1. Introduction

Programming by example (pbe) is the inference of programs from samples of their
behavior. Rather than have users program a task, they need only specify examples of
how to perform it, from which a program is synthesized that accomplishes the task
itself. Pbe schemes have been proposed for office information systems (e.g. Halbert,
1984; MacDonald & Witten, 1987), operating system interaction (e.g. Waterman et al.,
1986), robot programming (e.g. Andreae, 1984; Heise & MacDonald, 1989), graphical
editing (e.g. Myers, 1988; Maulsby et al., 1989), and text editing (Mo & Witten, 1990;
Nix, 1984).

The dominant paradigm in pbe is the procedural approach, where a sequential
trace of user actions is generalized into an explicitly procedural representation. One
alternative is the transformational method espoused by Nix (1984), where sequential
information in the user’s trace is ignored and a functional mapping is sought between
input and output. Another is a knowledge-intensive approach where domain knowledge
and plan inference techniques combine to infer the user’s goals so that they can be
accomplished automatically.

In this paper we address the question of evaluating alternative procedural
descriptions of a sequential trace of user actions. Moreover, we are concerned with the
case in which the procedure is developed incrementally, on the fly, rather than being
inferred from a completed action trace, Experiments have shown that this incremental
strategy helps to reduce noise and free variation in user action sequences that would
otherwise confound attempts to infer an underlying procedure (Maulsby ef al., 1990).
By working incrementally the system is able to suggest actions at the earliest possible
opportunity, which has the triple effect of helping the user early on, reducing user
errors, and encouraging consistency in situations that admit several acceptable variants

of an action sequence—thereby reducing the complexity of induction.



We work with procedures that are incompletely specified so that, in effect, some
actions are non-deterministic. In practice non-determinism will be resolved by the user:
the pbe system will suggest the most likely action and the user will either accept it, ask
for an alternative, or enter the correct action. While the aim of pbe is to infer a
completely specified deterministic procedure that predicts all actions uniquely and
correctly, it is necessary to work with nondeterministic procedures for two reasons.
First, the information needed to disambiguate alternative courses of action may simply
not be available to the program—for example, it might depend on unexpressed goals of
the user or on unpredictable real-world events. Second, even if the critical information
is available, in the early stages of operation the system will not have had enough
experience to sift it from the mass of potentially relevant facts, yet still may be able to

offer predictions that are useful even though not always correct.

2. Goal

In this paper it is assumed that procedures are represented as finite-state automata. The
pbe system operates in a continual cycle as follows:

» predict the next user action, if possible;

» receive the next user action, whether in the form of an accepted prediction or as

anew action constructed by the user;

+ update the model of the program to reflect that action, if necessary.
Although not explicitly mentioned, we take it for granted that each of these steps will be
conditioned on the current application-specific state or “situation,” as provided by the
system in which programming-by-example takes place.

In the case where the program does not predict the correct action, the third step
will modify its structure to accommodate that action in future. In general, there will be

several plausible ways in which it can be modified, none of which can be immediately



determined to be superior to the others. This leads to the strategy of maintaining a set of
plausible models, and elaborating the third step above to:

» modify each member of the plausible model set to reflect that action, if

necessary;

» select that model currently judged best, as the basis for the next prediction.

It is likely that the modify operation adds new members to the model set—indeed, each
member may spawn several offspring. The model set must then be continually pruned
to prevent exponential growth.

The goal of this research is to devise a rational method for selecting the “best”
model from a set of candidates. This will be used for prediction as dictated by the final
step above, and perhaps also for pruning the model set to implement a beam-search
exploration of the space of possible models.

We are not concerned here with the question of how to modify individual models
to conform to a new, unpredicted, action. While this operation forms an essential part
of the incremental pbe methodology, in our experience it is very easy to come up with
plausible heuristics for modifying models. We have experimented with many different
heuristics, ranging from context-based ones where each action is predicted on the basis
of a small number of predecessors, to programming ones that force models to conform
to accepted programming practice—for instance, no branching out of loops.

It seems unlikely that there exists a single, “best,” approach to model formation
and modification. Some problems lend themselves naturally to a production-system-
style model as a set of quasi-independent situation-action “rules.” Others are strictly
sequential and are best implemented as a state machine. The notion of “state” may need
to be abstracted from the sequence of actions and/or situations. Creating suitable
models is an interesting problem, but, for general pbe, will almost certainly remain one

for which no optimal solution exists.



In summary, a generate-and-test approach to model formation seems appropriate.

This paper addresses the testing part.

3. Examples

Some specific illustrations of the problem will prove helpful. To help focus on the
question of model evaluation, the examples are presented as sequence-identification
problems. They are nevertheless representative of actual pbe problems, and to add
verisimilitude the final example is taken from a real pbe system which can be seen in the

accompanying videotape.

EXAMPLE 1. Figure 1 shows two alternative models for sequences that contain an a,
two b’s, one c, and one or more d’s, i.e. (abbcdts)t. The symbol » is used as a
terminator, and superscript + means repetition one or more times. The question is,
when is it rational for the system to prefer the second model, that encodes the
information that exactly two b’s appear, to the first, that treats consecutive b’s the same
as consecutive d’s? Presumably not after Sequence 1 of Figure 1, but perhaps after

Sequence 2.

EXAMPLE 2. Figure 2 shows another problem with two competing models, one of
which captures the “true” structure of the sequence while the other does not. How long
must the sequence run before the second model, larger but more accurate, is preferred

to the first?

EXAMPLE 3. Figure 3 shows a sequence that, at first sight, looks like random coin-
tosses. (It is taken from an anecdote of Andreae’s, 1977, about a rigged penny-tossing
machine.) Closer examination shows some deterministic structure—when taken in
threes (starting after the second H of the sequence shown), the third member of each

triple is a copy of its predecessor. The random model can be expressed as a 2-state



automaton, while the “true” one below is much more complex, requiring 6 states. How
much of the sequence must be seen before the larger model is preferred? Another large
model that partially captures the structure is shown on the right: should this ever be the

preferred model?

EXAMPLE 4. Figure 4a shows a program formed by the Metamouse system for pbe in a
graphical environment, taken from Maulsby et al. (1990). In fact, the system has been
taught to align and sort a set of boxes, and the actions do accomplish this task.
However, the program is not completely autonomous, since it requires prodding from
the user at one point; a more accurate program is shown in Figure 4c. (The reader is
referred to the videotape for a graphic demonstration of the problem.) Our question is,
how many repetitions of the procedure are required before the larger but more

predictive model is preferred?

4. Proposed evaluation measure

We seek a suitable metric for evaluating a candidate model with respect to a given
sequence. The measure we propose is
+ the number of bits needed to transmit both sequence and model using a coding
scheme capable of economically transmitting any sequence and model of it.

This is a form of the “minimum description length” principle proposed by Rissanen
(1985) and applied by a number of authors to machine learning problems. However, it
is by no means a routine application of this principle, because, as we shall see, coding
the sequence and model is best done using a novel incremental coding technique. The
actual coding method is necessarily a heuristic one—the question of optimal coding of a
sequence into a minimum number of bits is well known to be undecidable (Chaitin,
1974).

The central hypothesis of the paper is that



» this measure corresponds with intuition about when it is worth using a more
complex model to describe a sequence.
In other words, when does the evidence from the sequence “justify” a larger model?
For example, in Figure 1 the first sequence certainly does not justify preferring the
second model to the first, while the second probably does. This process of induction is
an intuitive one and a good metric will agree with our own judgement.

We now define a particular coding scheme capable of economically transmitting
any sequence along with a model of that sequence. This is done in several steps,
illustrated in Figure 5. First, we dispense with the tedious and irrelevant business of
actually producing a bit-string that represents the result of coding and replace it with an
entropy measure that gives the size of the resulting bit-string without actually producing
it. Second, the entropy of a sequence with respect to a given probabilistic model is
defined. Third, this definition is extended to models in which the probabilities are not
specified, by associating counts derived from the sequence itself with the model’s
transitions. Fourth, it is shown how entropy can be decreased by manipulating the
counts as the sequence is processed. Fifth, it is shown how almost the same result can
be obtained without transmitting the counts at all. Finally, this method of “adaptive

transmission” is extended to transmit the model structure as well.

DISPENSING WITH THE CODING OPERATION. There is no need to perform the coding
operation because it is known how to code a symbol whose probability is known to be
p in-logp bits. The method of “arithmetic coding” has the property that
* it is able to code a symbol with probability p in a number of bits arbitrarily close
to -logp;
» the symbol probabilities may be different at each step.
(See Witten et al., 1987, for further discussion, and an implementation.) Consequently

we need only discuss coding schemes in terms of their entropy. If a sequence of



symbols a1a; ... a, can be predicted with probabilities p1, py, ..., pp, then the entropy

of the sequence is

n
,21—108171' bits.
=

ENTROPY W.R.T. A PROBABILISTIC MODEL. Given a sequence of symbols and an
automaton that represents it and has probabilities attached to the transitions, the entropy
of the sequence with respect to the model is defined in the usual way:

2—cijlogp;; bits,
where ¢;; is the number of times that transition ij is traversed, pij is the probability
attached to it, and the summation is over all transitions in the model. It is assumed that
the model is one that “accepts” the sequence, in the sense that appropriate transitions
exist for it to be possible to trace the sequence through the model, and that it is
unambiguous, in the sense that transitions out of a state always lead to states with
different labels. Figure 5a shows such a model for the example sequence, and the
counts derived from it; the entropy of the sequence with respect to the probabilistic
model is 6.83 bits.

One could imagine first transmitting a probabilistic model of a sequence, then
sending the sequence with respect to it. However, this is infeasible because
probabilities are, in general, fractional numbers that take a good deal of space to encode

to any reasonable accuracy.

SELF-ENTROPY W.R.T. A NON-DETERMINISTIC MODEL. A non-deterministic model of
a sequence is a probabilistic model which has no probabilities assigned to the
transitions, like that of Figure 5b. Given a sequence of symbols and a non-deterministic
model of it, the entropy of the sequence with respect to the model is defined by
counting the number of times each transition is traversed when the sequence is passed

through the model and then forming probabilities from these counts. The self-entropy is



Ylciloge; - Zc,} loge;j] bits, where c;= Zc,-j.
i J J
This is obtained by simply replacing p;; in the previous expression by the empirically
observed frequency cyj/c;. It can easily be shown that these particular values of pij will
minimize the entropy. For example, the non-deterministic model of Figure 5b gives a
self-entropy of 6.75 bits.

It would be feasible to transmit (a) a non-deterministic model of a sequence, then
(b) the count associated with each transition, then (c) the sequence with respect to the
model. One simple way of transmitting the model is to specify, for each of z states, the
destinations of the g transitions that could emanate from that state, where q is the size of
the alphabet used. This requires glogn bits per state, or nqlogn bits in total. For the
example model this amounts to 24 bits.

To transmit the counts, note that for an N-symbol sequence and a model with r
transitions, there are NC, ways of assigning counts to transitions, and so if nothing is
known a priori about the distribution of counts, transmitting them will consume

(N+r-1)! .
N—!(m bits.

log
This amounts to 10.97 bits in the example. In fact, as N and r grow one can show that
this enumerative method is (asymptotically) no better than transmitting each count Cij
individually, which can be done (asymptotically) in logc;; bits.

However, given the model and counts, a more economical coding of the sequence

is possible.

SELF-ENTROPY WITH DECREASING COUNTS. Given transition counts that are known to
correspond to a particular sequence, the count on a transition should be decremented
each time it is taken. For example, if a particular state has two exits, taken 2 times and 6
times respectively for a particular sequence, then the probability is 1/4 that the first exit

will be taken. Once it has been taken, however, the probability should drop to 1/7 since



it will be taken just once more (and the state will be visited 7 times more). The last time
the state is visited, the exits will have counts of 0 and 1 (or vice versa), and it will be
known which will be taken. Figure 5c shows the calculation for the example sequence,
based on the non-deterministic model of Figure 5b.

This is a better way to use the counts than the previous one. However, both

methods share the problem that both model and counts must be transmitted.

SELF-ENTROPY WITH INCREASING COUNTS. It is possible to avoid transmitting the
counts explicitly. Clearly the entropy value will be the same whether the counts begin at
their maximum value and decrease to zero, or begin at zero and increase to their
maximum value. But in the latter case they need not be transmitted at all (except,
perhaps, the total, to terminate the sequence)! There is a catch, however. When they are
zero the model can make no predictions, and hence the sequence cannot be transmitted.
An obvious solution is to start all counts at 1 rather than 0. Coding performance on the
sequence itself is reduced, since the probabilities are less accurate, but this is more than
outweighed by the fact that the counts need not be transmitted. Figure 5d shows the
calculation, again based on the model of Figure 5b.

There is no theoretical justification for starting the counts at 1, rather than, say,
2—or even 1.5. This is a variant on the so-called “zero-frequency problem” that, in the
absence of any information, there can be no rationale for probability estimation (see
Witten & Bell, in press, for a fuller discussion). In practice, coding is relatively
insensitive to the particular solution that is chosen.

In fact, when we come to adaptive transmission of the model structure, it will be
beneficial to use a different solution to the zero-frequency problem. Call transitions that
have not yet occurred “novel,” and for each state record the frequency of novel
events—the number of transitions emanating from the state—and the frequency of non-

novel events—the total count on the transitions. This provides a basis for estimating the
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probability that the next event will be novel, called the “escape probability.” If it is
novel, a different mechanism must be used to specify which of the zero-frequency

transitions has occurred.

ADAPTIVE TRANSMISSION OF THE MODEL STRUCTURE. So far it has been assumed
that the model structure is transmitted in advance. However, the way is now paved for
incremental transmission of structure as well as counts.

At each stage, a symbol will either

* cause an existing transition to be followed out of the current state;

* cause a new transition to be created to an existing state;

* cause a new state to be created, with a transition to it.

In the first case, the coding probability is c¢;/(c;+1) to transmit the fact that the jth
transition occurred. In the second case, an escape code is generated with probability
1/(ci+1), the fact that an existing state is used is transmitted in 1 bit, and the identity of
that state is transmitted in logn bits where n is the current number of states in the model.
In the third case, the escape is generated as before; a code indicating new-state is
transmitted in 1 bit, and the symbol associated with the new state is transmitted in loggq
bits where, as before, g is the size of the alphabet used.

This is the coding method used; its operation on the example sequence is
illustrated in Figure 6. The result is that the sequence and model are coded together in
just 21.51 bits, significantly less than the other methods discussed. Some small
optimizations can be applied—for example, when q transitions emanate from a state,
one can use the coding probability cijlc; instead of c;j/(c;+1), since escape can never

occur—but these have negligible effect on the results below.
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5. Performance on the examples

We now apply the evaluation measure developed above and illustrated in Figure 6 to the
examples of Section 3 to see whether it accords with our intuitive judgement as to when

there is enough information to justify more complex models.

EXAMPLE 1. The first example sequence of Figure 1 and the first model are transmitted
together in 21.87 bits, while that sequence and the second model require 22.52 bits—
thus the first model is preferred. When the number of d’s in the sequence is varied, this
difference remains constant at 0.64 bits. However, the second example sequence favors
the second, more accurate, model (38.35 bits) over the first (40.76 bits); the difference
again remains constant (at 2.41 bits) regardless of the number of d’s in the three
subsequences. In fact, the second model is preferred whenever the sequence consists of

two or more subsequences of the form abbcd+te.

EXAMPLE 2. Results for the second example are shown graphically in Figure 7. The
smaller, simpler model has a smaller evaluation measure, and is therefore preferred,
until the first 14 elements of the sequence have been seen, which comprise two
repetitions of the form a*bat*c. The models remain neck and neck until 22 elements
have been seen. Once a total of just under 4 repetitions of a*ba*c have been seen, the

second model is uniformly preferred to the first.

EXAMPLE 3. The coin-tossing example is interesting because people rarely spot the
structure themselves. The true model (6 states) is much more complex than the naive
one (2 states), and many examples must pass before sufficient evidence has
accumulated for it to be preferred by our evaluation measure. Figure 8 shows that the
simple model remains superior until just over 60 symbols have been seen, and the two

remain neck and neck for another 40 symbols. In fact, although it is not shown on the
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graph, the more complex model remains superior from symbol 103 onwards. It is
interesting to note that the third model, which predicts the sequence better than the naive
one (but worse than the true model), is never preferred over the naive model during the
example sequence because its predictive superiority does not justify the added

complexity.

EXAMPLE 4. Both of the models shown in Figure 4 were tested on the action trace
generated by sorting 4 boxes, and the simpler (but inferior) model of Figure 4a was
preferred by the evaluation measure (by about 4 bits). However, when a second action
trace, generated by sorting 3 boxes, was appended the correct model of Figure 4b was
preferred (by 6 bits). When a third action trace was appended the correct model was

preferred by a larger margin (9 bits).

6. Conclusions

The entropy-based measure developed here is a principled way of evaluating alternative
procedural descriptions of a sequential trace of user actions. Based on the minimum
description length principle, it differs from existing applications of that principle in that
it operates adaptively, building the final description incrementally. This appears to be
the most economical way of coding a sequence along with a model that accepts it, and
indeed there is some theoretical justification for the approach (Cleary & Witten, 1984).

The use of the evaluation measure presupposes some means of generating
alternative candidate models. That is not addressed in the paper. However, we have
found it easy to come up with ways of generating models: the problem is choosing
between alternative possibilities.

The test of the measure is whether its preference of one procedure over another,
based on a particular example sequence, accords with human judgement. Examples

were presented that illustrate different aspects of procedures (unrolling loops, creating
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states, detecting complex statistical anomalies) and here the measure performs well. A
final example illustrated its use in a real programming-by-example system to detect an

ill-formed procedure.
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Sequence 1:
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Competing models:
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Figure 1 How much evidence is required to unroll a loop?

Sequence:

Competing models:

“True” structure:
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(a*batc)*

Figure 2 How much evidence is required to create a state?
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Figure 3 How much evidence is required to see that the coin is unfair?
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40.

41.

. Move to position (ask-user)

Draw-line Base- / Gapline to
position (ask-user)

Move to grasp (Box.center)

Drag Box to touch
(Box.bottom : Baseline.?)

5-12. Repeat 3—4 three times

Then do 1-2 again
Move to position (constant)

Draw-line Sweepline to
position (constant)

Move to grasp (Sweepline.?)

Drag Sweepline to touch
(Box.top : Sweepline.?)

Move to grasp (Box.center)

Drag Box to touch (Box.left :
Gapline.right)

Move to grasp (Gapline.midpt)

Drag to touch (Gapline.left :
Box.right)

Delete Sweepline

Move to grasp (Gapline.midpt)
Delete Gapline

Move to grasp (Baseline.?)

Delete Baseline

(b)

Figure 4 (a) Program formed by Metamouse

(b) Explanation of action in each state
(c) Well-structured program for the same task
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Sequence: abaaacaab

Bits

Model Tosend Tosend To send
sequence statistics structure
(a) | Entropy Given Derived 6.83 Large 24
(wrt. a P 025 ¢t Oz (real
given — numbers)
probabilistic a a
model) 15/ \ ;/ \
b c b c
a a
o O
(b) | Self-entropy  Given Derived 6.75 1097 24
(wrt a P Ol/z
given non-
deterministic = ~# 4 a
model) / \ lfl'/ \
b " b c
a a
0 O
(c)|Self-entropy(with a b a a a ¢ a a b 4.17 10.97 24
decreasing
counts) 2 21 2 1 1 1 11
4 3 1 3 2 1 1 2 1
(d)} Self-entropy(with a b a a a ¢ a a b 8.49 0 24
increasing
counts) 111 1 2 1 1 2 2
2 3 1 2 3 4 1 4 5
(e) | Self-entropy (including See Figure 6 Total; 21.51

transmission of model)

Figure 5 Steps along the way to defining the proposed evaluation measure




Modelso far ~ Upcoming Action Probability Bits

symbol
a a Don’t create a new state : 1
O ! b Don’t follow existing transition (c=1) 3 2 +]og3
a Create a new state 3
Assign it a symbol from {a,b,c} 3
O/" b a Create a new state : 1 +log3
a Assign it a symbol from {a,b,c} :
O P a Don’t create a new state : 1 +1log3
a a Identify next state from {1,2,3} 3
O /b \O‘ a Follow existing transition (cj=1, ¢;=1) % 1
a a
O /b \(-;2 c Don’t follow existing transition (c;=2) % 1+21]og3
a a Create a new state %
Assign it a symbol from {a,b,c} :
O ) b\O a Don’t create a new state % 3
a . s Identify next state from {1,2,3,4) 1
1 a isti iti =1 =) 1 log3
(;) ) b\(;) Follow existing transition (cj=1,¢=2) 3
\c e
2 b Foll isting transition (c;i=1, ¢=3) 1 2
Q/'lb\(? ollow existing transition (cj=1,¢=3)
N
Total:  21.51

Figure 6 Example use of the proposed evaluation measure
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Figure 7 Evaluation measure versus sequence length for the example of Figure 2
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Figure 8 Evaluation measure versus sequence length for the example of Figure 3



