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Abstract 

A numerical sieve device is an automated device used for solving systems of simulta-

neous congruences. This thesis describes the design and construction of CAssIE—the 

Calgary Scalable Sieve—and explains this design in the context of previous sieve de-

vices. 

CASSIE employs several key optimizations to the sieve problem, including doubly-

focused enumeration, a technique which allow this sieve to achieve sieve rates over 

106 times higher than any previous sieve device. 

One particular sieve problem—the pseudosquare problem—was examined in de-

tail. Using CASSIE, the table of known pseudosquares was extended to include 12 new 

values. These values were then used to offer additional computational evidence for a 

conjecture on the lower bound of the primality proving problem. Additional applica-

tions of pseudosquares, including fast, randomized verification of a Rabin-Williams 

digital signature scheme, and a solution to the unsolicited commercial email (ucE, 

or Spam) problem are also explored. 
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Epigraph 

It's very esoteric, of course, and since I am practically the only man working in this 

field you can see how widespread the interest in it is. 

—D. H. Lehmer, on sieves [Leh8O]. 
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Chapter 1 

Introduction to the Generalized Sieve Problem 

With the possible exception of the equator, everything begins somewhere. 

—Peter Robert Fleming 

1.1 Motivation and Background 

Though this is not a thesis on factoring integers, the early history of the automated 

sieve device and the problems of factoring an odd, composite integer, N into non-

trivial factors N = rs are closely linked. 

The sieve connection comes from an observation of Pierre de Fermat's ([dF94], 

pp. 256-258); namely that if N is composite and odd, then the factors r and s are 

also odd, and choosing (arbitrarily) r < define: 

U-
- 2 

V - r. 
2 

Using this definition, N is expressible as a difference of squares, namely N 

U2—V2 with U<-1. 

With this observation, Fermat reduced the problem of factoring to the problem 

of finding all values of  = U2—N with U [VNJ+1, +2,...,N 2 1 for which 

x is a perfect square. Enumerating successive values of x is quite straightforward by 

'The trivial case, where r = \/W is not considered. 

1 
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noting that (x + 1)2 - 2 = 2x +1. In other words, by starting with x = +1, 

the series of candidates for x may be obtained by adding successive odd integers. 

This approach to factoring is called the difference of squares method and it forms2 

the basis of most modern factoring algorithms. 

In addition to this discovery, Fermat noticed the following: it is possible to shorten 

this search for x by examining the last two digits of x and rejecting any candidates 

that cannot possibly be a perfect square. As there are only 22 quadratic residues 

modulo 100, this method succeeds in excluding almost 1 of the choices for x. 

This basic idea is called modular exclusion, and the following observation, due to 

Gauss, provides a understanding of the power of this technique. 

Given f(x), g(y) E Z[x], consider the problem of solving a IJiophantine equation 

of the form: 

f(x)=g(y) for x,yE7L (1.1) 

Select k exclusion moduli, M1, M2,. .. , Mk, that are pairwise relatively prime.3 

For any solution (x, y) of Equation 1. 1, the following expression must hold: 

f(x)Eg(y) (mod M) for l≤i≤r 

Now, for each of the exclusion moduli, M, determine the acceptable residue 

classes for x given y = 0, 1, 2,. . . ,Mi -  1. In most cases, x will assume a relatively 

modest set of residue classes (modulo Mi). Consider, for example, the Diophantine 

equation 22 + 97w = y2. If this equation is considered modulo 4, the result is 

2Along with an important modification by Kraitchik 
'This is not a necessary requirement, but it does serves to simplify the discussion. 



3 

2 + x y2 (mod 4), and thus x (mod 4) E {2, 3}. Continuing in this fashion with 

M2 = 3, M3 = 5, M4 = 7 produces the following set of congruence criteria: 

x (mod 4) e {2, 3} 

x (mod 3) E {0, 2} 

x (mod 5) E {1,2,4} 

z (mod 7)E {0,1,4,6} 

Computing all possible combinations of residues via the Chinese Remainder The-

orem (aRT) (discussed in more detail in Section 1.2.1), produces 2 2 3 4 = 48 

possible solutions (modulo 420) .' Trying each of these candidates in turn quickly 

reveals a solution for x = 11: 

22+97.11=332 

Problems such as this one, involving systems of simultaneous congruences, are 

called sieve problems. Though this chapter began with a discussion of factoring, it 

should be clear from this example that the sieve process applies to a more general 

class of problems. Lehmer [Leh66}, once gave the following (by no means exhaustive) 

list of examples: 

1. Find all solutions (x, y) with x < L of the equation x2 + D = y2 for a given 

DEZ. 

4x (mod 420) E {6, 11, 14, 27, 39, 42, 62, 71, 74, 99, 102, 111, 119, 126, 134, 146, 147, 162, 167, 
174, 179, 182, 186, 207, 231, 239, 242, 246, 251, 266, 267, 279, 287, 291, 294, 302, 314, 326, 342, 
347, 351, 354, 371, 386, 399, 407, 414, 419} to be precise. 
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2. Find the representations of a large number by a given binary quadratic form, 

i.e.N = x 
- y2. 

3. Find (or count) the integers x ≤ L which are power residues for each of a given 

set of small primes. 

4. For a given polynomial, g, find (or count) the numbers for which g(x) is divisible 

by none of a given set of small primes. 

5. Find the least possible integer value of g(y). 

6. Find the binomial units of a given algebraic number field. 

1.2 The Generalized Sieve Problem 

The generalized sieve problem may now be formalized: 

Definition 1.1 Let 7?. = {rl,r2,...,rk} with 0 ≤ rj < M for j = 1,2,...,k be the 

set of acceptable (or admissible) residues modulo M. The tuple {M, fl.} is called a 

sieve ring. 

Definition 1.2 Two sieve rings are said to be relatively prime if their modulus 

values are relatively prime. 

Definition 1.3 The Generalized Sieve Problem (GsP) is defined in the following 

manner. Given: 

.1. A, B E Z with B > A (the sieve interval) 
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2. k sieve rings, {M1, R 11 , {M2, 12},. . . , {M, 7k}, whose moduli, M1, 

are relatively prime in pairs. 

Find all a; E Z such that A < a; < B and 

a; (mod MI) E R.1A 

a; (mod M2)E 7.2A 

a; (mod M3)E R3  

a; (mod Mk) E l?-k 

Any solution a;, satisfying the sieve criteria above is said to be a solution admitted 

by this sieve problem. 

Note that a sieve problem may be thought of as an intersection of sets: 

S=fl{X EZIX (mod M)7 A≤a;<B} 

Definition 1.4 The width of a particular GSP instance is defined as the number of 

congruence conditions present in the problem definition; i.e., the width of the sieve 

problemS— fl.1{xEZIx(mod Mj) E Ri A≤x<B}isk. 

1.2.1 Extremes in Sieve Problems 

Generally, a sieve problem is categorized in terms of the density of acceptable residues 

when compared to the size of the sieve interval. Though this notion of density will 

be formalized in Section 3.1, the following broad categories of sieve problems will be 

discussed here: 
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Dense Sieve Problems 

The Sieve of Eratosthertes is perhaps the best known example of a dense sieve algo-

rithm. This method for generating prime numbers dates back over 2300 years. In 

this algorithm, the primes {pi, P2.....Pk} are used as sieve moduli. The acceptable 

residues are all the residue classes other than zero, i. e.7 1 = {1, 2... . , p - 1}. Now, 

sieving the interval [pk+1, i+i) will reveal all the primes in that range.5 

For example, given: 

x (mod 2) E {1} 

x (mod 3) E {1, 2} 

x (mod 5)E {1, 2,3,41 

x (mod 7)E {1,2,3,5,6} 

x (mod 11) E {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

Sieving over the interval [13, 169) produces the primes 17, 19, 23, 29, 31, 37, 41, 

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 

139, 149, 151, 157, 163, and 167. 

This type of sieve problem is referred to as a dense sieve problem, owing to the 

large number of candidate solutions in the sieve interval. 

Sparse Sieve Problems 

On the other end of the spectrum is a category know as sparse sieve problems. In its 

most extreme case, a problem may be considered with exactly one acceptable residue 

per sieve modulus. Unlike other forms of the GSP, this case was solved exactly by Sun 

'This process may be continued indefinitely by adding the newly discovered primes to the list 
of exclusion moduli and incorporating the appropriate residue conditions. 
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Tsu over 2000 years ago, and is more commonly known as the Chinese Remainder 

Theorem (CRT) 6 

Theorem 1.1 Chinese Remainder Theorem (CRT) 

Given the congruences 

a; r1 (mod m1) 

a; r (mod m2) 

a; r (mod Mk) 

where m1, m2, . . . , M k are pairwise relatively prime. 

Set M = fl m and define Ni = . Since gcd(m, N) = 1, the expression 

eN Mi 

1 (mod m) for i=1,2,...,k 

is solvable. A solution to these simultaneous congruences is given by 

(mod M) 
i=1 

Proof: See [HW79], pp. 95. 

Sparse sieve problems are unusual in that a relatively efficient algorithm (the 

CRT) exists to determine a solution. This idea motivates a definition that will used 

extensively in Chapter 3. 

61n the period when the USA refused to recognize mainland China, D. H. Lehmer would refer to 
this theorem as the Taiwan Remainder Theorem 
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Definition 1.5 Given a set of sieve rings, Si = jRj, M}, the CRT combination of 

these rings is defined as the set of solutions obtained via the CRT for every possible 

combination of residues; i.e., 

={rEzIr 
i=i 

ejNr (mod M), r1 E Ri .... , rk E R k }. 
Notice that when sieve rings are combined in this fashion, the number of accept-

able residues in the combined sieve ring may be exactly predicted, as is demonstrated 

by the following Lemma. 

Lemma 1.1 The set of acceptable residues, R obtained via the CRT combination of 

R.., 'R.2,. . . , fl.k with associated residues M1, M2,. . . , Mk (pairwise relatively prime) 

is exactly iRi = fJC1 IR.L 

Proof: Consider the sieve ring, 7, obtained via the CRT combination of the sieve 

rings R., fl.2. As there are only II I72I different ways to combine the acceptable 

residues from these two sets, it is clear that 17Z < I7i . 

Suppose (r1, . . . , rk), (Si,.. . ,$) E fl x X R-k and 

Then 

so 

i=i 

k 

k 

6iNiri =_ ijNs (mod M) 
i=i 

- sj) 0 (mod M) 

- s) 0 (mod M) 
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for each j = 1,2,...,k. As Mi I Ni for i =A j, and gcd(Nj,m) = 1, then the 

congruence 

sj (mod Mi) 

must hold for all j = 1, 2... . , k. 

Thus the RI R,i solutions are all distinct. 

U 

Problems of Quadratic Density 

One of the most interesting classes of sieve problems occurs when approximately half 

of the residues for a given sieve modulus are acceptable. These problems of quadratic 

density are the most frequently encountered sieve problems [Leh53], and occur in 

investigations such as the examples given in Section 1.1. 

1.2.2 Sieve Performance and Measurement 

In [Pat92], Patterson showed that, when translated into a decision problem, the as 

is NP-complete. In general, there is no known efficient method for solving the asp. 

To date, the most successful methods for solving instances of the GSP have involved 

the construction of devices that automate the search for a solution. 

Definition 1.6 The canvass rate of a given sieve implementation is defined as the 

number of solutions, x, in a given sieve interval A ≤ x < B divided by the number 

of seconds required to sieve the interval. This value is given in terms of trials per 

second. 
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In practice, there is another very important component of a sieve solution that 

may impact the overall speed of the sieve device. 

1.2.3 Filtering 

It is rare for a sieve problem to be specified in isolation. Quite often, in the reduction 

from the original problem, a set of additional restrictions are placed on the values x 

that are admitted by the sieve. Some examples include: 

1. x is (is not) a pseudoprime, strong pseudoprime, or provable prime. 

2. x is (is not) a perfect square. 

3. x is (is not) a perfect cube. 

4. A function of x satisfies one of the above conditions (for example, x2 + D2 is 

prime). 

Though these types of filtering conditions often figure prominently in a particular 

sieve problem, filtering is not usually considered part of the GSP. Filtering can, 

however, play a significant role in the efficiency of a particular sieve implementation. 

For this reason, an additional measure of sieve performance is often defined. 

Definition 1.7 The maximum sieving rate of a particular sieve implementation is 

defined as the number of values output by the solution detection mechanism for that 

particular problem. 

Definition 1.8 A sieve problem is called filter-bound if the maximum sieving rate 

of the problem is determined by the speed of filtering the outputs. 
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A sieve problem is called sieve-bound if the maximum sieving rate of the problem 

is determined by the canvass rate of the sieve device. 

Note that if a sieve implementation is sieve-bound, the maximum sieving rate is 

exactly equal to the canvass rate of the device. 

1.3 Structure of the Thesis 

This thesis is concerned with the design and construction of an automated sieve 

device, the Calgary Scalable Sieve (cAssIE). 

Chapter 2 puts the sieve problem in context by outlining the the history of sieve 

automation. Chapter 3 discusses general techniques for optimizing the sieve problem. 

Chapter 4 describes the design and implementation of OASSIE. Finally, Chapter 5 

describes several applications of the new sieve device, including the pseudosquare 

problem, its applications, and several record-setting computations obtained using 

this new device. 



Chapter 2 

History of Sieve Automation 

HISTORY, n. An account mostly false, of events mostly unimportant, which are 

brought about by rulers mostly knaves, and soldiers mostly fools. 

—Ambrose Bierce 

2.1 The Beginnings of Automation 

Around 1895, F. W. Lawrence rediscovered Fermat's difference of squares method 

of factoring [Law96]. Recognising its power, he began to consider ways to automate 

the technique. His first idea was to employ movable paper strips, whose length was a 

unit multiple of the modulus. By lining up columns of numbers under consideration 

spaced by the same unit distance, the paper strips (with the appropriate residues 

marked with a line) could be slowly shifted across these columns and the unacceptable 

values crossed off. In fact, variants of this columnar idea have been around for as long 

as mathematicians have been constructing factor tables. Anton Felkel, for example, 

used a set of 8 rods in 1776 to construct a table of factors up to 408,000.1 C. F. 

Hindenburg is said to have used a similar technique even earlier than this [Wil98], 

though his results were never published. 

'This table met a rather ignoble end when, after failing to sell, it was collected up and the paper 
used for cartridges in the war against the Turks. 

12 
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2.1.1 The Prototypes 

Lawrence's next idea for sieve automation was much more significant. Recognizing 

the cyclic nature of the residue conditions, he proposed the construction of a machine 

with gears representing each of the exclusion moduli, m1, m2,. . . , Mk. Each of the k 

gears would have mi equally-sized teeth, which would be numbered from 0 to m —1. 

Acceptable residues would be denoted by placing brass studs through the tooth, 

extending from the gear on both sides. Each of these modulus gears would then be 

mounted on individual axles in a fan-like arrangement. This arrangement had two 

purposes. First, it allowed the gears to be driven by a common driving gear. Second, 

it allowed the mounting hardware to be angled outward so as to allow the protruding 

brass studs to clear the mounting hardware. Whenever a solution occurred, the 

protruding studs would make contact with each other, forming a continuous circuit 

and ringing a bell to notify the operator. By examining the positions of the various 

modulus rings, or by employing a rotation counter on the driving gear, the operator 

would be able to determine the value of x at which the solution occurred. 

Though Lawrence never built this machine, in 1910 his proposal was translated 

into French and republished in Andre' Gérardin's journal Sphinx-Oedipe. By 1912, at 

least 3 people had constructed prototypes of Lawrence's machine: Gérardin himself, 

Maurice Kraitchik, and Pierre Carissan [Gf 2]. Though certainly proof of the concept, 

these early prototypes were not particularly reliable or robust. Encouraged by these 

early results, however, Pierre Carissan's brother, Eugène-Olivier went on to build a 

much more precise device; one which deserves to be called the first truly automated 

sieve device. 
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2.1.2 E.-O. Carissan's Sieve 

This automated sieve device was completed by E.-O. Carissan in 1919 [Car2Oa]. 

Building on lessons learned in the construction of his brother's prototype, Carissan's 

sieve was a beautifully machined device consisting of 14 concentric brass rings, each 

consisting of a driving gear on the bottom, and a set of mi studs, equally spaced 

around the circumference of the ring. These 14 rings moduli were chosen to represent 

the first 17 primes, with 21 = 3 . 7, 26 = 2 - 13, 34 = 2. 17, 55 = 5 11, 19, 23, 29, 

31, 37, 41, 43, 47, and 53 studs respectively. 

Each ring was geared to advance at the same linear rate. i. e.To advance by one 

stud for each iteration of a hand-driven counter. A series of 14 contact switches 

was placed along the radius of the device in a configuration called the investigation 

line. Acceptable residues were indicated by placing a non-conductive cap on the 

appropriate stud for a particular ring. When a non-conductive cap passed under the 

investigation line, it raised the switch. When all 14 rings indicated an acceptable 

residue, a circuit was completed and an audible click could be heard in a telephone 

headset connected to the circuit and worn by the operator. When this occurred, 

the device was stopped, and rolled back to the point where the solution occurred, 

angular momentum having carried the device too far. 

The device was driven by hand (though Carissan later indicated plans to add a 

motor-drive [Car2Ob]) and featured a 6-digit counter. It was capable of sieving at 

rates of 35-40 trials per second. 

After Carissan's death in 1925, the machine was nearly forgotten. It sat in a 

drawer at Observatoire de Bordeaux in Floirac, France for nearly 50 years. It was 
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recently rediscovered [SWM95] and currently resides in the Conservatoire Nationale 

des Arts et Métiers in Paris. 

2.1.3 The Path to Full Automation 

The early sieve prototypes and Carissan's sieve shared two key drawbacks. First, 

they required a human operator to physically manipulate the machine. This limited 

the amount of time that could be devoted to a particular sieve problem to either 

the limit of the operator's attention span, or his arm strength. Second, the solution 

detection mechanisms required that an operator take note of the solution condition 

and stop the device. A momentary lapse in the operator's attention could result in 

a missed solution. 

The next wave of automated sieve devices aimed to reduce or eliminate the effects 

of operator error by improving the devices in two ways: 

. Mechanize the advancement of the sieve moduli, to allow the problems to run 

for extended periods. 

• Automate the solution detection mechanism, making it difficult, if not impos-

sible for solutions candidates to be missed or ignored. 

2.2 Lehmer's Sieves 

The next chapter of sieve development can be summed up with one name: Derrick 

Henry Lehmer. For over 6 decades, Lehmer participated in the design and construc-

tion of automated sieve devices. 
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2.2.1 The Bicycle Chain Sieve 

Lehmer's first foray into sieve building occurred while he was still an undergraduate 

at the University of California, Berkeley. In 1927, he adapted an idea of his father's2 

to produce the bicycle chain sieve [Leh28]. Long thought to be the first automated 

sieve device (Lehmer did not know of Carissan's sieve) the bicycle chain sieve closely 

resembled Lawrence's original prototype, consisting of 19 loops of bicycle chain sus-

pended from a common drive shaft, and driven by an electric motor. The number 

of chain links represented particular sieve moduli, combinations of sieve moduli, or 

powers of sieve moduli: 64 = 21,27 = 3,25 = 52,49 = 72,22 = 2 11,26 = 2• 13, 

and the primes 17, through 67. Acceptable residues were indicated by a pin inserted 

into the appropriate link, with the 0th link painted red to facilitate the counting. 

The solution detection mechanism employed by the bicycle chain sieve was very 

similar to Carissan's design, employing contact switches that were engaged by the 

pins inserted into acceptable residues. When all switches were lifted (indicating a 

potential solution had been encountered), a circuit was completed, engaging a relay 

and stopping the drive motor. A revolution counter on the drive shaft revealed the 

solution (once the effects of angular momentum were accounted for). 

The bicycle chain sieve was capable of sieving at rates of up to 50 trials per 

second—any faster, and the loose-hanging bicycle chains would tend to bind and 

become entangled. Despite these relatively low sieve speeds, and the relative diffi-

culty in setting up a sieve problem,' the bicycle chain sieve was used on between 50 

and 100 computational problems, including the pseudosquare problem (which will 

2Derrick N. Lehmer, also a professor at U. C. Berkeley 
1-2 hours for a typical problem [Wil98] 
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be revisited in Chapter 5). 

Though the whereabouts of the original bicycle chain sieve are unknown (having 

been disassembled for transport, and subsequently stolen), a replica built by Robert 

Canepa of Carnegie Mellon is currently in storage at the Computer Museum's History 

Centre in Mountain View, California [Pom82]. 

2.2.2 The Photoelectric Sieve 

Lehmer's next foray into sieve building came in 1932, with the development of the 

photoelectric sieve. This remarkable machine was modelled closely after Kraitchik's 

original prototype. It employed 30 modulus gears representing the primes 11-113, 

and the prime powers 26 = 64,31 = 27,5 2 = 25, and 72 = 49. Each of these 

gears was free to rotate independently around one of 2 axles, and was driven by 

a matched driving gear, chosen to ensure the modulus gear advanced by 1/mi of 

its circumference with each iteration of the sieve counter. Acceptable residues were 

indicated by a hole centred below each gear tooth, located a fixed radius from the 

axle. Unacceptable residues had this hole filled [Leh34]. 

The photoelectric sieve's solution detection mechanism was the most impressive 

component of the sieve design, consisting of a light source and an incredibly sensitive 

photodetector. Light would enter the device at one end, pass through the first 15 

modulus gears, and then be reflected via a pair of prisms through the second set of 

15 modulus gears and back to the photodetector. The photodetector consisted of a 

6-stage amplifier, capable of amplifying the signal received at the photocell by over 

7.29 x 108 times [car33]. If light was detected, indicating a solution candidate, a 

thermionic relay was tripped, and the electric drive motor stopped. 
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The photoelectric sieve was capable of operating at speeds of up to 5000 trials 

per second. 

In 1933, the photoelectric sieve was disassembled, and shipped to the Century of 

Progress Exhibition in Chicago, where Lehmer was hired to demonstrate the device. 

Unfortunately, the sensitive nature of the photodetector prevented it from being set 

up, and Lehmer ended up giving his demonstrations on a non-functional sieve. The 

sieve was never fully reassembled afterwards. 

Portions of the photoelectric sieve are still housed at the Computer History Mu-

seum in Mountain View, California. 

2.2.3 The Movie Film Sieve 

Despite its then-fantastic speeds, the main failings of the photoelectric sieve were 

the enormous difficulties involved in setting up a problem, and the problem ensuring 

the reliable operation of the solution detection mechanism. 

Lehmer's next sieve design was intended to address three main concerns: reliabil-

ity, portability,4 and ease of use. In 1934, he produced a modification of his bicycle 

chain idea: the movie film sieve. 

This sieve used 18 loops of 16mm film leader draped over a brass drive shaft to 

represent the sieve moduli. The loop lengths were chosen to be proportional to each of 

the moduli, and a i-inch hole was punched in the leader to indicate an unacceptable 

residue. In a necessary improvement over the original design, adjustable rollers were 

added to the bottoms of the loops to provide the tension necessary to keep the loops 

4 A the time, Lehmer was in search of employment. The portability criterion ensured that he 
could continue with his research in the interim. 
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from slipping. The entire mechanism was driven by an electric motor. 

The solution detection mechanism consisted of a series of metallic brushes— 

one per film loop—that made contact with the brass driving rod through the holes 

punched in the film. While the device was operating, the drive circuit would remain 

complete as long as at least one of the brushes remained in contact with the drive 

shaft. If a solution was encountered, indicated by 18 unbroken loops of film, the 

circuit would be broken, a relay would trip, and the machine would coast to a stop. 

As with Lehmer's other designs, the device could then be rolled back to the point of 

solution, and the solution candidate read from a revolution counter attached to the 

drive shaft. 

Lehmer used this device with some success, even though its top speed was only 

around 50 trials per second. The key advantage over previous designs was that a 

particular sieve problem took only about 30 minutes to set up. Unfortunately, the 

film loops tended to wear out after about 10 hours of use [Leh80] and thus the sieve 

operation was typically restricted to problems lasting only a few hours in duration. 

Like many of Lehmer's other sieve designs, the movie film sieve is currently housed 

at the Computer History Museum in Mountain View, California. 

2.2.4 Gérardin's Adding Machine Sieve 

In 1937, Gérardin published information on an electric, automated sieve device that 

he had constructed [G7]. As with many of Gérardin's sieve device accounts, few 

details of its design or construction were supplied. From a photograph of this device, 

it appears to have been based on an adding machine. Gérardin's account indicated 

that the device was capable of printing its solutions, and performed around 25,000 
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operations per working day. Very little else is known about this sieve. 

2.3 The Electronic Revolution 

Mechanical sieve devices have a common failing. Their reliance on moving parts 

both constrain the speeds of the devices, and make them prone to wear. The advent 

of electronics and the computer era brought about a revolution in automation that 

extended to automated sieve devices. In fact, the early history of electronic sieves is 

closely tied with the early history of computing. 

2.3.1 ENIAC 

The story of sieving on electronic computers began with a family outing on the 

weekend of July 41h in 1946. Where some families might consider a trip to the 

beach, this particular family outing involved a trip to see the Electronic Numerical 

Integrator and Calculator (ENIAC) at the Moore School of Electrical Engineering of 

the University of Pennsylvania. 

Taking advantage of some idle time between ballistics calculations,' D.H. Lehmer, 

and his wife Emma set up ENIAC to search for composite numbers, n that divide 2'-2 

i. e.the base-2 Fermat pseudoprimes. The idea was that by verifying and extending 

the table of known pseudoprimes [Leh36], the task of testing a large number for 

primality could be reduced to using just Fermat's test with a few small trial divisions. 

The algorithm implemented on ENIAC was a fairly straightforward one. For each 

prime p, the computer was to try every value of the exponent n < 2000 to determine 

5Making it, quite possibly, the first problem in computational number theory to be solved using 
"idle time" on available computers. 
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whether 2' 1 (mod p). This brute-force method, though seemingly inefficient, 

could produce a result in less than 2.4 seconds [Leh49]. 

In the end, Lehmer was able to extend the list of base-2 Fermat pseudoprimes to 

include all values in the range 108 to 2 x 108, and produce 85 new factors of 2' ± 1 for 

k ≤ 500. This result, in Lehmer's words, was "like picking plums at waist height" 

[BLS02]. 

At the time, ENIAC was still in its original, parallel configuration, involving 20 

independent accumulators that could be wired together in a variety of fashions. 

Later, on the suggestion of von Neumann, these parallel units were converted 

to one-word registers, and ENIAC retained just a single accumulator, a model that 

inspired many computing designs to come.6 

Though Lehmer's goal was not to implement the GSP on ENIAC, the pseudoprime 

problem did include a sieve component. For a variety of reasons, including the desire 

to allow the algorithm to run unattended, the list of primes, p, could not be entered 

as needed via punch cards. Thus, ENIAC had to compute the candidate primes on its 

own. For the initial list, a sieve process that eliminated all primes p < 47 was run on 

some of the accumulators. This sieving success led Lehmer to write a proposal for a 

fully electronic sieve device [Leh46] capable of sieving at rates far exceeding any of 

his purely mechanical designs. 

°A decision which eventually prompted Lehmer to quip 
"ENIAC was a highly parallel machine, before von Neumann spoiled it" 
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2.3.2 The Proposed Electronic Sieve 

Encouraged by the ENIAC successes, Paul Morton and D.H. Lehmer sat down to 

develop an electronic sieve, using a series of counters arranged in rings. 

Lehmer's proposed electronic sieve used flip-flops implemented with a pair of 

triode tubes. These flip-flops were arranged as ring counters (each representing a 

particular sieve modulus), with the output of each flip-flop transferred to the next 

upon the arrival of a gated clock pulse. Outputs taps were placed from the specific 

ring moduli specified by the problem instance, and wired to the grid connection of 

the gate tube (a pentode which effectively acted as an AND gate). The other gate 

connection for this pentode was wired to the clock signal. The net effect was that 

if ever a coincidence occurred where none of the output taps feeding the pentode 

gate showed a signal (i.e., when a solution was encountered), further clock signals 

were suppressed from reaching the ring counters. Thus, when a solution occurred, 

the device would stop counting. A regular (decade) counter was employed to count 

the total number of clock pulses sent, allowing an operator to see if the counting had 

stopped. Once the solution was recorded, the operator would press a manual switch 

(which presumably delivered a clock pulse to the ring counters) and the device would 

continue sieving. 

Based on his experiences with ENIAC, Lehmer predicted such a device, if built, 

could achieve speeds of over 10,000,000 trials per minute [Leh46]. The project ran 

into difficulty, however, [Leh80] when it became clear that long counters were difficult 

to construct.7 

7This was likely an early encounter with propagation delays. Bronson and Buell [BB94] described 
similar issues when designing their Field Programmable Gate Array (FPGA)-based sieve, eventually 
leading them to exclude the prime 53 from their hardware sieve design. 
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In the same (unpublished) proposal, Lehmer detailed a possible design for an 

acoustic sieve capable of sieving 10 times faster than even the electronic sieve. 

Though neither of these devices was ever fully constructed, the principles of these 

designs lead Lehmer to conceive of a radically different design, one which eventually 

became his most successful and reliable sieve device. 

2.3.3 The Delay Line Sieves: DLS-127 and DLS-157 

The Delay Line Sieve (DLs) came online in December, 1965 [BLS02], and was 

originally referred to as the DLS-127 [Leh66]. This sieve was fabricated from Navy 

surplus delay lines—conductors with a stable and known propagation time. A total 

of 2877 microseconds of delay was available, divided into 31 recirculating "tanks" 

[Leh80]. Each tank had a pulse shaper and coincidence counter. Pulses were added 

into the appropriate tank separated by a fixed delay. These pulses would pass by a 

coincidence counter, and then be reshaped before recirculating again (to overcome 

the inevitable signal deterioration), effectively providing indefinite operation. The 

overall length of each pulse tank delay line was proportional to the sieve modulus 

it was supposed to represent. The set of 31 pulse tanks could therefore be used to 

represent the primes (or powers of primes) up to 127. The actual moduli used were: 

64, 81, 50, 49, 22, 39, 17, 19, 23, 58, 31, and the primes from 37 to 127 [Leh]. 

Solution candidates were indicated by the simultaneous arrival of pulses at each 

of the pulse tank coincidence counters. When a solution condition was detected, the 

device shifted into an idle mode. In this mode, each of the pulse tanks were connected 

8The term "tank" refers to a delay-line loop, and seems to derive its name from Lehmer's 
unpublished proposal for the acoustic sieve [Leh46], which shared many characteristics with the 
Delay Line Sieve. 
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in sequence, with the last tank feeding back into the first. The pulses could cycle in 

this manner indefinitely. When the device was switched back into the sieve mode, 

the device would wait until the next multiple of 2877 microseconds, and then the 

original (circulating tank) behaviour was restored, effectively returning the sieve to 

the state it was in before solution detection. Problem loading was also done in idle 

mode, with each new pulse added at the appropriate offset from 2877 microseconds 

to place it in the desired pulse tank. 

The DLS was perhaps Lehmer's most successful sieve design, capable of sieving 

at speeds of up to 106 trials per second. The success of this design stemmed as 

much from its reliability,9 as from its ease of use. Problem setup, for instance, was 

highly automated. Since most sieving problems can be represented as a function of 

the form f(x, y) = 0, a program was written on Berkeley's IBM 7094 computer that 

accepted the coefficients to a function of this type, and output a set of punch cards. 

These cards were then taken to the Bendix G-15 (designed by Harry Huskey) which 

°The DLS was reliable, but not infallible. John Brilihart recounts the following anecdote: "... 

I was the first person to run the Delay-Line Sieve, because Lehmer was out of town for 2 weeks 
at the moment the engineer (Bob Coffin) had finally gotten all the bugs out of the sieve to make 
it run. Even then, there was one more bug, which showed up when I tried to run the first test 
problem. You may know that that sieve had an optical reader that read the sieve bit pattern in 
from a paper tape. The process of making the tape was the following: Dick used the current IBM 
computer on the campus to do the arithmetic to produce the initial bit string to be loaded into the 
sieve and had it punched into a bunch of cards. This was carried from the computer center over 
to the electrical engineering building where Dick's friend Harry Huskey, had one of the computers 
he had designed, the Bendix G-15, which read the cards and punched the bit pattern onto a paper 
tape. The tape was then carried to the sieve room, where it was read into the sieve by an optical 
reader. The tape also had a bit count on it that had to agree with the count of the number of bits 
the sieve read in. 

After I read the tape in and tried the sieve, it didn't work. I phoned Dick, who was in San Diego 
and told him there was still a problem. He surprised me a great deal by suggesting what to do. He 
said to connect the two wires on the optical reader in the reverse way, so it would reverse the parity 
of the bits read. I did it and it worked. I'll never know (I should have asked him) why he thought of 
that. I suspect it had happened before, and is one of the things that distinguishes people who are 
all talk with no experience from those who involve real experience with their growing understanding 
of something." [Bri] 



25 

would read the cards and output the sieve setup on a long punched tape. Finally, 

this tape (which could consist of several successive sieve jobs) was taken to the DLS. 

An optical reader read in the tape values, and automated the process of starting 

additional jobs (if they were present) when the current job completed. 

This job queueing would not be of much value were it not for another innovation: 

the automatic printing of solutions. Previous sieve designs would stop when a solu-

tion was found, waiting to be restarted by the operator. the DLS simply shifted into 

idle mode, printed the solution, then shifted back into regular sieve operation. 

The DLS had both a solution printing mode and a solution counting mode. This 

was useful in problems with a high solution density, predictable solution densities, 

and noticeable filtering overhead. To avoid bottlenecks due to filtering, the sieve 

could be run in solution counting mode for a particular range, and the resulting 

count of solutions compared against theoretical values. If the two counts differ, 

the range could be sieved using the solution mode. Otherwise, the process would 

continue with the next range. 

In the early 70s, The DLS was fitted with 6 additional sieve rings, constructed 

from shift registers, and renamed the DLS-157. The device was retired in 1975 [Wil98] 

and though it was once believed to be in storage in the Computer History Museum 

in Mountain View, California, its current wherabouts are unknown. 

2.4 Software Sieves 

Since the early experiments with ENIAC in 1946, there has been sustained interest in 

the idea of implementing the GSP in software on a general purpose computer. Unfor-
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tunately, since von Neumann's early modifications transformed ENIAC into a stored-

program computer [Cli48], most general purpose computing designs have adopted a 

serial approach to the processing of arithmetic operations. This design decision is 

at odds with the inherent parallelism of the GSP, and hence, purely software-based 

approaches to solving the GSP have typically lagged behind the dedicated hardware 

approach. Still, the relatively widespread availability of general purpose computers'° 

has assured software solutions an important place in the history of sieve devices. Fur-

thermore, a recent optimization of Bernstein's (see Section 2.6) has rekindled interest 

in software-based sieve implementations. 

2.4.1 SWAG 

In the Generalized Sieve Problem, a candidate, x, is either accepted or rejected by 

each exclusion modulus, M. As this is a binary decision, the GSP seems ideally suited 

for implementation on a binary computer. This observation was certainly not lost on 

Lehmer [Bri92] who, while heading the Bureau of Standards' Institute for Numerical 

Analysis at UCLA, had the opportunity to work on the newly constructed Standards 

Western Automatic Computer (swAG), the first large electronic computer to operate 

in the western United States [BLS+02]. 

In [Leh53], Lehmer published the first detailed description of a GSP implemen-

tation in software. In this implementation, strings of bits were used to represent 

acceptable residues, 0 indicating acceptable, and 1 indicating not acceptable. These 

bit strings were then compared 36-bits at a time using a machine operation called 

EXTRACT. In modern terms, the EXTRACT command worked like a 36-bit logical 

10Especially when compared to the availability of dedicated sieve devices. 
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AND operation, with one of its inputs inverted." The use of EXTRACT in this manner 

allowed 36 bit positions to be examined for solutions in parallel, an idea that later 

became known as the multiple solution tap technique. 

If no solution was found, the bit strings were then circularly rotated using a clever 

two-register multiplication technique, and the process repeated. In this fashion, the 

SWAC was able to search for solutions at a rate of 1438 per second. In 1954, Lehmer 

and Selfridge built a 17-ring sieve implementation on the SWAC [Leh54], successfully 

extending the table of least pseudosquares to include the primes p 79. 

2.4.2 The Berkeley IBMs 

In 1967, John Brillhart wrote a software sieve implementation on Berkeley's IBM 

7090 to help find factors of integers of the form 2 ± 1 [BS67]. The software, which 

implemented up to 22 sieve moduli, was capable of sieving at speeds of up to 150,000 

trials per second. It accepted a single input, the integer N to be factored, (which had 

presumably already been tested with Fermat's test to reject any prime, or (rarely) 

pseudoprime values). It then constructed a target bit string, representing the initial 

sieving by the first few primes. The remaining moduli were typically combined into 

double-moduli of the form m = pq with p, q representing primes or powers of primes. 

The bitstrings associated with these moduli would then be repeatedly ANDed with 

the target. Once all moduli bitstrings were applied, the result was compared with 0. 

If it matched, meaning no solutions were found, the target bitstring was reintroduced, 

EXTRACT was even more versitile than this. The first parameter (the extractee) was inverted, 
and ANDed with the second parameter (the extractor). EXTRACT took an optional third parameter 
(shift) which indicated which way, and by how many bit positions to shift the result. For the 
purposes of the sieve, this third operand was not used and was (presumably) filled with zeros [Hur]. 
This extra versitility, however, allowed EXTRACT to be used in a variety of logic and floating point 
applications [Hus97]. 
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and the moduli bitstrings (appropriately rotated) were ANDed again. 

If at any point, the target remained nonzero, it meant the existence of a potential 

solution, which was then tested to determine if a factor had been found [Bri]. 

This method showed some success, producing several record-setting factorizations 

for integers of the form 2' ± 1 [BS67]. 

2.4.3 ILLIAC IV 

The ILLIAC iv was a unique machine—the first to employ what later came to be 

known as a Single Instruction Multiple Data (sIMD) architecture. This parallel 

design allowed each of the 64 Parallel Execution (FE) units (processors) to operate 

on the same instruction, albeit with different data elements. Though construction 

began in 1965, the ILLIAC Iv did not become operational until 1976. 12 

The architecture featured 64 FE units, connected via 64-bit communications chan-

nels arranged in a topology known as a chordal ring [IT89]. This chordal ring allowed 

PEs to directly communicate with other processors that had logical distances of ±1 

or ±8. Each FE had access to a local 2048 x 64-bit memory store. A central con-

trol unit issued instructions to each of these PEs, and though each of the processors 

was designed to operate on the same instruction (albeit with data drawn from their 

local data store), individual processors could be set to selectively "sit out" of a par-

ticular operation. This latter flexibility proved so useful it has been part of SIMD 

architecture design ever since. 

'2Cost overruns and engineering problems plagued the ILLIAC iv project. Though originally 

planned as a four-node machine, the project was halted after the first node was completed, the 
costs having ballooned from the original $8 million estimate to over $31 million. Several years after 
its completion, the ILLIAC Iv was disassembled, securing its place as one of the largest flops in the 
history of computing [fol]. 
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In 1976, Lehmer wrote an implementation of the GSP for the ILLIAC Iv architec-

ture [Leh76], with each FE representing a particular sieve modulus. In the FE'S local 

RAM, a bitfield representing the acceptable residues for that modulus was created, 

o indicating acceptable, 1 indicating not acceptable. This bitfield was repeated suf-

ficient times to ensure the bit pattern stopped on a word boundary. Once the sieve 

problem was loaded in this fashion, the current machine word from each of the PEs 

was logically oRed together. If any bit position of the combined result remained 

zero, a solution candidate had been found. 

The unique parallel architecture of the ILLIAC Iv machine allowed Lehmer's 

GSP implementation to operate with a degree of parallelism not usually possible 

on general-purpose computers. As a result, Lehmer's sieve implementation was able 

to reach speeds of 15 million trials per second, making it the second-fastest sieve 

device Lehmer ever devised. Unfortunately, the experimental nature of the ILLIAC 

iv machine prevented Lehmer from using it on a long-term basis [SW9O]. 

2.5 Estrin's idea: the Fixed-plus-Variable (F+V) Approach 

In 1962 [CEFT62], Cantor, Estrin, Fraenkel, and Turn described a new architecture 

for solving the GSP, based on what they termed a fixed-plus-variable (F+v) design. 

This revolutionary idea incorporated both a fixed, general-purpose, component, and 

variable, custom component to produce a device capable of sieving at rates of up 

to iO'° numbers per minute. Their proposal outlined three main ideas. First, it 

described an efficient algorithm for implementing the GSP using shift registers on 

reconfigurable hardware, including a method for constructing the solution detection 
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mechanism that eliminated the need for the largest modulus (m3). 

Second, it described a technique for implementing additional (virtual) sieve rings 

in software on the attached general purpose computer, by carefully matching the 

predicted output rate of the shift-register sieve with the arithmetic capabilities of 

the host machine. 

Finally, the paper made the important observation that by employing r solution 

taps in parallel, and relabelling the bit positions of the 1-bit circular shift registers 

(effectively converting them to r-bit circular shift registers), the parallelism of the 

sieve device could be increased by a factor of r at the expense of little more than 

additional solution detection circuitry. 

Revolutionary as it was, the Estrin proposal was not acted on for almost 13 years. 

2.5.1 SRS-181 

The first actual implementation of Estrin's fixed-plus-variable (F+v) idea came from 

Lehmer [Leh80]. Referred to as the SRS-181, and constructed by Lehmer and Morton, 

this device was similar to the DLS, but used cyclic shift registers in place of delay 

lines as the variable hardware component of the sieve. The fixed hardware was to 

be a stand-alone microcontroller device. Unfortunately, before this host device was 

completed, the sieve device was mistakenly removed from the lab and sold for scrap 

while Lehmer and Morton were away [Ste89]. 

Though Lehmer never formally published the device specifications, references in 

[MB75], and [Leh76], indicate that the Shift Register Sieve was capable of sieving at 

rates of 20,000,000 trials per second, and like Lehmer's previous designs, the SRS-181 

sieve had both search and solution counting modes. The device had 42 hardware 
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rings, implemented using 8-bit shift register TTL integrated circuits, and representing 

the primes (or prime powers) from 2, 3, . . ., 181 [Pat92]. 

The SRS-181 design was the basis for the first of a series of sieves constructed at 

the University of Manitoba. 

2.5.2 UMSU 

The next implementation of Estrin's F+V idea was the University of Manitoba Sieve 

Unit (uMsu), built by Cam Patterson and H. C. Williams in 1983 [Pat83]. This sieve, 

which began as a reimplementation of the SRS-181, contained 32 rings representing 

each of the first 32 primes (or prime powers), and was implemented on a set of 3 

wire-wrap boards using 500 integrated circuits. It featured 8 solution taps, and a 

shift rate of 16.67 MHzfor an overall canvas rate of 133,000,000 trials per second. 

The sieve acted as a peripheral to a host computer, a PDP-11/45. Software 

running on the PDP allowed for problem creation, spooling, and filtering, including 

the implementation of the virtual sieve rings concept first mentioned by Estrin, et al.. 

The sieve featured automatic checkpointing, where the hardware state was saved 

and verified for correctness every hour. If a fault was discovered, or the process was 

interrupted for any reason, it could be restarted without losing more than an hour's 

work. 

Though certainly proof of the usefulness of the shift register design, the next sieve 

to emerge from the University of Manitoba featured a completely different hardware 

approach. 
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2.5.3 OASiS 

The Open Architecture Sieve System (OASiS), developed by Stephens and Williams 

in 1985 [Ste89] was the successor to the University of Manitoba Sieve Unit (uMsu). 

Unlike previous shift-register designs where ring moduli were fixed by the hardware 

design, OASiS employed a novel RAM-based design that allowed variable-sized moduli 

to be employed. As this was the first sieve device to allow reconfiguration of the sieve 

hardware without physical disassembly, OASiS is perhaps one of the best examples 

of the Estrin's F+V idea. 

The variable ring idea was as follows: a sieve pattern, consisting of a bit string of 

length m, was replicated gcd (m,16) times, and stored contiguously in a 16-bit RAM 

module. This repetition ensured that the cyclic bit pattern ended exactly on a 16-bit 

word boundary. Since data stored in the RAM is retrieved one word at a time, this 

allowed a single RAM access to serve as a 16-tap solution window. To access the 

next 16 solutions, the RAM index register would be increased by one word (modulo 

lcm(m, 16)). 

The original OASiS design featured 16 8192-byte rings. By combining smaller 

moduli into larger rings (for example, by combining the moduli 5, 7, 11, and 13 into 

a single ring of size 5 . 7. 11 . 13 = 5005), moduli representing the first 37 primes 

(2,31 . . . , 157) could be squeezed into these 16 rings. 

OASiS employed a programmable shift rate that, in its fastest configuration, oper-

ated at 13.3 MHZ. Combined with the 16 solution taps, this allowed for a maximum 

canvas rate of 2.15 x 108 trials per second. 

In addition to the variable hardware component, OASiS also consisted of a fixed-
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architecture host system. This host, a MicroVAX II, was responsible for problem 

setup, filtering, reporting, and verification. Unfortunately, the communication path 

between OASiS and the host machine was a relatively low-bandwidth 9600 bits-per-

second serial port. This meant that problem setup, verification, or checkpointing 

could take upwards of 10 minutes to complete. A more critical flaw occurred in 

problems requiring a high degree of solution filtering. Since this filtering was done 

on the host machine, the low bandwidth communication path became a bottleneck 

in the sieving process. 

Despite these shortcomings OASiS was able to produce a number of impressive 

sieve results, including the discovery of five previously unknown pseudosquares; 

£193, £197, £199, £211 and £223 [SIAT9O]. 

In 1989, oAsis was fitted with an additional sieve board. The combined device 

was called oAsis-II, and contained a total of 32 8192-word rings. This improved sieve 

was able to extend the table of least pseudosquares by an additional 2 primes: L227 

and £229 [LPW95]. 

2.5.4 Bronson and Buell (SPLASH) 

The GSP implementation on SPLASH was the first electronic sieve device to employ 

FPGA technology—reconfigurable hardware devices that essentially allow the con-

struction of application-specific arithmetic units [131394]. The software-configurability 

of these FPGA devices make them ideal for realizing the variable component of Es-

trin's F+V proposal. 

The SPLASH hardware consisted of a linear array of 32 Xilinx 3090 FPGA chips, 

each containing a grid of 16 x 20 configurable logic blocks. Each configurable logic 
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block (cLB) could be programmed to assume one of a variety of configurations, 

including a pair of flip-flops, any single 5-input, 2-output combinatorial function, or 

two 4-input, 1-output combinatorial functions. For the purposes of the sieve problem, 

one prime shift register was implemented per FPGA chip. To maximize performance, a 

64-bit solution tap was employed, and Estrin's optimization was employed to convert 

the 1-bit cyclic shift registers to 64-bit cyclic shift register. As originally noted by 

Lehmer (see Section 2.3.2), long end-around communication paths in shift registers 

were notoriously unreliable, so wherever possible, short cycles introduced by Estrin's 

optimization were employed to reduce propagation delays.'3 SPLASH implemented 

sieve rings for the primes 3, 5,.. . , 71 (excluding 53), 97, 127, and 131. Additional 

sieving (for any combination of primes less than 500), was relegated to a software 

process running on the host machine. 

The SPLASH sieve implementation used 64 solution taps and a master clock rate 

of 16 MHZ, for a total sieve rate of 1024 X 106 trials per second. 

In 1994, Bronson and Buell used this sieve to extend the table of negative pseu-

dosquares, originally published in [LLS7O], and later extended in [Ste89]. 

2.5.5 MSSU 

The Manitoba Scalable Sieve Unit (MSSu) was another highly successful sieve device. 

Originally built in 1993 by Lukes, Patterson and Williams [Luk95], this device offered 

an order of magnitude increase in sieving speed over previous sieve designs, and is 

still in use today. 

'3Though these short-cycle implementations were constructed for most of the small primes, the 
modulus 53 did not lend itself well to an efficient shift register implementation. For this reason, 
sieving for this modulus was left out of the hardware sieve, and relegated to the host machine. 
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The MSSU hardware consisted of three main components: the sieve controller, 

the sieve chip array, and the host machine software. The sieve controller accepted 

commands from the host machine via a standard serial port, and translated the 

commands into the necessary low-level instructions to operate each of the sieve chip 

arrays. Sieve chip arrays had 16 sieve chips in each of two slots. The sieve chips 

themselves were designed using Very Large Scale Integration (VLSI) technology as 

a 40-pin DIP package, and could each accommodate the first 30 primes. The chips 

were driven at a shift rate of 24 MHz, 14 and 8 solution taps for an overall sieve rate 

of 192 x 106 trials per second. With all 32 sieve chips installed, the MSSU had a 

maximum theoretical sieve rate of 6.144 x 109 trials per second. 

The final component of the MSSU system was the host machine software. This 

software was responsible for a wide assortment of tasks, including problem setup, 

optimization, and spooling. The software also had the ability to apply up to two 

optional software filters. One of these filters, the virtual ring filter, allowed for the 

application of congruence conditions that did not fit into the dedicated hardware 

rings. 

2.5.6 Star Bridge Systems HC 36m 

In 2003, Wake and Buell revisited the FPGA idea with a sieve implementation on their 

latest generation of F+V hardware: the Star Bridge Hypercomputer 36m [WBO3]. 

This machine employed a dual 2.4 GHz Intel Xeon machine as its fixed host hardware. 

The variable component consisted of 7 Xilinx Virtex FPGA5, four of which (Xilinx 

14 The chips were originally designed to accommodate a clock rate of 33 MHZ, it was later decided 
to reduce this frequency in order to lower the power consumption, and hence, heat generation of 
the sieve chips. 
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xc2v6000's) were available as programmable computing resources.'5 

The overall speed of the HO 36m architecture was limited by the 66 MHZ PCI bus 

used for communication. Synthesis models indicated it was possible to implement 

12 sieves per Virtex FPGA, each sieve handling primes up to 151. By employing the 

most naive form of parallelism (each sieve configured at a different start point), the 

HO 36m device was capable of 48-bit parallelism. Combined with the 64-bit solution 

tap, the Star Bridge architecture offered theoretical sieve rate of 192 x iO trials 

per second. For a problem such as the pseudosquare (or negative pseudosquare) 

problem, a more intelligent optimization could be used, for instance, by combining 

the residues 8, 3, 5, 7, and 11 to produce 30 residue classes (modulo 9120). In this 

configuration, sieve rates of 39 x 1012 trials per second could be achieved. 

2.6 Software Revisited: Bernstein's Software Sieve 

Since it had long been shown that sieving with dedicated hardware devices was vastly 

more efficient than sieving in software on a conventional computer, it came as some 

surprise when D. J. Bernstein announced in 2000 that he had succeeded in extending 

the table of pseudosquares (last extended by a 180-day computation by the MSSU) 

using software running for 10 days on a single-processor general purpose computer, 

a Pentium Iv running at 1406 MHZ. His solution used an optimization technique 

which, though seemingly simple in hindsight, had not previously been applied to 

sieve designs. This optimization technique, called doubly-focused enumeration, is 

examined in more detail in Chapter 3. 

15The other 3 were devoted to handling onboard communications for the HO 36m board. 



Chapter 3 

Implementing and Optimizing the Sieve Problem 

Premature optimization is the root of all evil. 

—Donald E. Knuth 

3.1 Notation and Preliminaries 

Before going any further, some additional properties of sieve problems will now be 

formalized. 

Definition 3.1 The sieve problems 

Si— fl1{xEZIx (mod M)E7?, A≤x<B} 

82= flr+i{XEZIX (mod Mj)EThj, A≤x<B} 

are equivalent if and only if S = 82 for all A, B E ; i.e., for any choice of bounds 

the set of solutions admitted by each of the sieve problems is the same. 

With this notion of equivalence, the following theorem may now be demonstrated. 

Theorem 3.1 Given a sieve problem, S = fl 1 {x E Z x (mod M) E Rj, A < x <B} 

of width k ≥ 2 and whose sieve rings are relatively prime, an equivalent sieve problem 

of width k - 1 can be formed. 

37 
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Proof: This is a straightforward application of the CRT. Consider the congruences: 

x (mod M1) E R-. 

x (mod M2) E 1 '2 

Let M = M1 M2, N , j JV' (mod M) as per Theorem 1.1. Define the Mi 

set R to be the CRT combination of all residues from the sets Rfl, 12; i.e., 

R={rIriNiri+e2N2r2 (mod Mj.M2), r1 E7i,r2 E7 2} 

Now, form a new sieve problem, replacing the sieve rings {M1, fl.1} and {M2, R.2} 

with the newly constructed ring {M, R.}. The width of this new sieve problem is 

k - 1. By the CRT, x E 7?. if and only if x E 7?. A x E R.2. Equivalence of the sieve 

problems follows from Definition 3.1 a 

Corollary 3.1 Any sieve problem S = fl {x € 7L x (mod M) E l?.i, A ≤ x <B} 

consisting of of k relatively prime sieve rings can be replaced by an equivalent sieve 

problem consisting of a single sieve ring: 

S={xE7LIx (mod M)E7?., A≤x<B} 

where M = fl M and 

={rEzIr 
i=1 

ejNr (mod M), r1 E R, ... . Irk E R k} 

Proof: By Theorem 3.1, any sieve problem of width k may be replaced by an 

equivalent sieve problem of width k - 1. This process can be repeated until only a 
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single ring remains. The definitions of M and R follow from repeated application of 

the CRT. 

With this Corollary in hand, the notion of sieve density that was first mentioned 

in Section 1.2.1 may now be formalized. 

Definition 3.2 The density of solutions for a given sieve problem is defined to be 

the ratio of acceptable residues to all possible solutions in the sieve interval; i.e., 

for the sieve problem, S = {x E Z I x (mod M) E 7, A < x < B}, the solution 

density is given by: 

RI density (S) = 

Multiplying the sieve density by the size of the sieve interval (B - A) offers a 

prediction as to the number of solutions that will be obtained by sieving over the 

indicated range. This prediction is exact when M I (B - A). 

3.2 Optimizing Sieve Algorithms 

3.2.1 The Trivial Sieve Algorithm 

The most obvious algorithm for finding all solutions to an instance of the GSP is to 

examine each of the values x = A, A + 1, A + 2, . . . , B - 1 sequentially to determine 

if all of the congruences x (mod m) E R (i = 1, 2, 3,.. . , k) are satisfied.' 

This approach is also trivially parallelizable, for instance, by partitioning the 

sieve interval across several sieve units. If r sieve units are available, sieve over the 

'Bernstein calls this approach unfocused enumeration [BerO4]. 
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interval A < x < A+ on the first unit, A + <x <A +2 on the 

second, and so forth up to A + (r - 1) [B_A] ≤ x < B. 
In practice, this trivial algorithm and parallelization tactic are rarely used, as 

more efficient methods are available. These methods will now be described. 

3.2.2 Sieve Normalization 

In [Leh53], Lehmer described a technique for eliminating single-valued congruences 

from sieve problems. He called this technique normalization. 

In general, only one single-valued congruence need be considered when discussing 

Lehmer's normalization. Consider, for example, the following set of congruence 

conditions: 

x 6 (mod 8) 

x 2 (mod 3) 

x lor4 (mod 5) 

X 3,50r6 (mod 7) 

The CRT may be applied to the first two congruences in the following manner. 

Take M1 = 8, M2 = 3, M = 8 3 = 24, N1 = 3, j 3' 3 (mod 8), 

N2 = 8, and 2 8_i 2 (mod 3), giving: 

e,Niri + e2N2r2 (mod M) 

x 3•3•6+8•2•2 (mod24) 

x 14 (mod 24) 

More generally, given the residue conditions: 
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X Ti (modMi) A 

X r2 (mod M2) A 

X Th (mod Mh) 

An equivalent congruence can be produced: 

XET0 (modmo) 

where m0 = fl.1 M, and ro = E (mod Ma), with N, ei defined as per 

Theorem 1.1. 

Definition 3.3 The arithmetic progression, a; = ymo + r0, produced via the ORT 

combination of all single-residue congruences is called the normalization function for 

a particular sieve problem. If m0 = 1, ro = 0, it is called the trivial normalization 

function. 

This idea motivates the following definition. 

Definition 3.4 The canonical representation of a sieve problem is defined as the 

equivalent sieve problem where all single-residue congruences have been combined 

into a normalization function, a; = ym0 + r0, giving 17ZiI > 1 for all remaining sieve 

rings. 
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Lehmer's normalization works as follows. Instead of sieving for solutions, x, over 

the interval A < x < B, sieve instead for acceptable values of y over the interval: 

[A—ron 

MO 

Sieve solutions obtained for y may be transformed back into solution for x by 

applying the normalization function, x = ym0 + ro, to each of the solutions obtained. 

Theorem 3.2 Given the canonical sieve problem 

S={xEZlx (mod M)E, A≤x<B} 

and a nontrivial normalization vector, x = ym0 + r0, a sieve problem, S, can be 

found that operates over a smaller sieve interval, but where S = {ymo + ro, y E S*}. 

This sieve problem, called the normalized sieve problem, is given by 

= E Z Y (mod M) E Y 

where Y is defined as follows: 

Yi={ylym 1(r—ro) 

rA m0 -r01 rB_'0 
1710 I I 

(mod Mi), r E 7j} 

Proof: Consider the sieve problem operating over the interval A x < B, with 

normalization vector x = m0y + r0, and satisfying the following residue conditions: 

x (mod M1) E 7 

x (mod M2) E R2 

x (mod Mk) E 7'k 
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If only the solutions for x lying in the arithmetic progression x = m0y + r0 are 

considered, an alternate set of acceptable residues may be defined as follows. Let 

Y={yym'(r—ro) (mod Mi), r E 

Clearly, y E Yj if and only if x = ym0 + ro E lj. Thus, a new sieve problem may 

be defined as: 

y (mod M1) E 3)1 

y (mod M2) E 3)2 

y (mod J1/Ik) E Yk 

Since all acceptable values of x may be obtained from the arithmetic progression 

x = ym + To, finding all acceptable y in the interval [A—ro] ' < [B—ro ], will MO 

produce all x values in the interval A < x < B. 

I 

For example, the sieve problem given by 0 ≤ x < 9240 and 

X 1 (mod 8) 

x 1 (mod 3) 

x lor4 (mod 5) 

X 1, 2, or  (mod 7) 

X 1,3,4,5, or  (mod 11) 

can be normalized to produce an equivalent problem operating over a smaller interval. 
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Evaluating the non-normalized sieve problem over the interval 0 < x < 9240 

gives S = {1, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2641, 2689, 2809, 

3481, 3529, 3721, 4321, 4489, 5041, 5329, 5569, 6169, 6241, 6889, 7561, 7681, 7921, 

8089, 8761}. 

By combining the first two congruences into a normalization function x = 24y + 1, 

and applying this function to the remaining congruences, new sets of acceptable 

residues may be obtained: 

Yj = {(r1 -1). 24' (mod 5), ri E {1,4}} = {0,2} 

= {(r2-1).24' (mod 7), r2 E{1,2,4}}{0,1,5} 

= {(r3 -1). 24' (mod 11), r3 E {1,3,4,5,9}} = {0,1,2,4,7} 

This leads to the normalized sieve problem: 

y (mod 5) E {0, 2} 

y (mod 7) E {0,1,5} 

y (mod 11) E {0,1,2,4,7} 

The normalized sieve interval becomes: 

ro - il r9240-1  

24 24 

i.e.0 ≤ y < 385. Sieving over this interval produces the solution $* = {0, 7, 12, 15, 

22, 35, 40, 57, 70, 77, 92, 110, 112, 117, 145, 147, 155, 180, 187, 210, 222, 232, 257, 

260, 287, 315, 320, 330, 337, 365}. 

The equivalence of this normalized sieve problem, 5* and the original sieve prob-

lem, S may be verified by applying the normalization function x = 24y + 1 to each 

y E 5 
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It should be noted that applying Lehmer's normalization to this sieve problem 

reduced the effort of computing all solutions in the sieve interval from B - A sieve 

operations to B-A sieve operations. This reduction in effort comes at the expense of MO 

precomputing the acceptable residues, Y, and translating the resulting sieve outputs, 

y E S* back into values of x. 

3.2.3 Parallelizing the Sieve Problem 

There is an obvious optimization method employing Lehmer's normalization tech-

nique if multiple sieve units may be used in parallel. 

Given a sieve modulus, M with 17Zil acceptable residues, the sieve problem may 

be partitioned into IRil parallel problems by performing normalization on each of 

rij E Ri for 0 < j < 17Zi acceptable residues, and sieving on each of these problems 

in parallel; i.e., x = yM + rij. The set of sieve results for the original problem then 

becomes the union of the results for each of the 17Zil parallelized sieve problems. 

This optimization can be useful even if the normalized sieve problems are solved 

consecutively. As demonstrated by Lehmer [Leh28], an effective speedup of may 

still be achieved by executing the normalized sieve problems in series, as each of the 

IRi I normalized sieve problems operates over I th of the original sieve interval. Lukes Mi 

[Luk95] calls this optimization multiple residue optimization. Bernstein [Ber04J calls 

it singly-focused enumeration. 
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3.3 Doubly-Focused Enumeration 

Consider a sieve problem given by: S = fl.1 {x E x (mod M) E 7, A < x < B}. 

By repeated application of Theorem 3.1, it is possible to derive an equivalent sieve 

problem with exactly two sieve rings; i.e., set M = fl..1 M, M = U=8+1 M, with 

R formed from the CRT combination of RI, 7Z2,. . . ,R. and 7 s+1,Rs+2,. Rk 

respectively. The new sieve problem is given by: 

x (mod M) E R,, A x (mod M) E Rp (3.1) 

Bernstein noted that as a special case of the explicit CRT [BSO3], x may be written 

as the difference of small multiples of M and M; i.e., 

x=a— a = tM— tM (3.2) 

Then, taking this expression modulo both M and M, and combining these 

congruences with Equation 3.1, the following congruences may be obtained: 

x —tM (mod M) E 7 

x tM (mod M) E R p 

By sieving for solutions of t and t, over appropriate intervals, and merging these 

results according to Equation 3.2, all acceptable values of x in the interval [A, B) 

may be obtained. Furthermore, solving these two new sieve problems can be vastly 

more efficient than solving the original sieve problem, S. 

This definition may now be formalized as follows: 

Definition 3.5 Given a sieve problem 

k 

S= nix EZx (mod M)E7Z., A<x<B} 
i=1 
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partition the moduli M1, • , Mk into two distinct sets, JV( and M. Define the 

quantities Mn and M as the products of the moduli in these sets; M = M 

and M = M respectively. A potential solution, x, of this sieve problem may 

be written as the difference of small multiples of these quantities: 

This technique is called doubly-focused enumeration, and it allows the original 

sieve problem to be replaced with two equivalent (and usually smaller) ones: 

Sp = f-{tEzIt (mod M)ETi=1  

(sn = 
k 

fl {tn E Z I tn 
i=s+1 

with T, Tn given by 

7—n= 

(mod M) E T, 

{ r E 7L I r 

[M'11  <tp< r B+ (MM_1)M1} --  

0 ≤ t-, <M -  11 

(mod Mr), r E Rpj 

{r E Z r r(—M)' (mod Ma), rn E RnI 

These sets may be combined to produce all acceptable values for x in the range 

(A, B]: 

S={xIx=tM—tM, t, E E 7,, A≤ x < B} 

The equivalence of these sieve problems will now be established. 

Lemma 3.1 Every x in the range A < x < B may be expressed as the difference 

X = tM - where M, M are relatively prime LA1 < < rB+(M-1)M1 
'IMnI_ 2' J Mn ' 

and 0 <t <Ma. 
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Proof: Consider the arithmetic progression obtained by fixing t and varying t in 

the expression: 

This progression is capable of producing any x —tM (mod Ma). Thus, if a 

(mod M) is made to range over all residue classes {O, 1, 2,. . . , M - 1}, the resulting 

arithmetic progressions can be used to produce all possible integers x in the interval 

[A, B) by varying t. 

Consider t {O, 1, 2, . . . , M - 1}. Since gcd(M, M) = 1, it is straightforward 

to show that It I t tM (mod Ma), 0 ≤ t7. < M} forms a complete reduced 

residue system. If not, then for some 0 ≤ i, j < M, i j, the congruence: 

i.MEj.M (mod M ,,) 

would hold. Multiplying both sides by M;' (mod Ms), however, gives 

ij (mod M,,) 

a contradiction, as 0 ≤ i, j < M. Hence, it is sufficient to consider 0 < t < M 

to produce the necessary arithmetic progressions. Since t, is always nonnegative, 

choose t ≥ and as the largest choice for t is M - 1, it follows that t < 

[B+(M-1)M  

Mn 

Theorem 3.3 The sets of solutions given by 

/ 

S={xEzIx (modM)e, A<x<B} 
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and the doubly-focused problems given by Definition 3.5; i.e., 

S={xIx_— tM — tM, tES,tES, A≤x<B} 

are the same. 

Proof: 

Lemma 3.1 shows that every x in the interval A < x < B is expressible as the 

difference x = tM - where M = fl1 mi and M = m, [-] 
Mn 

t < I B+(M-1)M and 0 <— t, <Ma. 
P  M 

Thus if x E S, write x = tM - and by Equation 3.1: 

X E —tM (mod M) E 1? 

x tM (mod M) E Rp 

By the construction of Tp and Tn in Definition 3.5, it is clear that t, (mod M) E 

> tpM n (mod M) e Rp and ti,, (mod M) E 7 < > —tM, (mod M) E 

7.  Hence, xES < > t,ES1, A tES. • 

3.3.1 The Simultaneous Enumeration Algorithm 

Though it is clear from Lemma 3.1 that every x in the interval A ≤ x < B is 

expressible as the difference x = tM - an algorithm to produce these x 

values from t and tn without retaining all intermediate values is not immediately 

obvious. 

In [BerOl], Bernstein suggests a method of generating these values in a systematic 

manner, which limits the number of intermediate values that must be retained. He 
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calls this algorithm simultaneous enumeration [Ber04], and is given as Algorithm 

3.1. 

Algorithm 3.1 Simultaneous Enumeration of x = a - a 

1: first +- 0; last +- 1 
2: a[first] +- next (S) 
3: repeat 
4: a +- next (Sp) M 
5: x1[first] - a - a[first] 
6: until (xfirst] ≥ A) 
7: a[last] +- next(S) Mi,; x[last] +- (a - a- [last]) 
8: loop 
9: if last < IRI then 

10: while (x[last] > A) do 
11: last 4- last + 1 
12: a[last] - next(S) M; [last] +- (a - a— [last]) 
13: end while 
14: end if 
15: Filter and print x[first], . . . , x{last - 1] 
16: a <- next (Sp) Mn 
17: if (ar> (B + (M - 1)M)) then 
18: Quit 
19: end if 
20: for each i from first to last do 
21: [i] +- a - 
22: if ([i] > B) then 
23: first +- first + 1 
24: end if 
25: end for 
26: end loop 

The algorithm works as follows: the functions next (Sr) and next (Sn) return the 

next output from each of the S and Sn sieves, respectively. These outputs appear 

in ascending numerical order. 

The loop at line 3 advances the S sieve until the first acceptable ≥ A is 

obtained. 
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The main loop starts at line 8, and operates as follows. For a particular acceptable 

candidate a, maintain a vector of all permissible candidates á (called the row 

vector), such that = (a - a) ≥ A. The loop at line 10 is responsible for appending 

entries to the end of this row vector. It does so by peeking ahead at the next value for 

, appending it to the array if it exceeds the lower bound of the sieve problem (A). 

Since sieve outputs are returned in ascending order, it is sufficient to stop sieving 

for á when x[last] < A. Candidate values of up to, but not including the peek-

ahead value are filtered and printed in line 15. The loop at line 20 is responsible for 

obtaining the next acceptable candidate for a, and computing the next row vector. 

In line 23, entries are removed from the front of the row vector if they exceed the 

upper bound of the sieve interval. Line 17 terminates the algorithm when a exceeds 

the upper bound of the sieve range. 

The complexity of this algorithm depends on two factors: the number of solution 

candidates obtained from the S and S sieves (the number of multiplications), and 

the average width of the row vector, = {firstJ,. . . , x[last - .l]} (the number of 

additions per row). 

3.3.2 Computing the Optimal Bounds 

The goal of applying the doubly-focused enumeration technique is to reduce the 

amount of work required to sieve for x over a particular interval. Thus, the amount 

of work performed by Algorithm 3.1 must be determined for various problem param-

eters. 

Recall that M = fl m and M =  r1k +1  mj are the products of all moduli 

mi e M p and mj E M respectively. The number of residues admitted by each of 
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the sieves may be determined as follows: 

density (T) = I'R I  
M 

density M) = i2iMP 

To obtain all possible values of x, a = tM must be allowed to range over 

[A, B + (M - 1)M) and a = tM to range over [0, (M - 1)M). Thus, the num-

ber of solutions for t (and hence a,) in the interval 0 ≤ t < M, - 1 is given exactly 

by S, = 7,,I. The sieve interval for t, is given by [_L] < t < [B+(M.-1)Mp] ' 
Mn Mn 

and hence there are 1B JMPl + M values in this range. Since this is rarely an 

exact multiple of M, a precise prediction of the number of solutions in S may not 

usually be given. It should be clear, however, that lSI ([1:B_A)_M] + M) 1 . 

And thus, for a reasonable choices of sieve interval (B - A), the number of solutions 

is expected to be around IR,I. Bernstein [Ber04] gives the following approximations 

for most practical implementations: (B - A) 1020, M 10 14. 

3.4 A Simple Example 

Consider the problem of finding all values that satisfy the congruences: 

x (mod 24) =I 

x (mod 5) E {1,4} 

x (mod 7) E{1,2,4} 

By the Chinese Remainder Theorem, any set of solutions to this problem will be 

cyclic modulo 5 7 24. Thus the set of solutions may be completely determined by 
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sieving over the interval 0 ≤ x <840 and testing each choice for x against the three 

congruences. This approach requires 840 sieve operations. 

By normalizing this sieve problem, the effort required to determine the sieve 

solutions may be reduced by a factor of 24; i.e., x = 24y + 1, so sieve for y in the 

Iro— il 184O-11 - In 
range LI 24 I'I 24 .1 - 

For convenience, define the sets Y = {i I y (n j - n0) m 1 (mod Mi), nj E Ri 

where m0 = 24 and n0 = 1. In this case, Y1 = {0, 2}, Y2 = {0, 1, 5}, and the sieve 

problem becomes: 

y (mod 5) E {0, 2} 

y (mod 7) E {0,1,5} 

for 0 ≤ y < 35. Solving this sieve problem would involve 35 sieve operations2. 

Applying both the normalization and doubly-focused enumeration to this problem 

yields even further improvements. Choose M-n = 7, M, = 5. Define y = tM - 

tM = 7t - 5t, and consider this expression modulo both M and M: 

y 7t 2t, (mod 5) 

y —5th 2t, (mod 7) 

In effect, this can be thought of as two separate normalization problems. In both 

cases, m0 = 2, no = 0. Define: 

Tn = {n I n r• (5)1 (mod 7), n, E {0, 1, 5}} = {0, 4, 6} 

71= {n Innp.(7)' (mod 5), rj1 E {0,2}} = {0,1} 

Now, simultaneously enumerate over the acceptable residues for both t, E 7-p and 

t, E 7 as per Algorithm 3.1 to form the acceptable choices for y = tM - tnMp-

20f course, this figure ignores the work required to normalize and denormalize the sieve problem. 
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t\t 0 1 2 3 4 5 6 

0 0 
1 72 
2 14 9 4 
3 21 16 11 6 1 
4 28 23 18 13 8 3 
5 30 25 20 15 10 5 
6 32 27 22 17 12 

7 34 29 24 19 
8 31 26 

9 33 
10 

Table 3.1: Doubly-Focused Enumeration 

Table 3.1 offers a more graphical illustration of this enumeration. Acceptable residues 

for y are highlighted in bold. 

Acceptable solutions for y are found by sieving for t, and t over the ranges 

0 < t < 7 and t,, < [35+(7-1)5  respectively. Acceptable solutions oc-

cur at the intersection of t, E {0, 1, 5, 6} and t E {0, 4, 6}. In other words, 

y E {0, 5, 7, 12, 15, 22}. 

The total number of sieving operations required for this optimization is: 

tin[0,MI) =[0,7) 

tp in [[_L]'[B+(M.-1)Mp])  —[0,10) 
Mn 

The total number of sieve operations required above is 17. The doubly-focused 

technique offers a clear reduction in the sieving effort required to solve this partic-

ualr sieve problem. Unfortunately, these savings occur at the expense of 7 modular 

multiplications, and 8 modular subtractions.3 

3This also ignores the work required to normalize and denormalize the sieve problem 



Chapter 4 

The Calgary Scalable Sieve Architecture 

Things should be made as simple as possible, but not any simpler. 

—Albert Einstein 

4.1 Design Goals 

The Calgary Scalable Sieve (cAssIE) design is based around a simple idea, though 

one that has plagued engineers and implementors throughout the ages: a system 

must be usable to be considered successful. 

In the context of the sieve problem, the most successful sieve designs have been 

those with the highest levels of usability. Lehmer's delay line sieve, for example, 

was generally considered his most successful design, mainly due to its reliability and 

high degree of automation [Leh66]. Sieve parameters could be entered as coefficients 

of a problem in the form f(x, y) = 0. These coefficients would then be converted 

automatically' to a sieve problem, and printed to a linear tape, ready for input into 

the DLS. 

The photoelectric sieve demonstrated the opposite effect. Though it was Lehmer's 

fastest sieve design for many years to come, it was rarely used owing to difficulties in 

setup, problem design, and reliability.' The later successes of the Movie Film sieve, 

'Actually, via an IBM 7090 and the Bendix G-15. 
'After being disassembled for transport to the Century of Progress Exhibition in Chicago, the 

photoelectric sieve was never used again. 

55 
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despite it being almost 50 times slower than the photoelectric sieve, showed that 

fast problem setup, and reliable behavior were vastly more important measures of 

success than high speeds. 

CASSIE'S initial design was driven by three technical design goals: 

1. Hybrid Design—CASSIE would employ both FPGA (hardware) and software 

technology to implement a fixed-plus-variable (F+v) sieve design. 

2. High Performance—CASSIE would employ Bernstein's doubly-focused enumer-

ation technique to improve sieve performance. 

3. Reliability—CASSIE should be able to run for long periods of time without 

operator intervention. Detection and recovery from errors should be automatic. 

Software should be free of memory leaks or crashes. 

Experience with early versions of the CASSIE implementation showed that, de-

spite impressive speeds, the sieve design appeared to be following the lead of the 

photoelectric sieve; that is, it suffered great usability problems. Thus, in July 2003, 

the underlying CASSIE architecture was changed significantly to reflect a fourth goal: 

• Ease of use—Though CASSIE was to incorporate a hybrid software/hardware 

architecture and advanced optimization techniques, this complexity should be 

hidden from the user. Sieve problems should be fast, easy, and consistent to 

set up, regardless of which underlying technologies or optimizations were in 

place. 
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4.2 Approach 

4.2.1 Previous Architecture Choices 

Previous sieve designs such as the MSSU and OASiS featured a certain amount of 

automation in the host system implementation. Sieve configuration was flexible, 

involving a series of simple text-files for job configuration and checkpointing. How-

ever, pre- and post-processing of sieve data was by no means automatic, involving 

additional software and programming libraries to reduce a high-level problem de-

scription to its its corresponding congruence conditions. For example, the negative 

pseudosquare problem [LLS7O] can be compactly characterized as follows: 

Definition 4.1 The negative pseudosquare problem is defined as the problem of 

finding N E Z such that N —1 (mod 8) with (=Np) = 1 for all p ≤ p. Pi 

However, the problem of actually reducing this characterization to the set of congru-

ence conditions (Figure 4.2.1) has to be done by the operator.3 

In its early implementations, CASSIE was no different from previous sieve designs 

in this respect. That is, reduction of problems to a GSP instance, and subsequent 

conversion to a set of doubly-focused congruences was the responsibility of the sieve 

operator. Unfortunately, the added complexity of producing a set of doubly-focused 

congruences made sieve problem setup quite tedious, even with the development of 

automated tools for the purpose. 

Thus, in July 2003, the CASSIE design was amended to incorporate a radical 

design concept: the dual-language approach proposed by Ousterhout [0us98]. 

3Though once the set of congruences was entered, M55U and OASiS would automatically normalize 
any single-residue congruences 
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x (mod 8) E {7} 

x (mod 3) e {2} 
x (mod 5) E{1,4} 

x (mod 7) E{3,5,6} 

x (mod 11) E {2, 6,7,8, 10} 

x (mod 13) E {1,3, 4, 9, 10, 12} 

x (mod 17) E {1, 2,4,8,9, 13, 15, 16} 

x (mod 19) E {2, 3, 8, 10, 12, 13, 14, 15, 18} 

Figure 4.1: Congruence Conditions for the Negative Pseudosquares, p 19 

4.2.2 The Dual-Language Paradigm 

The main idea of a dual-language approach for CASSIE is to embed the sieve im-

plementation and control mechanisms into a general purpose scripting language. 

Manipulation and configuration of sieve parameters is accomplished with the (high-

level) scripting language, while the actual sieve implementation is done in whatever 

low-level language is most suitable. 

Whereas with the dedicated tool approach, sieve configuration files contain little 

more than a textual representation of a congruence problem, in a dual-language 

approach sieve configuration files can contain high-level programming code. Sieve 

set-up and configuration then inherits the benefits of a high-level scripting language 

such as Perl, Tel, or Python, while retaining the performance advantages of being 

implemented in a language like C or C++. 

For the purposes of CASSIE, John K. Ousterhout's Tool Command Language 

(Tel) [0us94] was chosen as the basis of the script language. Ousterhout is one 

of the pioneers of the dual-language concept, and Tel was designed for this pur-
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pose. Specifically, it was intended to be integrated with C/C++ in a dual-language 

capacity.4 

4.2.3 The CASSIE Scripting Language 

The CASSIE Scripting Language is a superset of the Tel scripting laguage that in-

cludes both the ability to specify and run sieve problems, and the ability to perform 

arbitrary-precision arithmeticic operations. Multi-precision arithmetic was imple-

mented using the MPEXPR extension, a high-level interface on top of David Bell and 

Landon Curt Noll's multi-precision library, calc [Nol]. Tel was further extended with 

a CASSIE software layer,5 including a complete software implementation of the GSP, 

incorporating sieve normalization, doubly-focused enumeration, automatic check-

pointing, and an interface to FPGA-based sieves. Integration of the CASSIE library 

into Tel was generated via the software wrapper generation tool SWIG [Bea96]. 

The result is a high-level scripting language well-suited to the specification and 

manipulation of sieve problems and their results. As an example, the negative pseu-

dosquare problem described in Definition 4.1 was implemented in the CASSIE Script 

Language as shown in Figure 4.2.3. 

As specified, the CASSIE of Figure 4.2.3 searched for all solutions, x = 24y + 23 

in the range 0 < y <500,000,000. i.e.: 

0 < x < 12, 000, 000, 023 

When this sieve problem was executed the results of Table 4.1 were obtained in 

4An additional benefit of choosing Tcl is the possibility of (later) adding a graphical user interface 
via the Tk toolkit. 

5A complete user's manual for the CASSIE script language is found in Appendix A. 
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#! /usr/local/bin/tclsh 

source "sieve-lib.tclt' 

# Given a modulus p, return all residues, N, such that the negatives, 

# (-N/p) = 1 (i.e. the Negative Pseudosquare problem) 

proc 11s2-ring -Cp} { 
set res_1 [list] 

for {set i 1)- {$i < $p} -Cincr i} -C 
if -C[JACOBI -$1 $p] == 1} -C 

lappend res_l $i 

return [list $p $res_l] 

sieve 11s2 

11s2 end 500000000 

# Set up reporting / checkpointing 
11s2 log 11s2.out 

11s2 report 11s2.rpt 

# Combine the 2 single-residue rings into a normalization function 

ring r -C{8 7). {3 2).). 

11s2 normalize [lindex [r get] 0] [lindex [r get] 1] 

# Add a ring for each of the primes from 5 ... 19 

foreach p [primes 5 19] -C 
11s2 ring-add [11s2-ring $p] 

# Retain the least N_p for each of the primes from 19 to 127 

foreach p [primes 19 127] -C 
lls2 score-add [11s2-ring $p] 

} 
# Run the sieve problem 

11s2 run 

Figure .2: CASSIE Script for the Negative Pseudosquares 
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P N2 

19 10,559 
23 18,191 
29 31,391 
31 118,271 

37,41 366,791 
43,47,53 2,155,919 

59,61 6,077,111 
67 98,538,359 
71 120,293,879 

73,79 131,486,759 
83 508,095,719 

89,97,101,103,107,109 2,570,169,839 

Table 4.1: Negative Pseudosquares 

approximately 4 seconds on the CASSIE host machine6. 

4.2.4 CASSIE Implementation Summary 

To summarize, the CASSIE Script Language is extremely powerful tool for setting up 

and executing sieve problems. It encompasses 

• A software sieve implementation in C. 

• Object orientation applied by Tel. 

• Automatic (Tcl/C) wrapper code generation using SWIG 

• A hardware driver layer in C. 

• Arbitrary-precision arithmetic via MPEXPR and calc. 

'Specifically, the code was run on one processor of a dual Athlon 2000+ machine with 2Gb RAM. 
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• Sieve hardware encapsulation (currently, a Xilinx Virtex 2 2000, Nallatech 

Ballynuey combination) . 

4.3 Implementation Details 

4.3.1 Notes on Algorithms 

Several algorithms will be presented in this chapter. Variables representing arrays are 

designated with a hat, as in C A specific (numbered) element of an array is desig-

nated by an index value contained in square brackets after the array name i. e. —X[first]. 

Where object orientation is assumed, methods and attributes are indicated by a set 

of double colons, as in sieve :: start. 

4.3.2 Sieve Object 

The sieve object is the main container for a sieve problem. Most of a user's inter-

action with CAME has to do with the creation and manipulation of sieve objects. 

Based on these attributes, the appropriate parameters of the underlying sieve imple-

mentation will be generated automatically. 

The sieve object encapsulates the following information: 

• Sieve type - Whether to use traditional sieve representation, or a doubly-

focused one. 

• Implementation Type - Whether to use a Software or Hardware implementa-

tion. 

7Hardware details will not be covered in this thesis, as the main idea of the CASSIE script 
language is to encapsulate and abstract the underlying sieve implementation. 
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• Parallelism - Whether the sieve instance is standalone, or will be part of a 

multiprocessor (parallel) implementation.' 

• Sieve Range - Start, and end values for the sieve problem. 

• Normalization - The normalization modulus and residue. 

• Problem Filters - Filters to be applied to sieve outputs. 

The sieve object also includes links to attached rings, scoreboard, and monitor 

objects, though this linkage is not normally visible to the user. A detailed user 

manual describing each of these objects in detail is given in Appendix A. 

4.3.3 Sieve Rings 

Recall from Definition 1.1 that a sieve ring is a tuple consisting of a modulus and its 

associated acceptable residues, i. e.S = {M, R}. In CASSIE, sieve rings are specified 

as Tel lists.9 For example, a ring consisting of a modulus 13, and the acceptable 

residues 1, 2, 4, and 9, would be denoted: 

-C13 -Cl 2 4 9}} 

By Corollary 3. 1, any set of sieve rings 81,82,.. 8 can be reduced to a single 

sieve ring S. To this end, CASSIE allows multiple rings to be specified as a list-of-

lists. These rings are then combined into a single sieve ring as per this corollary. For 

example, 

8At this time, Message Passing Interface (MPI) is the only supported form of parallelism. This 
is the mechanism used on the University of Calgary's Advanced Cryptography Laboratory (AOL) 
cluster. 

in Tcl, lists are delimited by curly braces, and entries are separated by whitespace. Lists may 
be nested to form lists-of-lists, and other compound data structures. 

'°Extra whitespace is ignored in Tcl lists, so this could be equivalently written on one line. 
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struct ring -C 
mt modulus; 
uint32 *bits; 1* bitfield array *1 

Figure 4.3: Bitfield ring in C 

{{8 1} 
{3 1} 
{5 -Cl 4}} 
-C7 { 1 2 4}}} 

as the list of moduli and acceptable residues, to the ring constructor results in the 

creation of the following, equivalent ring: 

840 { 1 121 169 289 361 529 } 

This "magic constructor" is used throughout the CASSIE command language. 

That is, whenever a sieve ring is expected, a ring list may be specified, and a combined 

ring will be generated automatically. 

4.3.4 Ring Creation 

When ring objects are created in CASSIE, they are converted from the high-level Tcl 

list format to an internal bitfield structure, indicated in Figure 4.3. The first step in 

the conversion from a Tc1 representation to the bitfield representation is to allocate 

an array of m machine words. The individual bits of this bitfield are then set to 

either 1, indicating an acceptable residue, or 0, indicating an unacceptable one. This 

bitfield representation is then repeated k times, where k is the number of bits in 
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a machine word, in order to make the bitfield end on a machine word boundary." 

This fully populated bitfield structure is called a ring object. 

4.3.5 Ring Rotation and Normalization 

The process of associating a ring object with a sieve problem is called attaching a 

ring to the sieve problem. Before a ring may be attached to a sieve object, however, 

it may need to be rotated, and/or normalized, depending on the sieve parameters. 

In the context of a sieve problem, the position of a ring indicates the residue (or in 

the case of multiple solution taps, residues) currently under investigation. Changing 

the start value for a sieve problem is akin to rotating each of the attached rings to 

that new start value modulo each of the ring moduli. 

Normalization, as described in Section 3.2.2, is a process by which the acceptable 

residues are permuted and shifted in order to achieve a speedup in sieve operation. 

This transformation may be accomplished using the following algorithm, noted in 

[Luk95]. 

A similar algorithm (Algorithm 4.2) may be developed to accomplish denormal-

ization. In this manner, the appropriate permutation may be generated by first 

locating the bit position of the final (ring :: modulus - 1) entry in the sieve, and 

repeatedly subtracting the normalization modulus. Thus: 

YkMXk+RM(Mr1)+RRM (modMr) 

"Since the moduli of interest are usually odd and machine word sizes are usually powers of two, 
km is a crude approximation to the more correct value, lcm(k,m). 
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Algorithm 4.1 Normalize a Ring 
Variables: 
r,i: UInt3 
newring : Ring 

Inputs: 
modulus, residue: UInt32 
ring: Ring 

Outputs: 
newring: Ring 

Algorithm: 

1: newring :: modulus +- ring:: modulus 
2: r - residue mod ring:: modulus 
3: for i +— 0 to (ring.modulus — 1) do 
4: newring:: residues[i] +- ring:: residues[r] 
5: r +- (r + modulus) (mod ring:: modulus) 
6: end for 
7: return newring 

4.3.6 Combination of Ring Operations 

When the normalization and rotation transformations are combined, it is important 

to decide in which order these operations will occur. 12 In CASSIE, normalization 

occurs before rotation. In other words, the start and end attributes of a sieve object 

refer to the start and end values of the normalized sieve problem. The effective sieve 

interval for the original (non-normalized) problem may be computed via: 

start = m0 start + T0 

endeff = m0 start + r0 

where m0 and r0 are the normalization modulus and residue respectively. 

12] general, the rotation and normalization transformations do not commute. 
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Algorithm 4.2 Denormalize a Ring 
Variables: 
lastm, i: UInt82 
newring: Ring 

Inputs: 
modulus, residue: UInt32 
ring : Ring 

Outputs: 
newring: Ring 

Algorithm: 

1: newring:: modulus +- ring:: modulus 
2: lastm +- residue - modulus (mod ring:: modulus) 
3: for i +- (ring:: modulus - 1) downto 0 do 
4: newring :: residues [lastm] +- ring :: residue[i] 
5: lastm +- (lastm - modulus) (mod ring:: modulus) 
6: end for 

4.3.7 Scoreboard 

The scoreboard object implements a variant of the the virtual ring filter (common to 

many previous F+V sieve designs) where values emerging from the sieve are partially 

matched against additional sieve rings. To implement partial matching, scoreboard 

sieve rings are ordered by modulus, and candidates emerging from the sieve are tested 

against each of the scoreboard moduli in turn. Each scoreboard ring remembers the 

smallest candidate that has met its acceptable residue criteria. If the new candidate 

is smaller than this value and meets the residue criteria, the "best" value is updated. 

If the candidate fails either of these conditions for a particular scoreboard modulus, 

no further matching is performed. 

In this fashion, the scoreboard object keeps track of the smallest solution can-

didates for each of a set of sieve moduli that are not included in the original sieve 

problem (for example, the results summarized in Table 4.1). This behavior is es-
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pecially useful in doubly-focused sieves, as solution candidates emerge in essentially 

random order. 

4.3.8 Monitor Object 

The monitor object encapsulates all log and checkpointing information associated 

with a sieve problem. In particular, it specifies the log and checkpoint filenames, the 

frequency of checkpointing, and whether the sieve problem should terminate after a 

set number of checkpoints are reached. 

4.4 Sieve Algorithms 

4.4.1 Optimizing the Sieve Algorithm 

A basic sieve algorithm is shown in Algorithm 4.3. Clearly, there is not much in the 

basic algorithm that can be optimized. The speed of this algorithm is limited by the 

speed of the sieve operation in line 3, and the speed of the filtering algorithm in line 

10 in place. Filtering is discussed in Section 4.4.3. 

Algorithm 4.3 Fixed-precision Sieve 

1: x +- start 
2: loop 
3: 6 - nextd(S) 
4: nxf--x+6 
5: x+— nx 
6: if (nx <6) or (nx ≥ end) then 
7: Quit 
8: end if 
9: Checkpoint (if necessary) 

10: Filter and Test x 
11: end loop 
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4.4.2 Optimizing Simultaneous Enumeration 

The simultaneous enumeration algorithm introduced in Chapter 3 (Algorithm 3.1) 

is a means of iterating over the sieve solutions t,, t, to produce all the values of 

X = tpMn —tM in such a way that a relatively modest number of intermediate values 

need be retained. In this section, some modest improvements to the simultaneous 

enumeration algorithm will be presented. 

A key optimization is as follows. In the original description of the simultaneous 

enumeration algorithm, the functions next(S) and next(S) returned the next out-

put from each of the S, and S sieves, respectively. By modifying the sieve routines to 

return differences between successive sieve outputs, it may be possible to avoid many 

of the multiplications of the original algorithm. i. e. Rather than returning the sieve 

sequence x E {x1, x2, x3, . . .}, return the sequence x E {x1, (x2 - x1), (x3 - x2) .. .. }. 

Since sieve output values obtained via differences will be much smaller than the orig-

inal sieve outputs, precomputation or caching of small multiples of M and M can 

vastly improve sieve performance. This modification is shown in Algorithm 4.4. 

Algorithm Notes 

In line 1, start indicates the start value of the sieve S. This ensures that the first 

value assigned to 6 (line 4) is absolute, and thus t = F, 6, is true at all times. 

The terminating condition at line 17 is actually quite difficult to implement as 

written. Recall from Section 3.3 that tpMn ranges from A to B+(M - 1)M, so there 

are Tp [B_A+p-_1Mj different choices for t in this range. From the discussion 

following Definition 3.2, the number of solutions admitted by the sieve S may be 

exactly predicted only when number of choices for t divides the sieve modulus, 
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Algorithm 4.4 Simultaneous Enumeration of x = O - O with Differences 

1: first <- last +- 1; rows f- 0; Jp +- start 

2: J,, first] - nextd(S) 
3: repeat 
4: O +- 6 + nextd(S) Mr,; rows +- rows + 1 

5: until (O ≥ A +c[first]) 

6: x'first] +- O - O[first] 
7: next 4- last + 1 
8: O[next] 4- nextd(S) 
9: loop 

10: while (next < ISI) and (x[last] ≥ A+ 5{next]) do 
11: x[next] +- x[last] - 6n[next] 
12: last +- next; next 4- next + 1 
13: O[next] +- nextd(S) 
14: end while 
15: Filter and print xfirst],. . . , [last] 
16: 5 4- nextd(S) Mn; rows +- rows + 1 
17: if (rows ≥ S) then 
18: Quit 
19: end if 
20: for each i from first to last do 
21: 5qij +- [i] + OP 
22: if ([i] ≥ B) then 
23: first +- first + 1 
24: end if 
25: end for 
26: end loop 
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i.e.TIM. Since this is rarely the case '3, a more practical stopping condition is 

required. One possibility is to test whether t = 6p <   

If this algorithm is implemented using fixed-precision integers, 14 and B is chosen 

to be the largest representable integer, care must be taken to ensure the comparison 

at line 22 checks for overflow in the addition on line 21. The usual approach is to 

use a construct such as is shown in Algorithm 4.5. 

Algorithm 4.5 Fixed-Precision Addition with Overflow Check 

1: x•-[i]+6 
2: [i] X 

3: if ([i] ≥ B) or (x < 6) then 
4: first +— first + 1 
5: end if 

4.4.3 Filters 

Filters are C functions that may be used to eliminate solution candidates of a certain 

form once they have emerged from the sieve. CASSIE includes several standard filters: 

• perfect-square — Reject x if it is a perfect square. 

• perfect-cube — Reject x if it is a perfect cube. 

• abprime — Reject x unless x2 + a2 is a prime, for some parameter a. 

• probprime - Reject x if it fails a probable primality test. 

• none — Perform no filtering of results. 

13 The size of the sieve interval, H = B — A, is usually determined by factors such as the largest 
integer expressible by the underlying hardware; typically 232 — 1 or 264 — 1. 

"Fixed-precision integers are taken to mean integers implemented using a fixed word size, k. 
Operations on these integers are assumed to be valid modulo 2'. 
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Many sieve problems define filtering requirements that are more specific than have 

been provided here. For this purpose, an Application Programming Interface (API) 

has been provided for the purpose of developing new filters, and is discussed in 

Appendix A. 



Chapter 5 

Sieve Problems and Results 

However beautiful the strategy, you should occasionally look at the results. 

—Sir Winston Churchill 

5.1 The Pseudosquare Problem 

The pseudosquare problem, first considered by Kraitchik [Kra24] is characterized in 

the following manner: 

Definition 5.1 Given an odd prime, p, a pseudosquare, L, is defined as the least 

positive integer satisfying:' 

• 1 (mod 8) 

• The Legendre symbol (-LP-) = 1 for all odd primes qj ≤ p qi 

• L is not a perfect square. 

In other words, the pseudosquare, L behaves (locally) like a perfect square mod-

ulo all small primes q < p, 

Kraitchik originally provided pseudosquare results up to L47 in [Kra24], pp. 41-

46. Since that time, various efforts, spearheaded first by D. H. Lehmer ([L654]) 

11n [LLS7O], and [BB94], pseudosquares are defined as any nonsquare integer satisfying the 
conditions of Definition 5.1. Pseudosquares satisfying the least positive integer criterion are referred 
to in these works as least pseudosquares. 

73 
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and later by H. C. Williams ([LPW95]) extended this list to L277. To this point, 

optimization techniques for the pseudosquare problem remained largely unchanged, 

and advances involving sieve results were made mainly through the construction of 

improved (faster) sieve devices. In 2000, however, Bernstein's publication ([Ber04]) 

of the doubly-focused sieve technique (and L281) breathed new life into the problem. 

It should be noted that the term pseudo-square has a different and unrelated 

definition given by Atkin in [Atk65] (and again in [BR98]). Atkin's pseudo-squares 

will not be considered in this thesis. 

5.1.1 Applications of Pseudosquares 

The growth rate of pseudosquares has several key applications in Number Theory. 

Hall, in [Hal33] proved the following result: 

Theorem 5.1 A number which is a quadratic residue of every prime not dividing it 

is a perfect square. 

A natural consequence of this theorem is that the values for L tend to infinity 

with p. A variant of this result, where least prime pseudosquare values are con-

sidered,' can be used to show that there exist primes with arbitrarily large least 

primitive roots. 

Numeric results for pseudosquares have also been used by Wedeniwski ([WedOl]) 

to improve the upper bound for the least quadratic nonresidue of a squarefree natural 

number, n, and by Bach and Huelsbergen ([BH93]), to support a heuristic argument 

on the smallest x generating the multiplicative group modulo n. 

'Western and Miller, for example, tabulated such values in [WM68] pp. xv. 
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A natural application of pseudosquares is the problem of perfect square recog-

nition. Cobham, in a 1966 IBM Technical Report ([Cob66]), developed an efficient 

algorithm for determining whether an integer N is a perfect square based on the 

growth of least quadratic nonresidues. A similar result was given by Bach and Soren-

son in [B593]. Indeed, the results of Williams et al. [Wil98] show that to determine 

whether a single-precision integer is a perfect square, it is sufficient to examine, for 

example, a 32-bit integer modulo the primes q < 101, or a 64-bit integer modulo the 

primes q < 277. A variant of this idea is used in the popular GNU Multi-Precision 

(GMP) programming library ([AB]). 

5.1.2 Pseudosquares and Primality Testing 

Perhaps the most interesting application of pseudosquares is in the area of primal-

ity testing. In [LPW96], Lukes et al. indicated that a sufficiently rapid growth 

rate of pseudosquares would lead to a deterministic polynomial-time algorithm for 

determining the prime character of an integer N. At the time, the best known uncon-

ditional result for proving primality was due to Adleman, Pomerance, and Rumely 

([APR83]), and offered a time complexity of O((logN)c logloglogN) In August 2002, 

Agrawal, Kayal,and Saxena ([AKSO2]) described an unconditional, deterministic al-

gorithm for proving primality with time complexity 0 ((log N) 12+0(1)). This result 

was later improved by Lenstra and Pomerance (described by Bernstein in [Ber02]) 

to O((logN)6 °(')). 

This trend raises the obvious question: "how far can the time complexity of 

unconditional, deterministic primality proving be improved"? In Section 5.2.2, nu-

merical evidence for a conjecture on this point will be offered. First, the issue of how 
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pseudosquares growth is related to the problem of determining the prime character 

of an integer will be examined. 

In the aforementioned [Hal33], Hall was the first to demonstrate a primality test 

involving the pseudosquares. This test was based on a formalization of some falla-

cious ideas ([Leh3O]) originally put forth by Seelhoff in [See86], and later espoused 

by Cole [ColO3]3 and Kraitchik [Kra29]. 

The main idea of this test involved what Hall termed apparent residues 4, defined 

as follows. 

Definition 5.2 Apparent Residues and Nonresidues 

Let N E Z be odd, and p, q E Z be odd primes. Furthermore, define 

P = t\) p = (-1) -,2 p 

If W= 1, then p' is said to be an apparent residue of N. If W= —1 then 

q' = (-1)'q is said to be an apparent non-residue of N. 

The apparent residue character of 2 and —1 were defined in a similar manner. 

Hall then proved the following theorem. 

Theorem 5.2 If all the (not necessarily prime) factors of N are less than L, 

and if the primes —1, 2, —3, 5,. . ., (-1) 2 p can be divided into two classes: the 

apparent residues of N, A = {a1, a2, . . . , a8} and the apparent nonresidues of N, 

31n an editorial in Notices of the AMS ([Kna99]), the story is told of Cole's 1903 address to the 
Society, entitled On the Factoring of Large Integers. It is said the lecture was "met with a standing 
ovation after he lectured without saying a single word, multiplying two large integers and verifying 
that their product was 267 - 1." The description given in [Col03] is somewhat more verbose than 
this, however, and includes the discussion of Seelhoff's idea. 

4This was a translation of Kraitchik's "residues éventuelles." 
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B = {b1, b2,.. . , b, 1, such that every member ai E A is  true quadratic residue of N, 

and the product of every pair of elements bibj E B is also a true quadratic residue of 

N then N is either a prime or a power of a prime. . 

Though actually using this method as a primality test is difficult,' Beeger success-

fully used it twice, first in [Bee39] to prove the 12-digit cofactor of 2577687858367 = 

17-151628697551 prime,' then in [Bee46] to prove a 13-digit factor of 12 +1 prime. 

Dan Shanks, in correspondence with D. H. Lehmer ([Wil98]) implied a different 

test involving the pseudosquares when he noted the following theorem: 

Theorem 5.3 If N —1 (mod 4) is a base-q probable prime, that is, if q r_l = 1 

(mod N) for all primes q ≤ p, then any prime divisor P 1 (mod 4) of N must 

satisfy P ≥ I'. I 

The implied test is as follows: if it is known that N —1 (mod 4) is the product 

of at most two primes, and if N < L2, then N is a prime if qN_l = 1 (mod N) for all 

primes q < p. Unfortunately, like Hall's test, this algorithm is of limited practical use. 

Selfridge and Weinberger [Wil78], however, extended this idea and their extension, 

with modifications by Williams in [LPW96], became the first practical primality test 

to use pseudosquares. This test will now be introduced via a trio of lemmas. 

Lemma 5.1 Let s ≥ 1 be the value for which 2 m, i.e.2s I m, but 28+1 Im. If 

—1 (mod N) 

5To say the least. If N is not known to be prime and the Jacobi symbol () = 1, the problem 
of determining whether a given integer m is a quadratic residue modulo N is believed to be as 
difficult as the problem of factoring integers ([MvOV96], pp. 99). 

6This is the numerator of the 34th Bernoulli number. 
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then any prime factor p I N must have the form p 1 (mod 2). 

Proof: Let p be any prime divisor of N. Let w = ord(b), i. e.the least positive 

integer that satisfies b' 1 (mod p). Since b —1 (mod N), btm 1 (mod N) 

and since p I N, btm 1 (mod p). Thus w m, but w 1r , and hence, 25 11 w. 

Now, since p is prime, b' 1 (mod p), and hence w I (p—i). Then 28 I (p—i), 

and it follows by definition that p 1 (mod 2). 

Lemma 5.2 Given N E Z odd, choose s such that 2 II (N - 1). Suppose Ic E Z 

such that 

C ±1 (mod N) 

If () = —1 for some prime factor q I N such that q 1 (mod 2) then 

28 11 (q_i). 

Proof: Write N—i = 28m with m odd, and let w = 2"t = ordq(c) with todd. Since 

±1 (mod N), and since q I N, then eN_l 1 (mod q). Thus w I (N - 1), 

2't I 28m, and since m is odd, r < s. 

It is clear from (9) = —i that c —i (mod q). Thus c' = 1 (mod q), and 

w = 2't I (q - 1) but w = 2't does not divide j1. Thus 2 II (q - i). If q 1 

(mod 2) then 28 I q - 1 and s < r. 

Hence, s = r, and 2 (q - 1). 

Lemma 5.3 Given N E Z odd, choose s such that 2 II (N - i). If 2 (q1 - 1), 

28 II (q2 - i), where q1, q2 are primes and c is some integer such that ( -c-  -) = —i 

then 

±1 (mod q1q2) 
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Proof: - - (-L so without loss of generality, choose ) q2) qj (-L) - - 1 and 
(Q-) = —1. Now let WI , W2 be the multiplicative orders of c modulo q1 and q 

respectively. 

Suppose: 

N-i 

c  ±1 (mod q1q2) 

From (h.) = —1 and 28 II q —1, it is clear that —1 (mod q2) and 2S ii w2. 

From 5. 1, eN_l 1 (mod q). Since 2' (N - 1), w2 does not divide N 2 1, and 

So 

N-i 
2 

qi-i  

Now = 1, c 2 = 1 (mod q1), 
qi 

(mod q) (5.2) 

and w1 = 2 1t with t odd. Write 

= 2rm  (m odd), and notice that r ≤ s - 1. 

Since c_1 1 (mod qi), w1 I (N— 1). Recall that 28 II (N— 1); hence w1 

N-i 

cT 1 (mod qi) 

Thus, from 5.2 and 5.3, a contradiction to 5.1 is obtained, and hence 

c12 0 ±1 (mod q1q2) 

An efficient primality test involving the pseudosquares may now be given. 

Theorem 5.4 If 

1. All prime divisors qN exceed the bound B € 

IV-1 
2 

(5.3) 

U 
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<Li, for some prime, p, 

N-i 

3. p ±1. (mod N) for all primes pi, 2 ≤ pi ≤ p, 

. pJ —1 (mod N) for some odd Pj <p when N 1 (mod 8), 

2' —1 (mod N) when N 5 (mod 8) 

then N is a prime or a power of a prime. 

Proof: Suppose an integer N passes the conditions 1-4, but N is not a prime or 

or 

a prime power. Then N possesses at least 2 distinct prime divisors. Let q be one of 

these distinct prime divisors. If N 3 (mod 4) then (-1)'i' —1 (mod N). If 

N 1 (mod 4), then by condition 4 of the theorem, there exists a b such that 

b'i E -1 (mod N). 

If we choose s € Z such that 2 II (N - 1) then by Lemma 5. 1, all prime divisors q 

of N are of the form q 1 (mod 2). Furthermore, consider three cases: 

Case 1: q 1 (mod 8) - By condition 1, every prime divisor of N exceeds B 

and hence q < . By condition 2, q <L so by the definition of the pseudosquares, 

there must exist some pj < p such that (A-) = —1. By Quadratic Reciprocity, 
Pi 

(L) = —1. Notice also that by condition 3, pJ +1 (mod N). Thus Lemma 

5.2 applies, and 2S (q - 1). 

Case 2: q 5 (mod 8) - By the properties of the Legendre symbol, W  

From condition 3, 2 2 ±1 (mod N). Thus Lemma 5.2 applies, and 2 (q - 1). 

Case 3: q —1 (mod 4) - By the properties of the Legendre symbol, () = 
—1. Clearly, (-1) ±1 (mod N), so by Lemma 5.2, 2 (q - 1). 
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Since all prime divisors, qj of N are of the form qj = 1 + 2'ti for some t,, 

N= 1+2't = H1+2'tj with t,ti odd. 

By a simple parity argument, it is clear that r must be odd. i.e. 

1+28t = fJ1+2t 
i=1 

1+ 28t = (1+ 28t1)(1+ 28t2) . .. (1+ 28tr) 
T 

1 + 28t 1 + 28 5 t (mod 28+1) 
i=1 

And thus t r t (mod 2). Since N is not a prime or a prime power, there 

must be two distinct primes, q1, q2 such that q1q2 I N. By a similar argument as 

before it may be shown that: 

• If q1 q2 1 (mod 8), there exists a prime Pk <p such that ( qlq2 ) — (.\ — 
A  - qj q2 — 

—1, as q1q2 < L <Li, and q1q2 is not a perfect square. 

• If q1q2 5 (mod 8), then by the properties of the Jacobi symbol  

• If qiq 3 (mod 4) then the Jacobi symbol (zr-) = —1. 

N-i N-i 

Condition 3 says p, 2 1 (mod N), so p - ±1 (mod q1q2) for all primes 

2 ≤ pi ≤ p, but by Lemma 5.3, p 2 # ±1 (mod q1q2), a contradiction. 

So N must be a prime, or a prime power. 

Notice that if N is a nonsquare, and N < L, then there exists a prime q such 

that 2 < q p, and () =A 1. Furthermore, if N is prime, conditions 3 and 4 of IV 

Theorem 5.4 always hold. 
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The main consequence of this result is that if L grows sufficiently quickly i. e.if 

P < c(log L)' for fixed constants c, k, then Theorem 5.4 offers an unconditional, 

deterministic polynomial-time primality test. 

The growth rate of the pseudosquares will now be examined. 

5.1.3 Pseudosquare Growth 

In [Bac9O], Bach gave the following result, conditional upon the Extended Riemann 

Hypothesis (ERH): 

Theorem 5.5 Let g be a nontrivial subgroup of (7L/m7Z)* (the group of reduced 

residues modulo m) such that n E g for all positive ri < x. Then x < 2(logm)2. a 

This result may be used to bound L as follows. Consider the subgroup 9 of 

(Z/L7L)* consisting of all g such that (i-) = 1. Since L is a nonsquare, there 

must be an odd prime q such that qa I L, with a odd. Let t be a quadratic 

nonresidue of q, i.e.() = —1, and set: 

r t (mod q") 

r 1 (mod) 
qa 

By the CRT, r E (Z/LZ)* and by the properties of the Jacobi symbol, ()  

Thus, g is a nontrivial subgroup of Z/(L)*. Also, n E g for all 0 < n <p. By 

Theorem 5.5, p < 2 (log L)2, and hence 

log L> 
2 

(5.4) 



83 

In [Sch97], Schinzel refines the bounds on L to:7 

(1— 6)\/ < logL < (2 log 2 +   
logp 

for any 6> 0 with p > p0(6). 

Thus, under the conditions of the ERH, Theorem 5.4 offers a deterministic polynomial-

time primality test. 

Lukes offers an alternate prediction for the growth rate of L in [Luk95], pp. 111, 

based on a density argument and the Prime Number Theorem.' Under the stated 

assumptions, L would have a growth rate of the form 2(/ 109 P)(1+0(1)). In other words: 

log L2 j log 2 (5.5) 
logp 

It should be noted that by the Prime Number Theorem ([HW79J pp. 9), n 

where p is the th prime, and hence, log LP n - log  (1 + o(1)). 

This coincides with the assumption given by Bach and Huelsbergen in [BH93] 

that the pseudosquares provide extreme values of G(p), where G(n) represents the 

smallest value of x such that the primes ≤ n generate the multiplicative group Z. 

This leads to the relationship p log L  log log L and hence, Equation 5.5 [LPW96]. 

If these predictions hold, then primality proving may be done (via Theorem 5.4) 

using O((logN)1+0(1)) modular exponentiations. Since performing modular exponen-

tiation (using, for instance, the techniques of Schonhage and Strassen [SS71]) incurs 

a complexity of O((logN)2 °(')), it may therefore be conjectured that the primality 

of an arbitrary integer N may be proved with O((logN)3 °(')) operations. 

logp 

7Assuming the Extended Riemann Hypothesis (ERH). In the same paper, an unconditional 
result is also given. 

8Essentially, assume solutions for L are equidistributed in the range 0 < x < 8P2P3 p,, 

and hence L rl!  so by Merten's Theorem [HW79], and the Prime Number Theorem, 

c2' logp for c = 20 where 'y = 0.57721 is Euler's constant. 
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5.1.4 Applications to Cryptography 

In 2003, Bernstein [Ber03a] presented a fast, secure public-key signature scheme 

based on the Rabin-Williams [Ber03b] cryptosystem. In this system, a private key 

is a pair (p, q), with p, q prime, p 3 (mod 8) and q 7 (mod 8). The public key 

is the product N = pq. The signature scheme is defined as follows. 

Definition 5.3 Given a message, M, a publicly known hash function, H,9 and a 

public key N = pq, a standard signature is defined to be a vector (e, f, r, s) such that 

e E {1, —1}, f E {1, 2}, r is a random bitstring of length B, and s E Z satisfying: 

fs2 eH(rIIM) (mod N) 

where II denotes bitwise concatenation. 

The difficulty of forging a Rabin-Williams signature is based on the problem of 

determining a square root modulo the composite integer N. It can be shown, for 

instance in [Wil80], that the difficulty of this problem is equivalent to the problem 

of factoring N. 

Verification of Rabin-Williams signatures is extremely fast, requiring only a sin-

gle modular squaring. Bernstein noted, however, that verification can be made even 

faster by transmitting what he calls an expanded signature, and replacing this mod-

ular squaring with a randomized test. 

Definition 5.4 Given the message M and its standard signature, (e, f, r, s), define 

an expanded signature as the vector (e, f) r, s, t) where t is defined as the integer 

°A hash function is a function mapping an arbitrary-length bitstring into a fixed-length bitstring. 
Cryptographic hash functions are typically chosen such that it is computationally infeasible to find 
two distinct bitstrings x1, x2 that evaluate to the same hash value, H(xi) = H(x2), and that given 
y, it is computationally infeasible to determine its pre-image x, such that H(x) = Y. 
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satisfying: 

fs2—eH(rIlM)—tN=0 

Clearly, verification of an expanded signature may be achieved by evaluating 

C = fs2 - eH(rlM) - tN and testing whether c = 0. A faster, randomized verifi-

cation scheme is obtained by mapping it to a random quotient ring, for example, by 

generating a random, secret 100-bit prime, P, setting 

8' 8 (mod P) 

t (mod P) 

N' N (mod P) 

H(rIIM) (mod F) 

and computing c' = fs'2 - t'N' - eh' (mod p). Note that this result is zero if c = 0, 

and is virtually guaranteed" to be nonzero if c 54 0. 

Bernstein further noted that the pseudosquare test of Theorem 5.4 offers the 

fastest known method for verifying whether a candidate prime for this verification 

scheme (P) is in fact a provable prime. i. e.If it can be shown that P has no prime 

divisors < 220, then (as illustrated in Table 5.2) < L367, and a proof of primality 

requires only 73 modular exponentiations. 

5.1.5 Applications to Networking - Spam Prevention 

The unmetred nature of Internet mail delivery has resulted in a proliferation of 

Unsolicited Commercial Email—typically referred to as UCE or spam. Despite an in-

10With probability 1 - 2-100. 
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credibly low response rate, purveyors of spam have been able to maintain profitability 

due to the essentially zero-cost nature of electronic mail delivery. 

One oft-cited remedy for the spam issue is the adoption of a pay-per-send pricing 

model for electronic mail. In 1992, Dwork and Naor [DN92] presented an innova-

tive computational technique for implementing a pay-per-send infrastructure. Under 

their proposal, the sender of a electronic mail message was first required to perform a 

message-specific computation requiring a moderate investment" of CPU time. Before 

accepting a message for delivery, the mail gateway would verify this computation; 

accepting or rejecting the message accordingly. By design, verification of this com-

putuation required significantly less effort than was needed to produce it in the first 

place—often by several orders of magnitude. 

Under the Dwork and Naor proposal, the computational cost of sending millions 

of messages a day could be made prohibitively expensive, shifting the computational 

workload from sender to receiver without imposing a significant burden on regular 

users of the electronic mail infrastructure. 

Variants of this idea, sometimes referred to as the proof of work (row) concept, 

have been demonstrated to be effective in a variety of resource exhaustion application, 

including Adam Back's HashCash proposal [Bac97], Rabin, Shamir, and Wagner's 

[RSW96] cryptographic time-lock, and Juels and Brainard's Client Puzzles [JB99]. 

Pseudosquares and Spam Prevention 

A variant of modular square root problem may be adapted to implement a workable 

anti-spam solution for electronic mail that involves the pseudosquares. The technique 

"Typically, 2-10 seconds on of CPU time on a desktop workstation. 
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works as follows. 

First, a mail server generates an extremely large prime p —1 (mod 4) and a 

public hash function, H. Once chosen, these parameters may remain the same for 

the remainder of the protocol. 

Before accepting a message M for queuing, the mail server issues a challenge con-

sisting of the large prime p and an R-bit random bitstring, r. Using this information, 

the sending client computes the message hash 

h = 6H(rIM) 

and finds a modular square root 

h (mod p), 

where 6 E {-1, 1} is chosen to ensure that the Legendre symbol, (A) = 1. The 

client then sends the 4-tuple (s, 6, k, M), where k is the solution to s2 - h - kp = 0 

to the server for verification. 

At this point, the server may verify the computation by evaluating whether the 

solution to c = s2—h--kp is exactly zero. An even faster verification is possible using 

the randomized verification idea of Section 5.1.4, where the server chooses a random 

100-bit prime, Q, verifies its primality using the pseudosquare test of Theorem 5.4, 

and reduces the verification parameters modulo this prime; i.e., 

82 (mod Q) 

k k (mod Q) 

p (mod Q) 

h €H(rllM) (mod Q). 
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Verification of the problem is a matter of evaluating whether - h - kp 0 

(mod Q). Note that this result is zero whenever c = 0, and is virtually guaranteed" 

to be nonzero if c =A 0. 

Note that the value P may be precomputed whenever a new random prime, Q, is 

chosen. A new prime, Q, should be generated at regular intervals. 13 

The size of the prime p may be varied to change the workload demanded of 

remote clients. Since p —1 (mod 4), the most efficient means known for computing 

the modular square root, s2 h (mod p), is to evaluate s hP (mod p). This 

modular exponentiation has an expected runtime of O((logp)3) bit operations using 

the traditional algorithm [MvOV96]. Thus, the computational effort expended by 

the client is effectively parameterized by the size of the prime p. 

One consequence of this parameterization is that untrusted (or offending) clients 

can be asked to perform a more intensive computation than known (or trusted) 

clients; an idea which leads naturally into the concept of a decentralized web-of-

trust 14 for electronic mail delivery. 

5.2 Pseudosquare Results 

In [Luk95], Lukes offered empirical evidence to support both Bach's estimate (log L> 

and the Bach and Huelsbergen density prediction (log L 12) by comput-
log P 

ing the pseudosquares for all primes q ≤ 277, and comparing the results to 5.4 and 

12 With probability 1 - 2-100. 

"Typically, a new prime Q would be chosen after either a set amount of traffic had been processed, 
or a fixed time interval had elapsed, whichever occurred first. 
'4A model which was originally popularized by the Pretty Good Privacy (o) encryption pack-

age [Sta95]. 
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5.5. Using CASSIE, the table of pseudosquares was extended to include all primes 

q ≤ 359 and it was shown that the predictions of 5.4 and 5.5 still hold. These results 

are given in Section 5.2.2. 

5.2.1 Construction of the Problem 

To extend the table of pseudosquares, two separate computations were performed. 

Both computations were performed in software, and used Bernstein's doubly-focused 

enumeration optimization ([Ber04]) to speed the computation. 

First Run 

The first computation, a proof of concept, was a doubly-focused enumeration im-

plemented in software over two processors. The underlying hardware was a dual-

processor Athlon MP 2000+. The software was compiled using GCC 2.96 under Red 

Hat Linux 7.3 (kernel 2.4.18-27.7), using the -02 optimization. 

To partition the problem over two processors, the acceptable pseudosquare residues 

for 3, 5, and 8 were combined to produce the congruence condition x (mod 120) € 

{ 1, 49}. Each of these two possibilities was then converted to a normalization func-

tion, x = 1 + 120y, and x = 49 + 120y, and assigned to its own processor. Apart 

from the normalization function the problem setup on each of the processors was 

identical. 

The problem setup was very similar to Bernstein's in [Ber04]. The primes from 

7 to 73 were used as doubly-focused moduli, arranged in the following manner: 

= {7, 13, 29,31, 71,41,43, 59, 61} and M = {11, 17, 19,23,73,37,47, 53, 67}. 

Thus, the sieve searched for solutions x = tM—tM, where M = flmnEMn m = 
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36, 854, 760, 367, 243, and M = Urn €M m = 36, 838, 009, 702, 043. 

Values emerging from the doubly-focused sieve were further filtered by passing 

them through an exclusion sieve containing the primes 79-127. Remaining results 

were filtered to remove the perfect squares, and then tested against the primes up 

to 400 to determine where their pseudosquare behaviour broke down. 

The run was completed on April 6, 2003. The process took approximately 298 

hours, giving an effective canvass rate for the software sieve of 2, 063, 394, 191,690, 106 

2.06 x 1015 trials per second. The sieve, by virtue of the normalization function, 

searched all solutions up to 120 x 2 64 , and in addition to verifying the previous re-

suits up to L281, was able to find 6 previously unknown pseudosquare values: L293 

to £317. These results are summarized in Table 5.2. 

Second Run 

Once CAME had proved successful in the initial run, the pseudosquare computation 

was retooled for implementation in software over 180 processors. The underlying 

hardware was the University of Calgary's AOL; a Beowulf cluster consisting of 139 

dual-Xeon Pentium Iv processors running at 2.4 GHz. The software was compiled 

using GCC 2.96 under Red Rat Linux 7.3 (kernel 2.4.18-27.7), using the -02 opti-

mization. 

To partition the problem over 90 dual-processor units, the acceptable pseu-

dosquare residues for 3, 5, 8, 11, 13, and 17 were combined to produce 180 acceptable 

residue classes (mod 120120). Each of these residue classes was converted to a nor-

malization function. Using the MPI library [GLS94], the CASSIE software running on 

each of the AOL nodes was able to determine which normalization function to use. 
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The rest of the problem setup was identical for each of the processors. The primes 

from 17 to 83 were arranged into two sets: M = {17, 23, 29, 31, 37, 41, 47, 53, 71} 

and M p = {19, 43, 59, 61, 67, 73, 79, 83}. 

The sieve then searched for solutions x = tM-tM, where M = flmnEMn m = 

94, 309, 209, 838, 733 M = rlmpEMp m = 94, 298, 926, 699, 921. 

Values emerging from the doubly-focused sieve were further filtered by passing 

them through an exclusion sieve containing the primes 89-127. Remaining results 

were filtered to remove the perfect squares, and then tested against the primes up 

to 400 to determine where their pseudosquare behaviour broke down. 

The run was completed on July 26, 2003. The process took approximately 585 

hours, giving an effective canvass rate for the software sieve of: 

1, 052, 147, 624, 944, 915, 166 1.05 x 10 18 

trials per second. The sieve, by virtue of the normalization function, searched all 

solutions up to 120120 x 264, and in addition to verifying the previous results up 

to L317, was able to find 6 previously unknown pseudosquare values: L331 to £359. 

These results are summarized in Table 5.2. 

5.2.2 Numerical Results 

In Figure 5.1, the values of logL obtained from CASSIE have been plotted against 

p, and compared with the experimental predictions, L > e Vp-12 and log L 

In Figure 5.2, pseudosquare growth is shown as a function of n, where p,, is the 

prime. The straight line represents the least squares line fitted to this data, and is 
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p LP Source 

3 
5 
7 
11 
13 

73 
241 

1009 
2641 
8089 

Kraitchik (1924) 
Movable strips 

17 18 001 
19 53 881 
23 87 481 
29 117 049 
31 515 761 
37 1 083 289 
41 3 206 641 
43 3 818 929 
47 9 257 329 

53 22 000 801 Lehmer (1928) 
59, 61 48 473 881 Bicycle chain sieve 

67 175 244 281 Lehmer (1954) 
71, 73 427 733 329 SWAC 

79 898 716 289 

83, 89, 97 2805 544 681 Lehmer, Lehmer, and Shanks (1970) 
101 10 310 263 441 DLS-1E7 
103 23 616 331 489 

107,109 85 157 610 409 
113,127 196 265 095 009 

131,137,139 2 871 842 842 801 Lehmer (1973) 
149,151 26 250 887 023 729 DLS-157 

157, 163, 167 112 434 732 901 969 Patterson, Williams (1988) 
173,179 178 936 222 537 081 UMSU 
181,191 696 161 110 209 049 
193 2 854 909 648 103 881 Stephens, Williams (1989) 

197,199 6 450 045 516 630 769 OASiS 
211,223 11 641 399 247 947 921 
227 190 621 428 905 186 449 Lukes, Williams (1991) 
229 196 640 248 121 928 601 OASiS II 
233 712 624 335 095 093 521 Patterson, Williams (1994) 
239 1 773 855 791 877 850 321 MSSU 
241 2 327 687 064 124 474 441 
251 6 384 991 873 059 836 689 
257 8 019 204 661 305 419 761 

263,269,271 10 198 100 582 046 287 689 
277 69 848 288 320 900 186 969 
281 208 936 365 799 044 975 961 Bernstein (2001) 

Table 5.1: Previous Pseudosquare Results 
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P LP Source 

283 
293,307 

311,313,317 

533 552 663 339 828 203 681 
936 664 079 266 714 697 089 

2 142 202 860 370 269 916 129 

Williams, Wooding (2003) 
CA SSIE 

331 

337 
347, 349 
353, 359 

367 

13 649 154 491 558 298 803 281 
34 594 858 801 670 127 778 801 
99 492 945 930 479 213 334 049 

295 363 487 400 900 310 880 401 
> 120120 x 264 

Williams, Wooding (2003) 
CASSIE/ACL 
(180 processors) 

given by: 

Table 5.2: New Pseudosquare Results 

Y = 0.67121885x + 4.77028237 

Even with the relatively small number of data points, the slope of the least squares 

fit in Figure 5.2 appears to be approaching the predicted value of log 2 = 0.69315, 

i.e.L is of the form 2n(1+0(1)). 

It is clear then, that the pseudosquare results obtained to date support the pre-

dictions of Equations (5.4) and (5.5). This is at least empirical evidence that the 

polynomial-time nature of the primality test of Theorem 5.4 holds even in the absence 

of the ERH. 

5.3 Minus Class Numbers of Imaginary Cyclic Quartic Fields 

Let p be a prime and let be a primitive p1h root of unity. Let N denote the maximal 

imaginary subfield of degree d, a power of 2, of the cyclotomic field Q((1) and let 

N denote the real quadratic subfield of degree d/2 of N. The minus (relative) class 

number h of N is given by 

h = hN/hN+ 



94 

60 

50 

40 

30 

20 

10 

0 

0 

.. 

•••• 

• 
•• 

•,.•• 

* 

II, 

.111 

•* 

++ * 
• 
• lIa 

•• 

••• 

• 

A MA 
AAAM 

A AAA 
AA 

• 
• 

A 

I-

vt 

AA tA 

A ALA 

AAA 

100 200 

0 

300 

• log(Lp) a p In2/Iog(p) A sqrt(p/2) 

Figure 5.1: Pseudosquare growth vs. p 

400 



95 

60 

50 

40 

20 

10 

0 

.. 

y = 0.67121885x+ 4.77028237 

0 20 40 

n 

60 

Figure 5..: Pseudosquare growth vs. n 

80 



96 

where hN and hN+ are the class numbers of N and N+, respectively. For example, 

if p —1 (mod 4), then N := N = Q(/), N  Q, and := h is the class 

number of Q(/). In this case h; <p is always true. 

If p 5 (mod 8), there exist integers a and b such that p = a2 + b2, a —1 

(mod 4), b 2 (mod 4), and ab 2 (mod 8). Furthermore, these conditions suffice 

to determine a and b uniquely. In this case 

Q(_(+b)) N:=N=Q() 

and if h is the minus class number of N, then is not necessarily less than p. In 

fact, for any c> 0 it can be shown that there exists an infinitude of values of p such 

that > cp. For the remainder of this discussion, we will restrict our attention to 

the case of when p 5 (mod 8). 

Let Xp denote the only quartic Dirichlet character of conductor p such that 

Xp(2) = i (i +1 = 0). If, as usual, the Dirichlet L-function is denoted as 

then 

L(s,x) = 'Xp()  
L ,s 
n=1 

p L(1,xp)2 jL(o, XP) I2 
27r2 

(5.6) 

In [Lou98J, Louboutin developed a method of approximating the computation of 

Ii (0, Xp). Using this result, he was able to compute unconditionally all the values of 

for p < iO. Furthermore, by restricting the value of p such that (q) = 1 for 

q E {3, 5, 7, 11, 13, 17, 19, 23, 29}, he was able to use his method to discover that if 

p = 1679516029, then h; = 904595821 > p/2 (Ic/p 0.5386), but he was unable 

to say whether this was the least such p for which h; > p/2. 
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The purpose of this investigation is to attempt to find values of p for which 

larger values of the ratio h;/p are obtained by prescribing the quartic character 

(q) for the first several odd primes q. Specifically, we addressed a challenge by 

Louboutin to find a p for which hi/p > 1. Using a special construction and sieve 

methods, a conditional result (contingent upon the ERH) was successfully obtained. 

The construction of this sieve problem will now be described. 

5.3.1 Tabulation Approach 

The main idea is a modification of Louboutin's earlier idea of prescribing the quartic 

character of the primes for which could be evaluated. Instead of using only the 

first 9 primes, prescribe p as follows: 

• x(q) = 1 for 3 < q 31 (the first 10 odd primes), 

• x(q) = 1 for 5 of the next 10 primes. 

Since 

L(1,2) = fi (q-p(q)) 
q 

this maximizes the first several terms of the Euler product for IL (1, X) I. 

In order to filter out possible prime candidates quickly by recognizing whether or 

not this characterization holds, a result of Emma Lehmer [Leh58] may be employed. 

For p = a2 + b2 as above and (-Q) = 1 (clearly if p(q) = 1, (1) = 1) 

• Xp()() ifqb 

• xp(q)=() ifqa 
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A p—a2+b2 hi/p 
47 76400598855755832109 0.58 
53 13709687244002014322509 0.57 
59 13809503731429871522509 0.68 
61 1514508348294536139602509 0.61 
67 1514508348294536139602509 0.61 

Table 5.3: Minimal p = a2 + b2 with a = 3 

/ -2X(A+1)  x() = ) ifab # 0 (mod q) and a pb (mod q) for any such that 

= ()2 - 1)' (mod q), and A # 0,±1 (mod q). 

She also showed that there are exactly 1 (q - 4 - 3 ( ) - 2 (f)) such values of 
mod q. 

Let P = P1P2 . pi be the product of the first i odd primes. Our initial sieve-based 

approach involved fixing the value of a such that a 0 (mod 3), b 2 (mod 4), 

b (mod P), and finding minimal solutions such that p = a2 + b2 is prime. 

This attempt did not produce values for much better than to those obtained via 

a direct calculation, although considerably less processing power was required. For 

instance, the brute force tabulation of h; for the 113,764,515 primes p < 10'°,p 5 

(mod 8) took 1564 days of CPU time on 269 2.4 GHz Xeon processors running Linux, 

producing a maximal h;/p 0.69599. The sieve problems for the choices a = 3 and 

a = 9 took approximately 75 minutes on a single-processor AMD Athlon 2000+, and 

produced similar ratios. These sieve results are summarized in Tables 5.3 and 5.4. 

A detailed account of the brute-force tabulation is given in [JWWO4}. 
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A p = a 2 + b 2 Ic/p 
47 51450477912331322581 0.54 
53 4713675167444727400981 0.58 
59 6289887916225721232181 0.57 
61 1735951449151478486352181 0.68 
67 9189441298229683073700181 0.64 
71 96831855201472164369820981 0.63 
73 96831855201472164369820981 0.63 

Table 5.4: Minimal p = a2 + b2 with a = 9 

5.3.2 Construction Approach 

The next approach was to construct a value p using a technique of Teske and Williams 

[TW99]. Here, we obtained an approximation to IL (1, XP) 12 by computing 

H(2 1). q 

(We assume x(q) = 1 for all primes q ≤ Q.) If Q = 257, then this quantity 

exceeds 2,7r 2; thus, since the tail of the modulus of the Euler product is likely to be 

near 1, by (5.6) it is reasonable to hope that hT > p for p such that x,(q) = 1 for 

all odd primes q ≤ 257. 

To find such values of p we first computed 

I. b 2 (mod 4Q), where Qi is the product of all primes q ≤ 257 such that 

q1 (mod 4); 

2. a = Q2, where Q2 is the product of all primes q < 257 such that q 3 (mod 8). 

By Lehmer's results in Section 5.3.1 it is clear that p(q) = 1 for q I Q1Q2. For the 

primes q 7 (mod 8), we need to find X such that aX b (mod q), 2 

(mod q) and (1)) = —1. Again, we used CASSIE with this sieve construction to 
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produce suitable values of X modulo Q3 where Q3 is the product of all primes q < 257 

with q7 (mod 8). 

If (QX) + b2 is not a prime, we put Y = X + tQ3 in place of X and put 

f(t) = QY2 + b2 = QQt2 +2 QQ3Xt + QX2 +b 2 . 

If we find prime values for f (t), then such primes p will satisfy xp (q) = 1 for all 

q ≤ 257. 

Using q < 257 yields 

= 879213685579110366036964153 

Q2 = 6045516990773996918315926683 

= 3107339771040020951565899375487096822611929605890 

The difficulty with this approach is that the resulting values for p are much 

too large for Ic to be evaluated by our techniques in Section 5.3.1. However, an 

estimation of Ic/p may be obtained using a technique originally due to Bach, and 

later modified by te Riele and Williams [tRW03]. 

5.3.3 Sieve Results 

Using the construction in the previous section, CASSIE was able to obtain 14052 

values of X in 18 minutes on a dual-processor AMD Athlon 2000+, the smallest of 

which was 1385546961. Using the values X = 62204701189 and t = 0, we find that 

f (t) is a prime 

p = 965556045268704983009099019639798584657246700148135006824947423672 

3465700952560829330262763823669 (97 decimal digits). 
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The estimation technique of [tRWO3] notes the following: 

If S(x) = + j) log(x + j), B(x, x) > q<x q- p(q)' a = (x + ) 10-j) , 

then under the ERH 

T-1 

where 

log L(1,x) - 

=0 

aj log B(T + i, Xp) 

A(T, p) = c(p)G(T) + H(T) 

<A(T,p) 

c(p) = (logp + ), and G(x), 11(x) are defined in [tRW03]. 

Putting 

T-1 

S(T,p) = aRe(logB(T + i, Xv)) = E  w(q) log 
i=0 

where 

then 

Hence 

E T-1 a 

q<2T-1 

for q <T 

forT≤q<2T-1 

IlogIL(1,x)I—S(T,p) I <A(T,p) 

log IL (1, xp)I > S(T,p) - A(T,p) 

q  

q - X,, (q) 

Using this method with our 97 digit prime and T = 16830000 we obtain: 

(5.7) 

S(T,p) = 1.50800717, A(T,p) = 0.01499807 
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Thus, by (5.7) 

log IL (1, 2(r) > 1.50800717 - 0.01499807 

> 1.49300910 

> log(V) (i 1.491303476) 

and hence, by (5.6) 

- - IL (1, x) I2  
>1 h/p_ 2ir2 

as desired. 



Chapter 6 

Conclusions and Summary 

Say what you have to say and the first time you come to a sentence with a grammatical 

ending; sit down. 

—Winston Churchill 

6.1 Summary 

In this thesis, the development of a hybrid hardware/software sieve named CASSIE has 

been detailed. CASSIE represents a deviation from previous fixed-plus-variable sieve 

designs in that a dual-language design approach has been employed. The result is a 

high-level scripting language with support for both arbitrary precision mathematics, 

and sieve device control. 

6.2 Results and Conclusions 

Using CASSIE, 12 previously unknown pseudosquare results were obtained, offering 

further numerical evidence that existing unconditional primality testing algorithms 

may be improved to O((log N)3 °(')). 

A two-processor (single workstation) software implementation of CASSIE was able 

to achieve canvass rates of 2.06 x 1015 trials per second on the pseudosquare problem 

putting it ahead of even the fastest dedicated hardware sieve (currently, the Star 

103 
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Bridge Hypercomputer, which is predicted to achieve a canvass rate of 39 x 10 12 

trials per second for the same problem.) 

When combined with 180-processors of the University of Calgary's AOL, a canvass 

rate of 1.05 x 1018 trials per second was obtained for the pseudosquare problem—a 

result that was at least an order of magnitude above expectations for a software 

sieve, even with 180-fold parallelism. 

With these new pseudosquare results, the modified Selfridge-Weinberger primal-

ity test described in Theorem 5.4, combined with trial division up to 220 offers one 

of the fastest known methods for proving the primality of integers up to 2'°°. Two 

applications involving this test were described: a Rabin-Williams signature scheme 

with extremely fast verifications, and a computational solution to the unsolicited 

commercial email (spam) problem. 

Finally, CASSIE was able to obtain a 97-digit prime, p, for which the minus 

(relative) class number of an associated imaginary cyclic quartic field exceeded 1, 

answering a challenge originally posed by Louboutin. 

6.3 Future Improvements 

6.3.1 Hardware Improvements 

The reprogrammable hardware (FPGA) component of CAME has not yet been brought 

online. When it is, it is expected that the sieve rates of each of the doubly-focused 

sieve problems may be improved. It is not clear yet, however, if the simultaneous 

enumeration algorithm will act as a bottleneck, limiting any gains the hardware may 

offer. 
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A significant improvement may be realized by building the simultaneous enumer-

ation algorithm into hardware, via a pair of pipelined multipliers and a subtractor. 

Unfortunately, the single Xilinx of the Nallatech Ballynuey board is not large enough 

to accommodate a design of this size. Further investigations may reveal if adding ad-

ditional Xilinx modules to the Nallatech board' may make this approach realizable. 

Certainly, a more powerful hardware architecture, such as the Star Bridge Hypercom-

puter design employed by Wake, et al.[WBO3] may be flexible enough to implement 

this idea; dedicating two Processing Elements to the individual sieve problems, and 

the remaining elements to the multiplier circuitry. 

6.3.2 Software Improvements 

From Bernstein's description [Ber04] of his own software sieve implementation, it 

seems that at least a 2-fold improvement in sieving speeds may be achievable through 

further optimization of the software sieve code. 

If the Tel-based command language is not to taste, the use of SWIG to generate 

the bindings between the CASSIE library and the scripting language make it possible 

to target additional languages. It would be relatively straightforward to produce 

Python, Perl, or even PHP-flavoured variants of the CASSIE command language. 

'The Nallatech Ballynuey 3 board employed by CASSIE can accommodate up to 4 Xilinx devices 
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Appendix A 

CASSIE User's Manual 

A.1 Introduction 

The CASSIE control language is a superset of Tel, the Tool Command Language. 

A brief introduction to Tel will now be given. For a more detailed treatment, see 

[Wel97] or [AGS]. 

A.1.1 Tcl Overview 

As a programming language, Tel is quite Lisp-like (a resemblance for which I apol-

ogize in advance). Tel syntax is extremely simple, consisting of a procedure name 

followed by its arguments. i.e. 

procedure-name argi arg2 arg3 
procedure-name argi Csubprocedure subargi subarg2] 

Sub-procedures invocations are denoted by enclosing them in square brackets, as 

in [subprocedure subargi subarg2]. Variables names are indicated by prefixing 

them with a dollar sign, i.e.$variable. 

In Tcl, white space is used as an argument separator. If white space is intended 

to be part of a string literal, grouping delimiters must be used. There are two sets of 

grouping delimiters in Tcl: double quotes (") and curly braces (f 1). These delim-

iters differ in that variable and subcommand interpolation is performed in quoted 

strings, but not in text enclosed by curly braces. i.e. 

117 
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set ± 1 

puts "$i" 

puts {$±} 
puts "[expr 2 + 2]" 

puts -C[expr 2 + 2]} 

will produce the output: 

1 

$1 

4 

[expr 2 + 2] 

Here, the puts function simply prints a string to the standard output device. 

The expr evaluates an arithmetic expression in infix notation. 

There are two main data types of interest in Tel: strings and lists. In Tel, every 

data type has a string representation, and thus effectively, Tel treats every piece of 

data as a string unless instructed otherwise. 

Lists in Tel may be formed by enclosing space-delimited elements in curly braces. 

For instance, the string 

{7 {1 2 4}} 

may be treated as a list containing two elements: "7" and "{i 2 4}". Of course, the 

string {i 2 4} may be subsequently treated as a list containing the three elements 

"1", "2", and "4". This nesting of lists allows for the creation of more complex data 

types. 

Lists are decomposed into their constituent strings using the 1±ndex procedure. 

List elements are indexed starting at zero. For example, the commands 

set 1 -(this is a -C1±st example}} 

puts [lindex $1 01 
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will display the string "this", while 

set 1 -Cthis is a -Clist example}} 
puts [lindex $1 3] 

displays the string "list example". 

A.1.2 Using Objects 

Though object-oriented flavours of Tcl exist,' Tcl itself—and thus the CASSIE com-

mand language—is is a strictly procedural language. One common technique for 

achieving a semblance of object-orientation is to use a command-subcommand mech-

anism for procedures. i.e. 

object method argi arg2 

This technique is used throughout the CASSIE command language. Complex data 

structures implemented and manipulated in this manner will be referred to as objects 

throughout this manual. 

In general, objects are instantiated using a command of the form: 

object—type <obj ect_name> 

i.e.to create a ring named ringO 

ring ringO 

Attributes for a given object may be set using the configure command, followed 

by a flag representing the attribute name and its desired value. Multiple attributes 

may be set with a single configure command, as in the following: 

'See, for example, the [incr tcl] project at http://www.tcltk.com/itcl 
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<object_name> configure -paramaterl valuel -parameter2 va1ue2 

i. e.to create a monitor object, and set its logfile and rptfile attributes to appro-

priate values: 

monitor m 
m configure -logfile cassie.log -rptfile cassie.rpt 

Attributes may be examined by invoking the cget method with the attribute 

name as a flag. For example, to see the current interval setting for the previously 

defined m object: 

m cget -interval 

Methods may be invoked by simply specifying the method name (and any pa-

rameters) after the object name. i.e.to create a sieve called pseudosquare, attach 

two rings, and run the problem, the following script could be used: 

sieve pseudosquare 
pseudosquare ring-add {{8 1} {3 1}} 
pseudosquare ring-add -C{5 {1 4}} {7 {1 2 4}}} 
pseudosquare run 

In many cases, object-specific methods will be introduced to modify the under-

lying object attributes, as directly modifying certain objects may result in a sieve 

representation that is internally inconsistent. For this reason, use of the configure 

method for setting sieve attributes should be avoided, where possible. 

For example, while it is certainly possible to set the modulus and residue at-

tributes of a sieve object using a sequence of commands like: 

sieve s 
s configure -modulus 24 -residue 1 
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It is much safer to use the normalize method of the sieve object to perform the 

same task, as any attached sieve rings will be affected by the change: 

sieve s 
s normalize 24 1 

A.1.3 CASSIE Object Hierarchy 

The main user-modifiable object used by CASSIE is the sieve object. Most user 

interaction is handled by this object. Under the hood, a number of additional objects 

are used, including 

monitor - Object containing information pertinent to logging, checkpointing, 

and monitoring a particular sieve run. 

• ring - Object containing a modulus and its associated (acceptable) residues. 

• ssieve - A singly-focused sieve implementation. 

• scoreboard - A list of moduli and their associated "best" sieve values. 

The relationships between these objects can be shown using a Unified Modeling 

Language (uML) diagram[FS97], as is done in Figure A.I. 

The various CASSIE control language objects will now be described in more detail. 

A.2 Sieve Object Detail 

Most of the user's interaction with the sieve will occur via the sieve object. 

The sieve object is the main container for a sieve problem. It encapsulates 

the sieve implementation ( one or two ssieve objects), checkpoints (monitor ob-

ject), results (scoreboard object), filter procedures (the filter_proc attribute), and 
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scoreboard 
+best: uint64[] 
+bestonly: boolean 
+inodulus: uint32[] 
+nuxnscores: uint32 
+residues: int(] C] 

I,-
sieve 

+add(ring) 
+del (index:uint32) 
+denorinalize(xn:uint32 ,r:uint32) 
+dunip() 
+get () 
+get (index:u1nt32) 
+normalize (m: u1nt32, r :ujnt32) 
+reset () 
i-set (index: u1nt32, x : u1nt64) 

monitor 
+bestonly: boolean 
+dieafter: uint32 
+interval: uint64 
+J.ogfd: FILE * 
+logfile: string 
+rptfd: FILE * 
+rptfile: string 
+numchk: uint32 
+numsolns: uint64 

1 
modulus: uint32 = 1 
-residue: uint32 = 0 
-filter_proc: pointer 
+extra: MPINT 

i-log (path: string) 
i-report (path: string) 

1 

ssieve 
-cnt: uint32(] 
-diffbufsz: uint32 
-diffs: uint32(] 
i-end: uint64 
+frac: uint32 
i-modulus: uint64 
+nuxndiffs: uint32 
+numresults: uint64 
+numrings: uint32 
-rings: ringf] 
-start: uint64 

+bestonly(boolean) 
+diffbufsize(size: uint32) 
i-end(value:u1nt64) 
i-extra_get () 
i-extra_set (z :MPINT) 
i-fill() 
i-f ilter(type: string) 
-i-interval (value: uint64) 
-i-i og (path :string) 
i-normalize (m:uint32 , r:uint32) 
-i-report (path: string) 
-I-reset () 
i-ring_add (rings: list) 
i-ring_del (index: uint32) 
i-ring_get () 
i-ring_get (index: uint32) 
i-run C) 
i-score_add (ring) 
i-score_del (index: uint32) 
-i-score_get () 
i-score_get (index: uint32) 
1-score_reset () 
i-sieve_state () 
i-start (val :uint32) 

0. 

+diff_get (num:uint32) 
i-fill() 
i-reset () 
i-ring_add (rings: list) 
i-ring_del (index: uint32) 
-I-ring_get H 
-i-ring_get (index: uint32) 
i-rotate (val :u1nt32) 
i-state C) 

1 

1 

ring 
i-modulus: uint32 
-bits: bitfield 

i-clear (bit :uint32) 
+copy() 
i-denormalize (m:u1nt32 , r:u1nt32) 
i-dump () 
i-get () 
+isset (bit :uint32) 
i-set(bit:u1nt32) 
i-normalize (m:uint32 , r:uint32) 

Figure A.1: UML Class Diagram for Sieve Objects 
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optimization parameters (modulus, residue attributes) into a single object. From a 

design pattern standpoint[GHJV95], the sieve object is a facade for the underlying 

sieve implementation. 

A.2.1 Attributes 

The following attributes comprise the sieve object: 

modulus : uint3 - Modulus used for Lehmer normalization[Leh53]. (Default: 

1). Do not set this value manually. Instead, use the normalize/denormalize 

methods, described below. 

residue : uint3 - Residue used for Lehmer normalization. (Default: 0). This 

value should not exceed (or equal) the value of the modulus attribute. Do 

not set this value manually. Instead, use the normalize/denormalize methods 

described below. 

filter_proc : function pointer - Pointer to a C function that will filter the data 

emerging from the sieve. Do not modify this field directly. Use the filter 

method described below. 

extra : multiprecision - This is a multipurpose field used to pass an optional filter-

specific parameter to sieve filter procedures. i.e.The abprime filter uses this 

parameter to pass the value of a2 so that the value a2 + b2 (b is obtained from 

the sieve) can be tested for primality. 
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A.2.2 Methods 

The following methods are defined for the sieve object. Note that many of these 

methods simply act as proxies for methods of the underlying ssieve, monitor, ring, 

and scoreboard objects: 

bestonly : boolean - (Default 0) If set to 0, all acceptable solutions found by the 

sieve will be written to the associated output file. If 1, only values better 

than the best entries of the associated scoreboard object are written. This 

functionality is useful primarily in doubly-focused sieves, where sieve solutions 

emerge from the sieve in essentially random order. 

diffbufsize size : uint82 - The number of sieve outputs (stored as integer differ-

ences) to obtain each time the sieve buffer is filled. Because sieve solutions 

are obtained by examining solution taps in parallel, there is a lower bound 

(currently 33) on this parameter. For small, sparse sieve problems, smaller duff 

buffers may be desirable to avoid sieving much beyond the stated endpoint of 

the problem. 

end value : uint32 - Modify the upper bound value for the sieve problem. (Stored 

internally as the end attribute of the ssieve object). This method returns the 

old end value. 

extra-get - Return the current value of the extra attribute. 

extra-set value : multiprecision - Set the value of the extra attribute to the 

supplied multiprecision integer value. 
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fill - Fill up to diffbufsz values into the underlying ssieve objects duff buffer. Values 

are entered into the buffer as differences from the previous sieve output. The 

sieve is operated from its current state, and the numdiffs attribute of the 

underlying ssieve object is updated to reflect the number of values that were 

placed into the duff buffer. This method is normally used only for debugging. 

For normal operation, see the run method. 

filter filter-type - Add a filter to the sieve outputs. 

Filters are C functions with a declaration matching the prototype: 

mt filter_proc(unsigned long long x, struct sieve *sv); 

Filters are intended to return the value FILTER-YES if the filter condition is 

matched (and hence, the indicated x value should be excluded from consid-

eration) and FILTER-NO otherwise. These return values are defined in the 

filters.h header file. 

Filters are defined in the filters . c file, and its associated header file. Cur-

rently supported filter types are: 

none - do not filter. 

abprime - accept only (probable) prime values of the form a'+ b2, where b is 

the value obtained from the sieve, and a2 is passed via the extra attribute. 

perfect-square - exclude perfect squares. 

interval interval uint32 - The number of sieve fills between checkpoints (de-

fault: 10000). This parameter is typically adjusted to produce a checkpoint 

every hour. 
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log filename : string - Set log file name, or "none." 

normalize modulus : uint32, residue uint32 - Normalize the sieve problem 

using Lehmer's single residue optimization technique [Leh53]. All attached rings 

and scoreboard moduli are normalized, and the modulus and residue attributes 

of the sieve object are updated. If a normalization is already in effect this nor-

malization is first removed, and the new normalization applied. Thus, applying 

a normalization using modulus 1 and residue 0 effectively removes (denormal-

izes) any optimizations that may have been applied. 

report filename : string - Set report file name, or "none." 

reset - Reset sieve counters (and internal state variables) to their appropriate start 

values. 

ring-add rings : list - Adds a ring to the underlying ssieve object. Rings may 

be specified using the Tcl list notation, either: 

{modulus {residuel residue2 res1due3 . . . 11 

or 

{m_1 {r_11 r_12 r_13 . . .} ... -Cm_j -Cr_lj r_2j r_3j .. . 

If multiple rings are specified using the second form, they will be automatically 

combined (using the Chinese Remainder Theorem) into a single modulus and 

list of acceptable residues. For example: 

sieve0 ring-add {{8 11 -C3 11 {5 {1 4111 
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will actually add the ring: 

-C120 -Cl 49}} 

ring-del index : uint32 - Delete the indicated ring from the underlying ssieve 

object. Rings indexes are specified starting at 1. 

ring-get index : uint32 - Return the ring corresponding to index. If no ring 

index is supplied, all rings will be returned in the form of a Tel list-of-lists. 

run - Run the sieve problem, based on the parameters defined in this sieve object. 

score-add ring - Add the specified ring to the scoreboard, and set its associated 

best value to the default (currently 264 - 1). 

score-del index : uint32 - Remove the indicated scoreboard entry from the as-

sociated scoreboard object. Scoreboard entries are indexed starting at 1. 

score-get index uint32 - Return the indicated scoreboard entry. If no score-

board index is supplied, the entire scoreboard will be returned, in the form of 

a Tel list-of-lists. 

score-reset - Reset all best values for the associated scoreboard object to BEST-DEFAULT, 

currently 264 - 1. 

sieve-state - Return the internal state of the sieve. Currently, this is a Tel list of 

the form: 

-C-Cring counters} frac nuniresults} 

This method is intended for debugging only. 
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start val : uint64 - Rotate the sieve rings to a new start position, and update 

the s.sieve.start attribute to reflect this new value. Any existing rotation is 

removed before the new start value is applied. 

A.2.3 Examples 

To create a new sieve instance named spoon: 

sieve spoon 

To add several rings (moduli and their associated acceptable residues) to this 
sieve: 

spoon ring-add -(5 {1 411 
spoon ring-add -(7 {1 2 4}} 

To set the normalization modulus and residue for this sieve instance: 

spoon normalize 24 1 

To add a perfect square filter: 

spoon filter perfect-square 

To enable logging to a file called spoon. out: 

spoon log spoon.out 

To fill up to diffbufsz (default 1024) values into the duff buffer: 

spoon fill 

To reset the sieve, and start sieving at the value 10,000: 

spoon reset 
spoon start 10000 

Finally, to run this sieve instance: 

spoon run 
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A.3 Underlying Object Detail 

Most user interaction with sieve objects should occur via the attributes and methods 

of the sieve object. For certain advanced applications, however, it may be necessary 

to interact with the underlying implementation. This section describes the objects 

that comprise that implementation. 

A.3.1 Ring Object 

The ring object corresponds to the sieve ring: the list of acceptable residues for a 

particular modulus, or set of moduli. Rings are not usually manipulated directly. 

Instead, the ring-add and ring-del methods of the parent sieve or ssieve objects 

are typically used. 

Attributes 

modulus : uint3 - The modulus (or product of moduli) represented by this ring. 

This attribute should not be modified directly. See the magic constructor 

below. 

bits : bitfield - This is the structure used to represent the acceptable residues for a 

particular modulus. It should not be modified directly. See the clear, set, get 

and dump methods below. 

Methods 

The magic constructor - 

The ring object uses a special constructor to accept ring values in the form of 

a Tcl list defining the modulus and acceptable residues. The Tcl list is of the 
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form: 

-Cmodulus {residuel residue2 residue3 $\ldots$}} 

or 

{m..1 -Cr_li r_12 r_13 . . . } ... -Cm_j {r_lj r_2j r_3j . . . 

The magical part of this constructor is the following: if a list of modulus/residue 

pairs is given to the constructor, they will be automatically merged into a single 

ring consisting of the intersection of all acceptable moduli. In other words, the 

moduli obtained by the Chinese Remainder combination of the listed acceptable 

residues/modulus pairs, as described in section 1.2.1 i.e. 

Will be reduced to the equivalent: 

840 { 1 121 169 289 361 529 } 

dump - Dump the internal representation (currently a bitfield) of this ring. This 

method is intended for testing purposes only. In practice, an equivalent, and 

more compact result can be obtained using the get method. 

clear index uint32 - Remove index from the acceptable residue list. In other 

words, clear bit number index in the internal bitfield representation. 
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form: 

-Cmodulus -Cresiduei residue2 residue3 $\ldots$}} 

or 

-Cm_i -Cr_il r_12 r_13 ... ... -Cm_j -Cr_lj r_2j r_3j . . .}}} 

The magical part of this constructor is the following: if a list of modulus/residue 

pairs is given to the constructor, they will be automatically merged into a single 

ring consisting of the intersection of all acceptable moduli. In other words, the 

moduli obtained by the Chinese Remainder combination of the listed acceptable 

residues/modulus pairs, as described in section 1.2.1 i.e. 

{ C8 l} 
{3 l} 
{5 .Cl 4}} 
{7 -C 1 2 4}} 

} - 

Will be reduced to the equivalent: 

840 -C 1 121 169 289 361 529 } 

dump - Dump the internal representation (currently a bitfield) of this ring. This 

method is intended for testing purposes only. In practice, an equivalent, and 

more compact result can be obtained using the get method. 

clear index : uint32 - Remove index from the acceptable residue list. In other 

words, clear bit number index in the internal bitfield representation. 
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set index uint32 - Add index to the acceptable residue list. In other words, set 

bit number index in the internal bitfield representation to 1. 

copy - Return a copy of this ring object. Tcl is not well suited to passing pointers 

around, so making a copy is the safest way to make use of a ring structure 

programmatically. 

get Return a string representation (in the form of a Tcl list) of the ring contents, 
in the combined form: 

{modulus {residuel residue2 ... residuek}} 

Examples 

To create a ring called ring2 made up of the moduli 5, 7, 11, 13, 17 (and their 

acceptable residues): 

ring ring2 { 
•C5 {i 4}} 

{7 ti 2 4}} 

{11 -Cl 3 4 5 9}} 

-C13 -Cl 3 4 9 10 12}} 
-C17 -Cl 2 4 8 9 13 15 16}} 

} 

To retrieve the combined representation of this ring: 

ring2 get 

In this case, the output (having been combined into a single ring via the Chinese 

Remainder Theorem) will look something like the following: 

85085 { 1 4 9 16 36 64 81 144 179 191 246 256 324 361 389 529 576 
599 716 729 764 841 914 939 961 984 1024 1101 1114 1171 1226 1296 

(many lines omitted) 

84254 84319 84379 84386 84639 84659 84681 84709 84764 84984 84991 } 
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The CRT combination of inputs makes the ring object useful when computing 

normalization moduli and residues. For example, the following code computes the 

normalization function, x = my + r from a set of four moduli and their associated 

acceptable residues. The various choices for r are selected by choosing subsequent 

values for $n: 

ring nv [list [make-ring 7] \ 
[make-ring 11] \ 
[make-ring 13] \ 
[make-ring 17]] 

set normvector Env get] 

set m [lindex $normvector 0] 

set r [lindex [lindex $normvector 1] $n] 

This example assumes the existence of a make-ring function, which computes 

the acceptable residues for a particular modulus, returning the result in the form: 

{modulus {residuel residue2 ... residuek}} 

For example, the make-ring function for the pseudosquare problem could be written 
as follows: 

# Given a modulus p, return all residues that are quadratic residues 

# modulo p. i.e. e_i = 1 for all p <= p_i 
proc make-ring Cp} -C 

set res_l [list 1] ;# 1 is always a Quadratic Residue 

for -(set i 2} {$i < $p} -Cincr i} -( 
if -([JACOBI $i $p] == 1} -C 

lappend res_l $1 

} 
} 
return [list $p $res_l] 

} 
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A.3.2 Ssieve Object 

The ssieve object represents a basic implementation of the General Sieve Problem, 

including a set of bounds (start, end), a set of rings (moduli with acceptable residues), 

a buffer containing sieve outputs (diffs, diffbufsz), and the internal state needed to 

operate the sieve. A traditional (singly-focused) sieve implementation makes use of 

one ssieve object. A doubly-focused sieve uses two underlying ssieves. 

Attributes 

The following attributes are defined for the ssieve object: 

start : uint64 - The lower bound of the sieve problem (the A in A ≤ x < B). This 

attribute should not be modified directly, as changing the sieve's start position 

typically requires rotating all attached rings to a new starting position. Use 

rotate method (described below) to safely modify this attribute. 

end : uint6 - The upper bound of sieve problem (the B in A < x < B). It is safe 

to modify this attribute using the configure method described in section A.1.2. 

diffbufsz : uint3E - The maximum number of sieve outputs to generate per invo-

cation of fill. The default size is 1024 entries. 

numrings : uint3. - Number of rings attached to this sieve. Do not modify this 

attribute directly. It is updated automatically by the ring-add and ring-del 

methods. 

internal state : various - The other attributes in the sieve object are used to keep 

track of internal sieve state and should never be accessed directly. They are 

therefore omitted from this manual. 
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Methods 

The following methods are defined for the ssieve object: 

fill - Fill up to diffbufsz values into the ssieve object's duff buffer. Values are 

entered into the buffer as differences from the previous sieve output. The sieve 

is operated from its current state, and the numdiffs attribute of the underlying 

ssieve object is updated to reflect the number of values that were placed into 

the duff buffer. This method is normally used only for debugging. 

ring-add ring : list - Add a ring to the sieve. Rings are always copied before 

being attached to the sieve, with the copy being attached to the ssieve object, 

as the ring contents will be automatically rotated, based on the value of the 

start attribute. The ring-add method employs the magic ring constructor 

(described in A.3.1), and thus accepts a Tel string as input. 

ring-del ring-no : uint82 - Remove a ring from the sieve. This method auto-

matically updates the numrings attribute. 

ring-get ringno : uint82 - Return the indicated ring number. If no ring number 

is supplied, all rings will be returned in the form of a Tel list-of-lists. 

duff-get num - returns the first num entries in the duff array as a Tel list. 

reset - Reset the internal state of the sieve to its starting state. currently, the 

state is comprised of the frac field, and one cnt (counter) field for each of the 

attached rings. 
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rotate - Modify the start position of the sieve. All attached rings are rotated to 

this start position, and their acceptable residues modified accordingly. 

state - Return the internal state of the sieve. This method is intended for debugging 

purposes only. 

start val : uint64 - Adjust the start position of the sieve. All attached rings are 

rotated to the new start position. (note that the attached rings are actually 

rotated by the difference between the old and new start values) 

Examples 

Build the sieve. 

ssieve mysieve 
mysieve start 0 ;# optional. 0 is default 
mysieve configure -end 10000 

Add two rings (previously defined) rings to the sieve: 

mysieve ring-add ri 
mysieve ring-add r2 

See all rings attached to the sieve: 

mysieve ring-get 

Remove the second ring, added above: 

mysieve ring-del 2 

Look at ring 1 in the sieve defined above: 

[mysieve ring-get 1] get 

This last example was a bit tricky. An equivalent, but possibly more confusing 

notation is: 
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set ringi [mysieve ring-get 1] 
$ringl get 

Unfortunately, the example above runs into some scoping bugs in Tc1 where the 

$ringl object is sometimes destroyed by an over-eager garbage collector. A safer 

construct is the following: 

ring ringi -this [mysieve ring-get 1] 
ringi get 

The difference is subtle, wherein the ring object is assigned a real name, ringi, 

and not merely an automatic one as in the $ringl example. 

A.3.3 Scoreboard Object 

The scoreboard object contains a list of moduli and their associated "best" sieve 

values. 

Attributes 

modulus : uint32 array - Array containing the scoreboard moduli. 

best : uint64 array - Array containing the scoreboard "best" values. 

numscores : uint32 - The number of entries in the modulus and best arrays. Do 

not modify this attribute directly. It will be adjusted automatically when the 

add and del methods are used. 

Methods 

add modulus : uint32, best : uint64 - Add an entry to the scoreboard array. 

If the best attribute is omitted, the maximum value (currently 264 - 1) is 

assumed. 
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del index : uint32 - Delete the indextll entry from the scoreboard array. 

get index : uint32 - Return a string (or Tcl list) version of the index th entry 

from the scoreboard array. 

reset - Reset all scoreboard best values to BEST-DEFAULT, currently 264 1. 

Examples 
Create a scoreboard, check the defaults: 

scoreboard sc 

Add a ring to the scoreboard: 

sc add {{8 1} .(3 1} C5 {1 4}}} 

Add a ring (assigning the returned ring number to a variable), and view it: 

set idx [sc add {7 {1 2 4}}] 
sc get $idx 

View all scoreboard rings: 

Sc get 

Add a ring, and set its associated best value to 12345: 

set scnum [sc add -(11 -CO 2 4}}J 
sc set scnum 12345] 

Reset the scoreboard best values to default and view the result: 

sc reset 
sc get 

A.3.4 Monitor Object 

This object contains information necessary for the logging and checkpointing of sieve 

operations. 
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Checkpoint Overview 

A sieve checkpoint is a means of verifying and recording the sieve status at a given 

point in time. Verification entails testing the internal sieve representation against 

the original problem parameters, i. e.verifying that bit patterns match the residue 

conditions of the problem. For long-running, parallel problems, there is a non-

negligible probability that a bit of ram could be inadvertently flipped due to electrical 

effects, or even cosmic rays. Recording the sieve status allows a sieve job to be 

restarted in case of a machine outage, software fault, or verification failure. 

Checkpoint information is recorded in a report (.rpt) file, which may be specified 

using the report attribute. The format of this file is as follows: 

-(start -Cscoreboard_list} {sieve-status}} 
-(rings -Cring_list}} 
-Cchk {scoreboar&list} {sieve_sta-tus}} 

-Cchk {scoreboard-list} {sieve-status}} 
-(end -Cscoreboard_list} {sieve-status}} 

The first parameter indicates the entry type: start, rings, chk, or end. The start, 

chk, and end differ only by the text label used to identify the entry. 

the ring-list is specified as a list of rings. i.e. 

{-(modulusl -(residue list 111 -(modulus 2 -(residue list 2}} - . . } 

Finally, the sieve-status list has the following format: 

-(sieve counters} frac x 

Where x is the current value under investigation in the sieve, and frac represents the 

carry-out from the last sieve fill operation. 
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Attributes 

dieafter : uint32 - This attribute is used mainly for debugging and regression 

testing. If nonzero, the sieve run will terminate after dieafter checkpoint entries 

have been written. See also the numchk attribute. 

interval : uint64 - The number of values to sieve before a checkpoint is written. 

logfd: file descriptor - Unix file descriptor associated with the log file. 

logfile : string - String containing the log (results) file name. 

rptfd: file descriptor - Unix file descriptor associated with the report (check-

point) file. 

rptfile : string - String containing the report (checkpoint) file name. 

numchk : uint32 - Number of checkpoints that have been written. This attribute 

is used mainly in conjunction with the dieafter attribute. 

numsoins : uint32 - The number of solutions found by the sieve. This attribute 

is used in conjunction with interval to determine when a checkpoint should be 

written. 

Methods 

log path : string - Set the name of the log file to which sieve outputs will be 

written. If "none" is specified, logging functions are disabled. 

report path : string - Set the name of the report file to which checkpoints will 

be written. If "none" is specified, checkpointing functions are disabled. 
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A.4 Parallelizing Sieve Problems 

In Section 3.2.3, a parallelization technique was described where a sieve problem 

was partitioned into 17Zil parallel problems by performing normalization on each of 

rij E Ri for 0 ≤ j < IRil acceptable residues, and sieving on each of these problems 

in parallel. i.e.x = yM + r3. 

The following sieve framework accepts two parameters on the command line: the 

sieve instance (indicating which of the normalization residues should be used), and 

the total number of parallelized processes. It assumes the existence of three external 

functions: get-normalization-rings, which returns a normalization modulus and 

I 1iI associated residues in the form of a ring list, primes, which returns a list of 

primes between two bounds, and make-ring which returns the modulus and accept-

able residues (in the form of a ring list) associated with a given prime. 

if -C[llength $argv] == 2)- { 
set num [lindex $argv 0] 
set of [lindex $argv 1] 

} else { 
set num 1 
set of 1 

} 
set normvector [get-normalization-rings] 

for -Cset n [expr ($num - 1)])- \ 
{$n < [llength [lindex $normvector 1]])- -Cincr n $of} { 

set m [lindex $normvector 0] 
set r [lindex [lindex $normvector 1] $n] 

sieve s 
s log "sieve-$m-$r.ou-t" 
s report "sieve-$m-$r.rpt" 
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foreach p [primes 7 79] -C 

s ring-add [make-ring $p] 

} 

foreach p [primes 79 257] { 
s score-add [make-ring $p] 

s normalize $m $r 
s run 

} 

A.5 Sample Sieve Problems 

This sample sieve solves the Lehmer/Lehmer/Shanks problem number I (i. e.the pseu-

dosquare problem) for all primes up to 103: 

#! /usr/bin/tclsh 
### Helper Functions 
# sieve-lib provides the multiprecision function JACOBI, 

source "sieve-lib . tcl" 

# Procedure to implement the LLS-I problem condition: 

# Given a modulus p, return all residues that are quadratic residues 

# modulo p. 

# i.e. e_i = 1 for all p <= p_i 

proc psquare_ring -Cpl { 
set res_l [list 1] ;# 1 is always a Quadratic Residue 

for {set ± 2]- -[$1 < $p} -C±ncr 1]- -C 

if -C[JACOBI $1 $p] == 1} { 
lappend res_l $i 

} 
return [list $p $res_l] 

} 

# Implementation of Lehmer-Lehmer-Shanks Problem I 

# i.e. The pseudosquare problem. 

sieve ilsi 
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# We know from [11s70] that the pseudosqtares from L_3 to L_79 lie 

# in the interval 0 - 900,000,000. We can use the 24x+1 optimization 

# to reduce this effective interval to 0-37,500,000 

llsl start 0 

lisi end [mpexpr (900000000 - 1) / 24] 

# Set up reporting / checkpointing 
lisi log llsl.out 

ilsi report llsl.rpt 

# Exclude perfect squares 

ilsi filter perfect-square 

# add the rings. First, the even condition: 

lisi ring-add -(8 1]-

# Add a ring for each of the primes from 3 to 17. 

# This will serve as our exclusion sieve 

foreach p [primes 3 17] { 
lisi ring-add [psquare_ring $p] 

} 

# Maintain a "scoreboard'' for all primes between 17 and 127 

foreach p [primes 17 127] -C 
ilsi score-add [psquare_ring $p] 

} 

lisi normalize 24 1 

lisi run 

# To display the (denormalized) sieve results, uncomment the following line: 

# (Raw sieve results are placed in llsl.out) 

# score-print [ilsi cget -this] 

# Now, if you want to rerun the problem without the perfect square filter 

# do a: 

# lisi filter none 

# ilsi reset 

# lisi run 
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This sieve produced the following (denormalized) output in 14.363s on an AMD 

Athion 2000+. A total of 16,925,139 values were found that matched the sieve 

criteria. The effective canvas rate of the sieve was 1,670,960,105 trials per second. 

17: 18001 
19: 53881 

23: 87481 

29: 117049 

31: 515761 

37: 1083289 

41: 3206641 

43: 3818929 

47: 9257329 

53: 22000801 

59: 48473881 

61: 48473881 

67: 175244281 

71: 427733329 

73: 427733329 

79: 898716289 

83: 2805544681 

89: 2805544681 

97: 2805544681 

101: 10310263441 

103: 23616331489 

real 0m14.363s 

user 0m14.240s 

Sys Om0.000s 

The following sieve script shows how a sieve problem may be parallelized, by 

first creating a sieve ring containing the normalization residues, and then iterating 

through them. 

#! /bin/sh 

# the next line restarts using tclsh \ 
exec tclsh "$0" "$" 
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# Helper Functions 
source "sieve-lib.tcl" 

source quadmu-lib.tcl 

### SIEVE CODE STARTS HERE 

# Make the sieve problem parallelizable 

if -C[llength $argv] == 2} -C 
set num. [lindex $argv 0] 

set of [lindex $argv 1] 

} else -C 
set num 1 

set of 1 

# The following ring contains 4 acceptable residues 

ring normring [list [quadmu_ring 7] 
[quadmu_ring 11]] 

set nv [normring get] 

for -(set n [expr ($num - 1)]} -($n < [llength [lindex $nv 1]]} {incr n $of} { 

set m [lindex $nv 0] 

set r [lindex [lindex $nv 1] $n] 

sieve qu 

qu start 0 

qu end 1440000000 

# Fairly sparse problem, so use a small sieve buffer 

qu diffbufsize 33 

# Set up reporting / checkpointing 
qu log "qu-$m-$r.out" 
qu report "qu-$m-$r.rpt" 

foreach p [primes 13 41] -( 
qu ring-add [quadmu_ring $p] 
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# Keep a scoreboard for all primes between 41 and 127 

foreach p [primes 41 127] { 
qu score-add [quadmuring $p] 

} 
qu normalize $m $r 

qu run 

} 

If used in conjunction with a grid computing manager, such as the Sun Grid 

Engine, parallelization of this script may be accomplished by using a shell wrapper 

(myj ob. sh) resembling the following: 

#! /bin/tcsh 
sieve.tcl ${SGE..TASK.JD} $1 

And the sieve may be executed over 4 units in the following manner: 

qsub -t 1-4 myjob.sh 4 

Executing the job in this manner produces 4 output files, one for each of the 
normalization functions: 

qu-77-13. out 
qu-77-20 . out 
qu-77--57. out 
qu-77-64. out 


