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[Ueda 1987] and their “flat” versions; newer languages like Strand [Foster & Taylor 1990] have recently come
on the scene as well.

Finally, the backtracking stream AND-paralle! models feature both parallel execution of dependent and
independent goals and backtracking, at the cost of execution algorithms rather more complex than those in the
other two classes. The effort here is to gain the best of both worlds, achieving maximum parallelism but still
allowing all solutions to be found. For several years, combining the two was deemed impractical. Recently,
however, a number of algorithms have been published that combine stream AND-paralielism and backtracking
[Cleary et al 1988, Pereira et al 1986, Somogyi et al 1988, Tebra 1987].

Central to all of these algorithms (either implicitly or explicitly) is the notion of imposing a total ordering on
the goals executed by the system. The natural temporal goal ordering of sequential Prolog is what allows it to
backtrack successfully, but in a distributed environment, there is no such ordering readily available. Thus, some
ordering must be imposed artificially.

The ordering is used to determine the precedence of a goal: the earlier it appears in the ordering, the higher
its precedence. If two goals disagree on the value of a binding, the binding made by the higher-precedence goal
is accepted; the lower-precedence goal must retract its binding and recompute. When a lower-precedence goal
can find no solution, it may ask a higher-precedence goal to recompute its bindings.

Some systems, like those of [Pereira et al 1986] and [Tebra 1987], retain the depth-first ordering of sequential
Prolog. Others, like that of [Somogyi et al 1988}, base the ordering on producer/consumer relationships between
goals. The least restrictive algorithm is that of [Cleary et al 1988]: any ordering will suffice.

Our algorithm is based on that given in [Cleary et al 1988] and [Olthof 1991], with optimizations suggested in
those earlier works correctly incorporated into the main algorithm. The algorithm combines a number of desirable
features. Like Tebra’s design, execution is optimistic, allowing fully parallel execution of dependent goals. Like
Somogyi’s algorithm, ours is based on message passing, allowing its direct implementation on distributed-memory
as well as shared-memory platforms. It is also a highly-optimized algorithm which minimizes wasted work by
exploiting the regularity of Prolog to optimize Time Warp. Finally, because of its use of timestamped bindings, it
is simple to add intelligent backtracking (based on the technique given in [Mannila & Ukkonen 1986]).

The next section provides an outline of virtual time and Time Warp, on which our AND-parallel Prolog
system is based. Virtual times provide a total ordering on the goals in an execution, and Time Warp’s rollback
mechanism offers an undo operation. Section 3 introduces the distributed Prolog algorithm itself, describing the
data structures and messages used, after which an execution model is given. Section 4 illustrates the execution
of an example contrived to demonstrate the behaviour of all phases of execution. This is followed by a detailed
description of the algorithm in Section 5. Section 6 outlines a number of further optimizations to the basic
algorithm. Finally, Section 7 summarizes the work.

2 AND-Parallelism Using Virtual Time

A virtual time system [Jefferson 1985] imposes on a computation a temporal coordinate system; all events in the
computation are viewed in terms of this coordinate system. Each process has its own local virtual time (LVT);
each event receives its own timestamp based on the current LVT. Time increases with each event, and execution
is finished when all processes have a local virtual time of +0o (i.e. the global virtual time (GVT) is +00).

Virtual time is domain-specific and need not be related to real time. For example, in distributed simulation,
the natural basis for virtual time is simulation time. In a Prolog system, an ordering based on the search tree can
be used to construct a virtual time system.

One of two strategies may be used to ensure that the ordering within a distributed virtual time system is
correct. The conservative strategy defers the processing of an event until it is certain that no other event with an
earlier virtual time that can affect it is yet to be processed. Conversely, the optimistic strategy allows an event to
be processed immediately, on the (optimistic) assumption that the real-time order of processing will agree with
the virtual-time event ordering. If at some point in a computation this assumption is found to be false, some form
of order repair must occur.

Optimistic distributed systems have been shown [Fujimoto 1990] to be significantly more efficient for dis-
tributed simulation than conservative ones. In the case where the optimistic assumption is correct and no order



repair is necessary, optimism clearly provides more potential parallelism. Even in the case where order repair is
necessary, a process in a conservative system would have to wait until the out-of-order message arrived anyway.

The Time Warp mechanism [Jefferson & Sowizral 1985] was used in the first optimistic implementation of a
virtual time system. This implementation was designed with parallel simulation in mind, but the ideas behind
it can be applied as well to paraliel Prolog. In a Time Warp system, each simulation event is associated with a
message. Receiving an incoming message corresponds to processing the associated event. An outgoing message
schedules an event at some process.

The key component of the Time Warp mechanism is rollback, which is used to return the computation to an
earlier state so that an incorrect ordering can be repaired. When a message arrives out of order at a Time Warp
process, the process performs a rollback to the virtual time of the message (given by its timestamp); then, forward
execution starts again, processing the incoming messages in the correct order. To accomplish a roliback to a given
time, a process must perform several operations:

o it must “unreceive” already-received messages whose timestamp is greater than the given time;
¢ it must cancel outgoing messages whose timestamp is greater than the given time;
o it must restore its internal state to what it was at a time just before the given time.

Clearly, then, some form of state-saving is necessary. A Time Warp process uses three queues to do this: an
input queue (IQ), an output queue (OQ), and a state queue (SQ). The IQ contains (in timestamp order) incoming
messages for the process. The OQ holds negative copies of all messages sent out by the process; a message
is cancelled simply by sending out its corresponding negative message (or anti-message). The SQ contains
“snapshots” of the process at various virtual times; the internal state can be reconstructed using these snapshots.

Receipt of an anti-message may also cause a rollback. If its corresponding positive message is on the |Q but
not yet received, the two messages can just “annihilate” each other; if the positive message has been received, the
system must perform a rollback to the time of that message before annihilation may occur.

3 Distributed Prolog Algorithm

In examining our distributed Prolog algorithm, we begin with a high-level description of the basic algorithm.
We describe the stack and ancillary data structures necessary to implement the algorithm. Next, the message
types required by the algorithm and their behaviour in the message queues is considered. We then suggest two
optimizations to the algorithm that take advantage of the regularity of Prolog to reduce rollback and recomputation.
Finally, we give an execution model in the form of a state diagram. Sections 4 and 5 are closely related, the
former giving an example of parallel execution and the latter providing a detailed description of the algorithm.

3.1 High-Level Description

Our algorithm is based on the Time Warp system. Each unification corresponds to a Time Warp event and each
communication of binding information corresponds to a Time Warp message. Each solver (process) works on
its own part of the whole computation, alternating local execution and message processing. As with basic Time
Warp, each event and message is uniquely timestamped.

Local execution may process forward (goal selection, clause selection, and unification) or backward (back-
tracking). When a unification results in shared variables being bound, a BIND message is sent to each other solver
sharing one or more of these variables. When backtracking causes bindings of shared variables to be retracted, an
ANTI-BIND message is sent out to each solver that shares such a backtracked variable, so that the original BIND
is annihilated. In a similar fashion, goals are allocated via GOAL messages and withdrawn via ANTI-GOAL
messages. Finally, a distributed Prolog execution occasionally requires that a solver be able to force another to
backtrack. This requirement is met by using a FAIL message, which is not a Time Warp message—it has no
anti-message counterpart.

This basic algorithm was first proposed by [Cleary et al 1988] and implemented in [Olthof 1991]. Test results
from the latter exhibited good performance (as measured by the number of unifications performed) for deterministic
test programs, but shallowly- and deeply-nondeterministic programs ran less successfully. These results motivated
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a careful examination of the optimizations first proposed in [Cleary et al 1988]. This examination culminated in
the unification algorithm of [Olthof & Cleary 1992] and in the full Prolog algorithm of this paper.

3.2 Stack and Ancillary Structures

Like most sequential Prologs, the local execution of our algorithm is based around a stack. Specifically, each
process in the distributed system uses its own stack, executing local goals sequentially and communicating with
other processes in the system. The sequential interpreting engine is based on that given in [van Emden 1984].
Entries on the stack are frames. Local frames are created during the normal process of forward execution. Remote
frames are created by the arrival of messages. The values in such a frame are inherited from some frame in another
process. The main role of remote frames is to function as placekeepers for backtracking. When backtracking
arrives at a remote frame, it is redirected to the remote originating frame.

Each frame is divided into two parts, one containing information related to its associated goal, and the other
with that related to the currently-selected clause for that goal. These parts are referred to respectively as goal
frames and clause frames. Frames are kept on the stack in timestamp order: the frame with the earliest timestamp
is at the bottom of the stack; that with the latest timestamp is on the top. For local frames, this timestamp order
is exactly the depth-first order; the distinction comes from the remote frames, which are interspersed among the
local frames in the timestamp ordering.

The stack structure and the contents of each frame are illustrated in Figure 1. Each goal frame contains several
components:

o The timestamp is the virtual time at which the frame’s associated goal is executed.

o The originator is used in a remote frame to contain the ID of the process whose stack contains the originating
frame. Taken together with the timestamp and unique ID, the originating frame can be unambiguously



identified from this process ID. In a local frame, the originator is set to the local process ID.
o The goal is itself stored in the frame.
o The clause list identifies the clauses available to be unified with the goal.

o The marker contains a timestamp and is used to optimize the processing of ANTI-BIND messages. The
timestamp refers to the time of a frame lower on the local stack. Each of the frames between (and including)
the current frame and that referred to by the timestamp must be handled specially on backtracking. All
unselected clauses must be revisited, rather than just those following the current selection.

o The child, parent, and sibling pointers denote various related clause frames. The child pointer refers to
the goal frame’s associated clause frame and provides access to clause variables on unification. The parent
pointer refers to the clause frame for which the local goal is a body goal, and provides access to the parent
clause’s variables (i.e. the goal variables) on unification. The sibling pointer refers to the frame in the stack
just above the current one, and thus to the next frame to backtrack on failure of the current goal.

Each clause frame also contains several components:

o The unique ID distinguishes the frame from any other frame with the same virtual time. This is necessary
because timestamps can be reused after a rollback or backtrack. For example, if a clause for some goal is
backtracked and another clause chosen, the frame with the old clause and that with the new will have the
same timestamp. Since messages may arrive late, a message intended to affect an old frame may errantly
affect a new one instead. Thus these frames must be disambiguated; a simple integer counter for each
process suffices.

o The subgoal list is a list of the goals in the body of the current clause. (For a remote frame, this list is
empty.)

o The variable space contains allocated storage for each variable local to the clause.

This frame structure could be optimized considerably, particularly in the case of remote frames. We defer
such optimization in order to concentrate on the distributed execution algorithm.

In addition to the stack structure, each process must maintain several other pieces of state information. These
include the following:

o the network addresses of itself and processes with which it communicates
o the current local virtual time (LVT)

¢ an integer counter for numbering stack frames (see above)

o an input queue (IQ) to hold incoming messages (see below)

o alist of goals to be executed (goal_list)

3.3 Messages and Message Queues

We have chosen to describe the algorithm in terms of message passing rather than, say, a shared memory
paradigm. This is done to ensure that the algorithm can be applied to a wide range of machines. It should also be
straightforward to translate the algorithm to one which uses shared memory directly.

In a message passing system, variable bindings must be disseminated explicitly, and on backtracking, these
bindings must be retracted explicitly. This hooks in neatly to the Time Warp concept of message/anti-message
pairs. A binding is propagated via a BIND message; if that binding is later backtracked, it is withdrawn via an
ANTI-BIND message that will annihilate the original BIND.

The same principle applies to the allocation of work. Parallel goals may be created throughout the execution
and rescinded on backtracking, much as variable bindings are. A GOAL message is used to execute a goal at



some process at the virtual time given in the message. Such a goal may be withdrawn by sending an ANTI-GOAL
message.

A fifth type of message is necessary for a Prolog system, one that does not fit the Time Warp mould. This is
the FAIL message, through which a failing lower-precedence goal in one process may cause a higher-precedence
goal in another to backtrack.

Every message has certain basic information in common:

o atimestamp;
o an originator;
e aunique ID.

All of these are inherited from the frame which originated the message. The various message types have additional
fields:

BIND one or more variable/term binding pairs, each indicating that the given variable is bound to the given term;
GOAL the goal to be executed;

FAIL a context, identifying the sibling frame (with a timestamp, originator, and a unique ID) of the originating
frame. Such contexts are used to ensure that remote backtracking will search for all possible solutions.

ANTI-BIND and ANTI-GOAL messages contain no additional fields.

In order to support the transmission and receipt of all of these messages, the Prolog system needs to provide
its own versions of the Time Warp input, output, and state queues (IQ, OQ, and SQ, respectively). The SQ has
an immediate Prolog analogue: the stack. The contents of the stack up to a given virtual time exactly specify the
state of a process at that time; rolling back the stack to a certain virtual time amounts to backtracking all frames
with greater timestamps. The stack can also serve as an OQ: messages sent at a given virtual time can have their
anti-messages stored within the stack frame of that time. The only queue that needs special treatment is the 1Q,
since it may contain messages that are in the future of the receiving process; the stack can only record messages
from the past.

The 1Q holds messages of all five kinds. The BIND message is a classic Time Warp message; after being
received it will remain in the input queue until its corresponding ANTI-BIND arrives and annihilates it. That is,
it remains in the queue even after it has been processed, so that if a rollback causes it to be “unreceived,” it will
be reprocessed when the receiving process begins forward execution again.

The ANTI-BIND message is not persistent, since it annihilates its corresponding BIND immediately on arrival.
If no BIND corresponding to an arriving ANTI-BIND can be found, the BIND must have been rejected, and the
ANTI-BIND may be discarded.! GOAL and ANTI-GOAL messages are treated exactly like BINDs and ANTI-
BINDs, respectively. The odd one out is the FAIL message. Since it is not a Time Warp message, a FAIL is
removed from the input queue immediately on being processed the first time, never to be replaced.

The OQ holds only ANTI-BIND and ANTI-GOAL messages, each to be sent off when a rollback causes the
local virtual time to fall below that message’s timestamp. No BIND messages are stored in the OQ. For each
BIND sent out, the corresponding ANTI-BIND is enqueued in the OQ; similarly for GOAL messages. FAIL
messages are never stored in the OQ either. Once sent out, they are forgotten completely by the sender.

In standard Time Warp, global virtual time GVT is calculated regularly, so that fossil collection may be
performed—entries in each of the queues whose timestamps are less than GVT are reclaimed. This is possible
because no process will ever roll back to before the current GVT., In the Prolog algorithm, fossil collection is not
done, because the history of the computation must be retained—GVT may decrease during backtracking. Thus,
GVT is calculated only to determine termination.

Un this respect, we assume that the underlying message-passing system guarantees that messages from one process to another are delivered
in the order they are sent. If this is not the case, an ANTI-BIND with no corresponding BIND in the input queue would have 10 be retained
until that BIND arrived. The same assumption applies to GOAL and ANTI-GOAL messages.



3.4 Optimizing the Basic Algorithm

The simple form of Time Warp has a rollback occurring whenever any low-timestamped message arrives. When
Time Warp is specialized for Prolog execution, these rollbacks often can be avoided, thus reducing overheads and
improving total execution time. The results of [Olthof 1991] show that this is particularly important for programs
that are nondeterministic. For example, when a program is shallowly nondeterministic, it is common for a BIND
to be sent, followed immediately by its ANTI-BIND. The net effect on a process receiving these messages is to
leave the binding environment unchanged, but in the meantime, the BIND and the ANTI-BIND will each have
caused a rollback of execution which needs to be redone.

In a general Time Warp system, it is difficult to determine whether the contents of a message arriving in
the past of a process will affect the computation “after” it. Thus, such computation must be rolled back and
recomputed, though techniques like lazy cancellation {Gafni 1985] and lazy reevaluation [West 1988] may be
employed to mitigate the effects of rollback.

In a Prolog system, the effect of a message on later computation is much easier to determine. Since BIND
messages consist purely of variable binding information, and given the single-assignment property of Prolog,
binding conflicts are easily detected, and roliback need only be done when such a conflict occurs.

If a BIND message arrives out of order but no conflict arises, it can be accepted without rolling back and
recomputing. If a conflict does occur, a local binding may have higher precedence, so that the BIND may be
rejected out of hand. Even if the incoming binding takes precedence, the solver need only roll back far enough to
remove the offending local binding.

In a way, handling out-of-order ANTI-BIND messages is even simpler: the removal of a binding cannot
possibly cause a conflict. Thus, rollback in this case is in principle never necessary. Still, two complications arise.
The first of these occurs when a compatible but lower-precedence binding is possible for a variable unbound by
an ANTI-BIND. Had the BIND corresponding to that ANTI-BIND never arrived, the compatible binding would
have been recorded. That is, when a binding is withdrawn, the next-highest-precedence binding must be recorded
to keep the computation correct.

The second complication is that when a binding at some virtual time is withdrawn, the constraint on later
computation due to that binding is removed. That is, a clause that was rejected in forward execution because of
conflict with an earlier remote binding must become a candidate clause again, and be reselected on backtracking.

In [Olthof & Cleary 1992], we present two unification algorithms that support rollback avoidance. The first of
these, the order-independent unification (OlU) algorithm, permits BIND messages to be processed in any order,
requiring rollback only when an incoming binding conflicts with and has higher precedence than an existing
binding. Normally, unification proceeds with only minor alterations to the stack and backtrack trail so that both
appear to have been constructed in timestamp order.

Our second algorithm, the order-independent backtracking (OIB) algorithm, retains the functionality of the
first, and also avoids rollback when processing ANTI-BIND messages—that is, it allows bindings to be withdrawn
in any order. To solve the first of the complications noted above, it uses a more complex binding environment that
maintains multiple (compatible) bindings for each shared variable. The second complication, that of reselecting
candidate clauses, is external to the OIB algorithm, but is handled by the marker algorithm presented below.

34.1 Avoiding BIND rollbacks

As noted above, both the OIU and OIB algorithms permit BIND messages to be processed in any order and with
any number of later frames on the stack. Each attempted unification is done at some unification time, given by
the timestamp of the BIND that is being processed. Each returns a failure time, the time to which a rollback
must occur for the binding to be accepted. Success (no binding conflicts whatsoever) results in a failure time of
400 (i.e. no rollback). Complete failure (conflict with a binding whose timestamp is lower than the unification
time) gives a failure time equal to the unification time, and results in rejection of the message without recourse to
rollback. Finally, partial failure (conflict with a binding later than the unification time) causes a time greater than
the unification time but less than +0co to be returned. In this case, the binding conflict may be removed by rolling
back to the failure time.



34.2 Avoiding ANTI-BIND rollbacks

As noted above, the OIB algorithm maintains redundant bindings for each shared variable. Although this incurs
some overhead, the following example demonstrates its necessity. Suppose that in some execution, the goal p (X)
is to be executed, with X a shared variable and the clauses for p/1 being:

p(3).
p(2).
p(7).

Say that at time 1, a BIND with X = 2 is received. Later, at time 5, p (2) is executed. The clause p (3) . does
not unify, but p (2) . does. The redundant bindingX = 2 is trailed at time 5, and forward execution continues.
Now, if an ANTI-BIND arrives at time 1, we want to withdraw the binding for X without rolling back the stack.
If the remote binding (at time 1) is discarded, then the local binding of X = 2 at time 5 remains, keeping the
binding environment as it would have been had the remote binding never occurred.

The overhead of maintaining multiple redundant bindings for variables can be substantial, but it is mitigated
by two factors. At any given process, only bindings up to the first local binding need be maintained. Later
bindings, whether local or remote, will always be withdrawn before that local binding is backtracked. Also,
multiple remote bindings for a variable are unlikely, since it requires that two processors bind the same variable
at almost the same real time (before either one hears of the other’s binding). Thus, the most complex situation
likely to occur is that of one remote binding and one local binding.

The second complication with optimizing ANTI-BIND processing is also illustrated in the example above.
Normally, only the clause p (7) . would be tried after backtracking p (2) . However, the clause p (3) . was
only rejected because of the (now withdrawn) binding X = 2 at time 1. Thus, bothp (3) . andp(7) . need to
be retried on backtracking.

A wide range of algorithms are possible to deal with this problem. These trade off execution overhead against
accuracy in determining which clauses need to be retried. We believe that the marker algorithm described below
is a good compromise. It requires only a small constant overhead on each ANTI-BIND and on each time a frame
is backtracked or rolled back.

The simplest case requiring clause reselection occurs when a withdrawn binding is the only binding for some
shared variable. When such a binding is withdrawn, previously-rejected alternate clauses for goals with virtual
times between that of the message and the current LVT may become candidates again. (Rollback accomplishes
this automatically, but eagerly; a lazy method that retains the current solution path is preferable.) Our solution to
this problem is to set a marker at the current top of stack, and continue executing forward. This marker is given
the timestamp of the ANTI-BIND that caused it. (An unset or cleared marker is given the time +00.) When a
set marker is encountered on backtracking some frame, all alternatives to the current (rejected) clause are retried,
even those previously rejected. The marker is then passed down to the next lower stack frame, and the minimum
taken with the marker on that frame. When the timestamp of the stack frame is less than that of the marker, the
marker is cleared. Rejected clauses for goals with lower timestamps need not be retried, since they could not
possibly have failed due to the presence of the withdrawn binding.

Setting a marker is necessary whenever the highest-precedence binding for some shared variable is withdrawn
via an ANTI-BIND. If some lower-precedence binding exists, the marker is still given the timestamp of the
ANTI-BIND, but it is set in the remote frame corresponding to the highest-precedence remaining binding rather
than in the frame at the top of stack. For the frames above that of the remaining binding, no failed clauses need
be reselected, since they would still fail.

3.5 Execution Model

Parallel execution is performed by processes. Each process attempts to solve exactly one top-level goal, which it
receives in a GOAL message. (This restriction is easily and naturally relaxed, but is employed here for simplicity
and fluency of exposition.)

A process may be active or inactive. A process is inactive either when it has not yet been given any work (the
pending state), or when it has no work of its own left to do, and is merely waiting for messages to come in from
other processes (the solved state). When all processes are inactive and no messages are yet to be received, the
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system has terminated, either with a solution or in failure. (An algorithm like that given in [Dijkstra et al 1983]
suffices to detect termination.) Otherwise, a process is active, and may be in one of five states: forward execution,
message processing, rollback, local backtracking, or remote backtracking.

These states and their interactions are illustrated in Figure 2. A process begins in the pending state. On
receipt of a GOAL message, it begins actual Prolog execution. This is done in the forward execution state: a
goal and clause are selected and unified. If unification succeeds, any pending messages are processed. (Messages
need not actually be processed at this time. They may arrive asynchronously and be stored in the input queue
until they are processed.) If unification fails, local backtracking begins. This continues until either a local goal
can be retried, in which case forward execution begins again, or a remote frame is encountered, in which case
backtracking is forced on a remote process. Remote backtracking is forced by sending a FAIL message to the
process that originated the remote frame. The process that sends the FAIL then restarts forward execution.

During message processing, a message will either be accepted or ignored. Examples of messages that will be
ignored are a BIND whose variable bindings conflict with earlier local bindings, and an ANTI-BIND destined for
a stack frame that has already been backtracked. If a message has a timestamp earlier than the local virtual time,
execution must be rolled back to that timestamp before the message can be processed. A special case of this is
the ANTI-GOAL message, which causes the entire stack to be rolled back, after which the process returns to the
pending state, awaiting another GOAL message. Alternatively, if the message is a FAIL, remote backtracking
occurs, after which forward execution resumes. Otherwise, further messages are processed (including those that
may have been processed earlier but later rolled back). When no messages remain to be processed, forward
execution resumes.

Execution continues to return to the forward execution phase until no goals remain to be executed, at which
point the process becomes inactive. It remains inactive until another message arrives, whereupon it processes the
message and (sooner or later) returns to forward execution.
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4 Example

To illustrate the algorithm further, we present an example execution that enters each possible state. This example
has been carefully contrived to exhibit as much different message passing behaviour as possible with a very simple
program. In fact, the example given would most likely reach first solution in three messages rather than the eight
shown below.

Consider the query

- a(X),b(X)ep,

run with respect to the program
a(l). b(X) :- c2(X). c2(2).
a(2). b(X) :- cl(X). cl(1).

The goals in this query indicate that a (X) is to be run locally by the top-level process and b (X) to be run in
parallel on another processor. The top-level process will be denoted by P,, while the cooperating solver process
will be denoted by P;. The query has two solutions,X = 1andX = 2, with proof trees as shown in Figure 3.

Figure 4 depicts process initialization. P, begins by scanning the top-level query. It puts the goal a (X) on
its own goal list, and allocates the goal b (X) to P} by sending P, a GOAL message at virtual time 0.2 It then
begins forward execution. P, receives the GOAL message, puts b (X) on its own goal list, and begins forward
execution itself,

P selects goal b (X) and clause b (X) :- c¢2(X) ., and unifies them, all at virtual time 1. It then checks
for incoming messages. Finding none, it continues executing forward, selecting goal c2 (X) at time 6, unifying
it with clause c2 (2) .. This unification produces a binding for the shared variable X; thus P, sends a BIND
message binding X to the value 2 to P, with a timestamp of 6. ;

Meanwhile, P, selects goal a (X) and clause a (1) ., and unifies them at time 3. This unification also
produces a binding for X, namely X = 1. P, therefore sends a BIND to P at time 3. Note that at this point, two
incompatible bindings have been generated (see Figure 5). This conflict is resolved quickly, as both P, and P,
enter the message processing phase.

P, receives the BIND at time 6 and discovers that the bindingX = 2 conflicts withits own bindingof X = 1.
Seeing that its own binding antedates the incoming message, P, discards the message. (It could require P to

2Times used in this example have been chosen arbitrarily, albeit increasing up the stack.
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backtrack by sending it a FAIL, but this is unnecessary since Py will handle the conflict itself through rollback.)
P,4, having resumed forward execution, finds that it has no further goals to execute. It becomes inactive, setting
its virtual time to +oo and waiting for incoming messages.

P; receives the BIND at time 3 and finds that the binding within conflicts with its own binding at time 6.
Thus, it rolls back to before time 6, undoing its local unification and sending P, an ANTI-BIND message with
timestamp 6. (This message could be optimized away, since every process receiving the BIND at time 6 would
also receive that at time 3.) It then accepts the incoming binding, and installs a remote frame at time 3 to contain
the binding. No further messages arrive, so it returns to forward execution. This message-handling activity is
illustrated in Figure 6.

P, now receives the ANTI-BIND from P, but finds no corresponding BIND. P, thus discards the message
and returns to inactive status.

P} selects goal c2 (1) (note the variable substitution) and clause c2 (2) . When unification fails, it begins
local backtracking, trying to find another clause to match ¢2 (1) . Finding none, it backtracks a step further and
encounters the remote frame at time 3. Remote backtracking must now occur at P,: P, sends a FAIL to P, so
that the binding X = 1 will be retracted. (Included in this message is information about the sibling frame in P;’s
stack—that is, the local frame at time 1. Remote backtracking must be able to return eventually to Pj, since its
own bindings could have caused the original failure.) This situation is shown in Figure 7. P, removes the remote
frame (and the binding for X) and resumes forward execution, executing goal c2 (X) again.

When P, receives the FAIL from P,, it returns to active status, rolling back to time 3. Before backtracking
from that point, it inserts a remote frame in its stack at time 1 to direct remote backtracking back to Py later in
backtracking (see Figure 8). (This remote frame will be used later when the second global solution is sought.)
It then backtracks, sending out an ANTI-BIND to annihilate its original BIND and removing its own binding of
X = 1. Next,itretries goal a (X) , this time with clause a (2) ., and unifies them to produce the bindingX = 2.
Once again, it sends a BIND to P, to convey the binding information. With this forward execution step complete,
P, looks for incoming messages. Finding none, and finding no more goals to execute, it returns to the inactive

12
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state.

Meanwhile, P, has selected clause c2 (2) . and made the binding X = 2 again. Again, it sends out a
binding at time 6. Figure 9 shows the status of the system at this point, with two messages in transit from P, to
P; and one back from P; to P,. P, becomes active briefly to accept the BIND, and finds the binding within to
be compatible. Since its local binding has higher precedence (timestamp 3) than the remote binding, the remote
binding is ignored. Since no new bindings were made (not even redundant bindings), P, does not add a remote
frame to its stack. Instead, it ignores the message and returns to inactivity.

P processes its own incoming messages, finding an ANTI-BIND and a BIND at time 3. It finds no frame for
the incoming ANTI-BIND (since it destroyed that frame when sending the FAIL), and ignores it. In processing the
incoming BIND, it finds the binding within to be compatible with its own, but with a higher precedence. Thus, it
installs a remote frame at time 3 without rolling back and trails the redundant binding. P, then resumes forward
execution, but finds no more work to do. It too becomes inactive, as shown in Figure 10. Since both processes are
now inactive and no messages are pending, the system has terminated, in this case finding the solutionX = 2.

When another solution is requested, the point of introducing a new remote frame on receipt of a FAIL becomes
evident. P,, as the top-level process, begins backtracking. P, backtracks to time 3 and withdraws its binding of
X = 2, sending an ANTI-BIND to P;. P, receives the ANTI-BIND from P, at time 3 and removes the remote
frame at that time. In its local frame at time 6, it sets the marker to time 3. (As it turns out, this marker is never
used, but more complex executions would require it to guarantee completeness.) After it sets the marker, Py
returns to inactivity.

P, still backtracking locally, finds no further clauses to match goal a (X) . It backtracks a step further and
encounters the remote frame at time 1, installed when it previously received the FAIL from P,. P, sends the
failure back to P; at time 1, forcing remote backtracking, and restarts forward execution. (The frame at time 0 is
included in the FAIL as context.) P, tries goal a (X) anew, selects clause a (1) ., and sends a BIND at time 3.
It then finds no messages and no further goals, and becomes inactive.

P, receives the FAIL from P, wakes up, and rolls back to time 1 (in the process sending out an ANTI-BIND
at time 6). The marker disappears as rollback continues to before the marker’s time. P} then begins backtracking,
retrying b (X) with clause b (X) :- c1(X).. It checks for incoming messages, finds the BIND from p,,
and installs a remote frame at time 3 for the binding X = 1. Finally, it tries goal c1 (1), unifies with clause
c1(1) ., and sends out its own (compatible) BIND at time 6. It then becomes inactive. P, wakes up briefly to
accept the ANTI-BIND ands BIND messages, ignores them both, and returns to inactivity. A second solution has
been found; the state of each process is illustrated in Figure 11.

If yet another solution is requested, the system finally concludes that no other solutions exist. This is
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determined after several messages are sent: an ANTI-BIND, and a BIND with a new value for X from P,, next an
ANTI-BIND and a FAIL from P;, and then an ANTI-BIND followed by a successive FAIL from P,. P; sends a
final FAIL to P, at time 0, indicating that P;’s goal has failed completely.

It may seem that this example is much to do about nothing. After all, eight interprocess messages have been
used to reach the first solution of a problem that requires only three unifications and one shallow backtrack on
a sequential system. However, the situation which is illustrated—the same variable being given incompatible
bindings on different machines—should be relatively rare. If either P, or P; were to bind X early enough that
the binding reached the other before it did its own binding, the first solution would be reached in only three
interprocess messages (a GOAL and two BIND messages). The faster the underlying message passing system,
the smaller the window in which such a conflicting binding can occur.

5 Detailed Algorithm

The example above has illustrated most aspects of the optimized algorithm using the OIB unification algorithm,
In each of the sections that follow, pseudocode is given for one of the individual execution phases, together with
a detailed description of that phase.

5.1 Pending State

wait for GOAL message to arrive

set LVT = timestamp of message

set up stack with remote frame at LVT
put goal from message on goal_list
continue with goal execution

A process is in the pending state when it has not yet received a goal to execute. The only way to leave this
state is through the receipt of a GOAL message, which contains a goal for the process to solve.

When a GOAL message arrives, the receiving process begins by setting up its stack with a remote frame for
the GOAL message—thus, failure of the goal results in a FAIL message being sent back to the goal’s originator.
LVT is set to the timestamp of the message.

5.2 Forward Execution
Goal Execution

if goals exist on goal_list
select next goal to be executed
increment LVT
create goal stack frame
continue with clause execution
else
enter terminated state
end if

Clause Execution

select clause to unify with goal
create clause stack frame
increment ID counter and use value as unique ID for frame
unify selected goal with selected clause
if unification succeeds then
find all shared variables bound by the unification
send one BIND message to each process sharing a variable
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bound by the unification
for each subgoal in current clause
if subgoal is remote
send a GOAL message with LVT as timestamp
else
put goal on goal list
end if
end for
continue with message processing
else
continue with clause failure
end if

Forward execution is straightforward. Following from the goal frame/clause frame separation, it is divided
into goal execution and clause execution components. Goal execution amounts to selecting the next goal to
execute, incrementing the local virtual time, and creating a goal frame for that time containing the necessary
information about that goal.

Clause execution begins with selecting a clause and creating a clause frame. The frame takes its unique ID
from the value of a counter that is incremented each time a clause frame is created. Next, the current goal is
unified with the head of the current clause. If the unification fails, local backtracking begins with clause failure.
Otherwise, all variables that were bound and are shared with other processes are identified. One BIND message
is sent to each process sharing one or more such shared variables. Subgoals of the clause may be sequential or
parallel. Sequential goals are added to the local list of goals to be executed; parallel goals are scheduled® to be
run by some other process.

Unification, though not outlined above, is done according to the second unification algorithm of [Olthof & Cleary 1992].
For local execution, the effect is similar to that of standard unification: the attempt either succeeds with new
bindings, or it fails.

5.3 Message Processing
Top-level Processing

while incoming messages remain in IQ
select the next message from IQ
if message is a BIND
perform BIND processing
else if message is an ANTI-BIND
perform ANTI-BIND processing
else if message is an ANTI-GOAL
roll back entire stack
return to pending state
else /* message is a FAIL */
perform FAIL processing
end if
end while

BIND Processing

create remote frame to hold bindings
unification_time = message timestamp
faliure time = +inf

3Scheduling may be done in many ways, from hard-wired goal-to-process allocation through full-blown load-balancing scheduling.
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for each binding pair (V,B) in message
failure_time = min(failure time, unify(unification_time, V, B))
if failure time <= unification time /* unification fails */
ignore message /* unif. cannot succeed, even after rollback */
undo unifications already done for message
return to top-level processing
end if
end for
if unification_time < failure_time < +inf /* partial rollback required */
roll back to failure_ time
end if
return to top-level processing

ANTI-BIND Processing

if remote frame referred to in message exists
end_time = start_time = min(marker_time of frame, time of ANTI-BIND)
for each variable binding in frame
if binding is first (earliest) for its variable
if next binding for that variable exists
start_time = max(start_time, time of next binding)

else
start_time = time at top of stack
end if
end if
undo variable binding
end for
if start_time > end_time /* some frame needs marker set */
marker_time of frame at start_time = end time
end if

else /* remote frame doesn’t exist */
ignore message

end if

return to top-level processing

FAIL Processing

if frame referred to in message exists
if frame is local
roll back all frames later than FAILed frame
continue with remote backtracking
else /* frame is remote */
install context frame in own stack
send FAIL message to originator of remote frame,
including sibling frame as context
perform ANTI-BIND processing on FAILed frame
return to top-level processing
end if
else /* frame doesn’t exist */
ignore message
return to top-level processing
end if
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Messages may arrive at any phase of the execution, but they are not processed immediately. Message
processing is performed after each successful unification (and only then—accepting messages at other times can
cause incorrect execution). Messages that have arrived since the last message processing phase are processed in
timestamp order to minimize rollback.

If the message is a BIND, the values it contains are unified with the local copies of the shared variables bound
in the message. If the unification succeeds without conflicts occurring, nothing more need be done. If it fails,
then some higher-precedence local binding conflicts with an incoming binding, and the message is rejected. If
a conflict with a lower-precedence local binding is detected, a partial rollback to the time of the local binding is
necessary. (If more than one local binding must be undone, the process must roll back to the time of the earliest
such binding.) The time to which execution must be rolled back is given by the failure time, computed by the
OIB unification algorithm described in Section 3.4,

If the message is an ANTI-BIND, the remote frame created for its corresponding BIND must be removed.
When no such frame exists, the ANTI-BIND is ignored—either the original BIND was ignored, or the frame has
already been backtracked. If the frame does exist, it is removed from the stack and all variable bindings due
to it are undone. If the remote frame’s marker is set, the time of that marker must be taken into account when
calculating the new marker time (the virtual time at which the marker may be cleared). If any variable becomes
completely unbound as a result of the ANTI-BIND, the frame at the top of the stack must be marked with the
marker time given by the minimum of the marker time of the old frame and with the virtual time of the removed
frame.

If the message is an ANTI-GOAL, the entire stack is rolled back, and the process becomes inactive, returning to
the pending state. (Note that the message can never be a GOAL, given the single-goal assumption of the execution
model given in Section 3.5). Finally, if the message is a FAIL, the frame it refers to must be backtracked. If this
frame does not exist, the FAIL is ignored. If the frame is remote, the context of the FAIL is installed in the stack,
the remote frame is removed, and a FAIL is sent to the originator of the remote frame. Otherwise, all frames later
than the FAlLed frame are rolled back, remote backtracking begins, and no further messages are processed until
after the next successful unification.

5.4 Rollback

end _time = LVT
while LVT > rollback_time
send any ANTI-BINDs stored in current frame
undo bindings associated with frame
for each subgoal of clause associated with frame
if subgoal is remote
send ANTI-GOAL message to process solving subgoal
else
remove subgoal from goal_list
end if
end for
if current goal frame’s marker_ time < rollback_time
end_time = min(end_time, marker_time)
end if
de-allocate goal and clause frames
set LVT = time of sibling frame
end while
if end_time < LVT
frame’s marker_time = min(marker_ time, end_time)
end if

Rollback is done in order to handle two types of incoming messages: a BIND whose acceptance would result

in binding conflicts without the removal of “later” (lower-precedence) local bindings, and a FAIL directed at a
local stack frame. In the first case, the stack is rolled back far enough to remove any conflict; in the second,
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rollback is done back to the timestamp of the FAIL. During rollback, marker times must be propagated down the
stack so that frames not rolled back but requiring clause retrial will be handled correctly.

When a process rolls back from a virtual time ¢, to an earlier time ¢, all work between these times is undone.
Any bindings made after ¢; are backtracked; BIND messages sent out after ¢; are cancelled by sending out their
corresponding ANTI-BIND messages. In this, rollback appears much like backtracking. The salient distinction
between the two is that rolling back a goal resets the list of clauses with which it may unify, while backtracking
causes the current clause to be discarded and the next to be selected. As well, rollback causes all work past a
specific time to be undone, while backtracking goes back only far enough to find an untried clause or remote
frame.

5.5 Local Backtracking

Clause Failure

if marker time of current frame <= LVT
ensure all clauses other than the currently-selected one will
eventually be selected on backtracking
make rejected clauses available for retrial
if marker_time <= timestamp of previous frame
previous frame’s marker_time =
min(previous marker_ time, marker_time)
end if
end if
select next clause
if no alternative clauses for current goal
replace goal on goal list
delete goal frame
set LVT = timestamp of sibling stack frame
continue with goal failure for sibling stack frame
else
continue with clause execution for selected clause
end if

Goal Failure

backtrack all bindings associated with clause frame
if current stack frame is a remote frame
send FAIL message to originator (include timestamp and
unique ID of sibling frame as context in stack)
delete clause frame and parent goal frame
continue with goal execution
else /* frame is local */
send one ANTI-BIND message for each outgoing message of current frame
for each subgoal of clause associated with frame
if subgoal is remote
send ANTI-GOAL message to process solving subgoal
else
remove subgoal from goal_ list
end if
end for
delete clause frame
continue with clause failure
end if
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Local backtracking begins as a result of a failed attempt at unification of a goal and a clause head. This is
known as clause failure; the next available clause for the goal must be tried. If another clause is available, forward
execution resumes. Otherwise, goal failure results, and the current goal must be backtracked. From this point,
the previous clause frame on the stack is backtracked. If the previous frame is local, the clause frame is undone
as for rollback and backtracking continues with clause failure. If the previous frame is remote, failure is passed
on to the originator of the remote frame via a FAIL message.

In the process of backtracking, marker times are propagated down the stack. If a backtracked frame’s marker
time is less than its own time, all of its clauses are made available again. If the current LVT becomes less than the
marker time, the marker is reset to +o0c. Also, if a marker time is propagated down to a frame that already has its
own marker time, the lower marker time prevails.

It is important to note that simply being able to make another process backtrack is not sufficient for correct
remote backtracking. The bindings rejected by the sender of the FAIL may not be the cause of that sender’s failure;
they may merely have the latest timestamp of a large group of “suspects,” each of which could have contributed to
the failure. An earlier binding in that group may be the real culprit. Thus, a process that receives a FAIL message
needs some context with that message, since it may eventually backtrack to the time of the next-latest suspect.
To provide this context, it is sufficient to include the timestamp and unique ID of the sender’s sibling stack frame
with the FAIL message. (However, see Section 6.1, which optimizes this process.)

5.6 Remote Backtracking

if remote frame with timestamp and unique ID equal
to those in context of message does not yet exist
create a remote frame based on context given in FAIL
(process that sent FAIL, timestamp, frame ID)
insert in the local stack according to timestamp
end if
continue with goal failure from current frame

Remote backtracking begins at a process as a result of receiving a FAIL message from some other process. It
is identical to local backtracking except that two preparatory steps must be taken. First, the FAlLed process must
roll back to the virtual time given in the FAIL. (Details are given in the sections on message receipt and rollback.)

Second, the FAlLed process must ensure that it takes the context provided by the FAIL’s originator into
account. This context may be maintained in the stack of a FAIL’s recipient by inserting a remote frame whose
originator is the FAIL’s sender and whose timestamp is that of the sender’s sibling stack frame. (Sec Figures 7
and 8 for an example of this.) If it encounters this frame during later backtracking, it reacts as it would to any other
remote frame. Once these steps have been taken, normal backtracking begins with goal failure of the FAlLed
frame.

5.7 Solved State

wait for some message to arrive
continue with message processing

Actions performed in the solved state are straightforward. A solved process simply waits until a message
arrives, and resumes execution by processing it.

6 Optimizations
Although the most significant optimizations suggested in [Cleary et al 1988] have been incorporated into the
current algorithm, further optimizations are still possible. FAIL messages may be optimized to send multiple

contexts, making it more likely that a later FAIL will be sent directly to the originator of a rejected binding,
rather than to some intermediate process. As well, the algorithm is amenable to the application of intelligent
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Figure 13: As for two-process backtracking, except that P, passes failure on to P, immediately on receiving the
FAIL itself.

backtracking techniques, particularly the scheme proposed in [Mannila & Ukkonen 1986]. Related to this are two
“intelligent retrial” techniques.

6.1 FAIL Optimization

The aim of trying to optimize FAIL messages is to reduce the number of FAIL messages sent, and consequently
to minimize wasted message processing and stack examination. In the unoptimized algorithm, the context sent
with a FAIL message refers to the timestamp of the previous frame on the sender’s stack. If the FAIL’s recipient
cannot find an alternative without backtracking to before that timestamp, it sends a FAIL message back to the
sender (along with its own previous frame as context, of course).

In some cases (for example, in Figure 12), the previous frame sent as context is local to the sender; in this
case, if the failure comes back to it, the original sender will backtrack locally. Often, however, the context refers
to a remote frame, as in Figure 13. In this case, when a FAIL is directed back at the original sender, that process
checks back through its stack only to discover that the FAlLed frame is due to a third process. It must then install a
new context frame in its stack, remove the FAlLed frame, and send out its own FAIL message to the third process
before returning to forward execution. This is wasteful: an extra FAIL message is sent, and processing is done
to remove a remote frame that would be removed anyway on transmission of the appropriate ANTI-BIND, which
happens as soon as the FAIL reaches its final destination.
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Figure 14: Rather than sending a FAIL back through P,, P, can send it directly to P., and avoid making P,
receive and process a FAIL.

An attractive idea is to direct failure immediately to the third process, bypassing the originator completely.
This may be accomplished by including the process ID of the previous frame's originator in the context, along
with its timestamp; this method is illustrated in Figure 14. This saves process P, from having to roll back, and
results in one less FAIL message being sent out.

Though attractive, this optimization must be implemented carefully. It is important that the context provided
in the FAIL message always make it possible to direct failure back to the process that sent the FAIL. If this is not
done, situations can arise that cause possible solutions to be missed and thus incorrect execution [Olthof 1991].

The solution to this problem is to use a multi-place context, such that the i** component of the context
corresponds to the (i + 1)** last frame in the sender’s stack, be that frame local or remote. The exception is the
last component of the stack, which must direct failure back to the sender, whether the corresponding frame on the
sender’s stack is local or remote.

Setting the number of contexts in a FAIL message to some small number seems appropriate. This might be
determined by a natural message size in the implementation. We expect that sending three or four contexts will
cover almost all available optimization.

6.2 Intelligent Backtracking

Through the use of FAIL messages, the distributed algorithm already exhibits a simple form of intelligent
backtracking. When a process receives a FAIL for one of its bindings, it immediately rolls back to the virtual
time of that binding, rather than uselessly retrying later goals. The cause of failure is obvious and localized to a
specific group of bindings, and no amount of struggling with later bindings will remove the failure.

The challenge is to make this sort of backtracking possible for local execution as well. The intelligent
backtracking algorithm proposed in [Mannila & Ukkonen 1986] seems ideal for this purpose. Like our algorithm,
itkeeps track of binding timestamps. Though their reason for maintaining such timestamps differs from ours, the
method is so similar as to be nearly identical.

The central idea of their algorithm is that when all clauses for a goal have failed, backtracking should proceed
to the latest-timestamped unification whose bindings could have contributed to the failure of any of the clauses.
As each clause is tried and rejected, the bindings that caused it to be rejected—or rather their timestamps—are
recorded. Adding such behaviour to our algorithm is straightforward and incurs little additional space overhead.

7 Summary and Future Work

In arriving at the fully-optimized algorithm, an interesting process has been followed. A well-understood
sequential algorithm, namely backtracking for Prolog, has been transformed into a distributed algorithm by
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“applying” Time Warp to it. Time Warp was originally described as an algorithm for distributed simulation.
However, every sequential algorithm has a virtual temporal coordinate system imposed by the order of operations
during a sequential execution. By extracting this order and making it explicit, Time Warp can execute the algorithm
in parallel. In this case, the resulting algorithm was sufficiently specialized that significant optimizations to the
rollback processing of Time Warp were available. More “traditional” Prolog optimizations, like those for
intelligent backtracking, may still be applied. We look forward to secing other sequential algorithms, for which
it is difficult to construct an efficient distributed version, transformed in the same fashion.

An implementation of the optimized algorithm is planned for the near future. Results are expected to compare
favourably with concurrent logic languages for deterministic programs and with independent AND-parallel
systems for nondeterministic programs, as well as with the unoptimized algorithm implemented in [Olthof 1991].

One area that we will be exploring with the implementation is the effect that different timestamp allocation
algorithms have on performance. At one extreme, we can mimic the standard depth-first backtrack order by
appropriate timestamp selections. However, we believe that some programs will respond well to other orderings
that the flexibility of Time Warp allows.

Also, with care, itis possible to ensure that the timestamps assigned side-effecting operations such as assert,
retract, and input/output operations will be in the same order as in a purely sequential execution. Coupled
with database manipulation and I/O operations that can be rolled back, this would allow transparent distribution
of programs containing such side effects.
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