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ABSTRACT

As the simplest model that approximates actual cable
behaviour, a helical spring (coil) wound onto a cylindrical
core is considered to analyze and explain the internal
Ltosses in the cables,

A section of the coil-core model is further isolated
to investigate the formation of the slipping sections and
the propagation of the slipping section boundaries along
the cable.

It is shown that for a certain value of loads regions
of complete slippages, partial slippage and complete
non-slippage <can be found inside the <cable and the
boundaries of these three regions are given by simple
expressions. The resulting hysteresis tloop is found to be
in good agreement with the initial assumption of constant
and wuniformly distributed friction forces between the

strands.,
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NOMENCLATURE
Roman

A Percent distance from the fixed end of the cable at
which slippage in the cable ceases to exist

A" 1 - A

B Percent distance from the fixed end of the cable at

‘whiﬁh total slippage at the cross-section ceases to

exist

B' 1 -8

Ci1 A constant = 273,18

Co As defined in equation (4,37.b)

ﬁ Modulus of elasticity

F Force

G Modulus of elasticity in shear

h Total length .

I Moment of Inertia of Cable cross-section

Ie Equivalent moment of inertia of spring
(equation 2.26)

Iy Moment of Inertia for non-rotating catle
cross~section

Ip Moment of Inertia for completely-rotating cable

cross-section
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Iwv Moment of Inertia of coil wire

I; Moment of Inertia of coil wire wer.t. normal axis

"I Moment of Inertia of coil wire w.r.t. binormal
axis

£ Unit vector in the direction of x=-axis

i Number of strands in each coil 0 € i € n

i, Critical strand number after which strands
do not slip

iz Critical strand number before which strands
slip completely

4 Unit vector in the direction of y-axis

K Number of strands in a cable

k Unit vector in the direction of z-axis

k' h / 2 N (A constant)

£ Length of the wire that spring is made of

M Bending moment

Mb Bending moment along the binormal axis kFigure 2.4)

Mn Bending moment along the normal axis (Figure 2.4)

Mt Torsional moment along the tangential axis
(Figure 2.4)

Mti Torsional moment in the i'th strand

mf Uniformly distributed friction torque

N Total number of coils

n Number of coils in a cable 0 & n < N

P Concentrated load
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Pm Maximum value of load

R Hetig wire radius

n A vector that describes any point on helix

T Radius of the cylinder that helix is wound onto

S As described in equation (3.9)

s A variable along the coil 0 K s €

Ti Net internal torque at any cross-section

Tm As described in equation (3.6.b)

Tm' As described in equation (3.13.b)

Tmi As described in equation (4.7.a)

Tm'i As described in equation (4.7.b)

Text As described in equation (3.7)

X1 A

Xo g

Ym Non-dimensional displacement variable
(equation 5.46)

y Total displacement of the spring

% Displacement of spring under shear, displacement
of the cable in the first stage of loading

yp Displacement of spring under bending, displacement
of the cable in the second stage of loading

W Work done by applied load in the system

z A variable along the coil or cable 0~ 2 < h

Xxiv



Greek

o Load coefficient -1 XK 1

] A local variable

B1 Boundary of the slipping section in the first stage

By Boundary of the slipping section in the second
stage

Bii Boundary of the slipping section in the first stage
on the i’ th strand

Bpi Bouncary of the slipping section in the second
stage on the i/th strand

Y As described in equation (3.13.b)

A Increment, denotes incremental quantities

E As described in equation (2.30.¢)

n Non-dimensional sligpage angle

n* n after transformation |

ny Non-dimensional slippage angle in the first stage

ny Non-dimensional slippage angle in the second stage

Ny Maximum value of nj

Ny, Maximum value of njp

61 Rotation angle (slippage) in the first stage

62 Rotation angle (slippage) in the second stage

K Non-dimensional rotation angle

A Inclination of the coils wer.t. x-y plane

i.e. helix angle

XV



u Poissons ratio

1 As defined in equation (2.15)

o Angle between P and x-axis

¢ $' - ¢7

$' Central angle of the helix

¢m Location of the center of the slipping section

after transformation

¢mi Location of the center of'the slipping section
on i'th strand

¢oi Initial angle of i'th strand

¢ Central angle between the clamped end of the helix
and the x-axis

k4 Energy dissipated per cycle

Y] Non-dimensional load coefficient as described in
equation (3.12)

Qi Non dimensional load coefficient on i' th strand

fm Maximum value of Q

00 Value of Q at the first strand of the first coil
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CHAPTER ONE

INTRODUCTION

Strings, hanging chains and cables have Lbeen analyzed
fof centuries, Not only has cable behaviour been of
interest because it has many applications but also because
of the fundamental nature of problem solution. The
catenary and viorating string protlems can te found in most
elementary texts of mechanics and engineering mathematics.

During the late 1963's cables were studied with regard
to both application and analysis. Cable systems were being
considered d4s structural components in three dimensional
networks’, the cable supported roof used in the Munich
Olympics in 1972 and the 1983 Saddledome in Calgary, are
only but two examples, Ocedn requirements in both private
ané military sectors placed greater emphasis on complex
cable systems for mooring and undersea structures, The
complexity of these applications overextencec the classical
approdches for analyzing such cable systems, Sgecifically,
the catenary solution was difficult to apply to highly
branched networks uncer transient loading [223. In the
designs, operation, and expansion of electrical power

systems it became necassary to know the physical



characteristics of conductors used in the construction of
aerial distribution and transmission lines.

A typical stranded conductor made from bare copper
(Figure 1.1) is very similar in geometry and design to the

structural cables made from various alloys of steel.

Figure (1.1) A Typical Stranded Conductor.

In the electric-power field the following types of
conductors are generally used for high-voltage power
transmission lines: stranded copper conductors, hollow
copper conductors and ACSR (aluminum cable, steel
reinforced). A stranded conductor is easier to handle and
is more flexible than a solid conductor., particularly in
the larger sizes. A typical ACSR conductor is illustrated

in Figure (1.,2).



Figure (1.2) A Typical ACSR Conductor.

In this type of conductor, aluminum strands are wound
around a core of stranded steel. Varying relationships
between tensile strength and current-carrying capacity as
well as overall size of conductor can be obtained by
varying the proportions of steel and atuminum. By the use
of a filler, such as paper, between the outer aluminum
strands and the inner steel strands, a conductor of large
diameter can be obtained for use in high voltage lines
£13].

The effect of wind in producing vibrations in stranded
cables has been known for many yearsr, and the number of
laboratory and field investigations and of reports on the
subject has been continously increasing as a consequence of

general interest in the matter. The urgent necessity of



finding some practical solutions for the ever increasing
number of transmission Lline failures'has often led to the
confusion between the causes and the consequences of the
vibrations. Wind is the cause of the cable vibrations and
cable vibrations in turn are the cause of strand strains
that Lead to the strand fatique failures. Fatique occurs
almost entirely, 99 % or more , at hardware locations with
the major portion of failures occuring at suspension
clamps. However, a significant number of failures also
occur at hot-line taps., spacers, dampers, aircraft warning
devicess, and dead ends, since the state of stress is
similar to that at a suspension point. The lack of fatiqgue
in free-span locations away from hardware is attributed to
the fact that high dynamic strains occur only at restrained
nodes [5], [7]. The data collected by Claren and Diana [71]
shows dynamic stresses to be four times greater at the
fixed support, or completely restrained noder, than the free
span maximum,

For a better understanding of cable mechanics a number
of studies have been done to find the response of a cable
subjected to various forms of loadings. Since cables are
widely used for transmitting forces, most of the
publications deal with the response of cables to axial
loading and axial torsion [21, [41, [9]1, [101, [12]1, [£1413],

{253. In those paperss, linear and non-linear aﬁ;lysis are



made to find the contact stresses between individual
strands and on the core, and to evaluate the effective
modulus for twisting and to determine the strains for the
case of small and large deflections. Among these, work
done by Huang [10] deals with finite extension of an
elastic strand with a central core surrounded by a single
layer of helical wires and subjected to axial forces and
twisting moments, The theory of slender curved rods is
used in the analysis and some geometrical non-linearities
are considered. It is found that as a result of the
contact between the central core and helical wires, a
separation between helical wires can occur during the
extension of the strand. In an early paper by Phillips and
Costello [91, the method of separating the cable into thin
wires and solving the general non-linear equations for
bending and twisting of a thin rod subjected to line loads
is used. Only axial force and axial twisting moment are
considered and changes in helix angle and contact forces
are calculated.

In another paper, taking advantage of geometric
considerations, Machida and Durelli [4], give explicit
expressions for the determination of axial force, bending
and twisting moments in the helical wires, and for the
axial force and twisting moment in the core of a 7-wire

strand subjected to axial and torsional displacement.



Measurements on oversize epoxy models of the strand show
good correlation with the theory and support the
observation that axial load has no effect on the effective
torsional rigidity of the strand. Costello and Miller [12]
also analyze the effect of the twisting moments tending to
unwind the strand compared to that of the same strand
subjected to twistirg that tends to tighten up the strand.
Again in another paper by Costello and Phillips [9],
effective modulus of twisted wire cables is considered.
Six equilibrium equations are set and solved with
simplifying assumptions. Costello and Phillips [14], in a
later paper develop a more correct theory for twisted wire
cables. Also, Costello [15]) by using six equilibrium
equationss, finds the large deflections of helical spring
due to bending moment. Picard's Method is used to obtain
the solution and it is shown that the first approximation
yields valid results for most practical cases.

The response of stranded cables to exciting forces due
to wind has been investigated both analytically and
experimentally by Claren and Diaﬁa 5. They have studied
the problem by two approaches. In one approach, the damper
is treated as an exciting force on the taut cable alone and
in the other approach, it is treated as part o% a dynamic
system composed of the taut cable with one or more dampers.

In another paper written by the same authors [7], the



correlation between the dynamic strains occuring in span
and those occuring at the rigidly clamped extremities on
vibrating taut circular beams is shown. It is also
suggested that the wire slippage occuring on real ltoaded
stranded cables will reduce the dynamic strains and
contribute to the internal damping Af the cable.

As dampers play an important role in reducing the
level of vibrations and strains, an attempt is made by
Dhotorad, Ganesan and Rao [8] to study the effects of the
Location of dampers on maximum strains produced in the
cable. It is reported that dampers have appreciable
effects at high wind speeds and it is recommended to use
actual experimental values instead of approximate
solutionss In all the literature available to us,
especially the works of Claren and Diana [5], [7] and the
others [6], (8] a macroscopic view of analysis is used,
The cable is assumed to be a longs slender rod and
corresponding resonance frequencies are found from known
solutions, Ffrom these known solutions, kinetic and
potential energies of a vibrating cable are found. B8y
using either the decay method or the forced vibration
method energy dissipated due to internal damping and the
damping function corresponding to this dissipated energy
are derived [S]., The equation of motion is set up by means

of Lagrange's Equations and resonant frequencies are found



with about 5 X accuracy. This approach proves to be useful
in calculating the right size and number of dampers for a
particular power line, In another effort to determine the
dynamic strain distribution [7], the cable is again
modelled as a slender rod while strains for this case are
found from known solutions and related to experimentally
established values by means of so called "slippage
coefficients"”,

From the tests made on the deflection of cables, it
has been found that a hysteresis loop always occurs when a
cable is deflected and the {oad removed. If the hysteresis
characteristics for cables of the commercial sizes at
various tensions were known, the maximum amplitudes of
vibrations could be predicted quite definitely [203].
Furthermore, knowing the hysteresis characteristics of the
damper cabless the effects of different sizes and shapes of
damper weights on the efficiency of a damper on a given
size conductor may be determined theoreticatly {201, [71].
In a paper by Dhotarad, Ganesan and Rao [8] the effect of
Stockbridge Type Dampers near each end of the span for
different cable lengths is analyzed. A comparative study
of the maximum strains produced is made for various wind
power input assumptions, In finding the natural frequency
of the cable with a damper, internal damping of the cable

is neglected. -



In another paper by Caroll [21], the amount of energy
absorbed from the wind by the vibrating conductor is
measured by means of a coil in a magnetic field and it is
shown that the energy absorbed is proportional to the
amplitude. In a paper by Pipes [18], energy taken is
assumed to be varying as the square of the amplitude and
even though it is stated that interstrand friction has
great influence in absorbing energy and in mitigating
vibrations, it is again neglected and only the effect of
dampers is taken into account. In another paper by Wagner
{61, experimental load-deflection curves are obtained for a
few cables and it is observed that the equivalent bending
stiffness is considerably less than that of a rigid cable
and the difference is attributed to the slip between the
strands of the cable. Again in a paper by Sturm [19] the
“composite value”" for the stiffness of a cable is measu?ed
and substituted into the theoretical formulas. Sturm [203
again clearly states that the information available at
present is not sufficient to estimate the maximum
amplitudes of vibration for commercCial sizes of cables
under fietd}conditions. I{f the hysteresis characteristics
for cables of commercial sizes at various tensions were
known, the maximum amplitudes of vibration could be

predicted quite definitely.
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Although the above statement by Sturm was made in
1939, all the major papers published since then on the
subject of maximum amplitudes of cable vibrations have
employed a rather macroscopic point of view in dealing with
the Losses in the cables. They have all employed some
experimentally found loss coefficients in the equations for
the vibrations of rods [8], (191, [7], [5].

No publication analyzing the frictional tosses in a
cable from a microscopic point of view could be found in
the literature available to the author of this thesis. In
a few papers a statical analysis of cables is attempted by
considering a cable as a collection of helical springs
wound around a central core [3], [24], [25] but they fail
to explore the cause, type and effects of the interstrand
relative motion on the total response of the cable. 1In
facts the term "inter strand motion"” or "loosening of the
cable” is quite frequently used in most publications to
explain the discrepancies between various theoretical and
experimental values used in analyzing the vibration of
cables.

In this thesis a simple three dimensional model for
thé cable is developed to explain the internal losses in
the cables. Using this simplified model, the primary mode
of interstrand friction responsible for the internal losses

in cables is determined and the mechanism of the
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interstrand sliding is investigated. As the simplest model
that approximates actual cable behaviour, a helical spring
wound onto a cylindrical core is considered (Figure 2.1),
Vinogradov and Atatekin [28], [29]. A section of this
simple model is further isolated from the main model and
analyzed to better understand the actual microscopic
deformations taking place during cyclic loading of cables.
Theoretical findings will then be comparéd with
experimental results and the parameters that play the most
critical roles in frictional losses in cables will be
discussed.

In Chapter Two the expression for the centeriine of a
helical spring subjected to a transverse point load is
derived. The expression for the deflected centerline of a
helical spring is then compared with that of the
cytindirical core and it is shown that the rotation of
helical coils is the primary form of relative motion out of
two possible forms of relative motions (e.g. rotation and
transtation)., An expression for free rotation of the coils
is derived and is found to be in excellent agreement with
the experimentally measured values of rotation.

In Chapter Three, a portion of a helical coil is
isolated from the rest of the system and subjected to a
typical toading that occurs during the transverse

deflection of the system. A uniformly distributed friction
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force is assumed and the expressions for the rotation of
the isolated portion of coil are derived. Theoretical
results are found to be qualitatively in good agreement
Wwith the experimental resultse.

In Chapter Four, the equations derived for a single
coil in the previous chapters are transformed into a
geometry of six helical coils around one central core.
Expressions for the change in the moment of inertia of a
cable as a result of slippage are derived, Response of a
cable to a quasi;statically applied transverse concentrated
toad is found. Theoreticalty calculated load:deflection
curve is found to be qualitatively in good agreement with
the experimental results,

In Chapter Five the hysteresis Loop for a cable with
internal friction is obtained and results are in good
qualitative agreement with the experimental results.

Chapter Six provides an overall evaluation of the main
content of this thesis. The major contribution of the
present work includes a model for the explanation of

interstrand friction and sl{ippage inside the cables,



CHAPTER TWO

BENDING OF CYLINDRICAL HELICAL SPRINGS

2.7 INTRODUCTION

As mentioned 1in the first chapter, the most simple
model that has atl the features of most cable geometries is

a helical spring wound around a cylindrical core as shown

in Figure (2.1).

Helical Coil

OPm

AN
j\\g//

Central Core

Figure (2.1) Physical Model of Coil-Core System,

It is then easy to postulate that there can be two types of
relative motion between the helical spring and the cylinder
inside its a. Llateral sliding of the coils on the

cylinder, b. rotation of the coils, Vinogradov and

13
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Atatekin [281, [29]. 1In a paper analyzing a helical tape
on a cylinder subjected to bending [23) it is assumed that
the surface of the cylinder and the tape centroidal axis
undergo the same rotation. Considering the high
flexibility of an elastic tape, it is a valid assumption.
In our case, however, a helical spring with a much higher
degree of rigidity is quite a different structure than the
helical tape and requires some analysis before making any
such assumptions,

For the model discussed above, clamped-free end
conditions and a concentrated point toad at the free end
are assumed, The expression for the deflected centerline
of a cylinder subjected to a transverse pofnt lLoad can be
obtained from any st}ength of materials textbook. The case
for a freex spring is quite different, however. In the
literature, the response of a spring to axial load [2],
£&41, L1013, to torsion [91, [111, (141, and to bending [15],
£24] is analyzed. Despite all efforts, no publication
about the response of a spring to transverse point load
could be found. 1In a book by Andreeva [16], some empirical
formulas are given to find the deflection o; a spring at
the point of application of Load but nothing is said about
the deflected center line.

D M G MSAN D TS WD D A e M W D T A WO G YD WS D DAY W AN e A AP W e A WD WD W Y -

* Free spring: A spring that does not have éBy friction
force acting on its coilsa.
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In an effort to find the solution for the deflected
centerline of a spring subjected to a transverse point
loads first, differential equations given by Love [1] are
considered. Even after simplifications, the solution is
rendered to six simultaneous non-linear differential
equations. In pursuit of a simpler way of solution, an
energy method similar to the one used by Prescott [2] is

employed and results are presented.

2.2. SPRING GEOMETRY AND INTERNAL MOMENTS

As seen in Figure (2.2), the position vector
connecting point of application of load to any point on the

helix can be written as:
= -r cos¢'4 +r sind' § -(k'¢ '-h)k (2.1)

where
r=radius of the cylinder that helix is wound
onto,
¢'=central angle (e,g. for ¢=21 helix makes
one full turn),
¢1=central angle between the clamped end of the

helix and x—-axis,

o=¢ ")
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— t~d

¢

X

Figure (2.2) Spring Geometry.

A=helix angle (inclination of the coils w.r.t.
x=y plane. If A=0 helix would be a circle),
h={ength of the spring.,

£={ength of the wire that spring is made of.
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27N

Figure (2.3) Development of a Helix.

Basically the following relationships hold between "g",

"h'and A ",

=‘ h (2.2.a)
tand 2TrN
..v_h
cos)\=%‘%@l (2.2.¢)

where



N = Total number of coils,

By substituting "n" for

18

and "z" for "h" the

following equations in terms of the variables z, n, and s

can be obtained:

.z
tand= 27rn
sini= ——

s
z
and,
¢'= 2mn

0<z <h (2.3.a)
0<n <N
0<s <&

(2.3.b)

(263.¢C)

(2.4)

The distance along the center line can be expressed as:

h '
27rN ¢

z=

or,

(2.5)
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z= k'q)' (2.6)
where
k'= h - (
“omN - F tani 2.7)

Moment resulting from the concentrated load at the

free end can be found from:

= nxF (2.8)

where

-t
I

P cosO A+ P sino § (2.9)

then the moment at any cross section 'is found to be:

M= P sinc (k'¢'-h) L- P coso (k'¢'-h) j+ Pr (sind' coso-

sino cos¢') k (2.10)

Since we are only interested in finding the deflected
center lLine which does not change for any orientation of
axesr, a special orientation for helix and force is chosen

to simplify the expressions as much as possible:.
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It is taken

0= 90 (loading is in the same direction as
y=-axis)

¢1= 0 (helix starts at the x=-axis)

Then the expression (2.10) can be written as
M= <P (k'¢-h) L-P r cosd k (2.11)

The above expression for moment, when decomposed along

normal tangential and binormal axes takes the following

 forms:
Mn= P (k'¢-h) cosd (2.12.a8)
Mb= ~Pr cos$ cosA -P (k'¢-h) sind sinh (2.12.b)
Mt= -Pr cos¢ sinA +P (k'¢-h) sind cosh (2.12.¢)
where

Mn = bending moment along the normal axis
Mb = bending moment along the binormal axis

Mt = torsional moment along the tangential axis.
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Figure (2.4) Local Axes on a Helix.

2.3+ DEFLECTION OF A SPRING SUBJECTED TO A TRANSVERSE

POINT LOAD

Since two bending moments and one torsional moment are
in perpendicular planes (Equation 2.12) and their axes
coincide with the positions assumed for the principal axes
of the x-section, total energy can be written for the case

of small strains as follows [23]:
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£ ) 4 5 £ )
_ 1 |mn 1 [Mb 1 (mMe2
W > JEll ds + 5 JEIZ ds + 5 JGJ ds (2.13.a)
0] 0 0
where
ds= r d¢ / cosA (2.13.b)

If equation (2.12) is put into (2.13) and integrated

the following expression can be obtained:

W= —— P21 (2.14)

where

r secA h2 £ 8 . ,2 3 2
- o 3 _ 12
7 ET] s W k'4 N5 77— 4hk'N4m< )

2 ene?
r_sech ( ro costA £ | % k'28373 sin2\- 2hk'N2w2 sin2)

EI, " 2 T secA
. 2 5
h2f sin“A | r sech , 2 sin2)\ £ &4 9.3 3 )
+ 2 r secA )+ GJ ( 2 T sech +'§ k'4N° T cos“A

h22 cosZA

- 12,2 2
2hk'NTT cos®A +-—§f;—ggzx )

(2.15)
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If "y" is the cdeflection of the point where the load

is applied, work done can be written as follows:

W=J15(y) dy (2.16)

If equation (2.16) is equated to equation (2.14):

Y1

J P(y) dy =
0

2
1 (2.17)

N Hd

since II is a constant for a given geometry.,

differentiating both sides of equation (2.17) gives:

p=pnik (2.18)
dy
or
@ 1 (2.19)
dy I

Since the right hand side of (2.19) is constant and P

0 when y = 0, by integration it can be found that’



Y1=HP

I1f, now the expression for I is

equation (2,15) into equation

following identities;:

I =1y = Iv
J = 21w
E
G = -5/
2(1+1)

and equation (2.2).,
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(2.20)

subsituted from

(2.20), and by using the

(2.21.a)

(2.21.b)

(2.21.¢)

the following expression for the

transverse deflection of a spring can be obtained:

_
1 = 3ETw

-4
3

It should be noted.,

7 cosh (2+u coszl)}

however.,

{ BZ(2+u cosz)\)+r2 (1+4p sinzl)

2

Nh™ r (2.22)

equation (2.22) gives the

deflection of a spring only at the point of application of

load,

Before pursuing the matter any further to obtain an
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expression for the deflected center line, it should prove

useful to check the expression derived with those found in

the literature.

15

—
o

Load (Newtons)

U 5 10

Displacement (mm.)

Figure (2.5) Lateral Spring Constant for Small Deflections,
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The only other expression that could be found is
supplied by Andreeva [16]7 however no derivation is shown,
and the equation is supplied in terms of two coefficients
(see Appendix 1), Although it could not be proved
analytically that the expression supplied by Andreeva is
equal to equation (2,22), nonetheless, excellent agreement
is obtained in terms of numerical results.

To further check the theoretical results
experimentatty, an auto shock spring was tested (Appendix
IV, Because‘of the rather lLarge tolerances used in the
auto industry., the spring used for experiments had rather
large variations of helix angle and internal diameter. The
experimental deflection curve obtained, however, is still
in good agreement with the theoretical one with only 10 %

error as seen in Figure (2.,5).

2ob., EXPRESSION FOR THE DEFLECTED CENTER LINE OF A SPRING

The force and moment at any cross-section "z" of a
spring resulting from an applied load at the free end can

be written as follows:

Force = P (2.23.3a)
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Moment = P (h-z) (2.23.b)
Therefore the displacement at any cross section "z"

resulting from the force at any cross section "z" can be

written from equation (2.22) by subsituting "z" for "h":

Ps -
Y1 = SETw {22 (241 cos?) ) +r2 (141 sin?) )

ﬂNZZ r

U S 2
s cooh (2+U cos }\)} (2.24)

-
3

The expression for the curvature of a spring under

pure bending moment is given by Timoshenko [3] as’

_ Mz (2.25)
Y2 = T3EIe
where
_ 2 ITw sin)\ (2 26)
Te = 241 cos2A

If the expression for bending moment at any

cross-section resulting from the point applied (oad is
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subsituted into the equation (2.25), expression for the

displacement under bending load is obtained:

_ B (h-z) 2%
Y2 T T 7 ETe (2.27)

Assuming small displacements, expression for the
deflection of a spring at any cross-section under applied

point load can be obtained follows:

Y=y + 72 (2.28)
or
= 5522 [ 22 (21 cos) + r2 (14 sin?))
4 Nz2r 92 Pz2 (h-z) 2 (2.29)
T 3 s cosA (24U cos®A)] + 4 EI simA (241 cos?d) ,
or by using equation (2.3), it can be rearranged as
follows:
__P 3, 1 z2h (2.30.a)
y=mg [ 22540 + 52 .
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where

_ 2 Iw sinA
£ = (it sin’h) (2.30.¢)
4MeNZtan?) (24+n cosZ)) o

Referring to thke equation of deflection for & beam

173;

2
y = [ 23 (_%)+__22h (2.31)

By comparing equations (2.30.a8) and (2.31) the
discrepancy associated with the term £ 1in equation.
(2.30.a) can be seen. It means that both core and coil
slide with respect to each other in a longitudinal
direction. However, a3 simple estimation shows that the
discrepancy is negligible in the case of catles. Indeed,
in applications the lead anygle A > 7/4 s which means that

£ < 0.025/n2 and can be neglected compared with 1/6 even
for the first coil turn. 1t may be concluded that the
btending type of coil deformation is not essential in the

analysis of frictional losses.
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It should also be noted that this is the first time an
equivalent bending stiffness for springs under point load
is derived and is shown to be similar to the one given by

Timoshenko [3] for pure bending.

2.5. TWISTING OF COILS

Since it is found that the rotation of cocils in a
cable is the primary form of energy dissipation;, as a first
step in further analysis, “"free"” rotation of coils is
considered.,

The expression for torsional moment at any

cross—-section was found to be :

Mt =.-Pr cosd sind + P(k'¢-h) sing cosi (2.32)

Using equations (2.7) for k' and (2.2.3) for h.,

equation (2.32) can be reduced to the followiny form:
Mt = -Pr sin) [ cos¢ - (¢-27N) sin¢ ] (2.33)

and the expression for rotation angle can be found as:

of =

8
JMt(cb) in _ (2.34)

1
¢ J,
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and in terms of a unit vectors

Me($) = Mt (o) VT%LLT ' (2.35)
and
h=rcospLd+rsing § + k' k (2.36)
if differentiated,
dr =(-r sin$ L + r cosd j + r tan) k)d¢ (2.37)

I1f equation (2.37) is put into equations (2.35) and (2.34)
and by using the identity:

2 _ 1
(l+tan>\)—m

the following expression for the rotation angle can be

obtained:

2 .
0f = Pr” sink

" GJ cosA [ cos¢ (¢-2mN) + 27N ] (2.38)

or in terms of non-dimensional quantities:
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K = cosp (¢p-21N) + 27N (2.39.a)
where
__GJ (2.39.b)
K Pritani

As can be seen from equation (2.39) the dimensionless
parameter K 1is only dependent on the maximum number of
coils and does not depend on load or any other spring

parameters,

21N b
S—
S—
\\
T N
o —
0] \\
b= >
(=] \\
1 T —
= —~—
1 v —— 3a
—
o
—
—
/
/
—
//
//
/
/
=21N—

Figure (2.6) Distribution of Internal Torque

Along the Helix.
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2eb6. MEASUREMENT OF FREE ROTATIONS OF A SPRING AT A

CROSS-SECTION

After deriving the expressions for free rotation of
coils of a spring, it became desirable to develop & device
for measuring the rotation at a x-section in a direct way
and to cowpare the experimentally found values to the

theoretical ones.

GTN b~

OGJ
P rZtan)

2mN

Figure (2.7) Rotation Angle of free Coils Along the Helix,
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Such a device (Figure 3.7) could also be used in later
stages of the research to measure the actual values of
rotation under the influence of friction forces.
Measurements are done at o fixed location for each coil for
five different loadings. Results are shown below in Table

(1)2

" En v TR EE N e D - R e v S S e WS e B S P NP T S M - WP S S e W W T G e G - e e e Ee G = me w e

1.408 2.40N 6,328 12.76N 19,13N

e e em e e e T A D Gn = W G e e R > - Y MR G T T G A R R W S T - R s e - - G S S e e W e w ama W

Theoretical 0.26 0.45 1.20 2.40 3.55

(P o B B B e e e
Experimentat 0.10 0.40 1.60 2.C0 3.00
Theoretical 0.25 0,43 1.10 2.30 3.41

2e €Ol mowmmmrrmemre e e e e e s e e
Experimentat 0.10 0.40 1.00 2.1C 3.10
Theoretical 0.20 0.30 J.80 1.70 2.60

30 €Ol =wrmmmermecmcro e e c e e e
Experimental 0.20 0.30 0.90 1.80 2.60
Theoretical 0.10 0.20 0.50 1.10 1.76

be COTl ~rmemmmceemcsrerc e e e e e e e
Experimental 0.00 0.10 0.40 0.50 1.30
Theoretical 0.00 1.10 0.30 0.60 0.90

5¢ CoIl mowemmmm e e e e s e s -
Experimentel 0.00 0.00 0.20 0.4C 0.60
Theoretical 0.00 0.00 0.00 0.00 0.0

6o COTLl =mmomrrer o e e e e e e
Experimental 0.00 0.00 0.00 0.CO0 0.00

S e e M W W e e W e e Ge S i S R N M e e T e e WS R T T WD WE D SR MR R S AR W e e e W R e e GR Gn G R e e e W

Table (I)Y Compariscon of Theoretical ano Experimental Values
of Relative Rotation of Coils in a4 Spring (microradians),
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2.7, CONCLUSION

A simple model consisting of a helical spring wound
around a cylindrical core is considered in order to analyze
the principal mode of friction in the cables. The
expression for the deflected center line of a helical
spring subjected to transverse point load is derived and it
is proved that the equivalent stiffness of a spring in
shear is equal to that found by Timoshenko [30] in bending.
This is the first time such a result h#s been presented,

Theoretically the equation derived for the lateral
deflection of a spring is compared gnd found to be in very
good agreemenf with the experimental results,

Then by comparing the expressions for the deflected
center Llines of a helical spring and a beam it is shown
that the lateral slippage 5f coils inside a cable can be
neglected and the rotation of coils is the primary
mechanism of slippage and friction losses, Vinogradov and
Atatekin [291].

In the second part, a Rotation Measuring Device (RMD)
is developed, manufactured and used to measure the amount
of rotation, occuring at different cross—-sections of a

helical coil subjected to a transverse point toad.
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Experimentally measured values of rotation are found to be

in good agreement with the theoretical ones,



CHAPTER THREE

HYSTERESIS LOOP AT A CROSS=SECTION

3.7 INTRODUCTION

By taking a closer {ook at the expression for torque
;t any cross~section (equation 2.33), and the rotation
angle for a free helical spring (figure 2.7) it can be seen
that the expressions for (oading and deformation have
periodic characteristics with varying magnitudes in each
period. By also considéring the simple physical model of a
helical spring wound around a cylindrical core developed in
Chapter One, it is easy to see that that simple model can
be further simplified by isolating a small part of it from
the rest of the model. Assuming the location and size of
such "small parts"™ or "sections” can be found, then the
internal losses in a cable can be explained in terms of the
simplest model shown in Figure (3.1), Vinogradov and
Atatekin [28].

Furthermore, since the forces acting are perpendicular
to the center Lline of the helical coil, the physical model
of Figure (3.,1), can be shqwn to be mathematically

equivalent to the model in figure (3.2),

37
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Helical Coil

Figure (3.1) Basic Physical Mocel.

Uniformly distributed friction torque per unit length
is assumed to exjst between the coil and the core but if
the coil doesn't rotate;.friction torque is assumed to be
z2ero. If the‘expressions for rotation angle versus applied
internal torgue caﬁ te derived for any cross-section within
the small region  model considered above, then the total
loss for the whole cable can be found by simrply summing up
all such losses in esch particular region along the cable

axiss Vinoyradov anc Atatekin [28], [29].
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% Text=-aTm cosBi (External toraue)

+
\§L,/
1
N
*——4

\\J s=r8)cosk

ATIAAT I AAA

i mf (External friction

torque per length?)

B=-m/2 =0 B=m/2

Figure (3,2) t#athematically Egquivalent Model to

the Basic Element in Figure (3.1),

Assuminy the same deflected centerline, the internal
torque at any cross~section is the same for a "free'" spring
and for a spring with friction force acting on it, It
should be emphasized here that there is no doubt that a
spring with friction will deflect less under the same load
compared to that of a "fre;" spring, However, as long as
the general shape of the deflected center line remains

similar, internal torgue resulting from applied load can be

assumed to be the szme even though the "net internal

torque changes dramatically.
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3.2. TWISTING MODE OF COIL DEFORMATION

Recalling the expression for twisting torque caused by
a concentrated load (equation 2.33) at any cross-section of

a helical coilz:
Mt = -Pr sind [cosd + (2 N - ¢) sin ¢ ] (3.1)

3y neylecting the asymmetry of the torque distribution

within one coil turn, equation (3.1) can be simplified as:
Mt =-0 Pmr sinA [cosd + 2m (N - n) sing ] (3.2)

where

Pm = rwaximum magnitude of the load

o variable coefficient -1 < ag 1
In order to find the location of small sections where
slippage occurs, or in other wordss, to finc the location of

points for which external torque is maximum, internal

torque (equation 3.2) is equated to zero ancd solved.

0 Pmr sin) [cos) + 2T(N - n) sind ] = 0 (3.3)
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, - 1
¢pn = tan [ - ——— ] (3.4)
2 (N -~ n)

which gives the locations of middle points of all the

Stipping SectiOnS fOr n = D.SI 1' 1IS’Q-OOQCQQNO

By introducing a new variable:
B=¢m - ¢ (3.5)
equation (3.2) can te expressed as:

T=0o Ty sin B (3.6.a)

where
Tm = Pm T sinA [sin¢m - 27 (N - n) cosém ] (3.6.b)

It is important to keep in mind that;the egquation
(3.6) is the expression for internal torque at any
cross-section of the helical coil due to the applied load
at the free end. Tte corresponding external torque that

would result in the same internal torque can ke found as:

Text = -0 Ty cos B (3.7)
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Since it has teen proved before that the deflected
éentertines for a beam and a helical coil are similar, an
éxternal loading of the kind expressed in equation (3.7)
can be assumed to be acting on any cross-section of the
coil as a result of the deflected centerline,

Here it should be noted that the general fcrm of
equation (3.6) is the same for any rotating section, except
for the magnitude of Tm which is dependent on ®gn .
Therefore an analysis of half of a sectioa can be applied
to all the rotating sections later by considering symmetry
and changing the magnitude of Tm , Ffor the rest of this
chapter, a section as snown in Figure (3.2) will te analyzed
and the load versus rotation curve will be derived for any
cross-section within the rotating section boundary. 1In
this analysiss, Loading will be varied in two stages:; in the
first stage lodd increases from zero to maximum
(0 € a< 1), and in the s2cond stage from maximum to
negative minimum (1 >0 2 -=1), A possible third stage is
merely a repetition of second stage in tne reverse order

and does not require a seperate analysis,
3.2.1. STAGE ONE (0 o <1)

1f the slippage of strands is possible, then different

strands may slip simultaneously and interact with each
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other. In accordance with the assumption made that contact
stresses and coefficient of friction remain constant, these
effects can be neglected as far as the resistance of the
coil to the twisting is concerned. The slippage starts if
a3 twisting torque overcomes the frictional forces within
some length of the coil section being analyzed (see Figure
3.4, This length in terms Qf boundaries (811,612 ) can

be found from the requirement of section equilibrium:

T (B1D+ T (By,) -mg S=0 (3.8)
where

S=r (Bll - 812) / cosA (3.9

1t follows from the symmetry of {oading and geometry that

BLL= -gu = Bl, equation (3.8) can be written as;
o Tm cosA sinB)] ~mf r B = O (3.10)
or
Q sinfi- By = O (3.11.a)

0< Q< Qm . (3.11.b)
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where
]
=0 Tm /v (3.12)
"Tm‘" and " y " defined as
Tn = Pm r sin) Tm' (3.13,.3)
1
Tm = gingm - 2 (N - n) cosfm (3.13.b)
mf
Y= (3.14.3)
Pm sin) cos)
Pm sin 2\
8 =a () [ singy - 27 (N - n) cosdy ] (3.14.b)
mf 2

From equation (3.74.b) it can be seen that the
non-dimensional load factor Q' depends on the ratio of
the applied load and the friction torque ( P/mf ) for a
particular geometry of the cable and a fixed number of
strands (N, ) , It is the ratio ( P/mf ) rather than the
individual forces that determines whether or not the coils
will slip at any stage of loading. There is a limit,
howevers, on the maximum value of the applied load ( Pm ) for

a deflection within the linear limits. For mf =0 , coils
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rotate for any value of P, as Q= 1f the value
of mf 1s given and fixed then the non-dimensional load
factor " Q" changes from zero to ., + as the applied
load changes from zero to Ppax

For any given value of @ , equation (3.11) defines
the boundary of the slipping section’ls g « Furthermore,
it can be proved that a section star£s slipping at B =0
(Appendix I1) when Q=1 and continues to slip until
Bi =7/ 2 at g =17/ 2 and after that point, any further
increase in §! does not cause an increase in B as it
meets the rotation boundary of the next immediate section
at B = q/2 which has the equal magnitude of torque acting
on it in the reverse direction., Within the length of one
coil turn there are two equal slipping sections, having
opposite sense of twisting in accordance with the
assumption of torque symmetry,

The angle of twisting (slippage) is found by the

integration of the following differential equation:

2
470 _ _ x_.dr mf 12 (3.15)
GJdB " 7 cos d8+cos>\ *

satisfying the boundary conditions:

01 =0 at B = B3 and B = Byy = -B; (3.16)



-the solution isz:

where

and

that

nm, = £ ( cosB - cosBy ) +-%-( g% - 512 )
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(3.17.8)

(3.17.b)

(3.18.a)

(3.18.0)

m = GJ 01 cos?A / mf r2
2 as defined by equation (3.12). It can be shown
when:
1. =1 ( Section just starting to rotate,f; = 0 )
m=20
2. @ = m/2 ( Rotation all across the section,B1=7/2)

T 1,02 _ T2
=3 cos+y (B -7-)

(3.18.¢)

(3.18.d)
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Figure (3.3) Slippage Along the Coil- Section

During Stage One.

An

o
-
\|‘—41’/777‘|B7777X< W77 |

_1]./2 Blm * 0 62 Blm 'IT/2

I~

Figure (3.4) Slippaye Along the Coil Section

buring Stayge Two.
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and if

3. Q> m/2 (3.18.e)

72 )

T]1=QcosB+—;-(82-z— (3.18.4)
where, to find the maximum slippage., B = 0 can be
subsituted into equation (3.18) which gives:

72
n = - 3 for Q > 7w/2 (3.19)

At the end of the first stage o =1 and depending on

the cable parameters § = Qmax and By = Bimax where 0 < gy< /2,

3.2.2. STAGE TWo (1 >0 3>-1)

During this stagye the external load decreases and the
coil twists 1in an opposite sense. The houndary of a new
slipping section Bo < Bimax can be found from the
reguirement of equilibrium (see Figure 3.,4). At the enc of
stage one, the torque acting'in the cross-sectfon B =B, is

equal to
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T1(B2) = Tm sinBy, - mf r By / cosh (3.20)

During the second stage, the decreasing toad causes

the following torque in the cross-section B = By

To(B2) = o Tm sinBy (3.21)

Hence, the equation of section equilibrium, taking into

account the external friction forces is:

T1(B2) - T2(B2) = mf r By / cosh (2.22)

Using equations (3.,20), (3.21) and (3.22), the following

equation defining the boundary By is obtained:

(fm - ) sinBy - 289 =0 (3.23)

where

QDI:Q((X-—-].):TT[]'/'Y (3.24)

By using ¢ similar reasoning discussed in Appendix II.,
from equation (3.23) i1t can be found that the coil starts
slippihg in the opposite direction when Q= 0m - 2 for

which Bo =0 . As Q 1is decreased further down to
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Q= ¢m -, 62 = m/2 and forQ < Om - 2, 82 = T2 again,
If Q= -Qmax is put into (3.23), the following equation

can be obtained:

fm sinfy - By = 0 (3.25)

which is similar to the equation (3.11) for Q=0n . By
comparing these two equations.,Bomax = Bimax =Bim is found.
It means that the process! is symmetrical.

The angle of twisting is described by differential
equation (3.15) with the friction torque changing sign and

the new boundary conditions:

GJ-d—z—g%-= —ﬁ\-g—g-i—‘f—sﬁ; | (3.26)
with

02 (o,B2) = 61 (1,B82) (3.27.a)

02 (a,-B2) = 61 (1,-By) (3.27.b)

The solution is:
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N2 = Q (cosB-cosBy) +% (2822—82—81m2) + (m(cosB2-cosfim)  (3.28)

It can bhe shown that when

T« =8 (end of first stage)

B =0 n2 = mmax (3.29.a,b)

2o =0m -2 (coils are just starting to rotate in the

reverse direction)

By = 0 Ny = Nymax (3.2%9c »Q)
30 Q=6m -1
1, w2
By=m/2 M= (0n-7)cosB+z (5 ~B2-pm?)
- {m cosBim (3.29.e,f)
be Q= —Shmx‘
Bo = M2 np = - nimax | (3.29.g,h)

The third stage of loading( -1<a<1) Or m< Q< fm

is symmetrical to the second stage because
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conditions of equilitrium remain the same. The difference

is only in the direction of twisting.

3.3. HYSTERESIS LOCP AT A CROSS-SECTION

Derived expressions allow for any given magnjtude of
loads P (i,e. £) to determine the boundaries of slipping
sections and the angles of slippage. For any cross-section
of the coil this can be represented in the form of a
hysteresis loop defining the work lost during one cycle of
deformation.

By usiny equations (3.17) and (3,28) together with
(3.18) and (3.29) the hysteresis loop shown in Figure (3.5)
is obtained.

From Figure (3.5) it can be seen that the coil does
not start rotating until Q= 1.0 in the first stage, and
until Q= @m - 2 in the second stage. Distribution of
rotation angle along the rotating section can be visualized

as shown in Figure (3.3), and Figure (3.4),
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3.4. COORDINATE TFFNSFORMATION FOR SECOND STAGE

If the hysteresis loop at a cross-section (Figure 3,5)
is carefully analyzeds it can be seen that the similar
sections of the slippage curves for stages one and two are
proportional to each other by a factor of two, e.,g., A'/A =
B*/B = C'/C = 2, therefore by using the following
expressions:

0= fm - 20% (3.30)

Nz = T - 2n* (3.21)

The eguations (3.2L) and (3.23) can be put into the

following forms:

¢ = 0% (cos - cosBy ) + = ( B2 - By2 ) (3.32)
with
Q% sinBy - By = 0 (3.33)

for which
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Fijure (3.5) Hlysteresis Loop at a Cross-section.
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By comparing the equations (3.,32) and (3.33) with
(3.17.a) and (3.11), it can be seen that they are
identical. It has been proved before that the equations
for the third stage are identical to the ones for second
stage with a change in signs of load and displacement.
Nows the 5bove transformation shows that there is actually
one set of equations for boundary length and rotation at
any stage of the hysteresis loop. By using the following
transformations the amount of slippage and the toundary
length for the second stage can be found from the

expressions of the first stage:

Q = Om - 20 (3.34)

n2=nm..2nl (3.35)
for which

0« < Om

3.5. EXPERIMENTAL RESULTS

After obtaining excellent results in measuring the
rotation of helical coils of a "free" spring in Chapter
Two, it was decided to try and see if the rotational

slippage of coils of a spring on a cylindrical core can be
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measured too., In order to be able to change the magnitude
of friction force between the coil and the core, a set up
as shown in Figure (3.6) was used.

Due to the lLength of time and cost involved in having
a custom made spring with a precise internal diameter and
lead angle, 3 stock auto shock spring was purchased. The
middle part of the coil which had a reasonably constant
tead angle (9° = 15°) was used for experiments. The
internal diameter, however, was found to‘vary by a targe
amount from one point to another., In order to compensate
for this, the thinnest available metal sheet that could
also withstand the internal pressure without buckling was
chosen, The pressure between the coil and the core, or the
contact friction forces were controlled by means of a
hydraulic pump connected to a bicycle inner tube,

In spite of the flexible thin metal plate used as on
inner lining, a considerable number of non-touching surface
sections of coil and core could be observed by the naked
eye (Figure 3.7). Measurements were taken only at the
sections that appeared to have a possible even contact at
least for the distance between the clipped legs of the
Rotation Measuring Device (RMD).

Also the RMD developed earlier for measuring the
rotations of a “free” coil was found to be not sensitive

enough for measuring rotations of a coil under friction
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0.03" Shimstock

F\-—//Wﬁl mfb
Auto Spring End Cap

End Cap Bicycle Inner Tube

Figure (3.6) Experimental Set-up for Core Coil Model.

loading. A 20 times more sensitiverRMD was designed and
built by increasing the height of its legs and the length
of the beam with strain gages.

Experimentally obtained hysteresis loops are shown in
Figure (3.8). It should be noted that the loops shown are
obtained by relative displacement of two cross-sections.

It can be proved that the shape of a hysteresis loop
obtained by relative displacement of two cross-sections
will 4gain be similar to the one shown in Figure (3.5). 1In
all but one curve shown in Figure (3.8), the cross-sections
start rotating slightly as soon as the direction of load is
reversed. This can ke attributed to the mechanical

connection between the beam and the tips of the RMD. As
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the sensitivity of the RMD was increased by a factor of 20.,
it has also become sensitive to the axial bending due to

the friction between pointed ends and the beam,

Figure (3,7) Experimental Set-up for Measurements,
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RADIANS x 107

Figure (3.8%) Hysteresis Loops OLtained from Experiments,
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3¢6. CONCLUSION

Due to periodic symmetry of loading and geometry of
the helical coil wound around a cylindrical core, it is
shown that the internal losses in a cable can be anaiyzed
in terms of short sections that occur along the cable
length. A fheoretical model mathematically equivalent to
the actual physical model is developed. Assuming Coulomb
Friction, cable slippage and the propagation of a slippage
boundary is investigated for two stages of loadings. It is
shown that there is a minimum value of load after which the
coil section starts slipping. By further noting the
relationship between the slippage curves for initial and
subsequent loading, it is demonstrated that the slippage
curve for the second stage can be derived from the
expressions for the first stage by means of transformation
equations (3.34) and (3.35).

A second RMD 20 times more sensitive than the one used
for measuring free rotation of coils, is designed and
manufactured. Due to inconsistencies in the geometry of
the spring being measured, only the hysteresis loops
resulting from the relative slippages of the coils could be
measured., Not having been able to obtain inforﬁation on

the real contact stresses and friction forces, only the



61

form of the experimentally obtained hysteresis loops could
be compared with those of theoretical ones, Keeping in
mind the shortcomings of the mechanical device used for
measuring slippages, good quatitative agreement is obtained
between theoretical and experimental results.

Before closing, it is important to emphasize the
universality of the hysteresis loop shown in Figure (3.5).
Since it is at a cross-section of a coil section and
expressed in non-dimensioniess quantities, the loop shown
in Figure (1.1) represents the hysteresis at any
cross-section of any cable with any geometrical parameters
as long as the basic structure of the cable is composed of

the one or several geometries shown in Figure (1.1).



CHAPTER FOUR

GENERAL FORMULATION FOR CABLE GEOMETRY

4.7 INTRODUCTION

The existence of the relationship between interstrand
slippage and the change of stiffness of cables has long
been recognized in the literature, It is stated by Claren
and Diana 7] that the experimental tests performed
previously have shown that the average stiffness of a
vibrating cable has generally half the value which is
obtained from calculations made with the assumption that
the individual wires will not stip and the entire
cross-section of the cable will act as a unit,
Calculations made with the assumption that each wire acts
individually would give stiffness values corresponding to
1.5;2.0 percent of those obtained with no individual wire
slippages, that is, of a homogenous beam. It was then
thought to be preferable by Claren and Diana [7] to analyze
the dynamic strain distribution on taut homogenous beams
and then investigate experimentally how a real stranded
cable will differ from the theoretical model and make

corrections by introducing slippage coefficients.

62
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In other papers by Wagner and others [61, [203, [191],
£211, the e{perimentally obtained load~deflection curve for
a cable is considered and it is stated that the
experimental bending stiffness of a cable is considerably
less than that obtained by taking the product of Young's
Modulus of cable material and the second moment of area of
cross-section about its neutral axis. The difference is
attributed to the slip between the strands of the cable,

In this chapter it is proven that the change in the
stiffness of the cable can be explained in terms of the
slipping sections of finite length., After deriving the
expressions for slippage at any cross=section of a slipping
sections, the next step in understanding the internal
slippage of cables is to construct a full scale model built
of small sections described in Chapter Three. As was
stated earlier, the slippage section is a common property
of cables and can be found in cables of any geometry and
any number of strands. Formulation of a full scale model,
however, by combining such slippage sections, proves to be
difficult due to the complex geometry of cables with a
targe number of strands.,

As the simplest geometry used in real life, the cable
shown in figure (1.,1) will be used to analyze internal
slippage. Solut%ons for cables of more complex geometries

composed of several combinations of the cable shown in
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Figure (1.1) can be derived by using a somewhat similar

procedure.

4.2 GENERAL FORNMULATION FOR CABLE GEOMETRY

The assumption of aligning fhe x-axis with the central
axis of the helical coil was made in Chapter Two to
simplify the resulting equations without any loss in the
application to general cases. If five more additional
coils are added to the helical coil and core model of
Figure (2.1) to obtain the basic cable structure shown in
Figure (1.1), the‘fottowing terminoiogy and numtering
system is introduced to clearly define any cross-section at

any point of the cable.

Individual strand
in a coil.

First
coil

Figure (4.1) Numbering of Strands and Location of

Reference Axes in a Cable.
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As seen in Figure (4.1), the first strand in the first
coil starts at ¢ =0" . A clockwise direction is chosen
for numbering the strands. Positive direction of central
angle is counter-clockwise., Strands are referred to by
their strand number and coil number (e.g. Third strand in
second coil etc.).

The equation defining any strand in a cable with
number of strands (in our caseK =6 ) can be written as

follows:

ni =1 cosdp L+ r sinp § + k' [ ¢ + (i-1) %ﬂ 1k 6.1

fOf‘ i=1I2'3’.-¢¢..¢-K
h

v B
where k oma as before
and starting points on 2z = 0 plane can be found from:
. . 27 .
poi =~ (1i-1) a i=1,2,.....K (4,2)

By taking K= 6 in equations (4.1) and (4.2) and using
a-procedure similar to the one used in Section (2.2), the
torsional moment acting at any cross-section of any strand

can be found from:
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Mti = - Pm r sinA { cos¢pi + [ 27 (N-n) - (i-l)-g ] singi } (4.3)

Location of tte center of the slipping secticns can be

found by:

Mti = 0 (6.46)
which yives:
¢mi = tan~i[ - ) { G | (4.5)
3

with:
Ti = o Tmi sinf (4.6)

where
Tmi = Pm r sinA Tm'i (L.7.a)
Tm'i = singmi - [ 27(N-n) - (i-1) g-] cos¢pmi (4.7.b)

where

number o0f COIlS N 2142/ ccnessedld -
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i= number of strands in each coil., €.9.

-i=1I2l-¢. .6.

4.3 BOUNDARY QF THE SLIPP}NG SECTIONS

As mentioned before, the form of the loading fu&ction
on the slipping section (equation 4.6) does not change with
respect to its location. Only the magnitude of the
constant (Tpi) changes from one strand to another.

Therefore the expressions derived for the boundary and the
amount of slippage (equations 3.11 and 3.17.a) can be used
by replacing "Tp+" in those equations by "Tp's".

The expression that gives the boundary for a slipping

section is:

Qi singyi - gri = 0 ' (4.8)

where
Qi = q Tm'i/y (4.9)
¥ mf (4.10)

= Pm sin) cos)



Figure (4.2)

—+= Boundary line defining the boundaries of all slipping sections.

—— Boundary of each slipping section.

KXY slipping sections of the cable.

I

\

Ny

V_A o
_

Boundary of the Slipping Sections.

X Center of each slipping section.

68



69

At any stage of loading, the collection of points
defined by ¢mi and Bqi describes the boundary of the
end points of rotating sections, To better visualize such
a "boundary of boundaries'" a rather schematic
two-dimensional projection of the cable onto the y-z plane
is shown in Figure (4.2).

To better understand the picture shown in Figure
(4.2), it should be noted that the dark shaded area shown
can be taken as the top view of the coil shown in Figures
(3.4) and (3.5). As the applied load at the end of.the

ctable reaches a critical value, the first coil starts to

stip at "a" and as the load continues to increase the
boundary of slippage propagates in the direction of the
arrows shown and new centers of slippage continue to form
(e.gs Dbrcrdrea.etc.)

At a typical cable cross-section AA' as shown in
Figure (4.2), cross—-sections of the the strands 1, 2, and 3
slipr, as they are within the boundary line defining the
boundaries of all slipping sections.

Section AA' is also shown on the x-y plane in Figure
(4.3, It can be seen from Figure (4.3), that the
contribution of those three slipping sections to the total
moment of inertia of the cable is only 3 Iw. 1In the case

of no slippage, however, contribution from those three

sections rises to[ 3Iw + 3mR2( rzsin%¢l+rzsin2¢2+r2sin2¢3 ) I,
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Change in the moment of inertia of the cable due to
slipping strands of each cross-section is found first by
using a numerical method and then by a simplified mefhod in
the next section.,

A close examination of Figure (4.2) reveals that the
locations of uniform levels of strains do not exist either
along a specific strand or on two adjoining strands. This
finding is supported by the experiments done by Claren and
Diana [7] who report that even with the same static load on
wires, considerable differences can still be found on
strain values measured on two different, but closely
associated wires. It is therefore stated that [7] no
strain measurements made on a single wire can be taken as
representative of thte strain level of that paricular
cross-section of the cable.

The distance between the boundary of the stipping

sections and the y and z-~axes c¢can be written as follows:

y(i)/r = sin ( ¢mi + Bji) (46.11)

z(i)/h = [ 27 + (i-1) %+ ¢mi + Byi 1/2mN C4.12)

Since it is also known that all the cables loosen only

for part of the total Length (i.e. n« N ), by examining
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equation (4.5) it can be proven that ¢mi = 0 for the
slipping part of the cable which is in most cases less than
30 % of the total length. Also for the same reason, the
boundary of the slipping section is taken to be symmetrical
with respect to the z-axis, in spite of the fact that some

asymmetry will occur due to the helix angle '"A'"™,

4.6 CHANGE IN MOMENT OF INERTIA

For easier derivation, a reverse process is developed
to express the change in the moment of inertia in terms of

the boundary of the slipping sections. Instead of taking

" (4]

any” cross—-section and determining whether or not each
strand rotates in that cross-sections, first a specific
strand is chosen, the boundary of rotation for that strand
is found from equation (4.12) and then the cross-section of
the cable at the slippage boundary of that particular
strand is analyzed. Then a simple test is needed to
determine whether the rest of the strands at that
cross—-section rotate or not.

A lengthy TI-S§ programme was written following a
procedure explained below. For the ease of calculations

1"

the term "n'" is omitted in the following equations and

0o

instead "i is used as 3 = 14 27ceeeeebd N.



72

4.5 ALGORITHNM

1. For each strand, the boundary of slippage is found from

equation (5.8):

Qi sinfyi - Rpi =0 i=1,2,....6N (4.,13)

2. B3i found from the above equation is subsituted into

equation (4.12) to determine the cross~section that will be

analyzed:

z(i)/h = [ 2m + (i-1) 3+ B ] / 2mN (4.14)
3. Orientation of the reference stéand (which has ¢ =0 at
z = 0) is found fror:
R . U
¢p1=Bi+ (1i-1) 3 (4.15)

4, Orientation of the other strands (at the cross-section

found in step 2) can be found as:

¢3=¢1 - (3 -1)7 3=1,2....6 (4.16)
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S. The orientation co¢f the strand cross-section that
constitutes the boundary for the slipping strand
cross—-sections at the cross-section of the cable found in

step 2

¢1i = ¢mi + Bi (4.17)

but ¢mi = 0 , therefore ¢i = B1i ; (4.18)

6. Wwhether or not the rest of the strands slip can be

determined by the following test (see Figure 4.3):

If | sindj

.LE.| sinfyi | then singj =0 3§ =1...6 (4.,19)

1 and the

For example, ir Figure (4.3, i
cross-section at ¢y = By; is considered. Since it is also
known that the center of the slipping section is located on
y = 0, any strand cross-section with a center between ¢i
and the y = 0 line must be slipping. By considering the
symmetry of the slipping sections around the y = 0 axis, it
can be seen that strands 1, 2 and 3 are slipping in Figure
(4.3). By further considering the opposite side of the
coil with a reverse sign of torque and angle of slippage.,
it can be concluded that if strand 1 slips at the

cross—-section shown, then all the strands slip. However if
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Figure (4.3) Slippage of Strands at a Cross-section.

3 was the critically slipping strand, then only strands 3.,
2s 5 and 6 would be stipping. Equation (4.19)
automatically provides the number of strands that slip at
any cross—section.

7. Moment of Inertia at any cross~section of the cable can

be found from:

4 6 4
R R e 4.
= HZ_.+ YOI ﬂz—-+ 2 ( r singj )% ] (4.20)
j=1
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which can be simplified for ¥ = 2R and Iw==ﬂR4/4 :

6
I/Tw= 7 + 16-)  sin0j (4.21)
3=1

It should be noted that in all of the above equations.,
cross-sections of strands on the x=-y plane a}e assumed to
be perfect circles. Due to the helix angle ")", however,
cross~sections are slightly elliptical and a more exact

expression could be written as fol lows:

6
I/Iw= (1 + 6 sin ) + 16 sink )  sin2¢j (4.22)
j=1

For most practical applications, A >802 the error
introduced is less than 2 % by using the equation (4.21).

A diagram obtained by using the above explained
algorithm is shown in Figure (4.4), It should ke noted
that owing to the use of Load coefficient "Q", Figure (4.4)
represents the change in the "I" of a cable with a
structure as shown in Figure (1.1) and of any physical
dimension. It can be that I/Iw = 55 for a non-sltipping
cross—-sections, and I)Iw = 7 for a completely Lloose
cross-section, which represents an 87 % reduction in

rigidity of the cable.



Although the algorithm explained above is exact and
explains the strand slippage in detail, it is not in a
useful form for a use in later stages of formulation.
Therefore, an alternative approach will be sought té
express the change in I in terms of simple expressions.

It is proven in Chapter 2 that when Q= 1, slippage
starts and when 2 = T/2 , the section slips all the way
to §==1U2 s+ to meet the boundary of slippage in the
opposite direction at the ofher half of the coil.

3y introducing "Qo" which is the value of Q at the
first strand of the first coil for any appiied l.oad at t
end of the cabler, Qi for any strand can be written as

follows:

i = == Tn'i C4,

By taking ¢mi =~ 0 at the equation (4.7.b) and using

only one counter for strands (i.e. 1) instead of both

and "1 SO that NoW 1 = 1s2r0eeeerbN :

Tm' = 27N - (L - 1) (4.

w3
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To find the specific strand with a i= 1, equations
(4.13) and (4,174) can be combined to determine the critical

strand number:

. 1
ip=6N (1-35-)+1 (4.25)

It can be reascned that any strand with a strand
number greater than 1h does not contain any slipping
sections, or in other words, there is no internal slippage
of the cable after the ipth strand. It should te kept in
mind that as ¢mi = 0, ¢mi centers for all the strands are
on the x-z plane, Therefore, by defining the i'th strand.,
the intersection of dip'th strand with x-z plane can be
taken to define the begining of the non-slip section in the
cable, Therefore ecuation (4.,15) can be used to find the
length of the non-slipping part of the cable as a

percentage of the tctal length:

SV N R S
A en 1 ﬂo'+6N (4.26)
A = Percent distance from the fixed end of the cable at

which slippage in the cable ceases to exist.
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By using the same reasoning for QL = T/2 , the critical
strand number before which all the strands at any

cross—-section slip can be found as:

to & L
ig = 6N (1 ~55=) +1 (4.27)

or in terms of percent distance:

~iB_q,__ T .1
B=ow -1 200 " (4.28)
B = Percent distance from the fixed end of the cable at

which total slippage at the cross-section ceases to exist.
The distance from B to A is a transition region. At any
cross-section between B and A, only some of the strand
cross—~sections slip. It can be seen from Figure (4.4) that
the transition in the BA region is in terms of rather large
jumps in a non~linear fashion. Since the length of the
transition region is rather small (10 % max.) compared to
the total length of the cable, the change in "I" will be
assumed to be linear.

When equations (4.,26) and (4,28) are compared with the
results obtained from the algorithm mentioned before for

different values of Qo , excellent agreement is found
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between equation (4.26) and the algorithm. However, the
m/2 term in equation (4.,28) had to be replaced empirically
by 1.22 as the curvature of the coils atf8 = T/2 causes very
little increase in the I as B' just startg to decrease from
m/2 « By also neglecting the term 1/6 N compared to the
other terms (2 % error for N = 6), equations (4.26) and

(4.28) can be rewritten as follows:

1.22
Q
(o]
1
A= - ——— (4.30)
2
(¢]

Therefore, the following expressions can be written
for different levels of loading (Qo) :

1‘ Qo<l

No slippage at any cross-section of the cable:

I/ Iw = 55 for O (4.31)

N
N

/N
-2

,. lefg L22
hd o]

Clamped end of the cable starts to slip
partially. (No complete slippage) Assuming

linear change in "I":
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Figure 4.4 Change in the Stiffness of a Cabtle
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I/Iw

55 - 48(z-A)/(B-A) 0 < z < Ah (4.32.a)

I/Tw

55 Ah < z

N
=

(4,32.b)

3. 1.22 < 0
AlL tHree (complete slip, partial slipr, complete

non-slip) regions are present in the cable):

I/Tw = 7 0< z< Bh (6,.33.2)
I/Tw = 55 - 48(z-A)/(B-A) Bh < z < Ah (4.33.0)
I/Iw = 55 Ah< z<h (4.33.¢)

4.6 BENDING ENERGY STORED IN THE CABLE

The expression for bending energy in the most general

form for the cable shown in Figure (4.5) can te written as

follows:
Xx1h X2h h
Wb = = 1P2x2 dx + : ————szz dx + 222 dx
2 E Iy E I(X) E Ix (4.34)
0 x1h x,h
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where
P = 0Pn, load applied at the free end «
IR =7 1w
48A"T 48x%x
= - (4,
I(x) Iw [ 55 + ) B-A & ] 35)
h ~ 0Pm
I B! I(x) A' I
A /_ R I 4[_ ¢ j /—_ N y
17 y i Y
V
7 - X1h o
- Xah >
X -

Figure (4.5) dending Energy Stored in a Cable.

If equation (4.35), is subsituted into equation (4,34)

and integrated:

JP23 3, ) | @’ xd c
"Ew lTegt T T 2o TG ()




with

and 1 f

where

871, LG = Coxo)
C2 ( Cy = Coxy)
C1 = 273.18
Cy = 218.18 0
0ok 1 X] = X9 = 1
1€ Q0<1.22 x1=A"% =1
1.22 £ Q0 X3 = A" X9 = B'
A' = 1/Qo
B' = 1.22/%0
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(46.36)

(4,37.3)

(4.37.b)

(4.38)

(4.39)

(4.40)

(4.461)

(4,42)

or a programming trick used should be mentioned here:

Xy = A'

X9 = B' always
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but if A'.GE,T1 » A' =1

if B'.GE.T » B' = 1

4,7 CONCLUSION

In this chapter it is shown that the cable internatl
slippage can be explained in terms of local slipping
sections on each strand. The expressions derived in
previous chapters are generalized to formulate any slipping
at any cross-section of any strand. After defining each
slipping section at their respective places, a macroscopic
view is employed in an attempt to predict their behaviour
as a whole. An expression for the boundary of the end
points of all the slipping sections is derived and the
concept is explained pictorially. It is shown that if a
strand slips at any cross—section of the cable, it then
bends along its own axis rather than the axis of the cable
which results in considerable reduction in the stiffness of
the cable. Later, the idea of the boundary of the slipping
sections is taken one step further to determine the number
of slipping strands at each cross—-section to develop an
algorithm for finding the 'I",

The algorithm developed however, proves to be clumsy
for developing an expression for bending energy to be used
in later chapters. Fy using another approach explained in

Section 4.4,1, very useful formulas are developed for
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expressing the boundaries of complete slippage, partial
slippage and no slippage sections inside the catle.

In the last paert of this chapter, the expression for
the bending energy stored inside a cable with partially
rotating coils is derived and it is shown to be dependent
on a single variable, "Q0": the lLoad factor for the first
strand of the first coil at the fixed end. There is a
definite relationship between the "0 " and the external

toad applied at the end of the cable which will be

investigated in the next chapter,
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CHAPTER FIVE

HYSTERESIS LOOP FOR A CABLE

S«1 INTRODUCTION

From the tests made on the deflection of caktles [20],
[211, it has been found that a hysteresis ltoop always
occurs when a cable is deflected and the load removed. If
the hysteresis characteristics for cables of commercial
sizes under various tensions were known, the maximum
amplitude§ of vibrations could be predicted quite
accurately [20). A hysteresis lLoop test method described
by Claren and Diana [5] gives the possibility of accurate
measurements of cable stiffness and of the energy
dissipated per cycles

It is stated by Claren and Diana that although the
real damping forceé are not known and are worth further
investigation, a mathematical assumption of hysteretic
damping for bending leads to analytical results
sufficiently close to reality for practical use. They
further add that it is necessary in the choice of
tinearized cable stiffnesses and damping coefficients to

use the values obtained from cable deformation tests that

86
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are not too different from those that will occur on the
real cables under normal working conditions [S5].

As the last step in developing the theoretical model
discussed in previous chapters, it is shown that the
hysteresis loop for a cable can be obtained in terms of the
small slipping sections along the cable length. As
mentioned before, this is the first and only attempt in the
Literature available to explain the mechanics of frictional
losses in a cable by Vinogradov and Atatekin, [28], [291].
By using ;he expressions developed for the slippage of
strands in Chapter Three and the expression for the change
in the stiffness of a cable derived in Chapter Four, the
deflection curve for the cable of the specific geometry
shown in Figure (1.1) is found. A hysteresis loop is
formed by using the deflection curves obtained during
loading and unloading of the cable, The energy dissipated
by quasi-statical loading of a cable for different Llevels
of maximum load is found and the results are compared with

those experimentally determined in the literature,
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5.2 FIRST STAGE

As a first stage in an attempt to obtain the
hysteresis loop, the applied point load at the free end is
assumed to change from zero to a maximum within the limifs
of small strain assumptions. It is also assumed that when
the load is zero there is no residual slippage inside the
cable which is an impossible condition to obtain in real
life even for the cables just rolled out of the
manufacturing line in a factory. Nevertheless, the
increment work done by quasi;staticat loading of such a

cable can be written as follows (Figure 4,5):

—%AOLPmAyl=AWb1+AWt1+AWf1 5.1

where

Pm = maximum value of load applied

Ao Pm incremental load

Ay = incremental displacement of tne catble in
the first stage

AWby = incremental bending energy stored in the
cable

AWt1 = incremental torsional energy stored in the

catle
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Wl = incremental friction work done in the
cable by interstrand slippage.
To find the incremental frictional work, the following

equation can be used:

B1i 07 (Qi+AQ1i)
a6 dp (5.2)
-B1i  67(Qi)

mf r

6N
cosA Z

AWfl =

i=1

Remembering the symmetry of the slipping section and
another set of the slipping segtions on the other side of
the cables, equation (5.2) can be put into the following

form:

B1i
_ 4 nf r &N

Mgy = 2L izl J [61 (Qi+AQ1) - 6, (R1)] dB (5.3)

0

The expression for 671(Qi) .was found (equation 3.17)

also, from equation (3.12) for O = 1
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Omi Tm'i (5.5)

n

<

by using equations (3.13), (3.14) and (3.7):

_ Tmi cosA

by substituting eqguation (5.6) into (5.4), and taking
Bli(ﬂi) = B1i(Q1i + AR1) » the following expression can te

written:

011(Q1 + AQi) - 01i(Qi) =

.A 3

Tmi r Qi
Omi

GJ cosA

(cosBi - cosfii) (5.7)

If equation (5.7) is put into equation (5.3) anc

integrated:

_ 4 mf r3 Pm sin)
gy = GJ cosZA

6N
o
§=lmi Tm'i ( sinfyi

- Byi cosByi) (5.8)
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Wwhich gives the work lost in friction inside a3 cable
during the first stage of loading.
incremental torsional energy can be

The expression for

written as:

6N
—r 2
AWt] = 5T ooy g j [ Ti2 (Qi + AQ1)
2pp4

- Ti2(Q1i) 1 4B (5.9)

where the expression for net internal torque "Ti'" at any

cross-section can bte found as:

_d01i _ cosA dBqi (5.10)
M= =1 dR y
or
mf
= (5.11)
Ti(Q1) CJ ook (=21 sinBi + Bi)

by taking Ri(Qi) = Bi(Qi + AR1) and using eguation (5.6):
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T12(Q1 + AQL) - Ti2(Qi) = 2 Tmi2 ( Qi sin2Bi- BL sinfi )‘ég%z (5.12)

Again by considering the symmetry of the slipping
section and another set of slipping sections on the other
side of the cable, ecuation (5.12) is put into (5.9) and
integrated to obtain the expression for incremental

torsional energy as:

_Pm2 3 N2 002y aas '
AWt] = oo §=1 ni? [ Qi (2B11i - sin2Byi)

+ 4 B1i cosBii - 4 sinByi ] (5.13)

by further remembering equation (5.5):

'i
Qmi = 2L (5.14)
Y
and egudgation (3.12):
Qf = o 'L (5.15)
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or:

A = Ag IR

(5.16)
Y
it can be seen that:
A -
Dot _ (3.17)
Omi - DO 2

Equation (5.17) is not dependent on strand number "i"
and can be taken out of the summation sign in equation

(5.13)>. Equation (5,13) can be written as follows:

Pm? r3 AQ_)Z §N Tm'i sin?)

Awey = GJ cosA ( Om 11 AR

[ Q1 (2B11

- sin2B11) + 4B11 cosByi - 4 sinByi ] (5_qg)

Incremental berding energy stored in the cable can be

written by substituting the expression for incremental



load: AP = AoPm irto equation (4,36), expressing

equation (5.17) and usinyg h = 2mrN tan)\

o213 A I3randy [ XL
AWbl-m(Qm) { 87 ¥ tan- ) | 1€5
(1-x23) (x92-x12) Cc1

91%. 1n SC1_= Cox2) 13
C2 (C1 - Cax3)

where C1, C2, X1, X2 are as defined in eguations

(4.37)-(4,.42).,
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from

(5.19)

After bhaving ottained all the energy terms, eguations

(5.192), (5.18) and (5.,3) can be put into (5.1) and

simplified by using the following expressions:

-
G = Elw

T

(5.20)

(5.21)
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to obtain:

Mo | Pm 3 3.3 3 X3 2_ 4.2
= ( B 3 X1 A-x27) _ (x9%-x1%)
byy = (Top ) Tggy U 8V rand [ g+ Sy - St

S (ogny - G125 (C1-Coxp) Gy ¥ .2_sinZ)
c, (x2x1) ?:Jz"’fln (C1=Cox1) 1 T cosh g_l Tm'ifer (91 (2614

- sin2By1i ) + 4 B1i cosBii - 4 sinBfyi ]

) 6N
+ 16 sin“A (1+1) TN Y Tm'i ( sinBpi - Byi cosPyi ) (5.22)
AR cosA _
i=1
withs
C] = 273.18 (5.23.a)

218.18 Qo (5.23.0)

:

(@]
N
]
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X1 = X2 = l‘ for O0O<fox<l1 (5.23.¢)
X1 = A' x9 =1 for I<Qogl.22 (5.23.d)
Xy = A' X9 =B' for 1.22<Q0 (5.23.¢)
A' = 1/Q0 (5.23.€)
B' = 1.22/Q0 (5.23.9)

where:
Qo _ OPm TN sin2) (5.26)

mf
or:

0 = o Om (5.25)

or by using h = 2mrN tan\ » equation (5.24) can be written

ass

oPm h cosZA

flo = ——=— (5.26)
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Displacement 3
Pm h

Figure (5.1) Theoretically Obtained Deflection Curve

for a Ceble.
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An algorithm for solving equation (5.22) together with
equations (5.23), (4.5), (4,7.b), (4.8) and (4.9) is given
in the Appendix II1I. A careful examination of equation
(5.22) shows that dimensionless displacement parameter "Y"
is a function of "A" and "N". However, solution of
equation (5,22), Ffigure (5,1), shows no significant
sensitivity to the maximum number of coils in the cable.
Also for 10°< X< 60° , the deflection curve is
insensitive to the change in "\" too. For A > 602 the
deflection curve ano the amount of maximum cdeflection

changes dramatically with changes in A .
Se2.17 SOME PRACTICAL APPLICATIONS

Since it is difficult to visualize the load-deflection
curve for a cable in terms of "-Q0" v.s. (yﬁb1EIWHM1h3 Yy,
a practical way of obtaining load~deflection curves in
terms of Force vs. ©Displacement will be explained below.
It is assumed that all the physical characteristics of the
cable (i.e. hs rs ruwsi » E;‘Iw, mf) and the maximum value
of the applied loac (Pm) is known. Then the maximum load

coefficient ( Qm) can be found as follows:

_Pmnh cosZ\

§om
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For any 0 Qo <tm » from Figure (5.1):
fm EIw |_
HES )= o (5.28)
= Qo

Thens, load and displacement for that particularo can Le

found as:

Pm b3
Y1 = Cl %7w om (5.29)

P = Pm = (5.30)

A load-ceflection curve obtained for a specific case

is shown in Figure (5.,2).

5.3 SECOND STAGE

In the second stage of loading, applied loac is
assumed to be changing from maximum to minimum (i.e. 1 >q
> -1). As it has been explained in Section 3.4, by means

of the transformations:
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Newtons
Pm

0.6

0.4

0.2

h=645 mm.

rvw=1.84 mm
A=85°
, | E=2 x10° N/m’

0 | ] | ] 1
1 2 3 4 5 6 mm.

Displacement

Figure (5.2) Deflection Curve for a Specific Case.
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Qi = Qmi - 2Qi* (5.31)
n2i = mmi -~ 2ni* (5.32)

the expressions for the slippage angle and the boundary
length for the slipping section at any strand can be

expressed as:
ni* = Qi* ( cosBi - cosBii ) +-% ( BiZ - 81i2 ) (5.33)
Qi* sinB1i ~ B1i = 0 (5.34)
for whichs
0« Qi* <« fmi (5.35)

By comparing the equations (5.33), (5.,34) and (5.35)
to equations (3.1%.a,b) and (3.17), it can be seen that
they are identical. Since the amount of s(ippage at any
cross-sections, bouncaries of the slipping sections and the
amount of load-applied have the same range and the same
minimum and raximum values, it can be seen that, in terms
of (x) coordinates, the following expressions can be

written for the second stage:



102

AWbo* = AWby (5.36)
Mtg* = AWty (5.37)
MWE% = AWE, (5.38)

The expression for the second-stage in terms of (%)
coordinates for the incremental work done by quasi-statical
loading of a cable can be written as:

%—AOLPm Ayg* = MWbg* + Mit,* + AWEo* (5.39)

I1f egquations (5.36), (5,37) and (5.38) are put into

(5.39) and compared with (5,1) it can be seen that:

(5.40)

>
<
N
%
il
g
<
et

for:

fo* = Qo (5.41)

Therefore, by using the transformations (5.31) and

(5.32), the real displacement and load for the cable in the

second stage can be found by:
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Yo = ym = 2yo% (5.42)

2 = Om - 2Q0% (5.43)
Then the same equations and the algorithm developed
for the first stage of the hysteresis loop can be used to
find the {oad-deflectioﬁ curve for the second stage.
Hysteresis loops obtained by using above equations for
different values of helix angle " )" and maximum load
coefficient "OQm" are shown in Figure (5.3) and figure

(5.4).
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Figure (5.3) Hysteresis Loop for a Cab@e.
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0

)\::60

Figure (S.4) Hysteresis Loop for a Cable,
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5«4 COMPARISON WITH EXPERIMENTAL RESULTS

The hysteresis loop obtained from the experiments on a
steel cable is shown in Figure (5.5). In order to compare
the hysteresis loop of Figure (5.5), first, an imaginary
curve for first stage is drawn on Figure (5.5) by making
use of the experimentally obtained curve for second stage
(i.e. stiffnesi of the cable is the same in the beginnings
of first and second stages as there is no internal slippage
until o = 1),

It can be found that the at approximately a® 0.20,the

stiffness of the cable starts to change, for which §0 = 1,

then from equation (5.,26):

_OPm h cos?)
nf = o T (5.44)

o~

for $00=1, @ % 0,20, Pm= 2.55 N» h = 644.5 mms r = 5.52

mm, A= 85°

mf = 0,45 N.mm/mm can be found.



2.5

15 10 15
mm
h=644.5mm
r=1.84mm
AZ80
r
Fiqure (5.5) Experimentally Found Hysteresis Loop

for a Cabtle,
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Then, again from equation (5.26) for o = 1 :

2

om = Emb cos A (5.45)
mf r

fm = 5.0

is obtained.

From Figure (5.1 for A = 85 dand ¢m= 5.0, the maximum

displacement can be found as:

fm Elw _
T - 0

or:
ym = 25 mm

When compgared with: ymexp =13 mm ( 92% error )

The 92 ¥ error found above can be explained in terms
of the uneven fricticn forces along the cable. It has been
mentioned before that the coils start slipping at the
clamped end. In theoretical calculations, it is assumed
that the internal friction force is constant all along the
cable including the close vicinity of the clamped end. in
real Life, however, clamping increases the magnitude of the

friction forces inside the cable. Since this increase 1in

friction forces is limited to the close vicinity of the
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clamped end, the length of the slipping section decreases
and the cable becomes stiffer.

It can be proven that the discrepancy between the
theoretical and experimental values of cable stiffness are
dependent on the magnitude of clamping forces, cable

geometry and initial friction force between the strands.

5.5 INTERNAL LOSS INK A CABLE

Areas of the hysteresis loops shown in Figures (5,3)
and (5,4) give the amount of energy dissipated by friction
forces 1inside a cable. If the area of each hysteresis loop
is found and plotted with respect to maximum cisglacement
obtaeined for that particular hysteresis loop, then a
straight line as shoun in Figure (5.6) is obtained.

Before discussing the relationship between dissipated
energy and displacement any further, a quick review of the
two most common types of damping proves to be useful,

Coulomt damping is a non-linear damping phenomenon,
since discontinuities exist in the damping force time
history when a change in the direction of relative velocity
occurss, thereby resulting in a non-linear equation of
motion. The Coulomb damping force is of constant magnitude

and is independent of displacement. In a physical sense.,



EIw coszl
mf r h

Displacement

Figure

0 1 1 % i
0.2 0.4 0.6 0.8

4
Dissipated Energy= ymig nghcos A

(5.6) Energy Dissipated per Cycle as a Function

of Maximum Displacement,
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Coulomb damping is attainable from a retlative motion of two
surfaces arranged to slide one upon the other with a
constant normal force holding them together, where the
coefficient of friction between the two surfaces is
primarily dependent on the nature of the surfaces sliding
on each other, The energy dissipated per cycle by a
Coulomb damper experiencing a harmonic relative
displacement is independent of the frequency of vibration
amplitude {27}.

Hysteretic damping is a linear damping phenomenon for
which the damping force is proportional to the relative
displacement across the damper, where the constant of
proportionality is defined as the hysteretic damping
coefficient.

The concept of hysteretic damping was originally
postulated as a basis for describing the internal damping
properties of solid materiéls. From a rigorous
mathematical point of view, hysteretic damping does not
represent a physically realizable energy dissipation
mechanism since the responce may anticipate excitation
under some circumstances [27]. It is used, however, to
represent the internal damping characteristics of solid
materials undergoing harmonic vibration;. In a conceptual

sense, hysteretic damping is attainable from a viscous
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The energy dissipated per cycle by a hysteretic damper
experiencing a harmonic relative displacemepnt is
independent of the fregquency of the vibration but depends
on the vibration amplitude,.

Remembbering the assumption of Coulomb damping for
inter-strand friction (Section 3.1), the first cegree curve
obtained in figure (5.%6) proves that the expressions
obtained for the slippage of cross-sections and the
hysteresis loop obteained for a cable are corregt as far as
the assumptions made about the nature of losses in a cable
are concerned,

Claren and Diana [5] mentioned that the energy
dissipated per cycle is not proportional to the square of
the displacement of the end of the cable as it would have
been in the case of bysteretic damping (see Figure 5.7),
nor directly proportional to displacement as it would have
been in the case of Coulomb damping. The energy dissipated
lies in between the two theoretical curves as shown in
Figure (5.7). 1t is also stresseds, however, that the
enerygy can he dissipated without macroscopic slippage of
strandss, by the deformation of microscopic interstrand
asperities.,

In another paper by Sturm [20], measurements are made

for the energy dissipated in the steel cable of a
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Figure (5.7) Comparison of the Experimental Energy

Dissipation Curve with the Theoretical Curves.

Stockbridge damper and the resulting curve is compared with
a hysteretic damping curve.
3y also noting the obvious discrepancy between Sturm's

experimental Energy loss curve and the theoretical curve y
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= sz it can be seen that the internal damping cf cables
can be explained in terms of two different mechanisms:

1« Coulomb friction between the strands inside a
cable,

2. Hysteretic damping resulting from the deformation
of the individual strands and microscopic interstrand

asperities,

d inches per weight
o
W
| 1

=]
oo
~0.2 1
&
[V
¥
<
[a ¥
Q
O
[
0.1}F
0 . :

0.1 0.2 0.3
Amplitude (inches)

Figure (5.8) Loss v.s. Deflection Curve by Sturm [203].



Although in most papers published in this.field an
assumption of hysteretic damping is made [201, (53, (63,
{71, in a paper by Caroll [21], the amount of energy taken
from the wind by the vibrating cable is measured by means
of a coil in a magnetic field and it is shown that energy
teken is proportionasl to the displacement.

It can be reasoned that for cables mace from materials
with comparatively lower values of Young's FModulusy, within
the Limit of small strains, the energy spent on deformation
of strands would be less than the enérgy spent on the
Coulombian friction between the strands,

The non-dimensional term for the dissipated energy V¥

can be written as follows:

where:
Ym = non-dimensional displacement ( Yjmax )
o = 2o Elw coszk (5.46)
mf hZ r

Om = non-dimensional Load



Pm b cos2)\
fm = = (5.47)

by putting equations (5.47) and (5.,46) into eqguation

(5.45)

_ ym Pm Elw cos™)

y e (5.48)

toyether with equation (2.2.3):

h = 2mrN tanA (5.,49)

242 2.2
y = Y0 Psfglgdﬂ N4 sin42) : (5.50)

It can be seen from equation (5.50) that energy
dissipated increases with an increase in "ym", "Pm", "EIu"
and "N". However, as "h" is increased, everything else
being kept the same, dissipated energy decreases as for a
constant number of turns "A" changess, coils become flatter
and the torsional moment at any cross-section decreases.

If equation (5.50) is written as:

- (5.51)

€
0
E’o
Hh



and differentiated:

AY

o

Hmf (5.52)

Which shows that with an increase in the interstrand
friction torgue, the amount of dissipated energy decreases,
as the coils slip less and the catle Jdeflects less (for
constant applied force Pm), This change in the eneryy lost
is greater at smaller values of friction.

As was shown before in equation (2,.30):

Pm_h3 (5.53)
Elw
If equation (5.53) is put into equation (5.50):
Y a (:‘;"-—;;-)2 N2 sin22 (5.54)

Wwhich shows that it is tne ratio (Pm/mf), rather than
Pms or mf that is important in analyzing the internal
losses in the cable. Again from equation(5.54), it can be

seen that the energy lost is a maximum for ) = 450



5.6 CONCLUSION

In this chapter, expressions for tke internal energy
stored in the cable and the friction work done are written
for two stages of loading at the free end of the cable.
Equations derived for the slippage of strands in Chapter
Three are used to cktain the internal energy stored in the
rotation of the strands and the friction work lost by the
slippage. A qguasi-statical approach is used and the
external toad is aprlied in small increments, The
resulting bending energy is obtained from the equations
developed in Chapter Four and it is shown that the
deflection curve for a cable, in terms of non-dimensional
quantities, is very sensitive to the changes in the helix
angle" )", for 3 > 60°.

In section 5.3 it is shown that by using a certain
transformation the deflection curve for the second stage of
loading of a cable can be derived from that of the first
stage by combining the first and second stage of loading.,
knowing that the third stage is a symmetry of the second
stage. Hysteresis toops for various values of toad factor
(Qm) and (A) are otbttained and shown in Figures (5.3) and
(5.4, By plotting the areas of hysteresis loops (energy

lost) versus displacement it is shown that the



non-dimensional energy lost "y" 1is proportional to
non-dimensional maximum displacement "Ym'", as could be
predicted from the assumption of Coulomb friction between
the strands inside a cable.

Theoretically found lost energy versus displacement
curve is compared with those found in the literature and it
is shown that the slippage mechanism developed in this
thesis accounts for one of the two ways 4 deflected cable
loses internal energy. Therefore the first degree lost
energy versus displacement curve shown in Figure (5,6)
constitutes a limiting case for the actual lost energy
versus displacement curves obtained from the experiments
(Figure 5,7),

Hysteretic damping resulting from the deformation of
the individual strands and microscopic asperities is the
other way cables ltose internal energy. In many
publications [53, [63, [7), (0201, [213, the actual
behaviour is shown to be somewhere between (Figure 5.7) the
two extremes mentioned above.

In almost all the publications, however, hysteretic
demping is assumed to explain the losses inside the cables,
and Loosening and slippage of strands treated as something
that affects the stiffness of the cable in an unknown way

£51.
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In this chapter, the contribution of stranc slippage
to the internal loss of a cable is investigated and it is
shown that an increase in the ratio (Pm / mf) and total
number of coils (N) increases the energy lost which is also

a maximum for a 459 helix angle.



CHAPTER SIX

GENERAL DISCUSSIONS AND CONCLUSIONS

In this thesis a simple three dimensional model for
the cable is developed to explain the internal losses in
the cables. As the simplest model that ‘has all the
characteristics of the actual cable structure, a helical
spring wound around 3 cylindrical core is considered
(Figure 2.1).

Out of the two possible ways of slippage between the
coil (spring) and the core (i.e. rotation and
translation), in Chapter Two, it is shown that the
deflected centerlines for the coil and the core coincide
which rules out the possibility of interstrand transtation
as a major form of slippage, Vinogradov and Atatekin [29],
[28]. Having decided that the rotation of coils is the
principal form of energy dissipation, the existence and
significance of such rotations were measured by means of a
Rotation Measuring Device (RMD) on a3 "free™ helical coil
that had no internal coree« Experimentally measured values
of rotations were then compared and found to ke in good
agreement with the theoretical results. (Tabte 1),

Noting the periodic nature of tWwisting moment and

rotation angle at any cross-section and of the coil

121
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structure, a section of the coil core model is isolated
from the rest of the model to be analyzed separately in
Chapter Three, A mathematically equivalent physical model
as shown in Figure (3.2) is used to explain the losses
inside the cables in terms of small slipping sections along
the coil lengths, Vinogradov and Atatekin [28].

Uniformly distributed friction torque is assumed to
exist between the coil and the core, but if the coil does
not rotate, friction torque is assumed to be zero. The
applied load changes from 2zero to a maximum in the first
stage and from a maximum to a minimum in the second stage.,

It is shown that the slippage starts as the internal
twisting moment gets bigger than the friction torque at
some cross-section (¢mi ) and propagates in either direction
on the coil, thereby forming a slipping section of finite
tength. Due to the change in the sign ofrthe twisting
moment the maximum length of such slipping sections are
found to be half the length of a coile In Chapter Three,
also the expressions for the location of the center of such
slipping sections, the distribution of slippage and the
propagation of boundary length are given for stages one and
twos, and the expressions for stage three are shown to be
identical to the ones for stage two with a reversal of

Signs-
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wifh the help of a set of transformation equations
(3.34) and (3.35), it is also shown that the amount and the
boundary of slippages for stage two can be found from those
of the first stage. The hysteresis loop obtained in terms
of the nonldimensional load factor ( Q) and the slippage
term (nJs (Figure 3.3) is valid for any cross-section of
any strand of any cable made of any number of strands.

By designing a 20 times more sensitive Rotation
Measuring Devicer, measurements were done at different
cross:sections of an auto shock spring with a bicycle inner
tube connected to a hydra;lic pump to change the pressure
and therefore the friction torque on the coils.
Experimentally drawn hysteresis loops are found to be
qualitatively the same as the theoretical one of Figure
(3.3 .

Having obtained the basic¢ relationships between the
twisting torque and the slippage at a small section in
Chapter Three, the next step is to find the response of all
such slipping sections as a whole and to obtain a general
way of describing‘fhose sections in a cable with six
strands wound around a central core, 1In Chapter Ffour,
boundaries of the slipping sections expressed in local
coordinates are transformed and expressed in terms of the
global coordinates of the cable. Using the expression

found for the boundary of all such slipping sections, the
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number of slipping strand cross-sections are determined at
each cross-section, to develop a model for the "loocsening”
ef the cable under the applied lLoad.

By introducing a critical load factor (§0), which is
the value of @ at the first strand of the first coil for
any applied load at the end of the cable, it is shown that
for Q0 1, there is no slippage at any cross-section of
the cable and I/Iw = 55 for 0 €« 2 € h . For 1 < {0g1.22,
the clamped end of the cable starts to slip partially
without any complete slippage and the boundary of partial
slippayge "A" can be found from A = 1 - 1/Q0 . For o >
1.22+, all three sections of complete slippager, partial
slippage and complete non-stippage can be found inside a
cablé and the boundary of complete slippage "B'" can be
found from the expression B = 1 - 1,22 /§0 , 1/lw = 7 for
a completely slipping part of the cable and the expression
for a partially slipping section is given by equation
(4.33.b). |

In Chapter Five, the incremental work done on a cable
- by quasi-statical loading is found by using the expressions
for incremental bending and torsienal energies stored in
the cable and incremental friction work lost by strand
slippage, Once again the load is applied in two stages’

and the expressions found in Chapter Three for the amount

]
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and the bounaary of the slippage, are used in developing
the incremental torsional energy and the friction work
equations of Chapter Five. The incremental bending energy
term is obtained by making use of the expressions developed
in Chapter Four to describe slippage along the coil.
Solving the resulting equation nummerically, hysteresis
loops for cables with different values of helix angle (A ),
maximum load factor ( Qm) and total number of coils (N) are
obtained., It is shcwn that in term of non-cimensional
vdriables, the maximum displacement does not depend on "N"
but is greatly affected by the chanzes in "X ", especially
for A 60°.

The hysteresis loop found from the tests conducted on
a steel cable of commercial size is compared with phe
theoretical one and found to be in good qualitative
agreement. From a comparison of experimentally and
theoretically obtained hysteresis loopss, it is found that
the clamping forces change the magnitude of the friction
forces in their immeciate vicinity, which also happens to
be the most critical section of the cable.

A consideration of the clamped end of the cable with
modified friction forces and more exact boundaries-of
slippaye should be useful to obtain a more exact deflection

curve for catles.
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As a further step in analysis, areas of hysteresis

loops for various values of "Om" anu "A "were found and

” ”

plotted with respect to maximum displacement Ym (Figure
27). In accordance with the earlier assumption of Coulonmb
Friction between the strands, a straight line relationship
is found between the energy dissipated (¥ ) and the maximum
displacement. When compared with those of experimentally
found curves in the literature (51, (61, [73, [201, [21],
it can be seen that the ener3y dissipatec versus
displacement curve found in Chapter Five represents an
extreme case of dissipation of internal energy solely by
interstrand friction. The real tenaviour of the cables,
howeveres is cne of o compination of interstrand friction
and the deformation of the individual strands and
microscopic interstrand asperities as clearly demonstrated
by Claren anc Diana [5] in Figure (5.7).

In a tater part of Chapter Fiver, at least for the
Coulombian part of the energy dissipations, it is shown that
the energy dissipated is proportional to the square of the
number of coils (i.e. Length) and the ratio (Pm / mf).
Energy dissipated is also sHown to be maximum for A = 45
and decreases with an increase in A .

During the experiments, due to stock parts (i.e.

cable, autosprinyg) displaying great inconsistencies in

geometrical dimensions, it was with great difficulty that
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consistent and reliable data could be obtained. Especially
the assumption of uniform friction torque between the
strands proved to be the most difficult to realize under
lakboratory conditions, Constrainéd by time anc money,
Little could berdone to improve the experimental set-ups to
obtain better results.

It is the author's suggestion that before pursuing any
more serious theoretical work in this area, experiments
described in Chapter Three should be repeated with a custom
made spring made to very tight tolerances and a new
Rotation Measuring Device using the principle of two
polarized planes and a light source instead of mechanical
tontacts. Also, an automatic loading device instead of a
manual one as used by the author could prove to be useful
gn loading for 1000-2000 cycles to obtain more uniform

friction forces before making any measurements.
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APPENDIX 1

EXPRESSION FOR LATERAL DEFLECTION OF A SPRING

In a bock ty Andreeva [16] the vertical deflection

of a8 spring subjected t2 4 concentrated load is given

as.:

_ Pn3 _ Ph
3Ab As

Wwhere for round wire springs:

h Ed* cos)
32 Di (2 + U cosA )

Ab =

_ hEd® 1
- B
8D°1 1+ %—ﬂz tanZX + p ( g2-+ g-) sinZ)

As

where

Ciameter of the wire spring is made of

[
1

Diameter of the spring coils

<
t

Number of coils

-t
"
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BOUWDARIES OF THE SLIPPING SECTION

Remembering the equation (3.11) that gives the

boundary of the slipping?

2 sinPy - B =0

(I1.71)

Solution of equation (II1.1) can be found as the

intersection of two functions:

f1 = sinf

f2=Bl/Q

(11.2»

(11.3)

from which it can be seen that the aoove two curves

intersect at the origin for any value of & and %_= 0 is one

of the roots of the equation (l1I1.1).

However, £2 = B /Q intersects the sinf;

another point of if

ay | . dan
a | < am |

curve at

(I1.4)
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which gives
Q>1 (11.5)

as a condition for the start of slippage at the ¢m ,
Since it is also known that at the eng of the slipping
sectionB1=m/2 , the slope of the linefs , for a case of

total slippage can te written as:

afy _ 2
B p (11,6
from which
=T
Q= 9 (11.7)

is obtainad.

Therefore it is proven that the coils start to slip at
=1 for which g1 =0, B3 >0 forQ >1 . andpy = m/2 for @
> m/ 2 dJue te the symmetry of loading and jeometry, After Q
=1/2 » any further increase in § does not cause an increase
in B; as it meets tke rotation boundary of the next
immeJjiate section at B = q/2 which has an equal magnitude of

torgue acting on it in the reverse direction.
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APPENDIX II1

ALGORITHI FOR SOLVING EQUATION 5.22

00 = 0

—» 1 = 1, 6N

gind = tan~t[ - oo %i—l)ﬂ/3 ]

Tm'i = singmi ~ [ 27N - (i-1)7/3 ] cos¢mi
Qi=Qo Tm'i / 27N

AL = AQ Tm'i / 27N

Qi sinpji - B1i =0

152 ain?
- ZQiSIH A [Qi(2p1i-sin2Byi)+4Blicospli-4sinB il = SUM 17

Tm'i ( sinfji ~ Ryi cosByi ) = SuUMi18

i—— CONTINUE
Cp = 273.18 Co = 218.18 Qo
x1 =1/ Qo IF x4 > 1, x3 =
x2 = 1.22 / Qo IF xp >1, x2 =
VLA - vy = ag { 8n3¥tandh [ XS >y Ax2%) _ (xp2-x12)
Pm T 165 21 T T 2¢,
-8 c12 (€1 ~Cox ) 6N
X2-X1) - 1n Sul=t2X2) 1+ sinZ)
C2 C2 (C1-C2x1) ] cosA g—l Tn'1 AQ: [Q1 (2831
- sin2Bq1 ) + 4 Byi cosBii - 4 sinfyi ]
16 sin?\ (1#y) my &N
+ = cosX I To'i ( sinBji - Byi cosByi )

i=1

p41
f0o

Y, + AY;  PRINT
Qo + AQo  PRINT

CONTINUE
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APPENDIX 1V

EXPERIMENTAL SET-UP AND METHODS

In the first exreriment (Figure 2.5) to measure the
deflection of a free spring, a commercial auto spring with
0 2
h = 645 mms r = 1,846 mmy, A= 85 and E = 2 x 10 N/mm was
used. In order to realize the theoretically assumed
clamped end condition, one end of the spring was clamped
between the two U-beams. The deflection of the free end

was measured by means of a vernier scale,

Figure (IV.1) Experimental Set-up.
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In the second set of experiments to measure the
rotation of free coils of the same springs. a mechanical
Rotation Measuring Device (RMD) (Figure 3.7) was used.

With the help of the strain gages attached on the two faces
of a tin? beam clamped on one of the legs of the RMD,
relative rotation of coils is measured in terms of the
strain levels and recorded on a chart recorder. The spring
was again clamped between tws U-beams vertically on a rigid
platform (Figure IV.1) and loading was slowly applied in

small increments,



