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Abstract

This paper proposes a model of endogenous memory recall in a general dynamic setting using the frame-

work of rational inattention. I introduce the general model setup in chapter 2 through the lens of a rational

Bayesian agent who faces no memory constraints. Building on this framework, I define a memory process

in chapter 3. I then study how an exogenous memory process impacts the agent’s optimal actions, and

I discuss how the agent’s choice of actions given her memory constraints can be used to approximate her

risk preferences. Finally, endogenous memory costs enter into the agent’s welfare maximization problem in

chapter 4. These memory costs depend on the agent’s memory process, and are amplified by an exogenously

specified ability parameter. I show that in the presence of endogenous memory costs, the agent selects her

memory process according to her given ability: higher ability agents choose sharper memory processes, make

riskier decisions in the context of learning, and ultimately expect greater welfare.
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Epigraph

I consider that a man’s brain originally is like a little empty attic, and you have to stock it

with such furniture as you choose. A fool takes in all the lumber of every sort that he comes

across, so that the knowledge which might be useful to him gets crowded out, or at best is

jumbled up with a lot of other things, so that he has a difficulty in laying his hands upon it.

Now the skillful workman is very careful indeed as to what he takes into his brain-attic. He

will have nothing but the tools which may help him in doing his work, but of these he has a

large assortment, and all in the most perfect order. It is a mistake to think that that little

room has elastic walls and can distend to any extent. Depend upon it there comes a time

when for every addition of knowledge you forget something that you knew before. It is of the

highest importance, therefore, not to have useless facts elbowing out the useful ones.

- Sir Arthur Conan Doyle, A Study in Scarlet
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Chapter 1

Introduction

1.1 Background

Memory plays a crucial role in every aspect of our daily lives. We rely on our memory for everything from

remembering where we left our keys, to forming our beliefs about ourselves and the world around us. In

essence, memory helps shape who we are. However, a wide body of evidence from the psychology literature

asserts that memory is highly imperfect; increasingly, this fact is supported by research in economics. As

much as we rely on our memory to function, it can be a surprisingly fallible process. Nearly all of us are

familiar with the experience of forgetting something important: perhaps we forget a friend’s birthday on

occasion, and many of us cannot recall events in our lives from before a certain age. Moreover, there has

long been a thriving market for reminder apps, sticky notes, daily planners, and other memory-enhancing

tools (Brenner and Brenner 1982).

While many instances of imperfect memory are relatively benign, sometimes the consequences may be

more serious. Memory deficiencies can lead to faulty eyewitness testimony (and even erroneous convictions

and acquittals) in criminal trials (Fisher, Brewer, and Mitchell 2009). Furthermore, experimental evidence

suggests that limited memory impacts risk preferences (Muda, Niszczota, and Augustynowicz 2020): better

memory is associated with lower risk preferences. This suggests that poorer memory is associated with

riskier choices, and potentially worse outcomes.

Economic theory is also concerned with the study of memory, from how we process information given

memory constraints (Wilson 2014) to how we deal with complicated information such as complex contracts

(Jakobsen 2020). Given its important role in making decisions, memory is clearly important to the study of

economics.
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This thesis adds a novel dimension to the existing theoretical literature in economics by exploring the

impact of memory constraints on learning in a dynamic decision environment. We know that memory is

fallible by nature, and that imperfect memory can be associated with suboptimal outcomes. Thus, it is

natural to wonder how memory might be “managed” – in other words, where does memory fit into the

problem of studying incentives?

Before we begin to explore this question further, it is important to note that “sharp” memory requires

some degree of cognitive effort. To illustrate the trade-off between the benefits of sharper memory and

the costs of cognitive resource use, consider a university student who is studying for a sequence of exams.

She knows she wants to perform well, but she also knows that preparing for each of the tests will require

significant cognitive effort. If she passes the exams, she gets what she wants – in other words, the “good”

outcome. However, if she fails the exam – the “bad” outcome – she is worse off; in this way, the outcome

of the test serves as a signal about the student’s ability. She does not know the outcome before taking her

first action, which yields information about the true state of the world. Therefore, the student needs to

decide how to allocate her cognitive resources in order to optimally prepare for the exams ahead of time.

This simple example illustrates costly cognition in the context of memory and learning: the student stands

to gain more when she retains more information (that is, with better memory), but she also faces costs of

cognitive effort that constrain her overall payoff.

On a basic level, this example has three core properties: (1) an agent faces a decision problem multiple

times; (2) making a decision in each period yields information about the true state of the world by way of

observed payoffs; and (3) the agent has a memory problem – in other words, she only retains some of the

information from her decisions in previous periods.

Accordingly, this model can be interpreted as an agent who chooses how to use her memory of past

decisions to learn how to make better decisions in the future. Instead of treating memory as a signal about

the state of the world, I interpret memory as a signal about the history of past choices and their consequences.

The notion of a memory process helps to further conceptualize the problem. A memory process can be

thought of as an information manipulator: an exogenous memory process acts like an information filter,

while an endogenous process distorts the filter itself. In the case of an exogenous memory process, an agent

loses certain kinds of information while retaining others; for example, she may remember information that

supports her beliefs, and forget information that contradicts them. However, it seems unrealistic to assume

that memory processes are uniformly exogenous: for example, it seems plausible that people might put

more effort into recalling informative events when stakes are higher (such as in the example of the student

preparing for an exam).

Chapter 2 introduces the model by examining the behaviour of a rational Bayesian agent who faces her
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intertemporal decision problem in two periods, and in the absence of memory constraints. The rational

Bayesian case captures the agent’s optimal strategy from her perspective of not having learned yet, but

understanding that she will process information and choosing her actions accordingly. As the agent is

unconstrained by her memory in this context, the rational Bayesian case provides insight into how the agent

would behave if she did not face such constraints.

Chapter 3 introduces an exogenous memory process in which the agent is either a rational Bayesian with

some probability, or does not update her beliefs after observing information with some other probability.

With exogenously constrained memory, the agent again faces her decision problem in two periods; however,

she potentially has different information on which to base her decisions (depending on her exogenously

specified memory process). In this way, we can infer that, depending on her exogenous memory process, the

agent may be learning from her past actions and adjusting her behaviour accordingly.

Finally, endogenous memory formation is addressed in Chapter 4. In the endogenous case, I model

memory formation as a form of rational inattention in which “finer” (more detailed) memory requires greater

cognitive resources and, by extension, incurs greater cognitive costs. When memory is costly and endogenous,

I derive five main results. First, when memory is costless, the agent will choose perfect recall; however, if

memory costs are sufficiently high, the agent will bypass these costs by forgetting information from previous

periods. Moreover, when memory costs are restricted to a range of positive values, the agent will trade off

between improving her memory and exhausting her cognitive resources. Ultimately, higher memory costs

lead the agent to choose less risky actions, which reduces her welfare by limiting her potential benefit from

information.

1.2 Related Literature

Once we receive new information, we can store it for later use; this feature is fundamental to the current

understanding of memory. Moreover, our cumulative experience of the world around us is guided by our

beliefs about our observations and experiences. Given that our perspectives are profoundly shaped by our

beliefs, which depend on how we process and store the information we receive, it is worthwhile to wonder

how our memories shape our beliefs.

This model can be interpreted as an addition to the broad theoretical literature on non-Bayesian updating

in economics. It is well known that belief updating patterns are well-approximated by Bayes’ rule: when

faced with new information, we generally incorporate our new knowledge into what we already believe about

the world. However, examples of belief updating that deviate from the standard Bayesian method are well

documented in economics. From a theoretical perspective, Rabin and Schrag (1999) propose a model in
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which an agent misinterprets novel information as confirming beliefs he already holds. In this model, there

are two states of the world, and while the agent initially believes that either state is the true state with

equal probability, the distribution of signals the agent receives (and perceives) influence the beliefs at which

he ultimately arrives.

Examples of non-Bayesian updating have also been explored in the experimental economics literature.

Eil and Rao (2011) study the interplay between preferences and beliefs, and find that individuals tend

to incorporate positive signals into their beliefs in line with the standard Bayesian model, but they also

downplay the strength of negative signals (thereby acting in a non-Bayesian manner). In other words, people

respond differently to information that supports their beliefs than they do to information that challenges

their preconceptions.

How we use our memory to shape our beliefs is governed by the process of memory retrieval. Psychologists

recognize two forms of memory retrieval: recognition, and recall. Recognition involves awareness of a

stimulus item (something that one has seen or experienced before). Recall, on the other hand, requires us

to reproduce a stimulus item (Baddeley 2004). Clearly, recall forces us to think in some detail about what

we have experienced or seen.

However, thinking requires significant cognitive effort; this should not be a controversial statement. In

economics, the study of costly cognition is facilitated using the framework of rational inattention. Sims (2003)

develops the canonical model of rational inattenion in economics with the goal of capturing the idea that

people have limited capacity for processing information; many subsequent papers in recent years have applied

the rational inattention framework to study various dynamic behavioural problems. For example, Gossner,

Steiner and Stewart (2021) study how attention can be manipulated when an agent receives sequential

information before making a decision, and find that focusing attention on a particular item increases its

favourability regardless of its actual value. In other words, people tend to favour things that grab their

attention, perhaps because such things reduce their cognitive workload. As is the case with attention,

memory requires some degree of cognitive effort; as a costly cognitive process, memory fits neatly into the

rational inattention framework.

Perhaps (at least in part) because of its potential costs, the process of memory recall is highly imperfect.

The limitations of memory have important implications for decisions. Piccione and Rubinstein (1997) illus-

trate this fact through the paradox of the absent-minded driver: an agent who does not distinguish between

repeated occurrences of their decision problem exhibits imperfect recall, which constrains his payoff at the

end of the game. I adapt this formulation of imperfect memory recall to include the possibility that an agent

can be aware of her own absent-mindedness, and subsequently seek to remedy it.

The assumption that an agent can be aware of (and modify) her memory capacity is rooted in a phe-
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nomenon known in psychology as metamemory (Flavell and Wellman 1975). Metamemory encompasses our

own practical awareness of our memory capacities, the extent to which they are malleable, and what we

must to do facilitate the act of remembering. Accordingly, metamemory can be broken down into three

broad categories: knowledge of one’s own characteristics related to the act of remembering, knowledge about

differences in tasks that are important for how they are remembered, and knowledge of strategies that are

useful in remembering (Flavell and Wellman 1975). For the purposes of my model, I assume the agent is

aware of her limited memory capacity, and can employ memory-enhancing strategies to improve her memory.

Several strands of the literature in psychology view memory as an ongoing record of processes occurring

during learning (Wingfield and Byrnes 2013), and there is broad agreement that memory is inextricably

linked to learning. As such, an agent who is aware of her own limited memory and wants to improve it

over time can perhaps be thought of as wanting to “learn how to learn”. The theory of multi-armed bandit

problems is highly applicable to the study of optimal sequential learning (Gittins and Jones (1974); (1979)).

More specifically, multi-armed bandit problems can be thought of in terms of an agent choosing how to

allocate a fixed set of resources across competing options so as to maximize her expected outcome over time.

This is commonly referred to as the “exploration-exploitation” trade-off: exploration involves trying different

actions that could potentially provide different information and lead to the discovery of the optimal action

(since payoffs depend on the true state), while exploitation involves repeatedly choosing the action with the

best outcome in order to maximize payoffs. In particular, incentives for exploration depend on the agent’s

memory of past information.

Similar to other models of limited memory in the theoretical economics literature, this model incorporates

the notion that rehearsal facilitates memory (and, by extension, learning): recalling an event once makes

it easier to retrieve the memory in the future. Mullainathan (2002) proposes a model in which imperfect

memory distorts actions by way of influencing beliefs. The agent operates in a finite number of periods,

receives belief shocks that are either transitory or permanent, and information received is either “hard”

(regarding past events) or “soft” (concerning new events). Modeling memory as a stochastic map from

the true history to the agent’s perceived history, this paper finds that agents with limited memory tend to

overreact to memorable events and underreact (or forget) when there is a significant information lag.

Wilson (2014) proposes an alternative conception of memory, wherein an agent is faced with an infinite-

horizon problem but a finite set of memory states. The agent in this context observes a sequence of infor-

mative signals, and combines these signals into a memory state that is subject to updating when presented

with new information. From this perspective, limited memory impacts incentives, leading to common biases

in information processing such as confirmation bias and belief polarization.

I depart from these formulations of memory in several important ways. First, rather than treating
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memory as uniformly exogenous, my model is based on the idea that incentives and memory can jointly

influence each other. In essence, I focus on memory as an endogenous process: memory affects outcomes,

but if outcomes can be improved with better memory, then outcomes can also motivate incentives to affect

the memory process. Moreover, I do not restrict attention to a finite set of memory states. Rather, I address

memory as a continuous process in which the agent either learns to work with the memory states she is given,

as in the exogenous memory case, or optimally influences her memory in light of her cognitive constraints,

as in the endogenous memory case.
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Chapter 2

The Rational Bayesian Agent

Consider a rational Bayesian agent who faces a decision problem at two distinct points in time. There are

two states of the world, and the agent can observe two possible outcomes: a “good” outcome and a “bad”

outcome. The agent has a utility of 1 from the good outcome, and 0 from the bad outcome. Moreover, the

agent chooses an action, which determines the probability of observing the good outcome in different states.

Framed from this perspective, actions are Anscombe-Aumann acts (Anscombe and Aumann 1963), which

are described by a coordinate pair (a1, a2), where ai denotes the probability that the agent receives the good

outcome in state i. In selecting an action, the agent is effectively choosing an information structure: a1

and a2 represent probabilities that, along with her realized outcome, provide a signal about the state of the

world.

In general, this setup can be applied to a compact, convex set of such pairs; for ease of analysis, we restrict

attention to pairs of action contained in the unit circle. More succinctly, a1, a2 ∈ A = {(a1, a2) : ‖a‖2 = 1},

where the notation ‖ · ‖ refers to the Euclidean norm.

While the agent faces her decision problem exactly twice, we consider three periods of time, t ∈ {0, 1, 2}.

The agent chooses an action in period 0, and observes the payoff from that action at the start of period 1.

After choosing an action, the agent subsequently updates her prior µ = (µ1, µ2) in period 1 according to

Bayes’ rule. After revising her beliefs, the agent takes another action based on her posterior at the end of

the same period. Finally, the game concludes when the agent observes her payoff from the second action at

the start of period 2.

In a one-shot setting, the agent maximizes her expected utility µ ·a subject to ‖a‖2 = 1. Straightforward

calculations show that her optimal strategy is given by a∗(µ) = µ
‖µ‖ . In light of her prior beliefs, the value

of the agent’s optimal strategy is given by v(µ) = a∗(µ) · µ. This simply reduces to v(µ) = ‖µ‖.

7



It is worth emphasizing that a rational Bayesian agent chooses her strategy with the knowledge that

she will update her prior after observing her first payoff. Her posteriors then serve as informative signals

that help her choose an action in the following period. If the agent observes the good payoff in period 1,

she updates her beliefs according to µ̂(1) = µa
µ·a with probability µ · a; here, we draw attention to the fact

that µa refers to the component-wise vector multiplication of beliefs and actions in each period; that is,

µa = (µ1a1, µ2a2). Analogously, observing the bad payoff causes the agent to update her beliefs according

to µ̂(0) = µ(e−a)
µ·(e−a) with probability µ · (e − a) (where e = (1, 1) denotes the uninformative signal). To keep

things simple, I analyze the model for the case where the agent has a uniform prior; that is, when µ = ( 1
2 ,

1
2 ).

There are two ways we could determine the agent’s choice in period 0 and study her resulting payoff.

One method is to start at the end of the game, and then proceed via backward induction to determine what

she will choose at the start. Alternatively, we can view the agent as “forward looking”, and construct her

reasoning and preferences from the perspective of period 0. The two methods produce identical results when

the agent is a rational Bayesian, but the “forward looking” approach allows us to study a non-Bayesian

agent’s behaviour.

The agent holds beliefs in every period, and standard Bayesian equilibrium concepts require those beliefs

to be correct given the history of play up to that time. A non-Bayesian agent, however, may hold beliefs

that are incorrect at some histories. To bypass this problem, we assume that the agent correctly forecasts

her own belief updating and decision behaviour. Accordingly, the agent is still able to perform expected

utility assessments.

Definition 1. An agent is forward-looking if her period-0 preferences can be captured by an expected utility

function of the form

U(a) = µ · a+ δ

(
(µ · a) v

(
µa

µ · a

)
+ (µ · (e− a)) v

(
µ(e− a)

µ · (e− a)

))
.

The forward-looking expected utility function can be broken down into two parts: µ · a represents the

agent’s expected payoff at time 1, and (µ ·a)v
(
µa
µ·a

)
+(µ ·(e−a))v

(
µ(e−a)
µ·(e−a)

)
is the expected payoff at time 2.

The time-2 payoff further depends on two factors. First, µ ·a denotes the probability that the agent observes

the good outcome, and updates her prior to µa
µ·a according to Bayes’ rule. Similarly, µ · (e− a) corresponds

to the probability that the agent observes the bad outcome, and updates her prior to µ(e−a)
µ·(e−a) . With these

considerations in mind, U(a) specifies the agent’s expected utility from choosing an action in period 0, given

that her period-1 decisions will maximize her expected utility conditional on information generated by her

period-1 choice. The future-period expected payoff is discounted by δ ∈ (0, 1).
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Definition 2. Let U(a) = µ · a+ δ(‖µa‖+ ‖µ(e− a)‖).

1. The direct component d := µ · a is the agent’s expected payoff at t = 1.

2. The information component ‖µa‖+ ‖µ(e− a)‖ is the agent’s expected payoff at t = 2.

The following result demonstrates that, given a uniform prior, choosing an optimal strategy is analogous

to choosing an optimal direct component.

Proposition 1. Consider a forward-looking agent with a uniform prior. The agent’s problem of choosing

an optimal strategy a can be transformed into a problem of choosing an optimal direct component d.

Proof. Suppose the agent is forward looking and has a uniform prior. Then the agent’s preferences are

captured by U(a) = µ · a+ δ(‖µa‖+ ‖µ(e− a)‖); assuming a uniform prior, this becomes

U(a) = µ · a+ δ (‖µa‖+ ‖µ(e− a)‖)

=
1

2
(a1 + a2) + δ

√(a1
2

)2
+
(a2

2

)2
+

√(
1− a1

2

)2

+

(
1− a2

2

)2


=
1

2
(a1 + a2) + δ

√(1

2

)2

(a21 + a22) +

√(
1

2

)2 (
(1− a1)

2
+ (1− a2)

2
)

=
1

2
(a1 + a2) + δ

(
1

2

√
a21 + a22 +

1

2

√
(1− a1)

2
+ (1− a2)

2

)
=

1

2
(a1 + a2) +

δ

2
(‖a‖+ ‖e− a‖)

=
1

2
(a1 + a2) +

δ

2

(
‖a‖+

√
(1− a1)2 + (1− a2)2

)
=

1

2
(a1 + a2) +

δ

2

(
‖a‖+

√
(1− 2a1 + a21) + (1− 2a2 + a22)

)
=

1

2
(a1 + a2) +

δ

2

(
‖a‖+

√
(a21 + a22)− 2(a1 + a2) + 2

)
U(a) =

1

2
(a1 + a2) +

δ

2

(
‖a‖+

√
‖a‖ − 2(a1 + a2) + 2

)
.

The direct component becomes d = 1
2 (a1 + a2) with a uniform prior; moreover, the agent’s utility is con-

strained by ‖a‖2 = 1. Making the appropriate substitutions allows us to reduce the dimension of U(·), so

that it can be expressed as a single-variable problem in terms of d:

U(d) = d+
δ

2

(
1 +

√
1− 2(2d) + 2

)
U(d) = d+

δ

2

(
1 +
√

3− 4d
)
.

9



The optimal direct component d∗ is found by maximizing U(d) with respect to d; that is,

max
d

U(d) = 1 +
δ

2

(
1

2
(3− 4d)

−1/2
(−4)

)
.

Setting the derivative equal to zero, we have

0 = 1− δ (3− 4d)
−1/2

1 = δ (3− 4d)
−1/2

δ = (3− 4d)
−1/2

δ2 = 3− 4d

4d = 3− δ2

d∗ =
3− δ2

4
.

Substituting d∗ into the expected utility function yields the agent’s expected payoff from maximizing the

direct component.

U(d∗) = d∗ +
δ

2

(
1 +
√

3− 4d∗
)

=
3− δ2

4
+
δ

2

(
1 +

√
3− 4

(
3− δ2

4

))

=
3− δ2

4
+
δ (1 + δ)

2
.

Framed this way, it is easy to study the agent’s payoff from each component of her expected utility

function. First, we notice that a lower value of δ indicates that the agent more heavily discounts her future

payoff. Therefore, agent’s expected payoff in period 1 is decreasing in δ, and a higher value of δ means that

she cares more about her period-2 payoff than for lower values of δ.

Note that the optimal direct component cannot be larger than d∗ = 1√
2
, given the agent’s constraint

‖a‖2 = 1. Thus, setting d∗ = 1√
2
, we see that the agent must discount her future payoff to such an extent

that δ ≥ 1√
2
. Moreover, when δ = 1, the information component dominates the direct component, so the

smallest feasible direct component is optimal; in other words, when the agent does not discount her future

payoff at all, she always chooses to acquire the most information that she can. As such, we assume that

δ ∈
(

1√
2
, 1
)

to ensure that the agent can choose a direct component that falls between the two extremes.
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Chapter 3

The Exogenous Memory Case

Now that we have established how a rational Bayesian agent would behave, we are ready to introduce the

idea of a memory process.

Definition 3. Let p ∈ [0, 1] denote the probability that the agent updates her beliefs according to Bayes’

rule; similarly, let 1− p denote the probability that the agent’ does not update her prior. The parameter p

captures a memory process.

When the agent updates her prior according to Bayes’ rule, she benefits from information via the infor-

mation component of her expected utility function. Similarly, when the agent does not update her beliefs,

she does not acquire any extra information. Defining memory this way allows us to incorporate memory into

the agent’s expected utility function. That is, by definition of a memory process, the agent observes

U(d) = d+
δ

2

(
1 +
√

3− 4d
)

with probability p, and

U(d) = (1− p) (1 + δ) d with probability (1− p).

Across memory processes, the agent’s expected payoff is

U(d) = p

(
d+

δ

2

(
1 +
√

3− 4d
))

+ (1− p) (1 + δ) d

As in the rational Bayesian case, maximizing U(d) allows us to find the optimal direct component:

max
d

U(d) = p+
δ

2

(
1

2
(3− 4d)

−1/2
(−4)

)
− p(1 + δ) + (1 + δ)

11



Setting the derivative equal to zero, we have

0 = p− δp (3− 4d)
−1/2

+ (1 + δ)(1− p)

δp (3− 4d)
−1/2

= p− (1 + δ)(1− p)
δp

1 + δ(1− p)
= (3− 4d)

−1/2
(note: p− (1 + δ)(1− p) = 1 + δ(1− p))(

δp

1 + δ(1− p)

)2

= 3− 4d

4d = 3−
(

δp

1 + δ(1− p)

)2

d∗ =
1

4

(
3−

(
δp

1− δ(1− p)

)2
)

Substituting d∗ into the expected utility function, we get

U(d∗) = p

(
d∗ +

δ

2

(
1 +
√

3− 4d∗
))

+ (1− p) (1 + δ) d∗,

which simplifies to

U(d∗) =
p

4

(
3−

(
δp

1 + δ(1− p)

)2
)

+
δp

2

(
1 + δ

1 + δ(1− p)

)
+

(1− p) (1 + δ)

4

(
3−

(
δp

1 + δ(1− p)

)2
)

Taking p as given, we can look at the comparative statics for d∗ and U(d∗). Clearly, d∗ is decreasing in

p, and U(d∗) is increasing in p.

The intuition behind these observations is straightforward: better memory induces the agent to sacrifice

more of her period-1 payoff in favour of a potentially higher payoff in period 2. In this way, the agent’s

choice of optimal direct component captures her risk preferences: choosing a lower direct component is akin

to engaging in riskier behaviour, since the agent is willing to trade off more of her immediate expected payoff

in favour of potentially doing better in the future.

The agent is more likely to treat her memory process as exogenous if she feels she cannot do anything

to influence her memory. However, when the stakes are higher – perhaps when she can potentially improve

her outcome by doing so – the agent might be concerned with choosing her memory process more carefully

to enhance her learning. The following section endogenizes the memory process so that we may study such

behaviour.

12



Chapter 4

Endogenous Memory

Finally, we consider the case of endogenous memory recall. To endogenize the memory process, we proceed

via backward induction. First, recall that in the exogenous memory case, we found d∗ in terms of p; in the

endogenous memory case, d∗ is a function of p. In other words,

d∗(p) =
1

4

(
3−

(
δp

1 + δ(1− p)

)2
)

Substituting d∗(p) into the utility function, we end up with the value function

U(d∗(p)) = p

(
d∗(p) +

δ

2

(
1 +

√
3− 4d∗(p)

))
+ (1 + δ) (1− p) d∗(p).

However, we know that improving cognitive processes, including memory, generally comes with some cost;

at this point, we are ready to intoduce endogenous memory costs into the model. In this setting, memory

costs constrain the agent’s acquisition of information.

Definition 4. A memory cost is a function c : [0, 1]→ R that depends on a memory process p.

To study the effects of memory costs explicitly, we will consider the case where c(p) = kp2. In this

context, k is interpreted as a measure of cognitive ability: as k increases, the agent’s cognitive ability

decreases. Intuitively, if the agent has a higher level of cognitive ability, she will not have to exert as much

effort to improve her memory, and will face lower costs in doing so. Taken together, the value function

U(d∗(p)) and memory costs capture the tradeoff between the agent’s benefits of sharper memory versus the

costs of achieving it. Thus, the agent must decide how to optimally select p to balance these two competing

forces.

It is helpful to think of the optimal selection of p as occurring before the remaining steps in the game

13



are carried out; that is, when the agent selects her optimal memory process, she knows exactly how she will

select her future-period actions based on this choice. The following definition specifies the objective function

that weighs the costs and benefits of acquiring a memory process.

Definition 5. A forward-looking agent has rationally inattentive memory recall if her preferences take the

form

U(d∗(p))− c(p) = p

(
d∗(p) +

δ

2

(
1 +

√
3− 4d∗(p)

))
+ (1 + δ) (1− p) d∗(p)− c(p).

Furthermore, U(d∗(p) − c(p) captures the agent’s welfare; that is, her overall expected payoff from her

choice of memory process and the actions she subsequently takes.

In the case where c(p) = kp2,

U(d∗(p))− c(p) = p

(
d∗(p) +

δ

2

(
1 +

√
3− 4d∗(p)

))
+ (1 + δ) (1− p) d∗(p)− kp2.

The next set of results outline the circumstances in which it is optimal for the agent to choose either

perfect memory recall, or no recall at all.

Proposition 2. A forward looking agent with rationally inattentive memory recall will choose p = 1 when

k = 0.

Proof. Suppose k = 0. Then the agent simply maximizes U(d∗(p)); that is,

U(d∗(p)) = p

(
d∗(p) +

δ

2

(
1 +

√
3− 4d∗(p)

))
+ (1 + δ) (1− p) d∗(p).

To establish that perfect information is optimal in this case, we only need to look at the components of

the utility function. The direct component, d∗(p) = 1
4

(
3−

(
δp

1+δ(1−p)

)2)
, is decreasing in p; however, the

information component is increasing in p (by virtue of also being decreasing in d∗(p)).

When d∗(p) is maximized, d∗(p) = 1√
2

and

1

2

(
1 +

√
3− 4d∗(p)

)
=

1

2

(
1 +

√
3− 4

(
1√
2

))

=
1

2

(
1 +

√
3− 2

√
2

)
=

√
2

2

=
1√
2
.

14



In other words, the direct and information components of the utility function contribute equally to the

agent’s payoff when the direct component is maximized. However, for higher values of p, the information

component contributes more to the agent’s payoff than the direct component (by virtue of their relationships

with p). This implies that, in the absence of any costs associated with increasing p, the agent benefits from

choosing the highest possible p, since a higher p ensures a larger payoff from increasing information.

Proposition 3. A forward-looking agent with rationally inattentive memory recall will choose p = 0 for all

p ∈ (0, p∗); that is, for some p∗ ∈ (0, 1), U(d∗(0))− c(0) > U(d∗(p))− c(p) for all p < p∗.

Proof. Suppose the agent is forward-looking with rationally inattentive memory recall. Let p = 0. Then

d∗(0) =
1

4

(
3−

(
δp

1 + δ(1− p)

)2
)

=
1

4

(
3−

(
0

1 + δ(1− 0)

)2
)

=
3

4
.

However, the direct component is maximized at d∗(p) = 1√
2
; therefore,

d∗(0) =
1√
2

When p = 0, the agent’s expected payoff is

U(d∗(0))− c(0) = 0

(
1√
2

+
δ

2

(
1 +

√
3− 4

(
1√
2

)))
+

(1 + δ) (1− 0)√
2

− k(0)2

=
1 + δ√

2
.

However, we also have d∗(p) = 1√
2

when

d∗(p) =
1

4

(
3−

(
δp

1 + δ(1− p)

)2
)

1√
2

=
1

4

(
3−

(
δp

1 + δ(1− p)

)2
)

√
2 = 3−

(
δp

1 + δ(1− p)

)2

δp

1 + δ(1− p)
=

√
3− 2

√
2

δp = (1 + δ(1− p))
(√

3− 2
√

2

)
15



p =

(
1 + δ

δ

)(
3− 2

√
(2)

2

)1/2

.

In other words,

d∗

(1 + δ

δ

)(
3− 2

√
(2)

2

)1/2
 =

1√
2
.

Let p∗ =
(
1+δ
δ

)( 3−2
√

(2)

2

)1/2

. The agent’s expected payoff from choosing p∗ is given by

U(d∗(p∗))− c(p∗) = p∗

(
1√
2

+
δ

2

(
1 +

√
3− 4

(
1√
2

)))
+

(1 + δ) (1− p∗)√
2

− kp∗2

= p∗
(

1√
2

+
δ

2

(
1 +

√
3− 2

√
2

)
− (1 + δ)√

2

)
+

(1 + δ)√
2
− kp∗2

= p∗

(
1√
2

+

√
2δ

2
− (1 + δ)√

2

)
+

(1 + δ)√
2
− kp∗2

= p∗
(

(1 + δ)− (1 + δ)√
2

)
+

(1 + δ)√
2
− kp∗2

= p∗ (0) +
(1 + δ)√

2
− kp∗2

=
1 + δ√

2
− kp∗2.

Proposition 2 establishes that the agent will choose p = 1 if k = 0, so we must have k > 0; therefore,

1 + δ√
2

>
1 + δ√

2
− kp∗2, which implies

U(d∗(0))− c(0) > U(d∗(p))− c(p) for all p < p∗.

Proposition 3 provides us with some preliminary insight into the properties of the welfare function. In

particular, if the agent chooses to maximize the direct component for some range of p, we can infer how her

preferences behave for such a range of p close to 0.

Corollary 3.1. U(d∗(p))− c(p) is constant on the interval [0, p∗].

This implication is important to note for further analysis. An expected payoff that is constant on a

given interval does not achieve a maximum on that interval; in other words, the agent would never choose a

memory process that would make her worse off than if she chose to avoid information altogether.
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Proposition 4. A forward-looking agent with rationally inattentive memory recall will choose p = 0 for

sufficiently large values of k.

Proof. Rearranging the expected payoff function slightly, we see that

U(d∗(p))− c(p) = p

(
d∗(p) +

δ

2

(
1 +

√
3− 4d∗(p)

)
− kp

)
+ (1 + δ) (1− p) d∗(p).

Suppose k is sufficiently large that kp > d∗(p) + δ
2

(
1 +

√
3− 4d∗(p)

)
for all non-zero values of p. Then

p

(
d∗(p) +

δ

2

(
1 +

√
3− 4d∗(p)

)
− kp

)
< 0,

which implies that U(d∗(p)) − c(p) < U(d∗(0)) − c(0) = 1+δ√
2

for any strictly positive value of p. Thus, the

agent receives the highest expected payoff from choosing p = 0 for sufficiently large k.

This result has a simple interpretation. When the agent chooses p = 0, she never updates her beliefs, so

she does not benefit from information and effectively repeats her one-shot problem in both decision periods

(much like the absent-minded driver in Piccione and Rubinstein (1997)) Proposition 4 essentially tells us

that when the agent chooses p = 0, she behaves as if she is avoiding riskier actions for which the costs

outweigh the benefits.

Now that we have examined the behaviour of the agent’s preferences at the endpoints, the next definition

helps us pave the way to studying memory that is not “all-or-nothing”. 1

Definition 6. Any p ∈ (p∗, 1) that maximizes U(d∗(p))− c(p) is an interior solution.

When we think about memory and its limitations, we understand that it is not reasonable to restrict

ourselves to the boundary cases (where the agent either remembers everything, or forgets everything). Mem-

ory is clearly not an all-or-nothing process: for example, we do not forget where we left our keys every time

we want to leave the house, but we also do not remember every time either. The next result captures the

relationship between memory and ability in the context of learning.

Proposition 5. Let p(k) denote the optimal memory process for a given k. A forward looking agent with

rationally inattentive memory recall will choose p(k) ∈ (p∗, 1) for a range of positive k.

Proof. To show that an interior solution exists for some k, we first need to establish the first-order condition

1It is worth mentioning that, in the real world, we do not directly choose our memory processes; rather, the selection of
p arises from a gradual process in which we learn from our previous actions. We can think of the cost function c(p) and the
ability parameter k as a sort of evolutionary contraint, where nature acts as a “planner” that determines the agent’s long-run
outcome and the agent herself acts as a “doer” who is primarily concerned with her immediate payoff.
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for an optimal solution on (0,1). First, we notice that

U(d∗(p))− c(p) = p

(
d∗(p) +

δ

2

(
1 +

√
3− 4d∗(p)

))
+ (1 + δ) (1− p) d∗(p)− kp2

is continuous on [0, 1] and differentiable on (0, 1) in p and k. Thus, for an optimal p on (0, 1),

d

dp
U(d∗(p))− c′(p) = 0, which implies

c′(p) =
d

dp
U(d∗(p)).

By the envelope theorem, d
dpU(d∗(p)) = d

dpU(d) evaluated at d = d∗(p). Therefore,

2kp = d∗(p) +
δ

2

(
1 +

√
3− 4d∗(p)

)
− (1 + δ) d∗(p)

= (1− 1− δ)d∗(p) +
δ

2

(
1 +

√
3− 4d∗(p)

)
=
δ

2

(
1 +

√
3− 4d∗(p)

)
− δd∗(p).

Substititing for d∗(p) gives us our first-order condition for an interior solution in terms of k and p:

2kp =
δ

2

1 +

√√√√3− 4

(
1

4

(
3−

(
δp

1 + δ(1− p)

)2
))− δ

4

(
3−

(
δp

1 + δ(1− p)

)2
)

=
δ

2

(
1 +

δp

1 + δ(1− p)

)
− δ

4

(
3−

(
δp

1 + δ(1− p)

)2
)

=
δ

2

(
1 + δ

1 + δ(1− p)

)
− δ

4

(
3−

(
δp

1 + δ(1− p)

)2
)
.

Let K = {k : d
dpU(d∗(p))− c′(p) ≤ 0}. Suppose p(k) ∈ (p∗, 1) maximizes U(d∗(p))− c(p) for a fixed value of

k. The first-order condition for an interior solution tells us that, at p(k),

d

dp
U(d∗(p))− c′(p) =

δ

2

(
1 + δ

1 + δ(1− p(k))

)
− δ

4

(
3−

(
δp(k)

1 + δ(1− p(k))

)2
)
− 2kp(k)

= 0.

By Corollary 3.1, and since U(d∗(p)) − c(p) is continuous, choose p′, p′′ ∈ (p∗, 1) such that p′ < p(k) < p′′.
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Since p(k) maximizes U(d∗(p))− c(p) by assumption, then at p′ < p(k),

0 <
δ

2

(
1 + δ

1 + δ(1− p′)

)
− δ

4

(
3−

(
δp′

1 + δ(1− p′)

)2
)
− 2kp′.

Similarly, at p′′ > p(k),

0 >
δ

2

(
1 + δ

1 + δ(1− p′′)

)
− δ

4

(
3−

(
δp′′

1 + δ(1− p′′)

)2
)
− 2kp′′.

Rearranging these conditions to isolate k, we have

k <
δ

4p′

(
1 + δ

1 + δ(1− p′)

)
− δ

8p′

(
3−

(
δp′

1 + δ(1− p′)

)2
)

, and

k >
δ

4p′′

(
1 + δ

1 + δ(1− p′′)

)
− δ

8p′′

(
3−

(
δp′′

1 + δ(1− p′′)

)2
)
.

Given assumptions about δ and p′, it is clear that U(d∗(p))− c(p) is increasing for some positive k. Then, by

the Intermediate Value Theorem, there will be at least one value p(k) ∈ (p∗, 1) such that d
dpU(d∗(p))−c′(p) =

0 whenever

k ∈
(

δ
4p′′

(
1+δ

1+δ(1−p′′)

)
− δ

8p′′

(
3−

(
δp′′

1+δ(1−p′′)

)2)
, δ
4p′

(
1+δ

1+δ(1−p′)

)
− δ

8p′

(
3−

(
δp′

1+δ(1−p′)

)2))
.

While Proposition 5 establishes the conditions under which an interior solution can exist, we do not know

if it is unique for a given ability level. The next result demonstrates that any interior solution p(k) is, in

fact, unique for some k within the appropriate bounds.

Proposition 6. Any interior solution p(k) is unique for a given k.

Proof. Let k > 0 such that an interior solution exists. Suppose p̂(k) and p̄(k) are both interior solutions to

the agent’s problem for a given k. Then p̂(k), p̄(k) ∈ (p∗, 1),

d

dp
U(d∗(p))− c′(p) =

δ

2

(
1 + δ

1 + δ(1− p̂(k))

)
− δ

4

(
3−

(
δp̂(k)

1 + δ(1− p̂(k))

)2
)
− 2kp̂(k),

and

d

dp
U(d∗(p))− c′(p) =

δ

2

(
1 + δ

1 + δ(1− p̄(k))

)
− δ

4

(
3−

(
δp̄(k)

1 + δ(1− p̄(k))

)2
)
− 2kp̄(k).

Setting both derivatives equal to zero, this further implies that
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δ

2

(
1 + δ

1 + δ(1− p̂(k)

)
− δ

4

(
3−

(
δp̂(k)

1 + δ(1− p̂(k))

)2
)
− 2kp̂(k) =

δ

2

(
1 + δ

1 + δ(1− p̄(k))

)
− δ

4

(
3−

(
δp̄(k)

1 + δ(1− p̄(k))

)2
)
− 2kp̄(k)

δ

2

(
1 + δ

1 + δ(1− p̂(k)

)
+
δ

4

(
δp̂(k)

1 + δ(1− p̂(k))

)2

− 2kp̂(k) =

δ

2

(
1 + δ

1 + δ(1− p̄(k))

)
− δ

4

(
δp̄(k)

1 + δ(1− p̄(k))

)2

− 2kp̄(k).

Rearranging and simplifying, we notice that

δ(1 + δ)

2

(
p̄(k)− p̂(k)

(1 + δ(1− p̂(k)))(1 + δ(1− p̄(k)))

)
+

δ3

2

(
(p̄(k))2 − (p̂(k))2

((1 + δ(1− p̂(k)))(1 + δ(1− p̄(k))))
2

)
− 2k(p̂(k)− p̄(k)) = 0.

Since p̂(k), p̄(k) ∈ (p∗, 1), this condition only holds if p̂(k) = p̄(k). Hence, p(k) is unique for a given k.

Once an optimal memory process is chosen, we can analyze the agent’s actions in terms of her choice of d∗.

Note that when the agent chooses either p = 0 or p = 1, her choice of d∗ is trivial; she will either maximize

the direct component (assume no risk) or the information component (assume full risk), respectively. The

agent’s choice of optimal direct component when p(k) is an interior solution is more subtle; the next result

demonstrates that the agent’s optimal direct component depends on her ability.

Proposition 7. Let p(k) be an interior solution. The optimal direct component d∗(p(k)) is increasing in

ability k.

Proof. Suppose p(k) is an interior solution. Then p(k) satisfies the first-order condition for an optimal

solution, which is given by

2kp(k) =
δ

2

(
1 + δ

1 + δ(1− p(k))

)
− δ

4

(
3−

(
δp(k)

1 + δ(1− p(k))

)2
)
.

Rearranging this equation, we see that

p(k) =
δ

2k

(
1

2

(
1 + δ

1 + δ(1− p(k))

)
− 1

4

(
3−

(
δp(k)

1 + δ(1− p(k))

)2
))

=
δ

k

(
1

4

(
1 + δ

1 + δ(1− p(k))

)
− 1

8

(
3−

(
δp(k)

1 + δ(1− p(k))

)2
))

.
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Evaluated at p(k), the optimal direct component becomes

d∗(p(k)) =
1

4

(
3−

(
δp(k)

1− δ(1− p(k))

)2
)

=
3

4
−

δ

(
δ
k

(
1
4

(
1+δ

1+δ(1−p(k))

)
− 1

8

(
3−

(
δp(k)

1+δ(1−p(k))

)2)))
4

(
1 + δ

(
δ
4k

(
1+δ

1+δ(1−p(k))

)
− δ

8k

(
3−

(
δp(k)

1+δ(1−p(k))

)2)))

=
3

4
−

δ2
(

1
4

(
1+δ

1+δ(1−p(k))

)
− 1

8

(
3−

(
δp(k)

1+δ(1−p(k))

)2))
4k

(
1 + δ − δ2

k

(
1
4

(
1+δ

1+δ(1−p(k))

)
− 1

8

(
3−

(
δp(k)

1+δ(1−p(k))

)2)))

=
3

4
−

δ2
(

1
4

(
1+δ

1+δ(1−p(k))

)
− 1

8

(
3−

(
δp(k)

1+δ(1−p(k))

)2))
4k + 4δk − δ2

(
1
4

(
1+δ

1+δ(1−p(k))

)
− 1

8

(
3−

(
δp(k)

1+δ(1−p(k))

)2))

=
3

4
−

δ2
(

1
4

(
1+δ

1+δ(1−p(k))

)
− 1

8

(
3−

(
δp(k)

1+δ(1−p(k))

)2))
4k (1 + δ)− δ2

(
1
4

(
1+δ

1+δ(1−p(k))

)
− 1

8

(
3−

(
δp(k)

1+δ(1−p(k))

)2)) .

As we can see from the equation above, d∗(p(k)) is influenced by k both directly and through p(k). Clearly,

d∗(p(k)) is increasing directly in k. To help us ascertain the impact of k on d∗(p(k)) by way of p(k), we

analyze how k impacts p(k).

By Proposition 2, p = 1 when k = 0; similarly, p = 0 for sufficiently high k by Proposition 4. In the case

of an interior solution, we return to the first-order condition for an optimal solution:

kp(k) =
δ

4

(
1 + δ

1 + δ(1− p(k))

)
− δ

8

(
3−

(
δp(k)

1 + δ(1− p(k))

)2
)
.

Looking at this equation, it is apparent that if k increases, p(k) must decrease accordingly so as to maintain

equality. Since larger values of k are therefore associated with lower values of p(k), and d∗ is decreasing in

p (as discussed in Section 3), we can infer that d∗(p(k)) is increasing in k.

Proposition 7 demonstrates that the agent’s choice of direct component is increasing in k. As we know

that the optimal direct component is inversely related to the information component of the agent’s expected

utility function, we can infer that the information component must be decreasing in the parameter k. In

other words, if the agent is of higher ability, then she expects a larger payoff in period 2, and she will adjust

her choice of direct component downward (thereby taking riskier actions) to reflect her expectations. The
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final piece of this analysis deals with the impact of the agent’s ability on her overall welfare.

Proposition 8. Welfare is decreasing in k.

Proof. Suppose p(k) is an interior solution. By Proposition 7, d∗(p(k)) is decreasing in k. As discussed in

Section 3, U(d) is decreasing in d∗(p). Thus, as k increases, d∗(p(k)) increases and U(d∗(p(k))) decreases.

Moreover, the memory cost function evaluated at p(k), c(p(k)) = kp(k)2, is clearly increasing in k.

Welfare is given by U(d∗(p(k)))− kp(k)2. Since U(d∗(p(k))) is decreasing in k, and kp(k)2 is increasing

in k, we conclude that welfare is decreasing in k.

Recall that higher values of k are associated with lower levels of cognitive ability. Accordingly, the agent’s

welfare is ultimately increasing in her ability. From an intuitive standpoint, this finding makes sense: a high-

ability agent can improve her memory more easily than a low-ability agent, as higher ability is associated

with smaller cognitive costs.
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Chapter 5

Conclusion

This model I have proposed in this thesis was motivated by several key features of memory and learning: (1)

learning and memory are, to some degree, skills that can be manipulated at the individual level (Wingfield

and Byrnes 2013); (2) humans have some awareness of their own memory capacities (Flavell and Wellman

1975); (3) memory is highly imperfect; and (4) memory impacts decisions and outcomes (Wingfield and

Byrnes 2013). Given that memory and learning are malleable processes, and since we have some general

awareness of our memory capacities, it is clear that incentives to improve our memory might arise when

outcomes depend on these processes.

I have constructed a simple model of rationally inattentive memory recall in a general dynamic setting to

study a subset of “intentional remembering” problems (Wingfield and Byrnes 2013) that are characterized

by three properties: (1) an agent faces the same decision problem in two periods; (2) an agent’s choice of

action produces tangible information about the true state via the observed outcome; and (3) the agent has

imperfect memory recall. By framing memory as a tool for manipulating information, I have considered how

both exogenous and endogenous memory processes can impact an agent’s optimal choice of actions when she

faces her decision problem in different periods. When memory constraints are exogenous, an agent’s choice

of action is influenced by her memory, which is outside of her control. Rather than choosing her memory

process to select the best course of action, the agent adapts to her cognitive constraints in this setting.

However, when memory is endogenous, a forward-looking agent who faces a rationally inattentive memory

recall problem will choose a memory process according to the costs associated with doing so. When memory

is costless, such an agent will choose perfect recall, as she stands to benefit the most from information she

receives from her actions. On a similar note, a memory-constrained agent will choose not to exert cognitive

effort when the costs of doing so are sufficiently high. Finally, the agent will trade off between the potential
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benefits of risky information and the costs of acquiring it if her cognitive ability falls within a range of

positive values. These results both agree with and add a new dimension to the established literature on

imperfect memory recall.
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