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More and more often, call center managers are tuming to computer simulations
to help give them operational performance insights. To model service time for
simulation and to evaluate queueing theory assumptions of exponentially
distributed service times, analysts require an accurate distribution of call handle
time. Unfortunately, automated call distributors (ACDs) generally report only
average call handle time by time block — providing the analyst with incomplete,
temporally aggregated data. An often-used method to model this data is to
assume an exponential distribution with the caiculated overall mean. The use of
this method immediately raises two questions: is an exponential service time still
an accurate reflection of call handle time (service time) and if not, how can the
true distribution be estimated from the aggregated data readily available from
ACDs? This thesis presents several alternate methods to arrive at a call handle
time distribution and analyzes the efficacy of each.
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1
Chapter 1 Introduction

1.1 General Overview of incoming Call Center Management

There are two general categories of call centers - outgoing and incoming. This
paper will focus on the operational challenges of the incoming call center and the
input data analysis issues that analysts face in this environment.

Incoming call center management has been defined as “the art of having the
right number of skilled people and supporting resources in place at the right
times to handle an accurately forecasted workload, at service level and with
quality” (Cleveland and Mayben 1997). This definition hints at the role that
effective operations management/research techniques should play in the
effective management of incoming call centers. With call centers employing
millions of people in North America, the challenges of managing these centers
are beginning to receive more academic attention.

A recent general overview of Call Center Operations can be found in an article in
the Encyclopedia of Operations Research and Management Science, 2™ Edition
(Grossman et al., 1999a). A more detailed description of call center operations is
presented in a working paper (Grossman et al.,1999b), in which a five-stage
approach to call center scheduling is proposed. These five stages are outlined
in Figure 1 below. The 'time blocks' referred to in the figure represent blocks of
time for which forecasts are prepared and schedules developed. There has been
a trend in call centers towards using smaller (15 or 30-minute) time blocks to
schedule TSRs. The acronym, TSR, has different meanings from business to
business; it can stand for telephoneftransaction/telecommunications

sales/service/support representative (Anonymous 1996).



e Figure 1: Overview of Call Center Scheduling Process (Grossman et al. 1999b)

The scheduling process begins by obtaining a reliable forecast of the number of
calls that will enter the call center for each time block in the scheduling horizon.
From that point, staff requirements for each time block must be estimated. A
variety of performance estimation techniques can be used for this purpose.
Common methods include queueing theory applications such as 'Erlang tables'
and 'Call Center calculators'.

Recently, as call centers have adopted more complicated configurations such as
skill-based routing, the limitations of queueing theory have led to a growing use
of computer simulations to accurately estimate system performance. Call center
performance is often described as a 'service level' - the percentage of calls
answered within a minimum acceptable time (e.g. 80% of calls answered within
30 seconds). The staff requirements stage is complete once it has been
determined how many TSRs are required during each time block in order to
achieve a target service level.

The next stage is to develop a schedule that will closely match the established
staff requirements. Since each time block may have widely varying staff levels
and call centers often must work within restrictive labour rules, it is often
extremely difficult to achieve a 'perfect schedule' that will match the staff
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requirements determined in the previous stages. The final stage of rostering
matches actual employees to the scheduled shifts (or ‘tours’ of shifts), producing
a final employee schedule. These final schedules are often compromises as it is
often infeasible to match employee desires and skill levels with the call center
requirements as determined in the previous stages. Employee scheduling and
rostering are two very difficuit problems that are still receiving much attention
from OR/MS professionals and academics.

12 The Profile of an individual Incoming Cali

As an incoming call is processed by a call center, it may be designated by many
different names, depending on its current state and the path by which it traveled.
Figure 2 below helps describe the possible pathways and classification system.
Calls are randomly offered to the call center and if there is still trunk line capacity,
the call is accepted by a computer switch called an Automatic Call Distributor
(ACD), otherwise, the call is blocked and the caller receives a busy signal. The
ACD routes the calls to available TSRs. A very basic ACD will simply route calls
to the next available operator but more modern ACDs are programmable and
allow call-dependent call routings that may be controlied by TSRs, the telephone
number called by the customer, Automatic Number Identification (ANl) or

Interactive Voice Response (IVR).

« Figure 2: incoming Call Nomenclature

Blocked Calls
Offered Calls Abandoned Calls

Accepted Calls

Handled Calls




The ACD not only routes calls, but also keeps track of how long calls have been
in the system as well as other statistics. Often, when all available agents are
busy, the caller will be presented with a recording (“Your call is important to
us...") and asked to wait online. The caller may choose to wait patiently, or to
abandon the call and perhaps try again later. Most ACDs will record
abandonments — total number and how long the caller waited before hanging up
(time to abandonment). These statistics are often provided to call center
management in the form of a daily report as in Table 1 below.

« Table 1: Typical Abandonment Report from an ACD

Time Block Calis Cails T 60- | 120 )
Accepted | Handled 0-30 30-60 120 240 240+
8:00 - 8:30 am 24 20 1 1 2 0
8:30 -9:00 am 36 30 2 0 2 1 1
3:30 — 4:00 pm 1 10 0 0 1 0 0

The ACD also keeps track of calls that remain in the system to be handled. It
records the amount of time the call waits before being answered (time to answer)
and the time the caller spends with an agent (handle time). These data are
carefully recorded, but often not stored for more than one time block. At the end
of each time block, the tally and times for individual calls are summarized: total #
of calls entered, blocked, accepted, abandoned, handled during the time block,
average handle time and average time to answer are printed to file. Individual
call statistics generally do not appear to be kept in any retrievable form for later
use. ACDs will often return data as seen in Table 2 below.



e Table 2: Typical ACD output (on left) & the individual call handle time data that s ‘lost’ (on right).

Time block () # Calis (1) | Average handie time (X ) (X,-)““
1 8.00 am —-8:30am 20 6.2 661
2 ] 8:30 am-9:00am 20 6.0 593
3 9:00 am—9:30 am 30 5.5 605
4 | 9:30 am - 10:00 am 40 59 339
5 10:00 am — 10:30 am 40 58 588
6 10:30 am — 11:00 am 40 6.0 5.09
7 | 11:00am—11:30am 50 5.9 9.01
8 11:30 am ~ 12:00 noon 50 59 354
9 12:00 noon — 12:30 pm 40 59 783
10 | 12:30 pm — 1:00 pm 40 6.4 459
11 1:00 pm — 1:30 pm 50 6.1
12 | 1:30 pm —-2:00 pm 40 6.5 Where 58is the
13 | 2:00 pm -2:30 pm 30 6.1 ae_rggeofﬂrese 10
14 | 2:30 pm—3:00 pm 20 5.6 individual calls above
15 | 3:00 pm —3:30 pm 20 5.6 ZXx
16 | 3:30 pm -4:00 pm 10 58 f - 1eBlock 4

4 n

For each time block, the actual number of calls that arrived, and the average
length of those calls are recorded. For most call center managers, this is more
than enough information... and often this data is summarized even further into
daily or weekly reports. For the analyst wishing to build an accurate call center
simulation though, the ‘good data' has been lost, deleted at the end of each time
block and unrecoverable. These 'missing’ individual call handle times are
needed to accurately select the best distribution (and parameters) to model

service time.

Average arrival rates for incoming calls can also be readily attained from these
summary ACD reports. Unlike service times, where the average is inadequate,
average arrival rates are sufficient for modeling arrivals. The analyst, assuming
a Poisson arrival process, is primarily interested in the average number of calls
that arrive over a given period of time. The 30 or 15-minute time blocks used for
forecasting and scheduling often result in changing expected volumes from time
block to time block. The forecast is composed of both a call pattern — often one



distinct pattern for each day of the week, along with a call volume forecast.
Figure 3 represents a sample call pattern that will be referred to throughout this
paper. Each 30 minute time block receives 10 - 50 incoming calls. Example call
volumes are multiples of ten for simplicity only.

» Figure 3: Sample Call Pattern with a Call Volume of 540 calls

60

50

40

30 |

# Calls

20

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time Block (16 x 30-minutes time blocks over an 8-hour day)

In summary, while the cail arrival rate (pattern) is readily attainable from ACD
reports, the handle time (or call length, call duration) of individual calls has been
replaced with averages. For most call center managers, average handle time
has always been sufficient input into queuing theory tables/calculators. With
more centers using computer simulations to estimate performance, analysts are
no longer limited to the exponential service time assumption and individual call
handle times are needed to confirm or determine call handle time
distribution and to build effective and accurate computer simulations.
These individual call lengths no longer exist — they have been aggregated into a
time block average. It will be discussed in the following sections how
aggregation affects the information available to the analyst, how the aggregated
data is currently being used by call center analysts, and why it is important to
recapture critical information about the individual calls, through a process of

disaggregation.



1.3 The Profile of Aggregated Calls

The problem of data aggregation can be demonstrated by graphing both
aggregated and individual call handle times side-by-side. Synthetic ACD data
(see section 4.1) was created by simulating three sets of randomly generated call
handle times: exponential (u=6), censored normal (u=6,6=2)", and lognormal
(1=6,0=4). The data were then used to represent the individual call data ‘lost’

during aggregation.

In all 3 examples, 540 daily calls arriving over an eight-hour day were distributed
across sixteen 30-minute time blocks according to a fixed call pattern. The
arrival call pattern was that shown in Figure 3 where the number of calls arriving
during each time block range from 10 to 50 calls. For each time block, the call
handle times were averaged and both the aggregated and individuai call handle
times were plotted (Figure 4 - Figure 6). The data given in Table 2 shows the
results of aggregating individual calls with a call handle time ~N(6,2) (censored).
Exponential and lognormal call handie times were also generated using the same
method (see Appendix B.2 and B.4).

An important observation is that each of the three generated samples
(exponential, normal, lognormal) produce the same ‘aggregated call handle time'
histogram. That is, each of the three distributions were able to produce® the
same histogram of aggregated call handle times: 300 calls were handied in time
blocks with an average between 4 and 6 minutes and 240 calls were handled in
time blocks with an average between 6 and 8 minutes. Unlike these examples,
the data used to create the ‘aggregated’ histogram is the only information that the
call center analyst has to make conclusions about individual call handle time.
The following histogram overlays (Figure 4 - Figure 6) highlight the two critical

'AnynegaﬁveaﬁbnghsgeneratedbytheNamaKS,Z)dis&bﬁmmg’venaalleng(hofzem.
2 Each of the three distributions were able to produce a range of aggregated data histograms — several iterations were required to
arrive at the same histogram across all three distributions.



concerns of using aggregated data to determine the distribution of individual

calls:

1. The variance suggested by the aggregated data does not
accurately reflect the variance of the individual calls. (as will be
discussed in section 3.3)

2. The shape of the resuiting histogram provides little clue to the
distribution of individual call handle times.

» Figure 4: Histograms of Normally Distributed [u = 6, o = 2] Call handle time (Synthetic Data)
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)300 J’ 540 calls over an 8-hour day
§ 250 {16 x 30-minute time blocks)
3
g 200
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« Figure 5: Histograms of Exponentially Distributed [u = 6, o = 6] Call handle time {Synthetic Data)
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»Figure 6: Histograms of Lognormally Distributed [ = 6, = 4] Cali handie time (Synthetic Data)
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14 Curent Practices in Call Center Modeling & Data Collection

In this section, current call center practices will be discussed in the same order
that each issue would be addressed in a call center. Thatis:

1) How am | going to estimate the performance of my call center? Will | use
queueing theory or will | need to invest in a more complex computer

simulation?

2) | have 500 gigabytes of data from my ACD! How can | summarize it into

something useful?

3) What assumptions am | going to make in order to build my model?

14.1 Current Methods of Estimating Performance: Queueing Theory
vs. Simulation

Call centers vary greatly in their use of technology to help model call arrivals and

service. While use of queueing theory seems to be predominate [Cleveland &

Mayben 1997; Mehrotra 1997; Mehrotra et al 1997], there is an increasing use of

computer simulation. Monte Carlo simulation is a useful tool when queueing
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theory assumptions no longer hold true. There are many reasons why queueing
theory may not be the best choice in a modem call center:

= Queueing theory is often used as a 'black box' - those using Erlang
tables/calculators may not understand the origin and limitations of the
methods.

= Queueing theory assumes that there are no abandonments, which is
unrealistic for most cali centers.

= Traffic intensity (demand for service divided by service capacity) cannot
always be assumed to be less than 1.

» Steady-state behavior cannot be expected as time blocks become
increasingly smaller, call volumes fluctuate and staffing levels are adjusted
from one time block to another.

= Exponential service times with a mode of zero are questionable, especially
since service times are often a convolution of both talk time and after call

work.

s Complex call routings are becoming more common, and queueing theory
is unable to model these routings adequately.

Given the above limitations, several industry experts and researchers indicate
that under certain circumstances, simulation is preferred for modeling call centers
[Mehrotra 1997; Mehrotra et al 1997; MacPherson 1988; Cleveland & Mayben
1997]. Once the modeling technique has been chosen, the next step is to collect
and analyze the ACD data to determine how to model the input.

1.4.2 Data Modeling

Once the data has been gathered into an ACD report, the analyst must carefully
decide how to interpret and use the data. When attempting to model the data
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received from the ACD, a common (and accepted) method is to assume an
exponential distribution with mean equal to the weighted-average of the
call handle times. This approach is based on the assumptions of classical
queueing theory — specifically exponential service times.

Using the same method as described above and the data from Table 2, we can
calculate the weighted-average of the (m =16) sample means as:

« Equation 1
> nX,
Z_= _(20x6.2) +(20x6.0) +...+ (20 x 5.6) + (10 x 5.8) 60
i" 20+20+...+20+10 ’
7J
/=1 where m is the number of samples (time blocks)

my; is the number of calls in each time block j
. insmeaveragemlllengmroreachtimeblockj
X is the average call length (weighted) across m time blocks

Using the data in Table 2, an exponential distribution with a mean of 6 minutes
would be used to model the call handle time. The exponential distribution has a
single parameter (1) that simultaneously describes the population mean (1/A) and
variance (1/A%). The sample mean in Equation 1 is an unbiased estimator of
population mean and hence, the parameter A can be estimated without
estimating population variance. This is a distinct advantage of the exponential
service time assumption and will be explored further in Section 3.3.

1.4.3 Incoming Call Data Assumptions

For the purpose of this paper, it will be assumed that all calis throughout the
day are of the same ‘call type’ — that is, they follow the same call handle
time distribution during each time block. This seems to be a standard
assumption in the industry since most computer simulations and queueing theory
methods are based on this assumption also. Some may find this assumption
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troublesome since it is reasonable that different time blocks will 'attract' a
different call type and hence, a different call distribution.

Another common call center assumption that will be adopted is that the ACD is
recording data correctly. This assumption may seem trivial, but there is some
question about the time block in which calls are actually recorded. It shall be
assumed that the call arrival and associated handle time are recorded in the
same time block in which the call arrives, but there is evidence that many ACDs
may actually attribute the call handle time to the time block in which it was
completed. Violation of this assumption impacts not only input data analysis, but
also forecasting, as call volumes may contain inaccuracies.

1.5 Definition of Research Problem

Simply stated, this paper will address the research problem, “How can the
aggregated (averaged) data provided by most ACDs be used to parameterize
and select the best theoretical distribution to model individual call handle times?”

An audience that should be interested in the results of this research are those
involved with the stage of performance estimation, particularly when computer
simulations are being used to anticipate service level. Many ‘solutions’ will be
proposed — several of which are inadequate, a fact that will perhaps be
immediately obvious to some readers. The reason these solutions will be
discussed is that they are often used or attempted by inexperienced analysts
(and students) new to call center simulation. A contribution of this research is to
demonstrate the flaws in commonly used approaches.

The goal of this thesis is to demonstrate effective methods for arriving at
the distribution of individual call handle times. This distribution is an
essential component of an accurate simulation model, but whether using a
computer simulation or not, this research may help provide insight into the
distibution of the duration of incoming calls.



1.5.1

1.5.2

13

Objectives of Research
Demonstrate how current methods of Input Data Analysis are
inappropriate with aggregated ACD Data

Identify methods of handling ‘Aggregated Call handle time’ data to arrive
at usable input for a call center simulation.

Demonstrate the accuracy and efficiency of these methods

Make recommendations to practitioners with respect to the best method to
use in various situations.

Scope of Research

it will be assumed that actual call handle times follow either an
exponential, a censored normal (since call handle times > 0), or a

lognormal distribution.

A model call center with a moderate daily call volume of 540 calls spread
unevenly over an eight hour day (16 x 30 — minute time blocks) will be
used to demonstrate the effects of aggregation and the proposed
‘disaggregation’ methods. The methods used could be applied to other
call center configurations.

The call center will handle only the one type of call by a single tier of
TSRs. When a call center has a variety of call types, a separate analysis
of each would be appropriate.

The data analysis will be limited to synthetic data created to test potential
disaggregation methods. The absence of 'real' data highlights the
difficulty analysts have obtaining individual call lengths.
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1.5.3 Application and Relevance of Research

As long as call centers continue to use ACDs that handle data in the fashion
described, there will be a need for effective disaggregation methods. As
mentioned previously, the majority of call centers continue to use queuing theory
(often in the form of Erlang tables), and if simulations are used, exponential
service times are often an automatic assumption. Until those analyzing call
center performance begin to make use of simulation tools, question service time
assumptions and demand more useful data from their ACDs, the effects of
temporally aggregated service time data will require special treatment from

analysts.
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Chapter 2 Literature Review

Little, if any, has been written specifically about developing methods to
disaggregate data for the purpose of determining input models for discrete event
simulation. The following literature survey touches upon many related topics in
order to provide a basis for comparison and potential insights. There has been a
great deal written lately concerning Bayesian Inference and the use of Markov
chain Monte Carlo methods such as Gibbs Sampling. That literature will not be
discussed in this section, rather it will be referred to extensively in section 3.4

when Bayesian inference is introduced.

2.1 Service times

Exponential service times have been a historical, but not proven, model for call
handle times. Its use in queueing theory applications has continued in computer
call center simulations with little comment on its relation to actual call handle time
distributions. The teletraffic industry also uses exponential distributions to model
telephone circuit holding time distributions, but there has been some discussion

as to the validity of this assumption.

Bolotin (1994) provides empirical data showing that the conversation time
variance is much larger than in the exponential distribution and that for an
individual subscriber, the distribution call duration is lognormal.

Bolotin’s reasons for choosing the lognormal distribution are compelling. He
suggests that the callers’ perception of time is on a logarithmic scale - the longer
a conversations is, the longer the call is likely to continue. For example, a caller
that has already been in conversation for 1 minute will perceive the next 15
seconds of the conversation in a similar fashion as a caller that has spoken for
20 minutes will perceive the following 5 minutes of conversation.

i.e. value of time = log(15sec/60sec) = log (5min/20min) = log(0.25)
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Bolotin proposes that mixtures of lognormal distributions characterize call
duration for groups of subscribers, and demonstrates that a mixture of two
lognormal distributions fits empirical data well. Others propose that the Weibull
distribution (Rahko 1991) or the gamma distribution (Takemori et al. 1985) are
also more appropriate distributions to model conversation times.

Additional research, specifically related to the call handle times at inbound call
centers, is required to verify this teletraffic behaviour and determine an accurate
call length distribution for moderm call centers.

2.2 Aggregation of Data

Data can be aggregated temporally, geographically, by market level or according
to other classification systems. For example, time aggregated data is often a
problem for economists who wish to prepare monthly forecasts when only
quarterly historical data is available. Marketing analysts often encounter data
that has been aggregated geographically or by market level, and may wish to
make projections based on sub-regions. Inventory managers may be presented
with forecasts for product families, but instead require demand information about
components. These are just a few examples of circumstances in which
aggregated data must somehow be ‘disaggregated’ in order perform further

analysis.

Economists are often faced with data series of different temporal aggregation.
Chow and Lin (1976) developed a disaggregation method (best linear unbiased
method) that is still often used (Abeysinghe and Lee 1998). Once the
disaggregation has been completed, these values may be inserted into the model
and treated as actual observations. Hsiao (1979) presents a maximum likelihood
approach that performs data prediction and parameter estimation simuitaneously,
although its solution is computationally complex (Palm and Nijman 1982).
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Aggregated data can also be used to update our beliefs about its constituent
parts. There are often many circumstances where information is only known
about the sum of random variables and given that sum, we wish to modify our
prior belief about the distribution of the individual components. This is the case
presented by Jonsson and Silver (1987). The authors present a similar approach
to two situations: one where the sum of demands at several locations is known
exactly and another where the sum is known to be less than a given vaiue. In
these two cases, the authors use a Bayesian paradigm and considerabie
algebraic manipulation of conditional probabilities to arrive at an expression of
the conditional density function for any one of the individual locations.

2.3 Bayesian Methods Applied to Stochastic Simulations

One can find many instances in the literature where Bayesian statistics and
Monte Carlo simulation are discussed together. The use of simulation as a tool
for implementing Bayesian analysis has been well documented over the past
decade and will be discussed further in section 3.4. A more recent marriage of
the two topics has only begun to receive attention and promises to bring
interesting, new approaches to simulations.

Classical techniques for input distribution simulation (Banks and Carson 1996)
involve selecting a single distribution model and point estimate(s) of
accompanying parameter(s). The computer simulation is then performed and
output analysis completed in order to determine the stochastic or simulation
uncertainty (variance) for the given input. Recently, there has been much
discussion of incorporating another source of uncertainty — distribution selection
and parameterization, often called parameter, structural, systemic or subjective
uncertainty (Draper 1995; Chick 1997a,1998; Cheng and Holland 1997) into the
simulation. These authors suggest that by taking a Bayesian approach,
conditioning on model and parameter choice, and then integrating over the
uncertainty in both, one can achieve more accurate results.
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While these ideas are thought-provoking and eloquent, it will probably be many
years before they are incorporated into call center simulation packages. In the
mean time, simple sensitivity analyses incorporating model and parameter
uncertainty should be encouraged.

2.4 Bayesian Methods Applied to Operations Management

As Bayesian statistics has received more attention from statisticians,
practitioners from operations management have also begun to apply its methods
to business problems. While the list below is far from exhaustive, it provides a
sample range of applications.

= Ahn and Ezawa (1997) develop a Bayesian network learning model as part of
a decision support system to help outbound call center TSRs determine an
optimal customer service approach based on predicted response probability.

= Kaplan (1988) uses Bayesian updating to improve forecast demand in a
dynamic programming formulation of a periodic review (s, S) inventory control
model.

s McGrath et al (1987) present a Bayesian approach to queues that
incorporates uncertainty about interarrival and service times. The authors
recognize that certain queueing constraints, such as stability, can be directly
accounted for by conditioning on stability.

= Silver and Fiechter (1995) develop an optimal Bayesian strategy to determine
the preventive maintenance interval when the operating time distribution is
not exactly known due to limited historical data.
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Chapter 3 Development of Models

3.1 Disaggregation

Throughout this thesis, the term ‘disaggregation’ is used to describe a broad
range of data manipulations. The purpose of these manipulations is to use the
given aggregated (averaged) call handle times to arrive at an accurate
description of call handle time distribution. These call handle time distributions
can then be used as input into computer simulations to accurately model call
center performance. In the following sections, 3 alternate approaches to
modeling data similar to that found in Table 2 will be discussed. When the
approaches are shown to be inadequate or incomplete predictors of the
individual call handle time distribution, they are presented not to mislead, but
rather as examples of methods that are often used by inexperienced analysts

and students.

3.2 Standard Input Analysis Applied to Time-aggregated Data

Banks and Carson [1984] list 4 steps in the development of a valid model of input
data. The first step is the collection of the raw data and the second step is the
identification of the underlying statistical distribution, beginning with the creation
of a histogram from the data available. From this frequency distribution
(histogram), a theoretical distribution (normal, exponential, lognormal, beta etc.)
that best represents the distribution of the observed random variable can be
inferred.  In the third step, estimates are made of the parameters that
characterize the distribution. In the final step, a variety of test statistics (Chi-
squared, Kolmogorov-Smirnov) are calculated in order to determine how well the
theoretical distribution ‘fits’. Alternatively, if none of the theoretical distributions
can be used to model the data, the analyst then has the option of sampling
directly from the historical data (a method often referred to as ‘bootstrapping’) or



creating a continuous empirical distribution (‘smoothed bootstrapping’) from
which to sample (Cheng 1994).

The first model developed disaggregates the data in a very simplistic way.
Analysts will often use a method similar to the 4-steps described above and for
that reason, they would likely not assume an exponential distribution. These
analysts often have a variety of statistical software tools that they use to help
analyze data and arrive at distributions that best fit the data given to them.
These data-fitting tools are widely available and are often packaged with
simulation software.

Using the data given in Table 2 as an example, the analyst could interpret the
aggregated data as such: 20 observations of 6.2 minutes each, 20 observations
of 6.0 minutes, 30 observations of 5.5 minutes, 40 calls of length 5.9 minutes etc.
In a very basic sense, the analyst has disaggregated the 16 half-hourly
observations into 540 individual observations. These observations can then be
placed into a histogram with the hope of getting a better understanding of the
frequency distribution. The histogram in Figure 7 below represents the data in

Table 2 treated in such a manner..

o Figure 7: Histogram of Aggregated ACD Data given in Table 2
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Once this data is in a histogram, the analyst may be able to choose a distribution
from visual inspection or from use of a data-fitting software application. When
the data from Table 2 is analyzed using a package such as Palisade's BESTFIT
(Figure 8 - Figure 10), the distribution that provides the ‘best fit' is either
triangular, normal or beta, depending on the test statistic used. All three of the
proposed models fail to achieve ‘significance’ according to any of the tests (Chi-
Squared, Kolmogorov-Smimov, or Anderson-Darling) since the data is too
‘chunky’ given the high number of observations. This will often be the case with
any set of aggregated data treated in this manner.

» Figure 8: Triangular Distribution Fit to Aggregated Handle Time Histogram
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« Figure 9: Normal Distribution Fit to Aggregated Handle Time Histogram
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» Figure 10: Beta Distribution Fit to Aggregated Handle Time Histogram
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Given that none of the theoretical distributions meets required critical values for
any curve-fitting test statistic, which of the three above-mentioned distributions
should the analyst use to model individual call handle times? The answer is
probably NONE, since the average call handle times significantly understate the
variability of individual calls. Each of these distributions would most likely
perform adequately if the desired random variable was an average of 10 — 50 call
lengths, but an effective call center simulation requires individual call handle

times.

Since Table 2 contains simulated, synthetic data, we already know that the
underlying distribution of individual calls is a normal random variate with mean
equal to 6.0 and standard deviation of 2.0, censored at zero. When the
frequency distribution is plotted with the histogram of aggregated data (as in
Figure 11), it can be seen that the variance within the aggregated data is much
less than the variance between individual calls. Hence none of the above
distributions fitted to the aggregated data will adequately model individual call
handle times. Each of the proposed distributions is centered on the population
mean, but an accurate portrayal of the variance and overall shape of the
individual call handle time distribution is not achieved. In general, the standard
input analysis methods fail to determine individual handle time
distributions when presented only with aggregated data.



» Figure 11: Histogram of Aggregated Data and Frequency Distribution of individual Calls
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33 Determining Distribution Parameters with Unbiased Estimates (UE)
3.3.1 Sample and Population Mean

In section 1.4.2, an unbiased estimator of population mean was given:

o Equation 1(repeated)

Z";X’j
= ‘o _ (20><6.2)+(20x6.0)+...+(20x5.6)+(10x5.8) _

=J=

i 20+20+...+20+10

6.0

S

=

3.3.2 Variance of Sample Averages
A mistake often made by inexperienced analysts is to then use the variance of

sample averages, s%. as an estimate of population variance, 2. In this situation,
s§ represents the variance within the aggregated data, while o represents the
variance within individual call handle times. Unlike sample variance, 52, s2 is not

an unbiased estimate of o>. Two example calculations of s2 (Equation 2,

Equation 3) for the data in Table 2 has been provided. Equation 2, while easily
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calculated and often mistakenly used, does not actually represent any statistical
value, since it does not reflect that each sample contains a different number of

observed individual calls. Equation 3 correctly calculates s2.

» Equation 2
Z(YJ _f)z 2 2 2
ey _(6.2-6.0)’ +(6.0-6.0)" +...+(5.8—6.0) 031
m—1 15
e Equation 3
> n (X, - X)?
§2 = ;S-‘: /X ) _20(6.2-6.0)* +20(6.0 —6.0) +...+10(5.8 — 6.0)> =028

i"/ 539

J=

The reader will recall that the individual call distribution was a censored normal
distribution with a mean of 6 and a standard deviation of 2 or a variance of 4.

The source of the downward bias is the fact that each of the calculated X j is an

average talk time for the specified time block and deviates from the mean
significantly less than the unobserved individual talk times. This bias is
quantified for large n and the population variance (individual call handie time
variance) can be estimated using the relationship:

» Equation 4

2
o ) ) —
si—, ~-——  where n=the number of observations summarized by X
n

Analysts that recognize the downward bias present in the variance of sample
averages are likely to try to ‘'adjust’ for it using the above relationship.

Unfortunately, o? cannot be estimated using s and Equation 4 for two reasons:



= n differs from time block to time block and there is not one single ‘factor’
by which to muitiply the sampie variance.

» there may be time blocks in which n is small and Equation 4 will not hoid.

As mentioned previously, s? is an unbiased estimator of o2, but ACDs generally
do not record sample variance and without the individual call lengths, s2 cannot

be calculated. The inability to calculate the sample variance and subsequently
estimate population variance often leads the analyst to adopt the assumption of
an exponential service time. The exponential distribution has a single parameter
(2) that simultaneously describes the population mean (1/A) and variance (113
and hence, the parameter A can be calculated with an estimate of population
mean alone. The estimation of population variance is unnecessary and this is a
distinct advantage of the exponential service time assumption.

For multi-parameter distributions such as the Gaussian (Normal), Lognormal or
Gamma distribution, an unbiased estimate of population variance is required in
order to determine the parameters of the distribution.

3.3.3 Population Variance

The search for a known, unbiased estimate of population variance for aggregated
data led to the sum of squares formulas used in an ANOVA with unbalanced data
(Guttman et al., p 387-388). In analysis of variance, the total variation, SSt is
broken down into two components: SSg (between samples sum of squares),
which reflects the variance between treatment groups and SSy (within samples
sum of squares), which reflects variation with treatments.

o Equation 5

SS ot =SS berween +SS i OF alternatively, SS, =SS, +SS v



The between sample sum of squares is calculated based on the difference
between sample means and the overall mean (see numerator, Equation 7). The
expected between samples sum of squares, E(SSg), is comprised of both
population variance and variance due to the different ‘treatments’ of each

sample, as shown in Equation 6.
« Equation 6

E(SSB)=0-2(m_.1)+Z,,I§l% where ¢ are the effects of each time block

J=t
Assuming that the call handle time distribution is independent of the time block in
which the call arrived (i.e. there are no treatment effects), each of the o; are equal
to zero. Equation 6 can be simplified and rearranged to arrive at an unbiased

estimate of the population variance, o%
» Equation 7

m m m
v 372 2 V2
2. (X;-X)* 3 Xin,~XYn,

m—l_ m-1 m-—1

Using Equation 7 and the data from Table 2, we can calculate the unbiased
estimate for population variance as done below:

« Equation 8

n-()t—’-—f’)z
o2 ~ 555 _E, il _20(6.2-6.0)° +20(6.0-6.0)* +---+10(5.8—6.0)> _
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For the data in Table 2, the individual calls were censored normal random
variates with a mean of 6.0 and a variance of 4.0. The above estimate of
population variance of 2.8 should not be viewed as a poor estimate since the

statistic % is a random variable itself, which has its own distribution. The

mean of this distribution is 62. Increased accuracy of the variance estimate may
be achieved by sampling over a greater number of time periods rather than just

the 16 time blocks used in this example.

Once estimates of population variance and mean have been calculated, the next
step is to determine which distribution to use and to calculate the distribution
parameters. For many theoretical distributions, calculation of the parameters is
quite simple once population mean and variance have been estimated. The
difficult task is choosing which distribution to use! As seen in the previous
section, the aggregated data provides little clue as to the underlying distribution
of individual calls.

The coefficient of variation (c.v.) is defined as the ratio of standard deviation to
mean (E ). As a simple rule of thumb, if c.v. = 1.0, then an exponential

distribution may be appropriate. Otherwise, if c.v. < 1.0, then a normal
distribution may be required. Several other distributions, such as Gamma or
Weibull may fit just as well, or perhaps better. Unfortunately, one cannot
evaluate distributions using a trial and error method by comparing test statistics
(Chi-square, Kolmogorov-Smirnov) since the test statistic is calculated based on
the observed call handle time data, of which there is none!

The ability to calculate an unbiased estimate of population variance is a first step
at understanding the distribution of individual call lengths, but without individual
handle time data, the unbiased estimates of variance and mean do not allow
us to determine the best theoretical distribution for individual calls. In



order to use these estimates, more data would need to be collected about the
individual calls in order to perform tests for goodness-of-fit.

34 A Bayesian Approach to Disaggregation

The third (and final) approach to be discussed is the use of Bayesian Inference to
determine the best distribution and parameters to model individual cail handle
times. Before discussing the actual models, it would probably be helpful to briefly
describe Bayesian Inference and Markov chain Monte Carlo (MCMC) methods
as they apply to the models presented.

3.4.1 An introduction to Bayesian Inference

In general terms, Bayesian inference often deals with circumstances where there
is observed data, Y, and unknowns 6 which may include model parameters,
missing data, or events that have not been directly observed. Both Y and & may

be considered vector quantities.

It is assumed that from probability density functions the likelihood, p(Y189), can be
determined. There is generally uncertainty about @ before analyzing the data;
this is captured in the prior distribution, p(6). Bayes Theorem provides a method
of modifying the prior distribution based on the observed data. The end result is
a posterior distribution, p(QY) that better represents the uncertainty in the

unknown parameters, 6.

Joint probability distribution » Equation 9: Bayes theorem

0117 < POV _p©Op(X18) __ p@)p(Y|6) Mok lo
FEIY p(Y) pY) j p(a)p(YIB)dBOC p:( )P JI )
posterior distnbution prior distri k Ik ihood)

unnormalized posterior distribution




Since the denominator is independent of ¢, it can be considered constant for a
fixed Y and omitted to yield the unnormalized posterior density, the far right hand
side of Equation 9.

Equation 9 demonstrates how the posterior distribution is simply a function of the
prior distribution muitiplied by the likelihood of the observations given the prior
distribution. Obviously, the choice of prior becomes quite important, but where
does the prior come from? Despite the considerable research into this topic,
there is still no definitive or best way to choose a prior.

In principle, the choice of prior is subjective. The prior may attempt to capture
existing data through a meta-analysis, or it may be determined with the input
from ‘experts’. Often classical statisticians will cite this subjectivity as a major
weakness in Bayesian inference, and non-informative, ‘reference’, priors are
often used to increase the objectivity of the analysis. The selection of prior
distributions by formal rules is a goal of many statisticians, but there are still no
definitive standards (Kass & Wasserman 1996).

Sensitivity analysis can be performed on a variety of priors as a form of validating
the rigour of the model. Spiegelhalter [1999)] advocates the use of a ‘community

of priors’:
= reference priors representing non-informative, objective prior beliefs
= clinical priors that represent genuine clinical opinion
s archetypal priors expressing skepticism or enthusiasm

By performing a thorough sensitivity analysis using several priors, one can better
assess how convincing the resuits will be to a broad spectrum of opinion.

Priors are also often chosen for mathematical convenience and are based on the
form of the likelihood function. When the posterior distribution follows the same



parametric form as the prior distribution, then the prior is said to be a conjugate
prior. For example, if the likelihood follows a binomial distribution, then a beta
prior is often used since the resulting posterior distribution will also be beta. The
beta prior distribution is a conjugate family for the binomial likelihood. Other
examples are shown in Table 3. As computer numerical methods have gained
widespread use, restricting oneself to conjugate priors has not been as critical as

it once was.

» Table 3: Conjugate families for several likelihood distributions.

Prior Distribution Likelihood Posterior Distribution
Normal Normal (known variance) Normal
Beta Binomial Beta
Dirichlet Multinomial Dirichlet
Gamma Poisson Gamma

3.4.1.1 Example of Bayesian Inference

Part A: Using a discrete prior distribution

Assume a new campaign at an outbound call center may have a success rate, 0,
of 10%, 25%, 40%, 55% or 70%, each of equal prior probability (p(8;)= 0.2). If we

observe r successes out of n calls, how is our belief revised?

The likelihood function is binomial;

p(r|9)=Bin(rln,6)=(:)0'(l—9)"" < 8°(1-6)"".

If = 18 successes and n=30 calls, then the posterior probabilites may be

calculated as in Table 4 below.
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» Table 4: Calculation of Posterior distribution based on discrete prior

i 6, Prior Likelihood x Prior Posterior
p(8) (?: )9,’(1 ~8.)"" p(8,) G
1 | 010 | 020 | 1Cis(0.10)"%(0.90)'%(0.20)= 0.0000 0.00
2 | 025 | 020 | xCy(0.25)'%(0.75)%(0.20)= 0.0000 0.00
3 | 040 | 020 | xCis(0.40)%(0.60)%(0.20)= 0.0026 0.06
4 | 055 | 020 | 1Cis(0.55)"%0.45)'*(0.20)= 0.0253 0.59
5 | 070 | 020 | 1C1s(0.70)"(0.30)'%0.20)= 0.0150 0.35
P 1 p(r=18,n=30) = 0.0429 1.00

Ascznbeseenhcoumd,mencutemsimpendemde,awanbemidemdawmhragmnandr. s
common practice to omit this term from the caicutation.

We now believe there is only a small chance of the campaign having a success

rate of less than 40% and that the probability of the rate being 55% is ten times
greater than 40%.

Part B: Using a continuous prior distribution.

What if instead of using a discrete prior as in part A, we had decided to use a
continuous prior where we believed the success rate to have a mean of 0.40 and
a variance of 0.015?

Since the likelihood function is still binomial as before, we choose a conjugate
prior following the beta distribution.
This term may be considered constant — it is independent of 6
[(a+pB) paa -1 a-1 A1
p0) = Beta(a, f) = ———-60""'(1-6)"" « 6°'(1-6)
F(a)'(B)
The posterior distribution can then be calculated as follows:

p@|r,n)x p(r|6,n)p)
=0"(1-6)""8°'(1-6)7"
= gr+a- (- o)n-np-l
o« Beta(r +a,n—r + )



The Beta distribution has mean u = a/(a+f) and variance s?= p(1-p)/(a+p+1).
With the prior having a mean = 0.40 and s?=0.015, we can solve for « and B to

finda=6and =9

The posterior distribution for 0 is then Beta(24,21) with a mean = 0.53 and s2 =
0.0054. The binomial likelihood where r = 18 and n = 30 is proportional to a
Beta(18,12) density function. We can graph all three together as seen in Figure
12 below to show visually the relationship between prior, likelihood and posterior

distributions.

» Figure 12: Frequency Distributions of Prior, Likelihood and Posterior for example, partB
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Unlike this simple example, it is often not feasible to perform calculations on the
posterior density function directly, in which case it is useful to simulate from the
posterior distribution to obtain inferences. This method is often used for the more
complex models involving multiple variables of interest.

To illustrate this method, Figure 13 shows a histogram of 1000 draws from the
posterior distribution. An estimate of the 95% posterior interval can be obtained
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by taking the 25" and the 975™ of the 1000 ordered draws. In this case, an
estimate of the 95% posterior interval is [0.395,0.678). Unlike more complex
posterior distributions, we can compare these values with those obtained from
the known cumulative distribution function (cdf) for Beta variables. The 95%
interval obtained from the BETAINV function in EXCEL is [0.388, 0.675].

» Figure 13: Histogram of 1000 draws from the posterior distribution: Beta(24,21)
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3.4.2 Moving from Single Parameter to Hierarchical Models

Both of the above examples represent single parameter models in which
inferences are made about a single unknown variable — in this case, 0, the
success rate of the new campaign. For most practical problems in statistics
though, there is often more than one unobservable quantity and it is in these
situations that the strengths of Bayesian inference become more pronounced.

When two or more variables are unknown, we are often not particularly interested
in all of them. For example, if 0 is a vector, 8 = (84, 6,) where 6, = u and 0, = o2
and we are primarily interested in 6, (u) for the moment, then 0, (c®) is called a
nuisance parameter. This label may seem a bit harsh, but if we are interested in
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the posterior distribution, p(61]y), then the unknown variable 8, does become a bit

of a nuisance from a calculation standpoint.
The initial step is to determine the joint posterior distribution of all unknowns:

e Equation 10

PO1Y)=p(61,6, | Y)x (Y | 6,,0,)0(61.6,)

Since the desired probability is the marginal probability of 0,, we need to

‘average over’ or ‘integrate out’ 6,:

Marginal probability of 6, « Equation 11

¥

P(611Y)= [P(61,.6,1Y)d6, = [p(6) B2.Y)P(6, | Y)d6,

For multiparameter models, we rarely evaluate the integral in Equation 11
explicitly since it is often intractable for most real-scale problems. Rather, we
simulate the factored form (far right side) by repeatedly sampling 0, from its
marginal posterior distribution, and then sample 6, from its conditional posterior
distribution, using the 8, drawn in the first step. The integration in Equation 11 is
thus performed indirectly through simulation and is often called Monte Carlo

Integration.

There are many other ways of approximating integrals, but for high-dimensional
hierarchical models, Markov chain Monte Carlo methods (see section 3.4.3) have
proven extremely useful (Evans and Swartz 1995). A hierarchical model is a
muitiparameter model in which the parameters of the prior distribution are
themselves modeled as random variables following a specific theoretical
distribution with its own parameters, called hyperparameters.

For example, let us assume we are to build a Bayesian model to make
inferences about the parameter 6, given observed data Y. Rather than modeling



the prior distribution of 6 as a normal distribution with a mean of say, 10 and a
standard deviation of 2, a more flexible prior can be used. In a hierarchical
model where non-informative priors are used, a possible modeling of 0 is:

3 This produces a diffuse, non-informative
8 ~ N(u, 7)” where u ~ Normal (0,0.001) «—— prior centered at zero with o2 = 1000
{see footnote 3 below)

and precision, T ~ Gamma(0.001,0.001) <— This aiso produces a diffuse nom
informative prior restricted to be
msih.ve.

Hierarchical models are often displayed graphically to help describe the essential
structure of the model, to communicate conditional dependencies, to break the
model down into simple components and to provide a basis for later simulation.

» Figure 14: Graphical representation of a Hierarchical Bayesian Model
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Hierarchical models are obviously more complex than single parameter models,
so why would we prefer to model in such a way? The answer is that many real-
life systems involve stochastic variables that should be thought of as related, and
their parameters should be allowed to reflect the dependence amongst these

variables.
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its multiplicative inverse, precision. The symboi, tau (1), is used to represent precision where 7 = —20r0’=s/; . The
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normal distribution will then be parameterized as N(p,t) rather than N(1,6).



Expanding our example, let us assume that the observed data represents many
measurements of a similar nature - for example, the number of successes and
trials at each of four call centers. Rarely will each measurement lead to exactly
the same estimate of 8. Since each of the p(6;) will differ, our ability to predict Y
will be hindered. If we are willing to assume that each of the 0 are similar, then
we can treat them as random draws from a common population distribution. A
hierarchical model is a natural way to integrate all of these analyses into a single

model.

3.4.2.1 Example of Bayesian Hierarchical Model

Part C: Assuming a ‘similar’ success rate over several call centers.

Expanding on the example in the last section where the success rate of a new
campaign was being studied, let's now assume that 3 other outbound call centers
were also measuring the number of successes and the total number of calls.

o Table 5: Data For Call Center Example (Part C)

Call Center (j) # of successes () Total # calis(n)
1 18 30
2 9 20
3 26 44
4 13 25

Y, the observed data, now consists of r; and n; for each of the four call centers
(=1.2,3,4). Once again, we will model the number of successes, r; as a binomial
random variate, but this time, we will construct a logistic binomial regression
model with ‘non-informative’ priors as the hyperparameters. The complete
model, as built and executed in WinBUGS (Spiegelhalter et al. 1998), is
provided in Appendix A 4.



Figure 15 provides a graphical representation of this hierarchical model.

) ] Logit function transforms
Likelihood: r;~ Binomial(g;, n;) normal distribution on [0,1]
/ logit(8)=5 implies
where logit(8) = 5 logfaA1-6)}=5
and &~ Nomal (p,7) Reminder: Normal
distribution is parameterized in
Priors: p ~ Normal(0,1.0x1 06) — terms of precision.

T~ Gamma(1.0x103, 1.0x10%)  For example,
precision=1.0x 10% is
equivalent to a variance of
1.0 x 10° and a standard
deviation of 1000.

» Figure 15: Graphical Model for Example Part C

Hierarchical models such as this are much easier to interpret using simulation
methods similar to the ones discussed previously. In the following section,
methods of calculating the joint and marginal probabilities of the parameters
through Monte Carlo simulation will be discussed.



3.4.3 Markov chain Monte Cario Methods

Markov chain Monte Carlo (MCMC) has made Bayesian inference accessible to
many that would have not used it previously. It has also contributed to the
increased acceptance of Bayesian inference since it has aimost eliminated the
need to over-simplify problems into a framework that could be solved using other,
available frameworks. MCMC has its roots in the field of statistical physics, but it
has taken nearly 40 years for MCMC to move over to mainstream statistical

practice.

MCMC is simply Monte Carlo integration using Markov Chains. Monte Cario
integration was introduced in the previous section and can be briefly explained as
repeated sampling from a distribution as an aiternative to analytic evaluation of
an integral. Monte Carlo simulation is often used to find features of the posterior
distribution that may be expressed as expectations of functions of unknown
parameter 6. Using Equation 9 as a basis, the expected value of a function of an

unknown parameter 6 may be written as:

e Equation 12

[f©p@® p(Y|6)d0
[p@)p(¥|6)de

E[f(O)|Y]=

Monte Carlo integration evaluates E[f(6)|Y] by drawing k samples from the
posterior distribution, p(6]Y), and then uses the following approximation:

o Equation 13

1 & s
E[f(e)mz;wa‘ ) where 0M,0@ 0V ~ p@|Y)
s=1



When the samples {6 ©®, s = 1,...k} are independent, the accuracy of the
approximation can be improved by increasing sample size, k. With many
Bayesian models, the non-standard form of p(6]Y) often makes independent
sampling from the posterior distribution infeasible. Fortunately, dependent
sampling from a Markov chain with p(6]Y) as its unique, stationary distribution
produces the same successful results. The following section will describe a
method to construct a Markov chain such that its stationary distribution is p(6]Y).

3.4.4 Gibbs Sampling

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm first
introduced by Metropolis et al.(1953) and then Ilater generalized by
Hastings(1970). The Gibbs sampler generates a Markov chain by sampling from
full conditional distributions. It was given its name by Geman and Geman (1984)
and to date, most statistical applications of MCMC have used Gibbs sampling or
variations thereof. Gilks, Richardson and Spiegelhaiter (1996) provide a full
introduction with many worked examples to provide clarity. Gibbs sampling may

be summarized as follows:
Let 6 be a vector of length q of unknown parameters. 6 = {84, 0,,..., 8}
1) Choose starting values for each of the unknowns 6,%, 6,9, ... 6,

2) Sample 6," from the full conditional distribution p(61[6;® 85 _ 8,@.Y) )
Sample 6," from the full conditional distribution p(6,16:”. 8:® _ 8,©,Y) Repeat

Sample 8, from the full conditional distribution p(84]81™ 6, 84.4M.Y) )

3) After an appropriate burn-in period, k, a Markov chain is formed with p(6[Y) as

its stationary distribution.



The length of the bumn-in period represents the time it takes for the Markov chain
to converge to a stationary distribution. The burn-in period is designed to remove
dependence of the simulated chain on its starting values and its length may be
anywhere from ten to tens of thousands! Determining convergence of MCMC is
still a topic that attracts on-going research (Gelman 1996; Cowles and Carlin
1996) and is discussed further in section 3.4.5.1.

Gibbs samplers have been written in many languages (FORTRAN, SPLUS), but
a programming environment developed within the Biostatistics Unit at Cambridge
has become a very popular way to implement MCMC using Gibbs Sampling.
BUGS (Bayesian inference Using Gibbs Sampling) is a program which provides
a syntax for specifying hierarchical models, a command language for running
Gibbs Sampling sessions, and reporting features that allow the analyst to
evaluate the output. The ‘Classic’ BUGS program has now been superceded by
WinBUGS, as described in a following section.

3.4.5 Current Issues in MCMC

Before demonstrating MCMC using WinBUGS, there are a couple of issues that
must be discussed. The question of diagnosing convergence is very important
since the results of the simulation will be invalid if statistics are drawn before the
Markov chain has converged. Also, if one must decide between two or more
alternate models for the same data, how can this be done? These two topics
continue to receive a great deal of research attention, so there will be no attempt
to propose a definitive solution — rather several options will be discussed and
appropriate methods chosen for this application. Kass et al. (1998) present a
panel discussion addressing these topics and others.

3.4.5.1 Diagnosing Convergence

Convergence of the Markov chain must be identified in order to determine the
length of the bum-in period. The easiest and most common method is through
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simple visual inspection of the chain. While visual inspection of a single chain
can accurately determine when a chain has not converged, it is not adequate for
confirming convergence. Some chains move through the parameter space very
slowly — so much so that they may appear to have converged. This problem
occurs frequently since the samples from a Markov chain are serially correlated.
Other models, especially high-dimensional models, can be multi-modal, and if the
chain is stopped prematurely, the chain may appear to have converged at a
mode other than the ‘main’ mode. Many experts agree (Kass et al. 1998) that it
is important to run multiple sampling chains from over-dispersed starting points to
ensure that each chain converges to the same value(s). It is also important to
ensure that not only have the parameters of interest converged, but also the

nuisance parameters.

There have been many more formal tools proposed, called convergence
diagnostics, to estimate the length of burmn-in required in order for the chain to
forget’ its starting position. This is still an active area of research with many
proposed methods (Geweke 1992; Raftery and Lewis 1992), but an often-used
diagnostic is one developed by Gelman and Rubin (1992). This diagnostic, often

referred to as ﬁ, is a ratio of estimates of total sequence (pooled) variability and
within-sequence variability. The premise is that convergence has been achieved

once R approaches 1 (total sequence variance = within-sequence variance) and
the two variances have stabilized. In practice, simulations are run until the

values of R are all less than 1.2 (Kass et al. 1998).

The latest version of WinBUGS calculates the Gelman-Rubin diagnostic (GR-

Diag), as modified by Brooks and Gelman (1998). In this case, R (see Equation
14, below) is interpreted as the ratio of empirical 80% posterior interval lengths,

rather than as a variance ratio.



eEquation 14

R = length of 80% total-sequence interval
~ mean length of the 80% within-sequence intervals

As long as multiple chains are run, plots of the convergence statistic are
available for any of the monitored parameters. In Figure 16, the GR-Diag is
plotted for two chains, each of 10 000 iterations. Since the two variance chains

have stabilized and R appears to have reached a stable level near 1.0, we can
conservatively say that convergence may be assumed after 3000 - 4000

iterations.

» Figure 16: WinBUGS implementation of Gelman-Rubin diagnostic (GR-Diag) for convergence
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Others have developed rules to determine a priori resuits about time to
convergence for MCMC chains that may be used in conjunction with
convergence diagnostics (Roberts and Rosenthal 1998, Rosenthal 1995).

3.4.5.2 Model Selection and Critique

When presented with a Bayesian Model and its output, how can one critique the
inferences produced? When two or more competing models are given, how can
a choice be made regarding which one is best? Is it reasonable to assume that
one model alone is best? These questions are asked by both novices and
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experts in the field of Bayesian inference, and like the questions raised in the
previous section, this research paper will make no attempt to answer these

questions.

Classical model selection often analyzes residual errors, that is, the difference
between actual and predicted. The models presented will attempt to find the best
distribution to predict the individual call handle times. The actual individual call
handie times are unavailable (except in the case of the synthetic data), and
hence alternatives to the classical methods of model selection are required.
Comparisons may be made between predicted and observed aggregated data
and it is suggested that this cross-validation be done with separate evaluation
data. O'Hagan (1995) advocates the division of data into two parts. The first part
may be used as a training sample to obtain posterior distributions, and the latter
part used for model comparison. Gelman and Meng (1996) use posterior
predictive model checking as a method of model critique. In this case, the model
is deemed to not fit the data if the actual, observed values for some meaningfui

discrepancy variable are far from the predictive distribution.

Dempster (1974) proposes a method of examining the posterior distribution of
the log-likelihood of the observed data. This distribution, often called the
deviance measure is simple to calculate during a WinBUGS run. The deviance
(Equation 15) is re-calculated with each iteration of the converged Markov chain,

using the current values of Y and 6.
= Equation 15

deviance = -2log p(Y | 8)

Others (Gilks et al. 1992; Zeger and Karim 1991) used variations of this
technique as a method of model comparison. One of the benefits of using mean
deviance as a method of model critique is not only can it be calculated within the
MCMC simulation, but it is also easily understood. The assumption underlying



44

the use of this statistic is the smaller the likelihoods of the observations, the
greater the mean deviance and hence, the poorer the fit between observed data
and model. By choosing the model with the smallest mean deviance, we are
attempting to select the model that maximizes the likelihood of observing data Y.

There are many other techniques for model criticism such as Bayes Factors
approaches (Berger & Pericchi 1996; O'Hagan 1995, Carlin and Chib 1995), and
cross-validatory techniques (Gelfand 1996) which may also be appropriate.
Given the simplicity of the deviance measure and its immediate availability in
WinBUGS, its discriminatory ability should be adequate for the purpose of these
call center models.

3.4.6 WINBUGS

WinBUGS is an interactive version of the BUGS program. It has similar
functionality but it also incorporates a graphical model editor called
DOODLEBUGS and on-line viewing of simulations. Documentation and
downloadable programs are available from http://www.mrc-bsu.cam.ac.uk/bugs.
The models developed for this paper used the recently released, version 1.2 of

WIinBUGS.

3.4.6.1 Example of Bayesian Inference using WinBUGS

The best way to explain how WinBUGS works is to demonstrate its use through a
familiar example. Recall the outbound call centers that want to determine the
success rate of a new program at four different locations (see section 3.4.2.1).
The first step in WinBUGS is to develop a directed acyclic graphical (DAG) model
of the data using the DOODLEBUGS interface (See Figure 17, below):



e Figure 17: DoodleBug for Outbound Call Center Example
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Once the DOODLEBUG is complete, WinBUGS can automatically generate the
accompanying BUGS code shown in Figure 18 below:

e Figure 18: BUGS code generated from DoodleBUG for outbound call center

outbound call center model,
{
for(jin1:M){
rlj] ~ dbin(p(j].n{i])
logit(p(j]) <- bii]
b[j] ~ dnorm(mu,tau)
}
tau ~ dgamma(0.001,0.001)
mu ~ dnorm( 0.0,1.0E-6)
sigma <- 1 / sqrt(tau)
}



Once the code is generated and compiled, the data entered and the initial values
set, the next step is to run the Gibbs Sampler and gather statistics concerning
the parameters of interest. The latest version of WinBUGS allows the
simuftaneous analysis of several chains with varying initial vaiues. This feature
allows the analyst to monitor several chains on the same chart for convergence
assessment and allows the calculation of statistics such as the Geiman-Ruben

diagnostic.
For the example given, the data sets and initial values are as follows:

Data r=(18,9, 26, 13)
n = (30, 20, 44, 25)
M=4
Inits Chain 1: tau=10° mu=10
Chain 2: tau=102 mu=-10
Using two chains, each with a burn-in period of 4000 iterations, statistics were
gathered for the remaining 6000 iterations of each chain, producing a sample of
2 x 6000 = 12000. Table 6 lists the summary statistics for all unknown

parameters, including the major parameter of interest, p[j] (success rate):

o Table 6: Outbound Call Center Results from WinBUGS

Node Mean sd 2.5% Median | 97.5% Start sample
b{1] 0.265 0.2432 -0.2072 0.2604 0.7693 4001 12000
b{2] 0.1476 0.2787 -0.4946 0.1724 0.6301 4001 12000
b{3] 0.2662 0.2239 -0.1625 0.262 0.7305 4001 12000
b{4) 0.1954 0.2534 -0.3344 0.2059 0.6631 4001 12000
Mu 0.2183 0.2545 -0.2738 0.2226 0.6842 4001 12000
p{1] 0.5649 0.05856 0.4484 0.5647 0.6834 4001 12000
p{2] 0.5364 0.06787 0.3788 0.543 0.6525 4001 12000
p{3] 0.5653 0.05416 0.4595 0.5651 0.6749 4001 12000
p{4] 0.548 0.06174 04172 0.5513 0.66 4001 12000
Tau 198.8 396.6 1.305 53.61 1304.0 4001 12000

The mean success rate for the four call centers ranges from 53.6% to 56.5% and
the 95% interval for each is also given. As can be seen from the results, the
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Bayesian model produces different mean values for each of the b; (and hence p)),
but it should be noted that each of the b; is drawn from the same population: b; ~

dnorm(u,c?) where [7 = 0.218 and T = 198.8.

If this model was to be used to predict the success rate at a new call center (Po).
we could use the mean of the distribution from which all b; belonged, 7 = 0.218
as an estimate of by and then transform it through the logit function to arrive at po.

by =0.218 and logit(p,) = by

Po
log =b
1-pp  °
by 0.218
Po e e _1.24359 _ 0.544

T 1+e®™  1+e92'8 224359
An alternate method that is especially useful is demonstrated in Figure 19 below:

« Figure 19: DoodieBUG, BUGS code and new output for outbound call center model il

outbound call center model I,

for(jin1:M){
rij] ~ dbin(p(j],n(iD)
g logit(p(j]) <- b(j]

(>
G () / <« bl ~anom(mu au)
S| &

tau ~ dgamma(0.001,0.001)
mu ~ dnorm( 0.0,1.0E-6)
sigma <- 1/ sqrt(tau)
b.new ~ dnorm (mu,tau)
logit(p.new) <- b.new

Node Mean sd 2.5% Median | 97.5% Start sample
b.new 0.217 0.421 -0.589 0.229 0.985 4001 12000
p.new 0.553 0.090 0.357 0.557 0.728 4001 12000




The new parameters called bnew and pnew are sampled/calculated directly while
performing the MCMC simulation. The resulting p.new value indicates that at
another call center, the new program would have a prediction interval of
[0.357,0.728] with a mean success rate of 55%.

WinBUGS also provides a variety of useful graphical summaries. Analysts often
use trace plots of the chains (Figure 20) in order to confirm convergence, kernel
density plots such as Figure 21 help to visually represent parameters of interest,
and plots of the Gelman-Rubin convergence diagnostic (Figure 22) are used by
many before, or instead of, trace plots.

« Figure 20: Trace pilot of p[1] for two chains with over-dispersed starting values (5000 iterations)
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o Figure 21: Kemnel Density Plot for success rate at Call Center One, p[1]
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» Figure 22: Plot of Gelman-Rubin convergence diagnostic for p[1]
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Sections 3.4.1 through 3.4.6 above provided just a brief description of a few
techniques that may be used while analyzing data using Bayesian inference
techniques and MCMC. The purpose of the background information was to
provide the reader with just enough knowledge to understand the models that will
be presented in the next section. Those interested in a more thorough analysis
are directed to two informative texts: Bayesian Data Analysis written by Gelman,
Carlin, Stern and Rubin (1995) and Markov Chain Monte Carlo in Practice edited

by Gilks, Richardson and Spiegelhalter (1996).



3.4.7 Bayesian Modeis applied to Call Handle Times

Bayesian Inference is the third disaggregation method that will be discussed.
The Bayesian model will be used to infer the distribution parameters of individual
call handle times as well as provide some insight into model (distribution)
selection. This approach was motivated by the unique problem that the
individual call handle times are ‘missing’, although not in the classic statistical
sense. Bayesian methods have been quite successful dealing with missing data
and led to the contemplation of using these techniques for the problem at hand.

By knowing the average handle time and the number of calls, we are able to
caiculate the sum of the handle times for each time biock. For each of the
following models, the observed data Y;, represents the sum of the n; calis during
time block i. That is, the observed time block average has been transformed into

an observed time block sum through the function Y; = n; X; .

Three models have been created — each reflecting a different assumed
theoretical distribution for the underlying individual call handle time. The
exponential model assumes that each of the arriving calls follows an exponential
service time. This is the base model since it reflects current industry standards
and has the simplest structure. The normal model is presented as an alternative
to the exponential model when the coefficient of variation << 1. The final gamma
model is offered as an approximation to a potential lognormal call handle time
distribution. The complete WinBUGS models for each of the three data sets are
provided in Appendix A.

3.4.7.1 Exponential Model

If Xi, i=1,...,n are independent identically distributed (iid) exponential random
variables each having parameter 0, then Y = X; + X2 + ... +X, is a gamma
random variable with parameters (n,0). This gamma distribution, where n
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represents an integer, is often referred to as the Erang distribution. The
exponential model is defined with the foliowing distribution:

Y; ~ Gamma(n;,0;)

where n; is the observed number of calls handled and
Y; is the sum of the call handle times in time block i.

The 6; for each time block are assumed to be from the same distribution, in this
case, the gamma distribution with hyperparameters alpha and beta. Alpha and
beta are given independent, non-informative priors (as discussed in section

3.4.1).
6i ~ Gamma(a,f) with priors o, ~ Gamma(0.001,0.001)

The MCMC built in WinBUGS will have p(8]Y,n) as its stationary distribution. The
DoodleBug in Figure 23 represents the hierarchical structure of the model and

the accompanying WinBUGS code is also provided.

« Figure 23: DoodleBUG and WinBUGS code for Exponential Model

alpha @
exponential model;

{

for(iin1:N){
Y[i] ~dgamma(n[i],thetali])
theta(i] ~ dgamma(alpha,beta)
}

alpha ~ dgamma(0.001,0.001)
beta ~dgamma(0.001,0.001)
theta.new ~ dgamma(alpha,beta)
mu<-1theta.new

}




Since each of the 6; are drawn from the same distribution, they will be similar but
not identical. The goal of the model is to infer what 8 will be for future calls, and
the mean of the marginal posterior density of theta.new will be used to predict the
parameter of the individual, exponentially distributed, call handle times, 0.

3.4.7.2 Normal Model

If Xi, i=1,....n are iid normal random variables each having parameters (u,5) then
Y =X + Xz + ... +X, is @ normal random variable with parameters (nu.\/nc). The
second parameter, standard deviation, must be converted to precision in order to
be understood by WinBUGS. Precision is the multiplicative inverse of variance,

that is, precision = 1/(standard deviation)>. Hence, if each of the X has a
precision of t then Y has a precision of t/n;. The normal model is defined with the

following distribution:
Yi ~ (nip,t/ny)

where  n;is the observed number of calls handied,
Y; is the sum of the call handle times in time block i, and
u and r are the mean and precision of the individual calls.

The normal model omitted the second layer of stochastic parameters
(hyperparameters) and assumed non-informative ‘reference’ priors for both mu
and tau. This was done merely to demonstrate modeling flexibility rather than

one ‘correct’ method.

Prior distributions: p ~ Normal(0,0.000001) and t ~ Gamma(0.001,0.001)

The following DoodleBug in Figure 24 represents the hierarchical structure of the
model and the generated WinBUGS code is also provided.



» Figure 24: DoodleBUG and WinBUGS code for Normal Mode!

normal mode/;
{
for(iin 1:N){
alpha(i} <- mu * n[i}
beta(i] <- tau / n[i]
YTi] ~ dnorm(alphali],betali])
}
mu ~ dnomy( 0.0,1.0E-6)
tau ~ dgamma(0.001,0.001)
sigma <- 1/ sqrt(tau)
}

3.4.7.3 Gamma Model

Due to the similar shape and skew, the gamma distribution may be used as a
substitute to the lognormal distribution. Since the distribution of the sum of
lognormal variates has no closed analytical form, the gamma distribution will be
used to approximate the possibility of individual calls following a lognormal

distribution.

If X;, i=1,...,n are independent identically distributed (iid) gamma random
variables each having parameters (a, B), then Y = X; + Xz + ... +X, is a gamma
random variable with parameters (na, ). This relation is merely a generalization
of the one previously used in the exponential model. The gamma model is
defined with the following distribution:

Y; ~ Gamma(n;a,p)

where n; is the observed number of calls handled and
Y; is the sum of the call handle times in time block i.



The shape(a) and scale(p) parameters for the gamma distribution are given

independent, non-informative priors.
a ~ Gamma (0.001,0.001) and B ~ Gamma (0.001,0.001)
The DoodleBug presented in Figure 25 shows the hierarchical structure of the

model and the self-generated WinBUGS code.

« Figure 25: DoodleBUG and WinBUGS code for Gamma Model

@ @ gamma modef,

{

for(iin1:N){

nalphafi] <- n{i] * alpha

Y[i} ~ dgamma(nalphafi},beta
}

alpha ~ dgamma(0.001,0.001)
beta ~ dgamma(0.001,0.001)
mu <- alpha / beta

}

The parameter mu (1 =a/B) is calculated at each iteration as a model-checking
device. It reflects the current mean of the individual call handle time distribution
at each iteration. The implementation of these models is left to the next section.



Chapter 4 Design of Experiments

4.1 Construction of Synthetic Data

An Excel Spreadsheet (see Figure 26) has been created to mimic the data output
from an ACD over the course of one eight-hour day. Depending on the
distribution being considered, 540 random exponential, normal (censored) or
lognormal variables were generated (using Palisades @Risk simulation add-in
for Excel) and then aggregated according to the daily fixed call pattern.

Data set 1: Exponential (1 = 6.0). The exponential distribution is often
described in terms of the hazard rate, A, where A = 1/u. This is the case with
WIinBUGS. Since the synthetic data consists of 540 random draws from the
population, the sample mean and variance may differ slightly from the

population:

= Sample mean: 5.79 Sample standard deviation: 5.89

Data set 2: Censored Normal (u=6,0=2). The normal distribution may
produce invalid, negative-length call handle times. The frequency of
negative-length calls increases as o gets larger with respect to 1. The ACD
simulator recorded a handle time of zero for those instances. With
n=6 and o=2, this occurred only once for the 540 simulated individual calls.

» Sample mean: 6.01 Sample standard deviation: 2.04

Data set 3: Lognormmal(u=6,c5=4). The lognormal distribution may be
parameterized in numerous ways. In this example, the actual mean and
standard deviation of the individual call times are 6 minutes and 4 minutes

respectively.

= Sample mean: 6.04 Sample standard deviation: 4.29



Appendix B gives a full listing of the synthetic data that was used in the examples
throughout this thesis.

« Figure 26: ACD Simulator built in Excel
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4.2 Application of Disaggregation Models to Synthetic Data

In section 3.2, the ‘standard approach’ was shown to be inadequate when
applied to time-aggregated data. The remaining suggested approaches of using
(1) unbiased estimates and (2) Bayesian inference to determine distribution
parameters will be applied, analyzed and compared in the following sections.



4.2.1 Unbiased Estimate (UE) Approach

As discussed previously, by using the aggregated data to find the unbiased
estimates for mean and variance, we are able to calculate distribution
parameters for the individual call time distributions. Using Equation 1 and
Equation 7 from section 3.3, the following estimates of population mean and
variance were calculated for each of the three sets of synthetic data and

displayed in Table 7.

» Table 7: Calculation of UE's for synthetic data and the corresponding Gamma distribution parameters

Call Handle Time UE of UE of C.V. Gamma Distribution
Distribution N c o a wo)® | B (Fw
Exponential (u = 6) 579 6.50 1.12 08 7.28
Normal (u=6, c = 2) 6.01 1.68 0.28 12.85 0.47
Lognormal (u =6, o = 4) 6.03 4.52 0.75 1.79 3.38

Based on the coefficient of variation, one may be able to make some assumption
about the underlying call distribution, but these will always be just informed
‘guesses’. For example, the lognormal distribution can take on a wide array of
c.v.'s, so it would often be impossible to discern it from the normmal, the
exponential or many other continuous distributions. In the absence of any other
data supporting one distribution over another, it would be helpful to have a
‘standard approach’.

Since the gamma distribution is very flexible, it can be used to approximate a
variety of distributions. For example, if the data suggests a coefficient of
variation of 1, then the gamma distribution would have 1 as its shape (a)
parameter, and behave as an exponential distribution. By assuming a gamma
distribution, we are, in a sense, allowing the data to choose the shape of the
distribution. The Gamma parameter estimates can be calculated directly from

the estimated population mean and standard deviation. These parameters,



based on the unbiased estimated values of 1 and o, are also provided above in
Table 7.

4.2.2 Bayesian Approach

For each of the three models presented in the previous sections, the three
synthetic data sets were used as input into the models: exponential, normal and
lognormal (individual) call handle times. For each model, three to five
overdispersed sampling chains were used, each ranging from 15 000 to 30 000
iterations. Gelman-Rubin Diagnostics were plotted and convergence was

assumed after the ratio of pooled variance to within-chain variance (ﬁ) fell below
1.2. (See Figure 27 below)

» Figure 27: Plot of GR-Diag from WinBUGS - convergence assumed after 5000 iterations
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A variety of parameters were sampied from the MCMC chain once convergence
was achieved. For a complete listing of outputs, please refer to the WinBUGS
documents in Appendix A. One of the monitored statistics was the negative log-
likelihood of the observed data, called deviance. For each model/data
combination, the predictive model parameters and the deviance are given in
Table 8.

Once the model had been fit to the data, the next step was to determine how the
information from the model could be used to predict future individual call lengths.
Standard call center simulation packages are not (yet) set up to accept
hyperparameters and density functions as distribution parameters — these



packages require point estimates of the parameters. To this end, the means of
the posterior parameter distributions were used as point estimates of the
parameter(s) of each predictive model. For example, the predictive exponential
distribution model used the mean of the posterior distribution of theta.new as its
single parameter while the actual mean of the alpha and beta parameters were
used to parameterize the Gamma distributions.

o Table 8: Output from the three MCMC models for each of three synthetic data sets.

Model! Data—» Exponential(6) 6,2) )
e - E(5.7) ;
Mean deviance {1
N(8.01,1.77)
Normal Mean deviance (118.0) X
G(12.37,0.49) G{(1.72,3.50)
Gamma
| Mean deviance {117.6} Mean deviance {149.2)

The mean deviance statistic was used to determine the dominated models,
shaded grey and the ‘best’ (non-dominated) models, highlighted in white. For the
normal models, the deviance statistic was not used exclusively since those
models whose tail extended far into the negative call lengths would have an
understated deviance. This effect is caused by the absence of observed data in
the low-likelihood region of the far-left tail. The suggested normal model for the
lognormal data had a mean of 6.04 and a standard deviation of 4.75. Over ten
percent of all calls produced by this model would have a negative call length! For
the normal models, a visual check of the distribution should be sufficient to
ensure that the negative tail area is not significant before choosing the model.

4.2.3 Comments on the Application of Methods

In summary, both the UE method and the Bayesian method were able to
disaggregate the data. While the UE method is considerably easier to
implement, it still requires the analyst to first choose a theoretical distribution to
which to fit the data. It is proposed that the Gamma distribution is suitably



flexible for this task. The Bayesian approach is also not without its own
subjectiveness. By fitting the data to all three models, the analyst is then faced
with model selection. It has been proposed that the deviance statistic, easily
calculated during the MCMC simulation, be used to help choose the 'best’ model,
but this is a rudimentary measure, and there are a variety of other sampling-
based techniques that may be applied (Gelfand 1996).

4.3 Model Testing

For each of the three data sets, at least 2 distributions have been proposed as
best representing the individual call handle times. A summary of the modeis to
be tested is given in Table 9 below.

» Table 9: Disaggregation models chosen to be tested

Bayesian (MCMC) Unbiased Estimator

Synthetic Data Set (UE) Me

= R ‘\""y*"—v"f?

o ST, T Sl 2T i b A D G R ey

o T G ¥ _’;
Exponentlal (p-5 71) Gamma(a-o 8, B=7 28)

B SUHEASTEY Y 4 e ATe s
R R R
P g o ke
LY «I’.&f’-’éﬂﬁm SR PY L G

Gamma (=1 72 B=3 50) Gamma (a=1.79, p=3.38)

In order to determine the effectiveness of these models, an experimental design
was required that considered the ultimate purpose of the distribution of individual
calls: call center simulation.

The call center manager uses the simulation to get an accurate estimate of
critical performance measures. Two important call center performance measures
that are used industry-wide are service level (%) and abandonment (%). Call
centers are often remunerated based on their ability to maintain acceptable
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levels of these measures. To test the disaggregation models, it is proposed that
the model has been successful if its use during call center simulations produce
very similar performance estimates to the simulations using the known actual call

handle times.

4.3.1 A Simple Call Center Simulation

Using Cali$im, a call center simulation package that is built on Systems
Modeling’s Arena simulation software, a simple call center model was created.
(see Appendix C for details) The test call center employs 10 TSRs that work
from 9 am to 5 pm with no breaks. This obviously non-unionized call center
receives calls randomly throughout the 8-hour day according to the call pattemn in
Figure 3. The daily call volume is 540 calls and the call center wants to maintain
an average service of 80% (In this case, 80% of all calls answered within.

Those calling the call center will abandon after waiting a certain amount of time,
a random normal variate (truncated at zero) with a mean of 3 minutes and a
standard deviation of 1 minute. There is no after-call work associated with the
calls arriving at this call center and hence, call handle time is call talk time. For
each simulation, the only variable that changes is the distribution of call handle
times. 400 iterations were used in each simulation in order to attain a half-width
of approximately 0.5%. The results of the simulations will be provided in the

following section.
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Chapter 5 Results and Discussion

S.1 A Visual Comparison

While certainly not scientific, the first natural tendency is to use a simple visual
inspection of the known individual call handle time distributions and the
distributions proposed by the models. To satisfy that curiosity, the following
graphs are provided to compare the models proposed for the lognormai(6,4) cal
handle times (Figure 28), the censored normal(6,2) call handle times (Figure 29)
and the exponential(6) call handle times (Figure 30).

» Figure 28: Proposed Modeis for lognormal call handle times

Bl Lognorm(6,4) Call Handle Times |

=—MCMC: gamma(1.72,3.50)

====xUE: gammal(1.79, 3.38)

Probability

21
23
24

Call Length



« Figure 29: Proposed Models for normal call handle times
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» Figure 30: Proposed Models for exponential call handie times
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The distributions proposed by both the UE method and the Bayesian (MCMC)
method are displayed together with the actual, individual call handie time
distribution.



5.2 Call Center Simulation Results

Since the goal of determining the distribution of individual call lengths is use it as
input into a call center simulation, one method of determining the effectiveness of
the method is to compare results to the known actual.

Using the call center model described in section 4.3.1, the summary results in
Table 10 were caiculated based on 400 iterations and the various handle time
distributions listed. For each of the three sets of synthetic data, simulations were
produced using actual and modeled call handle times ( MCMC method and UE
method) as well as using the current industry practice of modeling call handle

times using the exponential distribution.

« Table 10: Comparison of simulation results for actual and modeled call handle times

Handle Time Service Level Abandonment Rate

Distribution Mean % Ermror Mean %‘E.rm
Exponential (u=5.79) industry| 82.2% 2.6% 42% -20%
Exponential (u=5.71) meme| 82.5% 3.0% 4.1% -22%
Gamma(a=0.8, B-? 28) ue| 81.8% 2.2% 4.7% 1%

ﬁe‘- SE R \1/@. : 3 : :‘ Paf

Exponennal ( p.—6 01) industry| 79.7% 2.7% 5.2% 29%
Nomal (u=6.01, 6=1.77) meme! 77.5% 0.2% 4.0% 1%
Gamma (a=12.37, B=0.49) memec| 81.0% 4.4% 5.9% 47%
Gamma (a 12 85 B—O 47) ue 81.4 4.9% 5.9% 46%
Exponenhal ( u.=6 04) . . .
Gamma (a=1.72, 8=3.50) mcme| 77.9% 0.7% 4.3% -1%
Gamma (a=1.79, p=3.38) ve| 77.6% -1.1% 4.4% 1%

The first observation is that both methods appear to have been successful in
arriving at plausible 'disaggregated' individual handle time distributions that
perform well in simulations against the known actuals. A secondary and equally



important observation is that if individual call handle times were in fact
Normal(6,2) or Lognormal(6,4), then the industry standard of modeling the call
handle times with an exponential distribution would significantly overestimate
service levels. This could easily lead to understaffing and potential sanctions

and/or poor customer service levels.

5.3 Implications of Research and Future Opportunities

The initial success of the UE method is very encouraging and can, with littie
effort, be applied to call center input analysis. This method uses the aggregated
data to calculate the unbiased estimates of population mean and variance, and
subsequently derives the parameter estimates for the Gamma distribution using
estimated values of u and o. In the above examples, only 16 data points were
used -- representing a single day's worth of aggregated data. It can be expected
that analysts would have much more data available to them and hence, better

estimates of 4 and o.

Analysts that still hold on to the belief that service times must be exponential may
use this method knowing that if the data suggests a c.v. = 1.0, then an
exponential call handle time distribution will result. If the c.v. = 1.0 then it would
still be prudent for the analyst to use both handie times as a form of sensitivity

analysis.

The effectiveness of the MCMC disaggregation technique is also impressive, but
the learning curve and computational effort required to implement this technique
are prohibitive. This method should not be discarded though, since its strength
may lie in the modeling of more complex call handle time distributions rather than
the simple examples chosen for this research. For example, if it is shown that
the call handle time is a mixture (of unknown proportions) of two or more distinct
distributions as suggested by Bolotin (1994) then the Bayesian MCMC
disaggregation technique may be the only viable approach. Also, if the



assumption of a single call handle time distribution across all time blocks is
relaxed, a Bayesian approach would be well-suited.

Of great interest to practitioners, a better understanding of call handle time
distributions is essential. A time study of this distribution, across many industry
sectors, is required and would be a logical next step in this line of research.



Bibliography

1. Abeysinghe, T. and Lee, C. 1998. Best linear unbiased disaggregation of
annual GDP to quarterly figures: The case of Malaysia. Joumnal of
Forecasting, 17, 527-537

2. Ahn, J-H. and Ezawa, KJ. 1997. Decision support for real time
telemarketing operations through Bayesian network leaming. Decision
Support Systems, 21, 17-27.

3. Banks, J. and Carson, J.S. 1984. Discrete event system simulation. Prentice
Hall, New Jersey.

4. Berger, J.O. and Pericchi, L.R. 1996. The intrinsic Bayes factor for model
selection and prediction. Joumal of the American Statistical Association, 91,

109-122.

5. Best, N.G., Cowles, M.K. and Vines, S.K. 1995. CODA: Convergence
Diagnosis and Output Analysis Software for Gibbs sampling output, Version
0.3. MRC Biostatistics Unit, Cambridge

6. Bolotin, V.A. 1994. Telephone circuit holding time distributions. In
Proceedings of the 14" Intemational Teletraffic Congress (ed. J. Labetoulle
and J.W. Roberts)

7. Carlin, B.P. and Chib, S. 1995. Bayesian model choice via Markov chain
Monte Carlo methods. J. R. Statist. Soc. B, 57, 473-484.

8. Cheng, R.C.H. 1994. Selecting input models. In Proceedings of the 1994
Winter Simulation Conference (ed. J.D. Tew, S. Manivannan, D.A. Sadowski,
and A.F. Seila), IEEE Piscataway, New Jersey, 184-191.

9. Cheng, R.C.H. and Holland, W. 1997, Sensitivity of computer simulation
experiments to errors in input data. J. Statist. Comput. Simul., 57, 219-241.

10.Chick, S.E. 1997a. Bayesian analysis for simulation input and output. In
Proceedings of the 1997 Winter Simulation Conference (ed. S. Andradottir,
K.J. Healy, D.H. Withers, and B.L. Nelson), IEEE Piscataway, New Jersey,
253-260.

11.Chick, S.E. 1997b. Selecting the best system: A decision-theoretic approach.
In Proceedings of the 1997 Winter Simulation Conference (ed. S. Andradottir,
K.J. Healy, D.H. Withers, and B.L. Nelson), IEEE Piscataway, New Jersey.



12.Chick, S.E. 1998. The effect of input distribution selection on the output of
stochastic simulations: A Bayesian perspective. To appear.

13.Chow, G.C. and Lin, A. 1976. Best linear unbiased estimation of missing
observations in an economic time series, Journal of the American Statistical
Association, 61, 719-721

14.Cleveland, B. and Mayben, J. 1997. Call Center Management on Fast
Forward: Succeeding In Today’s Dynamic Inbound Environment. Call Center
Press, Annapolis, Maryland.

15.Draper, D. 1995. Assessment and propagation of model uncertainty. J.R.
Statist. Soc. B., 57, 45-97.

16.Evans, M., Hastings, N., and Peacock, B. 1993. Statistical Distributions, 2™
Edition, John Wiley and Sons, New York

17.Evans, M. and Swartz, T. 1995. Methods for approximating integrals in
statistics with special emphasis on Bayesian integration problems. Statistical
Science, 10, 254-272.

18.Gelfand, A.E. 1996 Model determination using sampling-based methods. In
Markov chain Monte Carlo in Practice. (ed. W.R. Gilks, S. Richardson, and
D.J. Spiegelhalter), Chapman & Hall, London.

19.Gelman, A. 1996. Inference and monitoring convergence. in Markov chain
Monte Carlo in Practice. (ed. W.R. Gilkks, S. Richardson, and D.J.
Spiegelhaiter), Chapman & Hall, London.

20.Gelman, A., Carlin, J.B., Stem, H.S., and Rubin, D.B. 1995. Bayesian Data
Analysis, Chapman & Hall, London.

21.Gelman, A. and Meng, X-L. 1996. Model checking and mode! improvement.
In Markov chain Monte Carlo in Practice. (ed. W.R. Gilks, S. Richardson,
and D.J. Spiegelhalter), Chapman & Hall, London.

22.Gilks, W.R., Richardson, S. and Spiegelhaiter, D.J. 1996. Introducing
Markov chain Monte Carlo. In Markov chain Monte Carlo in Practice. (ed.
W.R. Gilks, S. Richardson, and D.J. Spiegelhalter), Chapman & Hall,
London.

23.Grossman, T.A,, Oh, S.L., Rohleder, T.R. and Samuelson, D. 1999a. Call
Centers. In The Encyclopedia of Operations Research and Management
Science, 2™ Edition. (ed. S.I. Gass and C.M. Harris).



24.Grossman, TA., Oh, S.L.,, Rohleder, T.R. 1999b. Operations Management
for Incoming Call Centers: Industry Practice, Literature Survey and Research
Needs. Working paper, Faculty of Management, University of Calgary.

25.Guttman, I, Wilks, S.S., and Hunter, J.S. 1982. Introductory engineering
statistics, 3 Edition. John Wiley & Sons, New York.

26.Hsiao, C. 1979. Linear regression using both temporally aggregated and
temporally disaggregated data. Journal of Econometrics, 10, 243-252.

27.Jonsson, H. and Siiver, E.A. 1987. Modification of Demand Distributions on
the Basis of Aggregate Information. /EE Transactions, 19, 379-384

28.Kaplan, A.J. 1988. Bayesian approach to inventory contro! of new parts. lIE
Transactions, 20, 151-156.

29.Kass, R.E. and Wasserman, L. 1996. The selection of prior distributions by
formal rules. Joumnal of the American Statistical Association, 91, 1343-1370

30.Kass, R.E., Carlin, B.P., Gelman, A. and Neal, RM. 1998. Markov chain
Monte Carlo in Practice: A roundtable discussion. The American Statistician,
$2, 93-100.

31.MacPherson, Jr. G. F. 1988. What Senior Managers Need to Know About
Incoming Call Centers. SLN Inc., Annapolis, Maryland.

32.McGrath, M.F., Gross, D. and Singpurwalla, N. 1987. A subjective Bayesian
approach to the theory of queues | — modeling. Queueing Systems, 1, 317-
333.

33.Mehrotra, V. 1997. Ringing Up Big Business. OR/MS Today, 24(4), 18-24

34.Methrotra V., Profozich, D., and Bapat, V. 1997. The Best Way to Design
Your Call Center. Telemarketing and Call Center Solutions, 16(5), 28-29,128-
129.

35.Neal, R.M. 1993. Probabilistic inference using Markov chain Monte Carlo
methods, technical report CRG-TR93-1, University of Toronto, Dept. of
Statistics.

36. O'Hagan, A. 1995. Fractional Bayes factors for model comparison. J. R.
Statist. Soc. B, 57, 99-138.

37.Palm, F.C. and Nijman, T.E. 1982. Linear regression using both temporally
aggregated and temporally disaggregated data. Journal of Econometrics, 19,
333-343.



70

38.Rahko, K. 1991. Measurements for control and modeling of teletraffic. In
Proceedings of the 13" Intemnational Teletraffic Congress. Copenhagen.

39.Roberts, G.O. and Rosenthal, J.S. 1998. Markov-chain Monte Carlo: Some
practical implications of theoretical results. The Canadian Joumal of

Statistics, 26, 5-31

40.Rosenthal, J.S. 1995. Rates of convergence for Gibbs sampling for variance
component models. Ann. Statist., 23, 740-761

41_Silver, E.A. and Fiechter, C-N. 1995. Preventive maintenance with limited
historical data. European Journal of Operational Research, 82, 125-144.

42.Spiegelhalter, D.J., Thomas, A, Best, N.G., and Gilks, W.R. 1996. BUGS:
Bayesian inference Using Gibbs Sampling, Version 0.5. MRC Biostatistics

Unit, Cambridge, UK.

43.Spiegelhalter, D.J., Thomas, A., and Best, N.G. 1998. WinBUGS User
Manual, Version 1.1.1. MRC Biostatistics Unit, Cambridge, UK.

44.Spiegelhalter, D. 1999. Bayesian Statistical Analysis Tutorial Notes.
Presented at 7th Intemational Workshop of Artificial Intelligence and
Statistics. January 3, 1999. MRC Biostatistics Unit, Cambridge, UK.

45.Takemori, E., Usui, Y. and Matsuda, J. 1985. Field data analysis for traffic
engineering. In Proceedings of the 11" International Teletraffic Congress.

Tokyo.



Appendices

Appendix A: WinBUGS Models

A.1  WinBUGS Model based on Exponential Call Handle Times
A2 WinBUGS Model based on Normal Call Handle Times

A3 WinBUGS Model based on Gamma Call Handle Times
A4  WinBUGS Model of Outbound Call Center Example

Appendix B: Summary of Synthetic Data
B.1 Summary of Simulated ACD Data
B.2 Exponential Data Detail

B.3 Normal Data Detail

B.4 Lognormmal Data Detail

Appendix C: Simulations using distributions/parameters from Bayesian
Models

C.1  Call Center Simulation with underlying Normal Call Handle Times

C.2  Call Center Simulation with underlying Exponential Call Handle Times

C.3 Call Center Simulation with underlying Lognormal Call Handle Times
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Appendix A.1

WinBUGS Model based on Exponential Call Handle Times
The model has been defined with the following distributions:
Y[i] ~ G(n[1), theta[i])
theta[i] ~ G(alpha, beta)
alpha and beta are given independent, non-informative priors.
Graphical Call Distribution Mode/

Bugs Language for Call Distribution Model

for(iin1:N){
Y[i] ~ dgamma(n([i}.thetafi)
theta[i] ~ dgamma(alpha,beta)

}

alpha ~ dgamma(0.001,0.001)
beta ~ dgamma(0.001,0.001)
theta.new ~ dgamma(alpha,beta)
mu<-1Aheta.new



Data(Dataset1)
list(N=16,n=c(20,20,30,40,40,40,50,50,40,40,50,40,30,20,20,10),
Y=c(146,95,210,265,186,191,299,364,230,273,235,172,184,80,127,71))

Data(Dataset2)
list(N=16,n=c(20,20,30,40,40,40,50,50,40,40,50,40,30,20,20,10),
Y=c(123,119,166,237,230,240,296,293,235,255,305,261,184,133,111,58))

Data (Dataset3)
list(N=16,n=c(20,20,30,40,40,40,50,50,40,40,50,40,30,20,20,10),
=c(145,96,208,268,293,217,267,290,216,250,327,234, 155,99, 138,57))

Inits(Chain1) list(alpha=1.0,beta=1.0)
Inits(Chain2) list(alpha=0.10,beta=10)

Inits(Chain3) fist(alpha=10,beta=0.10)



Results(Dataset 1)
First, Gelman Rubin Diagnostic statistics to determine convergence. A bum-in period
of 10000 iterations was used.
aipha chains 1:3
15}
10l NI
osh "
oo}
501 5000 10000 15000
teration
beta chains 1:3
15}
10} w—t ———— e ————
os} — —
oo} -
501 2500 5000 7500 10000
teration

06

1001

5000

L

15000

10000

teration

A 10000 update bum-in foliowed by a further 15000 updates (over 3 chains) gave the
following parameter estimates:

node mean sd
alpha 99.87 956
beta 5745 §539
deviance 1553 4277
mu 5842 0.9084
theta.new 01751 002614

MC orTor| 2.5% median | 97.5% start sample
8.321 17.06 65.3 388.7 10001 45000
4823 96.06 3727 22370 10001 45000
0.1407 1475 1551 164.1 10001 45000
0.008719 | 4296 5755 79 10001 45000
2.507E-4 | 0.1266 01738 02328 10001 45000

The underlying call length distribution in this example was Exponential(mu=6)
The raw (unaggregated) data had an actual mean of 5.79 and a s.d. of 5.89
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Resulits (Dataset 2)

First, Geiman-Rubin diagnostics are caiculated and piotted to determine
convergence. A bum-in period of 10000 iterations was used.

aipha chains 1:3
30t
20t /\——k—\
10f %

———
CO}
501 2500 5000 7500 10000
teration

beta chains 1:3
304
20} /.\"\_——\
10} e e o e T Sy e a—
00} :

v . -

501 2500 5000 7500 10000
fleration
A 10000 update bum-in followed by a further 20000 updates (over each of 3 chains)

gave the following parameter estimates:

node mean sd MC error| 2.5% medien |97.5% steart sample
alpha 1745 1121 8.735 38.1 1470 4821 10001 60000
beta 10470 675.7 5273 265 8778 28710 10001 60000
deviance 1466 2.443 01014 1434 1461 1528 10001 60000
mu 6.06 06444 0.00637 | 4.92¢ 8016 7473 10001
theta.new 0.1668 0.01742 16E-4 0.1338 0.1662 02031 10001

The underlying call length distribution (population) in this example was
Nomal(mu=6, sigma = 2). The raw (unaggregated) data had an actual mean of 6.01
and s.d. of 2.04.

mu chains 1:3 sample: 60000
08}
06}
oz _/\
02}
00}

25 50 75 100 125 150



Results (Dataset3)

First, Gelman-Rubin Diagnostic statistics are calculated and plotted to determine
convergence.

alpha cheins 1:3
30
20} \’\\
10 _— ]
6ofF

50 5000 10000 15000

Reration

beta chains 1:3
30}
20 \\
10¢ e e e — —————
oo} —

501 5000 10000 15000

teration

03}
02}F ¢ ‘ 1
01} s

00}

15000 20000 25000
teration
A 10000 update bum in followed by a further 20000 updates (over each of 3 chains)

gave the following parameter estimates:

node mesn sd MC error| 2.5% medien |97.5% stert sample
aipha 1495 81.66 6327 3552 1362 3441 10001 60000
beta 899.2 1 ] 38.1 2121 8177 20540 10001 60000
deviance 151.1 2803 0.02957 | 1465 150.7 1575 10001 60000
my 6.074 06755 0.005623 | 4877 6.028 7.541 10001 60000

thetanew | 01666 1001824 | 150664 | 01326 [o01659 | 0205 10001 60000
The underlying call length distribution in this example was Lognomal(mu=6,
sigma=4). The individual call handle times had an actual mean of 6.04 and a s.d. of
429



78
Appendix A.2

WinBUGS Model based on Normal Call Handle Times
The model has been defined with the foliowing distributions:

Y; ~ Nomal(nu, vn)

mu and tau are given independent, non-informative priors.
Graphical Call Distribution Mode!

Bugs Language for Call Distribution Model

model;
for(iin1:N){

alphali] <- mu * nfi]
betafi] <- tau / n[i]
YTi] ~ dnorm(alpha(i),betafi])

}
mu ~ dnom( 0.0, 1.0E-6)
tau ~ dgamma(0.001,0.001)
sigma <- 1/ sqrt(tau)

}



Data(Dataset1)
list(N=16,n=c(20,20,30,40,40,40,50,50,40,40,50,40,30,20,20,10),
Y=c(146,95,210,265,186,191,299,364,230,273,235,172,184,80,127,71))

Data(Dataset2)
list(N=16,n=c(20,20,30,40,40,40,50,50,40,40,50,40,30,20,20,10),
Y=c(123,119,166,237,230,240,296,293,235,255,305,261,184, 133,111,58))

Data (Dataset3)
list(N=16,n=c(20,20,30,40,40,40,50,50,40,40,50,40,30,20,20,10),
=c(145,96,208,268,293,217,267,290,216,250,327,234,155,99,138,57))

Inits(Chain1) listttau=1.0E-3,mu=0)
Inits(Chain2) listttau=1.0,mu=10)

Inits(Chain3) list(tau=1.0E-3,mu=10)



Results(Dataset 1)
First, Gelman Rubin Diagnostic statistics to determine convergence. A bum-in period
of 1000 iterations was used.

mu chains 1:3
10F corwam—

05¢
00+
1 2000 4000
iteration
tau chains 1:3
10}  — — ——— — —
05}
00}
1 2000 4000
teration

A 1000 update bum-in followed by a further 14000 updates (over 3 chains) gave the
following parameter estimates:

node mesn od MC error{ 2.5% medien | 97.5% start sample
deviance 1612 2106 001686 | 159.1 1605 1669 1001 42000
muy 579 0.2984 0.002519 | 5.197 879 6.364 1001 42000
sigma 6818 134 0.01113 | 4.773 6623 9.991 1001 42000
tau 0.02388 0.008735 | 7.312£-5 | 0.01002 0.0228 0.04388 1001 42000

The underlying call length distribution in this example was Exponential(mu=6)
The raw (unaggregated) data had an actual mean of 5.79 and a s.d. of 5.89



Results (Dataset 2)

First, Gelman-Rubin diagnostics are calculated and plotted to determine
convergence. A bum-in period of 2000 iterations was used.

mu chains 1.3
10 e —— I —————— —
0S5}
00}
1 2000 4000
teration
tau chains 1:3
10} f——————— — — —
05t
00}
1 2000 4000
teration

A 2000 update bum-in followed by a further 18000 updates (over each of 3 chains)
gave the following parameter estimates:

node mesn od MC error| 2.5% medien |{97.5% stert sample
deviance 1180 2104 001542 | 1159 1174 1237 2001 54000
mu 6.011 007727 | 5714E4 | 5857 6.011 6.164 2001 54000
sigma 1.768 0.3475 0.002632 | 1.239 1.717 2.592 2001 54000
tau 0355 0.1299 9.785E-4 | 0.1489 0.339 0.6517 2001 54000

The underlying call length distribution (population) in this example was
Normal(mu=6, sigma = 2). The raw (unaggregated) data had an actual mean of 6.01
and s.d. of 2.04.

mu chains 1:3 sampie: 54000 sigma chains 1:3 sample: 54000
6.0 15¢

40} 10
2.0 o O_S .
0.0 = 0.0 o
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Results (Dataset3)

First, Gelman-Rubin Diagnostic statistics are caiculated and plotted to determine

convergence.

mu chains 1:3

10+ N

|

05}
00}
1 4000
teration
tau chains 1:3
10} —
05+
00}
1 4000
teration

A 1000 update bum in followed by a further 14000 updates (over each of 3 chains)

gave the following parameter estimates:

node mesn od
deviance 1496 2106
mu 6.035 0.2079
sigma 4751 09339
tau 0.04916 001799

MC error | 2.5% medion |97.5% stert sample

1476 1490 1553 1001 42000
$622 6.036 6.449 1001 42000
3327 4615 6.963 1001 42000
002063 | 0.04694 | 0.09037 1001 42000

The underlying call length distribution in this example was Lognomal(mu=6,
sigma=4). The individual call handle times had an actual mean of 6.04 and a s d. of

4.29
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Appendix A.3

WinBUGS Model based on Gamma Call Handle Times
The model has been defined with the following distributions:
YT} ~ Gamma(n[iJ*aipha, beta)

alpha ~ Gamma(0.001,0.001)
beta ~ Gamma(0.001,0.001)

alpha and beta are given independent, non-informative priors.
Graphical Call Distribution Model

Bugs Language for Call Distribution Mode/

model;
{
for(iin1:N){
nalpha(i] <- n{i] * alpha
YTi] ~ dgamma(nalphali),beta)

alpha ~ dgamma(0.001,0.001)
beta ~ dgamma(0.001,0.001)
mu <- alpha / beta



Data(Dataset1)
list(N=16,n=c(20,20,30,40,40,40,50,50,40,40,50,40,30,20,20,10),
Y=c(146,95,210,265,186,191,299,364,230,273,235,172,184,80,127,71))

Data(Dataset2)
list(N=16,n=c(20,20,30,40,40,40,50,50,40,40,50,40,30,20,20,10),
Y=c(123,119,166,237,230,240,296,293,235,255,305,261,184,133,111,58))

Data (Dataset3)
list(N=16,n=c(20,20,30,40,40,40,50,50,40,40,50,40,30,20,20,10),
=c(145,96,208,268,293,217,267,290,216,250,327,234,155,99,138,57))

Inits(Chain1) iist(alpha=1.0,beta=1.0)
Inits(Chain2) list(alpha=0.10,beta=10)

Inits(Chain3) list(alpha=10,beta=0.1)



Results(Dataset 1)

First, Gelman Rubin Diagnostic statistics to determine convergence. A bum-in period
of 10 000 iterations was used.
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A 10 000 update bum-in followed by a further 20 000 updates (over 3 chains) gave
the following parameter estimates:

node mean sd MC error| 2.5% medisn |97.5% stert sample
aipha 0.753 0.2687 001107 | 0.3145 0.7243 1.359 10001 60000
beta 0.1299 0.04679 0.001926 | 0.05338 0125 02351 10001 60000
deviance 1616 2172 0.05187 1595 160.9 1674 10001 60000
mu §812 0.3095 0.002364 | 5237 5801 6.458 10001 60000

The underlying call length distribution in this example was Exponential(mu=6)
The raw (unaggregated) data had an actual mean of 5.79 and a s.d. of 5.89



Results (Dataset 2)

First, Gelman-Rubin diagnostics are calculated and plotted to determine
convergence. A bum-in period of 10 000 iterations was used.
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A 10 000 update bum-in followed by a further 20 000 updates (over each of 3 chains)
gave the following parameter estimates:

node mesn sd MC error | 2.5% medisn |97.5% start sample
aipha 1237 4.459 0.3485 6.148 11.56 2324 10001 60000
beta 2.058 0.7421 0.058 1922 1923 3867 10001 60000
deviance 1176 1.924 0.09317 | 1157 171 1229 10001 60000
mu 6.013 007748 | 5196E-4 | 586 6012 6.167 10001 60000

The underlying call length distribution (population) in this example was
Normal(mu=6, sigma = 2). The raw (unaggregated) data had an actual mean of 6.01
and s.d. of 2.04.
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Resuits (Dataset3)

First, Gelman-Rubin Diagnostic statistics are calculated and plotted to determine
convergence.
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A 5000 update bum in followed by a further 20000 updates (over each of 3 chains)

gave the following parameter estimates:

node mesn sd MC error | 2.5% medisn | 97.5% start ssmple
alpha 1723 0.6046 003166 | 07168 1.666 3.129 5001
beta 02854 01005 000526 | 0118 02759 05194 5001 60000
deviance 1492 2205 006707 | 1471 1486 1552 5001 60000
mu 6.046 02128 0.001555 | 5641 6.041 6.483 5001 60000

The underlying call length distribution in this example was Lognormmal(mu=6,
sigma=4). The individual call handle times had an actual mean of 6.04 and a s.d. of

4.29

aipha chains 1:3 sampile: 60000 beta chains 1:3 sampile: 60000
08} 60}

06+ 40t

04}

ol 20l k
00 00}




Appendix A.4

WinBUGS Model of Outbound Call Center Bxample

A binomial logistic regression is used to determine the success rate of new outbound
call center campaign.

GG

i

Core>

model;

for(jin1:M){
rfj] ~ dbin{p{jl.n{j])
logit(p(j]) <- bfj]
b[j] ~ dnorm(mu,tau)
}
tau ~ dgamma(0.001,0.001)
mu ~ dnorm( 0.0,1.0E-6)
b.new ~ dnorm(mu,tau)
logit(p.new)<-b.new
sigma <- 1/ sqrt(tau)

Data list(r = c(18, 9, 26, 13), n = c¢(30, 20, 44, 25), M = 4)
Inits1 list(tau=0.000001, mu= 10)
Inits2list(tau=0.001, mu= -10)



Results

Using Geiman-Rubin statistic, it appears that we can assume convergence after

4000 iterations...
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Also may want to monitor trace of two chains to confirm convergence and mixing.
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Statistics gathered for next 6000 iterations (2 chains). The parameter we are most
interested in is pfi], the success rate of the new program at each outbound cail

center.

node mean sd
b1} 0.265 0.2432
b2} 0.1476 0.2767
b{3} 0.2662 0.2239
b{4]) 0.1854 02534
b.new 02174 0.4206
deviance 1788 1.768
mu 0.2183 0.2545
p(1] 0.5649 0.05856
p{2) 0.5364 0.06787
p{3] 0.5653 0.05416
pl4] 0.548 0.06174
p.new 0.5527 0.08951
tau 1988 3966

MC error
0.006517
0.007378
0.006217
0.006784
0.007992
0.04002
0.006984
0.001583
0.001806
0.001514
0.001659
0.001834
8.588

medisn |971.5% start ssmple
0.2604 0.7693 4001 12000
01724 0.6301 4001 12000
0262 0.7305 4001 12000
0.2059 0.6631 400 12000
0229 0.9847 4001 12000
17.39 2266 4001 12000
02226 0.6842 4001 12000
0.5647 06834 4001 12000
0.543 06525 4001 12000
0.5651 06749 4001 12000
05513 066 4001 12000
0557 0728 4001 12000
5361 13040 4001 12000




Kemnel Density Plots for success rate (p) at each call center
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Posterior Distribution of the log-likelihood of the observed data (deviance)
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Appendix B.1 Summary of Simulated ACD Data

Exponential Nommal Lognormal
u=6 u=6, =2 u=6, =4
(truncated)
time average call average call average call
period #calls | cum #calls length length length
1 20 0 73 6.2 7.2
2 20 20 4.7 6.0 4.8
3 30 40 70 55 6.9
4 40 70 6.6 59 6.7
5 40 110 4.7 58 7.3
6 40 150 4.8 6.0 54
7 50 190 6.0 59 5.3
8 50 240 7.3 59 5.8
9 40 290 5.8 59 5.4
10 40 330 6.8 6.4 6.3
11 50 370 47 6.1 6.5
12 40 420 43 6.5 5.8
13 30 460 6.1 6.1 52
14 20 490 4.0 6.6 5.0
15 20 510 6.3 56 6.9
16 10 530 7.1 5.8 5.7

n=

540




Appendix B.2 Exponential Data Detail

OO NG EUN -

R I Innm

Exponential

6

Tiews Tome | Time Tone | Time | Time | Time | Time | Tiom | Tim Tons | Time | Time
Slock 1 ] Glock2 | Bivekl | Blochd | Block$ | Blochs | Block? | Biack s | Slock 8 | Biock 10| Bioek 11| Glock 12] Stock 13| Sleck 14| Biock 18] Biluek 16
5.89 6.50 11.30 11.41 348 2562 7.2¢ 7.7 4.70 7.16 5.70 12.18 7.55 4.11 14.65 29.28
427 1.98 0.75 827 17.93 13 6.96 .18 1.21 0.95 Q.15 489 2232 899 1.03 17.79
2.18 6.00 18.10 955 20.90 0.57 6.94 229 1.44, 1292 2.36 8.97 16.20] 1.35 4.07 1.72
0.79 593 452 4.89 261 0.33 1.14 6.81 1.1 0.44 a7 415 153 4.64 822 7.37
8986 15.47 749 27.85 a7t 328 0.12 0.14 044] 2084 1.70, 4.4 47 1.72 520 219
7.14 11.33 4.61 0.79 208 0.68/ 4.50 10.92 10.11 0.31 529 183 599 0.38 4.90 .86
15.06 2.08 6.6 0.2 5.16 062 245 10.99| 219 10.48) 1022 0.76 29 213 328 Q.12
254 037 575 2048 7.00 8.99) 1.58 538 391 568 268 1.37 306 025 4.55 3.57
294 13.20 10.08, 3.74 259 3.80 260 859 0.38 9.77 6.59 644 15.26| 0.04 7.90 4.9
14.83] 1.94 4.33 320 1.00 893 6.08 5.08 11.88 o7 ER 304 553 Q.78 274 0.48
451 2.19 6.19 3.10| 688 357 i3 222 085 225 205 1.19 4499 9.07 1.14
Q.33 242 13.45 9.1$ 1.73 4.35 528 0.99 238 1.59 1.13| 7682 2.95 0.86 3.14
17.73 0.21 10.63 4.08) 1.39 0.03 0.51 32.53 0.4S 18.16 a.57 427 344 120 0.70
415 8.14 3.95 6.70 1.58, 6.98 6.59 270 793 298 6.81 026 15.17 7.95] 35.85
20.05 824 0.53 1.08 6.32 1.28 0.79 868 215 22.29 1.10 8.94 1.70] 9.89 10.08
314 060 2244 067 028 250 7.54 10.74 11.39 4.16 202 Q.78 4.43 523 2.60
13.89 0.63 e 8.57 4.60 7.7¢ 1479 11.97 0.47 1.02 7.69 1324 171 10.71 6.79
082 038 242 027 0.3§ kX 5% 10.05| 082 1481 429 0.78 0.68| 3.09 7.56
228 6.30 177 7.77 n 8.43 6.89 s7 0.18 1.53 3.52 4.14 427 1 2
15.02 242 1.39 1.75 3.90 0.59 653 4.3‘! 064 542 0.07 218 3.60| 4.63 0.18
663 431 a2m 1568 kX -4 1.29 ass 0.72 6.87 27m 2481
.88 564 081 10.67 24.995] 3564 402 15.82 7.59 5.8 208
3.03 0.85 225 5.7a 29 17.45 1483 10.42 0.53 2953 511
5.51 8.34, 1.06 0.28 4.16 S5.72 17.11 271 Q.45 7.49 0.17
8.2¢ 11.33 0.73 2.10 0.53 413 29 7.79 19.49| 440 275
244 282 2.07 12.80 216 0.21 11.59 5.99 245 3.8 3.8
21.88 6.92 281 6.80 44 . 8- 0.54 4.95 7.13 700 497
15.00 277 1422 0.78 0.38 b B < § 0.63 0.03 10.58
322 1.71 0.91 8.14 20.60 063 0.17 4.08 4.30
0.30 A73 0.80 474 4.57 219 4.09 [+1.3] 0.08
261 6.58 2.48 7683 1.42 0.74 275
14.18 1163 0.98 0.98 542 887 529
7.7 5.77 0.24 361 6.75 3.45 7.83
6.82 0.06 0.81 514 .34 0.89 5.90
237 7.54 1.33| 3.10] 250 14.13 0.33
3.88 1.35 4.62 9.30 11.44 229, 14.17|
125 0.45 218 1”23 8.67 0.38 4.1
4.39 11.51 2.80 7.54 0.13 11.43 0.79
5.83 1.7 5.38 0.63, 6.87 1.80 Q.13
7.49, 0.11 7.43, 7.65 6.08 4.08
] 922 0.50
7.73 3.67
126 0.0¢
4.85 2.87
223 378
967 12.03
1.60 19.91
25.08 0.70:
4.02 6.16
981 9.17
M— R —
146 95 210 265 188 191 299 27 235 172 184 80 127 7
20 20 30 40 40 40 50 40 S0 40 o 20 20 10
73 47 7.0 66 47 48 60 68 47 43 6.1 40 6.3 7.t
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Appendix B.3 Normal Data Detail

Normal 6 2 (truncated at zero)

Time Tine Time

Siock 18] Biock 11| Bisek 12/ Mack 13 [ Siock 14| Biock 15| Slock 16
' 37| 228 941 421 533 294 681
2 s95| 424f o098 373 408 62| s9a
3 e17| &1 so3| se7| 821 600 605
. 284| sos| 777| seof 774l 278] 33
s aes| 9sof 673 so0| 738 sS4 ses
s 671 se9| 8z 812 639 772] soe
? 129 694] 91| 384 870 622 90
s a9t 6s7| soe 912 707] ss3| 3se
s a3s) as1| 302 789| 572 474l 783
10 s1sf o19] 73 e3s| s9e] aoco] ass
" 748 3es] o7e] ase s10] S
12 ag?7| oss| 513 6s4] 613] 768
3 22| 73| 526 425| s534f 428
1 662] 363 678
s aes] 955 954
18 a.37 206 297
7 a7y sar| 1119
18 9.14 7.9 5.85
' s28] ses| 23
2 asal 8«9 360
21 a.05 471 479

832] 374 489

653 677 o048

910 473 739

sos! 720 439

a1e] 965( ass

938| 918 779

s3s] 498 1.9

717 8.48 4.60
6.68 8.70 9.60
824 452 8.37
10.07 725 324
6.71 6.01 3.76
862 8.70 8.87
552 598] 10.69
873 6.47 4.79
$.09 7.36 5.54
X . 874 927 279
0.12 4.11 178 6.15 6.19 6.80 7.30] 561 n
5.66 $.78) 5.54 888 6.77 4.87 6.72 314 825

23 6.50 5.43
818 5.17 6.18
571 533 579
275 4.64 573
769 4.44 238
6.66 5.49 5.62
a7 408 9.95 689
48 6.01 0.66 7.57
49 6.73 462 6.35
50 6.37 7.64 8.03 —
sum 123 118 168 7 230 240 296 293 235 255 05 261 184 133 111 58
n 20 20 30 40 40 40 50 50 40 40 50 L 30 20 20 10
g 6.2 6.0 55 59 58 6.0 59 59 59 8.4 6.1 6.5 6.1 66 56 58
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Appendix B.4 Logormal Data Detail

Lognormal 6 4
Time
Blosk 14| Bleck 15| Bleck 16
1 272 92| s
2 d.41 3.05 3.0
3 8.57 2.96 S0
. 343 908 539
s 3.19 S.14 6.53
[ ] 3.83] 21.36 274
7 4.04 3.98 4.00
8 2.90 1.98 671
9 7.08 340 1024
10 568] 23.3 6.56
1" 5.60 4.68
12 9.12 385
13 9.64 a21
14 5.89 262
15 3.95 8.50
18 9.22] 10.18
17 3.10 3.97,
18 4.25 579
19 208 4.73
20 1.41 4.10
21
2
23
24
25
28
7
28
29
k1
31
32
33
kg
35
%
7
38
g
40
4"
42
44
“
45
L3
47
48
49 .
50 6.74
um 145 96 208 268 293 17 267 290 216 250 234 155 9 138 57
n 20 20 30 40 40 4«0 S0 50 40 40 40 0 20 20 10
vy 72 48 6.9 6.7 73 54 53 58 54 6.3 58 52 50 6.9 57



Appendix C

Screen Prints of Calt$im Diallog Booces

trw ol Pt

a

A

ly Schedule

Da







3.38)
‘ Pictwre

quiry

79,

»

ki

3

ccountin

At

e

<3

Nt

ed

Advanc

i it e Uy (o2 wm g o gD T e






