
THE UNIVERSITY OF CALGARY

Efficient Rendering of Animated
Blob l'bees

Mark A. Fox

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

August, 2001

@ Mark A. Fox 2001

National Library 6iblioWque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliiraphiques
395 Wdhgton Street 395. rus WeMingdon
OmwaON K l A W OtEawaON K f A W
camx% Canada

The author has grimted a non-
exclusive licence allowing the
National L ~ h u y of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts &om it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exc1usive pennettant a la
Biblioth-e nationale du Canada de
reproduire, pr-, distribuer ou
vendre des copies de cette these sow
la forme de microfiche//film. &
reproduction sm papier ou sur format
electronique .

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent &re imprimes
ou autrement reproduits sans son
autotisation.

Abstract

Implicit surfaces are a powerful modelling primitive for computer graphics. The

Blob Tree is a convenient data structure for representing implicit fields and surfaces.

-4s features have been added to the BlobTree, it has become more useful for modelling,

and therefore the models it has been used to express have grown larger and more

complex. The growth of BlobTree models has made it obvious that the time needed

to visualize large models is directly proportional to the size of the Blob Tree used

to describe a model. The BlobTree also suffers from an inability to include time-

dependent information, thus making animation difficult. This thesis is a presentation

of two techniques, reduction and pruning, that can substantially reduce the cost of

rendering large and complex models. Additionally, the extension of both techniques

to animated Blob Trees is explored.

iii

Preface

The research summarized in this thesis builds on the work of past contributors to The

Graphics Jungle. The implementation of the Blob Tree system, which is described in

Chapter 3, is derived from the work of Dr. Brian Wyvill, Andy Guy, and Mark

Tigges. Additionally, the task of reimplementing the Blob Tree system was shared

between myself and Callum Galbraith, with some help from Robson Lemos, Xikun

Liang, hlai Nur, and Dr. Wyvill.

Much of the research presented in this thesis has been published by myself: Callum

Galbraith, and Dr. Wyvill in both The Western Computer Graphics Symposium [16]

and Shape Modelling International [I 71.

The idea of applying t ree-normalizat ion, transformation compaction, and spatial

pruning, to the BlobTree stemmed from discussions with Dr. Geoff WyvilI at the

University of Otago, New Zealand.

The implementation of pruning and reduction in the BlobTree system was done by

myself, but the result gathering and analysis was shared between myself and Callum

Galbraith.

Acknowledgements

Thanks to my supervisor, Brian Wyvill, for his endless enthusiasm. His fascination

with implicits has been contagious. Thanks to Geoff Wyvill, for unselfishly sharing

ideas on research, all while encouraging me to enjoy New Zealand. Many of the past

and present members of the Jungle Research Group (Callum Galbraith, Cathy Jirasek,

Pavol Federl, Brendan Lane, Lars bluendermann, Mai Nur, Radek Kanvowski, and

Mark Tigges) deserve credit for providing both academic, and social support, in

addition to wonderful lunch-time conversation. Financial support from the National

Science and Engineering Research Council helped keep me focused on my research

rather than on the funding of my research. bly parents and family deserve a speciai

acknowledgement for infusing me with the will to undertake higher education. Lastly

and most of all, for standing by me through the two toughest times of my life, Carmen.

Contents

Approval Sheet

Abstract

Preface

ii

iii

iv

Acknowledgements v

Contents vi

List of Figures xi

1 Introduction 1

1.1 Explanation and Motivation . 1

1.2 Historical Survey . - . . 8

1.3 OutlineofContributions . 10

1.4 Thesis O v e ~ e w . 11

2 Fundamentals of Implicit Surfaces 13

2.1 Fields for Implicit Surfaces . 13

2.1.1 Convenient Construction of Fields 14

2.1.2 CSG in Implicit Surfaces - . 17

. 2.2 Visualization of Implicit Surfaces 18

2.2.1 Indirect Visualization of Implicit Surfaces 19

2.2.2 Ray Tracing of Implicit Surfaces 23

3 The Blob Zbee Implicit Modeling System 29

. 3.1 Introduction to the Blob Tree System 30

. 3.2 Object Orientation of the BlobTree 31

. 3.3 The Tree Nature of the BlobTree 32

. 3.4 The BlobTree 33

. 3.5 SkeletalPrimitiveNodes 34

. 3.6 Affine Transformation Nodes 36

3.7 Warps . 37

. 3.8 Blob Free Nodes for CSG 38

3.9 Blend Nodes . 39

. 3.10 Controlled Blend Nodes 40

. 3.11 .4 ttribute Nodes 41

. 3.12 Polygonizing the Blob Tree 42

3.13 Ray Tracing the Blob Tree . 44

3.14 Animatingthe BlobTree . 44

. 3.14.1 Tracks for Time-Dependent Values 45

. 3.14.2 Time-Dependent Blob Tree Queries 45

. 3.15 Python for Procedural Building of Blob Trees 46

. 3.16 Comparison to Past Blob Tree Systems 48

4 More Efficient BIobZke Rendering 51

. 4.1 Past Techniques For Efficient Field Evaluation 52

4.2 Spatial Techniques for Rendering . 54

4.3 Pruning the Blobnee . 55

. 4.4 Reducing the Blob Bee 58

. 4.5 Rendering With Pruning and Reduction 59

. 4.5.1 Applying Pruning to Rendering 60

. 4.5.2 -4pplying Reduction to Rendering 62

. 4.6 Polygonization and Pruning 62

. 4.7 Ray Tracing and Pruning 63

4.8 Reduction and Pruning Applied to Animated BlobTrees 64

. 4.8.1 Reducing Animated Blob Trees 64

. 4.8.2 Pruning Animated Blob Trees 66

4.9 Efficient Ray Tracing of animated BlobTrees 67

. 4.10 Efficient Polygonization of Animated Blob Trees 69

5 Results 70

6 Conclusions and Future Work 78

. . - - 6.1 Summary .. 78

6.2 Thesis Contributions . 79

. 6.3 Future Work 80

List of Figures

1.1 A sphere approximated by nearly 500 triangles. 2

1.2 A single BBzier- primitive. 3

1.3 A ray traced Peanut. 4

1.4 The link between a field and an implicit surface. 5

1.5 The Blob Tree used to define the peanut model for 1.3 and 1.4. 6

1.6 A complex model of the sea-shell Mwex cabritii built using

the BlobZke. (Image courtesy of Callum Galbraith.) . - . - . 7

2.1 The minimum distance between a point, $and a line segment,

is the minimum of the distances, d l , d2, and d3. In this case

d i s t (s , Q) = d 2 . . 15

2.2 The Blinn hnction and the resulting implicit surface. 16

2.3 A linear function and the resulting implicit surface. 16

2.4 The CSG operations applied to two implicit circles and their

definingfields. 18

2.5 A two-dimensional example of a case where a grid based im-

plicit surface polygonizer can produce a topologically incor-

rect polygonization. Which of these polygonizations should

be chosen? . 21

The general algorithm used in [29] and [30] for intersecting a

ray with an implicit surface. - . 24

The layout of the BlobZke system. The upper components

depend on lower components. 30

An illustration of the crucial vectors that all skeletal prim-

itives must be able to compute. In this case, the skeletal

primitive is a circle. - . . . - 35

A line wiil-~ped to a curve and the resulting bound of the curve. 37

An illustration of how attribute nodes are applied in a Blob-

The . Skeletal Point 1 will be affected by Attribute Node 2,

while Skeletal Point 2 will be afFected by Attribute Node 1. . 42

BlobTree nodes used in the coastruction of a novel model.

(Image courtesy of Brian Wyvill.) 43

The classic implicit peanut expressed as a Python script. . . 47

A bumpy torus expressed as a Python script. 48

A visualization of the field and c = ? surface of the Bloblke

expressed by the Python script in Figure 3.7. Only two of the

seven primitive field functions contribute to the highlighted

area. 53

The algorithm used to prune a unary node. 56

Tree reduction creates a tree with a single transformation

node above each leaf node. 58

Transformation nodes cannot pass through warp nodes in re-

duction. , . 60

Pruning applied to a two-by-two and four-by-four uniform grid. 61

The spline approximation algorithm recursively subdivides

the curve between pl and p;! as long as d > c. 66

4.7 Given that an axially aligned box is transformed by a piecewise-

linearly interpolated matrix tmck, its bound over time can

be computed by taking the union of the bounds of the Linear-

interpolation of the box between each pair of matrices, &Ii

and l V f i + l - 68

5.1 A rendering of the Grass model. 71

5.2 The Sparse model, composed of four small patches of grass

. separated by a large region of empty space. 72

5.3 A complex model built using the BlobTke. (Image courtesy

of Callum Galbraith.) . 77

- - - --- - - - - . - - - - - - - - -

1nt roduct ion

Implicit surfaces are useful for modeling interesting and practical shapes. Data-

structures like the Blob Tree provide the foundation of an integrated system for mod-

eling with implicit surfaces. Unfortunately, rendering large and complex models con-

structed using the BlobTree is slow due to the expense of BlobTree field evaluations.

This research examines methods of exploiting spatial and non-spatial information in

a BlobTree model to increase the speed with which it can be evaluated and therefore

rendered.

1.1 Explanat ion and Motivation

Computer graphics software can be used in a variety of areas including but not limited

to education, mathematics, engineering, and entert ainrnent . The field has developed

to the point where a motivated individual can begin to make simple, useful, and

perhaps even interesting images and animations of three-dimensional objects with

only a few thousand dollars worth of computer hardware and software, and only a

few days of training.

The rapid increase in computational power available to computer scientists has

driven advances in the field. The increase in computational power has made possible

novel algorithms for expressing, generating, and manipulating graphical information.

Figure 1.1: A sphere approximated by nearly 500 triangles.

The integration of these algorithms into software tools has greatly expanded the

flexibility of the computer as a tool for computer graphics.

The increase in selection and power of modeling primitives is one example of this

flesibility- A modeling primitive, or just primitive, is the smallest unit used to model

a three-dimensional object. For example, by using a deck of playing cards, one could

model a house. In this case, the model is a house, and the modeling primitive used to

represent it is the playing card. In computer graphics, the most pervasive modeling

primitive is the triangle.

Triangles are well suited to modeling objects that are made up of flat faces, such

as boxes and simple cabinets. However, objects with curved surfaces, spheres for

example, which are modeled with triangle primitives suffer due to the fact that curved

surfaces can only be approximated with triangles [15]. Figure 1.1 shows a model of

a sphere constructed from nearly 500 triangles. The fact that the model is only

an approximation of a sphere is obvious. To generate an acceptable approximation

of a curved surface, a Large number of triangles must be used. A consequence of

using a large number of triangles is that the data representing the object becomes

cumbersome for the user to manipulate, and for the computer to process.

One strategy for solving this problem is through the use of a more powerful prim-

Figure 1.2: A single B6zier primitive.

itive than the triangle. In this context, more powerful could be taken to mean; able

to represent curved surfaces accurately. The set of primitives based on spline patches

fulfills this requirement.

For the purposes of illustration, a reasonable physical analog to the spline patch

is a rectangular piece of thin and pliable sheet metal. By applying pressure to the

metal at points across its surface, it can be bent into a smoothly curving surface. In

this respect a spline patch is similar, by moving a set of control points, a smoothly

curving surface can be manipulated.

The BBzier spline patch in Figure 1.2 is described by only sixteen points. An

approximation of the same surface with triangle primitives would require several hun-

dred points dependinging on the accuracy required. This reduction in data through

the use of more powerful primitives results in a substantial increase in the expressive

power of both the artist and the computer.

Unfortunately, even with spline patches, there is still a point where the amount of

data necessary to represent a model can become too much both for the artist to easily

understand and the computer to easily process. If i t is considered that a convincing

representation of the human form could easily require several hundred spline patches,

it becomes obvious that a more powerful primitive is necessary.

Figure 1.3: A ray traced Peanut.

Using a type of modeling primitive called an implicit surface, the curved surface in

Figure 1.3 is entirely represented by only two points. The same surface would require

substantially more data if built with spline-patches or approximated with triangles.

An implicit surface is dependent on the notion of a field. A field simply assigns a

value to points in space. For example, a field could be defined that assigned all points

in space with their distance, in kilometers, from the tip of the Eiffel Tower. This field

would assign all of the points that are 1 kilometer from the Eiffel tower with the field

value 1.

Given a field, an implicit surface can be defined by stating that all the points with

a specific field value are on the surface. The field value that defines the surface is

called the surface value. For example, using our Eiffel Tower field, if we define the

surface value to be 1, then we would have a description of a sphere, centered on the

tip of the Eiffel Tower, with a radius of 1 kilometer.

The link between fields and implicit surfaces is illustrated in Figure 1.4. Figure

1.4(a) displays two points which are used to define the field shown in Figure 1.4(b).

The inner contour in Figure 1.4(c) corresponds to the part of the field that has a value

of 0.5, while the outer contour bounds the area where the field is non-zero. Figure

1.4 is intimately linked to the image in Figure 1.3, since both figures are generated

from the same simple field.

(a) The points which de- (b) The field defined by (c) The c = contour

fine a field the points (inner curve) and the

bound of the field's non-

zero area (outer curve).

Figure 1.4: The link between a field and an implicit surface.

-4 computer and a software tool can be used to define and visualize fields and

implicit surfaces which depend on those fields. Those implicit surfaces can then be

used to model real world or imaginary objects through the computer. The Blob Tree

is one such software tool for modeling objects with implicit surfaces. The BlobTree

allows a user to flexibly build complicated fields from simple fields. These complicated

fields can then be used to describe complicated surfaces which can be used to build

models of objects. The Blobnee used to express the field for Figures 1.4 and 1.3 is

depicted in Figure 1.5.

Unfortunately, complicated models based on implicit surfaces, although they re-

quire relatively little data, require a great deal of computation on the part of the

computer to produce an image. For example, using well known algorithms for ren-

dering implicit surfaces, the image in Figure 1.6, which depicts a model of a sea shell

built with the Blob Dee, took approximately 28 hours of computation to generate.

For production purposes, this is almost certainly unacceptable.

Point, 0
Figure 1.5: The Blob m e used to define the peanut model for 1.3 and 1.4.

For animation purposes, it is necessary that the BlobTree also incorporate infor-

mation on how the model changes over time. The additional computation required to

calculate the status of a model at a particular instant of time can add considerably

to the computation time required to render an image. Since animations are made up

of many individual images, the computation time to generate an animation is many

times the that needed to generate a single image. Still worse, in order to simulate the

look of film, images in an animation may require the generation of motion blur. In

terms of computer time, the computation required to generate motion blurred images

is expensive. The desire to create high-quality animations of complex Blob Tree mod-

els demands that the software used to render images of BlobDees, and the BlobTree

software itself, be as efficient as possible.

For users of the BlobDee software, once they have expressed their models, how

their models move and change over time, and described the position and motion of

any light sources and the camera, they must let the computer render the images. The

rendering time is dependent on many factors, but the most important is the complex-

ity of the model. A model of an object demands a certain amount of complexity.

Figure 1.6: A complex model of the sea-shell Murex cabritii built using the

BlobTbee. (Image courtesy of Callurn Galbraith.)

For BlobTree models the complexity is proportional to the number of nodes in the

model. For example, the BlobTree used to express the peanut model used for Figures

1.3 and 1.5 has four nodes. A more complex model is depicted in Figure 1.6.

It is instructive to note that, using conventional Blob Tree rendering algorithms,

the more complex model takes approximately four-thousand times as long to render

as the simple model. In fact, rendering time, T, can be expressed by the mathematical

equation T = cn, where c is a constant, and n is the number of nodes in the BlobTree

model. This formula implies that doubling the complexity of a Blob Tree model will

double the rendering time. This is acceptable, but could certainly be improved upon.

A Blob Tree rendering algorithm that yields an expression for T that is less depen-

dent on n could yield an image much more quickly. For example, if the algorithm

had T = c, then no matter what the complexity of the BZobTree model, the render-

ing time would remain the same. This is an impossibility for a program running on

a serial computer, but it is certainly possible to reduce the size of c. For the pur-

poses of this thesis, a reduction of T by a factor of would be significant. It would

also be considered significant if rendering time could be reduced to something like

T = c log(n).

The work presented in this thesis is focused on methods for modifying the Blob-

Tree, and extending algorithms that make use of the Blob Tree, to significantly reduce

the computational expense of rendering images and animations of BlobTree models.

1.2 Historical Survey

Although implicit surfaces have been used in other areas for some time, in 1973 Ricci

[35] is the first author to use them in the context of computer graphics, and provides

an extensive introduction to the theory of implicit surfaces along with some simple

algorithms for their visualization. Ricci's work is revisited and somewhat expanded by

Blinn in 1982 141. Despite the attention of Blinn, a very respected computer graphics

researcher, implicit surfaces remained unpopular, largely due to the expense of their

visualization.

In 1985, Nishimura [33] used quadratic equations to express implicit surfaces.

This allowed for high-quality rendering of the implicit surfaces using the ray tracing

techniques developed in [25], which were widely known a t the time. Still, the computer

graphics community remained largely ignorant of implicit surfaces.

An algorithm for converting an implicit surface to triangles, and data structures for

representing and efficiently computing the implicit field value, is detailed in [58]. Two

short animations, [48, 491, which made use of implicit surfaces for several purposes,

were released in 1986 and 1988, respectively. These two animations made the case

for implicit surfaces in computer animation.

General and accurate algorithms for rendering implicit surfaces are detailed by

Kalra in 1989 [29], and by Mitchell in 1990 [30]. Both techniques allow a great deal

of flexibility in the choice of functions, while still guaranteeing that fine details in the

surface will be captured.

With the publishing of techniques for synthesis of photo-realistic images of implicit

surfaces, techniques for real-time image synthesis still remained undiscovered. The

use of oriented particle systems by Witkin in i904 [46] made real-time visualization

of, and interaction with, implicit surfaces possible.

Although the use of tree data structures is prevalent in computer science and for

computer graphics, the application of trees to the definition of fields was not published

until 1999 [5 11. The data structure outlined, called the Blob Tree, incorporates affine

transformations, non-linear spatial warps as in [3], blending, and boolean operations

into a single unified data structure. That data structure is an ancestor of the one

detailed in this thesis.

The Blob Tree has many similarities to scene-graphs which are used to represent

traditional surface models [36]. Many techniques exist for more efficient rendering,

via ray tracing, of scene-graphs [14, 15: 451. Many of these techniques are dependent

on the idea of spatial partitioning [20]. Spatial partitioning has also been applied to

the simplification of Constructive Solid Geometry (CSG) trees [47, 57, 221. Spatial

partitioning has been applied to implicit surfaces [58, 55, 191, but the underlying r e p

resentations of implicit surfaces were very simple, and not as general as the BlobTree.

Another long standing problem with implicit surfaces was the inability to apply

two-dimensional texture maps. An algorithm for applying texture maps to implicit

surfaces is detailed in [.Ill. This method relies on repeated evaluations of the function

and is therefore expensive. An alternative approach, which is largely decoupled from

field evaluation, and therefore much more efficient, is outlined in [42].

The Blob Tree was integrated with a visual modeling tool and later integrated with

the Python programming language for procedural modeling [43]. The Blob Tree and

its suite of libraries have much in common with HyperFun, an extensive system which

makes use of F-reps (341, a representation of implicit surfaces which is analagous to

the Blob Tree. The HyperFun tools are described in [I].

1.3 Outline of Contributions

A major part of this research is the design and implementation of a complete system

for modeling and rendering of animated implicit surfaces. This system includes,

JungleGL, a foundation graphics library, JungleB T, the Blob Tree implementat ion,

Jungle WyvillPG, a polygonizer for Blob Trees based on [58], and JungleRT, an implicit

surfaces ray tracer based on a simplification of the techniques in [30]. The system

includes approximately fifty-thousand lines of C++ code, and represents a major

effort by the graduate students in The Graphics Jungle.

The analysis and presenation of techniques for making BlobTree implicit field eval-

uations more efficient is presented in this thesis. By making Blob Tree field evaluations

more efficient, the use of these techniques will in turn make any algorithm that de-

pends on these evaluations more efficient. The integration of these techniques with

ray tracing and polygonization is detailed. Preliminary work for the integration of

these techniques with animated Blob Trees is also presented.

Spatial pruning and its application to the Blob Tree for spatial partitioning is intro-

duced in this thesis. All of the features of the BlobTree are discussed as well. Special

attention is given to the BlobTree features, such as CSG and warps, that complicate

pruning.

Another technique for increasing the efficiency of scene-graphs, called reduction,

is adapted to the Blob Tree. By applying reduction to an instance of a Blob Tree

any redundant information stored in affine transformations is removed, resulting in a

BlobTree that is more efficient to evaluate. A complication to reduction, caused by

the use of warps in Blob Trees, along with its solution is presented.

The concepts of pruning and reduction were integrated into JungleBT. Both the

ray tracer and polygonizer have been extended to take advantage of the two tech-

niques. The fact that the BlobTree has recently been extended to support animation

has caused significant complications to the integration of pruning and reduction to

the Blob Tree system. Preliminary solutions to the problem of pruning and reduction

in the context of animated Blob Tree were devised and are described in this thesis.

1.4 Thesis Overview

The focus of this research is methods for making evaluations of the BlobTree, and

therefore rendering, more efficient. After the initial introduction and background to

implicit surfaces, except where noted, the implicit surfaces system discussed will be

the Blob Tree.

The body of this document is organized as follows:

Chapter 2 is an introduction to the theory of implicit surfaces and the algo-

rithms that can be used for their visualization. The techniques for building

interesting surfaces from simple primitive fields are explained, and several dif-

ferent algorithms for both ray tracing and polygonization of implicit surfaces

are discussed.

Chapter 3 details the BlobTree, the implicit surfaces system to which the tech-

niques presented in this thesis are applied. All the features and operations

of the BlobTree, including skeletal primitives, blends, controlled blends, affine

transformations, spatial warps, constructive solid geometry, and attributes are

examined in detail.

Chapter 4 presents reduction and pruning, the techniques used to make the

BlobTke more efficient. Explanations of how these techniques are applied to

ray tracing and polygonization are also given.

Chapter 5 presents the results of both ray tracing and polygonization of several

test Blob Tree models with pruning and reduction applied. Different parameter

values for the application of pruning are explored in an attempt to determine

appropriate values for the different test models. Trends in the results are pointed

out and a discussion why these trends occur is also included.

a Chapter 6 summarizes and concludes the findings and contributions of this

research. -4 discussion of ideas for future work is also given.

Fundamentals of Implicit Surfaces

Implicit surfaces are dependent on the notion of a field function

F : R3 + R. An implicit surface is defined to esist a t the set of points where F (f i = c,

where c is some constant. Given a function, F, and a value for, c, the definition of

the surface is complete, and it can be visualized directly by rendering algorithms such

as ray tracing. -\lternatively, it can first be polygonized and the resulting triangles

visualized by traditional met hods for polygons.

2.1 Fields for Implicit Surfaces

F, the field function simply assigns values to points in space. There is no constraint

on how F is defined, with the exception that for the purposes of rendering an implicit

surface, it is desirable that i t be both continuous and computationally inexpensive to

evaluate. The rendering algorithms assume that F is continuous. If that is not the

case, then they will fail. The rendering algorithms also evaluate F a large number of

times. If F is not computationally inexpensive, then the rendering algorithms will be

unacceptably slow.

There is a great deal of freedom in defining F . For example, by using the function

F(f l = p2 + p: + p: - r2 the surface of a sphere of radius r can be defined to exist

where F@5 = 0. As stated in [6], a torus of inner radius r and outer radius R can be

2 2 defined with the implicit equation F(p') = (p: + p$ + p:)2 - 4R (p, + P;) - r2. The

surface of the torus exists where F(p3 = 0. Similar functions can be defined for many

of the standard shapes used in computer graphics.

2.1.1 Convenient Construction of Fields

Although modeling a shape by deriving a formula may be attractive to mathemati-

cians, it is probably abhorrent to all but the most dedicated of artists. Blinn pre-

sented an approach that allows much more intuitive modeling in [4]. Given a set of n

points, Q, a simplified version of Blinn's field function is F(p') = CZn e-IF-Qi12. This

field function allowed Blinn to create visualizations of approximations to the electron

fields surrounding molecules, where the nuclei of the atoms were the set of points

in Q. By breaking Blinn's function down into its constituent parts the notions of

blending and skeletal elements can be derived.

BLinn's field function, F, is the sum of several exponential functions. The ex-

ponential~ are functions of the Euclidean distance between the query point, p', and

another point Q;. Let us define any geometric element, whose minimum distance to

a point in space can be found, as a skeletal element- Then, in Blinn's field function,

the set of points, Q, is a set of skeletal elements. Since Blinn uses points, the mini-

mum distance between a skeletal point element, Qi, and the query point, p', is simply

IP- Q i l -

Skeletal elements allows the use of a variety of geometric entities as the foundation

of skeletal elements. For example, we could use a line segment as a skeletal element.

In this case, the minimum distance between $and a segment of a line would be the

minimum of the distances between $and the closest point on the line, and between

@and the two ends of the line segment. This is illustrated in Figure 2.1.

The minimum distance, d , between the query point, p', and the skeletal element

is then used as a parameter to an exponential function f (d) = e-". This yields a

three-dimensional field function that surrounds the skeletal element. The shape of

Figure 2.1: The minimum distance between a point, p' and a line segment,

is the minimum of the distances, d l , d2, and d3. In this case &st (s , Q) = d2.

/ determines the effect that the summations of the fields surrounding two skeletal

elements will have on the implicit surface. To illustrate this, a plot of the function

and the resulting implicit surface, at c = f r , for Blinn's exponential function and a

linear function is given in Figures 2.2 and 2.3, respectively.

Most algorithms for rendering implicit surfaces assume that the field function,

F, is continuous as well. These algorithms will fail if F is not continuous. For this

reason, definitions of f should be continuous. Many different definitions of f have

been used in the past, and several are mentioned in [53, 71.

Since we desire the flexibility to use different skeletal elements and functions, we

can write a more generalized form of our implicit function. Given a set of functions,

G, a set of skeletal elements? S, and a function, dist(s,p'), which will return the

minimum distance between p'md a skeletal element, s, we can define F to be:

F m = C gi(dist(si, 3) (2-1)
t

This equation allows a great deal of freedom in specifying the field function since

a variety of both skeletal elements and field functions can be used.

Let us call the combination of a skeletal element and its associated field function a

(a) Blinn's e-xponential field function. (b) The c = $ surface resulting from

2.2(a).

Figure 2.2: The Blinn b c t i o n and the resulting implicit surtace.

(a) A linear field function. (b) The c =) surface resulting from

2.3(a).

Figure 2.3: A linear function and the resulting implicit surface.

primitive field. The summation of these primitive fields can then be defined as simple

additive blending. This allotvs a complex field to be created by the blending of simple

primitive fields.

Given an appropriately shaped field function, the one depicted in Figure 2.2(a)

for example, blending is an intuitively accurate term, since the surface that results

from the adding of several overlapping fields does indeed look like the smooth blend

of volumes.

An alternative to the simple additive blending operation is the super-elliptic blend

as defined by Ricci [35]. This operation is more flexible in that it allows a parameter

to smoothly vary the type of blend from a simple additive blend to a union operation.

2.1.2 CSG in Implicit Surfaces

Blending simple primitive field functions is an intuitive way of building and describing

organic looking models with soft flowing curves. Unfortunately, most man-made

objects cannot be easily described in this wayY This is because most man-made objects

are built by using one object, a drill bit for example, to cut a piece out of another

object, or by fastening two objects together. Put differently, man-made objects are

built by subtracting one object from another or adding one object to another.

Constructive Solid Geometry (CSG) provides a way of expressing man-made mod-

els in the same way that their physical analogs would be engineered. CSG provides

three operations for building models: union, diflerence and zntersection. The union

of two circles is the set of points contained by a t least one of the circles. The difer-

ence of two circles is the set of points inside the first circle, but not the second. The

2ntersection of two circles is the set of points that are inside both circles. The union,

digerenee, and intersection of two circles is depicted in Figure 2.4.

As pointed out by Ricci, CSG operations can be easily expressed in the context of

fields and surfaces [35]. Given two field functions fi@3 and f2@5, a function that will

yield the union of the two implicit surfaces can be defined as: U(p5 = ma.(f (p3, f2 @5),

(a) The union of two fields. (b) The difference of two (c) The intersection of two

fields. fields.

Figure 2.4: The CSG operations applied to two implicit circles and their

defining fields.

where max(n nn) yields the maximum of nL and 722. Similarly given that min(n,, n2)

yields the minimum of nl and na, difference and intersection can be defined as

D@') = rnin(fl@3,2c - f2 0) and I@) = min(h 0, f2(P')), respectively. Each of

Figures 2.4(a), 2.4(b), and 2.4(c) display the c = $ implicit surface resulting from the

above definitions, in addition to the underlying field.

The CSG operations can also be expressed as R-functions [34]. R-functions have

the advantage that they can exhibit higher degrees of continuity than simple CSG

operations based on min and max functions, which are first-degree discontinuous by

definition. The implementation of CSG via these R-functions does have the disad-

vantage of having a higher computational cost.

2.2 Visualization of Implicit Surfaces

The combination of skeletal primitives, blending, and CSG, allows many useful models

to be simply and intuitively expressed using a tree structure. Of course, the field of

computer graphics demands the existence of a way of visualizing the resulting models.

Two standard rendering methods for visualizing implicit surfaces are polygonization,

which approximates the implicit surface with polygons and renders the result using

standard techniques for rendering polygons [7], and direct ray tracing of implicit

surfaces [25, 27, 29, 301.

Polygonization has the advantage of having a much smaller computational expense

relative to direct visualization methods. Additionally, a polygonization is independent

of view direction, making it appropriate for interactive visualization.

Polygonization has several disadvantages. It can potentially create a massive

amount of data. Even though that data may be entirely unnecessary due to the

orientation of the camera. Since polygonization generates a piecewise planar approx-

imation to a potentially curved surface, unacceptable visual artifacts may result.

Although much more expensive computationally, direct methods for visualizing

implicit surfaces do not suffer from the inherent artifacts of a polygonal approxima-

tion. Direct visualization has the advantage that it requires much less data than

polygonization to create an accurate image [29]. These facts combine to make di-

rect visualization the method of choice for the generation of high-quality images that

accurately depict implicit surfaces, and indirect visualization methods the choice for

interactive applications.

2.2.1 Indirect Visualization of Implicit Surfaces

As far as traditional visualization methods are concerned, an implicit surface cannot

be visualized directly. If traditional methods are to be used an implicit surface must

first be converted to a form that can be directly visualized. Polygonizing of an

implicit surface approximates it by a set of planar polygons, which can then be directly

visualized.

Most implicit surface polygonization algorithms are based on the fact that F(p7 > c,

if p' is inside of the surface and F(p3 < c, if p'is outside of the surface. Therefore if a

point, Z, is inside, and another point is outside, the implicit surface must intersect

the line-segment between a' and an odd number of times.

Given a cube in the same space as the implicit surface, the individual vertices

of the cube can be labelled as inside or outside the implicit surface. If the vertices

are not all inside or all outside the surface, then the surface must intersect the cube.

-4ny edge of the cube with one end inside and the other outside the surface intersects

the implicit surface an odd number of times between its end-points. To simplify the

problem, most algorithms assume that "an odd number of times" means "exactly

one time". For cubes of sufficiently small size this assumption is true. A detailed

discussion of this issue is given in [44].

So, by examining the inside-outside value of the vertices of a cube, it can be

determined which edges, if any, intersect the implicit surface. Depending on the

accuracy needed, the point on an edge which intersects the surface can be accurately

determined via a numerical root-finding approach, or when accuracy is not an issue,

can simply be approximated by the edge's midpoint. These intersection points can

then be used to generate polygons that approximate the part, or parts, of the implicit

surface that passes through the cube. In fact, a 256-entry table can be generated with

each entry corresponding to a unique set of inside-outside values for the cube. This

table can be used to quickly determine which edges intersect the cube, and what

polygons will be generated as a result of these intersections [7].

If a grid of cubes is oriented over the space that an implicit surface occupies, the

above facts can be used to generate a polygonization of an implicit surface. This

is what is presented in [58] and, as pointed out in [32], is a type of cubical cell

polygonization.

Cubical cell polygonizations of implicit surfaces have several shortcomings [58, 5,

321. The surface may intersect the cube without intersecting the vertices. This is a

sampling problem inherent in the use of an uniform grid. As shown in Figure 2.5, an

additional problem is the fact that of the 256 different inside-outside cases for a cube,

several are ambiguous and must be carefully handled or else topological ambiguities

can result in holes in the polygonization.

Problems due to topological ambiguity can be reduced or alleviated by several

Figure 2.5: A two-dimensional example of a case where a grid based implicit

surface polygonizer can produce a topologically incorrect polygonization.

Which of these polygonizations should be chosen?

different strategies: cell decomposition, preferred polarity, and topological inference.

-4s implemented in [6], cell decomposition triangulates tetrahedrons rather than

cubes. Tetrahedrons have the desirable property of having no ambiguous cases for

triangulation. This approach completely solves the ambiguity problem but does gen-

erate many more triangles compared to t he cubical algorithm.

As pointed out by Ning and Bloomenthal in [32], preferred polarity solves the

ambiguity problem by producing polygons that always separate outside vertices, or

always separate inside vertices. In this way, topological ambiguities can be straight-

fonvardly avoided, although topological inaccuracy is not guaranteed.

Both cell decomposition and preferred polarity address the ambiguity problem but

since both techniques make use of information a t just the vertices of the cube, neither

can guarantee that the resulting polygons are topologically correct when compared to

the actual surface. Topological inference uses additional samples to gain more infor-

mation about the surface and produce a topologically more accurate polygonization.

In [58] the additional sample is a t the center of certain faces of the cube. Although

this reduces the chances of a topological ambiguity and increases the chances the

chances of topological accuracy, it guarantees nothing. Topological ambiguities and

inaccuracies may still occur using topological inference.

There are other algorithms, such as the shrink wrap algorithm [44] and point

distribution methods [46, 121 that do not fall under the category of cubical cell poly-

gonization, but can be used to generate a polygonal approximation to an implicit

surface.

The shrink wrap algorithm [44] is interesting in that, like [5], it produces an

adaptive polygonization. Areas with relatively low curvature are approximated with

fewer triangles than areas with higher curvature. The algorithm starts with a mesh

of triangles, forming a tetrahedron, that fully contains the implicit surface. The

algorithm proceeds by repeatedly moving the vertices towards the implicit surface

and then examining the triangles to determine if they need to be subdivided. Shrink

wrap is quite fast, and can give good accuracy provided that the implicit surface

being approximated is homeomorphic to a sphere. It was extended to remove this

constraint in [B].

Oriented particle systems form the basis of the algorithm described in [46], a

point distribution method. In their algorithm, a particle system uses four rules to

approsimate the shape of an implicit surface: a particle must stay on the implicit

surface; a particle must align itself with the field's gradient; a particle is repulsed by

other particles; and if there are no particles within some distance, E , a particle will

divide into two particles. In this way, particles will multiply and spread across the

implicit surface, until the particle system reaches an equilibrium state. The particles

can be used to define a set of discs whose normals are aligned with the normal of

the implicit surface being approximated and that are nicely distributed across the

surface. If polygons are necessary, the particles can be used as input points into a

three-dimensional polygonizat ion algorithm such as Delauney triangulation.

In [12], an oriented particle system is again used to quickly generate a polygonal

approximation to an implicit surface. However, in this method each primitive field

is associated with a set of particles and the polygonal mesh that they form. If two

primitive fields interact their corresponding meshes are merged in a way that does

not necessarily produce accurate results, but is certainly efficient and acceptable for

some applications.

2.2.2 Ray Tracing of Implicit Surfaces

Just as there exist many methods to indirectly visualize an implicit surface via poly-

gonization, many methods exist to visualize an implicit surface directly. Most direct

algorithms are used in the context of ray tracing, although Blinn uses a direct algo-

rithm that is more closely related to scan-line algorithms [4]. In order to make any

claims of accuracy and efficiency, most direct algorithms need some sort of auxiliary

information in addition to the implicit function, F O . This fact negatively impacts

the generality of the algorithms in the sense that it constrains the set of functions

that can be used. This discussion will focus only on robust direct and general algo-

rithms applicable to ray tracing, therefore only Kalra and Bar's use of the Lipschitz

condition [29], Mitchell's use of interval analysis [30], and Hart's sphere-tracing [27]

will be examined in any detail. Algorithms that are constrained to polynomial field

functions, such as [55], will be ignored.

In ray tracing, the crucial problem is to find the intersection of a ray with a surface.

-4 ray can be defined by r(t) = pj + &, where pj and dare three-dimensional vectors

and t varies over the interval [O, oo). By substituting r into the field Function F we can

find the intersections of the implicit surface with r by solving f (t) = (F o r) (t) - c = 0.

The least positive root corresponds to the first intersection with the ray. This is the

most useful intersection in standard ray tracing. Since f is a black box function, a

general root finding method must be used. Unfortunately, as pointed out by [27],

methods such as Newton's or regular falsi have the problem that they do not neces-

sarily converge to the least positive root.

Both the Lipschitz method and the interval analysis method have the property

that they are guaranteed to not only find the least positive root, but they can easily

be extended to find all roots, making them particularly appropriate when integrating

implicit surfaces into a traditional ray tracer incorporating CSG [30] or transparency,

intersect (interval)

1 If there is only one root in interval

2 Use Newton's method or regula falsi to

refine and return the root.

3 Else if there are no roots in interval

4 Return no roots.

5 Else

6 firsthalf = the first half of interval

7 If intersect (first half) returns no roots

8 secondhalf = the second half of interval

9 Return the result of intersect (secondhalf)

10 Else

11 Return the result of intersect (firsthalf)

Figure 2.6: The general algorithm used in [29] and [30] for intersecting a

ray with an implicit surface.

where all ray-surface intersections are required.

A function, f, is Lipschitz over a region, R, only if a positive constant, C, exists

such that 1 f (so) - f(xl)l < LIxo - xI I. All three root-finding algorithms depend on

the restriction that the Function be Lipschitz-

The algorithms make use of the Lipschitz condition to allow for simple and rea-

sonably efficient methods for isolating roots before refining them using a method such

as Newton's or regular falsi. Both algorithms are essentially as outlined in Figure 2.6.

The difference between the two methods is the way in which they exploit Lipschitz

conditions in lines 1 and 3.

Sphere tracing as introduced in [27] uses the Lipschitz condition in a novel way

to construct an algorithm that is of similar efficiency, but potentially more general.

Like the other ray- intersection algorithms sphere tracing can be easily extended to

find all intersections of a ray with an implicit surface.

All three algorithms can use some sort of spatial partitioning to eliminate regions

of empty space that cannot contain the implicit surface, allowing the ray tracer to

avoid unnecessary queries to the field. This fact is due to each algorithm's use of the

Lipschi tz conditions. -4s pointed out in [27], spatial partitioning has the additional

and greater benefit of allowing local Lipschitz constants to be computed for each

su b-space.

Ray Tracing of LG-Implicit Surfaces

An implicit surface, where the auxiliary functions L(R) and G(1, T) can be defined, is

called an LG-implicit surface, which fonns the basis for the guaranteed ray intersection

algorithm for implicit surfaces in [29]. L (R) corresponds to a bound of the maximum

rate of change of F over the region R. G(1, T) is a function for the bound of the

maximum rate of change for the directional gradient on the line 1 over the closed

interval T = [to, t l] . With definitions of L and G that correspond to a particular

field function F, a recursive algorithm which finds the least positive root can be

implemented as in [29]. In their algorithm the L and G functions are used to determine

whether a single root is contained in T, in which case the root can be found by

Newton's method or regula falsi, or whether no roots are contained in T, in which

case the algorithm can terminate. In any other case, the algorithm subdivides T and

calls itself recursively on the two sub-intervals.

The intersection algorithm for LG-implicit surfaces has the notable attribute that

it is guaranteed not to miss any intersections. The implementation of the algorithm is

simple and straight-forward. The only problems with the algorithm is its use of L and

G which are dependent on the definition of F. It is desirable that L and G not only

be close bounds, but also that they be efficient to compute. The fact that L and G

are only bounds, and not necessarily exact bounds, yields great freedom in choosing

an efficient implementation. As pointed out in [29], even global constants will suffice,

but the algorithm is more efficient when more accurate bounds are computed. Hart

[27] points out that a thorough understanding of the function, F, is required to find

a tight, efficient, or both tight and efficient: Lipschitz bound.

Interval Analysis for Ray Tracing Implicit Surfaces

Interval analysis [31] is the basis of an algorithm presented in (301 with the same goal

as, and a similar implementation to, the ray intersection algorithm for LC-implicit

surfaces. An interval is a set of real numbers inclusively bounded by a minimum and

maximum, i = [a, b] where a 5 b. The set of real intervals contains the real numbers,

since [a, a] = a. Given the definition of intervals, we can define functions that operate

on, or yield, intervals. A pertinent example is the extension of the field function, F,

to return its interval over a line segment. In this case the interval version of F would

return the interval [a, b], which bound the field's values over the set of points defined

by the line segment.

The algorithm presented in [30] makes use of the interval version of F along with

the interval version of its first derivative F', both of which compute an interval over a

line segment. The interval versions of F computes the minimum and maximum field

values that can occur over the points of the line segement defined by r . Likewise, F'

yields the minimum and maximum rate of change that occurs over the line segment.

In a fashion very similar to [29], the algorithm uses the interval versions of F and F'

over an interval of a ray.

Employing interval analysis in this way results in a ray intersection algorithm that

is simple and robust. Unfortunately, as is the case with LG-implicit surfaces, the

auxiliary functions required reduce the size of the set of functions that can be easily

and efficiently implemented. It is not clear which technique allows for a larger set of

implicit surfaces to be efficiently rendered, but internal analysis allows the generation

of a reasonable interval version of F automatically [30], making the rendering of

practically all implicit surfaces, that satisfy the Lipschitz condition, possible.

It is not generally recognized that, rather than just using an interval version of F

and accepting the very loose bounds that will result, a thorough understanding of the

field function can be used to efficiently compute accurate bounds of F over a segment

of a ray. For example: if we know that f is always decreasing and that our skeletal

primitive, p, is a point, then we know that F will be maximized a t the point on the

ray segment which is closest to p. This point can be straight-forwardly computed by

simple geometry.

Sphere Tracing Implicit Surfaces

Sphere tracing is a ray intersection method originally devised for deterministic fractals

[26] and later generalized to many other types of surfaces [27]. The algorithm uses the

Lipschitz conditions to devise a bound of the distance, d m , from an arbitrary point,

p', to the implicit surface. This estimate is used as a basis for a simple algorithm

that steps along a ray by an amount guaranteed not to penetrate the surface. If the

distance bound becomes smaller than some E, where E is near machine precision or

display limits, it is assumed that an intersection has been found.

Sphere tracing offers a number of benefits over past methods of performing ray-

intersections with implicit surfaces. It does not require a method to compute the

derivative of F. -4 wider range of implicit surfaces, including creased, rough, and

fractal surfaces are possible to render via sphere tracing. Finally, sphere tracing

provides an integrated method of anti-aliasing since it approximates cone tracing

[271.

Interval analysis and LG-implicit methods for ray intersection converge linearly

during the root isolation stage, and then converge quadratically during the root re-

finement stage. In contrast, sphere tracing always converges linearly.

Like the interval analysis and LG-implicit methods for ray intersection, sphere

tracing has some requirements for efficient computation. In interval analysis, the

constraint is that the interval be accurately computed. LG-implicit surfaces demand

that accurate bounds for L and G be found. With sphere tracing, an accurate distance

bound is required. In all three algorithms a loose bound may be used, but this will

not allow the algorithm to execute as efficiently as if an accurate bound is used.

The Blob Zkee Implicit Modeling System

Developments in systems for modeling and visualizing implicit surfaces have been

numerous and varied. The foundation for most systems is the basic method for

combining the effect of several primitive fields specified by skeletal primitives. As

proposed in [35], CSG can be easily integrated with such a system (34, 521. Additional

features include spatial warping as defined by [3], whose integration into implicit

surfaces systems is documented in [SO, 111, and blending graphs, which allow selective

blending of surfaces [23]. The BlobTree 1511 has been introduced as a method of

unifying these features into a single data structure and is the subject of this chapter.

The Blob Tree has undergone several redesigns and reimplementations since its in-

ception. The first complete implementation of the BlobTree is due to Andy Guy and

is detailed in [24]. A second implementation, that refined some aspects of Andy's im-

plementation, introduced texture mapping, and integrated the Python programming

language, is due to Mark Tigges and is covered in [40].

A major part of the research for this thesis was a complete redesign and imple-

mentation of the BlobTree system. The design of this new BlobTree system is the

focus of this chapter.

/ *

R a y Tracer/Polygonizer
L A

r \

BlobTree
L /

t \

Graphics Utility Library
\ J

r I

Standard Template library
\ J

Figure 3.1: The layout of the BlobZke system. The upper components

depend on lower components.

3.1 Introduction to the BloblPree System

The layout of the Blob Tree system is illustrated in Figure 3.1. The Blob Tree system is

a set of layered libraries that, taken together, provide a system for building, storing,

and rendering implicit surfaces models-

The BlobTree is a data-structure for expressing fields and surfaces. Like many

data-structures in computer science, the BlobTree is based on a tree structure. In the

BlobTree, each leaf node corresponds to a primitive field function, and each non-leaf

node corresponds to an operation on one or more descendant field functions.

The BlobTree is built upon a graphics utility library. The graphics utility library

includes support for the reading, writing, and manipulation of images. Linear algebra

routines that are particularly useful to computer graphics are also included in the

graphics utility library. Lastly, the graphics utility library also includes the foundation

necessary for the expression of values that change over time.

High quality visualization of Blob Tree models is accomplished through a ray tracer.

Interactive visualization of Blob Tree models is accomplished through the use of a

polygonizer, to generate a polygonal approximation of the model, and the use of

OpenGL to visualize the resulting polygons.

-4lthough it is not required to make use of the Blob Tree system, Python, a general

purpose programming language, is used in most of the tools which make use of the

Blob Tree. The fact that Python is both embeddable and extendible makes it applica-

ble to the Blob Tree. Python is embeddable in the sense that it can be easily accessed

from a C/C++ program. BlobTree nodes can call the Python interpreter to evaluate

some Python code. Python is extendible in the sense that new procedures, data-

types, and classes, all implemented in C/C++ can be added to the Python language.

This allows the nodes of the BlobTree to be instantiated, manipulated, and rendered

from within a Python script.

Python provides an easy way to interactively access the functionality of the Blob-

Tree, the ray tracer, and the polygonizer. Python programs are used to create, and

then to store, Blob Tree models. In a sense, Python is a glue language that helps the

tools for visualizing BlobT~ee models, the tools for constructing Blob Tree models, and

the BlobTree models themselves, interact in a useful fashion.

3.2 Object Orientation of the Blobnee

The Blob Tree is implemented in the C++ programming language [39]. This allows the

use of object-oriented language features to simplify its implementation and extension.

In order of importance, the major object-oriented features which the Blobnee uses

are user-defined types (classes), polymorphism, abstract inheritance (pure virtual

classes), and type instantiation (templates).

User defined types are used to define the BlobTree nodes themselves. Many user

defined types are also used internally and externaIIy in the implementation of each

node. Prevalent examples of this include the vector and matrix classes of which the

Blob Tree makes heavy use.

The use of polymorphism and abstract inheritance in the BlobTree are related

to one another. Inheritance simply allows for a class to redefine and extend the

functionality of a class from which it inherits. Abstract inheritance allows a base

class to define functionality that must be implemented in any class that inherits from

that base. For example, all classes that inherit from the field function class must defme

the value function. Polymorphism allows a class to be used without full knowledge

of its type. For example, a blend node has children, all of which must be BlobTree

nodes, but beyond that, the type of each child node is of no consequence to the blend

node.

Type instantiation is used in the BlobTree through its use of the C++ Standard

Template Library (STL). The STL provides a set of containers, such as list, vector, and

queue. Through type instantiation, a container for integers, matrices, or Blob Trees,

can be instantiated and put to use with very little effort.

3.3 The Tree Nature of the Blob Free

The Blob Tree is a tree data-structure. Tree structures have been used in many areas of

computer science and computer graphics to represent information. The Blob Tree has

much in common with scene-graphs, which are used throughout the field of computer

graphics. In part icuar, the Blob Tree incorporates hierarchical grouping, transforma-

tions, and CSG information.

It is useful to group the different types of nodes of the BlobTree into three broad

categories based on the number of children they can have: terminal nodes have no

children; unary nodes have one child; binary nodes have two children; and n-ary nodes

have multiple children. Terminal nodes will always be a t the leaves of a Blobnee.

While unary, binary, and n-ary nodes will always be internal.

In the BlobTree implementation, a class corresponding to each of these categories

of node exists. Each of these classes implements functionality common to all nodes of

that category. Since each of these classes is related to the number of children a node

has, the functionality they implement is limited to providing accessor and mutator

methods to set and retrieve their children.

3.4 The Blobmee

The obligations of all Blob Tree nodes are encapsulated in the declaration of the Blob-

Tree base class, the class from which all Blob Tree nodes must inherit. The function-

ality declared in the Blob Tree base class must be implemented by all Blob Tree nodes.

This functionality includes the ability to compute the value, gradient, interval along a

line, and interval within a box: of the field function. Additionallyv? all Blob Tree nodes

must be able to compute field dependent attributes, such as colour.

Since the BlobTree is used to express fields, the most important feature of all

BlobTree nodes is that they return the implicit field value given a point in space.

This is the value function, which corresponds to F(p3.

The gradient of a field is important in determining the normal of the implicit

surface. Therefore all nodes of the BlobTree must be able to compute VF(p3, the

gradient of F(p3. This functionality is encompassed in the gradient function. Given

a small value for 6, where 6 E R, the gradient can be numerically approximated with
((F(p')-F'g a , F(p;)-F(p) 6 , F(p')i F(a) , given that p; = p' + (d,O,O) , pi = P + (0,6,0) , and

6 = p'+ (O,0, b) . Due to the problem of choosing 6 and the problems with machine

precision when 6 is too small, it is desirable to use an exact value of O F 0 rather

than a numerical approximation.

In order to accurately ray trace an implicit surface, a guaranteed method of inter-

secting a ray with the implicit surface is necessary. The line interval and box interval

functions respectively yield the interval of possible field values for the set of points

on a line and within a box. Given these two functions, a guaranteed method for ray

tracing, based on a simplification of [30], can be devised.

For some applications, the ability to compute the colour of an implicit surface at

a particular point in space is needed. This allows the colour of an implicit surface

to be dependent on the field value, yielding the ability to blend colour as well as

geometry. This functionality is accessed through the attribute query method, which

allows arbitrary field dependent values, called attributes to be computed for any

point in space. Attribute query takes a position, a list of strings that identify the

attributes needing to be computed, and a list of attributes. The list of attributes

represents default values for each attribute. The attribute query method returns a

list of attributes. This list contains the computed attributes corresponding to the

method's parameters and the node it is called upon. Attributes need only have the

capability to be multiplied by a scalar number and summed with attributes of like

type. Therefore an attribute representing colour can be easily defined.

Lastly, in order to make texture-mapping of implicit surface possible, a two-

dimensional uv-mapping of a point on the surface is required. This functionality

is accessed through the uv method, which maps a query point to uv-coordinates. The

implementation and application of the uv method will largely be ignored, since it is

beyond the scope of this thesis. For a detailed discussion of issues surrounding the

determination of uu, the reader is referred to [40].

3.5 Skeletal Primitive Nodes

Although it is possible to directly specify a function within the BlobTree, most in-

stances of BlobTrees are based on skeletal primitive nodes, which are terminal nodes

corresponding to the combination of a skeletal element and a primitive field function

both of which are defined in Section 2.1.1. Given a distance, d, the primztive field

function, fp, must be able to compute its value, f,(d), and its first derivative, f i (d) .

Figure 3.2: An illustration of the crucial vectors that all skeletal primitives

must be able to compute. In this case, the skeletal primitive is a circle.

Each skeletal primitive must be able to compute five crucial vectors. The imple-

mentations of value, gradient, line interval, box interval, and attribute query are made

in terms of these five vectors and the stored primitive field function.

The most fundamentaL vector for a skeletal primitive node to compute is the short-

est vector from a point in space to a point on the skeleton, vmin(p7- A skeletal primitive

must also implement umin (r ([to, t l])) and urnor(' ([to, tl])) which respectively corre-

spond to the shortest and longest values of vmin@3 br the set of points on an interval

of a ray. Similarly, implementations must be provided for urnin ([xol XI], [yo, yl], [zo, tl])

and vm,([xo, xi], [yo, yl], [zo, zl]), which correspond respectively to the shortest and

longest vectors resulting from urnin(@') for the set of points in an axially aligned box.

These vectors are illustrated for the hypothetical circle skeletal primitive in Figure

3.2. For a discussion of other sorts of primitives, see [24].

If a natural local coordinate system exists, it should be used to compute the five

required vectors. This can significantly simplify their computation. For example,

using the center of the circle as the origin of the local coordinate system for the

implementation of the circle skeletal primitive. In this case, and in most others,

using a natural coordinate system for the skeletal primitive does not impact the

flesibility of the BlobTree system since an a n e transformation node (defined in

Section 3.6) can be used to perform any affine transformation on the skeletal primitive.

However, it should be noted that in the BlobTree system, the effect of applying an

afine transformation is that the field is transformed, not that the underlying skeletal

primitives are transformed.

The methods for value, gradient, line interval, and box interval can be implemented

in terms of umin@T 7 urnin (r([to 7 tl])) 7 ~rnaz(r([to 7 tl])): vrnin([xo, XI], [YO, YI], [201 ZL]) and

v,,([zo, xl], [yo, yl], [zo, zl]): the value method is implemented as fp(llumin(p5 I I); the

gradient method is implemented as (urnin @') fi (1 lvmin@3 1 l)/l lvmin(pZ I I; the line inter-

val method is implemented as [/ (llvrnaz(r([to, tl]))ll)7 f (llvrnin(r([t~, tt]))ll)]; and the

box interval method is implemented as:

The skeletal primitive node implements the attribute query method by computing

its field value at the query point, creating a copy of the list of attributes passed into

the method, multiplying each attribute in the copy by the field value, and returning

the new list of attributes.

3.6 Affine Transformat ion Nodes

Afine transformation nodes are unary nodes that apply f i n e transformations to

their child nodes. In order to do this, the inverse of a matrix, T, which encodes

the desired attine transformationan is applied t o the appropriate argument of each

method, and the transformed argument is passed to the corresponding query in the

child node. The result of this is that calls to value, gradient, tine interval, and bos

interval, respectively become F(T-lp3, VF(T- '~ ')TL , F(Tdlr, [to, tl]), and F(T-lb) .

Notice that for the gradient method the result of a call to the child's gradient method,

Figure 3.3: A line warped to a curve and the resulting bound of the curve.

ij, is treated as a row-vector and transformed by the transpose of T, ie. g T . This

special transformation of g' is necessary since g' is a gradient rather than an ordinary

vector.

With the exception of the query point, an a . n e transformation's attribute query

method passes its unaltered arguments to its child. The result of transforming the

query point by T V L , is passed to the child node's attribute query method.

3.7 Warps

4 warp node applies a non-affine transformation to its child node. To simplify their

implementation, warp nodes incorporate the fact that the effect of a non-affine trans-

formation on a particular point in space can be expressed as an affine-transformation.

So, given a point in space, an affine transformation, M , is computed and applied to

the point in the same way that afine transformation nodes apply T . The exception

to this is the line interval and box internal methods.

Since the non-affine transfornation of a line can be a curve, calls to a warp node's

line interval method must result in calls to the child node's box interval method. A

box which bounds the non-afFine transformation of the line segment is computed and

this is used as an argument to the child node's box interval method. This case is

illustrated in Figure 3.3. Similarly, calls to a warp node's box interval method result

in the computation of a new box, that bounds the non-affine transformation of the

original box, and is then used as an argument to the child node's box interval method.

3.8 BlobDee Nodes for CSG

Although the nodes implementing CSG operations in the BlobTree are n-ary nodes,

for simplicity the following discussion treats them as binary nodes.

The union, intersection, and difference of two fields can be easily expressed in

an implicit surfaces system [35]. The union of two fields, Fl and F2, is simply the

maximum of the two field values a t a point, max(Fl(p'), F2(p')). Similarly, the in-

tersection is espressed as the minimum of the two field values a t the query point,

rnin(Fl m, F2(p3). The difference of Fl ancl F2 is the intersection between FL and

the negation F2, where negation is taken to mean 2c - F(p'). This yields

min (Fl (fl .2c - F2 0). Each of these expressions can be viewed as being conditional

on the relative values of the fields at the query point. The union, intersection, and

difference nodes use this fact in each of their implementations.

The implementation of the gradient method is similar to the value method. For the

union node the gradient corresponds to whichever child has the maximum field value

a t the query point. The intersection node is similar but the gradient of the child with

the minimum field value at the query point is returned. With the digerence node,

VFl (p') is returned if Fl (fl is less than 2c - F2(p7, otherwise -VF2(fi is returned.

-4 similar situation occurs in the implementation of the attribute query methods

for CSG nodes. The result of calling attribute query on a CSG node will be the

result of calling attribute query, with the same arguments, on one of the CSG node's

children. Unlike the traditional methods used for computing the surface attributes in

ray tracing (which is simply wrong for difference and intersection) [54], the Bloblfee

produces an intuitively correct result for CSG nodes. This implies that the child

whose attribute query will be returned, as a result of calling attribute query on a

union or diflerence node, will be whichever child has the maximum field value at the

query point. In dgerence nodes, the child whose attribute query is returned is always

the one whose field is not negated.

The implementations of the line interval and box znterval methods are nearly

identical for each of the CSG nodes. In both cases, two intervals, [s , t] and [u,u],

corresponding to either the line interval or box interval, are computed by the two

children of the CSG node. The computation of the interval returned is identical for

both the line internal and box interval methods, [max(a, c) , max(b, d)] for union nodes,

[min (s, u) , min(t , v)] for intersection nodes? and [min(s, 2c - v) , min(t, 2c - u)] for

diflerence nodes.

3.9 Blend Nodes

-A blend node is an n-ary node that simply sums the field values of its children. This

fact makes its implementation simple and straightforward. The value and gradient

methods for a blend node sum the result of respectively calling value or gradzent for

each of its children. Both the line interval and box interval methods simply sum the

result of calling the corresponding interval method for each child, using the interval

definition of addition ([s, t] + [u, v] = [s + u, t + v]).
The attribute query method for a blend node computes the weighted average of

the result of calling each child's attribute query method. For example, if diffuse cotour

were one of the attributes being computed, the list of attributes returned would contain

an entry corresponding to the diffuse colour. That entry would contain the weighted

average of each diffuse colour attribute returned by the children. In computing this

average, each child's diffuse colour attribute would be weighted by the child's field

value at the query point. The result of using this approach is that, like the surface

geometry, each child's contribution to the blended attributes values is proportional to

its field value a t the query point.

3.10 Controlled Blend Nodes

Controlled blend nodes are used whenever it is required that certain nodes blend with

one another while others do not. For example, in a BlobTree model of a human

hand which is clenched into a fist, the tips of the fingers should definitely not blend

with the palm. This functionality can be achieved through the use of ordinary blend

and union nodes, but the controlled blend node is more convenient and much more

efficient. Controlled blending was introduced in [23].

-4 controlled blend node contains a list of children, and a list of groups of these

children. To compute the value of a controlled blend node, the valve of each child is

computed and stored. Then, for each group, the pre-computed values, corresponding

to each child in the group, are summed. The maximum of these sums is returned. In

this way: each child is only queried once for its value, rather than being queried once

for each group of which it is a member.

Just as is done for the value method, the gradient method computes the sums for

each group. The group with the largest sum of values has all of its gradients computed

and summed. This sum of gradients is then returned.

The attribute query method works in a similar fashion to the gradient method,

the group with the largest sum of field values determines which group will be used

to compute the attributes returned. Using the same method as in ordinary blend, the

group's attributes are determined by computing the weighted average of the result of

calling each group member's attribute query method.

The line interval and box internal methods work in a very similar fashion to the

gradient method. The group with the largest sum of values is computed, and that

group is used to compute the sum of line intervals or boz intervals, just as in a blend

node.

3.11 Attribute Nodes

Attribute nodes are unary nodes that contain a string and a value for an attribute.

The string represents the name of the stored attribute. A common example would be

an attribute node which contains a colour attribute and the string "diffuse colour".

Attribute nodes are indifferent to the value, gradient, line internal and box internal

methods. Therefore, calls to these methods result in corresponding calls to the at-

tribute node's child. The arguments passed to the attribute node's method are passed

unaltered to the child's corresponding method.

Attribute nodes have a non-trivial implementation of the attribute query met hod.

-4 call to an attribute node's attribute query method passes arguments for a position,

a list of strings that identify the attributes needing to be computed, and a list of

attributes, specifying default values. If the name of the attribute node's stored attribute

is in the list of strings, the corresponding entry in the list of attributes is over-written

with the value of the attribute node's stored attribute. In this way the value stored

in an attn'bute node is applied to its children, unless it is over-ridden by an attribute

node further down in the tree. This is illustrated in Figure 3.4.

The application of two-dimensional texture maps to implicit surfaces defined by

the Blob Tree is accomplished through texturing nodes which are a type of attn'bute

node that use a two-dimensional image to assign uv-dependent attribute values to the

query point. There are two methods for computing the uu value used. The simplest is

to call the child's uv method. The other method is to simulate a particle moving along

the field's gradient until it strikes a surface for which a simple uv mapping exists.

This method uses repeated calls to the child's gradient method and is therefore very

expensive. Further advantages and disadvantages of these techniques are detailed in

[421-

Attribute 1 0
Blend ?3

Skeletal A
Figure 3.4: An illustration of how attribute nodes are applied in a BlobZke.

Skeletal Point 1 will be affected by Attribute Node 2 , while Skeletal Point

2 will be affected by Attribute Node 1.

3.12 Polygonizing the Blob n e e

There are many algorithms for the polygonization of implicit surfaces [32]. Although

these algorithms are applicable to the Blob Tree, the method outlined in [58], aug-

mented with the technique in [52] for accurately representing first order discontinu-

ities due to CSG, is used. This method is used due to its robustness, generality, and

speed.

The polygonization algorithm uses a uniform grid to divide space into cubes. The

algorithm is only concerned with cubes that intersect the implicit surface. The algo-

rithm makes use of a continuation algorithm [2] to find these cubes. The continuation

algorithm must be seeded by cubes that are guaranteed to either be intersecting, or

completely inside of, the implicit surface.

The algorithm finds seed cubes by first querying the BlobTree for a set of seed-

points that are guaranteed to be on the inside of the implicit surface. This function-

Figure 3.5: BlobZke nodes used in the construction of a novel model. (Im-

age courtesy of Brian Wyvill.)

ality is encapsulated in the seed points query. For skeletal primitive nodes this query

simply returns a set of points that lie on the skeleton. For example, a point primi-

tive would return the origin. The other nodes in the Blob Tree must implement the

seed poznts query appropriately. Afine transformation and warp nodes transform and

then return the seed-points of their child. Blend and controlled blend nodes simply

return the union of their children's sets of seed points. CSG nodes must apply the

rules of CSG to their children's seed points to determine if they should be included

or removed. Union nodes act exactly like blend nodes. Intersection nodes can only

return seed points that are inside all of their children. D2fference nodes can only

return seed points that are inside their first child, and outside of all other children.

3.13 Ray Tracing the Blob D e e

For ray tracing BlobTrees, a simplified application of interval analysis as presented

in [30] is used. The simplified algorithm does not require the formulation of the

interval of the field's derivative along a ray. It only requires that the minimum and

maximum field values, both along a ray segment and within an axially aligned box, be

computable. This functionality is accessed through the line interval met hod which all

BZobTrees must implement. The algorithm proceeds by finding the line interval for the

ray segment of interest, and if the surface's iso-value is contained in the field interval,

calls itself recursively on the first half and then the second half of the ray-segment.

The algorithm terminates when a ray-segment is below some threshold length, e , and

still has a line internal that contains the surface value, c.

This algorithm linearly converges on an intersection between a ray and an implicit

surface and is guaranteed to find all ray-surface intersections. It is important to note

that this algorithm queries the Blob Tree many times to compute a single ray-surface

intersection.

3.14 Animating the Blob Tkee

The BlobTree's primary purpose is for modeling. For this reason, past implemen-

tations did not allow for temporally-dependent information to be included in the

BlobTree. Instead, a BZobTree would be created, rendered, and destroyed, for each

frame of animation. This works, but makes time-dependent effects such as accurate

motion blur impractical. It also requires that the code that drives the rendering

be aware of the structure of the BlobTree model being animated, and how to in-

stantiate such a model for each frame of animation. A BlobTree which incorporates

time-dependent information, and allows for time-dependent queries, circumvents these

problems. This section describes how the Blob Tree has been extended to incorporate

time-dependency.

3.14.1 Tracks for Time-Dependent Values

A track is simply a value that changes over time [9]. Any track can be queried for its

value at an instant of time. How a track's value is computed is of little consequence,

however it should be as efficient as possible. Some examples of tracks used by The

Graphics Jungle include constant tracks which return the same value regardless of the

scene-time they are queried at, lznear interpolated tracks, which compute their values

by linear interpolation, and spline tracks, which use splines to compute their values

a t a particular time.

A special type of track, called a mat& truck, exists to specify time-dependent

matrices. These tracks cannot only compute the time-dependent value of a matrix,

but the time-dependent value of the matrix's inverse as well. This functionality exists

to avoid the expense of computing a matrix's value and then being forced to invert it

using a mat riv inversion algorithm. Matrix tracks exist for computing time-dependent

analogues of all the standard d i n e transformations: translation, rotation, scaling, and

shearing.

Whenever possible, tracks have been implemented using C++ templates, so that

tracks for arbitrary data-types can be instantiated by the compiler. Wbere appropri-

ate, values in BlobTree nodes are replaced with a reference to a track representing a

time-dependent version of that value.

Since time-dependent Blob Tree queries may require computing additional informa-

tion when compared to their time-independent counterparts, they are more expensive.

However, this expense is reasonable (usually less than a factor of I;), and necessary

for time-dependent effects such as motion-blur.

3.14.2 Time-Dependent BlobZke Queries

If BlobTree queries are to be time-dependent, then they must be modified to take

a parameter representing the scene-time at which the query occurs. This must be

done for each of the required BlobTree queries. Each node's implementation of value,

gradient, line interval, box interval, attribute query, and seed points must be modified

to take a time parameter and use it appropriately. In nearly all Blob Tree nodes,

the appropriate handling of the time parameter is simply to pass it to queries made

to child nodes and to use it in querying any time-dependent values (represented

by tracks) for their value. A particularly important example of this is the afine

transfomation node.

Afine transfomation nodes that changes over time are crucial in the specifica-

tion of animated Blob Trees. In spite of its importance, extending the standard afine

transfomation node to allow for time-dependent queries is straight-forward and un-

complicated. Firstly, the matrix which represents the affine transformation being

applied must be replaced with a reference to a matrix track. All of the constructors,

mutators, and accessors: that deal with the matrix, must be modified to deal with

a matrix track instead. The Blob Tree queries must also be modified to first query

the mat7-i~ track for its value or inverse value, and apply it in place of the ordinary

matrix's value or inverse value, to the query point, line, or box.

The necessary modifications to the warp node are very similar to the ones made

to the a f i n e transformation node. Attribute nodes must also be modified to contain

tracks in place of any attributes and to replace any references to the attributes with

calls to the tracks. Blend and controlled blend nodes simply pass the time parameter

to their children. Skeletal primitive are the one node that can safely ignore their

time-parame ter for all standard Blob Tree queries.

3.15 Python for Procedural Building of BlobTkes

Python is a full-fledged general purpose interpreted programming language. In addi-

tion to being object-oriented in nature, one of Python's major attributes is the ease

with which it can be both embedded and extended.

def peanut () :

b = blobTreeBuilder0

b. beginMultiple(blend())

b.insertBlobTree(point 0)
b.translate(l.0, 0.0, 0.0)

b.insertBlobTree(point ())

b.endMultiple()

return b

Figure 3.6: The classic implicit peanut expressed as a Python script.

Embedding Python in an application allows the Python interpreter to be called

and used to execute some Python script. In this way, the Python interpreter could

be used to evaluate a mathematical expression entered by the user.

Extending the Python language allows new functionality to be added to the lan-

guage and accessed through a Python script. Extending Python to deal with Blob-

Trees is described in [43]. The major extension of the Python language is the addition

of the Blob Tree builder class. The Blob Tree builder ~vas originally a C++ class used

to simplify the building of BlobTrees, but it is now almost exclusively used through

a Python interpreter.

A simple example of a Blob Tree model expressed in Python is shown in Figure

3.6. A slightly more complicated model which makes use of Python's flow-control

structures is given in 3.7.

Largely because a procedural programming interface is familiar ground for com-

puter science students, Python scripts have become the standard "file format" for

Blob Tree models built by The Graphics Jungle students.

def bumpyTorus() :

b = blobTreeBuilder()

angle = 0.0

delta = 2.0*3.14159 / 7.0

while angle < 2.0*3.14159:

b.translate(2.0*math.cos(angle), 2.0*math.sin(angle), 0.0)

b.insert BlobTree (point ())

angle = angle + delta

return b

Figure 3.7: A bumpy torus expressed as a Python script.

3.16 Comparison to Past BlobZke Systems

The Blob Dee system constructed as part of this research is very similar to the past

implementations by Andy Guy and Mark Tigges. During the design of the new system

it was decided that a clean and understandable design and implementation would be

the foremost concern, followed by efficiency.

Past implementations of the Blobnee system were one person efforts. The result

of this was that these systems were consistent and made sense, to one person. When

that person left The Graphics Jungle, the remaining students were left to decipher

the behaviour of the system via the source code.

The design and implementation of the current Blob Tree system has benefitted from

the fact that it was a team effort. At all points of the design and implementation

process at least two people had input on any design decision and nearly all of the

code was examined by at least two people. The result is a reasonably consistent and

understandable system. The longevity of the system has also been positively affected

by these practices, as there are at least two people familiar with any part of the

project.

The fact that the design and implementation was shared between a group of people

also freed the developers to spend more time deciding on the best course of action for

a particular problem. For this reason, it came to the attention of the development

team that certain Blob Tree queries could have high computational cost if they were

not implementated with a great deal of care and caution. The best example of this

is the attribute query in a blend node.

As noted in Section 3.4, the attribute query method computes the field-dependant

attribute values a t a particular point in space and time. The resulting attribute

values are weighted according to the field contributions of the primitive nodes in the

model. A straight-forward way to compute these attribute values, in a blend node,

would be to first compute the field value of each child, then to compute the attribute

value of each child, and finally to use the field values to weight the attribute values.

The problem with this approach is that a single query results in multiple queries

of nodes further down in the tree. If a particular model has several layers of blend

nodes, then the number of queries that occur a t leaf nodes rises dramatically. This

problem occurs throughout the past implementations of the BlobTree, but in the

current implementation it has been eliminated. The solution is quite simple, and is

detailed in [17]. For attribute query the solution is to allow leaf nodes, rather than

attribute nodes, to compute their contributions to the query. In this scheme, attribute

nodes oniy modify the parameters to the attribute query and pass the information

down to their sub-trees. This is very similar to the way in which most unary nodes

behave.

The way that Python has been utilized in the current system is slightly modified

compared to Tigges' use of the language. In the old system, a Blob Tree tree could

only be constructed from the top-dom. In the new system, slight changes have been

introduced that remove this restriction.

The techniques noted in this research, animation, pruning, and reduction, are

additional differences between the past and current BlobTree implementations.

More Efficient Blobmee Rendering

With only a few exceptions, methods for improving the efficiency of implicit sur-

face rendering have focused on minimizing the number of queries made to the field

function. The implicit function evaluations per-triangle (IFEPT) metric was devised

in [58]. In that paper, the described polygonizer minimizes the IFEPT through the

use of hash-tables. Another approach, put forth in [46], uses oriented particle sys-

tems to produce a sampling of the implicit surface suitable for real-time interaction.

Their algorithm allows particles that are attracted to the iso-surface, but repelled

from each other, to distribute themselves and orient themselves with the gradient

of the field. The surface can then be visualized by drawing discs in place of each

particle, with the discs7 normals oriented along the field's gradient. Both of these

algorithms for implicit surface visualization use very different approaches to visualize

the implicit surface with as few field evaluations as possible although complex and

computationally-expensive-to-evalutate-fields are a stumbling point.

Minimizing the number of field evaluations is perfectly sensible approach, but an

alternative is to minimize the expense, in terms of computation time, of the field

evaluation. In the simplest of fields, this is quite difficult and probably not worth-

while. However, in systems that build complicated field functions from primitive field

functions, minimizing the expense of the field function can be very profitable in terms

of computational savings.

As illustrated in Figure 4.1, the number of primitive field functions that contribute

to a particular volume of space can be quite small relative to the number of primitive

field functions in the model. In this case, although there are seven primitive field

functions in the model, only two contribute to the highlighted volume of space. In

larger models, the difference between the number of primitive field functions in the

model and the number that contribute to a small volume of space can be much more

profound. Many past techniques for efficient field evaluation have taken advantage of

this fact.

4.1 Past Techniques For Efficient Field Evaluation

Techniques for improving the efficiency of field evaluation were developed alongside

algorithms for implicit surface visualization. Blinn [4] used a scan-line method to

determine which primitive fields could significantly contribute to the field function.

In this nray?. only the significant primitive field functions are used for a particular

scan-line.

In polygonizing an implicit surface, Wyvill and WJ-vill [58] used a uniform grid

and primitive fields with finite extent to determine exactly which primitive fields could

contribute to a cubical voxei of space. In a preprocessing step to polygonization, this

method associates a list ot primitive field functions with each cubical grid element in

a course voxel grid. Only the primitive field functions which affect the cubical space

are contained in the list. In this way, the expense of evaluating the field function

is proportional to the number of primitive field functions that affect the voxel that

contains the query point. This technique is applicable to both polygonization and

ray tracing, and it works for flat data-structures which simply add the contributions

of a list of primitive fields. It has not been generalized to more complicated data-

structures, like the Blcb Tree, that incorporate concepts such as CSG.

Polynomial approximation to a field along a ray are used for ray tracing in [37].

Figure 4.1: A visualization of the field and c = 1 surface of the BlobZke

expressed by the Python script in Figure 3.7. Only two of the seven

primitive fieId functions contribute to the highlighted area.

In this way, once a polynomial approximation is made, the ray-intersection can be

found analytically and very quickly compared to algorithms for general implicit func-

tions. For many applications, the error introduced by the polynomial approximation

is entirely acceptable.

Implicit patches are related to Voronoi diagrams and defined as the volume of

space where one primitive field has more influence than any other. Implicit patches

are used in [19] to attempt to reduce the cost of field evaluations in the context of

a LG-implicit surface ray tracer. Each patch is associated with the field primitives

that affect the space which the patch occupies, so that only those field primitives will

need to be queried for a query point anywhere in the patch. Patches have a relatively

complicated shape that is relatively expensive to intersect against a ray. In order

to avoid this expense, a more efficient data-structure, based on voxels, is built from

the patches. Each voxel contains a list of the patches that affect its volume. When

evaluating the field value for a point, the voxel containing the point is found, and the

maximum of the contributions of each patch in that voxel is used. This approach is

far horn optimal. It is also important to note that the approach was only applied to

a simple data-structure for expressing fields, and not a general one like the Blob Tree.

In past implementations of the BlobTree, each node incorporates a box that bounds

the space that the node affects [51]. This bounding box can be computed in terms of

a node's children. For any query of a BlobTree node, the query point, line-segment,

or box, is first tested to see if it is inside the node's bounding box. If so, the query

continues to the node's children. Otherwise, the node can safely assume that the

field does not affect the query, act appropriately, and safely avoid a great deal of

unnecessary computation-

Duff [13] introduces an elegant technique which makes use of interval arithmetic

and the rules of CSG to minimize the size of the tree used to represent the field while

applying a recursive algorithm, similar to bIitchel17s (301, for ray-surface intersection.

The difference is that interval analysis is used to remove parts of the subtree that

cannot possibly intersect the segment. In this way, the tree being queried shrinks as

the segment along the ray is subdivided.

All of the above algorithms make use of spatial knowledge to determine which

primitive fieIds need to be queried. The first two are only applicable to a flat data-

structure, whereas the bounding box method and Duff's method are applicable to a

more complicated tree-like data-structure such as the Blob Tree.

4.2 Spatial Techniques for Rendering

Spatial techniques have been used to increase the efficiency of many algorithms in

computer graphics. Perhaps the most prevalent application of a spatial technique

is the use of spatial sub-division in ray tracing [18, 201. In ray tracing, spacial sub-

division is used to reduce the number of objects that a ray must be tested against. As

a preprocessing step to the actual ray tracing, space is sub-divided into sub-volumes

and each sub-volume is associated with the primitives that intersect it. In order to

test a ray for intersections with primitives in the scene, the ray only has to be tested

against the primitives in the sub-volumes that the ray intersects.

The two most popular spatial subdivision techniques employ cubes in a uniform

grid or an oct-tree. In a uniform spatial subdivision, an axially aligned grid is used to

divide the scene into cubes. This allows the ray to be very efficiently tested against

the cubes that it may intersect [lo]. -4n oct-tree employs axially aligned cubes as

well, but makes use of a hierarchy of cubes, where each cube can be sub-divided into

eight children [20]. Hybrid methods have also been proposed, where each cube can be

subdivided into n sub-cubes, where n depends on the number of primitives present

in the cube 1281.

Spatial subdivision has also been used to reduce the complexity of CSG trees in

scene-graphs for the purposes of ray tracing [36, 22, 47, 56, 57, 131. All of these

techniques make use of the fact that given a subset of space, a CSG tree may be

simplified if oEe or more of its sub-trees does not affect the subset in question. In

essence, for a sub-volume of space, the scene-graph is pruned of all nodes that do not

effect that sub-volume.

4.3 Pruning the Blobmee

The fact that the number of primitives that influence a point in space is small relative

to the number of field primitives in the model is used to accelerate ray tracing of

implicit surfaces in 1191. The approach used in the research presented in this thesis

uses the same principal and has the same goal, but uses a simplified approach.

Given an &ally aligned box and a Blob Dee all sub-trees which do not affect the

volume bounded by the box are pruned away. This functionality is encapsulated in

prune(li, box)

I If U is an afine transformation or warp node

2 Transform the box as appropriate

3 Set C to the result of calling prune on U7s child with box

4 If C is the Null node

5 return the Null node

6 Else If C is the U's child node

7 return the child node

8 Else

9 Allocate a node of U', of the same type as Cr

10 Set U"schi1dtoC

11 return Uf

Figure 4.2: The algorithm used to prune a unary node.

the prune method. Calling p m e on a node can have one of only four results: the

node itself; a new instance of the same type of node; a child of the node, or the

Null node. The return values when pruning terminal, unary, and n-ary nodes are

introduced below.

A terminal node T, tests whether the box over-laps the bound of its field. If it

does, T is returned. Otherwise the Null node is returned.

A unary node, I/, transforms the box if it is an afine transformation or warp

node. The box is then used to prune U's child. If the child prunes to the Null node,

the Null node is returned. If the result of pruning the child is some other node C, a

unary node, U' of the same type as U is allocated, Uf's child is set to C, and U' is

returned as the result. This algorithm is expressed as pseudo-code in Figure 4.2.

An n-ary node, N, will return itself if all of its children prune to themselves. N

will return the !VulI node if all of its children do so as well. If only one of iV7s children

returns a non-Null node, C , then C is returned. The only case that remains is that

at least one of the children prunes to something other than itself and at least one

other child prunes to something other than the f i l l node. In this case, the set of

non-Null pruned children is made the set of children for a newly allocated node iV1,

of the same type as 1V, and N' is returned as the result.

Two of the n-ary CSG nodes, zntersection and diflerence, behave slightly differ-

ently than other n-ary nodes. An zntersection node returns the Null node if any of its

children return the Null node. The dgerence node returns the Null node if its base

child (the child which all others are subtracted from) returns the f i l l node. With

these exceptions, the CSG nodes behave identically to all other n-ary nodes.

One shortcoming of pruning as implemented in the BlobTree stems from its use

of axially aligned boxes. If an ordinary box is rotated its volume does not change. If

only axially aligned boxes are allowed, then this may not be the case. For example,

given an axially aligned box, B1, that is rotated and then bounded by another axially

aligned box, B2, i t may be that B2 has a larger volume than B1. In fact, with

the exception of translations and scales, all affine transformations can result in the

unnecessary growth of the axially aligned box. The affect of this is that by the time

the prune method reaches a leaf node in the Blob Tree, its box parameter will be larger

than necessary. This means that pruning using axially aligned boxes is unnecessarily

conservative and yields BlobTrees that are more complex than needed.

The expense of pruning a BlobTree model to a sub-space is proportional to the

number of nodes in the model's BlobTree. That is to say that if the number of nodes

in a BlobTree model is n, then pruning is an O(n) operation,

(a) Hierarchical Blob Tree (b) Reduced Blob Tree used

used for modeling. for rendering.

Figure 4.3: n e e reduction creates a tree with a single transformation node

above each leaf node.

4.4 Reducing the Blobnee

Although spacial knowledge is useful in reducing the cost of BlobTree queries, it is

not entirely necessary. Another strategy is to apply knowledge about the nodes of

the BtobTree and how they can be combined with one-another to remove redundancy.

This leads us to the technique called reduction which was first published in [56].

Reduction is a technique for converting a Blob Tree into another Blob n e e that is

less costly to query. The technique exploits the fact that redundancy is usually present

in the way that affine transformation nodes are used in a hierarchical Blob Tree model.

Given two matrices, Ma and &Ib, of the same dimensions we can combine them into

a single matrix, M, = II/fO1lfb, via matrix multiplication. Since, afine transformation

nodes simply encapsulate a matrix, the same approach can be used to combine two

afine transformation nodes.

Figure 4.3(a) represents an example of a BlobTree which may be reduced. In this

case, afine transformation A can be combined with each of afine transformatzons

B and C . The result is shown in Figure 4.3(b). Another way of thinking about the

reduction results from the fact that the tree in Figure 4.3(a) can be expressed as

T,(Ts(P,) + T,(P,)). Since afine tmnsfonnations are distributive, the expression can

be simplified to Ta(Tb(Pl))+Ta (Tc(P2)) and by recognizing that afine transformations

can be combined, we end up with Tab(PL) + Tac(P2), which is equivalent to the tree

in Figure 4.3(b).

The reduction algorithm proceeds by "pushing" afine transformations down the

Blob Tree until they are combined into a single afine transformation directly above a

primitive. After reduction there will be exactly one transformation between the root

node and each primitive node.

Unfortunatelv. there is an exceptional case that muddies an ot henvise clear imple-

mentation. The exceptional case involves warp nodes. Since warp nodes are non-affine

spatial transformations, they can neither be combined with afine transformation

nodes: nor can they allow parent afine transformation nodes to be combined with

child afine transformation nodes.

This case is illustrated in Figure 4.4. The Blob Tree depicted in Figure 4.4(a)

contains a warp node. Consistent with the above explanation, afine transformations

A and B can be combined, but the resulting afine transformation cannot be pushed

further down the tree to be combined with afine transformation C. Figure 4.4(b)

illustrates the result of reduction in this case.

The expense of reducing a BlobTree model is proportional to the number of nodes

in the model's BlobTree. More succinctly, if the number of nodes in a BlobTree model

is n, then pruning is an O(n) operation.

4.5 Rendering With Pruning and Reduction

The BlobTree allows the specification of hierarchical models. Organizational informa-

tion and instancing of structures are easily expressed using the various modeling nodes

of the BlobTree. Applying reduction or pruning to the BlobDee will destroy any orga-

Blend

warp

I

Blend

I

(a) Hierarchical Blob Tree (b) Reduced Blob Tree used

used for modeling. for rendering.

Figure 4.4: Transformation nodes cannot pass through warp nodes in re-

duct ion.

nizational information. For this reason, these methods are applied as a preprocessing

step before rendering. This allows model specification to take place entirely within

the context of a hierarchically organized Blob Tree, without any regard to rendering

efficiency.

4.5.1 Applying Pruning to Rendering

When used in conjunction with a spatial subdivision technique, pruning can be used

to build a data structure that associates a subspace with a pruned Blobnee. In

this research, uniform spatial subdivision is used since in most cases it is significantly

faster than other methods [lo, 281. Alternative spatial data structures can also be

used to associate sub-spaces with their corresponding pruned Blobnees.

A naive way of building such a data structure, based on a uniform grid, could

BlobTrees Used
BbbTree A B b b T m B

Point I

2-by-2 Grid
A B

Figtire 4.5: Pruning applied to a two-by-two and four-by-four uniform grid.

simply loop through all the voxels of the grid, using each voxel to prune Blob Tree

model and associate each voxel with the result. Since the entire model is pruned for

each voxel, this approach becomes expensive as the grid's resolution, and the model's

complexity, increases.

A better technique is to apply a recursive algorithm to use the result of pruning

to accelerate further applications of pruning. In this research, a form of binary space

partitioning was used to accomplish this task. First the spatial-volume of interest is

bound with an axially aligned box. The BlobTree model is pruned to that box, and

the box is split along one axis into two sub-boxes. Each sub-box is then used to prune

its parent box's Blob Tree and then split along another axis. The algorithm continues

recursively until the boxes are no larger than the voxels in the desired uniform grid,

or the pruned Blob Tree is the Null node.

A two-dimensional example of the resulting pruned BlobTrees when using a uni-

form grid, is shown in Figure 4.5. Three cases are illustrated. In the first, there is one

BlobTree, A, for the entire area. The extent of the field corresponding to each point

primitive is indicated by a circle. In the second case, the area has been uniformly

subdivided into a two-by-two grid. One additional Blob Tree, B, has been created for

the two right hand voxels which do not contain any part of the field corresponding to

Point 1. In the third case, a four-by-four grid is used and one more BlobTree, C, has

been created for those cells which do not contain any part of the field corresponding

to Point 2. The result is that 50% of the area contains the Null Blob Tree; 37.5% of

the area is occupied with simpler Blob Trees; and the original Blob Tree is only applied

over 12.5% of the area.

4.5.2 Applying Reduction to Rendering

Since reduction requires no spatial information, its application is straight-forward.

-411 that is required is that reduce be called on the BlobTree model, and the reduced

Blob Tree be used in place of the original Blob Tree for ail queries.

4.6 Polygonization and Pruning

-4s noted in Chapter 3, the method used to polygonize implicit surfaces, represented

with BlobTrees, makes use of a uniform grid to simplify polygon generation. With a

complex Blob Tree, the bulk of the polygonizer7s time is spent querying the Blob Tree

for its field value at the corners and along the edges of voxels that may intersect the

implicit surface. If these queries could be accelerated, the polygonization would be

accelerated as well.

To accelerate these queries, a uniform axially aligned grid, called the super grid,

is created. The super grid is much coarser than the polygonization grid. Each super-

voxel in the super grid stores the Blobnee created using the binary space partitioning

scheme described in Section 4.5.1. Upon entering a voxel, the super-voxel that con-

tains it is determined. For all the field d u e queries that will occur within the voxel,

the pruned BlobTree associated with the super-voxel is used.

In addition to the initial preprocessing to build the pruned Blob Trees stored in the

super grid, there is some small overhead to determine which super-voxel contains a

particular voxel, followed by a table lookup to find the appropriate super-voxel. For a

three dimensional grid, this overhead amounts to three integer divisions, two integer

multiplications, and an array index operation.

4.7 Ray Tracing and Pruning

Pruning of BlobTrees integrates very easily with ray tracers that employ standard

spacial subdivision techniques. Given that a spatial subdivision scheme is already

used in the ray tracer to avoid unnecessary ray-surface intersection tests, the same

spatial subdivision scheme can be used to simplify BlobTree models. This means that,

with the exception of the initial preprocessing to prune the Blob Trees, no additional

overhead is required-

The ray tracer used for visualization of implicit surfaces based on BlobTrees makes

use of a uniform grid for traditional spatially based acceleration of ray tracing. In

addition to traditional nodes for the camera, lights, transformations, and primitives,

the scene-graph used for this ray tracer includes a BlobTree node. So from the per-

spective of the ray tracer, a Blob Tree scene-graph node is, like a sphere or cylinder,

just another primitive in the ray tracer's scene-graph.

In a manner similar to the BlobTree, the scene-graph is able to prune itself to an

axially aligned box. The difference being that normal scene-graph primitives return

a Null scene-graph node when the box does not contain any part of their surface,

ot henvise they return themselves. In contrast, Blob n e e scene-graph nodes can return

a new BlobTree scene-graph node that encapsulates a Blobnee that is pruned to the

box. If the BlobTree prunes to the Null Blobnee node, a Null scene-graph node is

returned.

These changes allow the ray tracer to build a uniform grid for spatial subdivision

normally, with no knowledge of the BlobTree. When ray tracing, the uniform grid

will be leveraged in two ways: to reduce the number of unnecessary ray-intersection

tests with scene-graph primitives and to accelerate intersection tests with Blob Tree

scene-graph nodes by using pruned Blob Trees.

4.8 Reduction and Pruning Applied to Animated

Blob mees

-4nimated BlobTrees introduce a whole set of problems that complicate the applica-

tion of reduction and pruning. These problems stem from the fact that nodes in an

animated BlobTree can change over time. Since pruning is inherently spatially based,

it must be extended to account for Blob Trees that change spatially over time. Reduc-

tion is not spatially based, but since it attempts to combine afine transformations, a

way to combine animated aBne transformation nodes must be devised. The solution

to combining animated afine transjomations for the purpose of reduction also makes

a method for pruning Blob Trees with animated afine transformations possible.

4.8.1 Reducing Animated Blob Z k e s

Since animated a . n e transfornation nodes represent an affine matrix that changes

over time, in the form of a matrix track, they cannot be combined in the same way

as normal afine transformations nodes. If two matrix tracks, A and B, are to be

combined, one approach would be to simply multiply the resulting values of the two

matrix tracks for the query time. This behaviour could be encapsulated in a type

of matrix track that is defined to return the result of multiplying the values of its

children for a particular query time. This approach does succeed a t combining the

m a t e tracks, but yields nothing in terms of computational savings. This is due

to the fact that combining mat* tracks in this way replaces several matrix-vector

multiplications with matrix-matrix multiplications. Since it is more expensive to

multiply two matrices, rather than a vector and a matrix, this technique is much

slower.

The approach used for this research is to combine matrix tracks by approximat-

ing the result of their multiplication with a piecewise-linear approximation, which

is stored in a linearly interpolated matrix truck- The resulting linearly interpolated

matrix track can then be used in a single animated afine transformation which a p

proximates the combined affect of the set of uBne transformations being applied.

This approach replaces the expense of matrix-matrix multiplies with a linear inter-

polation for each element of the matrix. Not only does this yield a way of combining

several animated matrices, but it also yields a method of easily applying pruning

animated Blob Trees.

The piecewise-linear approximation is built by extending a recursive subdivision

algorithm for drawing spline curves [15] to matrices. As illustrated in Figure 1.6,

given a parametric curve, C (t) , an interval in the curve's parameter space, [to, t l] ,

and an error tolerance, E , the algorithm recursively subdivides the curve as long as

I lC((to + t 1)/2) - (C(to) + C(t1))/21 1 > E . Essentially, the algorithm is unchanged,

with the exception that a matrix track is used in place of a spline curve, matrices

are used in place of spatial points, and all the calculations take place in sixteen-

dimensional space.

There is one serious problem with the approximation of a temporally-dependent

affine transformation with a piecewise-linear approximation. A singular n x n ma-

trix, M, is one where the image of IFP is a proper subset of IW". Singular matri-

ces have the property that they are not invertible, and are therefore not affine-

transformations. From a modeller's perspective, it may be desirable to model an

object getting squashed into a plane or shrunk to a point, but due to the way ma-

trices are actually applied in both scene-graphs and the BlobTree, this behaviour is

entirely unacceptable.

Figure 4.6: The spline approximation algorithm recursively subdivides the

curve between pl and p2 as long as d > e .

In most scene-graphs, and in the BlobTree, the inverse of an affine transforma-

tion is applied to a query point. The inverse operation of scaling an object into

a plane is undefined. These problems make it desirable to disallow the use of sin-

gular matrices in a f i n e transformation nodes. Unfortunately, the use of piecewise-

linear approximation of temporally-dependent matrices can approximate a perfectly

valid temporally-dependent matrix, that never becomes singular, with an interpolated

temporally-dependent approximation that does become singular. For the purposes of

this research, this problem has been ignored. For an indepth discussion of meaningful

matrix interpolation without this problem, see [38].

4.8.2 Pruning Animated Blob T k e s

With animated Blob Trees the problem of pruning a Blob Tree for a particular region

of space, becomes a problem of pruning for a region of space over a period of time.

When looking at the problem from the local coordinate system of the leaf node, it

comes down to determining whether the leaf node's field affects any of the set of

points inside an axially aligned box, B, that moves over a period of time. If the

moving box ever overlaps the leaf node's field, then the leaf node can not be pruned,

otherwise it can be.

So it is necessary to determine if a leaf node's field overlaps an axially aligned

box that moves over time. The leaf node's field may or may not change over time, in

either case, since the leaf node's field is usually simple, it is also simple to compute

an axially aligned box, Bf, that bounds the leaf node's field over the interval of time

concerned. Bf can then be used in order to simplify the test against B.

If a bound for B, in the local coordinate system of the primitive and over the time

interval of interest, can be generated, B and Bf can be tested against one another.

If B and Br do not overlap, it can be safely assumed that the leaf node's field does

not overlap the moving axially aligned box over the time interval.

Unfortunately, it is quite difficult to generate a bound of an axially aligned bound-

ing box that undergoes an affine transformation that can change arbitrarily over time.

However, it is simple to generate a bound of an axially aligned bounding box that

is transformed over time by an animated affine transformation that is specified as

a piece-wise-linear interpolation of several affine matrices, AIO, ..., 1k.Inl as in Figure

4.7(a). In this case, the bound is simply the union of the axially aligned bounding

boxes that result from bounding B as it it transformed from h1, to M I , from fill to

.I&, and so on until we reach to &I.. This is illustrated in Figure 4.7(b). This

bound is quite conservative for mob Trees which contain primitive fields that have

velocities in the direction of the world's main diagonal.

4.9 Efficient Ray Tracing of Animated Blob l k e s

To efficiently ray trace an animated BlobTree, it is necessary to apply pruning and

reduction. Section 4.7 contains an illustration of a data structure that associates a

volume of space with a pruned and reduced BlobTree. With animated Blobfiees, a

volume of space-time needs to be associated with a pruned and reduced BlobTree. For

this research, a uniform axially aligned four-dimensional grid of space-time voxels is

used, although hex-trees [21] could also be used and would offer the benefits of an

(a) The transformation (b) The bounds of the trans

of a bounding box by a formed bounding boxes between

piecewise-linear interpolated pairs of matrices.

time-dependent mat* track.

Figure 4.7: Given that an axially aligned box is transformed by a piecewise-

linearly interpolated mat* tnrck, its bound over time can be computed

by taking the union of the bounds of the linear-interpolation of the box

between each pair of matrices, lbXi and l'CIi+l-

adaptive spatial partitioning scheme.

The four-dimensional grid structure is built by extending the binary space parti-

tioning technique outlined in Section 4.5.1 to four-dimensions. The data-structure is

built for the whole animation rather than for each frame. This has the disadvantage

that the grid must be built for the animation, rather than just a single frame. This

large grid is stored in memory for the duration of rendering.

4.10 Efficient Polygonizat ion of Animated Blob-

Similar to ray tracing, efficient polygonization of animated BlobTree uses a four-

dimensional axially aligned grid, called the super-grid, to reduce the cost of querying

a Blob Tree model. For simplicity, the four-dimensional super-grid is built for the

entire animation, rather than individually for each frame.

-4 polygonization can only occur for a particular value of time, which must be

specified before polygonization can begin. That time value is used, in addition to the

spatial position of the \-oxel, to determine the super-vouel that a voxel occupies. With

this exception polygonization of animated Btob Trees is identical to the polygonization

of static BlobTrees explained in Section 4.6.

Results

For testing purposes, three models were created. The first is an implicit peanut

as rendered in Figure 1.3. This model is referred to as the Peanut model. The Peanut

model contains only four nodes and is therefore an example of an extremely simple

model. Due to its simplicity, the Peanut model should not be greatly affected by the

application of reduction and pruning.

The second test model is the patch of grass shown in Figure 5.1. This model will

be referred to as the Grass model. -4s Blob Tree models go, the Grass model is quite

complex, containing 4610 nodes, 2048 of which are prinzitive nodes. The primitives

are distributed approximately evenly throughout the region of space occupied by the

model. The complexity of the Grass model and the fairly uniform distribution of its

primitives should allow reduction and pruning, as applied in the Blob Tree system, to

be used to good effect.

The third test model is four smaller patches of grass separated by a large region

of empty space. This model will be referred to as the Sparse model, and is depicted

in Figure 5.2. Just as with the Grass model, the Sparse model contains 4610 nodes,

2048 of which are primitives. The primitives are grouped in four widely separated

clusters of 512 primitives. Although the Sparse model contains the same number of

primitives as the Grass model, it is not expected that reduction and pruning will

have as profound an affect due to the large volume of empty space separating the

Figure 5.1: A rendering of the Gmss model.

primitives.

Each model was polygonized and ray traced with a variety of grid resolutions for

pruning purposes. The highest grid resolution used was 64 x 16 x 64. This limit was

due to the large memory overhead of having thousands of BlobTree models in memory

a t the same time. Higher grid resolutions required the use of virtual memory and ran

except ionally slow.

The preprocessing time required to generate the pruned BlobTrees and the average

number of nodes, n of the resulting BlobTrees, is summarized in Table 5.1. The

relative speed-ups, over non-reduced and non-pruned BlobTrees, for polygonization

of each model at several grid-resolutions is tabulated in Table 5.2. Similar results for

ray tracing are given in Table 5.3.

As shown in Table 5.1, the amount of time spent building a data-structure to

associate voxels of space with their associated BlobDee can become significant as

high grid resolutions are reached. With preprocessing times as high as 208 seconds

Figure 5.2: The Spame model, composed of four small patches of grass

separated by a large region of empty space.

for the Crass model, it is obvious that the grid resolution must be carefully weighed

against the potential savings a t rendering time.

The algorithm (as outlined in Section 4.5.1) for building the super-voxel grid

BlobTrees is efficient. The maximum increase in cost for generating eight times as

many voxels is only by a factor of 5.16. The minimum increase in cost is only by a

factor of 1.18. This is due to the fact that, as the algorithm subdivides space, it is

working with smaller and smaller BlobTrees, which are less expensive to prune.

Table 5.1, also shows, n, the average number of nodes in the pruned BlobTrees

over all the voxels in the super-voxel grid. This average is not weighted by the area

of the voxels, which explains the fact that occasionally it does increase slightly. As

we can see, the decrease in n strongly depends on the complexity of the BlobTree

model. In the case of both the grass and sparse models, there is still a significant

decrease in n at the highest grid resolutions tested. This implies that, with these two

models, there is still more efficiency that can be gained from further increases in grid

resolution.

From Tables 5.2 and 5.3, it can be seen that for simple models, such as the Peanut

model, there is little benefit, possibly even a cost, to the application of pruning and

Table 5.1: preprocessing time (PPT) in seconds and average number of

nodes (n) for pruned BlobZkes in the super-voxel grid.

5. RESULTS

-

Grid

Resolution

l x l x l

4 x 4 ~ 4

8 x 8 ~ 8

1 6 x 1 6 ~ 1 6

3 2 x 1 6 ~ 3 2

64x 16x64

Table 5.2: Relative speed-up results for polygonizing with both reduction

and pruning applied.

Grid Resolution

l x l x l

4 x 4 ~ 4

8 x 8 ~ 8

16x 16x16

3 2 x 1 6 ~ 3 2

6 4 x 1 6 ~ 6 4

Preprocessing Results

Peanut

PPT n

0 4

-025 3.00

-110 3.20

-568 2-82

1.58 2.89

5.24 2.80

Polygonizat ion Speed-Up

' Peanut

1

0.982

0.998

1.03

1.03

1.03

Grass

PPT n

0 4610

22.2 258

46.1 71.4

91.1 27.4

128 14.0

208 9.20

Sparse

PPT n

0 4611

14.5 878

27.0 752

51.7 351

61.2 148

75.5 58.2

Grass

1

18.0

57.3

138

207

243

Sparse

1

5.06

6.02

8.38

21.7

32.9

Table 5.3: Relative speed-up results for ray tracing with both reduction and

pruning applied.

Grid ion

l x l x l

4 x 4 ~ 4

8 x 8 ~ 8

1 6 x 1 6 ~ 1 6

3 2 x 1 6 ~ 3 2

reduction. It should be noted that the application of reduction alone would yield

some efficiency gains due to the fact that an aBne transformation node would be

removed . The collected data illustrates the potential of pruning and reduction to

greatly accelerate the rendering of complex BlobTree models. The largest speed-up

observed is nearly 250 for the Grass model.

These speed-ups make it possible to model complex and realistic models such as

the sea-shell: in Figure 5.3. This model was rendered in 18 hours using the techniques

presented in this paper. Without the application of reduction and pruning rendering

takes over 90 hours, which makes the construction of such a model infeasible.

The running time of BlobTree evaluations is O(n) with n nodes. Expected speed-

ups can be obtained from reduction of the average number of nodes in the BlobTrees

being evaluated, which is given in Table 5.1. The expected speed-up can be compared

to the actuat speed-ups recorded in Tables 5.2 and 5.3.

With low grid resolutions, the expected speed-up is close to the observed speed-

up. With large grid resolutions, the actual speed-up is less than expected due to

the increased over-head of traversing voxels. The exception is the ray tracing of the

Sparse model, which is faster than expected by a factor of almost 2. This is due to

Ray Tracing Speed-Up

Peanut

1

1.0

0.765

0.292

0.163

Grass

1

15.9

54.0

138

248

Sparse

1

5.63

10.0

22.5

45.0

the fact that no BlobTree traversals are necessary in the large areas of empty space.

By contrast, polygonization always follows the surface, and because of this, does not

gain any benefit from pruning of empty space.

Since a uniform grid is employed for spatial partitioning, the results with the

Sparse model, which contains the same number of nodes as the Grass model, do not

show as large a speed-up as with the Grass model. This is expected and could be

alleviated by the application of an adaptive spatial part it ioning technique.

A strength of pruning is that it can generate the minimum possible collection

of primitives for a given region of space. This does not actually occur in the cur-

rent implementation due to the use of axially aligned boxes and the fact that aBne

transformation nodes and warp nodes can cause them to grow unnecessarily. The

algorithm described in [19] cannot produce a minimal collection of primitives for a

region of space. The algorithms described in [19, 371 both show speed-ups, however

they require the calculation of Lipschitz constants which imposes a restriction on the

class of functions which can be rendered with their techniques.

Pruning and reduction compares favorably with a previous optimization method

described in [51], which requires intersection tests with bounding boxes to determine

whether to avoid traversal of sub-trees which do not affect the current query point.

Speed-ups obtained using the bounding box method are highly dependent on the

structure of the BlobTree used to describe the model. Because entirely different

BlobTrees can be used to describe the same implicit surface, speed-ups based on

this algorithm can vary dramatically for the same implicit surface. For example,

with the Grass model, the bounding box method produced a speed-up of 26.6. An

alternate BlobTree for the Grass model produced a speed-up of only 3.5 when using

the bounding box method. Contrast this with the reduction and pruning method

where unneeded sub-trees are simply removed. Due to this fact, the speed-ups are

similar for any Blobnee used to represent the model. For the two formulations of the

Grass model mentioned above, the speed-up was 257 in both cases.

The Sparse model is a case where the bounding box scheme performed slightly

better than pruning and reduction. This is due to the Sparse model containing

a large amount of empty space as well as small areas of densely packed BlobTree

primitives. Because of this, sufficiently small BlobTrees cannot be created without

using an excessively fine grid, which is impractical. .4n adaptive space partitioning

scheme would be better able to leverage pruning in this case.

Figure 5.3: A complex model built using the Blob-e. (Image courtesy of

Callum Galbrait h.)

Conclusions and Future Work

6.1 Summary

This research has found that the application of reduction, a global optimization strat-

egy, and pruning, a spatially aware local optimization strategy, in an implicit surfaces

modeling and animation system can yield significant efficiency gains. These gains are

most pronounced with large models containing hundreds or even thousands of prim-

i tive field functions.

The modification of the BlobTree system, a system for implicit surfaces modeling

and animation, to leverage both reduction and pruning has significantly increased the

complexity of models that it is practical to work with. The best observed speed-up to

date has been more than two orden of magnitude. Such significant speed-ups allow

the users of the Blob Dee system to attempt to model objects and scenes that were

simply not possible, due to computational constraints, in the past.

-4n explanation of the design and implementation of the Blobnee system has been

included. The extension of the BlobTree system to include reduction and pruning has

also been explained. It has been shown that the incorporation of both techniques

into the BlobDee itself is both simple and straightforward. A description of how

the Blobnee polygonizer can be extended to support pruning has shown that it is

reasonably easy to do so. A simi!ar description of how the BlobTree ray tracer can be

extended to support pruning has detailed many of the choices that must be made. An

analysis of the performance of the BlobTree system with and without reduction and

pruning has shown how the techniques can best be applied in both the polygonizer

and the ray tracer to increase rendering efficiency.

Lastly, algorithms which attempt to reduce the number of field evaluations, such

as (46): can easily be layered on top of our optimized BlobTrees to generate additional

speed-ups.

6.2 Thesis Contributions

The contributions made in this research can be separated into four general tasks:

-4 complete redesign and implementation of the BlobTree system. This includes

the graphics utility and math libraries that the BlobTree is based upon, the

Blob Tree library itself, the Blob Tree polygonizer, and the Blob Tree ray tracer.

-4 requirement of the new design and implementation is the integrated support

for animation within the BlobTree. The new system also makes much better

use of object-oriented features of the C++ programming language in order to

make the system's implementation smaller and more maintainable.

The modification of the BlobTree library t o incorporate the prune and reduce

operations to allow for less computationally expensive Blob Tree evaluations.

The redesign and implementation of both the Blobnee polygonizer and ray

tracer to incorporate spatially aware data-structures in order to leverage prun-

ing.

A comparison and analysis of the performance of the unmodified and modified

Blob Tree system.

6. CONCLUSIONS AND FUTURE WORK

The completion of these tasks has resulted in an extendible and efficient system

for modeling and animating with implicit surfaces. The performance analysis not

only verified that the new system is usually much more efficient than past BlobTree

implementations, but also exposed where the new system excels and how it can be

improved.

6.3 Future Work

The Blob Tree has recently been extended to support temporally dependent informa-

tion, giving us animatable BlobTreesand making rendering effects, such as accurate

motion blur possible. Animatable BlobTrees are much more complicated both to

prune and to reduce. Although, pruning of animatable BlobTrees has been described

in this thesis, a more in depth examination is required.

In animatable BLobTrees: afine transfonnation nodes may become much more

expensive to traverse if they are representing temporally-dependent transformations.

A potential solution to this is a caching scheme that will cache data that can be reused

when time does not change between queries. Caching can also be used to improve the

efficiency of nodes that, to complete a single traversal of themselves, require multiple

traversals of their children.

Since reduction is a global optimization strategy for BlobTrees, the reduction al-

gorithm explained in this paper can be improved upon by incorporating techniques

from the compiler field. For a concrete exampIe, i t is possible that pushing an ani-

mated a@ne transformation node down the tree can in fact increase the expense of a

field evaluation by increasing the complexity of many underlying non-animated afine

transformataon nodes. In this case our tree-reduction algorithm, which is minimiz-

ing the number of aBne transformation nodes, may increase the expense of querying

the BlobTree. Input from the fields of compiler and graph theory could be used to

produce algorithms which could determine whether the expense of trandorming child

6. C o ~ c t u s r o ~ s AND FUTURE WORK 81

non-animated aBne transfomatzon nodes into animated afine transfomation nodes

would outweigh the savings of combining several afine transfomation nodes.

It is desirable to have a faster method of creating data-structure that maps vol-

umes of space to their corresponding pruned BlobTrees. One potential improvement

is to use planar half-spaces rather than axially aligned boxes to prune a Blob Tree,

in combination with the recursive pruning scheme described in Section 4.5.1. This

could offer a solution to the problem of the axially aligned boxes growing due to

t ransforrnations.

Since ray tracers that make use of spatial subdivision must use a mail box or ray

signature algorithm to avoid testing a ray against a primitive more than once [14], an

important modification to pruning should be made. The modification ensures that

no sub-tree of the scene-graph is instantiated more than once.

-4nother method to reduce the expense of pruning may be to apply a lazy algorithm

to create only the needed parts of the pruned data-structure. Applying a lazy method

to the polygonizing algorithm would only require that the Blob Tree model be pruned

to the super-voxel the first time the super-voxel is entered. In a ray tracer this

approach would have to be applied to the whole scene-graph the first time a ray

enters a voxel. In both cases, this would mean that only the spaces of interest would

incur the expense of pruning.

Bibliography

[I] V. Adzhiev, R- Cartwright, E. Fausett, -4. Ossipov, -4. Pasko, and V. Savchenko.

HyperFun Project: A Framework for Collaborative RiIultidimensional F-rep Mod-

eling. Implzcit Surfaces, pages 59-69, September 1999.

[2] E. L. -4llgower and K. Georg. Numerical Continuation Methods: An Introduction,

volume 13 of Series in Computational Mathematics. Springer Verlag, Berlin,

Heidelberg, New York, 1990. pp 388.

[3] Alan H. Barr. Global and local deformations of solid primitives. In Computer

Graphics (SIGGR A PH '84 Proceedings), volume 18, pages 2 1-30, July 1984.

(41 James Blinn. A Generalization of Algebraic Surface Drawing. ACM Transactions

on Graphics, 1:235, 1982.

[5] Jules Bloomenthal. Polygonisation of Implicit Surfaces. Computer Aided Geo-

metric Design, 4(5):341-355, 1988.

[6] Jules Bloomenthal. An Implicit Surface Polygonizer. Graphics Gems IV, pages

324-349, 1994. Edited by Paul Heckbert.

[7] Jules Bloomenthal. Introduction to Implicit Surfaces. Morgan Kaufinann, ISBN

1-55860-233-X, 1997. Edited by Jules Bloomenthal With Chandrajit Bajaj,

Jim Blinn, Marie-Paule Cani-Gascuel, -4lyn Rockwood, Brian Wyvill, and Geoff

Wyvill.

[8] Andrea Bottino, Wim Nuij, and Kess van Overveld. How to Shrinkwrap a Critical

Point: An Algorithm for the Adaptive Triangulation of Iso-surfaces with -4rbi-

t rary Topology. Implicit Surfaces, Proceedings of Second Eurographics Workshop

on Implicit Surfaces, Ezndhoven, Holland., October 1996.

[9] Michael Chmilar. A Kernel for Computer Animation. Master's thesis, Depart-

ment of Computer Science, University of Calgary, Calgary, Canada, 1990.

[lo] John Cleary and Geoff Wyvill. Analysis of an Algorithm for Fast Ray Tracing

Using Uniform Space Subdivision. The Visual Computer, 4(2), 1988.

[ll] B. Crespin, C. Blanc, and C. Schlick. Implicit sweep objects. In Eurographics

'96, volume 15, pages 165-174, August 1996.

[12] Mathieu Desbrun, Nicolas Tsingos, and Marie-Paule Gascuel. Adaptive sampling

of implicit surfaces for interactive modeling and animation. Implicit Surfaces,

pages 171-185, April 1995.

[13] Tom Duff. Interval Arithmetic and Recursive Subdivision for Implicit Functions

and Constructive Solid Geometry. Computer Graphics, 26 (2) : 109-1 16, July 1992.

[14] Andrew Glassner (editor). An Intmdvction to Ray Tracing. Academic Press,

San Diego, CA, 1989.

[15] James D. Foley, Andries van Dam, Steven Feiner, and John Hughes. Computer

Graphics Priniciples and Practice. Addison-Wesley, 1990.

[16] Mark Fox, Callum Galbraith, and Brian Wyvill. Efficient Implementation of

the BlobTree for Rendering Purposes. Western Computer Graphics Symposium,

pages 47-54, March 2000.

[I?] Mark Fox, Callum Galbraith, and Brian Wyvill. Efficient Use of the BlobTree

for Rendering Purposes. Shape Modeling and Applications, pages 306-314, May

2001.

[18] A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: Accelerated Ray-Tracing System.

IEEE Computer Graphics and Applications, 1986.

[19] Jean-Dominique Gascuel. Implicit patches: An optimised and powerful ray in-

tersection algorithm. In Implicit Surfaces '95, April 1995.

[20] Andrew Glassner. Space Subdivision for Fast Ray Tracing. IEEE Computer

Graphics and Applications, 4(10):15-22, October 1984.

[21] Andrew Glassner. Spacetime ray tracing for animation. IEEE Computer Graph-

ics and Applications, pages 60-70, March 1988.

[22] J. Goldfeather, S. Molnar, G. Turk, and H. Fuchs. Near Real-Time CSG Render-

ing Using Tree Normalization and Geometric Pruning. IEEE Computer Graphics

and Applications, 9(3):20-28, May 1989.

[23] Andrew Guy and Brian Wyvil. Controlled blending for implicit surfaces. In

Implicit Surfaces '95' April 1995.

[24] Andrew W. P. Guy. Building Blocks for Implicit Surfaces. Master's thesis,

Department of Computer Science, University of Calgary, Calgary, Canada, 1998.

[25] Pat Hanrahan. Ray Tracing Algebraic Surfaces. Computer Graphics (Proc.

SrCGRAPH 83), 17(3):83-90, July 1983.

[26] J . C. Hart and T. A. Defanti. Efficient antialiased rendering of 3-d linear fractals.

Computer Graphics, 25(3), 1991.

[27] John C. Hart. Sphere tracing: a geometric method for the antialiased ray tracing

of implicit surfaces. The Visual Computer, 12(9):527-545,1996. ISSN 0178-2789.

[28] David Jevans and Brian Wyvill. Adaptive voxel subdivision for ray tracing. Proc.

Graphics In tejace 1989, pages 164-1 72, 1989.

[29] D. Kalra and A. Barr. Guaranteed Ray Intersections with Implicit Functions.

Computer Graphics (Proc. SIGGRA PH 89), 23 (3) :297-306, July 1989.

[30] D.P. Mitchell. Robust Ray Intersection with Interval Arithmetic. Proceeding of

Graphics Interface, pages 68-74, May 1990.

[31] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.

[32] Paul Ning and Jules Bloomenthal. An evaluation of implicit surface tilers. IEEE

Computer Graphics and Applications, 13(6):33-41, November 1993.

[33] H. Nishimura, A. Hirai, T. Kawai, T. Kawata, I .Shirakawa, and K. Omura.

Object Modelling by Distribution Function and a Method of Image Generation.

Journal of papers given at the Electronics Communication Conference '85, J6&

D(4), 1985. In Japanese.

[34] A. Pasko, V. .4dzhiev, A. Sourin, and V. Savchenko. Function representation

in geometric modeling: concepts, implementation and applications. The Visual

Computer, 2(8):429-446, 1995.

[35] A. Ricci. A constructive geometry for computer graphics. Computer Journal,

16(2):157-160, May 1973.

[36] S. D. Roth. Ray Casting for Modelling Solids. Computer Graphics and Image

Processing, 18:109-144, February 1982.

[37] Andrei Sherstyuk. Fast Ray Tracing of Implicit Surfaces. Computer Graphics

Forum, 18(2): 139-148, June 1999.

[38] Ken Shoemake and Tom Duff. Matrix animation and polar decomposition.

Graphics Interface '92, pages 258-264, May 1992.

[39] Bjarne St roust rup. The C+ + Programming Language (Third Edition). Addison-

Wesley, Reading, MA, 1997-

[40] Mark Tigges. Two Dimensional Texture Mapping of Implicit Surfaces. blaster's

thesis, Department of Computer Science, University of Calgary, Calgary, Canada,

1999.

[41] Mark Tigges and Brian Wyvill. Texture Mapping the BlobTree. Implicit Sur-

faces, 3, June 1998.

[42] Mark Tigges and Brian Wyvill. A field interpolated texture mapping algorithm

for skeletal implicit surfaces. Proc. CG International 99, pages 25-33, 1999.

1.131 Mark Tigges and Brian Wyvill. Python for scene and model description for

computer graphics. Proc. IPC 2000, January 2000.

[44] Kees van Overveld and Brian Wyvill. Potentials, Polygons and Penguins. An

efficient adaptive algorithm for triangulating an equi-potential surface . In Proc.

5th Annual Western Computer Graphics Symposium (SKIGRAPH 931, pages

31-62, 1993.

[45] Alan Watt . Fundamentals of Three-Dimensional Computer Graphics. Addison-

kVesley, Reading, MA, 1989.

[46] Andrew Witkin and Paul Heckbert. Using particles to sample and control implicit

surfaces. Computer Graphics (Proc. SIGGRA PH 94), 28:269-277, July 1994.

[47] J. R. Woodwark and K. M. Quinlan. The derivation of graphics from volume

models by recursive subdivision of the object space. Computer Graphics 80,

Proceedings of a Conference at Brighton, pages 335-343, August 1980. Held in

Northwood Hills, Middx..

1481 Brian Wyvill. SOFT. SIGGRAPH 86 Electronic Theatre and Video Review,

Issue 24, 1986.

[49] Brian \Vyvill. The Great Train Rubbery. SIGGRAPH 88 Electronic Theatre

and Video Review, Issue 26, 1988-

[50] Brian W-yvill. Warping Implicit Surface for Animation Effects. In Proc. Western

Computer Graphics Symposium (SKIGRA PH 921, pages 55-63, 1992.

[51] Brian Wq.vill, Eric Galin, and Andrew Guy. Extending The CSG Tree. Warp

ing, Blending and Boolean Operations in an Implicit Surface Modeling System.

Computer Graphics Forum, 18(2):149-158, June 1999.

[52] Brian Wyvill and Kees van Overveld. Polygonization of Implicit Surfaces with

Constructive Solid Geometry. Journal of Shape Modelling, 2(4):257-274, 1996.

[53] Brian WWwill and Geoff Wyvill. Field functions for iso-surfaces. The Visual

Computer, 5(1/2):75-82, March 1989.

[54] G . Wyvill and P. Sharp. Volume and surface properties in csg. New Trends in

Computer Graphics (Proceedings of CG International '88), pages 257-266, 1988.

[55] G. Wyvill and A. Trotman. Ray tracing soft objects. Proc. CG International

90, pages 469-476, 1990.

[56] Geoff Wyvill and Tosiyasu Kunii. A Functional Model for Constructive Solid

Geometry. The Visual Computer, 1(1):3-14, July 1985.

[57] Geoff Wyvill, Tosiyasu Kunii, and Yasuto Shirai. Space Division for Ray Tracing

in CSG. IEEE Computer Graphics and Applications, 6(4):28-33, April 1986.

[58] Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data Structure for Soft

Objects. The Visual Computer, 2(4):227-234, February 1986.

