We describe how a computer system can acquire procedural knowledge from
end-users in the domain of interactive graphics (Maulsby & Witten, 1988). This
domain provides excellent examples of human-computer cooperation requiring
continual, richly-structured, interchange between the partners. Popular drawing
programs (eg MacDraw; Cutter, 1987), which augment the software analog of drafting
tools with extensive editing capabilities and rudimentary positional constraints, are an
ideal environment in which to investigate the acquisition of knowledge from non-
expert computer users. These facilities enable casual users to master easily some of
the mechanical skills of draftsmen and to concentrate more upon design. Users often
perform individual operations in fixed sequences which, in principle, constitute
knowledge that may be re-used later. Current drawing systems do not provide any
way to manipulate this knowledge, and in practice users suffer considerable frustration
because they have to repeat operations over and over again.

As an example, Figures 1-3 illustrate several tasks to be programmed within a
MacDraw-style utility. The input picture is transformed into the output picture by
constructive operations having both ad hoc and derived parameters. Most users can,
after some contemplation, generate suitable sequences of operations to accomplish
these tasks. They do so by operationalizing and combining knowledge from diverse
sources, ranging from spatial intuition through principles of Euclidean geometry to an
understanding of everyday routines such as sorting. Our job is to devise a mechanism
to acquire these procedures, capturing them in a form which is flexible enough for
them to be re-used later in slightly different circumstances. It may be possible to
analyze the procedural knowledge so acquired and abstract more general principles
from it, but we have not yet begun to attempt this.

We view knowledge acquisition in this domain as tantamount to reaching.
Unlike other researchers in machine learning, we stress the transitivity of the verb
““teach”” — there must be some organism that is being taught, and the teacher must be
aware of its nature. A cornerstone of our approach is to employ a suitable metaphor
through which users can conceptualize the target of the teaching process. A user who
has a clear idea of the capabilities of the learner will automatically adapt his exposition
to capitalize on its strengths and compensate for its weaknesses. The success of the
metaphor will determine how well the user’s teaching matches the student’s ability to
learn.

Metamouse is the metaphor.

Welcome to my world
by M. Mouse

I, Metamouse, live in Flatland (Abbott, 1884), sharing this world with just two
types of objects, lines and boxes, on which two kinds of operations are possible,
translation and scaling. These primitives form the basis of my drawing world, a
program called A.Sq, whose user interface methods resemble those of MacDraw.
Although computer drawing environments normally provide a much richer selection of

[

primitive objects and operations, I am an experimental animal and this limited domain
is rich enough for experimental purposes.

My teacher, the human user of A.Sq, can create objects by rubber-banding,
select one of them with a pick, and transform a selected object by moving its handles.
For example, lines can be translated, rotated, elongated or shortened. Boxes can be
translated, reshaped, stretched or shrunk. Programs for this world which the user
teaches me are composed of these same operations.

As far as I am concerned, an object is characterized by its fype (line or box) and
its parts. The parts include the line segments that comprise it, and certain
distinguished points of the object, called its handles. A line has just one segment,
while a box has four (top, left, right, bottom). As Figure 4 illustrates, a line has three
handles (pointl, mid, poinr2), while a box has nine (among them ropleft, topmid,
center, bottomright). For the user’s convenience, I label objects as he sees them on
the screen, so that *‘left’” means his left, not necessarily mine.

In my world, A.Sq, a particular drawing function is associated with each handle
of an object. A line can be translated by grabbing its midpoint and moving it; it can
be rotated, elongated, or shortened by grabbing either end and moving that while the
other end stays fixed. Boxes can be reshaped by moving any corner, stretched or
shrunk by moving the midpoint of a side. I do not know anything about the geometric
properties of such transforms — 1 just grab handles and move as I am told.

I am also concerned with relations between objects. There are three kinds of
relation: point-on-point, point-on—segment, and segment-meets—segment. Each of
them is symmetric. The first occurs when handles of two objects coincide in space.
For example, if L is a line and B is a box, L.point]-on-B.topleft is a point-on—point
relation. The second kind occurs when a handle of one object lies on a segment of
another, like L.point2—on-B.bottom. The third kind is when a segment of one object
intersects that of another, like B.right-meets—L.lineseg. The point of intersection is not
specially distinguished — I do not know where objects meet, just rhar they meet.

Conventional computer-graphics ‘‘gravity’’ applies throughout my world, so that
points are deemed to be coincident if they are close enough, and if this is the case they
fall automatically into a position where they really are coincident.

This is my body
by M. Mouse

I mimic the behavior of the standard mouse locator device. Although my name
is a mouse’s, my body, in deference to Papert’s creations, is a turtle’s (Papert, 1980;
Abelson & diSessa, 1980). People call me a moveable menu that sometimes runs
away. My basic operations are to move forward, back, left or right, and to grasp or let
go. To make me do this, the teacher clicks the ordinary cursor (I call it the ‘‘dumb”’
cursor) on the appropriate part of me as shown in Figure 5. When I think I know

what to do, I do it anyway without waiting for the teacher; this is why I sometimes
over-enthusiastically *‘run away”. If the teacher does not approve of a particular
action, he or she can always pull me back by the tail.

In order to transform an object, I grasp it and carry it to its destination. Note
that I, like my teacher, can only grasp objects by their handles. To facilitate the
programming of problems that involve rotational order (eg convex hull), I can be
instructed to perform true rotation. To rotate an object, I grasp one of its handles and
turn myself. I can only grasp one thing at a time. Sometimes I grasp things to move
them around. Other times I pick up a constructed object which functions as a tool,
perhaps a short line to use as a spacer, or a long one to use as a sweep line — like a
pair of sensitive whiskers.

My sensory feedback comprises current position, heading, and tactile events, the
last being by far the most important. I use position only as a constant, when my
teacher specifies ‘‘same-place’’ generalization. I refer to my heading only when I
have been rotating and must return to some previous orientation. My tactile state is
governed by what I am grasping and also by what I am touching with my snout. I can
only grasp one object at a time, but may touch several objects at once. Although I am
very short-sighted I have a well-developed sense of touch, for I can tell

o the type of each object I am touching

e the type of the tool (or object) I am grasping

o the specific part of each object I am touching

o the specific part of the tool (or object) I am grasping

e spatial relations between the tool (or object) I grasp and any other object it
touches.

The parts of an object are its handles and line segments, while spatial relations are the
three binary symmetric relations I described before.

Note carefully the limits placed on my tactile awareness. I only pay attention to
things I bump into, and my head flashes when this happens so that my teacher knows
of the event. I sense only at my snout (current exact position). I can sense the objects
I touch, and if I am holding a tool I can sense the objects it touches. However, I am
not aware of contacts between other objects and what I am touching, nor of contacts
between other objects and those that touch the tool I am grasping. This extra
information is not strictly necessary since I can always check for significant contacts
by moving (or being moved) to the location where they might occur. My limited
sense of touch is designed to prevent my teacher from believing that I can analyze the
entire display.

All T know
by M. Mouse

I leam programs, which are structured sequences of actions (more on that later).
Often the actions of a program are parametrized, and some of the parameters must be
variable for the program to be general. The program must be deterministic so that it is
clear to me which action to perform when branching occurs. I therefore model actions
as (precondition, operation, path, postcondition) tuples, in the manner of the STRIPS
planning system (Fikes & Nilsson, 1971). The operation part must contain one of the
basic operations I can do. The parh part specifies my direction of motion. Conditions
are generalizations of my sensory feedback, that is, logical combinations of spatial
relations that must hold for the condition to succeed.

For example, here is a program step that I might learn. If I am facing right and
grasping a box by its translation handle, then move forward until the bottom-right
handle of the thing I am carrying (the box) touches the left side of any other box. In
order to carry out this action, I perform an A.Sq translate command whose numerical
parameters are calculated from the distance a ray would travel from my snout along
the specified path before intersecting a ‘‘left edge’’.

I execute a program step provided that 1) its preconditions are a generalization
of the current sensory state, and 2) its post-conditions are attainable. To determine if
the post-conditions are attainable I imagine carrying out the action and see if it is
possible to achieve the spatial relations necessary for the condition to hold. If I decide
against executing a particular step, I check any alternative ones. If none remain, I ask
my teacher to show me what to do in this novel situation. If he demonstrates one of
the actions I have considered but rejected, I generalize its preconditions to
accommodate the current situation by adding it n as disjunction. If the action is new, I
create a new branch using the current situation as a condition.

Whenever my teacher adds a new program step, I check whether a ‘‘sufficiently
similar’’ step appears elsewhere in the partially-constructed program. I look for a step
with matching action, pre-condition, and post-condition. If I find one, I conjecture a
link from the previous step to that one, instead of creating a brand new program step.
This usually allows me to predict a new action, which I perform immediately, and if
the teacher does not reject that action (by pulling me back) I take the conjecture as
correct. At present, once a linkage has been confirmed in this way I never retract it.
If my teacher rejects subsequent predictions, I try to construct a conditional branch
around the rejected actions. (It is recognized that this deterministic model will likely
prove too restrictive for teachers, and it may be necessary to adopt limited
backtracking in the future.)

I strive to follow good programming practice by appropriately biasing my search
for linkages. I do this by searching outwards from the current program step to try to
keep all linkages as local as possible. This permits a simple, reliable algorithm to
construct programs from traces. It will be interesting to see if this preference for local
connections tends to produce well-structured drawing programs of the kind that van
Sommers (1984) found in his study of the procedures people use when drawing.

My working memory has four conceptual divisions. Long-term memory
contains the procedure as learned so far; from this I conjecture linkages and predict
actions. My medium-term state records what objects have been created during the
current trace. Thus I recognize a constructor, such a sweep line, when I re-encounter
it, and can be taught to return to that particular constructor. Short-term memory
records the identities of objects most recently touched or grasped; this permits letting
go of something in order to investigate it further by *‘sniffing” around its perimeter.
My immediate memory contains the current sensory feedback.

I resolve any conflict between tactile feedback and position, heading, or path, by
generalizing. I prefer to generalize the last three, and am reluctant to generalize tactile
relations. While I could infer generalizations of these (eg by climbing a hierarchy),
and this might greatly accelerate learning, I am haunted by the specter of over-
generalization and the difficulty of correcting it. Moreover, daring, successful
generalizations may delude the teacher into over-estimating my intelligence — for 1
am a very simple mouse — and failures would result in a loss of confidence. In my
present form, therefore, I only generalize touch relations in the most minimal sense, by
merely recording the disjunction of those that occur.

In future I may experiment with other generalization heuristics. In general,
however, I would rather be simple and reliable than brilliant but capricious.

What I can do
by M. Mouse

Here is an example which shows what I can do. Consider the ‘‘box-to-line”’
procedure illustrated in Figure 6. The teaching process consists of leading me through
a trace of the task. The teacher begins by showing me the input set by selecting the
boxes. Then she places the guideline’s two endpoints (Figure 6c). Observing the
absence of a contact constraint, I classify the event as arbitrary and interrupt to ask
through a dialogue box (illustrated in Figure 7) whether the location is constant or a
run-time input. The teacher indicates that both points are to be specified at run-time.

I am then led through the main iterative sequence (Figure 6¢-i). It is easy for
me to observe that the objects transformed belong to the input set, and that iteration
terminates when every member has been processed. In general, however, selection and
iteration may depend on any number of properties of objects or situations. Therefore
iteration must be conditioned and ordered on events that I can sense by touch. A
horizontal sweep-line serves this purpose, and also constrains the boxes’ path of
translation. The teacher makes me draw the sweep-line near the bottom of the screen
and indicates (through a dialogue box) that its initial placement is constant. She then
makes me grab the sweep-line at its midpoint handle and moves me upwards, with the
line, until it touches the bottom edge of some box (Figure 6d). The contact is the
condition on which a box is selected for translation. When the line is swept past the
last remaining box, I note that the sweep-until-contact action will fail, and this failure
becomes my condition for terminating the loop. But I am getting ahead of myself.

-6 -

Observe that the desired program applies the alignment constraint through goal-
directed translation, where the goal is a visible contact. A suitable description of the
goal, say ‘“‘lower left corner of box in grasp is coincident with some point on
guideline’’, is invariant over iteration on the input set. My job is to distinguish this
contact event and induce its invariance.

When the sweep-line touches the first box, Teacher has me grasp the box and
move it rightward until its lower right corner touches the guideline while its bottom
edge remains on the sweep-line (Figure 6e). Teacher then moves me back to grasp the
sweep-line and proceed to the next box (Figure 6f). When I am made to select this
second box, the action patently repeats that of selecting the first one. Consequently I
conjecture a loop and predict the translation that is to follow (Figure 6g). The second
box, however, must be moved to the left. I am biased towards easily generalizing
directions of movement, so this does not faze me; I leap out of the teacher’s control
and eagerly move the box on my own. Since she does not object, I have now learned
the body of the loop, and operate on the next box by myself (Figure 6h-i).

After processing the third and final box, I recognize that I cannot complete the
action of moving the sweep-line because the ‘“‘contact’’ postcondition cannot be met.
Hence I terminate the loop on the condition of being unable to perform its first step,
and call upon the teacher to demonstrate what to do. At this point, she has me remove
the sweep-line and the guideline (Figure 6j), and then announces that the lesson is
over.

Concluding remarks
by Metamouse’s creators

Now that Metamouse has described his capabilities, we would like to make some
general remarks and draw some conclusions.

The user of a system for programming by example has much weaker
assumptions about the system than a programmer working in a formal language. Its
limited powers of induction are revealed gradually, and typically in disastrous
occurrences that the user finds hard to interpret. It has been argued that the
relationship between programmer and system is best understood as that of teacher and
apprentice, and hence that the perspicuity of the teaching metaphor is vital to the
success of the system (MacDonald & Witten, 1987).

The design of Metamouse has been strongly influenced by the results of an
experimental investigation of user behavior in constructive graphical tasks, in which
we studied the performance of a diverse group of people using MacDraw (no
Metamouse). Each subject was given one hour to complete seven tasks; activity was
recorded using a commercial system for programming by example (Affinity
Microsystems, 1985). We concluded that Metamouse must clearly inform the teacher
of his awareness, abilities, and limitations as a pupil. Metamouse promotes the
illusion that he is paying attention to the teacher’s activities by tracking the movement
of the physical drawing tool (mouse or stylus), and also transmits feedback from the
learning system (head flashing, dialogue boxes).

We have not yet completed a proper evaluation of how people interact with the
new drawing tool. Nevertheless, we can already draw some conclusions from the
work. First, user interaction can augment or replace domain knowledge in constraining
the massive searches incurred by function induction without requiring that the user
manipulate or even understand the internal representation. The three-way trade-off
between search space, ease of teaching, and built-in knowledge can be readily
investigated in the graphical domain. Second, an eager learner can reduce teacher
noise and enforce felicity conditions on the teaching sequence (van Lehn, 1983). The
learner’s actions must be clearly visible, and it is of course vital that a convenient
“‘undo’’ facility be provided to control its impetuosity.

Finally, while much machine learning research aims to improve the learner, and
some addresses the problem of teaching, none has considered the teacher’s image of
the pupil. We believe this to be very important. It can be moulded by providing an
actual device with given capabilities to serve as the focus of the teacher’s efforts.
Moreover, an appropriate metaphor — in our case, that of ‘‘Flatland” — can quickly
and forcefully convey the limitations of the learner.

Acknowledgements

This research is supported by the Natural Sciences and Engineering Council of
Canada. We gratefully acknowledge the key role Bruce MacDonald has played in
helping us to develop these ideas, and the stimulating research environment provided
by the Calgary Machine Learning Group. Metamouse in particular would like to thank

Hermann Maurer for providing the opportunity, and the occasion, to express himself in
this way.

References

Abbott, E.A. (1884) Flatland — a romance of many dimensions. Signet Classics
edition, New York, NY.

Abelson, H. and diSessa, A. (1980) Turtle geometry. MIT Press, Cambridge, MA.

Affinity Microsystems (1985) Tempo. Boulder CO.

Cutter, M., Halpern, B., and Spiegel, J. (1985) MacDraw. Apple Computer Inc.

Fikes, R.E. and Nilsson, N.J. (1971) ‘“‘STRIPS -- a new approach to the application of
theorem proving to problem solving’’ Artificial Intelligence, 2, 189-208.

MacDonald, B.A. and Witten, LH. (1987) ‘‘Programming computer controlled systems
by non-experts” Proc IEEE Systems, Man and Cybernetics Annual Conference,
Virginia, October 20-23.

Maulsby, D.L. and Witten, LH. (1988) ‘‘Acquiring graphical know-how: an
apprenticeship model”” Proc European Knowledge Acquisition Workshop 88,
Bonn, West Germany, June 1988; also available as Research Report 88/302/14,
Department of Computer Science, University of Calgary, Calgary, AL.

Papert, S. (1980) Mindstorms. Basic Books, New York, NY.

Van Sommers, P. (1984) Drawing and cognition. Cambridge University Press,
Cambridge, England.

VanLehn, K. (1983) ‘“‘Felicity conditions for human skill acquisition: validating an
Al-based theory”” Research Report CIS-21, Xerox PARC, Palo Alto, CA,
November.

a. Input: two polygons b. Construction: measure height of A by c. Output: A and B' (=B transformed)

duplicating and rotating 90°; translate B.

Figurc 1. Graphical task: translate polygon B such that distance from left extreme of A
to left extreme of B is 2 x height of A.

I |
a. Input: boxes unsorted b. Sweep line S meets A; move c. Repeat for B, etc. d. Boxes lined up for direct
A down to guideline G. comparison of height.

] D D
c. Create height-sweep line H f. Move D to lateral sweep line 5. g. Advance S by const disuance; h. Output: boxes sorted
and move untl contact with raise H to next contact; move B by height and evenly
top of some (lowest) box. o S (null op.) spaced.

Figure 2. Task: given a sct of boxes, sort them in order of increasing height.

[} ° [] ° L 'Y 1 4 ° L]
L] ® L4
. . . ¢ * ¢
.) N
. M Y M N
a. Input set b. Bring sweep-line up c¢. Route sweep line d. Connect M, N; ¢. Repeat ¢, d from N f. output
to lowest member, M about M to contact N center sweep at N

Figure 3. Task: given a sct of points, find their convex hull.

i point2
lineseg

mid

point1

left

top

top- top- top-
left mid right

N

center $

TN M Mg rgn

left

boltom- bottom bottom-
left mid right

bottom

a. parts of a line

a. parts of a box

Figure 4. Parts of objects.

Brain: click here to toggle Turtle’s
attention on or off.

Approximate actual size.

Snout: grasps and carries an object.
Brain: flashes when Turtle

Foot; rotate Turtle in direction
of mouse movement.

Shell: move Turtle along an
unconstrained path.

Move Turtle along NE/SW diagonal.

detects a sensory event.

Move Turtle along vertical line.

Move Turtle along horizontal line.

Move Turtle along NW/SE diagonal.

Tail: undo predicted action.

Figure 5. Anatomy of Meta-Mouse.

el — “
| |]
J: & B |—__} & e — - s

d. move S upward unti} contact

e. move B right until contact with G

S

c. create guideline G and sweep-line S

with a box B
%
L1/ & []
S
x;
/ # X |
f. action as in d; heading generalized. g. Turtle predicts action as in frame e.
3l / il il %
! (]

.)

B o

h. Turtle predicts action as in frame d.

i. Turtle predicts action as in frame e.

j.remove S and G, done

Figure 6. Task: align boxes (‘box-to-line™), complete with action/teaching trace

/

Why did we start the iine here?

@ (Always here.)

fisk user where.

Oopsi I should have
constructed position,

a. query for explanation of line origin

/

Why did we end the line here?

()

fisk user where,
Oops! 1 should have
constructed position.

b. query for explanation of line termination

Figure 7. Asking the teacher to explain seemingly arbitrary decisions.

