(l,o)

I
n -

. ' 1
uyx(0,0) s' (1) uyx(l,O).
This completes the first stage of the construction. The eecond stage is,

of course, the same as in the construction of the 28.d.o.f. element.

The 24 d.o.f. element.clearly preserves.all quartic nolynomials, for
quartic polynomials have cubic normal derivatives, There are fifteen linearly
independent quertic polynomials. 'The other nine linearly independent poly-
nomials which afe‘preserved'by this.element are i) the“bicubicsquz, xzys,

and ©%y%, 1i) «° and %, and iii) a*(2-23), w5 (Y2-23), (Sx2=2z3 )yt
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rand (3w 2—2'x3)y 5;

The eaving‘of four . nodes’ in thie.element asvcombereQ'to the'previous-‘
element has‘e greater'effect than one might at first snspect."Suppose wé '
have a large grld of. elements. 'Then'the'totel numberlof edéeS'is:elmost
tw1ce the number of vertices, and the ratio approaches two as the grld is
made finer. Therefore the total sav1ng in nodes reallzed by dlscardlng
the midside nodes is:almost aS'great as would be gotten by:ellmlnatlng two

nodes at each vertex.

‘The third Cllelement which we shall construct is a‘ZO.d.oin-élement
~ which is ekact-forAduartic polynomials. The nodal values for‘this.element
are u, U, uy,‘andl u et the Vertices', and the func_tion value-u at the
‘midpoints of the eides. Define v.along (for example) the left edge of U
by v(0,y) = r(y);'where r(y) is the unique quartic polynomial such that
20,00 (D) = u(0) r()

%y(O,O) SO

. .r(0)

u(0,1)

i
il

(r‘(O)

I
i

uy(O,l).
Define v, to be a cubic polynomial exactly as for the 24 d.o.f..element.
The second stage of the construction is exactly as it was for the other

two Cl elements.

The space S of polynomials preserVed'by this.element is the'epace ’
‘spanned by the quartic polynomials and & y s & y s . &L y » x“(3y —2y ), and

(3> —th)y .

The saving in total degrees of freedom realiZed'by using this:element

as compared to the 24.d.o.f..element is.small. 'The effect of:eliminating
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two nodes at each vertex. in the 20.d.o.f..element is.almost offset by the

addition of one midside-node.. '

We conclude this section by mentloniné the possibility of’ mix1ng
rectangular and trlangular elements in a given problem. -In many- problems;
such as problems in which the boundary is a polygon with angles other than
right angles, it might be useful to use rectangular elements in the 1nterior
of the domain and triangular:elements near the boundary. Both'the 28. d.o.£.
element and the’24.d.o.fité1ement‘are good candidates for such mixing.

There is a well-known.2l. d.o.f. ct element [25] haviné the nodal parameters’

o > Mys Vame oy Y

the midpoint of each side. This nodal configuration is the same as that

u u: , and u  at the vertices’ of each triangle and u, at

of the 28 d.o.f. rectangular element, so the two elements could share a
_common side. The 21 d.o.f. element is exact for quintic polynomials; as

is the 28 d.o.f. element. The two elements are, in a word;.compatible.

The 24 d.o.f. element.also has a triangular counterbart —-=- the 18 d.o.f.
element gotten from the .21 d.o.f. triangle by discarding:those trial functions
whose normal derlvatives on the element boundaries are not cubic. This
measure eliminatesﬁtherneed for the midside‘nodes and gines rise to a ct
element which is exact for quartic‘polynomialsrand is conpatible with the

24 d.o.f. rectangnlar.element.

(4.3) An.Element for Three-Dimensional Problems

s ‘ ( o
To demonstrate the possibility of using blending-function methods in

the construction of .elements for three-dimensional problems we shall comstruct

a three-dimensional "brick—shabed“-Co;element‘WhibhjpreserVesTChhic.pol?nbmials.
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‘ ) 3
We take as a standard “"brick" the unit cube =(0,1) . For nodal parameters
we take u, u, uy,,and u, at .the eight.vertices of y. Thus the:element

will have 32 degrees of freedom.'

Given uecd(fb we are to éonstruct an iﬁtérbolént'q-Qu d;pénaing only
on the‘nodél valu;s'of Us 'The'éonstructioﬁ,will be éa;riéd'6ﬁ£=in threé'
stages. 'The'fi#ét stagé consists of défining a fﬁﬁétiqn'v on'éhé'édgés'
of T which intefpgiates'the'noaal pafametéfs of u. 'Definé v oﬁ'(fo; example)
the edge {(a,y,2)| Osesl, y=2=0} by v(z,0,0)=p(x), whéré'p(x) is the‘ﬁniqﬁe ‘
éubic polynomial such that
p(0)
- p'(0)

%(0,0,0) "p(L)

u,,(0,0,0) p' (1)

it

u(1,0,0)

u&(l,0,0).

i

Define v along the other eleven edges in an analogous manner. This completes
the first stage of the construction. This stage 1s exact for tricubic
polynomials, i.e. linear combinations of monomials of the form xﬁygzk,

where ©, §, and k are.all less than or equal to three.

The second.phése of the construction consists of defining a function
©w on the faces of U which interpolates v along the edgés. Define w on
each face to be the blended interpolant of v based on linear blending
functions. Reéali (corollary 2.1.3) that this operation preserves those
monomials which\are linear (or constant) in at ieast onerof the wvariables.
Thus the monomial x?yjzk is preserved oﬁ‘the faces:z=0 and zél,if 1=l or
J=<i. Similari§; xiyjzk is presérVed'on‘ﬁhe faces y=0 éhdiy=l if <1 or
k=1, and on the fages'x=0 and x=1 if F=1 or k=l. It follows that the monomial
xiyjzk is preéérVed'on,all faces.by the second stage ‘of ;he'éonstruction

if at least two of ©,.J, and K-are less than or equal to one. '
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Note that’the first two. stages could have beeh'descrihed'as‘one:. we.
define w on (for example) the face z=0 by. considering the hodal values

Us Uy and uy at the four vertices associated With this face and taking

w to be the Adini's rectangle interpolant of these‘nodal values."

The'thihdLand!final phase of the'conatruction'is'the'definition of
the interpolant q—Qu throughout 7. . Deflne q to be the three—dimen51onal
blended interpolant of w based on linear blending functions. That is,
q=Pw, where P is defined by

P=P,+P,+Py-PP,~PP - PP Plpzés
or, equivalently,
| (I-P) = (I-P,) (I-P,) (I-P,)

and P,, P,, and P, are given by |

Pw(x,y,3) = w(0,y,2) (1-2) + w(l,y,2)w

P (myy,2) = w(w,0,2) (Imy) + w(w,1,2)y

Pgo(w,y,8) = w(z,y,0) (1-2). + w(wiy,1)z-
The theory of thtee—dimensional.blending—function methods is no different
from the,tno—dimensional theory. The blended interpolant Pw 1s completely
determined by the values of w on the facee'ti.e. on thelboundary) of U, and
Pw inﬂﬂpolatesé%the boundary values of) w;. This phaSerofvthe construction
preserves those monomials xiyjzk for which at least one of i} J» and k is
. less than oxr equai to one. :All of these monomials werée preserved in the

second stage as well.

‘To determine‘the space 5 of polynomials which are.preserved by this

.element we must determine which polynomials'are:preserVed'by;all three
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stages o[ithe construction. The first stage preserves'tricubic polynomials,
and the second and third stages preserve all monomials which are of first
degree in two of their three variables. ‘Thus- all monomials x y zk for .-
which ©, J, kK =3 and {two of z’ J, and k are less than or’ equal to omne are
preserVed in-all threeEStages'of'the'eonstruction. ‘A quick count shows
that there are 32 such monomlals, exactly the dlmension of S. 'Therefbre

S is the space generated by these 32 monomlals. Contalned in S are: all of
the cubic polynomials but- not for example; the quartic monomlals xu and

yzzzﬁ



CHAPTER FIVE

ERROR BOUNDS FOR FINITE ELEMENT METHODS

(5.1)' 1Introduction

In this chapter error bounds-: for finiteﬁelement methodé'arelbbtained'
by two different approacheSL The first approach is essentially that of
| Bramble and-. Zlamal [ﬁ] Here We obtaln some simplification by’ applylng
the Bramble—Hilbert lemma to 1inear operators Wlth range in L (U) rather
than to linear functlonals. ‘Also we utilize.fractlonal (i,e. noninteger)—
order Sobolev Spaces to obtain a more general result. ‘Aside from being
aesthetically pleasing, the increased generality has practical importance,
as will be shown by‘means of an example. This approach can be applied to
arbitrary nodal finite elements, not just those which can’be constructed

using blending-function methods. Our treatment of the subject is correspond—

ingly general. °

The second approach uses the one—variable versions_of the Sobolev and

7 Bramble-Hilbert lemmas together with the errox bounds already ohtained for
blending~function méthods to derive finite‘element error;Bounde. This
approach applies only to elements which can be conetructed by the methods

of chapter four.r“Its advantage over the first approach is' that in this

case it is possihleAto estimate the constants appearing in the error bounds.‘
The second approach is more involved than the first, and rather than striving
‘for great generality, Weipresent complete proofs only for Adini's rectangle.
We also 1nd1cate the procedure to be followed to obtain error bounds- for the
24.d.o.f..element constructed’ in.chapter four.. This. procedure can be applled'
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- to the other Cl.elements.as well.

The two approaches have ‘much in. common, and we shall cover their common

p01nts before examining them separately in sections 5. 2 and 5. 3 respectively.

In this chapter we return to the notation of chapters.one and two in
that points in a:plane will be denoted g = (ml,xz)tand w= (w ,w ), rather
. . . - . 1 2 :

than (2,Y).

Let Q be a bounded domain in the w—plane Whose boundary is a polygon
with sides parallel to the coordlnate axes. Let m be a positive integer 7
(which will remain fixed throughout . this chapter) and let |14 be a complete'
subspace of W( )(Q) .which contains W( )(9) Let a(~,;) be‘a symmetric bi-
linear form which‘ls bounded and strongly elliptic on/VL :Thus-there exist
positive constants M and o such that

(5.1.1) | la@u,0)| = Mlul lol, ¥ uvev

(5.1.2) - | a(v,v) = ot”'l)”; Vvl

Given a bounded linear funetional L on V we wish to solve numerically the
.elliptic problem

(5.1.3) e a(uw) = Lw) ¥ vel.

In section 3.1 it ‘was shown that (5.1.3) has a uniqueJSOlution ucl.

There are infinitely many ways of partitioning ﬁﬁinto rectangular
elements by draWing grids of horizontal and vertical linesl To each
partition II we‘asaign two numbers, A=k () and g=g (l1). The norm, h, of the
partition is the ﬁaximum of the lengths of .all sides'ofiall:elements in the ’

partition, and g .is the corresponding minimum."We.pick a number b=1 and -
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. consider only .those partipigns for WhiCh'h/g_{Eb. 'In:othé%'words, we consider
only .those partitions for .which thé.variétion in size aﬁd.shape bf‘thé"
.eléméﬁts is,not'£éo‘greét."Wé.Shallzélso‘}thiré.thaé‘h not'éxée;&'oné.

We are primarily interéstéd'in whét happéﬁs as fénds éo,zé;b;"

We select a nodal finitéuélémgn?.schemé;"Fo;'éaéh‘pagéitio;'n thé':
fiqite.élémént échemé'givés'fisé to a finiféféiéméﬁt subs?acé V*,g V; 'Thefé '
is a uniquéru*gvk‘éuch that
(5.1.4) a@® 0™ = 1% '/ U*eV#' :

We shall obtain asymptotic bounds for‘”u*u*”m'as the mesh norm % tends to

Zero.

In section 3.3 it was seen thaF u* 1s the hniqué.eléﬁént of V* which
is closest to u ﬁith respect to ;he energy norm a(°,')%;u'Theréfbre '
a(u—u*,u-u*) < a(u~Q"'u,u-q"'u)
where @'y is the unique. function in V* which interpolates the nodal values
‘of u. From this inequality and inequalities’ (5.1.1) and (5.1.2). we cohclude
that 7 |

(5.1.5)

* M 2
- 12 <2 1
lu-u || < qllu—Q. ul .

Thus, in order to estimate “u—u*”m it suffices to estimaﬁé “u—Q'u“m{

The éstimate.will be obtained in an,element—Byvelemént manner. That
is, for gaéh‘glémént.R we will gg?fa bound for ”u—Q'u”%’Ri 'Wg will then'
sum‘up~thgs§ bounds to obFain.an gstima;é for ”uﬁQ'u”m,Q. To obFain a
bound for ”u-Q'ﬁ”m;R we shall sg;iup-an affing map bg?ngh‘R and th hniF
square.U,. as in-gec?iqn 2.3.. We Shall.theﬁ'obtain.a bound foffthe?é¥tor

between' a function v on U and its’' finite:element interpolant @V, and use
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this bound together with the affine map to get a bound for u-Q'u on R. The
two approaches which we shall consider differ only in the way in which bounds

for v-Qv on Q'aré obtained.

Suppose the dimensions §f R are h1>< hz, and the lowef left corner of R
is at the point (al,az). Thgn the affing transformation
(5:1.6) C w, = hixi + a; 1=1,2
maps U in the x-plane onto R in the w-plane. As in section 2.3 there is an
obvious one-to—-one correspondence between functions v defined on U and
functions » defined on B. We associate the function ¥ with v, where
z')(wl,wz) = v(xl,xz). Lemma 2.3.1 is valid. TFor convénience we restéte it

here for the case p=2.

Lemma 5.1.1: [Let J be the Jacobian of the tramsformation (5.1.6), and let

o be any multiinteger. Then for all veW™ (V)

o Gy 05 =k a.
D™ =t n,25 3| 0%
19%lly 5 = By 20 0%

. o lof~
. BI v O~ 9
Here Dav'means Gy o7y and D v means —————0‘-1-—?—-@-.‘
: Bwl sz Bwl 'c)wz

(5.2) Error Bounds for Fractional Sobolev Spaces

We begin the first approach to error bounds by proving another lemma
about the transformation from U to R. Let & be any positive real number,

and recall the definition of the seminorm |- (rm”W(s) (), where

ls = 1"ls,,
@ 1s any bounded domain. If 8 is an integer the seminorm is defined by
(1.4.1). Otherwi_ée it is defined by (1.2.3) together with (1.2.1). Recall
that'h1 <h and hz = h, where hlxhz are the dimensions of R, and % is the

norm of the paftit;i.on under consideration. Recall also the definitions of

g and b. We have % = b.
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Lemma 5.2.1: Let J be. the. Jacobian of the transformatwn (5.1. 6), and let

s be any. posztwe number. Then for all veW(s)(U), _

. (5.2.1) ‘ |?I3,U < ch®g” Ivls;R
where C=1 i1f s is an integer, and &b;_i. otheriwise.’

Proof: First suppose & is an integer.. By lemma 5.1.1 we have, for:all a
such that |a|=s,

7 2007, 20 — ~12. 28 - ~
1012 ;= By %, 2 DI = 00 1

’ . ,

0,R*
Thus-

a~p2. _ 428 ,~1j~2
z ” UHO U = h J Zs”D UHO’R - h J |‘v'S,R.

|v |S v
la]2s

This proves (5.2.1) if s is an integer.

Now suppose g is not an integer, and let s=s' + o, where s' is an

integer and O<o<l.  Then by (1.2.3)

2 7_ o (2
‘U s,U = IQIES'ID UIU,U

and |5|§ g is given by an analogous equatioh. Thus it suffices to prove
that

" (5.2.2) o |Dd|2

w11 g2
vlg p < pr28g™ 1| p%|

o,R
for all @ such that |a|=s',, Let x=(xl,x25 and ¥=(Y;,¥,) be two points in
U, and let w=(w1;w2) and 2=(%1,37) be their respective images in R under

the ' transformation (5.1.6). Recalling definition.(l.zli),

(5.2.3) | ‘|‘D°‘v|§,u -0 DM@y - D Zi.zzl dndy.
: o = = ¥

We shall estlmate separately each of the factors of the 1ntegrand in (5 2 3).

Flrsts'by"the‘chaln rule for differentiatlon,
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‘ 2 20, 20 - .12
(5.2.4) |0%(2) - DYoyy|" =) thy 2| D%B@) - D% (@)
< 528" |D.°‘5(w) - 193] 2,
2t29
To estimate the term =y || = we shall assume, without loss of generallty,
that #;Sh,. Then fla-y||? = (a -—yl)z + (z —y2)2 hy (w =2 )2+ ) 2(w 73 )2 =
Thus.
5.2.5 _ p2+20 z -20 2420°
(3.2.3) | lezg 17727 = 7y o=zl
Finally
-2
(5.2.6) _ dedy = dwda.

Applying (5.2.4), (5.2.5), and (5.2.6) to (5.2.3).we get’

(5.2.7) : IDQUIZ < h23 h2+26 ‘de|
: o
. 2 ~1 ha h |
It is clear that J%hlhz. Therefore hZJ = z—-s-a = b, 8o by (5.2.7)

IRE 28", 20 =1 jo~ 2 2s 7L %5 2
| D v|U’U < bh™ hy J ~|D v|o’ < bh “|D v]G,R
This is just (5.2.2).])

We shall make use of this lemma as soon as we have eBtained bounds for
v-Qv on U, where g=Qv is, as in previous sections, the finite element
interpolant of v, Let k denote the number of degrees of freedom of the
element under consideration. Then there exist points x;,,.,,mk (generally
not distinct) in'ﬁ and formal differential opetators D“l,...,Dqk such that

(5.2.8) Q(x ) = Dd v(x ) i?l{..;,k-

As before, S will denote the range of @, the space of polynomials preserved
by the element. q:is the unique.member of S satisfying the interpolatory

conditions (5.2.8); Let'sl,..;;sk be:the'unique-membefé of § such that

s (m )= j L3d=Lye e ke
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The functions §),...,8, form.a canonical basis for S.. By the uniqueness
of interpolation it is:eaSy‘totverify that ‘
q(@) = ZD“ g )8 ; (@)
z—l
In v1ew of (5.2. 8) we can rewrite this expression as

(5.2.9) 0v(x) =

IIMK‘

o v<x$>si<x>.

=

We shall use this teptesehtation'of Q to obtain.error bounds for v-Qu.

Theorem 5.2.2i. Let d='max [a | where al,...,ak are as in (5.2.8) and
T =<k

(5.2.9). Let g % bea muzmmteger, and let s be a posv,mve real number

satisfying |o|Ss and dtl<s. Then there exists a constant C such that for

all UeW(s) ),
(5.2.10) o [P, g = Ol

Proof: First we show that Qv is well deflned if veW(s)(U) For this it is
sufficient that the derlvatives ® v(xt) appearing in (5 2 8) be well defined.
This will certainly be the case if veCd(U), Where d==max|q$l. But by the
corollary of the Sobolev lemma (corollary 1.3.2) with‘p=n?2,.W<3)(U)?S‘Cd(ﬁ).

Thus Qv is well defined for all veW(S)(Ujé

The hypothe31s la]-s 1mp11es 1mmed1ately that ”D v” = ”v” . Thus

0,0 8,U
the theorem will be proven if we can show that there is a constant (' such

o < 1.
that ||p Q””o,y =¢ ”v”s o From (5.2.9) we have

| o D%u(x) = ZD v(ac )Ds ().
. o z-l
Therefore

llp%wll z %, nax |0%0@t)
. 0,: 1, 0 U {1<f <k l
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The sum. on the right hand 31de of this inequality is. independent of v. 'We ’
denote it. C . By corollary.l.3. 2 (Sobolev lemma) w1th p—n—2 the max term.
is bounded by’ CZHUH v where C, is. 1ndependent of v. Thus\HDan“ <

0102””“3,U' "This - proves the theorem."

The degree of a flnlte element scheme is the 1argest integer J such
that the polynomial space S assoc1ated with the scheme contains all poly-
nomials of degree J or less. ‘Thus: an element is of degree J if and only
if it is exact for all polynomials of degree J or less but-not all polynomlals

of degree J+l.

Theorem 5.2.3: Let o, d, and s be as in the previous theorem, Thus

d = max|a®|, |a|fs, and d+l<s. Suppose that the element wnder constderatzon
18 ofAdegree t—l,wend suppogse s=<t. Then there extsts‘a constant C such
that, for all veW'® W),

- : = o
(-2 Py, = clolg,y

Proof: Define amllnear operator A:W(S)(U) 4:L2(U5 by'Av;Da(v—Qv). By
theorem 5.2.2 A is a bounded linear operator defined on all of W(S)(U).
Since Qu=v for all veé, and S5 contains all polynomials of degree less than
s, A4 annihilates all polynomials of degree less than Se Iherefore,‘by‘the
Bramble—Hilbertflemma (theorem 1.4.1), there exists a.constant ¢ such that

(5.2.11) holds.

A consequence of the hypotheses of theorem‘5.2.3 is;the inequalitY-'
d+l<t. Therefore this theorem is appllcable to only those elements for
which d+l<t.. (For n—dlmen51onal elements the correspondlng inequality is

. n .
d+ 7 < t.) Howeyer,.thls.restrlction does ‘not cause- any'problems. ‘This
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n
2

In particular,.each of the elements.mentioned in.this thesis satisfies the

author has never. encountered.an element which fails'to.satisfy d + « < t.

inequality, as can be easily checked.

Having obtained error bounds on U, we apply lemmas..5.1.1 and 5.2.1.to
translate the results onto the element R. 'Recall that U is mapped onto R
by the affine transformation (5.1.6)

= h.e. + a. =1,2..
w’l: htxz Cl,b‘ , 1T L4 o ’ |
A one-to-one correspondence between functions p on U and functions ? on R
is given by 5(wl,¢2) = v(x),x,). Let Q"' denote, as before, the finite
element interpolating projector on funetions on  (or their resérictions

~

to R.) . One can easily verify that if q=Qv then §=Q'D.

Theorem 5.2.4: Let s be a real number satisfying d+l<s-5t, wheretd=max|a7’|

(ef. (5.2.8)) and t-1 is the degree of the element. ILet a be a multiinteger

such that |a|Ss. Then there exists a comstant C such that for all 5ew®) (m)

, 7 : Qo At S""lOLI ~
(5.2.12). ID*@ - @Dy 5= " B[ L
Proof: Let w denote v-Qv. Then obviously w =:5—Q'5, Applying lemma 5.1.1
with v replaced by w = v-Qv, we obtain

G230 G - @)y = B - @]

Recall that Qe h;vé assumed the existence of a comstant b such that
hi 5%—5 b (i=i,25, Thgrgforg h;l < bh-l (2=1,2). Thés? ingqualitigs
applied to (5.2);3) imply |

[N

(5.2.14) 1% - Q") g = blalh-lalJ%”pa(v -y g

Combining this inequality with. inequalities’ (5.2.11) and (5.2.1) we get .
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(5.2.12). (Clearly the letter C has been used to denote different constants

in different places.)l|

Theorem 5.2.5: Let s be a real mumber satisfying d+l<sst, where d-max|a |

(cf. (5.2.8)) and t-1 is the degree of the element. Suppose also that m<s.
(Recall that m is the order of the Sobolev space in which the Elliptic
problem is defined.) Then there exists a comstant C such that for all

'DEW(S)(R)s
- e s+my ~
(5.2.15) L A LU
Proof: From theorem 5.2.4 we have, for all o such that |a[5m,
o, 2 S=la| |5
19965 - @rBylly p = 71l 5),

The subscript o has been affixed to the constant to emphasize the constant's

dependence on o, By definition

15 - '3l . = |ﬂ;W%5'¢bﬁﬁ

SO

(5.2.16) 15 - @'3ll2 < [I IZ ¢ th*E" '“l)]l B2 .
o ’

We have assumed that #<l. (This is the ome point at which this assumption

2(s—la|) 2(3 m)

is used.) Therefore & for all o such that |o|sm. It

follows from this and (5.2.16) that

'W'Wwigfh ZC]ZQWNIS

oi=m

R’

Letting 02 = [ z C ]

|la|sm *

In order to use theorem 5.2.5 to predict convergence as & tends to Zero,

we must have g>m, as is obvious from (5.2.15). 'This requirement, together
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withrthe hypothesis s=t, forces the,inequality m<t, This isreqhivalent to
mSt;l beceuse bothrm and't are‘integeré. The interpretation of .this inequal-
1ty is that in order to guarantee convergence of the finlte element method
for an elllptlc problem in W( )(Q) (e.g. a 2m~th order elllptic differentlal

equatlon), one must use an element of degree at least m, - This is a Well

known criterion.

'We how present the main theorem of this section.

Theorem 5.2.6: Let s be. any.real number satisfying d+l<s=t, where Hﬁmaxldtl ‘
(ef. (5.2.8)) and t-1 is the degree of the. &lement. Suppose also that m<s.

Let C be the constant of theorem 5.2.5. Then for all vew(s)(g),
) o ) ' -t < ST
(5.2.17) A llv Q'””m,o = cn” ol g
Proof: § is the union of rectangular elements Ez. Therefore
S PN P2 -  AY.I2
o = @'olly g = Il - @0l g,
If g is an integer the similar equation

(5.2.18) o 012 o = Zlvl:,R,

holds, so (5. 2 17) can be gotten by squaring (5 2 15), summlng over allr

elements R » and taking square roots.

If g is not an 1nteger (5 2.18) is not wvalid. IHowever, we shall
demonstrate the valldlty of

(5.2.19) ';- vlz L : P
‘ . ,

which is sufficient to imply (5.2.17).



- 72 -

Recall that

2 _ o 12
|7) 8,9 = ialzs'lp Ulo-,Q

where s=s'+0, s' is an integer, and O<o<l., Therefore, to prove (5.2.19)

it suffices to show that

o |2 o 12
0%l ,0 2 Dlg 5
7 7

for all o satisfying |a|=s'. But, ietting

y = 0% @) - DOLv(z)|2

I =TI,z
ko -

2 . 2
we have |D%0| o ='f f Idods = J1f fp Tdodz = [f f Idedz = J|0%[] o .|
137174 17171 4 z

The following table shows the values of d and -1 and the allowable
values of 8 in theorem 5.2.6 for the two-dimensional elements considered

in this thesis.

Table 5.1; Parameters for Theorem 5.2.6.
Element - d t-1 o
Bilinear 0 1 l<s=2
Adini's Rectangle 1 3 2<5=4
20 d.o.f. and 24 d.o.f. 2 4 3<5=5
28 d.o.f. 2 5 386

Suppose for example that we are'using Adini's rectangle to solve a second-
order problem (m=1), and we know that the actual solution u is four times
weakly differentiable, i.e. uaW(4)(Q). Then, according to theorem 5.2.6,
inequality (5.1.5), and table 5.1, the finite element soiution u® converges

to the actual solution at the rate 0(%23) as the mesh norm % tends to zero,
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the error being measured with respect to the norm

Bramble and Hilbert [5] have shown in the case in which s is %n integer
that it is sometimes possible (depending on the element) to streng%hen
inequality (5.2.17). We demonstrate this by means of an example. €Suppose
we wish to solve the generalized'Dirichlet.problem using the bilinear
element. By table 5.1 the admissible values of § are 1<8<2. We are inter—
ested in the case in which s is an integer, so we take s=2, Inequ?lity

(5.2.17) now takes the form

(5.2.20) , , 1
”v"Q'vlll = C%|vl2 = C%(”D(z’o)v”() + ”D(l’l)'l)”g + ”D(O,Z)vng)’z.

This inequality was obtained by utilizing the fact that the bilinear element
is an element of degree one. That is, it preserves the monomials 1,24,
and x,. Nowhere was the fact that xlxéis preserved used. According to
theorem 2 of Lﬁ], the fact that x)x, is preserved impligs that (5.2.20) can

be replaced by the stronger assertion

lo-g' oy = cr o Oups + 00D p)2)%,

[}
i

Similar improvements can be made for the other elements considered in this

thesis.

We conclude this section with the promised example showing the value
of considering noninteger Sobolev spaces. We consider the problem of the
bending of a thin clamped plate under a point load at the point xo. The
solution is the unique ueﬁ(z)(ﬂ) satisfying

a(u,) = L(v) v vef? (0)

where (see Landau and Lifshitz [15])
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- -\ (. - 22, o A2 2
alu,v) = [, [Aurv + (1-0) (2D, D,ub D v Dﬂ%v‘%Wpﬂ
and ;(p) = cv(xo). Here A is the Laplacian, o is Poisson's ratio [lSj,
and ¢ is a constant representing the force of the load. The boundary

conditions on a clamped plate are ulag = 0. Thus the solution is

221 -
mlaq
required to be in ﬁ(z)(Q).

- The linear functional L is a distribution [lé] and cgrresponds to the
"generalized function" e6(x), where § is Dirac's "S8~function" concentfatéd
at the poiht xO.K By performing two integrations by pargs on a(4,v) we see
that the solution u satisfies the differential equation A%4 = @8 in the

distributional sense.

By the Sobolev lemma (theorem 1.3.1) L is a bounded linear functional
on W(S)(Q) forrénﬁ s>1. 1If we define W(—s)(ﬂ) to be;ihe dual space of
W(S)(Q), then‘LgW(t)(Q) for all ¢<-l1l. By a very genérg;'theorem in the
book of Lions aﬁé Magenes ([16], pages 188-189).the solﬁpion Y has four
(=2m) more derivgﬁives than L. Thus ueW(s)(Q) for all s<3. However,
ﬁ¢W<3)(Q). (There is a gap in the @athematiCS here.' The theorem which
has just been citeq-haé as an hypothesis th;t the domain @ has a smooth
boundary, whereas:the domains.consideredrin this thesis have cornefs. This
author doubts that' this is a serious problem, eépecigliy for convex ‘domains

Q.)

Suppose we wish to solve this problem numerically‘by the finite element
method. We select an element of at least second degree, i.e. =122, By

theorem 5.2.6 and the ellipticity of the problem we have
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* .82
u-u ||, =c_|lu-q" =
lu~w"ll,=c lu-gull, = ¢ n°" |ul,
ok 8) . i A2) o 3) ¢ '
provided that ueW* ™ 2. We know that ey "’ (%), but.u (?), so we cannot
predict convefggnce if we consider only integer order Sobolev spaces.

However, if we consider noninteger Sobolev spaces we can predict nearly

o(w) convergencerﬁecause ueW(S)(Q) for all g<3.

(5.3) Error Bounds with Computable Constants

In this section the second approach to finite element error bounds.is
presented. Suppose that the situation is as stated in section 5.1.. We know
that to get a bound on Hu—u*luzit suffices..to bound ”u-Q'uHh; where y is
the actual solution of (5.1.3), u* is the finite element soluéion, and @'y
is the finite eigment intgrpolant of y. Bounds on ”u-Q'u”m are, in turn,
derived from bounds on ¢~Qu on the unit square U, where u is any sufficiently

smooth function on U, and Qu is its interpolant.

As stated in'section 5.1, we shall consider the case of Adini's rectangle
in detail., TFor any uaCl(ﬁ) let g=Qu denote‘the Adini's rectangle inter-
polant of u. Thué q is thg uniqug mgmbér of S such that ﬁ;q, D1u=D1q, and
_ D2u=D2q at the corners of U, where S is the 12—dimensional poiynomial space

generated by the cubic polynomials and the mohomials'x3x‘ and x x3 In

172 1%
chapter fodr it was seen that the projegtor @ can be constructed using
blending-functipn:methods. Let us-recall the construction explicitly. We
first defined a function v around thg perimeter of U. ”v wasrdgfined on
(for.example)‘thg bottom gdgé of T to bg thg uniqug cubic polynomial v(%,,0)

=p(Z;) such that
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- pC0) = u(0,0) p(1) = u(1,0)
“p'(0) = D;u(0,0) " p'(1) = Dyu(1,0).
Let pgsP1s9qs and q, bé thg uniqug cubic polynomials such t@at

(5.3.1)

1

iﬁpéj)(o) = §ij, qéj?(l)

T,9=0,1. .

]
It

.Then clearly

o 1. . -
| =0t * o
We define projectors S, and S, by

1

(5:3:2) 5 e a,) = zo(zﬁ'u(o,xa)p o) + D{ua,xz)qj(wl)]

J=
L 1 , L. S
8 ula, sw)) = jZO(D‘;u(wl,O)p ;@) + Djulays1)q j(”z)l’

Then clearly v(xzy,0) = S;u(w;,0) and v(xi,1) = Slu(xi,i); Also v(0,z,)
= 8,u(0,%5) aﬁd‘v(l,xz) = 9,u(l,zy). |

Having definéd v around the perimeter of U, we then’ defined q=Qu to
be the blended ingerpolant of ¥ based on linear blen&ingrfunctiéns. Thus
(5.3.3) e Qu = Pv o
‘wﬁere P is definedrby |
(5.3.4) ‘ 1 P=P, +P, -PP,

and Pl and Pzzafe:given by

il

L PO(y,@p) = 0(0,85) (1-21) + V(1,8p)8y

il

B8y = v(E,0 08, + 0@ 18,
Clearly Plv is'cémpletely determined by v(0,%,) and ﬁ(l,xz). It was seen’

~ above that v(j,xz) = 8,u(d,%,) (§=0,1), so P v = Plszu:V;Similarly P,v=P,S u .
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PyP,v is determined by the values of ¥ at the corners‘of.ﬁ.u‘v interpolates'
u ar the corners of U, so Plev = Pleu. We can therefore rewrite'(5.3.3)
and (5.3.4) as‘ |

(5.3.5) O Qu= PiSyut PySn - P.P,u.

,A straightforward computation shows that_P1 commutes with 52 and Pé commutes
with Sli Thus (5.3.5) can be rewritten as |

(5.3.6) Qu = 8,Piu+ S,Pyu~ PPu

(cf. [12], page 117, equation (20)). Our aim is to obtain bounds- on

u-Qu = (I-Q)u. We already have bounds on (I-P)u (theorem 2.2.5 With k=1),
so it will suffice to derive bounds for.(P—Q)u,v By (5;3.4) and (5.3.6),
(5.3.7) U @-@u = (T-5,)Pu + (-5 )P yu |

(cf. [12] page 117, (195) We therefore begin by obtaining bounds for

(I—S )v and (I—S )v for sufficiently smooth functions v on T.

Lemma 5.3.1: Iet i and s be integers with 1<s ‘and<25f354; Then

(5.3.8) IID'i(I-Sl)vII 6 = Bsi”D(s"o)vII o v veW(s._’O) )

oy < (0,s) " (0,‘3)
(5.3.9) Iy T-5,)0ll, = B_,lIp vII0 V veW i €))

ks, 2
where B, = (s+l) (lhK.(5/2) ) and
@) R
K, (fl[z (Ip(’“)cxn + |q ¢ <x>t>J ]
Herenpj,qj are gefined by (5.3.1).
Proof: We shalllprove (5.3.8). By (5.3.2)n

ot v(x ;) = ZO<D°7v<o,x2)p( )<x1> * D'7v<1,x2>q( ’(xm
, ‘ J=
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Therefore

(5 3. 10)

1 . . . -,
lD S v(xl,xz)l = j§0(|p§z>(xl)| + |q§$)(x1)|) jzgxi{|D{u(O,x2)l,|Diu(l,x2)[}.

By corollary 1.3.5 (modified Sobolev 1emma) with n=1 and p~2 we have

(5.3.11) = max {IDJv(O x )| |DJv(1 x )l}
J=0,1

3] T8 (1o@nsep 1+ 12y96ep0) | 5o | ) i, |

Substituting (5;3.11) into (5.3.10), sqoaring both sides‘of the inequality,

integreting with respect to %, and x,, and taking square roots, we get

1

. b )
i 5% 2 2 2 1212 (5]%
1555 90l = (3%, (1012 + 10002 + 19%012) = (3] %000 5 -
It follows immediately that for any integer s22, HD%SIOHO = (%]kKi”v“(s 0)°
. .- : s
Therefore,

Also, it is trivially true that for any 78, ”DEUHO S‘HUH(S O).
. ]

by the triangle inequality, )
S 7 .
' (5.3.12) ot 2 5%
ik a-splly = 1+ 3 thm

if i<g and 2ss.

By the conetruction of 51, S v=v for ail vrwhich'ere cubic in;ﬁ for

eacﬂ fixed %, e Thus Slv=v if D(4’0)v = 0. This implies that Dﬁ(IéSl)v=0

if D(4’O)U=Q. For §=2,3, or 4 and <5 define a linear operator

4@ gy & L (U) by 4v = D;(I-5,)v. By (5.3.12). 4 is bounded, and we
have seen that A annihllates all v for which D( O)U 0. Therefore, applylng
the modlfied Bramble—Hllbert lemma (theorem 1.5.6) with B (8,0) and pP=2

we have, for S8 and 25824,

. . ;5
W= ol = @{u(E] & |0 °’vu
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fbr all veW

Lemma 5.3.2: Let a—-(a 50, ) be a muZtunteger and let s—2 3 or 4, Then.

for all ueW(s 1) (U)

(5.3. 13) ’ b _— 2k

10%Cz-5 )Pl ._BsulM&ztg] (np(s’o)uuo-rup(s’l)unzl if o .
For all uSW(lfS)(Q),
(5.3.14) | | 1 1

0% (r-s )P u|| <Bsoz2Ma1(%]- (”D(O’S)-u”s'*'“D(l’S)uH ] if oSs.

Here M&i is giVén'bY My=1, Mi=2’ and M£=O for i=2.. Béai”ls as dgfingd in
lema 503.1.
Proof: We shall prove (5.3.13). It is easy to show that D, commutes with
o o o ’
I-S;. Thus Dq(I—Sl)qu = D?I(I—Sl)Dzszu, and it folLoWs from lemma 5.3.1
that - '
B 8,0 B
-8 Pl < Bsalnpf 2 ully.

Therefore we will be doﬁe if we can show that
1

Y
5.3.15 80 s,0 S, l
G310 e Dp ), <, g ey + Io¢e: ’no] :
Recall that,P2 is ‘given by
-_:qu(:cl,xz) = u(wl,O) (l—xz)‘:+ u(xl,l)xz.: :
Therefore
(s,°%2‘)“ _ 8 og L - 8 k2
‘ D . Z?Zu(xl,xz) Dlu(.'zc.'lso)D2 (l.-’.bfz‘) '+ Qlu(xl“,‘l)Dzl @,
It follows thét

(5.3. 16)|D(s,ég) zu(xl,x )| =, max{|psu(x1,0)| |Dsu(x l)l}

We apply corollary 1.3.5 (modified Sobolev lemma) with.n=1 and p=2 to get
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(5.3. 17)

| % 1 a 2 2 i
|D ulax l)l}_[] [.6 (IDlu(xl,xz)l + IDzDslu(xl,a%)l J dxz:] .

Substituting (5.3.17) into (5.3.16), squaring, integrating, and taking

Theorem 5.3.3: Let 8=2,3, or 4, and let o be a multiinteger such that
' 1
( ’s) (U) .

a=(s,s). Then for all ueW(s’l) w nw

0 E-ayul = 7, [nu(s"’)un"- + 10D ul]
%
[ND(O’S) 12 + nn<1’3>unz]
where F._ =B M (5/2);i and G (5/2)15
80 3041 a2 8(! 3(12

Proof: This theorem is an immediate consequence of lemma 5.3.2 and the

To simplify matters we take s=4 from now on. Fo‘ and Goz will denote

the constants F4a and G4a defined in the statement of theorem 5.3.3.

Theorem 5.3.4: Iet 0=(0,0), (1,0), or (0,1). Let N =30 if | a|=0, N =45

if |a|=1. Then for all wei D @y o we®) (N W(Z’Z? w,

I -ayull, <7 Dy uly

%
Fa(”D(4 »0) ” + ”D(4’l)u”§]'

1
%
+ Ga(”D<0’4)u”§ + HD(1’4)uM§]

Proof: By theorem 2,2,5 with E=I-P, k=1, g=(2,2), and p=2,

I z-pyally = 1022l .

o o o
Theorem 5.3.4 now follows from the representation D (I-Q) = D (I-P) + D (P_-Q)

and theorem 5.3.3.|
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‘Now let R be;a typical element, as in section 5.1.,'Suppose R has the
dimensions hyxh, with h.fh (i=1,2), and R is connected to U by.the affine
transformation (5 1. 6) There is a number b, independent of R, such that

%;: <b (1,—1 2)

Theorem 5. 3. 52 Let a=(0 0), (1,0), or (0,1), and let s F’ » and G be as

in theorem 5.3.4, Then for all ueW(4 1)(R) n W(l 4)(R) ﬂ W(z 2)(55
sl =plel gl [y @2

(5.3.18) ”D‘(IQ Yilly p =b™h | v o ull, | .

(10 Va2 + hznp<4 Dl o)

0,4 1,602 V2
e, 10l +hnﬁ >u2]ﬁ.
Proof: Apply lemma 5.1.1 to each term.||

(4 1) (1 4)

The appearance of the fifth order derivatives D nd D a
‘weakness of the theory, It should be possible to eliminate ‘them. - At least

their influence becomes small as A tends to zero.

Theotrem 5.3.6:"Theorem 5.3.5 remains true with R replaced by Q.

Proof: € is the'ﬁnion of elements Ezl We square (5.3.18),‘sum‘over all

elements R., and take square roots to get the desired result. ||

Theorem 5.3.7‘:“ Let F-( ) F ] { } G } . and N=(4950)% Then for
S el ® lal< © .
att uei 4D @) G @) o 2Dy,
(5.3.19) -], Sbhg[Nl,lD(Z’Z)“llo"

: .2 . : 2172
+ #pOupf + 52y

o o
o o100 u? + #pput] ]
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Proof: According to the previous.theorem, (5.3.18) holds with R replaced
by & We square (5.3.18), sum on o, and take square roots to get (5.3.19).

The inequality %2 =1 (or .at least A<p) is feqhired'. '

The constahtg N, F, and @ can be readily computed with the aid of a
calculator. We have N = 76.36 and F'= (¢ =29.19. These constants are
undoubtedly far from optimal, but they do indicate at ieaét thatrthe constants
which appear in‘finite element error -bounds are not so large as to make the

error bounds wofthless'frpm a practical standpoint.

We now consider the problem of obtéining error bounds for the 24 d;q.f.
element defined’ in chapter four. We shall pursue-thefproblem only to the

point of produqihg a representation analogous to (5.3.7)..

Let us‘récall“in detail the construction of tﬁié é}éﬁént. Given
usCz(ﬁ) we defingd.;he finite element intefpolant q=Qu'inltwo stages. The
first stage involvéd defining functions b hnd vn on thg 5§uqdaryrdf;5 to
represent thg boundary values of ¢ and its normal derivétive, réspectively.
Recall that:v(xi,O) (for instancg) was defined to bg the‘uniqug-quintic
polynomial p(xl) = v(xl,O) such that VAJ‘ 7

| p(0) = u(0,0)  p(L) = u(1,0)
Pt =D u(0,0 pr(1) - Du(10)

pre (0) = D%u(0,0) p'? (1) = D?u(l,o)

Let’rﬁ, tj (j=0,1,2)-be the unique quintic polynomials'satisfying

@) (2) |
coryTl(0) = a.. Ty (1) -
g S £=0,1,2..

1]
o
]

G @) o]
"Tﬁ ¢D) tj (O)A:
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If we define operators I'; and T2 by

2 . .
Tlu(xl,xz) = 3 [DJlu(O,xz)rj(x12 + D‘iu(l,xz_)tjt(xl)]

.

J=0

I o~100

' Tyu (x'i ,sz) =
S dJd

O[D‘Zu(xl ,O)r’j (x,z‘—)\ + D‘zu(m’l ,l) tJ (xz)]

then, as is easily seen,

(5.3.20) v(@, k)

Tlu(xl,k)
© k=0,1.

v(k,xz) T u(k,x,)

The normai derivative vn(xl,O) was defined to be the unique;cubic
polynomial m(xl) = v, (2,,0) such that

m(0) = D,u(0,0) m(1)

[
I}

D,u(1,0)

il
1]

~'m"(0) = D;D,u(0,0) m'(1) = D;D,u(1,0).

Let S1 and 52 be the operators defined by (5.3.2). Then

I}
i

vn(xl,k) E D,v(x,,k) SlDzu(xlg,k) D,S yu(ay ,7()

(5.3.21) k=0,1.

Un(ksxz)'z Dlv(k’xi) = SZDlu(k,xz)‘= Dlszu(kB@g)

Once we héve:dgfined the boundary values of v ané’un, we defing q to
be the blended;iﬁtgrpolant of v based on Hermife cubic blending functiops.
Thus | A
(5.3.22) g =Qu=25v=5p+ 5,0 - 5,5,
where Sl and Sé gré défined by (5.3.2). It is ponveniént‘to write Sl as a
suq.bl = Slo ;'éil? Whgrg ﬂ |

o . ‘S'lé)u(xl’xz) - u(o’_xz')Po(”,clj)‘ + u(,lﬂ’_xz)q_oi(w‘l)‘ .

‘ Siiu(xl,mz) Dlu(O,xz)p'l(xl.)& plu(l;xz)ql(xl).

The operator Sz'has an apaldgous-decomposition 52 = Szorf‘SZI‘ By (5.3.20)
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we have
Slov = SlOT u S, U= Sonlu.
By (5.3.21) we have
S110 = 8115,u S,q0 = .S'ZISlu. |
Also.Slszv = 5,9,u, as 5,5 u is determined by the corner’ values’ of U, ux,
Uy, and uxy’ and v interpolates these values of u. 'Thefefbre;(5.3.22),can

be rewritten as -

Qu

Slov + Sllv + Szov + SZlv - Slszvv‘

it

SioTou + 8,,5,u + S‘onlu + SZISluA- SISZu.
It is easy. to check that each pair of operators in the above sum- commutes.

For instance SlOT U = T2310“~ Therefore Wwe- can subtract this ‘sum- from the'

sum Su = Slou + Sllu + Szou 4+ SZlu -8 S S¥ to obtaln C

(S-Q)u:= (T-T5)8 gt + (I-Sz)Sllu + (I-T)8, u +. (I—S S, U

This expressicc'can be used to obtain bounds for S-@ in;the'Same way that
(5.3.7) was used to obtain bounds for P-4 for the Adic;:element.‘ Bounds
for u-Qu = (I-@)u-are then gotten by writiﬁg I-g = (I-5) + (5-Q) and using
the bound for‘(i~5)u provided by theorem 2.2.5 with E = I-S, k=2, B=(3,3)

and p=2.



CHAPTER SIX

NUMERICAL RESULTS

(6.1) Finite Rlement Programs::-

The subroutines of a finite element program fall into four. categories
depending on their function. 'The categories’ are preprocessing, assembly
of the matrix equation (3.3.4), solution of the matrix equation, and inter-

pretation of the solution. We shall consider these points one by one.

The main taske invoived'in prepfocesSing'are the subdivision of ehe
giveﬁ,domain into elements, the numbering of the elements, and the numbering
of the nodes. The preprocessing programs which this author has written
are rather primitive. The domain Q is assumed to be e rectangle, and the
program reads in data telling how many rows and columﬁs.of elements there
will be and where'ghe horizontal and vertical mesh lines which define the
elements are to be placed., The elements are humbered;from Jeft to. right
starting at the bdtﬁom of the rectangular domain. The main task is the
numbering,of the nodes. There are two numbering schemee. Qne is 1ocel
and is determined by the element type. For a given { degfee—ofrfreedom
finite element scheme, each element has dznodes:aséociated with it, and
we numberrthese;nedes locally. The job of the‘preproceseing-program is
to give each noae.a number in the global nuﬁbering scheme. The nodes,
like the elements, are numbered from left to right, starting at the bottom
of the domain. The global number of the Jth node of the ith element is
stored in the (J,t) entry of a two—dlmen31onal integer array named NODE.
(The programs are wrltten in FORTRAN.) Thus, if the jth node of the {th
element is the k;h node globally, we have NODE (7,I) = K. For nodes on

-85 -
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the boundary of the domain which are forced by boundary conditions to be
zero, we set NODE (J,I) = 0. The boundary conditions can be altered by

changing two short subroutines.

After the nodes have been numbered, the program reports the total
number 7 of nodes unaffected by the boundary conditions. The order of

the matrix equations to be solved is 7.

The final task of the preprocessing program is to compute a band
parameter which indicates the band width of the stiffness matrix which
will be generated. The band parameter is not exactly thg same as the band
width; which was defined at the end of chapter three, The band parameter
is the numberrof diagonals from the main diagonal to éhe last nonzero
diagoﬁal (in either direction, since the stiffness matrix is symmetric).

Thus the band width is one less than twice the band parameter.

The second phase of the finite element program is thg assembly of
the matrix equation. We shall first consider the assembly of the stiffness
matrix X. The (Z,7) entry of X is a(wi’wj)’ where ¢i is the basis function
whose 7th nodai value (in the global numbering scheme) is one and whose
other nodal values are zero, and g(+,*) is a symmetric, bounded, strongly
elliptic bilineaf forﬁ. Let us assume for definiteness that g(+,+) is
given by (cf. (3.1.4))
(6.2.2) a(u;v) =[ (uuv,+uuv,) u,vaﬁ(l)(ﬁ);

- Q XX vy

(Here we have rgturned to the x,y notation of cﬁapters tﬂree and four.
We will use thisrnotation from now on.) Lgt €1seeesy bé the elements

into which @ has been partitioned, and define a,(+,°) by
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ar(u,v) = far -(u:]cvac + uyvy)‘ r=l,.00s80

Then

s

alu,w) = 2 ay(usv) .

r=1
The stiffness matrix is evaluated on an element by element basis. The
integrals al(ﬁi,¢j) are evaluated'for all 7 and j, then'the integrals
az(wi’wj) are evalueted,.end so on., Most of*tnese.integrals will be zero
trivially by the localness of the basis functions. Those integrals which
-are not zero are edded to the appropriate entry of the stiffness matrix
array, which was,nriginally set’ equal to zero. The integrais

(6.2.2) el = Gy b )

ey g g y
are integrals of polynomials and can therefore be integrated analytically.
However, it is convenient to lntegrate by numerical quadrature [14] LZZ]
instead. For rectangular elements, product Gauss quadrature rules are the
obvious choice%f;This author has used them exclusively. The integrals
- (6.1.2) can betenaluated exactly by a quadrature formularof sufficiently
high degree, but this can prove expensive for elements of high degree.
"It is better to Weheat" and use a lower—degree'formula. This is one of
‘the "variational cfimee" discussed by Strang and Fix [2£]. In section

6.3 we shall discuss the specific quadrature rules used for various elements.

Because the‘stiffness matrix ¥ is symmetric, only the main diagonal
and the lower’nelf‘of ¥ need be stored. In fact, if tne band perameter
of X is m, only m'diagonals need be stored. If the e;der of K is n, and
the m relevant diagonals of X are stored one after the other in a one-
dimensional‘afray, the storage requirement is only nm - m(m-1).

!
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The load vector, i.e. the right hand side of the matrix equationm,
must also be computed. 'The entries of the load vector are generally of

the form
L(\bi) = (f,%)o = fo¢7;
and can be evaluated by numerical quadrature in an element-by-element

manner.

The matrix équation, once assembled, is solved by the Choleski or
square root method [9]. .In this method a lower triangular matrix G such h
that K==GGZ1is coﬁputedl 'The'matfix equation is then solved by forward
elimination and back substitution. The matrix G inherits the Band structure
of K, so G takes no more storage space than does XK. The order of computa~
tion of thg gqtfies of ¢ is such that once Géj has been’cpmputgd, Fhe
valug of Kij iérnq 1ong§r nggdéd; "Thus- it is possibleAtQ store @ ovér

K.

In practiég there is some overlap between the matrix assembly phase’
and the equation solving phase of the program. Once the stiffness matrix
has been compﬁted,“it is immediately decomposed into éGT. G is s£ored where
K wasj K 1is lésﬁ.r In practice there may bermore than one load vectbr. We
may wish to solve several equations Gszi = yi. The first load vector is
computed, the forward elimination and back substitﬁtion‘are carried out,
‘and. the first solution vector is obtained. This process;stores the solution
‘vectorrover‘thé load vector but:does not destroy G. Once‘a solution vector
is obtained, thé interpretive subroutines are called, ané the solution is

translated into usable data, which is printed out. Only after the solution
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has been interpreted.is the next load .vector computed.

The interpretive phase of the problem is the'léast:cleér cut- and
most difficult phase. ‘There aré many,possibilitiés;;the simpiest of which
is to merely print out.the solution vector. Thisiis not a total loss; as
the ith entry of the solution vector is just the Zth nodal value of the
finite element solution. That is, it is the actual Valﬁe of the finite

element solution or one of its derivatives at a specific point. The
obviousxnext step is to write a subroutine which evélﬁates the finite
element solution and/or certain of its derivatives at points other than
the ﬁodés; This procedure is not very satisfactory because it causes the
gengration ofjgreat tables of numbers which are not easily interpreted.

A better idea is to display the data graphically with the aid of a plotter.

I have déné none of this (except print out the éolution vector), as
my main intenﬁiopfﬁas to measure the error in the Soboiév norm and deter-
mine whether the rates of convergence predicted in chapter five are
attained in pnaétice.‘ Accordingly, I have chosen problems whose actual
solution is known énd canrbe programmed. For such problems it is possible
to calculate the Sobolev norm of the error betweéen the actual solution
aﬁd the finité ele@ent‘solution. The program which I h;ﬁe written evaluates
the norm of the error by numgrically integrating ovérreach element using
the 5%5 produétlééuss. rule. This rule gives exact integrals'for poly-
nomials of degreé'as high as nine in each variable and can be expécted to
give accurate‘fesults for smooth functions. ‘Accurate‘results will ceftginly
be obtained'on.fing meshes, as the rate of cénvergenéé bfrthe rule is O(hlo)

as h + 0, where & is the mesh norm.
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There is oneAbther'subroutin; which has not been mentioned. This
foutine should be classified as a'prépfocéssor, even though it is called
at the end of the program. Its fﬁnctioﬁ is to réfiné thgrmesh by inserting
new mesh lines midway betweéh'thé'éxisting mésh lines;qthus halving the
mesh norm % and quadrupling the humber of elément;. Once the refinement

is carried out, the entire program is run again.

' (6.2) Confirmation of rates of Convergence '

The model problem which we shall consider is the Dirichlet problem
for Poisson's equation:

(6:2.1) ~-Au = f on 9

u=20 on 98

where  is thé unit square. Two load functions
(@) = (65-10) @'y 3Hy2—y) + (@3=5u2+kx) (12y2-65+2)
f1 @) x-10) @ "y "ty “y 7 =5a ) (L2y “-6y
*fé(x,y) ='em(sinﬁx[(sz-l)ysinﬂy—2ncqsﬂy] ~ 2mycosmxsinmy)
will be considgred. The respective solutions of (6.2.1) are
u, (woy) = (3522 +4a) (g 24y 34 ™)
u, () = (”sinmy) (ysinmy).

I have implemented three elements 47 the bilinear element, Adini's
rectangle, and the 24 d.o.f. element constructed in chaﬁter four. Each
of these elements has been used to calculate approximaté solutions of (6.2.1)
for the two load funetions fl and fé, using a variety of mesh sizes. The

programs were:run on the CDC 6400 computer of the UnivérSity of Calgary

Data Centre.
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Tables 6.1 through 6.4 below indicate the Sobolev norm ”u-u*ul of
the difference between the  actual solﬁtion u and thé‘finite element
solution u* for the thrée'éléménts. 'Oﬁly‘régﬁlaf meshéS“with square
elements were used, 8o each mesh is uﬂiquél& détermiﬁed‘by its mesh norm
h. To give an idea of the"écalé of thé'functions‘involved, the approximate
norms of the golutions 4, and u, are
llulll1 = 714
Iluzl‘ll_':‘—: 2,276
From theorem 5.2;6‘and table 5.1 we éxpectjconvergeﬁce'at the rate 0(h)

for the bilinear-element. This expectation is confirme&‘by the data in

tables 6.1 and 6.2.

Table 6.1: - lu-u*]] P Bilinear Element
50 | .25 | .25 | L0625
1 412 .| 207 | .103 | .0516
£, 1.52 . | .717 | .355 | .177.

Table 6.2: ‘ Hu-u*”l, Bilinear Element

.165 .0826. | ,0413 |

371 .283 <142




- 92 -

With Adini's rectangle we expect 0(13) convergence by theorem 5.2.6
and table 5.1, or by theorem 5.3.7. 'Table 6.3 indicates that this rate

of convergence is attained.

Table 6.3: "u—u*nlg_ Adini's Rgctanglg
load -3 ‘.--:.-fgST -125
function
A .903x10~1 | J122x307! | .163x1072
A .429. | .538x10-1 | .750x10"2

The 24 d.o.f. element should give 0(h*) convergence. Table 6.4

indicates that it does.

Table 6.4: : "u—u*nl, 24 d.o.f. Element
\ mesh '
PP NGl I .25
- functio
f1 .220x1072 | .114%1073
f, .209x10™1 | .981x1073

(6.3) Comparative Cost of Running the Programs

Comparing two different finite element programs is difficult because
the relative significance of the'Varioﬁs~phases‘of the program is different
for elements of low degree than for elements of high degree. For example,

the time required for the assembly of the Stiffness maérix is virtually
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negligible for the bilinear element, whereas it is significant for the

other two elements. There.are three'reaSOns for this. The first is that
in the element—by‘element process by'whieh'the Stiffness matrix is assembled,
the’ number of 1ntegrals a, (¢ ,¢ ) to be evaluated in each element is

La(g+1) , where d is the number of degrees of freedom of the element. Thus
the number of integrals to be evaluated in each element_grows quadraticelly
with d. The seeend reason is that each 6f the‘function'evaluations required
for numerical quadrature takes' comparatively llttle time for a lowedegree
element. This is because low~degree polynomials can be evaluated more
quickly than can high-~degree polynomials. VSpecifically{ a typical function
evaluation for the bilinear element requires one multi?llcation, whereas

a function evaluation for Adini's rectangle er the 24 d.o.f. element requires
about four or elght multiplications, respectively. The third reason is

that a quadrature rule of low degree can be used to evaluate the integrals
for low—degree'elements. Thus only a few function evaluations are nee&ed

to evaluate eaeh integral. For example, for the bllinear element the 2X2
product Gauss rule 1ntegrates the integrals «a (¢$,¢ ) = f (W$ ng :wi wj )
exactly. 1In fact, the 1x1 rule gives results which are‘elmost‘as good. The
rate of converéence is still O(h), as predicted by Strang and Fix [21].
"However, the reduction of cost realized in changing from the four-point

rule to the one-point rule is insignificant. It was this observation

which conVincedithis‘author that the.assembly time ofrthe stiffness matrix
for the bilineer element is negligible. The Same is net:true-for‘the two
more complex'elements. In the case of Adini's rectangle costs can be cut
considerably by‘using the 3x3 Gauss rule rather'than”thevax4 rule which

would be required to calculate the integrals exactly. The results obtained
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using 3x3 quadrature are.as good as those given by the Axé‘rule.'VOn the
other hand, the'teshlts*go;tén'using 2x2 quadfature:Wéré poor. ‘A similar
situation holds for the 24 d.o.f. élémént: 'In this case the 6x6 rule

would be needéd to iﬁtegtaté the'tefms exactly. 'Thié is out of the questiong
thirty-six points are too many. It was found that the 4x4 and 5x5 rules

give equally good feshlts, Whefeas thé 3x3 rule gives poor results. The
cost of rumning the program is reduced considerably if the 4x4 rule is

used instead of the 5x5 rule. Interéestingly, the Eheory of [2{] predicts
that the use of the 4x4 rule instead of the 5x5 rule will cause a reduction
in the rate of convergence from O(A%) to 0(3). This worsening of the

convergence rate was not observed.

So far it appears that the low-degree elements have the upper hand,
but we have not yet téken into account the fact that to attain a given
accuracy a ﬁuch finer mesh is required for a low-degree element than for‘
a high~-degree element. The use of a coarser mesh for high-degree elements
partially compensates for the slowness of the stiffneés matrix éssembly.
Other benefitsrafe'derived from the fact that the stiffness matrix is of
relatively low order if the mesh is coarse. We shall consider a specific
example. From tables 6.2 and 6.3 Qe see that even with érmesh norm of
#=.05 the bilinear element gives worse solutions than does Adini's rectangle
with %=.25. The éﬁiffness matrig for the‘biiinear elément with £=.05 is |
of order 3611Wi£h a band parameter’ of 21. By contrast, the stiffness
matrix for Adini's‘rectangle Witﬁ h=.25.1is of order 39 with band parameter
17. As was mgntioned'previously, the étorage_requirement for the stiffness

matrix is nm - }n(m-1), or roughly nm, where # is its order and m is its
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band parameter. Tor the bilinear element nm = 7581, whereas for Adini's

rectangle nm = 663.

Storage spaée is not the only p;oblém;"Obviousl§ a large matrix
_equation takes ionger'to solve thaﬁ a small matéix eqhaﬁion. The most
significant stépzis the decomposition K=GGT. 'This-decémposition involves
about nm? multiplications [Q]. Thus the'decbmposition‘time for.Aﬁini's
rectangle in the example under'considefation is only ébout-seven percent

the decompositibn time for the bilinear element.

Haﬁing established the fact that it is difficult pb compare finite
element pfograms Ey anaiyzing the subroutineé, we must resort to a very
éfude method of'goﬁparison: we éompafe the actual cost of running the
programs. It happens that the run in which the data éf table 6.2 was
compiled cost justrslightly more than the run-for table 6;3, which, ip furn,
cost just a bit more than did the run for table 6.4. TIn each case the
bulk of the time was spent on the most refined mesh, :The resultsvof table 6.4
(24 d.o.f. element) are significantly better than those of table 6.3 (Adini's
rectangle), which‘gre much better than those of table 6.2 (bilinear element).
On this basis wezcan‘cqnc}ude that the 24‘d.§.f. élemént.is pest for the
given problems, an& the bilinear element ;s worst. We'sﬁouid be extremely
Vcautious about congldding that the 24 d.o.f. element is better than the
others. We have cbnsidered only one problem with two sets of data. Iﬁ .
both cases‘the:&até and the solutions are smooth. The‘iower-degree elements
might fare bettef'in a competi;ion in which there are singularities in the

data.
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(6.4) Pointwise Approximation:- -

In section 6.1 it was noted’ that the solution vector of the finite
element matrix equation (3.3.4) givés'thé'ﬁodél values of tﬁe finite
element solution. Some'of this iﬁformation‘has been‘compiléd in tables
6.5 through 6.7. ‘All data in thééé tables pertains to the load function
f1 and the borrgsponding solﬁtion U 'Ip vigw'of thg conclusions drawn
in the previous section, the only surprise in these tables is the

relatively poor showing of the 24 d.o.f. element in table 6.6.

Table 6.5: Estimated and Actual Values of Uye
Bilinear | Adini's | 24 d.o.f. Actual
Element. Rectangle Element Value
point | #=:0625 h=.125 h=.25 :
Gk | 1405 | .140088 .140079 | .140076
Ge%) | 1748 | .174325 | 174318 | .174316
(%) || .1217 | .121406 .121398 | .121401
Goe) | .2204 .219750 219730 | .219727
Gs,k) || .2743 .273455 .273440 | .273438
(% %) .1910 . 190444 .190432 .190430
%s%) .2068 .206045 .205997 | .205994 -
G | L2572 . .256389 .256350 | .256348
G | .1792 . .178560 .178530 | .178528.°
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Tablg 6.6: Estimatgd'and Actual Valugs‘of ggiu
o T
N e e
pointN ]|~ A=v125 0 [egeiog | ‘
Goly || 033615 | 33607 ..33618
(s,%) || -.04986° | £.04979 -.04805
%) -.36115" | '-.36096 -.36108
(%,%) .52729 .52721 .52734
(s,%) -.07822 -.07811 -.07813
G,k || -.56652 ~.56625 ~.56641
%, %) 49430 49427 49438
(%;2) -.07344 ~-.07323 ~.07324
Gi%) || -.53124 ~.53087 -.53101
Table 6.7: Estimatgd and Actual Values of g%iu
o
Rectangie | ploment Actual
point\ | %=.125 h=.25
Gak) || 43950 | 43947 | .43945
5, || 54691 .54689 .54688
(%% || .38089 .38086 .38087
(%,%) || .17619 .17578 .17578
(s,%) || .21910 1.21875 .21875
(%,%) | .15261 .15234 .15234
(%,%) || -.35095 -.35158 | -.35156
(5,%) || -.43697 -.43752 | -.43750
(%,%) || -. 30428 ~.30470 | -.30469
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