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ABSTRACT 

As the simplest model that approximates actual cable 

behaviour, a helical spring ( coil) wound onto a cylindrical 

core is considered to analyze and explain the internal 

tosses in the cables. 

A section of the coil- core model is further isolated 

to investigate the formation of the slipping sections and 

the propagation of the slipping section boundaries along 

the cable. 

It is shown that for a certain value of load, regions 

of complete slippage, partial slippage and complete 

non-slippage can be found inside the cable and the 

boundaries of these three regions are given by simple 

expressions. The resulting hysteresis loop is found to be 

in good agreement with the initial assumption of constant 

and uniformly distributed friction forces between the 

strands. 
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NOMENCLATURE 
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A Percent distance from the fixed end of the cable at 

which slippage in the cable ceases to exist 
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which total slippage at the cross-section ceases to 
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le Equivalent moment of inertia of spring 

(equation 2.26) 
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cross-section 

x i i 
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i Moment of Inertia of coil wire w.r.t. normal axis 

12 Moment of Inertia of coil wire w.r.t. binormal 

ax is 

L Unit vector in the direction of x-axis 

I Number of strands in each coil 0 < I . n 
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do not slip 
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K Number of strands in a cable 
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M Bending moment 
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Mt Torsional moment along the tangential axis 

(Figure 2.4) 
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inf Uniformly distributed friction torque 

N Total number of coils 
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P Concentrated load 



Pm Maximum value of toad 

R Helix wire radius 

IL A vector that describes any point on helix 

r Radius of the cylinder that helix is wound onto 

S As described in equation ( 3.9) 

S A variable along the colt 0 s ,,< I 

Ti Net internal torque at any cross-section 

Tin As described in equation 

As described in equation 

Tmi As described in equation 

Tm' 

(3.6.b) 

(3.13.b) 

(4.7. a) 

Tin'i As described in equation ( 4.7.b) 

Text As described in equation ( 3.7) 

A' 

X2 3' 

Ym 

Y 

Yj 

W 

z 

Non- dimensional displacement variable 

(equation 5.46) 

Total displacement of the spring 

Displacement 

of the cable 

Displacement 

of the cable 

Work done by 

of spring under shear, displacement 

in the first stage of loading 

of spring under bending displacement 

in the second stage of loading 

applied load in the system 

A variable along the coil or cable 0 z .,< h 

x i v 
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(X Load coefficient — 1 <06< 1 

A local variable 

i Boundary of the slipping section in the first stage 

2 Boundary of the slipping section in the second 

stage 

11 Boundary of the slipping section in the first stage 

on the i' th strand 

2- Bouncary of the slipping section in the second 

stage on the i'th strand 

y As described in equation ( 3.13.b) 

L Increment, denotes incremental quantities 

As described in equation ( 2.30.c) 

TI Non— dimensional slippage angle 

* ri after transformation 

V)1 

712 

1m 

2m 

Non— dimensional slippage angle in the first stage 

Non— dimensional slippage angle in the second stage 

Maximum value of n 

Maximum value of r2 

01 Rotation angle ( slippage) in the first stage 

02 Rotation angle ( slippage) in the second stage 

K Non— dimensional rotation angle 

X Inclination of the coils w.r.t. x—y plane 

i.e. helix angle 

X  



11 Poissons ratio 

11 As defined in equation ( 2.15) 

a Angle between P and x-axis 

1' Central angle of the helix 

m Location of the center of the slipping section 

after transformation 

4m1 Location of the center of the slipping section 
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oi Initial angle of i ' th strand 

Central angle between the clamped end of the helix 
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Energy dissipated per cycle 

2 Non- dimensional load coefficient as described in 

equation ( 3.12) 

li Non dimensional Load coefficient on i' th strand 
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CHAPTER ONE 

INTRODUCTION 

Strings, hanging chains and cables have been analyzed 

for centuries. Not only has cable behaviour been of 

interest because it has many applications but also because 

of the fundamental nature of problem solution. The 

catenary and viorating string problems can be found in most 

elementary texts of mechanics and engineering mathematics. 

During the late 1963's cables were studied with regard 

to both application and analysis. Cable systems were being 

considered as structural components in three dinensional 

networks the cable supported roof used in the Munich 

Olympics in 1972 and the 1983 Saddledorne in Calgary, are 

only but two examples. Ocean requirements in both private 

and military sectors placed greater emphasis on complex 

cable systems for mooring and undersea structures. The 

complexity of these applications overextendec the classical 

approaches for anaLyzing such cable systems. Specifically, 

the catenary solution was difficult to apply to highly 

branched networks under transient loading [ 223. In the 

design, operation, and expansion of electrical power 

systems it became necassary to know the physical 

1 
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characteristics of conductors used in the construction of 

aerial distribution and transmission lines. 

A typical stranded conductor made from bare copper 

(Figure 7.1) is very simitar in geometry and des.ign to the 

structural cables made from various alloys of steel. 

Figure ( 1.1) A Typical Stranded Conductor. 

In the electric- power field the following types of 

conductors are generally used for high- voltage power 

transmission lines: stranded copper conductors, hollow 

copper conductors and ACSR ( aluminum cable, steel 

reinforced). A stranded conductor is easier to handle and 

is more flexible than a solid conductor, particularly in 

the larger sizes. A typicaL. ACSR conductor is illustrated 

in Figure ( 1.2). 
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Figure ( 1.2) A Typical ACSR Conductor. 

In this type of conductor, aluminum strands are wound 

around a core of stranded steel. Varying relationships 

between tensile strength and current— carrying capacity as 

welt as overall size of conductor can be obtained by 

varying the proportions of steel and aluminum. By the use 

of a filler, such as paper, between the outer aluminum 

strands and the inner steel strands, a conductor of large 

diameter can be obtained for use in high voltage lines 

[133. 

The effect of wind in producing vibrations in stranded 

cables has been known for many years, and the number of 

laboratory and field investigations and of reports on the 

subject has been continously increasing as a consequence of 

general interest in the matter. The urgent necessity of 
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finding some practical solutions for the ever increasing 

number of transmission line failures has often led to the 

confusion between the causes and the consequences of the 

vibrations. Wind is the cause of the cable vibrations and 

cable vibrations in turn are the cause of strand strains 

that lead to the strand fatique failures. Fatique occurs 

almost entirely, 99% or more , at hardware locations with 

the major portion of failures occuring at suspension 

clamps. However, a significant number of failures also 

occur at hot- tine taps spacers, dampers, aircraft warning 

devices, and dead ends, since the state of stress is 

similar to that at a suspension point. The tack of fatique 

in free- span locations away from hardware is attributed to 

the fact that high dynamic strains occur only at restrained 

nodes [ 5J, C7D. The data collected by Claren and Diana C7J 

shows dynamic stresses to be four times greater at the 

fixed support, or completely restrained node, than the free 

span maximum. 

For a better understanding of cable mechanics a number 

of studies have been done to find the response of a cable 

subjected to various forms of loadings. Since cables are 

widely used for transmitting forces, most of the 

publications deal with the response of cables to axial 

loading and axial torsion [ 2], C4J, [ 9J, [10], [12J, [ 143, 

[25]. In those papers, Linear and non-linear anatysi s are 
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made to find the contact stresses between individual 

strands and on the core, and to evaluate the effective 

modulus for twisting and to determine the strains for the 

case of small and large deflections. Among these, work 

done by Huang [ 10] deals with finite extension of an 

elastic strand with a central core surrounded by a single 

layer of helical wires and subjected to axial forces and 

twisting moments. The theory of slender curved rods is 

used in the analysis and some geometrical non-linearities 

are considered. It is found that as a result of the 

contact between the central core and helical wireso, a 

separation between helical wires can occur during the 

extension of the strand. In an early paper by Phillips and 

Costello [ 93, the method of separating the cable into thin 

wires and solving the general non-linear equations for 

bending and twisting of a thin rod subjected to line loads 

is used. Only axial force and axial twisting moment are 

considered and changes in helix angle and contact forces 

are calculated. 

In another paper, taking advantage of geometric 

considerations, Machida and Durelli [ 4J, give explicit 

expressions for the determination of axial force, bending 

and twisting moments in the helical wiresp and for the 

axial force and twisting moment in the core of a 7- wire 

strand subjected to axial and torsional displacement. 
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Measurements on oversize epoxy models of the strand show 

good correlation with the theory and support the 

observation that axial load has no effect on the effective 

torsional rigidity of the strand. Costello and Miller 1123 

also analyze the effect of the twisting moments tending to 

unwind the strand compared to that of the same strand 

subjected to twistir'g that tends to tighten up the strand. 

Again in another paper by Costello and Phillips [ 9J, 

effective modulus of twisted wire cables is considered. 

Six equilibrium equations are set and solved with 

simplifying assumptions. Costello and Phillips [ 14], in a 

later paper develop a more correct theory for twisted wire 

cables. Also, Costello [ 153 by using six equilibrium 

equations, finds the large deflections of helical spring 

due to bending moment. Picardts Method is used to obtain 

the solution and it is shown that the first approximation 

yields valid results for most practical cases. 

The response of stranded cables to exciting forces due 

to wind has been investigated both analytically and 

experimentally by Claren and Diana [ 5]. They have studied 

the problem by two approaches. In one approach, the damper 

is treated as an exciting force on the taut cable alone and 

in the other approach, it is treated as part of a dynamic 

system composed of the taut cable with one or more dampers. 

In another paper written by the same authors [ 73, the 



correlation between the dynamic strains occuring in span 

and those occuring at the rigidly clamped extremities on 

vibrating taut circular beams is shown. It is also 

suggested that the wire slippage occuring on real loaded 

stranded cables will reduce the dynamic strains and 

contribute to the internal damping of the cable. 

As dampers play an important rote in reducing the 

level of vibrations and strains, an attempt is made by 

Dhotorad, Ganesan and Rao [ 83 to study the effects of the 

location of dampers on maximum strains produced in the 

cable. It is reported that dampers have appreciable 

effects at high wind speeds and it is recommended to use 

actual experimental values instead of approximate 

solutions. In alt the literature available to us, 

especially the works of Claren and Diana [ 53, [ 7J and the 

others [ 63, [ 8] a macroscopic view of analysis is used. 

The cable is assumed to be a tongs slender rod and 

corresponding resonance frequencies are found from known 

solutions. From these known solutionss kinetic and 

potential energies of a vibrating cable are found. By 

using either the decay method or the forced vibration 

method energy dissipated due to internal damping and the 

damping function corresponding to this dissipated energy 

are derived [ 5].. The equation of motion is set up by means 

of Lagrange's Equations and resonant frequencies are found 
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with about S X accuracy. This approach proves to be useful 

in calculating the right size and number of dampers for a 

particular power tine. In another effort to determine the 

dynamic strain distribution [ 73, the cable is again 

modelled as a slender rod white strains for this case are 

found from known solutions and related to experimentally 

established values by means of so catted " slippage 

coefficients". 

From the tests made on the deflection of cables, it 

has been found that a hysteresis loop always occurs when a 

cable is deflected and the load removed. If the hysteresis 

characteristics for cables of the commercial sizes at 

various tensions were known, the maximum amplitudes of 

vibrations could be predicted quite definitely [ 20]. 

Furthermore, knowing the hysteresis characteristics of the 

damper cables, the effects of different sizes and shapes of 

damper weights on the efficiency of a damper on a given 

size conductor may be determined theoretically [ 20], [ 7]. 

In a paper by Dhotarad, Ganesan and Rao [ 8] the effect of 

Stockbridge Type Dampers near each end of the span for 

different cable lengths is analyzed. A comparative study 

of the maximum strains produced is made for various wind 

power input assumptions. In finding the natural frequency 

of the cable with a damper, internal damping of the cable 

is neglected. 



9 

In another paper by Carott [ 21J, the amount of energy 

absorbed from the wind by the vibrating conductor is 

measured by means of a coil in a magnetic field and it is 

shown that the energy absorbed is proportional to the 

amplitude. In a paper by Pipes E18J, energy taken is 

assumed to be varying as the square of the amplitude and 

even though it is stated that interstrand friction has 

great influence in absorbing energy and in mitigating 

vibration, it is again neglected and only the effect of 

dampers is taken into account. In another paper by Wagner 

[6] experimental toad- deflection curves are obtained for a 

few cables and it is observed that the equivalent bending 

stiffness is considerably Less than that of a rigid cable 

and the difference is attributed to the slip between the 

strands of the cable. Again in a paper by Sturm [ 19] the 

"composite value" for the stiffness of a cable is measured 

and substituted into the theoretical formulas. Sturm [ 20] 

again clearly states that the information available at 

present is not sufficient to estimate the maximum 

amplitudes of vibration for commercial sizes of cables 

under field conditions. If the hysteresis characteristics 

for cables of commercial sizes at various tensions were 

known, the maximum amplitudes of vibration could be 

predicted quite definitely. 
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Although the above statement by Sturm was made in 

1939, all the major papers published since then on the 

subject of maximum amplitudes of cable vibrations have 

employed a rather macroscopic point of view in dealing with 

the losses in the cables. They have all employed some 

experimentally found loss coefficients in the equations for 

the vibrations of rods [ 8], [ 19J, E7J, [ 5]. 

No publication analyzing the frictional tosses in a 

cable from a microscopic point of view could be found - in 

the literature available to the author of this thesis. In 

a few papers a statical analysis of cables is attempted by 

considering a cable as a collection of helical springs 

wound around a central core [3], [ 24), [ 25) but they fail 

to explore the causes type and effects of the interstrand 

relative motion on the total response of the cable. In 

fact, the term " inter strand motion" or " loosening of the 

cable" is quite frequently used in most publications to 

explain the discrepancies between various theoretical and 

experimental values used in analyzing the vibration of 

cables. 

In this thesis a simple three dimensional model for 

the cable is developed to explain the internal losses in 

the cables. Using this simplified model, the primary mode 

of interstrand friction responsible for the internal losses 

in cables is determined and the mechanism of the 
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interstrand sliding is investigated. As the simplest model 

that approximates actual cable behaviour, a helical spring 

wound onto a cylindrical core is considered ( Figure 2.1), 

Vinogradov and Atatekin [ 283, [ 293. A section of this 

simple model is further isolated from the main model and 

analyzed to better understand the actual microscopic 

deformations taking place during cyclic loading of cables. 

Theoretical findings will then be compared with 

experimental results and the parameters that play the most 

critical roles in frictional losses in cables will be 

discussed. 

In Chapter Two the expression for the centerline of a 

helical spring subjected to a transverse point load is 

derived. The expression for the deflected centerline of a 

helical spring is then compared with that of the 

cytindiricat core and it is shown that the rotation of 

helical colts is the primary form of relative motion out of 

two possible forms of relative motions ( e.g. rotation and 

translation). An expression for free rotation of the coils 

is derived and is found to be in excellent agreement with 

the experimentally measured values of rotation. 

In Chapter Three, a portion of a helical coil is 

isolated from therest of the system and subjected to a 

typical loading that occurs during the transverse 

deflection of the system. A uniformly distributed friction 
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force is assumed and the expressions for the rotation of 

the isolated portion of coil are derived. Theoretical 

results are found to be qualitatively in good agreement 

with the experimental results. 

In Chapter Four, the equations derived for a single 

coil in the previous chapters are transformed into a 

geometry of six helical coils around one central core. 

Expressions for the change in the moment of inertia of a 

cable as a result of slippage are derived. Response of a 

cable to a quasi -statically applied transverse concentrated 

load is found. Theoretically calculated load- deflection 

curve is found to be qualitatively in good agreement with 

the experimental results. 

In Chapter Five the hysteresis loop for a cable with 

internal friction is obtained and results are in good 

qualitative agreement withthe experimental results. 

Chapter Six provides an overall evaluation of the main 

content of this thesis. The major contribution of the 

present work includes a model for te explanation of 

interstrand friction and slippage inside the cables. 



CHAPTER TWO 

BENDING OF CYLINDRICAL HELICAL SPRINGS 

2.1 INTRODUCTION 

As mentioned in the first chapter, the most simple 

model that has all the features of most cable geometries is 

a helical spring wound around a cylindrical core as shown 

in Figure ( 2.1). 

Helical Coil 

aPm 

Central Core 

Figure ( 2.1) Physical Model of Coil- Core System. 

It is then easy to postulate that there can be two types of 

relative motion between the helical spring and the cylinder 

inside it a. lateral sliding of the coils on the 

cylinder, b. rotation of, the coils, Vinogradov and 

13 
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Atatekin ( 28], [ 29]. In a paper analyzing a helical tape 

on a cylinder subjected to bending [ 23] it is assumed that 

the surface of the cylinder and the tape centroidal axis 

undergo the same rotation,. Considering the high 

flexibility of an elastic tape, it is a valid assumption. 

In our case, however, a helical spring with a much higher 

degree of rigidity is quite a different structure than the 

helical tape and requires some analysis before making any 

such assumptions. 

For the model discussed above, clamped- free end 

conditions and a concentrated point toad at the free end 

are assumed. The expression for the deflected centerline 

of a cylinder subjected to a transverse point load can be 

obtained from any strength of materials textbook. The case 

for a free* spring is quite different, however. In the 

Literature, the response of a spring to axial toad [ 2J 

[4], [ 10), to torsion [ 9], [ 11], [ 14], and to bending [ 15], 

[24] is analyzed. Despite all efforts, no publication 

about the response of a spring to transverse point toad 

could be found. In a book by Andreeva [ 16], some empirical 

formulas are given to find the deflection of a spring at 

the point of application of toad but nothing is said about 

the deflected center tine. 

* Free spring: A spring that does not have any friction 
force acting on its coils,. 
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In an effort to find the solution for the deflected . 

centerline of a spring subjected to a transverse point 

load, first, differential equations given by Love Cl] are 

considered. Even after simplifications, the solution is 

rendered to six simultaneous non—linear differential 

equations. In pursuit of a simpler way of solution, an 

energy method similar to the one used by Prescott [ 2] is 

employed and results are presented. 

2.2. SPRI1G GEOMETRY AND INTERNAL MOMENTS 

As seen in Figure ( 2.2), the position vector 

connecting point of application of load to any point on the 

helix can be written as: 

/= —r cos4'.L +r sin' 3 —(k''—h)k. ( 2.1) 

where 

r=radius of the cylinder that helix is wound 

onto, 

'=central angle ( e.g. for 4=27r helix makes 

one full turn), 

q1=central angle between the clamped end of the 

helix and x—axis, 
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Figure ( 2.2) Spring Geometry. 

X=helix angle ( inclination of the coils 

y 

w.r.t. 

x—y plane. If X0 helix would be a circle), 

hlength of the spring, 

tength of the wire that spring is made of. 
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Figure ( 2.3) Development of a Helix. 

Basically the following relationships hold between 

to h " an d of 

tanX=   
21TrN 

(2.2.a) 

sin hA= (2.2.b) 

cosA= 2irrN  

where 

( 2 . 2 . c ) 
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N = Total number of coils. 

By substituting " n" for " N" and " z" for " h" the 

following equations in terms of the variables z, n, and s 

can be obtained: 

tanA= z 
2llrn 

cosA— ri 2irr 
z 

and, 

O<z <h 
O<n <N 
O<s <.e 

(?.3.a ) 

(2.3.b) 

(2.3.c ) 

cI '= 27tn (2.4) 

The distance along the center line can he expressed as: 

h  
Z 2irrN 

0 r, 

(2.5) 
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Z= (2.6) 

where 

271N  = r tanX (2.7) 

Moment resulting from the concentrated load at the 

free end can be found from: 

M= /LxF (2.8) 

where 

F= p cos .L+ P sin 3 (2.9) 

then the moment at any cross section 'is found to be: 

M= P sine (k''—h) -L- P cosa (k''—h) 3+ Pr (sir4' cosc— 

sinc cos') (a (2.10) 

Since we are only interested in finding the deflected 

center line which does not change for any orientation of 

axes, a special orientation for helix and force is chosen 

to simplify the expressions as much as possible. 
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It is taken 

= 90 ( loading is in the same direction as 

y - axis) 

0 ( heLix starts at the x-axis) 

Then the expression ( 2.10) can be written as 

M -P (k'-h) IL-p r cosq Ia (2.11 ) 

The above expression for moment, when decomposed along 

normal tangential and binormal axes takes the following 

,forms: 

where 

Mn P (k'-h) cosc 

Mb= -Pr cos cosX -P (k'-h) s1n4 sinX 

Nt= -Pr cos sinA +P (k'4-h) sin4 cosA 

(2.12 a ) 

(2.12.b) 

(2.12.c) 

Mn = bending moment along the normal axis 

Mb = bending moment along the binormal axis 

Mt = torsional moment along the tangential axis. 
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Figure ( 2.4) Local Axes on a Helix. 

2.3. DEFLECTION OF A SPRING SUBJECTED TO A TRANSVERSE 

POINT LOAD 

Since two bending moments and one torsional moment are 

in perpendicular planes ( Equation 2.12) and their axes 

coincide with the positions assumed for the principal axes 

of the x- section, total energy can be written for the case 

of small strains as follows E2J: 
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w-

where 

1 

2  
0 

ds + 1 1Mb2 1 (Mt2 T JT ds + -- 

0 0 

(2.13.a) 

ds= r d4 I cosA (2.13.b) 

If equation ( 2.12) is put into ( 2.13) and integrated 

the fo1owing expression can be obtained: 

where 

1 

2 
p2 (2.14) 

rsecX h2  
2 El1 r secA + k' 2 N3 _ 4hktN27r2 ) 

r secX r2 £ + k'2N3 3 2X_ 2hktN27r2 sin2X 
+ E12 2rsecX 3 

+ 112t sin 2A r secX r2 sin2X  + k'2N3 73 COS2X 
2rsecX)+ GJ 2rsecA 

- 2hk'N2 2 2 h2 cos2X  
IF cosA+ 2rsecX (2.15) 
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If "y" is the deflection of the point where the load 

is applied, work done can be written as follows: 

W=JP(y) dy (2.16) 

If equation ( 2.16) is equated to equation ( 2.14): 

YJ 2 fP(y) dy 

since II is a constant for a given geometry, 

differentiating both sides of equation ( 2.17) gives: 

or 

P = P II 
dy 

dP 1 
dy - II 

(2.17) 

(2.18) 

(2.19) 

Since the right hand side of ( 2.19) is constant and P 

= 0 when y = 0, by integration it can be found that; 
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Yj. = It P (2.20) 

If, now the expression for II is subsjtuted from 

equation ( 2.15) into equation ( 2.20), and by using the 

fot towing identities: 

Ii = 12 = 1w 
( 2 . 2 1 . a ) 

3 = 21w ( 2 . 2 1 . b ) 

E  
G - 2(1-Iji) 

(2.21 • C) 

and equation ( 2.2), the foLlowing expression for the 

transverse deflection of a spring can be obtained: 

Yl = 2EIw h2 (2+p cos 2X)ir2 ( 1+p sin2X) 

4Nh2r (2+p cos2A)} (2.22) 

It should be noted, however, equation ( 2.22) gives the 

deflection of a spring only at the point of application of 

Load. Before pursuing the matter any further td -obtain an 
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expression for the deflected center line, it shouLd prove 

useful to check the expression derived with those found in 

the literature. 

5 

Displacement (mm.) 

10 

Figure ( 2.5) Lateral Spring Constant for Small Deflections. 
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The only other expression that could be found is 

supplied by Andreeva tiój. however no derivation is shown, 

and the equation is supplied in terms of two coefficients 

(see Appendix I). Although it could not be proved 

analytically that the expression supplied by Andreeva is 

equal to equation ( 2.22), nonetheless, excellent agreement 

is obtained in terms of numerical results. 

To further check the theoretical results 

experimentally, an auto shock spring was tested ( Appendix 

IV). Because of the rather large tolerances used in the 

auto industryp the spring used for experiments had rather 

Large variations of helix angle and internal diameter. The 

experimental deflection curve obtained, however, is still 

in good agreement with the theoretical one with only 10 % 

error as seen in Figure ( 2.5). 

2.4. EXPRESSION FOR THE DEFLECTED CENTER LINE OF A SPRING 

The force and moment at any cross—section " z" of a 

spring resulting from an applied load at the free end can 

be written as follows: 

Force = p (2.23.a) 
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Moment = P (h-z) (2.23.b) 

Therefore the displacement at any cross section " z" 

resulting from the force at any cross section " z" can be 

written from equation ( 2.22) by subsituting " z" for " h": 

Ps 
= 2EIw {z2 (2+p cos2X ) +r2 (,+p sin2A ) 

4 iTNz 2 r  
s  (2+-p 2X) (2.24) 

The expression for the curvature of a spring under 

pure bending moment is given by Timoshenko E3J as; 

where 

N Z2 
Y2 = 2 Ele 

Ie- 
2 1w siaX 

2+p cos'X 

(2.25 ) 

(2 . 26) 

If the expression for bending moment at any 

cross-section resulting from the point applied load is 
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subsituted into the equation ( 2.25), expression for the 

displacement under bending toad is obtained: 

-  P (h-z) z2 
2EIe (2.27) 

Assuming small displacements, expression for the 

deflection of a spring at any cross-section under applied 

point load can be obtained follows: 

or 

Ps  
2 El t z2 (2+iicos2X) + r2 (1+.psin2X) 

4  Nzr  (2+p cos2A)] + Pz2(h-z)  (2+p os2A) 
3 s cosX 4 El sirLX 

or by using equation ( 2.3), it can be rearranged as 

follows; 

y = 
P 3  z 2h z (- 1 +) + 

( 2.28) 

(2.29) 

(2.30.a) 
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where 

117 3: 

- 2 1w sinX  
e (2+j cos2X) 

(1+P sin2X)  
- 41T2N2tan2A (2+p cos 2X) 

(2.30.h) 

(2.30.c ) 

Referring to the equation of deflection for a beam 

P Z3 (--)+ z2h--.---] (2.31 ) 

By comparing equations ( 2.30.a) and ( 2.31) the 

discrepancy associated with the term in equation. 

(2.30.a) can be seen. It means that both core and coil 

slide with respect to each other in a longitudinal 

direction. However, a simple estimation shows that the 

discrepancy is negliç,iDle in the case of cables. Indeed, 

in applications the lead angle X > rr/4 , which means that 

< 0.025/n2 and can be neglected compared with 1/6 even 

for the first coil turn. It may be concluded that the 

bending type of coil deformation is not essential in the 

analysis of frictional losses. 

N 
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It should atso be noted that this is the first time an 

equivalent bending stiffness for springs under point toad 

is derived and is shown to be similar to the one given by 

Timoshenko [ 33 for pure bending. 

2.5. TWISTING OF COILS 

Since it is found that the rotation of cci Is in a 

cable is the primary form of energy dissipation; as a first 

step in further analysis, "free" rotation of coils is 

considered. 

The expression for torsional moment at any 

cross-section was found to be 

Mt = .-Pr cosc sin) + P(k'c-h) sin4cosA 

Using equations ( 2.7) fork' and ( 2.2.a) for h, 

(2.32) 

equation ( 2.32) can be reduced to the foLlowing form: 

Mt = -Pr sinA [ cos4 - (-27rN) s1nq ] (2.33) 

and the expression for rotation angle can be found as: 

e 
Of - JMt() di 

(2.34) 
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and in terms of a unit vector: 

and 

d)L 
Mt() = Mt (c) Id/ft (2.35) 

t=rcosi+rsin4j+k'4!z ( 2.36) 

if differentiated, 

d)t =(-r sinc £ + r cos j + r tanA (2.37) 

If equation ( 2.37) is put into equations ( 2.35) and ( 2.34) 

and by using the identity: 

(1+ tan2X ) = 1 
cosA 

the f o L Lowi ng expression for the rotation angLe can be 

obtained: 

2 
= Pr s inX 

Uf 
GJ cosA 

[ cos4 (-2irN) + 27T ] 

or in terms of non-dimensionaL quantities: 

(2.38) 



where 

K = c0s4 (c-27N) + 2irN 

GJ  
K = 2 

Pr tanX 

32 

(2.39.a) 

(2.39.b) 

As can be seen from equation ( 2.39) the dimensionLess 

parameter K is onLy dependent on the maximum number of 

coils and does not depend on Load or any other spring 

parameters. 

Figure ( 2.6) Distribution of InterndL Torque 

Along the Helix. 
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2.6. MEASUREMENT OF FREE ROTATI04S OF A SPRING AT A 

CROSS-SECTION 

After deriving the expressions for free rotation of 

coils of a spring, it became desirable to develop a device 

for measuring the rotation at a x- section in a direct way 

and to coipare the experimentally found values to the 

theoretical ones. 

47rN 

27rN 

1 2 3 n 

Figure ( 2.7) Rotation Angle of Free Coils Along the Helix. 



34 

Such a device ( Figure 3.7) could also he used in later 

stages of the research to measure the actual values of 

rotation under the influence of friction forces. 

Measurements are done at a fixed location for each coil for 

five different loadings. Results are shown below in Table 

(1): 

1.40J 2.40N o.32N 12.76N 19.13N 

Theoretical 0.26 0.45 1.20 2.40 3.55 
1. Coil 

Experimental 0.10 0.40 1.00 2.00 3.00 

Theoretical 0.25 0.43 1.10 2.30 3.41 
2. Coi I 

Experimental 0.10 0.40 1.00 2.10 3.10 

Theoretical 0.20 0.30 0.80 1.70 2.60 
3. Coil 

Experimental 0.20 0.30 0.90 1.80 2.60 

Theoretical 0.10 0.20 0.50 1.10 1.76 
4. Coil 

Experimental 0.00 0.10 0.40 0.90 1.30 

Theoretical 0.00 1.10 0.30 0.60 0.90 
5. Coil 

Experimental 0.00 0.00 0.20 0.LC 0.60 

Theoretical 0.00 0.00 0.00 0.00 0.10 
6. Coil 

Experimental 0.00 0.00 0.00 0.00 0.00 

Table ( I ) Comparison of Theoretical ana Experimental Values 

of Relative Rotation of Coils in d Spring ( microradians). 
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2.7. CONCLUSION 

A simple model consisting of a helical spring wound 

around a cylindrical core is considered in order to analyze 

the principal mode of friction in the cables. The 

expression for the deflected center tine of a helical 

spring subjected to transverse point load is derived and it 

is proved that the equivalent stiffness of a spring in 

shear is equal to that found by Timoshenko £ 30] in bending. 

This is the first time such a result has been presented. 

Theoretically the equation derived for the lateral 

deflection of a spring is compared and found to be in very 

good agreement with the experimental results. 

Then by comparing the expressions for the deflected 

center tines of a helical spring and a beam it is shown 

that the Lateral slippage of coils inside a cable can be 

neglected and the rotation of coils is the primary 

mechanism of slippage and friction losses, Vinogradov and 

Atatekin 1293. 

In the second part, a Rotation Measuring Device ( RMD) 

is developed, manufactured and used to measure the amount 

of rotation, occuring at different cross— sections of a 

helical coil subjected to a transverse point toad. 
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Experimentally measured values of rotation are found to be 

in good agreement with the theoreticat ones. 



CHAPTER THREE 

HYSTERESIS LOOP AT A CROSS—SECTION 

3.1. INTRODUCTION 

By taking a closer took at the expression for torque 

at any cross—section ( equation 2.33), and the rotation 

angle for a free helical spring ( Figure 2.7) it can be seen 

that the expressions for loading and deformation have 

periodic characteristics with varying magnitudes in each 

period. By also considering the simple physical model of a 

helical spring wound around a cylindrical core developed in 

Chapter One, it is easy to see that that simple model can 

be further simplified by isolating a small part of it from 

the rest of the model. Assuming the location and size of 

such "small parts" or " sections" can be found, then the 

internal tosses in a cable can be explained in terms of the 

simplest model shown in Figure ( 3.1), Vinogradov and 

Atatekin 1281. 

Furthermore, since the forces acting are perpendicular 

to the center tine of the helical coil, the physical model 

of Figure ( 3.1), can be shown to be mathematically 

equivalent to the model in Figure ( 3.2). 

37 
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Helical Coil 

Cylindirical Core 

2 

Figure ( 3.1) Basic Physical Mocel. 

Uniformly distributed friction torque per unit length 

is assumed to exist between the coil and the core but if 

the coil doesn't rotates friction torque is assumed to be 

zero. If the expressions for rotation angle versus applied 

internal torque can Le derived for any cross—section within 

the small regionS model considered above, then the total 

loss for the whole cable can be found by simply summing up 

all such losses in each particular region along the cable 

axis, Vinoyradov anci Atatekin [ 28], [ 29]. 



8=0 8=7r/2 

39 

T ext —cxTm cos( (External torque) 

s:=r8/ cosX 

tnf (External friction 

torque per length.) 

Figure ( 3.2) athematically Equivalent Model to 

the Basic Element in Figure ( 3.1). 

Assuming the same deflected centerline, the internal 

torque at any cross—section is the same for a " free" spring 

and for a spring with friction force acting on it. It 

should be emphasized here that there is no doubt that a 

spring with friction will deflect less under the same load 

compared to that of a " free" spring. However, as long as 

the general shape of the deflected center line remains 

similar, internal torque resulting from applied load can be 

assumed to be the same even though the "net" internal 

torque changes dramatically. 
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3.2. TWISTING MODE OF COIL DEFOR'4ATION 

Recalling the expression for twisting torque caused by 

a concentrated load ( equation 2.33) at any cross—section of 

a helical coil: 

Mt = —Pr sinX [ cos + ( 2'rr N - ) sin 1 ] (3.1) 

By neylecting the asymmetry of the torque distribution 

within one coil turns equation ( 3.1) can be simplified as: 

Mt - Pmr sinX { cos + 27r (N - n) sine ] (3.2) 

where 

Psi = rraximurn magnitude of the toad 

c= variable coefficient — 1 . 1 

in order to find the location of small sections where 

slipoage occurs, or in other words, to finc the location of 

points for which external torque is maximum, internal 

torque ( equation 3.2) is equated to zero and solved. 

a Pmr sinA [ cos + 27r(N - n) sin ] = 0 (3.3) 
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4iu tan  
1 

2 lr(N - n) 

which gives the locations of middle points of alt the 

slipping sections for n = 0.5, 1, 1p5p N 

By introducing a new variable: 

- (3.5) 

equation ( 3.2) can be expressed as: 

T = a Tm sin (3.ó.a) 

where 

Tm = Pm r sinA ( sinm - 27r (N - n) cosm ] ( 3 . 6 . b ) 

It is important to keep in mind that the equation 

(3.6) is the expression for internal torque at any 

cross—section of the helical coil due to the applied load 

at the free end. Te corresponding external torque that 

would result in the same internal torque can be found as: 

Text = —C'. Tm cos (3.7) 



42 

Since it has been proved before triat the deflected 

centerlines for a beam and a helical coil are similar, an 

external loading of the kind expressed in equation ( 3.7) 

can be assumed to be acting on any cross—section of the 

coil as a result of the ieflected centerline. 

Here it should be noted that the general fcrm of 

equation ( 3.6) is the same for any rotating section, except 

for tne magnitude of Tm which is dependent on 

Therefore an analysis of half of a section can be applied 

to all the rotating sections later by considering symmetry 

and changing the magnitude of Tm • For the rest of this 

chapter,a section as snown in Figure ( 3.2) will be analyzed 

and the load versus rotation curve will be derived for any 

cross—section within the rotating section boundary. In 

this analysis, loading will be varied in two stages in the 

first stage load increases from zero to maximum 

(0 < a< 1), and in the second stage from maximum to 

negative minimum ( 1 > — 1). A possible third stage is 

merely a repetition of second stage in tne reverse order 

and does not require a seperate analysis. 

3.2.1. STAGE ONE ( O < c1) 

If the slippage of strands is possible, then different 

strands may slip simultaneously and interact wi-th each 
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other. In accordance with the assumption made that contact 

stresses and coefficient of friction remain constant, these 

effects can be neglected as far as the resistance of the 

coil to the twistinc is concerned. The slippage starts if 

a twisting torque overcomes the frictional forces within 

some Length of the coil section being dndlyzed ( see Figure 

3.4). This length in terms of boundaries 0 11' 12 can 

be found from the requirement of section equilibrium: 

where 

T + T m S = 0 (3.8) 

S = r ( 11 - 12 ) / cosX (3.9) 

It follows from the symmetry of loading and geometry that 

equation ( 3.8) can be written as 
11 12 1 9 

or 

- mf r i = 0 (3.10) 

Q sin 1— 3i= 0 ( 3 . 1 1 . a ) 

0 < Q < R M ( 3 . 1 1 . b ) 
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where 

=TM /1 

"Tin'" and " y " defined as 

(3.12) 

Tin = Pm r sinA Tin' (3.13.a) 

Tm = sin* - 2 (N - n) cos* (3.13.b) 

mf 

Pin sinA cOS 

Pm sin 2X 

mf 2 

(3. 14.a ) 

sin  - 27r (N - n) COS4m ] '' 

From equation ( 3.14.b) it can be seen that the 

non—dimensionol load factor "ç" depends on the ratio of 

the applied load and the friction torque ( P/inf ) for a 

particular geometry of the cable and a fixed number of 

strands (N,n ) It is the ratio ( P/mf ) rather than the 

individu1 forces that determines whether or not the coils 

will slip at any stace of loading. There is a limit, 

however, on the maximum value of the applied toad C Pm ) for 

a deflection within the Linear limits. For mf = 0 , coils 
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rotate for any value of P, as = If the value 

of mf is given and fixed then the non— dimensional load 

factor " " changes from zero to umax , as the applied 

toad changes from zero to Pmax 

For any given value of Q , equation ( 3.11) defines 

the boundary of the slipping section " • Furthermore, 

it can be proved that a section starts slipping at = 0 

(Appendix II) when 2 = 1 and continues to slip until 

71/ 2 at Q = 7r/ 2 and after that point, any further 

increase in Q does not cause an increase in as it 

meets the rotation boundary of the next immediate section 

at $ = 7r/2 which has the equal magnitude of torque acting 

on it in the reverse direction. Within the length of one 

coil turn there are two equal slipping sections, having 

opposite sense of twisting in accordance with the 

assumption of torque symmetry. 

The angle of twisting ( slippage) is found by the 

integration of the following differential equation: 

r . dT GJ d20 + mfr2 

satisfying the boundary conditions: 

el = 0 at $ = $i and = 21 = 4 1 

(3-.15 ) 

(3.16) 
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the solution is: 

where 

= ( cos - cosfti ) + - i2 ) 

ril = GJ Oi cos2A / mf r2 

(3.17.a) 

(3.17.h) 

and 7 as defined by equation ( 3.12). It cdn be shown 

that when; 

1. Q= 1 ( Section just starting to rotate,1= 0 ) (3.18.a) 

nl= 0 (3.18.b) 

2. 0 = 7/2 ( Rotation all across the section,1r/2) ( 3.18.c) 

= cos + ( 2 - 'if2 (3.18.d) 
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Figure ( 3.3) Slippage Along the CoilS Section 

During Stage One. 

Figure ( 3.4) Slippage Along the Coil Section 

During Stage Two. 
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and if 

3. Q >, 7/2 (3.13.e) 

= 2 cos + ( 2 - ¶2 

where, to find the maximum slippage, P = 0 can be 

subsituted into equation ( 3.18) which gives: 

'if2 
for : 'ff12 

(3. 13.f ) 

(3.19) 

At the end of t1e first stage a = 1 and depending on 

the cable parameters 0 = S7max and = max where 0 'ff12. 

3.2.2. STAGE TWO ( 1 a —1 ) 

turing this stage the external load decreases and the 

coil twists in an oprosite sense. The boundary of a new 

slipping section •E 1xnax can be found from the 

requirement of equilibrium ( see Figure 3.4). At the end of 

stage one, the torque acting in the cross—section = 2 is 

equal to 
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T1(2) = Tm - mf r 2 / cosX (3.20) 

During the second stage, the decreasing load causes 

the following torque in the cross—section 

T2(2) = c. Tm n2 

2 : 

(3.21) 

Hence the equation of section equilibriums taking into 

account the external friction forces is: 

Ti(2) - T2(2) = mf r 2 / cosA (3.22) 

Using equations ( 3.20), ( 3.21) and ( 3.22), the following 

equation defining the boundary 2 is obtained: 

where 

( cu - c1 ) s:in2 - 22 = 0 

Q (ct=1) = Tm' / y 

(3.23) 

(3.24) 

By using a similar reasoning discussed in Appendix II, 

from equation ( 3.23) it can be found that the coil starts 

slipping in the opposite direction when = cm - 2 

which 2 = 0 . As 0 is decreased further down to 

for 



and for2Qm-2, 2/2 

If ç= —cmax is put 

can be obtained: 
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again. 

into ( 3.23), the following equation 

m stn2 - = 0 (3.25) 

which is similar to the equation ( 3.11) for Q= . By 

compariny these two equations,2max= ftLmax=ftLnl is found. 

It means that the process lis symmetrical. 

The angle of twisting is described by differential 

equdtion ( 3.15) with the friction torque changing sign and 

the new boundary conditions: 

with 

r  dT mfr2 
cosX d cos2X 

02 (c,2) = 01 (1,2) 

02 (c,-2) = 01 (1 ,-132) 

The solution is: 

(3.26) 

(3.27.a) 

( 3 . 2 7 . b ) 
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fl2 = (cos-cos2) + (222_ 2_ftyi2) + u(cos -cosftLm) ( 3.28) 

It can be shown that when 

1. 2 = (end of first stage) 

= 0 fl2 = fl,1max (3.29.a,b) 

2. 0= Om — 2 ( coiLs are just starting to rotate in the 

reverse direction) 

= 0 = fl1max (3. 29 .c ,d) 

3. Q =: n — ir 

7r/2 T•2 = (Qn - ) 2 - m2 ) 

= - max 

= rr/2 fl2 = - qlmax 

- ch cosftin 

The third stage of loading ( —1 < cx. < 1 ) 

is symmetrical to the second stage because 

(3.29.e,f) 

(3.29.g,h) 

cni 
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conditions of equiliriuni remain the same. The difference 

is only in the direction of twisting. 

3.3. HYSTERESIS LOOP AT A CROSS-SECTION 

Derived expressions allow for any given magnitude of 

Load, P ( i.e. 2) to determine the boundaries of slipping 

sections and the angles of slippage. For any cross-section 

of the coil this can be represented in the form of a 

hysteresis loop defining the work lost during one cycle of 

deformation. 

By using equations ( 3.17) and ( 3.28) together with 

(3.18) and (3.29) the hysteresis loop shown in Figure ( 3.5) 

is obtained. 

From Figure ( 3.5) it can be seen that the coil does 

not stdrt rotating until E2 = 1.0 

until m-2 

in the first stage., and 

in the second stage. Distribution of 

rotation angle along the rotating section can he visualized 

as shown in Figure ( 3.3) o, and Figure ( 3.4). 
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3. 4. COOP INpTE TFEtSFORrATION FOR SECOND STAGE 

If the hysteresis loop at a cross-section ( Figure 3.5) 

is carefully analyzed, it can be seen that the similar 

sections of the slippage curves for stages one and two are 

proportional to each other by a factor of two, e.g. A'/A = 

B'IB = C'/C = 2, therefore by using the following 

expressions: 

= - 2* 

fl2 = 1-im - 2n* 

The eutions ( 3.?C) and ( 3.23) can be put into the 

followin3 forms: 

w i t h 

for wh I ch 

ç* ( COS - COS2 ) + 2 22 ) 

2* sin2 - = 0 

0 

(3.30) 

(3.31 ) 

(3 . 32) 

(3.33) 
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A 

A 

B 

1.0 

A At 

(c2m-7r 

Tim 

B 

C, 

Fijure ( 3.5) Iysteresis Loop at a Cross—section. 
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By comparing the equations ( 3.32) and ( 3.33) with 

(3.17.a) and ( 3.11), it can be seen that they are 

identical. It has been proved before that the equations 

for the third stage are identical to the ones for second 

stage with a change in signs of load and displacement. 

Now, the above transformation shows that there is actually 

one set of equations for boundary length and rotation at 

any stage of the hysteresis loop. By using the following 

transformations the amount of slippage and the boundary 

length for the second stage can be found from the 

expressions of the first stage:' 

(3.34) 

ocm 

(3.35) 

for which 

3.5. EXPERIMENTAL RESULTS 

After obtaining excellent results in measuring the 

rotation of helical coils of a " free" spring in Chapter 

Two, it was decided to try and see if the rotational 

slippage of coils of a spring on a cylindrical core can be 



56 

measured too. In order to be able to change the magnitude 

of friction force between the coil and the core, a set up 

as shown in Figure ( 3.6) was used. 

Due to the length of time and cost involved in having 

a custom made spring with a precise internal diameter and 

lead angles a stock auto shock spring was purchased. The 

middle part of the coil which had a reasonably constant 

lead angle ( 9° - 150) was used for experiments. The 

internal diameters however, was found to vary by a large 

amount from one point to another. In order to compensate 

for this, the thinnest available metal sheet that could 

also withstand the internal pressure without buckling was 

chosen. The pressure between the coil and the core, or the 

contact friction forces were controlled by means of a 

hydraulic pump connected to a bicycle inner tube. 

In spite of the flexible thin metal plate used as on 

inner lining, a considerable number of non- touching surface 

sections of coil and core could be observed by the naked 

eye ( Figure 3.7). Measurements were taken only at the 

sections that appeared to have a possible even contact at 

least for the distance between the clipped legs of the 

Rotation Measuring Device ( RMD). 

Also the RMD developed earlier for measuring the 

rotations of a " free" coil was found to be not sensitive 

enough for measuring rotations of a coil under friction 
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0.03" Shiinstock 

End Cap Bicycle Inner Tube Auto Spring '— End Cap 

Fi gure ( 3.6) Experimental Set-up for Core Coil Model. 

Loading. A 20 times more sensitive RMD was designed and 

built by increasing the height of its legs and the length 

of the beam with strain gages. 

Experimentally obtained hysteresis loops are shown in 

Figure ( 3.8). It should be noted that the loops shown are 

obtained by relative displacement of two cross- sections'. 

It can be proved that the shape of a hysteresis loop 

obtained by relative displacement of two cross- sections 

will again be similar to the one shown in Figure ( 3.5). In 

all but one curve shown in Fijure ( 3.8), the cross- sections 

start rotating slightly as soon as the direction of load is 

reversed. This can he attributed to the mechanical 

connection between the beam and the tips of the RMD. As 
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the sensitivity of the RMD was increased by a factor of 20, 

it has also become sensitive to the axial bending due to 

the friction between pointed ends and the beam. 

Figure ( 3.7) Experimental Set-up for Measurements. 
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Figure ( 3.) Hysteresis Loops obtained from Experiments. 
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3.6. CONCLUSION 

Due to periodic symmetry of loading and geometry of 

the helical coil wound around a cylindrical core, it is 

shown that the internal losses in a cable can be analyzed 

in terms of short sections that occur along the cable 

Length. A theoretical model mathematically equivalent to 

the actual physical model is developed. Assuming Coulomb 

Friction, cable slippage and the propagation of a slippage 

boundary is investigated for two stages of loadings. It is 

shown that there is a minimum value of load after which the 

coil section starts slipping. By further noting the 

relationship between the slippage curves for initial and 

subsequent loading, it is demonstrated that the slippage 

curve for the second stage can be derived from the 

expressions for the first stage by means of transformation 

equations ( 3.34) and ( 3.35). 

A second RMD 20 times more sensitive than the one used 

for measuring free rotation of coils, is designed and 

manufactured. Due to inconsistencies in the geometry of 

the spring being measured, only the hysteresis loops 

resulting from the relative slippages of the coils could be 

measured. Not having been able to obtain information on 

the real contact stresses and friction forces, only the 



61 

form of the experimentally obtained hysteresis loops could 

be compared with those of theoretical ones. Keeping in 

mind the shortcomings of the mechanical device used for 

measuring slippage, good qualitative agreement is obtained 

between theoretical and experimental results. 

Before closings it is important to emphasize the 

universality of the hysteresis loop shown in Figure ( 3.5). 

Since it is at a cross—section of a coil section and 

expressed in non— dimensionless quantities, the loop shown 

in Figure ( 1.1) represents the hysteresis at any 

cross—section of any cable with any geometrical parameters 

as tong as the basic structure of tte cable is composed of 

the one or several geometries shown in Figure ( 1.1). 



CHAPTER FOUR 

GENERAL FORMULATION FOR CABLE GEOMETRY 

4.1 INTRODUCTION 

The existence of the relationship between interstrand 

slippage and the change of stiffness of cables has tong 

been recognized in the Literature. It is stated by Ctaren 

and Diana C7J that the experimental tests performed 

previously have shown that the average stiffness of a 

vibrating cable has generally half the value which is 

obtained from calculations made with the assumption that 

the individual wires will not slip and the entire 

cross-section of the cable will act as a unit. 

Calculations made with the assumption that each wire acts 

individually would give stiffness values corresponding to 

1.5-2.0 percent of those obtained with no individual wire 

slippage, that is, of a homogenous beam. It was then 

thought to be preferable by Claren and Diana [ 7] to analyze 

the dynamic strain distribution on taut homogenous beams 

and then investigate experimentally how a real stranded 

cable will differ from the theoretical model and make 

corrections by introducing slippage coefficients. 

62 



63 

In other papers by Wagner and others [6], 1203, [ 193, 

[213, the experimentally obtained toad- deflection curve for 

a cable is considered and it is stated that the 

experimental bending stiffness of a cable is considerably 

less than that obtained by taking the product of Youngs 

Modulus of cable material and the second moment of area of 

cross-section about its neutral axis. The difference is 

attributed to the slip between the strands of the cable. 

In this chapter it is proven that the change in the 

stiffness of the cable can be explained in terms of the 

slipping sections of finite length. After deriving the 

expressions for slippage at any cross-section of a slipping 

section, the next step in understanding the internal 

slippage of cables is to construct a full scale model built 

of small sections described in Chapter Three. As was 

stated earlier, the slippage section is a common property 

of cables and can be found in cables of any geometry and 

any number of strands. Formulation of a full scale model, 

however, by combining such slippage sections, proves to be 

difficult due to the complex geometry of cables with a 

large number of strands. 

As the simplest geometry used in real life, the cable 

shown in Figure ( 1.1) will be used to analyze internal 

slippage. Solutions for cables of more complex geometries 

composed of several combinations of the cable shown in 
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Figure ( 1.1) can be derived by using a somewhat similar 

procedure. 

4.2 GENERAL FORMULATION FOR CABLE GEOMETRY 

The assumption of aligning the x-axis with the central 

axis of the helical coil was made in Chapter Two to 

simplify the resulting equations without any loss in the 

application to general cases. If five more additional 

coils are added to the helical coil and core model of 

Figure ( 2.1) to obtain the basic cable structure shown in 

Figure ( 1.1), the following terminology and numbering 

system is introduced to clearly define any cross-section at 

any point of the cable. 

Individual strand 
in a coil. 

First 
coil 

Figure ( 4.1) Numbering of Strands and Location of 

Reference Axes in a Cable. 
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As seen in Figure ( 4.1), the first strand in the first 

coil starts at = 00 . A clockwise direction is chosen 

for numbering the strands. Positive direction of central 

angle is counter— clockwise. Strands are referred to by 

their strard number and coil number ( e.g. Third strand in 

second coil. etc.). 

The equation defining any strand in a cable with 

number of strands ( in our case K = 6 ) can be written as 

follows: 

i=rcos4L+rsinj+k' q-l-(i_1) 2-ff ] i 

for i1,2,3,   

where k' as before 

and starting points on z = 0 plane can be found from: 

(4.1) 

i=1,2,  K (4.2) 

By taking K= 6 in equations ( 4.1) and ( 4.2) and using 

a.procedure similar to the one used in Section ( 2.2), the 

torsional moment acting at any cross—section of any strand 

can be found from: 
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Nti = - 'Pm r sinA { cosi + [ 2n(N—n) - (i—i) 1  I slnq1 } (4.3) 

Location of te center of the skipping sections can be 

found by: 

which gives: 

with: 

where 

where 

Mti = 0 (4•4) 

qmi tan-l[ 
- 1 2 (N-n) - (i-i) 7r 

Ti ct Tmi sin$ (4.6) 

Tmi Pm r sinA Tm'i (4.7.a) 

(4.5) 

Tm'i = sinmi - [ 27r(N—n) - (i—i) 2  ] cosqmi ( 4.7.b) 

number of coils n = 1,2,   N - 
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i= number of strands in each coil, e.g. 

1=1,2.... . 6. 

4.3 BOUNDARY OF THE SLIPPING SECTIONS 

As mentioned before, the form of the loading function 

on the slipping section ( equation 4.6) does not change with' 

respect to its location. Only the magnitude of the 

constant ( Irni) changes from one strand to another. 

Therefore the expressions derived for the bounddry and the 

amount of slippage ( equations 3.11 and 3.17.a) can be used 

by replacing " Tm'" in those equations by " Tm 'j". 

The expression that gives the boundary for a slipping 

section is: 

2is1n1i_1i=O (4.8) 

where 

ci = a Tm'i/y (4.9) 

mf  

Pm sin?, cos'A 
(4.10) 



A' EM Slipping sections of the cable. 

--Boundary line defining the boundaries of all slipping sections. 

-- Boundary of each slipping section. 

)( Center of each slipping section. 

0' 
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At any stage of loading, the collection of points 

defined by. 4m1 and ii describes the boundary of the 

end points of rotating sections. To better visualize such 

a " boundary of boundaries" a rather schematic 

two-dimensional projection of the cable onto the y- z plane 

is shown in Figure ( 4.2). 

To better understand the picture shown in Figure 

(4.2), it should be noted that the dark shaded area shown 

can be taken as the top view of the coil shown in Figures 

(3.4) and (3.5). As the applied load at the end of the 

cable reaches a critical value, the first coil starts to 

slip at " a" and as the load continues to increase the 

boundary of slippage propagates in the direction of the 

arrows shown and new centers of slippage continue to form 

(e.g. b,c,d,...etc.) 

At a typical cable cross-section AA' as shown in 

Figure ( 4.2), cross- sections of the the strands 1, 2, and 3 

slip, as they are within the boundary line defining the 

boundaries of all slipping sections. 

Section AA' is also shown on the x- y plane in Figure 

(4.3). It can be seen from Figure ( 4.3), that the 

contribution of those three slipping sections to the total 

moment of inertia of the cable is only 3 1w. In the case 

of no slippage, however, contribution from those three 

sections rises to[ 31w + 3TrR2( r2sinZ41+r2sin2q2+r2sin2 3 ) }• 
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Change in the moment of inertia of the cable due to 

slipping strands of each cross-section is found first by 

using a numerical method and then by a simplified method in 

the next section. 

A clos'e examination of Figure ( 4.2) reveals that the 

locations of uniform levels of strains do not exist either 

along a specific strand or on two adjoining strands. This 

finding is supported by the experiments done by Claren and 

Diana [ 7] who report that even with the same static load on 

wires, considerable differences can still be found on 

strain values measured on two different, but closely 

associated wires. It is therefore stated that [ 7J no 

strain measurements made on a single wire can be taken as 

representdtive of te strain level of that paricular 

cross-section of the cable. 

The distance between the boundary of the slipping 

sections and the y and z-axes can be written as follows: 

y(i)/r = sin ( mi + 1i) (4.11) 

z(i)/h [ 2'rrn + ( 1-1) 21 + 4m1 + ] 1 ]/2irN (4.12) 

Since it is also known that all the cables loosen only 

for part of the total length ( i.e. p.4 N ), by examining 
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equation ( 4.5) it can be proven that mi = 0 for the 

slipping part of the cable which is in most cases less than 

30 % of the total length. Also for the same reason, the 

boundary of the slipping section is taken to be symmetrical 

with respect to the z-axis, in spite of the fact that some 

asymmetry will occur due to the helix angle ".X". 

4.4 CHANGE IN MOMENT OF INERTIA 

For easier derivation, a reverse process is developed 

to express the change in the moment of inertia in terms of 

the boundary of the slipping sections. Instead of taking 

"any' cross-section and determining whether or not each 

strand rotates in that cross-section, first a specific 

strand is chosen, the boundary of rotation for that strand 

is found from equation ( 4.12) and then the cross-section of 

the cable at the slippage boundary of that particular 

strand is analyzed. Then a simple test is needed to 

determine whether the rest of the strands at that 

cross-section rotate or not. 

A lengthy 11-59 programme was written following a 

proceJure explained below. For the ease of calculations 

the term " n" is omitted in the following equations and 

instead " i" is used as i = 1,2, 6 N. 
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4.5 ALGORITHM 

1. For each strand, the boundary of slippage is found from 

equation ( 4.8): 

Pi sini - fti = 0 i = 1,2,....6N (4.13) 

2. fti.ifound from the above equation is subsituted into 

equation ( 4.12) to determine the cross-section that wilt be 

an a I y z e d: 

z(i)/h = [ 27m + (i-i) + ji ] / 2rN (4.14) 

3. Orientation of ti- e reference strand ( which has = Oat 

z = 0) is found from: 

= i + ( I - 1 ) E (4.15) 

4. Orientation of the other strands ( at the cross-section 

found in step 2) can be found as: 

= 1 - ( i - 1 ) j = 1,2... . 6 (4.16) 
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5. The orientation of the strand cross-section that 

constitutes the boundary for the slipping strand 

cross- sections at the cross-section of the cable found in 

step 2: 

= mi + i (4.17) 

but 4mi = 0 , therefore cIi = ii (4.18) 

6. Whether or not the rest of the strands slip can be 

determined by the following test ( see Figure 4.3): 

If I SitLj I .LE. I sin1i I then sinj = 0 j = 1...6 ( 4.19) 

For example, in Figure ( 4.3), i = 1 and the 

cross- section at1=11 is considered. Since it is also 

known that the center of the slipping section is Located on 

y = 0, any strand cross-section with a center betweerHj 

and the y = 0 line must be slipping. By considering the 

symmetry of the slipping sections around the y = 0 axis, it 

can be seen that strands 1, 2 and 3 are slipping in Figure 

(4.3). By further considering the opposite side of the 

coil with a reverse sign of torque and angle of slippage, 

it can be concluded that if strand 1 slips at the 

cross-section shown, then all the strands slip. However if 
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Figure ( 4.3) Slippage of Strands at a Cross-section. 

3 was the critically slipping strand, then only strands 3, 

2, 5 and 6 would be slipping. Equation ( 4.19) 

automatically provides the number of strands that slip at 

any cross-section. 

7. Moment of Inertia at any cross-section of the cable can 

be found from: 

I = + [ - + rrR2 ( r sinj )2 ] 
j=1 

(4.20) 
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which can be simplified for r = 2R and Iw= '11R4/4 : 

6 
I/lw = 7 + 16 sin2 j 

j=1 
(4.21) 

It should be noted that in all of the above equations, 

cross- sections of strands on the x- y plane are assumed to 

be perfect circles. Due to the heLix angle "", however, 

cross- sections are slightly elliptical and a more exact 

expression could be written as follows: 

6 
I/lw ( 1 + 6 sinX ) + 16 sinX I sin2 j 

j=1 

(4 . 22) 

For most practical applications, X >80 00 the error 

introduced is less than 2% by using the equation ( 4.21). 

A diagram obtained by using the above explained 

algorithm is shown in Figure ( 4.4). It should be noted 

that owing to the use of load coefficient "a", Figure ( 4.4) 

represents the change in the " I" of a cable with a 

structure as shown in Figure ( 1.1) and of any physical 

dimension. It can be that I/lw = 55 for a non- slipping 

cross-section, and I/lw = 7 for a completely loose 

cross-section, which represents an 87 % reduction in 

rigidity of the cable. 
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Although the algorithm explained above is exact and 

explains the strand slippage in detail, it is not in a 

useful form for a use in later stages of formulation. 

Therefore, an alternative approach will be sought to 

express the change in I in terms of simple expressions. 

It is proven in Chapter 2 that when Q = 1, slippage 

starts and when 0 = ¶12 , the section slips all the way up 

to = ¶12 , to meet the boundary of slippage in the 

opposite direction at the other half of the coil. 

3y introducing " no" which is the value of 2 at the 

first strand of the first coil for any applied l-oad at the 

end of the cable, 2i for any strand can he written as 

follows: 

- co , i 
= Tm  (4.23) 

By taking mi= 0 at the equation ( 4.7.b) and using 

only one counter for strands ( i.e. i) instead of both " n" 

and " i " so that now i = 1,2,  , 6N 

Tm' = 2 7T - ( I - 1 ) (4 .24) 
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To find the specific strand with a Qi 1, equations 

(4.13) and ( 4.14) can be combined to determine the critical 

strand number: 

iA = 6N ( 1 - ) + 1 (4.25) 

It can be reascned that any strand with a strand 

number greater than iA does not contain any slipping 

sections, or in other words, there is no internal slippage 

of the cable after the lAth strand. It should be kept in 

mind that as nii 0, mE centers for all the strands are 

on the x— z plane. Therefore, by defining the i'th strand, 

the intersection of IA'th strand with x— z plane can be 

taken to define the begining of the non—sLip section in the 

cable. Therefore ecuation ( 4.15) can be used to find the 

length of the non— slipping part of the cable as a 

percentage of the Utal Length: 

A ==1— --+-- 
6N -Qo 6N 

(4.26) 

= Percent distance from the fixed end of the cable at 

which slippage in the cable ceases to exist. 
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By using the same reasoning for Qi = 'ff12 the critical 

strand number before which all the strands at any 

cross-section slip can be found as: 

13 6N ( 1 - ) + 1 

or in terms of percent distance: 

B = = 
6N 

Tr + 1 
22o 6N 

(4.27) 

(4.28) 

B = Percent distance from the fixed end of the cable at 

which total slippage at the cross-section ceases to exist. 

The distance from 13 to A is a transition region. At any 

cross-section between 13 and A, only some of the strand 

cross- sections slip. It can be seen from Figure ( 4.4) that 

the transition in the BA region is in terms of rather large 

jumps in a non-linear fashion. Since the length of the 

transition region is rather small ( 10% max.) compared to 

the total length of the cable, the change in " I" will be 

assumed to be Linear. 

When equations ( 4.26) and ( 4.28) are compared with the 

resuLts obtained from the algorithm mentioned before for 

different vaLues of o, excellent agreement is found 
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between equation ( 4.26) and the algorithm. However, the 

'ff12 term in equation ( 4.28) had to be rep'aced empirically 

by 1.22 as the curvature of the coils at = 7T/2 causes very 

little increase in the I as just starts to decrease from 

'iil2 . By a'lso neglecting the term 1/6 N compared to the 

other terms ( 2 % error for N = 6), equations ( 4.26) and 

(4.28) can be rewritten as follows: 

1 . 22 
B = 1   (4.29) 

0 

1 

A= 1 

0 

(4 . 30) 

Therefore, the following expressions can be written 

for different levels of loading () 

1 

No slippage at any cross—section of the cable: 

I / 1w = 55 for 0zh (4.31) 

2 1.22 
0 

Clamped end of the cable starts to slip 

partially. ( No complete slippage) Assuming 

Linear change in " I": 
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I/lw 
60 

A" 

=24 
N=6 
X=850 

I I I  

0.2 0.4 0.6 0.8 1.0 z/h 

Figure 4.4 Change in the Stiffness of aCabe 
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I/Iw = 55 - 48(z—A)/(B—A) 0 ' z Ah 

I/Iw = 55 Ahz - h 

(4.32.a) 

(4.32.b) 

3. 1.22o 

All three ( complete slip, partial slip, complete 

non— slip) regions are present in the cable): 

I/Iw = 7 0-. z B  

I/Iw = 55 - 48(z—A)/(B--A) Bh zZ Ah 

I/Iw = 55 Ahzh 

4.6 BENDING ENERGY STORED IN THE CABLE 

(4.33.a) 

(4.33.b) 

(4.33.c) 

.The expression for bending energy in the most general 

form for the cable shown in Figure ( 4.5) can be written as 

follows: 

X2h Ti 

Wib J 22 f 
22 P2x2  

dx+ f dx 
EIN  EI()  EIR 

0 x1h 

(4 . 34) 
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where 

P = cRi , toad applied at the free end 

IN = 55 Iw 

IR = 7 1w 

I() = 1w [ 55 + 48A'  48x  
(B'—A') - (B'—A') h 

h cPm 

B' 1 _I(x) ' [ . IN 

x1h 

x2h 

x 

Figure ( 4.5) iending Energy Stored in a Cable. 

(4.35) 

If equation ( 4.35)p is subsituted into equation ( 4.34) 

and integrated: 

Wb P2h3 + (1—X9 3) - (x22_x12) - Cl  
- 2EIw 165 21 2 C 
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with 

and If 

where 

  in - C7x2)  
C2 J ( Cl - C2) 

Cl = 273.18 

C2 = 218.18 2o 

1. 0Zf2o.1 x1=x2 =1 

2. 12o.1.22 ' iA'X21 

3.1.22o 

A' = 1/co 

B' = 1.22/no 

(4.36) 

(6.37.a) 

(4. 37.b) 

or a programming trick used should be mentioned here: 

A' = B' always 

(4 . 38) 

(4.39) 

(4.40) 

(4.41) 

(4 . 42) 
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but if A'. GE. l , A' = 1 

if B'.GE.l , B' = 1 

4.7 CONCLUSION 

In this chapter it is shown that the cable internal 

slippage can be explained in terms of local slipping 

sections on each strand. The expressions derived in 

previous chapters are generalized to formulate any slipping 

at any cross—section of any strand. After defining each 

slipping section at their respective places, a macroscopic 

view is employed in an attempt to predict their behaviour 

as a whole. An expression for the boundary of the end 

points of all the slipping sections is derived and the 

concept is explained pictorially. It is shown that if a 

strand slips at any cross—section of the cable, it then 

bends along its own axis rather than the axis of the cable 

which results in considerable reduction in the stiffness of 

the cable. Later, the idea of the boundary of the slipping 

sections is taken one step further to determine the number 

of slipping strands at each cross—section to develop an 

algorithm for finding the " I". 

The algorithm developed however, proves to be clumsy 

for developing an expression for bending energy to be used 

in later chapters. Ey using another approach explained in 

Section 4.4.1, very useful formulas are developed for 
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expressing the boundaries of complete slippage, partial 

slippage and no slippage sections inside the cable. 

In the last part of this chapter, the expression for 

the bending energy stored inside a cable with partially 

rotating coi Is is derived and it is shown to be dependent 

on a single variable, "CO": the Load factor for the first 

strand of the first coil at the fixed end. There is a 

definite relationship between the "co" and the external 

load applied at the end of the cable which will be 

investigated in the next chapter. 
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CHAPTER FIVE 

HYSTERESIS LOOP FOR A CABLE 

5.1 INTRODUCTION 

From the tests made on the deflection of cables [ 20], 

[21], it has been found that a hysteresis loop always 

occurs when a cable is deflected and the load removed. If 

the hysteresis characteristics for cables of commercial 

sizes under various tensions were knowne the maximum 

amplitudes of vibrations could be predicted quite 

accurately [ 20]. A hysteresis Loop test method described 

by Claren and Diana CS] gives the possibility of accurate 

measurements of cable stiffness and of the energy 

dissipated per cycle. 

It is stated by Claren and Diana that although the 

real damping forces are not known and are worth further 

investigation, a mathematical assumption of hysteretic 

damping for bending leads to analytical results 

sufficiently close to reality for practical use. They 

further add that it is necessary in the choice of 

linearized cable stiffnesses and damping coefficients to 

use the values obtained from cable deformation tests that 

86 
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are not too different from those that will occur on the 

real, cables under normal working conditions [ 5]. 

As the Last step in developing the theoretical model 

discussed in previous chapters, it is shown that the 

hysteresis Loop for a cable can be obtained in terms of the 

small, slipping sections along the cable Length. As 

mentioned before, this is the first and only attempt in the 

literature available to explain the mechanics of frictional 

losses in a cable by Vinogradov and Atatekin, [ 283, [ 291. 

By using the expressions developed for the slippage of 

strands in Chapter Three and the expression for the change 

in the stiffness of a cable derived in Chapter Four, the 

deflection curve for the cable of the specific geometry 

shown in Figure (1.1) is found. A hysteresis loop is 

formed by using the deflection curves obtained during 

loading and unloading of the cable. The energy dissipated 

by quasi—statical loading of a cable for different levels 

of maximum load is found, and the results are compared with 

those experimentally determined in the literature. 
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5.2 FIRST STAGE 

As a first stage in an attempt to obtain the 

hysteresis toopp the applied point load at the free end is 

assumed to change from zero to a maximum within the limits 

of small strain assumptions. It is also assumed that when 

the load is zero there is no residual slippage inside the 

cable which is an impossible condition to obtain in real 

life even for the cables just rolled out of the 

manufacturing tine in a factory. Nevertheless, the 

increment work done by quasi— statical loading of such a 

cbte can be written as follows ( Figure 4.5): 

where 

1 AU Pm Ayl = Wb + AVItl+ ATH1 

Pm = maximum value of load applied 

&t Pm = incremental load 

= incremental displacement of tne cable in 

the first st age 

L1.7b1 = incremental bending energy stored in the 

cable 

Wt1 = incremental torsional energy stored in the 

cable 

(5.1) 
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Wfl= incremental friction work done in the 

cab Le by interstrand slippage. 

To find the incremental frictional work, the following 

equation can be used: 

6N Oi(i+&1i) 
mf r 

f •f dO d cos :t=] 
—ii O(i) 

(5.2) 

Remembering the symmetry of the slipping section and 

another set of the slipping sections on the other side of 

the cable, equation ( 5.2) can be put into the following 

form: 

1 6N i 
AWf _ 4mfr  

1 cosX   J  O1(i)] d 
.1= 1 

0 

(5.3) 

The expression for 011(Qi) was found ( equation 3.17) 

to be: 

O1i(2i) = f cos2A [42i (cos11—cosi)— - (ftji2— i2)] 

also, from equation ( 3.12) for 4 = 1 

(5.4) 
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Tm'i  
nh1 = 

I 

by using equations ( 3.13), ( 3.14) and ( 3.7): 

Tmi cosA  
mf = 2mi r 

(5.5) 

(5.6) 

by substituting equation ( 5.6) into ( 5.4), and taking 

ftti(i+ i) , the foLLowing expression can be 

written: 

Oii(i + Lci) - Oii( 2i) = 

Tmi r  (cosi - cos1i) Ani 
GJ cos), 

If equation ( 5.7) is put into equation ( 5.3) ano 

integr at ed: 

Wf1 = 4 mf r3 Pm sinX rm i 
GJ cos2X   ni Tm'i ( sin1i 

1=1 

- ii cosi) 

(5.7) 

(5.8) 
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Which gives the work Lost in friction inside a cable 

during the first stage of Loading. 

The expression for incremental torsional energy can be 

written as: 

LWt1 = 
6N 

2 GJ 
r cosA J I [Ti2 (pi + ci) 

- Ti2 (2i) I d (5.9) 

where the expression for net internal torque " Ti" at any 

cross—section can be found as: 

or 

Ti - - COSA d1i  
ds r d 

Ti(c2i) -  cosX sinai + W 

(5.10) 

(5.11) 

by taking j(1j) = aj(oi + j) and using equation ( 5.6): 
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Ti2 (c2J. + ≤li) - T12 (c2i) = 2 Tmi2 ( Qj sin2 i- i sini mi ) (5.12) 

Again by considering the symmetry of the slipping 

section and another set of slipping sections on the other 

side of the cable, eouation ( 5.12) is put into (5.9) and 

intecirated to obtain the expression for incremental 

torsiondi energy as: 

AWt1 - p2 r3  6N Tmi2 sin2X ç2i  
i: GJ cosA i (2ftji - sin2ftj1) 

1=1 

+ 4 ii cos1i - 4 sin1j I 

by further remembering equation (5.5): 

m,T 

2nii =   

Y 

and equation ( 3.12): 

(5.13) 

(5.14) 

(5.15) 
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or: 

it can be seen that: 

Mi 
- 

mi 

(5.16) 

(5.17) 

Equation ( 5.17) is not dependent on strand number " i" 

and can be taken out of the summation sign in equation 

(5.13). Equation ( 5.13) can be written as follows: 

6N 
ATbrt pm2 r3 )2 Tm'I Sjn2X 

- GJ cosX AQi Pi (2fti 
:1=1 

- sin21i) + cosi - 4 sin1i ) (5.18) 

Incremental bending energy stored in the cable can be 

written by substituting the expression for incremental 
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t.oad: LP = ctPm irto equation ( 4.36), expressing from 

equation ( 5.17) and using h = 2rrN tanX 

LWb1 = p, 2 r3 4P) { 87T3N3tan3X XI  
2EIw cim 165 

+ (1-x93) (x, 2-xi 2) ( X2 - X1 ) 
21 2C2 C2 

C3,2 1 (Cl - C2X2)  
C23 ' (Cl C2x1) ' (5.19) 

where Cl, C2, Xl, X7 are as defined in equations 

(4.37)-(4.42). 

After having oLtained all the energy terms, equations 

(5.19), ( 5.18) and ( 5.3) can be put into ( 5.1) and 

simplifiei by using the following expressions: 

Ary = 
APO 

EIw  
- (1+p) 

(5.20) 

(5.21) 
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to obtdin: 

{ 8ir3N3tan3A i: 21+ (1x73) (, 22 x12) Ayl = ( Mo  r  
EIw 165 21 2 C2 

a ________  in2A  
- C2 2-x1) - in (C1-C2c2) + (i+p) 6N Tm'i2 [ç2i (2j 

(C1-c2x1) cosX 1=1 Ani 

- s1n2811 ) + 4 fti cos1i - 4 sin1i ] 

16 sin2X(1+p )  6NITN Tm'i C - ]• 1 cosftil ) 
+ tc cosX 

with: 

Cl = 273.18 

C2 = 218.18 o 

(5 . 22) 

(5. 23.a) 

( 5 . 2 3 . b ) 
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XI = X = 1 for Oo1 (5.23.c) 

Xi = A' X2 = 1 for 1-2o1.22 ( 5.23.d) 

xi = A' x2 = B' for 1.22o (5.23.e) 

A' = 1/2o (5.23.f) 

B' = 1.22/2o (5.23.g) 

where: 

or: 

QO - cPm irN sin2A  
mf 

(5.24) 

20 = ci SRxn (5.25) 

or by using h = 2irrN tanX , equation ( 5.24) can be written 

as: 

20 = OPm I-i cos2X  
mf r (5 . 26 ) 
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Figure ( 5.1) Theoretically Obtained Deflection Curve 

for a Cable. 
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An algorithm for solving equation ( 5.22) together with 

equations ( 5.23), ( 4.5), ( 4.7.b), ( 4.8) and ( 4.9) is given 

in the Appendix III. A careful examination of equation 

(5.22) shows that dimensionless displacement parameter " Y" 

is a function of " A" and " N". However, solution of 

equation ( 5.22), FiQure ( 5.1), shows no significant 

sensitivity to the maximum number of coils in the cable. 

Also for 10° < A < 60 0 , the deflection curve is 

insensitive to the change in "A" too. For A > 6010 the 

deflection curve ano the amount of maximum deflection 

changes dramaticatty with changes in A. 

5.2.1 SOME PRACTICAL APPLICATIONS 

Since it is difficult to visualize the load- deflection 

curve for a cable in terms of "'Qo" v.s. ( y1mEIw/pm h3 )' 

a practical way of obtaining load- deflection curves in 

terms of Force vs. Displacement will be explained below. 

It is assumed that all the physical characteristics of the 

cable ( i.e. h, r, rw,A , E, 1w, mf) and the maximum value 

of the applied Load ( Pm) is known. Then the maximum load 

coefficient ( cm) can be found as follows: 

Pm h cos2A 
mfr (5.27) 
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For any 0 , from Figure ( 5.1): 

Yi Qm EIw   Pm h3 - 

= c2o 

(5.28) 

Then, load and displacement for that particularQo can be 

found s: 

pm Yl = Cl EIw Om 

P = Pm co 
RM 

(5 . 29) 

(5.30) 

A load-ceftection curve obtained for a specific case 

is shown in Figure (5.2). 

5.3 SECOND STAGE 

In the second stage of loading, applied loac is 

assumed to be changing from maximum to minimum ( i.e. 1 -c 

>, -l). As it has been explained in Section 3.4, by means 

of the transformations: 



100 

Newtons 

3 4 

Displacement 

5 1 2 

Figure ( 5.2) DefleêtiOfl Curve for a Specific Case. 



c2i = c≥mi - 22i* 

fl2i = flmi - 2fli* (5.32) 

the expressions for the slippage anle and the boundary 

Length for the s1ipi.ing section at any strand can be 

expressed as: 

for which: 

= çi* ( cosi - cos1i ) + 4 ( i2 - 1 2 ) (5.33) 

2i* sinli - ii = 0 (5.34) 

0 2mi (5.35 ) 

By comparing the equations ( 5.33), ( 5.34) and ( 5.35) 

to equations ( 3.11.a,b) and ( 3.17), it can be seen that 

they are identical. Since the amount of slippage at any 

cross—section, boundaries of the slipping sections and the 

amount of load- applied have the same range and the same 

minimum and rraximum values, it can be seen that, in terms 

of (*) coordinates, the following expressions can be 

written for the second stage: 
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AWb2* = LWb1 

Wt2* = AWt2 

Wf 2* = AWf2 

(5 . 36) 

(5 . 37) 

(5.38) 

The expression for the second- stage in terms of (*) 

coordinates for the incremental work done by quasi- statical 

loading of a cable can be written as: 

4 & Pm Y2* = Wb2* + Wt2* + Wf2* (5. 39) 

If equations ( 5.36), ( 5.37) and ( 5.38) are put into 

(5.39) and compared with ( 5.1) it can be seen that: 

for: 

Y2* = yl (5.40) 

c70* = co (5.41 ) 

Therefore, by using the transformations ( 5.31) and 

(5.32), the real displacement and Load for the cable in the 

second stage can be found by: 



Y2 = yfli - 2Y2* 
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(5.42) 

(5 . 43) 

Then the same equations and the algorithm developed 

for the first stage of the hysteresis loop can be used to 

find the toad- deflection curve for the second stage. 

Hysteresis toops obtained by using above equations for 

different values of helix angle " A" and maximum toad 

coefficient " 2m " are shown in Figure ( 5.3) and Figure 

(5.4). 
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Figure ( 5.3) Hysteresis Loop for a Cable. 
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2 

Figure ( 5.4) Hysteresis Loop for a Cabe. 



106 

5.4 COMPARISON WITH EXPERIMENTAL RESULTS 

The hysteresis loop obtained from the experiments on a 

steel cable is shown in Figure ( 5.5). In order to compare 

the hysteresis loop of Figure ( 5.5), first, an imaginary 

curve for first stage is drawn on Figure ( 5.5) by making 

use of the experimentally obtained curve for second stage 

(i.e. stiffness of the cable is the same in the beginnings 

of first and second stages as there is no internal slippage 

until 00 = 1). 

It can be found that the at approximately a'7' 0.20,the 

stiffness of the cable starts to changes for which 

then from equation ( 5.26): 

for 

1i mf cPm  
r 

920 = 

(5.44) 

° 1, cz 0.20, P m= 2.55 N, h = 644.5 mm, r = 5.52 

mm, X= 85 0 

0.45 N.mm/mm can be found. 
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Figure ( 5.5) Experimentally Found Hysteresis Loop 

for a CabLe. 
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Then, again from equation ( 5.26) for a = 1 : 

= Pm h cos 2A  

mf r 

c?m = 5.0 

(5 .45) 

is obtained. 

From Figure ( 5.1) for A = 85 and rn 5.0, the maximum 

displacement can be found as: 

or: 

yin Qm EIw -  0.4 
Pm h 

ym = 25 mm 

When compared with: yinexp  = 13 mm ( 92% error ) 

The 92 % error found above can be explained in terms 

of the uneven frictic'n forces a1onj the cable. It has been 

mentioned before that the coils start slipping at the 

clamped end. In theoretical calculations, it is assumed 

that the internal friction force is constant all along the 

cable including the close vicinity of the clamped end. In 

real life, however, clamping increases the magnitude of the 

friction forces inside the cable. Since this increase in 

friction forces is limited to the close vicinity of the 
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clamped end, the length of the slipping section decreases 

and the cable becomes stiffer. 

It can be proven that the discrepancy between the 

theoretical and experimental values of cable stiffness are 

dependent on the magnitude of clamping forces, cable 

geometry and initial friction force between the strands. 

5.5 INTERNAL LOSS IN A CABLE 

Areas of the hysteresis loops shown in Figures ( 5.3) 

and ( 5.4) give the amount of energy dissipated by friction 

forces inside a cable. If the area of each hysteresis loop 

is found and plotted with respect to maximum aisplacement 

obtdined for thdt particular hysteresis loop, then a 

straight line as shon in Figure ( 5.6) is obtained. 

Before discussing the relationship between dissipated 

energy and displacement any further, a quick review of the 

two most common types of damping proves to be useful. 

Coulomb damping is a non-linear damping phenomenon, 

since discontinuities exist in the damping force time 

history when a change in the direction of relative velocity 

occurs, thereby resulting in a non-linear equation of 

mot ion. The Coulomh damping force is of constant magnitude 

and is independent of displacement. In a physicdt sense, 



110 

12 

0.2 0.4 0.6 0.8 

Dissipated Energy Y Pin EIw COAX 
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Figure ( 5.6) Energy Dissipated per Cycle as a Function 

of Maximum Displacement. 
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Coulomb damping is attainable from a relative motion of two 

surfaces arranged to slide one upon the other with a 

constant normal force holding them together, where the 

coefficient of friction between the two surfaces is 

primarily dependent on the nature of the surfaces sliding 

on each other. The energy dissipated per cycle by a 

Coulomb damper experiencing a harmonic relative 

displacement is independent of the frequency of vibration 

amplitude ( 27). 

Hysteretic damping is a linear damping phenomenon for 

which the damping force is proportional to the relative 

displacement across the damper, where the constant of 

proportionality is defined as the hysteretic damping 

coefficient. 

The concept of hysteretic damping was originally 

postulated as a basis for describing the internal damping 

properties of solid materials. From a rigorous 

mathematical point of view, hysteretic damping does not 

represent a physically realizable energy dissipation 

mechanism since the responce may anticipate excitation 

under some circumstances C27J. It is used, however, to 

represent the internal damping characteristics of solid 

materials undergoing harmonic vibrations. In a conceptual 

sense, hysteretic damping is attainable from a viscous 
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The energy dissipated per cycle by a hysteretic damper 

experiencing a harmonic relative displacemepnt is 

independent of the frequency of the vibration but depends 

on the vibration amplitude. 

Remembering the assumption of Coulomb damping for 

inter- strand friction ( Section 3.1), the first cegree curve 

obtdined in Figure ( 5.6) proves that the expressions 

obtained for the slippage of cross- sections and the 

hysteresis loop obtained for a cable are correct as far as 

the assumptions made about the nature of losses in a cable 

are concerned. 

Claren and Diana [5] mentioned that the energy 

dissipated per cycle is not proportional to the square of 

the disptdcenent of the end of th,e cable as it would have 

been in the case of hysteretic damping ( see Figure 5.7), 

nor directly proportional to displacement as it would have 

been in the case of Coulomb damping. The energy dissipated 

lies in between the two theoretical curves as shown in 

Figure ( 5.7). It is also stressed, however, that the 

energy can he dissipated without macroscopic slippage of 

strands, by the deformation of microscopic interstrand 

asperities. 

In another paper by Sturm [ 20], measurements are made 

for the energy dissipated in the steel cable of a 
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0 
1mm. 

Vibration Amplitude 

Figure ( 5.7) Comparison of the Experimental Energy 

Dissipation Curve with the Theoretical Curves. 

Stockbridge damper and the resulting curve is compared with 

a hysteretic damping curve. 

By also noting the obvious discrepancy betteen Sturm's 

experimental Energy loss curve and the theoretical curve y 
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= kX it can be seen that the internal damping of cables 

can be explained in terms of two different mechanisms: 

1 • Coulomb friction between the strands inside a 

cable. 

2. Hysteretic damping resulting from the deformation 

of the individual strands and microscopic interstrand 

asperities. 

0 
0.1 0.2 

Amplitude (inches) 

0.3 

Figure ( 5.8) Loss v.s. Deflection Curve by Sturm E203. 
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Although in most papers published in this.field an 

assumption of hysteretic damping is made [ 20], [ 5], [ 6], 

[7], in a paper by Caroll [ 21] the amount of energy taken 

from the wind by the vibrating cable is measured by means 

of a coil in a magnetic field and it is shown that energy 

taken is proportional to the displacement. 

It can be reasoned that for cables mace from materials 

with compartivety tower values of Young's rodulus, within 

the limit of small strains, the energy spent on deformation 

of strands would be less than the energy spent on the 

Coulombian friction between the strands. 

The non-dimensional term for the dissipated energy 'j' 

can be written as follows: 

= y1 Qm (5.45) 

where: 

Ym = non- dimensional displacement(Ymax) 

Ym = yin EIw cos 2X  
mf h2 r 

OM = non-dimensional load 

(5 .46) 



= Pm h cos2X 
mf r 

by putting equations ( 5.47) and ( 5.46) into equation 

(5.45) : 

- ym Pm EIw cos4X 
11  m1 2 r2 h 

together with equation ( 2.2.a): 
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(5.47) 

(5.48) 

h = 2irrN tanA (5.49) 

- ym Pm EIw .Ir2N2 sin22X  
mf 2 h 

(5 • 50) 

It can be seen from equation ( 5.50) that energy 

dissipated increases with an increase in " ym", " Pm", " EIw" 

and " N". However, as " h" is increased, everything else 

being kept the same dissipated energy decreases as for a 

constant number of turns "A" changes, coils become flatter 

and the torsional moment at any cross—section decreases. 

If equation ( 5.50) is written as: 

(5.51) 
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and differentiated: 

AY = -2 C 1 Lmf 
Mf 

(5.52) 

Which shows that with an increase in the interstrand 

friction torque, the amount of dissipated energy decreases, 

as the coils slip less and the cable Jeflects less ( for 

constant applied force Pm). This change in the energy lost 

is greater at smaller values of friction. 

As was shown before in equation ( 2.30): 

Pm h3 
ym a Mw 

If equation ( 5.53) is put into equation ( 5.50): 

J! a Pm ) 2 N2 sin22 
Mf 

(5.53) 

(5. 54 ) 

Which shows that it is tne ratio ( Prn/mf), rather than 

Pm, or rnf that is irr.portant in analyzing the internal 

tosses in the cable. Again from equation(5.54), it can be 

seen that the energy lost is a maximum for x = 450 
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5.6 CONCLUSION 

In this chapter, expressions for the internal energy 

stored in the cable and the friction work done are written 

for to stages of loading at the free end of the cable. 

Equations derived for the slippage of strands in Chapter 

Three are used to ottain the internal energy stored in the 

rotation of the strands and the friction work lost by the 

slippage. A quasi— statical approach is used and the 

external load is applied in small increments. The 

resulting bending energy is obtained from the equations 

developed in Chapter Four and it is shown that the 

deflection curve for a cable, in terms of non— dimensional 

quantities, is very sensitive to the changes in the helix 

for 6C 0. 

In section 5.3 it is shown that by using a certain 

transformation tte deflection curve for the' second stage of 

loading of a cable can be derived from that of the first 

stage by combining the first and second stage of loading, 

knowing that the third stage is a symmetry of the second 

stage. Hysteresis Loops for various values of toad factor 

(ç) and ( A) are obtained and shown in Figures ( 5.3) and 

(5.4). By plotting the areas of hysteresis loops ( energy 

Lost) versus displacement it is shown that the 
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non— dimensional energy lost " Tj" is proportional to 

non—dimensional maximum displacement " Yrn", as could be 

predicted from the assumption of Coulomb friction between 

the stranJs inside a cable. 

Theoretically found lost energy versus displacement 

curve is compared with those found in the literature and it 

is shown that the slippage mechanism developed in this 

thesis dccounts for one of the two ways a deflected cable 

loses internal energy. Therefore the first degree lost 

energy versus displacement curve shown in Figure ( 5.6) 

constitutes a limiting case for the actual lost energy 

versus displacement curves obtained from the experiments 

(Figure 5.7). 

Hysteretic damping resulting from the deformation of 

the individual strands and microscopic asoerities is the 

other way cables lose internal energy. In many 

publications [ 53, [ 6], [ 73, [ 203, [ 213, the actual 

behaviour is shown to be somewhere between ( Figure 5,7) the 

two extremes mentioned above. 

In almost all the publications, however, hysteretic 

damping is assumed to explain the losses inside the cables, 

and loosening and slippage of strands treated as something 

that dffects the stiffness of the cable in an unknown way 

[53. 
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In this chapter, the contribution of strand Slippage 

to the internal toss of a cable is investigated and it is 

shown that an increase in the ratio ( Pm I mf) and total 

number of coils ( N) increases the energy lost which is also 

a maximum for a 450 helix angle. 



CHAPTER SIX 

GENERAL DISCUSSIONS AND CONCLUSIONS 

In this thesis a simple three dimensional model for 

the cable is developed to explain the internal losses in 

the cables. As the simplest model that as all the 

characteristics of the actual cable structure, a helical 

spring wound around a cylindrical core is considered 

(Figure 2.1). 

Out of the two possible ways of slippage between the 

coil ( spring) and the core ( i.e. rotation and 

translation), in Chapter Two, it is shown that the 

deflected centerlines for the coil and the core coincide 

which rules out the possibility of interstrand translation 

as a major form of slippage, Vinogradov and Atatekin C29J, 

C28J. Having decided that the rotation of coils is the 

principal form of energydissipation, the existence and 

significance of such rotations were measured by means of a 

Rotation Measuring Device ( RMD) on a " free" helical coil 

that had no internal core. Experimentally measured values 

of rotations were then compared and found to be in good 

agreement with the theoretical results. ( Table 1). 

Noting the periodic nature of twisting moment and 

rotation angle at any cross—section and of the coil 

121 
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structure, a section of the coil core model is isolated 

from the rest of the model to be analyzed separately in 

Chapter Three. A mathematically equivalent physical model 

as shown in Figure ( 3.2) is used to explain the losses 

inside the cables in terms of small slipping sections along 

the coil length, Vinogradov and Atatekin [ 28). 

Uniformly distributed friction torque is assumed to 

exist between the coil and the core, but if the coil does 

not rotate, friction torque is assumed to be zero. The 

applied load changes from zero to a maximum in the first 

stage and from a maximum to a minimum in the second stage. 

It is shown that the slippage starts as the internal 

twisting moment gets bigger than the friction torque at 

some cross—section (qj) and propagates in either direction 

on the coil# thereby forming a slipping section of finite 

length. Due to the change in the sign of the twisting 

moment the maximum length of such slipping sections are 

found to be half the length of a coil. In Chapter Three, 

also the expressions for the location of the center of such 

slipping sections, the distribution of slippage and the 

propagation of boundary length are given for stages one and 

two, and the expressions for stage three are shown to be 

identical to the ones for stage two with a reversal of 

signs. 
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With the help of a set of transformation equations 

(3.34) and ( 3.35), it is also shown that the amount and the 

boundary of slippages for stage two can be found from those 

of the first stage. The hysteresis loop obtained in terms 

of the nondimensional toad factor , 7) and the slippage 

term ( y ), (Figure 3.3) is valid for any cross-section of 

any strand of any cable made of any number of strands. 

By designing a 20 times more sensitive Rotation 

Measuring Device, measurements were done at different 

cross- sections of an auto shock spring with a bicycle inner 

tube connected to a hydraulic pump to change the pressure 

and therefore the friction torque on the coils. 

Exp,erimentatty drawn hysteresis Loops are found to be 

qualitatively the same as the theoretical one of Figure 

(3.3). 

Having obtained the basic relationships between the 

twisting torque and the stippage at a small section in 

Chapter Three, the next step is to find the response of all 

such slipping sections as a whole and to obtain a general 

way of describing those sections in a cable with six 

strands wound around a central core. In Chapter Four, 

boundaries of the slipping sections expressed in local 

coordinates are transformed and expressed in terms of the 

global coordinates of the cable. Using the expression 

found for the boundary of all sucti slipping sections, the 
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number of slipping strand cross— sections are determined at 

each cross—section, to develop a model for the " loosening" 

of the cable under the applied toad. 

By introducing a critical load factor ( 2o), which is 

the value of 0 at the first strand of the first coil for 

any applied load at the end of the cable, it is shown that 

for 1, there is no slippage at any cross—section of 

the cable and I/lw = 55 for 0 z h • For 1 . 

the clamped end of the cable starts to slip partially 

without any complete slippage and the boundary of partial 

slippage " A" can be -founJ from A = 1 - 1/2o . For 92o >,-

1.22, all three sections of complete slippage partial 

slippage and complete non— slippage can be found inside a 

cable and the boundary of complete slippage " B" can be 

found from the expression B = 1 - 1.22 / O • I/lw = 7 for 

a completely slipping part of the cable and the expression 

for a partially slipping section is given by equation 

(4 . 33 • b) 

In Chapter Five, the incremental work done on a cable 

. by quasi— statical loading is found by using the expressions 

for incremental bending and torsional energies stored in 

the cable and incremental friction work lost by strand 

slippage. Once again the toad is applied in two stages; 

and the expressions found in Chapter Three for the amount 
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and the bouncary of the slippage, are used in developing 

the incremental torsional energy and the friction work 

equations of Chapter Five. The incremental bending energy 

term is obtained by making use of the expressions developed 

in Chapter Four to describe slippage along the coil. 

Solving the resulting equ3tion numerically, hysteresis 

loops for cables with different values of heLix angle ( A), 

maximum load factor ( Qm ) and total number of coils ( N) are 

obtained. It is shown that in term of non—cimensional 

variables, the maximum displacement does not depend on " N" 

but is greatly affected by the changes in "A" especially 

for A>,aO ° . 

The hysteresis loop found from the tests conducted on 

a steel cable of commercial size is compared with the 

theoretical one and found to be in good qualitative 

agreement. From a comparison of experimentally and 

theoretically obtained hysteresis loops, it is found that 

the clarnoing forces change the magnitude of the friction 

forces in their immediate vicinity, which also happens to 

be the most critical section of the cable. 

A consideration of the clamped end of the cable with 

modified friction forces and more exact boundariesof 

slippage should be useful to obtain a more exact deflection 

curve for cables. 
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As a further step in analysis, areas of hysteresis 

loops for various values of " gm" and " A "were found and 

plotted with respect to maximum displacement " Yin" ( Figure 

27). In accordance with the earlier assumption of Coulomb 

Friction between the strands, a straight line relationship 

is found between the energy dissipated ('I') and the maximum 

displacement. When compared with those of experimentally 

found curves in the literature [ 5], [ 6], [ 73, [ 20], [ 21], 

it can be seen that the energy dissipatea versus 

displacement curve found in Chapter Five represents an 

extreme case of dissipation of internal energy solely by 

interstrand friction. The real behaviour of the cable, 

however, is cne of a comoination of interstrand friction 

and the deformation of the individual strands and 

microscopic interstrand asperities as clearly demonstrated 

by Claren anc Diana [ 5] in Figure ( 5.7). 

In a later part of Chapter Five, at Least for the 

Coulonbian part of the energy dissipation, it is shown that 

the energy dissipated is proportional to the square of the 

number of coils ( i.e. Length) and the ratio ( Pm / mf). 

Energy dissipated is also shown to be maximum for A = 45 

and decreases with an increase in  

Duriny the experimentsr due to stock parts ( i.e. 

cable, autospriny) displaying great inconsistencies in 

geometrical dimensions, it was with great difficulty that 
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consistent and reliable data could be obtdined. Especially 

the assumption of uniform friction torque between the 

strands proved to be the most difficult to realize under 

laboratory conditions. Constrained bytime anc money, 

little could be done to improve the experimental set-ups to 

obtain better results. 

It is the author's suggestion that before pursuing any 

more serious theoretical work in this area, experiments 

described in Chapter Three should be repeated with a custom 

made spring made to very tight tolerances and a new 

Rotation Measuring Device using the principle of two 

polarized planes and a tight source instead of mechanical 

contacts. Also, an automatic loading device instead of a 

manual one as used by the author could prove to be useful 

in loading for 1000-2000 cycles to obtain more uniform 

friction forces before making any measurements. 
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AP PEN DIX I 

EXPRE SSI ON FOR LATERAL DEFLECTION OF A SPRING 

In a book Ly Andreeva C16J the vertical deflection 

of a spring subjected to a concentrated load is given 

as: 

Ph3 + Ph 

3Ab As y -  

where for round wire springs: 

Ab h Ed4 cosA  
32 D i (2 + P cos A ) 

bEd4  1  
¶2 5 

As = 8—D-  1 + ¶ tan2X + p ( + ) sinX 

where 

= Diameter of the wire spring is made of 

D = Diameter of the spring coils 

i = Number of coils 
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APPENDIX II 

DOU4DARIES 01 THE SLIPPING SECTION 

Remembering the equation ( 3.11) that jives the 

boundary of the slipping: 

sin1— L= 0  

Solution of equation ( 11.1) can be found as the 

intersection of two functions: 

f  = 

f2 = 1 / 

(11.2) 

(11.3) 

from which it cn be seen that the aoove two curves 

intersect at the origin for any value of U and 13j 0 is one 

of the roots of the equation ( 11.1). 

However, = ftj_ ic intersects the sin1 curve at 

another point of if 

Ii < 4i 
di d 1 

iU 

(11.4) 
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which gives 

(11.5) 

as a condition for the start of slippage at the m 

Since it is also known that at the enc of the slipping 

section1T/2 , the slope of the 1inef2 , for a case of 

total slippage can Le written as: 

from which 

df7 - 

di IF 

71 

2 

(11.6) 

(11.7) 

is obtained. 

Therefore it is proven that the coils start to slip at 

2= 1 for which j= 0, a, -o forc - 1 , and 1 = 71/2 for 

2 due to the symmetry of Load in. and geometry. After ç 

=71/2 , any further increase in does not cause an increase 

in as it meets the rotation boundary of the next 

immediate section at = 71/2 which has an equal magnitude of 

torque act ing on it in the reverse direction. 
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APPEdDIX III 

ALGORITHM FOR SOLVIIG EQUATION 5.22 

no = 0 

 ' i = 1, 6N 

ini = tan1[ - 2irN - (i-1)ir/3 

Tm'i = sinmi - [ 2irN  

pi = no Tm'i / 2'iiN 

= M Tm'i I 2irN 

ca sin1i - = 0 

'j'2 stn2x  

AQi 
Tm'i ( sinfti - O1j ) = SUN118 

CONTINUE 

cosmi 

= SUN 17 

Cl = 273.18 C2 = 218.18 no 

i1/O IF,i> 1,X1l 

X2 = 1.22 /no IF ' 2 > 1 ' 2 = 1 

1n y EIw  
= = c2o { 8ir3N3tanA [  + (1-x 3) (x,-x, 2)  

Pm ri 165 21 2C2 

- (x2-1) - .c4 (Cl-c2) + (1+.i) 6N Tm'i2 sin2A [c21 (21i 
(CiC2i) cosX 1=1 mi 

- sin2ii ) + 4 1i cosfti - 4 sini I 

16 sin2A(1+) N 6N ( s$i - i cosi ) 
+ An  cosX 

i=l 

Yl = Yl + AY, PRINT 

E-20 = no + M2o PRINT 

CONTINUE 
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APPENDIX IV 

EXPERIMENTAL SET-UP AND METHODS 

In the first exreriment ( Figure 2.5) to measure the 

defLection of a free spring, a commercial auto spring with 

h = 645 mm, r = 1.86 mm, I' = 85 0 and E = 2 x 10 14/mm Z was 

used. In order to realize the theoretically assumed 

clamped end condition, one end of the spring was clamped 

between the two U- beams. The deflection of the free end 

was measured by means of a vernier scale. 

Fiqure ( IV.1) Experimental Set-up. 



136 

In the second set of experiments to measure the 

rotation of free coils of the same spring,, a mechanical 

Rotation Pleasuring Device ( RMD) ( Figure 3.7) was used. 

With the help of the strain gages attached on the two faces 

of a tiny beam clamped on one of the legs of the RMD, 

relative rotation of coils is measured in terms of the 

strain levels and recorded on a chart recorder. The spring 

was again clamped between two U— beams vertica'ly on a rigid 

tatform ( Figure IV.1) and loading was slowly applied in 

small increments. 


