
THE UNIVERSITY OF CALGARY

Development of a High-Speed Hybrid Sieve Architecture

by

Kjell Wooding

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

November, 2003

© 2003 Kjell Wooding

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "Development of a High-Speed

Hybrid Sieve Architecture" submitted by Kjell Wooding in partial fulfillment of the

requirements for the degree of Master of Science.

9D2ooLF

Date

'petvisor Dr. Hugh C. Williams
Department of Mathematics and Statistics

Dr. Mark Bauer
Department of Mathematics and Statistics

Dr.,6hn Watrous
Department of Computer Science

II

Abstract

A numerical sieve device is an automated device used for solving systems of simulta-

neous congruences. This thesis describes the design and construction of CAssIE—the

Calgary Scalable Sieve—and explains this design in the context of previous sieve de-

vices.

CASSIE employs several key optimizations to the sieve problem, including doubly-

focused enumeration, a technique which allow this sieve to achieve sieve rates over

106 times higher than any previous sieve device.

One particular sieve problem—the pseudosquare problem—was examined in de-

tail. Using CASSIE, the table of known pseudosquares was extended to include 12 new

values. These values were then used to offer additional computational evidence for a

conjecture on the lower bound of the primality proving problem. Additional applica-

tions of pseudosquares, including fast, randomized verification of a Rabin-Williams

digital signature scheme, and a solution to the unsolicited commercial email (ucE,

or Spam) problem are also explored.

111

Table of Contents

Approval Page

Abstract iii

Table of Contents iv

Epigraph x

1 Introduction to the Generalized Sieve Problem 1
1.1 Motivation and Background 1
1.2 The Generalized Sieve Problem 4

1.2.1 Extremes in Sieve Problems 5
1.2.2 Sieve Performance and Measurement 9
1.2.3 Filtering 10

1.3 Structure of the Thesis 11

2 History of Sieve Automation 12
2.1 The Beginnings of Automation 12

2.1.1 The Prototypes 13
2.1.2 E.-O. Carissan's Sieve 14
2.1.3 The Path to Full Automation 15

2.2 Lehmer's Sieves 15
2.2.1 The Bicycle Chain Sieve 16
2,2.2 The Photoelectric Sieve 17
2.2.3 The Movie Film Sieve 18
2.2.4 Gérardin's Adding Machine Sieve 19

2.3 The Electronic Revolution 20
2.3.1 ENIAC 20
2.3.2 The Proposed Electronic Sieve 22
2.3.3 The Delay Line Sieves: DLS-127 and DLS-157 23

2.4 Software Sieves 25
2.4.1 SWAC 26
2.4.2 The Berkeley IBMs 27
2.4.3 ILLIAC IV 28

2.5 Estrin's idea: the Fixed-plus-Variable (F+V) Approach 29
2.5.1 SRS-181 30
2.5.2 UMSU 31

iv

2.5.3 OASiS 32
2.5.4 Bronson and Buell (SPLASH) 33
2.5.5 MSSU 34
2.5.6 Star Bridge Systems HG 36m 35

2.6 Software Revisited: Bernstein's Software Sieve 36

3 Implementing and Optimizing the Sieve Problem 37
3.1 Notation and Preliminaries 37
3.2 Optimizing Sieve Algorithms 39

3.2.1 The Trivial Sieve Algorithm 39
3.2.2 Sieve Normalization 40
3.2.3 Parallelizing the Sieve Problem 45

3.3 Doubly-Focused Enumeration 46
3.3.1 The Simultaneous Enumeration Algorithm 49
3,3.2 Computing the Optimal Bounds 52

3.4 A Simple Example 53

4 The Calgary Scalable Sieve Architecture 56
4.1 Design Goals 56
4.2 Approach 58

4.2.1 Previous Architecture Choices 58
4.2.2 The Dual-Language Paradigm 59
4.2.3 The CASSIE Scripting Language 60
4.2.4 CASSIE Implementation Summary 62

4.3 Implementation Details 63
4.3.1 Notes on Algorithms 63
4.3.2 Sieve Object 63
4.3.3 Sieve Rings 64
4.3.4 Ring Creation 65
4.3.5 Ring Rotation and Normalization 66
4.3.6 Combination of Ring Operations 67
4.3.7 Scoreboard 67
4.3.8 Monitor Object 68

4.4 Sieve Algorithms 69
4.4.1 Optimizing the Sieve Algorithm 69
4.4.2 Optimizing Simultaneous Enumeration 69
4.4.3 Filters 72

V

5 Sieve Problems and Results 74
5.1 The Pseudosquare Problem 74

5.1.1 Applications of Pseudosquares 75
5.1.2 Pseudosquares and Primality Testing 76
5.1.3 Pseudosquare Growth 83
5.1.4 Applications to Cryptography 85
5.1.5 Applications to Networking - Spam Prevention 86

5.2 Pseudosquare Results 89
5.2.1 Construction of the Problem 90
5.2.2 Numerical Results 92

5.3 Minus Class Numbers of Imaginary Cyclic Quartic Fields 94
5.3.1 Tabulation Approach 98
5.3.2 Construction Approach 100
5.3.3 Sieve Results 101

6 Conclusions and Summary 104
6.1 Summary 104
6.2 Results and Conclusions 104
6.3 Future Improvements 105

6.3.1 Hardware Improvements 105
6.3.2 Software Improvements 106

Bibliography 107

A CASSIE User's Manual 118
A.1 Introduction 118

A.1.1 Tcl Overview 118
A.1.2 Using Objects 120
A.1.3 CASSIE Object Hierarchy 122

A.2 Sieve Object Detail 122
A.2.1 Attributes 124
A.2.2 Methods 125
A.2.3 Examples 129

A.3 Underlying Object Detail 130
A.3.1 Ring Object 130
A.3.2 Ssieve Object 134
A.3.3 Scoreboard Object 137
A.3.4 Monitor Object 138

A.4 Parallelizing Sieve Problems 141
A.5 Sample Sieve Problems 142

vi

List of Tables

3.1 Doubly-Focused Enumeration 54

4.1 Negative Pseudosquares 62

5.1 Previous Pseudosquare Results 93
5.2 New Pseudosquare Results 94
5.3 Minimal p = a 2 + b 2 with a=3 99
5.4 Minimal p = a2 + b2 with a = 9 100

vii

List of Figures

4.1 Congruence Conditions for the Negative Pseudosquares, p < 19. 59
4.2 CASSIE Script for the Negative Pseudosquares 61
4.3 Bitfield ring in C 65

5.1 Pseudosquare growth vs. p 95
5.2 Pseudosquare growth vs. n 96

A.1. UML Class Diagram for Sieve Objects 123

viii

List of Algorithms

3.1 Simultaneous Enumeration of x = a - a 50
4.1 Normalize a Ring 66
4.2 Denormalize a Ring 68
4.3 Fixed-precision Sieve 69
4.4 Simultaneous Enumeration of x = - 6 with Differences 71
4.5 Fixed-Precision Addition with Overflow Check 72

ix

Epigraph

It's very esoteric, of course, and since I am practically the only man working in this

field you can see how widespread the interest in it is.

—D. H. Lehmer, on sieves [Leh8O].

x

Chapter 1

Introduction to the Generalized Sieve Problem

With the possible exception of the equator, everything begins somewhere.

—Peter Robert Fleming

1.1 Motivation and Background

Though this is not a thesis on factoring integers, the early history of the automated

sieve device and the problems of factoring an odd, composite integer, N into non-

trivial factors N = rs are closely linked.

The sieve connection comes from an observation of Pierre de Fermat's ([dF94],

pp. 256-258); namely that if N is composite and odd, then the factors r and s are

also odd, and choosing (arbitrarily) r < define:

U-
- 2

V - r.
2

Using this definition, N is expressible as a difference of squares, namely N

U2—V2 with U<-1.

With this observation, Fermat reduced the problem of factoring to the problem

of finding all values of = U2—N with U [VNJ+1, +2,...,N 2 1 for which

x is a perfect square. Enumerating successive values of x is quite straightforward by

'The trivial case, where r = \/W is not considered.

1

2

noting that (x + 1)2 - 2 = 2x +1. In other words, by starting with x = +1,

the series of candidates for x may be obtained by adding successive odd integers.

This approach to factoring is called the difference of squares method and it forms2

the basis of most modern factoring algorithms.

In addition to this discovery, Fermat noticed the following: it is possible to shorten

this search for x by examining the last two digits of x and rejecting any candidates

that cannot possibly be a perfect square. As there are only 22 quadratic residues

modulo 100, this method succeeds in excluding almost 1 of the choices for x.

This basic idea is called modular exclusion, and the following observation, due to

Gauss, provides a understanding of the power of this technique.

Given f(x), g(y) E Z[x], consider the problem of solving a IJiophantine equation

of the form:

f(x)=g(y) for x,yE7L (1.1)

Select k exclusion moduli, M1, M2,. .. , Mk, that are pairwise relatively prime.3

For any solution (x, y) of Equation 1. 1, the following expression must hold:

f(x)Eg(y) (mod M) for l≤i≤r

Now, for each of the exclusion moduli, M, determine the acceptable residue

classes for x given y = 0, 1, 2,. . . ,Mi - 1. In most cases, x will assume a relatively

modest set of residue classes (modulo Mi). Consider, for example, the Diophantine

equation 22 + 97w = y2. If this equation is considered modulo 4, the result is

2Along with an important modification by Kraitchik
'This is not a necessary requirement, but it does serves to simplify the discussion.

3

2 + x y2 (mod 4), and thus x (mod 4) E {2, 3}. Continuing in this fashion with

M2 = 3, M3 = 5, M4 = 7 produces the following set of congruence criteria:

x (mod 4) e {2, 3}

x (mod 3) E {0, 2}

x (mod 5) E {1,2,4}

z (mod 7)E {0,1,4,6}

Computing all possible combinations of residues via the Chinese Remainder The-

orem (aRT) (discussed in more detail in Section 1.2.1), produces 2 2 3 4 = 48

possible solutions (modulo 420) .' Trying each of these candidates in turn quickly

reveals a solution for x = 11:

22+97.11=332

Problems such as this one, involving systems of simultaneous congruences, are

called sieve problems. Though this chapter began with a discussion of factoring, it

should be clear from this example that the sieve process applies to a more general

class of problems. Lehmer [Leh66}, once gave the following (by no means exhaustive)

list of examples:

1. Find all solutions (x, y) with x < L of the equation x2 + D = y2 for a given

DEZ.

4x (mod 420) E {6, 11, 14, 27, 39, 42, 62, 71, 74, 99, 102, 111, 119, 126, 134, 146, 147, 162, 167,
174, 179, 182, 186, 207, 231, 239, 242, 246, 251, 266, 267, 279, 287, 291, 294, 302, 314, 326, 342,
347, 351, 354, 371, 386, 399, 407, 414, 419} to be precise.

4

2. Find the representations of a large number by a given binary quadratic form,

i.e.N = x
- y2.

3. Find (or count) the integers x ≤ L which are power residues for each of a given

set of small primes.

4. For a given polynomial, g, find (or count) the numbers for which g(x) is divisible

by none of a given set of small primes.

5. Find the least possible integer value of g(y).

6. Find the binomial units of a given algebraic number field.

1.2 The Generalized Sieve Problem

The generalized sieve problem may now be formalized:

Definition 1.1 Let 7?. = {rl,r2,...,rk} with 0 ≤ rj < M for j = 1,2,...,k be the

set of acceptable (or admissible) residues modulo M. The tuple {M, fl.} is called a

sieve ring.

Definition 1.2 Two sieve rings are said to be relatively prime if their modulus

values are relatively prime.

Definition 1.3 The Generalized Sieve Problem (GsP) is defined in the following

manner. Given:

.1. A, B E Z with B > A (the sieve interval)

5

2. k sieve rings, {M1, R 11 , {M2, 12},. . . , {M, 7k}, whose moduli, M1,

are relatively prime in pairs.

Find all a; E Z such that A < a; < B and

a; (mod MI) E R.1A

a; (mod M2)E 7.2A

a; (mod M3)E R3

a; (mod Mk) E l?-k

Any solution a;, satisfying the sieve criteria above is said to be a solution admitted

by this sieve problem.

Note that a sieve problem may be thought of as an intersection of sets:

S=fl{X EZIX (mod M)7 A≤a;<B}

Definition 1.4 The width of a particular GSP instance is defined as the number of

congruence conditions present in the problem definition; i.e., the width of the sieve

problemS— fl.1{xEZIx(mod Mj) E Ri A≤x<B}isk.

1.2.1 Extremes in Sieve Problems

Generally, a sieve problem is categorized in terms of the density of acceptable residues

when compared to the size of the sieve interval. Though this notion of density will

be formalized in Section 3.1, the following broad categories of sieve problems will be

discussed here:

6

Dense Sieve Problems

The Sieve of Eratosthertes is perhaps the best known example of a dense sieve algo-

rithm. This method for generating prime numbers dates back over 2300 years. In

this algorithm, the primes {pi, P2.....Pk} are used as sieve moduli. The acceptable

residues are all the residue classes other than zero, i. e.7 1 = {1, 2... . , p - 1}. Now,

sieving the interval [pk+1, i+i) will reveal all the primes in that range.5

For example, given:

x (mod 2) E {1}

x (mod 3) E {1, 2}

x (mod 5)E {1, 2,3,41

x (mod 7)E {1,2,3,5,6}

x (mod 11) E {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Sieving over the interval [13, 169) produces the primes 17, 19, 23, 29, 31, 37, 41,

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,

139, 149, 151, 157, 163, and 167.

This type of sieve problem is referred to as a dense sieve problem, owing to the

large number of candidate solutions in the sieve interval.

Sparse Sieve Problems

On the other end of the spectrum is a category know as sparse sieve problems. In its

most extreme case, a problem may be considered with exactly one acceptable residue

per sieve modulus. Unlike other forms of the GSP, this case was solved exactly by Sun

'This process may be continued indefinitely by adding the newly discovered primes to the list
of exclusion moduli and incorporating the appropriate residue conditions.

7

Tsu over 2000 years ago, and is more commonly known as the Chinese Remainder

Theorem (CRT) 6

Theorem 1.1 Chinese Remainder Theorem (CRT)

Given the congruences

a; r1 (mod m1)

a; r (mod m2)

a; r (mod Mk)

where m1, m2, . . . , M k are pairwise relatively prime.

Set M = fl m and define Ni = . Since gcd(m, N) = 1, the expression

eN Mi

1 (mod m) for i=1,2,...,k

is solvable. A solution to these simultaneous congruences is given by

(mod M)
i=1

Proof: See [HW79], pp. 95.

Sparse sieve problems are unusual in that a relatively efficient algorithm (the

CRT) exists to determine a solution. This idea motivates a definition that will used

extensively in Chapter 3.

61n the period when the USA refused to recognize mainland China, D. H. Lehmer would refer to
this theorem as the Taiwan Remainder Theorem

8

Definition 1.5 Given a set of sieve rings, Si = jRj, M}, the CRT combination of

these rings is defined as the set of solutions obtained via the CRT for every possible

combination of residues; i.e.,

={rEzIr
i=i

ejNr (mod M), r1 E Ri , rk E R k }.
Notice that when sieve rings are combined in this fashion, the number of accept-

able residues in the combined sieve ring may be exactly predicted, as is demonstrated

by the following Lemma.

Lemma 1.1 The set of acceptable residues, R obtained via the CRT combination of

R.., 'R.2,. . . , fl.k with associated residues M1, M2,. . . , Mk (pairwise relatively prime)

is exactly iRi = fJC1 IR.L

Proof: Consider the sieve ring, 7, obtained via the CRT combination of the sieve

rings R., fl.2. As there are only II I72I different ways to combine the acceptable

residues from these two sets, it is clear that 17Z < I7i .

Suppose (r1, . . . , rk), (Si,.. . ,$) E fl x X R-k and

Then

so

i=i

k

k

6iNiri =_ ijNs (mod M)
i=i

- sj) 0 (mod M)

- s) 0 (mod M)

9

for each j = 1,2,...,k. As Mi I Ni for i =A j, and gcd(Nj,m) = 1, then the

congruence

sj (mod Mi)

must hold for all j = 1, 2... . , k.

Thus the RI R,i solutions are all distinct.

U

Problems of Quadratic Density

One of the most interesting classes of sieve problems occurs when approximately half

of the residues for a given sieve modulus are acceptable. These problems of quadratic

density are the most frequently encountered sieve problems [Leh53], and occur in

investigations such as the examples given in Section 1.1.

1.2.2 Sieve Performance and Measurement

In [Pat92], Patterson showed that, when translated into a decision problem, the as

is NP-complete. In general, there is no known efficient method for solving the asp.

To date, the most successful methods for solving instances of the GSP have involved

the construction of devices that automate the search for a solution.

Definition 1.6 The canvass rate of a given sieve implementation is defined as the

number of solutions, x, in a given sieve interval A ≤ x < B divided by the number

of seconds required to sieve the interval. This value is given in terms of trials per

second.

10

In practice, there is another very important component of a sieve solution that

may impact the overall speed of the sieve device.

1.2.3 Filtering

It is rare for a sieve problem to be specified in isolation. Quite often, in the reduction

from the original problem, a set of additional restrictions are placed on the values x

that are admitted by the sieve. Some examples include:

1. x is (is not) a pseudoprime, strong pseudoprime, or provable prime.

2. x is (is not) a perfect square.

3. x is (is not) a perfect cube.

4. A function of x satisfies one of the above conditions (for example, x2 + D2 is

prime).

Though these types of filtering conditions often figure prominently in a particular

sieve problem, filtering is not usually considered part of the GSP. Filtering can,

however, play a significant role in the efficiency of a particular sieve implementation.

For this reason, an additional measure of sieve performance is often defined.

Definition 1.7 The maximum sieving rate of a particular sieve implementation is

defined as the number of values output by the solution detection mechanism for that

particular problem.

Definition 1.8 A sieve problem is called filter-bound if the maximum sieving rate

of the problem is determined by the speed of filtering the outputs.

11

A sieve problem is called sieve-bound if the maximum sieving rate of the problem

is determined by the canvass rate of the sieve device.

Note that if a sieve implementation is sieve-bound, the maximum sieving rate is

exactly equal to the canvass rate of the device.

1.3 Structure of the Thesis

This thesis is concerned with the design and construction of an automated sieve

device, the Calgary Scalable Sieve (cAssIE).

Chapter 2 puts the sieve problem in context by outlining the the history of sieve

automation. Chapter 3 discusses general techniques for optimizing the sieve problem.

Chapter 4 describes the design and implementation of OASSIE. Finally, Chapter 5

describes several applications of the new sieve device, including the pseudosquare

problem, its applications, and several record-setting computations obtained using

this new device.

Chapter 2

History of Sieve Automation

HISTORY, n. An account mostly false, of events mostly unimportant, which are

brought about by rulers mostly knaves, and soldiers mostly fools.

—Ambrose Bierce

2.1 The Beginnings of Automation

Around 1895, F. W. Lawrence rediscovered Fermat's difference of squares method

of factoring [Law96]. Recognising its power, he began to consider ways to automate

the technique. His first idea was to employ movable paper strips, whose length was a

unit multiple of the modulus. By lining up columns of numbers under consideration

spaced by the same unit distance, the paper strips (with the appropriate residues

marked with a line) could be slowly shifted across these columns and the unacceptable

values crossed off. In fact, variants of this columnar idea have been around for as long

as mathematicians have been constructing factor tables. Anton Felkel, for example,

used a set of 8 rods in 1776 to construct a table of factors up to 408,000.1 C. F.

Hindenburg is said to have used a similar technique even earlier than this [Wil98],

though his results were never published.

'This table met a rather ignoble end when, after failing to sell, it was collected up and the paper
used for cartridges in the war against the Turks.

12

13

2.1.1 The Prototypes

Lawrence's next idea for sieve automation was much more significant. Recognizing

the cyclic nature of the residue conditions, he proposed the construction of a machine

with gears representing each of the exclusion moduli, m1, m2,. . . , Mk. Each of the k

gears would have mi equally-sized teeth, which would be numbered from 0 to m —1.

Acceptable residues would be denoted by placing brass studs through the tooth,

extending from the gear on both sides. Each of these modulus gears would then be

mounted on individual axles in a fan-like arrangement. This arrangement had two

purposes. First, it allowed the gears to be driven by a common driving gear. Second,

it allowed the mounting hardware to be angled outward so as to allow the protruding

brass studs to clear the mounting hardware. Whenever a solution occurred, the

protruding studs would make contact with each other, forming a continuous circuit

and ringing a bell to notify the operator. By examining the positions of the various

modulus rings, or by employing a rotation counter on the driving gear, the operator

would be able to determine the value of x at which the solution occurred.

Though Lawrence never built this machine, in 1910 his proposal was translated

into French and republished in Andre' Gérardin's journal Sphinx-Oedipe. By 1912, at

least 3 people had constructed prototypes of Lawrence's machine: Gérardin himself,

Maurice Kraitchik, and Pierre Carissan [Gf 2]. Though certainly proof of the concept,

these early prototypes were not particularly reliable or robust. Encouraged by these

early results, however, Pierre Carissan's brother, Eugène-Olivier went on to build a

much more precise device; one which deserves to be called the first truly automated

sieve device.

14

2.1.2 E.-O. Carissan's Sieve

This automated sieve device was completed by E.-O. Carissan in 1919 [Car2Oa].

Building on lessons learned in the construction of his brother's prototype, Carissan's

sieve was a beautifully machined device consisting of 14 concentric brass rings, each

consisting of a driving gear on the bottom, and a set of mi studs, equally spaced

around the circumference of the ring. These 14 rings moduli were chosen to represent

the first 17 primes, with 21 = 3 . 7, 26 = 2 - 13, 34 = 2. 17, 55 = 5 11, 19, 23, 29,

31, 37, 41, 43, 47, and 53 studs respectively.

Each ring was geared to advance at the same linear rate. i. e.To advance by one

stud for each iteration of a hand-driven counter. A series of 14 contact switches

was placed along the radius of the device in a configuration called the investigation

line. Acceptable residues were indicated by placing a non-conductive cap on the

appropriate stud for a particular ring. When a non-conductive cap passed under the

investigation line, it raised the switch. When all 14 rings indicated an acceptable

residue, a circuit was completed and an audible click could be heard in a telephone

headset connected to the circuit and worn by the operator. When this occurred,

the device was stopped, and rolled back to the point where the solution occurred,

angular momentum having carried the device too far.

The device was driven by hand (though Carissan later indicated plans to add a

motor-drive [Car2Ob]) and featured a 6-digit counter. It was capable of sieving at

rates of 35-40 trials per second.

After Carissan's death in 1925, the machine was nearly forgotten. It sat in a

drawer at Observatoire de Bordeaux in Floirac, France for nearly 50 years. It was

15

recently rediscovered [SWM95] and currently resides in the Conservatoire Nationale

des Arts et Métiers in Paris.

2.1.3 The Path to Full Automation

The early sieve prototypes and Carissan's sieve shared two key drawbacks. First,

they required a human operator to physically manipulate the machine. This limited

the amount of time that could be devoted to a particular sieve problem to either

the limit of the operator's attention span, or his arm strength. Second, the solution

detection mechanisms required that an operator take note of the solution condition

and stop the device. A momentary lapse in the operator's attention could result in

a missed solution.

The next wave of automated sieve devices aimed to reduce or eliminate the effects

of operator error by improving the devices in two ways:

. Mechanize the advancement of the sieve moduli, to allow the problems to run

for extended periods.

• Automate the solution detection mechanism, making it difficult, if not impos-

sible for solutions candidates to be missed or ignored.

2.2 Lehmer's Sieves

The next chapter of sieve development can be summed up with one name: Derrick

Henry Lehmer. For over 6 decades, Lehmer participated in the design and construc-

tion of automated sieve devices.

16

2.2.1 The Bicycle Chain Sieve

Lehmer's first foray into sieve building occurred while he was still an undergraduate

at the University of California, Berkeley. In 1927, he adapted an idea of his father's2

to produce the bicycle chain sieve [Leh28]. Long thought to be the first automated

sieve device (Lehmer did not know of Carissan's sieve) the bicycle chain sieve closely

resembled Lawrence's original prototype, consisting of 19 loops of bicycle chain sus-

pended from a common drive shaft, and driven by an electric motor. The number

of chain links represented particular sieve moduli, combinations of sieve moduli, or

powers of sieve moduli: 64 = 21,27 = 3,25 = 52,49 = 72,22 = 2 11,26 = 2• 13,

and the primes 17, through 67. Acceptable residues were indicated by a pin inserted

into the appropriate link, with the 0th link painted red to facilitate the counting.

The solution detection mechanism employed by the bicycle chain sieve was very

similar to Carissan's design, employing contact switches that were engaged by the

pins inserted into acceptable residues. When all switches were lifted (indicating a

potential solution had been encountered), a circuit was completed, engaging a relay

and stopping the drive motor. A revolution counter on the drive shaft revealed the

solution (once the effects of angular momentum were accounted for).

The bicycle chain sieve was capable of sieving at rates of up to 50 trials per

second—any faster, and the loose-hanging bicycle chains would tend to bind and

become entangled. Despite these relatively low sieve speeds, and the relative diffi-

culty in setting up a sieve problem,' the bicycle chain sieve was used on between 50

and 100 computational problems, including the pseudosquare problem (which will

2Derrick N. Lehmer, also a professor at U. C. Berkeley
1-2 hours for a typical problem [Wil98]

17

be revisited in Chapter 5).

Though the whereabouts of the original bicycle chain sieve are unknown (having

been disassembled for transport, and subsequently stolen), a replica built by Robert

Canepa of Carnegie Mellon is currently in storage at the Computer Museum's History

Centre in Mountain View, California [Pom82].

2.2.2 The Photoelectric Sieve

Lehmer's next foray into sieve building came in 1932, with the development of the

photoelectric sieve. This remarkable machine was modelled closely after Kraitchik's

original prototype. It employed 30 modulus gears representing the primes 11-113,

and the prime powers 26 = 64,31 = 27,5 2 = 25, and 72 = 49. Each of these

gears was free to rotate independently around one of 2 axles, and was driven by

a matched driving gear, chosen to ensure the modulus gear advanced by 1/mi of

its circumference with each iteration of the sieve counter. Acceptable residues were

indicated by a hole centred below each gear tooth, located a fixed radius from the

axle. Unacceptable residues had this hole filled [Leh34].

The photoelectric sieve's solution detection mechanism was the most impressive

component of the sieve design, consisting of a light source and an incredibly sensitive

photodetector. Light would enter the device at one end, pass through the first 15

modulus gears, and then be reflected via a pair of prisms through the second set of

15 modulus gears and back to the photodetector. The photodetector consisted of a

6-stage amplifier, capable of amplifying the signal received at the photocell by over

7.29 x 108 times [car33]. If light was detected, indicating a solution candidate, a

thermionic relay was tripped, and the electric drive motor stopped.

18

The photoelectric sieve was capable of operating at speeds of up to 5000 trials

per second.

In 1933, the photoelectric sieve was disassembled, and shipped to the Century of

Progress Exhibition in Chicago, where Lehmer was hired to demonstrate the device.

Unfortunately, the sensitive nature of the photodetector prevented it from being set

up, and Lehmer ended up giving his demonstrations on a non-functional sieve. The

sieve was never fully reassembled afterwards.

Portions of the photoelectric sieve are still housed at the Computer History Mu-

seum in Mountain View, California.

2.2.3 The Movie Film Sieve

Despite its then-fantastic speeds, the main failings of the photoelectric sieve were

the enormous difficulties involved in setting up a problem, and the problem ensuring

the reliable operation of the solution detection mechanism.

Lehmer's next sieve design was intended to address three main concerns: reliabil-

ity, portability,4 and ease of use. In 1934, he produced a modification of his bicycle

chain idea: the movie film sieve.

This sieve used 18 loops of 16mm film leader draped over a brass drive shaft to

represent the sieve moduli. The loop lengths were chosen to be proportional to each of

the moduli, and a i-inch hole was punched in the leader to indicate an unacceptable

residue. In a necessary improvement over the original design, adjustable rollers were

added to the bottoms of the loops to provide the tension necessary to keep the loops

4 A the time, Lehmer was in search of employment. The portability criterion ensured that he
could continue with his research in the interim.

19

from slipping. The entire mechanism was driven by an electric motor.

The solution detection mechanism consisted of a series of metallic brushes—

one per film loop—that made contact with the brass driving rod through the holes

punched in the film. While the device was operating, the drive circuit would remain

complete as long as at least one of the brushes remained in contact with the drive

shaft. If a solution was encountered, indicated by 18 unbroken loops of film, the

circuit would be broken, a relay would trip, and the machine would coast to a stop.

As with Lehmer's other designs, the device could then be rolled back to the point of

solution, and the solution candidate read from a revolution counter attached to the

drive shaft.

Lehmer used this device with some success, even though its top speed was only

around 50 trials per second. The key advantage over previous designs was that a

particular sieve problem took only about 30 minutes to set up. Unfortunately, the

film loops tended to wear out after about 10 hours of use [Leh80] and thus the sieve

operation was typically restricted to problems lasting only a few hours in duration.

Like many of Lehmer's other sieve designs, the movie film sieve is currently housed

at the Computer History Museum in Mountain View, California.

2.2.4 Gérardin's Adding Machine Sieve

In 1937, Gérardin published information on an electric, automated sieve device that

he had constructed [G7]. As with many of Gérardin's sieve device accounts, few

details of its design or construction were supplied. From a photograph of this device,

it appears to have been based on an adding machine. Gérardin's account indicated

that the device was capable of printing its solutions, and performed around 25,000

20

operations per working day. Very little else is known about this sieve.

2.3 The Electronic Revolution

Mechanical sieve devices have a common failing. Their reliance on moving parts

both constrain the speeds of the devices, and make them prone to wear. The advent

of electronics and the computer era brought about a revolution in automation that

extended to automated sieve devices. In fact, the early history of electronic sieves is

closely tied with the early history of computing.

2.3.1 ENIAC

The story of sieving on electronic computers began with a family outing on the

weekend of July 41h in 1946. Where some families might consider a trip to the

beach, this particular family outing involved a trip to see the Electronic Numerical

Integrator and Calculator (ENIAC) at the Moore School of Electrical Engineering of

the University of Pennsylvania.

Taking advantage of some idle time between ballistics calculations,' D.H. Lehmer,

and his wife Emma set up ENIAC to search for composite numbers, n that divide 2'-2

i. e.the base-2 Fermat pseudoprimes. The idea was that by verifying and extending

the table of known pseudoprimes [Leh36], the task of testing a large number for

primality could be reduced to using just Fermat's test with a few small trial divisions.

The algorithm implemented on ENIAC was a fairly straightforward one. For each

prime p, the computer was to try every value of the exponent n < 2000 to determine

5Making it, quite possibly, the first problem in computational number theory to be solved using
"idle time" on available computers.

21

whether 2' 1 (mod p). This brute-force method, though seemingly inefficient,

could produce a result in less than 2.4 seconds [Leh49].

In the end, Lehmer was able to extend the list of base-2 Fermat pseudoprimes to

include all values in the range 108 to 2 x 108, and produce 85 new factors of 2' ± 1 for

k ≤ 500. This result, in Lehmer's words, was "like picking plums at waist height"

[BLS02].

At the time, ENIAC was still in its original, parallel configuration, involving 20

independent accumulators that could be wired together in a variety of fashions.

Later, on the suggestion of von Neumann, these parallel units were converted

to one-word registers, and ENIAC retained just a single accumulator, a model that

inspired many computing designs to come.6

Though Lehmer's goal was not to implement the GSP on ENIAC, the pseudoprime

problem did include a sieve component. For a variety of reasons, including the desire

to allow the algorithm to run unattended, the list of primes, p, could not be entered

as needed via punch cards. Thus, ENIAC had to compute the candidate primes on its

own. For the initial list, a sieve process that eliminated all primes p < 47 was run on

some of the accumulators. This sieving success led Lehmer to write a proposal for a

fully electronic sieve device [Leh46] capable of sieving at rates far exceeding any of

his purely mechanical designs.

°A decision which eventually prompted Lehmer to quip
"ENIAC was a highly parallel machine, before von Neumann spoiled it"

22

2.3.2 The Proposed Electronic Sieve

Encouraged by the ENIAC successes, Paul Morton and D.H. Lehmer sat down to

develop an electronic sieve, using a series of counters arranged in rings.

Lehmer's proposed electronic sieve used flip-flops implemented with a pair of

triode tubes. These flip-flops were arranged as ring counters (each representing a

particular sieve modulus), with the output of each flip-flop transferred to the next

upon the arrival of a gated clock pulse. Outputs taps were placed from the specific

ring moduli specified by the problem instance, and wired to the grid connection of

the gate tube (a pentode which effectively acted as an AND gate). The other gate

connection for this pentode was wired to the clock signal. The net effect was that

if ever a coincidence occurred where none of the output taps feeding the pentode

gate showed a signal (i.e., when a solution was encountered), further clock signals

were suppressed from reaching the ring counters. Thus, when a solution occurred,

the device would stop counting. A regular (decade) counter was employed to count

the total number of clock pulses sent, allowing an operator to see if the counting had

stopped. Once the solution was recorded, the operator would press a manual switch

(which presumably delivered a clock pulse to the ring counters) and the device would

continue sieving.

Based on his experiences with ENIAC, Lehmer predicted such a device, if built,

could achieve speeds of over 10,000,000 trials per minute [Leh46]. The project ran

into difficulty, however, [Leh80] when it became clear that long counters were difficult

to construct.7

7This was likely an early encounter with propagation delays. Bronson and Buell [BB94] described
similar issues when designing their Field Programmable Gate Array (FPGA)-based sieve, eventually
leading them to exclude the prime 53 from their hardware sieve design.

23

In the same (unpublished) proposal, Lehmer detailed a possible design for an

acoustic sieve capable of sieving 10 times faster than even the electronic sieve.

Though neither of these devices was ever fully constructed, the principles of these

designs lead Lehmer to conceive of a radically different design, one which eventually

became his most successful and reliable sieve device.

2.3.3 The Delay Line Sieves: DLS-127 and DLS-157

The Delay Line Sieve (DLs) came online in December, 1965 [BLS02], and was

originally referred to as the DLS-127 [Leh66]. This sieve was fabricated from Navy

surplus delay lines—conductors with a stable and known propagation time. A total

of 2877 microseconds of delay was available, divided into 31 recirculating "tanks"

[Leh80]. Each tank had a pulse shaper and coincidence counter. Pulses were added

into the appropriate tank separated by a fixed delay. These pulses would pass by a

coincidence counter, and then be reshaped before recirculating again (to overcome

the inevitable signal deterioration), effectively providing indefinite operation. The

overall length of each pulse tank delay line was proportional to the sieve modulus

it was supposed to represent. The set of 31 pulse tanks could therefore be used to

represent the primes (or powers of primes) up to 127. The actual moduli used were:

64, 81, 50, 49, 22, 39, 17, 19, 23, 58, 31, and the primes from 37 to 127 [Leh].

Solution candidates were indicated by the simultaneous arrival of pulses at each

of the pulse tank coincidence counters. When a solution condition was detected, the

device shifted into an idle mode. In this mode, each of the pulse tanks were connected

8The term "tank" refers to a delay-line loop, and seems to derive its name from Lehmer's
unpublished proposal for the acoustic sieve [Leh46], which shared many characteristics with the
Delay Line Sieve.

24

in sequence, with the last tank feeding back into the first. The pulses could cycle in

this manner indefinitely. When the device was switched back into the sieve mode,

the device would wait until the next multiple of 2877 microseconds, and then the

original (circulating tank) behaviour was restored, effectively returning the sieve to

the state it was in before solution detection. Problem loading was also done in idle

mode, with each new pulse added at the appropriate offset from 2877 microseconds

to place it in the desired pulse tank.

The DLS was perhaps Lehmer's most successful sieve design, capable of sieving

at speeds of up to 106 trials per second. The success of this design stemmed as

much from its reliability,9 as from its ease of use. Problem setup, for instance, was

highly automated. Since most sieving problems can be represented as a function of

the form f(x, y) = 0, a program was written on Berkeley's IBM 7094 computer that

accepted the coefficients to a function of this type, and output a set of punch cards.

These cards were then taken to the Bendix G-15 (designed by Harry Huskey) which

°The DLS was reliable, but not infallible. John Brilihart recounts the following anecdote: "...

I was the first person to run the Delay-Line Sieve, because Lehmer was out of town for 2 weeks
at the moment the engineer (Bob Coffin) had finally gotten all the bugs out of the sieve to make
it run. Even then, there was one more bug, which showed up when I tried to run the first test
problem. You may know that that sieve had an optical reader that read the sieve bit pattern in
from a paper tape. The process of making the tape was the following: Dick used the current IBM
computer on the campus to do the arithmetic to produce the initial bit string to be loaded into the
sieve and had it punched into a bunch of cards. This was carried from the computer center over
to the electrical engineering building where Dick's friend Harry Huskey, had one of the computers
he had designed, the Bendix G-15, which read the cards and punched the bit pattern onto a paper
tape. The tape was then carried to the sieve room, where it was read into the sieve by an optical
reader. The tape also had a bit count on it that had to agree with the count of the number of bits
the sieve read in.

After I read the tape in and tried the sieve, it didn't work. I phoned Dick, who was in San Diego
and told him there was still a problem. He surprised me a great deal by suggesting what to do. He
said to connect the two wires on the optical reader in the reverse way, so it would reverse the parity
of the bits read. I did it and it worked. I'll never know (I should have asked him) why he thought of
that. I suspect it had happened before, and is one of the things that distinguishes people who are
all talk with no experience from those who involve real experience with their growing understanding
of something." [Bri]

25

would read the cards and output the sieve setup on a long punched tape. Finally,

this tape (which could consist of several successive sieve jobs) was taken to the DLS.

An optical reader read in the tape values, and automated the process of starting

additional jobs (if they were present) when the current job completed.

This job queueing would not be of much value were it not for another innovation:

the automatic printing of solutions. Previous sieve designs would stop when a solu-

tion was found, waiting to be restarted by the operator. the DLS simply shifted into

idle mode, printed the solution, then shifted back into regular sieve operation.

The DLS had both a solution printing mode and a solution counting mode. This

was useful in problems with a high solution density, predictable solution densities,

and noticeable filtering overhead. To avoid bottlenecks due to filtering, the sieve

could be run in solution counting mode for a particular range, and the resulting

count of solutions compared against theoretical values. If the two counts differ,

the range could be sieved using the solution mode. Otherwise, the process would

continue with the next range.

In the early 70s, The DLS was fitted with 6 additional sieve rings, constructed

from shift registers, and renamed the DLS-157. The device was retired in 1975 [Wil98]

and though it was once believed to be in storage in the Computer History Museum

in Mountain View, California, its current wherabouts are unknown.

2.4 Software Sieves

Since the early experiments with ENIAC in 1946, there has been sustained interest in

the idea of implementing the GSP in software on a general purpose computer. Unfor-

26

tunately, since von Neumann's early modifications transformed ENIAC into a stored-

program computer [Cli48], most general purpose computing designs have adopted a

serial approach to the processing of arithmetic operations. This design decision is

at odds with the inherent parallelism of the GSP, and hence, purely software-based

approaches to solving the GSP have typically lagged behind the dedicated hardware

approach. Still, the relatively widespread availability of general purpose computers'°

has assured software solutions an important place in the history of sieve devices. Fur-

thermore, a recent optimization of Bernstein's (see Section 2.6) has rekindled interest

in software-based sieve implementations.

2.4.1 SWAG

In the Generalized Sieve Problem, a candidate, x, is either accepted or rejected by

each exclusion modulus, M. As this is a binary decision, the GSP seems ideally suited

for implementation on a binary computer. This observation was certainly not lost on

Lehmer [Bri92] who, while heading the Bureau of Standards' Institute for Numerical

Analysis at UCLA, had the opportunity to work on the newly constructed Standards

Western Automatic Computer (swAG), the first large electronic computer to operate

in the western United States [BLS+02].

In [Leh53], Lehmer published the first detailed description of a GSP implemen-

tation in software. In this implementation, strings of bits were used to represent

acceptable residues, 0 indicating acceptable, and 1 indicating not acceptable. These

bit strings were then compared 36-bits at a time using a machine operation called

EXTRACT. In modern terms, the EXTRACT command worked like a 36-bit logical

10Especially when compared to the availability of dedicated sieve devices.

27

AND operation, with one of its inputs inverted." The use of EXTRACT in this manner

allowed 36 bit positions to be examined for solutions in parallel, an idea that later

became known as the multiple solution tap technique.

If no solution was found, the bit strings were then circularly rotated using a clever

two-register multiplication technique, and the process repeated. In this fashion, the

SWAC was able to search for solutions at a rate of 1438 per second. In 1954, Lehmer

and Selfridge built a 17-ring sieve implementation on the SWAC [Leh54], successfully

extending the table of least pseudosquares to include the primes p 79.

2.4.2 The Berkeley IBMs

In 1967, John Brillhart wrote a software sieve implementation on Berkeley's IBM

7090 to help find factors of integers of the form 2 ± 1 [BS67]. The software, which

implemented up to 22 sieve moduli, was capable of sieving at speeds of up to 150,000

trials per second. It accepted a single input, the integer N to be factored, (which had

presumably already been tested with Fermat's test to reject any prime, or (rarely)

pseudoprime values). It then constructed a target bit string, representing the initial

sieving by the first few primes. The remaining moduli were typically combined into

double-moduli of the form m = pq with p, q representing primes or powers of primes.

The bitstrings associated with these moduli would then be repeatedly ANDed with

the target. Once all moduli bitstrings were applied, the result was compared with 0.

If it matched, meaning no solutions were found, the target bitstring was reintroduced,

EXTRACT was even more versitile than this. The first parameter (the extractee) was inverted,
and ANDed with the second parameter (the extractor). EXTRACT took an optional third parameter
(shift) which indicated which way, and by how many bit positions to shift the result. For the
purposes of the sieve, this third operand was not used and was (presumably) filled with zeros [Hur].
This extra versitility, however, allowed EXTRACT to be used in a variety of logic and floating point
applications [Hus97].

28

and the moduli bitstrings (appropriately rotated) were ANDed again.

If at any point, the target remained nonzero, it meant the existence of a potential

solution, which was then tested to determine if a factor had been found [Bri].

This method showed some success, producing several record-setting factorizations

for integers of the form 2' ± 1 [BS67].

2.4.3 ILLIAC IV

The ILLIAC iv was a unique machine—the first to employ what later came to be

known as a Single Instruction Multiple Data (sIMD) architecture. This parallel

design allowed each of the 64 Parallel Execution (FE) units (processors) to operate

on the same instruction, albeit with different data elements. Though construction

began in 1965, the ILLIAC Iv did not become operational until 1976. 12

The architecture featured 64 FE units, connected via 64-bit communications chan-

nels arranged in a topology known as a chordal ring [IT89]. This chordal ring allowed

PEs to directly communicate with other processors that had logical distances of ±1

or ±8. Each FE had access to a local 2048 x 64-bit memory store. A central con-

trol unit issued instructions to each of these PEs, and though each of the processors

was designed to operate on the same instruction (albeit with data drawn from their

local data store), individual processors could be set to selectively "sit out" of a par-

ticular operation. This latter flexibility proved so useful it has been part of SIMD

architecture design ever since.

'2Cost overruns and engineering problems plagued the ILLIAC iv project. Though originally

planned as a four-node machine, the project was halted after the first node was completed, the
costs having ballooned from the original $8 million estimate to over $31 million. Several years after
its completion, the ILLIAC Iv was disassembled, securing its place as one of the largest flops in the
history of computing [fol].

29

In 1976, Lehmer wrote an implementation of the GSP for the ILLIAC Iv architec-

ture [Leh76], with each FE representing a particular sieve modulus. In the FE'S local

RAM, a bitfield representing the acceptable residues for that modulus was created,

o indicating acceptable, 1 indicating not acceptable. This bitfield was repeated suf-

ficient times to ensure the bit pattern stopped on a word boundary. Once the sieve

problem was loaded in this fashion, the current machine word from each of the PEs

was logically oRed together. If any bit position of the combined result remained

zero, a solution candidate had been found.

The unique parallel architecture of the ILLIAC Iv machine allowed Lehmer's

GSP implementation to operate with a degree of parallelism not usually possible

on general-purpose computers. As a result, Lehmer's sieve implementation was able

to reach speeds of 15 million trials per second, making it the second-fastest sieve

device Lehmer ever devised. Unfortunately, the experimental nature of the ILLIAC

iv machine prevented Lehmer from using it on a long-term basis [SW9O].

2.5 Estrin's idea: the Fixed-plus-Variable (F+V) Approach

In 1962 [CEFT62], Cantor, Estrin, Fraenkel, and Turn described a new architecture

for solving the GSP, based on what they termed a fixed-plus-variable (F+v) design.

This revolutionary idea incorporated both a fixed, general-purpose, component, and

variable, custom component to produce a device capable of sieving at rates of up

to iO'° numbers per minute. Their proposal outlined three main ideas. First, it

described an efficient algorithm for implementing the GSP using shift registers on

reconfigurable hardware, including a method for constructing the solution detection

30

mechanism that eliminated the need for the largest modulus (m3).

Second, it described a technique for implementing additional (virtual) sieve rings

in software on the attached general purpose computer, by carefully matching the

predicted output rate of the shift-register sieve with the arithmetic capabilities of

the host machine.

Finally, the paper made the important observation that by employing r solution

taps in parallel, and relabelling the bit positions of the 1-bit circular shift registers

(effectively converting them to r-bit circular shift registers), the parallelism of the

sieve device could be increased by a factor of r at the expense of little more than

additional solution detection circuitry.

Revolutionary as it was, the Estrin proposal was not acted on for almost 13 years.

2.5.1 SRS-181

The first actual implementation of Estrin's fixed-plus-variable (F+v) idea came from

Lehmer [Leh80]. Referred to as the SRS-181, and constructed by Lehmer and Morton,

this device was similar to the DLS, but used cyclic shift registers in place of delay

lines as the variable hardware component of the sieve. The fixed hardware was to

be a stand-alone microcontroller device. Unfortunately, before this host device was

completed, the sieve device was mistakenly removed from the lab and sold for scrap

while Lehmer and Morton were away [Ste89].

Though Lehmer never formally published the device specifications, references in

[MB75], and [Leh76], indicate that the Shift Register Sieve was capable of sieving at

rates of 20,000,000 trials per second, and like Lehmer's previous designs, the SRS-181

sieve had both search and solution counting modes. The device had 42 hardware

31

rings, implemented using 8-bit shift register TTL integrated circuits, and representing

the primes (or prime powers) from 2, 3, . . ., 181 [Pat92].

The SRS-181 design was the basis for the first of a series of sieves constructed at

the University of Manitoba.

2.5.2 UMSU

The next implementation of Estrin's F+V idea was the University of Manitoba Sieve

Unit (uMsu), built by Cam Patterson and H. C. Williams in 1983 [Pat83]. This sieve,

which began as a reimplementation of the SRS-181, contained 32 rings representing

each of the first 32 primes (or prime powers), and was implemented on a set of 3

wire-wrap boards using 500 integrated circuits. It featured 8 solution taps, and a

shift rate of 16.67 MHzfor an overall canvas rate of 133,000,000 trials per second.

The sieve acted as a peripheral to a host computer, a PDP-11/45. Software

running on the PDP allowed for problem creation, spooling, and filtering, including

the implementation of the virtual sieve rings concept first mentioned by Estrin, et al..

The sieve featured automatic checkpointing, where the hardware state was saved

and verified for correctness every hour. If a fault was discovered, or the process was

interrupted for any reason, it could be restarted without losing more than an hour's

work.

Though certainly proof of the usefulness of the shift register design, the next sieve

to emerge from the University of Manitoba featured a completely different hardware

approach.

32

2.5.3 OASiS

The Open Architecture Sieve System (OASiS), developed by Stephens and Williams

in 1985 [Ste89] was the successor to the University of Manitoba Sieve Unit (uMsu).

Unlike previous shift-register designs where ring moduli were fixed by the hardware

design, OASiS employed a novel RAM-based design that allowed variable-sized moduli

to be employed. As this was the first sieve device to allow reconfiguration of the sieve

hardware without physical disassembly, OASiS is perhaps one of the best examples

of the Estrin's F+V idea.

The variable ring idea was as follows: a sieve pattern, consisting of a bit string of

length m, was replicated gcd (m,16) times, and stored contiguously in a 16-bit RAM

module. This repetition ensured that the cyclic bit pattern ended exactly on a 16-bit

word boundary. Since data stored in the RAM is retrieved one word at a time, this

allowed a single RAM access to serve as a 16-tap solution window. To access the

next 16 solutions, the RAM index register would be increased by one word (modulo

lcm(m, 16)).

The original OASiS design featured 16 8192-byte rings. By combining smaller

moduli into larger rings (for example, by combining the moduli 5, 7, 11, and 13 into

a single ring of size 5 . 7. 11 . 13 = 5005), moduli representing the first 37 primes

(2,31 . . . , 157) could be squeezed into these 16 rings.

OASiS employed a programmable shift rate that, in its fastest configuration, oper-

ated at 13.3 MHZ. Combined with the 16 solution taps, this allowed for a maximum

canvas rate of 2.15 x 108 trials per second.

In addition to the variable hardware component, OASiS also consisted of a fixed-

33

architecture host system. This host, a MicroVAX II, was responsible for problem

setup, filtering, reporting, and verification. Unfortunately, the communication path

between OASiS and the host machine was a relatively low-bandwidth 9600 bits-per-

second serial port. This meant that problem setup, verification, or checkpointing

could take upwards of 10 minutes to complete. A more critical flaw occurred in

problems requiring a high degree of solution filtering. Since this filtering was done

on the host machine, the low bandwidth communication path became a bottleneck

in the sieving process.

Despite these shortcomings OASiS was able to produce a number of impressive

sieve results, including the discovery of five previously unknown pseudosquares;

£193, £197, £199, £211 and £223 [SIAT9O].

In 1989, oAsis was fitted with an additional sieve board. The combined device

was called oAsis-II, and contained a total of 32 8192-word rings. This improved sieve

was able to extend the table of least pseudosquares by an additional 2 primes: L227

and £229 [LPW95].

2.5.4 Bronson and Buell (SPLASH)

The GSP implementation on SPLASH was the first electronic sieve device to employ

FPGA technology—reconfigurable hardware devices that essentially allow the con-

struction of application-specific arithmetic units [131394]. The software-configurability

of these FPGA devices make them ideal for realizing the variable component of Es-

trin's F+V proposal.

The SPLASH hardware consisted of a linear array of 32 Xilinx 3090 FPGA chips,

each containing a grid of 16 x 20 configurable logic blocks. Each configurable logic

34

block (cLB) could be programmed to assume one of a variety of configurations,

including a pair of flip-flops, any single 5-input, 2-output combinatorial function, or

two 4-input, 1-output combinatorial functions. For the purposes of the sieve problem,

one prime shift register was implemented per FPGA chip. To maximize performance, a

64-bit solution tap was employed, and Estrin's optimization was employed to convert

the 1-bit cyclic shift registers to 64-bit cyclic shift register. As originally noted by

Lehmer (see Section 2.3.2), long end-around communication paths in shift registers

were notoriously unreliable, so wherever possible, short cycles introduced by Estrin's

optimization were employed to reduce propagation delays.'3 SPLASH implemented

sieve rings for the primes 3, 5,.. . , 71 (excluding 53), 97, 127, and 131. Additional

sieving (for any combination of primes less than 500), was relegated to a software

process running on the host machine.

The SPLASH sieve implementation used 64 solution taps and a master clock rate

of 16 MHZ, for a total sieve rate of 1024 X 106 trials per second.

In 1994, Bronson and Buell used this sieve to extend the table of negative pseu-

dosquares, originally published in [LLS7O], and later extended in [Ste89].

2.5.5 MSSU

The Manitoba Scalable Sieve Unit (MSSu) was another highly successful sieve device.

Originally built in 1993 by Lukes, Patterson and Williams [Luk95], this device offered

an order of magnitude increase in sieving speed over previous sieve designs, and is

still in use today.

'3Though these short-cycle implementations were constructed for most of the small primes, the
modulus 53 did not lend itself well to an efficient shift register implementation. For this reason,
sieving for this modulus was left out of the hardware sieve, and relegated to the host machine.

35

The MSSU hardware consisted of three main components: the sieve controller,

the sieve chip array, and the host machine software. The sieve controller accepted

commands from the host machine via a standard serial port, and translated the

commands into the necessary low-level instructions to operate each of the sieve chip

arrays. Sieve chip arrays had 16 sieve chips in each of two slots. The sieve chips

themselves were designed using Very Large Scale Integration (VLSI) technology as

a 40-pin DIP package, and could each accommodate the first 30 primes. The chips

were driven at a shift rate of 24 MHz, 14 and 8 solution taps for an overall sieve rate

of 192 x 106 trials per second. With all 32 sieve chips installed, the MSSU had a

maximum theoretical sieve rate of 6.144 x 109 trials per second.

The final component of the MSSU system was the host machine software. This

software was responsible for a wide assortment of tasks, including problem setup,

optimization, and spooling. The software also had the ability to apply up to two

optional software filters. One of these filters, the virtual ring filter, allowed for the

application of congruence conditions that did not fit into the dedicated hardware

rings.

2.5.6 Star Bridge Systems HC 36m

In 2003, Wake and Buell revisited the FPGA idea with a sieve implementation on their

latest generation of F+V hardware: the Star Bridge Hypercomputer 36m [WBO3].

This machine employed a dual 2.4 GHz Intel Xeon machine as its fixed host hardware.

The variable component consisted of 7 Xilinx Virtex FPGA5, four of which (Xilinx

14 The chips were originally designed to accommodate a clock rate of 33 MHZ, it was later decided
to reduce this frequency in order to lower the power consumption, and hence, heat generation of
the sieve chips.

36

xc2v6000's) were available as programmable computing resources.'5

The overall speed of the HO 36m architecture was limited by the 66 MHZ PCI bus

used for communication. Synthesis models indicated it was possible to implement

12 sieves per Virtex FPGA, each sieve handling primes up to 151. By employing the

most naive form of parallelism (each sieve configured at a different start point), the

HO 36m device was capable of 48-bit parallelism. Combined with the 64-bit solution

tap, the Star Bridge architecture offered theoretical sieve rate of 192 x iO trials

per second. For a problem such as the pseudosquare (or negative pseudosquare)

problem, a more intelligent optimization could be used, for instance, by combining

the residues 8, 3, 5, 7, and 11 to produce 30 residue classes (modulo 9120). In this

configuration, sieve rates of 39 x 1012 trials per second could be achieved.

2.6 Software Revisited: Bernstein's Software Sieve

Since it had long been shown that sieving with dedicated hardware devices was vastly

more efficient than sieving in software on a conventional computer, it came as some

surprise when D. J. Bernstein announced in 2000 that he had succeeded in extending

the table of pseudosquares (last extended by a 180-day computation by the MSSU)

using software running for 10 days on a single-processor general purpose computer,

a Pentium Iv running at 1406 MHZ. His solution used an optimization technique

which, though seemingly simple in hindsight, had not previously been applied to

sieve designs. This optimization technique, called doubly-focused enumeration, is

examined in more detail in Chapter 3.

15The other 3 were devoted to handling onboard communications for the HO 36m board.

Chapter 3

Implementing and Optimizing the Sieve Problem

Premature optimization is the root of all evil.

—Donald E. Knuth

3.1 Notation and Preliminaries

Before going any further, some additional properties of sieve problems will now be

formalized.

Definition 3.1 The sieve problems

Si— fl1{xEZIx (mod M)E7?, A≤x<B}

82= flr+i{XEZIX (mod Mj)EThj, A≤x<B}

are equivalent if and only if S = 82 for all A, B E ; i.e., for any choice of bounds

the set of solutions admitted by each of the sieve problems is the same.

With this notion of equivalence, the following theorem may now be demonstrated.

Theorem 3.1 Given a sieve problem, S = fl 1 {x E Z x (mod M) E Rj, A < x <B}

of width k ≥ 2 and whose sieve rings are relatively prime, an equivalent sieve problem

of width k - 1 can be formed.

37

38

Proof: This is a straightforward application of the CRT. Consider the congruences:

x (mod M1) E R-.

x (mod M2) E 1 '2

Let M = M1 M2, N , j JV' (mod M) as per Theorem 1.1. Define the Mi

set R to be the CRT combination of all residues from the sets Rfl, 12; i.e.,

R={rIriNiri+e2N2r2 (mod Mj.M2), r1 E7i,r2 E7 2}

Now, form a new sieve problem, replacing the sieve rings {M1, fl.1} and {M2, R.2}

with the newly constructed ring {M, R.}. The width of this new sieve problem is

k - 1. By the CRT, x E 7?. if and only if x E 7?. A x E R.2. Equivalence of the sieve

problems follows from Definition 3.1 a

Corollary 3.1 Any sieve problem S = fl {x € 7L x (mod M) E l?.i, A ≤ x <B}

consisting of of k relatively prime sieve rings can be replaced by an equivalent sieve

problem consisting of a single sieve ring:

S={xE7LIx (mod M)E7?., A≤x<B}

where M = fl M and

={rEzIr
i=1

ejNr (mod M), r1 E R, Irk E R k}

Proof: By Theorem 3.1, any sieve problem of width k may be replaced by an

equivalent sieve problem of width k - 1. This process can be repeated until only a

39

single ring remains. The definitions of M and R follow from repeated application of

the CRT.

With this Corollary in hand, the notion of sieve density that was first mentioned

in Section 1.2.1 may now be formalized.

Definition 3.2 The density of solutions for a given sieve problem is defined to be

the ratio of acceptable residues to all possible solutions in the sieve interval; i.e.,

for the sieve problem, S = {x E Z I x (mod M) E 7, A < x < B}, the solution

density is given by:

RI density (S) =

Multiplying the sieve density by the size of the sieve interval (B - A) offers a

prediction as to the number of solutions that will be obtained by sieving over the

indicated range. This prediction is exact when M I (B - A).

3.2 Optimizing Sieve Algorithms

3.2.1 The Trivial Sieve Algorithm

The most obvious algorithm for finding all solutions to an instance of the GSP is to

examine each of the values x = A, A + 1, A + 2, . . . , B - 1 sequentially to determine

if all of the congruences x (mod m) E R (i = 1, 2, 3,.. . , k) are satisfied.'

This approach is also trivially parallelizable, for instance, by partitioning the

sieve interval across several sieve units. If r sieve units are available, sieve over the

'Bernstein calls this approach unfocused enumeration [BerO4].

40

interval A < x < A+ on the first unit, A + <x <A +2 on the

second, and so forth up to A + (r - 1) [B_A] ≤ x < B.
In practice, this trivial algorithm and parallelization tactic are rarely used, as

more efficient methods are available. These methods will now be described.

3.2.2 Sieve Normalization

In [Leh53], Lehmer described a technique for eliminating single-valued congruences

from sieve problems. He called this technique normalization.

In general, only one single-valued congruence need be considered when discussing

Lehmer's normalization. Consider, for example, the following set of congruence

conditions:

x 6 (mod 8)

x 2 (mod 3)

x lor4 (mod 5)

X 3,50r6 (mod 7)

The CRT may be applied to the first two congruences in the following manner.

Take M1 = 8, M2 = 3, M = 8 3 = 24, N1 = 3, j 3' 3 (mod 8),

N2 = 8, and 2 8_i 2 (mod 3), giving:

e,Niri + e2N2r2 (mod M)

x 3•3•6+8•2•2 (mod24)

x 14 (mod 24)

More generally, given the residue conditions:

41

X Ti (modMi) A

X r2 (mod M2) A

X Th (mod Mh)

An equivalent congruence can be produced:

XET0 (modmo)

where m0 = fl.1 M, and ro = E (mod Ma), with N, ei defined as per

Theorem 1.1.

Definition 3.3 The arithmetic progression, a; = ymo + r0, produced via the ORT

combination of all single-residue congruences is called the normalization function for

a particular sieve problem. If m0 = 1, ro = 0, it is called the trivial normalization

function.

This idea motivates the following definition.

Definition 3.4 The canonical representation of a sieve problem is defined as the

equivalent sieve problem where all single-residue congruences have been combined

into a normalization function, a; = ym0 + r0, giving 17ZiI > 1 for all remaining sieve

rings.

42

Lehmer's normalization works as follows. Instead of sieving for solutions, x, over

the interval A < x < B, sieve instead for acceptable values of y over the interval:

[A—ron

MO

Sieve solutions obtained for y may be transformed back into solution for x by

applying the normalization function, x = ym0 + ro, to each of the solutions obtained.

Theorem 3.2 Given the canonical sieve problem

S={xEZlx (mod M)E, A≤x<B}

and a nontrivial normalization vector, x = ym0 + r0, a sieve problem, S, can be

found that operates over a smaller sieve interval, but where S = {ymo + ro, y E S*}.

This sieve problem, called the normalized sieve problem, is given by

= E Z Y (mod M) E Y

where Y is defined as follows:

Yi={ylym 1(r—ro)

rA m0 -r01 rB_'0
1710 I I

(mod Mi), r E 7j}

Proof: Consider the sieve problem operating over the interval A x < B, with

normalization vector x = m0y + r0, and satisfying the following residue conditions:

x (mod M1) E 7

x (mod M2) E R2

x (mod Mk) E 7'k

43

If only the solutions for x lying in the arithmetic progression x = m0y + r0 are

considered, an alternate set of acceptable residues may be defined as follows. Let

Y={yym'(r—ro) (mod Mi), r E

Clearly, y E Yj if and only if x = ym0 + ro E lj. Thus, a new sieve problem may

be defined as:

y (mod M1) E 3)1

y (mod M2) E 3)2

y (mod J1/Ik) E Yk

Since all acceptable values of x may be obtained from the arithmetic progression

x = ym + To, finding all acceptable y in the interval [A—ro] ' < [B—ro], will MO

produce all x values in the interval A < x < B.

I

For example, the sieve problem given by 0 ≤ x < 9240 and

X 1 (mod 8)

x 1 (mod 3)

x lor4 (mod 5)

X 1, 2, or (mod 7)

X 1,3,4,5, or (mod 11)

can be normalized to produce an equivalent problem operating over a smaller interval.

44

Evaluating the non-normalized sieve problem over the interval 0 < x < 9240

gives S = {1, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2641, 2689, 2809,

3481, 3529, 3721, 4321, 4489, 5041, 5329, 5569, 6169, 6241, 6889, 7561, 7681, 7921,

8089, 8761}.

By combining the first two congruences into a normalization function x = 24y + 1,

and applying this function to the remaining congruences, new sets of acceptable

residues may be obtained:

Yj = {(r1 -1). 24' (mod 5), ri E {1,4}} = {0,2}

= {(r2-1).24' (mod 7), r2 E{1,2,4}}{0,1,5}

= {(r3 -1). 24' (mod 11), r3 E {1,3,4,5,9}} = {0,1,2,4,7}

This leads to the normalized sieve problem:

y (mod 5) E {0, 2}

y (mod 7) E {0,1,5}

y (mod 11) E {0,1,2,4,7}

The normalized sieve interval becomes:

ro - il r9240-1

24 24

i.e.0 ≤ y < 385. Sieving over this interval produces the solution $* = {0, 7, 12, 15,

22, 35, 40, 57, 70, 77, 92, 110, 112, 117, 145, 147, 155, 180, 187, 210, 222, 232, 257,

260, 287, 315, 320, 330, 337, 365}.

The equivalence of this normalized sieve problem, 5* and the original sieve prob-

lem, S may be verified by applying the normalization function x = 24y + 1 to each

y E 5

45

It should be noted that applying Lehmer's normalization to this sieve problem

reduced the effort of computing all solutions in the sieve interval from B - A sieve

operations to B-A sieve operations. This reduction in effort comes at the expense of MO

precomputing the acceptable residues, Y, and translating the resulting sieve outputs,

y E S* back into values of x.

3.2.3 Parallelizing the Sieve Problem

There is an obvious optimization method employing Lehmer's normalization tech-

nique if multiple sieve units may be used in parallel.

Given a sieve modulus, M with 17Zil acceptable residues, the sieve problem may

be partitioned into IRil parallel problems by performing normalization on each of

rij E Ri for 0 < j < 17Zi acceptable residues, and sieving on each of these problems

in parallel; i.e., x = yM + rij. The set of sieve results for the original problem then

becomes the union of the results for each of the 17Zil parallelized sieve problems.

This optimization can be useful even if the normalized sieve problems are solved

consecutively. As demonstrated by Lehmer [Leh28], an effective speedup of may

still be achieved by executing the normalized sieve problems in series, as each of the

IRi I normalized sieve problems operates over I th of the original sieve interval. Lukes Mi

[Luk95] calls this optimization multiple residue optimization. Bernstein [Ber04J calls

it singly-focused enumeration.

46

3.3 Doubly-Focused Enumeration

Consider a sieve problem given by: S = fl.1 {x E x (mod M) E 7, A < x < B}.

By repeated application of Theorem 3.1, it is possible to derive an equivalent sieve

problem with exactly two sieve rings; i.e., set M = fl..1 M, M = U=8+1 M, with

R formed from the CRT combination of RI, 7Z2,. . . ,R. and 7 s+1,Rs+2,. Rk

respectively. The new sieve problem is given by:

x (mod M) E R,, A x (mod M) E Rp (3.1)

Bernstein noted that as a special case of the explicit CRT [BSO3], x may be written

as the difference of small multiples of M and M; i.e.,

x=a— a = tM— tM (3.2)

Then, taking this expression modulo both M and M, and combining these

congruences with Equation 3.1, the following congruences may be obtained:

x —tM (mod M) E 7

x tM (mod M) E R p

By sieving for solutions of t and t, over appropriate intervals, and merging these

results according to Equation 3.2, all acceptable values of x in the interval [A, B)

may be obtained. Furthermore, solving these two new sieve problems can be vastly

more efficient than solving the original sieve problem, S.

This definition may now be formalized as follows:

Definition 3.5 Given a sieve problem

k

S= nix EZx (mod M)E7Z., A<x<B}
i=1

47

partition the moduli M1, • , Mk into two distinct sets, JV(and M. Define the

quantities Mn and M as the products of the moduli in these sets; M = M

and M = M respectively. A potential solution, x, of this sieve problem may

be written as the difference of small multiples of these quantities:

This technique is called doubly-focused enumeration, and it allows the original

sieve problem to be replaced with two equivalent (and usually smaller) ones:

Sp = f-{tEzIt (mod M)ETi=1

(sn =
k

fl {tn E Z I tn
i=s+1

with T, Tn given by

7—n=

(mod M) E T,

{ r E 7L I r

[M'11 <tp< r B+ (MM_1)M1} --

0 ≤ t-, <M - 11

(mod Mr), r E Rpj

{r E Z r r(—M)' (mod Ma), rn E RnI

These sets may be combined to produce all acceptable values for x in the range

(A, B]:

S={xIx=tM—tM, t, E E 7,, A≤ x < B}

The equivalence of these sieve problems will now be established.

Lemma 3.1 Every x in the range A < x < B may be expressed as the difference

X = tM - where M, M are relatively prime LA1 < < rB+(M-1)M1
'IMnI_ 2' J Mn '

and 0 <t <Ma.

48

Proof: Consider the arithmetic progression obtained by fixing t and varying t in

the expression:

This progression is capable of producing any x —tM (mod Ma). Thus, if a

(mod M) is made to range over all residue classes {O, 1, 2,. . . , M - 1}, the resulting

arithmetic progressions can be used to produce all possible integers x in the interval

[A, B) by varying t.

Consider t {O, 1, 2, . . . , M - 1}. Since gcd(M, M) = 1, it is straightforward

to show that It I t tM (mod Ma), 0 ≤ t7. < M} forms a complete reduced

residue system. If not, then for some 0 ≤ i, j < M, i j, the congruence:

i.MEj.M (mod M ,,)

would hold. Multiplying both sides by M;' (mod Ms), however, gives

ij (mod M,,)

a contradiction, as 0 ≤ i, j < M. Hence, it is sufficient to consider 0 < t < M

to produce the necessary arithmetic progressions. Since t, is always nonnegative,

choose t ≥ and as the largest choice for t is M - 1, it follows that t <

[B+(M-1)M

Mn

Theorem 3.3 The sets of solutions given by

/

S={xEzIx (modM)e, A<x<B}

49

and the doubly-focused problems given by Definition 3.5; i.e.,

S={xIx_— tM — tM, tES,tES, A≤x<B}

are the same.

Proof:

Lemma 3.1 shows that every x in the interval A < x < B is expressible as the

difference x = tM - where M = fl1 mi and M = m, [-]
Mn

t < I B+(M-1)M and 0 <— t, <Ma.
P M

Thus if x E S, write x = tM - and by Equation 3.1:

X E —tM (mod M) E 1?

x tM (mod M) E Rp

By the construction of Tp and Tn in Definition 3.5, it is clear that t, (mod M) E

> tpM n (mod M) e Rp and ti,, (mod M) E 7 < > —tM, (mod M) E

7. Hence, xES < > t,ES1, A tES. •

3.3.1 The Simultaneous Enumeration Algorithm

Though it is clear from Lemma 3.1 that every x in the interval A ≤ x < B is

expressible as the difference x = tM - an algorithm to produce these x

values from t and tn without retaining all intermediate values is not immediately

obvious.

In [BerOl], Bernstein suggests a method of generating these values in a systematic

manner, which limits the number of intermediate values that must be retained. He

50

calls this algorithm simultaneous enumeration [Ber04], and is given as Algorithm

3.1.

Algorithm 3.1 Simultaneous Enumeration of x = a - a

1: first +- 0; last +- 1
2: a[first] +- next (S)
3: repeat
4: a +- next (Sp) M
5: x1[first] - a - a[first]
6: until (xfirst] ≥ A)
7: a[last] +- next(S) Mi,; x[last] +- (a - a- [last])
8: loop
9: if last < IRI then

10: while (x[last] > A) do
11: last 4- last + 1
12: a[last] - next(S) M; [last] +- (a - a— [last])
13: end while
14: end if
15: Filter and print x[first], . . . , x{last - 1]
16: a <- next (Sp) Mn
17: if (ar> (B + (M - 1)M)) then
18: Quit
19: end if
20: for each i from first to last do
21: [i] +- a -
22: if ([i] > B) then
23: first +- first + 1
24: end if
25: end for
26: end loop

The algorithm works as follows: the functions next (Sr) and next (Sn) return the

next output from each of the S and Sn sieves, respectively. These outputs appear

in ascending numerical order.

The loop at line 3 advances the S sieve until the first acceptable ≥ A is

obtained.

51

The main loop starts at line 8, and operates as follows. For a particular acceptable

candidate a, maintain a vector of all permissible candidates á (called the row

vector), such that = (a - a) ≥ A. The loop at line 10 is responsible for appending

entries to the end of this row vector. It does so by peeking ahead at the next value for

, appending it to the array if it exceeds the lower bound of the sieve problem (A).

Since sieve outputs are returned in ascending order, it is sufficient to stop sieving

for á when x[last] < A. Candidate values of up to, but not including the peek-

ahead value are filtered and printed in line 15. The loop at line 20 is responsible for

obtaining the next acceptable candidate for a, and computing the next row vector.

In line 23, entries are removed from the front of the row vector if they exceed the

upper bound of the sieve interval. Line 17 terminates the algorithm when a exceeds

the upper bound of the sieve range.

The complexity of this algorithm depends on two factors: the number of solution

candidates obtained from the S and S sieves (the number of multiplications), and

the average width of the row vector, = {firstJ,. . . , x[last - .l]} (the number of

additions per row).

3.3.2 Computing the Optimal Bounds

The goal of applying the doubly-focused enumeration technique is to reduce the

amount of work required to sieve for x over a particular interval. Thus, the amount

of work performed by Algorithm 3.1 must be determined for various problem param-

eters.

Recall that M = fl m and M = r1k +1 mj are the products of all moduli

mi e M p and mj E M respectively. The number of residues admitted by each of

52

the sieves may be determined as follows:

density (T) = I'R I
M

density M) = i2iMP

To obtain all possible values of x, a = tM must be allowed to range over

[A, B + (M - 1)M) and a = tM to range over [0, (M - 1)M). Thus, the num-

ber of solutions for t (and hence a,) in the interval 0 ≤ t < M, - 1 is given exactly

by S, = 7,,I. The sieve interval for t, is given by [_L] < t < [B+(M.-1)Mp] '
Mn Mn

and hence there are 1B JMPl + M values in this range. Since this is rarely an

exact multiple of M, a precise prediction of the number of solutions in S may not

usually be given. It should be clear, however, that lSI ([1:B_A)_M] + M) 1 .

And thus, for a reasonable choices of sieve interval (B - A), the number of solutions

is expected to be around IR,I. Bernstein [Ber04] gives the following approximations

for most practical implementations: (B - A) 1020, M 10 14.

3.4 A Simple Example

Consider the problem of finding all values that satisfy the congruences:

x (mod 24) =I

x (mod 5) E {1,4}

x (mod 7) E{1,2,4}

By the Chinese Remainder Theorem, any set of solutions to this problem will be

cyclic modulo 5 7 24. Thus the set of solutions may be completely determined by

53

sieving over the interval 0 ≤ x <840 and testing each choice for x against the three

congruences. This approach requires 840 sieve operations.

By normalizing this sieve problem, the effort required to determine the sieve

solutions may be reduced by a factor of 24; i.e., x = 24y + 1, so sieve for y in the

Iro— il 184O-11 - In
range LI 24 I'I 24 .1 -

For convenience, define the sets Y = {i I y (n j - n0) m 1 (mod Mi), nj E Ri

where m0 = 24 and n0 = 1. In this case, Y1 = {0, 2}, Y2 = {0, 1, 5}, and the sieve

problem becomes:

y (mod 5) E {0, 2}

y (mod 7) E {0,1,5}

for 0 ≤ y < 35. Solving this sieve problem would involve 35 sieve operations2.

Applying both the normalization and doubly-focused enumeration to this problem

yields even further improvements. Choose M-n = 7, M, = 5. Define y = tM -

tM = 7t - 5t, and consider this expression modulo both M and M:

y 7t 2t, (mod 5)

y —5th 2t, (mod 7)

In effect, this can be thought of as two separate normalization problems. In both

cases, m0 = 2, no = 0. Define:

Tn = {n I n r• (5)1 (mod 7), n, E {0, 1, 5}} = {0, 4, 6}

71= {n Innp.(7)' (mod 5), rj1 E {0,2}} = {0,1}

Now, simultaneously enumerate over the acceptable residues for both t, E 7-p and

t, E 7 as per Algorithm 3.1 to form the acceptable choices for y = tM - tnMp-

20f course, this figure ignores the work required to normalize and denormalize the sieve problem.

54

t\t 0 1 2 3 4 5 6

0 0
1 72
2 14 9 4
3 21 16 11 6 1
4 28 23 18 13 8 3
5 30 25 20 15 10 5
6 32 27 22 17 12

7 34 29 24 19
8 31 26

9 33
10

Table 3.1: Doubly-Focused Enumeration

Table 3.1 offers a more graphical illustration of this enumeration. Acceptable residues

for y are highlighted in bold.

Acceptable solutions for y are found by sieving for t, and t over the ranges

0 < t < 7 and t,, < [35+(7-1)5 respectively. Acceptable solutions oc-

cur at the intersection of t, E {0, 1, 5, 6} and t E {0, 4, 6}. In other words,

y E {0, 5, 7, 12, 15, 22}.

The total number of sieving operations required for this optimization is:

tin[0,MI) =[0,7)

tp in [[_L]'[B+(M.-1)Mp]) —[0,10)
Mn

The total number of sieve operations required above is 17. The doubly-focused

technique offers a clear reduction in the sieving effort required to solve this partic-

ualr sieve problem. Unfortunately, these savings occur at the expense of 7 modular

multiplications, and 8 modular subtractions.3

3This also ignores the work required to normalize and denormalize the sieve problem

Chapter 4

The Calgary Scalable Sieve Architecture

Things should be made as simple as possible, but not any simpler.

—Albert Einstein

4.1 Design Goals

The Calgary Scalable Sieve (cAssIE) design is based around a simple idea, though

one that has plagued engineers and implementors throughout the ages: a system

must be usable to be considered successful.

In the context of the sieve problem, the most successful sieve designs have been

those with the highest levels of usability. Lehmer's delay line sieve, for example,

was generally considered his most successful design, mainly due to its reliability and

high degree of automation [Leh66]. Sieve parameters could be entered as coefficients

of a problem in the form f(x, y) = 0. These coefficients would then be converted

automatically' to a sieve problem, and printed to a linear tape, ready for input into

the DLS.

The photoelectric sieve demonstrated the opposite effect. Though it was Lehmer's

fastest sieve design for many years to come, it was rarely used owing to difficulties in

setup, problem design, and reliability.' The later successes of the Movie Film sieve,

'Actually, via an IBM 7090 and the Bendix G-15.
'After being disassembled for transport to the Century of Progress Exhibition in Chicago, the

photoelectric sieve was never used again.

55

56

despite it being almost 50 times slower than the photoelectric sieve, showed that

fast problem setup, and reliable behavior were vastly more important measures of

success than high speeds.

CASSIE'S initial design was driven by three technical design goals:

1. Hybrid Design—CASSIE would employ both FPGA (hardware) and software

technology to implement a fixed-plus-variable (F+v) sieve design.

2. High Performance—CASSIE would employ Bernstein's doubly-focused enumer-

ation technique to improve sieve performance.

3. Reliability—CASSIE should be able to run for long periods of time without

operator intervention. Detection and recovery from errors should be automatic.

Software should be free of memory leaks or crashes.

Experience with early versions of the CASSIE implementation showed that, de-

spite impressive speeds, the sieve design appeared to be following the lead of the

photoelectric sieve; that is, it suffered great usability problems. Thus, in July 2003,

the underlying CASSIE architecture was changed significantly to reflect a fourth goal:

• Ease of use—Though CASSIE was to incorporate a hybrid software/hardware

architecture and advanced optimization techniques, this complexity should be

hidden from the user. Sieve problems should be fast, easy, and consistent to

set up, regardless of which underlying technologies or optimizations were in

place.

57

4.2 Approach

4.2.1 Previous Architecture Choices

Previous sieve designs such as the MSSU and OASiS featured a certain amount of

automation in the host system implementation. Sieve configuration was flexible,

involving a series of simple text-files for job configuration and checkpointing. How-

ever, pre- and post-processing of sieve data was by no means automatic, involving

additional software and programming libraries to reduce a high-level problem de-

scription to its its corresponding congruence conditions. For example, the negative

pseudosquare problem [LLS7O] can be compactly characterized as follows:

Definition 4.1 The negative pseudosquare problem is defined as the problem of

finding N E Z such that N —1 (mod 8) with (=Np) = 1 for all p ≤ p. Pi

However, the problem of actually reducing this characterization to the set of congru-

ence conditions (Figure 4.2.1) has to be done by the operator.3

In its early implementations, CASSIE was no different from previous sieve designs

in this respect. That is, reduction of problems to a GSP instance, and subsequent

conversion to a set of doubly-focused congruences was the responsibility of the sieve

operator. Unfortunately, the added complexity of producing a set of doubly-focused

congruences made sieve problem setup quite tedious, even with the development of

automated tools for the purpose.

Thus, in July 2003, the CASSIE design was amended to incorporate a radical

design concept: the dual-language approach proposed by Ousterhout [0us98].

3Though once the set of congruences was entered, M55U and OASiS would automatically normalize
any single-residue congruences

58

x (mod 8) E {7}

x (mod 3) e {2}
x (mod 5) E{1,4}

x (mod 7) E{3,5,6}

x (mod 11) E {2, 6,7,8, 10}

x (mod 13) E {1,3, 4, 9, 10, 12}

x (mod 17) E {1, 2,4,8,9, 13, 15, 16}

x (mod 19) E {2, 3, 8, 10, 12, 13, 14, 15, 18}

Figure 4.1: Congruence Conditions for the Negative Pseudosquares, p 19

4.2.2 The Dual-Language Paradigm

The main idea of a dual-language approach for CASSIE is to embed the sieve im-

plementation and control mechanisms into a general purpose scripting language.

Manipulation and configuration of sieve parameters is accomplished with the (high-

level) scripting language, while the actual sieve implementation is done in whatever

low-level language is most suitable.

Whereas with the dedicated tool approach, sieve configuration files contain little

more than a textual representation of a congruence problem, in a dual-language

approach sieve configuration files can contain high-level programming code. Sieve

set-up and configuration then inherits the benefits of a high-level scripting language

such as Perl, Tel, or Python, while retaining the performance advantages of being

implemented in a language like C or C++.

For the purposes of CASSIE, John K. Ousterhout's Tool Command Language

(Tel) [0us94] was chosen as the basis of the script language. Ousterhout is one

of the pioneers of the dual-language concept, and Tel was designed for this pur-

59

pose. Specifically, it was intended to be integrated with C/C++ in a dual-language

capacity.4

4.2.3 The CASSIE Scripting Language

The CASSIE Scripting Language is a superset of the Tel scripting laguage that in-

cludes both the ability to specify and run sieve problems, and the ability to perform

arbitrary-precision arithmeticic operations. Multi-precision arithmetic was imple-

mented using the MPEXPR extension, a high-level interface on top of David Bell and

Landon Curt Noll's multi-precision library, calc [Nol]. Tel was further extended with

a CASSIE software layer,5 including a complete software implementation of the GSP,

incorporating sieve normalization, doubly-focused enumeration, automatic check-

pointing, and an interface to FPGA-based sieves. Integration of the CASSIE library

into Tel was generated via the software wrapper generation tool SWIG [Bea96].

The result is a high-level scripting language well-suited to the specification and

manipulation of sieve problems and their results. As an example, the negative pseu-

dosquare problem described in Definition 4.1 was implemented in the CASSIE Script

Language as shown in Figure 4.2.3.

As specified, the CASSIE of Figure 4.2.3 searched for all solutions, x = 24y + 23

in the range 0 < y <500,000,000. i.e.:

0 < x < 12, 000, 000, 023

When this sieve problem was executed the results of Table 4.1 were obtained in

4An additional benefit of choosing Tcl is the possibility of (later) adding a graphical user interface
via the Tk toolkit.

5A complete user's manual for the CASSIE script language is found in Appendix A.

60

#! /usr/local/bin/tclsh

source "sieve-lib.tclt'

Given a modulus p, return all residues, N, such that the negatives,

(-N/p) = 1 (i.e. the Negative Pseudosquare problem)

proc 11s2-ring -Cp} {
set res_1 [list]

for {set i 1)- {$i < $p} -Cincr i} -C
if -C[JACOBI -$1 $p] == 1} -C

lappend res_l $i

return [list $p $res_l]

sieve 11s2

11s2 end 500000000

Set up reporting / checkpointing
11s2 log 11s2.out

11s2 report 11s2.rpt

Combine the 2 single-residue rings into a normalization function

ring r -C{8 7). {3 2).).

11s2 normalize [lindex [r get] 0] [lindex [r get] 1]

Add a ring for each of the primes from 5 ... 19

foreach p [primes 5 19] -C
11s2 ring-add [11s2-ring $p]

Retain the least N_p for each of the primes from 19 to 127

foreach p [primes 19 127] -C
lls2 score-add [11s2-ring $p]

}
Run the sieve problem

11s2 run

Figure .2: CASSIE Script for the Negative Pseudosquares

61

P N2

19 10,559
23 18,191
29 31,391
31 118,271

37,41 366,791
43,47,53 2,155,919

59,61 6,077,111
67 98,538,359
71 120,293,879

73,79 131,486,759
83 508,095,719

89,97,101,103,107,109 2,570,169,839

Table 4.1: Negative Pseudosquares

approximately 4 seconds on the CASSIE host machine6.

4.2.4 CASSIE Implementation Summary

To summarize, the CASSIE Script Language is extremely powerful tool for setting up

and executing sieve problems. It encompasses

• A software sieve implementation in C.

• Object orientation applied by Tel.

• Automatic (Tcl/C) wrapper code generation using SWIG

• A hardware driver layer in C.

• Arbitrary-precision arithmetic via MPEXPR and calc.

'Specifically, the code was run on one processor of a dual Athlon 2000+ machine with 2Gb RAM.

62

• Sieve hardware encapsulation (currently, a Xilinx Virtex 2 2000, Nallatech

Ballynuey combination) .

4.3 Implementation Details

4.3.1 Notes on Algorithms

Several algorithms will be presented in this chapter. Variables representing arrays are

designated with a hat, as in C A specific (numbered) element of an array is desig-

nated by an index value contained in square brackets after the array name i. e. —X[first].

Where object orientation is assumed, methods and attributes are indicated by a set

of double colons, as in sieve :: start.

4.3.2 Sieve Object

The sieve object is the main container for a sieve problem. Most of a user's inter-

action with CAME has to do with the creation and manipulation of sieve objects.

Based on these attributes, the appropriate parameters of the underlying sieve imple-

mentation will be generated automatically.

The sieve object encapsulates the following information:

• Sieve type - Whether to use traditional sieve representation, or a doubly-

focused one.

• Implementation Type - Whether to use a Software or Hardware implementa-

tion.

7Hardware details will not be covered in this thesis, as the main idea of the CASSIE script
language is to encapsulate and abstract the underlying sieve implementation.

63

• Parallelism - Whether the sieve instance is standalone, or will be part of a

multiprocessor (parallel) implementation.'

• Sieve Range - Start, and end values for the sieve problem.

• Normalization - The normalization modulus and residue.

• Problem Filters - Filters to be applied to sieve outputs.

The sieve object also includes links to attached rings, scoreboard, and monitor

objects, though this linkage is not normally visible to the user. A detailed user

manual describing each of these objects in detail is given in Appendix A.

4.3.3 Sieve Rings

Recall from Definition 1.1 that a sieve ring is a tuple consisting of a modulus and its

associated acceptable residues, i. e.S = {M, R}. In CASSIE, sieve rings are specified

as Tel lists.9 For example, a ring consisting of a modulus 13, and the acceptable

residues 1, 2, 4, and 9, would be denoted:

-C13 -Cl 2 4 9}}

By Corollary 3. 1, any set of sieve rings 81,82,.. 8 can be reduced to a single

sieve ring S. To this end, CASSIE allows multiple rings to be specified as a list-of-

lists. These rings are then combined into a single sieve ring as per this corollary. For

example,

8At this time, Message Passing Interface (MPI) is the only supported form of parallelism. This
is the mechanism used on the University of Calgary's Advanced Cryptography Laboratory (AOL)
cluster.

in Tcl, lists are delimited by curly braces, and entries are separated by whitespace. Lists may
be nested to form lists-of-lists, and other compound data structures.

'°Extra whitespace is ignored in Tcl lists, so this could be equivalently written on one line.

64

struct ring -C
mt modulus;
uint32 *bits; 1* bitfield array *1

Figure 4.3: Bitfield ring in C

{{8 1}
{3 1}
{5 -Cl 4}}
-C7 { 1 2 4}}}

as the list of moduli and acceptable residues, to the ring constructor results in the

creation of the following, equivalent ring:

840 { 1 121 169 289 361 529 }

This "magic constructor" is used throughout the CASSIE command language.

That is, whenever a sieve ring is expected, a ring list may be specified, and a combined

ring will be generated automatically.

4.3.4 Ring Creation

When ring objects are created in CASSIE, they are converted from the high-level Tcl

list format to an internal bitfield structure, indicated in Figure 4.3. The first step in

the conversion from a Tc1 representation to the bitfield representation is to allocate

an array of m machine words. The individual bits of this bitfield are then set to

either 1, indicating an acceptable residue, or 0, indicating an unacceptable one. This

bitfield representation is then repeated k times, where k is the number of bits in

65

a machine word, in order to make the bitfield end on a machine word boundary."

This fully populated bitfield structure is called a ring object.

4.3.5 Ring Rotation and Normalization

The process of associating a ring object with a sieve problem is called attaching a

ring to the sieve problem. Before a ring may be attached to a sieve object, however,

it may need to be rotated, and/or normalized, depending on the sieve parameters.

In the context of a sieve problem, the position of a ring indicates the residue (or in

the case of multiple solution taps, residues) currently under investigation. Changing

the start value for a sieve problem is akin to rotating each of the attached rings to

that new start value modulo each of the ring moduli.

Normalization, as described in Section 3.2.2, is a process by which the acceptable

residues are permuted and shifted in order to achieve a speedup in sieve operation.

This transformation may be accomplished using the following algorithm, noted in

[Luk95].

A similar algorithm (Algorithm 4.2) may be developed to accomplish denormal-

ization. In this manner, the appropriate permutation may be generated by first

locating the bit position of the final (ring :: modulus - 1) entry in the sieve, and

repeatedly subtracting the normalization modulus. Thus:

YkMXk+RM(Mr1)+RRM (modMr)

"Since the moduli of interest are usually odd and machine word sizes are usually powers of two,
km is a crude approximation to the more correct value, lcm(k,m).

66

Algorithm 4.1 Normalize a Ring
Variables:
r,i: UInt3
newring : Ring

Inputs:
modulus, residue: UInt32
ring: Ring

Outputs:
newring: Ring

Algorithm:

1: newring :: modulus +- ring:: modulus
2: r - residue mod ring:: modulus
3: for i +— 0 to (ring.modulus — 1) do
4: newring:: residues[i] +- ring:: residues[r]
5: r +- (r + modulus) (mod ring:: modulus)
6: end for
7: return newring

4.3.6 Combination of Ring Operations

When the normalization and rotation transformations are combined, it is important

to decide in which order these operations will occur. 12 In CASSIE, normalization

occurs before rotation. In other words, the start and end attributes of a sieve object

refer to the start and end values of the normalized sieve problem. The effective sieve

interval for the original (non-normalized) problem may be computed via:

start = m0 start + T0

endeff = m0 start + r0

where m0 and r0 are the normalization modulus and residue respectively.

12] general, the rotation and normalization transformations do not commute.

67

Algorithm 4.2 Denormalize a Ring
Variables:
lastm, i: UInt82
newring: Ring

Inputs:
modulus, residue: UInt32
ring : Ring

Outputs:
newring: Ring

Algorithm:

1: newring:: modulus +- ring:: modulus
2: lastm +- residue - modulus (mod ring:: modulus)
3: for i +- (ring:: modulus - 1) downto 0 do
4: newring :: residues [lastm] +- ring :: residue[i]
5: lastm +- (lastm - modulus) (mod ring:: modulus)
6: end for

4.3.7 Scoreboard

The scoreboard object implements a variant of the the virtual ring filter (common to

many previous F+V sieve designs) where values emerging from the sieve are partially

matched against additional sieve rings. To implement partial matching, scoreboard

sieve rings are ordered by modulus, and candidates emerging from the sieve are tested

against each of the scoreboard moduli in turn. Each scoreboard ring remembers the

smallest candidate that has met its acceptable residue criteria. If the new candidate

is smaller than this value and meets the residue criteria, the "best" value is updated.

If the candidate fails either of these conditions for a particular scoreboard modulus,

no further matching is performed.

In this fashion, the scoreboard object keeps track of the smallest solution can-

didates for each of a set of sieve moduli that are not included in the original sieve

problem (for example, the results summarized in Table 4.1). This behavior is es-

68

pecially useful in doubly-focused sieves, as solution candidates emerge in essentially

random order.

4.3.8 Monitor Object

The monitor object encapsulates all log and checkpointing information associated

with a sieve problem. In particular, it specifies the log and checkpoint filenames, the

frequency of checkpointing, and whether the sieve problem should terminate after a

set number of checkpoints are reached.

4.4 Sieve Algorithms

4.4.1 Optimizing the Sieve Algorithm

A basic sieve algorithm is shown in Algorithm 4.3. Clearly, there is not much in the

basic algorithm that can be optimized. The speed of this algorithm is limited by the

speed of the sieve operation in line 3, and the speed of the filtering algorithm in line

10 in place. Filtering is discussed in Section 4.4.3.

Algorithm 4.3 Fixed-precision Sieve

1: x +- start
2: loop
3: 6 - nextd(S)
4: nxf--x+6
5: x+— nx
6: if (nx <6) or (nx ≥ end) then
7: Quit
8: end if
9: Checkpoint (if necessary)

10: Filter and Test x
11: end loop

69

4.4.2 Optimizing Simultaneous Enumeration

The simultaneous enumeration algorithm introduced in Chapter 3 (Algorithm 3.1)

is a means of iterating over the sieve solutions t,, t, to produce all the values of

X = tpMn —tM in such a way that a relatively modest number of intermediate values

need be retained. In this section, some modest improvements to the simultaneous

enumeration algorithm will be presented.

A key optimization is as follows. In the original description of the simultaneous

enumeration algorithm, the functions next(S) and next(S) returned the next out-

put from each of the S, and S sieves, respectively. By modifying the sieve routines to

return differences between successive sieve outputs, it may be possible to avoid many

of the multiplications of the original algorithm. i. e. Rather than returning the sieve

sequence x E {x1, x2, x3, . . .}, return the sequence x E {x1, (x2 - x1), (x3 - x2) }.

Since sieve output values obtained via differences will be much smaller than the orig-

inal sieve outputs, precomputation or caching of small multiples of M and M can

vastly improve sieve performance. This modification is shown in Algorithm 4.4.

Algorithm Notes

In line 1, start indicates the start value of the sieve S. This ensures that the first

value assigned to 6 (line 4) is absolute, and thus t = F, 6, is true at all times.

The terminating condition at line 17 is actually quite difficult to implement as

written. Recall from Section 3.3 that tpMn ranges from A to B+(M - 1)M, so there

are Tp [B_A+p-_1Mj different choices for t in this range. From the discussion

following Definition 3.2, the number of solutions admitted by the sieve S may be

exactly predicted only when number of choices for t divides the sieve modulus,

70

Algorithm 4.4 Simultaneous Enumeration of x = O - O with Differences

1: first <- last +- 1; rows f- 0; Jp +- start

2: J,, first] - nextd(S)
3: repeat
4: O +- 6 + nextd(S) Mr,; rows +- rows + 1

5: until (O ≥ A +c[first])

6: x'first] +- O - O[first]
7: next 4- last + 1
8: O[next] 4- nextd(S)
9: loop

10: while (next < ISI) and (x[last] ≥ A+ 5{next]) do
11: x[next] +- x[last] - 6n[next]
12: last +- next; next 4- next + 1
13: O[next] +- nextd(S)
14: end while
15: Filter and print xfirst],. . . , [last]
16: 5 4- nextd(S) Mn; rows +- rows + 1
17: if (rows ≥ S) then
18: Quit
19: end if
20: for each i from first to last do
21: 5qij +- [i] + OP
22: if ([i] ≥ B) then
23: first +- first + 1
24: end if
25: end for
26: end loop

71

i.e.TIM. Since this is rarely the case '3, a more practical stopping condition is

required. One possibility is to test whether t = 6p <

If this algorithm is implemented using fixed-precision integers, 14 and B is chosen

to be the largest representable integer, care must be taken to ensure the comparison

at line 22 checks for overflow in the addition on line 21. The usual approach is to

use a construct such as is shown in Algorithm 4.5.

Algorithm 4.5 Fixed-Precision Addition with Overflow Check

1: x•-[i]+6
2: [i] X

3: if ([i] ≥ B) or (x < 6) then
4: first +— first + 1
5: end if

4.4.3 Filters

Filters are C functions that may be used to eliminate solution candidates of a certain

form once they have emerged from the sieve. CASSIE includes several standard filters:

• perfect-square — Reject x if it is a perfect square.

• perfect-cube — Reject x if it is a perfect cube.

• abprime — Reject x unless x2 + a2 is a prime, for some parameter a.

• probprime - Reject x if it fails a probable primality test.

• none — Perform no filtering of results.

13 The size of the sieve interval, H = B — A, is usually determined by factors such as the largest
integer expressible by the underlying hardware; typically 232 — 1 or 264 — 1.

"Fixed-precision integers are taken to mean integers implemented using a fixed word size, k.
Operations on these integers are assumed to be valid modulo 2'.

72

Many sieve problems define filtering requirements that are more specific than have

been provided here. For this purpose, an Application Programming Interface (API)

has been provided for the purpose of developing new filters, and is discussed in

Appendix A.

Chapter 5

Sieve Problems and Results

However beautiful the strategy, you should occasionally look at the results.

—Sir Winston Churchill

5.1 The Pseudosquare Problem

The pseudosquare problem, first considered by Kraitchik [Kra24] is characterized in

the following manner:

Definition 5.1 Given an odd prime, p, a pseudosquare, L, is defined as the least

positive integer satisfying:'

• 1 (mod 8)

• The Legendre symbol (-LP-) = 1 for all odd primes qj ≤ p qi

• L is not a perfect square.

In other words, the pseudosquare, L behaves (locally) like a perfect square mod-

ulo all small primes q < p,

Kraitchik originally provided pseudosquare results up to L47 in [Kra24], pp. 41-

46. Since that time, various efforts, spearheaded first by D. H. Lehmer ([L654])

11n [LLS7O], and [BB94], pseudosquares are defined as any nonsquare integer satisfying the
conditions of Definition 5.1. Pseudosquares satisfying the least positive integer criterion are referred
to in these works as least pseudosquares.

73

74

and later by H. C. Williams ([LPW95]) extended this list to L277. To this point,

optimization techniques for the pseudosquare problem remained largely unchanged,

and advances involving sieve results were made mainly through the construction of

improved (faster) sieve devices. In 2000, however, Bernstein's publication ([Ber04])

of the doubly-focused sieve technique (and L281) breathed new life into the problem.

It should be noted that the term pseudo-square has a different and unrelated

definition given by Atkin in [Atk65] (and again in [BR98]). Atkin's pseudo-squares

will not be considered in this thesis.

5.1.1 Applications of Pseudosquares

The growth rate of pseudosquares has several key applications in Number Theory.

Hall, in [Hal33] proved the following result:

Theorem 5.1 A number which is a quadratic residue of every prime not dividing it

is a perfect square.

A natural consequence of this theorem is that the values for L tend to infinity

with p. A variant of this result, where least prime pseudosquare values are con-

sidered,' can be used to show that there exist primes with arbitrarily large least

primitive roots.

Numeric results for pseudosquares have also been used by Wedeniwski ([WedOl])

to improve the upper bound for the least quadratic nonresidue of a squarefree natural

number, n, and by Bach and Huelsbergen ([BH93]), to support a heuristic argument

on the smallest x generating the multiplicative group modulo n.

'Western and Miller, for example, tabulated such values in [WM68] pp. xv.

75

A natural application of pseudosquares is the problem of perfect square recog-

nition. Cobham, in a 1966 IBM Technical Report ([Cob66]), developed an efficient

algorithm for determining whether an integer N is a perfect square based on the

growth of least quadratic nonresidues. A similar result was given by Bach and Soren-

son in [B593]. Indeed, the results of Williams et al. [Wil98] show that to determine

whether a single-precision integer is a perfect square, it is sufficient to examine, for

example, a 32-bit integer modulo the primes q < 101, or a 64-bit integer modulo the

primes q < 277. A variant of this idea is used in the popular GNU Multi-Precision

(GMP) programming library ([AB]).

5.1.2 Pseudosquares and Primality Testing

Perhaps the most interesting application of pseudosquares is in the area of primal-

ity testing. In [LPW96], Lukes et al. indicated that a sufficiently rapid growth

rate of pseudosquares would lead to a deterministic polynomial-time algorithm for

determining the prime character of an integer N. At the time, the best known uncon-

ditional result for proving primality was due to Adleman, Pomerance, and Rumely

([APR83]), and offered a time complexity of O((logN)c logloglogN) In August 2002,

Agrawal, Kayal,and Saxena ([AKSO2]) described an unconditional, deterministic al-

gorithm for proving primality with time complexity 0 ((log N) 12+0(1)). This result

was later improved by Lenstra and Pomerance (described by Bernstein in [Ber02])

to O((logN)6 °(')).

This trend raises the obvious question: "how far can the time complexity of

unconditional, deterministic primality proving be improved"? In Section 5.2.2, nu-

merical evidence for a conjecture on this point will be offered. First, the issue of how

76

pseudosquares growth is related to the problem of determining the prime character

of an integer will be examined.

In the aforementioned [Hal33], Hall was the first to demonstrate a primality test

involving the pseudosquares. This test was based on a formalization of some falla-

cious ideas ([Leh3O]) originally put forth by Seelhoff in [See86], and later espoused

by Cole [ColO3]3 and Kraitchik [Kra29].

The main idea of this test involved what Hall termed apparent residues 4, defined

as follows.

Definition 5.2 Apparent Residues and Nonresidues

Let N E Z be odd, and p, q E Z be odd primes. Furthermore, define

P = t\) p = (-1) -,2 p

If W= 1, then p' is said to be an apparent residue of N. If W= —1 then

q' = (-1)'q is said to be an apparent non-residue of N.

The apparent residue character of 2 and —1 were defined in a similar manner.

Hall then proved the following theorem.

Theorem 5.2 If all the (not necessarily prime) factors of N are less than L,

and if the primes —1, 2, —3, 5,. . ., (-1) 2 p can be divided into two classes: the

apparent residues of N, A = {a1, a2, . . . , a8} and the apparent nonresidues of N,

31n an editorial in Notices of the AMS ([Kna99]), the story is told of Cole's 1903 address to the
Society, entitled On the Factoring of Large Integers. It is said the lecture was "met with a standing
ovation after he lectured without saying a single word, multiplying two large integers and verifying
that their product was 267 - 1." The description given in [Col03] is somewhat more verbose than
this, however, and includes the discussion of Seelhoff's idea.

4This was a translation of Kraitchik's "residues éventuelles."

77

B = {b1, b2,.. . , b, 1, such that every member ai E A is true quadratic residue of N,

and the product of every pair of elements bibj E B is also a true quadratic residue of

N then N is either a prime or a power of a prime. .

Though actually using this method as a primality test is difficult,' Beeger success-

fully used it twice, first in [Bee39] to prove the 12-digit cofactor of 2577687858367 =

17-151628697551 prime,' then in [Bee46] to prove a 13-digit factor of 12 +1 prime.

Dan Shanks, in correspondence with D. H. Lehmer ([Wil98]) implied a different

test involving the pseudosquares when he noted the following theorem:

Theorem 5.3 If N —1 (mod 4) is a base-q probable prime, that is, if q r_l = 1

(mod N) for all primes q ≤ p, then any prime divisor P 1 (mod 4) of N must

satisfy P ≥ I'. I

The implied test is as follows: if it is known that N —1 (mod 4) is the product

of at most two primes, and if N < L2, then N is a prime if qN_l = 1 (mod N) for all

primes q < p. Unfortunately, like Hall's test, this algorithm is of limited practical use.

Selfridge and Weinberger [Wil78], however, extended this idea and their extension,

with modifications by Williams in [LPW96], became the first practical primality test

to use pseudosquares. This test will now be introduced via a trio of lemmas.

Lemma 5.1 Let s ≥ 1 be the value for which 2 m, i.e.2s I m, but 28+1 Im. If

—1 (mod N)

5To say the least. If N is not known to be prime and the Jacobi symbol () = 1, the problem
of determining whether a given integer m is a quadratic residue modulo N is believed to be as
difficult as the problem of factoring integers ([MvOV96], pp. 99).

6This is the numerator of the 34th Bernoulli number.

78

then any prime factor p I N must have the form p 1 (mod 2).

Proof: Let p be any prime divisor of N. Let w = ord(b), i. e.the least positive

integer that satisfies b' 1 (mod p). Since b —1 (mod N), btm 1 (mod N)

and since p I N, btm 1 (mod p). Thus w m, but w 1r , and hence, 25 11 w.

Now, since p is prime, b' 1 (mod p), and hence w I (p—i). Then 28 I (p—i),

and it follows by definition that p 1 (mod 2).

Lemma 5.2 Given N E Z odd, choose s such that 2 II (N - 1). Suppose Ic E Z

such that

C ±1 (mod N)

If () = —1 for some prime factor q I N such that q 1 (mod 2) then

28 11 (q_i).

Proof: Write N—i = 28m with m odd, and let w = 2"t = ordq(c) with todd. Since

±1 (mod N), and since q I N, then eN_l 1 (mod q). Thus w I (N - 1),

2't I 28m, and since m is odd, r < s.

It is clear from (9) = —i that c —i (mod q). Thus c' = 1 (mod q), and

w = 2't I (q - 1) but w = 2't does not divide j1. Thus 2 II (q - i). If q 1

(mod 2) then 28 I q - 1 and s < r.

Hence, s = r, and 2 (q - 1).

Lemma 5.3 Given N E Z odd, choose s such that 2 II (N - i). If 2 (q1 - 1),

28 II (q2 - i), where q1, q2 are primes and c is some integer such that (-c- -) = —i

then

±1 (mod q1q2)

79

Proof: - - (-L so without loss of generality, choose) q2) qj (-L) - - 1 and
(Q-) = —1. Now let WI , W2 be the multiplicative orders of c modulo q1 and q

respectively.

Suppose:

N-i

c ±1 (mod q1q2)

From (h.) = —1 and 28 II q —1, it is clear that —1 (mod q2) and 2S ii w2.

From 5. 1, eN_l 1 (mod q). Since 2' (N - 1), w2 does not divide N 2 1, and

So

N-i
2

qi-i

Now = 1, c 2 = 1 (mod q1),
qi

(mod q) (5.2)

and w1 = 2 1t with t odd. Write

= 2rm (m odd), and notice that r ≤ s - 1.

Since c_1 1 (mod qi), w1 I (N— 1). Recall that 28 II (N— 1); hence w1

N-i

cT 1 (mod qi)

Thus, from 5.2 and 5.3, a contradiction to 5.1 is obtained, and hence

c12 0 ±1 (mod q1q2)

An efficient primality test involving the pseudosquares may now be given.

Theorem 5.4 If

1. All prime divisors qN exceed the bound B €

IV-1
2

(5.3)

U

80

<Li, for some prime, p,

N-i

3. p ±1. (mod N) for all primes pi, 2 ≤ pi ≤ p,

. pJ —1 (mod N) for some odd Pj <p when N 1 (mod 8),

2' —1 (mod N) when N 5 (mod 8)

then N is a prime or a power of a prime.

Proof: Suppose an integer N passes the conditions 1-4, but N is not a prime or

or

a prime power. Then N possesses at least 2 distinct prime divisors. Let q be one of

these distinct prime divisors. If N 3 (mod 4) then (-1)'i' —1 (mod N). If

N 1 (mod 4), then by condition 4 of the theorem, there exists a b such that

b'i E -1 (mod N).

If we choose s € Z such that 2 II (N - 1) then by Lemma 5. 1, all prime divisors q

of N are of the form q 1 (mod 2). Furthermore, consider three cases:

Case 1: q 1 (mod 8) - By condition 1, every prime divisor of N exceeds B

and hence q < . By condition 2, q <L so by the definition of the pseudosquares,

there must exist some pj < p such that (A-) = —1. By Quadratic Reciprocity,
Pi

(L) = —1. Notice also that by condition 3, pJ +1 (mod N). Thus Lemma

5.2 applies, and 2S (q - 1).

Case 2: q 5 (mod 8) - By the properties of the Legendre symbol, W

From condition 3, 2 2 ±1 (mod N). Thus Lemma 5.2 applies, and 2 (q - 1).

Case 3: q —1 (mod 4) - By the properties of the Legendre symbol, () =
—1. Clearly, (-1) ±1 (mod N), so by Lemma 5.2, 2 (q - 1).

81

Since all prime divisors, qj of N are of the form qj = 1 + 2'ti for some t,,

N= 1+2't = H1+2'tj with t,ti odd.

By a simple parity argument, it is clear that r must be odd. i.e.

1+28t = fJ1+2t
i=1

1+ 28t = (1+ 28t1)(1+ 28t2) . .. (1+ 28tr)
T

1 + 28t 1 + 28 5 t (mod 28+1)
i=1

And thus t r t (mod 2). Since N is not a prime or a prime power, there

must be two distinct primes, q1, q2 such that q1q2 I N. By a similar argument as

before it may be shown that:

• If q1 q2 1 (mod 8), there exists a prime Pk <p such that (qlq2) — (.\ —
A - qj q2 —

—1, as q1q2 < L <Li, and q1q2 is not a perfect square.

• If q1q2 5 (mod 8), then by the properties of the Jacobi symbol

• If qiq 3 (mod 4) then the Jacobi symbol (zr-) = —1.

N-i N-i

Condition 3 says p, 2 1 (mod N), so p - ±1 (mod q1q2) for all primes

2 ≤ pi ≤ p, but by Lemma 5.3, p 2 # ±1 (mod q1q2), a contradiction.

So N must be a prime, or a prime power.

Notice that if N is a nonsquare, and N < L, then there exists a prime q such

that 2 < q p, and () =A 1. Furthermore, if N is prime, conditions 3 and 4 of IV

Theorem 5.4 always hold.

82

The main consequence of this result is that if L grows sufficiently quickly i. e.if

P < c(log L)' for fixed constants c, k, then Theorem 5.4 offers an unconditional,

deterministic polynomial-time primality test.

The growth rate of the pseudosquares will now be examined.

5.1.3 Pseudosquare Growth

In [Bac9O], Bach gave the following result, conditional upon the Extended Riemann

Hypothesis (ERH):

Theorem 5.5 Let g be a nontrivial subgroup of (7L/m7Z)* (the group of reduced

residues modulo m) such that n E g for all positive ri < x. Then x < 2(logm)2. a

This result may be used to bound L as follows. Consider the subgroup 9 of

(Z/L7L)* consisting of all g such that (i-) = 1. Since L is a nonsquare, there

must be an odd prime q such that qa I L, with a odd. Let t be a quadratic

nonresidue of q, i.e.() = —1, and set:

r t (mod q")

r 1 (mod)
qa

By the CRT, r E (Z/LZ)* and by the properties of the Jacobi symbol, ()

Thus, g is a nontrivial subgroup of Z/(L)*. Also, n E g for all 0 < n <p. By

Theorem 5.5, p < 2 (log L)2, and hence

log L>
2

(5.4)

83

In [Sch97], Schinzel refines the bounds on L to:7

(1— 6)\/ < logL < (2 log 2 +
logp

for any 6> 0 with p > p0(6).

Thus, under the conditions of the ERH, Theorem 5.4 offers a deterministic polynomial-

time primality test.

Lukes offers an alternate prediction for the growth rate of L in [Luk95], pp. 111,

based on a density argument and the Prime Number Theorem.' Under the stated

assumptions, L would have a growth rate of the form 2(/ 109 P)(1+0(1)). In other words:

log L2 j log 2 (5.5)
logp

It should be noted that by the Prime Number Theorem ([HW79J pp. 9), n

where p is the th prime, and hence, log LP n - log (1 + o(1)).

This coincides with the assumption given by Bach and Huelsbergen in [BH93]

that the pseudosquares provide extreme values of G(p), where G(n) represents the

smallest value of x such that the primes ≤ n generate the multiplicative group Z.

This leads to the relationship p log L log log L and hence, Equation 5.5 [LPW96].

If these predictions hold, then primality proving may be done (via Theorem 5.4)

using O((logN)1+0(1)) modular exponentiations. Since performing modular exponen-

tiation (using, for instance, the techniques of Schonhage and Strassen [SS71]) incurs

a complexity of O((logN)2 °(')), it may therefore be conjectured that the primality

of an arbitrary integer N may be proved with O((logN)3 °(')) operations.

logp

7Assuming the Extended Riemann Hypothesis (ERH). In the same paper, an unconditional
result is also given.

8Essentially, assume solutions for L are equidistributed in the range 0 < x < 8P2P3 p,,

and hence L rl! so by Merten's Theorem [HW79], and the Prime Number Theorem,

c2' logp for c = 20 where 'y = 0.57721 is Euler's constant.

84

5.1.4 Applications to Cryptography

In 2003, Bernstein [Ber03a] presented a fast, secure public-key signature scheme

based on the Rabin-Williams [Ber03b] cryptosystem. In this system, a private key

is a pair (p, q), with p, q prime, p 3 (mod 8) and q 7 (mod 8). The public key

is the product N = pq. The signature scheme is defined as follows.

Definition 5.3 Given a message, M, a publicly known hash function, H,9 and a

public key N = pq, a standard signature is defined to be a vector (e, f, r, s) such that

e E {1, —1}, f E {1, 2}, r is a random bitstring of length B, and s E Z satisfying:

fs2 eH(rIIM) (mod N)

where II denotes bitwise concatenation.

The difficulty of forging a Rabin-Williams signature is based on the problem of

determining a square root modulo the composite integer N. It can be shown, for

instance in [Wil80], that the difficulty of this problem is equivalent to the problem

of factoring N.

Verification of Rabin-Williams signatures is extremely fast, requiring only a sin-

gle modular squaring. Bernstein noted, however, that verification can be made even

faster by transmitting what he calls an expanded signature, and replacing this mod-

ular squaring with a randomized test.

Definition 5.4 Given the message M and its standard signature, (e, f, r, s), define

an expanded signature as the vector (e, f) r, s, t) where t is defined as the integer

°A hash function is a function mapping an arbitrary-length bitstring into a fixed-length bitstring.
Cryptographic hash functions are typically chosen such that it is computationally infeasible to find
two distinct bitstrings x1, x2 that evaluate to the same hash value, H(xi) = H(x2), and that given
y, it is computationally infeasible to determine its pre-image x, such that H(x) = Y.

85

satisfying:

fs2—eH(rIlM)—tN=0

Clearly, verification of an expanded signature may be achieved by evaluating

C = fs2 - eH(rlM) - tN and testing whether c = 0. A faster, randomized verifi-

cation scheme is obtained by mapping it to a random quotient ring, for example, by

generating a random, secret 100-bit prime, P, setting

8' 8 (mod P)

t (mod P)

N' N (mod P)

H(rIIM) (mod F)

and computing c' = fs'2 - t'N' - eh' (mod p). Note that this result is zero if c = 0,

and is virtually guaranteed" to be nonzero if c 54 0.

Bernstein further noted that the pseudosquare test of Theorem 5.4 offers the

fastest known method for verifying whether a candidate prime for this verification

scheme (P) is in fact a provable prime. i. e.If it can be shown that P has no prime

divisors < 220, then (as illustrated in Table 5.2) < L367, and a proof of primality

requires only 73 modular exponentiations.

5.1.5 Applications to Networking - Spam Prevention

The unmetred nature of Internet mail delivery has resulted in a proliferation of

Unsolicited Commercial Email—typically referred to as UCE or spam. Despite an in-

10With probability 1 - 2-100.

86

credibly low response rate, purveyors of spam have been able to maintain profitability

due to the essentially zero-cost nature of electronic mail delivery.

One oft-cited remedy for the spam issue is the adoption of a pay-per-send pricing

model for electronic mail. In 1992, Dwork and Naor [DN92] presented an innova-

tive computational technique for implementing a pay-per-send infrastructure. Under

their proposal, the sender of a electronic mail message was first required to perform a

message-specific computation requiring a moderate investment" of CPU time. Before

accepting a message for delivery, the mail gateway would verify this computation;

accepting or rejecting the message accordingly. By design, verification of this com-

putuation required significantly less effort than was needed to produce it in the first

place—often by several orders of magnitude.

Under the Dwork and Naor proposal, the computational cost of sending millions

of messages a day could be made prohibitively expensive, shifting the computational

workload from sender to receiver without imposing a significant burden on regular

users of the electronic mail infrastructure.

Variants of this idea, sometimes referred to as the proof of work (row) concept,

have been demonstrated to be effective in a variety of resource exhaustion application,

including Adam Back's HashCash proposal [Bac97], Rabin, Shamir, and Wagner's

[RSW96] cryptographic time-lock, and Juels and Brainard's Client Puzzles [JB99].

Pseudosquares and Spam Prevention

A variant of modular square root problem may be adapted to implement a workable

anti-spam solution for electronic mail that involves the pseudosquares. The technique

"Typically, 2-10 seconds on of CPU time on a desktop workstation.

87

works as follows.

First, a mail server generates an extremely large prime p —1 (mod 4) and a

public hash function, H. Once chosen, these parameters may remain the same for

the remainder of the protocol.

Before accepting a message M for queuing, the mail server issues a challenge con-

sisting of the large prime p and an R-bit random bitstring, r. Using this information,

the sending client computes the message hash

h = 6H(rIM)

and finds a modular square root

h (mod p),

where 6 E {-1, 1} is chosen to ensure that the Legendre symbol, (A) = 1. The

client then sends the 4-tuple (s, 6, k, M), where k is the solution to s2 - h - kp = 0

to the server for verification.

At this point, the server may verify the computation by evaluating whether the

solution to c = s2—h--kp is exactly zero. An even faster verification is possible using

the randomized verification idea of Section 5.1.4, where the server chooses a random

100-bit prime, Q, verifies its primality using the pseudosquare test of Theorem 5.4,

and reduces the verification parameters modulo this prime; i.e.,

82 (mod Q)

k k (mod Q)

p (mod Q)

h €H(rllM) (mod Q).

88

Verification of the problem is a matter of evaluating whether - h - kp 0

(mod Q). Note that this result is zero whenever c = 0, and is virtually guaranteed"

to be nonzero if c =A 0.

Note that the value P may be precomputed whenever a new random prime, Q, is

chosen. A new prime, Q, should be generated at regular intervals. 13

The size of the prime p may be varied to change the workload demanded of

remote clients. Since p —1 (mod 4), the most efficient means known for computing

the modular square root, s2 h (mod p), is to evaluate s hP (mod p). This

modular exponentiation has an expected runtime of O((logp)3) bit operations using

the traditional algorithm [MvOV96]. Thus, the computational effort expended by

the client is effectively parameterized by the size of the prime p.

One consequence of this parameterization is that untrusted (or offending) clients

can be asked to perform a more intensive computation than known (or trusted)

clients; an idea which leads naturally into the concept of a decentralized web-of-

trust 14 for electronic mail delivery.

5.2 Pseudosquare Results

In [Luk95], Lukes offered empirical evidence to support both Bach's estimate (log L>

and the Bach and Huelsbergen density prediction (log L 12) by comput-
log P

ing the pseudosquares for all primes q ≤ 277, and comparing the results to 5.4 and

12 With probability 1 - 2-100.

"Typically, a new prime Q would be chosen after either a set amount of traffic had been processed,
or a fixed time interval had elapsed, whichever occurred first.
'4A model which was originally popularized by the Pretty Good Privacy (o) encryption pack-

age [Sta95].

89

5.5. Using CASSIE, the table of pseudosquares was extended to include all primes

q ≤ 359 and it was shown that the predictions of 5.4 and 5.5 still hold. These results

are given in Section 5.2.2.

5.2.1 Construction of the Problem

To extend the table of pseudosquares, two separate computations were performed.

Both computations were performed in software, and used Bernstein's doubly-focused

enumeration optimization ([Ber04]) to speed the computation.

First Run

The first computation, a proof of concept, was a doubly-focused enumeration im-

plemented in software over two processors. The underlying hardware was a dual-

processor Athlon MP 2000+. The software was compiled using GCC 2.96 under Red

Hat Linux 7.3 (kernel 2.4.18-27.7), using the -02 optimization.

To partition the problem over two processors, the acceptable pseudosquare residues

for 3, 5, and 8 were combined to produce the congruence condition x (mod 120) €

{ 1, 49}. Each of these two possibilities was then converted to a normalization func-

tion, x = 1 + 120y, and x = 49 + 120y, and assigned to its own processor. Apart

from the normalization function the problem setup on each of the processors was

identical.

The problem setup was very similar to Bernstein's in [Ber04]. The primes from

7 to 73 were used as doubly-focused moduli, arranged in the following manner:

= {7, 13, 29,31, 71,41,43, 59, 61} and M = {11, 17, 19,23,73,37,47, 53, 67}.

Thus, the sieve searched for solutions x = tM—tM, where M = flmnEMn m =

90

36, 854, 760, 367, 243, and M = Urn €M m = 36, 838, 009, 702, 043.

Values emerging from the doubly-focused sieve were further filtered by passing

them through an exclusion sieve containing the primes 79-127. Remaining results

were filtered to remove the perfect squares, and then tested against the primes up

to 400 to determine where their pseudosquare behaviour broke down.

The run was completed on April 6, 2003. The process took approximately 298

hours, giving an effective canvass rate for the software sieve of 2, 063, 394, 191,690, 106

2.06 x 1015 trials per second. The sieve, by virtue of the normalization function,

searched all solutions up to 120 x 2 64 , and in addition to verifying the previous re-

suits up to L281, was able to find 6 previously unknown pseudosquare values: L293

to £317. These results are summarized in Table 5.2.

Second Run

Once CAME had proved successful in the initial run, the pseudosquare computation

was retooled for implementation in software over 180 processors. The underlying

hardware was the University of Calgary's AOL; a Beowulf cluster consisting of 139

dual-Xeon Pentium Iv processors running at 2.4 GHz. The software was compiled

using GCC 2.96 under Red Rat Linux 7.3 (kernel 2.4.18-27.7), using the -02 opti-

mization.

To partition the problem over 90 dual-processor units, the acceptable pseu-

dosquare residues for 3, 5, 8, 11, 13, and 17 were combined to produce 180 acceptable

residue classes (mod 120120). Each of these residue classes was converted to a nor-

malization function. Using the MPI library [GLS94], the CASSIE software running on

each of the AOL nodes was able to determine which normalization function to use.

91

The rest of the problem setup was identical for each of the processors. The primes

from 17 to 83 were arranged into two sets: M = {17, 23, 29, 31, 37, 41, 47, 53, 71}

and M p = {19, 43, 59, 61, 67, 73, 79, 83}.

The sieve then searched for solutions x = tM-tM, where M = flmnEMn m =

94, 309, 209, 838, 733 M = rlmpEMp m = 94, 298, 926, 699, 921.

Values emerging from the doubly-focused sieve were further filtered by passing

them through an exclusion sieve containing the primes 89-127. Remaining results

were filtered to remove the perfect squares, and then tested against the primes up

to 400 to determine where their pseudosquare behaviour broke down.

The run was completed on July 26, 2003. The process took approximately 585

hours, giving an effective canvass rate for the software sieve of:

1, 052, 147, 624, 944, 915, 166 1.05 x 10 18

trials per second. The sieve, by virtue of the normalization function, searched all

solutions up to 120120 x 264, and in addition to verifying the previous results up

to L317, was able to find 6 previously unknown pseudosquare values: L331 to £359.

These results are summarized in Table 5.2.

5.2.2 Numerical Results

In Figure 5.1, the values of logL obtained from CASSIE have been plotted against

p, and compared with the experimental predictions, L > e Vp-12 and log L

In Figure 5.2, pseudosquare growth is shown as a function of n, where p,, is the

prime. The straight line represents the least squares line fitted to this data, and is

92

p LP Source

3
5
7
11
13

73
241

1009
2641
8089

Kraitchik (1924)
Movable strips

17 18 001
19 53 881
23 87 481
29 117 049
31 515 761
37 1 083 289
41 3 206 641
43 3 818 929
47 9 257 329

53 22 000 801 Lehmer (1928)
59, 61 48 473 881 Bicycle chain sieve

67 175 244 281 Lehmer (1954)
71, 73 427 733 329 SWAC

79 898 716 289

83, 89, 97 2805 544 681 Lehmer, Lehmer, and Shanks (1970)
101 10 310 263 441 DLS-1E7
103 23 616 331 489

107,109 85 157 610 409
113,127 196 265 095 009

131,137,139 2 871 842 842 801 Lehmer (1973)
149,151 26 250 887 023 729 DLS-157

157, 163, 167 112 434 732 901 969 Patterson, Williams (1988)
173,179 178 936 222 537 081 UMSU
181,191 696 161 110 209 049
193 2 854 909 648 103 881 Stephens, Williams (1989)

197,199 6 450 045 516 630 769 OASiS
211,223 11 641 399 247 947 921
227 190 621 428 905 186 449 Lukes, Williams (1991)
229 196 640 248 121 928 601 OASiS II
233 712 624 335 095 093 521 Patterson, Williams (1994)
239 1 773 855 791 877 850 321 MSSU
241 2 327 687 064 124 474 441
251 6 384 991 873 059 836 689
257 8 019 204 661 305 419 761

263,269,271 10 198 100 582 046 287 689
277 69 848 288 320 900 186 969
281 208 936 365 799 044 975 961 Bernstein (2001)

Table 5.1: Previous Pseudosquare Results

93

P LP Source

283
293,307

311,313,317

533 552 663 339 828 203 681
936 664 079 266 714 697 089

2 142 202 860 370 269 916 129

Williams, Wooding (2003)
CA SSIE

331

337
347, 349
353, 359

367

13 649 154 491 558 298 803 281
34 594 858 801 670 127 778 801
99 492 945 930 479 213 334 049

295 363 487 400 900 310 880 401
> 120120 x 264

Williams, Wooding (2003)
CASSIE/ACL
(180 processors)

given by:

Table 5.2: New Pseudosquare Results

Y = 0.67121885x + 4.77028237

Even with the relatively small number of data points, the slope of the least squares

fit in Figure 5.2 appears to be approaching the predicted value of log 2 = 0.69315,

i.e.L is of the form 2n(1+0(1)).

It is clear then, that the pseudosquare results obtained to date support the pre-

dictions of Equations (5.4) and (5.5). This is at least empirical evidence that the

polynomial-time nature of the primality test of Theorem 5.4 holds even in the absence

of the ERH.

5.3 Minus Class Numbers of Imaginary Cyclic Quartic Fields

Let p be a prime and let be a primitive p1h root of unity. Let N denote the maximal

imaginary subfield of degree d, a power of 2, of the cyclotomic field Q((1) and let

N denote the real quadratic subfield of degree d/2 of N. The minus (relative) class

number h of N is given by

h = hN/hN+

94

60

50

40

30

20

10

0

0

..

••••

•
••

•,.••

*

II,

.111

•*

++ *
•
• lIa

••

•••

•

A MA
AAAM

A AAA
AA

•
•

A

I-

vt

AA tA

A ALA

AAA

100 200

0

300

• log(Lp) a p In2/Iog(p) A sqrt(p/2)

Figure 5.1: Pseudosquare growth vs. p

400

95

60

50

40

20

10

0

..

y = 0.67121885x+ 4.77028237

0 20 40

n

60

Figure 5..: Pseudosquare growth vs. n

80

96

where hN and hN+ are the class numbers of N and N+, respectively. For example,

if p —1 (mod 4), then N := N = Q(/), N Q, and := h is the class

number of Q(/). In this case h; <p is always true.

If p 5 (mod 8), there exist integers a and b such that p = a2 + b2, a —1

(mod 4), b 2 (mod 4), and ab 2 (mod 8). Furthermore, these conditions suffice

to determine a and b uniquely. In this case

Q(_(+b)) N:=N=Q()

and if h is the minus class number of N, then is not necessarily less than p. In

fact, for any c> 0 it can be shown that there exists an infinitude of values of p such

that > cp. For the remainder of this discussion, we will restrict our attention to

the case of when p 5 (mod 8).

Let Xp denote the only quartic Dirichlet character of conductor p such that

Xp(2) = i (i +1 = 0). If, as usual, the Dirichlet L-function is denoted as

then

L(s,x) = 'Xp()
L ,s
n=1

p L(1,xp)2 jL(o, XP) I2
27r2

(5.6)

In [Lou98J, Louboutin developed a method of approximating the computation of

Ii (0, Xp). Using this result, he was able to compute unconditionally all the values of

for p < iO. Furthermore, by restricting the value of p such that (q) = 1 for

q E {3, 5, 7, 11, 13, 17, 19, 23, 29}, he was able to use his method to discover that if

p = 1679516029, then h; = 904595821 > p/2 (Ic/p 0.5386), but he was unable

to say whether this was the least such p for which h; > p/2.

97

The purpose of this investigation is to attempt to find values of p for which

larger values of the ratio h;/p are obtained by prescribing the quartic character

(q) for the first several odd primes q. Specifically, we addressed a challenge by

Louboutin to find a p for which hi/p > 1. Using a special construction and sieve

methods, a conditional result (contingent upon the ERH) was successfully obtained.

The construction of this sieve problem will now be described.

5.3.1 Tabulation Approach

The main idea is a modification of Louboutin's earlier idea of prescribing the quartic

character of the primes for which could be evaluated. Instead of using only the

first 9 primes, prescribe p as follows:

• x(q) = 1 for 3 < q 31 (the first 10 odd primes),

• x(q) = 1 for 5 of the next 10 primes.

Since

L(1,2) = fi (q-p(q))
q

this maximizes the first several terms of the Euler product for IL (1, X) I.

In order to filter out possible prime candidates quickly by recognizing whether or

not this characterization holds, a result of Emma Lehmer [Leh58] may be employed.

For p = a2 + b2 as above and (-Q) = 1 (clearly if p(q) = 1, (1) = 1)

• Xp()() ifqb

• xp(q)=() ifqa

98

A p—a2+b2 hi/p
47 76400598855755832109 0.58
53 13709687244002014322509 0.57
59 13809503731429871522509 0.68
61 1514508348294536139602509 0.61
67 1514508348294536139602509 0.61

Table 5.3: Minimal p = a2 + b2 with a = 3

/ -2X(A+1) x() =) ifab # 0 (mod q) and a pb (mod q) for any such that

= ()2 - 1)' (mod q), and A # 0,±1 (mod q).

She also showed that there are exactly 1 (q - 4 - 3 () - 2 (f)) such values of
mod q.

Let P = P1P2 . pi be the product of the first i odd primes. Our initial sieve-based

approach involved fixing the value of a such that a 0 (mod 3), b 2 (mod 4),

b (mod P), and finding minimal solutions such that p = a2 + b2 is prime.

This attempt did not produce values for much better than to those obtained via

a direct calculation, although considerably less processing power was required. For

instance, the brute force tabulation of h; for the 113,764,515 primes p < 10'°,p 5

(mod 8) took 1564 days of CPU time on 269 2.4 GHz Xeon processors running Linux,

producing a maximal h;/p 0.69599. The sieve problems for the choices a = 3 and

a = 9 took approximately 75 minutes on a single-processor AMD Athlon 2000+, and

produced similar ratios. These sieve results are summarized in Tables 5.3 and 5.4.

A detailed account of the brute-force tabulation is given in [JWWO4}.

99

A p = a 2 + b 2 Ic/p
47 51450477912331322581 0.54
53 4713675167444727400981 0.58
59 6289887916225721232181 0.57
61 1735951449151478486352181 0.68
67 9189441298229683073700181 0.64
71 96831855201472164369820981 0.63
73 96831855201472164369820981 0.63

Table 5.4: Minimal p = a2 + b2 with a = 9

5.3.2 Construction Approach

The next approach was to construct a value p using a technique of Teske and Williams

[TW99]. Here, we obtained an approximation to IL (1, XP) 12 by computing

H(2 1). q

(We assume x(q) = 1 for all primes q ≤ Q.) If Q = 257, then this quantity

exceeds 2,7r 2; thus, since the tail of the modulus of the Euler product is likely to be

near 1, by (5.6) it is reasonable to hope that hT > p for p such that x,(q) = 1 for

all odd primes q ≤ 257.

To find such values of p we first computed

I. b 2 (mod 4Q), where Qi is the product of all primes q ≤ 257 such that

q1 (mod 4);

2. a = Q2, where Q2 is the product of all primes q < 257 such that q 3 (mod 8).

By Lehmer's results in Section 5.3.1 it is clear that p(q) = 1 for q I Q1Q2. For the

primes q 7 (mod 8), we need to find X such that aX b (mod q), 2

(mod q) and (1)) = —1. Again, we used CASSIE with this sieve construction to

100

produce suitable values of X modulo Q3 where Q3 is the product of all primes q < 257

with q7 (mod 8).

If (QX) + b2 is not a prime, we put Y = X + tQ3 in place of X and put

f(t) = QY2 + b2 = QQt2 +2 QQ3Xt + QX2 +b 2 .

If we find prime values for f (t), then such primes p will satisfy xp (q) = 1 for all

q ≤ 257.

Using q < 257 yields

= 879213685579110366036964153

Q2 = 6045516990773996918315926683

= 3107339771040020951565899375487096822611929605890

The difficulty with this approach is that the resulting values for p are much

too large for Ic to be evaluated by our techniques in Section 5.3.1. However, an

estimation of Ic/p may be obtained using a technique originally due to Bach, and

later modified by te Riele and Williams [tRW03].

5.3.3 Sieve Results

Using the construction in the previous section, CASSIE was able to obtain 14052

values of X in 18 minutes on a dual-processor AMD Athlon 2000+, the smallest of

which was 1385546961. Using the values X = 62204701189 and t = 0, we find that

f (t) is a prime

p = 965556045268704983009099019639798584657246700148135006824947423672

3465700952560829330262763823669 (97 decimal digits).

101

The estimation technique of [tRWO3] notes the following:

If S(x) = + j) log(x + j), B(x, x) > q<x q- p(q)' a = (x +) 10-j) ,

then under the ERH

T-1

where

log L(1,x) -

=0

aj log B(T + i, Xp)

A(T, p) = c(p)G(T) + H(T)

<A(T,p)

c(p) = (logp +), and G(x), 11(x) are defined in [tRW03].

Putting

T-1

S(T,p) = aRe(logB(T + i, Xv)) = E w(q) log
i=0

where

then

Hence

E T-1 a

q<2T-1

for q <T

forT≤q<2T-1

IlogIL(1,x)I—S(T,p) I <A(T,p)

log IL (1, xp)I > S(T,p) - A(T,p)

q

q - X,, (q)

Using this method with our 97 digit prime and T = 16830000 we obtain:

(5.7)

S(T,p) = 1.50800717, A(T,p) = 0.01499807

102

Thus, by (5.7)

log IL (1, 2(r) > 1.50800717 - 0.01499807

> 1.49300910

> log(V) (i 1.491303476)

and hence, by (5.6)

- - IL (1, x) I2
>1 h/p_ 2ir2

as desired.

Chapter 6

Conclusions and Summary

Say what you have to say and the first time you come to a sentence with a grammatical

ending; sit down.

—Winston Churchill

6.1 Summary

In this thesis, the development of a hybrid hardware/software sieve named CASSIE has

been detailed. CASSIE represents a deviation from previous fixed-plus-variable sieve

designs in that a dual-language design approach has been employed. The result is a

high-level scripting language with support for both arbitrary precision mathematics,

and sieve device control.

6.2 Results and Conclusions

Using CASSIE, 12 previously unknown pseudosquare results were obtained, offering

further numerical evidence that existing unconditional primality testing algorithms

may be improved to O((log N)3 °(')).

A two-processor (single workstation) software implementation of CASSIE was able

to achieve canvass rates of 2.06 x 1015 trials per second on the pseudosquare problem

putting it ahead of even the fastest dedicated hardware sieve (currently, the Star

103

104

Bridge Hypercomputer, which is predicted to achieve a canvass rate of 39 x 10 12

trials per second for the same problem.)

When combined with 180-processors of the University of Calgary's AOL, a canvass

rate of 1.05 x 1018 trials per second was obtained for the pseudosquare problem—a

result that was at least an order of magnitude above expectations for a software

sieve, even with 180-fold parallelism.

With these new pseudosquare results, the modified Selfridge-Weinberger primal-

ity test described in Theorem 5.4, combined with trial division up to 220 offers one

of the fastest known methods for proving the primality of integers up to 2'°°. Two

applications involving this test were described: a Rabin-Williams signature scheme

with extremely fast verifications, and a computational solution to the unsolicited

commercial email (spam) problem.

Finally, CASSIE was able to obtain a 97-digit prime, p, for which the minus

(relative) class number of an associated imaginary cyclic quartic field exceeded 1,

answering a challenge originally posed by Louboutin.

6.3 Future Improvements

6.3.1 Hardware Improvements

The reprogrammable hardware (FPGA) component of CAME has not yet been brought

online. When it is, it is expected that the sieve rates of each of the doubly-focused

sieve problems may be improved. It is not clear yet, however, if the simultaneous

enumeration algorithm will act as a bottleneck, limiting any gains the hardware may

offer.

105

A significant improvement may be realized by building the simultaneous enumer-

ation algorithm into hardware, via a pair of pipelined multipliers and a subtractor.

Unfortunately, the single Xilinx of the Nallatech Ballynuey board is not large enough

to accommodate a design of this size. Further investigations may reveal if adding ad-

ditional Xilinx modules to the Nallatech board' may make this approach realizable.

Certainly, a more powerful hardware architecture, such as the Star Bridge Hypercom-

puter design employed by Wake, et al.[WBO3] may be flexible enough to implement

this idea; dedicating two Processing Elements to the individual sieve problems, and

the remaining elements to the multiplier circuitry.

6.3.2 Software Improvements

From Bernstein's description [Ber04] of his own software sieve implementation, it

seems that at least a 2-fold improvement in sieving speeds may be achievable through

further optimization of the software sieve code.

If the Tel-based command language is not to taste, the use of SWIG to generate

the bindings between the CASSIE library and the scripting language make it possible

to target additional languages. It would be relatively straightforward to produce

Python, Perl, or even PHP-flavoured variants of the CASSIE command language.

'The Nallatech Ballynuey 3 board employed by CASSIE can accommodate up to 4 Xilinx devices

Bibliography

[AB] Swox AB. GNU MP library. http://www.swox.com/gmp/.

[AGS] Hal Abelson, Philip Greenspun, and Lydia Sandon. Tcl for web nerds.

http://philip.greenspun.com/tcl/.

[AKSO2] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P.

(preprint), August 2002.

[APR83] Leonard M. Adleman, Carl Pomerance, and Robert S. Rumely. On dis-

tinguishing prime numbers from composite numbers. Annals of Mathe-

matics. Second Series, 117(l):173-206,1983.

[Atk65] A. 0. L. Atkin. On pseudo-squares. Proceedings of the London Mathe-

matical Society (8), 14a:22-24, 1965.

[Bac90] Eric Bach. Explicit bounds for primality testing and related problems.

Mathematics of Computation, 55(191) :355-380, 1990.

[Bac97] Adam Back. Hashcash—a denial of service counter-measure. http: II

www.cypherspace . org/#adam/hashcash/,1997.

[BB94] Nathan D. Bronson and Duncan A. Buell. Congruential sieves on FPGA

computers. In Walter Gautschi, editor, Mathematics of computation,

1943-1993: a half-century of computational mathematics: Mathematics

of Computation 50th Anniversary Symposium, August 9-13, 1993, Van-

convey, British Columbia, volume 48, pages 547-551, Providence, RI,

106

107

USA, 1994. American Mathematical Society.

[Bea96] David M. Beazley. SWIG: An easy to use tool for integrating scripting

languages with C and C++. In Proceedings of the Fourth Annual Tcl/Tk

Workshop, Monterey, California, USA, July 10-13 1996. USENIX Asso-

ciation.

[Bee39] N.G.W.H. Beeger. Report on some calculations of prime numbers. Nieuw

Archief voor Wiskunde, 20(2):48-50, 1939.

[Bee46] N.G.W.H Beeger. Note sur la factorisation de quelques grands nom-

bres. Institut Grand-Ducal de Luxembourg, Sec. d. Sc. nat. phys. math.

Archives, 16:93-95, 1946.

[BerOl] D. J. Bernstein. Enumerating solutions to p(a) + q(b) = r(c) + s(d).

Mathematics of Computation, 70:389-394, 2001.

[Ber02] D. J. Bernstein. Proving primality after Agrawal-Kayal-Saxena. http:

I/cr. yp . to/papers/aks . pdf, 2002.

[Ber03a] D. J. Bernstein. More news from the Rabin-Williams front. http:

/Icr.yp.to/talks/2003front2.ps, November 2003. Conference Talk,

Mathematics of Public Key Cryptography (MPKC) 2003. University of

Illinois at Chicago.

[Ber03b] D. J. Bernstein. Proving tight security for standard Rabin-Williams sig-

natures. http://cr. yp . to/papers . html#rwtight, September 2003.

108

[Ber04] D. J. Bernstein. Doubly focused enumeration of locally square polyno-

mial values. High Primes and Misdemeanors—Conference in Number

Theory in honour of Professor Hugh Williams, 2004. To appear.

[BH93] Eric Bach and Lorenz Huelsbergen. Statistical evidence for small gener-

ating sets. Mathematics of Computation, 61(203):62-89, 1993.

[BLS02] John Brilihart, D.H. Lehmer, J.L. Selfridge, Bryant Tuckerman, and

S.S. Wagstaff Jr. Factorizations of b ± 1, b=2,8,5,6,7,1O,11,12 Up to

High Powers, volume 22 of Contemporary Mathematics. American Math-

ematical Society, 2002.

[BR98] R. Balasubramanian and D. S. Ramana. Atkin's theorem on pseudo-

squares. Institut Mathe'matique. Publications. Nouvelle Série, 63(77):21-

25,1998.

[Bri] John Brilihart. Private correspondence.

[Bri92] John Brilihart. Derrick Henry Lehmer. Acta Arithmetica, 62(3) :207-220,

1992.

[BS67] John Brilihart and J. L. Selfridge. Some factorizations of 2 ± 1 and

related results. Mathematics of Computation, 21(97) :87-96, 1967.

[B593] Eric Bach and Jonathan Sorenson. Sieve algorithms for perfect power

testing. Algorithmica, 9:313-328, 1993.

[BSO3] D. J. Bernstein and Jonathan P. Sorenson. Modular exponentiation via

the explicit Chinese Remainder Theorem. http: I/cr . yp . to/papers.

109

html#meecrt, September 2003.

[Car20a] E.-O. Carissan. Machine a résoudre les congruences. Bulletin de la

societe' d'Encouragement pour l'Industrie Nationale, 132:600-607, 1920.

[Car20b] E.-O. Carissan. Principe méchanique et description de la machine du Ct.

E. Carissan. Unpublished, 9 May 1920.

[car33] Machine performs difficult mathematical calculations. News Service Bul-

letin, Ill(3):19-22, 1933. Carnegie Institution of Washington. Washing-

ton, D.C.

[CEFT62] D. G. Cantor, G. Estrin, A. S. Fraenkel, and R. Turn. A very high-

speed digital number sieve. Mathematics of Computation, 16(78):141-

154, 1962.

[Cli48] R. F. Clippinger. A logical coding system applied to the ENIAC (Elec-

tronic Numerical Integrator and Computer). Technical Report 673, Bal-

listic Research Laboratories, Aberdeen Proving Ground, Maryland, 29

September 1948.

[Cob66] Alan Cobham. The recognition problem for the set of perfect squares.

Technical report, IBM Research, April 1966.

[Col03] F. N. Cole. On the factoring of large numbers. Bulletin of the American

Mathematical Society, pages 134-137, December 1903.

[dF94] Pierre de Fermat. Oeuvres de Fermat, volume 2. Gauthier-Villars et fils,

1894.

110

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting

junk mail. Advances in Cryptology CRYPTO '92, (LNCS 740):139-147,

1992.

[fol] FOLDOC: The free online dictionary of computing. http://www.

foldoc . org/foldoc/.

[FS97] Martin Fowler and Kendall Scott. UML Distilled: Applying the Standard

Object Modelling Language. Addison Wesley Longman, Inc., 1997.

[G12] A. Gérardin. Question 335. Sphinx-Oedipe, 7:47-48, 1912.

[G7] A. Gérardin. Machine a congruences (modèle 1937). 70C Congrès des

Societe' Savantes de Paris et des Départements, pages 14, II pp. 37, 1937.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns: Elements of Reusable Object- Oriented Software. Addison-

Wesley, 1995.

[GLS94] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Pro-

gramming with the Message Passing Interface. MIT Press, Cambridge,

Massachusetts, USA, 1994.

[Ha133] Marshall Hall. Quadratic residues in factorization. Bulletin of the Amer-

ican Mathematical Society, 39:758-763, 1933.

[Hurl Alex Hurwitz. Private correspondence.

111

[Hus97] H.D. Huskey. SWAC—Standards Western Automatic Computer: the

Pioneer Day session at NCC. July 1978. Annals of the History of Com-

puting, IEEE, 19(2):51-61, 1997.

[HW79] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Num-

bers. Oxford University Press, fifth edition, 1979.

[IT89} R. N. Ibbett and N. P. Topham. Architecture of High Performance

Computers, volume II: Array processors and multiprocessor systems.

Springer-Verlag, 1989.

[JB99] A. Juels and J. Brainard. Client puzzles: A cryptographic defense against

connection depletion attacks. pages 151-165, 1999.

[JWWO4] M.J. Jacobson Jr., H.C. Williams, and Kjell Wooding. Minus class num-

bers of imaginary cyclic quartic fields. In Proceedings of the Sixth In-

ternational Symposium, ANTS- VI, Lecture Notes in Computer Science.

Springer, 2004. (Submitted for publication).

[Kna99] Anthony W. Knapp. Frank Nelson Cole. Notices of the American Math-

ematical Society, 46(8):860, September 1999.

[Kra24] Maurice Kraitchik. Récherches sur la Théorie des Nombres. Tome I.

Gauthier-Villars, Paris, 1924.

[Kra29] Maurice Kraitchik. Re'cherches sur la Théorie des Nombres. Tome II.

Gauthier-Villars, Paris, 1929.

112

[Law96] F. W. Lawrence. Factorisation of numbers. Quarterly Journal Pure and

Applied Mathematics, 28:285-311, 1896.

[Leh] D. H. Lehmer. A half-hour discussion of the delay line sieve from the

viewpoint of the operator-mathematician. Typewritten transcript.

[Leh28] D. H. Lehmer. The mechanical combination of linear forms. American

Mathematical Monthly, 35(4):114-121, 1928.

[Leh30] D. H. Lehmer. A fallacious principle in the theory of numbers. Bulletin

of the American Mathematical Society, 36:847-850, 1930.

[Leh34] D. H. Lehmer. A machine for combining sets of linear congruences. Math-

ematische Annalen, 109(5):661-667, 1934.

{Leh36} D. H. Lehmer. On the converse of Fermat's Theorem. The American

Mathematical Monthly, 43(6):347-354, 1936.

[Leh46] D. H. Lehmer. Preliminary proposal for the design and construction of

the electronic sieve. U.C. Berkeley, unpublished, December 1946.

[Leh49] D. H. Lehmer. On the converse of Fermat's Theorem II. The American

Mathematical Monthly, 56(5):300-309, 1949.

[Leh53] D. H. Lehmer. The sieve problem for all-purpose computers. Mathemat-

ical Tables and Other Aids to Computation, 7(41):6-14, 1953.

[Leh54] D. H. Lehmer. A sieve problem on pseudo-squares. Mathematical Tables

and Other Aids to Computation, 8(48):241-242, 1954.

113

[Leh58] Emma Lehmer. Criteria for cubic and quartic residuacity. Mathematia,

5:20-29, 1958.

[Leh66] D. H. Lehmer. An announcement concerning the delay line sieve DLS

127. Mathematics of Computation, 20(96):645-646, October 1966.

[Leh76] D. H. Lehmer. Exploitation of parallelism in number theoretic and com-

binatorial calculation. In B. L. Hartnell and H. C. Williams, editors,

Proceedings of the Sixth Manitoba Conference on Numerical Mathemat-

ics, pages 95-111. Utilitas Mathematica, 1976.

[Leh80] D. H. Lehmer. A history of the sieve process. In N. Metropolis,

J. Howlett, and Gian-Carlo Rota, editors, A History of Computing in

the Twentieth Century, pages 445-456. Academic Press, Inc., 1980.

[LLS7O] D. H. Lehmer, Emma Lehmer, and Daniel Shanks. Integer sequence

having prescribed quadratic character. Mathematics of Computation,

24(110):433-451, 1970.

[Lou98] S. Louboutin. Computation of relative class numbers of imaginary

abelian number fields. Experimental Mathematics, 7:293-303, 1998.

[LPW95] R. F. Lukes, C. D. Patterson, and H. C. Williams. Numerical siev-

ing devices: Their history and some applications. Nieuw Archief voor

Wiskunde. Vierde Serie, 13:113-139, 1995.

[LPW96] Richard F. Lukes, Cameron D. Patterson, and H. C. Williams. Some

114

results on pseudosquares. Mathematics of Computation, 65(213):361-

372)S25—S27)1996.

[Luk95] Richard F. Lukes. A Very Fast Electronic Number Sieve. PhD thesis,

The University of Manitoba, 1995.

[MB75] Michael A. Morrison and John Brilihart. A method of factoring and the

factorization of f. Mathematics of Computation, 29(129):183-205, 1975.

[MvOV96] A. Menezes, P van Oorschot, and S. Vanstone. Handbook of Applied

Cryptography. CRC Press, 5 edition, 1996.

[Nol] Landon Curt Noll. C-style arbitrary precision calculator. http: //www.

isthe . com/chongo/tech/comp/caic/.

[0us94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, 1994.

[0us98] John K. Ousterhout. Scripting: higher level programming for the 21st

century. IEEE Computer, 31(3):23-30, March 1998.

[Pat83] Cameron Douglas Patterson. Design and use of an electronic sieve. Mas-

ter's thesis, University of Manitoba, 1983.

[Pat92] Cameron Douglas Patterson. Derivation of a High Speed Sieve Device.

PhD thesis, The University of Calgary, 1992.

[Pom82] Carl Pomerance. The search for prime numbers. Scientific American,

247(6):136-147, December 1982.

115

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and

timed-release crypto. Technical Report MIT/LCS/TR-684, 1996.

[Sch97] A. Schinzel. On pseudosquares. New Trends in Probility and Statistics,

4:213-220, 1997.

[See86] P. Seelhoff. Ein neues kennzeichen für die primzahlen. Zeitschrift fur

Mathematik und Physik, 31:306-310, 1886.

[SS71] Arnold Schonhage and Volker Strassen. Schnelle multiplikation grosser

zahlen. Computing, 7:281-292, 1971.

[Sta95] William Stallings. How to certify public keys without a central authority.

Byte Magazine, 1995.

[Ste89] Allan J. Stephens. OASiS: An Open Architecture Sieve System for Prob-

lems in Number Theory. PhD thesis, The University of Manitoba, 1989.

[SW9O] A. J Stephens and H. C. Williams. An open architecture number sieve.

In Number Theory and Cryptography (Sydney, 1989), volume 154 of Lon-

don Math. Soc. Lecture Note Ser., pages 38-75. Cambridge Univ. Press,

Cambridge, 1990.

[SWM95] J. Shallit, H. C. Williams, and F. Morain. Discovery of a lost factoring

machine. The Mathematical Intelligencer, 17(3) :41-47, Summer 1995.

[tRW03] H.J. te Riele and H.C. Williams. New computations concerning the

Cohen-Lenstra heuristics. Experimental Mathematics, 12(l):99-113,

2003.

116

[TW99] E. Teske and H.C. Williams. A problem concerning a character sum.

Experimental Mathematics, 8(1):63-72, 1999.

[WBO3] H. A. Wake and D. A. Buell. Congruential sieves on a reconfigurable

computer. 11th Annual IEEE Symposium on Field-Programmable Gus-

torn Computing Machines, pages 11-18, April 2003.

[Wed01] Sebastian Wedeniwski. Primality Tests on Commutator Curves. PhD

thesis, Eberhard-Karls-Universität, Tübingen, 2001.

[Wel97] Brent B. Welch, editor. Practical Programming in Tcl and Tk. Prentice

Hall, 2 edition, 1997.

[Wil78J H. C. Williams. Primality testing on a computer. Ars Combinatoria,

5:127-185, 1978.

[Wil80] H. C. Williams. A modification of the RSA public-key encryption pro-

cedure. IEEE Transactions on Information Theory, IT-26(6):726-729,

1980.

[Wil98] H. C. Williams. Edouard Lucas and Primality Testing, volume 22

of Canadian Mathematical Society Series of Monographs and Advanced

Texts. Wiley-Interscience, 1998.

[WM68] A. E. Western and J. C. P. Miller. Tables of Indices and Primitive Roots,

volume 9 of Royal Society Mathematical Tables. Published for the Royal

Society at the Cambridge University Press, London, 1968.

Appendix A

CASSIE User's Manual

A.1 Introduction

The CASSIE control language is a superset of Tel, the Tool Command Language.

A brief introduction to Tel will now be given. For a more detailed treatment, see

[Wel97] or [AGS].

A.1.1 Tcl Overview

As a programming language, Tel is quite Lisp-like (a resemblance for which I apol-

ogize in advance). Tel syntax is extremely simple, consisting of a procedure name

followed by its arguments. i.e.

procedure-name argi arg2 arg3
procedure-name argi Csubprocedure subargi subarg2]

Sub-procedures invocations are denoted by enclosing them in square brackets, as

in [subprocedure subargi subarg2]. Variables names are indicated by prefixing

them with a dollar sign, i.e.$variable.

In Tcl, white space is used as an argument separator. If white space is intended

to be part of a string literal, grouping delimiters must be used. There are two sets of

grouping delimiters in Tcl: double quotes (") and curly braces (f 1). These delim-

iters differ in that variable and subcommand interpolation is performed in quoted

strings, but not in text enclosed by curly braces. i.e.

117

118

set ± 1

puts "$i"

puts {$±}
puts "[expr 2 + 2]"

puts -C[expr 2 + 2]}

will produce the output:

1

$1

4

[expr 2 + 2]

Here, the puts function simply prints a string to the standard output device.

The expr evaluates an arithmetic expression in infix notation.

There are two main data types of interest in Tel: strings and lists. In Tel, every

data type has a string representation, and thus effectively, Tel treats every piece of

data as a string unless instructed otherwise.

Lists in Tel may be formed by enclosing space-delimited elements in curly braces.

For instance, the string

{7 {1 2 4}}

may be treated as a list containing two elements: "7" and "{i 2 4}". Of course, the

string {i 2 4} may be subsequently treated as a list containing the three elements

"1", "2", and "4". This nesting of lists allows for the creation of more complex data

types.

Lists are decomposed into their constituent strings using the 1±ndex procedure.

List elements are indexed starting at zero. For example, the commands

set 1 -(this is a -C1±st example}}

puts [lindex $1 01

119

will display the string "this", while

set 1 -Cthis is a -Clist example}}
puts [lindex $1 3]

displays the string "list example".

A.1.2 Using Objects

Though object-oriented flavours of Tcl exist,' Tcl itself—and thus the CASSIE com-

mand language—is is a strictly procedural language. One common technique for

achieving a semblance of object-orientation is to use a command-subcommand mech-

anism for procedures. i.e.

object method argi arg2

This technique is used throughout the CASSIE command language. Complex data

structures implemented and manipulated in this manner will be referred to as objects

throughout this manual.

In general, objects are instantiated using a command of the form:

object—type <obj ect_name>

i.e.to create a ring named ringO

ring ringO

Attributes for a given object may be set using the configure command, followed

by a flag representing the attribute name and its desired value. Multiple attributes

may be set with a single configure command, as in the following:

'See, for example, the [incr tcl] project at http://www.tcltk.com/itcl

120

<object_name> configure -paramaterl valuel -parameter2 va1ue2

i. e.to create a monitor object, and set its logfile and rptfile attributes to appro-

priate values:

monitor m
m configure -logfile cassie.log -rptfile cassie.rpt

Attributes may be examined by invoking the cget method with the attribute

name as a flag. For example, to see the current interval setting for the previously

defined m object:

m cget -interval

Methods may be invoked by simply specifying the method name (and any pa-

rameters) after the object name. i.e.to create a sieve called pseudosquare, attach

two rings, and run the problem, the following script could be used:

sieve pseudosquare
pseudosquare ring-add {{8 1} {3 1}}
pseudosquare ring-add -C{5 {1 4}} {7 {1 2 4}}}
pseudosquare run

In many cases, object-specific methods will be introduced to modify the under-

lying object attributes, as directly modifying certain objects may result in a sieve

representation that is internally inconsistent. For this reason, use of the configure

method for setting sieve attributes should be avoided, where possible.

For example, while it is certainly possible to set the modulus and residue at-

tributes of a sieve object using a sequence of commands like:

sieve s
s configure -modulus 24 -residue 1

121

It is much safer to use the normalize method of the sieve object to perform the

same task, as any attached sieve rings will be affected by the change:

sieve s
s normalize 24 1

A.1.3 CASSIE Object Hierarchy

The main user-modifiable object used by CASSIE is the sieve object. Most user

interaction is handled by this object. Under the hood, a number of additional objects

are used, including

monitor - Object containing information pertinent to logging, checkpointing,

and monitoring a particular sieve run.

• ring - Object containing a modulus and its associated (acceptable) residues.

• ssieve - A singly-focused sieve implementation.

• scoreboard - A list of moduli and their associated "best" sieve values.

The relationships between these objects can be shown using a Unified Modeling

Language (uML) diagram[FS97], as is done in Figure A.I.

The various CASSIE control language objects will now be described in more detail.

A.2 Sieve Object Detail

Most of the user's interaction with the sieve will occur via the sieve object.

The sieve object is the main container for a sieve problem. It encapsulates

the sieve implementation (one or two ssieve objects), checkpoints (monitor ob-

ject), results (scoreboard object), filter procedures (the filter_proc attribute), and

122

scoreboard
+best: uint64[]
+bestonly: boolean
+inodulus: uint32[]
+nuxnscores: uint32
+residues: int(] C]

I,-
sieve

+add(ring)
+del (index:uint32)
+denorinalize(xn:uint32 ,r:uint32)
+dunip()
+get ()
+get (index:u1nt32)
+normalize (m: u1nt32, r :ujnt32)
+reset ()
i-set (index: u1nt32, x : u1nt64)

monitor
+bestonly: boolean
+dieafter: uint32
+interval: uint64
+J.ogfd: FILE *
+logfile: string
+rptfd: FILE *
+rptfile: string
+numchk: uint32
+numsolns: uint64

1
modulus: uint32 = 1
-residue: uint32 = 0
-filter_proc: pointer
+extra: MPINT

i-log (path: string)
i-report (path: string)

1

ssieve
-cnt: uint32(]
-diffbufsz: uint32
-diffs: uint32(]
i-end: uint64
+frac: uint32
i-modulus: uint64
+nuxndiffs: uint32
+numresults: uint64
+numrings: uint32
-rings: ringf]
-start: uint64

+bestonly(boolean)
+diffbufsize(size: uint32)
i-end(value:u1nt64)
i-extra_get ()
i-extra_set (z :MPINT)
i-fill()
i-f ilter(type: string)
-i-interval (value: uint64)
-i-i og (path :string)
i-normalize (m:uint32 , r:uint32)
-i-report (path: string)
-I-reset ()
i-ring_add (rings: list)
i-ring_del (index: uint32)
i-ring_get ()
i-ring_get (index: uint32)
i-run C)
i-score_add (ring)
i-score_del (index: uint32)
-i-score_get ()
i-score_get (index: uint32)
1-score_reset ()
i-sieve_state ()
i-start (val :uint32)

0.

+diff_get (num:uint32)
i-fill()
i-reset ()
i-ring_add (rings: list)
i-ring_del (index: uint32)
-I-ring_get H
-i-ring_get (index: uint32)
i-rotate (val :u1nt32)
i-state C)

1

1

ring
i-modulus: uint32
-bits: bitfield

i-clear (bit :uint32)
+copy()
i-denormalize (m:u1nt32 , r:u1nt32)
i-dump ()
i-get ()
+isset (bit :uint32)
i-set(bit:u1nt32)
i-normalize (m:uint32 , r:uint32)

Figure A.1: UML Class Diagram for Sieve Objects

123

optimization parameters (modulus, residue attributes) into a single object. From a

design pattern standpoint[GHJV95], the sieve object is a facade for the underlying

sieve implementation.

A.2.1 Attributes

The following attributes comprise the sieve object:

modulus : uint3 - Modulus used for Lehmer normalization[Leh53]. (Default:

1). Do not set this value manually. Instead, use the normalize/denormalize

methods, described below.

residue : uint3 - Residue used for Lehmer normalization. (Default: 0). This

value should not exceed (or equal) the value of the modulus attribute. Do

not set this value manually. Instead, use the normalize/denormalize methods

described below.

filter_proc : function pointer - Pointer to a C function that will filter the data

emerging from the sieve. Do not modify this field directly. Use the filter

method described below.

extra : multiprecision - This is a multipurpose field used to pass an optional filter-

specific parameter to sieve filter procedures. i.e.The abprime filter uses this

parameter to pass the value of a2 so that the value a2 + b2 (b is obtained from

the sieve) can be tested for primality.

124

A.2.2 Methods

The following methods are defined for the sieve object. Note that many of these

methods simply act as proxies for methods of the underlying ssieve, monitor, ring,

and scoreboard objects:

bestonly : boolean - (Default 0) If set to 0, all acceptable solutions found by the

sieve will be written to the associated output file. If 1, only values better

than the best entries of the associated scoreboard object are written. This

functionality is useful primarily in doubly-focused sieves, where sieve solutions

emerge from the sieve in essentially random order.

diffbufsize size : uint82 - The number of sieve outputs (stored as integer differ-

ences) to obtain each time the sieve buffer is filled. Because sieve solutions

are obtained by examining solution taps in parallel, there is a lower bound

(currently 33) on this parameter. For small, sparse sieve problems, smaller duff

buffers may be desirable to avoid sieving much beyond the stated endpoint of

the problem.

end value : uint32 - Modify the upper bound value for the sieve problem. (Stored

internally as the end attribute of the ssieve object). This method returns the

old end value.

extra-get - Return the current value of the extra attribute.

extra-set value : multiprecision - Set the value of the extra attribute to the

supplied multiprecision integer value.

125

fill - Fill up to diffbufsz values into the underlying ssieve objects duff buffer. Values

are entered into the buffer as differences from the previous sieve output. The

sieve is operated from its current state, and the numdiffs attribute of the

underlying ssieve object is updated to reflect the number of values that were

placed into the duff buffer. This method is normally used only for debugging.

For normal operation, see the run method.

filter filter-type - Add a filter to the sieve outputs.

Filters are C functions with a declaration matching the prototype:

mt filter_proc(unsigned long long x, struct sieve *sv);

Filters are intended to return the value FILTER-YES if the filter condition is

matched (and hence, the indicated x value should be excluded from consid-

eration) and FILTER-NO otherwise. These return values are defined in the

filters.h header file.

Filters are defined in the filters . c file, and its associated header file. Cur-

rently supported filter types are:

none - do not filter.

abprime - accept only (probable) prime values of the form a'+ b2, where b is

the value obtained from the sieve, and a2 is passed via the extra attribute.

perfect-square - exclude perfect squares.

interval interval uint32 - The number of sieve fills between checkpoints (de-

fault: 10000). This parameter is typically adjusted to produce a checkpoint

every hour.

126

log filename : string - Set log file name, or "none."

normalize modulus : uint32, residue uint32 - Normalize the sieve problem

using Lehmer's single residue optimization technique [Leh53]. All attached rings

and scoreboard moduli are normalized, and the modulus and residue attributes

of the sieve object are updated. If a normalization is already in effect this nor-

malization is first removed, and the new normalization applied. Thus, applying

a normalization using modulus 1 and residue 0 effectively removes (denormal-

izes) any optimizations that may have been applied.

report filename : string - Set report file name, or "none."

reset - Reset sieve counters (and internal state variables) to their appropriate start

values.

ring-add rings : list - Adds a ring to the underlying ssieve object. Rings may

be specified using the Tcl list notation, either:

{modulus {residuel residue2 res1due3 . . . 11

or

{m_1 {r_11 r_12 r_13 . . .} ... -Cm_j -Cr_lj r_2j r_3j .. .

If multiple rings are specified using the second form, they will be automatically

combined (using the Chinese Remainder Theorem) into a single modulus and

list of acceptable residues. For example:

sieve0 ring-add {{8 11 -C3 11 {5 {1 4111

127

will actually add the ring:

-C120 -Cl 49}}

ring-del index : uint32 - Delete the indicated ring from the underlying ssieve

object. Rings indexes are specified starting at 1.

ring-get index : uint32 - Return the ring corresponding to index. If no ring

index is supplied, all rings will be returned in the form of a Tel list-of-lists.

run - Run the sieve problem, based on the parameters defined in this sieve object.

score-add ring - Add the specified ring to the scoreboard, and set its associated

best value to the default (currently 264 - 1).

score-del index : uint32 - Remove the indicated scoreboard entry from the as-

sociated scoreboard object. Scoreboard entries are indexed starting at 1.

score-get index uint32 - Return the indicated scoreboard entry. If no score-

board index is supplied, the entire scoreboard will be returned, in the form of

a Tel list-of-lists.

score-reset - Reset all best values for the associated scoreboard object to BEST-DEFAULT,

currently 264 - 1.

sieve-state - Return the internal state of the sieve. Currently, this is a Tel list of

the form:

-C-Cring counters} frac nuniresults}

This method is intended for debugging only.

128

start val : uint64 - Rotate the sieve rings to a new start position, and update

the s.sieve.start attribute to reflect this new value. Any existing rotation is

removed before the new start value is applied.

A.2.3 Examples

To create a new sieve instance named spoon:

sieve spoon

To add several rings (moduli and their associated acceptable residues) to this
sieve:

spoon ring-add -(5 {1 411
spoon ring-add -(7 {1 2 4}}

To set the normalization modulus and residue for this sieve instance:

spoon normalize 24 1

To add a perfect square filter:

spoon filter perfect-square

To enable logging to a file called spoon. out:

spoon log spoon.out

To fill up to diffbufsz (default 1024) values into the duff buffer:

spoon fill

To reset the sieve, and start sieving at the value 10,000:

spoon reset
spoon start 10000

Finally, to run this sieve instance:

spoon run

129

A.3 Underlying Object Detail

Most user interaction with sieve objects should occur via the attributes and methods

of the sieve object. For certain advanced applications, however, it may be necessary

to interact with the underlying implementation. This section describes the objects

that comprise that implementation.

A.3.1 Ring Object

The ring object corresponds to the sieve ring: the list of acceptable residues for a

particular modulus, or set of moduli. Rings are not usually manipulated directly.

Instead, the ring-add and ring-del methods of the parent sieve or ssieve objects

are typically used.

Attributes

modulus : uint3 - The modulus (or product of moduli) represented by this ring.

This attribute should not be modified directly. See the magic constructor

below.

bits : bitfield - This is the structure used to represent the acceptable residues for a

particular modulus. It should not be modified directly. See the clear, set, get

and dump methods below.

Methods

The magic constructor -

The ring object uses a special constructor to accept ring values in the form of

a Tcl list defining the modulus and acceptable residues. The Tcl list is of the

130

form:

-Cmodulus {residuel residue2 residue3 \ldots}}

or

{m..1 -Cr_li r_12 r_13 . . . } ... -Cm_j {r_lj r_2j r_3j . . .

The magical part of this constructor is the following: if a list of modulus/residue

pairs is given to the constructor, they will be automatically merged into a single

ring consisting of the intersection of all acceptable moduli. In other words, the

moduli obtained by the Chinese Remainder combination of the listed acceptable

residues/modulus pairs, as described in section 1.2.1 i.e.

Will be reduced to the equivalent:

840 { 1 121 169 289 361 529 }

dump - Dump the internal representation (currently a bitfield) of this ring. This

method is intended for testing purposes only. In practice, an equivalent, and

more compact result can be obtained using the get method.

clear index uint32 - Remove index from the acceptable residue list. In other

words, clear bit number index in the internal bitfield representation.

130

form:

-Cmodulus -Cresiduei residue2 residue3 \ldots}}

or

-Cm_i -Cr_il r_12 r_13 -Cm_j -Cr_lj r_2j r_3j . . .}}}

The magical part of this constructor is the following: if a list of modulus/residue

pairs is given to the constructor, they will be automatically merged into a single

ring consisting of the intersection of all acceptable moduli. In other words, the

moduli obtained by the Chinese Remainder combination of the listed acceptable

residues/modulus pairs, as described in section 1.2.1 i.e.

{ C8 l}
{3 l}
{5 .Cl 4}}
{7 -C 1 2 4}}

} -

Will be reduced to the equivalent:

840 -C 1 121 169 289 361 529 }

dump - Dump the internal representation (currently a bitfield) of this ring. This

method is intended for testing purposes only. In practice, an equivalent, and

more compact result can be obtained using the get method.

clear index : uint32 - Remove index from the acceptable residue list. In other

words, clear bit number index in the internal bitfield representation.

131

set index uint32 - Add index to the acceptable residue list. In other words, set

bit number index in the internal bitfield representation to 1.

copy - Return a copy of this ring object. Tcl is not well suited to passing pointers

around, so making a copy is the safest way to make use of a ring structure

programmatically.

get Return a string representation (in the form of a Tcl list) of the ring contents,
in the combined form:

{modulus {residuel residue2 ... residuek}}

Examples

To create a ring called ring2 made up of the moduli 5, 7, 11, 13, 17 (and their

acceptable residues):

ring ring2 {
•C5 {i 4}}

{7 ti 2 4}}

{11 -Cl 3 4 5 9}}

-C13 -Cl 3 4 9 10 12}}
-C17 -Cl 2 4 8 9 13 15 16}}

}

To retrieve the combined representation of this ring:

ring2 get

In this case, the output (having been combined into a single ring via the Chinese

Remainder Theorem) will look something like the following:

85085 { 1 4 9 16 36 64 81 144 179 191 246 256 324 361 389 529 576
599 716 729 764 841 914 939 961 984 1024 1101 1114 1171 1226 1296

(many lines omitted)

84254 84319 84379 84386 84639 84659 84681 84709 84764 84984 84991 }

132

The CRT combination of inputs makes the ring object useful when computing

normalization moduli and residues. For example, the following code computes the

normalization function, x = my + r from a set of four moduli and their associated

acceptable residues. The various choices for r are selected by choosing subsequent

values for $n:

ring nv [list [make-ring 7] \
[make-ring 11] \
[make-ring 13] \
[make-ring 17]]

set normvector Env get]

set m [lindex $normvector 0]

set r [lindex [lindex $normvector 1] $n]

This example assumes the existence of a make-ring function, which computes

the acceptable residues for a particular modulus, returning the result in the form:

{modulus {residuel residue2 ... residuek}}

For example, the make-ring function for the pseudosquare problem could be written
as follows:

Given a modulus p, return all residues that are quadratic residues

modulo p. i.e. e_i = 1 for all p <= p_i
proc make-ring Cp} -C

set res_l [list 1] ;# 1 is always a Quadratic Residue

for -(set i 2} {$i < $p} -Cincr i} -(
if -([JACOBI $i $p] == 1} -C

lappend res_l $1

}
}
return [list $p $res_l]

}

133

A.3.2 Ssieve Object

The ssieve object represents a basic implementation of the General Sieve Problem,

including a set of bounds (start, end), a set of rings (moduli with acceptable residues),

a buffer containing sieve outputs (diffs, diffbufsz), and the internal state needed to

operate the sieve. A traditional (singly-focused) sieve implementation makes use of

one ssieve object. A doubly-focused sieve uses two underlying ssieves.

Attributes

The following attributes are defined for the ssieve object:

start : uint64 - The lower bound of the sieve problem (the A in A ≤ x < B). This

attribute should not be modified directly, as changing the sieve's start position

typically requires rotating all attached rings to a new starting position. Use

rotate method (described below) to safely modify this attribute.

end : uint6 - The upper bound of sieve problem (the B in A < x < B). It is safe

to modify this attribute using the configure method described in section A.1.2.

diffbufsz : uint3E - The maximum number of sieve outputs to generate per invo-

cation of fill. The default size is 1024 entries.

numrings : uint3. - Number of rings attached to this sieve. Do not modify this

attribute directly. It is updated automatically by the ring-add and ring-del

methods.

internal state : various - The other attributes in the sieve object are used to keep

track of internal sieve state and should never be accessed directly. They are

therefore omitted from this manual.

134

Methods

The following methods are defined for the ssieve object:

fill - Fill up to diffbufsz values into the ssieve object's duff buffer. Values are

entered into the buffer as differences from the previous sieve output. The sieve

is operated from its current state, and the numdiffs attribute of the underlying

ssieve object is updated to reflect the number of values that were placed into

the duff buffer. This method is normally used only for debugging.

ring-add ring : list - Add a ring to the sieve. Rings are always copied before

being attached to the sieve, with the copy being attached to the ssieve object,

as the ring contents will be automatically rotated, based on the value of the

start attribute. The ring-add method employs the magic ring constructor

(described in A.3.1), and thus accepts a Tel string as input.

ring-del ring-no : uint82 - Remove a ring from the sieve. This method auto-

matically updates the numrings attribute.

ring-get ringno : uint82 - Return the indicated ring number. If no ring number

is supplied, all rings will be returned in the form of a Tel list-of-lists.

duff-get num - returns the first num entries in the duff array as a Tel list.

reset - Reset the internal state of the sieve to its starting state. currently, the

state is comprised of the frac field, and one cnt (counter) field for each of the

attached rings.

135

rotate - Modify the start position of the sieve. All attached rings are rotated to

this start position, and their acceptable residues modified accordingly.

state - Return the internal state of the sieve. This method is intended for debugging

purposes only.

start val : uint64 - Adjust the start position of the sieve. All attached rings are

rotated to the new start position. (note that the attached rings are actually

rotated by the difference between the old and new start values)

Examples

Build the sieve.

ssieve mysieve
mysieve start 0 ;# optional. 0 is default
mysieve configure -end 10000

Add two rings (previously defined) rings to the sieve:

mysieve ring-add ri
mysieve ring-add r2

See all rings attached to the sieve:

mysieve ring-get

Remove the second ring, added above:

mysieve ring-del 2

Look at ring 1 in the sieve defined above:

[mysieve ring-get 1] get

This last example was a bit tricky. An equivalent, but possibly more confusing

notation is:

136

set ringi [mysieve ring-get 1]
$ringl get

Unfortunately, the example above runs into some scoping bugs in Tc1 where the

$ringl object is sometimes destroyed by an over-eager garbage collector. A safer

construct is the following:

ring ringi -this [mysieve ring-get 1]
ringi get

The difference is subtle, wherein the ring object is assigned a real name, ringi,

and not merely an automatic one as in the $ringl example.

A.3.3 Scoreboard Object

The scoreboard object contains a list of moduli and their associated "best" sieve

values.

Attributes

modulus : uint32 array - Array containing the scoreboard moduli.

best : uint64 array - Array containing the scoreboard "best" values.

numscores : uint32 - The number of entries in the modulus and best arrays. Do

not modify this attribute directly. It will be adjusted automatically when the

add and del methods are used.

Methods

add modulus : uint32, best : uint64 - Add an entry to the scoreboard array.

If the best attribute is omitted, the maximum value (currently 264 - 1) is

assumed.

137

del index : uint32 - Delete the indextll entry from the scoreboard array.

get index : uint32 - Return a string (or Tcl list) version of the index th entry

from the scoreboard array.

reset - Reset all scoreboard best values to BEST-DEFAULT, currently 264 1.

Examples
Create a scoreboard, check the defaults:

scoreboard sc

Add a ring to the scoreboard:

sc add {{8 1} .(3 1} C5 {1 4}}}

Add a ring (assigning the returned ring number to a variable), and view it:

set idx [sc add {7 {1 2 4}}]
sc get $idx

View all scoreboard rings:

Sc get

Add a ring, and set its associated best value to 12345:

set scnum [sc add -(11 -CO 2 4}}J
sc set scnum 12345]

Reset the scoreboard best values to default and view the result:

sc reset
sc get

A.3.4 Monitor Object

This object contains information necessary for the logging and checkpointing of sieve

operations.

138

Checkpoint Overview

A sieve checkpoint is a means of verifying and recording the sieve status at a given

point in time. Verification entails testing the internal sieve representation against

the original problem parameters, i. e.verifying that bit patterns match the residue

conditions of the problem. For long-running, parallel problems, there is a non-

negligible probability that a bit of ram could be inadvertently flipped due to electrical

effects, or even cosmic rays. Recording the sieve status allows a sieve job to be

restarted in case of a machine outage, software fault, or verification failure.

Checkpoint information is recorded in a report (.rpt) file, which may be specified

using the report attribute. The format of this file is as follows:

-(start -Cscoreboard_list} {sieve-status}}
-(rings -Cring_list}}
-Cchk {scoreboar&list} {sieve_sta-tus}}

-Cchk {scoreboard-list} {sieve-status}}
-(end -Cscoreboard_list} {sieve-status}}

The first parameter indicates the entry type: start, rings, chk, or end. The start,

chk, and end differ only by the text label used to identify the entry.

the ring-list is specified as a list of rings. i.e.

{-(modulusl -(residue list 111 -(modulus 2 -(residue list 2}} - . . }

Finally, the sieve-status list has the following format:

-(sieve counters} frac x

Where x is the current value under investigation in the sieve, and frac represents the

carry-out from the last sieve fill operation.

139

Attributes

dieafter : uint32 - This attribute is used mainly for debugging and regression

testing. If nonzero, the sieve run will terminate after dieafter checkpoint entries

have been written. See also the numchk attribute.

interval : uint64 - The number of values to sieve before a checkpoint is written.

logfd: file descriptor - Unix file descriptor associated with the log file.

logfile : string - String containing the log (results) file name.

rptfd: file descriptor - Unix file descriptor associated with the report (check-

point) file.

rptfile : string - String containing the report (checkpoint) file name.

numchk : uint32 - Number of checkpoints that have been written. This attribute

is used mainly in conjunction with the dieafter attribute.

numsoins : uint32 - The number of solutions found by the sieve. This attribute

is used in conjunction with interval to determine when a checkpoint should be

written.

Methods

log path : string - Set the name of the log file to which sieve outputs will be

written. If "none" is specified, logging functions are disabled.

report path : string - Set the name of the report file to which checkpoints will

be written. If "none" is specified, checkpointing functions are disabled.

140

A.4 Parallelizing Sieve Problems

In Section 3.2.3, a parallelization technique was described where a sieve problem

was partitioned into 17Zil parallel problems by performing normalization on each of

rij E Ri for 0 ≤ j < IRil acceptable residues, and sieving on each of these problems

in parallel. i.e.x = yM + r3.

The following sieve framework accepts two parameters on the command line: the

sieve instance (indicating which of the normalization residues should be used), and

the total number of parallelized processes. It assumes the existence of three external

functions: get-normalization-rings, which returns a normalization modulus and

I 1iI associated residues in the form of a ring list, primes, which returns a list of

primes between two bounds, and make-ring which returns the modulus and accept-

able residues (in the form of a ring list) associated with a given prime.

if -C[llength $argv] == 2)- {
set num [lindex $argv 0]
set of [lindex $argv 1]

} else {
set num 1
set of 1

}
set normvector [get-normalization-rings]

for -Cset n [expr ($num - 1)])- \
{$n < [llength [lindex $normvector 1]])- -Cincr n $of} {

set m [lindex $normvector 0]
set r [lindex [lindex $normvector 1] $n]

sieve s
s log "sieve-$m-$r.ou-t"
s report "sieve-$m-$r.rpt"

141

foreach p [primes 7 79] -C

s ring-add [make-ring $p]

}

foreach p [primes 79 257] {
s score-add [make-ring $p]

s normalize $m $r
s run

}

A.5 Sample Sieve Problems

This sample sieve solves the Lehmer/Lehmer/Shanks problem number I (i. e.the pseu-

dosquare problem) for all primes up to 103:

#! /usr/bin/tclsh
Helper Functions
sieve-lib provides the multiprecision function JACOBI,

source "sieve-lib . tcl"

Procedure to implement the LLS-I problem condition:

Given a modulus p, return all residues that are quadratic residues

modulo p.

i.e. e_i = 1 for all p <= p_i

proc psquare_ring -Cpl {
set res_l [list 1] ;# 1 is always a Quadratic Residue

for {set ± 2]- -[$1 < $p} -C±ncr 1]- -C

if -C[JACOBI $1 $p] == 1} {
lappend res_l $i

}
return [list $p $res_l]

}

Implementation of Lehmer-Lehmer-Shanks Problem I

i.e. The pseudosquare problem.

sieve ilsi

142

We know from [11s70] that the pseudosqtares from L_3 to L_79 lie

in the interval 0 - 900,000,000. We can use the 24x+1 optimization

to reduce this effective interval to 0-37,500,000

llsl start 0

lisi end [mpexpr (900000000 - 1) / 24]

Set up reporting / checkpointing
lisi log llsl.out

ilsi report llsl.rpt

Exclude perfect squares

ilsi filter perfect-square

add the rings. First, the even condition:

lisi ring-add -(8 1]-

Add a ring for each of the primes from 3 to 17.

This will serve as our exclusion sieve

foreach p [primes 3 17] {
lisi ring-add [psquare_ring $p]

}

Maintain a "scoreboard'' for all primes between 17 and 127

foreach p [primes 17 127] -C
ilsi score-add [psquare_ring $p]

}

lisi normalize 24 1

lisi run

To display the (denormalized) sieve results, uncomment the following line:

(Raw sieve results are placed in llsl.out)

score-print [ilsi cget -this]

Now, if you want to rerun the problem without the perfect square filter

do a:

lisi filter none

ilsi reset

lisi run

143

This sieve produced the following (denormalized) output in 14.363s on an AMD

Athion 2000+. A total of 16,925,139 values were found that matched the sieve

criteria. The effective canvas rate of the sieve was 1,670,960,105 trials per second.

17: 18001
19: 53881

23: 87481

29: 117049

31: 515761

37: 1083289

41: 3206641

43: 3818929

47: 9257329

53: 22000801

59: 48473881

61: 48473881

67: 175244281

71: 427733329

73: 427733329

79: 898716289

83: 2805544681

89: 2805544681

97: 2805544681

101: 10310263441

103: 23616331489

real 0m14.363s

user 0m14.240s

Sys Om0.000s

The following sieve script shows how a sieve problem may be parallelized, by

first creating a sieve ring containing the normalization residues, and then iterating

through them.

#! /bin/sh

the next line restarts using tclsh \
exec tclsh "$0" "$"

144

Helper Functions
source "sieve-lib.tcl"

source quadmu-lib.tcl

SIEVE CODE STARTS HERE

Make the sieve problem parallelizable

if -C[llength $argv] == 2} -C
set num. [lindex $argv 0]

set of [lindex $argv 1]

} else -C
set num 1

set of 1

The following ring contains 4 acceptable residues

ring normring [list [quadmu_ring 7]
[quadmu_ring 11]]

set nv [normring get]

for -(set n [expr ($num - 1)]} -($n < [llength [lindex $nv 1]]} {incr n $of} {

set m [lindex $nv 0]

set r [lindex [lindex $nv 1] $n]

sieve qu

qu start 0

qu end 1440000000

Fairly sparse problem, so use a small sieve buffer

qu diffbufsize 33

Set up reporting / checkpointing
qu log "qu-$m-$r.out"
qu report "qu-$m-$r.rpt"

foreach p [primes 13 41] -(
qu ring-add [quadmu_ring $p]

145

Keep a scoreboard for all primes between 41 and 127

foreach p [primes 41 127] {
qu score-add [quadmuring $p]

}
qu normalize $m $r

qu run

}

If used in conjunction with a grid computing manager, such as the Sun Grid

Engine, parallelization of this script may be accomplished by using a shell wrapper

(myj ob. sh) resembling the following:

#! /bin/tcsh
sieve.tcl ${SGE..TASK.JD} $1

And the sieve may be executed over 4 units in the following manner:

qsub -t 1-4 myjob.sh 4

Executing the job in this manner produces 4 output files, one for each of the
normalization functions:

qu-77-13. out
qu-77-20 . out
qu-77--57. out
qu-77-64. out

