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Abstract 

The interference problem inherent in random access local area networks (LANs) 

necessitates a buffer at each network user to temporarily store messages. This disser-

tation proposes a new methodology for the analysis of a local area network which con-

sists of a finite population of buffered users using the nonpersistent Carrier Sense Mul-

tiple Access with Collision Detection (CSMA-CD) protocol for channel access. A new 

technique is desirable as existing methods become computational intensive and/or inap-

plicable for large number of network users each equipped with infinite buffer size; and 

furthermore, there is no technique available for the study of buffering multipacket mes-

sages. 

The methodology developed in this dissertation is based on: 1) a decomposition 

approximation, 2) an appropriate state-space modeling of each network user and the 

shared broadcast channel, 3) a steady-state Markov chain theory, and 4) renewal theory 

arguments. Within this framework, the methodology offers formal solutions to the fol-

lowing four key problems of practical significance: i) the analysis of multimessage 

buffer LANs with single-packet messages, ii) the analysis of single-message buffer 

LANs with multipacket messages, iii) the analysis of multimessage buffer LANs with 

multipacket messages, ,and iv) the analysis of interconnected single-message buffer 

LANs with multipacket messages. To achieve effective use of the channel in transmit-

ting multipacket messages, the gated and limited packet transmission strategies are pro-
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• posed and analyzed. It is argued that the gated transmission strategy has broad appli-

cability in integrated services local area networks (ISLANs). 

Specific new results obtained in the dissertation are: a) steady-state' probability 

generating function for queue length and the mean queue length, b) formulas for mean 

packet delay and message response time,' c) formula for the probability of buffer 

overflow, d) formula for the throughput, and e) necessary and sufficient condition for 

system stability. The performance measures are obtained numerically for sample net-

works of each of the four problems considered and the effects of specific parameters 

on the system performance are investigated. Discrete-event computer simulation 

models of the sample networks are constructed and it is found that the numerical 

results based on the methodology developed are in good agreement with the simulation 

results. 

The significant contribution of the dissertation lies in the potential of the analytic 

models developed which provide useful insights into the performance of buffered ran-

dom access LANs. 
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I 

CHAPTER 1 

INTRODUCTION 

1.1 Theme of the Dissertation 

This dissertation solves the interfering queue problem in a random access 

local area network (LAN) which consists of a finite number of buffered users. 

Indeed, the tenacious difficulty of the problem makes its exact analysis formidable, 

hence, the solution offered in this thesis revolves mainly (but not solely), around a 

decomposition approximation methodology. This analytical framework forms the 

main contribution of the thesis. 

The tasks involved in the solution methodology include stochastic modeling of 

buffered random access LANs using realistic (practical) assumptions, mathematical 

analysis of the developed models with techniques from queueing theory and 

verification of the analytical models by discrete-event simulations. 

Finally, the importance of the solution methodology is demonstrated through 

several numerical examples which provide useful insights into the performance of 

buffered random access LANs. 

1.2 An Overview of Random Access Local Area Networks (LANs) 

Basically, a local area network is a communications network which is limited 

in geographic extent (typically 0.1 - 10 km range) and provides a high bandwidth 

channel (over 1 Mbit/sec) for communication among a finite number of geographi-
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cally distributed users [ 1-5]. Qne major characteristic of the communication chan-

nel is that only one message can be successfully transmitted at any time instant. 

However, the geographically distributed users will transmit their messages indepen-

dent of transmissions by other users. This gives rise to contention (simultaneous 

demands for the channel) or what is usually referred to as the multiple-access prob-

lem. The control algorithm for effective access to the channel by the distributed 

users is known as the multiple-access protocol. From previous studies in the litera-

ture, the control algorithm ranges from no control at all to either fixed control on 

the one hand or to some form of dynamic control on the other [6-9]. 

It is noted in [8] that whichever algorithm is employed, there is a price to be 

paid (you do not gain something for nothing !), either in the form of collisions due 

to no control, or in idle time due to fixed control or overhead due to dynamic con-

trol. This thesis is devoted primarily to random access techniques, which can be 

defined to be those for which no control algorithm is employed in the sharing of 

the high speed communication channel, and possesses the advantage of simplicity 

in its implementation. Note that the focus on only random access techniques elim-

inates from consideration such schemes as time-division multiple-access (IDMA), 

frequency-division multiple-access (FDMA), token passing, demand assignment 

multiple-access (DAMA), and a host of others which are examples of collision-free 

protocols that have been proposed in the literature [ 10-14]. 

The earliest application of random access techniques in a distributed environ-

ment is in the area of packet switching over a radio channel [15,16,17]. Recently, 
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the use of random access techniques has spread to bus configured LANs, of which 

the Carrier Sense Multiple-Access with Collision Detection (CSMA-CD) is the 

most popular protocol [ 18]'. A well known practical system incorporating the 

CSMA-CD protocol is Ethernet [19,20] and for which there is currently an IEEE 

standard [21]. The CSMA-CD protocol operates at the data link layer of the 

ISO/OSI reference model [22] or the medium access control layer of the IEEE 802 

Standard [21,23]. Its operation is described as follows. Each user with ai message 

to transmit first listens to see if the channel is idle ("listen" means to sense the 

channel for the presence of any ongoing transmission, hence the name "carrier 

sense"). If the user senses the channel idle, it then transmits its data onto the chan-

nel, otherwise if the channel is sensed busy, the user defers its transmission until a 

later time. However, because of the finite signal propagation delay on the channel 

and nonzero carrier detection time, a collision may occur when a user (say user 1) 

senses an idle channel and begins to transmit, while another user has already 

started transmitting a packet that has not yet propagated past user i (thus the 

"multiple-access"). When a collision occurs (each user is equipped with some 

means for "collision detection"); all the users involved immediately cease transmis-

sion and independently select a random amount of time to wait before initiating a 

retransmission. 

There are three variants of the CSMA-CD protocol: non-persistent, p - 

persistent, and 1-persistent. In the non-persistent variant, a user upon sensing the 

channel busy does not persist listening to the channel in order to transmit; rather, it 
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schedules transmission for some future time, according to a retransmission delay 

distribution. At the scheduled time, if the channel is idle, the user transmits its 

packet, otherwise it repeats the non-persistent algorithm. For the p -persistent vari-

ant, a user sensing the channel idle transmits with probability p and does not with 

probability (1 - p). Upon finding the channel busy, a user performing a p - 

persistent protocol persists by waiting until the channel becomes idle. The 1-

persistent variant is a special case of the p -persistent for which the probability 

p = 1. In this thesis, interest is mainly on the non-persistent variant because it is 

the most amenable to analytic treatment; however, with modifications, the analysis 

presented in the thesis can be extended to the other variants. 

In much of the work on random access LANs, it is assumed that users can 

store at most one packet (referred to as unbuffered users) [24, 25]. For the realistic 

situation when queues of packets are allowed to form at each user (buffered user), 

then from the viewpoint of queueing analysis, these queues are coupled (or statisti-

cally dependent), because, since all the users share one channel, the behavior of 

one queue will then depend upon the state of the other queues in the network, and 

this renders the analysis problem quite difficult [26, 27, 28]. In fact, a rather 

extensive analysis is required in order to study a particular case of only two 

interfering queues [29] and for more than two queues no exact analysis is yet avail-

able. Since exact analysis is so difficult, then it is useful to either seek bounds [8, 

30] or apply approximate techniques [31-35]; the latter solution approach is pur-

sued vigorously in this thesis. 
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A survey of previous work on buffered CSMA-CD LANs is now in order. 

We note that while a lot of work has been done on CSMA-CD LANs with 

unbuffered users, only very few studies have appeared on buffered users. For 

buffered CSMA-.CID LANs with infinite buffer size, Takagi and Kleinrock [29] 

used a joint probability generating function approach to analyze the case of two 

identical users. Coyle and Liu [31] analyzed the non-slotted non-persistent 

CSMA-CD system under the assumption that packet buffering is permitted only at 

one of the system users. Silvester and Lee [32] considered the p -persistent 

buffered CSMA system where each user is modeled by an MIGI1 queue. This 

approach was recently extended to delayed first transmission (DFT) CSMA-CD by 

Takine et al [33]. 

When the user buffer size is finite, previous studies have been reported in [34] 

and [35]. Tasaka [34] utilized the equilibrium point analysis to obtain approximate 

results for slotted non-persistent buffered CSMA-CD system while Apostolopoulos 

and Protonotarios [35] used an approach based on identical statistical behavior of 

each user to analyze the p -persistent buffered CSMA-CD system. 

It is importint to note that all the above studies have assumed the buffering of 

single-packet messages on a particular LAN scenario. The present work provides 

an analytic treatment which not only is suitable for predicting the performance of 

buffered (non-persistent) CSMA-CD LANs with single-packet messages but also is 

applicable in studying the performance of such LANs with users capable of 

buffering multipacket messages. 
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1.3 Outline of the Dissertation 

1.3.1 Bus LAN Terminologies, Performance Measures and 

Modeling Methodologies 

(i) Bus LAN Terminologies: An illustrative hardware block diagram of a bus 

configured LAN is shown in Fig. 1.1. It consists of a high speed broadcast channel 

(bus) and a myriad of network devices which typically ranges from unintelligent 

terminals to host computers. Intermediate between a network device and the bus is 

the bus interface unit (BIU) which serves as the connection device. The BIB exe-

cutes the channel access protocol and provides the necessary data buffers. Fig. 1.2 

depicts the associated queueing network block diagram of Fig. 1.1. 

Thus far, the word user has been used informally without a precise definition. 

We note that for data networks in general, the word user may represent a person 

sitting at the keyboard of a terminal, or it may represent a computer or an applica-

tion program in a computer or it may stand for a remote controlled printer [36]. 

As LAN devices also have different forms, then for the sake of brevity and unifor-

mity, the word user in this thesis represents the BIUs of the LAN devices. The 

words station and node are equivalent terminologies of the word user, these terms 

are used interchangeably in the ensuing chapters. 

(ii) Performance Measures: The three major performance measures of interest in 

LANs are channel throughput, message (or packet) delay and the conditions 

required for stability. The throughput is the rate at which messages are success-
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Fig. 1.2. Queueing network block diagram of illustrative bus LAN, 

TQ = Transmit Queue, RQ = Receive Queue . 
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fully transmitted on the channel, and for the most part of the network load, is usu-

ally less than the channel capacity because of the loss due to collisions. The mes-

sage delay is the time interval between the arrival of a message at a source node 

and its reception at the destination node. Referring to Fig. 1.2, the message delay 

mainly consists of the waiting time in the transmit queue (TQ) of the source node 

and the actual transmission time of the message on the channel. Note that the 

message delay can be expressed as a mean, or as a variance or as the probability 

that the delay exceeds a fixed value (tail distribution). However, of all the three 

statistical estimates of delay, only the mean estimate can be obtained in general 

using the least complicated performance model. Hence, only the mean of the mes-

sage delay is reported in this thesis. Furthermore, there is a trade-off between the 

throughput and the message delay: we cannot minimize delay and at the same time 

maximize throughput. The instability of a random access LAN is manifested by a 

reduction of the throughput to the lowest levels and a simultaneous increase of the 

delay to intolerable levels. This obviously is undesirable, hence the problem then 

is to establish necessary and sufficient conditions for stability. 

While the above three measures should not be construed as the sole figures of 

merit for a LAN, they are the most considered in quantitative performance evalua-

tion and as such are determined in this thesis. Other subtle performance measures 

include the reliability and robustness of the LAN, LAN maintainability and secu-

rity, fairness in the sharing of the bus, and the cost of the LAN. The extent to 

which these factors are pursued varies from organization to organization and is 
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beyond the scope of this thesis. 

(iii) Modeling Methodologies. As the LAN studied is a random system, the model-

ing tools are borrowed from the theory of probability and stochastic processes [37-

44], and the main tool for analysis is queueing theory [45-50]. Specifically, the 

modeling and analysis employ standard concepts in probability theory, probability 

generating functions, Markov chains, semi-Markov processes, renewal and regen-

erative arguments, Little's law and some mathematical results from real analysis. 

In addition, discrete-event computer simulations are conducted to assess the accu-

racy of the stochastic models [51-54]. 

1.3.2 The Main Contributions 

1. The Decomposition Approximation Methodology 

We propose a decomposition approximation methodology as a tractable 

analytical technique for solving the interfering queue problem in buffered random 

access LANs. The principles on which the methodology is based are outlined and 

discussed in Chapter 2. 

2. Multimessage buffer LANs with single-packet messages 

As stated in Section 1.2, all the previous studies on buffered random access 

LANs have considered the buffering of only single-packet messages and each of 

these prior treatments was restricted to a particular network scenario, such as a net-

work consisting of statistically identical users with eithei finite or infinite buffer 

size and there is no unified analytical treatment which encompasses all the network 
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scenaria. We propose such a unified analytical framework using the decomposition 

approximation technique, which not only is applicable to statistically identical 

(homogeneous) users with finite/infinite buffer size but also is suitable for the 

analysis of a network consisting of heterogeneous buffered users. We derive 

expressions for the probability generating function for user queue length, the mean 

queue length, the channel throughput and the condition for system stability in 

Chapter 3. 

3. Single-message buffer LANs with multipacket messages 

Unlike the LANs with single-packet messages considered in Chapter 3, we 

study in Chapter 4 a more practical LAN whose nodes can store one multipacket 

message. The gated transmission (GT) and limited transmission (LT) strategies are 

proposed as more efficient packet transmission strategies over the conventional 

strategy studied in Chapter 3. For both the GT and LT strategies, the message 

response time is determined using Markov chain theory and limiting results from 

regenerative processes, in conjunction with Little's law. The GT strategy also 

allows us to derive a relationship between the message and packet access delays 

and furthermore, it is shown that the GT strategy has practical application in 

integrated services LANs. 

4. Multimessage buffer LANs with multipacket messages 

As an extension of Chapter 4, we analyze a random access LAN with nodes 

capable of buffering multipacket messages in Chapter 5 for which to date no 
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reported studies are available. Invoking the decomposition approximation metho-

dology, each network node is independently modeled as an MX IG / 1 queueing sys-

tem with busy and resting periods. The main results obtained from our analysis 

are the expressions for the probability generating function for queue length, the 

Laplace-Stieltjes transform of the waiting time and the channel throughput. 

5. Interconnected buffered LANs with multipacket messages 

Motivated by the limitations of single separate LANs, we study in Chapter .6 

the throughput and delay performance of interconnected buffered random access 

LANs. The previous studies on interconnected LANs have assumed thaf each node 

generates (and stores) only single-packet messages. Our study considers the more 

practical scenario where each node generates (and stores) multipacket messages. 

The analysis of the interconnected system is performed using some of the results 

that are already obtained in earlier chapters. 
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CHAPTER 2 

STOCHASTIC MODEL DEVELOPMENT AND PROBLEM FORMULATION 

2.1 Introduction 

In this chapter, we present a detailed description of the system under investi-

gation. The assumptions required for constructing a tractable analytic model are 

then stated and for completeness we also discuss the deviation of the assumptions 

from reality. We choose this as our starting point for two reasons. First, it provides 

an understanding of the physical system which hopefully will facilitate the abstract 

task of stochastic modeling. Second, the assumptions will suggest powerful 

mathematical tools that can be employed in quantitative problem formulation. 

The problem of primary interest in the dissertation is then formulated 

mathematically using the method of probability generating function and solution of 

stationary equations for Markov chain. Next, we show that these formulations are 

not amenable to tractable analysis. Finally, the method of decomposition approxi-

mation is introduced as a means of obtaining an approximate solution to the prob-

lem posed. 

2.2 A Detailed System Description 

The system under consideration operates in the following way. A finite 

number of nodes intercommunicate over a single channel, where each node is 
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equipped with a transmit buffer to store arriving messages (Fig. 1.2). For efficient 

sharing of the channel, all the nodes adopt the non-persistent CSMA-CD protocol. 

A node can be either in the empty state (no packet is present in the node buffer) or 

in the nonempty state (at least one packet is present in the node buffer). Upon the 

arrival of a new message, an empty node changes to the nonempty state and senses 

the channel either immediately-this implies immediate first transmission (W1) pro-

tocol or after a random delay-that is, delayed first transmission (DFT) protocol. A 

ndnempty node which senses the channel idle immediately begins the transmission 

of a packet. A transmission is successful if no other node initiates transmission 

within the collision window from the original transmission commencement instant. 

After successful transmission, the packet will be deleted from the buffer and 

queued packets are transmitted on a first-come, first-served basis. On the other 

hand, when more than one node begins transmission within the collision window, 

collision occurs. At the end of the collision resolution period, the colliding nodes 

are rescheduled to sense the channel again after independently selected random 

timeout intervals. 

2.3 Stochastic Model Development 

In order to develop a stochastic model for the system, we first specify the 

channel and the network by the following assumptions. 
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2.3.1 Modeling Assumptions 

For the Channel 

A 1 - The channel is error free so that unsuccessful transmissions occur only from 

collisions. 

2 - The propagation delay between any two nodes is r seconds which is the 

maximum one-way propagation delay in the network and is assumed to be 

very small compared with the packet transmission time. 

A3 - The channel time is either slotted or nonslotted. For the slotted operation, the 

channel is divided into equal slots of t seconds each. 

For . the Network 

- The network consists of M nodes intercommunicating via a random access 

channel. 

A5 - Each node has a buffer capable of storing K, 1≤IC≤ oo, packets. 

A6 - For the slotted operation, a node can sense the channel instantaneously with 

probability p. All nodes are synchronized so that packet transmission can 

begin only at the slot boundaries. 

- For slotted channel operation, the message arrival process at each node fol-

lows an independent Bernoulli process with mean arrival rate messages/slot 
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and the arrival is assumed to occur at the end of a slot. On the other hand, 

for nonslotted channel operation, messages arrive at each node buffer in 

accordance with a time-homogeneous Poisson process with rate X. 

A8 - The network is operating under steady-state condition. 

2.3.2 Practical Implications of the Modeling Assumptions 

The justification for the assumptions made above are stated as follows: 

A 1 - The assumption that the channel is error free implies that there is no channel 

failure and no transmission error; it is justifiable for high speed communica-

tion channels. Hence, unsuccessful transmissions result only from collisions. 

A2 - The assumption of constant (maximum one-way) propagation delay between 

all pairs of nodes in the network is somewhat pessimistic because in practice, 

the propagation delay between any two nodes is a random variable which 

depends on the relative positions of the two nodes in the network. In the 

case of slotted channel operation where transmissions begin only at the slot 

boundaries (by assumption A 6' the residual part of a propagation slot is use-

less anyway, and the above assumption is justifiable. The assumption that 

the propagation delay is much less than the packet transmission time is a 

standard requirement for the proper operation of carrier sense based protocols 

because carrier sensing gives more effective information about the actual 

state of the channel (bus) when the ratio between the propagation delay and 

the packet transmission time is a small value. 
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A3 - The time-slotted (discrete-time) assumption is made to reduce the length of 

the contention interval and to simplify our analysis. It is realistic because it 

matches the time-synchronized configuration of many practical communica-

tion systems. However, the nonslotted (continuous-time) channel operation 

truly represents the actual implementation of the channel. 

A4 - This assumption is valid because realistic communication systems consist of 

only a finite number of nodes. 

A5 - It is economically infeasible to implement a buffer of infinite capacity. How-

ever, the infinite buffer size assumption ensures that no generated message is 

rejected and it is made for analytic simplicity. Actually, a buffer of finite size 

is more realistic and also serves as a means of congestion control. 

A6 - The assumption regarding channel sensing being instantaneous implies that 

the time required to detect whether the channel is busy or idle is negligible. 

It is convenient to synchronize the nodes connected to a time-slotted channel 

because the information about the state of the channel is used only at the slot 

boundaries. 

A.,, - In the Bernoulli arrival process assumption, a node generates a message with 

probability a and does not with probability (1 - ), the message 

generations/no generation at the end of successive slots are independent. The 

Bernoulli message arrival process is valid for discrete-time systems with a 

finite number of nodes. The Poisson message arrival process assumption is 
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approximately valid for continuous-time systems provided the number of 

nodes is large (M ≥ 20) [13]. The Poisson arrival process is a standard 

assumption supported by a number of observations in queueing and teletraffic 

theory [49]. 

A3 - What we assume here is tantamount to stating that the performance of the 

system does not depend on the initial state of the system and also after a 

long time the system has been in operation, the probabilities characterizing 

the different system variables are invariant with time. 

2.4 Problem Formulation 

We now formulate quantitatively the interfering queue problem as a multi-

queue problem. For simplicity reasons, the problem is formulated with respect to a 

slotted system. Define the system state as the number of packets present in the 

buffer of node i, 1 ≤ i ≤M, at the beginning of slot n , n ≥ 1, and denote it by 

Q(z). The system is then described by an M—tuple 

= (Q, l), . , Q(M)) ,i = 1, 2, (2.1) 

To describe the evolution of the buffer contents at the nodes, it is appropriate to 

define two indicator random variables. Let 
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and also let 

1 if Q(i),Ø 

0 if i)0 

.fi with probability p 

I(S,)) = L° with probability (l—p) 

(2.2) 

(2.3) 

where S,') defines the channel sensing event by node i at the beginning of slot n. 

Recall that p is the time-invariant probability of sensing the channel at the begin-

fling of a free slot by a nonempty node in a slotted system. Using these definitions 

and the system description, the stochastic-difference equations governing system 

evolution for n = 1, 2, . , can be written as 

Q (i) = Q(i) - I(s(1)) J(Q(i))fl(1 - I(S2 )) I(Q,J))) + (2.4) 

j:;6i 

where A represents the input traffic to the ith node during [n , n+1). Notice 

that (1 - I (S2)) I(Q,(J))) is a binary-valued random variable and can be inter-

preted as the interference indicator at the beginning of slot n, that is, it indicates 

whether or not node j interferes with node' i 's transmission. We see from (2.4) 

that the state of the Q -process at epoch n+1 depends only on the state at epoch n, 

hence the process {Q, 1 ).; n ≥ 11 is a Markov chain. We have therefore 

transferred the problem of analyzing the 'M-dimensional stochastic process (2.1) to 
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the problem of determining the distribution of the M-dimensional Markov chain 

from which, in principle, the relevant results of the system can be determined. The 

analysis of the M -dimensional Markov chain can proceed using either the method 

of generating function or solution of the stationary equations for Markov chain. As 

will be shown in the following, both approaches lead to analytic complications. 

2.4.1 Formulation of Joint Probability Generating Function 

If we assume the M-dimensional Markov chain to be ergodic, the steady-state 

joint generating function for the queue lengths distribution is given by 

M Q(i) 
G(Z-) G(z 1 z2 ... zM ) = lim E fl z1 ' 

i=l 

(2.5) 

Assuming knowledge of the explicit expressions for the generating function, we 

then can appeal to the property of generating functions to derive any moment of 

the queue lengths and in a straightforward manner determine the average time 

delays by invoking Little's law [55]. However, in general, G () is expressed in 

terms of several boundary generating functions (or boundary functions for short) 

which are defined by 

G (QJ JC) = G (z 1' ' ... zM ) zi =0, i E J, 1 ≤ i ≤ M (2.6) 

where J is a subset of the universal set of all nodes in the system and J' is the 

complement of J. In the following, we state and prove a theorem that gives the 

number of boundary functions required to uniquely determine G (i). The theorem 
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is a generalization of a proposition in [56]. 

Theorem 2.1: In a random-access based M-node network where every node 

can interfere with every other node, the joint probability generating function for 

queue lengths C (), is uniquely determined by 2M - 1 boundary functions. 

Proof: We introduce the following notations. Denote the set of all nodes in 

the system by H ={ 1, 2, ..., M }. Let l≤i ≤ M, denote the set of all i-

element subsets of H. This means that the elements of a set J are themselves 

sets. Further, denote a generic i -element subset of H by J and let jc be its com-

plement. For clarification of the above notations, consider the following example 

when M = 3. Then H = {1, 2, 3}, J1 = fi ll, C2}, {3}}, 

= jl,2}, C1,3}, {2,3}}, and J3= {{ 1,2,3}}. It follows that the set J can 

represent any of the seven enumerated i-element subsets of H, 1 ≤ i ≤ 3. Suppose 

J = {1,2}, then jC {3}. 

By the definition of a boundary function (2.6), 

G(&1, z ')=G(zl,z2,...,zM)Io. E Jl<.<M 

and this holds for all the i -element distinct subsets of H. Therefore, the total 

number of boundary functions, NBF required is just equal to the total number of 

i-element distinct subsets of H, for all 1, 1 ≤ i ≤ M, that is 
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where for each i, N is the number of i-element distinct subsets of H. But from 

combinatorics, N  is the number of distinct ways in which the M elements of H 

can be arranged into i-element distinct subsets, hence 

M 
NBF= ( M )=2 

i=' 

where the second equality follows easily from a result in combinatorial 

analysis. QED 

It is seen from the above theorem that the number of boundary functions 

depends on M. We note that even for the case M = 2 which requires only 'three 

boundary functions, their determination is quite a formidable task and as pointed 

out in [57] requires a solution of the Riemann-Hilbert boundary value problem. For 

large M, the number of boundary functions increases and to date there is no known 

method for determining the boundary functions for M ≥ 3. Thus, an explicit 

expression for the generating function cannot be determined for realistic values of 

M. 

2.4.2 Solution of Stationary Equations for Markov Chains 

It follows from the ergodicity assumption of the M-dimensional Markov chain 

that the limiting joint state probabilities for queue lengths can be obtained by solv-

ing the stationary equations [47] 
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urn Pr {Q, 1 = f, ... (M) = } = 'in' Pr{Q()1 = 11, n+l fl M -400 

Q (M) = 1A1 IQ,l)=il,...,QM)=iM}Pr{Q(l)=il, ... Q (M)_ 1} n+l 

(2.7) 

subject to the constraint 

urn = 1, Q,) = 1M = 1. 
fl —>°o'I IM 

(2.8) 

In principle, once the state probabilities are obtained, we can determine the relevant 

parameters of the system. Unfortunately, there are two basic difficult problems. The 

first problem is what we call "state-space explosion" which is best illustrated by an 

example. If we assume that each node has a maximum buffer space of K packets, 

then from combinatorial analysis, the maximum number of possible states for the 

process {Q,; n ≥ 1} (2.1) is (K + 1)M• For a typical LAN with M = 10, we see 

that if K = 1 (bufferless system) there are 210 possible states and a system with 

buffering capability with K>l will therefore have a vast number of states. Further-

more, the task of solving (2.7) and (2.8) with very large number of stats is tedious 

even on a CDC CYBER2O5 Supercomputer [58]. The second problem is a conse-

quence of the first and deals with the enumeration of the transition probabilities 

(2.7). When the number of system states is very large, it is combinatorially very 

complex to enumerate all possible transition events. Thus, the solution of station-

ary equation for Markov chains also seems impractical for buffered LANs. 
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The explanations presented above demonstrate that the solution of the multi-

queue problem using standard techniques is quite complicated and the author 

believes that there is little (or no !) hope of obtaining exact analytic results in the 

foreseeable future. To circumvent the above difficulties, resort is made to an 

approximate analysis. 

2.5 Philosophy of the Decomposition Approximation 

The basic idea of the decomposition approximation being proposed for solving 

the multiqueue problem is to break up the network into smaller subsystems. Stated 

succinctly: consider each node in isolation and then approximate the interaction of 

a node with the other nodes in the network by the channel-activity parameters 

which have been independently obtained. The decomposition analysis method 

developed in this thesis is based on the following principles: 

(1) Decomposition of the network into subsystems, that is, each node in the net-

work is separately considered as a subsystem. 

(2) Approximation of all non-Markovian processes of a subsystem by Markovian 

processes. 

(3) Analysis of the subsystems in isolation. 

(4) Analysis of channel-activity parameters. 

(5) Approximation of the interaction of a subsystem with the other subsystems via 

•the computation of the channel-activity parameters by an iterative algorithm. 
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The key points of analysis are Principles 2 and 5. Principle 2 is motivated by 

the fact that we can construct embedded Markov chains for the stochastic processes 

{Q (z) ; n ≥ 1 }, 1 ≤ i ≤ M, defined at embedded points which coincide with the 

beginning of every free slot. Application of renewal-reward arguments then yields 

the long-run parameters of the processes which are valid at all slot boundaries (or 

all points in time). Principle 2 becomes invalid when the embedded epochs differ 

from those defined above and renewal-reward arguments presume that the system is 

operating under steady-state condition (Assumption A8). Principle S rests on the 

fact that all the nodes (subsystems) send their information over the same channel 

It therefoie seems reasonable to approximate the interaction of the nodes by the 

channel-activity parameters which are the probabilities of successful transmission, 

unsuccessful transmission and the busy and idle probabilities of the channel. Princi-

ple 5 also holds provided the system is operating under steady-state condition. 

We conclude this section with the remark that the decomposition approxima-

tion technique is not only applicable for solving the interfering queueing problem 

in random access LANs but can also be used to analyze complex queueing net-

works consisting of several queues. 

2.6 Summary 

This chapter describes the operation of a buffered CSMA-CD LAN and the 

assumptions (including justifications) required for model formulation are also 

stated. The interfering queue problem is then formulated as a multiqueue problem 
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and it is shown that the problem formulations in terms of probability generating 

function for queue lengths and solution of stationary equations for Markov chain 

do not lead to tractable analysis. Thus, in order to overcome the limitation of the 

standard techniques, a decomposition approximation model is proposed and its 

basic principles are outlined. 

The next chapter illustrates the application of the decomposition approxima-

tion principles to the study of multimessage buffer LANs with single-packet mes-

sages. 
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CHAPTER 3 

MULTIMESSAGE BUFFER LANs WITH SINGLE-PACKET MESSAGES 

3.1 Introduction and Problem Statement 

Previous studies on buffered random access LANs have considered the 

buffering of only single-packet messages [29,31-35] and this trend has continued to 

date for two reasons. First, it is motivated by practical application such as found 

in LANs designed primarily for short interactive data or inquiry/response traffic 

where the information (data burst) sent or received during a communication session 

is contained in only one packet. Second, even for the case of buffering single-

packet messages, the analysis is nontrivial due to the statistical dependence among 

the user queues. Previous treatments were therefore restricted to a particular sys-

tem scenario, such as a system consisting of statistically identical users with finite 

buffer size [34,35] or infinite buffer size [29,31-33] and to the best of the author's 

knowledge, there is no unified analytical treatrnent'which encompasses all the sys-

tem scenaria. The purpose of this chapter and one of the main contributions of this 

thesis is to present such a unified analytical framework which not only is applica-

ble to statistically identical (homogeneous) users with finite/infinite buffer size 

[59,60] but also is suitable for the analysis of a system consisting of heterogeneous 

buffered users [61]. 

For a buffered LAN with nodes capable of storing single-packet messages, the 

main problem is to determine the system performance measures such as message 
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(packet) delay, channel throughput, probability of buffer overflow (for finite buffer 

size) and the condition for system stability. Obviously, knowledge of the perfor-

mance measures are valuable to network designers as such estimates serve as initial 

indicators of a real system performance. Possibly more significant advantage is the 

usefulness of the analytic model developed for performance analysis which can be 

tuned to perform numerous sensitivity studies. 

3.2 Model Formulation 

Consider a LAN which consists of M homogeneous users sharing a single 

cdmmunication channel. The channel access protocol is the slotted non-persistent 

CSMA-CD protocol and the system operation is as described in Chapter 2. A user 

can be either ready or nonready. A user is nonready if its input buffer is empty 

and ready if there is at least one packet in its buffer. A ready user can be in either 

of two substates: active or dormant. A ready user is active if it is currently 

transmitting a packet and dormant if it has no transmission in progress. Note that 

because of the possibility of having more than one user begin transmission at a slot 

boundary, a user that begins the transmission of a packet is said to contend for 

access to the channel. Fig. 3.1 illustrates schematically a ready user operation 

where 7 () is the probability of successful (unsuccessful) transmission on the chan-

nel, p () is the probability that a ready user senses (does not sense) the channel 

and j.t (JI) is the probability that the channel is free (busy). a (13 ) is the proba-

bility that j packets arrive during a(n) successful (unsuccessful) transmission 
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period and () is the probability of one (no) packet arrival in a slot. In all the 

probabilities just defined, .T = 1 - x. 

We note that the assumptions made in the previous chapter are inadequate to 

completely formulate a tractable analytic model for the system under consideration. 

The following additional assumptions are thus introduced: 

(a) All users are statistically identical. 

(b) Packet lengths are constant and equal to T slots, where is an integer and 

a usei can transmit only one packet when it gains sole access to the channel. 

(c) Previously collided packets are treated in the same way as the new packets. 

(d) From the instant of successful transmission commencement, the channel 

becomes idle after + 1) slots. In the case of an unsuccessful transmission, 

the collision is detected after T slots and the channel again becomes idle 

after (T + 1) slots. The collision requirement in CSMA-CD dictates T be 

less than 

Notice that as a slotted channel operation is being considered, hence, from assump-

tion A7 of Chapter 2 the arrival process is Bernoullian. 

The rationale for the additional assumptions are stated below. The identical 

statistical user behavior assumption is made to reduce the number of system states 

in the analysis, thereby allowing for the consideration of large size systems. The 

constant packet length assumption is made to ensure equal transmission time for all 
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packets and also to allow fair sharing of the channel by the users, however, the fol-

lowing analysis can also handle random packet lengths. Assumption (c) implies a 

delayed first transiñission (DFT) protocol which requires that at the beginning of a 

slot, a ready user senses the channel with probability p and does not with probabil-

ity (1 - p). Thus, the first channel sensing attempt of any packet (new or old) 

suffers a geometrically distributed delay with mean lip slots, and no distinction is 

made between new and old packets. Conversely, a transmission protocol which 

distinguishes between new and old packets is called the immediate first transmis-

sion (EFT) [62], where a nonready user which has just generated a new packet 

senses the channel immediately with unity probability. Unfortunately, the analysis 

of buffered EFT CSMA-CD scheme is formidable [63]; hence, this thesis only con-

siders the DFT protocol. Furthermore, as pointed out in [64] there seems to be no 

significant difference in performance between the IFT and the DFT protocols in the 

cases of the (unbuffered) CSMA and CSMA-CD schemes (unlike the ALOHA 

scheme). Nonetheless, the author believes that the approach developed here can be 

extended to handle the 1F1 protocol. By assumption (d), it is evident that the last 

slot of a transmission period (successful or unsuccessful) allows the end of 

transmission to be sensed at all stations; and moreover, this also implies that the 

length of a channel idle period between two successive transmission periods is at 

least one slot: 

Based on the above assumptions, the system state at the beginning of slot 

n, n ≥ 1 can now be described by an (M + 1)-dimensional vector 
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V = {U, ; Q, l), Q,2), Q,1()} where is the number of users contend-

ing for access to the channel and i = 1, 2, , M, is the number of pack-

ets in the buffer of user i. The above definition of system state leads to a reduc-

tion in the system state space when compared with previously reported models [34, 

65, 66]. However, the modified system state space is still too large to permit exact 

analysis, therefore, we resort to the decomposition approximation whose principles 

are outlined in the previous chapter. 

By Principle 1, we shall decompose the system into M separate queues with 

lengths denoted by Q, ), f = 1, 2, , M. Furthermore, the process 

(U , n ≥ 11 representing the channel activity is also considered separately. Due 

to the user homogeneity, it suffices to consider one representative user process, 

{Q , n ≥ l} and then study the effect of the interaction of the remaining (M - 1) 

users on the representative user. Each diagram in Fig. 3.2(a) represents the activity 

of a user in the system and the superposition of all the diagrams in Fig. 3.2(a) 

yields Fig. 3.2(b) which illustrates the channel activity. 

In the following, we study in detail the performance of a network consisting 

of (i) homogeneous users with infinite buffer size, (ii) homogeneous users with 

finite buffer size and (iii) heterogeneous users with infinite buffer size. For the 

three network scenaria, the above model serves as the analytical framework. 



I 

K  

ACTIVE PER. DORMANT PERIOD ACTIVE PERIOD 

USER 1 

I slot ACTIVE PERIOD 

4 I 4 

DORMANT PERIOD 

1, 

e • • S TIME 

USER 2 
1 

• ACTIVE PER. 
• 

USER 14 

S 

. I S S S • • S S 

DORMANT PERIOD 

ACTIVE PER. 

p— . I 
•1 

TIME 

AACCTTIIVVEE PER. 

. S I I S I I S S • I I • I I I-

(a) 

COLLISION IDLE SUCCESSFUL TRANSMISSION IDLE 

I 

I 0-TIME 

SUCCESSFUL TRANSMISSION IDLE COLLISION 

4 
1 SLOTS 

1  
$ 4 4 S 
(ii' +1) scrrs 
a  

(b) 

Fig. 3.2(a) Illustration of a ready user state periods 
(b) Illustration of the channel state periods 

(On each diagram, the embedded Markov epochs are represented by 9 ) 

-i 
'W-TIME 

I/c 



34 

3.3 Performance Analysis 

In this section it is shown how the remaining principles of decomposition 

approximation are applied to analyze system performance. 

3.3.1 Homogeneous Users with Infinite Buffer size 

The first scenario assumes that each user has unlimited buffer space. By Prin-

ciple 2 of the decomposition approximation, we now approximate the user queue 

length and the channel-activity processes as Markovian processes. We state in 

passing that the Markov analysis, though nontrivial is analytically tractable and is 

presented as follows. 

3.3.1.1 Approximate User Markov Chain Analysis 

The main objective of the user Markov chain analysis is to determine the user 

queue state disftibution from which other relevant user parameters can be found. 

Consider a representative user activity shown in Fig. 3.2(a) and described by the 

process {Q , n ≥ fl. The user queue is said to be in state k at the beginning of 

slot n if Q = k, k = 0, 1, 2, ; where Q includes the packet arrival (if any) 

at the end of slot n - 1 but excludes any packet that has successfully completed 

transmission at the end of slot n - 1. (Note that the end of slot n - 1 is also the 

beginning of slot n). Clearly from the discrete-time arrival and departure processes, 

{Q, , n ≥ l} is a discrete-time stochastic process whose analysis is very difficult 

to handle, because of the task of observing the user queue state at the beginning of 
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every slot. To circumvent this difficulty, we construct an embedded Markov chain 

(Principle 2), denoted by where N, represents the number of packets stored 

in the queue of the representative user at the beginning of embedded epoch n'. 

The embedded epochs coincide with the beginning of each active period or each 

dormant slot (represented. by shaded dots ( •) in Fig. 3.2(a)) and are henceforth 

referred to as Markov epochs. Let it1 denote the limiting probability that j pack-

ets are stored in a user buffer at a Markov epoch. A method of calculating the 

queue length probability distribution is via the method of generating functions. 

A. Generating Function for Queue Length 

By definition, the limiting probability generating function for' the user queue 

length distribution at the Markov epochs is 

GN(z)= E'pjzJ 
P-0 (3.1) 

where the ir 's remain to be determined. To do so, we first enumerate all possible 

transition events and their corresponding transition probabilities. Fig. 3.3 depicts, 

an illustrative user state transition diagram whose transition probabilities are 

defined (in conjunction with Fig. 3.1) as follows: 

"A = Pr'{OIO} 

= Pr{a noriready user at the current Markov epoch remains nonready at the 

next Markov epoch, that is, no packet arrives at the end of one slot} 
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=. 

= Pr{klk} , k≥l 

(3.2) 

= Pr {a ready user successfully transmits the HOQ packet and one packet is 

generated at the end of the successful transmission period or 

a ready user unsuccessfully transmits the HOQ packet and no packet is 

generated at the end of the unsuccessful transmission period or 

channel is sensed to be busy and no packet is generated at the end of 

the slot when the channel is sensed busy or 

channel is not sensed at all and no packet is generated at the end of 

the slot when the channel is not sensed } 

= 

p11 = Pr{lO} 

= Pr { a nonready user at the current Markov epoch becomes ready at the 

next epoch, that is, a packet is generated at the end of one slot } 

= cy. 

PC = Pr{(k - l)Ik} , k ≥ 1 

(3.3) 

(3.4) 

= Pr { a ready user successfully transmits the HOQ packet and no packet 

arrives at the end of the successful transmission period } 

= p.rya0 . (3.5) 
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The q1 ' s, i > 0 in Fig. 3.3 are defined as 

q1 = Pr{(k+l)Ik} , k≥l 

= Pr { a ready user unsuccessfully transmits the HOQ packet and one packet 

is generated during the unsuccessful transmission period or 

a ready user successfully transmits the HOQ packet and two packets 

are generated during the successful transmission period or 

channel is sensed to be busy and one packet is generated at the end of 

the slot when the channel is sensed busy or 

channel is not sensed at all and one packet is generated at the end of 

the slot when the channel is not sensed } 

'l + + D rtY + jY. (3.6) 

For the range 1 <j ≤ 

q = Pr{(k+j)Ik} , k≥l 

= Pr { a ready user unsuccessfully transmits the HOQ packet and j packets 

are generated during the unsuccessful transmission period or 

a ready user successfully transmits the HOQ packet and (j + 1) 

packets are generated during the successful transmission period } 

= P gyp +p'a11 

and for the range T + 1 <f ≤ 

(3.7) 
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q= Pr{(k+j)IkJ. , k≥1 

= Pr { a ready user successfully transmits the HOQ packet and (i + 1) 

packets are generated during the successful transmission period } 

= pJi'ya11 . (3.8) 

Under the assumption that steady-' state conditions prevail, the packet flow bal-

ance equation is applicable [42], that is, 

FLOW OUT OF STATE j = FLOW INTO STATE j 

it0 = pAitOCitl 

iti=PBltO+Pitl+Pcit2 

nk = 'k_ltl + q1 21V2 + + q ltk_1 + PA/irk + ICitk+l , 2 ≤ k ≤ 

=q T irk - T5 + - irk - (T - 1) + + q 1"k —I 

+pfritk + pCitk+1 , k ≥ T S + 1. 

Multiply each equation by zi, j e {0, ..., oo}, (where j is the subscript of it on the 

left hand side) and then sum both sides of the resulting equations separately from 

j = 0 to j = 00, we obtain after simplifying 

GN(z) = 

T 

A 

l—(pz1+p ,+ qz) 
A i=l 

(3.9) 

7C  (3.10) 

which on substituting the expressions for the transition probabilities gives 
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T 

( + z) - L'ya0z 1 +(P9Ta+pt30 +p+)+ qz1) 

= 

T 

1— +(PRa1+pf30 +pçt +)+ qz) 

(3.11) 

Notice that T does not appear explicitly in the expression for GN (z), however, its 

effect is reflected in the expressions for the 's and 10 

B. Probability that a User is Nonready 

As stated before, knowledge of G  (z) allows us to determine the queue 

length distribution. To illustrate this point, we shall determine the probability that a 

user is nonready, 7c  as follows. By using the moment generating function pro-

perty GN(l) = 1, and applying L'Hospital's rule to (3.10) we get 

Ito = 

(PB+PC)_ iq 
i=1 

(3.12) 

and on substituting the values for p. and PC from (3.4) and (3.5) respectively, we 

get 

Ts 
pJrX0- iq 

i=1  
It0 = l's 

iq 
•i=l 

(3.13) 
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Having found it0, it is possible to determine the remaining i 's by solving 

(3.9) recursively. 

C. Mean Queue Length at the Markov Epochs 

The mean queue length at a Markov epoch, E [N], is then calculated by 

E[N] - dGN(z) 
- dz z=l 

Equation (3.10) can be expressed in the form 

GAT (z) = x(z) It 
LV y(z) 

where x (z) and y (z) are polynomials in z which are given by 

and 

(3.14) 

(3.15) 

T 

X (z) = ;A + pBz)_ (PC z 1 +p ,+ qz 1) (3.16a) 
A i=1 

Y(Z) = l —pz—1 

respectively. Hence from (3.15) 

dGN(z) - 

dz 

— p  q1z 
A i=1 

Y (z )x (z )itO - x (z )ic0y (z) 

[y(z)]2 

Substituting z = 1 into (3.17) gives an indeterminate result, then by applying 

L'Hospital's rule and after simplifying, we obtain 

(3.16b) 

(3.17) 

dGN(z) - x(1)ir0 — y"(l) (3.18) 

dz z=1 - 2y 11 (1) 

Evaluating the first and second derivatives of (3.16) and then substituting into 
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(3.18) yields after simplification 

E{N} = 

T 

(2p '-' o + I (i - 1)q1)(1 - 

T 

2(p .Lx0 - iq) 

(3.19) 

It is seen that (3.11), (3.13) and (3.19) are expressed in terms of y, t and t 

which are henceforth referred to as the channel-activity parameters. It will be 

shown shortly that these probabilities are functions of the channel steady-state pro-

babilities and this dependence demonstrates the coupling between the user and the 

channel Markov chains. 

3.3.1.2 Approximate Channel Markov Chain Analysis 

By Principle 2, we also approximate the process {U , n = 1, 2, 3, } by 

its underlying embedded process U ,, whose states are determined only at the Mar-
n 

kov epochs (represented by, • in Fig. 3.2(b)). The Markov epochs correspond to 

the beginning of each idle slot or each transmission period (successful or unsuc-

cessful) on the channel. Since U,, is a Markov chain with finite state space 

{O, 1, 2, , M) and is time-homogeneous, irreducible, aperiodic and positive 

recurrent, a solution exists for the equilibrium probability distribution 

k = 0, 1, , M J. of the channel states and can be obtained, by solving the 

following set of linear simultaneous stationary equations [47] 
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=jpijI 

M 

k=0 

(3.20) 

where P is a row vector of the channel steady-state probabilities, Pk is the 

steady-state probability that k users contend for access to the channel at a Markov 

epoch and ii i, j e {0, 1, 2, , M} is a square matrix of transition proba-

bilities. p1 is the conditional probability that j users contend for access to the 

channel at the current Markov epoch given that i users contended at the previous 

Markov epoch. The main task in (3.20) is the derivation of the expressions for 

to do so we proceed as follows: 

Consider two successive Markov epochs in Fig. 3.2(b) which for clarity is 

amplified in Fig. 3.4, Suppose that at Markov epoch n, i users contend for access 

to the channel while at Markov epoch n'+ 1, 'j users contend. Recall from the 

system model formulation that the number of users that sense the channel idle in a 

slot is equal to the number of users that contend for access to the channel at the 

next Markov epoch. Then, the transition probability from state i to state j, Pij is 

defined by 

p.. - Pr{Un  ,+ l jIU,=i}=Pr{jli}. 

Now, Pr fjIi } can be written as 

(3.21) 
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Fig. 3.4. Two Successive Markov Epochs of the Channel State. 
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UL 
Pr{jli} = Pr{j,kli} (3.22) 

k=LL 

where Pr {j, k Ii } is the conditional probability that j ready users (which include k 

ready users that contended at epoch n and are contending again at epoch n+l) 

contend for access to the channel at epoch n + 1 given that i ready users con-

tended at epoch n. Using conditional probability theory techniques, (3.22) 

becomes 

UL 
Pr{jIi} = Y, Pr{jlk, i}Pr{klij. . (3.23) 

k=LL 

where UL and IL are respectively the upper and lower liniith which remain to be 

determined. Based on the definition of Pr {k Ii }, Pr {j 1k ,i } is the conditional pro-

bability that given (M - i) nonready/dormant users at epoch n', (I - k) of the 

(M - i) users will contend at epoch n + 1. Hence, (3.23) can be written as 

UL 
PIj = Pr{(j — k)l(M — i)}Pr{kli}. (3.24) 

k=LL 

Noting that all the users behave independently, Pr{(i - k)I(M - i)} is binomially , 

distributed with parameters (M - i) and tav where tav is the average contention 

probability by an arbitrary user. Similarly, Pr {k I  } is binomially distributed with 

parameters I (i > 0) and t(i) where t(i) is a contention probability which is a 

function of i. Equation (3.24) then becomes 

11 = k=LL EM_i tf—k(l - )(M—i) - (f—k) t(j))k(l - 

(3.25) 



46 

It now remains to determine 'Cay:, 't(i) and the summation limits, LL and UL. 

Contention Probabilities: Since a nonready user at a Markov epoch will contend 

for access to the channel with probability zero and a ready user may contend with 

probability p, then the average contention probability by an arbitrary user (which is 

either nonready or ready) is given by 

'Cay = P 7CO). - (3.26) 

To derive the expression for t(i), we consider the following cases. Suppose i = 

at epoch n' (Fig. 3.4), this implies a successful transmission and a user which has 

just completed transmission may contend again at epoch n + 1 provided the user 

remains in the ready state. This condition occurs if the user buffer contains more 

than one packet at epoch n' or the user buffer contains only one packet at epoch n' 

(which has been successfully transmitted) and at least one packet arrives during the 

successful transmission period. These two mutually exclusive events occur with 

probability V defined by 

V = (1 - 3) + SaT (3.27) 

where S is the probability that a user buffer contains exactly one packet condi-

tioned on the user being in ready state, and from the user Markov chain analysis 

a 
It1 

1 - 7C  

(XT is the probability that at least one packet arrives during the successful transmis-

(3.28) 

sion period, given by 
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T5+1 T+1 

aT_ i y 

i=1 

+1—i 
1 - T (3.29) 

Since a ready user contends with probability p, r(l) then becomes 

t(1) = = pv. (3.30) 

For the case 1 < i ≤ M at epoch n, this means that a collision occurred during the 

ensuing transmission period and no packet is successfully transmitted by any of the 

contending users. Therefore, a user which contended at epoch n' and suffers a col-

lision remains in the ready state at epoch n + 1 irrespective of whether a new 

packet arrives or not during the unsuccessful transmission period which began at 

epoch n; and any of these i colliding users ' may contend again at epoch n' + 1 

with probability p. Hence, t(i), 1 <i ≤ M, denoted by r, , is 

IV  = p (3.31) 

Summation Limits: To determine the summation limits, it is necessary to first 

define the parameter, d, by 

d = (M_i)_(j_k)Ik (3.32) 

where d is the number of users in the system which were dormant/nonready at 

epoch n' and which will also remain dormant/nonready at epoch n + 1, assuming 

that none of the i users which contended at epoch n will contend again at epoch 

n + 1, that is, k = 0. There are two cases of interest: (i)d ≥ 0 and (ii) d <0. 
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(i) d ≥ 0: denotes the likelihood that all the j users contending at epoch n + 1 

are from those (M - i) users which did not contend at epoch n, hence, k 

must assume a lower limit (LL) of zero. To determine the upper limit, we 

note that k must be less than or equal to both i and j, hence the upper limit 

(UL) for k is equal to mm (i ,f). 

(ii) d <0: implies a negative number of nonready/dormant users at epoch n + 1 

which is impossible. Thus, we require that at least Id I of the i users which 

contended at epoch n' must contend again at epoch ii + 1; which is the lower 

limit for k. As in case (i), the upper limit is mm (1 ,j). 

Combining the two cases yields the summation limits of (3.25) as 

0 ,d≥0 

LL =lll , d<0 

and 

(3.33a) 

UL = niin(i, j) (3.33b) 

Based on the above discussion, we can now write (3.25) explicitly for all j, 

0 ≤ j ≤ M, as follows: 

(a) i = 0: IL = 0 (because d ≥ 0) and UL = 0 (since i = 0). Hence (3.25) 

reduces to 

ij = [f] av (1 - t , i =0. 

(b) i = 1: the limits of summation are given by (3.33), and (3.25) becomes 

(3.34) 
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''J) [i _ i] tP-k(l )(M—l)—Uk) [k1) tk(l _t)1—k 

k =LL  
Pu LI — k av av 

(3.35) 

(c) 1 <i < M: the limits of summation are given by (3.33), (3.25) then becomes 

Pij = min f) [M_i] fk -i —k av  tav)(M_Z)_(J_ ) ]Ick(1 - , 1<1 <M. 

(3.36) 

(d) i = M: LL = j (because d = -j) and UL = j (since j is less than or equal to 

M) so that (3.25) then reduces to 

= Nj t (1 - )M—j i = M. (3.37)if C C 

In summary, by combining (3.34) to (3.37), we get 

1M i (l_tav)M _J , i =0 
LjJ av 

[M-1) j—k (1 - )(M_1) - (f—k) 
j—k av av 

k =LL 

UL k=LL [% i] tf—k(l - av )(M—i) - (f—k) 

['f] (1_r)M i ,i M. 

] Ck 'k S(1 _ 5)l—k 

(3.38) 

- t)i_k 1 <i < M 

Having found the 's, we now can compute the vector P in (3.20) from 

which the channel-activity parameters ( y, g and t) (Principle 4) are evaluated. 

The probability of successful transmission, y, is defined as the probability that only 
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one ready user contends for access to the channel given that at least one ready user 

contends. y is expressed in terms of the channel steady-state probabilities as 

P1 

,y=   

and the probability of unsuccessful transmission, ly, is 

(3.39) 

1— Po —P1 
= 1—y=   . 1 Po (3.40) 

— 

The probability that the channel is idle, j.t, is found from the standpoint of renewal 

theory [43]. Since an idle period consists of a sequence of Bernoulli slots, from 

Fig. 3.2(b) we see that the number of slots, I, in an idle period is geometrically 

distributed where 

with mean 

PrCICh=i} = Pb'(l_PO) , i= 1,2,3 

E[I 1= ch 1 — 1 p0 

(3.41) 

(3.42) 

Note that P0 is the probability that no user contends for access to the channel at 

the beginning of a slot. By defining the transmission cycle time as the time inter-

val separating two successive transmission, commencement epochs on the channel, 

the long-run probability that the channel is idle is given by 

= E [channel idle period] = E "ch'  (3.43) 

E [transmission cycle] ((T5 + 1) + (1 - )(T c + 1) + E Vch 

Using (3.39) and (3.42), ji. can be expressed in terms of the channel steady-state 

probabilities as 
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1  

Pi(T+ 1)+(1_Po_Pi)(T+1)+1. (3.44) 

from which t(= 1 - ), the probability that the channel is busy is determined. 

3.3.1.3 Performance Measures 

In the following, we derive the expressions for the performance measures. 

Average Queue Length, E [Q ]: is the mean number of packets stored in the buffer 

of a representative user at an arbitrary slot boundary. Recall that the user Markov 

chain analysis presented above only gives the distribution of the process 

CN ,; n ≥1 } at the embedded epochs which, due to the non-Poissonian input pro-
n 

cess, is not equal to that of the Q, -process. We therefore determine E [Q] 

indirectly using the notion of semi-Markov process with reward [43]. The main 

idea propounded here is to view the number of packets stored in a user buffer at an 

arbitrary slot boundary as a reward. The motivation for this idea follows from the 

application of renewal-reward arguments to an irreducible and ergodic semi-

Markov process with reward: a reward is earned whenever a state of the process is 

entered at a Markov epoch and the reward is earned continuously (in fact at the 

end of every slot) during the time interval between two successive Markov epochs. 

We shall then invoke a limiting result from semi-Markov processes with reward, 

which states that the long-run reward (interpreted here as the mean queue length at 

an arbitrary slot boundary), E [Q ] is given by [43] 
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00 

: krk 
E[Q] = k=O  

00 

k=Ok 1k 

(3.45) 

where the numerator is the expected reward (measured in packets-slots) and the 

denominator is the expected duration (in slots). When state k is entered at a Mar-

kov epoch, rk is the mean reward accumulated, 11k is the expected duration 

between two successive Markov epochs and it  is the steady-state probability that 

there are exactly k packets in a user buffer at an arbitrary Markov epoch. The 

7C k 'S are already determined from the user Markov chain analysis, our next task 

thn is to find TIk and rk. 

(i) Expected Duration: For a nonready user (k = 0), the length between two suc-

cessive Markov epochs is one slot. For a ready user (k > 0), the length between 

two successive Markov epochs is (I's + 1) slots for a successful transmission 

(which occurs with probability p .iy), (T + 1) slots for an unsuccessful transmis-

sion (which occurs with probability p J.t(1 - by)) and one slot when a ready user is 

dormant (with probability (1 - p p.)). Hence for each user state, the expected dura-

tion between two successive Markov epochs can be written as 

Ii , k=0 

11k = tpxy(Ts + 1) + pp.(1 - y)(T + 1)+ (1 — pp.), k ≥ i . (3.46) 

(ii) Expected Reward Accumulated: The expected reward accumulated by a user 

which has just entered state k is given by 
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k=O 

rk = p (Bs(k,Ts)+pL(l_y)Bc(k,Tc)+(l_pL)Bd(k,1) , k≥l 

(3.47) 

where, if a user buffer contains k packets at a Markov epoch, B S (k, 7's) is the 

average reward accumulated during a successful transmission period, B C (k, T) is 

the average reward accumulated during an unsuccessful transmission period, and 

Bd (k, 1) is the average reward accumulated during a dormant slot; which are 

found to be 

and 

T+l 

B(k ,T)=(k -.1)(T+l)+T+ is 
i=l 

T+l 

B(k ,T)=k(T+ 1)+ 
1=1 

Bd(k, l)=k + 

(3.48a) 

(3.48b) 

(3.48c) 

respectively. We see from (3.48) that the reward accumulated over each time 

period is due to old packets and new packets that arrive between two successive 

Markov epochs. Note that in (3.47) and (3.48) is the mean number of arrivals 

per slot and the terms involving the -summation in (3.48) represent the expected 

reward accumulated due to the arrival of a new packet at the end of slot i of a 

transmission period. Now, substituting (3.46), (3.47) and (3.48) into (3.45) we get 

after simplification 
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E[Q] =   (3.49) 
7C  +(l - ir0)[p.t'y(T5 + l)+p.L(1 —'y)(T + 1)+(1—pjt)] 

where 

K1 = [Ppy(T5 +1)+pJ.L(1_y)(T+1)+(l_pJ.1)jE[N] 

and 

(T5 + l)(T5 + 2) 
K2 (1 - it0) P "11's - p j.t'y(T + 1) + p J.Ly 2 

+ l)(T + 2) 
+ pji.(l—y) 2 

Mean Packet Delay, E [D]: From the mean queue length derived above, application 

of Little's formula [55] gives the mean packet delay in slots as 

E[D] = E [Q I (350) 

Throughput, SCh: is defined as the proportion of time the channel is used success-

fully in a transmission cycle. Using renewal theory argument, 

S = 
ch 

by 

E [successful transmission period]  

E[transmission cycle] y(T5 + 1) + (1 - y)(T c + 1) + E 

(3.51) 

In terms of the channel steady-state probabilities (from (3.39)), Sch is given 

PT 

SCh = 

is  
(3.52) 

Pi(TS + 1) + (1— P0 - P1)(T + 1) + 1 
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Condition for System Stability: A rigorous derivation of the necessary and 

sufficient condition for stability of buffered CSMA-CD systems is extremely 

difficult. To the best of the author's knowledge, the previous rigorous analyses on 

stability of buffered random access systems have considered the slotted ALOHA 

scheme, which is the simplest random access protocol [65, 67, 68]. In this thesis 

we derive a necessary and sufficient condition for stability based on one possible 

definition of a stable system: a system is said to be stable for a given arrival rate if 

the expected delay per packet is finite [69]. By applying this definition, E [D ] is 

finite provided that E [Q] is. But from (3.49) the finiteness of E [Q ] requires E [N] 

to be finite. We then conclude from (3.19) that E [N] is finite provided 

iq < pp'yc 0 (3.53) 
i=1 

which is a necessary and sufficient condition for stability. The left hand side of 

(3.53) is the mean rate at which packets enter the user queue while the right hand 

side is the mean rate at which packets depart from the queue. Equation (3.53) 

states that the user queue is stable if the mean input flow rate is less than the mean 

output flow rate, and the whole system is stable provided (3.53) holds for all the 

user queues. 
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3.3.1.4 Numerical Results and Discussion 

(a) Computation Algorithm 

The analysis in the previous section reveals that the system performance 

measures are functions of the user and channel steady-state probabilities and have 

been shown to be interdependent, hence, they are determined iteratively (Principle 

5). The iterative algorithm required is outlined as follows: 

Step 1: Select the input parameters and perform initial computation: 

(a) select the system parameters - , p, M, T, and T ; 

• (b) compute a1, I = 0, 1, , T5 +1 and 13m' m = 0, 1, , + 1; 

(c) select the initial guess for 7r and i40). 

Step 2: Iteration step - at iteration k, k = 1, 2, . . , kmax where kmax is the 

maximum number of iterations permissible: 

(a) compute the channel transition probabilities from (3.38); 

(b) solve the channel stationary equation for {P1 }) from (3.20); 

(c) compute the new values of from (3.13) and (k) from (3.9). 

Step 3: Looping step - if the most recently computed values of no and irl are 

within a specified tolerance of their last computed values, then proceed to 

Step 4. Otherwise, go back to Step 2. 

Step 4: Compute the system performance measures: 

(a) compute E [Q] from (3.49), compute E [D I using (3.50) 
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and 5ch from (3.52). 

Remarks: 

(i) The iterative algorithm described above is easily programmed. In Step 2, 

(3.20) is solved using the Gaussian elimination technique [70]. In Step 3, the 

L-infinity norm [70] is employed to measure the convergence of no and it 1; 

and for all the input values chosen in the numerical examples, less than 50 

iterations are required to reach convergence of 7c  and it  within a tolerance 

of io 6. The analytic program is run on a SUN 3/180 system, the typical run 

time for a point on a performance curve shown below is 5 cpu (central pro-

cessing unit) seconds. 

(ii) In addition to the analytic computation, a discrete-event simulation program 

has been constructed to determine the user and channel steady-state probabili-

ties along with the system performance measures. Each simulation run is ter-

minated after 30000 packets have been successfully transmitted (rather than 

terminating the simulation after a fixed period of run time) so as to remove 

any bias from the simulation results [52]. The simulation program is run on a 

CDC CYBER 205 Supercomputer where its fast speed has been, of great 

advantage [58] and the typical processing time for one simulation run is 2000 

cpu seconds. The estimated values of the performance measures are obtained 

by averaging the outputs of 10 independent simulation runs. 
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(b) Discussion on Results 

In order to demonstrate the usefulness of the expressions derived for the per-

formance measures, numerical results are obtained for the following set of input 

parameters (except otherwise stated): 

System Population, M: 10. 

Packet Transmission time, 7's: 20 slots. 

Collision resolution period, T: 1 slot. 

Fig. 3.5 shows a plot of the mean queue length versus the system offered 

traffic, p(=M a T) where the sensing probability, p is the varying parameter. We 

see that for each value of p, the mean queue length increases as the offered traffic 

increases - an intuitive result. Furthermore, we see that in the range of light to 

moderate offered traffic, the mean queue length decreases as p increases; this is so 

because for large values of p, the transmission of a packet is attempted as soon as 

it reaches the head of queue and the transmission is more likely to be successful 

owing to the low offered traffic; hence, there is a minimal backlog accumulation. 

Under heavy offered traffic, and at large values of p, the mean queue length grows 

to a large value due to the backlog of packets at each queue which cannot be 

cleared as fast as the light load case. Since p is large, most of the users are more 

likely to contend for access to the channel but this inevitably leads to an increase 

in the number of collisions on the channel. The large backlog of packets at each 

user queue is caused by the new packets arriving during the collision periods and 
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timeout intervals. Note the good agreement between the analytic and simulation 

results especially in the range of light to moderate offered traffic. However, under 

heavy offered traffic, there is less agreement because the system is no longer stable 

(that is, the condition for stability (3.53) is violated) and the approximate analysis 

is not so accurate. 

The throughput-delay characteristics shown in Fig. 3.6 illustrate the tradeoff 

between the mean packet delay and the channel throughput and also facilitate the 

selection of suitable sensing probability at a given throughput value. We mention 

in passing that the numerical result obtained for the channel throughput (defined by 

(3.52)) is found to be equal to the offered traffic for up to 75% offered traffic over 

the range of p considered. Beyond 75% offered traffic, we find that the throughput 

is less than the offered traffic where the drop is accounted for by the increase in 

the number of collisions on the channel, this means that most of the channel time 

is spent on resolving collisions. As in Fig. 3.5, we see from Fig. 3.6 that for a 

fixed value of p, an increase in throughput leads to an increase in the mean packet 

delay (normalized with respect to the packet transmission time, T8). Under low to 

moderate throughput values, we observe that an increase in p results in lower 

mean packet delay. Actually, the mean packet delay consists of the mean packet 

queueing delay and the packet transmission time where the former depends upon 

the queue length seen by a newly generated packet, the sensing probability value 

and the number of retransmission attempts a packet undergoes before its successful 

transmission begins. In the range of low to moderate throughput (or equivalently 
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low to moderate offered traffic) and at large values of p, the mean queue length is 

small and therefore the mean packet delay is dominated by the packet transmission 

time. However, in the high throughput region when p is large, the delay is no 

longer small. The large delay is caused by the congestion of the channel which 

occurs when all the users are constantly in the ready state and they all contend for 

access to the channel with a high probability (due to large p). The net effect of 

channel congestion is an increase in the number of collisions (or an increase in the 

number of retransmissions). Hence, the packet transmission time is dwarfed by the 

sum of the large mean retransmission delays and the collision resolution periods 

which then leads to very large mean packet delays. Finally, we observe that the 

throughput range at which all analytical results agree closely with the simulation 

results is the range of stable operation of the system. As noted above, the less 

agreement in the high throughput region signifies system instability and under this 

condition the approximate analysis becomes inaccurate. It is also important to state 

that the large delays in the high throughput region is not due to the approximate 

analysis but is typical for random access protocols. 

In Fig. 3.7 we present a plot of the mean packet delay versus the sensing pro-

bability with the offered traffic as the varying parameter. For all the curves shown, 

we see that the packets transmitted when the sensing probability attains low values 

incur large mean delays owing to buffer congestion which is more pronounced for 

large values of offered traffic. As the value of p increases, the mean packet delay 

decreases because the buffer is decongested much more quickly thus preventing 
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excessive backlog accumulation. For the curves corresponding to moderate (and 

large) offered traffic, the mean packet delay decreases as p is further increased 

until a critical value of p (denoted by opt at which delay is minimum. Beyond 

the delay starts to rise where the increase is caused by channel congestion. 

We see in Fig. 3.7 that p0pt  tends to unity for the range p ≤ 0.6. 

3.3.2 Homogeneous Users with Finite Buffer Size 

In this section we relax the infinite buffer size assumption of Section 3.3.1 so 

as to arrive at a more realistic system. Unfortunately, the analysis of such a finite 

buffer size system becomes increasingly difficult. We shall show that with few 

modifications of the model and analysis presented in Section 3.3.1, the decomposi-

tion approximation technique reduces the analytic difficulty. 

3.3.2.1 Approximate User Markov Chain Analysis 

The user operation (depicted by Fig. 3.1) and its associated state transition 

diagram (Fig. 3.3) for the infinite buffer size system are not directly applicable to 

the finite buffer size system because of the need to rewrite the expressions for 

's for different values of K < oo. The preceding statement requires the repeti-

tion of user Markov chain analysis for each K, this not only is cumbersome but 

also seems impractical. We circumvent this problem by introducing an additional 

assumption: An active user generates only "one" message with probability cx at the 

end of a successful transmission period and with probability P at the end of an 
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unsuccessful transmission period. By the Bernoullian message arrival process 

assumption and as shown in Fig. 3.1, we expect that message arrivals during a(n) 

successful (unsuccessful) transmission period are, in general, more than one. How-

ever, the assumption is approximately valid provided a is very small; for example, 

in the range (0 ≤ a ≤ 0.003), the probability that more than one message arrive 

during a typical successful transmission period becomes small and the assumption 

is tenable [71]. With a being much less than unity, a and 1 are approximately 

given by (T + 1) and (T + 1) respectively. 

A. Generating Function for Queue Length 

Following the same analysis procedure as in Section 3.3.1, we derive first the 

transition probabilities of the modified user state transition diagram (Fig. 3.8). Let 

Pr{N+i = k IN = j}, j, k G{0, 1, 2, , K < oo}, be defined as the trail-

sition probability of a user being in state k at the next Markov epoch given that the 

user is in state j at the current epoch. We obtain 

1'A = Pr{0I0}= (3.54) 

, 1≤k≤K-1 (355) 

"B =Pr{1I0}=c (3,56) 

P ,= Pr{k+llk} 
B 

Pr { either {a ready user unsuccessfully transmits the HOQ packet and 

one packet arrives at the end of the unsuccessful transmission 



Fig. 3.8. User state transition diagram ( finite buffer size) 
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period} 

or {channel is sensed to be busy and one packet arrives at the end 

of the slot when the channel is sensed busy} 

or {channel is not sensed at all and one packet arrives at the end 

of the slot when the channel is not sensed} } 

= p +pto+ jTcr , 1≤k≤K-1 (3.57) 

Pr{(k-1)Ik}=pj.i , l≤k≤K 

p ,,= Pr{KIK} 
A 

= Pr f a ready user (with full queue) at the current Markov epoch 

remains ready (with full queue) at the next epoch} 

A"C 1—pry. 

(3.58) 

(3,59) 

Under equilibrium condition, the following balance relations can be written for the 

user steady-state probabilities: 

= 1'A "0 ' PC 1 

= 1'A 1 + 1'B O + C 2 

Ili PAFitj+PBEj_1+Pcitj+l , 2≤j≤K-1 

= PA K + B' itK1. 

Now define the probability generating function (pgf) for queue length by 

K 
GN(z)= I itf zJ. 

i—U 

Using the procedure of Section 3.3.1, we derive the pgf for queue length as 

(3.60) 

(3.61) 



68 

GN(z) = 
'A _ PA) +(PB 'B' — PC z_h1o+[(ppA ,)zK  _ P 

B' 

i — p A B , — p ,z PCZ 

(3.62) 

Equation (3.62) is true for K = 2, 3, and for K = 1, the pgf for queue 

length is obtained if p, is replaced by p A and p, is set to zero. The substitu-

tion gives 

GN(z) = 

- 1'A " + B Z -  PC  z_ lii it0 

1 p  — PC Z' 
(3.63) 

Application of the pgf property and L'Hospital's rule to (3.62) and (3.63) 

gives the expressions for the mean queue length, E [N], at the embedded Markov 

epochs as 

E[N] = 

PC (1 - it0) [K (K - 'A — p A PA - K (K + 1) B ' K  
+ ,K≥2 

2(PCPB ) 

1 - no , K=1. (3.64) 

The knowledge of the pgf now permits us to determine the queue length dis-

tribution, {ir Observe that (3.62) contains two unknown user steady-state 

probabilities 7r  and itK which are determined as follows. For uniqueness of solu-

tion, two equations involving it0 and IVK are required. One equation is obtained 

by expanding N (z) (3.62) in a Taylor series about z = 0 to the term in K+1 and 

then setting the coefficient of zK+1 to zero. Note that it is logical to set the 
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coefficient of zK+1 itK+ l) to zero because GN (z) is a polynomial of degree 

K in z. Another equation is derived using the normalization condition: GN(l) = 1. 

The two equations obtained are then solved to obtain the expressions for 7C  and 

ltK . For example, if K = 2, the expressions for no and it2 are derived to be 

and 

7C  = 

"— p ,) 
A B 

D 
nm 

(3.65) 

1'A' ,+(l—p " ,) 
_PA ') . B A B  (3.66) 

D 
nm 

respectively where the denominator term is 

D = '— p nm 
B B 

- (IA PA )PC(OC PB PB ) 

The other user steady-state probabilities are obtained from the recursive relations 

(3.60). Using the above procedure, similar expressions can be derived for higher 

values of K. For the special case where K = 1, only the normalization condition 

need be applied to (3.63) and the expression for 7u  is obtained as 

(3.67) 
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3.3.2.2 Approximate Channel Markov Chain Analysis 

The channel Markov chain analysis for the finite buffer size system is identi-

cal to that in Section 3.3.1.2 except that a T in (3.27) is now replaced by a due to 

the additional assumption introduced. 

3.3.2.3 Performance Measures 

The average queue length at an arbitrary slot boundary is also given by (3.49) 

where now E[N] is defined by (3.64). The average packet delay, E [D] and the 

channel throughput, SCh are computed from (3.50) and (3.52) respectively. For the 

finite buffer size system, knowledge of the buffer overflow probability, P0f is 

essential as it represents the fraction of messages rejected due to the buffer being 

full. For simplicity, we have approximated P0f by ltK, (becomes exact for the 

Poisson input process) the probability that a user buffer is full. Finally, by employ-

ing the same argument as in Section 3.3.1.3, we derive the necessary and sufficient 

condition for system stability as 

368 p Ly(T5 + 1) + p Ly(T + 1) + (1 - p ) ) 

Actually, for the finite buffer size system, the condition given by (3.68) is always 

satisfied because the queue size is bounded so that there is no possibility of its 

increasing indefinitely. 

3.3.2.4 Numerical Results and Discussion 

In the spirit of the decomposition approximation, we first determine the 

channel-activity parameters by employing the iterative algorithm of Section 3.3.1.4 
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where the corresponding equations for the finite buffer size system are used. By 

choosing identical input parameters as in the infinite buffer size system, we obtain 

system performance characteristics which are discussed in the following. Our 

objectives here are twofold: ( 1) discuss the effect of K on throughput-delay charac-

teristics and (2) determine the value of K that will result in an acceptably small 

number of lost packets. 

Fig. 39 shows the throughput-delay characteristics for a 10-node system and 

p = 0.05. We see that for K = 1, 2 and 3, the mean packet delay is small under 

low to medium throughput but becomes large in the high throughput range. 

Another observation is that higher values of K results in larger packet delay (the 

mean packet delay for the case of infinite queue size (K = 00) is included for com-

parison). Note the very good agreement between the analytic and simulation results 

especially under low to medium throughput; but there is less agreement in the high 

throughput region. The less agreement is accounted for by similar reasons stated 

in Section 3.3.1.4. 

The buffer overflow probability versus the system input traffic (M a7') is 

shown in Fig. 3.10 for a 10-node system where the queue size, K, also serves as 

the varying parameter. Excellent agreement is obtained between the analytic 

results and the simulation results. We see that low buffer overflow probabilities are 

obtained for higher values of K. A comparison between Fig. 3.9 and Fig. 3.10 

shows the tradeoff between the buffer overflow probability and the mean packet 

delay for a given K in buffered CSMA-CD systems: an increase of the queue size 
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will reduce the buffer overflow probability but will lead to higher mean packet 

delay. The author believes that an appropriate choice of queue size is that which 

satisfies the specified buffer overflow probability as this will result in a small 

number of lost packets at the expense of an increase in packet delay. 

3.3.3 Heterogeneous User with Infinite Buffer 

In the analyses of the system scenaria considered thus far, the user homo-

geneity has been tacitly assumed primarily for analytical convenience. In practice, 

different users will generate traffic with different arrival rates and/or sense the 

channel with different probabilities (heterogeneous users). For example, different 

packet arrival rates among the users are more likely to occur during peak traffic 

periods and/or different users may sense the channel with dissimilar probabilities 

depending on the user queue length. Hence, our aim in this section is to investi-

gate the impact of dissimilar packet arrival rates and/or dissimilar channel sensing 

probabilities on the performance of buffered CSMA-CD LANs using the decompo-

sition approximation. 

3.3.3.1 Performance Analysis 

The user Markov chain analysis of Section 3.3.1.1 carries over almost exactly 

to this section except that we now distinguish the parameters p and among the 

users in the system. For example, the parameters p and for a user (say user i) 

are now denoted by p (j) and (1) respectively. 
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To analyze the channel Markov chain, extra care is required because, unlike 

the homogeneous users case, the expressions for pij for all possible values of i 

and j cannot be written in a compact form as (3.38). Nevertheless, (3.38) still 

serves as the basis for writing the pip for the heterogeneous users scenario, but in 

addition, we must consider the dependence of each user on the other users in the 

system. As an illustration, the [pd] for a 2-node (heterogeneous) network is 

obtained as 

11 (1 _t ) ) 

2 2 

YH t(l)(l t(m)) n "(1)1=lm=1 av av av 

m#1 

2 2 2 2 2 2 2 2 

h1 (1_(l))(1(m)) (1 ,(l)(m) . H.r(1),c(m) 
2 l=lm=1 av S 2 1=lm=1 av S 2 1=lm=1 av S 2 1=1m=1 av S 

MW MW m#1 MW 

I(i _t(1)) 

2 2 

I1,(1) _(m) 
1=lm=1 C C 

m;d 

(3.69) 

where the sensing probabilities by a particular user (say user i) are now given by 

= (i) (1  
av 

IrY) =  (i) 

= 

(3.70) 

the parameters in (3.70) have their' usual meaning as stated in Section 3.3.1. It is 
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worth noting that the enumeration of the channel transition probabilities becomes 

more difficult as M increases. 

We can compute identical performance measures which are defined in Section 

3.3.1, except that the respective user parameters are now used in the computation. 

Since, due to dissimilar user parameters, the delay experienced by packets transmit-

ted by different users may now be unequal, it is appropriate to determine the 

weighted mean packet delay, E [D W ii which is computed from 

M 
E{D()} (i) 

E[DW ] = i=1 (3.71) 

3.3.3.2 Numerical Results and Discussion 

The analysis presented above is illustrated by a simple example of a 2-node 

system where T and are as chosen previously. Two investigations were con-

ducted. First, we examine the effects of dissimilar channel sensing probabilities, 

P(') (Fig. 3.11 to Fig. 3.13); second, we study the effects of different packet 

arrival rates, (i), on the delay-input traffic characteristics (Fig. 3.14). Fig. 3.11 

shows the mean packet delay (for p (1) = 0. 1, (2) = 0.05) versus the packet arrival 

rate when y(i) = cy(2). Note the very good agreement between the analytic and 

the simulation results, thus validating the approximate analytic technique. We 

observe that packets transmitted by node 2 incur larger mean delay than those 

transmitted by node 1, the reason is due to the value of p ( 1) which is greater than 
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P (2) However, it is observed that for all the input traffic considered, the weighted 

mean packet delay, E [D], is lower than the mean delay experienced by the pack-

ets transmitted by node 2 (which represents a gain with respect to node 2) but 

E [D] is higher than the mean packet delay for node 1 (seen as a loss with 

respect to node 1). In Fig. 3.12, we plot E [D] for different combinations of the 

sensing probabilities, the curves show that if p ( 1) (or (p (2)) is kept constant and 

P (2) (or p ( 1)) is varied, E [D W ] decreases as p (2) (or p ( 1)) increases. We infer 

from Fig. 3.12 that there is an optimal combination of p ( 1) and P (2) at which 

E [D] is minimum: set p (2) (or p (1)) to unity and then vary p (1) (or p (2)) The 

value of p ( 1) (or p (2)) at which E [D I is minimum corresponds to the optimum 

value of p ( 1) (or p (2)) Fig. 3.13 shows a plot of the minimum weighted mean 

packet delay (E [L5 ]) versus the network input traffic. The minimum mean packet 

delay for a homogeneous system (E [13 ]) is also included for comparison. We see 

that the inhomogeneity of users due to dissimilar channel sensing probabilities 

results in higher delays especially iii the medium to heavy network traffic range. 

Fig. 3.14 shows the curves of the weighted mean packet delay versus the 

channel sensing probability (p ( 1) = p (2)) when the network input traffic per slot is 

40% (M a = 0.4), which is then divided between the two nodes using five sharing 

ratios. Three observations are made from Fig. 3.14. First, the 10/90% traffic shar-

ing ratio (( 1) = O.lMy, c(2) = 0.9M(Y) gives the highest weighted mean packet 
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delay, this is because the weighted mean packet delay tends more towards the 

mean delay of packets transmitted by node 2 which carries 90% of the network 

input traffic. Second, as the traffic sharing ratio tends towards the same value, the 

weighted mean packet delay decreases and the smallest delay is obtained when the 

network load is shared equally between the two nodes. Third, for each load sharing 

ratio, the weighted mean packet delay, E [D W ], decreases from a large value to a 

minimum value and then increases as the channel sensing probability 

(1) = p (2) = p) increases. The large value of E [DW] for small values of p is 

due to the congestion of the nodal buffer while at high values of p is caused by 

the congestion of the channel. Fig. 3.14 seems to indicate that at Ma = 0.4, 

E [D] is minimum somewhere around 0.85 ≤ p ≤ 0.9 for all the sharing ratios 

considered. 

A final comment on the effect of the number of nodes in the network, M on 

all the erformance characteristics shown in this chapter is now in order. A higher 

(lower) value of M than the one used will cause the characteristics to shift upwards 

(downwards); this is due to the random control of access to the channel. 

3.4 Summary 

In this chapter, we have demonstrated the usefulness of the decomposition 

approximation in analyzing (in a unified manner) the performance of CSMA-CD 

systems with nodes capable of buffering single-packet messages. The numerical 

results obtained from the approximate analysis closely match (to a large extent) 
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those from computer simulations, this establishes the accuracy of the approxima-

tions introduced in analysis. 

The main findings from the numerical examples are tradeoffs which exist 

between throughput and delay on the one hand and (for finite buffer size) between 

buffer overflow probability and mean packet delay on the other. It is also found 

that the performance results based on user homogeneity assumption tend to be 

overly optimistic especially in moderate to heavy traffic range. For an application 

of the results obtained to a real network, the author offers the following guidelines: 

choose the sensing probability to keep the throughput at an acceptable level and 

simultaneously maintain delay at a tolerable value; select a buffer size to achieve 

small number of rejected packets. 

This chapter (and the previously reported studies in the literature) have 

addressed the problem of buffering single-packet messages. However, there are 

LAN applications, for example, host-to-host bulk data transfer and digitized voice 

transmission that require the buffering of multipacket messages. The remainder of 

this thesis is concerned with the study of the effects of buffering multipacket mes-

sages on CSMA-CD LANs. We begin in the next chapter by examining the per-

formance of single-message buffer LANs with nodes capable of storing multipacket 

messages. 
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CHAPTER 4 

SINGLE-MESSAGE BUFFER LANs WITH MULTIPACKET MESSAGES 

4.1 Introduction and Problem Statement 

The study of a LAN whose nodes can store multipacket messages is desirable 

not only for its practicality but because its analysis is mathematically challenging. 

Such a LAN is useful for bulk data transfer, for example, in ifie transfer applica-

tions (graphics, high/low resolution images, etc.) where each message is segmented 

into a random number of packets. In this chapter, we shall concern ourselves with 

a simplified form of such LANs in which only one message can be stored at each 

node (the more complex case where more than one message can be stored is stu-

died in the next chapter). 

The main problem of interest is the prediction of delays experienced by mes-

sages (packets). While message delay is a major performance measure from user's 

perspective, packet delay is also important for purposes of network dimensioning, 

for example, the appropriate choice of buffer size at each node depends in part on 

the tolerable packet delay. In seeking solutions to the above problem, two sub-

problems are identified. The first is the interfering queue problem. Although we 

already assume that only one message can be stored at each node, yet, the nodal ,  

buffers still interfere with each other (but to a lesser degree) through the contention 

for access to the channel as each message consists of a random number of packets. 

Interestingly, exact analysis of such a LAN is possible without recourse to our 
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decomposition approximation technique. The second subproblem deals with the 

packet transmission strategy to be employed by a node which has gained channel 

access right. Recall from Chapter 3 that each node gaining channel access right 

transmits only one packet (even when there are more than one queued packet) and 

then releases the channel. We shall show that this strategy is not efficient for mul-

tipacket message transmission on a CSMA-CD channel. To this end, we propose 

two packet transmission strategies, namely, gated transmission (GT) and limited 

transmission (LT) strategies in order to achieve high channel utilization and minim-

ize message (packet) delay [73-74]. 

To the best of the author's knowledge, there are only two studies on single-

(multipacket)message buffer CSMA-CD LANs [25, 72]. Tobagi and Hunt [25] 

considered a multipacket message as a superpacket whose transmission is success-

ful only if no other node begins transmission during the original transmission's col-

lision window. In an attempt to obtain a more realistic performance result, Hey-

man [72] modeled the length of a multipacket message by a geometric distribution, 

but unfortunately, the geometric distribution is restrictive in the sense that it is 

completely characterized by its mean and thus neglects the effect of the variance of 

the message length. Hence, in this chapter we model the length of a multipacket 

message by a general probability distribution which is characterized by its mean 

and variance so that composite message lengths comprising real-time and non-real-

time data can be appropriately modeled. In the following sections, we give a clear 

exposition of the solutions to the problems outlined above. 
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4.2 Model Formulation 

We adopt the network description and the modeling assumptions of Chapter 2 

with the following modifications: the propagation delay, t seconds is now normal-

ized by the packet transmission time, and is denoted by a time units; the channel 

time is assumed to be nonslotted and the buffer size K is assumed finite. We also 

introduce the following additional assumptions. 

(i) The length of a message, G, is a random variable which has the probability 

distribution, = Pr {G = j } with mean E [C] and variance Mes-

sage lengths are mutually independent and identically distributed. 

(ii) Messages arriving at each node constitute a Poisson process with an 

K 
effective mean arrival rate of = X Y, g messages/unit time. 

j=l 

(iii) Upon the arrival of a new message, an empty node becomes nonempty and 

senses the channel immediately. This implies immediate first transmission 

(IFT) protocol. Because a node can store at most one message in its buffer, 

the generation of a new message is inhibited until all the packets of the 

current message are successfully transmitted. 

(iv) If the length of a new message is greater than K, then the message will be 

rejected (blocked) in its entirety; this acceptance strategy is adopted in order 

to ensure the integrity of a message once it gets accepted. 
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(v) The transmission time of a packet is normalized to unity. 

(vi) The collision resolution time is c time units where a <c i 1. 

(vii) A collided packet is retransmitted after a random timeout interval which has 

an exponential distribution with mean 1/ic time units. 

(viii) The message interarrival times, message lengths and retransmission delays 

are mutually independent random variables. 

Based on the above assumptions, we present below the delay analysis of 

single-message buffer LANs incorporating either the GT or LT strategies. 

4.3 Performance Analysis 

In order to highlight briefly the need for a more efficient packet transmission 

strategy for multipacket message transmission, let us suppose that each node adopts 

the transmission strategy of Chapter 3 (henceforth referred to as the conventional 

transmission (CT) strategy). The CT strategy implies that there is a random access 

delay before the successful transmission commencement of every packet of a mul-, 

tipacket message. If we define message . response time as the time between mes-

sage arrival instant and transmission completion instant of the last packet of a mes-

sage, the message response time will apparently become large due to the sum of 

the random, access delays, along with a concomitant decrease in channel utilization. 

The author conjectures that these drawbacks can be alleviated by the GT and LT 

strategies which are described in the following. 
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4.3.1 The Gated Transmission Strategy 

The motivation behind the UT strategy is to minimize the total random access 

delays incurred by a multipacket message. Under the UT strategy, a node that 

gains channel access right transmits all the packets present in its buffer at the 

instant of channel access continuously. Unlike the CT strategy which incurs ran-

dom access delay for every packet in a message, the UT strategy incurs access 

delay just once (for the head of queue packet). However, the UT strategy seems to 

imply unfairness in that nodes with longer messages may hog the channel. We 

note that in the one-message buffer network under consideration, thç unfairness 

effect is minimized if all the nodes have identical message length distribution and 

generate traffic with the same intensity. 

4.3.1.1 Message Response Time Analysis [741 

In performing the message response time analysis, we shall use the standard 

embedded Markov chain technique together with the properties resulting from the 

theory of regenerative processes [42, 43]. 

By assumption (iii), let denote the steady-state probability that there are i 

messages, i E {O, 1, 2, , M }, in the network. To obtain the mean message 

response time, E [DM], we shall invoke Little's law [55]: 
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M 

t' - rr 1 - E[N] -  i0 
- - (. 1) 

eff (M— Zi4)A. 
i—U 

where 2eff is the effective mean arrival rate of messages into the network and 

E[R] is the mean number of messages in the network. The task of obtaining the 

mean message response time then reduces to the evaluation of the steady-state pro-

babilities, 0j. To do so, let I(t) be the number of messages in the network at 

time t so that 

= urn Pr{N(t) = i} i E {O, 1, 2, , M} (4.2) 

provided the limit exists. However, the modeling and analysis of the continuous 

time process {R (t) ; t ≥ O} is difficult because of the task of observing the process 

states at all possible times t. To circumvent this difficulty, we shall define a new 

process which is observed only at specified points (embedded points) in time that 

coincide with the transmission completion epochs. Denote the new discrete-time 

process by {Z ; n ≥ l}; where Z, is the number of messages in the network 

immediately after the nth transmission completion epoch. As the state of the pro-

cess at the next epoch depends only on the state at the current epoch, the process 

{Z ; n ≥ 11 evolves as a Markov chain whose analysis can easily be handled. 

We define the limiting probability that there are i messages in the network 

immediately after the nth transmission (successful or unsuccessful) completion 

epoch by 
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fi = urn Pr {Z = i} i E {O, 1, 2, , M} (43) 
n - 

which are determined from the knowledge of the transition probabilities, 

between two successive transmission completion epochs where 

f ii = Pr{Z,1 = j I = i} 1, j O, 1, 2, , M}. (4.4) 

Now, to determine the transition probabilities, it is necessary to examine in detail 

the possible states of each node in the network. A node can be either idle (buffer 

empty) or active (buffer nonempty). Furthermore, an active node can be in the 

active-transmit or active-wait substate. An active node is in the active-transmit 

substate if it is currently transmitting a packet and in the active-wait substate if it 

has no transmission in progress. A node in the idle state changes to the active-

transmit (active-wait) substate if a new message arrives during the channel idle 

(busy) period. Conversely, a node in the active-transmit substate changes to the 

idle (active-wait) state at the end of a successful (unsuccessful) transmission. From 

(4.4), notice that in order to reach the (n + 1)t1 transmission completion epoch, at 

least one of the nodes must initiate transmission after the nth transmission comple-

tion epoch. The node(s) initiating transmission(s) may be any of the i nodes in the 

active-wait state at the nth transmission completion epoch or any of the (M - i) 

idle nodes which have just changed to active-transmit state. Further, by Markov 

chain theory, the number of messages in the network immediately after the 

(n + l)tul transmission completion epoch, j, depends only on the number of mes-

sages in the network immediately after the n' transmission completion epoch, 1, 
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and any activity during the interval (n, n + 1], viz., successful (or unsuccessful) 

transmission and message arrivals (or no arrivals) to idle nodes. Note that by the 

gated transmission strategy adopted, the duration of a successful transmission 

period is k time units if there are k packets, k  {l, 2, , K}, in the buffer at 

the instant of channel access. From the above explanation, the expressions for f1 

can be written concisely as a sum of the probabilities of four mutually exclusive 

events - P1, P2,P and 54 where 

P1 = Pr [transmission commencement by an idle node with success, 

Zj=jIZ = i} 

= Pr {transmission commencement by an idle node without success, 

Z +i=jIz=i} 

P3 = Pr [transmission commencement by an active-wait node with success, 

zn+l=jlzn. =i 

P4 = Pr [transmission commencement by an active-wait node without success, 

whose explicit expressions are given respectively as 

} 

Z +1 =jIZ =i} 

- K 
= Z e(j_i,i,k)ök , O≤i≤M,O≤j≤M—1 

k=1 

P2 = c(J—i-1,i,c) , O≤i,j≤M 

(4.5a) 

(4.5b) 
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- K 
P3 = (l— c) e(j —i + 1,i - l,k)ök , 1≤j ≤M, 1≤j ≤M —1 

k=1 

(4.5c) 

P4 = (1 - a) 'c(j - i,  1, c) , 1 ≤ i ≤ M. (4.5d) 

From (4.5), given there are i active-wait nodes in the network, o is the probabil-

ity of a transmission commencement by an idle node before any of the i active-

wait nodes. Given that there are y active-wait nodes in the network, E(x, y, k) is 

the probability of successful transmission and that x idle nodes (out of M—y-1) 

change to the active state during a successful transmission period of duration k 

time units. c'(x, y, c) is the probability of unsuccessful transmission and that x 

idle nodes change to the active state during a collision resolution period of duration 

c time units. 5 is the probability that there are k packets in a nodal buffer at a 

(successful) transmission commencement instant given that the buffer is nonempty. 

We derive the expressions for o, 8(x, y, k), e(x, y, c) and Sk as follows. 

(i) e(x, y, k): is expressed as a product of three factors, 

c(x,y,k) = f3(x,k)y(y)a(x,y + 1,k). (4.6) 

Clearly, a transmission by a node (say node m) is successful if none of the other 

(M - 1) nodes in the network initiate transmission during the collision window (of 

duration a time units) of node m 's transmission period. Let us suppose that the 

duration of node m 's transmission (success) is k time units. Then, f3(x, k) is the 

probability that there is no idle to active-transmit transition in the network during 

the collision window given that x nodes change from idle state to active-wait state 
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during k time units. Since an idle node changes to the active state via the arrival 

of a message (assumed Poisson), f3(x, k) is obtained as 

f3(x,k) = (4.7) 

Also, given that there are y nodes in the active-wait state when node m begins 

transmission, y(y) is the probability that none of the y nodes reattempt transmis-

sion during the collision window, 

y) = [e']Y , y{O, 1, , M  (4.8) 

Finally, we derive the expression for a(x, y + 1 , k) by the following reasoning. 

Since there are y nodes in the active-wait state when node m begins transmission, 

then in all there are y + 1(= y) active nodes in the network so that 

a(x, y + 1 , k) is just the binomial probability that x idle nodes (out of M—y —1) 

change to the active state during a successful transmission period of duration k 

time units, 

a(x,y,k) = I IM x J YILi_e_ , kte_] 
/ 

—x 

(ii) e (x, y, c): follows from the definition of 

XE{O, 1, ,M — y}, 

(4.9) 

ye JO, 1, , M-1}. 

e(x,y,c) = [1-3(x,c)7(y)]a(x,y + 1,c) (4.10) 

where 13(x, c), y(y) and a(x, y + 1, c) are given by (4.7), (4.8) and (4.9) respec-

tively with k replaced by c, the collision resolution period. Note that c(x, y, k) 

(also a (x, y, c)) is zero, if x < 0 or y < 0 or if x is greater than the number of 
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idle nodes in the network when a node begins transmission. 

(iii) : By the Poisson message arrival process assumption, the message interar-

rival time at each idle node is exponentially distributed with mean 1/7k time units. 

Also by assumption (vii), the retransmission delay for each node in the active-wait 

state is also exponentially distributed with mean 1/ic time units. Then, given that i 

nodes are in the active-wit state immediately after a transmission completion 

epoch, s is written as 

=  (M—i)?. (411) 
I iic+(M—i)2. 

a consequence of the probability that one exponential random variable is smaller 

than another. 

(iv) a k: From assumption (iii), the presence of k packets in a nodal buffer at the 

instant of successful transmission commencement simply implies that the message 

length consists of k packets. Hence, 

8 9k  
K (4.12) 

We now can write the expressions for the transition probabilities, f in a compact 

form as 

K I-

f Oj  = e(j,O,k)k + c(j-1,O,c) , O≤j≤M 
k=1 

(4.13a) 
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K 
c(j — i,i,k) 6k + e(j—i-1,i,c)J 

k=1 

f1 =  4 
K 

+(l ._j)[E(j_i+1,i_1,k)8k +e(j_i,j_1,c)],(4.l3b) 
k=1 

1 ≤ i ≤ M,i —1≤j ≤M 

o , 1≤i≤M,j<i-1. 

Note that f ii = 0 for j < i - 1, 1 ≥ 1 because at most one message can be suc-

cessfully transmitted on the channel. Using (4.13), the limiting probabilities 

}io' which are valid at all transmission completion epochs are calculated by 

the numerical technique of direct forward recursion [75]. In order order to identify 

those epochs which coincide with the successful transmission completion epochs, 

we can define a subset of the transition probabilities, fij as follows 

{S n  Z+i_—jIZ=i} = P+) 3 , 0≤i ≤M,O≤j≤M-1 (4.14) 

where Sn denotes the event that a message is transmitted suôcessfully at the nth 

transmission completion epoch. Assuming homogeneity, denote the conditional 

probability Pr {E + i, Zn+1 = j Iz, = I } by d1 . then under steady-state condi-
n i 

tion, the probability that j messages are in the system immediately after a success-

ful transmission completion epoch, CI is expressed by 

M 
= d11 f1 , 0≤j≤M-1 

i=0 
(4.15) 
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and since d1 = 0 for j <i - 1, we obtain 

df , 0≤j≤M—l. 

i=O 

In (4.16), the expressions for the probabilities d11 follow from (4.13) as 

K 
d01 =. e(j,O,k)k , O≤j≤M-1 

k=1 

d.. 
V 

(4.16) 

(4.17a) 

K K 
Cyi [ e(J _i,i,k)8k] + (1—a1)[c(i —i + 1,i — 1,k)Sk], 

k=1 k=1 

1≤i≤M,i-1≤j≤M-1 (4.17b) 

l≤i≤M,j<i—1 

diM = 0 , O≤i≤M. 

where diM = 0 because of Assumption (iii). 

(4.17c) 

Having found the (X) ' s, the final task is to determine the 's which, as 

defined previously are valid at all points in time. It is a known fact from queueing 

theory that the distributions 's and 's are not, in general, equal. Equality 

holds if and only if the arrival process is Poissonand arrivals and departures occur 

in unit steps [47]. For the network under study, we know that successfully 

transmitted messages depart one at a time but message arrivals to the network do 

not necessarily occur singly because of the possibility of simultaneous arrivals at 

different nodes. Thus, to relate the 's to the 's, we shall appeal to the conser-

vation theorem which states that under steady-state condition [38] 

(M - j)A = j , 0:5 j ≤ M - 1 (4.18) 
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where is the mean departure rate of message from the network. Equation (4.18) 

is certainly intuitive, since, in the long-run, the effective mean arrival rate of mes-

sage into the network must equal the mean departure rate of message from the net-

work. The left hand side follows because under steady-state condition, if there are 

j messages in the network (with probability then (M - j) nodes are idle and 

each has a mean message generation rate of X. We see that the linear equations 

(M in number) defined by (4.18) contain (M + 1) unknowns, namely, 4, 4, 

M—1 and . Hence, the first step in the solution of (4.18) is to determine 

using regenerative arguments, which is applicable because the process 

{N(t), t ≥ O} regenerates whenever N(t) takes the value 0. If we say that a cycle 

is completed every time the process returns to state 0, then by the theorem of 

regenerative processes [42], 

= lim Pr{N(t) = 0} = E[L0] (4.19) 
E[LC] 

where L and L0 denote respectively , the length of a cycle and the amount of time 

spent in state 0 during a cycle. L0 has a mean of 

E[L0] = 1 

MA. 

since when N (t) = 0 (or Z, = 0), there are M idle nodes in the network and each 

(4.20) 

generates a new message (of maximum length K packets) in accordance with a 

Poisson process having a mean arrival rate X. To compute the mean length of a 

cycle, E [La] we proceed as follows. If we let Q denote the mean time spent in 
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state m during a cycle and if n denotes the mean number of times state m is 

visited (recall that state m corresponds to the number of messages in the network 

immediately after a transmission completion epoch) then the mean length of a 

cycle is expressed as 

M 
E[LC jJ = nm m (4.21) 

m=O 

By Markov chain theory and the strong law for renewal processes, nm is found to 

be [42] 

n = 
M 

(4.22) 

in (4.21) is a sum of two components - Wm and Vm where Wm is the mean 

channel idle time between a transmission completion epoch (at which there are m 

messages in the network) and the next' transmission commencement instant, and 

V  is the mean successful transmission time of a message. Given that m nodes 

are in the active-wait state at a transmission completion epoch, the time until one 

active-wait node begins a retransmission or one idle node (out of (M - m) idle 

nodes) begins a transmission is exponentially distributed with mean 

1/{m K + (M - M)% This follows from the exponential retransmission delay and 

Poisson assumptions. Wm is then given by 

1 
M =  - (4.23) 

mi+(M — m)% 

and v m is expressed by 
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K F 

V = m m [( Z (k + a) ek)C(O, m, a) + (a + c)(1 - E(O, m, a))] + 
k=1 

K (4.24) 

(1 - (k + a)ek)e(O, m - 1, a) + (a + c)(l - e(O, m - 1, a))] 
k=1 

where the am term is zero when m = M and the (1 - term vanishes when 

m = 0. ek is the probability of successful transmission of a message (of length k 

packets) given that at most K packets of one message can be successfully transmit-

ted consecutively when a node gains channel access right 

M 
where e  = 

j-0 i=0 

ek= 
e  
  1≤k≤K 

el 

1=1 

M 
d$')f1 . From (4.17) we can write d1?) as 

d) c(j,O,k)6k , 0≤j≤M-1 

-1, 1, k) 50 + (1 - o)[c(j - i + 1, i - 1, k) 8k" 

di(k) = 1≤i≤M,i-1≤j≤M-1 

0, l≤i≤M,j<i-1 

d) = 0 , 0≤i≤M. 

Substituting the expressions, for E[L0] and E [Lc I into (4.19) gives 

fo 

MXf 
m m 

(4.25) 

(4.26a) 

(4.26b) 

(4.26c) 

(4.27) 

M=O 

Having determined 00, we then can solve for the remaining M unknowns using the 
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M linear equations (4.18) and subsequently, we can compute E [DM] using (4.1). 

4.3.1.2 Analysis of Message and Packet Access Delays 

The message access delay, WM, is defined as the time between a message 

arrival instant and the successful transmission commencement instant of the last 

packet in the message.. This definition is reasonable because a message is assumed 

to be delayed so long as at least one of its packets is still in the buffer. The packet 

access delay, WA,, is defined as the time between a message arrival instant and suc-

cessful transmission commencement instant of an arbitrary packet. We shall derive 

expressions for the mean message and packet access delays as well as their interre-

lationship. 

The problem of comparing batch (message) and customer (packet) delays has 

been studied before by Halfin [76] and Whitt [77] in the context of queueing sys-

tems employing impartial service disciplines. Halfin [76] showed that for a large 

class of queueing systems where customers arrive in batches, the delay distribution 

of the last customer in a batch to enter service equals the delay distribution of an 

arbitrary customer if the batch size has a geometric distribution. Using the notion 

of stochastic ordering, Whitt [77] provided bounds between the mean delay of an 

arbitrary customer and that of the last customer in a batch to enter service when 

the batch size distributions are new better or worse than used in expectation, 

important concepts in reliability theory [78]. In addition, [77] gave an approximate 

relationship between the two expected delays, its application requires the 
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knowledge of the mean delay of the first customer in a batch and' the first two 

moments of the specified batch size distribution. Unfortunately, direct application 

of Whitt's relationship to LANs employing contention-resolving protocols such as 

the CSMA-CD seems impossible because of the formidable task of determining the 

mean delay of the first packet of a message. Hence, in the analysis presented 

below, we use a different approach which reverses the procedure of first determin-

ing the mean packet access delay and then the mean message access delay (as 

described in [76-77]). Specifically, the mean message dela' is first obtained from 

the previously found message response time and then the mean packet access delay 

is determined. The mean message access delay (or the mean access delay of the 

last packet of a message), E [WM], is equal to the mean message response time 

E [DM ] minus one packet transmission time (a consequence of the GT strategy) 

E [WM] = E [DM1 - 1 (4,28) 

where E[DM] is given by (4.1). Also, due to the GT strategy, the mean access 

delay of an arbitrary packet which is the kt1 to be transmitted in a message is 

expressed by 

K 
E[W] = E[W 1] + Y, (k - (4.29) 

k=1 

where E [W i is the mean delay of the first packet of a message and tk is the pro-

bability that an arbitrary packet is the kth to be transmitted in a message where 

[79] 
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K 

g1 

i =k  
, 

E[G] 

(4.30) 

K 
(= g,/ I g, 1 ≤ i ≤ K) is the probability distribution of unblocked message 

j=l 

lengths with mean E [G}. Similarly, we can write the mean access delay of the 

last packet of a message as 

E[WM] = E[W 1] + I(k -  1)9k (4.31) 
k=1 

Note that in (4.29) and (4.31), E[W1] is still unknown. By combining (4.28) and 

(4.31), E [W 1] is obtained as 

K 
E[W1] = E[DM] - 1 - (k - 

k=1 

If 
(4.32) 

Substitution of (4.32) into (4.29), and then using the values of and k gives, 

after simplification 

E[WI = (E[DMJ_ 1)_(E[G']_l)+ 

a2 ,+ (E[G])2 
G 

0.5 
2E[G] 

(4.33) 

where 2, is the variance of the lengths of unblocked messages. The relationship 

between the message and access delays then follows from (4.33) as 

E[W] = E[WM] — (E[G] - 1)+ 
G 

2E[Gj 
0.5 

(4.34) 
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4.3.2 The Limited Transmission Strategy 

Instead of transmitting all the packets of a message when a user gains channel 

access right, the LT strategy requires the transmission of up to a maximum of u 

packets where u > 1 and is henceforth referred to as a minimessage. In a real net-

work, the value of u is preselected on the basis of the expected network traffic and 

is assumed to be identical. for all the nodes in the network. In this way, the unfair-

ness effect of the GT strategy is minimized, - though at the expense of increased 

access delay. Intuitively, the LT strategy is expected to show an improved perfor-

mance when compared to the CT, 

4.3.2.1 Message Response Time Analysis 

The analysis proceeds in the same way as that of Section 4.3.1.1 except for 

some modifications. First note that the duration of a successful transmission period 

(neglecting propagation delay) is mm (u ,Q), where Q is the queue length at a suc-

cessful transmission commencement instant. Thus, for the LT strategy, transmis-

sion completion epoch is defined as 

Transmission Completion Epoch = 

End of an unsuccessful transmission 

or 

End of a successful transmission of j 
packet (s), 1≤j ≤ u 

The components of the transition probabilities between two successive embedded 

epochs are given by (4.5) with the following modification. Since the duration of a 

successful transmission depends on u and the queue length at a successful 
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transmission commencement instant, it is logical to break the expression for 

(and also P3) into two parts: (i) when the queue length is less than or equal to u, 

and (ii) when the queue length is greater than u. Expressed mathematically 

- U U 

k=1 k=1 

O≤i≤M,O≤j≤M-1 (4.35a) 

and 

14 P3 = (l—)[ c(j - i+li — 1,k)6k + eCj—i,i--1,u)(l— k'' 
k=l k=1 

1 ≤i ≤ M , 1 ≤j ≤M—1 . (4.35b) 

The fij 's now become 

f 
U U 

Of = ZJ,O,Ic)6k+c(J -1,0 ,u)(1_ Zk)+e(J -1,0,c), 
k=l k=1 

f1 = 

O≤j ≤ M (4.36a) 

k=1 k=1 

+ c(j—i-1,i,c)] 

+ 

c(j_i+l,i_l,k)6k + c(j_i,,u)(l_8k) 

+c(j—i,i,-1,c)], 

0, 1≤i≤M,j<i-1. (4.36b) 

and the 's are then determined as before using the direct forward recursion tech-
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nique. Recall from (4.12) that 8k was defined in terms of the message length, 

however, such a definition no longer applies in (4.36) because, at an instant a node 

gains channel access, its queue length is not necessarily equal to the initial message 

length, since part of the message might have been successfully transmitted prior to 

the current channel access. Hence, for the LT strategy, 8k is redefined in terms of 

the queue length at a successful transmission commencement instant. To this end, 

let Q denote a representative user queue length immediately after the nth 

transmission completion epoch. We assume that the process {Q,; n≥1} evolves as 

a discrete-time Markov chain whose limiting buffer state probabilities are defined 

by 

7C In = urn Pr ml , m = 1, 2, . )K 
n -4 00 

Then, 8k is  now given by 

(4.37) 

= 1 - it0 ,. k = 1, 2, . , u (4.38) 

where the 7tk'S remain to be determined. Note however that the ltk 's depend impli-

citly on the value of u, thus as an illustration, if K = 4, the state transition 

diagrams for u = 1, 2, 3 and 4 are shown in Fig. 4.1. 

The Markov chain n ≥1} has a finite state space and is irreducible, 

aperiodic and positive recurrent. Hence, the stationary probability distribution for 

queue length at the embedded epochs exists and is obtained by solving numerically 

the standard invariant equation for Markov chains [47], where the queue state 
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transition probabilities are given by 

l≤j≤K — u 

'Oj 
K — u<f≤K 

j In 

q00 

q0 

qii 

= Z 9k 
k=l 

.1 

= ?m u.<i≤K 

= 1 m 1≤i≤K 

(4.39) 

qij = 0 , otherwise 

In (4.39), 'm is the limiting probability of successful transmission of a minimes-

sage and r' is the probability that an idle node generates a new message (of length 

≤ K packets). To determine let E denote the event that a minimessage (of 
In n 

length k, k E {l, 2, , u } packets) is transmitted successfully at the nth 

transmission completion epoch. Assuming homogeneity, denote the conditional 

probability Pr j. Z,..1 = j I = i } by sf1, then under steady-state condi-

tion, the probability that j messages are in the system immediately after a success-

ful transmission completion epoch, s is given by 

M 
I = , 0≤j≤M 

i=0 

so that is 

(4.40) 
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M 
= S. (4.41) 

f—U 
In (4.40), the expression for s is written from (4.36) as 

Oj = 0, k)Sk + e(j - 1, 0, u)(1 - k , 0 :5j :5M (4.'42a) 
k=l  

Si) = 

1 - i, i,k) +  i - 1, i, u)(1 - k + 

k=1 k=i 

- - i + 1,1 — 1, k)6k + CU - i, i — 1, u)(1 18k)I' 

1≤i ≤ M , i — 1≤j ≤M 

0 , 1≤iM,j<i-1. (4.42b) 

Finally, the expression for r in (4.39) is obtained as 

M 
F = . (4.43) 

i=O 

where the 's are given by (4.11). An examination of (4.36) and (4.39) demon-

strates the interdependence between the Q-process and the Z-process: on the one 

hand, the f 's are expressed in terms of the ire's via 6i; and on the other hand, 

's are expressed in terms of the 's via This interdependence is analo-the q1 

gous to that seen before between the user and channel Markov chains in Chapter 3. 

Hence, in the the spirit of principle 5 of the decomposition approximation (Chapter 

2), the limiting probabilities [fi } and {it1 } are determined iteratively. 

The remainder of the analysis follows exactly as in Section 4.3.1.1. However, 

note that in computing the 's (4.16), the upper limit of summation in (4.17) is 
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replaced by u. Similarly, in (4.24) the upper limit of summation is replaced by u 

and furthermore, ek' is now redefined as ek' = ek ' m (note that 'm is also equal 

U MM 
to e1 ) where ek = 

1=1 f-U i=U Ij 

given by 

(k) = O,k)6k 03 

Now, for k = 1, 2, , u - 1, .(k) is 
Ii 

0≤j ≤ M 

o1[e(j _i,i,k)ak] + (l-)[c(j -i + 1,i - l,k)6k] 

(k) = 1 1≤i ≤ M, i - 1≤j≤M Ij 
1i≤M,j<i-1 

and for k = u we have 

(4.44a) 

(4.44b) 

U 

= e(j - 1,0, u)8 + CU, 0, u)(l -  Z 8k) , 0 ≤j ≤M (4.45a) 
k=1 

aI[e(/_i,i,u)6U +ej_i_f,i,u)(1_ök )} + 

U 

5 (u) = (1- y1)[e(j - I, + 1,1 - 1, U) 8U  - i, i, u)(1 - 1 80 
U k=1 

1 ≤ i ≤ M, i - 1 ≤ j ≤ M (4.45b) 

0 , 1≤i≤M,j<i-1. 

Remarks: 

1) In the expression for the transition probabilities s ii (4.42), the number of pack-

ets that can be transmitted continuously at every channel access is u, however, this 

is not exactly the case at all times. In fact, the upper bound should be mm (u ,Q), 
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where Q is the instantaneous value of the queue length at the instant of channel 

access by a node. Unfortunately, mm (u ,Q) is not directly implementable in com-

putation due to lack of prior knowledge of Q. Hence, the approximate upper 

bound that is used during the computation is [E[G1111 the nearest integral value 
not greater than E [G]; note that beyond this value the result predicted by our 

analysis is inaccurate. 

2) Instead of having all the nodes adopt the same strategy, it is possible to divide 

the nodes into two groups where MG nodes adopt the GT strategy while ML 

nodes employ the LT strategy, we then have what we call the mixed (GT-LT) stra-

tegy. Such a scenario has practical application, for example, in integrated services 

local area networks (ISLANs), which are designed for carrying voice and data 

traffic over the same channel by packetized transmission [80-83]. In such a net-

work, each voice node employs the GT strategy while each data node uses the LT 

strategy, It is argued in the following section that the maximum allowable random 

component of the voice packet delay is minimum if the GT strategy is adopted by 

the voice nodes. 

4.3.3 Analysis of Voice Packet Delay in ISLANs 

The voice packet delay, D, is a sum of the packetization time, the chan-

nel access delay, Da and the packet transmission time, Tr that is 

D = T+D+T. 
V p a r (4.46) 

T = B /Vd and Tr = (B, +B0 )/C, where B (B0) is the packet data (overhead) 
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length in bits, Vd is the vocoder rate in bits/sec and C is the channel capacity in 

bits /sec. Da is the random access delay which depends on the number of colli-

sions experienced by a packet and the backoff algorithm employed. A requirement 

for voice traffic is the delivery of a voice packet before the maximum allowable 

value of Da (denoted Da ) elapses. For continuity of speech, Da must be 
max e max 

bounded, a way of achieving this is by choosing a finite buffer size. But, at first 

thought, a consequence of finite buffer is the rejection of voice packets which 

implies discontinuity of speech. Hence, for voice applications, we shall impose a 

condition that no new packet in a taikspurt is lost due to the buffer being full, a 

necessary condition to ascertain continuity of speech. We implement this condition 

by discarding the oldest (head of queue) packet when a new packet arrives into a 

full buffer since at that instant, the head of queue packet has been delayed up to 

anyway. Given a packet transmission strategy, the above explanation 
max 

enables us to express Da in terms of T , Tr and K. For the CT strategy, 
max 

for the GT strategy, 

and for the LT strategy, 

D = KT — T 
max P r 

D = K(T — Tmax ) P r 

D = AT — uT. 
amax p r 

(4.47a) 

(4.47b) 

(4.47c) 

It is obvious from (4.47) that Da is least for the GT strategy; notice also that 
max 
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(4.47a) and (4.47b) are special cases of (4.47c). 

4.3.4 Performance Comparison of the Transmission Strategies 

We present below numerical results obtained from the analyses of the preced-

ing sections. In addition, simulation results are also presented to assess the accu-

racy of the analytic results. The following input parameters are selected: 

Number of nodes in the network, M: 50. 

Normalized propagation delay, a: 0.01 slots. 

Collision resolution period, c: 0.02 slots. 

Mean packet retransmission rate, : 0.5. 

Buffer Size, K: 10. 

Mean message length, E [G]: 5 packets. 

For Fig. 4.2 only, message lengths are geometrically distributed (but other distribu-

tions can as well be used). From the specified values of K and E [G], the mean 

length of unblocked messages, E [GJ is calculated to be 3.8. 

Fig. 4.2 is a plot of the mean message response time versus the throughput for 

the conventional (u = 1), limited (u = 2, 3) and gated transmission strategies. The 

throughput is defined (nonrigorously) as the rate of successful transmission of mes-

sages, by the steady-state operation assumption, this implies that effective message 

throughputs are effective message arrival rates, 2eff' so that the normalized 

effective throughput (or simply throughput) is given by X eff E [G 1. Note the 

excellent agreement between the simulation and analytic results. We see that the 
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CT strategy gives the worst response time, thus confirming our earlier intuition of 

its unsuitability for multipacket message transmission on a random access channel. 

For the LT strategy, we see that as u increases, there is an improvement in perfor-

mance and the best response time is obtained using the CT strategy. However, our 

result suggests that the GT strategy does not give the least response time over all 

range of throughput; for this example, beyond approximately 65% throughput, the 

LT strategy (u = 3) gives a lower response time than the CT strategy. This 

behavior is explained by first noting that in the high throughput region, the mean 

retransmission delays incurred by employing either the LT strategy (u = 3) or CT 

strategy will be approximately equal. Hence, the extra delay of the GT strategy is 

due to the transmission time of.the extra packets (and overheads) in a message. 

Fig. 4.3 shows a comparison between the mean message and packet access 

delays (GT strategy in vogue) for two message length distributions: geometric and 

truncated Poisson. We have chosen the truncated Poisson distribution because of 

its lower variance relative to the 'popular' geometric distribution, which is found to 

best fit measurement data on real computer communication networks [84]. Notice 

that the truncated Poisson and geometric distributions are selected here to illustrate 

the usefulness of the analysis; in a real network, the actual message length distribu-

tion will depend largely on the type of application for which the network is 

designed. 

Fig. 4.3 reveals that in the throughput range below 0.8,, the mean message 

access delay is not equal to the mean packet access delay for the two message 
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length distributions, the difference between the access delays being lower for the 

geometric distribution. A further observation from Fig. 4.3 is that the mean mes-

sage (packet) access delay for the truncated Poisson distribution is higher than the 

corresponding delays for the geometric distribution. However, it is found that the 

variance of geometrically distributed message lengths is higher than that for trun-

cated Poisson distributed message lengths so that the above observation is contrary 

to the expected result that a higher variance message length naturally leads to 

higher delay. We explain the above result by the finite buffer size assumption and 

the whole message acceptance strategy adopted in this chapter. For the geometric 

distribution, a large proportion of the messages generated are rejected due to their 

lengths being longer than the buffer space. Conversely, for the lower variance 

truncated Poisson distribution, only a fewer number of messages will be rejected. 

Thus, the larger number of messages accepted then leads to an increased message 

(packet) access delay as compared to that for geometrically distributed messages. 

Note that the effect of increasing K and/or E [G ] leads to an increase in the mean 

access delays [74]. 

Fig. 4.4 displays the mean voice packet delay (purely simulation results) 

versus the number of voice nodes in the network where the nodes employ either 

the GT or CT strategy. In the simulation model, the channel parameters are based 

on the IEEE 802.3 standard [21]. Throughout the simulations, each voice node is 

assumed to be active, that is, it generates an alternate sequence of talkspurts and 

silent periods. The distributions of talkspurts and silences are assumed exponential 
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with average lengths taken to be 1.34 sec and 1.67 sec respectively {85}. The 

voice signal generated while in a taikspurt is digitized at a constant rate of 

64 kbits /sec with a speech activity of approximately 40%. Each voice packet 

formed consists of 368 bits (data) and 208 bits (overhead). The above chosen 

data gives a packetization time of 5.75 msecs and the number of packets in a 

talkspurt (geometrically distributed) has a mean (calculated) of 234 packets. 

The voice packet delay is plotted for different values of K, which as seen 

from (4.47), partly determines the maximum random access delay. We see that for 

K = 1, there is no gain derived by employing either the GT or CT strategy, which 

is expected. However, as K increases, the GT strategy, gives a better delay perfor-

mance compared to the CT strategy; this improvement is more prondunced at 

higher values of K. Thus, the GT strategy appears to be more suitable for real-

time multipacket message transmission on a random access channel. 

4.4 Summary 

The gated and limited transmission (GT and LT) strategies are proposed in 

- this chapter as possible candidates for transmission of multipacket messages on 

.CSMA-CD LANs. The delay analysis of the two strategies is then performed 

using Markov chain theory and limiting results from regenerative processes. 

The principal findings from this chapter are as follows: 

1) the conventional transmission (CT) strategy seems unsuitable for multipacket 

message transmission on CSMA-CD LANs and the application of the LT and GT 
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strategies yields an improved delay performance, 

2) for low to medium throughput range, the GT strategy gives the least mean mes-

sage response time (compared to LT and CT strategies), but in the high throughput 

region, the LT strategy (with a high minimessage size) may perform better than the 

GT strategy, 

3) the mean access delays are sensitive to the message length distribution and node 

buffer size, and 

4) for voice data transfer application, the GT strategy displays a much improved 

performance over the CT strategy for values of buffer size greater than one. 

This chapter has examined the performance of CSMA-CD LANs in which 

only one multipacket message can be stored at each node. The scenario where 

more than one multipacket message can be stored forms the topic of the next 

chapter. 
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CHAPTER 5 

MULTIMESSAGE BUFFER LANs WITH MULTIPACKET MESSAGES 

5.1 Introduction and Problem Statement 

In this chapter, we shall study the performance of a random access LAN hav-

ing a finite number of nodes each capable of buffering multipacket messages; this 

as the reader will recall is the higher order scenario of that considered in the 

preceding chapter. The motivation for studying the current scenario follows natur-

ally from the operation of a real (random access) network to which new messages 

arrive while a node is waiting to transmit previously queued messages. Hence, the 

single-message buffer assumption of the last chapter may seem somewhat unrealis-

tic. But, as pointed out in Chapter 3, moving towards reality leads to analytic 

complications due to the interfering queue problem, this is also the main problem 

we are faced with in the current chapter. Furthermore, in the multipacket message 

buffered CSMA-CD LANs considered here, the inherent interfering queue problem 

is compounded by the modeling of message lengths and how the queued messages 

are transmitted when a node gains channel access right. Our objective in this 

chapter then is to provide appropriate solutions to these problems which will, hope-

fully, enable us to predict the performance of such LANs. We state that there are 

no known or published prior studies on the above scenario for random access 

LANs and the current study is the first [86]. 
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5.2 Model Formulation 

The model description of Section 4.2 carries over into the present section 

except for the following changes: the buffer size at each network node is assumed 

to be infinite, as a consequence, the mean message arrival rate of the Poisson pro-

cess is now equal to 2. The latter part of assumption (iii) in Section 4.2 is relaxed 

since for the current scenario a node can store more than one multipacket message. 

Assumption (iv) is dropped in its entirety as there is now no restriction on message 

length. Finally, assumption (v) is generalized so that the transmission time of a 

packet is denoted by a random variable S with distribution function (DF) S (x) and 

probability density function (pdf) s (x). We further assume that after successful 

transmission, a packet will be deleted from the nodal queue and queued messages 

are transmitted on a first-come, first-served basis. A node that gains channel access 

right employs the gated transmission strategy and in addition, continues to transmit 

until its buffer becomes empty and the channel then becomes idle (this transmis-

sion strategy is referred to as exhaustive service under the polling access scheme 

[87]). 

Since an exact analysis for the above network model is difficult due to the 

interaction among the nodal queues, we therefore resort to the decomposition 

approximation (Chapter 2). Specifically, by principle 1, we shall decompose the 

network into M separate nodal queues. From the network operation and the 

modeling assumptions stated above, each node is independently modeled by an 

MX IG /1 queue undergoing busy and resting phases; and the supplementary 
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variables technique [88-90] is applied for calculation of relevant parameters of the 

nodal queues. The interaction of the nodes is then modeled by the channel-activity 

parameters, namely, the probability that the channel is idle, jt and the probability of 

successful transmission on the channel, y 

5.3 Performance Analysis 

We begin by defining the important terminologies required in the analysis. A 

node is said to be in the busy phase if it is in the nonempty state (at least one 

packet is present in the node buffer) and has acquired the channel access right. On, 

the contrary, a node is said to be in the resting phase if (a) it is in the empty state 

(no message is present in the buffer) or (b) it is in the nonempty state but undergo-

ing backoff or (c) it is in the nonempty state and is currently undergoing unsuc-

cessful transmission (Fig. 5.1). The justification for assuming case (c) as a resting 

phase is as follows: since the colliding packets will be retransmitted the nodes 

involved in a collision behave like resting. Transmission initiation by a node 

occurs if it is in the nonempty state and it senses the channel busy. Transmission 

commencement by a nonempty node occurs if it senses the channel idle and 

immediately begins a transmission. The end of a resting phase of a nonempty 

node occurs if the node commences a transmission and acquires the channel access 

right. 
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5.3.1 Generating Function for Nodal Queue Length 

In this Section, we derive the generating function for nodal queue length 

under steady-state condition. We first observe that at an arbitrary time t, a node in 

the network can be characterized by the following random variables: 

= the phase of the node at time t 

0 if the node is in the resting phase at time t 

(t) =1 
[1 if the node is in the busy phase at time t 

Q (t) = number of packets present in the queue at time t 

S (t) = residual successful transmission time of a packet at time t 

R (t) = residual resting time of a node in the resting phase at time t 

In addition, let B be the random variable denoting the duration of a busy phase of 

a node and let B (x )(b (x)) be its DF (pdf). Also, denote the duration of a resting 

phase of a node by R and let R (x )(r (x)) be its DF (pdf). 

In general, the single-server queue-length process (Q (t) , t ≥ 0} is non-

Markovian because the future behavior of the process cannot be predicted by the 

current number of packets in the queue. To make The queue length process Marko-

vian, we shall apply the supplementary variable technique whose underlying idea is 

characterized by the inclusion of one or more additional variable(s) in the non-

Markovian process [88]. Application of the supplementary variable technique to 

the resting and busy phases of a node (Fig. 5.1) results in two bivariate Markovian 

processes {Q (t) , (t)} and {Q (t) , f (t)} which will then be jointly studied in 
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order to obtain results for the non-Markovian process {Q (t)}. In the queueing 

literature, it is usual to define the augmentation variable in terms of the backward 

recurrence time instead of the forward recurrence time used in the definition of 

S (t) and R (t) stated above. 

We first derive the steady-state differential-difference equations governing 

each node activity. For the {Q (t) , S(t)} process, we define p(t, x)At + o 

n > 0 as the probability that at time t there are n packets in the nodal queue and 

the node is in the busy phase and the residual successful transmission time of a 

packet lies between x and x + At, that is 

p, (t, x )& = Pr {Q (t) = n, x < S (t) ≤ x + At, (t) = 11, n = 1, 2, (5.la) 

Similarly, for the {Q (t), 1? (t )j process, we define 7rn (t, x )& + o (&), n ≥ 0 as 

the probability that at time t there are n packets in the nodal queue and the node is 

in the resting phase and the residual resting time lies between x and x + &, that 

is, 

1r  (t, x)& = Pr{Q(t) = n, x <](t) ≤x + At, (t) = O}, n = 0, 1, . (5. lb) 

To obtain the differential-difference equations connecting these probabilities, we 

shall relate the state of the node at time r + At to the state at time r. The proba-

bilities defined by (5.la) and (5.1b)-give rise to two cases of interest. 
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Case 1: Node in Busy Phase 

For n > 1, 

p,1 (t + At, x) = p(t, x + &)[i - 2At + o(&)] 

n—i 
+ Z j_(t, x + &)[?& + o (&)]g 

k=l 

+ Pn+i(t &){s(x)&] + 1tn(t &)[s (x)&] . (5.2a) 

The term on the left hand side is the probability that at time t + At, there are n 

packets in the queue, the node is busy and the residual successful transmission time 

of a packet is x seconds (x > 0). The only four ways to enter this state are 

(1) there were n packets in the queue at time t, the node is busy and the packet 

undergoing successful transmission has a residual transmission of x + it 

seconds and there were no message arrivals in (t, t + At) or 

(ii) there were n - k packets in the queue at time t, the node is busy and the 

packet under transmission has a residual transmission time of x + At seconds 

and one message of length k packets with probability 

(k = 1, 2, , n - 1), arrived in (t, t + &) or 

(iii) there were n + 1 packets in the queue at time t and the node is busy with the 

residual packet transmission time being equal to At and the packet transmis-

sion will be completed in (0, &) (x, x + &) or 
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(iv) there were n packets in the queue at time t and the node is resting with the 

residual resting time being equal to At and the head of queue packet will 

begin a successful transmission in (0, At) (x, x + At). 

Note that in (5.2a), the probability that a packet will complete a transmission in 

(0, At) and the probability that a packet will begin a transmission in (0, At) are 

equal. 

For n = 1, 

p1(t +&, x) = p1(t,x +tt)[l —2At +o(At)] 

+ 2( & ) [s (x )& I + i(' tt )[s (x )& I (5.2b) 

where the terms in (5.2b) have the same interpretation as the corresponding terms 

in (5.2a). 

Case 2: Node in Resting Phase 

For n ≥ 1, 

+ At, x) = 7C (t, x + Lu)[1 - ?At + o(&)] 

+ 1t k(t, x + &)[2& + o (E(t)]g. (5.3a)" 

The term on the left hand side is the probability that at time t + At, there are n 

packets in the queue and the node is resting with the residual resting time being 

equal to x seconds. The only two ways to enter this state are 

(i) there were n packets in the queue at time t, and the node is resting with the 

residual resting time being equal to x + At seconds and there were no arrivals 

in (t, t + it) or 
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(ii) there were ii - k packets in the queue at time t, and the node is resting with 

the residual resting time being equal to x + At seconds and one message of 

length k packets arrived in (t, t + At). 

For n = 0, we can write 

+ At, x) = ir0 (t, x + At)[l - At + o(&)] + 1r0 (t, &)[r(x)At] 

+ p1(t, At)[r(x)&]. (5.3b) 

The left hand term and the first term on the right hand side have the same interpre-

tation as the corresponding terms of (5.3a). The second term on the right hand 

side can be interpreted as the probability that at time t there were no packets in the 

queue and the node is resting with the residual resting time being equal to At and 

the resting period will terminate in (x, x + At) while the third term can be inter-

preted as the probability that at time t there was one packet in the queue and the 

node is busy with the residual packet transmission time being equal to At and the 

resting period will begin in (x, x + At). As in case 1, the probability that a resting 

period will end in (x, x + At) and the probability that a resting period will begin 

in (x, x + At) are equal. Note that the node activity described above is analogous 

to the standard M/G/l queueing system with server vacations where the server 

begins a vacation when the buffer goes empty [91-92]; but in our case the node 

can be in a resting phase even when the buffer is nonempty. To obtain the 

steady-state differential-difference equations describing the node activity we adopt 

the following procedure: Starting from (5.2a), let us expand the left hand side in a 
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Taylor series about t while ignoring second-order and higher order terms in At: 

aP(t, x) 
p, (t + At, x) = p, (t, x) + At + o (At). 

at 

Substituting this in (5.2a) and rearranging the terms gives 

Pn (t, x) - p, (t , x + At) + a At = - [XAt Ip,, (t, x + At) 

n—i 
+ At z P —k (t , x + At )g + p, + i(t, At )[s (x )At] 

k=1 

+ it(t, At) [s(x)At] + o(At) 

Dividing both sides by At and letting At - 0 gives 

Don  x) 
+ 

ax at 

n—i. 
= —?q,(t,x)+ x pfl (t,x)g 

k=1 

0)s (x) + 7c(t, 0)s (x) 

aP(, x) 
As t -4 00 using the equilibrium results urn 

t-400 

limp(t,x) — p(x) we finally obtain 
t-400 

at 

(5.4) 

(5.5). 

=0 and 

dp(x) — n—i 

- 1'n' + nkk +p 1(0)s(x) + 1t(0)s(x)  
k=i 

(5.6a) 

Similarly, by applying the above procedure to (5.2b), (5.3a) and (5.3b) we get 

dp 1(x) - 

dx - Xp 1(x)+p 2(0)s(x)+ir1(0)s(x) (5.6b) 
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and 

dc 

dit0(x) 

n 
= - ?it n (x) + ?Z 9k 7Cn—k (x) , n ≥ 1 (5.7a) 

k=1 

= —2it0(x)+7r0(0)r(x)+p 1(0)r(x) 

respectively. Under steady-state condition, define the Laplace-Stieltjes transforms 

(LST) of p, (x), 7C  (x), 5(x) and R (x) respectively by 

00 

(5.7b) 

P(8) = feOXp(x)dx , n = 1, 2, (5.8a) 
0 

00 

fl,  (8) = feit(x)dx , n = 0, 1, (5.8b) 

0 

00 

S*(e) = fe's(x)dx (5.8c) 

0 

00 

R*(0) fer(x)dx 

0 

Further, let us introduce the generating functions 

00 

(5.8d) 

P (z, 0) = Y, p, (0)z (5.9a) 

n=1 

P*(0) = P:(e)Zn (5.9b) 

n=1 

00 

fl(z,O) = 7t(0)z' (5.9c) 

n=0 
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00 fl* (z, 8) = E ll ,(9)z ' . (59d 

Then, the steady-state probability generating function for queue length Q * (z, 0) is 

given by 

* * * 
Q (z, 8) = P (z, 8) + II (z, 8) 

which after tedious algebraic manipulations is found to be 

Q*(z 0) I a1(z, 8) + a2(z, 0) 1 
=  f l(o) (1 _R*(?))(z --- . + A.G(z)) 

where 

a 1(z, 0) = z (R * (? - 2G (z)) - 1)(S * ( - Q (z)) - S * (8)) 

and 

(5.10) 

a 2' 8) = (z - S * (2 - XG (z )))(R * ( - XG (z)) - R * (8)) 

To establish the existence of the limiting probabilities we shall first set 8 equal to 

zero in (5.10) 

Q* (z 0) = 
a1(z, 0) + a2(z, 0) 

(1 - R * R* (A.))(z - S* (), - A.G(z)))(-2. + A.G(z)) 
(5.11) 

Using Takac's Lemma [93, p. 47], we see that if A.E[G]E [S] ≤ 1, then a denomi-

nator factor of (5.11) (z -, S * (A. - XG (z))) = 0 has exactly one root z 0 in the 

region I z I ≤ 1 and this single positive real root lies on the unit circle, that is, 

z0 = 1. Note that by the analyticity property of probability generating functions 

the numerator of Q * (z, 0) must be zero at z = 1. Since the root z is uniquely 
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determined, we conclude that the steady-state probabilities {p (0)} and fit1 (0)} can 

be determined uniquely. In particular, to obtain p we simply set z = zo = 1 

in (5.11) and after applying L'Hospital's rule twice we get 

p1(0) = (1— XE [G]E [S]) (1 -1(X)) (5.12) 

The mean queue length is obtained using a property of probability generating func-

tions and successive application of L'Hospital's rule (four times to reach conver-

gence) we obtain after tedious manipulations 

E[Q]  = XE [G ]E [S] + XE [G ]E [R 2] + X(X(E [G ])2E [5 2 + (E [G 2 - E [G ])E [S])  

2E[R] 2(1— XE[G]E{S]) 

(5.13) 

Notice that E [Q] is expressed in terms of the first two moments of the node rest-

ing period which remain to be determined. 

5.3.2 Waiting Time Distribution 

The waiting time of an arbitrary packet, W, consists of two components: the 

waiting time due to the other packets present in the queue when the message of the 

tagged packet arrives, W0, and the waiting time due to the position of the arbitrary 

packet in its message, Wg• The evaluation of W0 depends on whether the mes-

sage containing the test packet arrives during a nodal busy or resting period. Let 

{WOb IQ = n } denote the waiting time of the new message arriving in a busy 

period and finding n packets in the queue, n = 1, 2, 3, We have the condi-

tional event 
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{WOb IQ = n } = Residual transmission time of the packet undergoing transmission 

+ (n - 1) packet transmission times of the other packets in the queue. 

(5.14a) 

Similarly, let {Wor IQ = n } denote the waiting time of the new message arriving 

in a resting period and finding n packets in the queue n = 0, 1, 2, . Then 

{Wor IQ = n } = Remaining resting time of the node 

+ n packet transmission times of the packets in the queue. (5.14b) 

Herein lies the rationale for using the forward recurrence time (as opposed to the 

usual backward recurrence time) as the supplementary variable: It enables us to 

determine the LST of the distribution of residual transmission time of the packet 

undergoing successful transmission when on arrival the new message finds n pack-

ets in the queue (given by (5.8a)). Furthermore, we can also determine the LST of 

the distribution of residual resting period of the node from the arrival instant of the 

new message which finds n packets in the queue on arrival (given by (5.8b)). 

Hence, by unconditioning (5.14) with respect to n the LST of the distribution of 

W0 is given by 

CO 00 

W(8) = nlP85 1nl+ no1Tln e)[s(e):1n 

Using (5.9b) and (5.9d), we can express W(0) as 

• 
w :(e) = P * (s * (e)e) + fl* (S (0), 0) 

 5* () 

and after simplifying, W(8) becomes 

(5.15) 
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w;(e) = 1 — XE[G]E[S]  (1 - R *  (0)) (5.16) 
(0_ + 2.G(s* (e))) E[R] 

To obtain Wg we shall invoke Burke's result which gives the probability that a 

packet is in the Oh position in its message as [79] 

00 

i=k 1 (5.17) 

tk = E[G] 

that is, from the instant when a node begins the successful transmission of the first 

packet in a message, the waiting time of a test packet which is in the kth position 

in the message is equal to the sum of the transmission times of the (k — 1) packets 

ahead of the test packet. Stated mathematically, 

k—i 
•CWg :5tltest packet is in kth position} = [ Si :5t} ,k = 1, 2, 

i=1 

where $ is the transmission time of the ith packet. Taking the LST of the distri-

bution function of both sides and unconditioning yields 

= tk[S(0)] 
k=1 

where the packet transmission times are assumed to be independent and identically 

(5.18) 

distributed. Substituting (5.17) into (5.18) and after some algebraic manipulations 

we get 

W(0) =  1— G(S*(0)) 

E[G](1_S*(0)) 
(5.19) 

Thus, the LST of the distribution of W is the product of W(9) and W( (8) since 
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W0 arid Wg are independent random variables, 

W*(e) = (1_R*(e))(1_2 E[GIE{s]) (1_G(S* (e))) (5.20) 

E[R](e_X+2G(s*(e))) E[G](1 _ S*(e)) 

By the LST property, the expression for the mean packet waiting time, 

E[W](= E[W0] + E[Wg ]) is derived from (5.16) and (5.19) as, after 

simplification 

E[W] -  &E[GJEtS2J  +  (E [G2] - E[G])E[S]  + E[R2] (5.21) 
2(l—E[G}E[S]) 2E{G](l-2E[G]E[S]) 2E[R] 

We remark that the first two terms on the right hand side of (5.21) is the mean 

waiting time of an arbitrary packet (customer) in an ordinary MX/G/1 single-

server queueing system without a rest period [49] while the last term represents the 

equilibrium mean residual resting time of a node that is currently undergoing a 

resting phase. Notice here also the dependence of E [WI on the moments of R. 

5.3.3 Node Resting Period Distribution 

As can be seen from Fig. 5.1, each node in the netwok alternates between a 

sequence of 'rest' and ' busy' periods. From the end of a busy period, let NA be 

the number of transmission attempts up to the beginning of the next successful 

transmission (busy period). Clearly, NA is geometrically distributed with mean 

1/y. We can write the equivalent events (Fig. 5.1) 

I k—i 
{R ≤ dNA = k } = + . (C. + I.)) ≤ t 

where C 2 i > 0 is the duration of the i 

i=l 
(5.22) 

unsuccessful transmission period and 
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i ≥ 0 is the length of the ith node idle period. Taking the LST of the distri-

bution function of both sides 

E[e R INA =k] = I(e)[I*(e)c* (e)1k_l 

which follows from the independence of 'o with the I1's, i > 0 and the fact that 

the I 's are independent and identically distributed. By unconditioning and intro-

ducing the probability generating function for NA we have 

* 1() * *  I(8) 
R (0) =  NA  (0)C (0)) =   (5.23) 

C* (0)I*(e) 1_(1_yc*(e)I*(e) - 

C, i >0 is a constant equal to c + a so that C* (0) = e 8(C + a) where c and 

a are respectively the collision resolution period and the normalized propagation 

delay. From (5.23), we calculate the first two moments of R to be 

E[R} —I'(0) [1—?] X * (0) (5.24) 

and 

*" I —' l E[R2] = I (0) + 1 y 
, j X*" (0) 

+2 ____ *, I1_7l* 11_jx*'(0)[Io x 
7 j (0)j (5.25) 

* * * *' *' *" 

where X (0) = C (8)1 (0), and o (0)(X (0)) and J (0)(X (0)) respectively 

denote the first and second derivatives of I (0)(X* (8)) with respect to 8 and 

evaluated for 0 equal to zero. It remains now to determine 10 (8), 1* (0) and 7. 
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(i) Evaluation of I (8): Since at the end of a busy period the nodal queue is 

empty, then I (Fig. 5.1) actually consists of the message interarrival time, TA, 

plus the total delay before the first transmission commencement instant by a node, 

for clarity these components are shown in Fig. 5.2(a). However, for the purpose of 

calculating the queue length and the packet (message) waiting time, I is hen-

ceforth taken to be the total delay from the instant the first message arrives at an 

empty buffer to the first transmission commencement instant, the reason being that 

the message interarrival time should not be included as part of the waiting time of 

a message because the message has not arrived yet. From the instant a new mes-

sage arrives to a node in the resting phase, let N8 denote the number of times the 

channel is sensed up to the first transmission commencement. For example, if 

N8 = k then the node must have sensed the channel busy in the first (k - 1) 

transmission initiations while the channel is sensed idle in the last sensing attempt. 

Thus N8 is geometrically distributed with mean 1/j.t. Recall from the model for-

mulation that each instant the channel is sensed busy, the next channel sensing 

occurs after an exponentially distributed delay, D1. Thus 

k—i 
{I0 ≤t INS = k}=D1 ≤t}. 

i=1 

Taking the LST of the distribution function of both sides and unconditioning 

I(8) =   .Pr{N5 = k}[D * (8)Jk 00 
D (0) k=1 

(5.26) 

(5.27) 
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Fig. 5.2(a). Illustration of 10 and Io 

Transmission initiation by a node. 

Transmission commencement by a node. 
t 
t 

for a node. 

Channel busy period due to transmission(s) by other node(s). 

time 
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By using the pgf of a geometrically distributed random variable we get 

p. 

1 - (1 - * (8) 

Note that 

(5.28) 

D*(0) = oi (5.29) 

since D is exponentially distributed with parameter 1. From (5.28), we find the 

first two derivatives of I (0), evaluated at 8 = 0 as 

and 

—(1—p.) 
1 = o (0) K.L 

J (0) 
= 2(1—p.)  

However, p. still remains unknown in (5.30). 

(5.30a) 

(5.30b) 

(ii) Evaluation of 1* (0): Each of the I s, i > 0 shown in Fig. 5.1 consists of a 

sum of retransmission delays - the first retransmission delay is the timeout interval 

caused by the previous collision while the other retransmission delays are due to 

the channel being sensed busy at subsequent successive transmission initiations 

before the next transmission commencement instant (Fig. 5.2(b)). Following the 

same procedure used for deriving the expression for I (8), we find that 

J*(9) =  (5.31) 

1— (1— p.)D*(0) 

where as in (5.28) p. is yet to be determined. With 1* (8) determined, the first two 



Fig. 5.2(b). Illustration of I j , 1>0 for a node. 
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derivatives of X * (0) at 0 = 0 are 

and 

—((c  X (0) +a)iqt+ 1) 
= 

iqi. 

X (0) = (c + a)2 + 2(c + a) +  2  

(5.32a) 

(5.32b) 

(iii) Evaluation of y: Observe that y depends on the state of the channel and 

accounts for the node interactions with the channel. Fig. 5.3 depicts a snapshot of 

the channel which is obtained from the superposition of all the node activities in 

the network. Let 2(t) denote the number of nonempty (active) nodes in the net-

work at time t. Also, define an embedded epoch (represented by • in Fig. 5.3) as a 

time instant of a transmission completion. If we let' 2; n ≥ 1 denote the number 

of nonempty nodes in the network immediately after the nth transmission comple-

tion epoch, then the process {2,; n ≥ 1} is a Markov chain embedded in the pro-

cess 2(t); t > 0}. Further, let f1 denote the limiting probability that i nonempty 

nodes are present in the network at an arbitrary embedded epoch, that is, 

f1 = urn Pr {Z = i} iEJO, . ,M}. 
n -4-

Introduce the vector, E = (f 0, f1' !M)• Then the probabilities 

determined by the system of equations [47 

(5.33) 

U1} are 

F = FT (5.34) 

M 
subject to the normalizing condition Z fi = 1. '1' in (5.34) is the matrix of tran-

i=0 



Fig. 5.3. A snapshot of the channel time. 



I 
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sition probabilities Nfij between two consecutive embedded epochs, where V = 

Pr{Z +i = j I 2n = i}. From Fig. 5.4 we can write the expression for Nfij as the 

sum of the probabilities of four mutually exclusive events - , 162, P3 and P4 

where 

1 = Pr [transmission commencement by an empty node with success, 

2 =jI2 = i} 

= Pr {transmission commencement by an empty node without success, 

Z +i =jIZ =i} 

= Pr {transmission commencement by a nonempty node with success, 

2 =jI2 = i} 

P4 = Pr {transmission commencement by a nonempty node without success, 

=j} 

Note that in the definitions of P2 and P4 the unsuccessful transmission is due to 

other transmission commencement(s) during the collision window of the original 

transmission. These other commencement(s) may be from either at least one of the 

i nonempty nodes or from k (k ≥ 1) nodes which were empty at epoch n. The 

explicit expression forfi 1 is 

= cY exp[—{M - i - 1)% + iK}a] bin (M - i - 1, f — i, (EBJ - a)), 

0:5 i , j ≤ M - 1 (5.35a) 

where the first factor of the product on the right hand side is the probability of 
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a transmission commencement by an empty node, the second factor is the exponen-

tial function which is the probability that none of the i nonempty nodes and the 

other (M - i - 1) empty nodes commence transmission during the collision win-

dow, and the third factor is the probability that (1 - i) out of (M - i - 1) empty 

nodes become nonempty during the mean busy period. 

From the explanation on the cause of unsuccessful transmission stated above, 

the expression for P2 is broken into two parts: a) k = 0 and b) k ≥ 1. For k = 0 

P20 = cY. exp[—(M - i - 1)Xa](1 - exp—iica))binM - I - 1, j - I - 1, c), 

1≤ I ≤ M —1,1 + 1≤j ≤M (5.35b) 

where on the right hand side Cs1 has the same interpretation as in (5.35a). The 

second and third factors can be interpreted as the probability that none of the other 

(M - I - 1) empty nodes commence transmission during the collision window but 

at least one of the i nonempty nodes does. The fourth term is the probability that 

I - 1) out of (M - I - 1) empty nodes become nonempty during the collision 

resolution period. For k ≥ 1 

P 2 = cs1 bin (M—i-1,k,a)bin(M—i—l—k,j—i—l—k,c), 

0:5 i  ≤ M —2,1 + 2 ≤j :9 M, 1≤k ≤j —i —1 5.35c) 

where ai has the same interpretation as stated above. The second factor is the 

probability that k out of (M - I - 1) empty nodes commence transmission during 

the collision window and the third factor is the probability that (j - i - 1 - k) out 

of (M - I - 1 - k) empty nodes become nonempty during the collision resolution 
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period. Combining (5.35b) and (5.35c) yields 

- j—i—i - 

'2k 
k—O 

Similarly, we can write the expressions for P3 and P4 as 

P3 cY)exp[—{(M - i)2+ (i - l)K}a ]bin (M - i, j - i + 1, (E{B] - a)), 

1 ≤ I ≤ M , 0:!g f ≤ M - 1 (5.35d) 

P 40 = (1 - Y1)exp[—(M - i)Xa](1 - exp[—(i - l)ica])bin(M - i, f - i, c), 

2≤i ≤M,i ≤j ≤M (5.35e) 

1'4k = (i- 1 )bin (M—i,k,a )bin (M—i—k,j—i_k,c), 

i≤1≤M—i,i+1≤j≤M,1≤k≤j—j (5.3Sf) 

and 

14 = 
k=O 

The factors on the right hand side of (5.35d) - (5.3Sf) can be interpreted in the 

same way as those ofA5 1 and P 2• Note that in (5.35a) - (5.3Sf), bin (y, x, z) is a 

binomial distribution with parameters (y, (1 - exp(—%A)); furthermore, given that i 

nonempty nodes are in the network at epoch n, then from the assumptions of 

exponentially distributed message interarrival time and retransmission delay, 

= (M - i )7J[(M - i)% + i K]. The transition probability between two embed-

ded epochs is then given by 

= 1 + P 2 + P 3 + P 4 , 0.≤i ,j ≤M . (5.36) 

Observe that the limiting probabilities {f1 }j obtained from (5.34) are valid for 
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all transmission completion epochs. In oder to identify those epochs which coin-

cide with the successful transmission completion epochs, we can define a subset of 

the transition probabilities (5.35) as follows 

•Pr{Z +l=j , Success I2 =i}= i+P3 ,O≤j≤M,O≤j≤M_l 

(5.37) 

so that 

M - - 

= urn Pr =n+l  j , Success 12  = i ]f. 
1=0 n-4-

The limiting probability of successful transmission on the channel, y, is then given 

by 

(5.38) 

M-1 
= Ew. (5.39) 

j=0 
Note that for simplification in (5.35a) and (5.35d), instead of the actual length of a 

busy period the mean busy period E [B] has been used as an approximation. It 

remains now to determine E [B ]. 

5.3.4 Node Busy Period Distribution 

A way of determining E [B ] is from the knowledge of the busy period distri-

bution. From Fig. 5. 1, the busy period B is the time interval from the end of a 

resting period until the nodal queue becomes empty. This is equal to the transmis-

sion time of all the packets (messages) present in the queue at the end of the rest-

ing period (original packets) as well as the transmission time of the messages 

which arrive during the transmission time of the original packets. Suppose that at 



t=Oi=Ox—Ok=0 

By interchanging the order of integration 
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the end of a resting period there are j packets in the nodal queue. Let the busy 

period generated by these j packets be denoted by B. with distribution B1 (t) and 

LST B7(0). It is shown in [49] that 

B1(t) = B(J)(t) 

where B 1(t) is the distribution of the busy period started by a single-packet mes-

(5.40) 

sage and B (i) (t) is the f-fold convolution of B 1(t) with itself. From the 

definition of busy period given above, it is clear that the busy period generated 

when j = 1 at the end of a resting period is equal to the transmission time of the 

original single packet plus the sub-busy periods generated by those messages which 

arrive during the successful transmission time of the original single packet. 

Expressed mathematically, 

B1(t) = i ±  )ke g k)B.(t — x)dSx) (5.41) 
k! 

i=0 x=O k=O 

where g is the k—fold convolution of g with itself, with g (0) = 5 -  the 

Kronecker's delta function. Using (5.40) in (5.41) and then taking the LST of both 

sides we find that 

00 

CIO t B(9) = f $ ± e0t  ()ke4x g (k)B(i)(t — x )dS(x )dt. 
k! 
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00 00  1 00 

B (0) = $ k! e  g (k)ds (x) f e OtB (j) (t - x )dt. 

x=0 i—sD k-0 t=x 

Now making the transformation t - x = y and then using the- convolution property, 

we get 

00 

= f ± gj 
B (0) )  * (k )e —Ox (B (Ø))1 dS (x) 

x=0 i-0 k=0 

Interchanging the order of summation and then simplifying gives 

B (0) = ? (0 + 2 - 2G (B (8))) (5.42) 

Taking the LST on both sides of (5.40) and using the convolution property we 

have 

B7(e) = [B(0)]) 

Thus by unconditioning (5.43) we obtain 

(5.43) 

00 

B*(e) = B1(0)Pr{QR =i} (5.44 

j=l 

where QR is the number of packets present in the queue at the end of a resting 

period, Ra which in this case is defined as the time interval from the instant the 

node buffer becomes empty to the successful transmission commencement instant. 

Clearly, by the Poisson arrival process 

00 ()kex g*(k)dR (x). (5.45) 
Pr{QR = 1 k' j a 

x=Ok=0 

Substituting (5.43) and (5.45) into (5.44) we get 
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00 

CO B *(0) = [B (0)]j J k'  g (k)dR(x) 

j=1 x=Ok=O 

which after interchanging the order of summation and simplifying we finally obtain 

B*(e) = (5.46) 

in (5.46) is also given by (5.23) except that is now equal to the sum of 

TA and the total delay before the first transmission commencement instant by a 

node in Fig. 5.2(a)). The LST of the distribution function of 1 is then 
aa 

derived to be 

I(8) = 
1 - (1 - 

(5.47) 

where 2A* (9) is given by ?/(9 + X). By using (5.46) we obtain the mean node 

busy period as 

E[B] = XE[B 1]E[G]E{R} (5.48) 

But from (5.42), E[B i' = E[S] / (1 - XE [G]E[S]) so that 

E[B] = 
XE[G]E[S]E[R] 

1— TkE[G]E[S] 

which is a function of the first moment of Ra• Equation (5.49) asserts that the 

node busy period will terminate provided )LE [C ]E [S] is less than unity which is a 

necessary and sufficient condition for system stability and this condition was 

alluded to earlier for the validity of Talcac's Lemma (Section 5.3.1). By substitut-

ing (5.31) and (5.47) into (5.23), we obtain the first moment of R  

(5.49) 
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E[R = içi. + X(1 -  + 1 - y (c + a)iqi. + 1 (550) 
a 

Finally, the probability for the channel being idle is obtained from the standpoint 

of renewal theory. We see from Fig. 5.3 that the channel alternates between idle 

and busy periods, so let 'ch (Bch) denote the channel idle (busy) period. If we 

suppose that a cycle is completed at the end of a transmission completion epoch, 

then the above constitutes an alternating renewal process. By a theorem of alter-

nating renewal processes, the long-run proportion of time for the channel being 

idle, t, is given by [42] 

- E 111ch'  - E Vch 1  (5.51) 

- E[Ich]+E[BCh] - E[f]+7(E[B]+a)+(1 _y)(c+a) 

Suppose there are i nonempty nodes in the network immediately after a transmis-

sion completion epoch. Since the time interval between a transmission completion 

epoch and the next transmission commencement instant is exponentially distributed 

with mean 1I[(M - i )? + I ic], then the unconditional expected idle period of the 

channel is given by 

M f 
E I:'ch] = i0 (M - I )A + I K (5.52) 

5.3.5 The Iterative Algorithm 

The above analysis shows that there are no explicit expressions for the 

channel-activity parameters, y and .t. In fact, from (5.39) and (5.51) both y and j.t 

depend on {f1 }; it is also seen from the definition of the transition probabilities 
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that ff1 } can be determined from the knowledge of the channel-activity parameters 

(via E [B]) - a node defined parameter). Also from (5.49) and (5.50), E [B] can be 

obtained through the knowledge of the channel-activity parameters. The preceding 

statements demonstrate the coupling between the node defined parameter and the 

channel-activity parameters and we assert that this coupling approximately accounts 

for the interaction of the nodal queues. By principle 5 of the decomposition 

approximation, the values of y and p are determined iteratively using the following 

algorithm: 

Step 1: Initialization of channel-activity parameters 

• select (0) and 0) 

• set iteration count k = 1 

Step 2: Calculation of node parameters 

• compute E ERa I from (5.50) and E [B ] from (5.49) 

Step 3: Calculation of Transition Probabilities 

• if k = 1, then compute all transition probabilities using (5.35a) - 

(5.3Sf), else compute P from (5.35a) andP from (5.35d) 

Step 4: Calculation of steady-state probabilities 

• compute F from (5.34) 

Step 5: Calculation of Qc) and k) 

• compute (k) from (5.39) and (k) from (5.51) 
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Step 6: Test for convergence 

• if max{yV') - .(k-1)i,(k) 1(k) - .(k—l)J/(k)} < 8, then stop 

Step 7: Otherwise increase the iteration count and continue 

• k = k + 1 and go to Step 2. 

When convergence has been reached, we' then compute the first two moments 

of the resting period from (5.24) and (5.25) and subsequently the mean queue 

length from (5.13) and the mean packet waiting time from (5.21) as well as the 

channel throughput, SCh, which is defined as 

yE[B]  

5ch = E[ICh] + E[B] + a) + (1 - y(c + a) 

5.3.6 Numerical Results and Discussion 

(5.53) 

In this section we show the usefulness of the approximate analytic model 

presented above by an illustrative example. The main objective is to investigate the 

effects of the mean retransmission rate, the average message size and the message 

length distribution on the network performance measures such as the mean packet 

waiting time, the mean message response time and the channel throughput. In 

addition, a computer simulation model is constructed whose results serve to vali-

date the results obtained from the approximate analysis. The following input 

parameters were selected: 

Number of nodes in the network, M: 20. 

Normalized propagation delay, a: 0.05 slots. 
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Collision resolution period, c: 0.1 slots. 

Packet transmission time, S: 1 slot. 

Except otherwise stated, the message length is assumed to follow a geometric dis-

tribution. 

During the computation of the analytic results, the relative error test tolerance 

for convergence of the iterative algorithm was chosen as l0, and it was observed 

that on average less than 50 iterations were required to reach convergence for all 

the parameters considered. The simulation model constructed was a discrete-event 

type and for each simulation experiment, 10 independent runs were performed 

where each run was terminated after 50000 multipacket messages have been suc-

cessfully transmitted; however, the simulation outputs were gathered over the last 

25000 messages to allow for the transient effect. The estimated values of the per-

formance measures were obtained by averaging the 10 values associated with the 

10 independent replications and the approximate 95% confidence intervals were 

constructed by assuming a Student—t distribution with 9 degrees of freedom. 

Fig. 5.5 shows the mean packet waiting time - throughput characteristics for 

various values of retransmission rate, ic and mean message length, E [G ] = 5 pack-

ets. Note the excellent agreement between the approximate analytic and simulation 

results which are exhibited under low to medium throughput; the lesser agreement 

in the high throughput range is due to the congestion of the channel. We observe 

that for a fixed value of ic(K ≥ 1) and for low to medium throughput, there is on 

average one message in the buffer and the mean waiting time of an arbitrary 



I 
C. 
0 

L) 

z 
a: 

I 

K"0.05 

K =0.1 

K =0.2 

K1. 0 

K=5.O 

Analytic results 

confidence 
Simulation results (95% interval ) 

0.0 0.2 0.1 0.6 0.8 1. 

THROUGHPUT Sch 

Fig. 5.5. Mean packet waiting time - throughput characteristics 

( M = 20,E [G] = 5 packets, Geometric distribution) 



156 

packet, E [W], is dominated by the waiting time due to the packet's position in its 

message. In the high throughput range (that is high input traffic), the mean packet 

.waiting time increases and the large delay is accounted for by the retransmission 

delay (due to numerous collisions) as well as the waiting time of the message con-

taining the test packet where the message waiting time comprises the transmission 

time of all the queued messages ahead of the test packet's message and the access 

delay of the head of queued messages. We also see from Fig. 5.5 that the mean 

packet waiting time decreases as K increases, which is due to the lower mean 

retransmission delay. 

In Table 5.1 we show the dependence of the mean message response time 

(time interval from message arrival instant at the source node to the reception 

instant at the destination node) on the average message size, E [G], where the total 

input traffic to the network, 2T (=M 2E [G ]E [S]) is the varying parameter and 

c= 1. For a fixed value of 17' we see that an increase in E[G] leads to an 

increase of the mean message response time. Actually for low to medium input 

traffic when there is relatively no queueing of messages, the mean message 

response time is approximately equal to the average transmission time of a message 

(E [G] slots). However, at high input traffic, the number of collisions on the chan-

nel increases, thus the additional delay to the message transmission time is largely 

due to the retransmission delay of the collided messages. We observe in Table 5.2 

that for a specified IT , the effect of increasing E [G] is to slightly decrease the 

throughput and this is more pronounced at high values of A.T; however, the 
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Table 5.1. Effect of E[G] on Message Response Time. 

E[G] 
0.1 0.2 0.4 0.6 0.8 

MEAN MESSAGE RESPONSE TIME (slots) 

2 2.1258 2.2833 2.7606 3.7273 6.5886 

5 5.1368 5.3034 5.7852 6.6931 8.9779 

10 10.1605 10.3505 10.8756 11.8091 13.9945 

20 20.2101 20.4498 21.0739 22.0997 24.323 

Table 5.2. Effect of E[G] on Channel Throughput. 

0.1 0.2 0.4 0.6 0.8 
E[G] 

. CHANNEL THROUGHPUT 

2 0.10 0.1998 0.3976 0.5895 0.7709 

5 0.10 0.1998. 0.3976 0.5894 0.7664 

10 0.10 0.1997 0.3975 0.5893 0.7652 

20 0.10 0.1997 0.3975 0.5893 0.7647 
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throughput tends to a limiting value at higher values of E [G ]. 

Next, we investigate the effect of the message length distribution on the mean 

packet waiting time - throughput characteristics. Apart from the popular geometric 

distribution that is usually employed for modeling message lengths, here we also 

assume the message lengths to follow a low variance (relative to geometric) trun-

cated Poisson distribution which is defined by gi = Ai 1(i !(eA - 1)), i ≥ 1, A> 0. 

Fig. 5.6 depicts the mean packet waiting time - throughput characteristics obtained 

when ic = 0.1 and 1.0, and E [G] = 5 packets. We see that for each value of ic and 

under low to medium throughput, there is a marked difference between the waiting 

time-throughput curves for the two distributions considered. The difference is 

explained by the value of the mean waiting time due to the position of an arbitrary 

packet in a message, E [W8 ], which is calculated to be 4 slots and 2.48 slots 

respectively for the geometric and truncated Poisson distributions (using the first 

moment of (5.19) and E [G] = 5 packets). However, in the high throughput range 

when the mean packet waiting time is now dominated by the retransmission delay, 

the mean packet waiting time for the two message length distributions tends to the 

same value. Note that in the high throughput range, the curves for the case 

= 0.1 are closer than that for ic = 1 because of the high mean retransmission 

delay (10 slots for the former and 1 slot for the latter). 

The next set of results deals with the choice of ic which will ensure system 

stability for a specified network input traffic. Fig. 5.7 shows the mean packet wait-
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ing time - mean retransmission rate characteristics when M = 20, 

E[G] = 5 packets, and XT = 0.2, 0.4 and 0.6. We see that at a given value of XT I 

very small values of ic leads to large mean packet waiting time. As ic is increased, 

the mean packet waiting time decreases until a minimum is reached at ic opt , the 

optimum value of ic. A larger ic than 1C,1, leads to system instability which is 

exemplified by very large mean packet waiting time and (although not shown) a 

decrease of throughput to very small values [94]. From Fig. 5.7 note that as 

increases three observations are evident; first, the acceptable region of mean 

retransmission rate becomes smaller; second, the value of ic opt decreases, 

10, 9, and S for = 0.2, 0.4, and 0.6 respectively; and thirdly, the 

minimum mean packet waiting time increases. From these observations, we con-

clude that xOpt cannot assume a single value over a specified range of input traffic; 

it follows then that the retransmission rate must be tracked as the input traffic 

changes so as to maintain system stability. The minimum mean packet waiting 

time obtained for this example is shown in Fig. 5.8. 

Finally, in Fig. 5.9 we present the mean packet waiting time - retransmission 

rate characteristics for ?. = 0.7, E [G] = 5 packets and three values of M: 5, 10 

and 20. Note that the three observations made from Fig. 5.7 also apply here. 

These observations follow from the fundamental characteristic of a random access 

channel: under heavy traffic condition, an increase in the number of nodes access-

ing the channel leads to an increase in the number of collisions on the channel and 
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as we have noted before, the net effect is a high mean packet waiting time. From 

this explanation, we conclude also that the number of nodes in the network has 

considerable effect on the value of the retransmission rate which should be reason-

ably small in order to maintain system stability. 

5.4 Summary 

In this chapter we have presented the analysis of a CSMA-CD LAN with 

nodes capable of buffering multipacket messages where each message length may 

follow any arbitrary probability distribution. The central idea of the analytical 

technique presented is the decomposition approximation in which each node in the 

network is independently modeled as an MX/G /1 queueing system with busy and 

resting periods and the interaction among the nodes is accounted for approximately 

by the channel-activity parameters which are determined from an iterative algo-

rithm. 

We find from the numerical results . obtained that the mean packet (message) 

waiting time is sensitive to the message length statistics as well as to the message 

length distribution. Furthermore, the study in this chapter reveals that in the pres-

ence of variations in the input traffic and/or the number of nodes in the network, 

the choice of the retransmission rate has a definite effect on the system stability. 
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CHAPTER 6 

INTERCONNECTED BUFFERED LANs WITH MULTIPACKET MESSAGES 

6.1 Introduction and Problem Statement 

Thus far, we have studied only single buffered random access LANs. The 

problem with such isolated LANs is that necessary future upgradability may be 

hampered due to inherent network design limitations. Two examples of such limi-

tations are noteworthy. First, as we have found from the previous Chapters, a sin-

gle random access LAN to which a very large number of nodes are connected 

leads to poor performance, and this necessitates limiting the number of network 

nodes to a reasonable number so as to attain acceptable performance level or 

reducing the traffic generated per node. Second, a high performance level can be 

achieved if the geographic coverage of random access LANs is restricted to short 

distances, for example, the Ethernet standard specifies a segment length of 

500 meters. A way to overcome the above limitations is by interconnecting LANs 

together, where the interconnection may be implemented either at the data link 

layer (with a bridge) or the network layer (with a router) of the. ISO/OSI reference 

model [95]. Note that at the present time, there is no consensus on which of these 

two interconnecting devices is more efficient, ged [95] for details of differing 

views. Nonetheless, for our purpose here, we shall assume that the interconnection 

is accomplished with a bridge. 
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Simplistically, a bridge is a store-and-forward device that interconnects LANs 

and possesses the transparency (intercommunication among nodes connected to 

different LANs as if the nodes were on the same LAN) and filtering (isolation of a 

LAN from traffic which does not need to traverse that LAN) properties. The prob-

lem of interest in this chapter then is the performance analysis of bridged CSMA-

CD LANs. We note that by appropriate modeling of the individual LANs and the 

bridge, the analysis of the interconnected system is performed by applying some of 

the results that are already obtained in the preceding chapters. The very few previ-

ous studies on interconnected random access networks are found in [96-99], where 

for reasons of analytic tractability, all have assumed that nodes on each LAN gen-

erate (and store) only single-packet messages: The study presented here differs 

from the above studies in that the more realistic assumption where each node gen-

erates (and stores) multipacket messages is made [ 100]. 

6.2 Model Formulation 

Consider two CSMA-CD LANs (labeled 1 and 2) as depicted by Fig. 6.1. 

Each LAN is structured and operates as those studied in Chapter 4, hence the 

modeling and analysis therein (Section 4.3.1) also apply here. However, for 

identification purposes, we denote the mean message arrival rate to each node of 

LAN (1 = 1, 2) by X,and the retransmission rate by ice. 

To enable stations on one network to communicate with stations on the other, 

a bridge is introduced. The bridge is capable of receiving messages on one net-
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work and transmitting them on the other. Such internetwork messages to be thus - 

conveyed are identified by the bridge via an address that is included in each mes-

sage. It follows then that the bridge consists of two halves: one receiving on net-

work 2 and transmitting on network 1, denoted BR and the other in the reverse 

direction, denoted BR 2, these two halves operate independently (Fig. 6.1). Since 

messages may arrive at the bridge faster than they can be transmitted, the bridge 

must contain buffer spade in which messages are temporarily stored. For analytic 

simplicity, it is assumed that the bridie buffer space is unlimited and internetwork 

messages arrive at the bridge buffer in accordance with a Poisson process having 

rate 2bj (1 = 1, 2). The arriving internetwork messages are added to the bridge's 

buffer where the transmission (service) discipline is first-come, first-served. The 

bridge adheres to the same transmission protocol that the stations on the individual 

LANs adopt except that the bridge, when it gains channel access right continues  to 

transmit until its buffer goes empty, the reason being to minimize bridge buffer 

congestion; aside from this, no other preference is given to the bridge. However, if 

the bridge is involved in a collision, the colliding message will be retransmitted 

after an exponentially distributed delay having a mean of l/Kbi. 

The above description for the bridge closely fits that of a node in the LANs 

considered in Chapter 5; thus, the activity of the bridge is modeled as a sequence 

of cycles each consisting of an alternating busy and resting periods. Then, under 

the assumption of Poisson (internetwork) message arrival process, the bridge 
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behavior is approximately modeled by an M'/G/1 queueing system with busy and 

resting periods. In the spirit of the decomposition approximation, the interaction of 

the bridge with the nodes connected to LAN1 is then approximated by the 

channel-activity parameters which, as we have seen before are determined itera-

tively. 

6.3 Performance Analysis 

The first task in the analysis is the evaluation of the input rates to the two 

independent halves of the bridge, denoted by ? b 1 and 2b 2. Note that 

%bi (1 = 1, 2) is the rate at which messages to be forwarded to LANE (from 

LAN  j = 1, 2) are arriving at BR1 (Fig. 6.1). Furthermore, observe that the nor-

malized mean arrival rate of messages to be forwarded to LAN1 is given by 

E [G JXbi, E [G J being the average transmission time (in slots) of a message. 

Now, let S,hj be the normalized throughput generated by all stations on LAN  of 

which a fraction (x ji is to be conveyed to LAN1. Then, under equilibrium condi-

tion, the input and output flow rates are equal, that is 

E [G}.bj = aJ1SChJ 1, j = 1, 2; i# j (6.1) 

Alternatively, the expression for SChJ can be derived independently in terms of 

bj• It then follows that in principle we can solve (6.1) simultaneously for Xb 1 

and Xb 2' but unfortunately, the determination of the explicit expression for SChI 

(in terms of is formidable so that the algebraic solution of (6.1) seems 
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impossible. This difficulty is overcome by computing Xb 1 and Xb 2 numerically 

using the iterative algorithm given in Section 6.3.2. 

6.3.1 Throughput Analysis 

In this section, we derive expressions for the throughput of an isolated LAN, 

Schi as well as that of interconnected LANs, Schi. 

(i) Analysis of SChI: Schi is the throughput generated by the stations connected to 

LAN  assuming BR is deactivated, that is Xbj = 0. The expression for Schi is 

derived from the standpoint of renewal theory [43-44]. Specifically, if we define a 

transmission cycle as the time interval between two successive transmission com-

pletion epochs on the channel, then by the limiting theorem of alternating renewal 

processes, Schi is expressed as 

F 

'yE[G]  
sch) ' 

E[ICh]+'y(E[G]+a)+(l_y)(c+a) 
(6.2) 

where y is the probability of successful transmission on the channel and is given by 

M—1 
(6.3) 

j=0 

the 's being obtained from (4.16). E[Ich] is the mean length of channel idle 

period which is computed from 
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M 
E C'h = W  M fm  (6.4) 

m=O 

where w is given by (4.23) and the fm  's are obtained from (4.13). Recall from 

the previous chapters that a and c in (6.2) are respectively , the normalized propa-

gation delay and collision resolution period. 

(ii) Analysis of SChf: By adopting similar concept used above in writing (6.2), the 

throughput generated by stations on LANJ of an interconnected system, SChj is 

given by 

;E[GI 
Schi =   (6.5) 

E[ICh]+y(E[G]+a)+'yb(EBb]+a)+(1 _'b + a) 

where y () is the probability of successful transmission by a station (bridge), 

and E {Bb J is the mean successful transmission period by the bridge, all of which 

remain to be determined. Note that the expression for E 'ch' (6.4) is no longer 

valid in (6.5) because now the bridge is active and its effect is to reduce the 

throughput generated by the stations on LAN  (with an attendant increase in 

delay); this of course is the rationale for the approximation made in Step 3 of the 

iterative algorithm (Section 6.3.2). The evaluation of the unknown quantities now 

proceeds as follows. 

First, observe that the effective number of nodes contending for access to the 

channel of LAN  is now M+l comprising the M original stations plus the bridge. 

Since the two halves of the bridge operate independently, we shall focus on LAN  
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to which one half of the bridge is connected and henceforth refer to this as the sys-

tem. Let Z, denote the number of nonempty nodes in the system immediately 

after the nth transmission completion epoch.. As noted in Chapter 5, the process 

{2, n ≥ 11 evolves as a Markov chain so that the next task is to determine its 

state transition probabilities. In addition to the explanation of Section 5.3.3 for 

writing the Nf ii 's, it is important to note here that the state transition probability 

between epoch n and epoch n + 1 also depends on the state of the bridge (empty 

or nonempty) at epoch n. The distinction between the bridge and any ordinary sta-

tion is necessary here because of the difference in the message arrival rates (and 

also the difference between the retransmission rates). Based on the above, the tran-

sition probability between two successive embedded epochs, 'qc is now defined as 

Vij = E [Pr f2n+i = IZ 1BR ' ' 0 ≤ i J ≤ M+1 (6.6) 

where the expectation is with respect to 'BR' a binary-valued random variable for 

the state of the bridge, 

if BR is empty 

'BR = tl if BR is nonempty (6.7) 

and BR is a generic notation for BR or For brevity, denote 

Pr f2 +1 = i Iz, = 'BR = 0} by {'ij I IB 01 and similarly 

Pr {Z +1 = i IZ, = i, 'BR = 11 by [lIfij  "B i• In order to further simplify the 

description of [jf "B 0 and [w 1 we introduce the following notations: 
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Se (S's): Transmission commencement by a station which was in the empty 

(nonempty) state at epoch n 

Be (B ' ): Transmission commencement by the bridge which was in the empty 

(nonempty) state at epoch n. 

Ts (To ): Transmission is successful (unsuccessful). 

Ak: Within a time units after the beginning of an ongoing transmission 

period, k stations which were in the empty state at epoch n begin 

transmission. 

Using the above notations, the components of [Nf 1B 0] are defined below: 

lbse 
I' l) 

(ese 
Ij 

'nj 
nse 

= Pr{B eflTsfl2n+i =j IZ=i} 

= 12 = i} 

= Pr{S'T'2 +i=I IZ=i} 

bce - 
NJZJ 

%f(ece 
'r jj 

Pr{B eflTc(...Akfl2 +l =j I2 =i} 

= Pr{Se flTC flAkflZ =jl = 'I 

nce 
= Pr {S' - T'' rAk ( 2n +1 = j I ZJfr = } 

The explicit expressions for the above transition probabilities are (to reduce the 

complexity of notation, we shall henceforth assume that the two LANs are identical 

so that X1 ½ = 1 = = ' bl = b2 = b' and cb, = Kb2 = Kb) 



, nse 
"-ii 

174 

bse 
= ib exp[—{(M - i)X + iic}a] bin (M - i,j - i, E [Bb J), 

O≤i,j≤M (6.8a) 

= es. (1— esh )exp[—{(M - I - 1)% + + I K}a I {bin (M - i —1,] - i, E [G ]) 

exp_?bE [G 1) + bin (M —i —1,j —1 —1, E [G])(1 — exp_A.bE [G]))}, 

O≤i ≤M-1, O≤j ≤ M (6.8b) 

= (1—es.)exp[—{(M —i)A. + + (L-1)K}a]{bin(M — i, f—i + 1, E[G]) 

exp(—?bE[G']) + bin(M — i, j—i, E [G])(l_exp(_? bE [G]))}, 

O≤j ≤M (6.8c) 

bce = Gb exp[—(M - i )Xa ](1 - exp(—i a ))bin (M - i, f - i - 1, c), 

1≤i ≤M,i +1≤j ≤M+1 (6.8d) 

411J,k = 

0 ≤i≤M — 1, 2≤j ≤ M + 1; 1 ≤k ≤j —i —1 (6.8e) 

= es1(1 - Gb)exp[—{(M—z- 1) + ?t.b}a](1— exp(—iKa))bin(M—i-1,j—i-1, c) 

• exp(—?b c) + bin (M - i - 1, j - i - 2, c)(1 - c))}, 

1≤i≤M-1,i+1≤j≤M+1 (6.8f) 
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N'if,k = i—b)[b1nM_1-1, k,a)exp(_2ba){binM_i_i_k, f—i—i—k, c) 

• exp(—?b c) + bin (M—i —i—k, j—i-2—k, c)(i - exp(_Ab c))} 

+ bin (M—i —1, k—i, a)(1 - exp(—?b a ))bin (M—i —k, f—i—i—k, c)], 

O≤i≤M—i,2≤f≤M+i;1≤k≤f—i—i (6.8g) 

nce 
= (1—)exp[—{M—i)2. + Ab}a](1_exp[-(i_1)Ka]){binM_i, f—i, c) 

• exp_?bc) + binM —i, f—i—i, c)(1_exp(_?bc))}, 

2≤i≤M, i≤f≤M+i (6.8h) 

= (1- 1){binM—i, k, a)exp(_ba){binM_i_k, f—i—k, c)exp-2bc) 

+ bin (M—i—k, f—i—i—k, c)(l — exp(—Xb c))} 

+ bin (M — i, k — i, a)(1— exp(_?ba))binM — i — k + 1, f — i — k, c)J, 

1≤i≤M—i,2≤j≤M+i;1≤k≤f—i • (6.8i) 

,,nce 
'ij,k 

Thus, 

f—i—1 f—i-1 f—i nce 
['Vf "B & = bse + Vese + • bce + + 

ii ii Ij 
k=O ' k=O k=O 

(6.9) 

Similarly, the definition of the transition probabilities given that the bridge is 

nonempty, [N'1f 1'B ) can be stated thusly 
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,bsn 

.1esn 

nsn 

bcn 'vii 

1ecn 
'Yjj 

ncn 'vii 

= Pr{BflTS(Z1=j IZ=i} 

= Pr{SeflTsfl21=j 2n =' I 

= 2n = 'I 

= Pr{BhzflTcflAkflZ +i= 2n 'I 

= Pr{SeflT.Akfl z+1 = f I = i} 

= Pr{SflTcflAkfl Zn+i_J I Z = i} 

The expressions for the above transition probabilities can then be written as 

= Ij DlDbexp{{(M - i + l) + (i - l)K}aj bin M - i + 1,] - I + 1, EBb]), 

l≤i≤M+l,O≤j≤M (6.lOa) 

Nf = (l—D1)exp[—{(M — i)X+(i — l)1c+1zb}a] bin (M_i,j —i,E[G']), 

1≤i,j ≤M (6.lOb) 

. Ii =  1 (l_Db)exp{_{(M — i + 1)?+(i — 2)i+ b}aJ 

, 

bin (M—i+l,j—i+l,E[G]), 2≤i ≤M + 1, l≤j ≤M (6.lOc) 

bcn 
- IDbeXP[—(M - i + 1)?.a](l - exp[—(i - l)ia])bin(M - i + 1, j - i, c), rj,O 

2≤i,j≤M+l (6.lOd) 

bcn - 1j 'k - l)10 b binM - I + 1, k, a) bin (M - i + 1 - k, i - i - k, c), 

1≤i ≤M,2≤j ≤ M + 1; 1≤k ≤j —i (6.lOe) 
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ecn --  (1 - o.)(1 - exp[—{(i-1)K + lcb }a])exp{—(M - i)Xa J 

.bin(M—i,j-1,c), 1≤i≤M,2≤j≤M+1 (6.lOf) 

ecn - 

— (1—D)bin(M—i,k,a) bin (M — i — k,f — i — 1—k,c), 

1≤i≤M - 1,2≤f ≤M + 1; 1,≤k ≤f —i—i (6.l0g) 

_tlrncn - 

Tjj ,O - Di(l—Db)(l — exp[—{(i-2)K + 1(b }al)exp[_(M_i+1)XaJ 

bin (M —i + 1, f—i, c), 2:5 i, j ≤ M + 1 (6.10h) 

ncn - 

Vij — (l _Db) bin(M—z.+1, k, a)bin(M—i+i—k,j—i—k, c), 

2≤i ≤M,2≤f ≤ M+1); i≤k ≤j —i (6.iOi) 

so that 

f-i f—i—i i-i 
bsn  E Nfncn [w lB 1 = '1if + NJffSfl + + + + 

k=0 k=0 k=0 

(6.11) 

The probabilities (, b' and introduced in (6.8) and (6.10) are defined 

respectively as follows: 

es. = the probability of a transmission commencement by an idle node before 

any of the i nonempty stations given that the bridge node is empty 

(M 

=  (M . )+? b . (6.12a) 
_ z  

= probability of a transmission commencement by the bridge node before 

any of the i nonempty stations given that the bridge node is empty 
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Xb = (M ' 2b (6.12b) 

= probability of a transmission commencement by an idle node before any of 

the i nonempty nodes given that the bridge node is nonempty 

(i - 1)ic+ Kb 

(i — l)K+Kb+(M_i+l) (6.12c) 

10 b = probability of a transmission commencement' by the bridge node before 

any of the i nonempty nodes given that the bridge node is nonempty 

Kb 
=  . . (6.12d) 

(l_l)K+icb 

It is seen from (6.6), (6.8a) and (6.lOa) that 'I' (and subsequently the 's using 

(5.34)) are determined completely provided the probability that the bridge node is 

empty, b0 and the mean bridge busy period, E [Bb] (both of which are henceforth 

referred to as bridge parameters) are known. From (5.12) 

and from (5.49) 

l—A.bE[G]E[S] * 

b0 = p1(0) = E [R J R 

E[Bb] = 
?E[G]E[S]E{R} 

1— ?bE[G]E[S] 

where the parameters E [.1 and R * (.) are as defined in Chapter 5 with &b, Kb and 

still retaining their earlier definitions but are now defined with respect to the 

bridge node. Implicit in (6.13) and (6.14) is ji., the probability that the channel is 

(6.13) 

(6.14) 



179 

idle, which from the standpoint of renewal theory is given by 

E 'ch1 
(6.15) 

and and E still remain unknown. Following similar idea used in 

obtaining (5.38) and (5.39),; and are found to be 

and 

MM+l 
-is =  • JfJf1 

j=O z=O 

MM+l 

ii fj 

j=O i=O 

(6.16) 

(6.17) 

respectively. In (6.16), is the transition probability between two consecutive 

successful transmission completion epochs by a station which formally takes the 

definition of (6.6) with Nfij replaced by Nf and also 

and 

.1,ese 
[1V1j 11B&_  

['v17 1'B 1 = esn + 

nse 
if 

(6.18a) 

(6.18b) 

Further, in (6.17) is the transition probability between two consecutive sucIi 

cessful transmission completion epochs by the bridge and similarly takes the form 

(6.6) with replaced by and 
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- bse 
_ lluij 

and 

(6.19a) 

[N!fj'IIB 1 = 4;sn . (6.19b) 

Finally, E [I I in (6.5) (and also in (6.15)) is determined using the same argument 

for deriving (6.4) but now the empty and nonempty states of the bridge node are 

taken into account. E 11ch Iis then expressed as 

M b0ft M+1 (1—b0 )f( 

E = (M - i + + j + i1 (M - i + 1) + (i - 1) + 

where the ff's (f s) are the limiting probabilities urn Pr = i } under the 
fl—)oo 

(6.20) 

condition that the bridge node is empty (nonempty) and are separately determined 

by applying (5.34) in conjunction with the corresponding terms of (6.6) for the 

empty and nonempty states of the bridge. 

It is seen from the above analysis that there are no explicit expressions for the 

channel-activity parameters .t,;, and ?b. In fact, they are interdependent with 

and E {Bb II. Hence, they are computed by invoking principle 5 of our decomposi-

tion approximation (Chapter 2) via an algorithm similar to that outlined in Chapter 

5. However, we shall first compute ? b 1 and 2b 2 by the following algorithm. 
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6.3.2 The Iterative Algorithm 

Step 1: Compute SChJ from (6.2). 

Step 2: Compute SChj = eSChf (0 < e < 1) where chj is the estimate of Schi 

and e is the estimator that accounts for the effect of BR. on SCh. 11 assum-

ing BR is active. Set iteration count k to 1. 

Step 3: Compute ? bi  f) from (6.1) where 5chj is approximated by SChI. 

Step 4: Compute SChi, (i # f) from (6.5). 

Step 5: Compute # i) using (6.1), with i - j and  -+ i). 

Step 6: Compute s) (j o 1) from (6.5). ch 

Step 7: Test for convergence: if s$) - Schi I < C stop. 

Step 8: Otherwise, chj = increase the iteration count and go to Step 3. 

Note that the key steps of the algorithm outlined above are Steps 1, 4 and 6. 

6.3.3 Message Response Time Analysis 

The message response time in an interconnected system is of two types: 

a) intranetwork message response time, Dina and b) intemetwork message 

response time, D inter 
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a) Intranet'work Message Response Time, Dintra: The intranetwork message 

response time is the time interval from the instant a message is generated to the 

time the message is received at its destination where both the transmitting and 

receiving stations are on the same LAN. Assuming that the mean number of 

intranetwork messages in the system is known, then in principle, the mean intranet-

work message response time can be determined using Little's law. Unfortunately, 

the limiting probabilities of state {f } determined from (6.6) are only useful for 

calculating the mean number of nonempty nodes in the system which, because the 

bridge buffer may contain more than one message at a given time instant, is not 

the same as the mean number of intranetwork messages in the system. Neverthe-

less, an optimistic (lower bound) intranetwork message response time is obtainable 

by considering an isolated LAN (with bridge node deactivated), the message 

response time analysis of such a system has already been presented in Chapter 4 

(Section 4.3.1.1). 

b) Internetwork Message Response Time, D inter: The intemetwork message 

response time consists of the following components: time interval from when a 

message arrives at a station until the instant the message reaches the bridge buffer 

(assumed to be equal to the intranetwork message response time, D jfltra the mes-

sage waiting time in the bridge buffer, WM and the actual message transmission 

time, E [G II on the channel of the LAN to which the destination node is connected, 

that is, 
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, 

E[D inter-1 1 intra = E[D ]+E[WM]+E[G] (6.21) 

Notice that WM is equal to the total waiting and transmission times of all the 

packets ahead of the tagged message (equivalent to W0 in Chapter 5). From 

(5.16), the LST of the distribution function of WM is given by 

(1-2..bE{G']E[S]) (1  
Wif  =   

(O2 + XG(S* (0))) E[R] 

with mean 

(6.22) 

E [R 2 + E [G ]E [S 2 + E [(G')21 - E [G I )(E [S ])2 

E[WM] 2E [R] 2(1— bE[GIE[S]) 2(1.— bE[G]E[S]) 

(6.23) 

where E [R] and E [R 2 are given respectively by (5.24) and (5.25) with y and K 

replaced by b and Kb respectively. 

6.3.4 Numerical Results and Discussion 

For illustration purposes, the following parameters have been used in the 

numerical example presented below. 

Number of stations on each LAN (M1 =. M2): 10. 

Fraction of messages transmitted from LAN  to LAN 21 a12: 0.5. 

Station retransmission rate, ic 0.2. 

Bridge retransmission rate, Kb: 0.2. 

Mean message size, E [G ]: 5 packets. 
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Station buffer size, K: 10. 

Normalized Propagation delay, a: 0.05 slots. 

Collision, resolution period, c: 0.1 slots. 

Fig. 6.2 shows the throughput characteristic of the bridged network plotted 

against the total network input traffic. Note that the throughput plotted here is that 

generated by all the stations connected to the two LANs. In addition, the 

thtoughput characteristic of an equivalent CSMA-CD LAN to the bridged network 

is also shown for comparison, where the equivalent CSMA-CD LAN is that con-

sisting of M 1 + M 2 stations which are connected to the same channel. We see 

from Fig. 6.2 that at low network load, the throughput performance of the bridged 

network is identical to that of its equivalent network, but as the network load 

increases, the throughput of the bridged network becomes better than that of its 

equivalent LAN. An explanation for this improvement is the possible occurrence 

of two simultaneous successful (intranetwork) transmissions (one on each LAN) at 

high network load. 

Fig. 6.3 depicts the delay characteristics versus the total network input traffic 

for the bridged network and its equivalent LAN. The delay shown for the bridged 

network is that for internetwork messages, which, as seen from Fig. 6.3 is largely 

dominated by the internetwork message waiting time in the bridge buffer. We also 

observe that the message delay (message response time) in the equivalent network 

is much lower than the internetwork message delay which is obviously due to the 

absence of the waiting time in the bridge buffer. The above observation therefore 
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demonstrates a performance penalty of LAN interconnection, however, the author 

believes that this penalty can be minimized by appropriate choice of the input 

parameters for the bridge node; for example, selecting high value of bridge 

retransmission rate and using a finite (instead of an infinite) bridge buffer size, the 

implementation of the latter suggestion will no doubt lead to increasing analytic 

complexity. 

6.4 Summary 

Motivated by the limitations that abound in single separate LANs, this chapter 

studies the throughput and delay performance of interconnected buffered CSMA-

CD LANs. The analysis of the bridged network is performed by applying some of 

the results of the previous chapters, - 

The main finding from this study is the improvement in the throughput of the 

bridged network over that of its equivalent LAN. It is also found that large inter-

network message delay is a performance penalty of interconnected LANs, and this 

delay can be reduced by appropriate choice of bridge node (input) parameters. 
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CHAPTER 7 

CONCLUSIONS AND OPEN PROBLEMS FOR FURTHER RESEARCH 

7.1 Conclusions 

The central focus of this thesis was on the solution of the interfering queue 

problem in buffered random access local area networks (LANs). We began by 

demonstrating that an exact analysis using either the standard method of probability 

generating function or the solution of the stationary equations for Markov chains 

was intractable,, hence, a decomposition approximation technique was proposed. 

The versatility of the decomposition approximation methodology in analyzing the 

performance of buffered CSMA-CID LANs with single-packet as well as mul-

tipacket messages distinguishes this dissertation from prior work on buffered 

CSMA-CID LANs. Specifically, the solution methodology offered formal solutions 

to the following key problems: 1) analysis of multimessage buffer LANs with 

single-packet messages, 2) analysis of single-message buffer LANs with mul-

tipacket messages, 3) analysis of multimessage buffer LANs with multipacket mes-

sages, and 4) analysis of interconnected single-message buffer LANs with mul-

tipacket messages. Throughout the thesis, the emphasis was on the quantitative 

performance evaluation and the main performance measures determined were the 

throughput, the message delay and the necessary and sufficient condition for stabil-

ity. 
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The main contributions and findings of this thesis can be summarized as fol-

lows: 

• We proposed a decomposition approximation methodology as a tractable analyti-

cal technique for solving the interfering queue problem in buffered random access 

LANs. For each of the key problems considered, we developed a discrete-event 

simulation model to assess the accuracy of our approximations. 

• We showed that for buffered CSMA-CD LANs with single-packet messages, the 

decomposition approximation technique served as a unified analytical framework 

for studying the performance of such LANs which consist of homogeneous users, 

each equipped with finite/infinite buffer size and also of LANs with heterogeneous 

users. To, the best of the author's knowledge, no such unified analytic technique 

exists to date. We derived expressions for the probability generating function for 

user queue length, the mean queue length, the channel throughput and the neces-

sary and sufficient condition for system stability. 

The main findings from the numerical examples are tradeoffs existing between 

throughput and delay on the one hand and (for finite buffer size) between buffer 

overflow probability and mean packet delay on the other. We also found that the 

performance results based on the user homogeneity assumption tend to be optimis-

tic especially in moderate to heavy traffic range. Our findings can be applied to a 

real network as follows: choose the sensing probability to keep the, throughput at 

an acceptable level without exceeding the tolerable delay, then select a buffer size 
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to achieve a small number of rejected packets. 

• Recently, LANs are being considered for digitized voice transmission in addition 

to the traditional bulk data transfer. Such data are broken down into messages, 

each message consisting of more than one packet. We provided the message 

response time analysis for such "new generation" LANs and for efficient transmis-

sion of the multipacket messages, we proposed the gated and limited packet 

transmission strategies. Using the gated transmission strategy only, we derived a 

relationship between the message and packet access delays. 

Results from this study confirmed our intuition of the unsuitability of the con-

ventional transmission strategy for multipacket message transmission. We found 

that in the low to medium throughput range, the gated transmission strategy gave 

the least mean message response time; however, in the high throughput region, the 

limited transmission strategy (with a high minimessage size) might perform better 

than the gated strategy. In addition, we saw that the mean access delays were sen-

sitive to the message length distribution and buffer size. For voice data transfer 

• application, we found that the gated transmission strategy displayed a much 

improved performance over the conventional strategy for value of buffer size 

grater than one. 

• We extended the decomposition approximation principles to analyze multimes-

sage buffer random access LANs with nodes capable of buffering multipacket mes-

sages. For this type of LAN, we claim that this study is the first. The main results 
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obtained fromour analysis are the expressions for the probability generating func-

tion for queue length, the Laplace-Stieltjes transform of the waiting time and the 

channel throughput. 

Our numerical results showed the sensitivity of the mean packet (message) 

waiting time on the message length statistics as well as on the message length dis-

tribution. The results also revealed that in the presence of variations in the input 

traffic and/or the number of nodes in the netsork, the choice of the retransmission 

rate had a definite effect on the system stability. 

• We further showed that the main idea of the decomposition approximation had 

broad applicability in interconnected buffered random access LANs, the study of 

which constitutes the topic of current research due to the limitations of single 

separate LANs. We offered the throughput and delay analysis of interconnected 

buffered CSMA-CD LANs, our work differed from recently reported studies in that 

the more realistic assumption where each node generates (and stores) multipacket 

messages was made. 

We found an improvement in the throughput of the interconnected LANs over 

that of its equivalent LAN. However, we saw that the internetwork messages 

suffered larger delays compared with the message response time in the equivalent 

LAN, we conjectured that the intemetwork delay could be reduced by appropriate 

selection of bridge node (input) parameters. 
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Finally, the solution of the interfering queue problem in random access LANs 

(via the decomposition approximation technique) presented in this thesis represents 

a fascinating application of probabilistic thinking with elegant mathematical 

analysis. We believe that this thesis has provided an indepth study of the interfer-

ing queue problem in random access LANs. We sincerely hope that this effort will 

stimulate further research. 

7.2 Open Problems For Further Research 

The solution to the four key problems addressed in the thesis has unfolded a 

number of problems that require further investigation. We outline briefly some of 

these in the following: 

1. Dynamic Control Procedure for Buffered CSMA-CD LANs 

For simplicity reasons, steady-state condition was tacit1y assumed in all our 

analyses. However, it will be appropriate to analyze the system dynamics under 

transient condition, this will give a better indication of the actual system behavior 

but such an analysis is going to be extremely difficult. 

2. Stability of Buffered CSMA-CD LANs with Multipacket Messages 

While the necessary and sufficient condition for stability was derived for 

buffered CSMA-CD LANs with single-packet messages, we only discussed numeri-

cally the stability issue for buffered CSMA-CD LANs with multipacket messages. 

We state categorically that the problem of deriving the necessary and sufficient 
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conditions for stability for buffered random access LANs is a formidable one. In 

fact, it is still a wide open problem in the field of random access communications. 

It will therefore be desirable to investigate mathematically the condition for stabil-

ity for multimessage buffer CSMA-CD LANs with multipacket messages as well as 

other issues. For example, the dynamic control of retransmission rate in the pres-

ence of variations in the input traffic and/or number of nodes in order to maintain 

system stability. 

3. Whole versus Partial Message Acceptance Strategy 

In Chapters 4 and 6, it was assumed' that arriving messages were accepted into 

the nodal buffer provided the message lengths were smaller than or equal to the 

available buffer space. An alternative acceptance strategy is to accept parts of a 

message which will just fill up the empty buffer space (dubbed partial acceptance 

strategy), which has possible application in real-time data transfer. It will be 

appropriate to compare the effects of these two acceptance strategies on system 

performance. However, the author notes that partial acceptance poses a question of 

what to do with the remaining packets of a partially accepted message while wait-

ing for a free buffer space. 

4. Message and Packet Access Delays using Limited Transmission Strategy 

In Chapter 4, we were unable to derive a relationship between the message 

and packet access delays for the limited transmission (LT) strategy because the 

argument used for the gated transmission (GT) strategy was no longer valid. A 
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problem for further investigation is to seek an approach for deriving the relation-

ship between the two access delays for the LT strategy. Furthermore, the analysis 

of Chapter 5 also assumed gated-like transmission strategy, but as noted in Chapter 

4, this strategy may imply unfairness in the usage of the channel. A topic for 

further research will be the analysis of buffered LANs with multipacket messages, 

each node employing the LT strategy. In the author's opinion the LT strategy will, 

to some extent, ensure a higher degree of fairness than the GT strategy, it will also 

be desirable to quantify this claim. 

5. Parameter Tuning in Interconnected Buffered CSMA-CD LANs. 

We presented in Chapter 6 the analysis of the interconnected buffered 

CSMA-CD LANs using the decomposition approximation. It will be desirable to 

investigate the effects of varying the bridge node and station parameters on the 

interconnected LANs performance. In addition, a possible extension of the model 

used is to incorporate a finite • bridge buffer size and also allow the buffering of 

more than one message at each station. Such a model, though more realistic than' 

the one considered in Chapter 6 will be very difficult to analyze but it is well 

worth the effort. 
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