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ABSTRACT

Recent studies of nonlinear realizations of groups are
reviewed. The general methods developed for the construction
of nonlinear realizations are demonstrated by a number of detailed
calculations. As examples groups are chosen which are of intefest
for physical applications. Physical consequences aﬁising if

‘these groups are realized nonlinearly are indicated.
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CHAPTER I
INTRODUCTION

In the preéenf theéié we are tryihg‘to give a syStematic‘reviewn

of some recent studies of nonlinear realizations of groups in physics.
. The deve]opment of nonlinear realization techn1ques is due to

~ the search for a better description of e1ementary particles and their
interactions. One of the,We11—established‘eXperimenta] facts is
invariance (at least abproximate) of intefactfons under Vérioué groups
of éymmetry. If we tryitd fit eiementary particies into multiplets
corresponding to 1inearﬁrepreséntations-of these groups'(e.g.“SU(S) X
SU(3)), we are Ted to predict too many particles (not all of them seem
to‘exist in nature)-. .Nonlinear realizations provide‘én elegant meéns
of solving this difficulty. | | |

| Histofica11y, the Tinear realizations (répresentatjons)iOf'groups
were tried first and the extra particles were gotten:rid of by imposing
.nonlinegr Eonstraints on .the %ie]ds aésociated with the particles.
Such é'treatment is already completely eﬁdiva]ent to employing a non-
linear realization whiqh is Tinear when restricted to a subgroup of
the whole group of symmetry (Ref. 19).

Furthermore, nonlinear realizations may be relevant in quantum‘-
fﬁeld theories with so-called spontaheous symmetry breaking,.ah effect
which reduﬁes thé symmetry of,fhé physical states (Refs , 19).
rSpontaneous‘symmétry breéking.ﬁs djscussed in the 11terature from
rvarious éng]es and will not be treated hefe. A few remarks concerning

the subject must suffice.



| Thé spontaneous breaking of symmetry means (from a mathematical
point of view) choosing a special set of solutions with less symmetry
than the equations to which the so]utions‘belong. This way of breaking
a symmetry is aftractive; for example, as a poésibility in which
cohfo?ma] symmetry might be realized in nature. It enables us to
introduce Lagrangiaﬁé invariant under the conformal gfoup‘which Tead
to physical solutions with a discrete spectrum of mass (corresponding
to the obsérVedrpértic]es).' If the conformal group were realized
linearly, we should expect tohobcerVe,a continuous mass spectrum of
elementary particles (Ref. 23), which c]ear]& is not the case.:

When a symmetry is:broken spontaheoucly, the vacuum state cannot
be invariant under the whole group of symmetry It is invariant under
.some subgroup only (the same subgroup under which the rea]1zat1on
becomes linear) (Refs. 18, 19). In such a theory there are many vacuum
states, one for each 1nequiva1ent representation of the algebra of
observables, so that one also speaks of a degenerate vacuum. These
various vacuum states differ by different admixtures of zero-mass
particles (Ref. 18). It turns out that Légrangians whichvare-invariant ,
under. a nonlinear transformatfon Taw of its fields usually also contain
some fields which correspond to mass]ess particles (Refs. 19);
however, fewer mass]ess part1c1es than would be required in case of a
11near transformat1on Taw of the f1e1ds By explicitly breaking the
symmetry by add1ng a small mass term to the Lagrangian; we obtain a
theory describing massive particles" chever, it may perhaps-not be
necessary to 1ntroduce such symmetry break1ng mass terms in order to

describe massive particles.



The type of ordinary symmetry breakinj mentioned in the pfevious
paragreph is discussed by means of‘exp1icit examples in Chapter IV.

Our main‘aim is to show what the theory of nonlinear realizations looks
Tike in'ﬁhe form:developed and discussed in Refs. 1, 2, 24. This form
is metivated not so much by‘any physicél arguments but by a ce?tain
mathematical elegance. Our approaéh 15 to follow this mathematical
line and to demonstrate the theory by working out explicit examples of
groups closely related to physics. "

In the second chapter we give a review of the geﬁera] theory of
nonlinear rea]izatioﬁs of groups, which is complete as far as compact,
connected, semisimple groups are concerned (Refs.'1, 2, 24). Some facts
concerning lineaf realizations: (representations) of groups are also
mentioned here.(quoting Refs. 6, 7, 15; 16). 1In the third chapter we
treat as an example the group SU(n) x SU(n) in detail, and an invariant
Lagrangian fs constructed in a'separete'section (Ref. 3). Chapter IV
shows how the Tinear and nonlinear realizations are related in the case
of the SU(Z) X SU(2) group. Also some symmetry breaking tefms and weak
currents are constructed in-the note-section (Ref._17). The 1aet |
chapter is a review of an attempt fo apb]y the standard method of the
general theory to a noncompact group of physical 1ntere$t, namely the
conformal group (Refs. 20, 5).

The ‘exposition of‘non11near rea11zat1ons presented in this thesis
also 1eads to some open quest1ons worthy of further investigation (for
~example, questions arising in connection with noncompect groups, or
. with the incorporation of gauge invariance into conformally invariant

Lagrangians) as pointed out in the text. ‘The thesis intends to serve

as a basis for any such research.



CHAPTER 1II

GENERAL THEORY

a) Representations

First we‘sha11;quoté some definitions and results concerning Lie
_groups and their representations (from Refs. 15,.16, 24). - We shall pay
no étfention to details -necessary to achieve mathematical rigour (such
details can be found in Refs. 6, 7). |
| An'r—parameter Lié group. is a group whose elements can be labelled

by r independent cont1nuous1y varying real parameters with one more
requ1rement, ‘namely that the parameters of the product of two elements
can be expressed as analytic functions of the parameters of these two
elements. |

: If the pafameters labelling group e]éments.yaryiover-a finite -
range,‘thé group isECalled compact, if by varying the parameters con-
tinuously we can reach the unit element, the group is called connected.

' A Lie gréupwwhich has no proper invariant Abelian subgroup is
called semisimple. _

When we find a one~to-one correspbndence between a set of (n x n)—l
matrices and elements of a Lie group such that these matr%cgs preserve
the giroup multiplication, we say we have found an n-dimensiona] faith-
ful representation of the group. WHeh to one matrfk there can correépond
more elements of the group, we just speak of a representation (not
k faithful). Obviously, wé can think of these matrices as tranéfofmations |
of vectors in an nnd1mens1ona1 Euclidean space. :

A matrix correspond1ng to an e]ement g of a Lie group can be

written (at 1east for sufficiently small g ) in the form (Refs. 6, 16)

R(g) = {51X1} | L i - 7 o : (1)



where the g1 are a special set of r real parameters (cal}ed canonical)
representing the element g and Where,the5X1 are a set of r (n x n)-
matrices representing the so-called generators of the group. They
satisfy relations

[X.o X:1=f,.5%, S -,

i* %5 ij “k° ‘ (2)

where fijk are the so-called structure constants of the Lie groups
(they are the same in any representation) and where [Xi X ]
Xij = A;X; is.the commutator of the matrices X, and Xs- The fis k
antisymmefric in the indices i,and‘j (because of the commutaton
property) and.must satisfy the Jacobi identity (Refs, 6, 16).

e Se M S, M Se Mmoo _

Fis ks *Teifys *Fofis = 0 . (3)

Here.and everywhere else in the thesis a summation over the same
upper and lower index is understood. |

The fijk thémse1yes define a representation of the set of
_ generators, the. so-ca]]ed adjoint répresentation (we have to take the
first of the 1ower indices to label the matr1x and the upper index and
the second 1ower one as the usual row and column indices respect1ve1y)

We can define a symmetric tensor_gijhby |
o k. m . ‘

945°% fim fik | (4)

It can always be d1agona11zed by a .proper cho1ce of generators of
the L1e group (as any rea] symmetr1c matr1x o can always be d1agona1-
: 1zed by a rea] orthogona] matr1x o, i.€., @ o can be found so that

gegeo! is diagonal (Ref ).



A semisimple Lie group is chafacterized by .det (gij) #0
(Refs. 6, 15, 16), which implies that g has only non-zero diagonal
elements when it has been diagonalized. A semisimple connected Lie
group is compact if and only i%, by a proper choice of. parameters of the

can be made a scalar multiple of Kronecker's symbol 854

group, gij j

(Ref. 7).

b) Nonlinear Realizations

’ We would ]%ke to describe now thé nonlinear realizations iﬁ the
standard form in which they were given by Coleman et al (Refs. 1, 2, 24).
We shall again'more or less only quote fheir results since it would be
qUitéldifficult to improve on the presehtation givén in their papers.
Coleman et al also restrict themséives to compact, cbnhected, ;émisimp]e
Lie groupé, and we shall- point out where these assumptions are needed
and what changes occur if compacfness ié-removed.

Most of fhe Lie groups used in physics satisfy all of the assum-
ptions (they are compact, connected and semisimple). Onérof the exceptions
is the Poincaré group, which is neither compact nor semisimﬁ]e, but
for physical abp]ications we are only iﬁierested in Tinear represen=
tations of this group anyway. Another, more jimportant éxception is the
conformal group which vio]ateé éompactness only. But the standard
techniques of nonlinear realizations can be applied even here (see Ref.
20 and Chapter V) with all the appropriate precautions (Ref. 15).

~ We want to.construct a nonlinear realization of a Lie group G
which is Tinear when restricted to some continuous subgroup H of G.
It is essential for this construction that the set of generators of
G can be‘spTit into two parts with certain commutation re]ations

among each other. On the one hand we have the set of generators



Vo (i =1, 2, ..., s where s<r) of the subgroup H and on the other the
7 femaining génerators Aj (3=1,2, ..., r-s) of the gréup G. While ﬁhe
commutators [Vi’ Vj].are, 6%7coukée; Tinear combinations of the V's

onﬁy, fhe A's éan'be chosen (if G.is compact, semisiﬁple and connected)

in such a way that the commutator

o Ag] : e

is a 1inear combination of A's,only (Refs. 1, 24)L The éonditiqns
in parentheses are sufficient since they guarantee the full reducibility-
of the adjoint representation of G‘when restricted to the subgroup H
only (Ref. 7). If G were not semisimp]é.and if we chose for H an
invariant sUbgroup; the commutator (5) would be a combination of the -
.generatoré v oh]y. Why this property of'commufator (55 to bé a 1jnear‘
combination of the generators A on1y ié}essentia] will bécome clear |
in the- next paragkaph.

Group elements in the neighbourhood of the identity element of
G (for compact, semisimple and connected Lie‘groups 1tAsuffices to -

study such elements -~ Ref. 24) can be decomposed uniquely (Refs. 6,

7, 24) into the form
eg»Aeu-Vs' , o S , ' (6)

where £ and u are sets of (r - s) and s real parameters respectively and

where

Y"‘S 1-
oA = 2: £ Ai
i=1
and
usy = u Vi‘



If 95 is an element of théigrdup G, we can define aztransformation

of £ under 95 uniquely by

geA _ £'<A u'eV -
9,8 e” e | - , 7 (7)
In the case when 9o = h eH th1s transformat1on of the g s

1s indeed 11near as can be shown in the following way

L N N T a'-A | . ~
hoe hoe hO hO e ho. (8)
- This £' is a Tinear function of £ because if property (5) is

used on the right hand side of the known decomposition

usvV, _~u-V _ J uJu '

we gei:—eu'VA.e"“'v = Rij(u)AJ, where the matr1x R is JUSt a collection
of a1] coeff1c1ents of A from the r1ght hand side of equat1on (9).

It imp]ies é]ear]y g'j = g’R.J(u),_which is linear.
L i S . S

If now R(h) are the matriceé of an arbithary representation of

the subgroup H (acting on vectors ¥) we can show that the mapp1ng

9,
( )-——-—->(€ ) defined by (7) and

ceREy gy

is a realization.of the ‘group G which becomes Tinear under H This

fol]ows from the fo]]ow1ng ca]culat1ons (for the w-part)

oA o o ', 1, -tr.? e
geh _ g'-Au'eV £ A =,e€l Aeu :V“‘.

- g.e ‘; e e’ . ... gq€
0 . 1 (]])

o e ", ", ' u.‘ w ., 2
| 9190e€ A~f»e€ Aeu. Veu'sV o et :Aeu v,
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which shows that under the transformation by ngo’ ¥ is transformed

into R(eu"°v)R(eul°V)w. The Tinearity of mapping (10) under H is clear
bécause Equations (7)_and (8) imply euf-V = ho so that werget back to
the original representation of H.

We note that in the realization (10) the matrix R depends on
£ through¥u'.

It can be shown (Réfs. 1, 2, 4).that manifolds on which a non-
Tinear realization of a compaCf, cdnnected,‘semisimpTe Lie’group is.
defined: (with the additfona] restriction that the realization becomes
linear under a continuous' subgroup H of the whole gfoup G) can always
be parametrized in such a way that we obtain the standard transformation
property (7) for a subset of thecwordinatesqf the manifold and the
standérd transformation property (16) for the set of remafning coor-
dinates. of fhe manifola (if any). The coordinates whiqh'belong to -
the first set are called the preférred coordinates and they are neces-
sarily a part of any such manifd]d. Their number is équa] fb the
number of the group genefators minus;the humber of‘the subgroup
generators. J

This means that if some coordinétés of the manifold are not
transformed in the standard way, they can be redefined to creaté a

' standard set of coordinates. Here the éssumption of compactness enters
.essentia11y (Refs. 1, 2, 4). 7

Thisredefinifion keeps the origfnwof coordfnates‘fixed (Ref. 24)
whigh iﬁp]iés that if the coordinétes of the manifold are inte%preted
as fields defined on sbace-time (or:théir space-time derivatives) of

. L%
a physical theory, the described redefinition of coordinates (fields)

* ‘ .

In this sense the coordinates of the manifold will be called fields in
the following, although we do not make any attempt to follow up the
consequences implied for quantized fields transforming in this nonlinear
manner. '
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does not change on maSs—sheil S-matrix elements (neither the exact
expreséions.(proved in Ref. 21), nor tﬁeir free graph approximations
(Refs. 1, 4)). This'enables us to restrict ouf attention to nonlinear
fea]izatiqns in their standard form only. B

When the preferred fields are already defined in the standard
%ashion wh%]e there are some other coordinates of the manifold (they
might include space-time derivatives of the'preferred'fie]ds and some
other'physica1 fieldé and their space;time derivativeé), jointly denoted
byr®'throughout this section, whose transformaiidn properties.méy
still differ from (10), we know from the last paragraph that we can
a1way$ redefine them 1nto's£andard form. To give an exﬁ]icit formula .
'for this redefinition, we shall considér a point P of the manif&]d with

~g+A

coorinates (£,%). The group element e will map P 1nto another

point P' with coordinates (0,@ Y. Then we def1ne the new coordinates

New)
already

of the point P under consideration by Pnew = s'. 'Then (&,e

can serve as new coord1nates of P where the coord1nates )

New

N ew
_have the standard transformat1on property (10).

Let us denote by TS the transformation which takes the old
, o . o
coordinates & of some point P w1th preferred ébordinates“g into the
old coordinates o' of another point P' with preferred coordinates &'

if P is mapped into P' by app]ying the group element 99> in a. formula:

i

o Tg . With this notation, the definition of the coordinates QNeQ
0 ‘ ' - | )

of P can be expressed as

. - g '
ONew T Te—g-A ¢
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In order to show the standard transformation property of ONew

We write equation (7) as €%’ °Ago = ! Verth This implies that

the redeftned o coordinates of the point withro1d coordinates
1

g _ £ '
T T8 & =T 1, f
. £'eA g, g Agod, are equal to

(E',Tg @) » name]y (Tg @
9 g

New
£ .. S0 ok 6 =10, o .
Teuf Ve'£°A® Teu’ VTe—ng QU+ V- New

If the group is not compact, we can'have different nonlinear
realizations of it which cannot be transformed‘into:each other by a
tranSformetion which would leave the physical content of the theory
unchanged. fhe c1assification'of nonlinear realizations of noncompact
groups is an open prob]em One examp1e of a noncompact group, the
conforma] group, -is treated in Chapter V For this group, however, it
has been shown (Ref, 15) that indeed all its nonlinear rea]izations
are physically equivalent to the non]inear‘rea1ization~in the standard

form. This is briefly discussed in.Chanter V.

c) Linearization

If we have any fields ¥ transform1ng Tinearly under a group G,
‘ they can always be redefined into a set of fields ¥ which have the

standard transformat1on properties (10). Onerp0551b111ty is to set _

y = R( - A)w . . o | (13)
as can. be checked easily (Refs. 1. 17, 24).

This construct1on can be inverted, and any f1e1ds wh1ch transform
Tinearly under H (such that there ex1sts a linear representat1on of G
which, when restricted to H, becomes equal to the representat1on of H

on the given fields) can be redefined to transforn Tinear]y (according

to the Tinear representation of G) under the whole group (Refs. 1, 17, 24).
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Furthermore, it has'been proved (Ref. 24) that functions of the
preferred fields ¢ can be constructed so that they also transform
“according to a linear representation of G, provided this representation
‘reduces under H and has the friyia] (unjty) representation in its
decomposition. This procedure will be demonstrated in Chapter IV, and

the connection with the o-model will be pointed out.

d) Covariant Derivatives

We shall redefine the usuel space-time derivatives of fields in
order to bring them into a form which'tfensferms in the standerd'way (10).
We khdw (Refs , 24) that any fie]ds other than the'preferred fie]de

( ‘and a ¥ and a g certainly are different from g) can be redefined

(in the sense;of the'prev1ous section) 1n such a way. -A redef]n1t1on is
~ necessary since we have no reason to expect the space-time derivatives
of ¢ (g transform according to equation'(7)) to transform‘acgording to
equation (105 while auw cahndt traneferm:according to (10) because of. .

u 'V)w which arises when we differentiate (10) (for

the extra term R(aue
details of the calculation see the next chapter).A

Forithe fedefinitiOn'ef 5 é and 9 ? we use equation-(lz) (we
;assume chat the preferred fields & a1ready transform accord1ng to (7)

~in the form D W= (5 g)New = TZ'E A(a g) and D ¥ = = (9 W)New Tg_gQA(a ¥).

"~ The quant1t1es D g and D v will be called the covar1ant der1vat1ves of
_the fields g and W respect1ve1y '

In order to carry out the construction of the covariant deriyatives
exb]icit]y,'we use a little trick (Ref. 19). For fields ¥ transforming

in the standard way (10) we can define a covariant operation aY by‘

bt - R(eER) o (R(e5M)y) (14)
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Using definitions (7) and (10), the covariance is shown by

(a,9)" = (™ "Ma (R(e2 P)r(e! V)y) =

= R " r(e™ PIR(g; o (RUg IR(FAYe) = R(e! V) v

Note that 9% is an x“~—1ndependent group-~e1ement Thus Auw really
transforms accord1ng to (10).

Equation (14) can.be rewritten as
. ~gh Ehyy, -
= + g
Y =0y R(e ; A?(auR(e‘, Y)v | - o (15)
The last ‘term of this.equation can be rewritten using
I NN N j |
R{e™ "o R(e” ™) = o R(A;) + 8 RO, ~(18)

where o and 8 are some functions of ¢ ahd aug and where R(Ai) and
R(Vj) are the generatorsrof G in the corresponding representétjon
(see Ref. 19). The functions au1 can be shown to be;éXaét1y the

Dug’i of the previous parqgréph (for details see the next’chapter)'and
so they must be transformed according ts (10) by themselves. "They
can be extracted from Equation (15) leaving the rest still covariant.
fhis means that the'exﬁressions»a ¥+ B jR(V.)w can serve as the
covar1ant der1vat1ves D ¥ of the f1e1ds v (s1nce they transform

’ accord1ng to (10)) ,

“The covar1ant derijvatives w111 be necessary for construct1ng
invariant Lagranga1ns. They are genera11zat1ons of the ord1nary space-
tﬁmeﬂderiyqtives in the sense that the covar1ant,der1vat1ves,are equal
to the ordinary ones for £ = 0. '

. In proving the covariance of Equation (14) we treated the element
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9o 38 being space~time independent. If‘this is not the case, we speak
of gauge transformations of the second kind.  Having elements of G
space-time dependent forces us to introduce two additional sets of
gauge fields and to redefine the standard derivatives of ¢ and ¥. For

details see the next chapter as well as Refs. 3, 19.



~ CHAPTER 'III °
NONLINEAR:REALIZATIONS OF SU(n) x SU(n)

In this chapter we would Tike to show how the theory of non11near
rea11zatrons applies to the spec1a1 case of the group G=SU(n) x SU(n)
if the subgroup H is taken to be the d1agona1 subgroup To make c]ear
this term1no]ogy we shal] denote the (n -1) generators of the 1eft
(r1ght) subgroup of SU(n) X SU(n) by J (J ), ‘where 1 —:1 2y eees n2-1.
In terms of these generators the Lie a]gebra of SU(n) x SU(n) is

described by

+ +
1 k.-

Kot pqm - + -
[0, 931 = 359, 195 31 = £y 5 0% and 93, 931= 0, (1)

- where a]T’fndices run from 1 to (n -1) and fﬁjk are the structure
coefficients of the SU(n) group. We choose the generators 3% and 0”
because they diagona1ize‘the tensor gij’ which in thisscaSe becomes a -
multiple of Kroneqker‘s delta (see the previous;Chapter). In this
case a]so,fijk is totally antisymmetric, beeause-fijk % f1j191r is
always antisymmetric (Ref.-16). ‘For more details -concerning these
standard results see Refs. 1, 3. |

If we choose a new set of (2n2-2) generators of tre group G

defining V, = J7 + J7 and Ay = 3% - 33, we find that in terms of

!

V and A the Lie algebra is described by .

| _e kyoop e K : - B
[Vi9 vj] - fij Vk [vi, Aj] - fij Ak and [Ai,,Aj] - fij k’ (2)

where fijk are the same structure coefficient (Ref. 1).

It follows from the first equation in (2) that the generators V
span a subalgebra of the Lie algebra of G. We shall ca]i the
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4 corresponding éubgroup the diagonal one. 7

" At thé right hand side of the second equation in (2) there are
no V-terms. This can always be achieved by a‘proper choice of A's
(if fhe'v‘s are chosen to be the generators of the subgroup H) as
we know from the last chapter (all the required conditions are satisfied).
It meaﬁs that the adjo{ht representatidn of thérLie algebra of G when
restricted to the Lie algebra of H provides (apaft fromrthe adjoint
representation of H) a represehtafion of the Tatter on the vector space
spanned by the generators A. Correspondingly, the sUBgroup H is
1inearly represented on the space G/H of right cosets of H. The non;
Tinear realization of G which we construct using the preferred fields
¢ becomes linear and isomorphic to the.representation‘menfioned in
- the previous séntence, when restricted to the subgroups H {Refsi 1,
3, 12). | :

The third equation in (2) gives us no A-terms on the right hand

side. This‘is just accidental and Qe shall say in such é case that
the corresponding subgroup H is symﬁetrica]. It enables us to define
a parity conjugation which will be used to simplify the form of the -

nonlinear realization (Refs. 1, 3, 8, 24).

a) - Transformation of the -Preferred Fields

We introduce some.notation first. ;Any group element geG can
be written uniquely in the form g = eAi§1eViu1'=reA;géV'u whéré 
g and u” are tiwo sets of (n®1) real paraméters each (Refs. 7, 24).
An operationrwhich takgs the group element g,w1th parameters
Ei and ui into another group element d with pakaméters -gi and ﬁi will
be called a parity conjugation (Refs. 1, 3, 8). The element 8, parity

conjugate to g, is then § = ALY
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In the previous section we have already discussed the 1inear
‘representation of H on the vector space G/H parametrized by £. It

can be written explicitly as

g'" = exp (91f1jk)€‘] | : (3)

if the transforming element hoeris equal to ev'e.

This can also be written in the form

o AeE~T _ Voo Aeg Voo .
= hoe h, —'e e “e , S (4)

as can be seen from the'fo]]owing calculation:

8

ev°eAje

L]

~Vep = A +e"[v A],r'g_"_e;l[\, V., A.1] +
- 'R i’ 7 21 RipekVye Agdd e

. - 1 ' .
o ade K e’e _ i, k

. . . .
It is easy to genera11ze h e g eA 2 .h -(equation 4) to

define an un1que transformation of g under an e1ement of G. Replacing

h on the left-hand s1de by ‘an arb1trary g eG, we can wr1te

9, eA e A"5-'ev’u'l, : B (5)

which is already the most general nonlinear t%ahsformation of ¢ .

and which was described in the previdus chapter. |

| The equation (5) gives actually two mappings, namé]y gl = g'(g,go)
which is the transformation of the preferred fields and u"=“u'(g,go)
which will be used in.the transformation law of any:dther field, |

If we apply the parity conjugation to equation (5) we get

—A'g = e"A‘E'eV'U'.V
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Inverting this equation and multiplying it by equation (5) from the -

left we find
L] - - . '
5, (9% = (MEH2 | (6)

" When the transformation law of the fields £ is written in this
form one can check that this transformation law really provides a

realization of the group G by writing g, = 919p- This implies

(eA'E‘)Z (eA°£)2-'\J"] -1

= 9192 95 97 >

- in other words nothing results but a su;éessivé app]icafion of gé and

9 (Refs. 1, 3, 8).

b) Transformation of Other Fields

Assume that we have other fields ¥* which are transformed
Tinearly under H, i.e.,

vt = R (h)v®, 3 6D
where heH and where R°‘B belong to a representation of H.

Then we can extend this transformation to the whole group G
by writing
" . g . " M V B . L
o a ¢ Veu'y B
w———% Rs(e. )?y | o | (8)
wheré'goeG and u' = d'(g,go) is given by (5).

That this is indeed a realization of G which in the case |

9o = heH redqces to the original transformation (7) was already shown

“in Chapter II.
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c)_Covariant Derivatives
In this section we are looking for some analog to the usual

5 agd o _ oy :
derivatives 9 gJ = == and 8 ¥ = —— of the preferred and the other
u u u u P

X X

fields respectively. These analogs can be treated as additional fields
and so they can be required to transform according tb (8) (Refs. 2, 3,
8, 24).

We know how to transform augj and auw“ (as implied by equations
(5) and (8)), but this transformation does not have the standard form
of equation (8). The reason is that not just WB:but.also u'(g,go) is
x¥-dependent through £, which (if equation (8) is differentiated with
respect to x“)qgreates one additional term and thus spoils the
standard behaviour. 7

In Ref. 2 and in Chapter II it is shown that the covariant
derivatives can be defined as follows: TIf we take all fields and

their derivatives together, (', ¥, augJ, auws)

a group element g = g E°A

, and transform them under

, we get the following resu]tz

(a‘, v, 2.8 %) = (0, ¥, DE, DY)
 This means that the fields £ become zero, that the fields ¥ do not

. change at all and that Dug and Duw (just a new notation for (aug)'
and (auw)') define the desired analogs of aug and auw respectively,

because they have the standard transformation propefties.

Now we shall calculate and check all of this explicitly. To
an jnfinitesima] increase of the space-time cobrdipates (xHaxH+dxH)
there must correspond increases of ¢ and ¥ and, through equation (5),
increases of the transformed coordinates ', ¥', and of u'. If we

denote these increases by dg, d¥, dg', d¥' and du' respectively, we
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can write two relations (usiﬁg;equatiohs'(S) and (8)),

go Ac(grdz) _ A= (g +dg") V- (”'+d“’)‘=and

(¥'4ay')? = R“B(ev"“'+d”’))(w + dv)®,

Now we take gy = e-A'g and express the: exponentials as power sefies in
dg,dg'-and du' up to the first order. This gives us

.-‘ . . A.E ‘ s A u' Veu' -
eAg(eAg+aei d€1)=(Ag +Be - (d ) )( '38 1(
3 . (sg") (su')
for thé first equation and -
ot V'U'
(\H'm'l' d‘i")a = ROtB(eV u S Be 1 (du ) )(‘P + d\y)B
' (au )
for the second one.
Collecting the zero okder terms gives us £' =0, u' = O“andfw' =¥,
From the first order terms we obtain |
Aot |
"A & 381 dE = A (dg )1 + V (du ) and
o9&
(dv')® 5 ROV, (du) TP+ 6 @ ar.
Dividing both equations by dx“.yfelds
I B¢ L T LA ‘
e T —— 3 & =A -tV and ' (%),
A dx® dxM ,
¢ ' OL. 1 ‘
()% _ pe gy y (@) o8, 40

dx¥ ‘ B ;) dx LI . . (9b)

i " L
We have a]ready agreed o call (dgl) Dﬁg? a covariant

dx

1\ 0 _ ‘ ’ .
derivat1ve of E and (—-)n- uw“ a covarjant derivative of v.
) , dx* - ’ . _ '

du')’)
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' Aeg deE
Only the difficulty to calculate e ~——— remains.

'd£17

This is done in Appendix 3a. There it is shown that

) "k, J ko 1,m, J J
e-A-g deA g = (6 J + Xi Xk + Xi xk X] Xm + )A _ (xi +
dgi i 31 5 B 2!
ko, 1.3 \
X. X, X . . . .
ik 71 = dp o J o ke J
= f ...)Vj = o, Aj Py Vj, where X5 £ fki

and where the Tast step is just a definition of the matrices ¢ and p.

Our two equations now read

. . . . o
) Toaped ¢y (dul)
(ci Aj Py Vj)aua AJ & vj ! and

. o
D v® = 5 v* + R* (v,) (W) o8,

u U u
Collecting A and V terms in the first equatfon.and replacing

1yd ’
(QEEL— in the second equation by the explicit expression obtained from
dx

the first one yields the final result

S A o
D &= o, 2 & and | (10a)

D = o - RO (V)0 TP, | (10b)

n

where the matrices o and p are still functions of E.
Let us check that these two expressions transform in the standard

way. We can write an X“-derivafiveAof‘equation (6) as

Aeg _ Aeg'y Veu! A-g! Veu' .
goaue = (aue e + e : (aue ), (11)
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where 9 has been treated as x"-independent.

° ‘ .. $ - L]
Since g, = fegiglruAE (from equation (5)), we get

o . ° . L] L] o ! ‘ . J ' o ¢ E o V
Qe u'e A gaueA £ (aueA eVt 4 A g(euev u'y.

This equation can be rewritten (in two steps) as

J«(zauev”‘)e'v'u

9 ' - L] * - i e l - * . * l
elou e A E(aueA )e Yeut | e A-g (aueA 2 ) and

Veu', 3 i fVeu' - 3o ni
e’ " (o5 (E)A50 £7 = 0 (E)V50 £ e o;" (8)A; (3, &")

V‘U')é“V‘u!

e (e Wya g + (5 e (12)

Separating the A-terms at each. side of this equation gfves‘

1y J = Veu' -Veu' Jj
(Dug ) Aj e Aje Dug .

Now we can simply repeat the ca]cu1atioﬁ.fo]]owinglequation (4) to

get thg transformation property of Dug as
2% IRTATES PO O -
(D g")7 = exp ((u')'f; 7D g% (13)

This has exactly the standard form of equation (8), whf&h was to be
proved. - |
Separating the V-terms in equétion (1é) gives us the transformation
‘prbperty of VjpiJ(g)au€1 as follows ‘
oAyt L Ve dee iy Vet Veu'y =Vew!
,.Vj(pi 3.8 ) =e "o, (aua )Vje , (aue )e .

With this relation we can determine the transformation law of the

‘standard derivatives,Duw.
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In this calculation we must, of course, express all generators
and group elements in that representation to which the fields ¥ belong

(i.e., we must use the R°°B matrices). We get (when replacing ¥ by

¥' in equation (10b))

.'1' ‘
(Du?l)u =,3u {Ras(ev u )WB} - R%

B

(""" 0,3 (s £RE. (V)

,Rya(e’V'U') _ Ra8(3u§V'U')R86(e-V'U')}(wl)5'

Using RB(S(e"V'u )(‘P')6 = yb (see equation 8) we finally see
that Duw is also transformed in the standard form of equation (8):

W.(JL=OL
(D ¥')" =R

Veu! B R Jo oy o opo o Veu! B
+ Jo. = .
B(e )(auw R Y(VJ)p1 aug ¥v) =R B(e )Duw

(14)

Note: Lagrangians

If we have constructed a Lagrangién as a function of g,v, auﬁ

and 3 v
U

L= L(g,wsaua,BUW),

we already know (see the third paragraph of Section c) how it trans-

. _A.g

forms under 9o = © , namely

1 = -t 1 1 Yy - VA
L'(g,¥.2 8,2 ¥) = L(e',¥' 58 250 v') = L(0,¥,D £.D ).‘

This implies that in order to have a Lagrangian invariant under
the group G it hés to be a function of Dug,w and auw only and it has to
be superficially inva}iant under the subgroup H (Ref. 3). This already
guarantees the invariancg under the whole group G due to the standard

transformation property of W,Dug and Duw. In the case of a system
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described by the preferred fields only, there is a natural choice for

such a Lagrang1an name1y (Ref. 3)

L= % fzgw(D )0, &) =%— fzgkmkoj]auaiauaj,
where f is a numerical constant. Here'gij is the metric tensor

defined by equatjon (4) in Chapter II. "In the case of a compact

group it will usua]]y'be assumed to be in its djagonal form propor-
tional to a Kronecker delta, which can always be achieved by an
appropriate parametrization of the group. In what follows we will
.assume that this has been done. From tne,invariance of this Lagrangian
.we can see easily that 9195 ko L is andther Jinvariant metric tensor

in the space spanned by & (the quadrat1c form gk]° 'o ]dg ng is

invariant). For a d1scuss1on of this geometr1ca1 po1nt of view see

Refs. 9, 10.

-d) _Gauge Transformation; of the Second Kind

In this section we shall consider the transformations to be
x"-dependent. This will give'us one more additiona]_term (a 9% ) A-g
on the left-hand side of equation (11). In order to be able to
repeat the calculation following this equation and to get the same
| trénstrmation laws (13) and (14), we must.modify the expressions for

eovarient deriyeties of the fields £ and ¥ by making them dependent

. on two newly introduced sets of fields (Refs. 1, 3).. These fields,

which we shall call Vui (a set of (n>1) vector fields) and a#i'(a
_ set of’(nz-]j axial vector fields), should be transformed under 9%
- according to

.’ | -1
+ £V a ) = ) )
3 £V Y, + A ap) go[a]J + f(V v, * A au)]g0 , (15)
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where f is a numerical constaﬁt‘and Veyu + Aoau is the most general
‘element of the Lie algebra of G (Refs. 1, 3) | ' '
If we replace 3, by 3, + f(Vo\)u + A-au) in equation (9a), we

obtain

eMELy 4 f(Vey o+ Ava )]EME = AD Y - v.p./ja\g"‘
u n u w31 T, (16)
Ly T ' N R
where Dugkand P aug is an analog of Dug and 0 aug from:equations

- o~ N . .
- (10). If we use Dug and piJaug instead of Dug and piJaug' to

define covariant derivatives of the fields £ and ¥, these new covariantr
derivativés will haverfhe standard transformation properties (equation
(8) or (13), (14)) extended to the gauée transformations of. the

‘second kind.

To prove that equations (15) and (16) fogether,with

ANo g . ~Nig ' .

Duw =Y R B(Vj)pi 28 | . ‘ (1?)
~really define such covariant derivatives of the fields ¢ and v

. A _ : : .
(given by Dug and Duw‘reSpective1y) we start by ca]cu]ating how the
left-hand side of'equatibn (16) transforms under goeGL Since

Mg’ goeA-ge-v-.u

we get

e"AngEau_‘. 'F(V'V;l + A"al:)]eA.g = e\/'u “A gg g [3 +f(V.V+Aoau)]o
.; . -y .l . —A‘ -
.-go]goeA EgmVou' | ev:u,e g[a + f(V A A ‘a )]eA Ee Veu'

where we have -used equation (15) essentially.

"This calculation shows that all we have to do.to transform the
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Veu'

left~hand side of equation (16) is to mu]iip]y it by e from’

the Teft and by e ~Veu!

from the right. If the same operation is
_ app11ed to the r1ght—hand side of (16) it will give us the trans-
formation properties of D & and D s (through 5:3;\2 ) which turn
out to be of the standard form. To show that, we just note that
equation (9a)~is‘transformed by app]yihg the same opehation (when

F-independent). This implies transformations (13) and (14).

9% is X

Everthing which .has been said so far in this section about
nonlinear rea]izatioh5~§pp1ies to all compact, connected, semisimple
Lie groups, but now we are going torusé thé,specific‘Lie algebra of
the Su(n) x SU(n) group. | J

To calculate the covar1ant der1vat1ves D g and D ¥ as defined
by equations (16) and (17) we need the fo11OW1ng resu1to, which are
proved in Appendix 3b): | | _

: k k, 1 m
e"A°EV%gA”€ = (5 ij + Z,kJ § Xk4T]‘ J H Vs

ck, T, 3
X_i Xk X-I

3t

oy d . bow Y« sinh x 9A- '
(%, + ¥ i )AL = cosh x; Vs sinh x; Aj and

J
similarly é*A.EAieA°£ = cosh XijAj - sinh xijvj,‘whéré again
x,9 = gkfkij. Comparing A and V terms of both sides of equations
-A.‘g Aog

' 3 = Ao - .‘.j i ] ’
(16) (ahd rememher1ng e’ "3 e A ng VJp1 2,8 ) gives us
SN s St sinh kv ) and '
Dug Pu? f(cosh X;“a, sinh XV, ) and . . (18a)
EENT I 5,1
ps aug =05 aug - f(cosh X vu - s1nh X; a ) respect1ve1y

(18b)

e) ' The Gauge Fié]dS»

In the previous section we replaced éu by 3, t f(Vovu + A'éu)
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to get the new covariant derivatives. Now it is obvious how to construct

the covariant generalization of the curl operation. We just calculate

[au + f(V-'vu + A’au’JEBV + f(V-vv *Aa )] -[o + f(V-vv + A )l

Loy, + Ty, + Aea))]

and separate the coefficients of fVi and fAi which we call Fuv1 and

= i .
Fuv. respectively.

We find (see Appendix 3c)

Fu§i = auvvi - évvu1 + ff 1(v J k - a Ja k) and

Foianalo gl i Gk 3
. 9-a -+ Ff. -
Fuvl 03y w3 fka (au v, - v e

1l
(o>
3]

1
Q

From this definition follow immediately (see equation (16)) the

transformation properties of the tensors F, namely

oaE iy e Gl iy -1
(Fuv Ai * Fuv vi), - Fuv goAigd +,Fuv.govigoz’ (19)

where g cG represents the transformation.
 Now we can construct a Lagrangian of the gauge fie]dS'yuand au

in the generalized Yang-Mills form:as (see Ref. 3)—
L, = - a5, (F TP 4§ ipdy

(not mixing F with F because of parity cqnseryation); |

To show the invariance of suth‘é Lagrangian would be casy if
the tensors F had the standard transformétion pfopefties. Since that
is not'the§case7 we want to rédefihe F and rewrite Lva in ofder to

make both manifestly covariant.
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To do so we redefine first the gauge fields v and a which also
are not trénsformed in-the standard way of equation (8). Using the
method described in the Introduction and Section c¢) of this chapter

"A°£

we set g = e in equation (15). Thus we can define new fields

Vu and a]J by
° ° "A'E At
. + L] - . + o
v, Y a, A e ,(Vu y a, A)et e, (20)
' o ' [+] .
where v, and a must have the standard transformation properties.

We can rewrite equation (20) in an explicit form (using the identities

of Appendix 3b) as

o
€,
u

J i o J i
cosh (xi )vu sinh (xi )au and

[}
[N
L

cosh x.j ”i - siﬁh x.j ﬁ.
) (x;))a] (I,

. . ' AN AN
(This demonstrates the standard behaviour of Dug and Duw (defined by

equations (18)) under x"-independent transformations).
By using the same method we can redefine the tensors F to give us

new tensors E having the standard transformation property. Setting

g = e

0 ,» equation (19) becomes

i = iy _ i
Euv Ai +‘Euv Vi = Fuv (gosh (x

J e J
; )Aj sinh (xi )Vj) + |

= i o s i ' |
+ Fuv (cosh (xi')vj s1nﬁ (Xi )Aj) or, separately, .

- Fw1 cosh xT.J -‘?Lv1 sinh xiJ and J7: - (21a)

m
par}
]

= oi_e i J_p i J
Euv va cosh X5 Fuv sinh X; (21b)
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- These relations can be used to check that L,_ = = l-6.:.(E 1.E“"j +
_ ‘ va 4 13 v

L.
« -

—

+Euv1fuv3) is evidently jnvariant under'the whole group G because of

the standard transformation properties of E and E’v and because of

the orthonormality of the matrices Ra 1n equat1on (8).

The standard transformation property of E can be checked by us1ng

its definition, the relation e-A+&' g, = eV e A E.and the fact that

the F's are transformed linearly under H. We can also demonstrate it
explicitly by rewriting E in terms of fields and covariant derivatives
which all transform in the standard way- under the second gauge trans-

formations as follows:

o 3 o . {10 ~\10 o 90
i_pno . i i m _ om_ T
Euv = Duvv Dv  + f1m [Dug a, -.Dg a, *F(v]‘J vv +
o-‘om ‘ o - T -
+ a a, )] and : - ( (22a)
A~ N ~ ';/\\

= i_q°i ° 1 i 1° m.
Epv = Dpav -tpvahr i [Dug v D WYy

2 1°m . °1° ma '
- f(v’J a, *ta v, ™1 | (22b)

This agrees with the or1g1na1 def1n1t1on of E given by (21a) and .(21b)

- as shown in Append1x 3d)



CHAPTER IV -
LINEARIZING THE NONLINEAR REALIZATION OF SU(2) x SU(2)

In this qhdpter we shall carry out explicitly the cdnstrucﬁion of
1inear-rea]ization§ out of a nonlinear one whieh was ﬁentioned in
Chapter II. The basic idea consists in redefining the %ie]ds on which
the non1inear:reelizatioﬁ is defined. ‘The construction is duite com-
plicated and that is why we sha]] treat the case where the group G 1s
Jjust the SU(2) x SU(2) group. The construction has practical importance
because in linear representations, as opposed to non11near ones, the
usual space-time derivatives are, already covariant udder transformations
of G. | : 7 | |

When'Tineariz%ng the preferred fields, we have to obtain' a rep-
resentation of G on'the redefined fields which when restricted to H,
has the tr1v1a1‘(unity) reﬁresehtation in its decompOSjtion'intd a
direct sum of irreducible representat1ons of H (Refs. 1, 17, 24 and
t Chapter 11I). o |
We know a1] Tinear representat1ons of the SU(2) x SU(2) group.

" They are usua]ly denoted by (¥, i7), where 2j‘ +1 and 2j~ + 1 are
the dimensions of thezrepresentations of the 1eft'end right subgroup,
which are combined in a direct proddct te give a representation of

~ the whole group,‘ |

The fepreeentations with j+‘='j =J decompose under the d1a— f
gonal subgroup H into irreducible representat1ons w1th I= 0, 1, 2,

s 2] (the label I is called the isospin of the correspond1ng .

(2I + 1)-dimensional representat1on) and thus contain ‘the tr1v1a1
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one, which has I = 0. These are actually all such representations,
because for j+ # j- we get the following possible isospins:

ki

I= - j”l, i, which means I is a]ways d1fferent from

zero (Ref 17)

a) Linearization of the Preferred F1e1ds

The algebra of generators of the SU(2) x SU(2) group is (see the

prev1ous chapter)

[va’ VhJ - EAaf Ab:j Te bcV and [V b] abc ¢’ (1)

where the 1nd1ces a, b and ¢ run from 1 to 3 (summat1on over a double

‘ 1ndex is understood throughout th1s chapter), where € abe is Kronecker s
tota]]y ant1symmetr1c tensor and the 1mag1nary unit i stays here for
our conven1ence only (it makes the generators A and V herm1t1an - they'
were ant1herm1t1an in the previous chapter)

We can construct two Cas1m1r operators for th1s algebra,

(o]
L}

(V-V) + (A-A).= 2(3%-0) + 2(0707) and " (2a)

Cp= (R = (AV) - A ¢

where J° and J” have been defined’in the first paragraph‘of Chapter III.
‘If ue'apply them to a vector of the (j+, in) representation space, we
Cget 2575+ 1) +257(57 + 1) and (5% - 37)(5T + 57+ 1) as eigenvalues
of this'uector under C, and Cz.respecttve1y.' |

‘In a representation eligible for our purpose (j+ =i =3) we.

“have

C; =4j(3 +1) andCy=0. | (3)
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. We need to explain how we define the operation of a generator
on a field. The previous chapfe? énab]ed us to calculate a trans-
formation property of a field under a group element 9° We now
;write.go = e"‘”X (where X is any one of the group generators and w
is-an infinitesimal parameter) andicalculate an infinitesimal change
of the field under such an element. This infinitesimal change divided
by w 15 equal to what results if X operates on the field. In this
sense generators'will be called operators in the following.

According to this definition we may say that
Vath = Teapcte | (4)

(gc is a set of three preferred fields), which is in complete corres-
pondence with equafionr(S) of the previous chapter. If f(gi) is a
function of the preferred field, our definition also gives us for a

generator X operating on f -

Xf(gy) = %% Xes s
which will be used extenéive]y in the calculations.

To construct the (j, j) répresentatidn of the group G out of the
preferred fields we first need a function of these‘fiélds (Tet us call
it S(g))which is an isoscalar (meahing V.S = 0) under the diagonal |
shbgroup H. Such a functibn will enable us to construct all (j, j)
representations as wé can see from the following paragraph, where,wé
present results of Ref. 17, but using slightly differentrarguments.

If we apply the operatdb A, = A] + jAz to S n times, we can

prove easily (using commutation relations (1)) that
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V3(A

s = n(a)"s o L (B)

(W) (A" = n(n + DAY~ (6)

This shors that the functions (A+)nS-are the highest eigenfunctions
(having the maximal V3—eigenva1ue) of the isospin = n representation of
H. To get all the (Zn + 1) eigen functions of this represéntation we
‘just apply the 1ower1ng operators V==V, - ivz to (A+)ns successively
2n times. . | o |

To comb]ete the (j, j) representation of the whole group G we

~have to have all the subgroup repreéentétions‘with ieospin equa1 to
0, 1, 25 "wees 2§ ' ’ '

This induces one more condition upon the function S

(A,

y23¥s - g | , (7)

A]]lwe have to do now is to find an isoscalar function S of the
preferred f1e1ds satisfying cond1t1on (7) | ‘

In order to accomp11sh th1s we need the complete transformat1on
properties of the preferred fields. The transformat1on 1aw under the
subgroup H has already been ment1oned in equation (4). The most
general form of ‘the transformation law under the rema1n1ng generators

~of the group G is (Refe: 4,12, 17, 22) in the case of real fields the

following:
Ag = —1(6 #(e2) + £ £,9(c%)) ” | (8)
a~b ab *ab 'Y ‘ o ‘

whereg Zgg’a

- aa ab is Kronecker's de]ta?‘f(gz) is an arbitrary
a= . ‘ : “

function of'gz, and where g(gz) is related to f(gz);as shown below. .



34

Here it is worth mentioning that the generality of (8) implies the
subgroup is symmetric KRef‘ 12). Also, (8) is a more general trans-
formation law tﬁan the sfanderd frensfermation law of the preferred
fields described in the previous chapter (but they are physically
equivalent in the sense of that chapter).

. From the condition [A A ]gb cadvdgb’ which fo]lows from
the Lie a]gebra of generators we can ca]cu1ate the function g(gz) as

_ 1+t 2Ff! o
£ - 2688 o ' (9)

where f! = —115—) (for the. proof see Appendix 4a)
dE

It is not'easy to construct an isosca]ar function S(&) satisfying
conditidn (7). and we shall devote to this task ihe rest of this section.
We could try the obv1ous 1sosca1ar g R but it does not term1nate as
condition (7) requ1res ' | _ '

2

We have to take some general function of £°. Let us call it

.hoﬁgz). When we.apply.the operator A, (multiplied by.i. for our

convenience) to such a function we obtain

| 3 -

1 2. .. 2 ~ ' . o e

hg (ETGAIET = hy 2 B (89,F + 5120 * 65,7 +
a=1, :

(iA,)hg (£%)

+ 1EE,9)E, '¢2h0(f + g_zg)(£1 + ig,) = h1(a2)5+, | (10)

where a prime always means a first derivative of a function with respect

to gz and where the last step is just a definition of -

| h](§2) = Z(f(gé) +g?g(g2))hé(£2) and of g+ =—§1 +'1;2.
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Cens . 2 2 2
S1m11arjy we can define hz(g ) through (iA,) h, = hé(g+)

(the common argument g? of:the functions h is essumed, and most

generally
N, _‘ | no ' S
ARy = (), - (1)

Such a relation defines the functions h, properly, as can be
checked using equation (8) repeatedly. Furthermore, this definition

gives us a recurrence relation for the functions h, in the form

v ) ’ ’ :
h oy = ngh. + 20 (F + £%). | (12)

n+l.

For n = 0 this has been derijved in (10), and we can prove similarly that
it holds for (n+1) if it holds for n.

To guarantee a proper termination of the functions h (equation 7),
we have to impose the condition‘ | |

2541 = 0 . | | (13)

h
Each funct%on hn musf be an eigenfunction of both Casimir operators
- with the required eiéenva]ue§_(see equation 3). Since the operator A .
commuteé with the Casimir operators we can require this for fhe ho— N
function only and we shall get the<desired eigenvaiues for all the other
functions h automatically. | | |
iSinCe ho is a scaler under H and thus obeys Vaho =0 (a = 1, 2, 3), .
it is an eigenv‘ector_of‘.C2 = A.V WithVeigenvelue‘zero. This together»
~with the requirement that h0 be an eigenvector of 01 (see equation. (3))
then implies that
o ; .
C1ho =5 AaAaho = 43(5 + 1)ho : ) E (14)
a=1 -
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To rewrite this equation in an explicit form we calculate

Aaho = ih]ga and then apply the operator Aa once more and éum over a.

The result is

3 .
. o 242, 2.\ = _(n 2
a=1

Equation (14) now reads
Chyg? 3 f A5G+ 1) = 0 (15)
Equations (12), (13) and (15) define the functions h completely.
To solve them in this form would be still quite difficult. The
greatest contribution of Ref. 17 consists in introducing a new set of

functions vy of a new variable u given by

u=-f/o, o= (f%+&%)% and v (u) = "n (£9). (16)

n

This redefinition enables us to rewrite the recurrence relation (12)

* in a nice form,

_de oy . S
Va1 (W) = g v (W) n (17)
' ' ~ 2 .
. ]
as can be checked easily using d°2 = 2f20+1, Q22 = iL:_gégf'
’ | - “ dg 26

and relation (9).

;Equatibn (13) now reads
d 2j+1 _ '
Voje7(U) = (Eﬁf) volu) =0 y (18)

and rewriting equation (15) yields

2)

(1~ u)vy(u) = 3uvq(u) + 45(5 + 1)'= 0. ' ‘ (19)
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Equation (18) tells us that vo(u)‘must be a polynomial of degree
2j or Tess in the variable u. Equation (19) can be solved by a power
series expansion, v_(u) = zbnun, which yields a recurrence relation

for the coefficieﬁts by

(2r + 2)(2r + 3)byyp = (4r(r + 1) = 45(5 + )b, (20)

N =

where r = 0, =, 1, %3 ... Because the recurrence relation (20)

together with equation (18) implies that b2j+] must vanish while
sz# 0, we have to take b0 # 0 and b1 = 0. for j being an integer and

bo = 0 and b] # 0 for j being a half-integer number.

The function ho(gz)‘; vo(u) is the isoscalar function of the
preferred fields which we were trying to find and which has all the
required properties. |

The way to generate the remaining functions of the (j, j)-
representation from h0 has been discussed at the beginning of thié section.

In the case of j = % the (%, %) rep?esentation décomposes (when
| restricted .to H) into representations with I = 0 and 1.  The eigenvalues
correspond to the o-particle and tﬁree‘pions known from the so-called

o-model (Ref. 4).

Note: Redefinition of the Preferred Fields

We can define a set of new fields by the equation

(21)

£ =g H(e

where H(gz) is any function of gz for which H(0) # 0. (As discussed
in Chapter II this will give us the same physical results). The
previous section can be rewritten in terms of these new fields if we

replace the functions f and g by functions F and G of the new variable
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5*2‘ These functions, in order to satisfy equations (4) (8) and (9)

must be of the form
% %
F(E'2) = F(e2H(£?) and G(£72) = (gH + 2H'(f + e2g))/H?  (22)

b by writing A e* = A (5. (D)) = (6, H + 26.¢ H)AE. =
as can be seen by writing A g, = a(gb %)) = (8, gpEH") ke =

. , : ' 1.2 * 2yy -
-1(s,,fH + g8, (gH + 2H'f + 2H'e%g)) and V g, = V_ (g H(E")) =
| . : ) | 0y * 7

= (8 cH + 208 H')ie, 8y = ey cEee
Furthermore, we have to redefine a* = Ho and u* = u (see definition

16). We now notice that h (£%)(£,)" = h (£"2)(&;)" (see the third

n
of equations 16), which means that the Tinearized fields do not change

under such a redefinition of the preferred fields.

~ b) Linearization of Other Fields

We already know from the last chapter how the other fields v
transform under an element h of the diagonal subgroup H, namely accor-
ding to a linear representation of H, in a formula: (y')% = RQB(h)wB.

The generators then operate on the fields y as follows:

VY =ty “ ' {23)

where by ta we understand the matrix R(Va). For the generators A the
most general form of their action on the ¥'s can be derjved to be

(Refs. 12, 17, 22)

Aw—wék (24)

abc c bw’

where we sum over indices b and c.
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From the Lie algebra we obtain [Aa,‘AbJW = 1€abcy ¥, which

yields .the following expression for the function v:

V) = el o
_ £(g7)x(f" + £°) o1 % u)
Here f is the arbitrary function of the last section. (For a prbof
' see Append1x 4b) |
We want to extend the 11near transformat1on property (23) over
the whale group SU(2) x SU(2).

The simplest case occurs when equat1on (23) def1nes an 1rreduc1b]e
representat1on of . h We can expand. it to either of the following
representations of the whole group G, (t, 0) of (Q, t).

_ In the -extended representatfon there will correspond to each Aa
~a matrix which we shall denote by X . The set of X and t-matirces must

sati;fy the commutation relatijons (1),

l:ta’ tbjh'= [Xa’ XbJ = abc c and [t bJ abc c (25)
Linearization of the fields ¥ will be done by f1nd1ng a matrix
M(z) (a function of the preferred fields) wh1ch will muitiply ¥ to g1ve

a resu]t transform1ng Tinearly.

This means we are Tooking. for a matrix M(g) satisfying
V,(M(z)¥) = ~t M(z)y and A (M(g)¥) = X M(e)y. - (26)

It can be checked (using eqﬁations 23 and 24) that'(26) is

equivalent to

VaM(g) = -[ta, M] and AaM(g) = =X M - € bele thb ‘ (27)
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The second of these equations can be written more explicitly as

M

8E, 1.M‘Sabf * gagbg) = —XéM " €apchcVMty (28)

Multiplying this by £a and summing over a we obtain

(-0)(F + )z g7 = -(rem, (29)

where

- 3
(Xeg) =a§=:1-xaga,.

To solve this equdt{on, we shall make an ansatz for M as a

power series of (iX-g) with‘ngdependent coefficients
L o 2yfiy.py
M(g) = § a (£7)(iX-€)".
' n=1 ‘
Such a choice already satisfies the first of the equations (27).

Inserting this trial solution into equation (29) gives us

. 2 1 ' _
,(f + £%g)(2¢ a, + nan) = -2 e (30)
% 2y _ 1 A In ' . .
If we assume a, (&%) = — [=%5=1" , where A is a function of
n . n: ((S )
u only, equation (30) simplifies to
92\.. = - .__.....____.._’1 t ) o . (3])

This has a solution A = arccos(~u) < 0.

With this solution for A(u) we find that

M(g) = exp (in(X-8)/(z?)%).  (32)
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This M is obviousiy also invariant under the redefinition (21) of
‘the preferred fields.
M can be calculated explicitly for the representations (%,0) and

(0,%) (Appendix 4c). We obtain the fé]]owing result:

B ;2 : . ' !
{1 - u - i Y
M= ( 3 ) (1 tonew 5.))’ (33)
where fhe S are.the Pauli matrices.

Similarly we get for.the representations (1,0) and (0,1)

M= {131 (xg) - LEN (x-s)z),A | (34)

g

where Xa is the matrix with coefficients (Xa)bc = -Tegpe.

c) Relation Between M anid (V—)khn(g+)n

If the linearized version of the fields ¥ is transformed according
"to the (j, j)-representation of G, theﬁ there exists a relation between
the matrix M and these functions which were constructed in section'a) .
from the preferred fields to represent the group G linearly. By |n,m>
we shall denote the base vectors of the (3, j)—representatioh defined
by the following properties: ) |

tgln,m> = m[n,m> and (t-t)|n,m> = n(n + 1)|n,m>.

As before, the t are matrices representing the operatorsrv'in"

1

the (j; j)-representation, n may be any number from the series 0, R 1,

%3 2, ..:» 25 and m satisfies |m|< n.

We can brove (Ref. 17) that the matrix e]ements><0,0]M(g)]n,m>
are exact]y (up to a constant factor) these functioqs constructed in
- section a) to form the (j, j)-representation which are characterized by

the same quantum numbers n and m.
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For example in the case of the (%,%) representation we have

(35)

M(g) = exp|—2—— (s- - A (s,
() eXP(z(gz)%_( a))@em( W( a))

i

(compare with equation (32), S

(see Appendix 4d) <0,0|M|0,0>

2X are Pauli matrices), which yields

-u and <0,0|M|1,+1> = ~ig /o
which are the functions of section a) obtained from vo(u) = -u (up to
the constant factors appearing in the last three expressions) as can

be seen from equations (11), (16) and (17) and from

ok, &
-1 ét: ..-—-3-.=*..—.0._ initd
(V1 1V2) . -2 = 2— (by def1n1t1on of go) and

g

o

g
- 1 ._.3_ = .é:.
(Vi 1V2) 5 .

Note: The Standard Form of £(£2)

In the previous chapter a particular kind of nonlinear realization
was constructed. The results of the present chapter are more general
(but restricted to SU(2) * SU(2)) because the function f(gz) describing
the transformation Taws is cdmp]ete]y'arbitrary. (Physically no generality
is gained by this freedom to choose f(gz) as was discussed in Chaptgr II).
, It‘would be interesting to know what the function f(gz) would hévé
to be to give the special case of Chapter II.. After some ca1cu1atioh

the answer turns out to be (Ref. 17)-
f(£?) = - (£9)*% cot (£9)™.

The sbecia] kind of transformation implied by this special function
f can always be obtained from a general function f if we redefine the
preferred fields as

g =g z_%sg- with A defined in (31).
E .



43

) *
This equation implies that-) = (g.zfi and since 1 is invariant
under such a redefinition of the preferred fields, we can rewrite
equafion (32) in terms of the new fields &* as

M(g*) = exp (~iX-g¥)

d) Lagrangians.

_In this section we shall more or Tess quote Ref. 17 to indicate
possible physical app]ications of the theory of nonlinear rea]izations.

In the Introduction'we mentioned br%efly'the symmetry breaking
terms in Lagrangians and now we are going to construct them exp11c1tlw

For a term which remains 1nvar1ant under the diagonal subgroup H
" but wh1ch breaks the symmetry of a Lagrang1an under the whole group G
we can natura11y take the 1sosca1ar funct1on h (from section a).

We can expand it as a power series in gz and it gives- .after some easy

manipulations.
3m° 1.2.2 m2 '4i(j+1)~3 ' 2r ! 2,2
hy = I - % 4 L3 ()2 - u | (6554
7 (g hug V' f
| ‘ ' (36)

2 2

where the eoefficient of £~ has been ca]]ed - %—m and‘where u is the

function;ef gz defined in (16) and where ué and ug mean the first and
secend-deriuative of u at the point"g2 = 0. The first term of (36)
is a constant and has no phys1ca] significance. The second term is
called a mass term because it indicates the mass of the part1c1es E.
It gives. us the reason for adding such a symmetry‘breaker to the-
Lagrangian, which would otherwise describe massless particles only |
(see expnession 39). The third term of (36) will contribute tg the
interactjon'ferm qf the whole Lagrangian. _

* The next term of the Lagrangian should be invariant under the

Whoie:group (it is the basic term not breaking the SU(2) x SU(2)

symmetny) and it should contain the 5pace—time derivatives of &
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(if we consider the preferred fields only). Sinéé we know that
Vaa;M|0,0> = -t,5 M|0,0> and A 2 M|0,0> = -X2,M]0,0> (37)

(from equation 26), we can conclude that <0,0|auM+a“M|0,0>
. . %*
provides an expression with the desired properties. It can be expanded

as a power series again

R 1 u(l)l ] (u('))z 2 u
g<0,0[a M"a*M|0,0>= ~5(3 £+3 ) - ~2fe £%(n £e0Mg) -
‘ H . 4y u N
0
2
un +,(U') }
e ) L (38)

where g is a number which makes the coefficient of (a £-3%€) equal to

- —-(to get the so called kinematic term - —-(a £ a“g)), where uO and
ug.have the "same meaning as before and where (goaug) and (aug'aug) are

the usual scalar products. Equation (38) (as well as 36) is correct
up to the fourth order of &.’ i
Collecting the right hand sides of equations (36) and (38), we

get for the total Lagrangian

,:§~= - %ngz - %(a £ g)-+—-u (gﬂa j+1)=3)m (52)2
c -(39)

+ £2(0 gea¥g) - 2(e+3 £)2) = %2 - La W& -a%e) +;I,
u it 2" 2

whére ;Ii g_g’is the interaction part. In equation (39) we omitted
the constant term of equatfon.(36) as‘we11 as another term proportional

to ug (because it is also proportional to the fOU@~d1vergencerof

. .
auM+ means the hermitian conjugate of auM.
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gz(g «3 g) and therefore does not contr1bute to the space-time integral
on§.)
We shall add one more note concerning the weak currents,
Experimental evidence 1ndicates that the weak sfrangeﬁess conser-
ving current changes the third component of the isospin by 1. This,
"~ together with our sign conventions for the currents, implies that the
weak strangeness éurreﬁt is transformed‘according to ther(1,0)~rep— '
resentation of the group‘G. We can check that the following expression
trahsforms that wéy; furthermore, it is obviohs]y a four vector in

space-~time -

J = G<0,0[M"(t_ + X )o M]o,,0> G —ﬂi——) ((Exa e_:) +
u a a’u EZ
+ fauga - gaauf).

So it can serve as an expfession for the weak strangeness -conserving
 current (here G is a numerical cqnstant‘andvfxang is the usug] vector
product). .

Similarly we know from experimenf that the weak strangeness
violating current changes the third compoﬁent of the isospin by-%
and must transform according to the (%,0)-representation of the group
G. To construct such an expression we take some additional f1e]ds 12
assoc1ated with the K-mesons) which transform under the diagonal
subgroup H according to the usual 2-dimensional répresentation (isospin
= %?. Then we need the hatrix M(g)rin thej(%,O)-; (0;%)- and (%,%)-
representation of the group G (we shall dengte these by M(%,O),
- M(0,%) and M(%,%)‘respective1y). Now Ref. 17 shggesfs two expressions
for the weak strangeness violating current, which can be shown to have

the desired,propérties and which can be expanded in a power series.
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These expressions are

(M-, <y h s ((545)9) + L (50 £)2
J, 2, (M(,0)¥) = -3 ¥ + 7 3 ((g-8)y) + oy (g°3 8)% +
' 0

2 -
tEp ava . and
8,

0 2 = THT(0,5)5,5 Mx,5) 0,05 = i (Sen g)v +
M 2w (2 e

RN (S+&)(s+2.¢)¥ o

2(2)7f,

where the S's are the Pauli matrices, foris the value of the function f

2 T T

at &-=0and ¥ and M are the transposed matrices ¥ and M respectively.
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CHAPTER V
" THE CONFORMAL GROUP

a) Definition and notation

The conformal group can be characterized as the set of all point
transformations of Minkowski space which map a space-time vector X, into
another spaée—time vector x; such that infinitesima] ﬁﬁ]]-vectors dxﬁ
remain null vectors.* In other words,‘dxudxu = 0 implies axl'l(dx')u = 0,
where the metric is the Lorentz metric gV =.(+1, -1, -1, -1) (Ref. 23).

These transformations coﬁsist‘of the Poincaré group transformations
plus the so-called spec1a1 conformal transformat1ons depend1ng on four

parameters s and def1ned by

XN}:: b3

X X' , ,
--——e>—§§ t, = ,—iL—7§ o , ' (1)
X o (x") : - ,

plus the dilatations depending on one parameter ¢ and defined by

xu-—-———ewxue'°‘:é X "(2)

)
|

Where x2

and (x')2 denote the Lorentz-invariant sca]arfproducfs ofir
X, and x; with themselves, both formed, of course, with the'éame‘
‘metric g"¥ as above (Ref. 23). |

Wé shall show in this. section that fhe conforma] group is equi?—
:a1ent tb'a group of linear transformations in a six-dimenéfonal‘spacé

preserving the fo]]oWing metric:

We shall express most relations in terms of the quantities
xuz(t,ei)’instead of x"=(t,X) for our convenience only. All relevant

equations can be rewritten in terms of x* easily (by raising indices).
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gAB = ('ﬂ: "]b "'-l: "19 "]: 'H)Va . (3)

where the indices A and B run through the numbers 0, 1, 2, 3, 5 and
6 (Ref. 20). Such a group will be called 0(4,2). To be mqre'precise,
if A is an element of 0(4,2) (A is a (six by six)-dimensional matrix)*

which maps a six-vector ) into nA via'nA = AAB”B’ we must have

BAC D _ BD |
Mg A =g, | (4)

‘where summation. over indices B and C is ynderstéod. ‘Equation (4) can

also be written'shortly as AT

gA:,V= g, where AT is the transpose of the
matrix A. - (‘ |
Suppose we have a representation of the group 0(4,2) given by
matrices R. A matrix representing an element AAB = GAB + eAB (where
eAB is.a set of 36 infinitesimally small numbers) can be‘written fn

the forh

R(A) = _ﬂ + -12— eABJéAg : ' | : j (5)

where 1 is a unit hafrix and where JBA is a set of thirty-six mafricés
generéting the repfesentation (théy are of the same dimension as_jLand
just fifteen of them are 1inear1y-independent). We get a similar

expression for another element A' =4[ + &' (in general &' is different
from ¢ and 4 is here the (six by six)-unit matr?x) of the group 0(4,2).

Using equétion (5) gives us. (up to the first order of ¢ and ¢')

* It is difficult to keep the previously introduced notation
throughout. this chapter because of the existing (and overlapping)
standard notations. A general element of the group 0(4,2) (the
conformal group) will be called A (instead of the old g) and the"
letter g will be saved for the metric tensor. :
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L}

A)(f{L+2 a9 o) - R(RGORAT) = RO o7 =

(6)

i1y g9C S 4 i AL B EC
-ﬂi‘z(Ag A )CDJ' .—‘_‘ﬂ_'l- 5 A € A gBE D J

i, A B,DC

L]

-1 gATg and the usual practice of raising

Where we used the re]atfon A
and Towering indices.
Comparing the'first_and the Tast expression of (6) we can cancé]
the unit matrix and the factor %u In order to cancel out the common
factor eAé (whicﬁ is antisymmetric in A and B as follows from equation
(4)) we have to antfsymmetrize-its coéffﬁcients on both sides. We can
do this without loss of generality by‘choosinngAéAto'be antisymmetric

in the fndices.A and B. Then equation (6) reads
R(0IFRT (1) =_4cA DBJDC | o (7)
Thié‘can be‘rewrﬁtten:onée more as
.(114 T eepda®A (- % eCDJ?C) = (5" + e (6 + EDB)JDC‘,
‘which (after cgnce]]ing some terms ) y%e]ds the result

S CD[JDC BAJ ] ECAJBC . eDBJDA i} SCDgDAJ?C DCgCBJDA

In order to cancel €cp in this equationvwe have to write its
coefficients as a sum-of symmetric and antisymmetrfc terms in C, D.
The symmetric terms do not contribute, because eCDis antisymmetric, and

“we are left with the antisymmetric coefficients
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‘ CD- _. AD.BC" A
%_IJAB} 307 - gADJ C - g C4BD + gBCJAD ) gBDJAQ’ (8)

which is the final result of this calculation and defines the Lie
 algebra-of the 0(4,2) group. : _
It can be checked easily, that the following matrices (Ref, 20)

provide'a represéntatioh 6f this a1gebﬁaf

AB) D _ A BD B AD) - ﬁ' | (9)

These matrices rebreéent the genefators in the six-dimensional
self-representation of the group10(4,2). .(Here A;B are indices'
1abe11iﬁg the matrix and C,D are the usual row and column indiées).

Similarly we get (lowering the indices A,B) '

oD, D Dy |
(Ingde = 1(opcdp .~ 9pcla )- (10)

In Appendix 5a) there is an exp]idit 1ist of these matrices,
which is convenient to have for any practica]‘ca1cu1atibn;

To make the connection with,fhe conformal group we redefine these

generators into a set

P]J = J5p f J6p K11 = J5u - J6u and D f J56"‘ _ (11):

where u runs from 0 to 3. For A<3 and B<3 we keep‘JAB unchanged
except for denot1ng these indices by Greek Tetters.
The structure equations of the L1e algebra of 0(4 2) in terms of

these new generators become (us1ng‘equat1on (8))

[y g ol = 195,96, = 900 | 9,900 " Jop?

o gy (12a) |

[p.pI=0 [Ku-,K\,J =0 and [J ,0]=0 (12b)
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[Pp,D] = "1Pp R [Kﬁ,DJ = 1kh aﬁd [kLvaJ = 21(Juv - guvD) (12¢)

[Puadyv] = i(gaqu"- gvau) and [Ka,Ju§] = 1(gdqu - gavkh). (12d)

This is just the Lie algebra of the conformal group (Ref. 23),
where Juv are the géneratqrs of the Loréntz transformations, Pu are
the generators of the translations, kh'are the generators of the special
conformal transformations and D is the generator of the dilatations.
Now we can show quite eaéi]y (Appendix 5b) using the generators. in

the se1f~representatioh“that

n. +a (n5 + “6)'

uo Cu
(o-P) + (aen) *+ % a¥(ng *+ ) -

elleP) "5 T e g T g _ : (13a)
N~ (asn) - %'az(ns * ng)
n, + 8 (ng = ng)

eilBk) ng * (Ben) + %isz(n5 - ng) | (13b)
ng + (Ben) + %-62(n5 - ng)
"

e(i?D?n = - ngcosh o + ng sinh o ’ (13c)

T]5S'inh g + n6 COSh g

where n is a six-vector, o, and Bﬁ are two sets of four real parameters

each, {a-P), (8:K), (a+n) and (Ben) mean the usual scalar product in
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four dimension; (for example {a-n) = agng élnl - apny d3n3) and o

is a real parameter.

Because of the isométrism bétweén 0(4,2) and the conforma1
group jt must be ppssible to redefine the six-vector n to get four
.components which wou]d‘trénsform Tike a space-time vector, and two
additional componeﬁts say k and A. bne possibility is the following
(Ref. 20): ”

. ,

X, = ;ﬁ—;—;g' k =mng +ng and A = ng - ng - (14)

It can be shown easily (using equations (13)) that the X,
really have the correct transformation properties ﬁnder the Pojncaré
subgroup and under- dilatations. To obtain also agreement with the

transformation prpperty‘(1), we have to restrict the n's to 1ie on

the hyperquadratic

n? = Mg = MMy 7 Mignp < Ngng = mgng ”5”é'= 0. . (15)

This onTyfmeéhS we loose one of ourrin&ependenf barameters, say
A, which is equal to kx?. 7 ' ‘

With the restriction (15), the expression (14) for XM cén be.
.interpréted as the definition of homogenedus cdordinatesﬁfor space-time.
In another connection these homogeneous coordinates serve the usual
purpose of distinguishjng between various infinite pqints ofrspace;time.
This is ﬁmportqnt because the conformal group maps finite points into
infinity and vice versa. Sincg it is also a one-to-one map, we must-
distinguishrbetween different points at ihfinfty.

We can now write
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and, using equation (13b); verify the transformation law (1),

For a later pufpose we define an operator dpge If f(n) is
a scalar function of n, we can calculate an infinitesimal change of
this function under an element A of the group 0(4,2). With

B B B

Ay~ = 95" + ey the change of f can be expressed as

| 5 .y _of B AB_
sf(n) = f(n') - f(n) = 5%; (n' = n)y = Sg;eA,”B = e ngd,f,
where the last step is a definition of the operator 9y

Since eAB is antisymmetric in the indices A,B, we antisymmetrize its

coefficients by writing
6t(n) = ¢ D(ngag = naag)Fln) = - 2ABy fn). (16)

The last step is a definition of the operator'aAB. 7
This operator can easily be rewritten in terms of the new set

of independent variables x> k and A:

[$%
]
x
(%)
$
x
@

= )
35u + aeu -~au + quk = |
’ ’ (17)
5. =93, =gy . 2x ((x+3) - k 2_ o
Bu 6u  k “n U ak
= o (xe ., 8
: 356 = ~(x+9) + k T

If we use here condition (15) for the six-vector n (this condition
-1s invariant under the 0(4,2) group) and if we redefine the function |

f(n) as follows:



54

Fn)—>f(n) = ( - ko) &

(such a redefinition does not change the function for any n satisfying
condition‘(]5) but makes its first derivative with respect‘to X vanish

there. for these n's), we can rewrite equation (17) (Ref. 20) as
a =
py TRaY) v

2

6 = X5, - 20, ((x09) - k &)

Q2
!

56 = ~(x+2) + k 2.

(o5
1

The standard way of dea11ng with k. = ak is to assume that f(n) is
2 homogeneous function of k of degree 2, which 1mp11es that it satis-

f1es Eu]er S equat1on,

A genera] function f(n) can be written as a.sum of such homogeneous

funct1ons of different degrees 2.

" b)__Transformation of the Preferred Fields

| ‘For constructing a nonlinear realization of the preferred fie]ds
:we'use-the’standard method of ‘the second chapter. It does not guarantee
'genera11ty of our results, i.e., there m1ght be different phys1ca11y
1nequ1va1ent non]1near realizations of this group since the conforma]
group is noncompact (see Chapters I and II) but it can "be shown

(Ref. 5) that in the case of the conformal group th]S method does
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provide the mostléenera1 resu1ts.* Some attempts to-generaliie the
results to a]]‘nohcompaét'groups have been made in Refs. 12, 13, but -
the arguments éke not quite cléér. JFufther work Femains to be done
to give an exhausting answer to this question.”

In the case of the conformai groub we choose as subgroup H the
homogeﬁeous Lorentz subgroup because'theﬁ the éommdtétibn relations
are of the required form discussed in connection wjth expressi6n (5)
in Chapter II. Thus we are left with njné preferred fields. Since
four of them'turn out to- transform just‘like the four coordinates
of the space-time vector We will interpret them as.xu. Then there are
five preferred fields left. |

Because .any .group e1ement,Arcan be,ertten uniquely din the form

' . . N . L o ]J_\)
A = e1(x P) e1(¢ K) o ioD e1squ

(Ref. 7) (splitting the preferred fields into three parts is uneésentia]
since the decomposition is still unique), we can define a transformation
of the preferred fie]ds,under a group eJémentIAo by

s lyeD . 3 soipd 1M _ : . 7 o
Aoe1(x P) 1(4:K) -ioD | e1qu i K (-0 Ph, ; (19)
where h is an element of H uniquely- determined by’(19).

~ To calculate the‘transfbrmatidn laws of the preferred fields

explicitly i$ rather tricky. Since the 6—dimeﬁs{oha1 se]f—représentétion

*

" "In Ref. 5 the author starts "by defining the most general
commutators between the preferred fields.and.the generators of the
group. The Jacobi identities are then used to derive differential
equations for the functions introduced in the commutators. Explicit
field transformations are shown to define transformation laws for these
functions and these laws are then used to show that the commutators
are equivalent to the very simple form ... of Ref 20."
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- of the conformal group (discussed above) is well-~known and since a
number of relations are‘probab1y simplesf in this representat5bn, we
shall express'a11 groub elements and generators in the fo]Tonng in

‘this representation. Then we notice that

s pH u_D sy pH 3o M s -
e1qu 1¢ k io = Ao e’qu e1¢uk o ioD hvj | (20)

implies that the Tast two columns of the (6x6)-matrix

;‘u.p_’. o ' )
M =u61xu3‘ e7¢uK' o 1oQ ' o , (21

transform'as two ordinary six-vectors. This is SO because in our
representation the matrix h! 15 pbvioue1y in fully reduced block form
containing a four-dimensional part, effecting the ho@bgenedus Lorentz
transformation on the first four components of a 6—Veetor, and a two-
dimensional unit matrix in the indices 5 6 This imp]ies that the
- matrix Mh™ “1 has the same Tast two co]umns as M, and therefore A Mh™ -1
has as 1ts Tast two co]umns the 1mage of the Tast two co]umns under A
Furthermore, the transformat1on of the 1ast two columns of the

matrix M must determine the transformat1on laws of the preferred fields
uniquely (because to any transfermation of the preferred fields which
transforms thei1ast two coTumne ef M proberly we can always find a
matrix h satisfying relation (19),7but we also know that such a trans-
formation‘or the preferred fields (sat{sfying re]atfon.(19)) must
be unique). | | | I |

-~ Second we éssume that the quentities x]J transform’]ike components
- of the space-time vector; and using this trial transformation‘]éw of
X, > We calculate the transformat1on 1aws for - ¢ and o from equation .

(19) as we know from the 1ast paragraph If this problem has a

[N
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‘so1ution, it must be the very unique solution of the whole task, and
then we know that the assumption 1$.the correct one.
Thus, asusmfng fhe'transformatiqn:propertieé of gu és known,
we have reduced oﬁr problem to ca]pu]atihg only ¢; and o' by using
just the last two columns of.the matrix equation (20) (which are equal
to the last two columns of equation (195).
In the calculation that fo]]ows,‘it is more convenient (while
‘cdmpletely equiya]ént) to use the difference and the sum of the last
two columns of M instead of using the Tast fwo co1umhs themselves.
The difference and the sum are | |
206, + x 6%)e% 2X e
u i _ u
B=1{ (1 + 2(x-¢) + x2¢2 + ¢2)e0 and S = (17+,x2)e-° (?2)

e (1 F 2(x9) + x2¢2 - ¢2)e° (1 - xz)e'G

respectively, as can be seen in Appendix 5c)..
We sha11‘consider fhe‘transformation of the preferred fields
in three separate cases: | | | | |
I. under the Poincaré'subgroup,
IT. under the speciaT conformal subgroup,

III. under the dilatatation subgroup.

I, Here we consider transformations under the Poincaké subgroup. Let -

Y
A = e'locuP A

O 2

where A is a homogeneous Lorentz transformation.

According to the previous notes we et xu,transform like the'spaée-time
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: ...B
vector and B, and S, as six-vectors. This implies that x%z— and
A A ‘ By+By
S. ,
§—1§- also transform Tike space-time vectors while BytB; and Sp+Sg
5776 | . , h

are conserved (check with equation 13a). A1l we have to show now is.
the consistency of these transformations. We can reformulate them

once more by saying that

Bu (B +B ) = 2¢ e’ and Sﬁ - (55+56) 0

. transform Tike four-vectors while

_ 2.0 e -
85+36 = ¢7e gnd;u85+56 = e

transform 1ike sca]ars‘uhder an e1emehtlof the Poincarg subgroup.
Th1s can be satisfied eas11y by 1ett1ng ¢ transform as a four-
“vector and o as a scalar.

' we summariZe these ‘transformation probertﬁés in fhe fo]]owihg:~“
$,» o' =0 and xL.; Apvkg + 0y - . (23)
where Auv‘is th§ space—ti@e part of the-mafrix A

Last we cé]cu]ate
h= )T M= efoP e-iAu9¢vk“ e—iAuvva” e-iauP“ efauP“A.

. VPSR |
‘eruP ej¢uK o foD

= A,
where we used
. pH ' . u i _in
ix P 1A x P ¢ K_ e1A ¢vk A and pe” 10D = omioD,

he Ty v A, Ae
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This ca]ch]ation can be repeated step by step even if ¢ and o are

functions -of xu{ - We only have to modify (23) to
O (x') = A Y (x), o'(x') = o(x) and x' = A x +a.  (24)
? LI U u -

We notice that the transformations are Tlinear if AOeH as we ‘

would have expécted.

NV
II. Now, let A = e13uk be a special conformal transformation.
We want
“Bu Su : xﬁ
i and —5
BgBg  S575¢ T x2

to transform in the fashion of equation'(l) ( the requirement BZ=52=0

is satisfied) and B5"B6 and 55-36 to be conserved under such a trans-
formation (check with equation 13b). This implies that the following
quantities are conserved: | '

X X :

B~ —% (B.~B.) = ¢ e - =% (1 + 2(x+3))e°
A RO e
. Bg-Be = (1 + 2(x¢) + x2¢2)e0
X .
Su - 2.(55— 6) =0
X
and  Sg-Sg = x%e™0

These conditfoné are consistent with each other (the second
7 expression divided by the first one squared gives us therlast one)."

They can be satisfied by the following transfqrmatéons:
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2
+
X, X 8,

. o - | (25a)
X% 1+ 2(xep) * x50 |

which is equivalent to equation (1),
. ’ 22 o
' =o ~2n (1 + 2(xeg) + x“8%), | , (25b)
which follows from the last condition, and

ot = (14 20x8) + £x%)p + (1 + 2(x0))(1 + 2(x-8)) -

- o (8-a))e, - (2(s+4) + 621 ¥ 20x4)))x,

which can be checked after some tedious calculations.

For the matrix h we obtain (up to‘the first order in g)
= ATIRY
h =4 + 2ix"g Juv T ..

as is shown in Appendix 5d).

iAD

III. If A, = e’ is a.dilatation we must require t_hat-éu = (¢u+xu¢2)eg

i ®)

and Su = xue are conserved under such a transformation while the

2

quantities 85+86 = ¢ e’ and 35+S6 = e are multiplied by e (check

with equation 13c). This can be satisfied simulitaneously by

=xe”", ¢' = ¢ue and o' =0 = A

as can be seen easily. These relations imply that

- . S i MA s H.=A : u
ho=-(M) 1A0M - oilo=A)D ip K'e® ~ix Pre ™ JiAD Jix P

. u - R
. e1¢uk e ioD _ 1
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ixD _ix P* iX P”ex‘ iAD

o A Y (IR S
because e ey =e’n e and e1AD e1¢pk = e7¢uK e e”‘D :

as follows by interpreting these expréssions as elements of the conformal

_group acting on the space—time.vector.‘

c) Transformat1on of Other F1e1ds

Let us assume we have a set of f1e1ds W wh1ch transform 11near1y

under the conformal group
¥ (n') = R(0)¥(n)s | , | (26)

where A is an element of the conformal group.
and R is a matrix represent1ng it.
In order to turn ¥ into a set of fields which transform in the

standard non11near fashion, we Just redefine it as follows:
¥(n) = R(e!P i, e‘*xgp”mn) - R(M“>’u¥(n> R : (27)
transforming ¥(n) by A giVeé (as already shown in Chaptér;l)'
v'(n') = R(h)R(M“)R( '])R(A)‘P(n) R()¥(n), - (28)

which follows from equations‘(ZO) and (26). Here h = h{A,M) is the
element of the hombgeneoﬁs Lorentz supgroup which has beén calculated
in the previous section. |

If ¥(n) is a homogeneous function of n of degree e ( i.e.,
Q(x) = ?(k) k™ Y(n), we can 1nterpret equat1on (28) as the trans—
formation law of fields. defined on space-time. We shall.work th1s out

explicitly for transformations of:the form A ='6AB + eAB, where'aAB

is a set of infinitésimé11y small numbefs.
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In that case we can write equation (28) as

) = e Fo R, | (29)

where CH is a set of numbers corresponding to huv = auv +

Now- we can perform the fo]]owing manipulations:

v (x') w*(}}%) - ()M (') =<§—) Mt F o R ) =

:ﬂ+ 3 0 R (x), (30)

- where ¢k is an infinitesimal ihbreasg of k.
 This finally yields (since ¥'(x') = W'(x)+6xuauw'(x) =

= w‘(x)+6xua“w(x) up to the first order in infinitesimals),

s¥(x) = ¥'(x) - ¥(x) = ¢v'(x') =~ ax;a”w(x) - ¥(x) =
= (e " + St To REV¥K) (31)

Having a quick Took into the previous section gives us
immediately |

I. for the Poincar€ subgroup, where sk = 0, 6xu = suvxv + o and

r(x) = - (e, + 0 )R £ e RV (32)

II.. for the épecia1 conformal subgroup, where &k = 2(B+n). from

. = W2, . I T TR THRY
equation (13b), 8x = X8 ‘2xu(x 8) and h =q+ X8 Juv"

8¥(x) = (2(x°B)XU‘XZB;)B“W(X)-2£(B~x)W(X)+2iX“BQR(J )¥(x)  (33)

(LA
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I1I. and for the dilatation subgroup, where sk = ak (from equation

13¢c), 6x = -ax_and h ° = 7,
u u po.oom

aw(x)'= A(xualJ - 1)w(x). : ' (34)

These fo?mu1as are héndy‘when caléu]ating currents from a
Lagrangian density L for the preferred and other fie]ds._

The genéra] expression for a curreht associated with a symmetry
transformation of a Lagrangian according to Gell-Mann and Le'vy fs

given by

i (x) = oL sy + —2b 5 4+ 2L

. 30 +‘5x'L. (35)
5(a%y) 3(s%,) A (3 o) !

For .inhomogeneous Lorentz transformations the curreﬁts obtained 
from expression (35) are the energy-momentum and angular momentum and -
boost tensors.

Special conformal transformations,and dilatations give us new

currents, namely

. (K¥) _ sl | 2 s
g0 3(auw)Sva(x-a)— x‘av - 20X+ 2ix R(Jav))w(x) +
oL 2. o Ve ox 4t
+ a(auw((.2x\,(x-'c>)- XTa + 2xv)¢x-2xa¢v+ng+2(xi¢)ng) +
L 2 2
, ;%;17;) ((2¢,(x:3) = X3 )0 = 20)) + (g, -2x x )L
and
3,0 = 8L (ea)- i +~—*"-L——-<<x-'a>+n¢ b2k
SR s(s"e) a(a“¢x) A a(Me)

« ((x<3)o - 1) - qu respectively.
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d) Covariant DerivatiVeS

To construct covariant derivaties of the preferred fields and
other fields we start with the édjofnt representation of the conformal
~group. It is the representafion,ac;ording to which tﬁe operator AR
defined in Section a) is fransformed (Ref. 20). If we apply the operator
9ap to érbitrary Tinearly transformed fields ¥ (see equation 26) we
get an expression with cohp]icated transformation properties.

Using the general ideas of Chapter II we can define a new operator

by
T Cpom -
¥ = (D 0T PROMay, | = (36)

- where the matricés-R are:qefinéd by equation‘(26) and the matrix M
: by equation (21) | - 7, ;

That DABY indeed has the standard transformat1on properties (for
each of its 1nd1ces separate]y) under an e1ement A can be shown 1n the.

following way:

-1 -1 ~1 —1

¥)!

(DAB (hM A )A (hM

)B R(hM )AC D EF(R(A)‘”' N

hAChBDR(h)DCD% I o (37)

where:we have used equations (20) and (21) the known transformat1on

propertiés of 3 5B (according to the adjoint representat1on) and the

assumpt1on that the parameters of A are space- t1me 1ndependent
Equation (36) can be written in a more explicit form by noticing

that (Ref. 20)

. s Boe, ix PH :
BAB = %(GTXUP )A (E]XHP )BD(k’pa}1 + zzD)CD' ' . (38)
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This is proved in Appendix 5e).

With the help of this relation we obtain

i
2

D,V =

T iy pM 1 ayepH
¥ = 3 RO TP )AC(M TP DMK o + 20D)p. (39)

. . - . s M . U .
Y= %-R(M ])(e1§De1¢uK )AC(e1¢uK e 1oD)DB "

Lkt w2 Dy =
(k;a +.gzD)C ¥ =3

;1 o} i ‘rw
R(M )(kLe (au + 22¢u)+22D)ABw,

where we have used the géneral relatioﬁ ABA'= (A'])AB, (valid for any
eleﬁent of 0(4,2)), equa£ion (21) and the formulas eichﬁe'ﬁOD.= Ke® -
and e'i¢uKuDei¢ukﬁ =D + ¢uk“. |

The expression (Kuéo<au +'2z¢u) + ézD)AB-can be evaluated using'
the explicit matricesbf‘Appendix 5a) Wifh the final result %pr DABW‘

ny

D ¥=0
uv ‘
| Ny oeTy,o o
(DSu + nﬁu)w = R(M: )g’{au + 22¢u)w
| . | (40)
. - I‘J -
(Dsu Dﬁu)w 0
D56W = oy,

4

The covanianﬁ derivaties we are looking for must be contained .
. in the expression for (DSQ‘+ Dsu)W; which transforms (using equation

37) according to

D

5. + DGu)w-—f-——9hu R(h)(P5u‘+ DGM)W:T . — : (41) .
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The expression for (Déﬁ + D6ﬁ)$ can be rewritten using the

standard fields ¥ (defined by equatioh;28) as

(D, + D6P)W = R(M'])eg(aﬁ + 2z¢u)R(M)w = e°(au + 28 )y 4

5
R(M‘1)e°R(aum)w} (42)

The matrix R(M"])R(BUM) can .be expreséed as a 15nearlcombination
of the generators of the conformal ~group (1n the correspond1ng repr-
esentation) and then separated into two parts, the f1rst part being
a 1inear combination of the generators of the subgroup H only and ther
gecond part being a 1ineér combination 6f the remaining generators.

We know from the geﬁerai discussion of Chaptér II that the second
part (multiplied by e’) must be cova}ainﬁ on its own and that it gives
us the-covarjant derivatives of the preférred fields, while the first |
part (multiplied by %) must be added tq the term eo(au + 22¢u)w (of'
expression (42)) to cdmp1ete the covariant derivative of V.

It 55 easy to separate the—matrix R(M"1)R(3 M)‘ihto these two
parts 1n the ‘self representat1on In th1s representat1on we can
separate the part correspond1ng to H from the rest s1mp1y by separat1ng

-1

the space-time part of the matrix M 3uM from the last two columns of

M"]auM. This yields (after multiplying by e7)

-1 o - i = w039,V ]
(We 8 M), = 2950, - 9,,0,) = -21€70 (0 )y os

20 2,
267 (a0, + 9,07 - 20,0.)

-]o' _ (¢ + |
MA.e 2B=| e (auo‘ 2¢u)

—e?(auc + 2¢p)' . (43)
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‘ 29uv
~1 0. o L a0 ;

M e% S = e {30+ 2 )

~e°(auc + 2¢;)

~ Details are provided in'Appendix 5f). (B and S were defined
in 22).

The final expressions for the covariant derivatives are then

Do 2

u

e”(a 0+ 2 ), Du%.— (a0, 9,07 - 200),

L]

and D ¥

Ofn. .V : - | :
y e (a}l + 22% 2i¢ R(Juv))w.‘ | (44)

These have (by constructﬁon) fhe‘desired transformation properties
S h V ' >h ¥ or
Duc hu_DvG > Doy hu hk Dyt
and ;Duw-——-—-)hu"R(h)Dnuw. o (45)

IT we want to construct Lagrangians‘wbich in .addition to being
conformally invariant are also invariant under the usual gauge érans—
formations of the second kind, the covariant derivatives will have to

‘be furfher modified. How this is to be done must be left for a future
investigation; This is perhabs,an interesting problem because both,
the gauge transformations of the second kind and the special conformal
transformations, are x¥-dependent transformations, so thét there méy
be'an~inﬁerp1ay between thg preferked fiers q>]1 and‘the vector field

vu“whjch must be introducéd to achieve gauge invariance.
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APPENDIX 3a -

We would 1ike to evaluate

ohoE aeA t chEln Aj(Aeg)+(A-£)A,
351 L - oeb

+

Aj(AE)Z + (A-e)A, (Avg) + (Aeg)Pn, .
+ 30 Ly ... (1)

Each fraction in the parentheses can be wr1tten as a sum of terms
with a decreas1ng number of commutators and a correspond1ng numerical

coefficient equal to -

1
(k+1) T (n-k-T)1 *

where n! is the denomination of the fraction ‘
and " k<n is the number of commutators in that term. To give an

exanple e consider the fourth fraction.
Ir (4 aee)® + (a e;)A (Ae)? + (Aeg)?n, (Avg) + (A £)°n;) =
= a7 ([, (A-5)1(A-5)? ‘ 2(A-a)EAi,(A-a)](A-£) + 3<Afs.>2[A,.,(A-s_)] +
+ (Ae) ) = gp (LA AT, (A J0Aee) + 3A-E)LIA, (A-E) ], (Ae5) ] +
,+“6(A°£)2[A19(A'£)J s 4(aee)n) = I ([IIA, ,.(A-E)J-,.(A-a)]s(l\-g)] ;

+AA-E)TAL (0D 1A )T + 6(Ae) AL, (AvE)T + 4(A-)A,) =

I [LAL (A0 1, ()L, (A6)] + L (A)[IA; (A0 T, (Ae5)] +



b oo (AE)PTAL (Ae5)T + 3 (A+€)%A,.

When all terms on the right hand side of equation (1) have been

expanded as in this example, we collect all terms with the same number

k of commutatdrs and sum them up. The resulting coefficients of such

multicommutator terms are clearly

€

SR

which yields for the explicit result

A-g [A;,(A-g)]  [[A:s(A-£)],(A-£)]
oheg 38 " = p, o+ 1;, + L 3 +
3?-;1 1 H .
| s
[LLA.,(A-£)1.(A-£)],(A-E)] £°F, V.
¢ ! - ’ +...]=A, - —K
Y] | i~ T2
ke J m ke j. 1, mn, r
R S N T S I NI R S
31 ¥)
k., J ko 1T.m, J ‘ J Tk,
PN TN M S M St PR P MO Bt
A9y 31 51 ey T T TR
R PN
o5 Aj Py Vj’

‘where fijk are the structure coefficients,

j_ .k
X_i “g

matrices o and p. -

fkiJ and where the last step is just a definition of the
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We can show

- k,1
Aok, Aeg _ Lk £E [AP[Ak’Vi]
e Wy T = Vg - EAGY T4 71 -

£ EMA L TALL[ALV, 1T )
+ cae = v~ - g f
31 1

L
ki h*

ke §.1. m ke 3.1, rom. s
EfG e fsAn BTG E fry B A .
+ 5T -‘ 3 + ... =

K j kKo1om j

. X. X Xse X; Xq X .
ik LTk - J

j 5T Y11 LIRTEP L PR C

il
o~
=2
ca
+

k, 1, 3

Xs X Xq°
J i %k 1
+ (xi g+ "')Aj

and similarly (by exchanging Ai and Vi in the result) we obtain

zkg][A],[Ak,Ai]]
+ ...

]

—A.g Aog _ _ k
e Aie = A'I g [Ak’A'I] +

3!
k, J k. 1.3
. X X : . X. X, X
= (g9 + 1 _k_ IR R T e
i ke
wherg X = £ fki .

70
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APPENDIX 3c
We calculate

(3u + ‘F(V«vu + Aoap))(a11 + f(V-vv + A-av))'- (av + f(v-vv + A'av))°

-(au + f(V-vu + A~au)) f f(V-auvv) + f(A-auav) - f(V-avvu) -

2

Cetnn i 2 2 i i
f(A avau) + f v, Y, [vi,vj] + f v, a, [Yi’Aj] + f aa, [Ai’Aj]‘+

2

2 403 v i iy ko d, .k
+ a, v, [Ai,ij fVi(auvv Wy ki (Vu v, + aa, )) +

i i k., J
G CFICIC N NC R o P v,"))
which is equal to

fv.F T
T uv T uv

by a definition of the tensors F__and F .
‘ T uv
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APPENDIX 3d

Proving the equivalence of formulas (21) and (22) of Chapter III
requires a rather 1engthyica1cu1ation and we can give just a few steps

to guide an interested reader. .The covariant derivaties of the fields

o [}
v and a are
°q _ %1 ik, LT 22 kyC
MO BN ERPE N SN B S
and Duav auau fkj (p] aug fvu )av
respectively..

These expressions follow from equations (17) and (18b) of Chapter

II1I, where we use

(the adjoint representation of the subgroup H).
For the covariant derivatives of the preferred fields we have

(using equation (18aj and the definition of au)

1 1 i °
= g. + .
Dug 0. Buﬁ fau

We insert these derjvatives into equations (21) and then replace

° - B - " - . - ° - 3 -
N i J a1 g J g i 3,1
v, by (vu cosh X; a sinh X; ) and‘au by (au cosh X; v,
sinh xia)., The biggest difficulty is in calculating the following

~terms: -

: Jy J
au(s1nh X ) and Bu(cosh X; ).
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They can be evaluated by a method of Appendix 3a) We shall quote

the final resu]t only
. v - dr ky T...m . ky 1, .m
au(s1nh X; ) = ik (cosh(xi )Fm 3L - s1nh€xi )pm aug )

and ‘au(cosh xiJ) = f]kJ(sinh(xik)cm]augm - cosh(xik)pm]auam),

with the matrices o and p defined in Appendix 3a).

Collecting all terms in the expression (22a), we obtain

finally
g J = (5 v L 1.(v Iy Ky g dy k)) cosh x,J -
uv TReT! v Jk My TERAY i
- 1 1y Jk J i
(auav 3,3, * k (a tv e ) s1nh X;
o i J_F 1 J
Fuv cosh x, Fuv sinh x.*,

which is equation (21a).

E;v can be evaluated similarly.
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APPENDIX . 4a

To prove equation (9) of Chapter IV we apply the operator AC to
equation (8). We get:

- . t ‘ 1
AcAaEb~_ ("1)(6abf ng * 6adgbg * gaabdg * gagbg ng)-

'(-i)(acdf-+ gcgdg) -—'."(‘21‘.f'.|‘5c6ab'+ Sac b9 * Spe ?fg T 28 EpEe”

2

R 1 ‘ . 2 t | 2 1
fg' + 26 ;£ £ 9F' + 26,8,8.0° + 26,5,5.£799")

as well as AaACgb simply by exchanging the indices a and c. Now we

can calculate
- - ' - - )
[Ac’Aa]gb = -(eff (gcsab gaécb)~+ fg(gaécb gcaab) *

+ 26897 (5.8, = Ex8cp))>

which should be equaﬁ to
TecadVdfh = cfab ™ Falch’
Comparing both results gives us

2

2Ff' + 2f'gg” - fg + 1=0

which is equation (9).
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APPENDIX 4b

To calculate the function v of equation (24) we use a similar

method. First we cé]cu]ate
AApY = Aa(vebdegetdw) = (Zv'gcebdegetdy * Vebdeéectdw)°
. . ! .
f('T)(éacf * gagcg) * Vsbdegetdveakmg tk (=) (2v fga

2
' -
*epdefelq? T 2V 98 gaebdegetdw * Vfepgatyt t VOE,

2

g ty = (-i)(2v'f + 2v'ge” +

2
°€bdetdw) v ebdeg eCdSakmimtkY

. 2

ba
two expressions gives us

We find A, A_¥ by exchanging indices a and b, and combining these

2

[A A JY = (-1)(2v'f + 2v'ge™ + vg)(a +Sbde " ab ade)Eabqt

+(-1)2vfe byt + iV epgel el s knEncdkntn?
The last term of the right-hand side can be written as

. 2 ‘
-V sabcgc(g-t)w.

abcvcw = abctcw This equality

[A ,Ab]w should be equa1 to ie
. (where for [A Ab]W we use the express1on derived above) can be

multiplied by ie abj and summed over a and b. This yields
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2 2 2

(2v'f + 2v'ge” + vg) (%5 - £5(e-t))y + 2vftyy + v

e (get)y = tjw.

Comparing coefficients of tjw and gj(g-t) gives us

2

(2v'f + 2v'gs” + vg)gz + 2vf = 1

2 2

and  (2v'f + 2v'ge® + vg) = v

Combining these two equations we get

Vel s ovf -1 =0

which'has the solution

1
f + (f2 + gz)%

v:

This solution can be shown to satisfy both of the original equations

as well.



APPENDIX 4c
We want to calculate the matrix

' i) .
- (.2@2)% ¢ g.)) ’

where §' are the Pauli's matrices.

From the algebra of these matrices we know that
.|.
(s.5)%K = (2K and (s-0)2K*T = ()K(se8),

where k is ‘an integer number.’

This -enables us to calculate

. . . 2
_ i) S. =1 +—12 _ (s, 1 ix 2
| eXp(z(gz)z:( ’5)) ( e (S+€) + 5 (‘“‘2“1;) &

.. \3 <, |9 . |
1_ (i 1A 1) A DN
o+ 3T (——é-) +4-§-!- (——-2-) + )= cos 5 + (’%‘)‘3; (S-¢)sin 5= ‘

. i 1 g 1- 3 o
- 6(]Iu2)% ( ;u) (S+¢) =(—§H) (] - 61%:3)(5'3)) )

where A is defined by equation (31).
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APPENDIX 4d

We know from equation (35)

—72-”—(_11_ ) (5 s)) (.ﬂ."‘“&‘(‘%‘;g)(s'é))f ,

16

* cl] u)

i(gq+ig,)
o(1-u)

and from the Clebsh-Gordan coefficients for spin = %

1 ! '

|1,0> ='&‘)‘g((0)®(?) - (?)@(0)) ,

1,51 = (@ (), 111> = (0) @ (0)

and  [1,00 = 1 (( )@ (©) + (ﬁ’)@(é)) :
(2)"

We can write immediately

78

o(T-uy

153

1- o(1-u)
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ey igg g1+1g2 1E3 E]+1€2
<0,0[M|1,1> Ez;s' (( ”13’1]J i) o(i-u) ~ ( s(1~uy/ ! F(T-u)

= (=1) ’E.i »
0,0[M]11> = ()" (( ETT‘"J )“(““"y ( o(1- u)) o(1- U))
= (-) &

and finally

oo 1 (( i, )2 _-(] g )z) _
7 E(T'") \" 7 o(T-u)
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APPENDIX 5a

Now we shall 1ist the generators of the self-representation
of the conformal group. They can be derived from formula (10) of

Chapter V.

D _ .. D D
(Jpgle” = 1(9ppdg - 9pcdp )-

I e e e

I50 = Y60 7
_17
+1

I [ . . . o]

gy = 1 Jo1 = 1
-1
.+

A Y . ’. . “. o+

gp = 1 Jgo = 1

.+
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. *

. =1

.I.
+




31

.+l

.+l

82
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APPENDIX 5b

Using the explicit matrices of Appendix 5a we can calculate the

following matrices:

and

igD =

+o

+g
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where

a-P = a P = aiPq = apPy - aé?s
and where

B+K = BoKy - BKy = BpKp - 83K3:

From here on it is easy to calculate any power of these matrices (the third
power of the first two matrices is already the zero matrix and the third
matrix squared consists of two blocks, one is the four-dimensional zero

2). It means

matrix and the other is the unit matrix.multiplied by o
we can easily calculate any power series expansion consisting of these
matrices. Expanding the exponentials of equations (13) of Chapter V

gives us the final results.



APPENDIX 5c.

We have already calculated the matrices e

e 1P Then we find their product to be

p——r=

5 V+2x ¢
TR

2

M=e1’(x-P)ei(¢-k)e-’icD = | X%+ (14x

V4" (14x)

-

Summing- the Tast two columns yijelds .

2% e °
u

S = ‘(1+x'2)e'(j ,
(1+x2)e"OF

while subtracting gives us

o 20
e X e +
¢u u¢

+x e °
u

(x+¢)e%+cosh o+

ag
+ %—4¢2(]+x2)+

2 .
X“ -g
-I-_2 e

(x+¢)e%-sinh ot

g

¥ & 62(1-x%)-

N

-g

i
le
o

i(x'P)’ ei(¢-k)

85

and

o 20
¢ue xu¢ e+

+x e °

{x+¢)e%+cosh o-

(0]
- & P (1) -




: 2\ o
2(¢u+xn¢ Je
(1 + 2(x+4) + x50 + §2)e”

(1 + 2(xe9) + x%% - ¢2)e°

86
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APPENDIX 5d -
Here we’want to evaluate the expression
D0 - 23(800)e 4 < 2108 (640) - 16D - 23 (o) (8o8) +
+ 21(ge9) (x-K))e TxP(1 - ix(pep) + Zi(x-e)(x-P)(l + 1(geK))+

RICEORICARRE

up to the first order.inrﬁ,

First we use the relation

- (x- P)K el (X°P) _ K, - XM ko] - [P [P K J] -+ oty
+2x D + x2P - "2(x*P)X_ ,
Vv AY) v ‘
which enables us to writg

| o (x P)(B K) 'I(X P) (l( B) + ZXMBVJuv +72(X'B)D + XZ(B'P) -

- 2(x+P)(xs8).

Qur original express1on now reads
01 - zusmme“¢wu-zwxmwk>~mu¢xsm

+ 21(8~¢y(xﬂk) + 2'ixp v -i-'21'(x-B)D)e1‘(¢'K).e"10

(¢K)J e(¢K)"JA+$K\’—¢K and
Hv TRRY

‘ Exp10y1ng f1na11y e WK

e—i(¢°k)Dei(¢‘K)_= D + (¢+K) leaves us with

o190 (1 - 24(gex)D)(1 + 2ix" %0 * 2i(x-8)D)e  P= 1 + 2ix* V4
ST ' B Tuv
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APPENDIX 5e

To prove relation (38) of Chapter 5 we write (similarly as in Appendix

5b)

+30 "3,
A
3, =2
i(K 8" + 20),PB = 2 7t
u 3, -9
3 3
33 +2%
83 +29
or, multiplying this by 9pp>
=8, =9,
. -3-] "3]
. u _ . . . -3 -9
.1(l(ua, + 22D)AE = 2 %2
. "83 —83
+a° t8, t3, +3, +28

Muitiplying again by the matrix

+1
.+
e1'(x-P) - .
+Xo -X1

- 4
xo x]




from the Teft and by the matrix

41

(e'i(X-P);- =
‘XO
.XO

89

0 (o]
+1 =Xy fxl
. H “Xo  +X,
i +1 ~Xs *xs
0 R B 1+32‘—2— 12‘—2-
U T B
2 2

from the right ( the operator au is not to be applied to this

matrix) we obtain

X 9 =X 2
SRV oV

4((x~a)-z)xv

—

where the matrix can be seen

T+x

#((x:0)-2)x

(xfa)-x

equal to operator

aAB'(see equations (18)).
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Finally we shall evaluate the expressions

90

M"]ecauM; M']eoauB and M"ecaus needed to calculate covariant

derivatives in Chapter V (see equations (43) of this Chapter).

M"]

can be calculated easily by taking the matrix M from

Appendix 5c) and transposing it with the proper change of signs

(elements having one and only one of its row or column indices equal

to 0 or 6 change sign, the other do not) gives us

vy 9 o - 2
ap 2¢ux X, ¢u(]+x )

vo  v20

~pe =X ¢ e = - (x+¢)e%+cosh o+
. g 2
Ve ¢ +-§— 2 (14x%)+ %—-e-c

vo  v2a0

e =X e+ (x+¢)e%+sinh o +

2
+xVe o + %__¢2(]+x2)_%__e“0

By applying the operator N to the matrix M we obtain

v v
Zguk¢ + quak¢ :

: . ‘ v vl 2 v
(a,M)," = 8y 0,0 (T4T) + 2xy9

AV

_ A 4 v
RN (1-x%) —72X1¢

for the first four columns of M and

2
xu+¢u(1-x )

(x+¢)e%+sinh o-

2/
1-x2)+ X g0

2( X

g
N

(x+¢)e%+cosh o-

o 2
e’ 2 2y_ X~ -0o
- 2 ¢ (]'*'X ) 2 e
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2 g 2y 0o
20,0, + 9,07 + 2x (¢+3,4)e” + 20,000, + X 4%)e

2 B = (2¢x+2(x'3A¢)+2XA¢2+2X2(?°?A¢)+2(¢'3£¢))ec+3x0(]+2(x'¢)+x2¢2+¢2)e0
”(2¢x+2(x'3A¢)+2XA¢2+2X2(¢'3A¢)"2(¢'3A¢))eo'3x°(]+z(X:¢)+X2¢2'¢2)e0
and
~0 | -0
ngve —Zakoxve
3.5 = 2x.e 93 c(1+x2)e'°
A X A

T 2\ .~
-?xxe '3A0(1+X e

for the difference and the sum of the last two columns of M respectively.

1

Multiplying these last three expressions by the matrix M ' from the

Teft we get expressions (43) of Chapter V.
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