
UNIVERSITY OF CALGARY

A Pre-Placement Individual Net Length Estimation Model

and an Application for Modern Circuits

by

Amin Farshidi

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

August, 2011

c© Amin Farshidi 2011

The author of this thesis has granted the University of Calgary a non-exclusive
license to reproduce and distribute copies of this thesis to users of the University
of Calgary Archives.

Copyright remains with the author.

Theses and dissertations available in the University of Calgary Institutional
Repository are solely for the purpose of private study and research. They may
not be copied or reproduced, except as permitted by copyright laws, without
written authority of the copyright owner. Any commercial use or re-publication is
strictly prohibited.

The original Partial Copyright License attesting to these terms and signed by the
author of this thesis may be found in the original print version of the thesis, held
by the University of Calgary Archives.

Please contact the University of Calgary Archives for further information:
E-mail: uarc@ucalgary.ca
Telephone: (403) 220-7271
Website: http://archives.ucalgary.ca

http://archives.ucalgary.ca/

Abstract

A-priori individual interconnect length estimates can be used to make placement efficient

and reduce delay and power consumption in a circuit. However, finding lengths of individ-

ual interconnects before their terminals have been placed can be a daunting task. In this

thesis, the main characteristics that need to be considered while designing an individual

a-priori length estimation technique for today’s integrated circuits are discussed. Then,

a technique for estimating individual interconnect lengths for mixed-size circuits based

on Radial Basis Functions (RBFs) is proposed. The advantage of using RBFs, is that the

given data do not need to be fitted into a pre-defined model such as a polynomial. In this

thesis, a method is proposed to calculate a suitable variance parameter of the RBFs. An

application of the length estimator is proposed where a predictor-corrector framework

for clustering that can be used to improve the results of placement is implemented.

i

Acknowledgements

I would like to thank all people who helped me in production of this thesis. First, I would

like to express my thanks to my supervisor, Dr. Behjat, for her suggestions in making this

thesis. I also thank my co-supervisor, Dr. Westwick, for his comments and suggestions.

In addition, I appreciate the valuable comments from the committee members. I wish to

thank all of my previous teachers who helped me a lot in my education.

I would like to thank my family which is the most important factor of my success. I

wish to thank my mom and dad who always guide me into the way of success. To my

wife, Mehrnaz, thanks for making a happy environment for me during the writing of this

thesis. Finally, thanks to my colleagues, Logan, Yangyang, Bardia and Aysa, for helping

me with the proofreading of the thesis.

ii

Table of Contents

Abstract . i
Acknowledgements . ii
Table of Contents . iii
List of Tables . v
List of Figures . vi
List of Terms . vii
1 Introduction . 1
1.1 A-priori Individual Net Length EstimationTechnique 2
1.2 Research Motivations and Contributions 3
1.3 Thesis Structure . 5
2 Background: Net Length Estimation and Radial Basis Functions 7
2.1 Existing Net Length Estimation Techniques 7

2.1.1 Introduction . 7
2.1.2 Net Length Estimation Types . 8
2.1.3 Statistical Net Length Estimation Technique 9
2.1.4 Polynomial Estimation Model For Standard Cell Circuit Designs . 11
2.1.5 Mutual Contraction Technique . 15
2.1.6 Intrinsic Shortest Path Length Technique 19
2.1.7 Polynomial Estimation Model For Mixed-Size Circuits 21

2.2 Radial Basis Functions Background . 28
2.2.1 Introduction . 28
2.2.2 Radial Basis Functions Types . 29
2.2.3 Radial Basis Functions Applications 31
2.2.4 Estimation Using Radial Basis Functions 31
2.2.5 Center Placement . 34

2.3 Summary . 39
3 Background: Clustering Algorithms . 40
3.1 Introduction . 40
3.2 Clustering Problem Definition . 41
3.3 Types of Clustering Algorithms . 43
3.4 Scoreless Clustering Algorithms . 43

3.4.1 Edge Coarsening . 44
3.4.2 Hyperedge Coarsening . 46
3.4.3 Modified Hyperedge Coarsening 49
3.4.4 FirstChoice Clustering . 51
3.4.5 Heavy-Edge Matching . 53
3.4.6 PinEC Clustering . 54

3.5 Score-Based Clustering Algorithms . 57
3.5.1 Edge Separability-Based Clustering 57
3.5.2 Fine Granularity Clustering . 60
3.5.3 Best-Choice Clustering . 60

iii

3.5.4 Net Cluster Clustering . 63
3.5.5 SafeChoice Clustering . 67

3.6 Feedback Loop for Clustering Correction 68
3.7 Summary . 69
4 The Proposed Net Length Estimation Model 70
4.1 Introduction . 70
4.2 Modeling Improvements . 71

4.2.1 Placer Effects . 72
4.2.2 Fixed Cells . 78
4.2.3 Fitting the Best Model . 81
4.2.4 Model Performance . 83

4.3 Radial Basis Function-Based Net Length Estimation 89
4.3.1 Algorithm Overview . 89
4.3.2 Variance Selection . 91
4.3.3 Experimental Results . 93

4.4 Summary . 96
5 Proposed Net Length Estimation Model Application 99
5.1 Introduction . 99
5.2 Effects of Clustering on Individual Wire Lengths 100
5.3 A Predictor-Corrector Framework for Clustering 106

5.3.1 The Proposed Predictor Step . 106
5.3.2 The Proposed Corrector Step . 108

5.4 Summary . 114
6 Conclusion and Future Work . 116
6.1 Summary and Contributions . 116
6.2 Future Work . 118
Bibliography . 120
A Physical Design . 128
A.1 Partitioning . 128
A.2 Placement . 130
A.3 Routing . 131
A.4 Other Approaches to Improve Physical Design 131

iv

List of Tables

2.1 The variables used in the model in [1] and the covered effect 12
2.2 The variables used in the model in [2] and the covered effect. 24

4.1 Proposed base length for different configurations of degree-two nets . . . 76
4.2 Average probabilities for each configuration using different placers 77
4.3 Model correlation coefficients using the proposed variable. 78
4.4 Model correlation coefficients considering fixed cells impacts 80
4.5 Correlation coefficients of x6 and x′

6 to the actual lengths 84
4.6 The proposed variables for model improvement 85
4.7 Performance of model variables . 85
4.8 Statistical comparison of ICCAD04 and ISPD05 circuits 87
4.9 Correlation coefficients of the estimated and actual lengths 88
4.10 The variables used in the proposed net length estimation model 90
4.11 Comparison of the correlation coefficients of estimated and actual lengths 97
4.12 Comparison of the correlation coefficients of estimated and actual lengths 98

5.1 Comparison of after and before clustering net lengths, Best-Choice 103
5.2 Comparison of after and before clustering net lengths, Net Cluster 104
5.3 Comparison of nets with increased and decreased lengths 105
5.4 Number of bins with largest variables with nldratio greater than one . . . 111
5.5 Comparison of total wire length before and after corrector for ICCAD04 113
5.6 Comparison of total wire length before and after corrector for PEKO . . 115

v

List of Figures

1.1 Example of net lengths before and after placement 2

2.1 An example for calculation of wgh for an edge 10
2.2 An example for mutual contraction calculation for an edge 16
2.3 An example for mutual contraction calculation for a net 17
2.4 An example for ISPL calculation . 20
2.5 Algorithm Poly: Algorithm for polynomial coefficients calculation 23
2.6 Examples of degree-two nets from standard and mixed-size cell designs . 25
2.7 An example for calculation of macro base length 26
2.8 Example of Estimation Using RBFs . 33
2.9 High-level algorithm for RBF-based estimation 33
2.10 Centers generated by traditional and proposed center placement methods 35
2.11 High-level algorithm for CSU center placement method 37
2.12 Example of the constructive selective uniform center placement method . 38

3.1 Example for clustering using EC . 45
3.2 Example for clustering using HC . 48
3.3 Example for clustering using MHC . 50
3.4 Example for clustering using FC . 52
3.5 Example for clustering using PinEC . 56
3.6 Example for calculation of edge separability 59
3.7 Example for clustering using BC . 62
3.8 Example for formation of potential clusters using NC 66

4.1 Shapes of different configurations of degree-two nets 73
4.2 Percentage occurrences of net configurations placed by different placers . 75
4.3 Analysis of effects of presence of fixed cells 79
4.4 Demonstration of actual length versus Nettintnc variable 82
4.5 Illustration of the effects of forces generated by external connections . . . 82
4.6 High-level algorithm for RBF-based net length estimation 90
4.7 Comparison of estimation using RBFs with different variances 92
4.8 Linear search to verify the calculated standard deviation for RBFs 95

5.1 Demonstration of nldratio versus several estimation variables for IBM04 . 109
5.2 Demonstration of nldratio versus several estimation variables for IBM06 . 110

A.1 Physical design procedure . 129

vi

List of Terms

Acronyms:

BC : Best-Choice Clustering
CCR : Cell Cluster Ratio
CSU : Constructive Selective Uniform
EC : Edge Coarsening
ESC : Edge Separability-Based Clustering
FC : FirstChoice Clustering
FGC : Fine Granularity Clustering
FM : Fiduccia and Mattheyses
HC : Hyperedge Coarsening
HEM : Heavy-Edge Matching
IC : Integrated Circuit
MHC : Modified Hyperedge Coarsening
RBF : Radial Basis Function
VLSI : Very Large Scale Integration

Sub-scripts:

i : Index of cells and nets, centers and RBFs
j : Index of cells and nets
k : Index of cells and nets
l : Index of external nets

Scalars:

a : Coefficient
aveAstdCell : Average area of standard cells in a circuit
b : Coefficient
base : Base length for each net configuration
c : Center of an RBF
cell : Cell
Clu : Cluster
dc : Grid distance
e : Edge
Gh : Hypergraph
hstd : height of a standard cell
kNC : A constant for finding cluster scores in NC
kPinEC : A constant for finding connectivity in PinEC clustering
LBClu : Lower bound on the cluster size

vii

M : Number of actual data points
N : Number of centers
ncenter : Number of uniform centers
ngrid : Number of center grids
nvar : Number of variables
net : Net
numd2PL : Number of possible layout configurations for degree-two net
numd2tot : Total number of degree-two nets in a circuit
numext : Number of external connections
numtotcell : Total number of cells in a circuit
P : Probability
pd : Polynomial degree
px : Location of a pin on horizontal axis
py : Location of a pin on vertical axis
pclu : Potential cluster
perdec : Percentage of nets with decreased length after clustering
perinc : Percentage of nets with increased length after clustering
Pr : Measure of overall properties of a circuit
r : Radius used in CSU center placement method
ratioinc−dec : Ratio of nets with increased and decreased lengths
SF : Measure of safeness of a cluster
UBClu : Upper bound on the cluster size
UF : Utilization factor
UFh : Horizontal utilization factor
UFv : Vertical utilization factor
w : Weight of an RBF
wave : Average width of a set of cells
x : Model variable
α : A factor for considering fixed cells effects
λ : A factor for finding the new base length
σ : Standard deviation

Sets:

E : Set of all nets
R : A restricted subset of nets
SC : A typical set of cells
setcellNbr : An arbitrary set of neighbor cells of a cell
setnbr : Set of cells adjacent to a cell
V : Set of all vertices

Vectors:

c : Vector of coordinates of a center

viii

cp : Vector of coordinates of a potential center
$act : Vector of actual after placement lengths
$est : Vector of estimated lengths
w : Vector of weights of RBFs
x : Vector of model variables
yact : Vector of actual data points
yest : Vector of function estimates

Matrices:

C : Matrix of center locations of RBFs
Cp : Matrix of potential centers of RBFs
X : Matrix of model variables
Φ : Matrix of RBFs

Functions:

2ndlvl(·) : Second level effect variable of a net
2PinCong(·) : Degree-two congestion metric of a net
area(·) : The area of a cell
attintnc(·) : The variable attintnc of an edge
baseL(·) : Base length variable of a net
comN(·) : Set of common nets of a set of cells
compLclu(·) : Comparison of after and before clustering lengths of a net
conn(·, ·) : The connectivity between two cells
CorrCoef(·, ·) : Correlation coefficient between two sets
COV (·, ·) : Covariance of two sets
d(·) : Distance of a data point to a potential center
dg(·) : Degree of a net or edge
estAveLh(·) : Estimated mean of a group of nets
estV arLh(·) : Estimated variance of a group of nets
f(·) : A function that approximates the expected length increase of a net
fB : A specific third-order polynomial function
h(·) : The height of a cell
ispl(·) : Intrinsic shortest path length of a net
$act(·) : The actual after placement length of a net
$actAC

(·) : The actual length of a net after clustering
$actPC

(·) : The actual length of a net before clustering
$est(·) : The estimated length of a net
log(·) : The natural logarithm function
macroBaseL(·) : Macro base length of a net
max{·, ·} : The maximum of two numbers
mc(·, ·) : Mutual contraction between two cells

ix

mcg(·) : Mutual contraction of a group of connected cells
min(·) : The minimum of a set of numbers
N2oth(·) : The variable N2oth of a net
nc(·, ·) : Number of polynomial coefficients
Nettintnc(·) : The variable Nettintnc of a net
nldratio(·) : Ratio of after and before clustering lengths of a net
numC(·) : Number of cells in a cluster
numcut(·) : Number of nets cut by a cluster
numd2nbr(·) : The number of degree-two nets in the neighborhood of a net
numN(·) : Number of nets in a cluster
numtotnbr(·) : The number of all nets in the neighborhood of a net
qs(·) : A quadratically-growing sinusoidal function
RBFNN (·) : Radial basis function neural networks
rspl(·) : Restricted shortest path length of two cells
rspls(·) : Restricted shortest path length of set of cells
scoreclu(·) : The score assigned to a potential cluster
scorenet(·) : The score assigned to a net
set2c(·) : Set of cells in the second level neighborhood of a net
setc(·) : Set of cells connected to a net
size(·) : The size of a cluster
w(·) : The width of a cell
wg(·) : Weight of a net, edge, cell or connection
xi(·) : A model variable of a net
yest(·) : Function estimate of a data point
φ(·) : A radial basis function
|| · || : Euclidean norm
∩ : Intersection
∪ : Union
Σ : The summation of a set of numbers
Π : The multiplication of a set of numbers

Definitions:

Adjacent (Neighbor) : Cells that are connected with at least one net
Cell : A circuit component, e.g. logic gate
Edge : An interconnect that only connects two cells
Macro cell : A cell that is more complex and larger than typical stan-

dard cells
Mixed-size design : A design that contains macro cells in addition to stan-

dard cells
Net (Hyperedge) : An interconnect that connects two or more cells
Net degree : Number of cells that are connected to the net
Net length : Length of wire needed for routing a net

x

Second level neighbor : A cell that can be reached from cells of a net by just one
net

Standard cell design : A design that only contains standard cells
Standard cells : Cells at logic design level that have same heights
Total wire length : Sum of lengths of wires needed for routing a circuit

xi

1

Chapter 1

Introduction

In today’s Integrated Circuit (IC) designs, millions of circuit components are integrated

in a small area, for example, Intel’s Core i7 processor released in 2010 contains 2.79

million transistors in each mm2 [3]. The design of these ICs is a complex process that

includes determining the system specifications, such as performance, functionality and

physical properties of the circuit. Physical design is one of the main steps in IC design

where the physical properties such as the exact locations of components and wires of the

circuit, are determined [4, 5].

The physical design includes three major stages: partitioning, placement and routing

[4,5]. In the partitioning stage, the circuit, represented by a netlist, is divided into several

partitions that are relatively independent, i.e. as few wires as possible connect them. In

the placement stage, the exact locations of the circuit components are determined. Then,

the paths for all of the nets of the circuit are determined in the routing stage. A more

comprehensive introduction of these stages is presented in Appendix A.

Several approaches are also employed during physical design to improve the perfor-

mance of these major stages. One such approach is clustering, where the size of the

circuit is reduced to empower the placement to better handle modern IC designs. An-

other approach to improve the performance of the placement stage involves using an

a-priori individual net length estimation technique, the main focus of this thesis. In this

technique, the lengths of individual nets from circuit are estimated and this information

is used to improve the quality of the placement. The data encountered in the physi-

cal design are highly non-linear and do not follow any well-known trends. This makes

net length estimation a very complex task. In this thesis, it is proposed to use Radial

2

net1

net2

net3

1 3

2

(a) The pre-placement circuit

net2

net3

net1

3

2

1

(b) The after placement
circuit

Figure 1.1: Example of net lengths before and after placement

Basis Functions (RBFs) to capture these non-linearities. In addition, several important

characteristics of modern ICs that have not been considered in the existing net length

estimation literature, are covered in the proposed technique. Then, an application of

the proposed individual net length estimation technique in clustering is designed and

implemented, and it is shown that the quality of the placement stage can be improved

by applying the proposed technique.

The rest of this chapter is organized as follows: In Section 1.1, the a-priori individual

net length estimation problem is introduced. In Section 1.2, the research motivations and

major contributions of this thesis are presented. Finally, the thesis structure is presented

in Section 1.3.

1.1 A-priori Individual Net Length EstimationTechnique

Net length estimation is defined as approximating the lengths of nets used for routing a

circuit. A-priori net length estimation techniques are used to evaluate the net lengths

before placement. In Figure 1.1, an example circuit is shown before and after placement.

It can be seen that when the locations of the cells and their pins are determined, Figure

3

1.1(b), the calculation of net lengths is simple. However, it is very complicated to estimate

the lengths of nets before the circuit components have been placed, Figure 1.1(a). For

example, the nets net1 and net3 are long after placing the circuit since their pins are

placed in distant positions.

A-priori individual net length estimation techniques aim to predict the lengths of the

nets in a circuit before the locations of its cells have been determined. Therefore, it can

be a complex task. Existing a-priori net length estimation techniques mostly output the

total wire length or the average wire length of the nets [6,7]. However, there exist several

techniques that estimate individual net lengths [1, 2, 8]. In these techniques, different

characteristics of the nets and components of circuits are translated into several model

variables. Then a predefined model such as a polynomial or exponential model that

includes these model variables is used for net length estimation. The outputs of these

techniques are the lengths of individual nets of the circuit.

1.2 Research Motivations and Contributions

As more and more components are placed in ICs, resources in the circuit, especially

routing resources, are becoming more scarce. In addition, the design rules, i.e. rules

that need to be observed so that the IC can be fabricated, are becoming numerous and

increasingly complicated. In such an environment, it is not unusual for a design process

to go on for days, before it is decided that the circuit can not be fabricated due to

insufficient resources, usually routing resources, or violation of some design rules, such

as timing, resulting in loss of valuable time and millions of dollars.

If some of these challenges are known prior to the physical design stage, proper action

can be taken to avoid design rule violations. For example, if it is known a-priori that

certain nets with tight timing are going to become too long, corrective actions for these

4

nets can be taken.

Individual a-priori net length estimation technique can be a valuable tool for this type

of problem. However, most existing techniques do not produce reliable results since they

try to fit a predefined model, such as a quadratic polynomial, to a highly non-linear set

of data. Using a predefined basis for net length estimation results in inaccuracy.

In this thesis, it is proposed to use RBFs to estimate individual net lengths. RBFs

provide the ability to capture the details of a set of highly non-linear given data with

manageable model complexity [9]. In addition, most of the existing net length estimation

techniques cannot handle mixed-size circuits with macro cells. However, today’s mixed-

size circuits include macro cells that are much bigger than standard cells [10]. These

circuits also contain several cells that are not moveable, i.e. fixed cells. Furthermore,

the existing length estimation techniques do not consider the type of placer that is going

to be used to place the circuit, in their estimates. In this thesis, these shortcomings are

considered and covered in the proposed estimation technique.

One potential application of the proposed pre-placement net length estimation tech-

nique is in clustering. Clustering algorithms are used to improve the performance of the

placement stage [11]. However, sometimes clustering may have negative impacts on the

individual net lengths. Therefore, the prediction and correction of these negative effects

can help to improve the clustering and subsequently the placement performance. In this

thesis, a predictor-corrector framework is proposed to capture and correct for the nega-

tive effects of clustering on individual net lengths. In the first step of this framework, a

structure is considered to predict the nets that may be negatively affected during clus-

tering. Then, a corrector step is designed to improve the results of clustering by avoiding

those negative impacts.

The main contributions of this thesis are as follows:

• In this thesis, a new RBF-based pre-placement individual net length estimation

5

technique is proposed. For the first time in net length estimation, RBFs are applied

to enable the net length estimation to better deal with the highly non-linear data

encountered in physical design. The performance of the proposed technique is

improved significantly when RBFs are applied.

• A new method is proposed and implemented for tuning the shapes of RBFs in order

to properly adapt them to the given data. This method makes the RBFs effective

for net length estimation since it calculates their variance parameter based on the

input data.

• A new model variable which considers the effects that different placers have on the

net lengths is proposed. The performance of different placement algorithms can

affect the accuracy of the estimated lengths. Therefore, it is proposed to cover

these effects by defining a new model variable.

• A new variable is defined to consider the effects of the presence of fixed cells.

These cells exist in today’s integrated circuits and affect the length of nets in their

neighborhood, significantly. Considering these effects makes the proposed technique

more effective for estimating the net lengths of modern circuits.

• A new predictor-corrector framework for clustering is proposed. The negative side

effects of clustering algorithms on the individual net lengths are predicted in this

framework. Then, these negative effects are corrected by further clustering the

negatively-affected nets. The experiments validate the effectiveness of the proposed

framework in improving the clustering results.

1.3 Thesis Structure

The rest of this thesis is organized as follows:

6

• Chapter 2

In this chapter, a comprehensive background on the existing interconnect length estima-

tion techniques is presented. In addition, radial basis functions are introduced as effective

tools for net length estimation.

• Chapter 3

Several existing clustering algorithms for circuit partitioning and placement are ex-

plained.

• Chapter 4

In this chapter, the first contributions of this thesis are presented. First, new model

variables to consider the effects of different placers and the presence of fixed cells on the

individual net lengths are proposed. These variables are used in net length estimation

techniques to be proved to be effective. Then, an RBF-based net length estimation

technique is proposed and implemented. A new method for tuning the shapes of the

RBFs is suggested as well.

• Chapter 5

Another main contribution of this thesis is presented in Chapter 5. A predictor-corrector

framework is proposed and applied to improve the results of clustering. The proposed

framework is then validated by performing several experiments.

• Chapter 6

In this chapter, the thesis is summarized and the potential future research directions are

suggested.

• Appendix A

In this appendix, further introduction to the physical design problem is given.

7

Chapter 2

Background: Net Length Estimation and Radial Basis Functions

In this chapter, backgrounds on net length estimation techniques and radial basis func-

tions are presented. This chapter is organized as follows: In Section 2.1, the existing net

length estimation techniques are studied. Then, in Section 2.2, Radial Basis Functions

(RBFs) are discussed in detail. Finally, a summary is presented in Section 2.3.

2.1 Existing Net Length Estimation Techniques

2.1.1 Introduction

With the continuing growth of the amount of interconnects or nets in Integrated Circuits

(ICs), circuit delay and power consumption are becoming highly affected by the net

lengths. In addition, circuit area significantly depends on the total net length required

for completing the connections of a circuit, since a major part of the physical space of

the circuit is used for interconnection routing. Therefore, estimating the lengths of nets

a-priori to the physical design is becoming an important tool in empowering designers in

dealing with tough issues before the design is complete [6].

Several net length estimation techniques are proposed to provide insight about net

length during or before physical design [1,2,6–8,12–24]. This insight helps the designer to

improve the quality of placement and routing of a circuit. For example, if the estimated

length for a specific net on a critical path is large, in the placement stage the spatial

proximity of the cells in the net can be emphasized.

8

2.1.2 Net Length Estimation Types

There are two typical ways to classify the existing net length estimation techniques: the

stage the estimation is performed at and the level of details of the estimates.

In the first classification, net length estimation techniques are distinguished in three

groups depending on the physical design stage where the estimation happens at: a-priori,

on-line and a-posteriori [14]. In the following, each one is briefly described.

A-priori net length estimation [1, 2, 6–8, 12, 13, 15–20, 24] is used to evaluate the net

length before components of a circuit have been placed. These estimates may be used to

obtain rough measures of routability. In addition, since estimation is performed before

placement, the quality of placement results can be improved by clustering the circuit

based on estimated lengths [24].

On-line net length estimation techniques, which happen during placement, are used

when the estimated net lengths are desired during the placement stage. These estimates

are used to stop the placement process early when it becomes clear that the process is

resulting in a bad placement solution. In [14] an example of on-line net length estimation

techniques is presented.

A-posteriori net length estimation techniques try to estimate the net lengths after

the placement is obtained, but before the routing stage has been performed. These

estimated lengths can be used to choose among several competing placement solutions

[14]. In [21–23], several examples of a-posteriori net length estimation techniques are

proposed.

In the other classification, net length estimation techniques are divided into three

classes based on how detailed their outputs are, as global, semi-individual and individual

net length estimation techniques.

Global techniques estimate the average length of all nets, the total wire length of a

circuit or distributions of net lengths. These techniques do not output any individual

9

estimated net lengths. Examples of global net length estimation techniques are proposed

in [6, 7, 12, 13, 15, 16, 20].

Semi-individual techniques are the ones that obtain data about groups of nets in

a circuit. These data are mostly statistical data such as the average or variance of a

group of nets with similar properties. In [17, 25] instances of semi-individual estimation

techniques are presented.

Individual net length estimation techniques try to estimate the length for each indi-

vidual net in a circuit. Since reporting lengths for each net provides much more detailed

information compared to global and semi-individual techniques, individual net length es-

timators are more complicated and need much more processing time and memory space.

For example, in [1, 2, 8, 24], individual net length estimation techniques are developed.

Considering that the focus of the current research is a-priori individual net length

estimation techniques, the existing a-priori individual and semi-individual techniques are

further described in the following.

2.1.3 Statistical Net Length Estimation Technique

In [17], one of the a-priori semi-individual net length estimation techniques is proposed.

The input to this technique is a netlist of a standard cell circuit design and the outputs

are some statistical data about the individual net lengths. These statistical data include

the mean and variance of the net lengths.

In [17], a weight function is defined for each edge and is used to make the net length

estimation model. This weight is calculated as:

wgh(ei) = dg(neti) + attintnc(ei),

where wgh(ei) is the weight of edge ei and dg(neti) is the degree of net neti from which

ei is taken. Degree of a net is the number of cells connected to that net. Variable

10

C5 cell2cell1

cell3

cell4

cell5 cell6

net1

net2

net3 net4

Figure 2.1: An example for calculation of wgh for an edge

attintnc(ei) is defined for edge ei and is equal to the number of nets connected to the

cells of ei, excluding the number of common nets between those cells.

In Figure 2.1, a small circuit is presented. To calculate the weight for edge e1 that

connects cell1 and cell2 and belongs to net net1, first, the degree of net1 and attintnc(e1)

are calculated as 3 and 2, respectively. Then, the weight for edge e1 is calculated as

wgh(e1) = 3 + 2 = 5.

Once the weight for each net is calculated, nets with similar weights, are grouped

together, and the average and variance of the lengths of the nets in each group are

predicted. Several circuits are used to make this model. These circuits only contain

standard cells, i.e. cells at logic design level that have same heights. It is shown that

the mean net length and the variance of net lengths can be modeled as linear functions

of the weights of the nets. The average and variance for each group of nets with weight

11

wgh is estimated as:

estAveLh(wgh) = aA + bA × Pr1 × wgh

estV arLh(wgh) = aV + bV × Pr2 × wgh,

where estAveLh(wgh) and estV arLh(wgh) are the estimated average and variance of the

lengths of a group of nets with weight wgh, respectively. aA, bA, aV and bV are the model

parameters and their values are reported in [17]. Furthermore, Pr1 and Pr2 are the

measures of the overall properties of a circuit related to the net density or congestion.

The shortcomings of this technique are:

• It is designed for standard cell circuits and is not suitable for today’s mixed-size

circuits.

• This technique outputs the mean and variance of groups of nets and does not give

any information about individual net lengths.

2.1.4 Polynomial Estimation Model For Standard Cell Circuit Designs

One of the most detailed techniques for a-priori individual net length estimation for

standard cell designs is proposed in [1]. In this technique, several variables are proposed

and used for net length estimation. All of these variables can be calculated before the

cells of a circuit are placed. Each variable represents a certain property of the net, its

connected cells or of the circuit as a whole. Then, these variables are used to make a

polynomial model that estimates the length of each net.

The definitions and roles of these variables in the model are shown in Table 2.1 and

further described in the following:

base length: Base length is a measure of net length that considers the effects of the

sizes of the cells, i.e. their heights and widths (the dimensions of cells when they are seen

12

Table 2.1: The variables used in the model in [1] and the covered effect
Variable Name Modeling Role

base length effect of cell sizes
N2oth effect of degree-two nets of the circuit

degree-two effects of degree-two nets
congestion metric in the neighborhood of a net

degree-three effects of degree-three nets
congestion metric in the neighborhood of a net

degree-four effects of degree-four nets
congestion metric in the neighborhood of a net

degree-five effects of degree-five nets
congestion metric in the neighborhood of a net

degree-six effects of degree-six nets
congestion metric in the neighborhood of a net

from the top view), connected to a net for a typical standard cell circuit. The degree of

a net, which is the number of cells connected to that net, is used to find the base length

since it is shown that the nets with higher degrees are usually longer than those with

lower degrees [1, 2, 8]. The base length, baseL, of the net netj is calculated as:

baseL(netj) =
1

2
dg(netj)

(

hstd +
wave

UF

)

, (2.1)

where hstd is the height of a standard cell, wave is the average width of all the cells con-

nected to netj and UF is the utilization factor. The utilization factor is a user-specified

factor that determines what portion of a row width is to be used for cell placement.

According to (2.1), base length is equal to the adjusted average of the height needed

for placing all the cells connected to the net vertically on the top of each other and

row width required for placing them horizontally beside each other. Considering that

in a standard cell design all cells have the same height, the height of a standard cell is

used in base length calculations. In addition, in [1], all cells are considered to have the

same width. This assumption results in the same average width, wave, for all of the nets.

Therefore, the base length value is equal to the degree of the net multiplied by a constant

value. This results in the same value of the base length variable for all nets with the

13

same degree.

N2oth: Degree-two nets constitute the largest percentage of nets in a design, about

60% in a typical integrated circuit [26]. Furthermore, most placement algorithms are

designed to put the cells connected by degree-two nets, as close together as possible.

Therefore, a variable is defined to consider the effects of the presence of these nets on the

length of any individual net. This variable, that is denoted as N2oth, gives an estimate of

how the degree-two nets cause congestion in the path used to route other nets.

N2oth is then defined as:

N2oth(netj) = (numd2tot − numd2nbr(netj)) ×
numtotnbr(netj)

numtotcell

,

where numd2nbr(netj) and numtotnbr(netj) are the number of degree-two nets and the

number of all the nets in the neighborhood of net netj , respectively. Also, the total

number of degree-two nets in the circuit is denoted by numd2tot while numtotcell represents

the total number of cells in the circuit. In this equation, the number of degree-two nets

in the neighborhood of the net is subtracted from the total number of degree-two nets in

the circuit. This means that the effects of the presence of these nets on the net lengths

are ignored. The reason is that these effects are already considered in the degree-two

congestion metric which is discussed in the following paragraph.

degree-two to degree-six congestion metrics: Degree-two to degree-six congestion met-

rics, 2PinCong to 6PinCong, are proposed to estimate how the length of a net is affected

by the presence of nets with degree two to six, respectively, in the neighborhood of that

net. For instance, the degree-two congestion metric of any net is defined to consider the

effects of all degree-two nets that exist in the neighborhood of that net.

To calculate these metrics, the number of nets of a certain degree in the neighborhood

of a net and the common layouts that these nets can take are found. The common layouts

that a net can take are the possible paths through which a net can be routed. The number

14

of these possible paths is calculated by investigating the possible layout configurations,

which the cells connected to that net can take.

For example, the equation for degree-two congestion metric, 2PinCong, of netj can

be derived as:

2PinCong(netj) = numd2nbr(netj) × numd2PL,

where numd2nbr(netj) is the number of degree-two nets in the neighborhood of net netj

and numd2PL is the number of possible layout configurations for a typical degree-two net.

It should be mentioned that although the placement results are not available when esti-

mation is performed, the possible layouts of nets can be found by investigating common

placement algorithms and so are known before the placement stage. The equations for

degree-three to degree-six congestion metrics are derived using similar methods.

model development: The a-priori net length estimation model proposed in [1] consists

of the proposed variables: base length, N2oth and degree-two to degree-six congestion

metrics. Therefore, the estimated net length using this model, $estB , for net netj is:

$estB(netj) = fB(baseL, N2oth, 2PinCong, 3PinCong, 4PinCong, 5PinCong, 6PinCong).

In this equation, fB is a specific third-order polynomial with 19 terms. These terms are

the product of from one to three variables.

The coefficients of this polynomial are calculated using Ordinary Least Square Fitting

(OLSF). OLSF is a method which minimizes the residual squared error to fit the best

model [27]. The actual after placement net lengths of a limited number of nets from a

few benchmark circuits are used as training data in finding the polynomial coefficients.

These coefficients are then used to estimate the lengths of a different set of nets. The

output estimated lengths are relatively correlated to the actual after placement lengths.

15

2.1.5 Mutual Contraction Technique

The concept of Mutual Contraction (MC) was first proposed in [18]. This metric that

evaluates the proximity of the connected cells in a circuit is used in [18, 19, 25] as a

technique for estimating the wire lengths. These techniques provide a-priori individual

estimates which are applied in pre-placement clustering.

Mutual contraction can be calculated between two cells before the cells are placed. To

calculate this metric, first, the weight, wge, of each edge, ei, connecting two cells should

be calculated as:

wge(ei) =
2

dg(neti)(dg(neti) − 1)
,

where dg(neti) represents the degree of the net neti which includes the edge ei. The

weight of all connections, wgt, between cell, celli and all the cells in its neighborhood is

defined as follows:

wgt(celli) =
∑

cellj∈setnbr

wgc(celli, cellj),

where wgc(celli, cellj) is the weight of the edge connecting the cells celli and cellj . In

fact, wgc(celli, cellj) = wge(ek), if ek is the edge connecting celli and cellj . The setnbr

represents the set of cells adjacent to cell celli. Then, the relative weight of a connection,

wgrel between cells celli and cellk can be calculated as follows:

wgrel(celli, cellk) =
wgc(celli, cellk)

wgt(celli)
.

In [18], the mutual contraction between cells celli and cellk is defined as the tuple

(wgrel(celli, cellk), wgrel(cellk, celli)). To simplify the comparison between connections,

the scalar metric for mutual contraction, mc(celli, cellk), is calculated as:

mc(celli, cellk) = wgrel(celli, cellk) × wgrel(cellk, celli).

16

cell1

cell3

cell4

cell5cell2

net1net2 net3

Figure 2.2: An example for mutual contraction calculation for an edge

As an example, a small circuit is given in Figure 2.2 where it is desired to calculate

the mutual contraction of the connection between two cells cell1 and cell2. The weight

of edge, e1, connecting cell1 and cell2 is calculated as wgc(cell1, cell2) = wge(e1) =

2
dg(net1)(dg(net1)−1) = 1. The weight of all connections between cell1 and all of its neighbors

is wgt(cell1) = 2
2(2−1) + 2

3(3−1) + 2
3(3−1) = 5

3 . Then, the relative weight of cell1 and cell2

is wgrel(cell1, cell2) = 1
5
3

= 3
5 . Similarly, wgrel(cell2, cell1) = 1

2 . So, mc(cell1, cell2) =

3
5 ×

1
2 = 3

10 .

This definition of mutual contraction is only suitable for nets that only connect two

cells, degree-two nets. Therefore, in [18], mutual contraction is expanded to be applicable

for nets with degree higher than two. First, the relative weight of the connections of a cell,

celli, to an arbitrary set of its neighbor cells, setcellNbr, is denoted as wgrelg(celli, setcellNbr)

and calculated as follows:

wgrelg(celli, setcellNbr) =

∑

cellj∈setcellNbr
wgc(celli, cellj)

wgt(celli)
.

17

cell2

cell5

cell1

cell6

cell7cell8

cell3

cell4

net2 net1 net3

net4net5

Figure 2.3: An example for mutual contraction calculation for a net

Then, the mutual contraction of a set of connected cells is defined as the multiplication

of all the relative weights:

mcg(setcellNbr) =Π cellk∈setcellNbr
wgrelg(cellk, setcellNbr − {cellk}). (2.2)

To calculate the mutual contraction for net net1 connecting three cells cell1,cell2 and

cell3 in Figure 2.3, (2.2) is used. If setcellNbr = {cell1, cell2, cell3} then wgrelg(cell1, setcellNbr−

{cell1}) = wgc(cell1,cell2)+wgc(cell1,cell3)
wgt(cell1) =

1
3+ 1

3
1
3+ 1

3+1
= 2

5 . In a similar way, wgrelg(cell2, setcellNbr−

{cell2}) = 2
3 and wgrelg(cell3, setnbr − {cell3}) = 1

4 . Therefore, the mutual contraction of

net1 is calculated as mcg(net1) = mcg({cell1, cell2, cell3}) = 2
5 ×

2
3 ×

1
4 = 1

15 .

Several applications of mutual contraction are presented in [2, 18, 19, 25]. In [18],

an application of mutual contraction is shown where it is used in an estimation-based

clustering algorithm. Even though it is shown that MC is correlated to the net lengths,

it is not used to estimate the net lengths in [18]. However, it is used as a metric for

scoring and comparing potential clusters.

18

Net length estimation is another application in which mutual contraction is frequently

used. In [25], this metric is used to estimate the lengths of nets with degree two, and

it is shown that mutual contraction is inversely proportional to the length of the net.

The higher the mutual contraction, the lower the net length is. However, the correlation

between actual after placement net lengths and mutual contraction is relatively low for

nets with higher degree, so this metric is not adequate for estimating the lengths of these

nets. This shortcoming is considered in [2] and is discussed in Section 2.1.7.

In [19], another application of mutual contraction in a placement algorithm is pre-

sented. In this work, constraints such as upper bounds on net lengths, are applied on

the lengths of nets during the placement stage. The upper bounds are calculated using

mutual contraction metric. Therefore, any increase in an individual net length during

the placement stage is constrained to this boundary.

The disadvantages of a net length estimation technique which is only based on mutual

contraction, such as the one proposed in [25], are:

• Length of a net is not just affected by the mutual contraction of its connected cells.

• Mutual contraction is not highly correlated to the actual after placement lengths

of nets with degree more than two.

In fact, the length of a net is affected by several circuit characteristics, such as the

presence of other nets in the circuit and the sizes of the cells connected by that net. These

characteristics, that are not considered in a net length estimate only based on mutual

contraction, are more likely to be seen in mixed-size circuits. Furthermore, mixed-size

circuits contain nets with very high degrees. Therefore, a technique such as the one

in [25], is not well suited to today’s mixed-size circuits.

19

2.1.6 Intrinsic Shortest Path Length Technique

The Intrinsic Shortest Path Length (ISPL) is proposed in [8] and used for estimating

net lengths before the placement stage. Therefore, ISPL is considered as an a-priori

individual net length estimation technique. The advantage of this technique is that it

deals with nets with different degrees and it is not required to convert nets with higher

degrees into edges.

To simplify the definition of the intrinsic shortest path length, in [8], in the first step,

the Restricted Shortest Path Length (RSPL), rspl, between two cells cell1 and cell2 of a

circuit is defined as the minimum-weight set of nets that connect cell1 and cell2. In the

other words, supposing a hypergraph Gh = (V, E) where V is the set of vertices or cells

and E is the set of all nets, and supposing a subset of nets R ⊂ E, the restricted shortest

path length between two cells cell1 and cell2 when R is restricted, is defined as the sum

of the weights of all nets in the minimum-weight set of nets connecting cell1 and cell2 in

the hypergraph G′
h = (V, E − R). For a typical set of cells, SC ⊂ V and a set of nets R,

this definition is expanded as:

rspls(SC |R) = maxcell1,cell2∈SC
rspl(cell1 → cell2|R), (2.3)

where rspls is the restricted shortest path length of a set of cells and rspl(cell1 → cell2|R)

is the RSPL between cell1 and cell2when R is restricted. In the other words, RSPL of a

set of cells is equal to the maximum RSPL of all the possible pairs of cells.

In [8], the intrinsic shortest path length is then defined as the smallest weighted path

through the connectivity graph between pairs of cells connected by a net supposing that

net is removed. It means that for a net, netj , the ISPL is maximum of the restricted

shortest path length of its connected cells when the net itself is restricted. So:

ispl(netj) = rspls(SCj
|netj), (2.4)

20

cell1

cell2

cell3

cell4 cell5

cell6

cell7 cell8 cell9

net1

net2

net3

net4

net5

net6

net7

net8 net9

net10

Figure 2.4: An example for ISPL calculation

where ispl is the intrinsic shortest path length of a net and SCj
is the set of cells connected

by netj .

In Figure 2.4, a simple circuit including 9 cells and 10 nets, is presented as an ex-

ample. It is desired to calculate the ISPL for net net1. According to (2.4), ispl(net1) =

rspls(cell1, cell2, cell3|net1). Then, from (2.3), ispl(net1) = max(rspl(cell1 → cell2|net1),

rspl(cell1 → cell3|net1), rspl(cell2 → cell3|net1)). Since rspl(cell1 → cell2|net1) = 2,

rspl(cell1 → cell3|net1) = 4 and rspl(cell2 → cell3|net1) = 3, then ispl(net1) = 4.

The intrinsic shortest path length is then used to develop an individual a-priori net

length estimation technique. After considering the distribution of net lengths and ISPL

for several circuits, an exponential relation between the estimated length and ISPL of

netj is introduced as:

$estISPL
(netj) = a1e

a2ispl(netj),

where $estISPL
(netj) is the length of netj estimated by ISPL technique and a1 and a2 are

21

the coefficients. These coefficients are calculated by performing curve fitting using a set

of after placement net lengths as training data.

This estimation technique produces results in high correlation between the estimated

length, net degree and the actual wire length of degree-two nets when using a modified

version of ICCAD04 benchmark circuits [28] where all cells have unit area. However,

in today’s mixed-sized circuits, there are nets with degrees much higher than two as

well as cells of different sizes. Therefore, considering all cells to have unit size and only

degree-two nets can result in large errors in the predicted lengths of a real circuit.

2.1.7 Polynomial Estimation Model For Mixed-Size Circuits

The a-priori individual net length estimation technique, proposed in [2], is the basis of

the model proposed in this thesis. The estimation technique proposed in [2] can be

performed before or after the clustering stage. In addition, this technique is designed to

deal with mixed-size circuits by proposing several variables that consider the effects of

the presence of cells with different sizes on individual net lengths.

This estimation model is a second-order polynomial that is expressed as:

$estF (netj) =
nvar
∑

i=1

nvar
∑

k=i

aikxi(netj)xk(netj) +
nvar
∑

i=1

bixi(netj) + c. (2.5)

In this equation, $estF (netj) represents the length of net netj estimated by the model

proposed in [2]. The variables xi(netj) are the values of the variables of the model

for net netj , and nvar is the total number of variables that are utilized in the model.

These variables are defined to provide coverage of various parameters that can affect the

length of a net in a typical integrated circuit. The values of all of these variables can be

calculated before the placement stage. Since nine variables are used in this technique,

nvar is set to nine. In (2.5), coefficients aik, bi and c are the coefficients of the polynomial

that need to be calculated using estimation methods. The methods that are used to

22

obtain the values of these coefficients are further explained in the following. Then, the

definitions of the model variables are presented.

To find the coefficients of the polynomial model of (2.5), curve fitting is performed

using after placement lengths of a limited number of nets as a training data set. Ordi-

nary Least Square Fitting (OLSF), which fits a model based on minimizing the residual

squared error, is used to find the optimal polynomial coefficients. However, OLSF has

the drawback that the estimates can have very large variances resulting in lowering the

accuracy of the estimation [29]. In [29], Least Absolute Shrinkage and Selection Oper-

ator (LASSO) technique is introduced that addresses the mentioned problem by setting

a selected number of coefficients that are not deemed to be effective in the prediction,

ineffective terms, to 0. LASSO minimizes the sum of squared errors subject to the ab-

solute values of the coefficients being less than a constant, the LASSO constant. This

technique increases the accuracy of the estimates since it only considers the polynomial

terms which have the most effect on the model.

In [2], the Algorithm Poly shown in Figure 2.5 is used to calculate the optimal values of

polynomial coefficients of (2.5). This algorithm uses a combination of OLSF and LASSO

to improve the quality of the polynomial estimation model. The inputs to the algorithm

are a training data set of actual after placement net lengths (usually 30% of the total

number of nets), values of model variables which are calculated before placement, and

a set of LASSO constants. The outputs of Algorithm Poly are the optimal polynomial

coefficients, aik, bi and c, which are used for estimating the individual net lengths.

In Step 1, a LASSO constant is chosen and taken out of the given set of LASSO

constants. Then, in Step 2, LASSO is used to discard ineffective terms of the polynomial.

LASSO removes ineffective terms by setting them to zero. In Step 3, OLSF is used to

find the coefficients only for the effective terms of the polynomial. Then, in Step 4, the

estimated length of each net in the training data set is calculated using the calculated

23

polynomial coefficients. In Step 5, the correlation coefficients of these estimated lengths to

the training data set of the actual lengths are calculated as a metric to compare different

iteration results. The algorithm returns to Step 1 if any LASSO constant remains in

the set of LASSO constants, in Step 6. Finally, in Step 7, the correlation coefficients

from all iterations are compared. The optimal polynomial coefficients are the coefficients

which yield the best correlation. These polynomial terms are used in the final estimation

model.

The correlation coefficient is calculated using the following equation [30]:

CorrCoeff($estF , $act) =
COV($estF, $act)

σ!estF
σ!act

,

where $estF and $act represent the vectors of the estimated lengths and training data set

of the actual lengths, respectively. COV ($estF, $act) is the covariance of the estimated

and actual lengths and σ!estF
and σ!act are the standard deviations of the estimated and

actual lengths, respectively.

Inputs: Training data, Values of model variables, LASSO constant set
Output: aik, bi and c
1. Choose a LASSO constant
2. Use LASSO to discard ineffective terms of (2.5)
3. Use OLSF to find polynomial coefficients only for the effective terms
4. Estimate length of each net using calculated polynomial coefficients
5. Calculate correlation coefficient of estimated lengths and training data
6. If LASSO constant set is not ∅, go to Step 1
7. Set aik, bi and c to the polynomial coefficients yielding the best

correlation coefficient

Figure 2.5: Algorithm Poly: High level algorithm for polynomial coefficients calculation

The model proposed in (2.5) includes global and local net and cell parameters that

can be calculated before placement and are relatively independent. These variables have

been used or introduced by different researchers, and are gathered as the most relevant

variables in [2]. In addition, in [2], three new variables are introduced. After a variable

24

analysis procedure, in [2], these variables are carefully chosen among all the existing

variables proposed for net length estimation. In Table 2.2, each variable and its role is

briefly described. Further description of the variables and their origins are given in the

Table 2.2: The variables used in the model in [2] and the covered effect. Variables shown
with bold letters are proposed in [2]

Variable Name Modeling Role

x1 net degree number of cells of a net
x2 macro base length minimum half-perimeter net length
x3 second level effect sizes of 2nd level neighbors
x4 N2oth effect of degree-two nets
x5 inv. mutual contraction connectivity between cells of a net
x6 Nettintnc common and uncommon

nets between cells of a net
x7 degree two to four effects of other nets in the

x8 , x9 congestion metrics neighborhood of a net

following:

net degree (x1): Net degree is the number of cells connected to a net. Many researchers

have used this variable as an indicator for estimating the length of nets, e.g. [1, 2, 8]. It

is shown that a higher net degree indicates a higher length. This is a correct assumption

when considering nets of greatly different degrees. However, for nets with the same or

close degrees other characteristics should be considered and net degree is not adequate

for these cases.

macro base length (x2): Macro base length is a measure of net length calculated using

the actual widths and heights of cells connected to a net. This variable is developed

in [2] to improve the suitability of the base length metric for mixed-size circuits. The

base length variable, which is initially proposed in [1], is described in detail in Section

2.1.4 and is calculated using (2.1). The base length is defined to cover the effects of the

sizes of cells that are connected to a net, on the length of that net, but only for standard

cell circuit designs. In calculations for variable, all the cells of the circuit are considered

25

Mixed-size Cell Design Standard Cell Design

Figure 2.6: Examples of degree-two nets from standard and mixed-size cell designs

to have equal heights and widths. This results in the same base length value for nets

with equal degrees.

In mixed-size circuits, cells with large differences in their dimensions can exist as

a mixed-size design includes both standard cells and macro cells. In Figure 2.6, small

examples of mixed-size and standard cell designs are presented. It is shown that even

though both nets are degree-two nets, the base lengths of the nets are very different.

To cover the effects of the presence of mixed-size cells on the individual net lengths,

the macro base length is proposed. In [2], instead of the standard cell height used in the

base length equation, to calculate the macro base length the average value of actual cell

heights is used. The macro base length is equal to the adjusted average of the height

required for placing all the cells of the net vertically and the row width required for

placing them horizontally right next to each other. The averages are multiplied by a

utility factor to allow sufficient space allocation for wiring space. Therefore, the macro

base length, macroBaseL, of a net netj is:

macroBaseL(netj) =
1

2

(
∑

celli∈setc(netj)
h(celli)

UFv

+

∑

celli∈setc(netj)
w(celli)

UFh

)

,

where setc(netj) is the set of cells connected to netj and h(celli) and w(celli) are the

height and width of the cell celli connected to net netj , respectively. UFh and UFv

26

Lv

Lv

LhLh

w1

h1

h2

h3

w3

w2

cell1

cell2

cell3

cell3

cell2

cell1

Figure 2.7: An example for calculation of macro base length

represent the utility factors for horizontal and vertical cell placements, respectively.

In Figure 2.7, an example is presented to clarify the calculation of the macro base

length. Lh and Lv are the minimum lengths needed for wiring in the horizontal and

vertical directions, respectively. These lengths are determined by dividing the half

perimeters of the cells by the relevant utility factors. Then, the macro base length

for net net1 connecting cells cell1, cell2 and cell3 is calculated as macroBaseL(net1) =

1
2(

h1+h2+h3
UFv

+ w1+w2+w3
UFh

).

The development of the macro base length results in the ability of the model to

distinguish between nets with the same degree. Therefore, the value of macro base

length is not just based on net degree but depends on the actual sizes of cells connected

to a net. For example, the length of a degree-two net which is connected to a macro cell

is usually higher than the length of a degree-two net that is only connected to standard

cells. This concept is covered using the macro base length in net length estimation.

second level effect (x3): The sizes of cells in the second level neighborhood of a net

affect the net length, particularly when macro cells are in that second level neighborhood.

Therefore, a variable for considering the second level effect is introduced in [2] to cover

27

the effect of the sizes of the second level neighbor cells of a net, which are cells that do

not belong to the net, but are directly connected to cells of that net. This variable is

calculated as the sum of the half perimeters of the cells in the second level neighborhood:

2ndlvl(netj) =
∑

celli∈set2c(netj)

(h(celli) + w(celli)) ,

where set2c(netj) and 2ndlvl(netj) are the set of cells in the second level neighborhood

and second level effect variable of net netj , respectively. Also, h(celli) and w(celli) are

the height and width of a cell celli in set2c(netj), respectively.

In [2], this variable is used in the proposed a-priori net length estimation model. The

variable analysis results show that the second level effect of a net is significantly correlated

to the actual after placement net lengths. Using the second level effect and macro base

length variables makes the net length estimation model suitable for mixed-size circuit

designs.

N2oth, (x4): N2oth is originally proposed in [1] and explained in Section 2.1.4.

Inverse Mutual Contraction (x5): Mutual contraction, introduced in [18], is described

in Section 2.1.5. In [2], during the variable selection analysis, mutual contraction is shown

to be relatively correlated to the actual after placement lengths. Therefore, this variable

is used as one of the variables in (2.5).

Nettintnc, (x6): Nettintnc is equal to the number of nets connected to the cells of a

net excluding the nets that are connected to two or more cells of that net. This variable

is developed based on attintnc that is originally introduced in [17] for degree-two nets,

i.e. edges, and is explained in Section 2.1.3. In [2], the variable is expanded to include

nets of all degrees as shown in the following:

Nettintnc(netj) = numNsetc(netj)
− numcomN(setc(netj)),

where numNsetc(netj)
is the number of all the nets that are connected to at least one of the

28

cells in the neighborhood of net netj and numcomN(setc(netj)) is the number of common

nets between the cells connected to netj .

degree-two to degree-four congestion metrics (x7), (x8), (x9): Degree-two to degree-six

congestion metrics are proposed originally in [1] and explained in Section 2.1.4. During

the variable selection procedure in [2], degree-five and degree-six congestion metrics are

not chosen to be included in the estimation model. In fact, these variables show relatively

low correlation to the actual after placement net lengths in comparison with the other

variables. Therefore, degree-two to degree-four congestion metrics are included in the

net length estimation model.

2.2 Radial Basis Functions Background

2.2.1 Introduction

As computers are utilized widely in all engineering areas, the efficient evaluation and

implementation of mathematical functions become important. In many cases, it is not

possible to implement the exact mathematical functions. For example, sometimes, the

number of terms required to represent functions is not finite. In addition, it can be very

time consuming to evaluate the exact representation of a function. Therefore, the needs

to approximate mathematical functions grow rapidly [27].

One way to approximate a function is to model the data based on a pre-specified basis.

This basis can be a general function such as a polynomial. This method is usually used

when the data follow the general trend of a pre-defined function. However, approximating

a function which represents a set of highly non-linear data that do not follow any well-

known trend, is a daunting task.

Individual a-priori net length estimation techniques, such as [1, 2, 8], use pre-defined

models such as exponential models, quadratic or third order polynomials, for net length

29

estimation. However, fitting the data with a pre-defined basis is not suitable for the

complex and large circuits used today since the given data for estimation are highly

non-linear.

In this research, Radial Basis Functions (RBFs) are used to estimate the individual

lengths since the function for net length estimation is not known in practice and as the

data suggest, is highly non-linear. RBFs are the means to estimate the multivariate

functions. RBFs provide better ability to capture the details of a set of highly non-linear

given data with manageable model complexity [9].

The rest of this section is organized as follows: In Section 2.2.2, different types of

RBFs are introduced. The applications of radial basis functions are explained in 2.2.3.

In Section 2.2.4, an algorithm is introduced which is used for estimation using RBFs.

Finally, different methods for determining the locations of centers of RBFs are presented

in Section 2.2.5

2.2.2 Radial Basis Functions Types

Several radial basis functions exist and are used for estimation. In fact, any function

which takes the distance between any given point as the input and a certain point, the

so called center, is a radial basis function. So, the general form of a radial basis function,

φi, for a given data point, x, is:

φi(x) = φ(||x − ci||2),

where, φ(·) represents a function and ci is the center associated with that function.

There are a few radial basis functions which are commonly used by researchers such

as Gaussian, multiquadric, inverse multiquadric and thin plate spline functions [9]. These

RBFs are discussed in the following paragraphs:

Gaussian Radial Basis Functions: Gaussian RBFs are widely used in several different

research areas [9]. One reason is that the normal distribution usually fits well to the

30

training data. The second reason is that the parameters of a Gaussian RBF, i.e. its

mean and variance, can be intelligently found. In this thesis, Gaussian RBFs are used.

The general form of a Gaussian radial basis function, φg, for a center c and a given

point x is as follows:

φg(x) =
1√

2πσ2
exp

(

−||x − c||2

2σ2

)

,

where σ2 is the variance of the Gaussian function.

Multiquadric Radial Basis Functions: The general form of these RBFs for a center c

and a given point x is shown in the following:

φm(x) =
√

a2
m + ||x − c||2,

where φm is the multiquadric RBF and am is its parameter. This parameter is set by

studying the given data which should be estimated using RBFs.

Inverse Multiquadric Radial Basis Functions: The general form of the inverse multi-

quadric RBFs, φim, for a center c and a given point x is:

φim(x) =
1

√

a2
im + ||x − c||2

,

where the function parameter aim is found based on the input data.

Thin Plate Spline Radial Basis Functions: The general form for thin plate spline

RBFs, φt, for a center c and a given point x is as follows:

φt(x) = ||x − c||2 log (||x − c|| + at) ,

where at is the RBF parameter which is calculated by carefully considering the training

data set. It should be noted that this parameter should be bigger than zero to deal with

the case that the input point is exactly located on a center.

31

2.2.3 Radial Basis Functions Applications

Recently, radial basis functions have been used in many applications. Radial basis func-

tions are widely used by scientists for estimation and interpolation. Some applications

of RBFs are in neural networks [31, 32], non-linear control systems [33–35] and pattern

recognition [36, 37]. Furthermore, RBFs are used in signal processing [38], image pro-

cessing [39] and global optimization [40].

RBFs are applied in neural networks. These networks consist of several RBF neurons,

i.e. RBFs each associated with one center, that are applied in parallel [9]. All these

neurons are connected to the output neuron. The general form of an RBF network,

RBFNN (·) for each input point x is as follows:

RBFNN(x) =
N

∑

i=1

wiφNi
(||x − ci||2),

where ci and wi are the center and weight associated with RBF neuron φNi
, respectively.

In [31, 32], radial basis function neural networks are used for load forecasting in the

electricity market. In these papers, the capability of RBFs in non-linear data estimation

is used to predict the short-term load in power systems.

2.2.4 Estimation Using Radial Basis Functions

Radial Basis Functions (RBFs) are a class of functions which can be used to estimate

the values of a function, given a set of measurements, without having to fit them into

a pre-defined function, such as a polynomial [9, 27, 41]. In RBF-based estimation, a

set of distribution functions centered throughout the data space are used to estimate the

function value at any data point. Each distribution function captures the local properties

of the data around each center. The estimated value at a certain point is the weighted

sum of all the distribution functions evaluated at that point. These weights are calculated

using the given set of measurements. Using RBFs allows the estimation to be performed

32

on a very complex set of data, i.e. data with high non-linearity, without having to smooth

the non-linearity to fit a pre-specified model [27].

In contrast to RBFs, in order to increase the accuracy of a polynomial estimation

model, such as the ones used for length estimation [1, 2], the degree of the polynomial

model needs to be increased. However, the number of polynomial coefficients, nc(·, ·),

increases rapidly with the polynomial degree, pd, and number of variables, nvar. This

increase can be calculated using the following relation:

nc(pd, nvar) =

(

pd + nvar

nvar

)

.

This relation results in a large number of coefficients for large number of variables and

large polynomial degrees. The large number of coefficients that need to be calculated to

form an estimation model shows that the strategy of increasing the polynomial degree to

improve the estimation accuracy is not practical, especially for large numbers of variables

and large sizes of data.

Radial basis functions can solve this problem by avoiding the need to use a specific

form for the estimated function and instead using a combination of independent distri-

butions. This combination is a highly non-linear function and can be used to estimate

complex data while each independent distribution, RBF, is not complex.

For example, consider a quadratically-growing sinusoidal function, qs(·):

qs(x) = x2 sin(2.5πx4).

qs(·) is a non-linear function and its values when x ∈ [0, 1] are plotted in Figure 2.8, using

the solid gray line. The function is evaluated at a set of random data points selected

between 0 and 1 and used to reconstruct the least-square estimates using second and third

order polynomials. These least-square estimates are shown in Figure 2.8 using dotted

gray and solid black lines, respectively. It can be seen that the second and third order

polynomial estimates do not follow qs(·) very closely. The correlation coefficients of these

33

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

M
ag

ni
tu

de

Validation Set
RBF
Quadratic Polynomial
3rd order Polynomial

Figure 2.8: Approximation of a quadratically-growing sinusoidal function using polyno-
mial and RBF-based models

estimates with the actual function are 14.5% and 11.7%, respectively. However, if RBFs

with four centers are used for the estimation using the same data set, the correlation

coefficient is increased to 99.9%, and the plot of the estimated values, as shown in Figure

2.8 using a black dotted line, follows the plot of qs(·) closely.

To produce function estimates using RBFs, Algorithm RBF shown in Figure 2.9 is

used. The inputs to this algorithm are a set of M actual data points, their corresponding

Algorithm RBF: RBF-based estimation

Inputs: Sets of actual data, yact, model variables, X
and center locations, C

Output: Set of estimated values, yest

1. For each center, ci ∈ C:
1.1. Evaluate RBFs using (2.6)

2. Solve (2.7) to find weights for RBFs
3. Find estimated values using (2.8)

Figure 2.9: High-level algorithm for RBF-based estimation

model variables and a set of N centers located over the data space. These centers can

34

be determined using different center placement methods which are discussed in Section

2.2.5. The outputs of the algorithm are the estimated values, yest.

Each center, ci ∈ C, is associated with an RBF, φi(·), whose inputs are the distances

between any point and the center. Hence, in Step 1 of the Algorithm RBF, for a given

point, x, φi(x) is calculated as:

φi(x) = φ(||x − ci||2), (2.6)

where φ(·) represents a distribution function.

In Step 2, the weights associated with RBFs, are determined by solving the following

matrix equation:

Φw = yact, (2.7)

where yact ∈ +M×1 is the vector of M actual data points, Φ ∈ +M×N is the matrix of

radial basis functions evaluated for each of N centers and M data points and w ∈ +N×1

is a vector of weights for each of the N distribution functions. Usually, M , N , so that

(2.7) is an overdetermined system of equations that can be solved using OLSF, resulting

in some robustness.

Finally, in Step 3, the estimated value for any given point, yest(x), is calculated as

the weighted sum of all the RBFs:

yest(x) =
N

∑

i=1

wiφi(x), (2.8)

where wi are the weights associated with RBFs.

2.2.5 Center Placement

Center selection is a crucial part of RBF-based estimation. Centers should be selected to

cover the whole range of the data. Sometimes the input data points are scattered over

a wide range of values. Most previous RBF applications use a uniform center placement

35

method [9] which places centers in a set of uniformly distributed grid points over all

data space dimensions. Each dimension is associated with one variable in the estimation

model. In Figure 2.10, an example with two variables, that are normalized to be between

0 and 1, is shown to illustrate the concept of center placement. In this figure, the solid

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

xi

 x
j

Figure 2.10: Centers generated using traditional uniform and the proposed constructive
selective center placement methods for two-dimensional training data

black line is the training data set. The intersections of the center grid lines, shown with

× in Figure 2.10, are the positions of the centers. In general, having normalized all the

model variables between 0 and 1, the grid distance, dc, between two adjacent centers on

each dimension, when using the uniform center placement method, is

dc =
1

ngrid − 1
,

36

where ngrid is the number of center grids for each variable, 10 in Figure 2.10. The relation

between ngrid and the total number of centers, ncenter, placed by uniform center placement

method, is as follows:

ncenter = ngrid
nvar . (2.9)

According to (2.9), if the estimation model includes a large number of model vari-

ables, the total number of centers created by uniform center placement method becomes

extremely large. Hence, an increase in the number of center grids increases the number

of centers exponentially. It should be mentioned that estimation with a large number of

centers requires a huge memory space and a large amount of computing time.

In addition, there exist centers which do not have any data points in their neighbor-

hood. These centers do not contribute to the estimation and hence, can be removed. The

lower the number of centers, the lower the required processing time and memory space

are. However, because of the large number of centers, center removal can also be very

time consuming.

A new center placement method, called the constructive selective uniform (CSU)

center placement method , is proposed in the literature which constructs an essential set

of centers for estimation using the given data. The advantage of the constructive selective

uniform center placement method over a traditional uniform center placement method is

that it creates fewer centers without losing the accuracy of the estimation results. This

leads to less required memory space and shorter processing time. Furthermore, using a

constructive center placement method instead of a center removal technique results in

further savings in computational time and memory usage.

The CSU center placement method locates the centers based on the distribution of

the data. Initially, a space with nvar dimensions and ngrid center grids on each dimension

is considered. The intersections of center grid lines are the locations of potential centers.

37

For each given data point, only the centers which are within a certain radius, r, are used

in the estimation model. The algorithm for this new center placement method, Algorithm

Center, is shown in Figure 2.11. Each step of the algorithm is explained in what follows.

Algorithm Center: Center placement

Inputs: Model variables (X), ngrid

Output: Set of center locations, C

1. Normalize all model variables to be between 0 and 1
2. Calculate grid distance, dc = 1

ngrid−1

3. Calculate the radius r using dc

4. For each data point in model variables, xi ∈ X:
4.a. Find all the neighboring potential centers, Cpi

4.b. For each cpij
∈ Cpi

:
4.b.i. Calculate distance of data point to potential

center, d(cpij
) = ||cpij

− xi||
4.b.ii. If the distance, d(cpij

) ≤ r, add cpij
to C

Figure 2.11: High-level algorithm for CSU center placement method

Model variables (X) and number of center grids on each dimension, ngrid, are the

inputs of this algorithm. The set of center locations, C, is the output. In Step 1, all the

model variables are normalized between 0 and 1. Then, in Step 2, the grid distance is

calculated. In Step 3, the radius r is calculated using the value of the grid distance. The

proposed calculation of r is given in the following paragraph. Finally in Step 4, for each

data point, the neighboring potential centers are found and the potential centers whose

distances to the data point are less than r, are added to the center locations, C.

To calculate the value of r, two extreme situations should be considered. One situation

is when a datum is located on a potential center location. In this case, since one center

is sufficient to cover that datum in the estimation model, r = 0 can be used. This is

the minimum value that can be chosen for r. Another situation is when a datum is

located on a spot where the distances to all the neighboring potential center locations

are the same. For example, if only two variables are used, i.e. two-dimensional space,

38

this extreme situation occurs when the data point is located in the middle of a square

with the closest potential centers on its corners. Each center is in a distance of
√

2
2 in this

situation. Considering that one center is sought, in nvar dimensions, r should be
√

nvar

2 dc

which is the maximum value for the radius r. Therefore, a value within the range of

0 ≤ r ≤
√

nvar

2 dc should be chosen.

If the maximum value of r is chosen in the constructive selective uniform center

placement method, the number of centers becomes too large for estimation and results

in over-fitting. On the other hand, if the minimum value of r is set, the CSU center

placement method places a low number of centers and leads to less accurate estimation

results. Therefore, r is chosen to be the average of the extreme values and set to be
√

nvar

4 dc.

r

Figure 2.12: Two-dimensional example of the constructive selective uniform center place-
ment method with one data point using radius r

In Figure 2.12, an example of CSU center placement method for estimation with two

variables, two dimensions, is shown for a data point . The data point is shown by •
and the potential center locations are shown by ×. In addition, the selected center is

represented by ◦. It can be seen that any center which is within a distance of r from the

data point is selected and used in the estimation model.

39

To better illustrate the effectiveness of the new center placement method, in Figure

2.10, both the traditional uniform and CSU center placement methods are used to gen-

erate centers for the data. The centers generated by the uniform technique are shown

as × and the centers generated by the proposed center placement method are shown by

◦. For the data that are easy to estimate, the data in the left half of the figure, less

centers are placed by CSU center placement method while when the data trend changes,

the data in the right half of the figure, more centers are placed to provide the ability of

capturing the trends.

2.3 Summary

In this chapter a background on estimation is presented. Major a-priori individual net

length estimation techniques are explained in detail. In addition, performances of several

existing techniques are studied and compared.

Furthermore, a background on Radial Basis Functions (RBFs) is presented in this

chapter. RBFs are used for estimation and interpolation. The types and characteristics

of RBFs along with an algorithm for estimation using RBFs are introduced. Finally,

different methods for determining the locations of the centers of RBFs are discussed.

40

Chapter 3

Background: Clustering Algorithms

3.1 Introduction

As transistor sizes decrease, the power consumption and delay caused by circuit inter-

connects have become a larger part of the total circuit delay and power consumption.

Furthermore, the number of cells and interconnects in ICs is significantly growing [42].

To handle the increasing sizes of circuits, clustering algorithms are used to minimize the

amount of wires required for routing interconnects. Clustering algorithms are applied in

different stages of physical design such as partitioning and placement.

Clustering has been used in physical design for more than a decade. The leading

partitioning algorithms such as hMetis [43] have used clustering to improve results since

1997. In the ISPD 2005 [10] and ISPD 2006 [44] placement contests, clustering techniques

were used in almost all of the placement algorithms. The clustering algorithms that are

applied in the placement stage are the focus of this research. These algorithms reduce the

sizes of the circuits in order to improve the placement results. This results in empowering

the placers to cope with the exponentially increasing sizes of circuits. Examples of these

clustering algorithms are presented in [11, 43, 45–49].

The rest of this chapter is organized as follows: In Section 3.2, the clustering problem

is defined. In Section 3.3, different types of existing clustering algorithms are identified.

Then, the scoreless and score-based clustering algorithms available in the literature are

presented in Sections 3.4 and 3.5. In Section 3.6, the idea of a feedback framework for

correcting the negative effects of clustering algorithms is described. Finally, a summary

is presented in Section 3.7.

41

3.2 Clustering Problem Definition

The clustering problem in physical deign is defined as grouping highly connected cells

of a circuit together, such that certain requirements are satisfied. Examples of these

requirements can be lower and upper bounds on the sizes of clusters. Suppose that

Gh = (V, E) is a hypergraph where V is the set of cells or vertices and E is the set of

nets. A set of clusters Clu1, Clu2, ..., Cluk is found such that the following requirements

are met:

k ≤ numtotcell,

Clui /= {}, ∀i = 1, ..., k

Clui ⊂ V, ∀i = 1, ..., k

∪k
i=1Clui = V,

Clui ∩ Cluj = {}, ∀i = 1, ..., k, i /= j

size(Clui) ≤ UBClu, ∀i = 1, ..., k

size(Clui) ≥ LBClu, ∀i = 1, ..., k

where k is the number of clusters. The number of all the cells in the circuit is represented

by numtotcell and UBClu and LBClu are the upper and lower bounds on the sizes of clusters,

respectively. Also, size(Clui) represents the size of cluster Clui which can be either the

number of cells in the cluster or the sum of the areas of all cells in the cluster.

In a typical clustering algorithm, clusters with higher quality, i.e. clusters that result

in a placement solution with less total wire length, are sought. The number of nets that

are cut by all of the clusters can be used as a measure of the quality of a set of clusters.

A net is cut by a cluster if that net is connected to at least one cell in the cluster while at

least one of its connected cells does not belong to that cluster. Considering that the aim

of clustering is to group highly connected nets together, a set of clusters with a minimum

42

number of cut nets is desired. Therefore, in addition to the requirements mentioned

above, one of the main goals of clustering is defined as the minimization of the number

of nets that are cut by the set of clusters:

min(
k

∑

i=1

numcut(Clui)),

where numcut(Clui) is the number of nets cut by cluster Clui.

Once the clusters have been made, the nets that only connect cells from one cluster

are absorbed into that cluster, i.e. eliminated. However, nets that connect at least one

cell which does not belong to the cluster are kept, and counted as cut nets. Then, each

group of clustered cells is replaced by a bigger cell which represents the cluster. This

procedure may be repeated for a circuit to reduce its size to a desired size. Such a

clustering algorithm is called multilevel clustering.

To control the reduction of circuit size in each level of a multilevel clustering, the Cell

Cluster Ratio (CCR) is defined and calculated as:

CellClusterRatio(CCR) =
number of cells in clustered circuit

number of cells in original circuit
.

This metric is mostly expressed as a percentage and used to stop clustering at each

level when the circuit size is reduced to the desired size. Multilevel clustering is used

to perform multilevel placement or partitioning. In multilevel placement, first, all levels

of clustering are performed. Then, the first level of placement is performed by placing

the cells of the highest level of the clustered circuit. In the next level of the placement

stage, the circuit is unclustered for one level and the exact locations of the unclustered

cells are determined. This procedure is repeated for all clustering levels until all the cells

have been placed. It has been shown that using clustering for circuit placement results

in decreased runtime and increases the quality of the placement results as compared to

the placement results without using clustering [50, 51].

43

3.3 Types of Clustering Algorithms

There exist several classifications of clustering algorithms. One possible classification

of clustering algorithms is based on whether or not they perform comparison of the

potential clusters, i.e. score-based versus scoreless. Examples of score-based algorithms

are best-choice clustering [47], Net Cluster [11], edge-separability [48], and fine granularity

clustering [49]. Although score-based algorithms are more desirable in terms of the quality

of the results, they are usually more time consuming than the scoreless approaches.

Edge coarsening [43], FirstChoice [52], PinEC [45], hyperedge coarsening [53] and heavy-

edge matching [46] are examples of scoreless clustering where clusters are made without

comparison to each other. These algorithms can have low runtimes and reduce the

circuit sizes effectively, but the quality of clusters might not be very high, because high

quality potential clusters can be disregarded since their cells are already assigned to other

clusters.

Another classification of clustering algorithms can be made based on if clusters are

made by focusing on grouping cells together, e.g. FirstChoice, PinEC, best-choice, or by

collapsing nets, e.g. hyperedge coarsening and Net Cluster.

3.4 Scoreless Clustering Algorithms

Scoreless clustering is an approach in which potential clusters are formed by considering

the local neighborhood of cells. In this approach, these potential clusters are finalized and

are not compared with any other potential clusters. These clusters are locally the best

possible clusters while they may not be the best overall clusters. The lack of comparison of

finalized clusters with other potential clusters results in lowering the quality of clustering

results. However, scoreless clustering approaches are relatively fast which makes them

suitable for specific circumstances. The existing scoreless clustering approaches that are

44

most commonly used in physical design are presented in the following subsections.

3.4.1 Edge Coarsening

One of the basic clustering algorithms is called Edge Coarsening (EC) and presented

in [43, 52]. This algorithm is based on randomly considering cells in a circuit. In this

algorithm, first, a randomly selected cell is considered. If this cell is already clustered, it

will be skipped and another cell is selected randomly. If the selected cell is not clustered,

it is chosen as the seed cell. The seed cell is a cell that is considered as a base for

formation of a cluster or potential cluster. Then, the weights of connections of this seed

cell to its unclustered adjacent cells are calculated. The cell with the highest connectivity

to the seed cell is grouped with the seed cell in a cluster.

Edge coarsening forms clusters of two cells in each iteration. This formed cluster

is locked and does not change during the following iterations. To find the weight of

connection between two cells, first, the weight, wgn, of a typical net netj is defined:

wgn(netj) =
1

dg(netj) − 1
,

where dg(netj) is the degree of netj , i.e. number of cells that are connected to the net.

Then, the weight of connection between two cells celli and cellj , wgcon(celli, cellj), is

calculated as:

wgcon(celli, cellj) =
∑

{netk|netk→{celli,cellj}}

wgn(netk) =
∑

{netk|netk→{celli,cellj}}

1

dg(netk) − 1
, (3.1)

where netk → {celli, cellj} means that netk is connected to the cells celli and cellj .

In Figure 3.1(a), a small circuit is presented. This circuit contains 5 cells that are

connected by 8 nets. When EC is used for clustering, a seed cell is selected randomly.

In this example, the first seed cell is randomly chosen to be cell5 which is an unclustered

cell. Therefore, the weight of connections between this seed cell and its unclustered

45

cell2

cell1

cell3 cell4

cell5

net1

net2

net3

net4

net5

net6

net7

net8

(a) Original Circuit

cell2

cell1

cell3 cell4

cell5

net1

net2

net3

net4

net5

net6

net7

net8

(b) Formed Clusters (shown with dashed
lines)

net1

net2

cell2
net6

net3

net7

cell3,cell4

cell1,cell5

(c) Final Clustered Circuit

Figure 3.1: Example for clustering using EC

46

adjacent cells, cell1 and cell4, are calculated as wgcon(cell5, cell1) = 1
dg(net8)−1 = 1

2−1 = 1

and wgcon(cell5, cell4) = 1
dg(net7)−1 = 1

2−1 = 1. Since these weights are the same, cell1 can

be randomly chosen to form a cluster with cell5. In the next iteration, another random

seed cell is selected which can be, for example, cell3. This seed cell does not belong to

any clusters and is connected to cell2 and cell4 that do not belong to any cluster. In

a similar way, the connectivity weights are calculated as wgcon(cell3, cell2) = 1
2−1 = 1

and wgcon(cell3, cell4) = 1
2−1 + 1

2−1 = 2. As the connection weight between cell3 and

cell4 is higher, they are put in a new cluster. The next random seed cell is, for example,

cell1 which is already clustered. This seed cell is skipped and cell2 is randomly chosen

as the next seed cell. Even though this cell has not already been clustered, all of its

adjacent cells are part of other clusters and cannot form a new cluster with cell2. This

cell is skipped too and cell4, which is the only unvisited cell remaining, is selected as

the seed cell. However, this cell is already clustered and is skipped by EC algorithm. In

Figure 3.1(b), the formed clusters are shown using dashed lines and in Figure 3.1(c), the

clustered circuit is shown that contains 3 cells and 5 nets. It should be mentioned that

nets net4, net5 and net8 are absorbed into the clusters.

3.4.2 Hyperedge Coarsening

In [52,53], Hyperedge Coarsening (HC) is proposed. In this clustering algorithm, instead

of considering cells in a random manner, nets or hyperedges are visited. In the first step,

the nets of a circuit are ranked by their degrees in ascending order. To deal with nets

with the same degree, the sum of the areas of all cells connected to each net is used to

rank the nets in increasing order.

In the next step, the first ranked net, i.e. net with the lowest degree, is selected as a

seed net. The seed net is a net that is considered as a base for the formation of a cluster

or potential cluster. Similar to EC clustering, if the seed net is already clustered, it will

47

be skipped and the next ranked net will be visited. A net is considered as a clustered

net if at least one of its connected cells belongs to a formed cluster. If the seed net is

not clustered, all of its connected cells are grouped as a new cluster. This procedure is

repeated for all the nets in the circuit. The procedure stops when the desired cell cluster

ratio is obtained or all the nets of the circuit have been visited.

This algorithm can be repeated for the clustered circuit by considering the formed

clusters as the cells of a new circuit. To prevent the production of unbalanced clusters,

an upper bound on the sizes of clusters is set. It should be noted that size of a cluster is

the sum of areas of cells in that cluster.

In the HC clustering algorithm, in contrast to EC clustering that makes clusters with

only two cells, the clusters may contain different numbers of cells, depending on the

degree of the net used to form the cluster.

In Figure 3.2(a), an example circuit with 9 unit-size cells and 3 nets is presented. The

hyperedge coarsening algorithm is used to form clusters with an upper bound of 5 units

on the cluster size. In the first step, the nets are sorted based on their net degrees in

increasing order, as follows: net3, net1 and net2. The first ranked net which is net3 with

degree 3, is visited as the first seed net. This net can be clustered since none of its cells

belongs to any cluster. All of the cells connected to this net are grouped in a new cluster

that absorbs net3. The size of this cluster is 3 unit-size cells which does not violate the

constraint on the cluster size. The next seed net is net1 which is connected to 4 cells:

cell1, cell2, cell3 and cell4. These cells are not part of any cluster and so they form a new

cluster with a size of 4 units which is less than the upper bound on the cluster size. The

last seed net is net2 which is a net with degree 7. Some of the cells connected to this net

are already clustered. Therefore, net2 is skipped and the clustering is concluded since all

of the nets have been visited.

In Figure 3.2(b), the formed clusters are shown using dashed lines. Finally, in Figure

48

cell2

cell4

cell3

cell5

cell6

cell7

cell8

cell9cell1

net1
net2 net3

(a) Original Circuit

cell2

cell4

cell3

cell5

cell6

cell7

cell8

cell9cell1

net1
net2 net3

(b) Formed Clusters (shown with dashed lines)

cell6

net2

cell5

cell1,cell2,cell3,cell4 cell7,cell8,cell9

(c) Final Clustered Circuit

Figure 3.2: Example for clustering using HC

49

3.2(c), the circuit is presented after it has been clustered using the HC clustering algo-

rithm. It can be seen that the circuit has been reduced to a circuit with only 4 cells and

1 net.

3.4.3 Modified Hyperedge Coarsening

Modified Hyperedge Coarsening (MHC) was proposed in [52, 53]. This algorithm is a

modified version of hyperedge coarsening (HC). As discussed in Section 3.4.2, the HC

algorithm skips any seed net that is connected to at least one clustered cell. This results

in skipping a large number of nets during clustering, which may decrease the efficiency of

the clustering algorithm. The MHC algorithm was developed to cluster nets even when

they are connected to clustered cells.

Modified hyperedge coarsening first uses the HC algorithm to cluster a circuit. Then,

nets are considered again to find those nets that are not clustered because they are

connected to clustered cells. The unclustered nets form new clusters in this process. The

constraint on the cluster size must still be satisfied by these new clusters. This procedure

continues until all the nets have been clustered or a certain cell cluster ratio is reached.

In Figure 3.3, MHC is performed on the circuit used as an example for explaining

the hyperedge clustering algorithm in Section 3.4.2. As it can be seen in Figure 3.3(a),

two clusters are produced in the first step of the MHC algorithm. Then, nets are visited

again and net2 is found to be the only net which is not clustered. This net along with

its connected cells that have not already been clustered, i.e. cell5 and cell6, form a new

cluster. This cluster satisfies the constraint on the cluster size since its size is 2 units

which is less than the specified upper bound on cluster size, 5. The MHC algorithm stops

since all the nets have been clustered. In Figure 3.3(b), the clusters formed by MHC are

shown. Finally, in Figure 3.3(c), the final clustered circuit is presented. This circuit is

reduced in size compared to the circuit clustered by the HC algorithm.

50

cell2

cell4

cell3

cell5

cell6

cell7

cell8

cell9cell1

net1
net2 net3

(a) Clusters formed in the first step of MHC
(shown with dashed lines)

cell2

cell4

cell3

cell5

cell6

cell7

cell8

cell9cell1

net1
net2 net3

(b) All of the clusters formed with MHC
(shown with dashed lines)

cell1,cell2,cell3,cell4 cell7,cell8,cell9
net2

cell5,cell6

(c) Final Clustered Circuit

Figure 3.3: Example for clustering using MHC

51

3.4.4 FirstChoice Clustering

The FirstChoice Clustering (FC) algorithm is proposed in [52]. This algorithm is a

modified version of the edge coarsening (EC) algorithm discussed in Section 3.4.1. Similar

to EC, FirstChoice clustering is based on randomly visiting circuit’s cells. If a visited

cell has not yet been clustered, it is treated as a seed cell.

In EC, the weights of the connections between the seed cell and any unclustered adja-

cent cells are calculated and the seed cell is clustered with the neighbor cell that has the

maximum weight. The calculation of connection weights is presented in (3.1). However,

the only difference between EC and FC is that in the FC algorithm, the clustering status

of the adjacent cells is not considered. In the other words, in FC, for each seed cell, the

weights of its connections with all the adjacent cells, i.e. clustered and unclustered, are

calculated. Then, the seed cell is clustered with the adjacent cell that has the maximum

connection weight without considering its clustering status. Therefore, if the adjacent

cell with the maximum connectivity is part of a cluster, the seed cell is added to the

existing cluster, rather than forming a new cluster. Since clusters such as these may

include too many cells, the clusters formed by the FC algorithm are required to satisfy a

constraint on their size.

In Figure 3.4(a), the example circuit used in Section 3.4.1 to explain the EC algorithm

is used to provide a fair comparison between EC and FC. The cells are randomly visited.

However, this random sequence was set to be the same as that used in the example for EC,

in order to have a proper comparison. Similar to the example for EC, the first visited cell

is cell5 which is unclustered and considered as a seed cell. The weights of its connections

to cells cell1 and cell4 are calculated as wgcon(cell5, cell1) = 1
dg(net8)−1 = 1

2−1 = 1 and

wgcon(cell5, cell4) = 1
dg(net7)−1 = 1

2−1 = 1. Similar to the example for EC, since the

connectivities are equal, cell1 is randomly chosen to be grouped in a new cluster with

cell5. The cluster size constraint, set to 5 in this example, is satisfied by this cluster. As

52

cell2

cell1

cell3 cell4

cell5

net1

net2

net3

net4

net5

net6

net7

net8

(a) Original Circuit

cell2

cell1

cell3 cell4

cell5

net1

net2

net3

net4

net5

net6

net7

net8

(b) Formed Clusters (shown with dashed
lines)

cell3,cell4

net3 net6 net7

cell1,cell2,cell5

(c) Final Clustered Cir-
cuit

Figure 3.4: Example for clustering using FC

53

in EC example, the next visited cell is cell3 which can be considered as a seed cell because

it is still unclustered. Calculating wgcon(cell3, cell2) = 1 and wgcon(cell3, cell4) = 2, cell3

and cell4 form a new cluster that meets the constraint on cluster size. The next visited

cell, cell1, is a clustered cell and so is skipped. Then, cell2 is visited randomly and

is considered as a seed cell since it is not clustered. The connectivities are calculated

as wgcon(cell2, cell1) = 1
dg(net1)−1 + 1

dg(net2)−1 = 1
2−1 + 1

2−1 = 2 and wgcon(cell2, cell3) =

1
dg(net3)−1 = 1

2−1 = 1. The connectivity between cell2 and cell1 is more than that between

cell2 and cell3. Although cell1 is already clustered and since FC is used for clustering,

cell2 is added to the already existing cluster that includes cell1 and cell5. This cluster

still satisfies the constraint on the cluster size. Since the last visited cell, cell4, is already

clustered, it is skipped and the clustering process stops because all cells have been visited.

In Figure 3.4(b), the formed clusters are shown with dashed lines. In Figure 3.4(c),

the circuit clustered by the FirstChoice clustering algorithm is shown. It can be seen

from Figures 3.4 and 3.1 that when the example circuit is clustered using FC, the circuit

size is reduced to 2 cells and 3 nets while the circuit clustered by EC includes 3 cells and

5 nets.

3.4.5 Heavy-Edge Matching

In [46], the Heavy-Edge Matching (HEM) clustering algorithm is proposed. This algo-

rithm is a modified version of edge coarsening (EC) in which the priority is with forming

clusters that are smaller physically. The main process of HEM clustering is similar to

EC, but the definitions and calculations of connection weights are different.

A new measure for the calculation of connectivity between two cells, celli and cellj ,

is defined as:

connHEM(celli, cellj) =
1

area(celli) + area(cellj)

∑

{netk|netk→{celli,cellj}}

1

dg(netk)
, (3.2)

54

where connHEM(celli, cellj) is the connectivity between celli and cellj defined in HEM

clustering. Also, area(celli) and area(cellj) are the areas of celli and cellj , respectively.

The net netk is the net that is connected to both celli and cellj and dg(netk) is the

degree of netk. It can be seen that in this connectivity measure, the effects of cell areas

are considered.

Using the connectivity measure defined in (3.2), priority is given to the nets with

lower degrees and the cells with smaller areas. The clustering procedure is the same as

EC. The cells in the circuit are visited randomly and a cell is considered to be a seed

cell if it is unclustered. The connectivities between the seed cell and any unclustered

adjacent cells are calculated. The seed cell is grouped in a new cluster with the adjacent

cell with maximum connectivity. This procedure is repeated for other seed cells until all

the cells of the circuit have been visited or a pre-specified cell cluster ratio is reached.

3.4.6 PinEC Clustering

A variation of the heavy-edge matching (HEM) clustering algorithm is presented in [45].

In this algorithm, called PinEC clustering, a new method for connectivity calculations

along with an algorithm different from HEM are used. In this algorithm, the connec-

tivity of the nets with degree two is doubled to emphasize the priority of these nets.

In addition, the clustering algorithm is modified. In this new algorithm, the cells are

updated dynamically after the formation of a new cluster. Thus, once a new cluster is

formed by grouping two connected cells, those two cells are removed from the set of cells

in the circuit and replaced by the new cluster. In subsequent iterations, this cluster is

treated as a cell with an area equal to sum of the areas of the clustered cells. Therefore,

all subsequent calculations of connectivities and formation of clusters are aware of all

previously formed clusters. The calculation of connectivity that includes the areas of

clustered cells in order to give priority to the formation of small clusters, is defined as

55

follows:

connPinEC(celli, cellj) =
1

area(celli) + area(cellj)

∑

{netk |netk→{celli,cellj}}

kPinEC

dg(netk)
,

and:

kPinEC =











2, netk is a degree-two net

1, otherwise

where connPinEC(celli, cellj) is the connectivity between cells celli and cellj and kPinEC

is a constant which is equal to 2 for degree-two nets and equal to 1 for nets with other

degrees.

An example of clustering using the PinEC algorithm is presented in Figure 3.5. The

same circuit as the one presented in the example for EC in Section 3.4.1 is used. This

circuit contains 5 unit-size cells and 8 nets and is clustered using PinEC clustering. The

cells are visited randomly but in the same order as the example for EC.

The first cell to be visited is cell5 which is considered as the seed cell since it is not clus-

tered. The adjacent cells are cell1 and cell4, and both are unclustered. The connectivities

are calculated as connPinEC(cell5, cell1) = 1
1+1(

2
2 + 2

2) = 1 and connPinEC(cell5, cell4) =

1
1+1(

2
2 + 2

2) = 1. Since the connectivities are equal, cell1 is randomly selected to form

a new cluster with cell5. This cluster is shown with a dashed line in Figure 3.5(a).

Then, the circuit is updated by replacing cell1 and cell5 by a cell that includes the

newly formed cluster and its area is the sum of the areas of all cells in the cluster.

The updated circuit is shown in Figure 3.5(b). Then, cell3 is visited and considered as

the seed cell. Finding the connectivities as connPinEC(cell3, cell2) = 1
1+1(

2
2) = 1

2 and

connPinEC(cell3, cell4) = 1
1+1(

2
2 + 2

2) = 1, cell3 and cell4 are grouped as a new clus-

ter. This cluster is shown with a dashed line in Figure 3.5(b). After updating the

circuit, cell2 is visited and considered as a seed cell. The connectivities are calculated

as connPinEC(cell2, cell1,5) = 1
1+2(

2
2 + 2

2) = 2
3 and connPinEC(cell2, cell3,4) = 1

1+2(
2
2) = 1

3 .

Therefore, cell2 is added to the already formed cluster that includes cell1 and cell5. The

56

cell2

cell1

cell3 cell4

cell5

net1

net2

net3

net4

net5

net6

net7

net8

(a) Original Circuit

net1

net2

cell2

cell1,cell5

net3

net7net6

net4

net5cell3 cell4

(b) Updated Circuit

cell3,cell4

net3 net6 net7

cell1,cell2,cell5

(c) Final Clustered Cir-
cuit

Figure 3.5: Example for clustering using PinEC

57

PinEC clustering stops since there is no unclustered cell in the circuit. The final version

of the clustered circuit that includes 2 cells and 3 nets, is shown in Figure 3.5(c).

3.5 Score-Based Clustering Algorithms

In this section, the existing score-based clustering algorithms are explained. A score-

based clustering algorithm is an algorithm in which potential clusters and their corre-

sponding scores are found. These scores measure the quality of the potential clusters.

The priority of potential clusters is based on their scores. It means that a potential clus-

ter with a higher score is formed before those with lower scores. The potential clusters

are ranked based on their scores and the clusters are formed in order, until all of them

have been formed or a certain cell cluster ratio has been obtained.

In some score-based clustering approaches, the scores are updated dynamically. Once

a cluster has been formed, it is treated as a regular cell and the clustering algorithm

continues with the awareness of all previously formed clusters.

3.5.1 Edge Separability-Based Clustering

A score-based clustering algorithm called Edge Separability-Based Clustering (ESC), is

proposed in [48, 54]. Edge separability is a measure for the connectivity between two

connected cells in a circuit. In this measure, all of the paths between two cells are

considered in the calculation of connectivity. These paths include the nets that connect

the cells directly and paths that connect the cells via other cells. This point is the feature

that distinguishes ESC, since before its proposal, all of the clustering algorithms used

connectivity metrics that do not consider the effects of paths that connect cells via other

cells.

The ESC algorithm works as follows: First, the circuit is considered as the corre-

sponding graph. This means that all the hyperedges of the circuit are converted to their

58

corresponding edges. In the next step, all the cells of the circuit are visited. For each

cell, the edge separability with each adjacent cell is calculated and the maximum of these

values is found. The cell is paired with the adjacent cell that has the maximum edge

separability. Then, all of these pairs of cells are ranked in decreasing order according to

the value of their edge separability. In fact, edge separability is used to score the poten-

tial clusters. Therefore, the pair of cells, i.e. potential cluster, with the maximum edge

separability and first rank between all potential clusters is formed as a finalized cluster.

Then, the second ranked potential cluster is formed. This procedure continues until a

pre-specified cell cluster ratio is reached or all of the potential clusters are formed.

To calculate the edge separability between two cells, celli and cellj , that are connected

by a net, netk, the concept of mincut should be defined. Suppose that the circuit is

divided into two partitions and that celli and cellj are located in different partitions.

These partitions are determined such that the number of nets that are cut by partitions

is minimized. The mincut is the minimum number of nets that are cut by the partitions.

The edge separability of net netk is equal to the mincut of celli and cellj .

In Figure 3.6(a), a small circuit is presented. The edge separability between cell1 and

cell2 is desired. The mincut of cell1 and cell2 is calculated in Figures 3.6(b) and (c).

In these figures, the partitions are divided by a dashed line and the number of cut nets

is calculated. It can be seen that the minimum number of cut nets is found as 2 when

partitions are made as in Figure 3.6(c). Therefore, the edge separability between cell1

and cell2 is 2.

The edge separability-based clustering algorithm calculates the connectivity of all

pairs of cells and compares them. This clustering algorithm compares the potential

clusters globally. Therefore, this algorithm is the first global clustering algorithm which

considers all of the potential clusters at one time.

59

cell3

cell4cell2

cell1

net1

net2

net3 net4

net5

net6

(a) Example Circuit

cell3

cell4cell2

cell1

net1

net2

net3 net4

net5

net6

(b) Number of cut nets = 4

cell3

cell4cell2

cell1

net1

net2

net3 net4

net5

net6

(c) Number of cut nets = 2

Figure 3.6: Example for calculation of edge separability

60

3.5.2 Fine Granularity Clustering

Another score-based clustering algorithm is presented in [49]. Fine Granularity Clustering

(FGC) can be summarized as follows: First, the circuit is converted to the corresponding

graph by converting the hyperedges into edges. Then in the first phase of the algorithm,

which is called the cluster formation phase, all the cells of the circuit are randomly

visited. If a visited cell has not yet been clustered, it is considered as a seed cell. Each

seed cell is grouped in a potential cluster along with the adjacent cell with the maximum

connectivity. Then, the adjacent cell with the second maximum connectivity is attracted

into the potential cluster. This procedure continues until the constraint on the maximum

cluster size is reached or all the adjacent cells have been attracted to the potential cluster.

The first phase of the algorithm procedure is repeated for all seed cells until all of the

cells in the circuit have been visited.

In the second phase of the algorithm, the cluster refinement phase, the formed po-

tential clusters are considered again. Cluster refinement is performed using the FM

algorithm proposed in [55]. The quality of the clusters is improved by moving cells be-

tween different clusters. The constraints on the cell movements are the lower and upper

bounds on the cluster sizes. In FGC, a cluster is defined as a fine cluster if it includes 2 to

6 standard cells. In the refinement phase, a clustering solution of fine potential clusters

is desired that maximizes the total connectivity of the nets absorbed by the clusters.

3.5.3 Best-Choice Clustering

Best-Choice Clustering (BC) is a score-based clustering algorithm proposed in [47, 56].

Similar to FGC, best-choice clustering includes two main phases. In this clustering

algorithm, the two cells with the maximum weight of connection are found and clustered.

In the first phase of the BC algorithm, the cells in the circuit are randomly visited.

For each cell, the weights of connections to its adjacent cells are calculated. Then, the

61

visited cell is grouped with the adjacent cell with the maximum connectivity in a potential

cluster. The potential clusters are ranked in a priority queue in decreasing order based

on the connectivity values.

In best-choice clustering, the connectivity between cells of potential clusters is identi-

fied as the clustering score, and gives an evaluation of the quality of the potential cluster.

It is calculated similar to (3.2):

connBC(celli, cellj) =
1

area(celli) + area(cellj)

∑

{netk|netk→{celli,cellj}}

1

dg(netk)
,

where connBC(celli, cellj) is the connectivity between two adjacent cells celli and cellj

and netk is a net that is connected to both celli and cellj .

In the second phase of BC, the first ranked potential cluster in the priority queue is

formed. Once the cluster has been formed, the priority queue is dynamically updated.

In other words, when a potential cluster is formed, the clustered cells are replaced by a

new cell with an area equal to the sum of the areas of the cells in the cluster. Then,

the connectivities of this new cell with its adjacent cells are calculated and new potential

clusters are identified. In the next step, the rankings of potential clusters in the priority

queue are updated. The procedure of forming clusters and dynamically updating the

priority queue is repeated until all of the cells of the circuit have been clustered or a

certain cell cluster ratio is reached.

In Figure 3.7(a), a circuit is presented as an example. This circuit, that includes

5 unit-size cells and 10 nets, is desired to be clustered by the best-choice clustering

algorithm. In the first phase, all of the cells are visited and the priority queue of potential

clusters is formed. The first ranked potential cluster, shown with the dashed line in Figure

3.7(a), consists of cell1 and cell2 with the clustering score of 0.75. This potential cluster

is formed and cell1 and cell2 are replaced by a new cell which is the newly formed cluster

and the connectivities are re-calculated. In Figure 3.7(b), the updated circuit is shown.

62

cell2

cell1

cell3 cell4

cell5

net2
net1

net3

net4

net5

net6

net7

net8

net9

net10

(a) Original Circuit

cell3 cell4

cell5

net5

net6

net8

net7

cell1,cell2

net4

net9
net10

(b) Updated Circuit

cell3,cell4

net4 net7 net8

cell1,cell2,cell5

(c) Final Clustered Circuit

Figure 3.7: Example for clustering using BC

63

In the updated priority queue, the potential cluster shown with the dashed line in Figure

3.7(b), is the first ranked potential cluster with the clustering score of 0.5. This procedure

continues until all of the cells of the circuit have been clustered. The example circuit

clustered by the BC algorithm is presented in Figure 3.7(c), and includes 2 cells and 3

nets.

The best-choice clustering algorithm tries to cover all the advantages of the previous

algorithms. The method for calculating the connectivity is taken from the heavy-edge

matching algorithm, that is a scoreless clustering. Using scores for potential clusters

improves the quality of clusters. This gives global information about the quality of

clusters. Therefore, at each clustering iteration, the potential cluster with the globally

highest quality will be formed.

3.5.4 Net Cluster Clustering

Another score-based algorithm, Net Cluster Clustering (NC), is proposed in [11, 57]. In

contrast to the previous score-based clustering algorithms, that are based on clustering of

cells of the circuit, the NC algorithm clusters the circuit by clustering its nets. Clustering

nets means the absorption of nets into the clusters. In fact, NC is a net-based clustering

algorithm in which it is desired to reduce the number of nets of the circuit.

Net cluster clustering includes three main phases. First, the potential clusters are

identified and their corresponding scores are calculated. Then, the potential net-based

clusters are ranked according to their scores. Finally, the potential clusters are finalized

by consideration of the potential scores.

In the first phase, the potential cluster identification phase, the cells of the circuit

are visited randomly. Then, the circuit is divided into two partitions. Each visited cell

is considered as a seed cell and the seed cell is put in one partition called the natural

partition. The other cells of the circuit are put into the other partition. The number

64

of nets that are cut by the partitions is used as a metric to measure the quality of

the potential clusters. For each seed cell, all of the adjacent cells are examined by

moving them one at a time into the natural partition. If by moving an adjacent cell

into the natural partition the number of nets cut by the partitions decreases, that cell

is permanently moved into the natural partition. Otherwise, the adjacent cell is kept

in the other partition. This procedure is repeated for all the adjacent cells of the seed

cell. Finally, this natural partition is considered as a potential cluster. However, for

some seed cells there may not be any potential cluster since no reduction results from

the movements of any of the adjacent cells.

The procedure of potential cluster formation is done for all the cells of the circuit and

a score is assigned for each potential cluster. For each potential cluster, pclui, the score

is defined as follows:

scoreclu(pclui) =
numN(pclui)

numC(pclui) − 1
× 1

∑

cellj∈pclui
area(cellj)

,

where scoreclu(pclui), numN(pclui) and numC(pclui) are the assigned score, number of

nets and number of cells of the potential cluster pclui, respectively. Also, area(cellj) is

the area of cellj that is clustered in pclui.

In the second phase of NC, the nets are assigned specific scores. The scores of potential

clusters are used to calculate the scores for the nets of the circuit. To calculate the score

for each net, the status of that net in different potential clusters is considered. The score

of each net is defined as the sum of all the scores of the potential clusters that absorb

that net minus the sum of all the scores of the potential clusters that cut that net. This

definition is formulated as:

scorenet(netj) =
∑

i

kNC(netj , pclui) × scoreclu(pclui),

65

kNC(netj , pclui) =























1, netj is absorbed into pclui

−1, netj is cut by pclui

0, otherwise

where scorenet(netj) is the score of net netj defined in NC. The constant kNC(netj , pclui)

is 1 if netj is absorbed by the potential cluster pclui, −1 if netj is cut by pclui and 0

otherwise. In this phase of the algorithm, the nets or potential clusters are ranked in a

decreasing order based on their corresponding scores and put in a priority queue. The

potential cluster or net with a higher score has the priority to form a cluster.

In the third phase of NC, the potential clusters are finalized. If the priority queue is

made by ranking the potential clusters, they are formed as new clusters based on their

rankings. On the other hand, if nets are ranked in the priority queue, the potential cluster

that includes the first ranked net is clustered first. A net is clustered by clustering its

connected cells into a cluster. This procedure is repeated for all the nets until a desired

cell cluster ratio has been reached.

In Figure 3.8, an example of the formation of potential clusters and the calculation of

their corresponding scores is presented. The circuit, presented in Figure 3.8(a), includes

7 unit-size cells and 6 nets. For cell cell1, the adjacent cells are cell2, cell4 and cell5.

In Figure 3.8(a), the initial natural partition for cell1 is shown with a dashed line. The

number of nets that are cut by this partition is 2 since nets net1 and net2 are cut. If cell2

or cell5 are moved to the natural partition, the number of cut nets increases. Therefore,

moves such as these are not accepted by NC algorithm. However, if cell4 is moved to

the natural partition, net1 is not cut anymore and the number of cut nets decreases

to 1. Therefore, this move is accepted and cell4 is permanently moved to the natural

partition. Then, for cell1, the natural partition, potential cluster pclu1, is formed as

shown in Figure 3.8(b) by a dashed line. The score for this natural partition is calculated

66

cell1 cell2 cell3

cell4 cell5

cell6 cell7

net1 net2

net3

net4

net5 net6

(a) Original Circuit (Original natural parti-
tion for cell1 is shown with a dashed line)

cell1 cell2 cell3

cell4 cell5

cell6 cell7

net1 net2

net3

net4

net5 net6

pclu1

(b) Potential cluster for cell1 is shown with a
dashed line (scoreclu(pclu1) = 1

2
)

Figure 3.8: Example for formation of potential clusters and calculation of their scores
using NC

67

as scoreclu(pclu1) = numN (pclu1)
numC(pclu1)−1 ×

1
P

cellj∈pclu1
area(cellj)

= 1
2−1 ×

1
1+1 = 1

2 .

Since the NC clustering algorithm is net-based, it is more effective in reducing the

number of nets in a circuit. Therefore, the total after placement length of the circuits

clustered by NC is typically lower than that of the circuits clustered by cell-based clus-

tering algorithms.

3.5.5 SafeChoice Clustering

In [58], a recent score-based clustering algorithm called SafeChoice Clustering (SC) is pro-

posed. SafeChoice is based on a condition referred to as safe clustering, which guarantees

that forming a cluster of some objects does not result in increasing the after placement

net lengths. The concept of safe clustering is defined as follows: If a set of cells can be

moved to a single position such that the total wire length of the circuit is not increased,

that set of cells can be formed as a safe cluster. Since the cells should be moved to one

single position, the cells are assumed to have negligible areas to ignore overlaps.

In [58], after defining the concept of safe clustering, a safe condition for pair-wise

clustering is developed where it is proved that if any two cells satisfy the condition

of safe clustering, forming a cluster of them does not lead to the degradation of the

after placement net lengths. Therefore, they can be grouped together as a pair-wise

safe cluster. Then, a clustering algorithm based on a priority queue of pair-wise safe

clusters is developed. This priority queue is made by ranking the identified potential safe

clusters in decreasing order, based on a score, scoreSC . Then, the potential clusters are

finalized based on their rankings in the priority queue. In [58], a criterion for stopping

the clustering is proposed in order to prevent the algorithm from forming clusters that

can degrade the after placement wire lengths.

The score, scoreSC , that covers both the safeness and area of potential clusters, is

68

defined for two cells celli and cellj as:

scoreSC(celli, cellj) = SFij + θSC × area(celli) + area(cellj)

aveAstdCell

,

where θSC is found experimentally and set to be 4 and aveAstdCell is the average area of

the standard cells in the circuit. In addition, SFij is a measure of safeness for a cluster

including celli and cellj and calculated based on the mode of operation of SC algorithm.

This mode of operation is defined based on the stopping criterion that is used by SC

algorithm. There are three modes of operation for SC: safety guarantee mode, clustering

ratio mode and smart mode. In the safety guarantee mode, the SC algorithm forms only

the completely safe clusters. However, under the clustering ratio mode, the SC algorithm

may produce some unsafe clusters as well as the safe ones in order to reach a certain cell

clustering ratio. In the smart mode, the algorithm is stopped whenever a typical placer

can achieve the best placement results. For each of these modes of operations, different

values of SFij are used.

3.6 Feedback Loop for Clustering Correction

In [2], the effects of different clustering algorithms on the lengths of individual nets are

studied. It is shown that by clustering the circuits, the lengths of individual nets are

not always decreased. In fact, a significant number of nets experience increases in their

lengths.

It is proposed in [2] to apply pre-placement net length estimation techniques to pre-

dict the negative effects of clustering algorithms on the individual net lengths. Since

the clustering is conducted before placement, there is no detailed information available

about individual net lengths. Therefore, pre-placement net length estimation, that can

provide information about the net lengths before, during and after clustering, is per-

formed. Once the individual net lengths before and after clustering have been compared,

69

further clustering steps can be performed to minimize the negative effects. Although

in [2], it is proposed to implement a corrective feedback loop on the clustering stage,

it fails to identify and implement the structure of this feedback loop. However, in this

thesis, the structure of a predictor-corrector framework for clustering is proposed and

implemented. This framework is discussed in detail in Chapter 5.

3.7 Summary

In this chapter, a comprehensive background on the existing clustering algorithms is

presented. Clustering is widely used before partitioning and placement stages of physical

design to handle the large sizes of circuits. The clustering algorithms are divided into

two groups. Scoreless clustering algorithms form clusters iteratively while they do not

compare them globally. On the other hand, score-based algorithms improve the quality

of clusters by comparing them and forming the clusters with the highest quality.

In this chapter several existing scoreless and score-based clustering algorithms are

discussed in detail. To better explain the procedure of these algorithms, several examples

are used. Finally, a recently proposed idea for a framework for correcting the negative

effects of clustering is presented.

70

Chapter 4

The Proposed Net Length Estimation Model

4.1 Introduction

In an ideal world, a designer can predict which nets in a circuit will have excessive

lengths, and hence cause the highest delay, before its placement of the components is

performed. Several of the a-priori net length estimation techniques discussed in Chapter

2 try to achieve this goal [1, 2, 7, 15, 17, 18]. Some of these techniques can only predict

wire length distributions or the average lengths of groups of nets [7,15,17]. In [1] and [2],

two individual net length estimation techniques, which are based on a polynomial model,

are given. However, they still require significant improvement to be deemed reliable.

In this research, the pre-placement net length estimation technique presented in [2]

is first further studied and tested on the most recent available benchmarks: the ISPD05

placement benchmarks [10]. The estimation models are validated by comparing the

estimated net lengths to the after placement net lengths. A number of improvements to

the model and the variables are suggested.

Individual net length estimation techniques, such as [1, 2, 8], utilize pre-specified

models such as polynomials or exponential models. However, fitting the data using a

pre-specified model is not suitable for today’s circuits since the input data are highly

non-linear.

In this research, Radial Basis Functions (RBFs) are used to estimate the individual

lengths. Using RBFs enables the model to capture the details of a set of highly non-

linear input data while the complexity of the model is still manageable [9]. In RBF-based

estimation techniques, the estimated length of each net is the weighted sum of a set of

71

Gaussian distribution functions referred to as RBFs. For each RBF, a center and an

associated variance need to be determined. The centers and the variances of the RBFs

should be selected to represent specific properties of the data. Once the RBFs are defined,

ordinary least-square fitting (OLSF), which minimizes the residual squared error to fit

the best model [27], is used to calculate the weight of each RBF used in estimating the

wire lengths. Furthermore, a new technique is proposed that adjusts the variance of the

RBFs used at each center.

The main contributions proposed in this chapter are as follows:

• Proposal of a new variable to consider the effects of different placers in the net

length estimation technique.

• Proposal of a new variable to consider the effects of the presence of fixed cells in

the net length estimation technique.

• Proposal and implementation of an RBF-based pre-placement individual net length

estimation technique.

• Proposal and implementation of a new method to find the proper variance for radial

basis functions.

The rest of this chapter is organized as follows: In Section 4.2, several improvements

to the model variables are proposed. Then, in Section 4.3, the proposed RBF-based

net length estimation technique is presented. Finally, in Section 4.4, a brief summary is

presented.

4.2 Modeling Improvements

The net length estimation technique proposed in [2] is the best existing model for mixed-

size circuits. However, it still needs improvements to be used as a reliable estimator.

72

The recent benchmark circuits, ISPD05 placement benchmarks, include some cells

which are fixed in specific locations. The presence of these cells, which are usually macro

cells, affect the length of nets that are connected to them.

To improve the accuracy of the model in [2], a study is performed to analyze the

characteristics of different placers and the impact of fixed cells in placement solutions.

The lengths of nets significantly depend on the algorithm that the placer utilizes to place

the circuit. Some placers produce higher net lengths compared to others, on average.

Therefore, the effects of different placement algorithms should be considered. Then, a

new length variable is proposed to incorporate the effects of different placers and fixed

cells into the model. In addition, it is shown that using non-quadratic models for variables

that show specific characteristics can make them better correlated to the actual lengths.

These improvements along with their rationales are discussed in the following Sections.

4.2.1 Placer Effects

To consider the effects of differences between placement algorithms on the net lengths,

the most commonly used academic placers are studied. These placers are Capo10.5

(Capo) [59], mPL6 (mPL) [50] and FastPlace3.0 (FastPlace) [60]. Each placer uses a

unique method for placing the cells. Capo is a min-cut placer that recursively bisections

a net list until each partition is small enough to be placed optimally. It also allocates

whitespace to ensure routability of the placement solution. This is in contrast to mPL

and FastPlace, which are analytical placers that minimize a total wire length objective

function (mPL uses a log-sum-exp wire length model and FastPlace uses a quadratic wire

length model). Capo tends to have higher wire length compared to mPL and FastPlace

because of its emphasis on routability. However, it tends to do better with respect to

the congestion indicators. It is proposed to model these differences in the net length

estimation.

73

Horizontally aligned

L−shaped

Vertically aligned

Overlapping

Figure 4.1: Shapes of different configurations of degree-two nets

To quantitatively differentiate between different placers, the occurrences of different

configurations of degree-two nets after placement are investigated. Degree-two nets are

chosen since they are the major percentage in a typical integrated circuit and are the

building blocks for other nets. For example, in ICCAD04 benchmark circuits [28], about

60% of the nets are with degree two [26].

Degree-two nets are divided into 4 categories based on their after placement shape.

These categories are: horizontally aligned, vertically aligned, L-shaped and overlapping

pins, as shown in Figure 4.1. Considering a degree-two net with two placed pins, p1 :

(p1x , p1y), p2 : (p2x , p2y), these shapes can be written as:

• vertically aligned (V): p1x = p2x , p1y /= p2y

• horizontally aligned (H): p1x /= p2x , p1y = p2y

• overlapping (O): p1x = p2x , p1y = p2y

• L-shaped (L): p1x /= p2x , p1y /= p2y

Based on this description, in a row-based placement the pins are required to be at

the same height along the cell edges for a net to qualify as horizontally aligned even

74

though the cells possessing its pins are in the same row. The same problem exists when

considering vertically aligned or overlapping shapes. In this research, it is proposed to

consider the pins of a net to be aligned if they are within one standard cell height, hstd,

of each other. Therefore, relaxed alignment conditions can be explained as:

• vertically aligned (V): |p1x − p2x| ≤ hstd, |p1y − p2y | > hstd

• horizontally aligned (H): |p1x − p2x| > hstd, |p1y − p2y | ≤ hstd

• overlapping (O): |p1x − p2x| ≤ hstd, |p1y − p2y | ≤ hstd

• L-shaped (L): |p1x − p2x| > hstd, |p1y − p2y | > hstd

The percentages of nets with each alignment for all of the ICCAD04 benchmarks are

calculated for three placers, Capo, FastPlace and mPL, and shown in Figures 4.2 (a), (b)

and (c), respectively. In these figures, the abscissa represents the circuit number and the

ordinate represents the percentage of nets in a specific configuration. It can be seen that

Capo overlaps the largest number of nets, while FastPlace usually has more L-shaped

nets. mPL aligns more of the nets horizontally than the other two placers.

Each of the configurations results in a different minimum length, i.e. the minimum

length when no other cells are encountered along the path connecting the pins of the

net. For example, the minimum length for a vertically aligned net is between zero and

two standard height of the cells of the circuit. On the other hand, the minimum length

of an L-shaped net is between zero and half of the perimeter of the cells whose pins are

connected to the net.

In this thesis, it is proposed to change the macro base length variable, x2, proposed

in the estimation technique of [2] discussed in Chapter 2, to reflect these configurations.

In addition, the effects of the presence of macro cells should be included in this variable.

Macro cells are considered since if one of the pins of a net belongs to a macro cell, its

expected length increases significantly, in relation with the size of the macro cell.

75

(a) Capo10.5

(b) FastPlace3.0

(c) mPL6

Figure 4.2: Percentage occurrences of different net configurations placed by different
placers for all circuits in the ICCAD04 benchmark suite

76

Table 4.1: Proposed base length values for different configurations of degree-two nets
Configuration Net Type

Standard Non-Standard

V: baseV hstd λ ∗ max{h1, h2}
H: baseH (w1 + w2)/2 λ ∗ max{w1, w2}
O: baseO hstd λ ∗ hstd

L: baseL (w1 + w2 + h1 + h2)/2 λ ∗ (max{w1, w2} + max{h1, h2})

The nets are then categorized in two groups: nets that connect only pins of standard

cells and nets that are connected to pins of one or more non-standard cells. For each

category of nets, a new base length calculation is proposed, where the calculations are

based on the average expected length of a net if the pins of the net are placed in a given

configuration.

The base lengths for different configurations of degree-two nets are given in Table 4.1.

In this table, (w1, h1) and (w2, h2) are the width and height of cells 1 and 2, whose pins

are connected to the net, respectively, and hstd is the height of standard cells in a circuit.

For nets that only connect pins of standard cells, Column 2, the base length calculations

are as follows:

If the pins are horizontally or vertically aligned, the expected base length of the net

connecting them, baseH or baseV , will be the average of their widths, (w1 + w2)/2 or

heights 2(hstd)/2 = hstd, respectively.

For a net in an L-shape, the half-perimeter length is chosen as the expected base

length, baseL. For a net with overlapping pins, the average expected base length, baseO,

is set to be the height of one standard cell.

If a net connects pins of non-standard cells, then the width (horizontal), the height

(vertical), the half-perimeter (L-shape) of the macro cell or a standard height (overlap-

ping) times a factor, λ ≥ 1, is used to calculate the base length.

To calculate λ, the ratio of the average actual length of those nets which are connected

77

Table 4.2: Average probabilities in percentage for each configuration using different plac-
ers

Configuration Probability Capo FP mPL

Vertical PV 15.6% 20.0% 16.6%
Horizontal PH 16.1% 18.8% 20.3%
Overlap PO 46.1% 25.1% 37.8%
L-shape PL 22.2% 36.1% 25.3%

to pins of one or more non-standard cells over the average actual length of the nets

which are only connected to pins of standard cells for each circuit, is calculated. This

value ranges from 5 to 20, depending on the circuit. In order to find a single λ for

all the circuits, a line search optimization using different values of λ, 5 ≤ λ ≤ 20, is

performed. For each value, the estimation is performed and the correlation coefficient of

estimated lengths to the actual lengths is calculated. Based on the comparison between

the recorded correlation coefficients, the best overall λ is around 10. Therefore, in the

following experiments, λ is set to 10.

Once the base lengths for each configuration have been calculated, for each placer,

the new base length variable, x′
2, is set to be equal to a weighted sum of these base

lengths. The weights are the average probabilities of each configuration occurring over

all the benchmarks for a specific placer. So the new base length can be calculated as

follows:

new base length : x′
2 = PHbaseH + PV baseV + PLbaseL + PObaseO, (4.1)

where, baseH , baseV , baseL and baseO represent the appropriate base length for each

configuration as given in Table 4.1, and PH , PV , PL and PO represent the average prob-

abilities of specific configurations occurring for the placer. These average probabilities

are calculated and given in Table 4.2.

The effectiveness of x′
2 is evaluated by replacing the macro base length variable, x2,

with x′
2 and the model correlation coefficients are calculated for all degree-two nets. The

78

Table 4.3: Comparison of the model correlation coefficients using macro base length and
the new base length. The actual lengths, which are used in the model, are produced by
Capo10.5 (Capo), FastPlace3.0 (FP) and mPL6 (mPL) placers.

Circuit Macro Base New Base Improvement
Capo FP mPL Capo FP mPL Capo FP mPL

IBM01 0.62 0.65 0.58 0.70 0.72 0.68 11.7% 10.0% 16.7%
IBM02 0.72 0.77 0.73 0.74 0.81 0.76 2.4% 4.4% 4.0%
IBM03 0.70 0.71 0.65 0.72 0.75 0.69 3.4% 5.5% 6.2%
IBM04 0.62 0.70 0.60 0.65 0.75 0.65 5.4% 6.1% 8.3%
IBM05 0.77 0.75 0.74 0.77 0.75 0.74 -0.1% 0.0% -0.4%
IBM06 0.83 0.83 0.82 0.85 0.84 0.84 1.9% 0.6% 2.5%
IBM07 0.58 0.61 0.55 0.61 0.64 0.59 4.6% 5.9% 6.7%
IBM08 0.72 0.83 0.71 0.73 0.83 0.72 1.6% 0.0% 1.3%
IBM09 0.60 0.63 0.56 0.63 0.66 0.59 4.1% 4.9% 5.3%
IBM10 0.46 0.56 0.46 0.50 0.61 0.51 8.0% 8.6% 9.7%
IBM11 0.56 0.59 0.50 0.58 0.62 0.53 3.6% 5.5% 7.7%
IBM12 0.52 0.62 0.50 0.53 0.64 0.51 2.8% 2.2% 2.8%
IBM13 0.59 0.61 0.58 0.61 0.64 0.60 3.7% 5.1% 3.4%
IBM14 0.53 0.54 0.51 0.55 0.56 0.54 4.6% 4.5% 5.0%
IBM15 0.57 0.58 0.56 0.58 0.61 0.59 3.1% 5.6% 4.2%
IBM16 0.56 0.59 0.58 0.58 0.61 0.60 3.0% 3.3% 3.4%
IBM17 0.47 0.49 0.43 0.48 0.51 0.46 3.9% 4.1% 7.7%
IBM18 0.64 0.61 0.63 0.66 0.64 0.65 2.4% 4.6% 3.4%

Average - - - - - - 3.9% 4.5% 5.4%

results of this experiment using the ICCAD04 benchmark suite are tabulated in Table

4.3. Using the new base length improves the model correlation by 3.9% to 5.4% on

average for each placer and always improves the correlation except for IBM05, which has

a decrease of as much as 0.4%. This can be because IBM05 has a special structure and

does not have any macro cells.

4.2.2 Fixed Cells

A main difference between the ICCAD04 and ISPD05 benchmarks is the fact that the

ISPD05 benchmarks have fixed cells. The existence of fixed cells can affect the lengths

of nets that are immediately connected to, or are in the neighborhood of such a cell.

Placement data confirming this increase in length are shown in Figure 4.3, where the

79

Figure 4.3: Comparison between the average length per degree of nets connected to pins
of one or more fixed cells and nets not connected to pins of fixed cells

average length per degree of nets in the neighborhood of fixed cells is compared to the

average length per degree of those nets which are only connected to the pins of movable

cells.

From Figure 4.3, it can be seen that the average length per degree for the nets which

are connected to the pins of one or more fixed cells is about 5 times longer, on average,

than nets which are not connected to the pins of the fixed cells in almost all circuits. In

the circuit Bigblue2, the average length per degree for nets connected to the pins of one

or more fixed cells is about twice that of nets not connected to the pins of fixed cells.

This can be because even though this circuit has the biggest number of fixed cells, all

these cells are relatively small and not much bigger than standard cells. Therefore, in

this case the lengths of the nets that are connected to pins of one or more fixed cells have

not increased dramatically. It can be concluded that, on average, the length of nets of a

certain degree, in the neighborhood of fixed cells is significantly longer than that of the

other nets of the same degree.

It is proposed to take into account the effects of fixed cells on the wire length by

multiplying the new base length of nets connected to pins of at least one fixed cell, by

a constant. It should be mentioned that the new base length for nets with degree two,

80

Table 4.4: Comparison between correlation coefficients of the estimated lengths to the
actual lengths for ISPD05 circuits with α0 = 1 (no fixed cell impact) and α0 = 5 using
Capo10.5

Circuit Corr. Corr. Improvement
α0 = 1 α0 = 5

Adaptec1 0.597 0.613 2.68%
Adaptec2 0.615 0.627 1.95%
Adaptec3 0.506 0.519 2.57%
Adaptec4 0.525 0.540 2.86%
Bigblue1 0.644 0.648 0.62%
Bigblue2 0.601 0.602 0.17%
Bigblue3 0.487 0.491 0.82%
Bigblue4 0.580 0.588 1.38%

Average 0.569 0.579 1.63%

which are connected to non-standard cells, is already multiplied by a constant. Since all

the fixed cells are non-standard cells, degree-two nets are not included in this process.

A new variable, x′
2α, is proposed to account for the impact of fixed cells on net lengths

and is calculated as

x′
2α = αx′

2, where α =











1 if the net is not connected to any fixed cells,

α0 otherwise,

where, α0 is a number greater than one, which is used to increase the base length of a

net connected to the pins of one or more fixed cells.

In this work, it is proposed to set the value of α0 to 5 which is calculated by finding

the ratio of the average length of the nets used in the training set that are connected

to the pins of one or more fixed cells, to the average length of all the training data set

of the nets that are not connected to the pins of fixed cells. The calculated value of α0

can be used for length estimation for any circuit containing fixed cells. To evaluate the

effectiveness of this technique, the correlation coefficients for the ISPD05 benchmarks

are computed using the calculated value of α0 = 5. The results show that a modest

improvement of 1.63% in the correlation coefficient is achieved, on average. Bigblue2

81

exhibits the smallest improvement when compared to the other circuits. This can be

explained by examining Figure 4.3, which shows that a value of α0 less than 5 is more

appropriate for this circuit. It should be mentioned that this improvement is on top of

the other improvement and made after using the new base length variable.

4.2.3 Fitting the Best Model

The model presented in (2.5) is quadratic in all of the variables. A quadratic model can fit

some variables well. However, not all variables show linear or second order characteristics.

In Figure 4.4, the average after placement net lengths versus the average values of the

variable Nettintnc, for circuit adaptec1, are shown with a solid red line. Because of the

sheer number of nets in the circuit, scatter plots can become confusing. To produce this

graph, values of Nettintnc are put in 20 equally-sized bins in increasing order. Then,

the average actual net length is calculated for each bin and a plot of the average length

value versus the average variable value is drawn, i.e. the plot is made of 20 points each

showing the average length versus the average variable value for 5% of the data. In the

same figure, quadratic and logarithmic models are fitted for the average Nettintnc values

with a green dashed line and a black dash-dotted line, respectively. It can be seen that

the logarithmic curve in Figure 4.4 can better fit the high values of Nettintnc.

A reason for why Nettintnc can be better modeled using a logarithmic relationship

can be explained with a simple example, as follows: Consider a degree-two net connecting

cells with zero area, for simplicity. By increasing the number of external connections, the

value of Nettintnc will increase in direct proportion, by definition. If there are initially

zero external connections, the two cells will be placed at the same location resulting

in a net of length zero. If each cell now has an external connection, the cells are not

expected to be at the same location since they are being “pulled apart” by the external

connections. As the number of external connections increases, the length is expected to

82

0 20 40 60 80 100 120 1400

2000

4000

6000

8000

10000

Nettintnc

Ac
tu

al
 L

en
gt

h

Experimental Data
Logarithmic
Quadratic

Figure 4.4: Demonstration of actual length versus Nettintnc variable for adaptec1 and
quadratic and logarithmic curve fits

sum of forces on 1
1

sum of forces on 2

2

(a) Scattered external connections

sum of forces on 1

1 2

sum of forces on 2

(b) Aligned external connections

Figure 4.5: Illustration of the effects of forces generated by external connections in dif-
ferent directions on net length

increase as well. However, the rate of increase is expected to decay, since the force added

by each additional external net is a lower portion of the total force. This tapering of the

increase in the length is due to the fact that the location of the connected cells can be all

around the circuit, as shown in Figure 4.5 (a), and not in two opposite directions, Figure

4.5 (b). Hence, some forces cancel out.

Since the initial expected length with no external connections is zero, the expected

length of the net can be calculated as the sum of the expected increases as each external

connection is added. This summation can be formulated as:

$act ∝
numext
∑

l=1

f(l),

83

where, $act is the actual length of the net, numext is the number of external connections,

and f(·) is a function which approximates the expected increase in length as each external

connection is added. An upper bound for f(·) is 1
l

since any sequence which decays as

or more slowly than 1
l

would diverge, implying an infinite length, which cannot occur.

Therefore, the expected value of L as the number of cells increase can be proportional

to:

$act ∝
numext
∑

l=1

1

l
≈

∫ numext+1

1

1

l
dl = log (numext + 1) .

The above equation shows that the expected length of a net is better modeled using a

logarithmic function of the number of its external connections than a quadratic or linear

function of the number itself. Since, Nettintnc is a measure of the number of external

connections of a net, its effect on net length is better modeled by a logarithmic curve.

To improve the accuracy of the length estimates, the net length estimation technique

presented in (2.5) is modified and the variable x6 is replaced with variable x′
6, where

x′
6 = log(x6). The correlation coefficients of the variables x6 and x′

6 to the actual lengths

are calculated and compared. These correlation coefficients are presented in Table 4.5. It

can be seen that the correlation between the values of this model variable and the actual

after placement lengths improved by up to 56% for all but IBM06 which had a slightly

lower correlation with the logarithmic variable. On average for ICCAD04 benchmarks

there is 19% improvement and for ISPD05 benchmarks there is 25% improvement in the

correlation coefficients of the variable values to the actual lengths.

4.2.4 Model Performance

The discussed enhancements are implemented and the new model variables are tabu-

lated in Table 4.6. To evaluate the performance of the model several experiments are

performed.

The first evaluation is to consider the correlation coefficients of each variable to the

84

Table 4.5: Correlation coefficients of Nettintnc, x6, and log(Nettintnc), x′
6, to the actual

lengths for ICCAD04 and ISPD05 circuits using Capo10.5
Circuit Corr. Corr. Improvement

Nettintnc log (Nettintnc)

IBM01 0.36 0.45 25%
IBM02 0.35 0.55 56%
IBM03 0.42 0.50 20%
IBM04 0.41 0.45 9%
IBM05 0.55 0.63 15%
IBM06 0.59 0.57 -3%
IBM07 0.37 0.48 29%
IBM08 0.49 0.62 27%
IBM09 0.40 0.45 13%
IBM10 0.25 0.32 25%
IBM11 0.38 0.39 3%
IBM12 0.33 0.39 19%
IBM13 0.43 0.44 4%
IBM14 0.33 0.43 30%
IBM15 0.37 0.41 3%
IBM16 0.41 0.46 11%
IBM17 0.29 0.41 40%
IBM18 0.43 0.53 24%

Average 0.40 0.47 19%

Adaptec1 0.36 0.42 18%
Adaptec2 0.44 0.45 1%
Adaptec3 0.29 0.36 26%
Adaptec4 0.29 0.34 18%
Bigblue1 0.30 0.44 47%
Bigblue2 0.31 0.39 28%
Bigblue3 0.22 0.34 55%
Bigblue4 0.30 0.38 28%

Average 0.31 0.39 25%

85

Table 4.6: The proposed variables for model improvement
New Variable Name

x′
2 New Base Length

x′
2α Fixed Base Length
x′

6 log(Nettintnc)

actual after placement lengths. Since different placers can have different impacts, the

actual lengths obtained by three placers: mPL, FastPlace (FP), and Capo are used and

the results are presented in Table 4.7. Each row of this table shows the average over

all circuits of the correlation coefficient of each variable to the actual net lengths. The

first group of columns, 2, 3 and 4, represent the results obtained by mPL, FastPlace and

Capo for the ICCAD04 benchmarks, respectively. In the second group of columns, 5, 6

and 7, the averages for the ISPD05 benchmarks for each placer are shown.

Table 4.7: Average correlation coefficients of variables of the model to after placement
lengths

ICCAD04 ISPD05
Variable mPL FP Capo mPL FP Capo

Corr. Corr. Corr. Corr. Corr. Corr.

x1 0.39 0.34 0.42 0.30 0.31 0.35
x′

2α 0.47 0.52 0.48 0.35 0.39 0.41
x3 0.43 0.47 0.44 0.29 0.27 0.30
x4 0.40 0.46 0.41 0.29 0.28 0.31
x5 0.38 0.38 0.40 0.29 0.29 0.31
x′

6 0.41 0.46 0.42 0.35 0.37 0.39
x7 0.40 0.44 0.41 0.29 0.27 0.30
x8 0.40 0.44 0.41 0.29 0.26 0.29
x9 0.39 0.43 0.41 0.29 0.27 0.30

Average 0.41 0.44 0.42 0.30 0.30 0.33

The average correlation coefficient of all variables are very close to each other, which

means that most of the variables are of the same importance in estimating the net lengths.

The correlation coefficients of the variables to the after placement lengths presented in

Table 4.7, on their own, are not high. Part of the reason for the low correlations is

86

that each variable used in the length estimation model covers only a certain portion of

characteristics of a net. For example, the net degree variable covers the effects of the

number of cells connected to a net but it does not include the effects of the second level

neighbors of a net or the composition of its neighbors.

According to Table 4.7, the correlation coefficients of each variable to the actual after

placement lengths for the ISPD05 circuits are lower compared to those from the ICCAD04

circuits. This is due to significant differences between these two sets of circuits. In Table

4.8, a statistical comparison of ICCAD04 and ISPD05 Circuits is performed and some

of their differences are highlighted. The total numbers of nets and cells in each circuit

are presented in Columns 2 and 3 of Table 4.8, respectively. In Columns 4 and 5 of

this table, the number of fixed cells (unmovable) and the percentage of the total chip

area that fixed cells occupy are given. In the ISPD05 benchmarks, a large number of

fixed cells exist. The ICCAD04 circuits do not contain any fixed cells, except for the

I/O pads. In addition, the fixed cells cover a large portion of the placement area since

they are all macro cells. These fixed cells can make significant changes in the lengths

of the nets in their neighborhood, where nets might be forced to go over or around the

fixed cells in order to connect two cells. In Columns 6 and 7, the average and maximum

net degrees of the circuits are given. Even though the average net degrees for the two

sets of benchmarks are close, the ISPD05 circuits contain some nets that have very high

degrees compared to those in the ICCAD04 benchmarks, as shown in Column 7. These

high degree nets make it harder to predict the net lengths than when the model deals

exclusively with lower degree nets.

Even though individual variables do not show high correlation to the actual lengths,

the estimated net lengths found by the proposed model after applying all of the suggested

improvements have high correlation to the actual after placement wire lengths. This

can be seen in Table 4.9 where the correlation coefficients of the estimated lengths to

87

Table 4.8: Statistical comparison of ICCAD04 and ISPD05 circuits
Circuit # Nets # Cells # Fixed Fixed Average Maximum

Cells Area Net Degree Net Degree

IBM01 14111 12752 0 0.00% 3.58 42
IBM02 19584 19601 0 0.00% 4.15 134
IBM03 27401 23136 0 0.00% 3.41 55
IBM04 31970 27507 0 0.00% 3.31 46
IBM05 28446 29347 0 0.00% 4.44 17
IBM06 34826 32498 0 0.00% 3.68 35
IBM07 48117 45926 0 0.00% 3.65 25
IBM08 50513 51309 0 0.00% 4.06 75
IBM09 60902 53395 0 0.00% 3.65 39
IBM10 75196 69429 0 0.00% 3.96 41
IBM11 81454 70558 0 0.00% 3.45 24
IBM12 77240 71076 0 0.00% 4.11 28
IBM13 99666 84199 0 0.00% 3.58 24
IBM14 152772 147605 0 0.00% 3.58 33
IBM15 186608 161570 0 0.00% 3.84 36
IBM16 190048 183484 0 0.00% 4.10 40
IBM17 189581 185495 0 0.00% 4.54 36
IBM18 201920 210613 0 0.00% 4.06 66

Average 87242 82194 0 0.00% 3.84 44

Adaptec1 221142 211447 543 63.17% 4.27 2271
Adaptec2 266009 255023 566 81.36% 4.02 1935
Adaptec3 466758 451650 723 82.63% 4.02 3713
Adaptec4 515951 496045 1329 77.18% 3.71 3974
Bigblue1 284479 278164 560 45.99% 4.02 2621
Bigblue2 577235 557866 23084 62.22% 3.68 11869
Bigblue3 1123170 1096812 1293 78.08% 3.41 7623
Bigblue4 2229886 2177353 8170 57.65% 3.99 20766

Average 710579 690545 4533.5 68.53% 3.89 6847

88

Table 4.9: Correlation coefficients of the estimated net lengths to the actual lengths pro-
duced by different placers and comparison to previous net length estimation techniques
after applying all the suggested improvements to the proposed model

Proposed Model Improvement Over Given Model
Circuit Fathi [2] Bodapati [1]

mPL FP Capo mPL FP Capo Capo
Corr. Corr. Corr.

IBM01 0.68 0.72 0.70 16.6% 10.0% 18.1% 42.2%
IBM02 0.76 0.81 0.74 4.0% 4.5% 5.4% 34.2%
IBM03 0.69 0.75 0.72 6.2% 5.5% 4.3% 24.1%
IBM04 0.65 0.75 0.65 8.3% 6.0% 7.0% 20.9%
IBM05 0.74 0.76 0.77 1.2% 1.8% 1.1% 23.9%
IBM06 0.84 0.84 0.85 2.4% 0.7% 2.2% 34.6%
IBM07 0.59 0.64 0.61 6.7% 6.0% 6.3% 26.3%
IBM08 0.72 0.83 0.73 1.3% 0.1% 1.5% 16.0%
IBM09 0.59 0.66 0.63 5.3% 4.9% 6.3% 20.6%
IBM10 0.51 0.61 0.50 9.7% 8.7% 11.6% 22.4%
IBM11 0.54 0.62 0.59 7.8% 5.5% 4.5% 33.0%
IBM12 0.51 0.64 0.54 2.8% 2.3% 4.9% 33.8%
IBM13 0.60 0.64 0.61 3.5% 5.2% 3.1% 32.2%
IBM14 0.54 0.56 0.55 4.9% 6.4% 1.9% 27.9%
IBM15 0.59 0.61 0.58 4.1% 6.3% 6.2% 24.3%
IBM16 0.60 0.61 0.58 3.4% 3.3% 3.6% 20.8%
IBM17 0.46 0.51 0.48 7.7% 5.6% 5.2% 21.0%
IBM18 0.65 0.64 0.66 3.3% 5.6% 2.7% 13.3%

Average 0.63 0.68 0.64 5.5% 4.9% 5.3% 26.2%

Adaptec1 0.55 0.55 0.62 7.6% 7.1% 7.7% -
Adaptec2 0.54 0.54 0.63 3.4% 2.0% 4.6% -
Adaptec3 0.48 0.51 0.53 7.6% 9.2% 6.3% -
Adaptec4 0.57 0.51 0.55 2.9% 5.4% 4.0% -
Bigblue1 0.59 0.56 0.65 5.7% 3.2% 4.1% -
Bigblue2 0.55 0.60 0.60 4.6% 3.8% 3.5% -
Bigblue3 0.48 0.46 0.49 4.4% 2.7% 5.5% -
Bigblue4 0.49 0.45 0.59 4.9% 3.5% 3.9% -

Average 0.53 0.52 0.58 5.1% 4.6% 4.9% -

89

the actual net lengths found by the mPL, FastPlace and Capo placers are provided for

both sets of benchmarks, in Columns 2, 3 and 4, respectively. These results have been

compared to two of the most recent and detailed models in the literature, proposed by

Fathi [2] and Bodapati [1]. In Columns 5, 6 and 7, the percentage improvements over the

model in [2] are reported for each of the placers, which show a positive improvement for

every circuit, with the averages around 5%. The percentage improvement over the model

in [1] is presented in Column 8. The results show a 26.2% improvement on average and

up to 42.2% improvement for circuit IBM01.

4.3 Radial Basis Function-Based Net Length Estimation

In this research, a new net length estimation technique which is based on Radial Basis

Functions (RBFs) is developed. As the data available for length estimation are highly

non-linear, fitting a specific model such as the polynomials used in [1,2] does not always

yield acceptable results. An example of this problem is shown in Section 4.2.3 for the

model variable NettintNC where it is shown that a polynomial model is not adequate to

model this variable. In this section, it is proposed to employ RBFs for net length esti-

mation to overcome the inadequacies of polynomial fitting. In addition, a new technique

is developed to tune the shapes of the Gaussian RBFs by finding the proper variance

parameter.

4.3.1 Algorithm Overview

There are two main components in an estimation technique. One is specifying the model

structure, where one decides which model variables should be used and how these vari-

ables can be modeled. Several model variables that affect the length of a net and which

can be calculated before placement are used as the parameters in this research. These

variables include the seven variables used in [2] along with two improved variables pre-

90

sented in Section 4.2. In Table 4.10, these variables are shown.

Table 4.10: The variables used in the proposed net length estimation model
Variable Name Modeling Role

x1 net degree number of cells of a net
x′

2α fixed base length minimum half-perimeter net length
considering placer and fixed cells effect

x3 second level effect sizes of 2nd level neighbors
x4 N2oth effect of degree-two nets
x5 inv. mutual contraction connectivity between cells of a net
x′

6 log(Nettintnc) common and uncommon nets
between cells of a net (logarithmic scale)

x7 degree two to four effects of other nets in the
x8 , x9 congestion metrics neighborhood of a net

The second main component of an estimation technique is to determine the parameters

of the model used in the estimation. In a polynomial model, these parameters are the

polynomial coefficients. In an RBF-based estimation model, the parameters comprise the

center locations, ci ∈ C, the variance parameter of the distribution functions, σ2, and

the weights of the RBFs, wi ∈ w. In this research, Gaussian RBFs are applied for net

length estimation and a variance selection method suited for mixed-size ICs is proposed.

The locations of centers are calculated using Algorithm Center that is discussed in detail

in Section 2.2.5.

The proposed estimation technique uses Algorithm Estimation that is shown in Figure

4.6 and is explained in the following.

Algorithm Estimation: RBF-based net length estimation

Inputs: Subset of actual lengths, !act, and
Model variables, X

Output: Estimated lengths, !est

1. Find center locations ci ∈ C using Algorithm Center
2. Calculate variance, σ2, of the RBFs
3. Find the estimated lengths, !est, using Algorithm RBF

Figure 4.6: High-level algorithm for RBF-based net length estimation

91

The input to the algorithm is a set of training data which includes a subset of the

actual net lengths and the values of all of the model variables. Estimated lengths of

individual nets, $est(netj), are the outputs of the algorithm.

In Step 1 of Algorithm Estimation, the proper locations of the centers are selected

using the center placement method, Algorithm Center, discussed in Section 2.2.5. In Step

2, an appropriate value for the variance parameter of the RBFs is chosen. The proposed

method for variance selection is discussed in Section 4.3.2. Finally, in Step 3, the weights

of RBFs are estimated and the estimated net lengths, !est, are obtained using Algorithm

RBF, discussed in Section 2.2.4, with Gaussian distribution functions.

4.3.2 Variance Selection

Choosing the right variance parameter for the Gaussian distribution functions used in

the proposed RBF-based length estimation model is very important. To better show this

importance, an example is given in Figure 4.7. Three separate estimates of six given

data points using three centers are presented for three different values of the variance

parameter of the Gaussian distributions. In this figure, the given data points are shown

by •, the center locations are represented by ∗ and the dotted line is the function estimate.

The variances are set to be 0.0001, 0.01 and 0.1 to illustrate how the variance parameter

can affect the estimation results. In Figure 4.7(a), it is shown that using a variance of

0.0001 results in undesirable sharp changes in the estimated function. Hence, data points

located between two neighbor centers cannot be properly evaluated. On the other hand,

in Figure 4.7(c), using 0.1 as the variance, the estimated function is too smooth and

unable to follow the changes in the given data trends. The function estimate resulting

from using a variance of 0.01 is shown in Figure 4.7(b). In this figure, the function

estimate can better capture details as well as the trends.

In this research, a method for finding the variance, σ2, is proposed. In Section 2.2.5,

92

0 0.2 0.4 0.6 0.8 10

0.5

1

x

f es
t(σ

 2 =
 0

.0
00

1)

(a) Variance = 0.0001

0 0.2 0.4 0.6 0.8 10

0.5

1

x

f es
t(σ

 2 =
 0

.0
1)

(b) Variance = 0.01

0 0.2 0.4 0.6 0.8 10

0.5

1

x

f es
t(σ

 2 =
 0

.1
)

(c) Variance = 0.1

Figure 4.7: Comparison of estimation using RBFs with different variances. Given data
points are shown by •, the center locations are represented by ∗ and the dotted line is
the function estimate.

93

the radius r used in the constructive selective center placement method is set to be
√

nvar

4 dc. This implies that the maximum distance between each data point and its nearest

center is r. Considering that in a Gaussian distribution, one standard deviation around

the center contains about 68% of the distribution, if a data point is within one standard

deviation of a center, the estimated value of that point is significantly determined by the

distribution function related to that center. Therefore,
√

nvar

4 dc is chosen for the standard

deviation. In addition, selecting
√

nvar

4 dc as the standard deviation makes the radial

basis functions of neighboring centers overlap significantly while they do not considerably

overlap with functions of non-adjacent centers. This prevents the estimated set of data

to be overly-smooth while it is still able to capture some of the details along with the

trends in the data. Considering that in the proposed RBF-based length estimation model

nine variables are used, nvar = 9, the standard deviation, σ, is calculated as follows:

σ =

√
9

4
dc =

3

4
dc.

The experimental results, which are provided in Section 4.3.3, support the selected stan-

dard deviation. The variance can then be calculated by squaring the standard deviation:

σ2 =
9

16
dc

2. (4.2)

4.3.3 Experimental Results

In this section, several experiments are presented that validate the variance selection

method and RBF-based length estimation technique, both of which are proposed in this

research. Benchmark circuits from the ICCAD04 and ISPD05 benchmarks are used in

the experiments. The number of center grids is determined by performing a linear search

from 2 to 20 on the benchmark circuits. Using 10 center grids represents a good trade-

off between the number of final centers and the correlation coefficients obtained over

all the benchmarks. Therefore, the number of center grids is set to 10 in the variance

94

selection and model performance experiments. All experiments are performed using a

2.93GHz IntelR© XeonR© X7350 server. The algorithm development environment is 64-bit

MATLAB 7.8.0.

Variance Selection Results

The proposed variance selection procedure is discussed in detail in Section 4.3.2. An

experiment is performed in which the RBF-based estimation model is constructed using

10 center grids on each dimension. According to Section 4.3.2, the standard deviation

is calculated to be σ =
(√

9
4 × 1

10−1

)

= 1
12 . A linear search is performed around the

calculated value to validate the theoretically-obtained standard deviation. The corre-

lation coefficient of the estimated lengths to the actual lengths is used as a metric to

evaluate the estimation model performance. In Figure 4.8, this correlation coefficient

versus standard deviation is plotted. It can be seen that the experiment supports the

theoretically-calculated value for standard deviation from which the variance parameter

for the RBFs is calculated to be σ2 = 1
144 .

Model Results

To show the effectiveness of the proposed RBF-based net length estimation technique,

the estimation results are compared with the results of the best model for mixed-size

circuits available in the literature [2]. At first, to have a fair comparison, the same

percentage of data, 50%, is used for training while the other 50% are used to validate the

estimation model. In addition, to better show the capabilities of the proposed model,

another experiment is performed with only 10% of data for training and the other 90%

for validation. This additional experiment is carried out to better show the effectiveness,

sensitivity and generality of the proposed model. Correlation coefficients of the estimated

lengths to the actual after placement lengths are used to compare the outputs of the

estimation models. The actual after placement lengths are produced by the Capo10.5

95

0 0.5 1 1.5
0

0.2

0.4

0.6

Standard Deviation (σ)

C
or

re
la

tio
n

(0.083,0.765)

Figure 4.8: Linear search to verify the calculated standard deviation for RBFs

placer [59], which is a partitioning-based placer, and the mPL6 placer [50], an analytical

placer. The experiments are performed on the ICCAD04 and ISPD05 benchmarks. The

variance parameter for RBFs is set to 1
144 , the number of center grids on each dimension

is 10, and the radius, r, for the constructive selective uniform center placement method

is r =
(√

9
4 × 1

10−1

)

= 1
12 .

The results are tabulated in Tables 4.11 and 4.12 where the actual lengths used to

measure the quality of estimated lengths, are produced by the Capo10.5 and mPL6

placers, respectively. In each table, columns 2-4 include the correlation coefficients of

the estimated lengths to the actual lengths for the model in [2] and the proposed model

with 50% and 10% training data, respectively. In Columns 5 and 6, the percentage

improvement of the proposed RBF-based model over the model of [2] is shown. With

50% training data improvement is achieved for all the benchmarks. For the ICCAD04

circuits and for both placers, an average improvement of around 16% is found and the

maximum improvement exceeds 30%.

96

Since the ISPD05 circuits have variables and net lengths with wide and sparse ranges,

estimating their lengths is more challenging. However, for these circuits, the proposed

RBF-based estimation model results are improved by 6.17% on average, compared to the

other model when the actual lengths are produced by Capo10.5 placer. In addition, a

maximum improvement of around 10% is observed for the circuit bigblue1. When the

mPL6 placer is used for the placement and hence to compute the actual lengths, an

average improvement of 8.36% and a maximum improvement of 14% are seen over the

model in [2] for the ISPD05 circuits.

The experiment with 10% training data verifies that the proposed model can compete

with the best estimation model for mixed-size circuits existing in the literature with only

one-fifth of the training data. It can be seen that for the majority of the benchmarks, im-

provement is achieved and the average improvement is still significant, 5% for ICCAD04

circuits and around 2% for ISPD05 circuits.

4.4 Summary

In this chapter, an RBF-based net length estimation technique is proposed. This tech-

nique is an individual a-priori length estimation technique. The effects of different placer

algorithms on the net lengths along with the effects of the existence of fixed cells in

ICs on net lengths are considered in the development of this technique. An algorithm

is proposed which estimates lengths of individual nets using RBFs. In addition, a new

method is proposed to calculate the proper value for the variance parameter of radial

basis functions. To justify all of these improvements and proposed methods, experiments

are provided that illustrate the effectiveness of these proposals.

97

Table 4.11: Comparison of the correlation coefficients of estimated net lengths to the
actual lengths produced by Capo10.5 placer using the proposed RBF-based model with
50% and 10% of data as the training data set and the model presented in [2]

Capo10.5
Circuit Model Proposed Model Percentage Improvement

in [2] 50% 10% 50% 10%

IBM01 0.59 0.77 0.65 30.51% 10.17%
IBM02 0.70 0.75 0.71 7.14% 1.43%
IBM03 0.69 0.77 0.72 11.59% 4.35%
IBM04 0.61 0.66 0.62 8.20% 1.64%
IBM05 0.76 0.85 0.74 11.84% -2.63%
IBM06 0.83 0.84 0.81 1.20% -2.41%
IBM07 0.57 0.71 0.64 24.56% 12.28%
IBM08 0.72 0.77 0.75 6.94% 4.17%
IBM09 0.59 0.73 0.67 23.73% 13.56%
IBM10 0.45 0.57 0.50 26.67% 11.11%
IBM11 0.56 0.69 0.60 23.21% 7.14%
IBM12 0.51 0.58 0.53 13.73% 3.92%
IBM13 0.59 0.67 0.58 13.56% -1.69%
IBM14 0.54 0.67 0.62 24.07% 14.81%
IBM15 0.55 0.62 0.57 12.73% 3.64%
IBM16 0.56 0.62 0.61 10.71% 8.93%
IBM17 0.46 0.55 0.50 19.57% 8.70%
IBM18 0.64 0.69 0.59 7.81% -7.81%

Average 0.61 0.69 0.63 15.43% 5.07%

adaptec1 0.57 0.61 0.59 7.02% 3.51%
adaptec2 0.60 0.64 0.61 6.67% 1.67%
adaptec3 0.50 0.54 0.53 8.00% 6.00%
adaptec4 0.51 0.52 0.51 1.96% 0.02%
bigblue1 0.62 0.68 0.65 9.68% 4.84%
bigblue2 0.57 0.59 0.55 3.51% -2.40%
bigblue3 0.47 0.50 0.47 6.38% 0.57%

Average 0.55 0.58 0.56 6.17% 2.03%

98

Table 4.12: Comparison of the correlation coefficients of estimated net lengths to the
actual lengths produced by mPL6 placer using the proposed RBF-based model with 50%
and 10% of data as the training data set and the model presented in [2]

mPL6
Circuit Model Proposed Model Percentage Improvement

in [2] 50% 10% 50% 10%

IBM01 0.58 0.74 0.62 27.59% 6.90%
IBM02 0.73 0.78 0.78 6.85% 6.85%
IBM03 0.65 0.74 0.67 13.85% 3.08%
IBM04 0.60 0.64 0.61 6.67% 1.67%
IBM05 0.73 0.84 0.72 15.07% -1.37%
IBM06 0.82 0.82 0.80 0.00% -2.44%
IBM07 0.55 0.72 0.62 30.91% 12.73%
IBM08 0.71 0.76 0.74 7.04% 4.23%
IBM09 0.56 0.70 0.63 25.00% 12.50%
IBM10 0.46 0.55 0.50 19.57% 8.70%
IBM11 0.50 0.65 0.55 30.00% 10.00%
IBM12 0.50 0.54 0.51 8.00% 2.00%
IBM13 0.58 0.67 0.57 15.52% -1.72%
IBM14 0.51 0.67 0.60 31.37% 17.65%
IBM15 0.56 0.61 0.57 8.93% 1.79%
IBM16 0.58 0.63 0.61 8.62% 5.17%
IBM17 0.43 0.54 0.48 25.58% 11.63%
IBM18 0.63 0.68 0.59 7.94% -6.35%

Average 0.59 0.68 0.61 16.03% 5.17%

adaptec1 0.51 0.54 0.52 5.88% 2.01%
adaptec2 0.53 0.58 0.55 9.43% 4.49%
adaptec3 0.45 0.49 0.46 8.89% 2.60%
adaptec4 0.53 0.54 0.53 1.89% -0.74%
bigblue1 0.56 0.64 0.58 14.29% 3.57%
bigblue2 0.53 0.58 0.51 9.43% -3.11%
bigblue3 0.46 0.50 0.47 8.70% 3.06%

Average 0.51 0.55 0.52 8.36% 1.70%

99

Chapter 5

Proposed Net Length Estimation Model Application

5.1 Introduction

The proposed individual length estimation model can have several applications to em-

power circuit designers to improve the quality of their designs. Among numerous appli-

cations associated with net length estimation, physical-driven synthesis, synthetic bench-

mark generation, field-programmable gate array routing estimation and technology ex-

trapolation can benefit the most from a-priori length estimation of interconnects [8].

Accurate prediction of interconnection length can help estimate the actual layout area

and evaluate the fit of a logic design to a fabrication technology. Also, with the knowl-

edge of predicted wire length, a quick estimate of the necessary wiring space and routing

difficulty can be performed in the early design planning stage [61].

The proposed application of the net length estimation technique in this research is to

use it as a tool to better understand the effects of pre-placement clustering on individual

nets and hence to improve the overall clustering quality. Clustering algorithms used

before placement try to reduce the overall length of wires by grouping cells that are

closely related. However, forming one cluster can negatively impact the length of the

nets that are in its neighborhood. In this research, it is proposed to use the a-priori

individual length estimation technique developed in Chapter 4 in a predictor-corrector

framework, in order to improve the results obtained by different clustering algorithms.

To increase the efficiency of a clustering algorithm, it would be useful to know which

nets are likely to increase in length as a result of clustering and then try to cluster the

cells of these nets in order to reduce their length increase. However, the lengths of nets

100

are not known before placement. In the predictor-corrector framework, it is proposed

to use the a-priori length estimation technique described in this thesis to find which

properties in a net can cause an increase in the chances of that net getting stretched

during clustering. The predictor-corrector, which is done after clustering, is divided into

two steps:

• In the first step, referred to as the predictor step, by finding characteristics of nets

that can cause increases in the net length, the nets which are expected to have

large length increases during the clustering stage are identified.

• In the second step, the corrector, clustering with a specific objective is applied to

improve the quality.

In this application, the effects of clustering on nets are studied. Variables that can

contribute to a net being stretched during clustering are identified, and a predictor-

corrector framework that can reduce the number of nets being stretched is proposed.

The rest of this chapter is organized as follows: In Section 5.2, a study of the effects

of clustering techniques on net length is performed and the negative side effects of clus-

tering algorithms on the lengths of individual nets are explained. A predictor-corrector

framework is proposed in Section 5.3 to handle those negative effects. Finally, in Section

5.4, the chapter is summarized.

5.2 Effects of Clustering on Individual Wire Lengths

Pre-placement clustering algorithms are designed to reduce the sizes of integrated circuits

in order to simplify the placement stage. Using these algorithms is shown to be effective

in decreasing the total wire length required for routing a circuit [11]. However, several

individual nets experience significant increases in their lengths. Therefore, the impacts

of clustering on individual net lengths should be studied.

101

In order to better understand the effects of clustering, after placement individual net

lengths, with and without clustering, are compared. First, placement is performed on

the whole circuit and individual net lengths are computed. Then, one level of clustering

is performed, where each circuit is clustered to 70% to 60% of its original size, i.e. cell

clustering ratio (CCR) is between 70% to 60%. This CCR is chosen since the normal

circuit size reductions are between 70% to 60% of the original size at each level. Two

different clustering algorithms, Best-Choice clustering (BC) [47] and Net Cluster clus-

tering (NC) [11] are used. These algorithms are described in Sections 3.5.3 and 3.5.4,

respectively. BC and NC are chosen since they are score-based algorithms that have

shown some of the best clustering results [62].

Placement is performed on the clustered circuit, and the lengths of individual nets

are calculated and compared with the lengths obtained when no clustering had been per-

formed. To have a closer look at the impact of clustering on net length, the corresponding

actual lengths of each net netj in the after clustered, $actAC
, and pre-clustered sets, $actPC

,

are compared. A variable called compLclu(netj), for each net netj , is introduced as,

compLclu(netj) =
$actAC

(netj)

$actPC
(netj) + $actAC

(netj)
. (5.1)

Based on this equation, if the value of compLclu(netj) is less than 0.5, it means that the

length of netj decreased as a result of clustering, which is desired. Similarly, if the value

of compLclu(netj) is greater than 0.5, it means the length of netj increased as a result

of clustering, which is undesirable. If compLclu(netj) is equal to 0.5, it means that the

length of netj did not change during clustering.

In Tables 5.1 and 5.2, the statistics of the variable compLclu are presented for the

ICCAD04 benchmarks that are clustered using BC and NC, respectively. In all of these

experiments, the individual net lengths are found using the Capo placer. In each table,

the maximum, minimum and mean values of the variable compLclu are shown in Columns

102

2 to 4, respectively. In Column 5, the standard deviation of compLclu, σcompLclu
, is

presented to show the variation of the variable values.

From Tables 5.1 and 5.2, it can be seen that even though the lengths of nets in most

of the circuits have decreased, on average, this reduction is not substantial and for some

circuits and some nets there is a large increase. In this thesis, it is proposed to improve

the quality of clustering results by applying a corrective clustering.

To better understand the effects of clustering on individual net lengths, the percentage

of nets that experience increases in their lengths during clustering are compared to the

percentage of nets that experience length decreases. Thus, a variable is defined for each

circuit as follows:

ratioinc−dec =
perinc

perdec

,

where for each circuit, ratioinc−dec is the ratio of percentage of nets that experience

increases in their lengths during clustering, perinc, and the percentage of nets that expe-

rience length decreases, perdec.

In Table 5.3, the percentages of the nets with increased length after clustering are

shown in Columns 2 and 3 for each clustering algorithm. Similarly, the percentages of

the nets that experience decreases in their length during clustering are given in Columns

4 and 5 for each clustering algorithm. The average values of variable ratioinc−dec are

presented for the ICCAD04 benchmarks when they are clustered using BC and NC in

Columns 6 and 7, respectively. In these experiments, Capo is used as the placer.

From this table, it can be seen that even though, on average, around 49% of the

nets experienced length decreases, a significant percentage, 44%, of the nets experienced

length increases. Most of the length increases are not substantial, but if the nets with

the largest increases in length can be identified, they can be targeted by corrective steps

to improve the overall quality of the clustering.

From the data presented in Tables 5.1, 5.2 and 5.3, it might seem that clustering

103

Table 5.1: Comparison of after and before clustering net lengths. These results are
obtained by Best-Choice clustering, using Capo for placement.

Circuit Maximum compLclu Minimum compLclu Average compLclu σcompLclu

IBM01 0.999 0.001 0.500 0.211
IBM02 1.000 0.000 0.440 0.229
IBM03 1.000 0.000 0.461 0.232
IBM04 1.000 0.001 0.481 0.230
IBM05 0.999 0.001 0.492 0.224
IBM06 1.000 0.000 0.506 0.229
IBM07 1.000 0.000 0.502 0.228
IBM08 1.000 0.000 0.496 0.224
IBM09 1.000 0.000 0.476 0.215
IBM10 1.000 0.000 0.486 0.224
IBM11 1.000 0.000 0.485 0.220
IBM12 1.000 0.000 0.490 0.222
IBM13 1.000 0.000 0.475 0.222
IBM14 1.000 0.000 0.484 0.222
IBM15 1.000 0.000 0.483 0.218
IBM16 1.000 0.000 0.486 0.214
IBM17 1.000 0.000 0.488 0.216
IBM18 0.999 0.000 0.485 0.208

Average 1.000 0.000 0.484 0.221

104

Table 5.2: Comparison of after and before clustering net lengths. These results are
obtained by Net Cluster clustering, using Capo for placement.

Circuit Maximum compLclu Minimum compLclu Average compLclu σcompLclu

IBM01 0.999 0.001 0.498 0.210
IBM02 1.000 0.000 0.439 0.231
IBM03 1.000 0.000 0.550 0.265
IBM04 1.000 0.001 0.483 0.228
IBM05 0.999 0.001 0.482 0.222
IBM06 1.000 0.000 0.484 0.216
IBM07 1.000 0.000 0.486 0.214
IBM08 1.000 0.001 0.497 0.222
IBM09 1.000 0.000 0.480 0.212
IBM10 1.000 0.000 0.494 0.222
IBM11 1.000 0.000 0.486 0.217
IBM12 1.000 0.000 0.485 0.216
IBM13 1.000 0.000 0.474 0.223
IBM14 1.000 0.000 0.483 0.218
IBM15 1.000 0.000 0.480 0.217
IBM16 1.000 0.000 0.485 0.214
IBM17 1.000 0.000 0.486 0.215
IBM18 0.999 0.000 0.486 0.205

Average 1.000 0.000 0.487 0.220

105

Table 5.3: The average values of the ratio, ratioinc−dec, of the percentage of nets that
experience increases in their lengths during clustering, perinc, and the percentage of nets
that experience length decreases, perdec

Circuit perinc(%) perdec(%) Average ratioinc−dec

BC NC BC NC BC NC

IBM01 47 45 45 47 1.04 0.96
IBM02 37 37 57 57 0.65 0.66
IBM03 41 54 53 40 0.78 1.37
IBM04 44 45 50 50 0.87 0.90
IBM05 44 42 46 47 0.95 0.90
IBM06 49 44 44 49 1.10 0.90
IBM07 47 44 45 48 1.03 0.91
IBM08 46 46 46 46 0.99 1.00
IBM09 42 43 51 50 0.84 0.85
IBM10 44 46 47 46 0.93 1.00
IBM11 45 45 50 50 0.90 0.90
IBM12 46 45 48 49 0.96 0.92
IBM13 43 43 51 52 0.84 0.83
IBM14 44 44 48 49 0.91 0.89
IBM15 44 44 50 50 0.88 0.87
IBM16 44 44 47 48 0.93 0.91
IBM17 45 44 48 49 0.94 0.90
IBM18 44 44 48 48 0.91 0.91

Average 44 44 49 49 0.91 0.92

106

is not always successful in reducing wire length. An explanation for this is that using

clustering at least can reduce the runtime of the global placer and enable the designer

to spend more time on the detailed placement stage and refinements, and hence obtain

better overall results. The main goal of this research is to propose techniques that can be

used to improve the efficiency of clustering, by focusing on reducing its negative effects.

5.3 A Predictor-Corrector Framework for Clustering

In this section a predictor-corrector framework is proposed to improve the quality of

clustering. Before applying the predictor-corrector, a clustering algorithm, such as one

of those introduced in Chapter 3, is applied to the circuit to reduce its size. The designer

can decide which clustering algorithm is best suited to use and based on the placement

algorithm used, how much the circuit size should be reduced. Normal circuit size reduc-

tions are between 70% to 60% of the original size at each level.

The predictor-corrector framework is divided into two steps: the predictor and the

corrector. Each step is described in the following sections.

5.3.1 The Proposed Predictor Step

The main purpose of this step is to further improve the quality of clustering by finding

which global or local properties of nets can cause their lengths to increase. To be able

to perform prediction, the estimation model variables shown in Table 4.10 and discussed

in Chapter 4, are studied for all nets. Common variables of those nets that have the

highest length increases in all benchmarks are identified as variables that can predict

net stretching after clustering. These variables can then be used to choose or design a

clustering algorithm for the corrector step.

In order to determine which nets have the largest increases in their after clustering

lengths, a set of estimation-based experiments are conducted. In these experiments,

107

the ratio of after clustering lengths to pre-clustering lengths for all nets that are not

completely absorbed by clustering are calculated. This ratio is referred to as nldratio(netj)

and can be calculated for each net netj as:

nldratio(netj) =
$actAC

(netj)

$actPC
(netj)

. (5.2)

Based on this equation, if the value of nldratio is less than 1, it means that the length

of the net decreased as a result of clustering, which is desired. In a similar way, if the

value of nldratio is greater than 1, it means the length increased as a result of clustering,

which is undesirable. If nldratio is equal to 1, it means that the net length did not change

during clustering.

It is desired to understand the relation between values of nldratio for all nets and each

variable, x1, ..., x9, of the estimation model. In addition, it is desired to find out if there

exists any variable values for which nldratio goes above one, i.e. the after clustering length

becomes higher than pre-clustering length. For example, a general hypothesis is that the

higher a net degree is, the greater the chances are for that net to have a length increase.

This hypothesis can be validated if we take the nets that have high values of the variable

associated with net degree, x1, and for these nets calculate the average nldratio. If this

ratio is significantly above one then the hypothesis is likely to be correct.

To be able to find relationships between variable values and increases in length, the

graphs of nldratio for all nets versus the values of each variable are drawn using the

same methodology as used for Figure 4.4. In these figures, the nets are sorted in 100

equally-sized bins in an increasing order based on value of the variable which is being

considered. For the nets belonging to each bin, the geometric mean of the values of

nldratio are calculated. The geometric mean is used instead of the arithmetic mean since

nldratio expresses a multiplicative change in length and not an additive change.

Examples of these graphs for variables x1: net degree, x′
2α: fixed base length, and x7:

108

2PinCong, are shown in Figures 5.1 and 5.2 for circuits IBM04 and IBM06, respectively.

In these graphs, the abscissa shows the value of the variable on a log-scale and the ordinate

is the average value of nldratio for the bin. From these graphs it can be seen that for small

values of each variable, there exist large fluctuations in the values of nldratio. However,

as the values of the variables increase, the magnitude of the fluctuations reduces.

In order to be able to predict which nets need corrective action after each clustering

level, the point at which the fluctuation of the nldratio dies and there is a constant decrease

or increase in the lengths is determined. In Table 5.4, the highest percentages for all of

the variables from all the circuits are given. Each entry in this table is the number of

consecutive bins containing the largest values of the variables where the average nldratio

is consistently higher than one. For example, for IBM01, for each of the top three bins

of values of x1, an average increase in length is seen. Since each bin represents 1% of

the total nets, it can be said that the 3% of the nets that have the highest values of x1

experienced length increases. Zero means that the bin containing the largest values of the

variable does not become higher than one. It is proposed to use all variables belonging

to the columns that do not have a zero entry, x3, x5, x7, x8 and x9, in the corrector step.

5.3.2 The Proposed Corrector Step

In this step, it is proposed that after each predictor step, a small corrector clustering step

is performed where those nets which are expected to have large length increases because

they have high values of the identified variables are clustered. These nets are determined

using the variables that are identified in the predictor step because they have no zero

entries. These variables, referred to as corrector variables, are:

x3: second level effect

x5: Inverse mutual contraction

109

1010.5

1

1.5

Netdegree

nldr
atio

(a) nldratio versus Net Degree (x1)

102 103

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

fixedBaseLength

nldr
atio

(b) nldratio versus Fixed Base Length (x′

2α)

101 102 103

0.5

1

1.5

2

2PinCong

nldr
atio

(c) nldratio versus 2PinCong (x7)

Figure 5.1: Demonstration of the relation between after and before clustering lengths
and several estimation variables for IBM04 using log-scale for abscissa

110

102 20

0.8

1

1.2

1.4

1.6

Netdegree

nld
rati

o

(a) nldratio versus Net Degree (x1)

101 102 103 104

0.8

1

1.2

1.4

1.6

1.8

2

fixedBaseLength

nldr
atio

(b) nldratio versus Fixed Base Length (x′

2α)

100 1,0000.8

1

1.2

1.4

1.6

1.8

2PinCong

nld
rati

o

(c) nldratio versus 2PinCong (x7)

Figure 5.2: Demonstration of the relation between after and before clustering lengths
and several estimation variables for IBM06 using log-scale for abscissa

111

Table 5.4: Number of consecutive bins containing the largest values of variables with
average nldratio greater than one

Circuit Variable
x1 x′

2α x3 x4 x5 x′
6 x7 x8 x9

IBM01 3 3 2 2 2 1 3 3 6
IBM02 1 3 3 2 1 3 6 7 3
IBM03 3 1 1 9 5 1 1 1 1
IBM04 3 3 2 3 1 2 3 2 2
IBM05 1 1 2 3 1 1 2 3 2
IBM06 7 1 33 15 8 20 26 24 20
IBM07 1 3 2 1 1 1 2 2 4
IBM08 7 1 1 2 3 1 1 1 1
IBM09 1 2 2 1 1 3 3 1 2
IBM10 0 0 1 0 1 0 2 2 1
IBM11 1 1 1 2 1 1 1 1 1
IBM12 1 1 1 3 4 3 2 2 2
IBM13 1 6 1 1 1 1 1 1 1
IBM14 5 1 1 1 1 0 1 1 1
IBM15 1 1 1 2 1 1 1 1 1
IBM16 1 2 2 5 1 4 1 1 1
IBM17 1 3 10 9 14 7 3 5 3
IBM18 1 10 2 17 8 20 2 13 18

Min 0 0 1 0 1 0 1 1 1
Average 2 2 3.8 4 3.1 4 3.4 3.9 3.9

112

x7: 2PinCong

x8: 3PinCong

x9: 4PinCong

Note that most of these variables represent the congestion effects due to other nets in the

neighborhood of the net being considered, and do not directly measure the connectivity

between cells.

To show the benefits of applying a corrector step, a simple clustering scheme is im-

plemented. In this corrector step, two-pin nets with values of the corrector variables,

x3, x5, x7, x8 and x9, are in the top one percent are considered for clustering. If these nets

have not already been clustered, their cells are put together to form a new cluster.

The improvements in the after placement solutions for the ICCAD04 benchmarks

when the corrector step is used after clustering using both NC and BC are shown in

Columns 4 and 7 of Table 5.5, respectively. These results show that, on average, there

are improvements of 3.4% and 3.7% in the total actual wire length using the NC and BC

clustering algorithms, respectively, while maximums of 33.5% and 22.5% are achieved.

Since the quality of clustering and placement results is already high, the average im-

provement in total after placement net length is significant. Also, it should be noted

that these improvement are significant since they are 3.4% and 3.7% of the total actual

wire length of the whole circuit. In addition, getting improvement of over 20% only with

a small clustering ratio for some special cases shows that by studying these cases and

applying this information to the other circuits, the placement solutions can be highly

improved.

To further validate the proposed predictor-corrector framework, the corrector is ap-

plied to the PEKO Benchmark Suite3 [63] after clustering with Net Cluster. These

circuits are tested since their optimal wire lengths are known. The PEKO Benchmark

113

Table 5.5: Comparison of total wire length, produced by Capo, for circuits clustered
using Net Cluster and best-choice before and after corrector (Corr.)

Net Cluster Best-Choice
Before After Before After

Circuit Corr. Corr. Improv. Corr. Corr. Improv.
(×106) (×106) (×106) (×106)

IBM01 2.54 2.49 2.0% 2.57 2.57 0.3%
IBM02 5.06 5.12 -1.2% 5.27 5.20 1.4%
IBM03 7.81 7.29 7.1% 7.83 7.76 0.9%
IBM04 8.63 8.26 4.5% 9.08 8.55 6.2%
IBM05 9.96 9.92 0.4% 10.09 10.16 -0.7%
IBM06 9.08 6.80 33.5% 8.29 7.81 6.2%
IBM07 11.07 10.86 1.9% 12.09 12.01 0.7%
IBM08 13.25 13.10 1.1% 13.57 13.45 0.8%
IBM09 14.01 14.10 -0.6% 15.06 14.44 4.3%
IBM10 33.63 31.29 7.5% 39.04 31.88 22.5%
IBM11 20.06 20.17 -0.5% 21.29 21.13 0.8%
IBM12 35.78 35.46 0.9% 41.53 37.44 10.9%
IBM13 25.83 25.38 1.8% 29.02 26.72 8.6%
IBM14 38.34 38.09 0.7% 38.51 39.66 -2.9%
IBM15 50.62 51.06 -0.9% 53.19 52.49 1.3%
IBM16 59.87 59.31 0.9% 65.29 64.07 1.9%
IBM17 72.20 70.76 2.0% 73.35 72.35 1.4%
IBM18 45.50 45.48 0.0% 47.33 46.55 1.7%

Average - - 3.4% - - 3.7%

114

Suite3 is used because its circuits have the same number of cells and nets as the ICCAD04

benchmarks, but also include terminal connections. The improvement of the placement

results relative to the optimal wire lengths obtained using Net Cluster before and after

the corrector are compared and reported in Column 5 of Table 5.6. The results show

that an average of 4.0%, and up to 13.8%, improvement relative to the optimal wire

lengths is achieved. These results are significant especially after considering that the

PEKO circuits do not contain any marco blocks and furthermore all of their cells are the

same size while one of the strengths of the proposed estimation model is how it handles

macro blocks and cells with different sizes.

5.4 Summary

In this chapter, the negative effects of clustering algorithms are considered. Several

experiments are performed to clarify the significance of these negative effects. Then, a

predictor-corrector framework for clustering is proposed.

The predictor-corrector framework includes two main steps. In the first step, the

prediction step, the nets that are expected to have large increases in their lengths during

clustering are identified. To perform the prediction, the estimation model variables are

studied and several variables are selected to be utilized in the predictor step.

In the second step, the correction step, the identified nets are targeted by a corrective

clustering algorithm. The experimental results support the effectiveness of the proposed

predictor-corrector framework as it is seen that the placement results are significantly

improved by applying the proposed framework.

115

Table 5.6: Comparison of total wire length, produced by Capo, for circuits clustered
using Net Cluster before and after corrector for PEKO benchmarks

Optimal Before After Improvement
Circuit Wire Lengths Corrector Corrector Relative

(×106) (×106) (×106) to Optimal

PEKO01 0.81 1.65 1.63 2.2%
PEKO02 1.26 2.22 2.20 2.6%
PEKO03 1.50 2.80 2.72 6.2%
PEKO04 1.75 3.42 3.39 1.8%
PEKO05 1.91 4.31 4.24 3.1%
PEKO06 2.06 3.54 3.48 3.7%
PEKO07 2.88 5.47 5.16 13.8%
PEKO08 3.14 5.94 5.85 3.1%
PEKO09 3.64 6.85 6.73 4.1%
PEKO10 4.73 8.85 8.65 5.3%
PEKO11 4.71 9.25 9.05 4.8%
PEKO12 5.00 11.43 11.33 1.6%
PEKO13 5.87 11.70 11.62 1.3%
PEKO14 9.01 16.04 15.86 2.5%
PEKO15 11.50 20.96 20.84 1.3%
PEKO16 12.50 22.56 22.36 2.0%
PEKO17 13.40 27.04 26.84 1.5%
PEKO18 13.20 22.40 21.46 11.3%

Average - - - 4.0%

116

Chapter 6

Conclusion and Future Work

6.1 Summary and Contributions

In this thesis, a new a-priori individual net length estimation technique that estimates

the lengths of nets before the placement stage, is proposed. In this thesis, it is proposed

to use RBFs for length estimation to better capture the non-linearity of the given data

sets. As macro and fixed cells are appearing more and more in today’s integrated circuits,

a new model variable is proposed to consider the effects of the presence of these cells in

the length estimation technique. In addition, the proposed technique considers the effects

of different placers on the individual net lengths. The quality of the lengths estimated

using the proposed RBF-based technique proves its effectiveness on modern mixed-size

benchmarks. The performance of the proposed technique is improved by around 15%, on

average, for the ICCAD04 benchmarks compared to the best existing technique in the

literature for such mixed-size circuits [2].

The other main contribution proposed in this thesis is to design and implement a

predictor-corrector framework for clustering. First, the negative side effects of clustering

algorithms on individual net lengths are studied. Then, a predictor-corrector framework

is proposed to correct these effects. The variables used in the proposed RBF-based net

length estimation technique are applied in the predictor step. Then, nets that are highly

expected to experience significant length increases during clustering are identified. In

the corrector step, the cells belonging to these nets are clustered to avoid net stretching.

By applying the predictor-corrector framework, the placement results are improved by

around 3.5%, on average. This improvement is quite significant since the quality of the

117

existing clustering and placement algorithms is already high.

The main contributions of the thesis are listed below:

• A new RBF-based a-priori individual net length estimation technique is proposed

and implemented. This is the first time that RBFs have been applied in net length

estimation and it is shown that using RBFs is very effective in enabling the es-

timation technique to better deal with the highly non-linear data encountered in

physical design. The quality of length estimates is improved significantly when

RBFs are applied.

• A new method for finding the variance parameter for RBFs that is based on the

characteristics of the net length estimation data, is proposed. This method makes

the RBF-based technique more suitable for capturing the highly non-linear data of

integrated circuits.

• A new model variable is proposed to consider the effects of different placers in the

net length estimation technique. Since the proposed technique tries to estimate the

after placement lengths of nets before the circuit has been placed, the performance

of the placement algorithms affects the quality of the length estimates significantly.

Therefore, in this thesis, it is proposed to cover these effects by defining a new

variable in the estimation technique.

• A new model variable is proposed to consider the effects of the presence of fixed

cells in the net length estimation technique. In modern ICs, there exist several fixed

cells whose locations are set and cannot be changed during placement. This affects

the lengths of the nets that are connected to these cells. Therefore, in the proposed

RBF-based technique, the effects of the presence of fixed cells are considered.

• A novel predictor-corrector framework for clustering is proposed and implemented.

118

Clustering algorithms are used to improve the quality of placement results. How-

ever, it is shown that clustering can affect some individual nets negatively. These

nets are identified in the predictor step of the framework. In the corrector step,

these nets are targeted to improve the performance of the clustering algorithm.

6.2 Future Work

The future work can be classified into two categories based on the main contributions of

this thesis:

• Experience with the proposed RBF-based net length estimation technique suggests

several future research directions. In this technique, nine different model variables

are used. Thus, the technique estimates the net lengths using a set of given data

with nine dimensions. Even though a new center placement method is used and a

new variance selection method is developed in this thesis, determining the center

locations and variances of RBFs are still complicated and time consuming due

to the large number of dimensions. By reducing the number of dimensions, the

complexity of the proposed RBF-based estimation technique will decrease and the

quality of length estimates will be improved. Therefore, future work may consider

reducing the number of variables and dimensions. This work could be performed by

defining new variables instead of using those nine variables used in this thesis that

are mostly taken from the literature. These new variables may combine several

properties of the cells and nets of a circuit which results in fewer variables and

dimensions. This needs a comprehensive variable analysis over many integrated

circuits.

• The predictor-corrector framework also has possibilities for future improvement.

The predictor step can be enhanced by making specific conditions for specific nets

119

and specific circuits. In addition, a new clustering algorithm specifically for the cor-

rector step can be designed. This algorithm can utilize different existing clustering

algorithms simultaneously in order to cover all of their advantages.

Bibliography

[1] S. Bodapati and F. Najm. Prelayout estimation of individual wire lengths. IEEE

Trans. on VLSI, 9(6):943–958, 2001.

[2] B. Fathi, L. Behjat, and L. Rakai. A pre-placement net length estimation technique

for mixed-size circuits. In Proc. of SLIP, pages 45–52, 2009.

[3] N. Kurd, S. Bhamidipati, C. Mozak, J. Miller, T. Wilson, M. Nemani, and

M. Chowdhury. Westmere: A family of 32nm ia processors. In Proc. of ISSCC,

pages 96 –97, 2010.

[4] N. Sherwani. Algorithm for VLSI Physical Design Automation, Third Edition.

Kluwer Academic Publishers, Massachusetts, USA, 1999.

[5] S. Sait and H. Youssef. VLSI Physical Design Automation, Theory and Practice.

IEEE Press, Piscataway, USA, 1995.

[6] W. Donath. Placement and average interconnection lengths of computer logic. IEEE

Trans. on CAS, 26(4):272–277, 1979.

[7] W. Donath. Wire length distribution for placements of computer logic. IBM Journal

of RD, 25(3):152–155, 1981.

[8] A. Kahng and S. Reda. Intrinsic shortest path length: a new, accurate a priori

wirelength estimator. In Proc. of ICCAD, volume 2005, pages 173–180, 2005.

[9] O. Nelles. Nonlinear system identification. Springer, Berlin, Germany, 2001.

[10] G. Nam, C. Alpert, P. Villarrubia, B. Winter, and M. Yildiz. The ISPD2005 place-

ment contest and benchmark suite. In Proc. of ISPD, pages 216–219, 2005.

120

121

[11] J. Li, L. Behjat, and A. Kennings. Net Cluster: A net-reduction-based clustering

preprocessing algorithm for partitioning and placement. IEEE Trans. on CAD, 26

(4):669–679, 2007.

[12] M. Feuer. Connectivity of random logic. IEEE Trans. on Computers, C-31(1):29–33,

1982.

[13] J. Cotter and P. Christie. The analytical form of the length distribution function

for computer interconnection. IEEE Trans. on CAS, 38(3):317–320, 1991.

[14] A. Caldwell, A. Kahng, St. Mantik, I. Markov, and A. Zelikovsky. On wirelength

estimations for row-based placement. IEEE Trans. on CAD, 18(9):1265–1278, 1999.

[15] M. Pedram and B. Preas. Interconnection length estimation for optimized standard

cell layouts. In Proc. of ICCAD, pages 390–393, 1989.

[16] T. Hamada, C. Cheng, and P. Chau. A wire length estimation technique utilizing

neighborhood density equations. IEEE Trans. on CAD, 15(8):912–922, 1996.

[17] H. Heineken and W. Maly. Standard cell interconnect length prediction from struc-

tural circuit attributes. In Proc. of IEEE CICC, pages 167–170, 1996.

[18] B. Hu and M. Marek-Sadowska. Wire length prediction based clustering and its

application in placement. In Proc. of DAC, pages 800–805, 2003.

[19] Q. Liu, B Hu, and M. Marek-Sadowska. Wire length prediction in constraint driven

placement. In Proc. of SLIP, pages 99–105, 2003.

[20] J. Dambre, D. Stroobandt, and J. Van Campenhout. Toward the accurate prediction

of placement wire length distributions in vlsi circuits. IEEE Trans. on VLSI, 12(4):

339–348, 2004.

122

[21] T. Yan and H. Murata. Fast wire length estimation by net bundling for block

placement. In Proc. of ICCAD, pages 172–178, 2006.

[22] T. Yan, S. Li, Y. Takashima, and H. Murata. A theoretical study on wire length

estimation algorithms for placement with opaque blocks. In Proc. of ASP-DAC,

pages 268–273, 2007.

[23] T. Taghavi, F. Dabiri, A. Nahapetian, and M. Sarrafzadeh. Tutorial on congestion

prediction. In Proc. of SLIP, pages 15–24, 2007.

[24] A. Farshidi, L. Behjat, L. Rakai, and B. Fathi. A pre-placement individual net

length estimation model and an application for modern circuits. Integration, 44(2):

111–122, 2011.

[25] Q. Liu and M. Marek-Sadowska. Pre-layout wire length and congestion estimation.

In Proc. of DAC, pages 582–587, 2004.

[26] L. Rakai, J. Li, L. Behjat, and J. Huang. A structural study and hyperedge clustering

technique for large scale circuits. In Proc. of IEEE Workshop on Signal Processing

Systems Design and Implementation, pages 66–70, 2006.

[27] M. Buhmann. Radial basis functions : theory and implementations. Cambridge

University Press, New York, USA, 2003.

[28] S. Adya, S. Chaturvedi, J. Roy, D. Papa, and I. Markov. Unification of partitioning,

floorplanning and placement. In Proc. of ICCAD, pages 550–557, 2004.

[29] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society, 58:267–288, 1996.

[30] J. Rodgers and W. Nicewander. Thirteen ways to look at the correlation coefficient.

The American Statistician, 42(1):59–66, 1988.

123

[31] D. Ranaweera, N. Hubele, and A. Papalexopoulos. Application of radial basis func-

tion neural network model for short-term load forecasting. IEE Proc. of GTD, 142:

45–50, 1995.

[32] Z. Yun, Z. Quan, S. Caixin, L. Shaolan, L. Yuming, and S. Yang. Rbf neural network

and anfis-based short-term load forecasting approach in real-time price environment.

IEEE Trans. on Power Systems, 23(3):853–858, aug. 2008.

[33] S. Seshagiri and H. Khalil. Output feedback control of nonlinear systems using rbf

neural networks. IEEE Trans. on Neural Network, 11(1):69–79, Jan 2000.

[34] S. Chen and S. Billings. Neural networks for nonlinear dynamic system modelling

and identification. International Journal of Control, 56(2):319–346, 1992.

[35] M. Pottmann and D. Seborg. A nonlinear predictive control strategy based on radial

basis function models. Computer and Chemical Engineering, 21(9):965–980, 1997.

[36] M. Er, S. Wu, J. Lu, and H. Toh. Face recognition with radial basis function (rbf)

neural networks. IEEE Trans. on Neural Networks, 13(3):697–710, may 2002.

[37] X. Wang, J. Li, and Y. Niu. Face recognition with radial basis function (rbf) neural

networks. In J. Wang, X. Liao, and J. Wang, editors, Advances in Neural Networks

ISNN 2005, volume 3497 of Lecture Notes in Computer Science, pages 171–176.

Springer Berlin / Heidelberg, 2005.

[38] C. Lindquist. Radial basis function transforms and their use in signal processing. In

Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems

and Computers, volume 1, pages 315–319, 1-3 1993.

[39] J. Carr, W. Fright, and R. Beatson. Surface interpolation with radial basis functions

for medical imaging. IEEE Trans. on Medical Imaging, 16(1):96–107, feb. 1997.

124

[40] T. Ishikawa, Y. Tsukui, and M. Matsunami. A combined method for the global

optimization using radial basis function and deterministic approach. IEEE Trans.

on Magnetics, 35(3):1730–1733, 1999.

[41] N. Sundararajan, P. Saratchandran, and Y. Lu. Radial basis function neural net-

works with sequential learning : MRAN and its applications. World Scientific, Sin-

gapore, 1999.

[42] International Technology Roadmap for Semiconducotors. ITRS 2009 report. Tech-

nical report, http://www.itrs.net/Links/2009ITRS/Home2009.htm, 2009.

[43] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph parti-

tioning: Application in VLSI domain. IEEE Trans. on VLSI, 7(1):69–79, 1999.

[44] G. Nam. ISPD 2006 placement contest: Benchmark suite and results. In Proc. of

ISPD, page 167, 2006.

[45] A. Caldwell, A. Kahng, and I. Markov. Improved algorithms for hypergraph bi-

partitioning. In Proc. of ASP-DAC, pages 661–666, 2000.

[46] C. Alpert, D. Huang, and A. Kahng. Multilevel circuit partitioning. IEEE Trans.

on CAD, 17(8):655–667, 1998.

[47] C. Alpert, A. Kahng, G. Nam, S. Reda, and P. Villarrubia. A semi-persistent

clustering technique for VLSI circuit placement. In Proc. of ISPD, pages 200–207,

2005.

[48] J. Cong and S. Lim. Edge separability-based circuit clustering with application to

multilevel circuit partitioning. IEEE Trans. on CAD, 23(3):346–357, 2004.

[49] B. Hu and M. Marek-Sadowska. Fine granularity clustering for large scale placement

problems. In Proc. of ISPD, pages 67–74, 2003.

125

[50] T. Chan, J. Cong, M. Romesis, J. Shinnerl, K. Sze, and M. Xie. mPL6: Enhanced

multilevel mixed-size placement. In Proc. of ISPD, pages 212–214, 2006.

[51] A. Kahng, S. Reda, and Q. Wang. APlace: A general analytical placement frame-

work. In Proc. of ISPD, pages 233–235, 2005.

[52] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proc. of

DAC, pages 343–348, 1999.

[53] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph parti-

tioning: Application in VLSI domain. In Proc. of DAC, pages 526–529, 1997.

[54] J. Cong and S. Lim. Edge separability based circuit clustering with application to

circuit partitioning. In Proc. of ASP-DAC, pages 429–434, 2000.

[55] C. Fiduccia and R. Mattheyses. A linear time heuristic for improving network

partitions. In Proc. of DAC, pages 175–181, 1982.

[56] G. Nam, S. Reda, C. Alpert, P. Villarrubia, and A. Kahng. A fast hierarchical

quadratic placement algorithm. IEEE Trans. on CAD, 25(4):678–691, 2006.

[57] J. Li and L. Behjat. Net Cluster: a net-reduction based clustering preprocessing

algorithm. In Proc. of ISPD, volume 26, pages 200–205, 2006.

[58] J. Yan, C. Chu, and W. Mak. Safechoice: a novel clustering algorithm for wirelength-

driven placement. In Proc. of ISPD, pages 185–192, 2010.

[59] J. Roy and I. Markov. Partitioning-driven Techniques for VLSI Placement. Hand-

book of Algorithms for VLSI Physical Design Automation. CRC Press, 2008.

[60] N. Viswanathan, M. Pan, and C. Chu. Fastplace 3.0: A fast multilevel quadratic

placement algorithm with placement congestion control. In Proc. of ASP-DAC,

pages 135–140, 2007.

126

[61] J. Cho. Wiring space and length estimation in two-dimensional arrays. IEEE Trans.

on CAD, pages 612–615, 2000.

[62] J. Li, L. Behjat, and J. Huang. An effective clustering algorithm for mixed-size

placement. In Proc. of ISPD, pages 111–118. ACM, New York, NY, USA, 2007.

[63] C. Chang, J. Cong, and M. Xie. Optimality and scalability study of existing place-

ment algorithms. In Proc. of ASP-DAC, pages 621–627. ACM, New York, NY, USA,

2003.

[64] A. Caldwell, A. Kahng, and I. Markov. Design and implementation of move-based

heuristics for vlsi hypergraph partitioning. In ACM JEA, volume 5, 2000.

[65] A. Chatterjee and R. Hartley. A new simultaneous circuit partitioning and chip

placement approach based on simulated annealing. In Proc. of DAC, pages 36–39,

1990.

[66] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.

The Bell System Technical Journal, 49(2):291–307, 1970.

[67] C. Cheng. Risa: Accurate and efficient placement routability modeling. In Proc. of

ICCAD, pages 690–695, 1994.

[68] A. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. In

Proc. of ISPD, pages 18–25, 2004.

[69] A. Agnihotri, S. Ono, and P. Madden. Recursive bisection placement: Feng shui 5.0

implementation details. In Proc. of ISPD, pages 230–232, 2005.

[70] C. Chang, J. Cong, Z. Pan, and X. Yuan. Multilevel global placement with conges-

tion control. IEEE Trans. on CAD, 22(4):395–409, 2004.

127

[71] J. Roy, D. Papa, S. Adya, H. Chan, A. Ng, F. Lu, and I. Markov. Capo: Robust and

scalable open-source min-cut floorplacer. In Proc. of ISPD, pages 224–226, 2005.

[72] S. Areibi, M. Xie, and A. Vannelli. An efficient steiner tree algorithm for vlsi global

routing. In Proc. of CCECE, volume 2, pages 1067–1072, 2001.

[73] L. Behjat, D. Kucar, and A. Vannelli. A novel eigenvector technique fot large scale

combinatorial problems in VLSI layout. Journal of Combinatorial Optimization, 6

(3):271–286, 2002.

[74] R. Hadsell and P. Madden. Improved global routing through congestion estimation.

In Proc. of DAC, pages 28–31, 2003.

128

Appendix A

Physical Design

The flowchart of the physical design procedure is shown in Figure A.1. The input of this

procedure is a circuit schematic. Circuit schematics are usually represented in netlist

format. A netlist includes a list of nets, interconnections between circuit components, and

a list of circuit components, i.e. cells. As seen in Figure A.1, the physical design process

outputs the circuit layout. All of the physical properties of the circuit are determined in

the layout [5].

The procedure of physical design contains three main stages that are referred to as

partitioning, placement and routing. These stages are shown in Figure A.1. Each stage

is further described in the following sections.

A.1 Partitioning

The objective of partitioning is to divide a circuit represented by a netlist, into several

partitions that are relatively independent, i.e. as few wires as possible connect them.

The partitions are also desired to be roughly from the same sizes. In today’s ICs, there

exist millions of transistors that should be integrated [10,44]. Sometimes, the number of

transistors may be very large such that it is needed to partition the circuit into smaller

sub-circuits. These sub-ciruits should be as independent as possible because the wires

that connect two different sub-circuits are much more costly than those that are confined

to a single sub-circuit. The procedure of dividing the circuit into smaller sub-circuits is

called partitioning [4, 5].

In [53, 55, 64–66], several examples of existing partitioning algorithms are presented.

129

Partitioning

Placement

Routing

Global Placement

Detailed Placement

Detailed Routing

Global Routing

Output: Circuit Layout

Input: Circuit Schematic

Physical Design

Figure A.1: Physical design procedure

130

The partitioning algorithms are also used in solving other physical design problems [53].

A.2 Placement

In the second main stage of physical design, the exact locations of the circuit components,

such as logical gates and terminals, are determined [4,5]. This stage is referred to as the

placement stage. A constraint on the placement stage is that the locations of the cells

must be unique so that two distinct circuit components cannot be placed on the same

location. The general objective of the placement stage is to minimize the total length

of nets that connect the circuit components. Minimization of the total wire length can

result in reduction of delays and power consumption of the circuit [60].

There are some other objectives that are also considered by a placement algorithm.

One is that the algorithm ensures that the circuit is routable. This means that the

algorithm does not place the cells such that highly congested areas in which the routing

of nets is not possible, are formed [67].

As shown in Figure A.1, placement algorithms usually include two main steps: global

placement and detailed placement [5]. In the first step, global placement is performed

in which a rough placement solution is produced. This solution is not a finalized place-

ment solution, since it may contain overlaps between cells. In the second step, detailed

placement is performed on this solution. In detailed placement, legalization techniques

are used to remove the overlaps between cells. Also, local refinement techniques are ap-

plied to improve the quality of the placement results. Detailed placement outputs a legal

placement solution which does not include any overlaps between cells.

The existing placement algorithms are typically classified into two groups: analytical

placement algorithms and partitioning-based placement algorithms. Placement is treated

as an optimization problem in analytical algorithms. In [50, 60, 68], some examples of

131

these algorithms are presented. On the other hand, in partitioning-based algorithms, the

circuit is first partitioned. Then, each partition is separately placed on the layout area.

Examples of partitioning-based algorithms are proposed in [69–71].

A.3 Routing

In the third main stage of physical design, routing is performed where the paths for all

of the nets of the circuit are determined [4, 5]. The objective of routing is to route all

the wires in the circuit while minimizing the total wire length. If an excessive number

of nets must pass through a certain area, the circuit is not routable. Therefore, in the

routing stage, it is essential to find a routable solution.

As shown in Figure A.1, the routing is usually performed in two main steps: global

routing and detailed routing. In global routing, an approximate routing solution is pro-

duced. In this solution, approximate paths of the nets are determined. Then, the detailed

routing is performed in the second step. In this step, the routing solution is further re-

fined and the exact paths of the nets are determined. Several examples of existing routing

algorithms are presented in [72–74].

A.4 Other Approaches to Improve Physical Design

In order to improve the quality of the physical design and reduce the runtime, several

approaches are used. One approach is clustering that is used to handle the large sizes

of today’s integrated circuits [11]. Clustering is used before partitioning and placement

to reduce the sizes of the circuits. This decrease in size results in reduced runtime and

improvements in the quality of partitioning and placement [11, 43]. A comprehensive

background on clustering is presented in Chapter 3.

Another approach that can be used to improve the quality of physical design is wire

132

length estimation, which is the main focus of this thesis. The length of wires used for

routing the nets of circuits, is usually used to measure the quality of different stages

of physical design. Therefore, wire length estimation becomes important. Wire length

estimation techniques are usually used to estimate the wire length before, during and

after the placement stage to measure the quality of placement and routing stages [6]. In

Chapter 2, a background on the existing wire length estimation techniques is presented.

