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Abstract

Individual demographic performance is the outcome of a complex interaction between a set of

physiological rules predetermined at a genetic level, the individual, and a particular context,

the environment. Both are highly dynamical entities. The environment varies in response

to many deterministic and stochastic forces, and individuals respond to their environment

as a function of their own internal conditions. My thesis combines empirical and theoretical

works on consumer-resource systems in order to study how genetic and environmental factors

interact to generate patterns of phenotypic expression and assess their effects on resulting

ecological and evolutionary dynamics.

I first present methods for carrying out sensitivity analysis of dynamic energy budget

models. These techniques are then used to study how the feedback loop between consumer

and resource dynamics affects individual life-history and emerging demographical patterns.

Thirdly, I present the results of large manipulative experiments on Daphnia-algae systems

aiming at characterizing how the combined effect of genetic variation and environmental

fluctuations affect the population demographic patterns and their underlying energetic basis.

The genomic response of individuals was further characterized through microarray experi-

ments. Finally, I integrate some of these results within a simplified model framework to draw

general implications for the dynamics of ecological systems.

Sensitivity analysis reveals that including the effect of the environmental feedback dras-

tically alters the predictions that are made on the patterns of expression in individual life

history, and tends to buffer genotypic variation. Experimentations decouple this environmen-

tal feedback to reveal that the demography of the different clones is impacted in a different

way by environmental food fluctuations. This result arises because the relation between

individual energetics and food density is qualitatively affected by dynamic variation in the

food environment. The genomic analysis supports these results and also emphasizes the
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importance of consumer-resource interactions for the functioning of biological organisms, as

up to 84% of the Daphnia genome was found to respond to variation in food conditions.

All the results of this thesis converge to highlight the fact that dynamical aspects in the

environment significantly affect patterns of genetic expression at both the individual and

population level.
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Chapter 1

Introduction

Elucidating the factors that contribute to the life history of a species is a central tenet of

ecology and evolution. Life history theory seeks to explain how natural selection and other

evolutionary forces shape organisms to optimize their survival and reproduction in the face

of ecological challenges posed by the environment (Stearns 1992, 2000, Roff 2002, Reznick

2010). Individual life history is however far from being a constant property of individuals

but is a highly dynamical feature that varies under the influence of the environment and the

evolutionary process (Stearns 1992, Roff 2002, Beckerman et al. 2002, De Roos et al. 2003).

Due to their direct link to the processes of birth and death, understanding the mechanisms

that produces particular life history is of paramount importance for both evolutionary biology

and ecology (Saccheri and Hanski 2006). Individual life history is indeed both the product

of, and has consequences, on ecological and evolutionary processes.

The expression of individual life history has both a genetic and an environmental basis

which can be highly variable and show variation among individuals within the same pop-

ulation, among populations, and over time. Dynamic variation at the individual level is

underlain by a map from genotype to phenotype which is highly complex, and environmen-

tal variation may still complicate this picture further (Sclichting and Smith 2002, Abouheif

et al. 2013). By contrast, ecological and evolutionary theories have been built by making

simplifications on the mechanisms underlying the interactions between the organisms and

their environments. In its most classical vein, ecological theory assumes strongly simplifying

assumptions on individual life history and studies their ecological implications. Conversely,

classical life history evolution theory assumes strongly simplifying assumptions on the eco-

logical context and studies how life history strategies evolve. Both theories are now striving
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to include more realism and to move beyond these simplifying assumptions. Moving over

these assumptions often leads to the emergence of qualitatively new phenomena that could

otherwise not be explained, which I will discuss in this chapter. In this context, a major

goal of this thesis is to clarify how these dynamic aspects of life-history processes affect and

are affected by ecological and evolutionary processes.

My research uses one of the rare systems where we have sufficient knowledge about the

biology of the consumer and their food supply, to study in details evolutionary processes and

ecological dynamics - the Daphnia-algae system. Daphnia are common herbivores that feed

on algae in lakes and ponds throughout the world, and are keystone species mediating the

dynamics and stability of many freshwater systems (Lampert 2011). Daphnia populations

are composed of clones that reproduce asexually with rare bouts of sexual recombination,

making it ideal to control for genetic factors. Females usually grow by discrete increment by

moulting every 2-3 and may release a brood of eggs at that time. These eggs can be easily

counted while females carry them in their brood pouch as their carapaces are translucent.

Development, fecundity and mortality are food-dependent, and their energetic basis has been

thouroughly studied (McCauley et al. 1990, Nisbet et al. 2004). These results have been

used to produce unique insights on the processes driving the dynamics of their populations

(e.g. McCauley and Murdoch 1987, McCauley et al. 1999, 2008). The Daphnia genome as

been sequenced and is being thoroughly studied as well (Colbourne et al. 2011, Miner et al.

2012). Combining this wealth of knowledge with the ease with which Daphnia populations

can be cultured and manipulated in laboratory makes it one of the best models for integrating

processes over biological scales and test the questions raised in this thesis.

In this introductory chapter, I start discussing the mechanisms at the interplay between

individual life history and ecological processes and their implications. I then discuss the

evolution of these life histories. Along this discussion, I highlight some of the current issues

in our understanding of these processes that motivated my Ph.D. research.
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1.1 State-dependent life histories and physiologically structured population

dynamics

In purely age-dependent life-history theories, the life history expressed by individuals is fixed

and does not depend on the conditions they experience (McNamara and Houston 1996). In

most circumstances however, life history processes have a strong dependency on states, which

may relate to both individual physiological states and environmental states. The primary

consequence is that individuals experiencing different environmental histories may express

very different life histories (De Roos et al. 2003). As individual demographic rates and

interaction rates with other species are a direct product of the life history expressed by

individuals, a number of consequences ensue for population and community processes that I

will discuss here.

State-dependent life histories generate inter-individual heterogeneity that has conse-

quences for population and community processes, as individuals in different states do not

contribute to the same extent to the demographic process, and for interactions with other

species. Structured population dynamics theory provides a quantitative link between the

expression of individual life history and its consequences for the demographic process (Diek-

mann and Metz 2010). A key ingredient in this link is a model relating how the individual

response to its environment generates a distribution of individuals at the population level,

and how this distribution affects ecological interactions.

In this context, two key aspects of state-dependent life histories have been the main focus

of ecological research: the dependence on individual size or stage; and the dependence on

resource conditions. Ontogenetic development often leads organisms to show pronounced

changes in size during their lifetime, which is associated with changes in ecological perfor-

mances (De Roos and Persson 2013). This may include variation in the type and strength of

interaction with other species, and life history processes, such as development, reproduction

and mortality rates. Similarly, resource-dependence affects ecological performances. The
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expression of life history traits is limited because organisms have a limited quantity of re-

sources available (e.g. energy, time) to allocate among competing functions (e.g. growth,

reproduction, survival) (Van Noordwik and De Jong 1986, Roff 2002). Thus, the phenotypic

expression of a particular genotype associated with life history should ultimately depend on

the environmental context experienced, and how these resources have been allocated among

the competing functions.

In many, if not most circumstances, the energy acquired through feeding is a limiting

resource, and also governs how an individual will grow during its lifetime. Energy budgets

provide a mechanistic framework for relating individual feeding history with their life his-

tory (Kooijman 2010). They explicitly account for the mechanisms of energy acquisition,

allocation and expenditure underlying individual trajectories of development, reproduction

and mortality. The cornerstone of the approach is that these processes have a functional

relationship on both the food environment (and possibly other environmental factors) and

individual states. Given the variety of life histories found in natural systems, theory has

strived to identify whether general features of population and community processes could be

associated with general features of individual life history (Murdoch et al. 2003). Most dy-

namic novelties arising from structured population dynamics can be linked to the facts that

state-dependent life histories may: (i) generate competitive asymmetry in individuals among

the population: different individuals may respond very differently to common environmental

conditions. (ii) Turn the expression of individual life history into a density-dependent pro-

cess: population processes impact some aspects of the environment, which in turn affects the

expression of individual life history (De Roos et al. 2003). This may be understood in the

context of consumer-resource systems. Most aspects of consumer development, reproduction

and mortality are food-dependent. Dynamics in the food environment are in turn largely

mediated by consumer foraging activity. The effect of this ecological feedback on individual

life history are however only assessable within a framework that accounts for the processes
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underlying the expression of individual life history in a mechanistic way, in contrast to more

classic studies that only incorporate life history effects in a phenomenological way (see e.g.

Caswell 2001, Beckerman et al. 2002).

The effect of competitive asymmetry has been most studied in the context of consumer-

resource interactions (De Roos and Persson 2013). In these systems, competitive asymmetry

is related to the ability of individuals to produce biomass, which can be quantified as the

mass-specific rates of biomass production as a function of individual states. For example, to

illustrate the population implications of competitive asymmetry, we can consider its conse-

quences under equilibrium conditions. At equilibrium, the net rate of biomass production in

the population is, by definition, zero. Since individuals are not equivalent in the population,

this implies that some individuals will be net biomass producers whereas others will be net

biomass losers depending on their states. Certain classes of individuals may thus form a

bottleneck for recruitment and population growth, whereas other stages may not be lim-

ited at all or to a limited extent (De Roos and Persson 2001). If we consider, for example,

competitive asymmetry between juveniles and adults, population growth is limited by low

adult fecundity when juveniles are the superior competitors, whereas in the opposite case,

population growth is limited by the maturation from juvenile to adult stages. In term of

individual life history, when juveniles are superior competitors, juvenile growth will be fast

and survival high, whereas adult will have reduced lifespan and fecundity. The opposite is

true when adults are superior competitors.

De Roos and Persson (2013) reviewed the novel phenomena associated with state-dependent

life histories for the structure and dynamics of populations and communities. In particular,

accounting for ontogenetic asymmetry and the ecological feedback on life histories provides

explanations for the emergence of various kinds of population cycles (De Roos and Persson

2003, Murdoch et al. 2002, Claessen et al. 2000, 2002), coexisting dynamical attractors (Mc-

Cauley et al. 1999, 2008), phenomena of biomass overcompensation, in which an increase
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in mortality rates causes an unexpected increase in total population biomass (De Roos et

al. 2007, Ohlberger et al. 2011, Schröder et al. 2009, Nilsonn et al. 2010), emergent Allee

effects (Persson et al. 2007), emergent facilitation (Cameron and Benton 2004, De Roos et al.

2008), and other implications for community structure and dynamics, including coexistence

mechanisms.

As my thesis focuses on the dynamical implications of state-dependent life histories, I

will provide more details on the mechanisms underlying population dynamical processes by

discussing the mechanisms involved in the emergence of population cycles. State-structured

competitive interactions allow for the emergence of two major kinds of cycles depending on

whether the effect of density dependence is direct or delayed: single-generation cycles and

delayed-feedback cycles. Both these types of cycles are commonly observed in natural and

laboratory systems (Murdoch et al. 2003).

Single-generation cycles are thus called because the period of the cycle is approximately

equal to the generation time. They emerge as a consequence of a particular class of individ-

uals being competitively dominant, thereby suppressing production in other cohorts. The

mechanisms underlying these cycles are well exemplified by considering competitive asym-

metry between juveniles and adults. When juveniles are competitively dominant, cyclic

dynamics arise because a large dominant cohort of juvenile is produced and induces a strong

level of density dependence. This results in fecundity suppression and/or strong mortality in

adult stages. As this cohort progresses through life stages and matures into adults, density

dependence is released and a new dominant cohort is produced. In contrast, when adults

are superior competitors, the greater sensitivity of juveniles to density dependence induces

variability in developmental delay and thus variation in recruitment to adult stages which

ultimately lead to population cycles.

Delayed feedback cycles occur in a large range of scenario when density dependence

operates on fecundity and/or survival with a delay. Such cycles are best illustrated with the
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classical Nicholson-blowfly experiments (Nicholson 1957, Gurney and Nisbet 1985). In these

experiments, blowfly larvae were fed ad libitum, while the food supply of adult population was

limited. When adult density was high, density dependence caused total recruitment rate to

larval stage to be strongly depressed. When this small group of newborns matured later into

adults, they consequently experienced a high per-capita food availability which then caused

a large production of newborns. Because larval food was not limited, the high number of

descendants produced subsequently matured into a large number of adults causing fecundity

to decrease again. Therefore, whenever a high number of newborns were produced, density

dependence acted to decrease fecundity with a delay: once juveniles matured into adults.

This caused successive generations of adults to alternate between high and low density with a

period of approximately two developmental delays. Longer periods can occur when adults are

relatively long lived. In these experiments, adults and juveniles differed in their sensitivity

to density dependence because they experienced different environments. These mechanisms

are however present in a larger class of systems, for example, when productivity depends on

individual states.

All of these unique phenomena happen because of the combination of the functional

dependence of ecological rates on individual states, and the population feedback on individual

life history. Theory has been able to identify some of the major mechanisms associated with

state-structured competitive interactions that explain major patterns at the population and

community level (Murdoch et al. 2003, De Roos and Persson 2013). Despite this progress, our

understanding of the interplay between individual life history and population and community

processes remains limited. For example, Daphnia population dynamics show characteristics

of both juvenile-driven and adult-driven single-generation cycles, which clearly suggests that

the theory remains incomplete (De Roos and Persson 2013). Progress on these topics requires

integrative approaches that simultaneously accounts for the mechanisms causing variation

in an individual state along its life, the functional relationship between an individual state
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and ecological performance, and the dynamical consequences of particular life histories.

1.2 Life-history evolution theory

In the previous section, I outlined some general principles underlying the expression of in-

dividual life history and their population and community consequences. I did not explicitly

consider how these processes affect and are affected by the evolutionary process.

Classical life history evolution theory has simplifying assumptions on the mechanisms

underlying the expression of life history. In this section, I will discuss the basic principles

and assumptions underlying this theory and discuss the consequences of releasing some of

these assumptions. In particular, I highlight three ideas linked to the fact that both the

environmental dynamics and individual expressed life history are dynamic processes: (i)

Dynamic variation in the environment affects qualitatively the selective process by affecting

the determinants of an organisms fitness. (ii) Phenotypic expression responds dynamically

to the environment, which has implications for the selective process. (iii) Evolution affects

ecological processes, which feeds back to cause further change in the evolutionary processes

1.2.1 Natural selection and the notion of optimality in life-history

Life-history characteristics of living organisms are very diverse between species, but also

within species. Life-history evolution theory tries to explain how such a large range of diver-

sity emerges from the evolutionary processes, and most particularly from natural selection.

Key issues traditionally studied by life-history theory are the determinants of age and size

at maturity, of optimal body size, of reproductive effort, of life-span length, of whether it is

optimal to produce few or many offspring (Stearns 1992, Roff 2002).

The process of natural selection affects the genetic composition of populations over time

because different genotypes vary in their reproductive success, which leads to the central

notion of fitness. Fitness, while usually hardly directly measurable, can be defined as the
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capacity of a particular genotype to maximize its genetic contribution to future generations

(Grafen 2007). It has been suggested that a limited number of key phenotypic traits of in-

dividual organisms may strongly determine their fitness. These traits have been collectively

referred to as life-history traits, and usually describe the patterns of development, reproduc-

tion and survival. Thus, to determine the genetic dynamics generated by natural selection,

one must first understand the selective mechanisms driving phenotypic evolution. If natural

selection leads organisms to maximize their reproductive success, we can expect that the

phenotypic response of an individual to its environment responds to a fitness maximization

principle. The classical approach of optimization is to define a measure of fitness, define the

relationship between traits and fitness, describe the trade-offs between traits, then find the

combination of traits that maximizes fitness (Stearns 2000).

This approach has historically been central tenet around which life history theory has

been developed, and most of current evolutionary thinking on the evolution of life histories

stem from these assumptions. In its most classical vein, life-history theory assumes near-

equilibrium dynamics, thus implying stationarity in the demographic process along with

constant environmental conditions. This assumption is used to derive common fitness crite-

ria used in life history analyses. In particular, this produces the result that the maximization

of individual reproductive success coincides with the maximization of the population growth

rate over the long term (Houston and McNamara 1999). It is also assumed that the environ-

ment has a single role: selecting among phenotypic variants. However, as discussed earlier,

the environment may also affect the phenotypic expression of a particular genotype, i.e., life

histories often include plastic responses to the environment. Finally, it is also assumed that

evolutionary changes do not affect ecological processes. I now discuss the consequences of

releasing these assumptions.
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1.2.2 Environmental heterogeneity and variability

Evolution in constant environments is a particular case of the more general theory of evolu-

tion in fluctuating environments. Here, I present the consequences of relaxing the assumption

of constancy in the environment.

Two observations justify the need to obtain a deeper understanding on the evolution of

life-history in fluctuating environments. (i) Environments are strongly variable, which has

important consequences on individual reproductive success. (ii) Evidence exists of adapta-

tion to environmental stochasticity, particularly through the studies of phenotypic plasticity

and genotype-environment interactions (Meyers and Bull 2002). In addition, the processes

of selection in fluctuating environments have been largely invoked to understand the main-

tenance of genetic diversity in natural populations (Chesson 2000).

The environment is virtually never homogeneous nor static, but heterogeneous and dy-

namic. The environment displays spatial and temporal variability under the influence of

biotic and abiotic factors, which may be caused by intrinsic (population dynamics) or ex-

trinsic (environmental forcing) processes; these changes may be stochastic or deterministic,

and act at different spatial and temporal scales. This poses a challenge for organisms, as they

require relatively constant internal conditions for physiological processes to function correctly

(Kooijman 2010). Moreover, virtually every aspect of an individual ecological performance

(e.g. vital rates such as fecundity, survival, growth, feeding, etc.) may be conditioned by the

environment, which will have direct consequences on the selective process. This has resulted

in organisms evolving a large range of mechanisms to cope adaptively with such variability

(reviewed in Meyers and Bull 2002).

The effect of variability on individual and evolutionary processes may largely differ as a

function of the type, intensity, and predictability of the environmental component causing

this variation (Roff 2002). A major distinction can be made between the different sources

of variability based on the degree with which their effects are correlated across different
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individuals (McNamara 2000). Variability acting independently on different individuals, e.g.

demographic stochasticity, does not preclude populations from reaching stationarity and, as

such, has been fully integrated within the framework of life-history theory. On the other

hand, the environment may vary as a whole and cause a highly correlated response among

individuals. The evolutionary processes involved in this last case add considerable complexity

to the determinants of reproductive success, which are still not completely understood. Early

works on the topic date from the 1960s with the pioneering works of Cohen (1966, 1967,

1968).

One of the main predictions from these lines of work is that individual optimization fails

in fluctuating environments (Houston and McNamara 1999, Metz 2008, but see Grafen 2007

for an alternative interpretation). While the maximization of individual reproductive success

in constant environment coincides with the maximization of the long-term growth rate of the

genotypic population, this is usually not the case in fluctuating environments (Tuljapurkar

1989, Tuljapurkar et al. 2003). The fitness measure used in such environment is the geometric

mean fitness of the population (Levins 1962, 1968). As environmental variance increases,

the geometric mean fitness decreases. Therefore, early works on life-history evolution in

fluctuating environments have emphasized the idea of a trade-off between the mean and

variance in fitness, referred to as bet-hedging (Slatkin 1974, Philippi and Seger 1989). Some

genotypes with a reduced mean reproductive success, but also a lower temporal variance,

may therefore be at selective advantage under fluctuating environments. For example, this

can be achieved by decreasing fecundity if juvenile are more sensitive to environmental

stochasticity than adults, or if smaller clutches are buffered more against environmental

conditions (Gillepsie 1977, Schaffer 1974). Moreover, under many circumstances, optimality

is achieved through the use of randomized, instead of pure strategies (often referred to as

adaptive coin flipping, Cohen 1966, Cooper and Kaplan 1982). That is, the rule prescribing

the behavioral and physiological decisions to be taken by an individual are no longer described
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by a deterministic solution, but is described by a probability distribution of behavioral

decisions.

1.2.3 Phenotypic plasticity and state-dependent life histories

One of the consequences of individual adaptation to the different form of environmental

variation is phenotypic plasticity (Via et al. 1995, de Witt and Scheiner 2004, Morris et

al. 2014). The concept of phenotypic plasticity encompasses the early observation that a

single genotype can produce a range of different phenotypes, and that conversely, a given

phenotype can be produced by different genotypes. The range of phenotypes that a single

genotype can produce is called the norm of reaction. The norm of reaction is a mechanistic

response to the environment that mediates patterns of phenotypic expression. Since the fit-

ness value of particular genotype depends on the phenotypic patterns expressed in response

to the environmental conditions encountered, reaction norms can be considered as a trait to

be optimized by selection processes (DeWitt et al. 1998, Morris and Rogers 2014). Organ-

isms may thus be selected to cope with environmental variability. When it is adaptive, a

great level of plasticity often comes with a cost (Callahan et al. 2008), leading to a trade-off

between the degree of local adaptation (i.e. the degree of adaptation to a particular envi-

ronmental state) and the degree of plasticity. Relative constancy in the environment might

therefore be reflected by a low degree of plasticity, while more variable environments might

be reflected by a high degree of plasticity, but not necessarily: because of the costs and

limits of plasticity, no genotype has evolved plastic traits so flexible that it can dominate

in all environments (Tollrian and Harvell 1999, Calahan et al. 2008, Svanback and Schluter

2012). This has direct implications in understanding the mechanisms maintaining genetic

diversity in spatially or temporally variable environments: some genotypes are well adapted

to a particular environmental state, while other are less well adapted, but best in another

environmental state (Miner et al. 2005, Roff and Fairbairn 2007). Moreover the cost and

benefits of the trade-off components are likely to change in a different fashion as a function
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of the genetic identity of the individual, a process that gives rise to genotype-environments

interactions (GxE). GxE can be interpreted as genetic variation in the reaction norm. GxE

provide a source of relative nonlinearity in competitive interactions between genotypes, one

of the fundamental mechanisms explaining the maintenance of genetic diversity in natural

populations (Chesson 2000).

Further progress has been made by recognizing that phenotypic plasticity may also be

interpreted as an organisms response to its state (McNamara and Houston 1996). I previously

discussed that individual ecological performance may depend on the particular state of the

individual. This has led to the idea that the behavioral and physiological decisions taken

by an organism may themselves depend on an individual’s state, and that natural selection

may be acting on these state-dependent strategies to improve an organisms fitness (Houston

and McNamara 1999). In other words, an organism’s response to its state may be shaped

by the selective process. The complexity of these analyses does not only lie in the question

of determining what aspects of an individual’s ecological performance is optimized by the

selective process, but also on the fact that the actions taken by an organism cannot be

considered in isolation. The realized fitness of a particular life history is the product of

the particular sequence of actions made by an individual along its lifetime. However, if

some form of variability is present in the environment, the expected fitness of a particular

strategy is more complex to assess, as different environmental conditions may affect the state

trajectories of individuals and may be further affected by dynamic individual responses to

this variation. Thus, the action taken by an organism at a given time may influence its state

in the future, which will in turn affect its residual reproductive value and hence the fitness

value of this action.

In an evolutionary analysis, one would thus require an assessment of how the combina-

tion of particular strategies and particular environmental scenarios conditions an individual

fitness, for a multitude of strategies and environmental scenarios. These results can only be
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reached if we have a robust understanding of the physiological and demographic consequences

of particular strategies, hence requiring a strong mechanistic linking as to how dynamic vari-

ation at the individual level and dynamic variation in the environment combine with each

other to produce particular life histories with particular demographic consequences.

1.2.4 The ecological feedback

Since natural selection acts on state-dependent aspects of an individual demographic per-

formance, and that these very processes condition population and community processes,

evolutionary changes in the population entail ecological changes. These ecological changes

in turn affect the selective process as the selective value of the genotypes is a function of their

environment, thus creating a feedback between ecological and evolutionary processes (Dieck-

mann 1995, Vincent and Brown 2005). The complexity induced by this eco-evolutionary

feedback is linked to the fact that in many circumstances, environmental changes may affect

the fitness ranking of genotypes. This leads to the conclusion that, in general, no optimiza-

tion principle applies (Metz et al. 2008).

The field of adaptive dynamics specifically focuses on the role of this eco-evolutionary

feedback on the evolution of organisms’ traits (Dieckmann 1995, Diekmann 2004). The

main approach consists first in assuming that the environmental dynamics are set by a

resident population. The fate of new genetic variants (often assumed to be produced through

mutations, hence referred to as mutants) is then evaluated as their ability to grow under

these conditions. Under the so-called infinitesimal model, mutations are assumed to results in

infinitesimally small changes in an organisms strategy. By using local perturbation analysis,

the linearization of the fitness function around the resident strategy makes it possible to

assess whether a small genotypic change results in an increase or a decrease in fitness. The

resulting metric is the selection gradient. As long as its value is different from zero, this

indicates that the resident strategy is unstable in the sense that small mutations may increase

an organism’s fitness and thus replace the resident strategy. Under these assumptions, the
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evolutionary process should, over the long term, result in a strategy where the selection

gradient vanishes, i.e. no strategy close to the resident strategy may invade.

These types of analyses have brought new insights on the type of evolutionary phenom-

ena produced by this interplay between ecological and evolutionary processes. First, the

predicted outcome of the selective process may be very different from that predicted in the

absence of the ecological feedback (Mylius and Diekmann 1995). Second, it can give raise

to qualitatively new phenomena, such as evolutionary branching points, which may, for ex-

ample, lead a monomorphic population toward a dimorphic state. The implications for the

speciation process has been discussed elsewhere (Dieckmann and Doebeli 1999, Doebeli and

Dieckmann 2000).

In most of these analyses, a time scale separation between ecological and evolutionary

processes is assumed: the apparition of a new genetic variant results in a period of competi-

tive interaction between the resident and mutant strategy that is short relatively to the time

required for new genetic mutants to appear (Diekmann 2004). Thus, on the evolutionary

time scale, if the mutant successfully invades and replaces the resident strategy, the environ-

ment sets more or less instantaneously to its long-term behavior. This coincides with the

classic view that evolution is a slow process, acting on the scale of thousands if not millions

of generations, whereas ecological processes acts on the scale of few generations (Slobodkin

1961). New evidences have however challenged this view and shown that evolution can be

as fast as the ecological process (Thompson 1998, Carroll et al. 2007, Pelletier et al. 2009,

Ellner et al. 2011, Schoener 2011). Once again, releasing simplifying assumptions comes

with qualitatively new phenomena for both the ecological and evolutionary process, and

we are only starting to understand the implications of this eco-evolutionary feedback on

contemporary time scales (Ellner 2013).

All these observations highlight the fact that the dependency of ecological dynamics

on the genetic composition of the population has influence on the evolutionary process and

15



vice-versa. The environment dynamically responds to genetic and phenotypic variation. Any

analysis aiming at studying how these processes act in conjunction requires a mechanistic

account of how ecological and evolutionary factors act to generate phenotypic variation at the

individual level, and assess how this variation, in turn, conditions ecological and evolutionary

processes.

1.3 Conclusions and structure of the thesis

I discussed how the combination of state-dependence in individual energetics and density-

dependent processes could give rise to various population and community phenomena, and

had implications for evolutionary processes. Linking this theory with empirical systems

requires experimentations that assess and parameterize the functional dependency of indi-

vidual performance on environmental state. Yet, in almost all the experiments that have

been carried out, individuals were raised in isolation under various but constant environ-

mental conditions. It is then assumed that the inferences drawn from these experiments

remain valid under conditions of density dependence and when the environment varies in a

dynamic fashion. This assumption has however never been tested, but as discussed in this

introduction, there are logical reasons to expect that it may not always be valid.

As the Daphnia systems represents one of the systems in which individual energetics

have been the most thoroughly studied, I conducted an exhaustive review of the literature

to identify studies that looked specifically at how different clones respond to variation in

their food environment (Deng 1996, Ebert 1991, 1993, Ebert et al. 1993, Epp 1996, Giebel-

hausen and Lampert 2001, Glazier 1992, Glazier and Callow 1992, Nelson 2004, Nelson and

McCauley 2005, Olijnyk and Nelson 2013, Pietrzak et al. 2010, Weider 1985, Weider and

Wolf 1991, Yampolsky and Kalabushkin 1991). Beside the studies of Nelson et al. (Nelson

2004, Nelson et al. 2005), these studies have invariably used individuals raised in isolation

and under constant food conditions. It is thus hardly defendable that we can bridge indi-
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vidual genetics with ecological and evolutionary patterns, when the presupposed effects of

interclonal differences measured at the individual level have not even been tested in term of

their effects at the population level.

In this introduction, I discussed how the individual is a highly dynamical unit, responding

to physiological, ecological and evolutionary factors. Ecological and evolutionary theories

have brought some insights on the novel phenomena emerging from this variability. Yet,

they also give a hint of the complexity emerging when more and more realism on these pro-

cesses is considered. There is still much theoretical and empirical knowledge that remain to

be bridged to reach a better understanding of these processes. Reaching a comprehensive

knowledge of how environmental variability and genetic variability combine with each other

to affect the dynamics at the individual and population levels can only be achieved through

a complementary effort of mathematical modeling, of empirical quantification of life-history,

demography and environmental dynamics, and of mechanistic approaches aiming at charac-

terizing the physiological responses of genetic variants to their environment and their impact

on ecological and evolutionary dynamics. My Ph.D. research has been motivated by these

observations and aims at bringing some elements that could help completing this knowledge.

More specifically, I have been looking at the effects the ecological feedback entails on the

expression of individual life history and how genetic and environmental variation combine

each other to affect the demographic process. I used a mechanistic approach that link the ge-

netic response of individuals to ecological and evolutionary factors to the population process

through the consideration of individual energetic and life-history processes.

In the second chapter of this thesis, I present methods for carrying out sensitivity analysis

of dynamic energy budget models. I make use of the ‘direct method’ from mathematical

theory on a simple model for individual growth, fecundity and mortality. The method allows

to quantify the effects and to decompose the chain of events that small genetic perturbation

in energetics cause on individual realized patterns of life history. Sensitivity analyses are
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of paramount importance in ecological and evolutionary theory, but their application to

continuous time models has been virtually ignored from these fields until now. I discuss the

benefits its application can bring for the study of many ecological issues.

In the third chapter, I make further use of these techniques to study how genetic variation

affects individual life history under conditions of density dependence. In consumer-resource

systems, regulation of the consumer population growth is achieved through resource ad-

justment, which is only possible if the resource conditions adjust dynamically to consumer

biology. These mechanisms drastically alter the predictions made on realized patterns of

individual life history and have important implications for life-history evolution theory, as

these effects have been traditionally ignored from these lines of research.

In the fourth chapter, I present the results of large manipulative experiments on Daph-

nia-algae systems designed to study how the combined effect of genetic variation and envi-

ronmental fluctuations affect the population demography and its underlying energetic basis.

The previous chapter reports that the environmental feedback tends to buffer the effect

of genetic variation on individual phenotype and demography. Thus, I used a unique ex-

perimental protocol that decoupled this environmental feedback and allowed for a better

characterization of genetic differences among clones. It is shown that resulting population

demographical patterns are affected by a genotype-environment interaction, and that envi-

ronmental fluctuations affect qualitatively the dependence of individual energetics on food

conditions. These results have important implications for the way we envision how genetic

variation affects ecological processes at the population and higher levels.

In the fifth chapter, I investigate the molecular basis underlying observed demographical

patterns observed in the previous chapter. Genome-wide gene expression patterns were

quantified for two of the clones used in the previous experiment, using microarrays. This

chapter represents only a first-step analysis of the wealth of data provided by this experiment

and aims at providing a preliminary test of the patterns of gene expression under distinct
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environmental dynamics and assess their coherence with observations at the population level.

These results show that a large percentage of the Daphnia genome is sensitive to the cycle

phase, cycle type, and clonal variation. Moreover, genotype-environment interactions could

also be detected at the genomic level.

Finally, I explore further the consequences of one of the major findings drawn from these

experiments, namely that environmental fluctuations may reverse the competitive ranking

between differently sized individuals. I show that beyond potential genetic differences, com-

mon mechanisms drive the dynamics of these experimental systems. These results may help

explaining seemingly contradictory evidences on the patterns of intraspecific competitions

observed in Daphnia species, and they have major implications for understanding the mech-

anisms driving the dynamics of many consumer-resource systems.
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Chapter 2

Sensitivity analysis of continuous-time models

2.1 Introduction

Sensitivity analysis is a powerful tool that allows assessment of the effect of parameter

variation on model outputs. Its application to ecological and evolutionary theory involves

a large range of issues and represents an important contribution to the fields of population

dynamics, conservation biology, epidemiology, ecotoxicology, evolutionary biology (Benton

and Grant 1999, Caswell 2000, Easterling et al. 2000, Metcalf and Pavard 2007). In these

applications, the models being used are specified on a discrete-time basis, usually as a form

of matrix population models. There is a well-developed framework for applying sensitivity

analysis to these types of models, including models accounting for environmental variability,

density-dependent growth and transient dynamics (Caswell 2000, 2007, 2008, 2009).

Whereas discrete-time models are adequate for modeling many systems, a large range

of systems are best modeled within a continuous-time framework, with models specified as

a set of differential equations (Gurney and Nisbet 1997). This includes a large class of

population models, such as consumer-resources or epidemiologic models. Continuous-time

models are also important for models of individual life-history, as they are often derived from

the consideration of the energetics of growth, development and reproduction, processes that

operate on a continuous-time basis (De Roos 2008).

Besides a handful of studies, sensitivity analysis has largely been omitted from the anal-

ysis of these ecological and life history models (Buzby et al. 2008, Tavener et al. 2008; as far

as the authors are aware). The insights that sensitivity analysis can yield for understanding

their behavior is potentially as large as their discrete-time cousins, and ecological and evolu-

tionary theory would certainly benefit from a more spread application of sensitivity analyses.
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De Roos (2008) presented numerical methods for deriving the sensitivity of the population

growth rate based on finite differenciation methods, and this method may also be applicable

to a larger range of issues. Mathematical theory possesses however an analytical framework

with a comprehensive set of tools that makes this type of analysis applicable to almost any

models commonly used by ecologists and evolutionary biologists.

Time-dependent models make predictions on the dynamics of the variables over time

and these trajectories have often an intrinsic interest beyond their asymptotic behavior.

This is particularly true when the time variable represents an individual age, such as in

models for individual life-history, for example. The interest is then placed on the whole,

age-dependent, realization of the schedule of growth, reproduction and mortality. In this

case, parameter perturbation is likely to affect these trajectories all along an individual

lifetime, and may manifest its effect in a contrasted way depending on the individual age.

The sensitivities of these model outputs to parameter perturbation are thus themselves

time-dependent trajectories, and have therefore been referred by some author as dynamic

sensitivities (Shiraishi et al. 2009). The possibility of performing this kind analysis on

systems of differential equations can thus prove particularly useful for the field of life history

theory, as it enables dealing with issues that could previously be dealt only with models

having closed-form solutions (e.g. Roff 2002). For example, it can be used to study how

variation in the energy allocation function between growth and reproduction affects resulting

patterns of individual development and fecundity. Doing so does not only yield insights on

the mechanisms underlying patterns of phenotypic expression, but because of the direct

link of these components with the demographical process, this allows to draw a number of

implications for ecological and evolutionary processes. In particular, it makes it possible to

calculate the selection gradient for physiologically structured populations, which is itself a

sensitivity.

The two main methods allowing sensitivity analysis are the direct and the adjoint meth-
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ods (Tortorelli and Michaleris 1994). The goal of this paper is to present and adapt the

direct method to the analysis of ecological methods. We walk the reader through an ap-

plication using a model that predicts individual lifetime patterns of growth, fecundity and

survival based from the consideration of the mechanisms mediating individual energetics.

Additionally, we also present method for analyzing the sensitivity of discrete events, such

as the age at maturity, which are less easily accessible than the basic tools for sensitivity

analysis, as this type of phenomena yields an hybrid system, which exhibit both continuous

and discrete dynamic behavior.

2.2 Dynamic models and dynamic sensitivities

2.2.1 The direct method

Consider a general dynamic model given by the following system of ordinary differential

equations:

dx

dt
(t, p) = f(x(t, p), p) (2.1)

x(t0, p) = x0 (2.2)

Where x(t, p) is a vector containing the n state variables, xi(t, p). Note that we made

their values at time t to be a function of some parameter of interest p. f is a vector of n

function fi giving the rate of change in x(t, p) as a function of time.

Integrating such a system yields a solution x(t, p) that gives the trajectory of the states

variables as a function of time, for a given value of the parameter p. The effects of small

(finite) changes ∆p in the parameter p on these trajectories can be assessed through linear

extrapolation:

x(t, p+ ∆p) ≈ x(t, p) +
dx(t, p)

dp
∆p (2.3)

The sensitivities are the terms Sp(t) ≡
dx(t, p)

dp
, or expressed in scalar notation, Sip(t) ≡
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dxi(t, p)

dp
. They can be interpreted as the expected displacement in x(t, p) relative to an

arbitrarily small displacement in p.

Most systems of differential equations do not have any closed-form solution. Instead

the dynamics are specified by a system of equations, such as (2.1, 2.2), and the solution

is inferred by numerical integration. Doing so prevents any differentiation of the solution,

and one has to resort on other methods in order to derive the sensitivities. One of these

is the direct method (Tomovic and Vukobratovic 1972, Dickinson and Gelinas 1976). It

simply requires the integration of an additional set of differential equations, together with

the original system. Its derivation is straightforward and involves only basic calculus. The

only potential difficulty one may encounter arises when discontinuities are present in the rate

functions f , but we give a method for dealing with these issues in part 5.

The derivation starts by noticing that since:

xi(t, p) =

∫ t

t0

fi(x(τ, p), p)dτ (2.4)

then

Sip(t) =
d

dp

∫ t

t0

fi(x(τ, p), p)dτ (2.5)

Interchanging the order of differentiation and integration gives:

Sip(t) =

∫ t

t0

dfi(x(τ, p), p)

dp
dτ (2.6)

This implies that the variable Sip(t) can be solved by integrating the differential equation

dSip(t)

dt
=
dfi(x(t, p), p)

dp
(2.7)

along with the original system.

Further progress is made by applying the chain rule to (2.7):

dSip
dt

=
∂fi
∂p

+
n∑

j=1

∂fi
∂xj

Sjp (2.8)
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Notice that a correct interpretation of the resulting sensitivities is only possible in the

context of dynamical systems. Indeed, at a given time t, the perturbation in p affects only

directly the rates at which the system changes. This eventually affects the state of the system

at future time, but not at the focal time t.

2.3 Applying the sensitivity analysis

In what follows, we show an application of these methods on an example model. We first

present the model, and then provide some basic, though relatively detailled, interpretation

of the results of this analysis, with the hope of giving the reader a better sense as to what

these dynamic sensitivities represent, how they arise, and to what purpose they can be used.

2.3.1 The model

The model we use is a basic model for the physiological ecology of individual consumers. It is

derived from a simple account of basic rules of energy acquisition, allocation and expenditure;

and predicts individual lifetime patterns of growth, reproduction and survival. Below, we

give a brief description of the model and its derivation. The model is set using functions and

parameter values that roughly corresponds to Daphnia pulex biology (Nisbet et al. 2004,

2010). All equations and default parameter values used are given in Tables 2.1 and 2.2.

Individual consumers feed on a single resource present at a constant concentration F .

They grow all their life, as long as enough food is available. The relation between an

individual weight and length is fixed: W = χL3. We use length (L) as the state-variable

describing the individual ”size”. Metabolic maintenance rate scales linearly with individual

weight: M = mχL3. Individuals have a type II functional response, with a half saturation

constant Fh and a maximum assimilation rate that increases proportionally to the square

of individual’s length: Amax = νL2. At any age, individual allocate energy toward growth.

The rate of energy allocation is a fixed proportion θ of the net production rate (assimilation
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minus maintenance rate). Taken together, these elements produce the following equation for

an individual growth rate:

dL

da
=

θ

3χ

(
F

F + Fh
ν −mχL

)
(2.9)

All remaining energy serves reproductive purposes: development of a reproductive struc-

ture in juveniles (maturation), and offspring production in adults. For simplicity, we assume

no energy costs associated with the maintenance of the reproductive tissues. The dynamics

in the cumulative amount of energy invested toward reproduction, R(a), thus follow:

dR

da
= (1− θ)

(
F

F + Fh
νL2 −mχL3

)
(2.10)

In the juvenile stages, when this quantity hits some threshold Rm, the individual matures

into an adult and starts reproducing.

The fraction of individuals surviving up to age a is denoted as s(a). Per-capita mortality

rate is taken to depend on an individual length such that:

ds

da
= −(µ0 + µ1e

µ2L)s(a) (2.11)

We chose a parameterization that makes it an increasing function of length.

For further purposes, we will also need to calculate the average number of descendants

produced from birth to age a that we refer to as effective fecundity: B(a) =

∫ a

0

β(α)s(α)dα,

where β(a) is the rate of offspring production of individuals of age a. Thus, the value B(∞)

is the basic reproductive number R0.

Our model therefore contains 4 state-variables: L, s, R, and B. We denote the corre-

sponding rate functions as gL, gs, gR, and gB, respectively. Note that under these assump-

tions and under constant food concentration, the model results in von Bertalanffy growth

with parameters: L∞ = νF
mχ(F+Fh)

and rB = θm
3

. We also note here that net production rate

is a hump-shaped function of length, and so are individual growth rate and the fecundity

rate since they are directly proportional to net production rate. It starts as an increasing
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function of length, reaches a maximum at Lp =
2νF

3mχ(F + Fh)
, and then decreases again

with length, to become null at L = L∞. Under the model parameterization used in our

example, Lp = 4.72 mm, a length that individuals do not reach within their lifetime. So, in

the interpretation presented below, we simply consider net production to be an increasing

function of length, and to remain always positive.

Examples of model runs for a constant food concentration of 100 µgC/mL and for different

values of θ are shown in Figure 2.1, left pannel. Natural questions that can be asked in view

of this figure are: what is the effects of a small change in the model parameters on these

trajectories? And how do these effects come about? For example, does increasing energy

investement toward reproduction necessarily increases lifetime offspring production? Figure

2.1e clearly shows that the response is no - most certainly because of the allocation trade-off

with somatic growth. Can we then characterize the details about how this trade-off operates?

All these questions can be enlightened through the help of a sensitivity analysis.

2.3.2 Model analysis

For this example, we choose θ - the fraction of net production allocated to growth - as the

parameter to be perturbed. The system of differential equations used to solve the sensitivities

is given in Table 2.3 in a generic form and as a function of model parameters and variables in

Table 2.4. A diagramatic representation of the paths conveying the perturbation to the state

variables is given in Figure 2.2. Model predictions for three values of θ, and the corresponding

sensitivities are plotted in Figure 2.1.

Sensitivity of L(a). Figure 2.1 shows that, not surprisingly, an increase in the fraction of

net production allocated to growth increases an individual length at every age. It is also

an increasing function of an individual age, reflecting the fact that the perturbation does

not only affects an individual’s growth rate at every age, but also accumulate over the

growth trajectory. This intuitive result can also be explained in a more mechanistic fashion
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by considering the differential equation for the sensitivity (Table 2.3 eq. 1). Variation in

the function SLθ is the result of two processes: the direct effect of parameter variation on

the growth rate
∂gL
∂θ

; and variation resulting from the perturbed value of individual length

consequent to the past effects of the perturbation
∂gL
∂L

SLθ. Both
∂gL
∂θ

and
∂gL
∂L

are positive

(as long as L < 4.72 mm), leading SL(a) to be a monotonically increasing function of age.

Sensitivity of s(a). Increasing θ decreases the fraction of individuals surviving at every age,

and the survival curve is most strongly affected by the perturbation in θ when individuals

are about 20 days old. In contrast to the previous case, the perturbation does not act di-

rectly upon the survival function (Figure 2.2 and Table 2.3). Mortality rates are impacted

only because mortality rate depends on individual length, which is affected by the perturba-

tion. Since the per-capita mortality rate is an increasing function of length, and the growth

trajectory is affected positively by the perturbation, per-capita mortality increases at every

age.

The other term mediating variation in the survival function is
∂gs
∂s

Ssθ and results from

the effect of the perturbation at previous age on s(a). Since the focus is at an individual

level, it is important to recognize that this is a mathematical effect resulting from the fact

that we calculate an expectation which corresponds to the probability of survival from birth

to age a, but individual survival remain unaffected per se. Because
∂gs
∂s

is negative, the

resulting feedback is negative, and this eventually nullifies the effect of the perturbation.

Sensitivity of R(a) Compared to the two previous cases, the pattern of sensitivity of the

reproductive output appears more variable, and strongly depends on the value of θ. Increas-

ing θ for small values of θ increases reproductive output at every age (green curve in Figure

2.1f), whereas the opposite is true for large values of θ (blue curve). In a crude way, this

indicates that reproductive output is the greatest at some intermediate values of θ, as it

indeed appears to be the case in Figure 2.1e. Intermediate values of θ result in R(a) to be

less sensitive to the perturbation. This produces more subtle patterns of variation, where
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the perturbation affects the distribution of the reproductive output within the individual’s

lifetime, rather than simply causes an overall increase / decrease.

Perturbation in R(a) arises from the direct negative effect of parameter perturbation on

the rate of reproductive allocation, and from an indirect effect resulting from the dependency

of net production on length (Table 2.3, Figure 2.2). Since net production increases with

length, this last effect contributes positively to the R(a). Again, these two processes oppose

each other, much like it was the case for Ssθ(a). However, there is no negative feedback

effect limiting the range of variation in SRθ(a) and the effect of perturbation seems to grow

unbounded with age.

Whereas the results from the two previous cases could have been roughly predicted on

a purely logical ground, it is much harder to deduce the effects of the perturbation on R

without the quantitative predictions provided by the sensitivity analysis.

In this section, we have shown how applying an analysis of sensitivity may reveal the

effect of parameter perturbation on the different components of an individual’s expressed life

history. This effect is usually non-uniform over an individual’s lifetime, reflecting the fact

that the perturbation affects vital rates in a different fashion as a function of an individual

age, but also that these effects accumulate at future ages. For example, the dynamics of all

three curves (SLθ, Ssθ, and SRθ) depend on a number of elements that are interdependent in

time. Nonetheless, their rates of change at any given age depends on a sum of independent

mechanisms as revealed by eq. (2.8) and this makes it possible to break apart the effect

of the perturbation into the contribution of independent processes. The above discussion

on the different curves exemplifies how the consideration of this property may be used to

provide further insights on the mechanisms allowing the perturbation to propagate over the

different compartments of an individual expressed phenotype.

The last aspect of the model analysis that has not been discussed so far concerns the

sensitivities of B(a). Its analysis presents an additional difficulty, which is exemplified the
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jump in the function SBθ(a) occuring at maturity that can be seen in Figure. 2.1h. It

happens because the fecundity rate function is discontinuous at maturity. The way to deal

with that peculiarity is a particular case of analyzing sensitivities associated with the timing

of events, and we present the framework necessary to deal with this below.

2.4 Sensitivity analysis of events

In many circumstances, the timing of events matters, and perturbation in this timing may

generate additional sources of perturbation. Formally, we define an event as a particular

state of interest taken by the system. For example, an event may be associated with the

moment at which an individual reaches maturation, or the moment at which the survival

probability equates 0.5. Mathematically, this may be expressed as a condition on the state

of the system, such as:
∫ te

t0

f(τ, p)dτ = h(x(te, p)) (2.12)

Where te is the time at which the event happens, and h is some function defining the

conditions on the state of the system.

If the function f(τ, p) is affected by parameter perturbation, the interval of time (te− t0)

necessary for condition (2.12) to be met will most certainly be affected too, making it an

implicit function of p. In order to assess the resulting displacement in t0 and te, we resort

to the following property of integrals with a variable domain of integration (Apostol 1991,

Stewart 2007):

d

dp

∫ te(p)

t0(p)

f(τ, p)dτ =

∫ te

t0

∂f(τ, p)

∂p
dτ − f(t0, p)

dt0
dp

+ f(te, p)
dte
dp

(2.13)

To see how this property can be used, we come back to our example. We saw that

maturity was trigerred once the individual had gathered enough energy to this purpose.

This condition is expressed as:
∫ Am

0

gR(a, θ) da = Rm (2.14)

29



where Am is the age at maturity.

Considering perturbation in θ and using (2.13), we deduce that:

∫ Am

0

∂gR(a, θ)

∂θ
da+ gR(Am, θ)

dAm
dθ

= 0 (2.15)

And we conclude that:

dAm
dθ

= − SRθ(Am)

gR(Am, θ)
(2.16)

Calculating such a measure may be useful because for its intrinsic interest, but it might

also be a necessary step for further calculations. Indeed, in this particular example, the

condition defining the event is posed on one variable of the system only (R). This implies

that the perturbed timing of this event may be associated with further variation on the

values of the other state-variables. For example, perturbation in the age at maturity entails

additional perturbation in the length at maturity. Indeed, the length at maturity is defined

by:

Lm(θ) =

∫ Am(θ)

0

gL(a, θ)da (2.17)

Using (2.13) once again, it follows that:

dLm
dθ

= SLθ(Am) + gL(Am, θ)
dAm
dθ

(2.18)

which is readily calculated once SLθ (part 3.2) and
dAm
dθ

(eq. 2.16) are known.

Hence, the perturbation affects the length at maturity in two different ways: because of

its effect on the growth schedule - which is accounted for by the term SLθ(Am); and also

because Lm depends on the age at which the individual matures, which may also be affected

by the perturbation. This rises a call for warning: if no care is taken, one may conclude too

quickly that the sensitivity simply equates SLθ(Am).

Discontinuities
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A particular kind of events are those represented by discontinuities. Biologically, such

discontinuities are often the result of abrupt changes in individual vital rates, as might

happen when individuals start reproducing. In our example, the function gB(a) presents

such a discontinuity and ’jumps’ from 0 to β(Am)s(Am) at maturity. Discontinuities may

have important consequences in term of integration, and their effects must be carefully

accounted for (Tolsma and Barton 2002).

Consider once again the following dynamical system:

dx(t, p)

dt
= f(t, p) (2.19)

and consider a discontinuity in the function f(t, p) arising at some point in time td. Rather

than considering the value of the function at this point, we look at the limits on the left

(i.e. t < td) and on the right (t > td) of this point. As long as these limits are well

defined and finite at td, this does not cause any major problem for integrating the function,

as integrability only requires for the solution x(t, p) to be continuous (Tolsma and Barton

2002). However, in the present context, a subtlety may arise because the location at which

this discontinuity arises may be affected by parameter perturbation.

Indeed, when the sensitivity function is integrated over some interval [0, t] containing the

discontinuity (0 < td(p) < t), we get that:

dx(t, p)

dp
=

d

dp

∫ td(p)

0

f(τ, p)dτ +
d

dp

∫ t

td(p)

f(τ, p)dτ (2.20)

Since each term on the right hand side of (2.20) contains a variable domain of integration,

we need to use (2.13) for their calculations, and acknowledge that the left and right limits

of f at td may be different, to get the result that:

dx(t, p)

dp
=

∫ t

0

∂f

∂p
(τ, p)dτ +

(
f(t−d , p)− f(t+d , p)

) dtd
dp

(2.21)

where f(t−d , p) is the limit on the left hand side, and f(t+d , p), the limit on the right hand

side. Notice that when these limits are equal, the last terms of eq. (2.21) cancel out, and
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there is no effect of the discontinuity. This kind of discontinuities are accordingly classified

as ’removable discontinuities’. Only when these two limits are unequal will there be an effect,

and the discontinuity is called a ’jump discontinuity’ (Stewart 2007).

In term of computation, the easiest way for accounting the effect of a jump discontinuity

is to break the integration at td, update Sxp(t) by adding up
(
f(t−d , p)− f(t+d , p)

) dtd
dp

, and

resume the integration.

In our example, gB(a) presents a jump discontinuity at maturity, with a limit on the left

of gB(A−m) = 0, and a limit on the right of gB(A+
m) = β(Am)s(Am). Thus, for ages a >= Am:

SBθ(a) =

∫ a

Am

∂gB(α, θ)

∂θ
dα− gB(A+

m, θ)
dAm
dθ

(2.22)

The value −gB(A+
m, θ)

dAm
dθ

represents the extent by which the function SB ’jumps’ at matu-

rity, as depicted in Figure 2.1h. Since gB(a) is always positive, it can be deduced that, with

everything else fixed, a perturbation increasing the age at maturity has a negative effect on

B(a) around that age, whereas the opposite is true. This simply comes as a consequence

from the fact that individuals maturating earlier also start producing offspring earlier, and

they do so at a rate gB(A+
m, θ). More details on the sensitivity analysis of events and how

to handle discontinuities can be found in Tolsma and Barton (2002) and ZivariPiran and

Enright (2012). The curve depicted in Figure 2.1h is of particular interest for evolutionary

analysis, as it predicts how reproductive success is affected over an individual lifetime, and

its asymptotic value is an estimate of the selection gradient. For example, it shows here

that the variation induced by the perturbed age at maturity may contribute to a substantial

extent to the final value of the selection gradient if θ is small or large, but has barely any

effect if θ takes intermediate values. Similarly, individuals of different ages will contribute

to a different extent to variation in fitness, depending on the value of θ.
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2.5 Discussion

Perturbation analysis is a major tool in the study of ecological and evolutionary processes

(Benton and Grant 1999, Caswell 2000, Easterling et al. 2000, Metcalf and Pavard 2007).

There is a well-established toolbox for matrix population models, but this type of approach

is virtually absent from the analysis of continuous-time systems specified by a system of

differential equations. In this paper we present a set of tools that makes this analysis

possible based on the ”direct method” from mathematical theory. It applies to any model

specified by a set of ordinary differential equation, and is relatively simple to carry out. The

mathematics are no more involved than those used for matrix population models and simply

require to integrate an additional set of differential equations for the sensitivities along with

the original system. The methodology is conceptually not much different from that presented

by Hal Caswell (2007, 2008, 2009) for matrix population models, where the sensitivities are in

essence evaluated by bookeeping the effect of the perturbation along a given trajectory of the

system or along the stationary distribution of individual states. Both share the advantages

that no assumption needs to be made on stationarity or linearity, making them applicable

to both transient and non-linear dynamics.

All the framework presented in our study is based on the direct method, because we

found it to be the most intuitive and the simplest to apply. There exist however variations

around this methodology, which mostly aim at improving numerical accuracy and efficiency

- as well as alternatives, such as the adjoint-method (Cacuci 1981, Tortorelli and Michaleris

1994, Chaniotis et al. 2001, Dunker et al. 2002, Wu et al. 2008, Perumal and Gunawan 2011,

Zi 2011). We also note that, in contrast to discrete-time models, an additional kind of error

arises when analysing periodic dynamics, because of the effect of parameter perturbation on

the period of the cycles. There are however well established methods for dealing with this

phenomenon (Larter 1983, Wilkins et al. 2009, Lu and Yue 2012), and we will present them

in another paper.
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Although we applied this methodology to a specific model about individual life history,

its application may be valuable for studying a very large range of issues involving dynamic

systems - as large as those of their discrete-time cousins. The sensitivity of the population

growth rate, which has importance for many fields, can be readily derived. It may help in

understanding the effects of natural or anthropological environmental variations on ecological

systems, which includes applications in population, community, and ecosystem ecology, such

as population management, conservation issues. It may be applied to issues in adaptive

dynamics, epidemiology, parameter estimation, stability analyses, etc. The list could be

quite long, see for example Caswell (2000, 2007) or Benton and Grant (1999), for more

complete discussions on the topic. Note that the method is easily extendable for assessing

elasticities (”relative sensitivities”), or higher order sensitivities, which are for example often

used for assessing the dynamic stability of evolutionary singular points (Geritz et al. 1997,

1998).

The method also comes with qualitatively new phenomena associated with the sensitivity

analysis of events. Events may be an important component of continuous time systems.

In the simplest case, an event is simply a carrier of information and does not impact the

dynamical behavior of the system. It essentially acts as a flag on the state of the system. For

example, an event defined as the half-life of the variable modelled (e.g. individual) is often

of interest, but does not impact in itself the dynamics of the system. At another extreme,

an event may induce a jump in the state of the system and/or be the trigger for changes

in the system dynamical behaviour. Both these kinds of events may be of interest in the

biological world. Important issues involving events include studying the factor determining

maturation - as exemplified in this study - and the dynamical consequences of this delay (see

e.g. Day and Rowe 2002, De Roos and Persson 2003, Ernande et al. 2004, McCauley et al.

2009); threshold traits, where continuous variation in a trait called liability underlies discrete

phenotypic variation (Hazel et al. 1990, 2004; Roff 1996); ecological threshold inducing major
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changes in the dynamics of ecological systems, such as regime shifts (Groffman et al. 2006,

Andersen et al. 2009); the period of cyclic dynamics (Kendall et al. 1999, Klausmeier 2008);

and no doubt, one could think of more examples.

Ordinary differential equation models represent only a specific kind of continuous-time

models, but other important one exists, such as delayed or partial differential equation models

(DDE and PDE). For these models, direct methods also exists, which are essentially similar

to those presented here (DDE: Rihan 2002, ZivariPiran and Enright 2012; PDE: Koda et al.

1979, Li et al. 2003, Petzold et al. 2006). The sensitivity analysis of DDE models involves

only little additional complexity, but that of PDE is - not surprisingly - more tedious. PDE

models are intrinsically more complex, but maybe more importantly, the discretization of

the state space necessary for their computation induces an additional kind of error, which

may be difficult to characterize (see e.g. Petzold et al. 2006 for a discussion on the topic). In

any circumstance, the fact that a methodology already exists for these models is comforting

and provides good support in the perspective of developping and applying the analysis for

ecological models.
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Table 2.1: Model definitions.

Balance equations

dL

da
= gL(a) =

θ

3χ

(
F

F + Fh
ν −mχL

)
Growth in length

ds

da
= gs(a) = −(µ0 + µ1e

µ2L)s(a) Survival function

dR

da
= gR(a) = (1− θ)( F

F + Fh
νL2 −mχL3) Energy investement in reproduction

dB

da
= gB(a) = β(a)s(a) Effective fecundity
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Table 2.2: Parameter definitions and default values.

Parameter Value Definition
Fh 164 half saturation constant
ν 3.61 maximum assimilation rate per squared length unit
m 0.1 maintenance rate per weight unit
θ varied proportion of net production allocated toward growth
Lb 0.69 length at birth
We 1.6 egg mass
Rm 5.75 threshold for maturation
µ0 0.07 mortality scalar
µ1 0.005 mortality scalar
µ2 1.5 mortality exponent
χ 1.93 parameter in the weight-for-length relationship
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Table 2.3: Balance equations for the sensitivities in a generic form.

dSLθ
da

=
∂gL
∂θ

+
∂gL
∂L

SLθ

dSsθ
da

=
∂gs
∂L

SLθ +
∂gs
∂s

Ssθ

dSRθ
da

=
∂gR
∂θ

+
∂gR
∂L

SLθ

dSBθ
da

=
∂gB
∂θ

+
∂gB
∂L

SLθ +
∂gB
∂s

Ssθ
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Table 2.4: Balance equations for the sensitivities as a function in an explicit form.

dSLθ
da

=
Fν

3(F + Fh)χ
−mL+

θm

3
SLθ

dSsθ
da

= −µ1µ2e
µ2LsSLθ − (µ0 + µ1e

µ2L)Ssθ

dSRθ
da

= − Fν

(F + Fh)
L2 +mχL3 +

(
(1− θ)( 2ν

F + Fh
L− 3mχL2)

)
SLθ+

dSBθ
da

= − Fν

(F + Fh)We

sL2 +
mχsL3

We

+

(
(1− θ)( 2ν

F + Fh
L− 3mχL2)

)
s

We

SLθ + β(a)Ssθ
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Figure 2.1: Trajectories of the state variables (left pannel), and sensitivities to θ (right
pannel). Blue: θ = 0.2; Black: θ = 0.4; Green: θ = 0.6. Circles indicates the age at which
the individual matures. Food concentration is constant and equals 100 µgC/L.
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Figure 2.2: Diagramatic representation of the paths conveying the perturbation in the allo-
cation function to model’s state variables. The signs next to the arrows indicates whether
increasing the value of a variable of the system (parameter or state-variable) increases or
decreases the rate of change in another dependent variable.
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Chapter 3

Unravelling the determinants of individual life history

in the presence of ecological feedback: A sensitivity

analysis for continuous-time models

3.1 Introduction

Individual life history relates how individual realized patterns of growth, survival and re-

production are expressed within an individual lifetime as a function of individual age or

state (Roff 2002, Stearns 1999). Much interest has been placed in understanding the genetic

and environmental determinants of these patterns (Noordwijk and de Jong 1986, Wade and

Kalitz 1990, Falconer and Mackay 1996, Stearns 2000), as well as characterizing their ecolog-

ical and evolutionary consequences (Metcalf and Pavard 2007, Coulson et al. 2010, De Roos

and Persson 2013). Classical life history theory has been built from a static perspective,

where the environment remains constant, or assume unchanging patterns of variability that

do not depend on population genetic composition. Yet in many circumstances, changes in

an organism’s biology, such as those induced by the evolutionary process, entail changes in

local ecological conditions.

Phenotypic evolution is primarily thought as the consequences of genetic changes that af-

fect the internal functioning of organisms through a chain of physiological processes (Schlicht-

ing and Pigliucci 1998). Phenotypic changes also affect the functioning of ecological units,

such as population and community processes, and these changes feed back on individual or-

ganisms to affect further patterns of phenotypic expression (Figure 3.1, Pelletier et al. 2009,

Ellner et al. 2011). The ecological feedback loop hereby induced has consequences for pre-

dicting the effects of natural selection on patterns of phenotypic expression in natural setting
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and the ecological effects of evolution, as well as for understanding how natural selection acts

in these systems (Dieckmann 1997, Kisdi and Geritz 2010). These types of questions take

particular importance at a time when ecologists and evolutionary biologist start realizing

that evolution can act as fast a ecological processes (Pelletier et al. 2009, Ellner et al. 2011).

The ecological feedback loop is tightly linked to the concept of population regulation.

Population do not grow without bounds, and this is achieved because density dependence

acts on individual vital rates, such as fecundity and survival (Murdoch 1994, Turchin 1999,

Meszéna and Metz 1999, Murdoch et al. 2003, Meszéna et al. 2006). A large body of

ecological theory has focused on the mechanisms causing population growth to be regulated.

In this context, understanding the mechanisms underlying patterns of phenotypic expression

and vital rates is a fundamental question because it underlies virtually every aspect of

ecological and evolutionary dynamics (De Roos et al. 2003).

In many circumstances, density dependence is not direct but mediated through relevant

aspects of the environment, such as resource conditions. To understand the effects of vari-

ation in an organism’s biology, one therefore needs to account for the modified patterns of

interactions between individuals and their environments.

In the case of consumer-resource interactions, the feedback loop is made up by (i) the

effect of consumer population on resource growth, which depends on the foraging pressure

exerted by the consumers, and (ii) the effect of variation in resource density on consumer

population growth, which occurs as a consequence of the resource dependence of consumer

demographic rates. Understanding this interaction requires understanding the physiological

intricacies mediating the individual energetics of acquisition, allocation and expenditure. The

quantity of energy individual organisms can acquire through feeding is by nature limited.

As a consequence, further partitioning of this energy among various physiological processes

operates in a competitive fashion which limits the expression of individual phenotypic and life

history traits (McNamara and Houston 1996, Zera and Harshman 2001, Roff 2002, Koiijman
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2010). Physiological changes can affect all these processes simultaneously. It may therefore

be difficult to apprehend how population regulation may be achieved and in what way

perturbed patterns of individual growth, survival and reproduction contribute to that end.

Progress on these questions have been impeded because these processes operate dynami-

cally, and most often, on a continuous time basis (Metz and Diekmann 1986, De Roos et al.

2008, Kooijman 2010) and their analysis requires the use of mathematical tools no readily

available to the ecologist. For example, there is currently no tool to derive the selection

gradient for models of individual energetics or to predict demographic and individual pheno-

typic changes under conditions of density dependence other than pure numerical simulations.

Simulation studies are useful to characterize these effects, but their explanatory power on to

what cause these changes to happen is limited because many of the intermediate processes

underlying demography are affected simultaneously.

Analytical sensitivity analysis provides a way to characterize the effect of small variations

in model parameters to the resulting outcome. Its explanatory power is greater than pure

numerical simulations, because predictions are achieved by keeping track mechanistically of

the effects of the perturbation along the different components of the model. This makes it

possible to decompose easily the contribution of intermediate processes to an overall out-

come. In an ecological context, it makes it possible to integrate information across biological

scales. For example, it may be used to characterize how much phenotypic change arises

from the direct effect of a perturbation in a genetic parameter and how much is induced by

the environmental feedback loop. As another example, it may be used to decompose the

contribution of perturbed schedules of fecundity, survival and development to the selection

gradient, or to the reaching of population regulation.

Until now, the application of analytical sensitivity analysis in ecology and evolution has

been almost entirely restricted to discrete-time models, and we presented a methodology for

its application to ecological models specified in continuous time (Chapter 2). Our analysis
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aims at applying this type of analysis to a model of physiological ecology and life history of a

consumer species in order to draw implications for the ecological and evolutionary processes.

We use the same model as in Chapter 2, which predicts individual lifetime patterns of growth,

fecundity and survival based from the consideration of the mechanisms mediating individual

energetics. The difference is that we now explicitly account for the mechanisms generating

density dependence on individual vital rates, and explore how this incorporation modifies

predictions.

In this chapter, we restrict our attention on equilibrium dynamics, because we are mostly

interested on how the environmental variation induced by the feedback loop between con-

sumer and their resources affects patterns of phenotypic expression. This issues has never

been investigated before using sensitivity analysis, so we start with the simplest case, as an

analysis under non-equilbrium conditions is likely to come with a burden of technical details

that may obscur general conclusions from this analysis. The generality and limitations of

these conclusions is considered in more details in the discussion.

3.2 Analysis of physiologically structured population at equilibrium

In chapter 2, our example involved the analysis of the consequences of a perturbation in

a parameter on the physiological dynamics of an individual foraging under constant food

conditions. In this context, parameter perturbation affects individual-level dynamics due to

variation in the internal mechanisms underlying patterns of phenotypic expression. We will

refer to these effects altogether as the intrinsic effects of the perturbation. In contrast, the

effects arising from variation in resource density consequent to the ecological feedback will

be referred to feedback-mediated effects.

In contrast to our previous analysis, the occurence of a feedback loop between consumer

and resource dynamics requires the perturbation to be defined at a population level, not only

at the individual level. Such kind of perturbation may, for example, result from an extrinsic
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influence on the system such as an anthropogenic perturbation affecting individual survival

(e.g. harvesting), or a change of mean temperature producing effects on physiological rates.

It is also coherent with evolutionary interpretations, where the perturbation originates either

from change in the mean genotypic value of a population, or from both the occurence of a

mutation at an individual level, and the substitution of the genotype originally present in

the population (resident) by the mutant one (invasion / replacement dynamics).

Because of this assumption, we need to raise our model for individual physiological dy-

namics (the i -state model) to the population level, and then assess the consequences of the

perturbation on the interaction between the population and its environment. Raising the

i -state model to a population level may come with its own difficulties (De Roos 1997, Diek-

mann and Metz 2010). In this paper, we restrict our attention to equilibrium demography,

which makes things simpler, as the equilibrium distribution can be directly described from

the i -state model (Gurney et al. 1996, Diekmann et al. 2003).

The model used in this example is thus the very same in structure as the one used in

Chapter 2. It predicts both the physiological dynamics over an individual lifetime, as well as

the equilibrium demography of the population. This close correspondence between individual

dynamics and equilibrium demography is the source for many insights about the processes

at play, but care must also be taken to keep in mind these two possible interpretations in

order to keep a coherent reasoning.

To predict equilibrium demography, we need to add another ingredient to the model by

imposing additional constraints on the dynamics in order to get an account of the ecological

feedback and reach stationarity. At the level of the consumer population, the condition

for equilibrium imposes that each individual produces on average one descendant during its

lifetime. When there is no direct interaction between individual consumers, this can only

happen if the resource density settle to the particular level F = F ∗ verifying that condition

(De Roos et al. 2010). Mathematically, F ∗ is therefore the particular food density verifying
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that:

R0(F
∗) ≡

∫ ∞

0

β(a, F ∗)s(a, F ∗)da = 1 (3.1)

R0 is the individual’s lifetime offspring production, β is the fecundity rate of age a individuals,

and s, their survival probability.

This relation implies that food density is not a parameter anymore, but instead, a variable

which value is entirely determined by the consumer biology. Thus, we can write equilibrium

food density as a function of the parameter(s) p underlying consumer biology: F ∗ = F ∗(p).

Such a dependence highlights the coupling between consumer’s individual-level dynamics

and resource density, which is the source of the ecological feedback loop. To emphasis this

state of affairs and the difference with the initial i -state model, we refer to the system now

formed by the i -state model plus the condition for equilibrium, as the coupled system.

Since eq. (3.1) establishes the condition determining equilibrium food density, it also

provides the ground for estimating the effect of parameter perturbation on food equilibrium

density. Making R0 a function of both the parameter p to be perturbed, and food equilibrium

density, we get that:

dR0(F
∗(p), p)

dp
= 0 (3.2)

Applying the chain rule, we obtain:

∂R0

∂p
+
∂R0

∂F

dF ∗

dp
= 0 (3.3)

Thus,

dF ∗

dp
= −∂R0

∂p

/
∂R0

∂F
(3.4)

Without any loss of generality, these results could also be derived in term of the per-capita

population growth rate, r(F, p). One simply needs to replace R0 by r in equations (3.2)-

(3.4). The sensitivities of r can be obtained by differentiating the Lotka renewal equation
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and evaluating the resulting expression for r(F, p) = 0 to get that
∂r

∂p
=

1

T

∂R0

∂p
, where

T =

∫ ∞

Am

aβ(a)s(a)da is the mean generation time.

Equation (3.3) is fundamental to establish the effect of the environmental feedback on

demography and individual physiological dynamics. It states that, at equilibrium, any vari-

ation in R0 induced by intrinsic changes in individual demography (first term on the LHS) is

exactly countered by an effect associated with the ecological feedback loop (second term on

the LHS). It is the dependence of individual-level processes on resource density that deter-

mines the appropriate adjustment in equilibrium resource density necessary to compensate

for the intrinsic effect of the perturbation on R0.

The effect of the perturbation on any variable X of the coupled system can be expressed

as:

dX

dp
=
∂X

∂p
+
∂X

∂F

dF ∗

dp
(3.5)

This clearly distinguishes the effects of intrinsic physiological changes from those mediated

by the environmental feedback. Note that the former kind of effects is the very same that

those predicted from the perturbation analysis of the uncoupled i -state model.

We will examplify the consequences of these processes by applying sensitivity analysis of

our example model.

3.3 Sensitivity analysis

The result of the sensitivity analysis of the coupled system are shown in Figure 3.2. The

perturbed parameter is θ, the proportion of net production allocated to growth. The con-

tributions of intrinsic changes, ecological-feedback mediated changes, and total changes are

shown separately.

For the growth and survival curves, the environmental feedback either amplifies the

effects of the perturbation, or has almost neglictible effects. On the other hand, its effect
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on cumulative reproductive energy investment (R) is large, and may reverse that of intrinsic

physiological changes depending on the value of θ. The last pannel of figures shows that the

intrinsic and feedback-mediated effects on effective fecundity (B) indeed cancel each other

out eventually. In all cases, the (positive) perturbation in θ always results in an earlier

schedule of reproduction, which may seem counter-intuitive, and contrasts with the case

with no environmental feedback.

A conclusion that can be drawn from these figures is that, even though the effect of

the environmental feedback on R0 is fully constrained by the requirement of matching the

intrinsic effect of the perturbation (eq.(3.3)), its effect on the intermediate phenotypic and

demographic rates leading to this state of affairs can be of any kind: negligible, amplifying,

buffering, or reversing that associated with intrinsic organismal changes. Figure 3.3 illus-

trates this variety of effects still further, by showing the contributions of intrinsic versus

feedback-mediated effects to the total variation of various demographic statistics and phe-

notypic traits in different regions of the parameter space. One can see that the contribution

of the two kinds of effects are generally opposite, and the prevalence of one or the other is

balanced, depending on the trait being looked at and the region of the parameter space.

3.4 Discussion

3.4.1 Individual dynamics and environmental coupling

Our study aims at providing further clarifications about the contribution of the ecological

feedback to the expression of phenotypes and its consequences for the demographic process

by looking in depth at the individual-level processes mediating the interaction between or-

ganisms and their environment. In this prospect, equations (3.3) and (3.5) are very useful

because they explicit the nature of the elements involved in this interaction. Their deriva-

tions result from a simple recognition of the dependence of R0 on consumer biology and

environmental conditions (Mylius and Diekmann 1995), and an application of the chain
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rule. It is essentially similar to those carried out by De Roos (2008), which applied it to the

Lotka renewal equation for analyzing density-independent models and derived the sensitiv-

ity of the intrinsic growth rate. Here, we show that the application of these principles to

density-dependent models yields powerful insights on the mechanisms mediating phenotypic

expression and population regulation, which we will discuss below.

These equations show that phenotypic and demographic changes can be compartemental-

ized into the contribution of three major components: the ”intrinsic” changes in individual

life history, variation in ecological conditions, and a plastic response to these changes (
∂X

∂p
,

dF ∗

dp
, and

∂X

∂F
, respectively). Though these equations are derived under a restricted set of

assumptions and formulated in term of perturbation analysis, they carry more generality

and may be interpreted phenomenologically as a decomposition of phenotypic changes into

intrinsic and plastic components, with concomitant changes in ecological conditions.

The effects of the ecological feedback come as a consequence of imposing constraints on

population growth, such that long-term population dynamics are regulated. The primary

implication is that the effect of the ecological feedback to the overall demographic perfor-

mance of individuals (i.e. R0) buffers that of the original perturbation: it has the exact

same magnitude but an opposite direction. This also defines the effect of the perturbation

on the environmental component: both the intrinsic effect of the perturbation and the plastic

response to the environmental conditions are already fully constrained by intrinsic proper-

ties of the individual (i.e. the structure of the i -state model), the condition for long-term

stationary dynamics is thus reached through an adjustement of the ecological variable.

This fundamental constraint does however not necessarily hold for the other phenotypic

and demographic traits involved in the process. Nonetheless, because of this final result,

we may still expect the ecological feedback to be of the same importance than that of the

intrinsic effect of the perturbation in determining total phenotypic changes in the population,

and most often, to act in an opposite direction. In part 3.3, we confirmed this inference by
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studying in details the relative contribution of both these effects on the traits involved

(Figures 3.2 and 3.3). This analysis also showed that, even though these effects often act

in an opposite direction, all possible scenarios are possible, and the ecological feedback can

either buffer, reverse, or amplify the intrinsic effect of the perturbation.

3.4.2 Beyond the stationarity assumption

Because we focused on the role of the ecological feedback, we considered exclusively variation

in the ecological component underlying this feedback, and assumed stationarity of the process

with associated steady-state dynamics. The prevalence of equilibrium demography in natural

systems may certainly be deemed circumscribed (Hasting 2004, 2010), so we discuss this

assumption first, argue that it does not impede much on the generality of the results discussed

below, and propose solutions to move beyond that assumption.

First, population regulation does not necessarily implies equilibrium dynamics, it only

needs population abundance to remain bounded over time. In any circumstance, if popu-

lation growth is effectively regulated, an ecological feedback loop must still be at play for

population abundance to remain bounded over the long term (Murdoch 1994, Turchin 1995,

Murdoch et al. 2003). In particular, the general result that any variation in demographic

performance induced by a perturbation must be eventually compensated for through the

ecological feedback still holds. In other words, an equation similar to (3.3), integrated over

an appropriate period of time, still holds under non-equilibrium situation (e.g. one period for

cyclic dynamics, its limit toward infinity for chaotic dynamics). Admittedly, the details as

to how and when regulation kicks in may vary and the mathematical analysis more complex.

Secondly, these results are about the outcome of the process. There is no explicit account

for the dynamics happening between the time the perturbation is applied, and the time at

which the adjustement of ecological conditions is reached. These details are certainly of

importance for understanding the contemporary dynamics of ecological systems (Hasting

2010). Though we only looked at what happened once stationarity was reached, it is only
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an assumption specific to the focus of our study and does not constitute a limitation of the

general methodology presented. These transient dynamics can be fully accounted for by

including a model for the dynamics of the ecological variable. For example, these dynamics

could be modelled by assuming some function for resource production (e.g. logistic) and

accounting for the effect of consumption on resource density.

3.4.3 Implications for life history theory

Life histories evolve in the presence of ecological feedback (Bassar et al. 2010, 2012, 2013,

De Roos and Persson 2012, Travis et al. 2013). Arguably, the main result of this study

in this respect, is that ecological feedback-mediated effects bring about as much changes

on patterns of phenotypic expression than genetic changes do. Predictions on patterns of

phenotypic evolution that omit this inclusion may therefore be misleading and be the source

for mismatches between the phenotypic and demographic characteristics expected to emerge

from the evolutionary process, and observations of organisms’ biology in the wild. This mis-

match may be thought as the difference between two qualitatively different measures: what

natural selection favors versus what natural selection results in. In an evolutionary context,

the term
∂R0

∂p
can be interpreted as the selection gradient, as it reflects the variation in pop-

ulation growth consequent to a small genetic change in individual physiological parameters

(Lande and Arnold 1983). This measure relates to the life history that is selected for or

against, and is only expressed during the early stages of the selective processes. However,

in the case these characteristics are actually selected (i.e. become the resident strategy or

the mean genotypic value in the population), it becomes clear from equation (3.5) and the

examples shown above that, in general, these are not the phenotypic and demographic char-

acteristics that will eventually be expressed by the individuals. Clearly, when the focus is at

a phenotypic level, what natural selection favours, and what natural selection results in are

two very different things. Both measures may lead to contrasting and sometimes opposite

predictions, because in numerous instances, the effect of the environmental feedback may be
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stronger. As the effect of the environmental feedback is defined in a way that oppose the

effect of natural selection, it has often a buffering effect on the variation induced by natu-

ral selection on phenotypic and demographic components, particularly those closely related

to fitness. This may be a reason for instances of selection that remain undetected in the

wild, and provides further grounds for speculating that rapid evolution may be more preva-

lent than expected from the observation of phenotypic changes alone (Ellner et al. 2011,

Palkovacs et al. 2012).

Previous analyses have been developed to partition the phenotypic variation following

environmental changes into the contribution of physiological, ecological and evolutionary

components (Collins and Gardner 2008, Ellner et al. 2011). Our approach differs from these

previous works in that environmental change is not considered as given here, but is instead

a consequence of combining genetic changes in the focal population with a feedback loop

between individuals and their environment. Additionally, our framework of analysis investi-

gates the effect of genetic variation on the whole age-dependent trajectories of individuals’

life history, rather than single valued traits. Interestingly, both these analyses also found

that ecological and evolutionary opposed each other and were often similar in magnitude.

The context of their studies is slightly different, because these authors mostly considered

case scenarios where the environmental perturbation originated first, and evolution followed,

whereas we considered the opposite. Our analysis is nonetheless supportive of these results,

and our analysis strongly suggests that these findings may be the consequences of the eco-

logical feedback loop that cause population to be regulated, because, irrespectively of the

nature of the perturbation affecting population demography, other mechanisms need to act

in an opposite way to limit population growth and maintain their persistence.
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3.4.4 Implications for population persistence and regulation

Our results are not only relevant in an evolutionary context. The perturbation may origi-

nate from an extrinsic influence on the system. This could, for example, reflect an increased

mortality due to harvesting, or a contrario, an effect following the application of conser-

vation measures. In many circumstances, human-induced perturbations act negatively on

population growth, and thus, the ecological feedback, which acts in an opposite direction,

may prevent population from extinction by improving (some aspects of) the environmental

conditions. Basically, similar predictions can be made from even the simplest consumer-

resource models (e.g. Lotka-Volterra like models), though they lack the necessary realism

to make predictions on individual life histories. Compensatory response of life histories to

perturbations have been documented empirically (Metcalfe and Monoghan 2002, Moe et al.

2002, Schröder et al. 2009, Nilsson et al. 2010, Ohlberger et al. 2011).

The mechanisms underlying the population feedback on individual realized life histories

may therefore have an important role for population persistence. At an individual level,

population persistence relies essentially on the plastic phenotypic response following the

adjustement in the ecological variable. Nonetheless, in contrast to the commonly held view,

the plastic response may not be qualified as adaptive per-se, because it is dictated by the

physiological mechanisms driving the response of individuals to their environments. None of

these two mechanisms involved bear any relation to the adaptive process, and they may be

more adequately interpreted as components mediating the resilience of ecological systems.
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Figure 3.1: Diagrammatic representation of the interdependency between individual genetics,
phenotypes, environment and population processes. Individual expressed phenotype is the
product between the genetically based components mediating the individual physiological
response to their environment, and the state of their environment. The left pannel shows
what happens in the abscence of ecological feedback and the right pannel what happens in its
presence. The ecological feedback loop is represented by the red arrow: individual expressed
phenotypes condition the population process which contributes to environmental dynamics
to eventually feed back on patterns of phenotypic expression.
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Figure 3.2: Sensitivities of the model state-variables to perturbation in θ, the fraction of the
net production allocated to growth. The different columns show the total, intrinsic effect
and feedback-mediated effects. Blue: θ = 0.2; Black: θ = 0.4; Green: θ = 0.6.
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Figure 3.3: Contributions of intrinsic physiological changes (Red) and environmental feed-
back (Green) to variation in some demographic statistics and phenotypic traits as a function
of θ, the fraction of the net production allocated to growth. The blue line represents the
total effect of the perturbation. The bars at the bottom of each graph indicates which of the

two effects contributes the most to total change. Note that the sign of
dF ∗

dp
changes from

negative to positive around θ = 0.23, which is always associated with a change in the sign
of the contribution of feedback-mediated effects.
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Chapter 4

Genotype-environment interactions at a population

level: The expression of genetic variation depends on

the patterns of environmental fluctuations

4.1 Introduction

Understanding how organisms and populations respond to environmental variability is a

fundamental question in ecology. Ecological interactions, such as consumer-resource or in-

traspecific competitive interactions, can generate various kinds of cycles, and therefore have

implications for understanding the dynamics of natural systems (Murdoch et al. 2003, De

Roos and Persson 2013). The variation generated by these cycles may affect ecological rates

at the individual level to generate qualitatively new phenomena compared to constant food

conditions. For example, decreasing food levels may induce major change in reproductive

allocation and trigger starvation (Kirk 1997, Peeters et al. 2010). The energetics of individ-

ual feeding, growth, fecundity and mortality is one of the cornerstones that makes it possible

to establish a connection between the organisms’ food environment and their demography

(Gurney et al. 1996, Nisbet et al. 2010, Kooijman 2010). Yet research that focused on link-

ing individual energetics with demographic patterns has been dominated by experiments on

individuals subjected to constant food conditions (Chapter 1). Inferences to the population

level are then drawn using a modeling approach under the assumption that energy allocation

rules and functional dependency of vital rates on resource conditions and individual state

remain constant while the conditions otherwise vary (Nisbet et al. 2000). This assumption

has rarely been tested and may explain some of the limitations of this approach to predict

and understand non-equilibrium dynamics.
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Natural systems also contain large amounts of genetic variability which may affect pop-

ulation and higher-level ecological processes (Mousseau et al. 2000, Nevo 2001, Petchey and

Gaston 2006, Hughes et al. 2008). There has been a recent surge of interest for characteriz-

ing the effects of intraspecific genetic variability on ecological functioning, and studies have

looked at its effects on processes such as biomass productivity, response to disturbances, or

fluxes of energy and nutrients, see for example reviews (Petchey and Gaston 2006, Hughes

et al. 2008). For example, it has been demonstrated in a poplar system that the genotype of

individuals impacts the strength and nature of trophic interactions with birds, insects and

beavers; the composition of the arthropod and microbial community hosted; and organic de-

composition and nitrogen mineralization (Whitham et al. 2003, 2006, 2008). Despite some

differences, many of the effects of genetic diversity parallel those of species diversity, and

studies have shown that intraspecific genetic variability can have as much effects on ecolog-

ical functioning as interspecific variability does (Hooper et al. 2005, Petchey and Gaston

2006, Hughes et al. 2008). This interest for the effect of intraspecific genetic diversity has

been further enforced with the recognition that ecological and evolutionary processes can

act on the same time scale and generate eco-evolutionary dynamics (Pelletier et al. 2009,

Ellner et al. 2011, Schoener 2011).

The effects of genetic variability are likely to depend on the environmental context, i.e.

genetic and environmental factors can interact to generate genotype × environment interac-

tions (Roff 1997). Genotype × environment interactions have been the topic of many studies

which focused on their effects on individual phenotypic expression and their implications for

the evolutionary process (Gillespie and Turelli 1989, Via and Lande 1985). Nonetheless,

individual phenotypic response is also a major feature conditioning ecological processes, and

this type of interaction has consequences for the functioning of ecological units (Miner et al.

2005). These consequences of genotype-environment interactions remain poorly character-

ized. This is even truer when dynamical variation in the environment is considered (Miner

59



and Vonesh 2004, Miner et al. 2005). Only a handful of studies have looked specifically at

how dynamical variation in the environment (in contrast to variation in mean environmen-

tal conditions) affects individual-level phenotypic response, and still fewer have looked at

genetic variation in this response (Siems et al. 1998, Miner and Vonesh 2004, Engelmann

and Schlichting 2005, Schoeppner and Relyea 2008, Rodriguez 2012). Studies using natural

setting include dynamical variation in the environment, but do rarely make a specific or

mechanistic account of the key environmental features affecting individual phenotypic ex-

pression, because the number of factors potentially involved is usually far too great. By

contrast, laboratory experimental works allow for the control of both genetic and environ-

mental factors. These studies used almost invariably constant environmental conditions

(Chapter 1). Thus we still lack as of today comprehensive studies.

Our study aims at characterizing how genetic variability interacts with dynamical features

of the environment to affect the demography of a consumer species using experimentations

and modeling on a number of monoclonal Daphnia-algae systems. Population response to

its environment is largely conditioned by genetically-based mechanisms of energy acquisition

and expenditure, which govern how an individual grows, reproduces and dies (Nisbet et al.

2000, Kooijman 2010). In order to clarify how genetic variation in these mechanisms affects

the response of populations to their food environments, we used a series of experiments

involving different clonal populations of the Cladoceran Daphnia pulicaria. The dynamics

of Daphnia-algae systems are well known for being driven by consumer-resource interaction.

In particular, this interaction generates various kinds of population cycles (McCauley and

Murdoch 1987, McCauley et al. 1999, 2008). A fundamental property of these systems is that

the dynamics of both population are interlocked through a feedback loop: consumer foraging

activity affects the dynamics of the resources, and resource dynamics affect the dynamics of

the consumer population. While primordial for understanding the dynamics of these systems,

the feedback loop induced by the interaction represents an impediment for characterizing
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the response of the consumer population to their food environment, because this latter

is not under full experimental control. Allowing for the consumer-resource interaction to

take place would imply that different consumer populations are not subjected to the same

environmental conditions. Therefore, we subjected the populations to carefully controlled

variations in food supply in order to decouple the dynamics in food production from the

consumer population demography and control the level of variation in the food environment.

This allowed us to make direct comparisons as to how different clonal populations respond

to the same patterns of fluctuations in their food environment. Indeed populations are

monoclonal, so that the genetic basis conditioning individual and population response to

their environment is genetically-based and remains the same across different environmental

conditions. In these experiments, food was supplied either in a constant fashion, or in

fluctuating fashions, in a way that mimics both large and small amplitude cycles that can

be observed in Daphnia population dynamics (McCauley et al. 1999). Moreover, these

cycles are produced by different mechanisms: small-amplitude cycles result from competitive

interactions between differently sized individuals, whereas large-amplitude cycles result from

the instabilities inherent to consumer-resource interactions (McCauley et al. 1999, 2008).

Individual energetics are likely to depend on individual physiological states and on the

feeding conditions they experience, resulting in a substantially complex interplay between

individual and population processes. In particular, the functional dependency of individ-

ual performances on these states has been shown to be critical in mediating patterns of

population variation (De Roos et al. 2003, De Roos and Persson 2013). To bring further

clarifications on how these mechanisms interact with genetic variability, we carefully param-

eterized models for each clone directly from population data. This type of approach, known

as inverse analysis, present a number of advantages compared to a full model parameteri-

zation from individual data only. The measurement of key processes rates from individual

experiments is indeed a tedious task, stretching over extended periods, which makes it a
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possibility for only a few model organisms. In addition, getting a sufficiently comprehensive

and accurate account on these processes is a challenge in itself. By contrast, inverse ap-

proaches allow the data to ’speak for themselves’. Despite this advantage, non-trivial issues

are associated with the approach. Most notoriously, these problems are often of an under-

determined nature: many competing hypotheses on underlying individual processes can fit

a particular set of data equally well (see e.g. Wood 2001, Nelson et al. 2004). Fortunately,

statistical solutions have been proposed to overcome this problem (Wood 2001, Nelson et al.

2004). In this study, we make use of an experimental design that enables the implementation

of successive steps of model selection and independent validations. Predictive ability of the

models is thus assessed with respect to conditions that are not only independent, but also

qualitatively different from those that have been used for parameterizing them.

4.2 Methods

4.2.1 Experimental methods

We used a series of experiments involving four clones of Daphnia pulicaria sampled from

shallow lakes in Alberta, Canada. We confirmed these clones to be genetically different

by sequencing 8 microsatellite markers. Details on the microsatellite analysis are given in

chapter 5. We then quantified the demography of clonal populations separately grown in a

set of controlled food environments. Populations were fed specified quantities of the green

alga Chlamydomonas reinhardtii. These experiments involved constant food supply (CF),

followed by starvation, called later starvation data; and small and large amplitude (SA and

LA) fluctuations in food supply, detailed below.

Algae was grown separately in axenic cultures using COMBO medium (Kilham et al.

1998). Algal concentration was estimated by diluting two replicate samples in lugol’s solution

and counting 16 squares in a Sedgewick-Rafter counting chamber. Cell concentration was

converted to carbon concentration assuming a carbon content of 2.0 µgC.cell−1 (Porter et

62



al. 1982).

In all experiments, Daphnia populations were reared at 22 ◦C in the dark, in order to

inhibit algal growth. Populations were censused by transferring individuals on a 35 µm

mesh, counting and sizing them under a dissecting microscope. Seven size classes were used

(I: <0.8mm; II: 0.8 - 1mm; III: 1 - 1.2mm; IV: 1.2 - 1.4mm; V: 1.4 - 1.6mm; VI: 1.6 - 2mm;

VII: >2mm). Individuals in class VII rarely exceeded 2.5 mm. Individuals greater than 1.4

mm were considered as adults. The number of eggs in their brood pouch were counted as

well. After the census, populations were placed in new medium and fed algae, as specified

below.

In CF experiment, populations were reared in a 275mL volume, censused and fed 3 times

a week, on Monday, Wednesday and Friday, for a quantity equalling 1.5 mgC/L/day. Two

to four replicates per clones were used. Total population biomass was considered stable

when the biomass growth rate remained ≤ 1% per day for at least 7 days. Feeding was

then stopped in order to induce starvation. Populations were then censused every day, and

replaced in fresh medium, until the last individual died.

In the SA and LA experiments, populations were reared in 800mL volume. They were

transferred in new medium and fed every day. Food amounts ranged from 0.3 to 1.5

mgC/L/day in SA experiments, and from 0.3 to 5 mgC/L/day in LA experiments. The

paterns of variation chosen roughly reflect those seen in large and small amplitude cycles

observed in coupled algae-Daphnia systems (McCauley et al. 1999). More details on these

specific feeding patterns are given in the appendix (Figure A.1). Populations were censused

twice a week, and 3 replicates were used for each clone.

4.2.2 Modeling and parameter estimation

One way to circumvent the problem of underdetermination is to use independent validations,

which tests how well a model can predict experimental data that are independent from the

ones used for its parameterization. Having in our hands experiments in CF, SA and LA
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environments, and data on starvation, we used the following strategy to parameterize and

validate the models:

First, we fitted models for each clone to the data from the CF experiments, assuming

that no starvation mortality occurred. For each clone, we obtained a number of different

models that led to equally good fits of the data. These models were obtained using either

(i) different model structures: we used a range of models that varied in their complexity and

level of details on Daphnia biology. We report here only the final form selected for these

models, as other, simpler, models were enable to predict well the dynamics under fluctuating

food treatments. (ii) The likelihood function usually presented a number of local minima

that led to equally good fits (∆AIC<2), which we found by using different initial conditions.

(iii) Given the uncertainty on the expected distribution of errors associated with this type

of data, we also fitted these models using various criteria for optimizing model fits. The

technical aspects on the fitting procedure are described in details in the section Model fitting

and objective function.

Second, we parameterized a starvation mortality function from the starvation data.

Third, we compared the ability of the models previously obtained to predict the dynamics

in the LA experiments, and selected the best model for each clone. We chose to do so rather

than fitting all the data at once, as this allowed for an independent test of the robustness of

the model inferences obtained. The set of data used for this test is thus not only independent

from the one used for their parameterization, but it is also the demographic product of

populations subjected to qualitatively different resource dynamics. This left us with four

models, one for each clone.

Finally, we used the data provided by the SA experiments as a means to validate the

estimates selected for each clone. For the purpose of this study, we needed models that not

only capture well the dynamics, but also reflect clonal differences. However, these differences

being relatively small, we found that the dynamics of a given clone were sometimes predicted
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better by the model parameterized for another clone. When that happened, we rejected

the parameterization, and came back to step one in order to refine those estimates, and

proceeded with subsequent steps again. We considered our estimates as final only once

the parameterization for each clone provided the best match with its own dynamics in SA

experiments.

Models derivations

To capture subtle differences in clonal biology, we wanted to use a model that adheres as

much as possible to what is known about Daphnia biology, and that included mechanistic

details on Daphnia physiological ecology. Some functions of the model were also represented

non-parametrically, using cubic spline functions, in order to release the structure of the

model from too restrictive assumptions on Daphnia biology (see Wood 2001 for a discussion

on semi-mechanistic models in ecology). We first sketch out some basic elements of the

models. Details requiring specific attention are dealt with individualized headings. The

resulting model and parameter values and range are given in Tables 4.1 and 4.2.

Three state variables are used to represent an individual : L, its length (mm); W ,

its weight (µgC); and Wr, the cumulative mass of carbon invested to reproduction (µgC).

In addition, other variables of the model include cohort abundance n and food density

F (µgC/L). Since the experiments involved transfer cultures, F is reset at a frequency given

by the experimental design, and only declines in between two transfers, due to Daphnia

feeding.

Daphnia individuals have a type II functional response, with a constant half saturation

constant (Fh) and a maximum ingestion rate that increases with individual length Im(L). We

used the relation reported in McCauley et al. (1990). We assumed the assimilation efficiency

εa to be constant. Metabolic maintenance rate is given by a function M = m(L)W . We

used a 3-knots spline function to parameterize m(L). We assumed that individuals were

subjected to a level of mortality independent of food, but dependent on individual length
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(δi(L)). That function was again parameterized with a 3-knots spline function.

Growth, reproduction and allocation

Though models on Daphnia usually assume simpler forms for the growth and fecundity

function, we found that the inclusion of the details regarding molting described below was

critical to obtain predictions that compare well to the experimental data of the fluctuating

food treatments, particularly with respect to the timing of reproduction.

Growth Individuals grow in length by discrete increment every Tm days, typically 1.5-3

days (McCauley et al. 1990). Under non-starving conditions, the length reached at the

time of the molt is typically food-independent. The relation between individual weight and

length at that time is well described by an allometric function: Wl = ξLq (Lynch 1989). We

call this particular weight the nominal weight-for-length of an individual, and its reciprocal

Lw(W ), the nominal length-for-weight.

There are several scenario to consider for calculating the growth increment between two

molts ∆L = L(t)−L(t− Tm). Under good feeding conditions, L(t− Tm) and L(t) are given

by the nominal length-for-weight relationship. In contrast, under poorer food conditions,

an individual weight may be less than its nominal weight-for-length at any of these times.

An individual cannot shrink however, so its length remains unchanged. This results in four

combinations for the growth increment that can be accounted for using the following relation:

∆L = max(Lw(W (t)), L(t))−max(Lw(W (t− Tm)), L(t− Tm)) (4.1)

To make this results usable in the continuous time framework in which our model is set,

we use an approximation that makes individual length continuously updated according to

the mean growth increment per unit time:

dL

dt
=

∆L

Tm
(4.2)
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Egg production During the intermolt period, adult females also allocate some of the

energy acquired toward egg production. New eggs are formed in female’s ovaries at the

begining of a molt, and packed with nutrients some time before the following molt (McCauley

et al. 1990). At molting, these eggs are transferred into the brood pouch, where they

incubate and develop until the mother molts again. This implies that the energy allocated

to reproduction during an instar is not released directly at the following molt, but only after

a subsequent second molt.

Denoting Wr the cumulative mass of carbon invested toward reproduction, and applying

again a continuous-time approximation, the mean rate at which a female releases eggs is:

β(t) =
Wr(t− Tm)−Wr(t− 2Tm)

(1 + γ)WbTm
(4.3)

where Wb is the mass of a juvenile at birth, and γ is the overhead cost of egg production.

Allocation function to reproduction There has been a multiplicity of model for rep-

resenting the allocation function. They either assume a direct dependency on energy fluxes,

in the form of net production or net assimilation models, a dependency on individual states

only, or both (see Nisbet et al. 2004 for a discussion).

Under sufficiently good and constant food conditions, individual weight varies smoothly

and remains over the nominal weight for length between two molts. In contrast, if food

conditions vary, the relation between an individual weight and its length may be much more

variable. Since a weight below Wl can only happen if net energy balance remains negative

for some time, we can use this fact to define a measure of individual condition. We define

the relative weight-for-length as the ratio between an individual weight and its nominal

weight-for-length: ω = W/Wl(L) so that a value smaller than 1 indicates nutritive stress,

whereas good feeding conditions result in values that are greater or equal to one. Taking

these elements together, we modelled the rate of energy allocation to reproduction assuming

dependence on individual size, condition and food conditions, resulting in a function of the

form: Θ(t) = α0fW (W,α1)fω(ω, α2)X(t).
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X(t) reflects the influence of current food conditions on allocation. We tried three pos-

sibilities, where X(t) was either the net acquisition rate, the net production rate, or was

simply set to 1. This last possibility, which makes the allocation process to depend on indi-

vidual states only, did not prove fruitful with this framework. The other terms reflect the

dependency of allocation on individual states. fW reflect the dependency of allocation on

individual weight, and the fω, on its relative weight-for-length. We scaled these functions

between 0 and 1 over the intervals [Wm Wsup] and [ω0 ωsup], respectively. The lower bounds

are biologically meaningful: individuals start to allocate toward reproduction only once they

reach a specific weight Wm = Wl(1.4), which reflects the onset of maturity, and they stop

allocating whenever ω is smaller than ω0 = 1. The upper bounds are used to reduce mul-

ticolinearity in parameter estimation, but the specific values chosen are of no consequence.

For the functions fW and fω, we used either power functions or exponential functions:

f(x) = a(w − b)αi (4.4)

or f(x) = aeαix + b (4.5)

where x is either W or ω. The parameters estimated are αi = α1 or α2, whereas a and b are

chosen appropriately to produce the scaling discussed above.

The starvation function

We assume that individuals are subjected to a mortality rate due to starvation that decreases

with decreasing ω, following:

δs(L) = max(0, α(L)e−β(L)ω(t) − δ0(L)) (4.6)

α(L) and β(L) are splines functions with 3 knots and δ0(L) is an offset in starvation mortality

rate. The offset takes either the value of a constant δc to be estimated, or δ0(L) = α(L)e−β(L)

if δc < α(L)e−β(L). This condition insures that individual do not starve as long as ω > 1.

The resulting function is given by δ0(L) = max(δc, α(L)e−β(L)).
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We also assumed a food-independent component of mortality, and the dynamics in ω(t)

depend on the basal metabolic rate. Both are estimated from the CF experiments. The

parameterization of the starvation function is therefore dependent on the estimates from CF

experiments.

Numerical simulations

We implemented the model using the escalator boxcar train (EBT) algorithm (De Roos 1988).

An advantage of this method is that does not make any assumption about the nature of the

model for the dynamics in individual state other than requiring that all individuals born at

the same time behave in exactly the same way. As far as we know, the combination between

the EBT algorithm and delay partial differential equations as never been used before. We

therefore carefully checked for any sign of inadequacy from the model outputs, but none was

apparent.

Model fitting and objective function

The demographic models generate predictions on the abundance of individuals in each of

the size-classes used in the experiements, and on the number of eggs they carry. We derived

a criterion for optimizing model using nonlinear regression, based on the likelihood of the

multivariate normal distribution (Bates and Watts 2007) in combination with data trans-

formation in order to improve normality and stabilize variance. Our strategy consisted in

trying a set of transformations, involving power transforms (g(x) = xλ), as well as the in-

verse hyperbolic sine function (g(x) = sinh−1(λx)/λ = log(λx+
√
λ2x2 + 1)/λ). This latter

transformation function has been showed to be more powerful than the former when assessed

(Burbidge et al. 1988). It tends toward the identity function as λ tends toward 0, and to a

log-transformation for large values of λx. An important strength of this transformation lies

in the way it handles zero values, which allows for the likelihood function to be defined on

the original scale of measurement, and hence directly select for the optimal value of λ in the

optimization process.
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We used this property to produce an objective criterion for assessing the match between

model predictions and data of fluctuating food treatments, i.e. for the steps of indepen-

dent validations. More specifically, we applied an inverse hyperbolic sine transformation on

each category of observation and selected the λ values that maximized the likelihood. This

produced likelihood values for each model that can be directly compared to each other.

All the estimates were obtained using global optimization algorithms (the direct search

algorithms from matlab (Mathworks) global optimization toolbox), and were further refined

using standard gradient search method (the fmincon function from matlab optimization

toolbox)

4.3 Results

Our experiments produced a large volume of data, involving the response of different demo-

graphic variables to different food regimes for different clones. We organize these results by

presenting how the different clones respond to the different food regimes. Each part contains

a discussion of the data first, and then a discussion on the agreement between models and

data.

4.3.1 Constant food supply

Figure 4.1 shows the trajectory of juvenile, adult and egg biomasses over the course of the

experiment. Juvenile biomass first showed a very strong increase, generally followed by a

more or less accentuated decline. Adult biomass followed a more steady increase until it

stabilized. Most populations exhibit an early peak in fecundity followed by a period of lower

fecundity. There was some variation in the timing and intensity of this peak among clones,

and some populations also showed a second fecundity peak. By regressing biomass growth

rate on total population biomass, we estimated that population reached steady values at

3.9 mgC/L for clone A; 3.2 mgC/L for clone B; 2.8 mgC/L for clone C; 3.2 mgC/L for
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clone D. Moreover, over the course of the experiment, the biomass of clone A was almost

always greater than that of the other clones, whereas the opposite was true for clone C.

This variation in total population biomass seems to be mostly linked to variation in juvenile

biomass which exhibit strong differences among clones (Figure 4.1). The differences in adult

biomass trajectories among clones are much less pronounced. Regarding population structure

(Figure 4.2), it remained relatively stable after the growth phase, and adults made up most

of the total population biomass, typically around 60-80%.

Models did a fairly good job at capturing patterns of variation in juvenile and adult

biomass, and fecundity (Figure 4.1). Biomass levels tend however to be slightly underesti-

mated. Recall that the data presented are made up from a number of sub-categories, 7 size

classes and 3 fecundity classes. When there is a consistent bias in the estimation of a partic-

ular category (e.g. juvenile biomass is consistently underestimated in clone A past day 15),

the fit of these subcategories is more balanced, where a mix of over- and under-estimation

is present (Figures A.2-A.5). Nonetheless, the models correctly predict the relative com-

partmentalization of biomass between juvenile and adult stages in the population (Figure

4.2). Models also clearly capture the fact that clone A maintains higher biomass levels and

a higher proportion of juvenile biomass in the population.

4.3.2 Starvation

The patterns of starvation survival among stage classes exhibit some variation among clones

(Figure 4.3, Figures A.6-A.9). Adults tended to withstand starvation better than juvenile,

but there was some variation among clones as to how much difference there was between

juvenile and adult survival. In all cases, it is noteworthy that medium-sized adults (1.6 - 2

mm) always survive better than larger adults, and except for clone D, small sized-adults (1.4

- 1.6 mm) do too. The model for starvation did a good job overall at capturing mortality

patterns among size classes, particularly in clone A and D (Figure 4.3). In clone B, it tended

to predict higher mortality levels than observed in the juvenile stages. In clone C, the sharp
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change in survival between large-juvenile and small-adult survival is not well accounted for,

resulting in an underestimate of small-adult survival.

4.3.3 Fluctuating food supply

In the LA experiments, the dynamics of every clone followed very regular patterns of os-

cillation (Figure 4.4). In all clones, there was almost no juvenile present during the nadir

of population abundance, and individuals survived the period as adults. A closer look at

adult classes (Figures A.10-A.13) shows that these adults were almost exclusively medium

sized (1.6-2mm). Models predictions matched the data very well. The phase of the fluctua-

tions (timing growth-peak-decline-nadir) is well captured. The amplitude of the fluctuations

is relatively well captured too, though it tends to be underestimated for juvenile biomass.

Models were however unable to capture effectively the transient dynamics that the data

display during the first cycle.

In comparisons to large-amplitude fluctuations, the dynamics under small-amplitude fluc-

tuations (SA) were less regular, and exhibited more interclonal variation (Figure 4.5). The

dynamics had more variation between different periods of the cycle, and clone D also exhib-

ited a high level of variation among replicates. The regularity of the oscillations greatly varied

among clones. Clone A displayed regular oscillations with well-marked peak and troughs,

whereas the dynamics in clone C and D were less regular. In particular the dynamics of the

adult stages in these clones lacked any clear cyclical patterns. Similarly to large amplitude

fluctuations, individuals tended to get through the nadir mostly as medium-sized adults, but

this pattern was less pronounced as a fraction of individuals also survive in other size classes.

Models did a poorer job at capturing the dynamics in small amplitude treatments. Patterns

in juvenile biomass and fecundity are relatively well captured, but it seems that there are al-

ways some imperfections for predicting adult biomass. A closer look into the details (Figures

A.14-A.17) reveals that the problem almost always lies in overestimating the abundance of

large adults (>2mm). In clone A, the levels of adult biomass are overestimated during the
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nadir. In clone D, beside the strong overestimation of large adults, the dynamics in other

classes are actually well captured (Figure A.17). The predictions associated with clone C

are more problematic, as the model predicts regular oscillations in adult stages when the

actual data show much more irregular patterns and smaller biomass levels. This irregularity

suggests a stronger involvement of stochastic processes than in the other clones, and this

cannot be captured by the deterministic model.

4.3.4 Model analysis

Next we analyze whether the patterns of food-dependence in individual energetics are affected

by the type of cycle, and whether this type of relation may affect the expression of genetic

variation as a function of the type of the feeding regime. The rationale here is that individual

feeding history - which for example depends on the type of cycle and the location within the

cycle, e.g. growing versus declining phase - may affect the relation between individual length

and individual weight, with subsequent implications for the ecological rates that depends on

them. The variable we examine is individual energetic efficiency, which we measure as the

quantity of biomass produced or lost for each unit of individual biomass per unit time. New

biomass is produced through reproduction, lost through mortality, and either gained or lost

through variation in body weight, which depends on the balance between energy acquisition

and expenditure. Since these relations also contains dependence on individual states, and in

particular on their developmental stage, we show these results for both juveniles and adults

using midpoint length of L = 1.05 mm and L = 1.8 mm, respectively. This representation

also provides a synthetic way for summarizing parameter estimates, for which a complete

list is given in the appendix (Figures A.18-A.21).

Note that the feeding protocole consisting in food transfers induces food concentration

to vary strongly in between two feeding interval. We do not focus on these short-term varia-

tions in the food environment, but rather focus on integrated effect by averaging individual

energetic efficiency over a feeding interval (i.e. 2 days in the CF, and 1 day in SA and LA).
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When plotted against food abundance, individual energetic efficiency forms a single line

in the CF treatments, whereas it forms a closed loop in SA and LA treatments (Figure 4.6

and 4.7). This indicates that individual energetics are asymetric with respect to the direc-

tions of change in food in the fluctuating treatments. In other words, individual energetics

depend on previous feeding history, in technical term, individual energetics present a hys-

teretic behavior. This behavior is much more pronounced for LA cycles than it is for SA

cycles, as shown by the larger range of values spanned by the function and the increased

difference in individual energetics as a function of whether food concentration increases or

decreases. Starvation mechanisms have much influence on these trajectories, as shown by

the strong asymmetry at low food levels in the LA treatments. Changes in the allocation

function contribute to hysteresis too, as shown by the greater level of asymmetry in adults

compared to juveniles under medium to high food conditions. The remaining asymmetry

may be attributed to direct variation in the association between individual length, on which

depends the assimilation process, and individual weight, on which depends metabolic main-

tenance rate. Note that all asymmetry present is ultimately a consequence of variation in

the relation between individual length and weight, as further energetic processes depend on

these variables.

4.4 Discussion

4.4.1 Modeling insights

Daphnia-algae dynamics are largely driven by consumer-resource type interactions and their

underlying energetic basis (Nisbet et al. 2010). This is epitomized in an experimental

system such as ours, where all other factors are under control. In order to make inferences

on the energetics and characterize the variation existing between clones, we used a modeling

approach. The availability of demographic data in qualitatively different food environments

made it possible to use a series of steps of model selection and independent validations. This
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provided a powerful way to overcome the problem of underdetermination intrinsic to these

types of issues.

Because populations are monoclonal, the genetic basis conditioning individual and pop-

ulation response to their environment is genetically-based and remains the same across dif-

ferent environmental conditions. The differential expression of genetic variation between the

LA and SA treatments therefore implies that the different environmental regimes affect the

mapping between individual and population response to their environment. Model analysis

provides two lines of evidence supporting the fact that the dynamics are more sensitive to

clonal variation in energetics in SA than they are in LA.

First, there was a good agreement between model and data in the large amplitude exper-

iment, in contrast to the small amplitude experiments, where the lack of fit is stronger. This

implies that some degree of error in individual energetics does not matter as much under

large amplitude treatments than it does under small amplitude treatments.

Secondly, differential expression of genetic variability between SA and LA may be caused

by any one of two (non-exclusive) possibilities. First, the different kinds of cycles may

affect the association between individual performances and resource conditions, and do it

in a different fashion for the different clones. Alternatively, these relations may or may

not remain the same, but population dynamics may not be equally sensitive to interclonal

variation in different regions of these functions. For example, the dynamics may be very

sensitive in low food regions, where small interclonal differences in energetics may make the

differences as to whether an individual starve or not, whereas it may be much less sensitive

to variation happening under high food conditions. Different environmental regimes would

then cause these different regions to be visited at different frequencies.

Model analysis supports both hypotheses. Cycle type induces much change in the rela-

tion between individual energetic efficiency and food conditions (Figures 4.6 and 4.7). In

addition, individual energetics have a hysteretic behaviour: the relation between individual
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energetics and food concentration is asymmetric with respect to the direction of change in

food concentration, and it also depends on the type of cycle considered. Individual behaviour

is thus conditioned by the rate at which food concentration changes. The hysteretic behavior

is more pronounced in LA cycles than it is in SA cycle because food concentration changes at

a faster rate. This implies that large amplitude fluctuations impose stronger directionality

in energetics than small amplitude fluctuations do. Therefore, the dynamics under large

amplitude fluctuations are more subjected to the dynamics of the food environment. Taken

together with the fact that the dynamics of the food environment is under experimental

control and common to all clones, this explains why genetic variation affect less the dynam-

ics in LA than in SA. Basically, large amplitude fluctuations causes much more variation

in individual vital rates over a cycle than genetic differences do, effectively washing out the

effect any clonal differences may have on the resulting population dynamics.

The hysteretic behavior is tied to the fact that short-term variation in food concentration

affects the relation between individual length and weight, which conditions the processes of

individual growth, reproduction and survival. This suggests that models aiming at studying

the dynamics of structured populations under non-equilibrium conditions should include

variables that reflect the influence of an individual’s physiological condition on energetics,

and not just the size- and resource- dependence of these processes. This dependency of

individual energetics is not unique to our model and has also been considered in other

frameworks, most notably the DEB theory from Kooijman (2010). Indeed, various lines

of evidence have suggested that such considerations are important to maintain consistency

at the individual level between energetics and empirical patterns of physiological behaviour

(Kooijman 2010).

4.4.2 Implications

First, these results have implications for the detection of genetic variability effects in natural

systems and for inferences that can be drawn from laboratory experiment. In particular, no
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perceivable effect of genetic variability does not necessarily implies its absence, i.e. environ-

mental fluctuations may elicit cryptic genetic variation. Conversely, if no significant effect

of genetic variation is detected in an experiment, this does not necessarily imply that this

variation will not be expressed in natural settings. This is particularly relevant to the level

of inference that can be drawn from experiments that use constant environmental settings.

Secondly, genetic variability and genotype × environment interactions have role for the

functioning of ecological units, the maintenance of genetic diversity and the selective process

(Gillespie and Turelli 1989, Via and Lande 1985, Miner et al. 2004). Studying these issues

involves the consideration of two different mappings: that from genotype to phenotype, and

that from phenotype to population. The mapping between genotypes and phenotypes is a

notoriously complex one. Not only do environmental conditions matter, but the patterns of

variability in the environment may also affect that mapping. Works at the individual level

have reported mixed evidence as to whether environmental variability per se affects patterns

of phenotypic expression at the individual level (Miner and Vonesh 2004, Schoeppner and

Relyea 2008, Siems et al. 1998, Engelmann and Schlichting 2005, Rodriguez 2012). Here we

show that this type of variability may not only matter for phenotypic expression, but also for

the way genetic variability affects population response to their environment. Most interest-

ingly, different patterns of variation may either inhibit or exarcerbate these differences at the

population level. Thus a specific account on the type of variation, and on how it interacts

with individual and demographic processes, is required. Note that in natural systems, algae

dynamics are interlocked with that of Daphnia populations due to the consumer-resource

feedback loop, which we decoupled in our experiments. Our results thus apply for the way

population respond to particular patterns of variations in their environment, not necessarily

to the total effect of genetic variation on those dynamics. In any circumstance, tackling

these issues will require joint appreciation of individual and population which may benefit

further from both theoretical and empirical studies. For example, McCauley et al. (2008)
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used bioassay experiments that made it possible to record individual performance, together

with an assessment of population dynamics in a Daphnia-algal system to show that different

types of population cycles affected key aspects of individual realized life history, and was a

primary determinant of population dynamical behavior.

Our results also indicate that if environmental fluctuations act as a strong driver in nat-

ural systems, standing genetic variation may simply not matter in term of their effects on

ecological processes. Fluctuation based coexistence theory requires both environmental vari-

ation, and a differential response of populations to this variation (Chesson and Huntly 1997,

Chesson 2000), so that these types of systems may be less likely to host large amount of

genetic diversity if other mechanisms are not present. This echoes findings from Nelson et al.

(2005, 2007) who found that small amplitude fluctuations provided equalizing mechanisms,

hence promoting the maintenance of genetic diversity, in comparison to large amplitude fluc-

tuations, where competitive exclusion was much faster. More generally, we may speculate

that the genetic composition of populations may have more importance for understanding

the dynamics of systems subjected to moderate amount of environmental variability, whereas

it may have a lesser importance for widely fluctuating systems. In our experiments, we used

non-random patterns of fluctuations that are representative to the type of food fluctuations

Daphnia populations may be subjected to. The dynamics of Daphnia-algae systems have

parallels with many other systems, because they are driven by broadly similar mechanisms

associated with consumer-resource interactions, and structured competitive interactions (Mc-

Cauley and Murdoch 1987, Murdoch et al. 2004, De Roos and Persson 2013). Thus, the

results presented in this study not only demonstrate the potential importance of environ-

mental variability in mediating the interplay between individual and population processes,

but they are also likely to reflect mechanisms that are common to many natural systems.

Based on our results, we may speculate on the relative importance of genetic variation

in affecting ecological dynamics. For example, we found that large amplitude environmen-
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tal fluctuations increased the contribution of environmental dynamics in driving population

demography relatively to genetic factors. When fluctuations are sufficiently large, standing

genetic variation may therefore not matter in term of their effects on ecological processes.

This may also have implications for the mechanisms that promote the maintenance of genetic

diversity in natural systems: fluctuation based coexistence theory requires both environmen-

tal variation, and a differential response of populations to this variation (Chesson and Huntly

1997, Chesson 2000), so that systems presenting large amplitude fluctuations may be less

likely to host large amount of genetic diversity if other mechanisms are not present. This

echoes findings from Nelson et al. (2005, 2007) who found that small amplitude fluctuations

provided equalizing mechanisms, hence promoting the maintenance of genetic diversity, in

comparison to large amplitude fluctuations, where competitive exclusion was much faster.

In our experiments, we used non-random patterns of fluctuations that are representative to

the type of food fluctuations Daphnia populations may be subjected to. The dynamics of

Daphnia-algae systems have parallels with many other systems, because they are driven by

broadly similar mechanisms associated with consumer-resource interactions, and structured

competitive interactions (McCauley and Murdoch 1987, Murdoch et al. 2004, De Roos and

Persson 2013). Thus, the results presented in this study not only demonstrate the potential

importance of environmental variability in mediating the interplay between individual and

population processes, but they are also likely to reflect mechanisms that are common to

many natural systems.
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Table 4.1: Model definitions.

Individual level dynamics

dn

dt
= −(δs(t) + δi(t))n(t) Cohort number dynamics

dL

dt
=

max(Lw(t), L(t)) − max(Lw(t− Tm), L(t− Tm))

Tm
Growth in length

dW

dt
= εI(t) −m(L)W (t) − Θ(t) Individual weight dynamics

dWr

dt
= Θ(t) Cumulative energy invested in reproduction

Population level dynamics

B(t) =
∑
β(t)n(t) Birth rate

dF

dt
= −∑

I(t)n(t)) Algae dynamics between transfer

Model functions

β(t) =
Wr(t− Tm) −Wr(t− 2Tm)

(1 + γ)WbTm
Egg production rate

Wl(t) = ξLq Nominal weight for length

Lw(t) = W−1
l (t) Nominal length for weight

ω = W/Wl(L) Ratio between an individual weight and its
nominal weight for length

I(t) =
F (t)

F (t) + Fh
Imax(L) Ingestion rate

Imax(L) = ι0L
ι1( 1 − exp(−(L/ι2)

ι3) ) Maximum ingestion rate

δs(t) = max(0, α(L)e−β(L)ω(t) − δ0(L)) Starvation mortality rate

δ0(L) = max(α(L)e−β(L), δc) Offset in the starvation mortality rate

Θ(t) = α0fW (W )fω(ω)X(t) Energy allocated to reproduction (see text for
details)

Spline functions

m(L) Weight specific maintenance rate

δi(L) Intrinsic mortality rate

α(L) Component of the starvation mortality function

β(L) Component of the starvation mortality function

1
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Table 4.2: Parameter values and definitions.

Parameter Value or range Description Source

Fh 164 µgC/L Half saturation constant McCauley et al. 1990

ι0 9.64 µgC/d/mm−ι1 Parameter in the maximum
ingestion rate function

McCauley et al. 1990

ι1 1.76 Parameter in the maximum
ingestion rate function

McCauley et al. 1990

ι2 0.95 mm Parameter in the maximum
ingestion rate function

McCauley et al. 1990

ι3 2.14 Parameter in the maximum
ingestion rate function

McCauley et al. 1990

ξ 2.62 mm Parameter in the weight for
length relationship

McCauley et al. 1990

q 2.4 Parameter in the weight for
length relationship

McCauley et al. 1990

Tm 1.5-3 d Intermolt duration This study

εa 0.4 -0.9 Assimilation efficiency This study

γ 0.4 -2 overhead cost of egg produc-
tion

This study

α0 > 0 parameter in the allocation
function

This study

α1 unconstrained parameter in the allocation
function

This study

α2 unconstrained parameter in the allocation
function

This study

1
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Figure 4.1: Biomass of the different stages in the constant food supply experiments. Black:
experimental data; Red: model fits to the data.
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Figure 4.4: Biomass of the different stages in the large-amplitude food supply experiments.
Black: experimental data; Red: model predictions.
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Figure 4.5: Biomass of the different stages in the small-amplitude food supply experiments.
Black: experimental data; Red: model predictions.
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Figure 4.6: Juvenile and adult energy efficiency as a function of scaled food density in
the constant food supply experiments, i.e. the saturating term of the functional response,
F/(F+Fh).
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Figure 4.7: Juvenile and adult energy efficiency as a function of scaled food density. The
blue line corresponds to large amplitude cycles, whereas the red lines correspond to small
amplitude cycles. The arrows indicate the direction of time.
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Chapter 5

The functional genomics of consumer-resource cycles:

Linking demographic patterns with patterns of gene

expression

5.1 Introduction

Considering the role of genes with reference to the ecological context in which populations

evolve provides an integrative framework that can shed light into genetic, ecological and evo-

lutionary issues, not reachable otherwise (Ungerer et al. 2008). This increased explanatory

power is enabled by the detection of genes of functional significance for ecological processes,

facilitating the study of the full chain of events linking the individual response to their envi-

ronment to ecological patterns over the different biological scales involved (genes, physiology,

life history, population dynamics) (Dalziel et al. 2009). It is indeed a longstanding issues of

ecological and evolutionary sciences to understand the origin of phenotypic variation. For

example, population dynamics are dictated by the way fecundity and mortality rates are

affected by environmental conditions, and similarly, it is the variation in phenotypic pat-

terns of expression among genetic variants that allows natural selection to operate. The

first feature of an individual response affected by environmental variation are the quantity of

RNA transcripted, which, through a chain of physiological events, translate to higher com-

ponents of the individual phenotype. Yet, there is no organism in which we fully understand

the mechanistic linking between environment and phenotypic expression. Identifying those

genes that systematically respond to environmental conditions experienced by individuals

may help adressing some of these caveats by identifying physiological pathways of impor-

tance and studying them in more depth. Integrating genomic and ecological sciences has,
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for example, made it possible to make progress in elucidating gene functions (e.g. Mihola

et al. 2009), on the origin of genomic architecture (e.g. Rogers et al. 2013), on which

part of the genome is under selective pressure (e.g. Rogers and Bernatchez 2007, Linnen et

al. 2013), and on the aspects of genetic variation that matter for ecological processes (e.g.

Sorria-Corrasco et al. 2014). Yet, in all of these investigations, elucidating the links between

the genomic basis of phenotypic variation and a functional mechanistic explanation of how

this variation interacts with the environment remains challenging (Colbourne et al. 2011,

Latta et al. 2012).

Understanding the mechanisms underlying organisms’ response to their food environ-

ments is a fundamental question in ecology (Murdoch et al. 2003, Olff et al. 2009, Kooijman

2010, Jeyasingh et al. 2011). Feeding provides the nutrients and energy necessary to achieve

growth, reproduction and survival, with direct implications for the demographic process

and ensuing consequences on higher levels of biological organization. Natural communities

present large levels of genetic variation which may affect how different individuals and pop-

ulations respond to similar food conditions (Vellend and Geber 2005, Hughes et al. 2008).

The food environment is also usually highly variable over time and space, once again, with

consequences on these processes. Given the prevalence of consumer-resource interactions in

nature and their importance for many physiological processes (Murdoch et al. 2003, Kooi-

jman 2010), we may expect the genome to be strongly responsive to variation in the food

environment over an ecological time scale. Similarly, patterns of genomic expression are of

importance for evolutionary analyses that study the process of selection under the influence

of resource dynamics. Natural selection results from differential patterns of phenotypic ex-

pression among genetic variants, particularly those traits closely related to fecundity and

mortality. Since patterns of resource availability experienced by individuals are one of the

major determinants of patterns of phenotypic expression, we may expect a fine tuning of

patterns of phenotypic expression in response to resource conditions. In order to identify
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and study genes subjected to selection, it is may be be helpful to identify those genes that

show diverging patterns of expression among genotypic variants.

In our previous works, we investigated the role of environmental and genetic variation

in driving population demographic patterns, using populations of the cladoceran Daphnia

pulicaria. In these experiments, populations involving different clones were raised in isolation,

and environmental variation was induced by providing the population with a controlled

amount of food every day (Chapter 4). The patterns of food supply mimicked two different

types of cycles observed in natural and laboratory conditions, and resulted in either small-

or large-amplitude fluctuations in the food environment (McCauley et al. 1999, Figure

5.1). We found that whereas small-amplitude (SA) fluctuations induced strong differences in

the population dynamics of the different clones, the dynamics under large-amplitude (LA)

fluctuations were very similar among clones. We concluded that emerging demographical

patterns were likely the result of genotype x environment interactions. Using a modeling

approach, we hypothesized that these patterns were underlain by a hysteretic behavior in

individual energetics (i.e. dependence on past conditions) that was related to the intensity of

environmental fluctuations. Therefore, the influence of environmental variation was greater

in LA treatments in driving the dynamics relatively to the effect of genetic variation. Yet,

the functional genomic response to these cycles remains unknown.

In this chapter, we analyze how patterns of gene expression of two of the clones used in the

experiment varied over a population cycle, in both SA and LA cycles. Given these noticeable

effects of clonal- and cycle type at the population level, we are testing in this chapter the

general question as to whether observed variations in demographic patterns resulting from

differences in clone and cycle type can be associated with characteristic patterns of expression

at the genomic level. The results of this analysis are for now purely descriptive, and linking

patterns of gene expression with phenotypic and environmental components will be provided

in future research.
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5.2 Methods

5.2.1 Experimental design

The individuals used for genomic analysis were sampled in the context of the demographic

experiment presented in Chapter 4. We used two clones of Daphnia pulicaria (clone A

and B), which were confirmed to represent distinct genotypes with 8 microsatellite markers

(Table B1, Colbourne et al. 2004). In these experiments, different clonal populations were

fed a daily ration of the green alga Chlamydomonas reinhardtii in a way that produced either

small- or large-amplitude cycles in their food environment (respectively abbreviated as SA

and LA). More details on the rearing protocol and the experimental methods used can be

found in Chapter 4.

For each type of cycle and each clone, we sampled individuals at four points within

the cycle, corresponding to different events in Daphnia population biomasses: the period

of maximal growth, the peak, the period of maximum decline, and the nadir, respectively

abbreviated as G, P, D, N (Figure 5.1). The individuals were sampled at the end of the

demographic experiments, and the timing of these events was calculated from data on previ-

ous cycles (Chapter 4). These expectations matched well the actual timing of the events in

large amplitude cycles, but there were some mismatches in the small-amplitude treatments

(Figure 5.1). This mismatch was somewhat expected, as small-amplitude cycles displayed

irregular patterns of variation (Chapter 4), which caused some differences in the phase of

these events among the different cycles of the time series.

For each point of the cycle, a group of usually twenty adults were sampled from a donor

population. These individuals were then replaced with identically sized individuals from

another replicate population in order to insure that the sampling of these individuals did

not significantly affect the demographic process. Sampled individuals were preserved in RNA

later (Qiagen) and then kept at -80◦C until extraction.
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5.2.2 RNA extraction, amplification and array hybridization

Five individual were pooled per biological sample in order to ensure sufficient RNA yield. All

samples were shipped on dry ice to Funomics (Funomics Global, Inc., Saskatoon, Saskatchewan,

Canada) who performed the RNA isolation. Daphnia were homogenized and total RNA was

isolated using the Trizol (Invitrogen) -chloroform method (Chomczynski and Sacchi 1987 ).

Total RNA was suspended in RNA Secure (Ambion, Inc). The quality of total RNA prepara-

tions was assayed by electrophoresis and measured on a Thermo Scientific NanoDrop 2000c

UV Spectrophotometer (for RNA abundance and contamination) and the Bio-Rad Experion

(for RNA degradation). Only samples with a A260/A280 ratio close to 2 and A260/A230

ratio greater than 1.8 were retained for analysis, and every individual yielded high quality

RNA (Table B2).

RNA amplification, microarray processing, and normalization of signal intensity were

performed at Notre-Dame university (Indiana, USA) by Dr. Jacqueline Lopez and Dr. Er-

liang Zeng. The NimbleGen (Roche-NimbleGen, Inc., Madison, WI, USA) Daphnia pulex

expression array 12x135k platform (GEO Accession GPL11278; Colbourne et al. 2011) is

a high-density NimbleGen gene expression microarray of 12 identical arrays prepared by

Maskless Array Synthesizer. Each array contained 137,000 isothermal probes representing

35,665 genes, with each gene represented by as many as three unique probes, while the

remaining probes were designed from transcriptionally-active regions (TARs) whose gene

models are not yet known. RNA amplification, hybridization and microarray analysis fol-

lowed Colbourne et al. (2011). Beginning with at least 0.2µg of total RNA, a single round

of amplification using MessageAmpTM II aRNA kit (Ambion, Austin, TX, USA) was per-

formed to generate cRNA (10 µg) that was converted into double strand cDNA with random

primers using the SuperScript Double-Stranded cDNA Synthesis kit (Invitrogen, Carlsbad,

CA, USA). Double-stranded cDNA (1 µg) was labeled with NimbleGen’s Dual-color Labeling

Kit (Roche NimbleGen, Inc., Madison, WI). Replicates of each treatment for each genotype
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were alternatively labeled and a dye swap was included among the replicate experiments.

Dual-color hybridization, post-hybridization washing and scanning were done according to

the Roche NimbleGen’s instructions. Images were acquired using a Roche Nimblegen MS200

scanner (Roche Nimblegen, Inc., Madison, WI).

5.2.3 Statistical analysis

The NimbleGen array image data were processed using NimbleScan version 2.5 (Roche Nim-

blegen, Inc., Madison, WI) to extract probe intensity values. Gene expression values (i.e.

gene intensity value) were obtained from a summarization of intensity values of all corre-

sponding probes using the RMA (Robust Multi-array Average) method. The pre-processed

microarray data were imported into an in-house analysis pipeline using Bioconductor for

normalization and analysis (Gentleman et al. 2004). All genes were quantile-normalized

across arrays, samples, and replicates (Bolstad et al. 2003).

Differential expression was assessed by contrast analysis in order to characterize the

effect of cycle type, clonal type, and within-cycle variation on gene expression. Mean of gene

expression measurements was compared between two conditions using an F-test, whereby p-

values were adjusted for multiple comparisons using a false discovery rate procedure (Storey

and Tibshirani 2003). This analysis was carried out on the 29,212 transcriptional units with

confirmed gene models (Colbourne et al. 2012 ; J. Lopez, personal communication).

Gene ontology analysis was performed using the genome annotation reported in Col-

bourne et al. (2011), and available at the JGI portal. Among the 6,643 genes annotated for

biological processes, we evaluated whether certain functional categories were over-represented

by comparing the observed frequency of differentially expressed genes in each category with

their expected frequency, based on the reference microarray gene set. In addition, this anal-

ysis would highlight potentital genes exhibiting parallel responses among treatments and

cycles. Statistical significance was assessed using Fisher exact tests with a false discovery

rate correction (Bluthgen et al. 2005). The significance level was set at the recommended
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0.01, with a minimum of five associated genes required in each gene set.

5.3 Results

5.3.1 Global patterns of gene expression

The proportion of the genes responding to within cycle variation varied from 58.2% in clone

A / LA cycle to 68.2% in clone B / SA cycle (Table 5.1). More details on the proportion

of genes differentially expressed by groups of treatments is provided by a Venn diagram in

Figure 5.2. Considering both kinds of cycles, 80.7% of the clone A genome was differentially

expressed in at least one within-cycle comparison. This proportion was 84.2% in clone B.

Considering both kinds of clones, the LA cycles induced gene expression variation for 78.7%

of the genes, and the SA cycles, 85.6%. We examined the effect of clone and cycle type

on transcript abundance. There are two ways to examine the variation induced by cycle or

clonal type: (i) examining how much transcript abundance is affected by these factors at

each point in the cycle, (ii) examining how much these factors affect transcript abundance

at one point of the cycle relatively to another (e.g. by examining whether the difference in

transcript abundance between the growth and the decline phase is affected by cycle type).

We refer to these two case scenarios as the effects of the factors on transcript abundance, and

their effects on within-cycle variation in transcript abundance, respectively. Table 5.1 reports

both the proportion of comparisons resulting in a significant effect of the factor being tested,

and the proportion of genes that showed a significant effect in at least one of the comparisons

being tested. The first type of measurements aims at reflecting how prevalent these effects

are for the dynamics, whereas the second type of measurements provides information on the

proportion of the genome that has the ability to respond to these factors.

Both types of assessment show that cycle type has a greater impact on the expression of

clone B genome than in clone A, both in term of transcript abundance and in term of within-

cycle variation in transcript abundance: 16.4% of the comparisons showed a significant effect
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of cycle type on transcript abundance in clone A, whereas this proportion was 27.7% in clone

B. In regard to within-cycle variation in transcript abundance, these values are 18.6% and

24.1%, respectively.

The effect of clonal type on transcript abundance was more pronounced in LA cycles

than in SA cycles (31.8% vs 26.6% respectively). On the other hand, both type of cycles

induced a comparable effect of clone on the within-cycle variation in transcript abundance

(14.2% vs 14.1%).

Finally, 21.1% of the comparisons tested showed a significant interaction between the

effects of clonal type and the effects of cycle type on transcript abundance, and 15.8% of

the comparisons regarding within-cycle variation in transcript abundance. All in all, this

resulted in 44.2% and 46.2% of the genes showing a significant effect of the interaction in at

least one comparison.

5.3.2 Candidate genes

As the previous results indicate, large percentages of the genome were associated with clonal

and cycle type, we examined the gene ontology categories among these gene sets involved

in the clone x cycle interaction, both in term of the effect on transcript abundance and on

within-cycle variation in transcript abundance (Table 5.2, the other comparisons are given in

Table B3). Almost all categories involved in the clone x cycle interaction and over-represented

in term of their effect on transcript abundance are also over-represented in term of their effect

on within-cycle variation in transcript abundance. These categories were mostly related to

protein processing and metabolism. These same categories were also frequently involved in

causing clonal differences in both types of cycles (Table B3). Concerning gene categories

underlying the differences caused by cycle type, 4 categories were common to both clones

in term of their effect on transcript abundance, and 10 of those in term of cycle effect on

within-cycle variation in transcript abundance.
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5.4 Discussion

The food dependence of individual physiological and life-history processes and its importance

for the population process and in shaping the evolution of Cladoceran species has long been

recognized and studied (Lynch 1984, Nisbet et al. 2004). Our results suggest that the

variation in these phenotypic processes is underlain by the variation of a very large proportion

of the genome: up to 84.2% of all identified protein-encoding genes responded to the variation

induced by the food environment. This echoes findings of Colbourne et al. (2011), which

found that a large proportion of the genome responded to variation in ecological factors

such as the presence of kairomones (79% of the genome), or cadmium concentration (72%

of the genome). Moreover, patterns of genomic expression strongly varied among clones.

Given the importance of phenotypic variation, and more particularly individual energetics,

in determining the ecological performance of individuals, this suggests that a large portion of

the genome may be under selection as a result of variation in the food environment, and that

the consideration of the mechanisms involved is of paramount importance to understand the

evolution of the genomic architecture of these species.

Considering the effect of clonal variation and cycle type, some aspects of the genomic

response are well in line with the conclusions drawn from the analysis of the demographical

consequences, whereas others are more surprising.

We found that cycle type had a notable effect on patterns of gene expression. The

mechanisms driving the dynamics of the populations in these two kinds of cycles are of

a qualitatively different nature (McCauley et al. 1999, 2008), and it is interesting to see

that they leave a specific signature at the genomic level. An application of these results

my involve using patterns of gene expressions as an ecological marker. For example, it has

been found in Arabidopsis that wounding and insect feeding could be distinguished by the

transcript profile induced by each treatment (Reymond et al. 2000). In our present study,

this signature of population dynamics at a genomic level suggests that genomic tools may
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be similarly used as a substitute from longitudinal survey data, for detecting the dynamical

state and regime populations are subjected to in the wild. Gene ontology analysis suggests

that a number of gene categories are over-represented in response to variation in cycle type,

and we will investigate these issues more deeply in order to identify specific genes that can

be used as robust ecological markers for identifying cycle type directly from gene expression

data.

Variation induced by the type of cycle is also important in an evolutionary context, as

qualitatively different selective regime operate in both kinds of cycles (Nelson et al. 2007).

Cycle type has been shown to affect the selective regime in term of their integrated effect on

fitness. In particular, small amplitude cycles provide equalizing mechanisms that promote

the maintenance of genetic diversity. Concurrent differences in patterns of gene expression

may be suggestive that these different types of cycles affect not only the selective regime,

but that they may also have an effect on which genes, and to which extent these genes,

are subjected to selection. This is further supported by the fact that many genes were

significantly affected by clone x cycle interaction, which suggests that cycle type does not

induce mere quantitative differences in gene expression, but qualitative changes as a function

of clones.

A large number of genes were significantly affected by clonal type. Overall, clonal type

induced more differences in the transcript abundance in LA cycles than SA cycles. This may

come as a surprise, as we found the exact opposite in term of the effect of clonal type in

demographical patterns. Several hypotheses may be involved in explaining this divergence.

(i) Variation in gene expression does not necessarily translate into phenotypic variation of

ecologically important traits. (ii) The timing at which genes are expressed and the identity

of these genes may be more important in explaining emerging interclonal at the phenotypic

and population level. A few genes may, for example, have a disproportionate effect on

the resulting outcome. (iii) In the present context, it may be more important to consider
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the relative change in transcript abundance over the cycle (i.e. the effect of clonal type

on within-cycle variation in transcript abundance), rather than the absolute variation in

transcript abundance caused by clonal type. (iv) Finally, variation in gene expression may

still be expressed at a phenotypic level, but food fluctuations may canalize this variation

to a greater extent in large-amplitude treatments than small amplitude treatments. This

is the hypothesis we drew in our previous study to explain the emergence of genotype x

environment interaction at the demographic level (Chapter 4).

Contrast analysis suggests a number of candidate genes involved in these differences,

and gene ontology analysis suggests further that these genes are mostly related to protein

processing and metabolism. Nonetheless, GO categories encompass processes that can hardly

be related to life history processes. Further analysis will be required to assess whether the

patterns of expression of these genes align to the expectation of being linked with resource use

and the energetics of growth, reproduction and mortality. In particular, the recent analysis

of Daphnia genome not only showed that there is about a third of the genome that does

not present homology with any other known genome (Colbourne et al. 2011). Moreover,

it is these Daphnia-lineage specific genes are the most differentially expressed in response

to ecological variation (Colbourne et al. 2011). The analysis provided in this paper is

only a first step aiming at describing general patterns of the functional genomic response of

Daphnia in response to the variation induced by dynamic food variation, by different types

of environmental regimes, and by genetic variation. Our analysis of chapter 4 generated large

amounts of data on relevant phenotypic, demographic and environmental variables, and we

also drew many inferences on individual energetics through modeling. A next step in the

analysis of these genomic data will consist in studying how variation in gene patterns affect

the expression of individual life history traits and respond to ecological variables, through

correlative analysis. This type of analysis is however non-trivial due to possible non-linear

relationship between patterns of gene expression and phenotypic expression (Shannon et al.
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2002, Daub et al. 2004, Chen et al. 2010). Nonetheless, it will make it possible to identify

candidate gene underlying phenotypic variation in ecologically important traits.
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Figure 5.1: Variation in total population biomass (black lines), and daily quantity of algae
fed to the populations (green lines), for both clones and both type of cycles. G: growth
phase, P: peak; D: decline phase; N: Nadir.
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Figure 5.2: Venn diagram showing the percentage of genes being differentially expressed in
at least one within cycle comparison. The numbers at the intersection between two or more
area show the percentage of genes that are differentially expressed in the different treatments.
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Table 5.1: Results of the contrast analysis.

	
% of significant

comparisons

% of genes with at
least one significant

comparison

Variation in
transcript abundance

Effect of clone type
LA 31.8 67.9
SA 26.6 63.4

Effect of cycle type
cA 16.4 49.7
cB 27.7 69.9

Cycle x clone interaction - 21.1 44.2

Within-cycle
variation in transcript

abundance

direct comparisons

cALA 22.6 58.2
cASA 24.8 62.7
cBLA 26 64.8
cBSA 27.7 68.2

Effect of clone type
LA 14.2 45.4
SA 14.1 44

Effect of cycle type
cA 18.6 54.8
cB 24.1 61.4

Cycle x clone interaction - 15.8 46.2
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Table 5.2: GO categories over-represented among the gene sets involved in the clone x cycle
interaction.

	
GO Accession
number Term p-value

Variation in
transcript

abundance

6457 protein folding 2.22E-07
6072 glycerol-3-phosphate metabolism 0.00010
6470 protein amino acid dephosphorylation 0.00013

59 protein-nucleus import. docking 0.00037
44267 cellular protein metabolism 0.00126
6468 protein amino acid phosphorylation 0.00131
5975 carbohydrate metabolism 0.00149
8152 metabolism 0.00361
6885 regulation of pH 0.00509
6511 ubiquitin-dependent protein catabolism 0.00552
8299 isoprenoid biosynthesis 0.00725

Within-
cycle

variation in
transcript

abundance

59 protein-nucleus import. docking 9.67E-10
44267 cellular protein metabolism 9.21E-09
6468 protein amino acid phosphorylation 9.55E-08
8152 metabolism 1.12E-07
6457 protein folding 2.23E-07
6470 protein amino acid dephosphorylation 1.95E-06
9117 nucleotide metabolism 9.24E-05
6511 ubiquitin-dependent protein catabolism 0.00021
6207 de novo' pyrimidine base biosynthesis 0.00035
6885 regulation of pH 0.00109

17000 antibiotic biosynthesis 0.00143
7018 microtubule-based movement 0.00192
6072 glycerol-3-phosphate metabolism 0.00468
6510 ATP-dependent proteolysis 0.00468
6783 heme biosynthesis 0.00468
6177 GMP biosynthesis 0.00510

16568 chromatin modification 0.00544
18149 peptide cross-linking 0.00624
7600 sensory perception 0.00813

51258 protein polymerization 0.00969
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Chapter 6

Environmental fluctuations can reverse size-dependent

competitive ability

6.1 Introduction

A major challenge in ecology is to explain the rarity of large amplitude population cycles in

nature when theory on consumer-resource interactions predicts their emergence (Murdoch

1994). Theory has mostly focused on the mechanisms allowing model’s equilibrium to remain

stable in spite of the destabilizing effect of enrichment. Another possible type of explana-

tion is that competitive interactions among individuals dominate over consumer-resource

interactions to generate alternative kinds of cycles with smaller amplitude (Murdoch et al.

2003, McCauley et al. 2008, De Roos and Persson 2013). These ‘stage-structured’ cycles

have been characterized in many natural and experimental systems (Murdoch et al. 2002,

2003). They arise as a result of density dependence acting differentially on individual vital

rates as a function of their state, and have been best described in the context of stage- or

size-structured interactions (De Roos et al. 2003). The mechanisms involved in these cycles

place this question at the interplay between individual and population processes. A partic-

ular aspect of this interplay that remains poorly characterized is how individual processes

interact with dynamically varying environments to affect the dynamics of populations. The

purpose of this chapter is to demonstrate that an explicit consideration of these processes

may help explaining the relative stability of populations in nature.

The hypothesis that stage-structured dynamics dominate over consumer-resource dy-

namics has been supported by research on Daphnia-algae systems. Experiment and theory

have confirmed that both large- and small-amplitude cycles can coexist under the very same
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conditions (McCauley et al. 1999, 2008). In these experiments, patterns of population dy-

namics were recorded for many populations subjected to the same conditions. The vast

majority of populations displayed stage-structured small-amplitude cycles, whereas only a

small portion of them displayed large-amplitude consumer-resource cycles (McCauley et al.

2008). Whereas, these authors have been able to show that the various sources of insta-

bilities provided by both consumer-resource and intraspecific competitive interactions were

fundamental to the presence of these coexisting attractors, much remains to be clarified on

the mechanisms underlying these dynamics.

Understanding the mechanisms generating these dynamics, and in particular why stage-

structured cycles prevail over consumer-resource cycles, requires a thorough investigation of

the intricacies associated with both size-dependent competitive interactions and consumer-

resource interactions. In consumer-resource systems, most aspects of individual demographic

performance are food-dependent (Gurney et al. 1996). In addition, individual state, such as

developmental stage or size, may affect how much individuals are sensitive to variation in the

food environment, and how they contribute to the demographic process (Meszéna et al. 2006;

De Roos et al. 2003). In this context, the dependency is best understood by considering the

mechanisms of energy acquisition and allocation underlying patterns of individual realized

patterns of growth, reproduction and mortality. One of the greatest difficulties associated

with these kinds of questions is however to reach an understanding on how individual level

processes translate to the population level.

These state-dependent aspects of an individual life history bear direct relationships with

their competitive abilities. Individuals compete for a common pool of resources that limit

their demographic rates. Different individuals are however not limited to the same extent

which may be assessed by their ability at producing or loosing biomass (Persson et al. 1998).

De Roos and coworkers (2007) have characterized some of the major mechanisms involved

in these types of interactions by considering the dynamical consequences of asymmetry in
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competitive ability between juveniles and adults. In the models used by these authors, it

is assumed that either juveniles or adults are superior competitors, and that this ranking

is fixed and maintained over varying food conditions. They have been able to show that

this ontogenetic asymmetry has important consequences for the structure and dynamics of

natural communities. In particular, they found that various kinds of cycles with different

properties emerge depending on the extent by which adult and juvenile competitive ability

differs. These theoretical predictions account for broad patterns of population variation in a

number of empirical systems including fish populations, indian meal moths, soil mites, and

unicellular organisms (Townsend et al. 1990, Sanderson et al. 1999, Briggs et al. 2000,

Massie et al. 2010, Persson and De Roos 2013).

This theory comes nonetheless with its limitations, and our understanding of the mech-

anisms causing these cycles may be still sharpened. For example, Daphnia population dy-

namics display many features characteristic of stage-structured dynamics, but they also

cannot fully be explained within this framework because different lines of evidences suggest

either juveniles or adults to be the superior competitors (reviewed in De Roos and Pers-

son 2013). Works on individual energetics suggest that additional mechanisms may be at

play. Indeed, individual contribution to the dynamics of the system is directly related to the

(state-dependent) feeding, development, reproduction, and mortality rates. These processes

may be affected very differently by variation in the food environment, and cause the relative

competitive ability of different stages to be affected non-uniformly. For example, there is no

particular reason to expect that the individuals surviving best under poor food conditions

will also be the most productive ones under high food conditions. In this chapter, we build

upon results drawn from our previous works on Daphnia-algae systems to show that a pos-

sible consequence of dynamical food regimes is to reverse the competitive ranking between

juveniles and adults, and more generally cause food-dependent competitive asymmetry be-

tween individuals in different states. We then discuss the implications of these results for
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the population dynamical process.

6.2 Evidences for alternating competitive rankings

In Chapter 4, we implemented population models for four different Daphnia clones based

on individual energetics and parameterized them from data on their population dynamics

under different regimes of food supply. We previously discussed the implications of the

differences found between clones for ecological and evolutionary processes. Here, we reverse

the question and aim at distinguishing the major mechanisms conditioning the demography

of Daphnia-algae beyond any clonal difference.

Competitive ability of individuals can be related to their efficiency at producing biomass.

We measure individual energy efficiency as the quantity of biomass produced or lost for each

unit of individual biomass per unit time (De Roos and Persson 2013). Figure 6.1 shows

the efficiency of juveniles and adults at producing biomass over a food cycle. This figure

was obtained from one of the models we parameterized in chapter 4. It is shown for a

given clone, but it is representative of the general patterns we found for other clones. This

graph clearly shows that under low food availability, adults are superior competitors, whereas

juveniles take over during periods of high food availability. The reason for that is two-fold.

First, adults have a greater resistance to starvation during periods of food shortage (Figure

6.1). Secondly, under higher food conditions, adults allocate an increased proportion of the

assimilated food to reproduction (Figure 6.2). Reproduction is however a costly process, we

estimated that only 33% to 50% of the energy invested in reproduction actually results in

the production of newborn biomass, and literature reports values ranging from 33% to 71%

(Nisbet et al. 2004). Therefore, for a given rate of assimilation, an increased fraction of

energy allocated to reproduction implies a decrease in total biomass production.

The general mechanism mediating alternative competitive ranking is linked to the fact

that, at an individual level, biomass production rate is a sum of different processes: new
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biomass is gained through reproduction, lost through mortality, and either gained or lost

through variation in body weight, which depends on the balance between energy acquisition

and expenditure. These processes scale differently with individual state, and dynamic vari-

ation in food concentration causes the relative contribution of these processes to vary over

time.

We found no other study explicitly reporting alternating competitive rankings in the

literature. Nonetheless, we explored the model in McCauley et al. (2008) in depth to find

that this mechanism was actually included in it. It is an important finding, as this model has

been parameterized from robust empirical data and encountered major success in explaining

Daphnia population dynamical behavior, notably the presence of coexisting cyclic attractors.

In figure 6.3, we plot the energy efficiency of juveniles and adults assumed by that model

as a function of food conditions. Adults are more efficient at very low food levels, whereas

juveniles are better under higher food concentrations. This result comes from the fact that

juveniles are estimated to be intrinsically more efficient in their energy use, but adults are

less sensitive to starvation mortality. There are some differences with our own findings as

the superior competitiveness of juveniles under high food conditions was due to an increased

reproductive effort in adults, which comes with a cost. In contrast, McCauley et al. (2008)

assume that a constant fraction of assimilated energy is invested to reproduction. Beyond

these differences, both parameterizations result in the qualitatively similar result that food

variation may reverse competitive ranking between adults and juveniles.

6.3 Dynamical effects of variable competitive asymmetry

In the analysis that follows, our goal is to characterize the dynamical consequences of variable

degree of competitive asymmetry between juveniles and adults as a function of food density,

including the possibility of reversing competitive rankings. We use the model of McCauley

et al. (2008) as a baseline, as the energetics of individuals are modeled in a simple and easily
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apprehensible way. Model equations are summarized in Table 6.1, and parameter definition

in Table 6.2. Briefly, in this model the consumer population is divided into two stages,

juveniles and adults, which feed on the same resource environment. Juvenile developmental

delay, reproduction rate, and mortality rates are all food-dependent. More details on its

derivation can be found in McCauley et al. (2008) and Nelson et al. (2007). Basically, in this

model, biomass loss and production result from the balance between two processes: energy

assimilation, which enables the production of new biomass through growth and reproduction,

and mortality. Essentially, the assimilation process largely prevails under moderate to high

food conditions, whereas starvation mortality prevails under low food conditions. Only

within a narrow range of food densities do these two processes have a similar magnitude

effect on biomass production.

In order to assess the consequences of varying the relative competitive ability of juveniles

and adults at low versus high food conditions, we need to slightly reformulate the model

of McCauley et al. (2008). Indeed, in the original formulation, starvation mortality rate

is considered to be inversely proportional to the assimilation rate. Therefore varying any

assimilation-related parameter affects the response at both high and low food level. We

re-express the starvation mortality functions using two new compounds parameters, δJ and

δA, that set juvenile and adult mortality rates independently from assimilation rates. Since

we do not aim at characterizing the dependency of model behaviour on parameter values

per se, but rather characterize the dynamical consequences of variable degree of competitive

asymmetry between juveniles and adults, we can safely ignore the dependency of δJ and

δA on assimilation-related parameters in the subsequent steps. By doing so, we can now

independently vary the degree of competitive asymmetry at low food density by varying δJ

and δA, - the juvenile and adult mortality scalars - and vary it at high food concentrations

by varying IJ and IA - the maximum ingestion rates of juvenile and adult.

Varying a parameter one at a time generally affects equilibrium food density, which
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has direct consequences on system stability (Murdoch et al. 2003). Indeed, changes in

resource equilibrium density affect the strength of density-dependence in resource growth

rate. This induces concomitant changes in system stability that are associated with changes

in resource dynamics rather than changes in consumer biology per se. In order to get a

better characterization of the effects of competitive asymmetry on system stability, it is

therefore preferable to maintain food equilibrium density to the same level, irrespective of

the changes imposed on consumer biology. To do so, we varied juvenile parameters (IJ or

δJ) independently from one another, but the corresponding adult parameters (IA and δA,

respectively) were, in contrast, adjusted such that food equilibrium density remains the same

under any of the parameter combination tested.

To assess the effects of parameter change on the prevalence of the different kind of

dynamics, we simulated the dynamics of the system using a set of 1000 initial conditions

and recorded the number of these simulations resulting in either equilibrium, small- or large-

amplitude cycles. Note that the resulting proportion estimated should not be interpreted as a

measure of the absolute tendency of the system to converge toward the different possible kinds

of dynamics. Rather they indicate how parameter variation affects the relative prevalence

of these different dynamics.

Figure 6.4 shows these results for three different levels of enrichment in resource carrying

capacity (K = 0.6 mgC/L; 1.1 mgC/L; 1.6mgC/L) and Figure 6.5 shows the shape of the

energy efficiency functions for some of the parameter combinations tested. The lower-left

part of Figure 6.5, and of each panel of Figure 6.4, corresponds to situations with minimal

asymmetry; going up along the IJ -axis increases asymmetry at higher food levels; going right

along the δJ -axis increases asymmetry at low food levels.

Richer environments increase the tendency of the system to display large amplitude

cycles. However, enrichment does not qualitatively affect the effects parameter variation has

on the prevalence of the different kinds of dynamics.
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When there is almost no asymmetry a low food density (Figure 6.5, First column), the

system always display large amplitude consumer-resource cycles, hence causing the disap-

pearance of coexisting attractors (Figure 6.4). Increasing juvenile starvation mortality rate

relatively to the adult one always tends to stabilize the system (Figure 6.4). This favors the

emergence of small-amplitude stage-structured cycles at first, and further increase causes the

system to stabilize to an equilibrium. Asymmetry in the response of adults and juveniles

to starvation is thus an important feature for stabilizing consumer-resource cycles and for

maintaining the coexistence of cyclic attractors. Similarly, increasing juvenile ingestion rate

tends to favor small-amplitude cycles over large-amplitude cycles and further increase causes

the system to stabilize to an equilibrium. Thus, increasing juvenile performance has quite

opposite effects on system stability depending on whether it is increased under low food

conditions or high food conditions.

This can be explained as follows. First, the asynchronous entry in starvation of the

different stages in the population causes juveniles to start dying sooner. This releases the

foraging pressure on resource and ultimately prevents massive mortality in adults which

would otherwise enforce the consumer-resource mediated instabilities. This mechanism is

further enforced when adult competitiveness is increased relatively to juvenile competitive-

ness under low food conditions, i.e. when δJ is increased.

Secondly, increasing juvenile competitiveness under high food conditions causes the per-

capita transfer rate of biomass to become greater from juvenile to adult stages than from

adult to juvenile stages. In contrast to the case where the relative efficiency of adults and

juvenile would remain fixed, this favors an increased proportion of adults in the population

until the food starts declining again.

Overall, a counter-intuitive consequence of the alternation of competitive rankings be-

tween low and high food conditions is that it promotes more constancy in the adult stages.

At low food density, there is almost no transfer of biomass between stages. The superior
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competitive ability of adults is due to their better survival. This favors the maintenance of

adult biomass. In contrast, under high food conditions, variation in individual performance

results from variation in foraging performance (assimilation rate), and this causes differential

transition rates of biomass between stages. The per-capita transfer rate of biomass through

development (from juvenile to adults) is thus greater than through reproduction (from adult

to juvenile). All these processes favor relative stability in adult biomass levels, and par-

tially decouple the dynamics of adult stages from resource dynamics. This may contribute

to attenuate the destabilizing effect of juvenile developmental delay on the dynamics of the

population.

It has been previously suggested that the continuous presence of adults and their rather

constant density over the cycle seem to be indeed an essential feature for stabilizing the in-

teraction between Daphnia and algae (McCauley and Murdoch 1987, Ananthasubramaniam

et al. 2013). In particular, the survival of a substantial number of adults during the nadir

of population density allows for the population to resume reproduction shortly after algae

population begins to recover (Ananthasubramaniam et al. 2013). The rapidly increasing for-

aging pressure induced by newborn production then allows to limit algae population growth

rate and thus stabilizes the interaction. Here, we have shown that both increasing adult

performance under low food conditions, or increasing juvenile performance under high food

conditions can favor this mechanism.

6.4 Conclusions and implications

In view of these results, a natural question to be asked is why the fact that food conditions

can reverse competitive rankings has never been previously characterized in the literature

despite the tremendous number of studies on individual energetics?

First, this question is relevant to issues at the interplay between the individual and

population processes, which is nowadays more rarely dealt with in the literature. Individual
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studies have been primarily used to predict how individual energetics generates patterns of

individual life history. But how these processes affect the overall efficiency of individuals at

producing or losing biomass mostly takes importance within a population context, so that

this result may have been overlooked.

Secondly, many of these aspects may have been missed because works on individual en-

ergetics are almost always based from experiments in constant environments. This study

has been motivated by the model inferences we drew in chapter 4. One important mecha-

nism contributing to food-dependent competitive asymmetry is starvation mortality, which

is a specific response to variable environments. Starvation mortality is however rarely in-

cluded within population models, and when it is, this is usually done in an overly simplistic

way. Starvation mortality has been the focus of many studies on individuals (Tessier et

al. 1983, Bradley et al. 1991, Gliwicz and Guisande 1993), but the connections with in-

dividual energetics, let alone the population process, are usually weaker. The other major

feature mediating the reversing of competitive ranking was the positive association between

reproductive effort and food density. Empirical works on Daphnia have however unequivo-

cally reported that energy allocation rules depend on size but not on food density (Nisbet

et al. 2004). A fundamental limitation of these previous works is that indeed their find-

ings come from experiments on individuals raised under various, but constant, food levels.

First, doing so does not guarantee consistency with population level behavior. Secondly and

much more importantly, dynamically varying food conditions are likely to affect qualitatively

the energetics of individuals (Chapter 4). In particular, constant food conditions result in

weak homeostasis (Kooijman 2010). According to dynamic energy budget theory, the ratio

between reserve mass and structural mass and hence the quantity of energy allocated to

reproduction - then becomes directly proportional to energy assimilation rate. Under dy-

namically varying food conditions this ratio becomes much more variable and has strong

consequences on reproductive allocation patterns.
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In consumer-resource systems, size-specific competitiveness is often measured as the food

density at which an individual with a specific size can just meet its maintenance needs

(Persson et al. 1998). The focus remains however on moderately low food conditions, close

to equilibrium conditions. A description of near equilibrium energetics is useful to under-

stand what causes an equilibrium to be stable or unstable, but carry only limited insights

to understand what causes the system to exhibit small or large amplitude fluctuations. By

definition, the processes mediating these kinds of behaviors happen away from equilibrium

conditions, and more focus on the energetic response over the whole range of conditions

spanned over a cycle is required. Measuring size-dependent competitive ability as the abil-

ity of differently sized individuals at converting food to consumer biomass and evaluating

it over the range of possible food conditions is, in this context, more insightful. We have

shown that doing so may reveal hitherto unsuspected relations in the energetic mechanisms

underlying intraspecific competitive interactions. Accounting for the specific mechanisms

underlying individual energetic response to variable environments opens the way for a whole

range of dynamical processes for structured consumer-resource systems that is not accounted

for by current theory. As shown in this study, they have general consequences on the demo-

graphic process, including the stabilization of consumer-resource interactions, the emergence

of stage-structured dynamics, and the coexistence of dynamical attractors and their preva-

lence. Moreover, dynamic variation in the environment can affect qualitatively individual

energetics, such that size- of stage- specific efficiency may not only depend on current food

conditions, but also on their feeding history (Chapter 4), and this is likely to complexify this

picture furthermore. We conjecture that such mechanisms may be able to generate popula-

tion cycles with new properties from those reported in the literature (i.e. consumer-resource,

delayed-feedback, and the different kinds of generation cycles), and this may help explaining

population patterns that cannot be fully accounted for by current theory, such as Daphnia

population dynamics.
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Table 6.1: Model equations.
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Table 6.2: Variable and parameter definitions.

Variables	 Description	F(t)	 Resource	density	(mgC/L)	J(t)	 Juvenile	density	(#/L)	A(t)	 Adult	density	(#/L)		 Developmental	delay	(days)	S(t)	 Juvenile	through-stage	survival	
	 	
Parameter	 Description	 Default	Value	q	 Maximum	per-capita	resource	growth	rate	 1	(d-1)	K	 Resource	carrying	capacity	 Varied	(mgC/L)	IJ	 Maximum	juvenile	ingestion	rate	 5.23x10-3	(mgC/L/d)	IA	 Maximum	adult	ingestion	rate	 1.91x10-2	(mgC/L/d)	Fh	 Half	saturation	constant	 0.164	(mgC/L)		 Proportion	 of	 utilized	 carbon	 allocated	 to	reproduction	 0.77	(-)	
	 Carbon	 required	 to	 produce	 one	 new	offspring	 1.51x10-3	(mgC/L)	
J	 Proportion	 of	 ingested	 carbon	 utilized	 by	juveniles	 0.49	(-)	
A	 Proportion	of	carbon	utilized	by	adults	 0.43	(-)	
J	 Juvenile	mortality	scalar	 4.25x10-3	(mgC/L/d)	
A	 Adult	mortality	scalar	 7.21x10-4	(mgC/L/d)	w	 Mass	 gain	 required	 to	 complete	 juvenile	development	 4.8x10-3	(mgC/L)	
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Figure 6.1: Energy efficiency of juveniles (L = 1.05mm; dashed line) and adults (L = 2mm;
solid line) over a large amplitude cycle, as described in chapter 4. Time within the cycle
is scaled such that t=0 corresponds to the nadir in food density, and T=10 corresponds to
the peak. The green bar is an indicator of the food supplied, with darker color indicating
greater amount of food supply.
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Figure 6.2: Proportion of net assimilation allocated to reproduction as a function of scaled
food density (the saturating term of the functional response). Data is shown for 1.8mm
individuals over a large amplitude cycle as described in Chapter 4. Arrows indicate the
direction of time. Note that within the modeling framework used, the allocation fraction
is not a direct function of food conditions but depends only on individual states. The
significant association between allocation and food density results from non-random patterns
of association between food density and individual states.
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Figure 6.3: Energy efficiency of juveniles (blue) and adults (red) as a function of scaled food
density, as predicted from McCauley et al (2008)’s model.
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Figure 6.4: Proportion of simulations resulting in large-amplitude consumer-resource cycles,
small-amplitude stage-structured cycles, or equilibrium. Data are shown for 3 different levels
of enrichments.
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Figure 6.5: Energy efficiency of juveniles (blue) and adults (red) as a function of scaled food
density for different combinations of IJ and δJ .
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Chapter 7

Concluding discussion

The work carried out in this thesis tackles issues related to the fact that the factors deter-

mining the expression of individual life history, and their consequences at higher levels of

biological organization, emerge from a highly dynamical interplay between individuals and

their environments. The mechanisms involved in this interplay span multiple levels of biolog-

ical organizations. Genetic factors determine the energetics and the life history of individuals

in response to their environments, which cascade further to populations, communities and

ecosystems, to finally feed back to the individual level. Understanding the resulting implica-

tions for ecological and evolutionary processes thus requires the integration of mechanisms

and feedback loops across biological scales. In this context, I focused more specifically on

the role genetic and environmental variation take in this interplay.

The goal of theory is to propose mechanistic explanations for particular phenomena by

evaluating the consequences of particular assumptions through modeling and assessing their

coherence with observed patterns of variation (Levin 1992). In the context of ecological and

evolutionary sciences, dynamic energy budgets (DEBs) provide a way of relating processes

occurring over a range of biological scales (Nisbet et al. 2000). They make predictions on

the life history expressed by individuals in response to specific environmental conditions,

which can be used further to make predictions at the population level. Understanding the

mechanism underlying model behavior implies being able to predict what happens to model

output when something changes as well as to providing the reasons why.

Variation is of importance not only because of its omnipresence in the biological world,

but also because it provides a fundamental avenue of testing the robustness of putatively

explanatory mechanisms. Variation is often non-random: the evolutionary process may
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cause directionality in genetics, ecological interactions causes specific patterns of variation

in ecological components... Non-random variation may cause a linking between both the

origin and the consequences of this variation, ultimately causing feedbacks in the dynamics

of the various components involved. These reciprocal interactions can blur our ability to

distinguish causal links between the processes involved in this interplay, and this is epito-

mized in consumer-resource systems. Our ability to understand the processes underlying the

dynamics of these systems and predicting them thus depends on our ability to disentangle

the contribution of the various components involved to the final outcome. This poses both

empirical and theoretical challenges. In chapters 2 and 3, genetic variation is induced the-

oretically, and its effects studied through analytical sensitivity analysis. In chapters 4 and

5, this variation is induced empirically, both at the genetic level and at the environmental

level.

The processes in DEB models operate on a continuous time basis, which, to some ex-

tent, has caused an impediment in the analysis of model behavior. Indeed, no method was

readily available to the ecologist until now to carry out the otherwise widely used analytical

sensitivity analysis (Caswell 2001). In chapter 2, I present a set of tools that makes this anal-

ysis possible for continuous-time models using the direct method from mathematical theory.

This makes it possible to relate how small, genetically-based, variation in energetics affects

individual phenotypic and life-history outputs. Beyond the predictive ability provided by

this type of analysis, an important asset of this approach is that it makes it possible to reach

some clarification on the contributions of the various processes linking the dynamics from

one level of organization to another. Introducing this analysis to ecological and evolutionary

sciences opens new exciting prospects for future research. In chapter 2, I have mentionned a

number of fields that could benefit from this type of analysis. As I worked on this analysis

and other parts of my research, I have often thought of applying this analysis on many, more

specific, issues associated with state-dependent life histories and physiologically structured
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population dynamics, and I hope to be able to tackle these issues in my future research.

Many of these are related to the ability of this analytical framework to decompose biological

variation into the contribution of their underlying components. For example, this may in-

clude decomposing the selection gradient into the contribution of fitness components, such

as survival, reproduction, and age at maturity. Or again, this analysis may be very useful

for studying further the effect of competitive asymmetry on consumer-resource dynamics

following Chapter 6. Competitive asymmetry indeed affects the dynamics of the system be-

cause different individuals are not equally sensitive to food variation, but also because they

do not impact their resource environment to the same extent due to their different foraging

rates. It could be interesting to study how the contributions in these two components varies

among different systems, and study whether systematic variation in these contribution may

be associated with characteristic patterns in the emerging dynamics of these systems.

Among the potential issues that can be tackled with this type of analysis, I have stud-

ied how the inclusion of a feedback loop between consumer and resource dynamics modifies

patterns of phenotypic expression. This ecological feedback has indeed a fundamental con-

tribution in driving the dynamics of ecological systems, as it establishes, in the long-run,

fundamental constraints that allows for population regulation (Metz et al. 1992, Murdoch

1994). It operates by altering ecological conditions and individual vital rates in the popula-

tion. Although its implications for the population process have been frequently considered,

its effects on the expression of individual life history have been much less so (Bassar et al.

2010). My analysis suggests logical reasons to expect a strong implication of the ecological

feedback in driving the expression of individual life history. A next step in this investigation

would be to test these inferences experimentally using controlled laboratory experiments

under conditions of density dependence. From a more theoretical perspective, it would be

interesting to study as well these issues under non-equilbrium conditions. I would then ex-

pect that similar conclusions on the symmetry between direct effects of the perturbations and
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feedback-mediated effects hold in the long run. Nonetheless, this result would not necessarily

apply directly to cohorts of individuals born at different time, as they may be subjected to

these effects to a different extent. Understanding the resulting implications for the dynam-

ics of the systems, the mechanisms of expression of individual life history and the selective

process would benefit from this analysis.

The ecological feedback induces qualitative changes in the expression of individual life his-

tory because it causes environmental variation associated with changes in consumer biology.

Another type of environmental variation inducing qualitative changes is when the environ-

ment varies in a dynamic fashion on a time-scale comparable to the individual lifetime.

Chapter 4 shows that environmental fluctuations induce hysteresis in individual energetics.

This conclusion was only possible because I used manipulative experiments that decoupled

the dynamics of resource production from the consumer dynamics, effectively disentangling

the effect of the energetic response of the population to environmental fluctuations from

the feedback loop induced by the consumer-resource interaction. This hysteretic effect was

dependent on the patterns of environmental fluctuations. The relative contribution of the

environmental driver versus consumer biology to emerging demographic patterns was found

to vary as a function of the intensity of the environmental fluctuations. This caused an

emerging genotype-environment interaction on population demographical patterns, which

has implications for both the selective regime and ecological processes, such as the mecha-

nisms maintaining genetic diversity in the wild. This works focused on how different genetic

variants respond to similar patterns of food variation, but does not allow predictions on

the total effect because in natural systems, resource dynamics are linked to those of their

consumers through a feedback loop. I do not consider the limitations as a drawback of my

experimental set-up, as they makes it possible to reach conclusions on individual processes

that would have been hardly reachable otherwise. Nonetheless, it would be exciting to follow

these works with similar type of experiments when the feedback loop is operational. This
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work also showed that much can be learnt on individual functioning from population data.

The classical approach to linking individual processes with population patterns of variation

is to carry out physiological experiments on individuals and make predictions on popula-

tions patterns. Yet, since populations patterns are the product of individual processes, it is

possible to do the opposite, an approach known as ‘inverse analysis’. This approach remains

seldom used in ecology, despite the fact that population data are much more easily available

than data on individuals, particularly under natural conditions. My study provides further

support for the usefulness of this approach. The main problem with this approach, that I

have been confronted to all along this analysis, is non-uniqueness: there are a number of

possible inferences on individual processes that may predict the data equally well. Statistical

solutions to this problem have been proposed, and I showed that carefully designed experi-

mental set-up may also provide a powerful way to validate those estimates. Another possible

alternative would have been to record the demography of the populations and also follow

concurently the fate of some individuals over their lifetime, which would largely constrain

the range of possible solutions.

The genomic analysis made it possible to refine these results further by showing that the

mapping between genotype and phenotype is not the only component involved in explaining

the genotype-environment interaction found in demographic pattern, but the map linking

individual to population behavior is also a likely contributor. Indeed, genetic variation

induced more differential gene expression in large-amplitude cycles than in small-amplitude

cycles, which may seem otherwise paradoxical. These results are however only suggestive

without further analysis and additional experiments, as several hypotheses could explain

these patterns. In any circumstance, a large number of genes were found to be subjected to a

genotype-environment interaction in their patterns of expression. This analysis also produced

strong support for the importance of consumer-resource interactions for the functioning

of biological organisms: up to 84% of all the protein-encoding genes were differentially
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expressed as a result of food variation. Much analysis remains to be done on these data,

and in particular, correlating patterns of gene expression with phenotypic and environmental

components is likely to bring further insights on these issues. It will help identifying the role

of genes in term of their ecological effects, and discriminate those of greater importance.

This may then open the way for further investigations on the interplay between genetic and

ecological processes, and may also open the way for a number of pratical applications, by

for example, using gene expression measurements as markers of the ecological history of

individuals.

Competitive asymmetry between individuals in different states has been shown to be able

to explain major patterns in population and community dynamics and structure. Nonethe-

less, the dynamics the dynamics of Daphnia-algae systems could not be fully explained by

this theory as yet because there were seemingly contradictory evidences as to whether ju-

veniles or adults are competitively dominant (De Roos and Persson 2013). One aspect of

ontogenetic asymmetry suggested by the previous analysis, and previously overlooked from

these lines of research, is that environmental variation may induce alternative competitive

rankings among individuals in the population, and more generally induce a variable degree

of competitive asymmetry as a function of the conditions experienced. Through the analysis

of a simplified model, I showed that such consideration may solve for these contradictory

evidences on the dynamics of Daphnia-algae systems and bring some insights on the mech-

anisms involved in the stabilization of consumer-resource dynamics and the prevalence of

various kinds of dynamics. I have showed that such consideration is likely to bring insights

on the prevalence of small-amplitude stage-structured cycles over large-amplitude consumer-

resource cycles. Another remaining open question is how frequent alternative competitive

rankings happens in other systems. Studying these issues may require an extensive analysis

of previously published data on individual energetics, but the specificity of the data required

for this analysis makes it more likely for experiments that address directly these issues to be
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more productive.

All these lines of work give further support for the importance of environmental and

genetic variation on the ecological and evolutionary processes. A comprehensive ecological

and evolutionary theory needs to account for the different ways this variation is expressed.

Given the numerous ways variation can be expressed in the wild, we certainly cannot hope

to make a systematic account of all these patterns, and abstraction need to be done at

some level in order to reach some form of generality. The issues investigated in this thesis

show that these effects span different levels of generality, depending on which aspect of

the dynamics is being looked at. Rather than asking whether genetic and environmental

variability matter for the dynamics of ecological systems, this suggests that progressing on

these issues will rather depend upon our ability to disentangle and compartmentalize which

aspects of the dynamics require an account of variability to be understood, and which aspects

can be understood despite this variability; and for those responding to variability, whether

predictions require specific accounts of the patterns and nature of the variability or whether

generic conclusions can be drawn.
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Bassar, R. D., López-Sepulcre, A., Walsh, M. R., Turcotte, M. M., Torres-Mejia, M. &

Reznick, D. N. 2010 Bridging the gap between ecology and evolution: integrating density

regulation and life-history evolution. Annals of the New York Academy of Sciences 1206,

17-34.

Bates, D. M., & Watts, D. G. 2007 Nonlinear regression analysis and Its applications.

John Wiley & Sons, New York, New York, USA.

Beckerman, A., Benton, T. G., Ranta, E., Kaitala, V. & Lundberg, P. 2002 Population

130



dynamic consequences of delayed life-history effects. Trends in Ecology & Evolution 17,

263-269.

Benton, T. G., & Grant, A. 1999 Elasticity analysis as an important tool in evolutionary

and population ecology. Trends in Ecology & Evolution 14, 467-471.

Bluthgen, N., Brand, K., Cajavec, B., Swat, M., Herzel, H. & Beule, D. 2005 Biological

profiling of gene groups utilizing Gene Ontology. Genome Informatics 16, 106-115.

Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. 2003 A comparison of

normalization methods for high density oligonucleotide array data based on variance and

bias. Bioinformatics 19, 185-193.

Bradley, M. C., Perrin, N. & Calow, P. 1991 Energy allocation in the cladoceran Daphnia

magna Straus, under starvation and refeeding. Oecologia 86, 414-418.

Briggs, C. J., Sait, S. M., Begon, M., Thompson, D. J. & Godfray, H. C. J. 2000 What

causes generation cycles in populations of stored-product moths? Journal of Animal Ecology

65, 352-366.

Burbidge, J. B., Magee, L. & Robb, A. L. 1988 Alternative transformations to handle

extreme values of the dependent variable. Journal of the American Statistical Association

83, 123-127.

Buzby, M., Neckels, D., Antolin, M. F. & Estep, D. 2008 Analysis of the sensitivity

properties of a model of vector-borne bubonic plague. Journal of The Royal Society Interface

5, 1099-1107.

Cacuci, D. G. 1981 Sensitivity theory for nonlinear systems. I. Nonlinear functional

analysis approach. Journal of Mathematical Physics 22, 2794-2802.

Callahan, H. S., Maughan, H. & Steiner, U. K. 2008 Phenotypic plasticity, costs of

phenotypes, and costs of plasticity. Annals of the New York Academy of Sciences 1133,

44-66.

Cameron, T. C. & Benton, T. G. 2004 Stage-structured harvesting and its effects: an

131



empirical investigation using soil mites. Journal of Animal Ecology 73, 996-1006.

Carroll, S. P., Hendry, A. P., Reznick, D. N. & Fox, C. W. 2007 Evolution on ecological

time-scales. Functional Ecology 21, 387-393.

Caswell, H. 2001 Matrix population models: Construction, Analysis, and Interpretation.

2nd edition. Sinauer Associates, Sunderland MA.

Caswell, H. 2007 Sensitivity analysis of transient population dynamics. Ecology Letters

10, 1-15.

Caswell, H. 2008 Perturbation analysis of nonlinear matrix population models. Demo-

graphic Research 18, 59-116.

Caswell, H. 2009 Sensitivity and elasticity of density-dependent population models. Jour-

nal of Difference Equations and Applications 15, 349-369.

Chaniotis, D., Pai, M. A. & Hiskens, I. 2001 Sensitivity analysis of differential-algebraic

systems using the GMRES method-application to power systems. Pages 117-120 vol. 2 The

2001 IEEE International Symposium on Circuits and Systems, 2001. ISCAS 2001.

Chen, Y. A., Almeida, J. S., Richards, A. J., Muller, P., Carroll, R. J. & Rohrer, B.

2010 A nonparametric approach to detect nonlinear correlation in gene expression. Journal

of Computational and Graphical Statistics 19, 552-568.

Chesson, P. 2000 Mechanisms of maintenance of species diversity. Annual review of

Ecology and Systematics, 343-366.

Chesson, P. & Huntly, N. 1997 The roles of harsh and fluctuating conditions in the

dynamics of ecological communities. The American Naturalist 150, 519-553.

Chomczynski, P. & Sacchi, N. 1987 Single-step method of RNA isolation by acid guani-

dinium thiocyanate-phenol-chloroform extraction. Analytical biochemistry 162, 156-159.

Claessen, D., De Roos, A. M., & Persson, L. 2000 Dwarfs and Giants: Cannibalism and

Competition in Size-Structured Populations. The American Naturalist 155, 219-237.

Claessen, D., Van Oss, C., de Roos, A. M. & Persson, L. 2002 The impact of size-

132



dependent predation on population dynamics and individual life history. Ecology 83, 1660-

1675.

Cohen, D. 1966 Optimizing reproduction in a randomly varying environment. Journal of

Theoretical Biology 12, 119-129.

Cohen, D. 1967 Optimizing reproduction in a randomly varying environment when a

correlation may exist between the conditions at the time a choice has to be made and the

subsequent outcome. Journal of Theoretical Biology 16, 1-14.

Cohen, D. 1968 A general model of optimal reproduction in a randomly varying environ-

ment. The Journal of Ecology, 219-228.

Colbourne, J. K., Robison, B., Bogart, K. & Lynch, M. 2004 Five hundred and twenty-

eight microsatellite markers for ecological genomic investigations using Daphnia. Molecular

Ecology Notes 4, 485-490.

Colbourne, J. K., Pfrender, M. E. , Gilbert, D., et al. 2011 The ecoresponsive genome of

Daphnia pulex. Science 331, 555-561.

Collins, S. & Gardner, A. 2009 Integrating physiological, ecological and evolutionary

change: a Price equation approach. Ecology Letters 12, 744-757.

Cooper, W. S. & Kaplan, R. H. 1982 Adaptive coin-flipping: a decision-theoretic exami-

nation of natural selection for random individual variation. Journal of Theoretical Biology

94, 135-151.

Coulson, T., Tuljapurkar, S. & Childs, D. Z. 2010 Using evolutionary demography to link

life history theory, quantitative genetics and population ecology. Journal of Animal Ecology

79, 1226-1240.

Dalziel, A. C., Rogers, S. M. & Schulte, P. M. 2009 Linking genotypes to phenotypes

and fitness: how mechanistic biology can inform molecular ecology. Molecular Ecology 18,

4997-5017.

Daub, C. O., Steuer, R., Selbig, J. & Kloska, S. 2004 Estimating mutual information

133



using B-spline functionsan improved similarity measure for analysing gene expression data.

BMC bioinformatics 5, 118.

Day, T., & Rowe, L. 2002 Developmental Thresholds and the Evolution of Reaction

Norms for Age and Size at Life-History Transitions. The American Naturalist 159, 338-350.

De Roos, A. M. 1988 Numerical methods for structured population models: the escalator

boxcar train. Numerical Methods for Partial Differential Equations 4, 173-195.

De Roos, A. M. 1997 A gentle introduction to physiologically structured population

models. In Structured-population models in marine, terrestrial, and freshwater systems, pp.

119-204. Springer.

De Roos, A. M. 2008. Demographic analysis of continuous-time life-history models.

Ecology letters 11, 1-15.

De Roos, A. M., Diekmann, O., Getto, P. & Kirkilionis, M. A. 2010 Numerical equilibrium

analysis for structured consumer resource models. Bulletin of Mathematical Biology 72, 259-

297.

De Roos, A. M., & Persson, L. 2003. Competition in size-structured populations: mecha-

nisms inducing cohort formation and population cycles. Theoretical Population Biology 63,

1-16.

De Roos, A. M. & Persson, L. 2013 Population and community ecology of ontogenetic

development. Princeton University Press.

De Roos, A. M., Persson, L. & McCauley, E. 2003 The influence of size-dependent life-

history traits on the structure and dynamics of populations and communities. Ecology

Letters 6, 473-487.

De Roos, A. M., Schellekens, T., van Kooten, T. & Persson, L. 2008 Stage-specific preda-

tor species help each other to persist while competing for a single prey. Proceedings of the

national Academy of Sciences 105, 13930-13935.

De Roos, A. M., Schellekens, T., van Kooten, T., van de Wolfshaar, K., Claessen, D. &

134



Persson, L. 2007 Food-dependent growth leads to overcompensation in stage-specific biomass

when mortality increases: the influence of maturation versus reproduction regulation. The

American Naturalist 170, E59-E76.

Deng, H.-W. 1996 Environmental and genetic control of sexual reproduction in Daphnia.

Heredity 76, 449-458.

DeWitt, T. J. & Scheiner, S. M. 2004 Phenotypic plasticity: functional and conceptual

approaches. Oxford University Press Oxford.

DeWitt, T. J., Sih, A. & Wilson, D. S. 1998 Costs and limits of phenotypic plasticity.

Trends in ecology & evolution 13, 77-81.

Dickinson, R. P., & Gelinas, R. J. 1976 Sensitivity analysis of ordinary differential equa-

tion systems - A direct method. Journal of Computational Physics 21 123-143.

Dieckmann, U. 1997 Can adaptive dynamics invade? Trends in Ecology & Evolution 12,

128-131.

Dieckmann, U., & Doebeli, M. 1999 On the origin of species by sympatric speciation.

Nature 400, 354-357.

Diekmann, O. 2004 A beginners guide to adaptive dynamics. Banach Center publications

63, 47-86.

Diekmann, O. & Metz, J. A. J. 2010 How to lift a model for individual behaviour to

the population level? Philosophical Transactions of the Royal Society B: Biological Sciences

365, 3523-3530.

Diekmann, O., Gyllenberg, M. & Metz, J. A. J. 2003 Steady-state analysis of structured

population models. Theoretical Population Biology 63, 309-338.

Doebeli, M. & Dieckmann, U. 2000 Evolutionary Branching and Sympatric Speciation

Caused by Different Types of Ecological Interactions. The American Naturalist 156, S77-

S101.

Dunker, A. M., Yarwood, G., Ortmann, J. P. & Wilson, G. M. 2002 The Decoupled Direct

135



Method for Sensitivity Analysis in a Three-Dimensional Air Quality Model Implementation,

Accuracy, and Efficiency. Environmental Science & Technology 36, 2965-2976.

Easterling, M. R., Ellner, S. P. & Dixon, P. M. 2000 Size-specific sensitivity: applying a

new structured population model. Ecology 81, 694-708.

Ebert, D. 1991 The effect of size at birth, maturation threshold and genetic differences

on the life-history of Daphnia magna. Oecologia 86, 243-250.

Ebert, D. 1993 The trade-off between offspring size and number in Daphnia magna: the

inuence of genetic, environmental and maternal effects. Arch. Hydrobiol, suppl 90, 453-473.

Ebert, D., Yampolsky, L. & Stearns, S. C. 1993 Genetics of life history in Daphnia magna.

1. Heritabilities at two food levels. Heredity 70, 335-343.

Ellner, S. P., Geber, M. A. & Hairston, N. G. 2011 Does rapid evolution matter? Mea-

suring the rate of contemporary evolution and its impacts on ecological dynamics. Ecology

Letters 14, 603-614.

Ellner, S. P. 2013 Rapid evolution: from genes to communities, and back again? Func-

tional Ecology 27, 1087-1099.

Engelmann, K. E. & Schlichting, C. D. 2005 Coarse-versus fine-grained water stress in

Arabidopsis thaliana (Brassicaceae). American Journal of Botany 92, 101-106.

Epp, G. 1996 Clonal variation in the survival and reproduction of Daphnia pulicaria

under low-food stress. Freshwater Biology 35, 1-10.

Ernande, B., Dieckmann, U. & Heino, M. 2004 Adaptive changes in harvested popu-

lations: plasticity and evolution of age and size at maturation. Proceedings of the Royal

Society of London. Series B: Biological Sciences 271, 415-423.

Gentleman, R. C., Carey, V. J., Bates, D. M. et al. 2004 Bioconductor: open software

development for computational biology and bioinformatics. Genome biology 5, R80.
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Figure A.1: Daily amount of algae provided in large- and small-amplitude treatments.
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Figure A.2: Dynamics of the different classes in the constant food supply experiment for
clone A. Starting from the upper-left graph and going to the bottom-right, size classes are
< 0.8mm, 0.8-1mm, 1-1.2mm, 1.2-1.4mm, 1.4-1.6mm, 1.6-2mm, > 2mm. The last 3 graphs
are the fecundities of the corresponding adult classes. Black lines are experimental data, red
lines are model fits to the data.
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Figure A.3: Dynamics of the different classes in the constant food supply experiment for
clone B. The graphs are ordered as in Figure A.2.
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Figure A.4: Dynamics of the different classes in the constant food supply experiment for
clone C. The graphs are ordered as in Figure A.2.
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Figure A.5: Dynamics of the different classes in the constant food supply experiment for
clone D. The graphs are ordered as in Figure A.2.
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Figure A.6: Proportion of surviving individuals as a function of time under starving condi-
tions for clone A. Black lines are experimental data, red lines are model fits to the data.
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Figure A.7: Proportion of surviving individuals as a function of time under starving condi-
tions for clone B. Black lines are experimental data, red lines are model fits to the data.
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Figure A.8: Proportion of surviving individuals as a function of time under starving condi-
tions for clone C. Black lines are experimental data, red lines are model fits to the data.
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Figure A.9: Proportion of surviving individuals as a function of time under starving condi-
tions for clone D. Black lines are experimental data, red lines are model fits to the data.
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Figure A.10: Dynamics of the different classes in the large-amplitude food supply experiment
for clone A. The graphs are ordered as in Figure A.2. Black lines are experimental data, red
lines are model predictions.
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Figure A.11: Dynamics of the different classes in the large-amplitude food supply experiment
for clone B. The graphs are ordered as in Figure A.2.

161



0 50
0

500

1000

Ju
ve

ni
le

 d
en

si
ty

 (
In

d/
L)

Time (days)
0 50

0

500

1000

Time (days)
0 50

0

100

200

300

400

Time (days)
0 50

0

100

200

300

Time (days)

0 50
0

50

100

150

200

A
du

lt 
de

ns
ity

 (
In

d/
L)

Time (days)

0 50 100
0

5

10

F
ec

un
di

ty
 (

E
gg

/In
d)

Time (days)

0 50
0

100

200

300

Time (days)

0 50 100
0

5

10

Time (days)

0 50
0

50

100

150

200

Time (days)

0 50 100
0

5

10

Time (days)

Figure A.12: Dynamics of the different classes in the large-amplitude food supply experiment
for clone C. The graphs are ordered as in Figure A.2.
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Figure A.13: Dynamics of the different classes in the large-amplitude food supply experiment
for clone D. The graphs are ordered as in Figure A.2.
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Figure A.14: Dynamics of the different classes in the small-amplitude food supply experiment
for clone A. The graphs are ordered as in Figure A.2.Black lines are experimental data, red
lines are model predictions.
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Figure A.15: Dynamics of the different classes in the small-amplitude food supply experiment
for clone B. The graphs are ordered as in Figure A.2.
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Figure A.16: Dynamics of the different classes in the small-amplitude food supply experiment
for clone C. The graphs are ordered as in Figure A.2.
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Figure A.17: Dynamics of the different classes in the small-amplitude food supply experiment
for clone D. The graphs are ordered as in Figure A.2.
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Figure A.18: Parameter values and estimated model functions for clone A (see main text for
details).
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Figure A.19: Parameter values and estimated model functions for clone B (see main text for
details).
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Figure A.20: Parameter values and estimated model functions for clone C (see main text for
details).
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Figure A.21: Parameter values and estimated model functions for clone D (see main text for
details).

171



Appendix B

Chapter 5 Appendices

Table B.1: Microsatellite loci used to characterize clones. Names correspond to those re-
ported in Colbourne et al. (2004). Accession numbers are for the Daphnia Genomics Con-
sortium website (wFleaBase). More details on the methods for characterizing these loci can
be found in the original publication (Colbourne et al. 2004).

Name Locus Accession #
Size (base

pairs)
Dp70 P1-M12 WFms0000072 239
Dp126 P2-B21 WFms0000129 163
Dp142 P2-H17 WFms0000146 319
Dp143 P2-H21 WFms0000147 364
Dp156 P2-N17 WFms0000160 136
Dp300 P4-K10 WFms0000309 329

Dp308
P4-M19;P4-
L19 WFms0000318 223

Dp395 P5-M14 WFms0000409 207
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Table B.2: Quantity and quality of total RNA extracted.

See text for abbreviations.

Clone Cycle Phase OD260/280 OD260/230 Concentration
(µg/µl)

Volume
(µl)

A

LA

P 2.06 2.21 329.2 14
P 2.06 2.19 408.2 14
P 2.03 2.28 351 14
D 2.03 2.24 172.5 14
D 2.02 2 196.5 14
D 2.04 2.23 64.6 40
N 1.97 1.98 97.8 14
N 1.92 1.82 142.1 14
N 1.98 2.08 103.3 14
G 2.03 2.18 695.1 14
G 2.03 2.05 651.9 14
G 2.07 2.3 564.1 14

SA

P 1.96 1.85 49.6 40
P 1.8 1.38 17.2 40
D 2 1.89 249.5 14
D 2.04 1.96 71.7 40
D 2.01 2.05 198.9 14
N 1.95 1.85 66.8 14
N 1.99 2 123.7 14
N 1.95 1.22 25.7 40
G 2.05 2.28 420 14
G 2.06 2.25 386.1 14
G 2.04 2.09 281.6 14
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Table B.2: Continued.

Clone Cycle Phase OD260/280 OD260/230 Concentration
(µg/µl)

Volume
(µl)

B

LA

P 2.06 2.31 104.4 40
P 2.02 2.11 290 14
P 2.08 2.32 128.3 40
D 1.99 2.23 56.2 40
D 1.97 2.28 45.5 40
D 2.03 2.18 43.1 40
N 2.02 2.16 178.3 14
N 2.02 2.04 170.7 14
N 1.96 2.23 33 40
G 2.09 2.15 75.9 40
G 2.1 2.32 308.4 40
G 2.09 2.32 756.6 14

SA

P 1.84 1.28 23.6 40
P 1.95 1.95 22 40
D 1.91 1.85 110.3 14
D 2.08 2.36 614.6 14
D 1.94 1.84 29.2 40
N 2.02 2.34 41.6 40
N 1.9 2.42 20.7 40
N 2.07 2.5 42.1 40
G 2.07 2.27 183.4 40
G 2.05 2.01 437 14
G 2.06 2.38 368.7 14
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Table B.3: GO categories over-represented among the

gene differentially expressed in the different type of com-

parisons.

Term

GO
Accession
number p-value

Va
ria

tio
n 

in
 tr

an
sc

rip
t a

bu
nd

an
ce

Ef
fe

ct
 o

f c
lo

ne
 ty

pe

LA

protein amino acid phosphorylation 6468 7.39E-07
protein-nucleus import. docking 59 2.06E-05
protein folding 6457 0.00014
cysteinyl-tRNA aminoacylation 6423 0.00039
lipoprotein metabolism 42157 0.00205
protein ubiquitination 16567 0.00443
protein modification 6464 0.00467
sensory perception 7600 0.00553
steroid metabolism 8202 0.00553

SA

protein amino acid phosphorylation 6468 4.68E-06
transport 6810 0.00161
proteolysis and peptidolysis 6508 0.00193
sensory perception 7600 0.00432
phototransduction 7602 0.00462
protein complex assembly 6461 0.00687
oxygen transport 15671 0.00801
lipoprotein metabolism 42157 0.00834

Ef
fe

ct
 o

f c
yc

le
  t

yp
e

cA

phototransduction 7602 2.53E-05
sensory perception 7600 0.00033
oxygen transport 15671 0.00033
metabolism 8152 0.00073
cellular protein metabolism 44267 0.00106
cation transport 6812 0.00171
protein folding 6457 0.00413
peptide cross-linking 18149 0.00548
de novo' pyrimidine base biosynthesis 6207 0.00653
antibiotic biosynthesis 17000 0.00927
protein-nucleus import. docking 59 0.00963

175



Table B.3: Continued.

Term

GO
Accession
number p-value

Va
ria

tio
n 

in
 tr

an
sc

rip
t a

bu
nd

an
ce

Ef
fe

ct
 o

f c
yc

le
  t

yp
e

cB

protein amino acid dephosphorylation 6470 4.52E-06
protein amino acid phosphorylation 6468 4.30E-05
carbohydrate metabolism 5975 0.00038
DNA metabolism 6259 0.00045
mismatch repair 6298 0.00074
protein-nucleus import. docking 59 0.00082
protein folding 6457 0.00165
regulation of pH 6885 0.00299
regulation of translational initiation 6446 0.00424
cellular protein metabolism 44267 0.00511
signal transduction 7165 0.00574
ubiquitin-dependent protein catabolism 6511 0.00590
cation transport 6812 0.00779
regulation of GTPase activity 43087 0.00835
steroid metabolism 8202 0.00894
microtubule-based movement 7018 0.00938

W
ith

in
-c

yc
le

 v
ar

ia
tio

n 
in

 tr
an

sc
rip

t a
bu

nd
an

ce

di
re

ct
 c

om
pa

ris
on

s

cALA

ubiquitin-dependent protein catabolism 6511 1.49E-07
DNA replication initiation 6270 3.44E-07
cellular protein metabolism 44267 7.17E-07
protein amino acid phosphorylation 6468 7.36E-06
nucleobase. nucleoside. nucleotide and
nucleic acid metabolism 6139 1.09E-05
protein-nucleus import. docking 59 1.70E-05
protein folding 6457 3.51E-05
DNA replication 6260 0.00022
chromatin modification 16568 0.00053
D-ribose metabolism 6014 0.00085
cell-matrix adhesion 7160 0.00180
translational termination 6415 0.00388
mitosis 7067 0.00388
frizzled-2 signaling pathway 7223 0.00518
protein polymerization 51258 0.00566
nucleoside metabolism 9116 0.00650
transmembrane receptor protein tyrosine
kinase signaling pathway 7169 0.00668
glycine biosynthesis 6545 0.00669
tetrahydrobiopterin biosynthesis 6729 0.00669
trehalose biosynthesis 5992 0.00714
de novo' pyrimidine base biosynthesis 6207 0.00714
nucleotide biosynthesis 9165 0.00714
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Table B.3: Continued.

Term

GO
Accession
number p-value

W
ith

in
-c

yc
le

 v
ar

ia
tio

n 
in

 tr
an

sc
rip

t a
bu

nd
an

ce

di
re

ct
 c

om
pa

ris
on

s

cASA

protein biosynthesis 6412 0
regulation of transcription. DNA-dependent 6355 3.55E-10
development 7275 4.34E-08
protein modification 6464 4.44E-06
glycolysis 6096 5.31E-06
signal transduction 7165 3.11E-05
phototransduction 7602 3.94E-05
protein-mitochondrial targeting 6626 4.90E-05
ribosome biogenesis and assembly 42254 4.90E-05
mitochondrial inner membrane protein import 45039 4.90E-05
GTP biosynthesis 6183 5.53E-05
UTP biosynthesis 6228 5.53E-05
CTP biosynthesis 6241 5.53E-05
translational initiation 6413 0.00017
ubiquitin cycle 6512 0.00029
copper ion transport 6825 0.00039
mRNA processing 6397 0.00046
monovalent inorganic cation transport 15672 0.00064
cell organization and biogenesis 16043 0.00064
ATP biosynthesis 6754 0.00091
glycerol-3-phosphate metabolism 6072 0.00147
ATP synthesis coupled proton transport 15986 0.00149
mitochondrial electron transport. ubiquinol to
cytochrome c 6122 0.00195
cell surface receptor linked signal transduction 7166 0.00195
protein targeting 6605 0.00282
frizzled-2 signaling pathway 7223 0.00324
small GTPase mediated signal transduction 7264 0.00355
nuclear mRNA splicing. via spliceosome 398 0.00393
lipid transport 6869 0.00546
cell adhesion 7155 0.00618
cell cycle arrest 7050 0.00622
homophilic cell adhesion 7156 0.00901

cBLA

protein amino acid phosphorylation 6468 0
phototransduction 7602 5.80E-07
protein-nucleus import. docking 59 1.59E-06
DNA replication initiation 6270 2.70E-06
ubiquitin-dependent protein catabolism 6511 6.19E-06
protein amino acid dephosphorylation 6470 2.81E-05
mismatch repair 6298 0.00014
cellular protein metabolism 44267 0.00014
protein folding 6457 0.00019
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Table B.3: Continued.

Term
GO Accession

number p-value

W
ith

in
-c

yc
le

 v
ar

ia
tio

n 
in

 tr
an

sc
rip

t a
bu

nd
an

ce

di
re

ct
 c

om
pa

ris
on

s

cBLA

regulation of pH 6885 0.00035
oxygen transport 15671 0.00082
steroid metabolism 8202 0.00104
visual perception 7601 0.00108
chromatin modification 16568 0.00131
DNA metabolism 6259 0.00223
glycerol-3-phosphate metabolism 6072 0.00286
transport 6810 0.00382
metabolism 8152 0.00482
signal transduction 7165 0.00690
fatty acid beta-oxidation 6635 0.00749
ATP-dependent proteolysis 6510 0.00830
microtubule-based movement 7018 0.00963

cBSA

proteolysis and peptidolysis 6508 1.33E-10
carbohydrate metabolism 5975 1.22E-08
protein amino acid phosphorylation 6468 1.46E-07
phototransduction 7602 2.92E-06
lipid transport 6869 2.32E-05
peptide cross-linking 18149 2.93E-05
microtubule-based movement 7018 0.00012
protein amino acid dephosphorylation 6470 0.00022
cellular protein metabolism 44267 0.00064
cell-matrix adhesion 7160 0.00207
regulation of translational initiation 6446 0.00264
nucleotide-sugar metabolism 9225 0.00304
regulation of pH 6885 0.00460
nucleocytoplasmic transport 6913 0.00554
N-linked glycosylation via asparagine 18279 0.00554
visual perception 7601 0.00658
nucleotide metabolism 9117 0.00775
nucleotide-sugar transport 15780 0.00775

Ef
fe

ct
 o

f c
lo

ne
 ty

pe

LA

protein amino acid phosphorylation 6468 3.47E-11
protein amino acid dephosphorylation 6470 2.51E-08
protein folding 6457 1.17E-07
regulation of GTPase activity 43087 0.00030
protein-nucleus import. docking 59 0.00034
regulation of pH 6885 0.00041
glycerol-3-phosphate metabolism 6072 0.00090
regulation of translational initiation 6446 0.00146
metabolism 8152 0.00183
protein complex assembly 6461 0.00205
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Table B.3: Continued.

Term
GO Accession

number p-value

W
ith

in
-c

yc
le

 v
ar

ia
tio

n 
in

 tr
an

sc
rip

t a
bu

nd
an

ce

Ef
fe

ct
 o

f c
lo

ne
 ty

pe

LA

cation transport 6812 0.00281
intracellular protein transport 6886 0.00338
neuropeptide signaling pathway 7218 0.00492
protein modification 6464 0.00544
small GTPase mediated signal transduction 7264 0.00795
development 7275 0.00817
ubiquitin-dependent protein catabolism 6511 0.00838
protein-nucleus import 6606 0.00913
isoprenoid biosynthesis 8299 0.00913

SA

heme biosynthesis 6783 1.52E-05
cellular protein metabolism 44267 4.44E-05
de novo' pyrimidine base biosynthesis 6207 7.83E-05
oxygen transport 15671 0.00018
protein folding 6457 0.00024
sensory perception 7600 0.00062
protein complex assembly 6461 0.00090
glycolysis 6096 0.00090
glycerol-3-phosphate metabolism 6072 0.00127
nucleotide-sugar transport 15780 0.00127
carbohydrate metabolism 5975 0.00131
protein polymerization 51258 0.00150
GMP biosynthesis 6177 0.00220
pyrimidine nucleotide biosynthesis 6221 0.00220
phototransduction 7602 0.00221
cell wall catabolism 16998 0.00288
nucleotide metabolism 9117 0.00431
metabolism 8152 0.00467
rRNA processing 6364 0.00827
purine ribonucleoside salvage 6166 0.00918
tRNA aminoacylation for protein translation 6418 0.00994

Ef
fe

ct
 o

f c
yc

le
 ty

pe

cA

protein-nucleus import. docking 59 1.89E-07
cellular protein metabolism 44267 4.35E-06
phototransduction 7602 8.05E-06
peptide cross-linking 18149 9.75E-06
sensory perception 7600 2.95E-05
protein amino acid phosphorylation 6468 7.01E-05
carbohydrate metabolism 5975 0.00014
de novo' pyrimidine base biosynthesis 6207 0.00085
DNA replication initiation 6270 0.00088
protein-nucleus import 6606 0.00098
metabolism 8152 0.00124
phosphatidylserine biosynthesis 6659 0.00148
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Table B.3: Continued.

Term
GO Accession

number p-value

W
ith

in
-c

yc
le

 v
ar

ia
tio

n 
in

 tr
an

sc
rip

t a
bu

nd
an

ce

Ef
fe

ct
 o

f c
yc

le
 ty

pe

cA

protein polymerization 51258 0.00161
translational initiation 6413 0.00212
D-ribose metabolism 6014 0.00266
fatty acid metabolism 6631 0.00266
peptidoglycan catabolism 9253 0.00266
glycolysis 6096 0.00288
oxygen transport 15671 0.00288
protein folding 6457 0.00312
chromatin modification 16568 0.00327
antibiotic biosynthesis 17000 0.00343
visual perception 7601 0.00540
regulation of translational initiation 6446 0.00587
cell-matrix adhesion 7160 0.00806
L-phenylalanine catabolism 6559 0.00849

cB

protein amino acid dephosphorylation 6470 6.91E-10
oxygen transport 15671 6.09E-09
protein amino acid phosphorylation 6468 1.07E-08
carbohydrate metabolism 5975 6.20E-08
protein-nucleus import. docking 59 1.27E-07
cellular protein metabolism 44267 1.71E-05
protein folding 6457 1.89E-05
microtubule-based movement 7018 2.23E-05
glycerol-3-phosphate metabolism 6072 2.98E-05
mismatch repair 6298 4.96E-05
signal transduction 7165 5.01E-05
DNA metabolism 6259 0.00018
regulation of pH 6885 0.00038
threonyl-tRNA aminoacylation 6435 0.00069
regulation of translational initiation 6446 0.00164
DNA replication initiation 6270 0.00183
ubiquitin-dependent protein catabolism 6511 0.00197
regulation of GTPase activity 43087 0.00221
alanyl-tRNA aminoacylation 6419 0.00408
chromatin modification 16568 0.00408
phosphatidylserine biosynthesis 6659 0.00447
glycine catabolism 6546 0.00685
N-linked glycosylation 6487 0.00895
trehalose metabolism 5991 0.00920
cell surface receptor linked signal transduction 7166 0.00920
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