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CHAPTER I 

INTRODUCTION 

in the present thesis we are trying to give a systematic review• 

of some recent studies of nonlinear realizations, of groups in physics. 

The development of nonlinear realization techniques is due to 

the search for a better description of elementary particles and their 

interactions. One of the well-established experimental facts is 

invariance (at least approximate) of interactions under various groups 

of symmetry. If we trytô fit elementary particles into multiplets 

corresponding to linear, representations of these groups'(e.g. SU(3) x 

SU(3)), we are led to predict too many particles (not all of them seem 

to exist in nature)'. Nonlinear realizations provide an elegant means 

of solving this difficulty. 

Historically, the linear realizations (representations)' ofgroups 

were tried first and the extra particles were gotten 'rid of by imposing 

nonlinear constraints on the fields associated with the particles. 

Such a treatment is already completely equivalent to employing a non-

linear realization which is linear when restricted to a subgroup of 

the whole group of symmetry (Ref. 19). 

Furthermore, nonlinear realizations may be relevant in quantum 

field theories with so-called spontaneous symmetry breaking, an effect 

which reduces the symmetry of the physical states (Refs. 14, 19). 

.Spontaneous symmetry breakingis discussed in the literature from 

various angles and will not be treated here. A few remarks concerning 

the subject must suffice. 
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The spontaneous breaking of symmetry means (from a mathematical 

point of view) choosing a special set of solutions with less symmetry 

than the equations to which the solutions belong. This way of breaking 

a symmetry is attractive, for example, as  possibility in which 

conformal symmetry might be realized in nature. It enables us to 

introduce Lagrangians invariant under the conformal group which lead 

to physical solutions with a discrete spectrum of mass (corresponding 

to the observed particles). If theconformal group were realized 

linearly, we should expect to observe  continuous mass spectrum of 

elementary particles (Ref. 23), which clearly is not the case. 

When asymmetry is broken spontaneously, the vacuum state cannot 

be invariant under the whole group of symmetry. It is invariant under 

some subgroup only (the same subgroup under which the realization 

becomes linear) (Refs. 18, 19). In such a theory there are many vacuum 

states,one for each inequivalent representation of the algebra of 

observables, so that one also speaks of a degenerate vacuum. These 

various vacuum states differ by different admixtures of zero-mass 

particles (Ref. 18). It turns out that Lagrangians which are invariant 

.under.a nonlinear transformation law of its fields usually also contain 

some fields which correspond to massless particles (Refs. 17, 19); 

however, fewer massless particles than would be required in case of a 

linear transformation law of the fields. By explicitly breaking the 

symmetry by adding a small mass term to the Lagrangian, we obtain a 

theory describing massive particles. However, it may perhaps not be 

necessary to introduce such symmetry breaking mass terms in order to 

describe massive particles. 
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The type of ordinary symmetry breaking mentioned in the previous 

paragraph is discussed by means of explicit examples in Chapter IV. 

Our main aim is to show what the theory of nonlinear realizations looks 

like in the form developed and discussed in Refs,. 1, 2, 24. This form 

is motivated not so much by any physical arguments but by a certain 

mathematical elegance. Our approach is to follow this mathematical 

line ant to demonstrate the theory by working out explicit examples of 

groups closely related to physics. 

In the second chapter we give a review of the general theory of 

nonlinear realizations of groups; which is complete as far as compact, 

connected, semisimple groups are concerned (Refs.'l, 2, 24). Some facts 

concerning linear realizátions'(representations) of groups are also 

mentioned here (quoting Refs. 6, 7, 15, 16). In the third chapter we , 

treat as an example the group SU(n) x SU(n) in detail,, and an invariant 

Lagrangian is constructed in a separate section (Ref. 3). Chapter IV 

shows how the linear and nonlinear realizations are related in the case 

of the SU(2) x SUM 'group. Also some symmetry breaking terms and weak 

currents are constructed inthe note-section (Ref. 17). The last 

chapter is a review of an attempt to apply the standard method of the 

general theory to a noncompact group of physical interest, namely the 

conformal group (Refs. 20, 5). 

The exposition of nonlinear realizations presented in this thesis 

also leads to some open questions worthy of further investigation (for 

example, questions arising in connection with noncompact groups, or 

with the incorporation of gauge invariance into conformally invariant 

Lagrangians) as pointed out in the text. ,The thesis intends to serve 

as a basis for any such research. , ' 



CHAPTER II 

GENERAL THEORY 

a) 'Representations  

First we shall quote some 'definitions and resultsconcerningLie 

groups and their representations (from Refs. 15,.16, 24). We shall pay 

no attention to details necessary to achieve mathematicai rigour (such 

details can be;found in Refs. 6, 7). 

An 'r-parameter Lie group. is a group whose elements can be labelled 

by r independent continuously varying real parameters with one more 

requ:irement, namely that the parameters of the product of two elements 

can be expressed as analytic functions of the parameters of these two 

elements; 

If the parameters labelling group elements vary. over .a finite 

range, the group is:called compact, if by varying the parameters con-

tinuously we can reach the unit element, the group is called connected. 

A Lie group which hasno proper invariant Abelian subgroup is 

called semisimple.  

When we find a oneto-one correspondence between 'a set of (n x n)-

matrices and elements of a L:ie group such that these matrices preserve 

the, group multiplication, we say we have found an n-dimensional faith-

ful representation of the group. When to one matrix there can correspond 

more elementsof the group, we just,speak of a representation (not 

faithful). 'Obviously, we can think of these matrices as transformations 

of vectors in an 'n-dimensional Euclidean space. ' 

A matrix corresponding to an element g of a Lie group can be 

written (at least for sufficiently small ') in the form (Refs. 6, 16) 

exp {cixj 
(1) 
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where the are a special set of r real parameters (called canonical) 

representing the element g and where the are a setofr (n x 

matrices representing the so-called generators of the group. They 

satisfy relations 

[X., x:i = f ii k 
(2) 

where fJ( are the so-called structure constants of the Lie groups 

(they are the same in any representation) and where Ex., XJ = 

XiX -  is,. the commutator of the matrices X. and X. The fjk are 

antisymmetric in the indices i,and J (bcaue of the commutator, 

property) and,rnust satisfy the Jacobi identity (Refs, 6, 16). 

f..i3 5fks mf ki Sfjs mf jk Sf is rn 0 (3) 

Here. and everywhere else in the thesis, a summation over the same 

upper and lower, index is understood. 

The f ii k themselves define a representation of the :set of 

generators, the.so-called adjoint representation (we have to take the 

firSt of the lower indices to label the matrix and the upper index and 

the second lower one as the usual row and column indices respectively). 

We can define a synimetric'tensorg.by . 

k m 
3 . -_ 'ml  

(4) 

It can always be diagonalized by aproper choice of generators of 

the Li group (as any real symmetric matrix a can always be' diagonal-

ized by a real orthogonal matrix a, i.e., a a can be found so that 

is diagonal (Ref. 11). 
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A semisimple Lie group is characterized bydet 0 

(Refs. 6, 15, 16), which implies that  has only non-zero diagonal 

elements when it has been diagonalized. A semisimple connected Lie 

group is compact if and only if, by a proper choice of. parameters of the 

group, gij can be made a scalar multiple of Kronecker's symbol 

(Ref. 7). 

b) Nonlinear Realizations  

We would like to describe now the nonlinear realizations in the 

standard form in which they were given by Colemanetal (Refs. 1, 2, 24). 

We shall again more or less only quote their results since it Would be 

quite difficult to improve on the presentation given in their papers. 

Coleman et al also restrict themselves to compact, connected, semisimple 

Lie groups, and we shall. point out where these assumptions are needed 

and what changes occur if compactness is removed. 

Most of the Lie groups used in physics satisfy all of the assum-

ptions (they are compact, connected and semisimple). One of the exceptions 

is the Po1ncar6 group', which is neither compact nor semisimple, but 

for physical applications we are only interested in linear rèpresen-

tations of this group anyway. Another, more important exception is the 

conformal group which violates compactness only. But the standard 

techniques of nonlinear realizations can be applied even here (see Ref. 

20 and Chapter V) with all the appropriate precautions (Ref. 15). 

We want to construct a nonlinear realization of a Lie group'G 

which is linear when restricted to some continuous subgroupS H of G. 

It is essential for this construction that the set of generators of 

G can be split into two parts with certain commutation relations 

among each other. On the one hand we have the set of generators 



7 

V. (i = 1, 2, ..., s where s<r) of the subgroup H and on the other the 

remaining generators A (j 1, 2, ..., r-s) of the group G. While the 

commutators [V1, V] are, of cour's' e, linear combinations of th.e V's 

only, the A's can be chosen (if G is compact,' semisimpie and connected) 

in such a way that the' commutator 

(5) 

is a linear combination of A's. only (Refs. 1, 24)'. The conditions 

in parentheses are sufficient since they guarantee the full reducibility , 

df the adjoint representation of G when 'restricted to the subgroup H 

only (Ref. 7).. If G were not semsimple .and if we chose for H an 

invariant subgroup, the commutator (5) would be a combination of the 

generators V only. Why this property of commutator (5) to be a linear, 

combination of.-,the generators A only is essential will become clear 

in the next paragraph. 

Group elements in the neighbourhood of the identity element of 

G (for compact,semisimple and connected Lie groups it suffices to 

study such elements -- Ref. 24) can be decomposed uniquely (Refs. 6, 

7, 24) into the form 

(6) 

where E and u are, sets of (r - s) and sreal parameters respectively and 

where 

and 

r-s 

i=l 

= il u1V. 
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If g0 is an element of the group G,we can define a transformation 

of I under g0 uniquely by 

g0e = 

In the case when g0 = h0cH, this transformation of the' 

is indeed linear as can be shown in the following way: 

(7) 

h Ah 1h - '•Ah S -,e (8) 

This ' is a linear function of I because if property (5) is 

used on the right hand side of the known decomposition 

eAe' A + utV, A] + EVkEVjAiJ] +..., (9) 

we get e Aie 1V = RJ(u)A where the matrix R is just a collection 

of all coefficients of A from the right hand side of equation (9). 

It implies clearly 1R3(u).which is linear. 

If nowR(h) are the matrices'of an arbitrary represéntaion of 

the subgroup H (acting on vectors ) we can show tt the mapping 
go S ()  defined by (7) and 

IfI 

is a realization-of the group G which. becomes linear under H. This 

follows fom the following calculations (for the 'i'-part): 

591 
g0 

g1e ItA = 

".AU'1 •VeU' •V = e .Auhle .V 

(10) 
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which shows that under the transformation by g1g0, 'Y is transformed 

into R(eUQ R(eU0l1). The linearity of mapping (10) under H is clear 

because Equations (7) •and (8) imply eU'.1I = so that we get back to 

the original representation of H. 

We note that in the realization (10) the matrix k depends on 

through -u'. 

It can be shown (Refs. 1, 2, 4) that manifolds on which a non-

linear realization of a compact, connected, semisimpie Lie group is 

defined. (with the additional rästriction that the realization becomes 

linear under a continuous' subgroup H of the whole group G) can always 

be parametrized in such a way that we obtain the standard transformation 

property (7) for a subset of the.coordinate,sof the manifold and the 

standard transformation property (10) for tjie set of remaining coor-

dinates, of the manifold (if any). The coordinates which belong to 

the first set are called the preferred coordinates and they are neces,-

sarily a part of any such manifold. Their number is equal to the 

number of the group generators minus.the number of the subgroup 

generators. 

This means that if some coordinates of the manifold are not 

transformed in the standard way, they can be redefined to create a 

'standard set of coordinates. Here the assumption of compactness enters 

essentially (Refs. 1, 2, 4). 

This redefinition keeps the origin of coordinates fixed (Ref. 24) 

which implies that if the coordinates of the manifold are interpreted 

as fields defined on space-time (or their space-time derivatives) of 

a physical theory, the described redefinition of coordinates (fields) 

* 

In this sense the coordinates of the manifold will be called fields in 
the following, although we do not make any attempt to follow up the 
consequences implied for quantized fields transforming in this nonlinear 
manner. 
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does not change on mass-shell S-matrix elements (neither the exact 

expressions (proved in Ref. 21), nor their free graph approximations 

(Refs. 1, 4). This:enables us to restrict our attention to nonlinear 

realizations in their standard form only. , 

When 'the preferred fields are already defined in the standard 

fashion while there are some other coordinates of the manifold (they 

might include space-time derivatives of the preferred fields and some 

other physical fields and their space-time derivatives), jointly denoted 

by throughout this section, whose transformation properties may 

still differ from (10), we know from the last paragraph that we can 

always redefine them into, standard form,. To give an explicit formula 

for this redefinition, we shall consider a point P of the manifold with 

coorinates(,). The group element e'A will map P into another 

point P' with coordinates (O,'). Then we define, the new coordinates 

New of the point P under consideration by New '. Then New 

can serve as new coordinates of P 'where the coordinates New already 

.have the standard transformation property (10). 

Let us denote by T the transformation which takes the old 
90 

coordinates of some point P with preferred coordinates into the 

old coordinates'' of another point P with preferred coordinates ' 

if P is mapped into P' by applying the group element g0; in a. formula: 

40 = T . With this notation, the definition of the coordinates 
90 New 

of P can be expressed as 

New = T_ .A 
(12) 
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In order to show the standard transformation property of 4) New 

we write equation (7) as e Ag0, = eU'e. This implies that 

the redefined coordinates of the point with old coordinates 

namely (oew = Te I.AT 0 are equal to 
90 

= Te Te_•A eu'w 

If the group is not compact, we can have different nonlinear 

realizations of it which cannot be transformed into each other by a 

transformation which would leave the physical content of the theory 

unchanged. The classification of nonlinear realizations of noncompact 

groups is an open problem. One example of a noncompact group, the 

conformal group, is treated in Chapter V. For this group, however, if 

has been shown (Ref, 15) that indeed all its nonlinear realizations 

are physically equivalent to the nonlinear realizationin the standard 

form. This is briefly discussed in Chapter V. 

c) Linearization  

If we have any fields transforming linearly under a group G, 

they can always be redefined into a set of fields i' which have the 

standard transformation properties (10). One possibility is to set 

= R(e) (13) 

as can be checked easily (Refs. 1. 17, 24). 

This construction can be inverted, and any fields which transform 

linearly under H (such that there exists a linear representation of G 

which, when restricted to H, becomes equal to the representation of H 

on the given fields) can be redefined to transform linearly (according 

to the linear representation of G) under the whole group (Refs. 1, 17, 24). 



12 

Furthermore, i.t has been proved (Ref. 24) that functions of the 

preferred fields can be constructed so that they also transforni 

according to a linear representation of G, provided this representation 

•reduces under H and has the trivial (unity) representation in its 

decomposition. This, procedure will be demonstrated in Chapter IV, and 

the connection with the ci-model will be pointed out. 

d) Covariant Derivatives  

We shall redefine the usual space-time derivatives of fields in 

order to bring them into a form which transforms in the standard way (10). 

We know (Refs. 1, 24) that any fields other than the preferred fields 

( and a T and a 9 certainly are different from ) can be redefined 

(in the sense of the previous section) in such a way. 'A redefinition is 

necessary since we have no reason to expect the space-time derivatives 

of E (g transform according to equation (7)) to transform according to 

equation (10) while D T cannot transform' according to (10) because of. 

the extra term R(ae'')'Y which arises when we differentiate (10) (for 

details of the calculation see the next chapter). 

For the redefinition'of a g and av we use equation (12) (we 

assume that the preferred fields already transform acOording to (7) 

in the form D 1iNew = TA() and D'P T 1i"New 1=TA(Y). 

• The quantities D g and D ' will be called the covariant derivatives of 

the fields and ' respectively'. ' 

• In order to carry out the construction of the covariant derivatives 

explicitly, -we use a little trick (Ref. 19). For fields '1 transforming 

in the standard way (10) we can define a covariant operation A 1'Y by, 

= R(e'') a (R(e'))  

11 11 • (14) 
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Using definitions (7) and (10), the covariance is shown by 

(A P  = R( e (R( e *A)R( e V)) = 

= R( eU )R( e A)R( g l)(R( g0 )R( e )w) = R( eU). 

Note that g0 is an x--independent group--element. Thus A P really 

transforms according to (10). 

Equation (14) can •be rewritten as 

= 9 T + R( e A)(R( e A)) . 
11 31 

The last term of thisequation can be rewritten using 

R(eR(e)a 1R(A) + 

where c and 8 are some functions of and a g andwhere R(A) and 

R(V) are the generators of G in the corresponding representation 

(see Ref. 19). The functions a can be shown to beexactly the 

(15) 

of the previous paragraph (for details see the next chapter) and 

so they must be transformed according to (10) by themselves. They 

can be extracted from Equation (15) leaving the rest still covariant. 

This means that the exressions 11 'v + 8 11 3R(V)'1' can serve as the 

covariant derivatives D'v of the fields 'i' (since they transform 

according to (10)). 

The covariant derivatives will be :necessary for constructing 

invariant Lagrangains. They are generalizations of the ordinary space-

time derivatives in the sense that the covariant derivatives are equal 

to the ordinary ones for E = 0. 

In proving the covariance of Equation (14) we treated the element 
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90 as being space-time independent. If this is not the case, we speak 

of gauge transformations of the second kind. Having elements of G 

space-time dependent forces us to introduce two additional sets of 

gauge fields and to redefine the standard derivatives of ,E and T. For 

details see the next chapter as well as Refs. 3, 19. 



CHAPTER 'III 

NONLINEAR REALIZATIONS OF SU(n) x SU(n) 

In this chapter we would like to show how the theory of nonlinear 

realizations applies to the special case of .the group GSU(n) x SU(n) 

if the subgroup H. is taken to be the diagonal subgroup. To make clear 

this terminologywe shall denote the (n2 1).generators of the left 

(right) subgroup of SU(n) x SU(n) by J (J), where i = 1, '2, ..., n2-l. 

In terms of these generators the Lie algebra'of SU(n) x SU(n) is 

described by 

f•kJ ,[J, J.] f.YJk and [J •J] 0,  

where all - indices run from 1 to (n2-l) and f'< are the structure 

coefficients of the SU(n) group. 'We, choose the generators J' and J 

because they diagonal ize the tensor gip which in this case becomes a' 

multiple of Kronecker's delta (see the .previous:chapter). In this 

case also, fk is totally antisymmetric, ijk because 1ij  is f g.  

always antisymmetric (Ref. .16). For more details concerning these 

standard results see Refs. 1, 3. ' 

If we choose a new set of (2n2-2) generators of the group G 

defining V. = J +J and A. = J -J, we find that in terms of 

V and A the Lie algebra 1s described by . 

[Vi, Vi] = kv [V A] fii kAk and LA.A]= ik' ' f(2j (2 

where f 'are the same structure coefficient (Ref. 1). 

It follows from the first equation in (2) that the generators V 

span a subalgebra of the Lie algebra of G. We shall call the 

) 
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corresponding subgroup the diagonal one. 

At the right hand side of the second equation in (2) there are 

no V-terms. This can always be achieved by a 'proper choice of A's 

(if the Vs are chosen to be the generators of the subgroup H) as 

we know from the last chapter (all the required conditions are satisfied). 

It means that the adjoint representation of the Lie algebra of G when 

restricted to the Lie algebra of H provides (apart from the adjoint 

representation of H) a representation of the latter on the vector space 

spanned by the generators A. Correspondingly, the subgroup H is 

linearly represented on the space G/H of right cosets of H. The non-

linear realization of G which we construct using the preferred fields 

becomes linear and isomorphic to the representation mentioned in 

the previous sentence, when restricted to the subgroups H (Refs. 1, 

3, 12). 

The third equation in (2) gives us no A-terms on the right hand 

side. This is just accidental and we shall say in such a case that 

the corresponding subgroup H is symmetrical. It enables us to define 

a parity conjugation which will be used to simplify the form of the 

nonlinear realization (Refs,.], 3, 8, 24). 

a) Transformation of the Preferred Fields  

We introduce some notation first. Any group element gcG can 

be written uniquely in the form,g = eAi 1eViU1 = where 

and u1 are two sets of (n2-l) real parameters each (Refs. 7, 24). 

An operation which takes the group element g with parameters 

and u1 into another group element with parameters - and u1 will 

be called a parity conjugation (Refs. 1, 3, 8). The element g, parity 

'1 conjugate to g, is then = ee'. 
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In the previous section we have already discussed the linear 

representation of H on the vector space G/H parametrized by g. It 

can be written explicitly as 

= exp (Øif k) 3 (3) 

if the transforming element h0cH is equal to e/' 6. 

This can also be written in the form 

h eAh_l = e10 A. e -Vo 

as can be seen from the following calculation: 

eV00Ae 10 = + o1[V , A] + 01 Cv1.[v AJJ + 

=A + oifjj kAk +,.0?1 f jj A +.. = .xp. (o'f k)Aii V 

(4) 

It is easy to generalize h0e'' eA.h0, (equation 4) to 

define an unique transformation of g Under an .element of G. Replacing 

h0 on the left-hand side by an arbitrary g0EG, we can write 

= ee U' , 

which is already the most general nonlinear transformation of 

and which was described in the previous chapter. 

The equation (5) gives actually two mappings, namely = 

which is the transformation of the preferred fields and u' 

which will be , Used in. the. transformation law of any other field. 

If we apply the parity conjugation to equation (5) weget 

-A' = 
90e 

(5) 
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Inverting this equation and multiplying it by equation (5) from the 

left we find 

g0(e)2, = (eA) 2. (6) 

When the transformation law of the fields is written in this 

form one can check that this transformation law really provides a 

realization of the group G by writing g0 = g1g2. This implies 

) '-1 -1 
9192 92 91 

in other words nothing results bui a successive application of 92 and 

g1 (Refs. 1, 3, 8). 

Transformation of Other Fields 

Assume that we have other fields i' which are transformed 

linearly under H, i.e., 

'Y' 

where hcH and where Ra belong to a representation of H. 

Then we can extend this transformation to the whole group G 

by writing 

 °> R(e 1 ) 

where g0EG and u' u'(, 0) isgiven by (5). 

That this is indeed a realization of G which in the case 

•(7) 

(8) 

g0 = hcH reduces to the original transformation (7) was already shown 

in Chapter II. 
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c) Covariant Derivatives  

In this section we are looking for some analog to the usual 

derivatives a Ej = j and a T - DT a  of the preferred and the other 
1-I DXP x1•1 

fields respectively. These analogs can be treated as additional fields 

and so they can be required to transform according to (8) (Refs. 2, 3, 

8, 24). 

We know how to transform a and a 11 Ya (as implied by equations 

(5) and (8)'), but this transformation does not have the standard form 

of equation (8). The reason, is that not just '! butalso u'(,g0) is 

x1-dependent through E, 'which (if equation (8) is differentiated with 

respect to x) creates one additional term and thus spoils the 

standard behaviour. 

In Ref. 2 and in Chapter II it is shown that the covariant 

derivatives can be defined as follows: If we take all fields and 

their derivatives together, (i', 'i', a, a'y), and transform them under 

a group element g0 =e °', we get the following result: 

(, 'y, a, a ')' = (0, 'i', D, D'). , 

This means that the fields E become zero, that the fields i' do not 

change at all and that D 11 E and D 11 q (just a new notation for () 

and (a T)') define the desired analogs of a E and a T respectively, 

because they 'have the standard transformation properties. 

Now we shall calculate and check all of this explicitly. To 

an infinitesimal increase of the' space-time coordinates (x't-,-x"+dx'1) 

there must correspond increases of E and T and, through equation (5), 

increases of the transformed coordinates ', ', and of u'. If we 

denote these increases by d, d'Y, dc', d'' and du' respectively, we 
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can write two relations (usingequations' (5) and (8)), 

and 

R(e)( + d. 

Now we take g0 = and express the exponentials as power series in 

'd,d'' and du.' up to the first order. This gives us 

-A. A. 
De  ,(d 1)j)(eV I U (du)1) (eA .' ae  d1) = (eaL\.' + 
(i)1 (u') 1 

for the first equati9n and 

( 1 + d'i')' 
UI 

du 

for the second one. 

Collecting the zero order terms gives us = 0, u' = 0 and'j!' T. 

From the. first order terms we obtain 

= A(d') 1 + V(du') 1 and 

R(V)(du1)l I1+ &dq'. 

Dividing both equations by dx 31 yields 

e ae1 = A. (d') 1 + 
31, 1 dx" 

(d'i')  - R' (V.) (du')' 

dx" 1 dx" 

and (9a), 

'IA I\1 
We have already agreed to call '  / = D' a covariant 

dx" 

deivative of c and : D TU a covarint derivative of T. 
dx"' 11 

(9b) 
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Only the difficulty to calculate e A de 1' 

This is done in Appendix 3a. There it is shown that 

remains. 

e'   - (+ x j(j + xjkxklxlmxmi + ...)A - 

X. klj 

+ 4!  + ...)V i3A, - p.13V, where x3 = 
ki 

and where the last step is just a definition of the matrices a and c. 

Our two equations now read 

(3A - = A.D + v (du')3 and 
3u 

D = + R (V)(du') . p p dx'1 

Collecting A and V terms in the first equation and replacing 

in the second equation by the explicit expression obtained from 

the first one yields the final result 

D CF and 

D ' = - Rc (V.)p. ja p p 31 p 

(1 Oa) 

where the matrices a and p are still functions of E. 

Let us check that these two expressions transform in the standard 

way. We can write an X'1-derivativeofequation (5) as 

g a e11' = (a e Ae' )e e V•U1 + 1( e!tJ'), 
Op p 31 
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where g0 has been treated as x'-independent. 

Since g0 = eA0teV'e4 (fromequation (5)), we get 

eA0 = (   e 
11 , 1,1 1.1 

This equation can be rewritten (in two steps) as 

= e_A '(A') +(eV)e and 

V•u' j 
e (a ()Aa1 - = 11  

• - Pj (' )V(a )1 +. (eV.u' )e 0U ' . 

Separating the A-terms at each, side of this equation gives, 

Aj = 

Now we can simply repeat the calculation, following equation (4) to 

get the transformation property of D as 

= exp ((u 1)1fjk3)D <11• . (13) 

This has exactly the standard form of equation (8)., which was to be 

proved. 

Separating the V-terms in equation (12) gives us the transformation 

property of as follows 

= ev. u, p .3( 1)V e VU' 

With this relation we can determine the transformation law of the 

'standard derivatives. D T. 
11 
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In this calculation we must, of course, express all generators 

and group elements in that representation to which the fields T belong 

(i.e., we must use the R matrices). We get (when replacing 'by 

in equation (lOb)) 

11. 
{RC( eV•U')lI} R( e U 

- Ra  )R(e' ' )}(' ). 

Using R( e_U)( Ft) 5 = 'i (see equation 8) we finally see 

that D 11 Y is also transformed in the standard form of equation (8): 

(D 11 V) = R (eV U')(a + R (V. )Pi 31) R(eU)D 11 v. 

('4) 

Note: Lagrangians  

If we have constructed a Lagrangian as a function of 

and 
U 

L = 

we already know (see the third paragraph of Section c) how it trans-

forms under go = namely 

Lt(,'i', ') = L( 1,'i", V) = L(O,'i',D ,D T).p p p p p 

This implies that in order to have a Lagrangian invariant under 

the group G it has to be a function of D 11 ,i' and a 11 T only and it has to 

be superficially invariant under the subgroup H (Ref. 3). This already 

guarantees the invariance under the whole group G due to the standard 

transformation property of T,D and D. In the case of a system 
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described by the preferred fields only, there is a natural choice for 

such a Lagrangian, namely (Ref. 3) 

L = f2g(D1)(D 11 9 3) =.- f2g1 )(ci.l1J , 

where f is a numerical constant. Here gij is the metric tensor 

defined by equation (4) in Chapter II. ' In the case of a compact 

group it will usually be assumed to be -in its diagonal form propor-

tional to a Kronecker delta, which can always be achieved by an 

appropriate parametrization of the group. In what follows we will 

assume that this has been done. From the invariance of this Lagrangian 

we can see easily that is anotherinvariant metric tensor 

in the space spanned by (the quadratic' form is 

invariant). For a discussion of this geometrical point of view see 

Refs. 9, 10. 

•d) Gauge Transformations of the Second Kind  

In this section we shall consider the transformations to be 

X"-dependent. This, will give us one more additional .term 

on the left-hand side of equation (11). In order to be able to 

repeat the calculation following this equation and to get the same 

transformation laws (13) and (14), we must, modify the expressions for 

covariant deriyaties of the-fields E and v by making them dependent 

on two newly introduced sets of fields (Refs. 1, 3).. 'These fields,, 

which we shall call v (a set of (n2-1) vector fields) and a 1, (a 

set of (n2.-l) axial vector fields), should be transformed under g0 

according to 

+ f(V•v' + Aa'1-I) = gO t p + f(V•v, p ,+ 
p 1:'  (15) 
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where f is a numerical constant and V°v .31 + A'a 11 is the most general 

element of the Lie algebra of G (Refs.], 3) 

If we replace a by a + f(Vv31 + A.a31) in equation (9a), we 

obtain 

+ f(VoV + A•a )JeA'E = A•D - V.p.3 
11 3.1 3.1 3.1 313.1, (16) 

where D E, and pija is an analog of D E and Ø31 frorn:equations 
11 11 AI 

(10). If we use D 1 and p.3a 1 instead . of of D and 1 to 
. 11 31  

define covariant derivatives of the fields and 'i', these new covariant 

derivatives will have the standard transformation properties (equation 

(8) or (13), (14)) extended to the gauge transformations of the 

second kind. S 

To prove that equations (15) and (16) together. with 

8 
D 11 Y =D T - Ra8(V  )P i 3a 'i' (17) 

really define such covariant derivatives of the fields and ' _ S  

(given by D and D31 'Y respectively) we start by calculating how the 

1efthand side of equation (16) transforms under g0cG. Since 

we get 

= g0ee \1 'U' 

e4.+ i(V°v' + A°a')Je = +f(V.v+A.a )]• 
0 11 •11 11 

.g; 0 lg e'\' eA' = e'' -A-
[a 31 + f(V•v 11 + A.a )]e' 

where we have -used equation (15) essentially. 

This calculation shows that all we have, to o transform the 
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left-hand side of equation (16) is to multiply it by e' ' from 

the left and by e0U from the right. If the same operation is 

applied to the right-hand side of (16) it will give us the trans-

• Ni 
formation properties of 11  and DY (through p. ) which turn 

out to be of the standard form. To show that, we just note that 

equation (9a) .istransforrned by applying the same operation (when 

90 is x'-independent). This implies transformations (13) and (14). 

Everthing which .has been said so far in this. section about 

nonlinear realizationsapplies to all compact, connected, semisimple 

Lie groups, but now we are going to use the .specific Lie algebra of 

the SUM x SU() group. 

To calculate the covariant derivatives D g and D 'Y as defined 
p 

by equations (16) and (17) we need the following results, which are 

proved in Appendix 3b); 

kj klmj 
= 3 +  X( X1 Xk 4.1 XlXm + 

21  
k 1 j 

- (x 3 3! - + ...)A = cosh x3V - sinh x JA and 

similarly é_iAe/k = cosh x 3A -. sinh x h , where again 

x. 3 = !(fki11. Comparing A and V terms of both sides of equations 

(16) (and remembering e'e" = AD E - gives us 

= D 3 +' f(cosh x3a 1 - sinh x3v') and •, (18a) 

'S .. 

= p31 - f(cosh x 3v' - sinh x3a') respectively. 
(l8b) 

e) The Gauge Fields . . 

In the previous section we replaced a by a + f(V.v + A.a) 
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to get the new covariant derivatives. Now it is obvious how to construct 

the covariant generalization of the curl operation. We just calculate 

+ f(V.v 11 + A•a 11 flEa + f(V'v + A•a)J - ta,, + f(V•v + A'a)]. 

.ED 11 + f(V•y 11 + A"a)] 

and separate the coefficients of fV. and fA. which we call F 1 and 
1 

respectively. 

We find (see Appendix 3c) 

= a v - V + if 1(v 3v k - 'a a k) and 
liv pv vii jk p v p v 

i = a. a a + ff. 1(a v k - v 3a k) 
p v p v 

From this definition follow iniiiêdiately. (see equation (16)) the 

transformation properties of the tensors F, namely 

(F 'A + T i v i ) ' F 1g A.l + 1gV11 11V .g l, 

where g0cG represents the transformation. 

Now we can construct a Lagrangian of the gauge fields'v and a 

in the generalized Yang-Mills formas (see Ref. 3) 

Lva PvJ + FIV F) 

(19) 

(not mixing F with P• because of parity conservation). 

To show the invariance of such' a Lagrangian would be easy if 

the, tensors F had the standard transformation properties. Since that 

is not the-case, we want to redefine F and rewrite Lva in order to 

make both manifestly covariant. 
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To do so we redefine first the gauge fields v and a which also 

are not transformed in -the standard way of equation (8). Using the 

method described in the Introduction and Section c) of this chapter 

we set g0 = in equation (15). Thus we can define new fields 

v p p and a by 

v• 11 V + a 11 A = e'(v•V + a .A) eA, 
(20) 

where v 11 and a1 must have the standard transformatiOn properties. 

We can rewrite equation (20) in an explicit form (using the identities 

of Appendix 3b) as 

v = cash (x.1 1 3)v - sinh (x.3)a and 
p p  11 

a3 = cash (x 3)a. 1 - sinh (x3)v1.11 

(This demonstrates the standard behaviour of D 11 E and Di' (defined by 

equations (18)) under x'1-independent transformations). 

By using the same method We can redefine the tensors F to give us 

new tensors E having the standard transformation property. Setting 

g0 = e4° , equation (19) becomes 

E 1A. + E 1V. = F 1(cosh (x .3)A. - sinh (x.3)V.) + 
p\) 1 ,pv 1 pv • 1 3 1 3 

+ r'(cosh (xJ)V - sinh (xi )A or, separately,. 

E = F cash x. - r ' sinhx ' and PV 11V 1 pv i 

= 1 cosh x 3 - PV I sinh x 11V 11V 
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These relations can be used to check that L .(E lEhiV3 + 
va oij pv 

+11"J) is evidently invariant under the whole group G L?ecause of 
PV 

the standard transformation properties of E and ' and because of 

the orthonormality of the matrices in equation (8). 

The standard transformation property of E can be checked by using 

its definition, the relation eA''g = eV•u' e_A• and the fact that 

the F's are transformed linearly under H. We can also demonstrate it 

explicitly by rewriting E in terms of fields and covariant derivatives 

which all transform in the standard way under the second gauge trans-

formations as follows: 

o' o • .1 o o o 

E D 11 v D 1 + fim 1[D p •V V p -D 'a m - f(v ii ' V m Vv,,, + 

•lam)J and 

= D - + f 1[D l m l rn 
PV )iv IV 11- lm, p V V p 

f(v 10  m 10 rn )] 
p V 31 V 

(22a) 

(22b) 

This agrees with the original definition of E given by (21a) and .(21b) 

as shown in Appendix 3d). 



CHAPTER IV 

LINEARIZING THE NONLINEAR REALIZATION OF SU(2) x SU(2) 

In this chapter we shall carry out explicitly the construction of 

linear realizations out of a nonlinear one which was mentioned in 

Chapter II. The basic idea consists in redefining the fields on which 

the nonlinear realization is defined. The construction is quite com-

plicated and that is why we shall treat the case where the group G is 

just the SU(2) x SU(2) group. The construction has practical importance 

because in linear representations, as opposed to nonlinear ones, the 

usual space-time derivatives are, already covariant under transformations 

of G. 

When linearizing the preferred fields, we have to obtain 'a rep-

resentation of G on the redefined fields which when restricted to H, 

has the trivial (unity) representation in its decomposition into a 

direct sum of irreducible representations of H (Ref. 1,, i1 24 and 

Chapter II). , 

We know all linear representations of the SU(2) x SU(2) group. 

They are usually denoted by (j, i) where 2j + 1 and 2j + 1 are 

the dimensions of the representations of the left'and right subgroup, 

which are combined in a direct product to give a representation of 

the whole group. 

The representations with j = = j decompose under the dia-

gonal subgroup'H into irreducible representations with I = 0, 1, 2, 

2j (the label •I is called the isospin of the corresponding. 

(21 + 1)-dimensional representation).and thus contain the trivial 
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one, which has  = 0. These are actually all such representations, 

because for j we get the following possible isospins; 

I = - j-111 ..., j + j , which means I is always different from 

zero (Ref. 17). 

a) Linearization of the Preferred Fields  

The algebra of generators of the SU(2) x SU(2) group is (see the 

previous chapter) 

[Van V = 'a' Ab] = 1Cabcfc and E"a i4bj = abcAc (1) 

where, the indices a, b and c •run from 1 to 3 (summation over a double 

index is understood throughout this chapte,r), where abc is kronecker's 

totally antisymmetric tensor and the imaginary unit i stays here for 

our convenience only (it makes the generators A and V hermitian - they' 

were antihermitian in the previous chapter). 

We can construct two Casimir operators for this algebra, 

C1 = (V-V) + (AoA). 2(J.J)+ 2(J.J) and 

C2 (V-A) = (A-V) 

(2a) 

(2b) 

where J arid J have been de'fined in the first paragraph of Chapter III. 

'If we apply them to a vector of the (j+, 3) representation space, we 

get 2j (j +1) + 2j (j + 1) and (j - j )(j + ,j + 1) as eigenvalues 

of this vector under C1 and C2 respectively; 

have 

In a representation eligible for our purpose (+ = = j) we. 

C1 = 4j(j + 1) and C2 0. (3) 



32 

We need to explain how we define the operation of a generator 

on a field. The previous chapter enabled us to calculate a trans-

formation property of a field under a group element g0. We now 

write g0 = e' (where X is any one of the group generators and w 

is-an infinitesimal parameter) and calculate an infinitesimal change 

of the field under such an element. This infinitesimal change divided 

by w is equal to what results if X operates on the field. In this 

sense generators will be called operators in the following. 

According to this definition we may say that 

'ab lCabcc (4) 

is a set of three preferred fields), which is in complete corres-

pondence with equation (3) of the previous chapter. , If f() is a 

function of the preferred field, , our definition also gives us for a 

generator X operating on f 

Xf(1) = 

which will be used extensively in the calculations. 

To construct the (j, j) representation of the group G out of the 

preferred fields we first need a function of these fields (let us call 

it S())which is an isoscalar (meaning V a S = 0) under the diagonal 

subgroup H. Such a function will enable us to construct all (i i) 

repreéntations as we can see from the following paragraph., where .we 

present results of Ref. 17, but using slightly different arguments. 

If we apply the operator A = A1 + iA2 to S n times, we can 

prove easily (using commutation relations (1)) that ' 
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V3(A+)S = n(A+)'S (5) 

(V.V)(A+)S = n(n + l)(A+)S (6) 

This shows that the functions (A)S. are the highest eigenfunctions 

(having the maximal V3-eigenvalue) of the isospin = n representation of 

H. To get all the (2n + 1) eigen functions of this représéntation we 

just apply the lowering operators V— = V1 - 1V2 to (A)'1S successively 

2n times. 

To complete the (i, i) representation of the whole group G we 

have to have all the subgroup representations with isospin equal to 

O,l,2,...,2j. 

This induces one more condition upon the function S 

= 0 (7) 

All we have to do now is to find an isoscalar function S of the 

preferred fields satisfying condition (7). 

In order to accomplish this, we need the complete transformation 

properties of the preferred fields. The transformation law under the 

subgroup H has already been mentioned in equation (4). The most 

general form of the transformation law under the remaining generators 

of the group G is (Refs 4,12, 17, 22) in the case of real fields the 

following: 

A 'ab + (8) 

3 

where C. = L ' ab is Kronecker's delta, f( 2) is an arbitrary 
a=1 aa  

2 2 2 
function of, and where g(t) is related to f()as shown below. 
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Here it is worth mentioning that the generality of (8) implies the 

subgroup is symmetric (Ref. 1?). Also, (8) is a more general trans-

formation, law than the standard transformation law of the preferred 

fields described in the previous chapter (but they are physically 

equivalent in the sense of that chapter). 

From the condition EA; Ab = 1 cadVdb which follows from 

the Lie algebra of generators, we can calculate the function g( 2) as 

+ 2ff'  
V 

f ,- 22f' (9) 

where f' = dh1T . ) (for ,the proofsee.Appendix 4a). 
d 

It is not easy to construct an isoscalar function S() satisfying 

condition (7.) and we shall devote to this task the rest of this section. 

We could try the obvioUs isoscalar E2, but it does not terminate as 

condition (7) requires. , 

We have to take some general function of 2. Let us call it 

When we apply the operator A (multiplied byi• for our 

convenience) to such a function we obtain 

3 

(iA)h0(2) ,h0 (2)(iA+)2 = h0 2E (csi af +1g+ LS2af+ 

a=l 

+ = f + 2g)( 1 + i2) = h1(2)+, 
(10) 

where a prime always means a first derivative of a function with respect 

to 2 and where the last step is just a definition of 

hl (f( 2) + E. 2g( 2))h 2) and of l+-iE 2 
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Similarly we can define h2(2) through (iA+)2h0 = h(Q 2 

(the common argument E of the functions h is assumed, and most 

generally 

(iA+)h0 = 

Such a relation defines the functions .h. properly, as can be 

checked using equation (8) repeatedly. Furthermore, this definition 

gives us a recurrence relation for the fUnctions h in the form 

h•1 = ngh + 2h •(f + 2g). 

For n = 0 this has been derived in (10), and we can prove similarly that 

it holds for (n+l) if it-holds for n. 

To guarantee a proper termination of the functions h (equation7), 

we have to impose the condition 

h2+1 (13) 

Each function h must be an eigenfunction of both Casimir operators 

with the required eigenvalues (see equation 3). Since the operator A+. 

commutes with the Casimir operators we can require this for the h 0-

function only and we shall get the desired eigenvalues for all the other 

functions h automatically. 

Since h0 is a scalar under H" and thus obeys V a h o = 0 (a = 19 2, 3), 

it is an eigenvector of = A•V with eigenvalue zero. This together 

with the requirement that h0 be an eigenvector of C1 (see equation. (3)) 

then implies that 

3 
C1h0 = AAh =4j(j + 1)h0 

a=l 

(14) 
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To rewrite this equation in an explicit form we calculate 

A a h o = ihia and then apply the operator Ra once more and sum over a. 

The result is 

3 

Z A a A a h o = (2h ;(f + 

a=l 

Equation (14) now reads 

2 + 3h1f + 4j(j + 1) = 0 

+ F1(3f + E 2g)) 2 + 3h1f). 

(15) 

Equations (12), (13) and (15) define the functions h completely. 

To solve them in this form would be still quite difficult. The 

greatest contribution of Ref. 17 consists in introducing a new set of 

functions v of a new variable u given by 

u = -f/c = (f2 + and gn(u) = a h( 2) (16) 

This redefinition enables us to rewrite the recurrence relation (12) 

in a nice form, 

du ') +1 (t _ - dv(u), 

as can be checked easily usin'g - ' 2ff'+l du - f - 2 2f'  
2 2i 2 2a3 

and relation (9). 

Equation (13) now reads 

( d 2j+l 
v2+1(u) = du v0 (u) = 0 

and rewriting equation (15) yields 

(17) 

(18) 

0 u2)v2(u) 3uv1 (u) + 4j(j + 1) = 0. (19) 
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Equation (18) tells us that v0(u) must be a polynomial of degree 

2j or less in the variable u. Equation (19) can be solved by a power 

series expansion, v0 '1 (U) = Ebu which yields a recurrence relation 

for the coefficients bn 

(2r ± 2)(2r + 3)b22 =(4r(r + 1) - 4j(j + l)b2r 

where r = 0, -, 1, , ... Because the recurrence relation (20) 

together with equation (18) implies that b21 must vanish while 

b2 0, we have to, take b0 0 and b1 = 0 for j being an integer and 

b0 = 0 and b1 0 for j being a half-integer number. 

The function h0(2) v0(u) is the isoscalar function of the 

preferred fields which we were trying to find and which has all the 

required properties. 

The way to generate, the remaining functions of the (j, 

representation from h0 has been discussed at the beginning of this section. 

In the case of j = ½ the (½, ½) representation decomposes (when 

restricted to H) into representations with I = 0 and 1. The,eigenvalues 

correspond to the a.-particle and three pions known from the so-called 

a-model (Ref. 4).  

(20) 

Note: Redefinition of the Preferred Fields  

We can define, a set of new fields by the equation 

(21) 

where H( 2) is any function of 2 for which H(0) t 0. (As discussed 

in Chapter II this will give us the same physical results). The 

previous section can be rewritten in terms of these new fields if we 

replace the functions fand g by functions F and G of the new variable 
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These functions, in order to satisfy equations (4), (8) and (9) 

must be of the form 

*2 
F( ) = f( 2)H( 2) and G( 2) = (gH + 2H'(f + 2g))/H2 (22) 

as can be seen by writing Aa = Aa(bH( 2)) = bc1 + 2 b cH')Aac = 

= i(6abfH + (gH+ 2H'f + 2H' 2 g)) and Va : = Va(bH( 2)) = 

Furthermore, we have to redefine a.* = Ha and u* = u (see definition 

16). We nownotice that h( 2)(•)r = hn(*2)() Ii (see the third 

of equations 16), which means that the linearized fields do not change 

under such a redefinition of the preferred fields. 

b) Linearization of Other Fields  

We already know from the last chapter how the other fields 

transform under an element h of the diagonal subgroup H, namely accor-

ding to a linear representation of H, in a formula: (pi)a = R(h)'i. 

The generators then operate on the fields i as follows: 

V1 = taY (23) 

where by t  we understand the matrix R(Va) For the generators A the 

most general form of their action on the i"s can be derived to be 

(Refs. 12, 17, 22) 

Aa'1 = 

where we sum over indices b and c. 

(24) 
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From the Lie algebra we obtain JA a,AbJT x 1CabcVc1 which 

yields the following expression for the function v: 

Vj - 2 I 221 -  1  
- 

1 )±(f + r cV(l ±u) 

Heref is the arbitrary function of thelast section. (For a proof 

see Appendix 4b). 

We want to, extend the linear transformation property (23) over 

the whole group SU(2) x SU(2). 

The simplest case occurs when equation (23) defines an irreducible 

representation of.H. We can expand. it to either of the following 

representations of the whole group G, (t, 0) or (0, t). 

In the extended representation there will correspond to each A  

a matrix which we shall denote by Xa . The set of X and t-rnatirces must 

satisfy the commutation relations (1), 

tta tbJ_ tXa XbJ abctc and Eta" Xbj = lEabcXc (25) 

Linearization of the fields 'P will be done by finding a matrix 

M() (a function of the preferred fields) which will multiply T to give 

a result transforming linearly. 

This means we are looking fora matrix M() satisfying 

Va(M()'P) = •'taM()'' and Aa(M(.)1P) = _XaM()'Pe (26) 

It can be checked (using equations 23 and 24) that (26) is 

equivalent to 

= -Eta' NJ and Aafv1() -X am - e'ábcc Mtb. (27) 
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The second of these equations can be written more explicitly as 

am 1)( 6abf + ) = abJC  

Multiplying this by E a and summing over a we obtain 

+ -(X.)M, 

where 
3 

(X) =, 

a=l 

To solve this equation, we shall make an ansatz for M as a 

power series of (iX') with 2_ dependentcoefficients 

00 M() an 
n=l ()(iX•. 

Such a choice already satisfies the first of the equations (27). 

Inserting this trial solution into equation (29) gives us 

(f + 2g)(22a+ nan) = 

I 
If we, assume a(2) = x  ti , where x is a function of 

u only, equation (30) simplifies to 

(1 - u2)½ 

This has a solution x = arccos(-u) < 0. 

With this solution for A(u) we find that 

(28) 

(29) 

(30) 

(31) 

2 M() = exp (ix(X)/()½). (32) 
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This M is obviously also invariant under the redefinition (21) of 

the preferred fields. 

M can be calculated explicitly for the representations (½,0) and 

(0,½) (Appendix 4c). We obtain the following result: 

1  ½ 
M= l i  

- u) (s.c)) 

where the S are the Pauli matrices. 

Similarly we get for the representations (1,0) and (0,1) 

M = (1 (X.) +2U (x.), 

where X  is the matrix with coefficients (X 

c) Relation Between M and (V_)kh(+)r1 

-ic abc. 

(33) 

(34) 

Ifthe linearized version of the fields 'i' is transformed according 

to the (j, fl-representation of G, then there exists a relation between 

the matrix M and these functions which were constructed in section a) 

from the preferred fields to represent the group G linearly. By ln,m> 

we shall denote the base vectors of the (i, j)-representation defined 

by the following properties: 

t3Jn,ni> = mn,m> and (t't)Jn,m> = n(n + 1)In,m>. 

As before, the t are matrices representing the operators Vin 

the (j, fl-representation, n may be any number from the series 0, 11 1, 

2, . .., 2j and m satisfies ImL n. 

We can prove (Ref. 17) that the matrix elements <O,OIM()ln,m> 

are exactly (up to a constant factor) these functions constructed in 

section a) to form the (j, j)-representation which are characterized by 

the same quantum nunibers'n and m. 
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For example in the case of the (½,½) representation we have 

M() = exp iA  
2( 2) 

(s) exp 
½ 2(e) 

(S. 
(35) 

(compare with equation (32), S = 2X are Pauli matrices), which yields 

(see Appendix 4d) <O,O!MIO,O> = -u and <O,OIMI1,+l> = 

which are the functions of section a) obtained from v0(u) = -u (up to 

the constant factors appearing in the last three expressions) as can 

be seen from equations (11), (16) and (17) and from 

(V1 - iV2) . = _2!. =-2- (by definition of E and 

(V. - iv ) —s- = ..L 
2 

Note: The Standard Form of f()  

In the previous chapter a particular kind of nonlinear realization 

was constructed. The results of the present chapter are more general 

(but restricted to SU(2) x SU(2)) because the function f( 2) describing 

the transformation laws is completely arbitrary. (Physically no generality 

is'gained by this freedom to choose f() as was discussed in Chapter II). 

It would be interesting to know what the function f( 2) would have 

to be to give the special case of Chapter II. After some calculation 

the answer turns out to be (Ref. 17) 

f( 2) = . ( 2)½ cot ( 2)½ 

The special kind of transformation implied by this special function 

f can always be obtained from a general function f if we redefine the 

preferred fields as 

withx defined in (31). a a 
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This equation implies thatA = (: 2)½, and since A is invariant 

under such a redefinition of the preferred fields, we can rewrite 

equation (32) in terms of the new fields as 

M(ck) = exp (_iX.*) 

d) Lay'angians. 

.In this section we shall more or less quote Ref. 17 to indicate 

possible physical applications of thetheory of nonlinear realizations. 

In the Introduction we mentioned brief ly the symmetry breaking 

terms in Lagrangians and now we are going to construct them explicitly, 

For a term which remains invariant under the diagonal subgroup H 

but Which breaks the symmetry of a Lagrargian under the whole group G 

we can naturally take the isoscalar function h0 (from section a). 

We can expand it as a power series in and it give's afte some easy 

manipulations. . 

8j(j+1)u, 

1 2 2 + m2 (4i+1)_3 (u 

4u 
U0 

II ) 

( 2)2 + 

(36) 

where the coefficient of 2 has been called __I m2 and where u is the 

function of E2 defined in (16) and where and u mean the first and 

second-derivative of Vat the point 2 = 0. The first term of (36) 

is a constant and has no physical significance. The second term is 

called a mass term because it indicates the mass of the particles g. 

It gives, us the reason for adding such a symmetry breaker to the 

Lagrangian, which would otherwise describe massless particles only 

•(see expression 39). The third term of (36) will contri.bute to the 

interaction 1erm of the whole Lagrangian. 

The next term of the Lagrangian should be invariant under the 

whole group (it is the basic term not breaking the SU(2) x SU(2) 

symmetry) and it should contain the space-time derivatives of 
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(if we consider the preferred fields only). Since we know that 

Va a 1i NIOO> = taaMJO ,O> and Aaa 11 MJO,O> = -Xaa 11 MJO,O> (37) 

(from equation 26), we can conclude that <O,OIM+:h1MIO,O> 

provides an expression with the desired properties. It can be expanded 

as a power series again 

U" - (u')2 
g<0,0 19 4u 

2 

(38) 

where g is a number which makes the coefficient of equal to 

- j- (to get the so called kinematic term - -- (•')), where u and 

have thesame meaning as before and Where (•) and are11 

the usual scalar products. Equation (38) (as well as 36) is correct 

up to the -fourth order of . 

Collecting the right hand sides of equations (36) and(38), we 

get for the total Lagrangian 

.im22 - l(t) + + 4j(j+l)-3)m2(2)2 + 

(39) 

+ 2(1) 2( 2) j22 1(P) + 

where ôL, is the interaction part. In equation (39) we omitted 

the constant term of equation. (36) as well as another term proportional 

to .0 (because it is also proportional to the four-divergence of 

* ,+ 
means the hermitian conjugate of a M. 
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and therefore does not contribute to the space-time integral 

of). 

We shall add one more note concerning the weak currents. 

Experimental evidence indicates that the weak strangeness conser-

ving current changes the third component of the isospin by 1. This, 

together with our sign conventions for the currents, implies that the 

weak strangeness current i's transformed according to the (1,0)-rep-

resentation of the group G. We can check that the following expression 

transforms that way; furthermore, it is obviously a four" vector in 

space-time 

J G<O,OJM.(t +' X)MJOa 11 'O> G 4j(j+l) 22 (Cxa) a + 

+f 
11  a 11 . 

S6 it can serve as an expression for the weak strangeness conserving 

current (here G is a numerical constant and ix is the usual vector 

product). 

Similarly we know from experiment that the weak strangeness 

violating current changes the third component of the isospin by 

and must transform according to the (½,O)-representation of the group 

G. To construct such an expression we take some additional fields w 

-associated with the K-mesons) which transform under the diagonal 

subgroup H according to the usual 2-dimensional representation (isospin 

= ). Then we need the matrix M() in the (½,O)-, (O,½)- and 

representation  of the group G (we shall denote these by M(½,O), 

• M(O,½) and M(½,½) respectively). Now Ref. 17 suggests two expressions 

for the weak strangeness violating current, which can be shown to have 

the desired properties and which can be expanded in a power series. 
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These expressions are 

(1) = = - + k- ((s)) + ()2 + 
'11 4f02 

2 
+   ... and. 

8f 
0 

(2) = jTMT(o½)$ a M(½,½)IO,O> - (s.a )w + 
11  (2)½f0 11 

+ 1  0 (s.)(S.a) -I. 
2(2)½f 

where the S's are the Pauli matrices, f0 is the value of the function f 

at = 0 and T T and MT are the transposed matrices '1'and M respectively. 



CHAPTER V 

THE CONFORMAL GROUP 

a) Definition and notation  

The conformal group can be characterized as the set of all point 

transformations of Minkowski space which map a space-time vector x into 

another space-time vector x' such that infinitesimal null-vectors dx 

remain null vectors.* In other words, dx 11 dx = 0 implies dx'(dx') = 0, 

where the metric is the Lorentz metric g" = (+1, -1, -1, -1) (Ref. 23). 

These transformations consist of the Poincar6 group transformations 

'plus the so-called special conformal transformations -depending on four 

parameters and defined by 

X X Xt 

1- -->i•+ (x1)2 
x x 

plus the dilatations depending on one parameter a and defined by 

x ea = 

1I '11 . 

where x2 and (x')2 denote the Lorehtz-invariant scalar-products of 

(1) 

(2) 

x and x with themselves, both formed, of course, with the same 
11 11 

'metric g'as above (Ref. 23). 

We shall show in this section that the conformal group is equiv-

alent to  group of linear transformations in a six-dimensional' space 

preserving the following metric: ' 

* 

We shall express most relations in terms of the quantities 

xE(t,-'x) instead of x'E(t,) for our convenience only. All relevant 

equations can be rewritten in terms of x1' easily (by raising indices). 
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gAB = (+1, l -1, -.1, -1, +1), (3) 

where the indices A and B run through the numbers 0, 1, 2, 3, 5 and 

6 (Ref. 20)'. Such a group will be called 0(4,2). To be more precise, 

if A is an element of 0(4,2) (A is a (six by six)-dimensional matrix) * 

which maps a six-vector 1A into 71Avia = AAnB we must have 

BAC D AA g A = BD g 9 (4) 

'where summation over indices B and C is understood. -Equation (4) can 

also be written shortly as ATgA = g, where AT is the transpose of the 

matrix A. . 

Suppose' we have 'a representation of the group 0(4,2) given by 

matrices R. A matrix representing an element A A B = oAB + C,4 (where 

isa set of 36 infinitesimally small numbers) can be written in 

the form 

R(A) = ii + .. CJ • (5) 

where is a unit matrix and where J is  set of thirty-six matrices 

generating the representation (they are of the same dimension as land 

just fifteen of them are linearly independent). We get .a simila-

expressionfor another element A' =f+ C ' (in general c' is different 

from .e and 41is here the (six by six)-unit matrix) of the group 0(4,2'). 

Using equation () gives us.(up.to the first order of e and -e,') 

* It is difficult to keep the previously introduced notation 
throughout. this chapter because of the existing (and overlapping) 
standard notations. A general element of the group 0(4,2) (the 
conformal group) will be called A'(instead of the old g) and the 
letter g will be saved for the metric tensor. 
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R(A)(+A JBA)Rl(A) = R(A)R(At)R(A l) = R(A(+ c')A) = 

i A 1 B EDC =(If l DC)J + A,c C A 

A 1 BDC 
ABAD J 

(6) 

where we used the relation A = gATg and the usual practice of raising 

and lowering indices. 

Comparing the first and the last expression of (6) we can cancel 

the unit matrix and the factor j-. In order to cancel out the common 

factor EA (which is antisymmetric in A and B as follows from equation 

(4)) we have to antisymmetrize its coefficients on both sides. We can 

do this without loss of generality bychoosing JAB to be antisymmetric 

in the indices A and B. Then equation (6) reads 

R(A)JBAR_l(A) A B DC 
= AC AD 

This can be, rewritten once more as 

CD BA DC cA C )( B B DC 
- CcJ )j, ( k CCDJ ) ( cc  + D )J 

'which (after cancelling some terms) yields the -result 

DC ABC BDA DABC CB DA . 
k CcD[J, BA = CC + CD = CCD9 J +EDCR J 

(7) 

In order to cancel CCD in this equation we have to irite its 

coefficients as a sum of symetric and antisymmetric terms in C, D. 

The symmetric terms do not contribute, because CCD is antisymmetric, and 

we are left with the antisymmetric coefficients . 
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CAB , CDj =gADjBC gACjBD + gBCJAD BD AC 19 

which is the final result of this calculation and defines the Lie 

(8) 

algebra -of the 0(4,2) group. 

It can be checked easily, that the following matrices (Ref, 20) 

provide a representation of this algebra: 

(JAB ) D . ABD -  B g AD 
C = 1(C g c j. 

(9) 

These matrices represent the generators in the six-dimensional 

self-representation of the group 0(4,2). (Here A,B are indices 

labelling the matrix and C,D are the usual row and column indices). 

Similarly we get (lowering the indices A,B) 

" .,, AB' ., C 0 - 0 BC°A 0 
-  

In Appendix 5a) there is an explicit list of these matrices, 

which is convenient to have for any practical calculation. 

To make the connection with the conformal group we redefine these 

generators into a set 

P=J 5 +J K =J5 -J and D=J 56, 
31 p, p p 6P 

(10) 

(11) 

where 31 runs from 0 to 3. For A3 and B<3 we keep J AB unchanged 

except for denoting these indices by Greek letters. 

The structure equations of the Lie algebra of 0(4,2) in terms.of 

these new generators become (Using equation (8)) 

tJc JijvJ i(g J - g J•p + g J - g J cv p cv ap av 

EP ,P ] =.0 [K,KJ 0 and tJ ,D 
p V 11 V 

(12a) 

(12b) 
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EP D] = -iP , EK,DJ = ik' and Ek''P) = 21(J - gD) (12c) 
11 31 11 11 11 PV JIV 

[P c ,J pv all V J = i(g P - g ccv P p cc iiv ) and [K ,J '] = i(c cqi v . K - g ccv k" p ). (12d) 

This is just the Lie algebra of the conformal group (Ref. 23), 

where J are the generators of the Lorentz transformations, P are 
1-" p 

the generators of the translations, k''are the generators of the special 

conformal transformations and D is the generator of the dilatations. 

Now we can show quite easily (Appendix Sb) using the generators. in 

the self-representation that 

e1 n = 

e1(13 < n, = 

Ti 11  + cc(n 5 + 

+ (cc'n) + 1 cc2 (15 + 

12 
116 (ccn) - cc '(115 + 

nd 

115 + (•1) + I2( - 16) 

6 ' + 1 - 

(iciD) ' e r = I n5.cosh ci + sinh ci 

\ n5Slflh a + cosh ci 

where ri is a six-vector, cc and are two sets of four real parameters 

each, (cc.P), (cc'ri) and (ori) mean the usual scalar product in 

/ 

(13a) 

(13b) 

(13c) 
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four dimensions (for example (an) ct0n0- cn1 - - and 

is a real parameter. 

Because of the isometrism between 0(4,2) and the conformal 

group it must be possible to redefine the six-vector ii to get four 

components which would, transform like a space-time vector, and two 

additional components say k and A. One possibility is the following 

(Ref. 20): 

k - 15 +• fl and x = 15 • 

It can be shown easily (using equations (13)) that the 

really have the correct transformation'properties under the Poincar 

subgroup and under dilatations. To obtain also agreement with the 

transformation property,(l), we have to restrict the Ti 'S to lie on 

the hyperquadratic , 

11 2 fl00 ll 22 - 1313 T5fl5 + n6T16 = 0 

(14) 

(15) 

This only' means we loose one of our independent parameters, say 

A, which is equal to kx2. ' 

With the restriction (15), the expression (14) for xi" can be, 

interpreted as the definition of homogeneous coordinates for space-time. 

In another connection these homogeneous coordinates serve the usual 

purpose of distinguishing between various infinite points of space-time. 

This is 'important because the conformal group maps finite points into 

infinity and vice versa. Since it is also a one-to-one map, we must 

distinguish between different points at infinity. 

We can now write  

1 
1_t_  1.1'•  
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and, using equation (13b), verify the transformation law (1), 

For a later purpose we define an operator aAB. If f() is 

a scalar function of n, we can calculate an infinitesimal change of 

this function under an element A of the group 0(4,2), With 

A A B = a A B + CAB the change of f can be expressed as 

af,, af B AB 
= f(') •- f(n) = A = DnA T1AA ,B = 

where the lat step is a definition of the operator a. 

Since e AB is antisymmetric in the indices A,B, we antis,ymmetrize its 

coefficients by writing 

lAB, lAB 
= BA - nAaB)f(n) = - E 

The last step is a definition of the operator aAB. 

This operator can easily be rewritten in terms of the new set 

of independent variables x, k and X; 

a = x a - xa 
31k) 3JV V 1 

a •+a,. =. +2xk a 
531 031 11 11 

- A a - 2x ((x.a) - k 
511 — 6P p p a 

a56  + k ak ax 

(16) 

(17) 

If we use here condition (15) for the six-vector ii (this condition 

is invariant under the 0(4,2) group) and if we redefine the function 

f() as follows: 
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f() 3f (n) - kx2) f 

(such a redefinition does not change the function for' any i satisfying 

condition (15) but makes its first derivative with respect to x vanish 

there for these ii's), we can rewrite equation (17) (Ref. 20) as 

=.x a -x 
11v 31\) Vu 

- 511 631 31 

56 -(x.) + k h' 

x.) 

(18) 

The standard way of dealing with is to assume that f(n) is 

a homogeneous function of k of degree Z, which implies that it satis-

fies Euler's equation, 

A general function f() can be written as a sum of such homogeneous 

functions of different degrees t. 

b) Transformation of the Preferred Fields  

For constructing a nonlinear realization of the preferred fields 

we' use the' standard iiiethod of the second chapter. It does not guarantee 

generality of our results, i.e., there might be different physically 

inequivalent nonlinear realizations of this group since the conformal 

group is noncompact (see Chapters I and II), but it can be shown 

(Ref. 5) that in the case of the conformal 'group this method does 
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* 
provide the most general results. Some attempts to generalize the 

results to all noncompactgroups have been made in Refs. 12, 13, but 

the arguments are not quite clear. Further work remains to be done 

to give an exhausting answer to this question;' 

In the case of the conformal group we choose as subgroup H the 

homogeneous Lorentz subgroup because then the commutation relations 

are of the required form discussed in connection with expression (5) 

in Chapter If. Thus we are left with nine preferred fields. Since 

four of them turn out to'transform just like the four coordinates 

of the space-time vector we will interpret them as x . Then there are 

five preferred fields left. 

Because,any.group e1emen1,A can be written uniquely in the form 

A = e X 

(Ref. 7) (splitting the preferred fields into three parts is unessential 

since the decomposition is still unique), we can define a transformation 

of the preferred fields under a group element A0 by 

A0e X e <') = ex t " ei'j' _ia (19) 

where h is an element of H uniquely determined by (19). 

To calculate the transformation laws of,the preferred fields 

explicitly is rather tricky, Since the 6-dimensional self-representation 

* 
In Ref. 5 the author starts "by defining the most general 

commutators between the preferred fi el ds and .the generators 'of the 
group. The Jacobi identities are then used to derive differential 
equations for the functions introduced in the commutators. Explicit 
field transformations are shown to define transformation laws for these 
functions and these laws are then used to show that the commutators 
are equivalent to the very simple form,... of Ref 20." 
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of the conformal group (discussed above) is well-known and since a 

number of relations are probably simplest in this representation, we 

shall express all group elements and generators in the following in 

this representation. Then we notice that 

e4Y11 e_ 1d'D e ix p '  VP e'1 h1 

implies that the last two columns of the (6x6)-matrix 

N ei4 pk. e 1 

(20) 

(21) 

transform as two ordinary six-vectors. This is so because in our 

representation the matrix h 1 is obviously in fully reduced block form 

containing a four-dimensional part, effecting the homogeneous Lorentz 

transformation on the first four components of a 6-vector, and a two-, 

dimensional unit matrix in the indices 5,6. This implies that the 

•matrix Mh 1 has the same last two columns as N, and therefore A0Mh 1 

has as its last two columns the image of the last two columns under A0. 

Furthermore, the transformation of the last two columns of the 

matrix N must determine the transformation laws of the preferred fields 

uniquely (because to any transformation of the preferred fields which 

transforms the last two columns of N properly we can always find a 

matrix h satisfying relation (19), but we also know that such a trans-

formation of the preferred fields (satisfying relation (19)) must 

be unique).  

Second we assume that the quantities x transform like components 

of the space-time vector; and using this trial transformation law of 

x, we' calculate the transformation laws for -4 and a from equation 

(19) as we know from the last paragraph. If this ,p' roblem has a 
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solution, it must be the very unique solution of the whole task, and 

then we know that the assumption is the correct one. 

Thus, asusming the transformation properties of x as known, 

we have reduced our problem to calculating only ' and ' by using 

just the last two columns of the matrix equation (20) (which are equal 

to the last two columns of equation (19)). 

In the calculation that follows, it is more convenient (while 

completely equivalent) to use the difference and the sum of the last 

two columns of M instead of using the last two columns themselves. 

The difference and the sum are 

2(4) + x4)2)e°i \ / 2xe 
B = (1 + 2(x•4)) + x 2 2 + 4)2 )e and S 

- (1 + 2(x4)) + x24)2 

respectively, as can be seen in Appendix 5c). 

We shall consider the transformation of the preferred fields 

in three separate cases: 

I. under the Poincar subgroup, 

II., under the special conformal subgroup, 

III. under the dilatatation subgroup. 

(1 +x2)e 

(1.- x 2 ) e-a 

(22) 

Here wet consider transformations under the Poincar6 subgroup. Let 

= 

where A is a homogeneous Lorentz transformation. 

According to the previous notes we let x transform like the space-time 
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vector and BA and SA as six-vectors. This implies that BB and 
5 6 

S 
  also transform like space-time vectoi's while B5+B6 .and S5+S 
5 6 

are conserved (check with equation 13a). All we have to show now is. 

the consistency of these transformations. We can reformulate them 

once more by saying that 

B - x (B5+B6) 24e and S - x (5P 11 11 5+S6) 0 
11 11 

transform like four-vectors while 

5 and e 

transform like scalars 'under an element of the Poincar6 subgroup. 

This can be satisfied easily by letting transform as a four-

vector and-a as a scalar. 

We summarize thësetransformation propertes in the following: 

and x' = A X'+ a , 
U 1.IV p p p V 

where An" is the space-time part of the-matrix A. 

Last we calculate 

h = (M' 1AM= e iaD e_Ap"v1 epv ep 0  

ix pP j. -laD 
p e, e 

where we used 

= e Ap X P 11 v ,A, Ae' e= e pv 1 crD VA and Ae 

(23) 

DA. 
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This calculation can be repeated step by step even if and a are 

functions,of x. We only have to modify (23) to 

A "4) (x), &(x') = a(x) and x'  A "x + c . (24) 
.I V 11 1IV 1.1 

We notice that the transformations are linear if A0cH as we 

would have expected. 

i'k' II. Now, let A0 = e 11 be a special, conformal transformation. 

We want 

S x 
and _JL 

B5-B6 S5-S6 x2 

to transform in the fashion of equation (1) ( the requirement 82=S2=O 

is satisfied), and B5-B6 and S5-S6 to be conserved under such a trans-

formation (check with equation 13b). This implies that the following 

quantities are conserved: 

B -
x x 

- (B -B) 4)5 6 e - (1 + 2( x.4) )) ea 

(1 + 2(x.4)) + x24)2)e 

x 
S - ___V_ ' (S5  0 

31 

and S5-S6 = x2  

These conditions are consistent with each other (the second 

expression divided by the first one squared gives us the last one). 

They can be satisfied by the following transformations: 
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x +x 2 0 
Ii  

11  1 + 2(x) + 

which is equivalent to equation (1), 

a' = a -n(l + 2(x.) + x22 ), 

which follows from the last condition, and 

= (1 + 2(x'13) + + ((.1 + 2(x'))(1 + 2(x.)) - 

- x2(•)) -. (2(.) + + 2(x)))x, 

which can be checked after some tedious calculations. 

For the matrix h we obtain (up to the first order in 3) 

h =IL+ 2ix'1 J31 •- 

as is shown in Appendix 5d). 

(25a) 

(25b) 

III. IF A0 = ixD is a. dilatation we must require that (31+x312)e cr 

and S x e are conserved under such a transformation while the 
31 31 

quantities B5+B6 ea and S5+S6 e are multiplied by ea (check 

with equation 13c). This can be satisfied simultaneously by 

x = x e, ' = ex and a' = a -• X 
31 11 11 1.1 

as can be seen easily . These relations imply that 

=(M' 1A0M e' e 31 -i ke -ix Pe iAD ix P31 ep e e p 

eij' 31 = 
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because e" e e p -e. ix P11 =e p ix PM.eX e and lAD i4 k'1 i p e k'e i2D 

as follows by interpreting these expressions as elements of the conformal 

group acting on the space-time vector. 

c) Transformation of Other Fields  

Let us assume we have a set of :fields T which transform linearly 

under the conformal group 

where A is an element of the conformal group 

and R is a matrix representing it. 

In order to turn T into a set of fields which transform in the 

standard nonlinear fashion, we just redefine it as follows: 

= R( e1 D e1p e)(n) = R(W1)(n) 

transforming Y(n) •by A gives (as already shoWn in Chapter II) 

= R(h)R(M 1)R(A 1)R(A)(n). R(h)(), 

(26) 

(27) 

(28) 

which follows from equations (20) and (26). Here h = h(A,M) is the 

element of the homogeneous Lorentz subgroup which has been calculated 

in the previous section. . . 

If i() is a homogeneous function of ii of degree z ( i.e., 

(x) = = k'(), we can interpret equation 28) as the. trans-

formation law of.fields. defined on space-time. We shall.work this out 

explicitly for transformations of the form A =_6 + CAB, where 

is a set, of infinitesimally small numbers. 
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In that case we can write equation (28) as 

= (1L+ w R(J))(n), (29) 
.Ifl) 

where w is a set of numbers corresponding to h ' = cs + U). 
]IV 11 p p 

Now-we can perform the following manipulations: 

= '(,) = (k')'(') =(f) (1U) R(J))(x) = 2 v 

i+ !w R(J))(x), 
2 pv 

where 5k is an infinitesimal increase of k. 

This finally yields (since 'i"(x') = 11 = 

= '(x)+6x (x) up to the first order in infinitesimals) 1 

6T(X) =i'(x) - 'Y(x) = ''(x') - xa'(x) - '1(x) 

= -(ox all + - w R(J.))'i'(x) 
P 2 pv 

Having a quick look into the previous section gives us 

immediately 

I. for the Poincarg subgroup, where ok = 0, ox =p p + c and 
v ii 

h=Ov± v 
11 p 

6T(x) = - (€'x + a )() + 
P k 

II. , for the special conformal subgroup, where ok = 2(.n)from 

equation (13b), ox = x2 - 2x (x.3) and h =..+ -x"J11 P 11 , 

(30) 

(32) 

= (2(x)x-x )'i'(x) (33) 
P ]IV 
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III. and for the dilatation subgroup, where Ok = Ak (from equation 

13c), ox = -x and h V V 51 
1.1 U 1.' 1 

= A(x P 9P - l)v(x). (34) 

These formulas are handy when calculating currents from a 

Lagrangian density L for the preferred and other fields. 

The general expression for a current associated with a symmetry 

transformation of a Lagrangian according to Gell-Mann and Le'vy is 

given by 

- , i(x) = A ST +   + (a) a) au  + ox L. (35) 

For inhomogeneous Lorentz transformations the currents obtained 

from expression (35) are the energy-momentum and angular momentum and. 

boost tensors. 

Special conformal transformations .and dilatations give us new 

currents, namely 

and 

• (kv) -  .L  (2x (x.)- x - 2tx + 2iR(J ))(x) + 
V V cv 

+   ((2xV(x. ) - x2+ 2xV) X_2 
( 11 x) 

L ((2x (x 
-V 

V 

__X2 )cr— 2x V ) + (x2g 1tV -2x 31 V x )L V  

• (D)_ L DL  ___ 

- - ((x.)-(x) + ((x')+l) + 

- x 11 L respectively. 
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d) Covariant Derivatives  

To construct covariant derivaties of the preferred fields and 

other fields we start with the adjoint representation of the conformal 

group. It is the representation, according to which the operator a AB 

defined in Section a) is transformed (Ref. 20). If we apply the operator 

AB to arbitrary linearly transformed fields T (see equation 26) we 

get an expression with complicated transformation properties. 

Using the general ideas of Chapter II we can define a new operator 

by 

(36) 

where the matrices R are defined by equation (26) and the matrix M 

by equation (21). 

That DAB indeed has the standard transformation properties (for 

each of its indices separately) under an element A can be shown in the, 

following way: 

(DAB)' = M A (h -1 -1 C 

= hAChBDR(h)DCDdi, 

l)BDRthM .1A 1 )AcEADF F(R(A)1) 

(37) 

where we have used equations (20) and (21), the known transformation 

properties of aAB (according to' the adjoint representation) and the 

assumption that the parameters of A are space-time independent. 
Equation (36) can be written in a more explicit form by noticing 

that (Ref. 20) S 

= k(eixlt)AC( ix P" ) D( + 
e B 11 (38)' 
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This is proved in Appendix 5e). 

With the help of this relation we obtain 

1 ix. P1 C(M.lix"P) D( P + 20 )CD' (39) DAB= R(M 1)(Tvi e B 

iD i4 C(k -iD 
e' ), e e DB 

• (k' +,22,D) ctJi1= 2 11 11 19 R(M_l)(Iea( + 2 )+2zD)ABi/, 

where we have used the general relation ABA = (A (valid for any 

element of 0(4,2)), equation (21) and the formulas e1 D V 11 e_1cD = 

and e 1 p De' ii p = D + 

The expression (ka( + 2) + 2D)AB can be evaluated using 

the explicit matrices of Appendix 5a) with the final reult for DABI' 

D =O 
1-1v 

(D5 + D6 )' = R 

(D5 = 0 

D5611 

11 + 2p,4 11 

(40) 

F - 

The covariant derivaties we are looking for must be contained 

in the expressiOn for (D5" + D611 ); which transforms (using' equation 

37) according to  

( + D6 YI' )h"R(h)(D5 + D6 )Y s' ' (41) 
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The expression for CD5" + D6 ) can be rewritten using the 

standard fields 'y (defined by equation 28) as 

(D5 + D6)1 = R(M 1)e(' + 2R(M) = e cr ± 21•) + 
11 V 11 

+ R(M)eR(M). (42) 

The matrix R(1vi1)R(iv1) can.be expressed as a linear 'combination 

of the generators of the conformal group (in the corresponding repr-

esentation) and then separated into two parts, the first part being 

a linear combination of the generators of the subgroup H only and the 

second part being a linear combination Of, the remaining generators. 

We know from the general discussion of Chapter II that the second 

part (multiplied by ea) must be covarainton its own and that it gives 

us the covariant derivatives of the preferred fields, while the first 

part (multiplied by e) must be added to the term e( 11 + 24 (of 

expression (42,)) to complete the covariant derivative of T. 

It is easy to separate the'matrixR(Ni')R(M) into these two 

parts in the self representation. In this representation we can 

separate the part corresporiding'to H from the rest simply by separating 

the space-time part of the matrix M a M from the last two columns of 

This yields (after multiplying by e) 

(M-1 ea M) Ap 2(+ - ) -2ie(J ) 
11 XP, PP A PV XP 'i  

- 

B = I ea(a ci + 24 P) 
TI 11 

+ 2) (43) 
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2 
]IV 

S = 
11 

+ 2) 

• Details are provided in Appendix 5f). (B and S were defined 

in 22). 

The final expressions for the covariant derivatives are then 

D 11 a = e' (a p ci + 2 11 li ), 0 qv = e2ci( a 11  + g 2 - 2,), 

and D 11 ' = e' (,a + 29.4 (44) 

These have (by construction) the desired transformation properties 

Dci > h 11 "D,ci D ? 

and D i' )h "R(h)D T. (45) 
p 11 P 

If we want to construct Lagrangians which in .addition to being 

conformally invariant are also invariant under the usual gauge trans-

formations of the second kind, the covariant derivatives will have to 

be further modified. How this is to be done must be left for a future 

investigation. This is perhaps an interesting problem because both, 

the gauge transformations of the second kind and the special conformal 

transformations, are x'-dependent transformations, to that there may 

bean interplay between the preferred fields and the vector field 

v which must be introduced to achieve gauge invariance. 
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APPENDIX 3a 

We would like to evaluate 

e" ' e4(Ai A(A.)•(A.)A. + 

+ A(A- )2 +(A'.)A(A•) + ('Ai)2A +  

'Each -fraction-in the parentheses can be written as a sumof terms 

with a decreasing number of commutators and a corresponding numerical 

coefficient equal to 

(k+l)1(n-k-l)! 

where ni is the denomination of the fraction 

and k<n is the number of commutators in that term. To give an 

example we consider the foirth fraction. 

(A(A)3 + (A')A.(Ae) 2 + .(A)2A(Ik) + (A-) 3A) = 

j- ([A(A.)](A.)2 + + 3(A•)2EA(A.)J + 

+ (A-) 3A1) = (C[Aj(Aø)J,(A.)](Ae) + 3(A . )t[A ,(A. )],(A.)] + 

+ 4(A.) 3A) = -j- ([C[A.,(Ae) (A')J(A.)J + 

+ + 6(A')2tA(A.)] + 4(A.)3A)= 

+ 3_ (A. )EtA,(A.)J,(A.)J + 
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+ 2!2! •- (A.)3A3.1 . 

When all terms on the right hand side of equation (1) have been 

expanded as in this example, we collect all terms with the same number 

k of commutators and sum them up. The resulting coefficients of such 

multicommutator terms are clearly 

which yields for the explicit result 

e1 ae' - [A(A.)] + 
.991 i A+  2! 3! + 

  + ...] = 2! + 

+ kflf li m kfki il f ljmnf nm rA r + = 

31 41 

x.kx 1 m i x. x)x k j 
'Si3 + 3! + 1 k  m  + ...)A -----+  k +  

=a i jAj - pijvj, 

where f ij k are the structure coefficients, 

= and where the last step is just a definition of the 

matrices a and p. 
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APPENDIX 3b 

We can show 

= V k Av +  kl[A ,[Ak,ViJ 
21 

kim 
cAm,[Ai,rAk,Vi]J] + ... = - • 

- 3! 

. S + kfjlf mA kf ki 3l r ii f m 'mr A + ••• = 

2! 3! 

k j k 1 mj 

= (3 • 2! 4! m  + )V, - (x 3 + 

xi  + (x43 +  31 kli + 

and similarly (by exchanging A and V in the result) we obtain 

A k[Ak,AjJ + 3! + ... = 

kj ku 

= (.J + 12!  + ...)A - (x3 +  1 3! + ...)v., 

' = where x1  ki 
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APPENDIX 3c 

We calculate 

(a p p p + f(V°v ± Aa ))(3 p + f(V'v, V + A'a ))- ( V V V + f(V.v + A.a ))o 

+ f(V.v + A'a )) = f(V. v ) + f(A. a ) - f(V. v ) - 
p p p jJV jl\) V 11 

- f(A.a a ) + f2v iv J[V,V] + f 2 v a3[VAj] + f2a 1a 1[A,A]+ 
VP 1 V 

± f2a p iv 1 •J V [A.,V. 1 J = fV.( 11 vV 1 - a v 11 i +' ffkj 1(v kvV  i + a 11 kaV )) + 

+ fA1(a 1 - +ffk.1(v kai + 

• which is equal to 

fV.F + fA.r 1 
1pv 

by a definition of the tensors F and 



72 

APPENDIX 3d 

Proving the equivalence of formulas (21) and (22) of Chapter III 

requires a rather lengthy calculation and we can give just a few steps 

to guide an interested reader. The covariant derivaties of the fields 
0 0 

v and a are 

v 1 v 1 -.f • l -fv )v 3 D 
• 0 a k 0 

pv kJ 1.! ') 

and D a = a - fv )a 
0 1 • 0 1 • (i V 0 ' 
pv pi 'kj i v 

respectively. 

These expressions follow from equations (17) and (18b) of Chapter 

III, where we use 

R'j(Vk) = kj' 

(the adjoint representation ofthe subgroup H). 

For the covariant derivatives of the preferred fields we have 

(using equation (18a) and the definition of a) 

= + fa. 1. 

We insert these derivatives into equations (21) and then replace. 

v by (v ' cosh x.3 - a ' sinh .x.3) and a 3 by (a ' cosh x.3 - v 
31 11 1 31 1 p p 1 

sinh x 3). The biggest difficulty is in calculating the following 

terms: 

3.1 
(sinh x. 1 31 3) ' and a (cosh x3). 
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They can be evaluated by a method of Appendix 3a). We shall quote 

the final result only 

(sinh .x. 3) = f1k3 11  k osxio)mll m - sinhx1 m i m 
3-1 

and (cosh x3) = flk3 (sinh (xito)amla 11 9 m - cosh(xik )Pm lm ), 

with the matrices a and p defined in Appendix 3a). 

Collecting all terms in the expression (22a), we obtain 

finally 

G ' = ( v v + f. i(v iv k + a a k)) cosh x. - 

PV pp vp jk p p v 1 

- a - a + 3 ff.k1(a 31 iv V k + V p a V k) sinh x = 

= F cosh x. 3 - T i sinh x.', 
]IV 1 ]IV 1 

which is equation (21a). 

can be evaluated similarly. 



74 

APPENDIX 4a 

To prove equation (9) of Chapter IV we apply the operator Ac to 

equation (8). We get: 

AcAa?b= 1XSabf2d +a adEbg+ og + 

• i)(scdf, + -(2ff'côab + acb fg + 6 bca fg 2abc" 

•fg' + 2ôajc29f' + + 

as well as AaAcb simply by exchanging the indices a and c. Now we 

can calculate 

[AcAa]b - -(2ff( ccsab - a cb ) + C a'cb Yab + 

+gf'(yab acb' 

which should be equal to 

iE cad"db = c6ab aôcb 

Comparing both results gives us 

2ff' +2f'g 2 -fg+l =p 

which is equation (9). 
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APPENDIX 4b 

To calculate the function v of equation (24) we use a similar. 

method. First we calculate 

AaAb'Y = A Cbdeetd' = (2V'cebdeetd T + VEbdecS ectdY) 0 

-(-i)(6 ac  + ) + v g ac a c = (i)( 2V'f a• 

bde•e t d T + + Vfcbdatdhl! + V9 a• 

cbdetdY) V2cbdeetdE:akmmtk'P = (-i)(2v'f + 2vg 2 + 

+ bde + (_ 1)Vfcabdtd'Y + V2cbdeetdCakmCmtkY• 

We find AbAa1I by exchanging indices a and b, and combining these 

two expressions gives us 

[A,Ab]Y = (-i)(2vf + 2v'g 2 + bde badeetd T + 

+ (.-i )2Vfcabdtdv + 1V2cbdeecakflmEdkfltfl'J!• 

The last term of the right-4iapd side can be written as 

[1ta1tb]'1 should be equal to 1EabcVc1 = _1Cabctchf This equality 

• (where for we use the expression derived above) can be 

multiplied by lcabj and summed over a and b. This yields 
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(2v'f + 2vtg2 + vg)( 2t5 + 2vft + 

= t. 

Comparing coefficients of t i T and gives us 

(2v'f + 2v'g 2 + vg) 2 + 2vf 1 

and (2v'f + 2v'g 2 + vg) = v2 

Combining these two equations we get 

+ 2vf - 1 = 0 

which has the solution 

v- -   
f ± (f2 + 

This solution can be shown to satisfy both of the original equations 

as well. 
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APPENDIX 4c 

We want to calculate the matrix 

exp (?2)½ (S.)) 

where S are the Pauli's matrices. 

From the algebra of these matrices we know that 

(S.)2t< = (2)k and (S.)21 

where k is an integer number. 

This enables us to calculate 

exfl( _______ ix  ' ½ (s.c)) =(i + 2(x2) 

+ ... =( + 2' 

+ 1 Iix 3 + 1 

•1 1 L+-Ul, (s.c) 1-u 
2 

where x is defined by equation (31). 

cos 

( 

I ix 2 1 /  ix  
Ss) (2( 2)½/ 

4+ 

• 

i 

+ ( 2)½ ( (2 

(S-)sin 2 
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APPENDIX 4d 

We know from equation (35) 

(S., 1U(1 

1-U  
2 

i( 1-i 2) 

- i(i-u) 

193 

(1-u) 

Cy (I -U) J 

and from the Clebsh-Gordan coefficients for spin = ½ 

1 (®m - (01 (0) 11,0> = (2)½ 

and 11 0> ( 
We can write immediately 

- 1- <0,OIMIO,0> - u ( 
2 

2 13 2 

- (1-u) + + ci(f-u) - 2 

i 

+ (1 - 

2 2 -ui 

1 2  - 1-u 2 -  (1.u) - 1-u. 1+u _ 

2(lu)2 .2 a2(1-u) 2 2 1.- TT - -u, 
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<0,0 IM 11,1> 

<0,OIMI1 ,-1> 

= 1-u 

2(2)½ 

= •1-u 

2(2)½ 

i3 \(j)  l+iE 2 

a(1-u) 

i3 ( •)l12  
1 a(1-U) (1 

and finally 

i 2 i 3 •2 

<0,01M11,0> = - (l -u) + (1-u) = 

• 1-i 2 ' - 
(lu) 
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APPENDIX 5a 

Now we shall list the generators of the self-representation 

of the conformal group. They can be derived from formula (10) of 

Chapter V. 

(JAB )CD 
- .1 

'50 = 

.-1 

+1 . 

+1 . 
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353 - i. 

65 = 

10 

3O •= 

+1 

.-1 

-1 

1 

63 

20 = 

21 = 

1 

/ 
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J31 = I 
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APPENDIX 5b 

Using the explicit matrices of Appendix 5a we can calculate the 

following matrices: 

• +c + 
0 0 

• • • +c +l 

• • • +c +c2 

• • • + 3 +c 

+a c 0 2 3 

-ct0 +ct1 
a2 a2 

and 

iiD = 

= 

• • + o f30 

• • • l 

2 

• • • • + 3 _3 

o l 2 3 

2 



84 

where 

c•P a 0P0 - - 

and where - 

- 22 * 

From here on it is easy to calculate any power of these matrices (the third 

power of the. first two matrices is already the zero matrix and the third 

matrix squared consists of two blocks, one is the four-dimensional zero 

matrix and the other is the unit matrix multiplied by a2). It means 

we can easily calculate any power series expansion consisting of these 

matrices. Expanding the exponentials of equations (13) of Chapter V 

gives us the final results. 
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APPENDIX 5c 

We have already calculated the matrices and 

Then we find their product to be 

+x e +x 
11 '4 

M=e 1)ee' iaD =1 x"+'(l+x) (x.)e-i-cosh ci+ -(x.)e-sinh a— 

+ ea 2(1+x2)+ e 
C-

Summing the last two columns yields 

s= 

I 2x e 
TI 

(l+ 2)e 

while subtracting gives us 

2 
e 

._(xs) ea sinh a+ 

+ F2  

(x,) ea+cosh 

+ •- (l-x2)- - . 2(1x2) 

2 2 x -a x —a 
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2+x 11 2)ea 

Ci + 2(x.) + x 2 2 + 

-(1 + 2(x.) + x 2 2 - 
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APPENDIX Sd 

Here we want to evaluate the expression 

- 2ix)D)e'( - 2i(x•t3)(4•k) - i(.k) - 2i(x.)(f3.k) + 

+ 2i(x.k))e'(l ix2(.P) + 2j(x.)(x.P)(l + i()) 

eee 

up to the first order in 0. 

First we use the relation 

ej< e1 = !< ix'PikvJ XX  EP '[P 1<]] = k + 2xJ + 
V v 2! V 

+ 2x D + x 2 -'2(x'P)x 
V V V 

which enables us to write 

e< P)( k)e' (1) + 2xU Vj +2(x.)D + x2 (0-P) - 

• 31\) 

- 2(x'P)(x). 

Our original expression now reads 

e1aD (1 - 2i( x)D)e1(l - 2i(x.)(°k) - 2i(x)(.k) + 

+ 2i(.)(xk) + 2ixV +2j(x.)D)e1e1aD  

Exploying finally éJ e1' = J + VV - V and 
liv ljv 11  V 1 

eDe' = D + (.k) leaves us with 

v 
e° (1 - 2i(3.x)D)(l + 2ix1' J + 2i(x.)D)e -1cD = 1 + 2ix1' \)J 

VV B iiv' 
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APPENDIX 5e 

To prove, relation (38) of Chapter 5 we write (similarly as in Appendix 

5b) 

i(k + 2LD) B = 
P  

• • • +3 _3 

4-a 2 3 • 

0 1 2 "&3 +2z 

or, multiplying this by gBE  

.i(k' 1-I + 2ZD)AE 

Multiplying again by the matrix 

= 

x 
0 

2 

+1 x3 x3 

+x0 -x1 -x2 -x3 1+ X2 X2 

-x 0 +Xx 1 +x 2 +x 3-- i x2 1 x 
-- 
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from the left and by the matrix 

(e 1 P)) = 

from the right ( the operator a is not to be applied to this 

matrix) we obtain 

2-

x a -x a 
'IIV v1t 

l+x2 a - 

2 v 

-((x° a)-')x 

- l+x2 a + 
2 .t 

0 (X. 3)+'k 

l-x2 a ••+  
2 v 

1-I 

where the matrix can be seen equal to operator aAB (see equations (18)). 
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APPENDIX. 5f 

Finally we shall evaluate the expressions 

M, M-leaa B and M-eaa 11 S needed to calculate covariant 
11 P  

derivatives in Chapter V (see equations (43) of this Chapter). 

can be calculated easily by taking the matrix M from 

Appendix 5c) and transposing it with the proper change of signs 

(elements having one and only one of its row or column indices equal 

to 0 or 6 change sign, the other do not) gives us 

'X (l±x2) 
11 P J.z P 

Vea xv 2ea 

vea xV 2ea+ 

(x.) ea+cosh a+ 

- - e 

-x 11 + 11 (1.-x2) 

(x.)ea+sinh a-

ea - f- (l-x2 )+ f- e 

(x)ea+sinh a + (x.)ea+cosh a-

+ ea 4,2(1+ 2 X -a e 2(l+x2)- - e Ir 
- x)--e -- 

By applying the operator a to the matrix M we obtain 

/ 2g4,V + 2x 
+ a4,\)(l+X2) + 2x4,V 

4,V(1x2) - 2x4,) 

for the first four columns of M and 
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+ g + 2x (')e + 23c(4 + V Ày 

= 

and 

= 2xAe_cY( 1+x2)e 

\ 
for the difference and the sum of the last two columns of M respectively. 

Multiplying these last three expressions by the matrix M 1 from the 

left we get expressions (43) of Chapter V. 
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