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Abstract 

Traditional results in convexity are extended to a new type of convexity called spindle 

convexity. In this context line segments are replaced by spindles. A spindle joining 

two points is the union of all circular arcs where the radii of the circles are larger than 

a fixed radius but the arcs are at most a semicircle. Standard results in convexity are 

examined in this new context. This topic leads to natural extensions of polyhedra 

called ball-polyhedra, where the region bounded by a family of planes is replaced by 

the region bounded by a family of spheres. The topics are examined in euclidean, 

hyperbolic and spherical spaces to provide full generality. 
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Chapter 1 

Introduction 

This thesis presents a variety of ideas and results that are based on the concepts 

traditionally covered in convexity, but we examine them here in a new context. This 

context is a generalization of convexity called spindle convexity. We have further 

broadened the discussion by looking at these results not just in euclidean space, but 

in hyperbolic space and spherical space as well. We introduce the concept of ball-

polyhedra and carefully examine the two-dimensional case. 

1.1 Thesis Overview 

ftaditiona1 results in convexity are extended to a new type of convexity called spindle 

convexity. In this context line segments are replaced by spindles. A spindle joining 

two points is the union of all circular arcs where the radii of the circles are larger than 

a fixed radius but the arcs are at most a semicircle. Standard results in convexity are 

examined in this new context. This topic leads to natural extensions of polyhedra 

called ball-polyhedra, where the region bounded by a family of planes is replaced by 

the region bounded by a family of spheres. The topics are examined in euclidean, 

hyperbolic and spherical spaces to provide full generality. 

1.2 Thesis Layout 

Chapter 2 lays the ground work by providing definitions, notation and preliminary 

results. In Chapter 3 we begin to explore some of the critical issues. The key results 
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deal with the monotonicity of the perimeter of certain spindle polygons. Many of the 

results broadly generalize to the three spaces. We conclude our study in Chapter 4 

where we restrict our attention in some cases to a particular space. The chapter 

concludes with results demonstrating the, somewhat surprising, failure of certain 

Helly type theorems in hyperbolic space. 
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Chapter 2 

Spindle-Convexity and Ball-Polyhedra: Notations and Basic 

Facts 

2.1 Introduction 

The study of convexity has a rich and deep history in mathematics. Various at-

tempts at generalizing the notion of convexity or developing an analogous concept 

have been made. In [43], Mayer examines one such generalization of convexity called 

ljberkonvexität and Soltan, in [48], attempts an axiomatic study of convexity. In 

this section we examine the idea of spindle-convexity which is similar to Mayer's 

Uberkonvexität, but does not fall within Soltan's discussion. The definition we use 

is broader than Mayer's as we attempt to generalize across euclidean, hyperbolic and 

spherical geometries. This chapter is a meticulous development of basic facts and 

notations related to spindle-convexity and ball-polyhedra in the three spaces IRTh, IRN, 

and S''. We conclude this chapter with an explanation of the condensed notation that 

is used throughout the remainder of this thesis. 

2.2 Preliminary Notation 

We begin with a development of some preliminary notation. At the end of this chapter 

we condense the notation considerably. However, in certain situations it is necessary 

and advantageous to have this robust notation. For example, there are several occa-

sions when we utilize the fact that hyperbolic and spherical spaces can be embedded 
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in a euclidean space. Once embedded in a euclidean space, objects in hyperbolic and 

spherical space have euclidean counterparts. In these situations it is necessary to 

identify the ambient space, dimension and other important characteristics. 

Let R', n ≥ 2, denote an n-dimensional euclidean space. We denote the origin by 

on. The euclidean distance between a E T1 and b E RTh is d (a, b). The closed line 

segment between two points is denoted by [a, b], the open line segment is denoted 

by (a, b) For the closed, n-dimensional ball with center a E Rn and of radius 

r > 0, we use the notation B[a,r] = {x E IRTh cl(a,x) ≤ r}. For the open 

n-dimensional ball with center a E Rn and of radius r > 0, we use the notation 

B(a, r) = {x E 1R" : d(a, x) < r}. The (n - 1)-dimensional sphere with center 

a E IRY" and of radius r > 0 is denoted by S 1 (a, r) = {x E ]I dRn  x) = r}. 

Let W, ri ≥ 2, denote an n-dimensional hyperbolic space. Unless otherwise 

specified, we use the Poincaré Ball Model of hyperbolic space. In this model, ]HI 

is embedded in JR as a ball, where the ball, which is called the Poincaré Ball, has 

radius one. We denote the center of the ball by on and assume that it coincides 

with 0R• The hyperbolic distance between a E Hn and b E Hn is d(a, b). The 

closed line segment between two points is denoted by [a, b], the open line segment 

is denoted by (a, b). For the closed, n-dimensional ball with center a E Htm and 

of radius r > 0, we use the notation B[a, r] = {x E dHn  x) ≤ r}. For the 

open n-dimensional ball with center a E TH[ and of radius r> 0, we use the notation 

B(a, r) = {x E TH[Th : dHn  x) < r}. The (n - 1)-dimensional sphere with center 

a e Htm and of radius r> 0 is denoted by S' (a, r) = {x E Htm : d(a, x) = r}. 

Let S', n ≥ 2, denote an n-dimensional spherical space. Unless otherwise specified, 

we use the Spherical Model of spherical space. In this model, Stm is embedded in R' 

as a sphere, where the sphere has radius one. We assume the center of the sphere 
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is OR-+i and let On be some fixed point on the sphere which we call the origin of 

S. The spherical distance between a EStm and b E Stm is d(a, b). The closed line 

segment between two points is denoted by [a, b], the open line segment is denoted 

by (a, b). For the closed, n-dimensional ball with center a E S' and of radius 

r > 0, we use the notation B[a, r] = {x E 5Th : d(a, x) ≤ r}. For the open 

n-dimensional ball with center a E Sn and of radius r > 0, we use the notation 

B(a, r) = {x E S : d(a, x) < r}. The (n - 1)-dimensional sphere with center 

a E 5Th and of radius r> 0 is denoted by Sr' (a, r) = {x E 5Th : d(a, x) = r}. 

Any sphere or ball in this thesis is of positive, possibly infinite, radius r. We use 

the notation (0, oo} to be the collection of all positive real numbers and the symbol 

oo. Furthermore, we make the convention that planes in euclidean and hyperbolic 

space are spheres where r = oo. In euclidean and hyperbolic space, r E (0, oo]. In 

spherical space, r E (0, ir/2] and lines in spherical space are spheres with r = ir/2. 

Finally, we note that a 0-dimensional sphere is a pair of distinct points. 

We conclude this section by introducing an operation on sets in the spaces R, 

Hn and 5Th• This operation is an important one that appears throughout the thesis. 

For a set X C ]RTh and r E (0, oo), let 

B[X, r] = fl B[x, r] and B(X, r) = fl B(x, r). 
xEX xEX 

For a set X C ]B[Th and r E (0, oo), let 

B[X,r] = fl B 1[x,r] and BIHI(X,r) = fl B(x,r). 
xEX xEX 

For a set X C 5'fl and re (0, .7r/2), let 

B[X, r] = fl B[x, r] and B(X, r) = fl B'(x, r). 
xEX xEX 

(2.2.1) 

(2.2.2) 

(2.2.3) 
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2.3 Euclidean Spindle, Spindle-Geodesic and Spindle-Distance 

In this section we develop the concept of a spindle in euclidean space and the associ-

ated notation. In the theory of spindle-convexity, the spindle plays the same role that 

line segments play in the theory of convexity. The goal here is to develop a theoretical 

construct, in this case spindle-convexity, that has features analogous to classical con-

vexity. Just as two points are joined by a line segment we find that, under the right 

conditions, two points are joined by a spindle. If the dimension of the space is n, then 

a spindle joining two distinct points is an n-dimensional body. In the classical theory, 

the line segment between two points a and b has the property that it is the shortest 

path between these two points. In the current setting, if two points are joined by 

a bounded spindle, then a spindle-geodesic is the shortest path on the boundary of 

the spindle between these points. The spindle-distance between two points is just the 

length of the spindle-geodesic joining them, just like the distance between two points 

is the length of the line segment joining them. 

Definition 2.3.1 Let r € (0, co]. Let a and b be two points in R'. If d(a, b) < 2r, 

then the closed euclidean r-spindle of a and b, denoted by spin[a, b, r], is defined as 

the union of all circular arcs, with end points a and b, that are of radii at least r and 

shorter than ''rr. If d(a, b) = 2r and m is the midpoint of [a, b], then spin[a, b, r] 

B[m, r]. If d(a, b) > 2r, then we define spin[a, b, r] to be ]RTh. In all cases, the 

open euclidean r-spindle, denoted by spin(a, b, r), is the interior of the closed one. 

Definition 2.3.2 Let r E (0, oo]. Let a and b be two points in R' with d(a, b) < 2r. 

A closed euclidean r-spindle-geodesic between a and b, denoted by geo[a, b, r], is a 

circular arc of radius r, with end points a and b, and of length at most irr. An 

open euclidean r-spindle geodesic, denoted geo(a, b, r)a, is the relative interior of 
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geo[a, b, r]. 

Spindle ,,- Spindle-Geodesic 

Figure 2.1: Euclidean r-Spindle and Euclidean r-Spindle-Geodesic in JR3 where r is 
finite. 

The points a and b in Figure 2.1 are joined by a euclidean r-spindle, where r is 

finite. The euclidean r-spindle is the union of all circular arcs of radius at least r 

joining a and b with length at most irr. The non-unique spindle-geodesic is a circular 

arc of radius r and of length 'irr joining a and b. In the event that it is clear what are 

the radius and the ambient space, we simplify the terminology and call spin[a, b, r} 

a spindle and geo[a, b, r]j a spindle-geodesic. 

The next two remarks provide useful characterizations of spindles and spindle-

geodesics. In Section 2.8, we examine Remark 2.3.3 (and Remarks 2.4.4, 2.5.3) in 

detail and simply state it here for reference. Remark 2.3.4 follows easily from Defini-

tion 2.3.2 and the conventions established earlier. 

Remark 2.3.3 Let r E R such that r > 0. If d(a, b) ≤ 2r, then spin[a, b, r] = 

B[B[{a, b}, r], r], and spin(a, b, r) = B(B[{a, b}, r], r). 

Remark 2.3.4 Let a and b be two points in R  The non-unique closed or open 

euclidean r-spindle-geodesic is a 2-dimensional curve. It lies on the boundary of 

spin[a, b, r] and is a circular arc of radius r and length at most 71r. The line segment 
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through a and b is the euclidean r-spindle where r is infinite. In the case r = 00 

we do not distinguish between the closed euclidean r-spindle and the open euclidean 

r-spindle. The closed (respectively open) euclidean line segment between a and b is 

the closed (respectively open) euclidean r-spindle-geodesic where r is infinite. 

All spindle-geodesics joining two points have the same length and this éommon 

value is called the spindle-distance. The spindle-distance is a useful measurement 

and has interesting properties. The next definition formalizes the concept and the 

following remark provides an explicit formula for the spindle-distance between two 

points. 

Definition 2.3.5 Let r E (0, co]. If a and b are two points in 1I, n ≥ 2, such 

that d(a, b) ≤ 2r, then the euclidean r-spindle-distance between a and b, denoted 

p[r](a, b), is the euclidean arc-length of any euclidean r-spindle-geodesics joining a 

and b. If d(a, b) > 2r, then the euclidean r -spindle- distance is undefined. By letting 

r be infinity, the euclidean r -spindle- distance becomes the euclidean distance. 

Let r E R such that r > 0. If a and b are two points in R', n ≥ 2, such 

that 4(a, b) ≤ 2r, then there is some spindle-geodesic geo[a, b, r]R joining a and b. 

Recall that geo[a, b, r]R is a circular arc in R. Let S' (c, r) be the circle containing 

geo[a, b, r]R, see Figure 2.2. 

By elementary trigonometry, the euclidean r-spindle-distance between a and b is 

simply pnR  b) = 2r0, where 

Sin O= dRn  
2r 

This discussion verifies the following remark. 
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Figure 2.2: Computing the Euclidean Figure 2.3: Monotonicity of the Eu-
and Hyperbolic Spindle-Distance be- clidean and Hyperbolic Spindle-Dis-
tween a and b. tance. 

Remark 2.3.6 Let r E (0, oo). Let a and b be two points in 1, n ≥ 2, such that 

d(a, b) ≤ 2r. If r E R such that r > 0, then an explicit formula for the euclidean 

r -spindle- distance is 

If r = oo, then 

(d(a, b)\ 
PnR  b) = 2r sin-'  2r ) 

p IT] (a, b) dRn  b). 

The final remark in this section simply says that if the euclidean distance between 

two points, say a and c, is greater than the euclidean distance between two points, say 

a and b, then spindle-distance between a and c is greater than the spindle-distance 

between a and b. Let r E (0, oo} and a, b, c E JRTh be points such that dRn  b) < 

d(a) c) ≤ 2r. If r = oo, then there is nothing to prove. Thus, we assume r < 00. 

Since d(a, b) < d(a, c) ≤ 2r, there is a map of the line segments [a, b] and [a, c] so 
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that the points a, b, c all lie on a circle of radius r, see Figure 2.3. The longer chord, 

joining a and c, subtends a longer arc on the circle than does the chord joining a and 

b. 

Remark 2.3.7 Let r E (0, oo]. If a, b, c € 1I are points such that dRn  b) < 

dI'll (a, c) ≤ 2r, then p[r](a, b) <p[r](a, c). 

2.4 Hyperbolic Spindle, Spindle- Geodesic and Spindle-Distance 

This section repeats the discussion presented in Section 2.3, but the setting is now 

hyperbolic space. We include the information primarily for reference. We highlight 

the subtle differences which vary from the euclidean case. 

In the current setting we are working strictly in hyperbolic space. Any circle or 

circular arc is a hyperbolic circle or hyperbolic circular arc, its radius is the hyperbolic 

radius and its center is the hyperbolic center. Furthermore, lines and line segments 

are hyperbolic lines and hyperbolic line segments. Finally any lengths and distances 

are measured using hyperbolic distance. 

Similar to Section 2.3, we define a hyperbolic r-spindle and hyperbolic r-spindle-

geodesic. Figure 2.4 provides examples of both objects in JUl2. We obtain characteriza-

tions of hyperbolic r-spindles and hyperbolic r-spindle-geodesics similar to Section 2.3 

and these are collected in Remark 2.4.4 (which is examined in Section 2.8) and Re-

mark 2.4.5, which follows from the definitions. Finally, Definition 2.4.6 provides an 

analogous definition for spindle-distance in hyperbolic space. 

The key issue that arises in this context has to do with the fact that in some cases 

not all of the circles required to form the spindle reside in the given hyperbolic space. 

In particular there are instances when the, spindle requires the inclusion of circular 
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arcs which are on hypercycles. Nonetheless, the portion of the hypercycles contained 

in the Poincaré Ball have familiar properties which we exploit here. 

Definition 2.4.1 Let r E (0,00]. Let f be the euclidean radius of the hyperbolic 

circle with hyperbolic radius r. Let a and b be two points in H. If the euclidean 

spindle-geodesic geo[a, b, fJR is contained in Poincaré Ball then we call it a geodesic 

with end points a and b and radius F. If d(a, b) < 2r, then the closed hyperbolic 

r-spindle of a and b, denoted by spin[a, b, r], is defined as the union of all geodesics 

with end points a and b and radii at least 1. If d (a, b) = 2r and m is the midpoint 

of[a,b], then spin[a,b,r] = B[m,r]. If d(a,b) > 2r, then we define spin[a,b,r] 

to be Htm. In all cases, the open hyperbolic r-spindle, denoted by spin(a, b, r), is the 

interior of the closed one. 

Remark 2.4.2 Let a and b be two points in 1HItm. The open (resp. closed) euclidean 

line segment joining a and b is contained in the open (resp. closed) hyperbolic spindle 

of a and b. 

Definition 2.4.3 Let r E (0,00]. Let a and b be two points in TEltm with d(a, b) ≤ 2r. 

A closed hyperbolic r-spindle-geodesic between a and b, denoted geo[a, b, r]j1j, is a 

circular arc of radius r, with end points a and b, and of length at most ir sinh(r). 

An open hyperbolic r-spindle-geodesic, denoted geo(a, b, r)IHI, is the relative interior 

of geo[a, b, r] j1j. 

The points a and b in Figure 2.4 lie on the dashed hyperbolic line and are joined 

by the solid hyperbolic line segment. The two dashed circles, passing through a and 

b, are congruent in TEl2. The intersection of their closures is the spindle joining a 

and b. Either circular arc, joining a and b, lying on the boundary of the spindle is a 

spindle-geodesic. 



12 

Figure 2.4: Hyperbolic r-Spindle and Hyperbolic r- Spindle- Geodesic in H2. 

Remark 2.4.4 Let r e IR such that r > 0. If d' (a, b) < 2r, then spin[a, b, ] r = 

B[B[{a, b}, r], r], and spin(a, b, r)' = -' 1 '-L{ a, b}, r], r). H  

Remark 2.4.5 Let a and b be two points in THP. The non-unique closed or open 

hyperbolic r-spindle geodesic is a 2-dimensional curve in hyperbolic space lying on the 

boundary of spin [a, b, r]. It is a hyperbolic circular arc of hyperbolic radius r. The 

hyperbolic length of this curve is at most ir sinh(r). The hyperbolic line through a 

and b is the hyperbolic r-spindle where r is infinite. In the case r = oc, we do not 

distinguish between the closed hyperbolic r-spindle and the open hyperbolic r-spindle. 

The closed (respectively open) hyperbolic line segment between a and b is the closed 

(respectively open) hyperbolic r-spindle-geodesic where r is infinite. 

Definition 2.4.6 Let r E (0, cc]. If a and b are two points in Htm, n > 2, such 

that dj(a, b) < 2r, then the hyperbolic r-spindle-distance between a and b, denoted 

p[r] (a, b), is the hyperbolic arc-length of any hyperbolic r-spindle-geodesics joining a 



13 

and b. If dHn  b) > 2r, then the hyperbolic r -spindle- distance is undefined. By letting 

r be infinity, the hyperbolic r -spindle- distance becomes the hyperbolic distance. 

Let r E R such that r > 0. If a and b are two points in TH[', n ≥ 2, such 

that d(a, b) 2r, then there is some spindle-geodesic geo[a, b, r]ri joining a and b. 

Recall that geo[a, b, r]H is a circular arc in 1HI'. Let %(c, r) be the circle containing 

geo[a, b, r] H. After translating the center c of S' (c, r) to the origin On, Figure 2.2 

accurately represents the configuration. The length of the circular arc joining a and 

b is 29 sinh r. By the hyperbolic law of cosines, 

cosh [d(a, b)] = cosh' r - [cos (20)] sinh2 r. 

Thus, we easily obtain the following remark. 

Remark 2.4.7 Let r E (0, co]. Let a and b be two points in JIF1, n ≥ 2, such that 

d(a, b) ≤ 2r. If r E R such that r > 0, then an explicit formula for the hyperbolic 

r -spindle- distance is 

cosh'  -  cosh [d(a, b)]  
Pnu  b) = sinh(r) ( sinh2(r) ). 

Ifr=oo, then 

p[r](a, b) = d; (a, b). 

Let r E (0, oo]. If a, b, c E Hn are points such that d(a, b) < d(a, c) ≤ 2r, then 

there is a map of the line segments [a, b] and [a, c] so that the points a, b, c all lie 

on a circle of radius r. Furthermore, if we translate the point a to the origin then 

Figure 2.3 accurately reflects the configuration. The next remark follows from the 

comments preceding Remark 2.3.7. 

Remark 2.4.8 Let r E (0, oo]. If a, b, c e Hn are points such that d(a, b) < 

d(a,c) ≤ 2r, then p[r](a,b) <p[r](a,c). 
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2.5 Spherical Spindle, Spindle- Geodesic and Spindle-Distance 

As with Section 2.4, this section repeats the discussion presented in Section 2.3, but 

the setting is spherical space. Again, we collect facts and notation relevant to the 

discussion of spindle, spindle-geodesic and spindle-distance for spherical space. Note 

that all generic terms, such as line, circle, distance etc., refer to objects in spherical 

space. 

Similar to Section 2.3 and Section 2.4, we define a spherical r-spindle, r-spindle-

geodesic and spindle distance. We obtain characterizations of these objects which are 

collected in the following figures and remarks. As before, Remark 2.4.4 is examined 

in Section 2.8. 

Definition 2.5.1 Let r E (0, ,7r/2]. Let a and b be two points in S. If d(a, b) <2r, 

then the closed spherical r-spindle of a and b, denoted by spin[a, b, r], is defined as 

the union of all circular arcs, with end points a and b, that are of radii at least r 

and shorter than 7rsin(r). If d(a, b) = 2r and m is the midpoint of [a, b], then 

spin [a,b,r} = B[m,r]. If d(a,b) > 2r, then we define spin [a,b,r] to be 5Th In 

all cases, the open spherical r-spindle, denoted by spin(a, b, r), is the interior of the 

closed one. The closed (respectively open) spherical line segment between a and b is 

the closed (respectively open) spherical r-spindle where r is ir/2. 

Definition 2.5.2 Let r E (0, 7/2]. Let a and b be two points in Sn with d(a,b) ≤ 

2r. A closed spherical r-spindle-geodesic between a and b, denoted geo[a, b, r]s, is 

a circular are of radius r, with end points a and b, and of length at most ir sin(r). 

An open spherical r-spindle geodesic, denoted geo(a, b, r)5, is the relative interior of 

geo[a, b, r]5. 
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Figure 2.5: Spherical r-Spindle and Spherical r-Spindle-Geodesic in S2. 

The dashed great circle passing through a and b in Figure 2.5 is a line in spherical 

space and the solid arc on the great circle joining a and b is a spherical line segment. 

The two circles passing through a and b have the same radius, namely r. The inter-

section of the disks bounded by these two circles is spin[a, b, r}. Either of the two 

arcs joining a and b on the boundary of the spindle are spindle-geodesics. 

Remark 2.5.3 Let  C (0, 7r/2). Ifd(a,b) < 2r, then spin[a,b,r] B[B[{a,b},r],r], 

and spin(a, b, r) = B(B[{a, b}, r], r). 

Remark 2.5.4 Let a and b be two points in S. The non-unique closed or open 

spherical r-spindle-geodesic is a 2-dimensional curve in spherical space lying on the 

boundary of spin[a, b, r]. It is a spherical circular arc of spherical radius r. The 

spherical length of this curve is at most 7 sin(r). The spherical line through a and b 

is the spherical r-spindle where r is ir/2. In the case r = 7r/2, we do not distinguish 

between the closed spherical r-spindle and the open spherical r-spindle. The closed 
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(respectively open) spherical line segment between a and b is the closed (respectively 

open) spherical r-spindle-geodesic where r is 7/2. 

Definition 2.5.5 Let r e (0, 7r/2]. If a and b are two points in S, n ≥ 2, such 

that d(a, b) < 2r, then the spherical r-spindle-distance between a and b, denoted 

p[r](a, b), is the spherical arc-length of any spherical r-spindle-geodesics joining a 

and b. If d(a, b) > 2r, then the spherical r-spindle-distance is undefined. By letting 

r be ir/2, the spherical r-spindle-distance becomes the spherical distance. 

Let r E (0, 7r/2]. If a and bare two points in 5n, n ≥ 2, such that d(a,b) ≤ 2r, 

then there is some spindle-geodesic geo[a, b, r]s joining a and b. Note that geo[a, b, r]s 

is a circular arc in S'. Let S' (c, r) be the circle containing geo[a, b, r]s. Recall that 

the spherical model is embedded in R' and the spherical circle S(c, r) is simply a 

euclidean circle, say S' (c', r'), in R'. To obtain c', we project the point c onto the 

plane in Rn containing S(c, r), see Figure 2.6. 

Figure 2.6: Computing Spindle-Dis-
tance in Spherical Space. 

Figure 2.7: Monotonicity of Spherical 
Spindle-Distance. 

In Figure 2.6, the point o is the origin, which is the same for both euclidean spher-

ical space, the circle is SR' (c', r') and the dashed segments lie in the same euclidean 



17 

plane as the circle. The dashed segments are radii of §k (c', r'). Now, b lies on the 

circle S1 (c, r), so the spherical distance between c and b is r. The spherical distance 

is the measure of the angle Lcob. In particular, Lcob = r. Since [o, c']' C [o, c]', 

we have that Lc'ob = r. Next, let 29 = Lac'b, where Lac'b is the angle between the 

segments [a, c']' and [b, c']' in the euclidean plane containing S' (c, r'). Since b 

is in spherical space and lies on a sphere which is of radius one and centered at o, it 

follows that the euclidean distance between o and b is one. 

From Figure 2.6, we readily compute p [r] (a, b) = 29r' = 29 sin r where, 

d'(a,b)  sin  = - d'(a,b) 
2r' - 2 sin (r) 

Thus, we easily obtain the following remark. 

Remark 2.5.6 Let r E (0, 7r/2]. If a and b are two points in S1, n ≥ 2, such that 

d(a, b) ≤ 2r, then an explicit formula for the spherical r -spindle- distance is 

(d 1(a, b)  
p[r](a,b)=2sin(r)sin' 2 sin (r) ) 

Let r E (0, 7r/2}. If a, b, c E 52 are points such that 4( a, b) < d(a, c) ≤ 2r, then 

there is a map of the line segments [a, b] and [a, cJ so that the points a, b, c all lie 

on a circle of radius r, see Figure 2.3. The longer chord, joining a and c, subtends 

a longer arc on the circle than does the chord joining a and b. This clarifies the 

following remark. 

Remark 2.5.7 Let r E (0, ir/2]. If a, b, c E §2 are points such that 4(a, b) < 

d(a,c) ≤ 2r, then p2 [r] <p[r](a,c). 
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2.6 Spindle-Convexity 

We now begin a discussion of the topic of spindle-convexity and what it means for a 

set to be spindle-convex. 

Definition 2.6.1 Let r E (0, oo]. A set C C W is r-spindle-convex in RI if, and 

only if, for every pair of points a, b E C, there exists a closed euclidean r-spindle-

geodesic joining them and every closed euclidean r-spindle-geodesic joining a and b is 

contained in C. 

Definition 2.6.2 Let r E (0, oo]. A set C C Htm is r-spindle-convex in 1FF if, and 

only if, for every pair of points a, b E C, there exists a closed hyperbolic r-spindle-

geodesic joining them and every closed hyperbolic r-spindle-geodesic joining a and b 

is contained in C. 

Definition 2.6.3 Let r E (0, ir/2]. A set C C S? is r-spindle-convex in Stm if, and 

only if, for every pair of points a, b E C, there exists a closed spherical r-spindle-

geodesic joining them and every closed spherical r-spindle-geodesic joining a and b is 

contained in C. 

When r = oo (resp. r = co, resp. r = ir/2) then there is a unique closed euclidean 

(resp. hyperbolic, resp. spherical) r-spindle-geodesic joining any two points. In fact, 

the euclidean (resp. hyperbolic, resp. spherical) r-spindle-geodesic joining any two 

points is just the line segment between them. Thus, when r = oo (resp. r = 00, resp. 

r = 7/2), r-spindle-convexity in R' (resp. 1FF, resp. Sn) is equivalent to convexity in 

11 (resp. lflltm, resp. Sn). 

Let r E H such that r> 0 (resp. let r E H such that r > 0, resp. let r E (0,71/2)). 

Suppose C c 11 (resp. C C H'2, resp. C C S'2) is an r-spindle-convex set. If C is 
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a single point then it is clearly convex and 0-dimensional. Let a and b be distinct 

elements of C. Now, C contains all euclidean (resp. hyperbolic, resp. spherical) 

r-spindle-geodesic joining a and b. The union of all such curves is the boundary of 

the closed euclidean (resp. hyperbolic, resp. spherical) r-spindle joining a and b. The 

closed euclidean (resp. hyperbolic, resp. spherical) r-spindle joining the points a and 

b contains, by definition, the euclidean (resp. hyperbolic, resp. spherical) line segment 

joining a and b. In the euclidean case, [a, bjn c spin [a, b, r] C implies C is convex, 

in the euclidean sense. In the hyperbolic case, [a, b] c spin[a, b, r] C implies C 

is convex, in the hyperbolic sense. In the spherical case, [a, b] C spin [a, b, r]n C C 

implies C is convex, in the spherical sense. 

Remark 2.3.3 (resp. Remark 2.4.4, resp. Remark 2.5.3) shows that a closed 

euclidean (resp. hyperbolic, resp. spherical) r-spindle is the intersection of closed 

balls, and it is either an empty set, or a point, or homeomorphic to a closed ball. The 

latter is true in this setting. Since C contains the aforementioned spindle, it has a 

non-empty interior and is full-dimensional. 

Let C, C R' (resp. Ci C 1HP, resp. C C S) be an r-spindle-convex set for each 

i E I. If the points a and b are contained in 

then a and b are contained in Ci for each i E I. Since Ci is an r-spindle-convex 

set for each i I, it follows that spin[a, b, r] (resp. spin  b, r], resp.spin[a, b, r]) is 

contained in Ci for each i E I. Finally, 

spin [a, b, r} fl C, (resp. spin [a, b, r] c fl C1, resp. spin [a, b, r] c fl c1) 
iEI iEI IEI 

yields that the intersection of r-spindle-convex sets is an r-spindle-convex set. We 

collect these facts in the following remarks. 
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Remark 2.6.4 Let r E (0, 00] and C C Rn be a non-empty r -spindle- convex set 

in R. Then C is convex. Furthermore, if r oo, then C is either 0-dimensional 

(a point) or n-dimensional. Finally, the intersection of r -spindle- convex sets is an 

r -spindle- convex set. 

Remark 2.6.5 Let r E (0, oo] and C C Hn be a non-empty r -spindle- convex set 

in TH[. Then C is convex. Furthermore, if r 00, then C is either 0-dimensional 

(a point) or n-dimensional. Finally, the intersection of r -spindle- convex sets is an 

r -spindle- convex set. 

Remark 2.6.6 Let r E (0, ii-/2] and C C Sn be a non-empty r -spindle- convex set 

in S. Then C is convex. Furthermore, if r ir/2, then C is either 0-dimensional 

(a point) or n-dimensional. Finally, the intersection of r -spindle- convex sets is an 

r -spindle- convex set. 

In the standard theory convexity, any two points are joined by a line segment, 

which is a bounded set. In the theory of spindle-convexity, it may be the case that 

points are too far apart for them to be joined by a spindle. We are primarily interested 

in bounded sets where the points are not too far apart. The following definitions 

clarify this. 

Definition 2.6.7 The circumradius crR(X) of a bounded set X C 1RY is the radius 

of the unique smallest ball that contains X (also known as the circumball of X); that 

is, 

crR(X) = inf{r> 0 : X C B[q, r] for some q E 

If X is unbounded, then crR(X) = 00. 
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Definition 2.6.8 The circumradius cr(X) of a bounded set X C 1H[' is the radius 

of the unique smallest ball that contains X (also known as the circumball of X); that 

is, 

crjji (X) = inf {r > 0: X C B[q, r] for some q E IHITh}. 

If X is unbounded, then criii(X) = 00. 

Definition 2.6.9 The circumradius crs(X) of a bounded set X C Stm is the radius of 

the unique smallest ball that contains X (also known as the circumball of X); that is, 

crs(X) = inf{r> 0 : X C B[q,r] for some q E S'}. 

If X is unbounded, then crs(X) = oo. 

Again, in the standard theory of convexity, the convex hull of a set S is the 

intersection of all convex sets containing S. We may also identify S as being in a 

convex position provided that no point in S is contained in the convex hull of the 

remaining points in S. The following extends these ideas to the current setting. 

Definition 2.6. 10 Let r E (0, oo) and X C Ift'. Then the euclidean r-spindle-convex 

hull of X is 

R convr X = fl{C ç JRTh : X C C and C is r-spindle-convex in RTh}. 

Furthermore, X is in an r-spindle-convex position in JRTh if, and only if, 

x1Rconvr(X\x), for any xeX. 

Definition 2.6.11 Let r E (0, oo] and X C IHITh. Then the hyperbolic r-spindle-

convex hull of X is 

JR convr X = fl{c ç THITh : X C and C is r-spindle-convex in TH[Th}. 
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Furthermore, X is in an r-spindle-convex position in Hn if, and only if, 

xJEIconvr(X\x), for any xEX. 

Definition 2.6.12 Let  E (0, ir/2] and  C S. Then the spherical r-spindle-convex 

hull of X is 

S cony,. X = fl{C ç 5Th : X C C and C is r-spindle-convex in STh}. 

Furthermore, X is in an r-spindle-convex position in S'' if, and only if, 

X5COflVr(X\X), for any xEX. 

2.7 Ball-Polyhedra 

Recall that a convex polytope is the convex hull of a finite set of points, and that a 

convex polyhedron is the intersection of a finite set of half-spaces. Convex polyhedra 

may be unbounded, but when bounded, they are equivalent to convex polytopes. We 

define ball-polyhedra, the main subject of study throughout this thesis. 

Definition 2.7.1 Let r E T1 such that r > 0 and X C Rn be a finite set such that 

crR(X) < r. We call P = B[X, r] 0, a euclidean r-ball-polyhedron. For any 

x E X, we call B[x, r], a generating ball of P, and S' (x, r), a generating sphere 

of P. If n = 2, then we say that a euclidean r-ball-polyhedron is a euclidean r-disk-

polygon. 

Figure 2.8 shows how a euclidean ball-polyhedron is constructed as the intersection 

of four congruent balls. 

Definition 2.7.2 Let r E TI such that r > 0 and X C IHITh be a finite set such that 

crjj (X) ≤ r. We call P = B[X, r] 0 0, a hyperbolic r-ball-polyhedron. For any 
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Figure 2.8: Euclidean Ball-Polyhedron in R. 

x E X, we call B' [x, r], a generating ball of F, and S'(x, r), a generating sphere 

of P. If n = 2, then we say that a hyperbolic r-ball-polyhedron is a hyperbolic r-disk-

polygon. 

Definition 2.7.3 Let r e (0, ir/2] and X C Sn be a finite set such that crs(X) ≤ r. 

We call P = B[X, r] 0, a spherical r-ball-polyhedron. For any x E X, we call 

B  [XI r], a generating ball of P, and S'(x,r), a generating sphere of P. If n = 2, 

then we say that a spherical r-ball-polyhedron is a spherical r-disk-polygon. 

The dotted circles in Figure 2.9 are congruent in their respective space. Taking 

the intersections of the closures of these circles produces a disk-polygon in either 112 

or S2. 

2.8 Notation Simplified 

It is evident from the preceding that the definitions, results and ensuing arguments 

vary little, if at all, with respect to the spaces 11, TH[ and S'. This remains true of the 
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Figure 2.9: Example of a Hyperbolic Ball-Polyhedron in H2 and Spherical Ball-Poly-
hedron in S2. 

results examined in the subsequent chapters of this thesis. Accordingly, we simplify 

the notation. Furthermore, with the new notation, we present only one statement 

of definitions and results which are valid in all three spaces. In general, only one 

argument or proof is necessary in these situations. When warranted, we distinguish 

results or arguments that vary between the three spaces. In certain situations, when 

it is necessary to distinguish space, dimension or radii, we utilize the more cumber-

some notation developed in the preceding sections. Otherwise we use the following 

conventions. 

We now introduce the generic space Y E {R, W, S' : n > 1}. Many of the 

objects discussed in this chapter arose from spheres, balls and circular arcs. Each 

of these objects depends on some radius. In general for each space Y, there is some 

fixed radius, say ry; furthermore, ry lies in some interval, called the radial domain 

of the space Y, denoted D. If Y E {R', 1E : n ≥ 1}, then Dy = (O,oc} and 

ry E D. If Y = STh, ri ≥ 1, then Dy = (0, 7r/2) and Ty E D. Finally, there 
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arise situations where we do not allow ry = oo, for Y E {R', IHP"}, or ry = ir/2, for 

Y = S'. If YE {R,JHI : n ≥ 1}, then let Ty = (O,00). If Y = S',rt ≥ 1, then let 

Dy = (0, ii-/2). We call Dy the restricted radial domain of the space Y. 

Using this fixed radius, we construct the previously described objects. We fre-

quently omit ry, with the understanding that it is in the correct interval. Also, in the 

case of objects, such as k-dimensional balls and spheres, which depend on a dimen-

sion argument we frequently omit the dimension when it is clear from the context. 

Table 2.8 summarizes the notational conventions used in the remainder of the thesis. 

Object Notation Notes 

Origin of Y. o Depends on Y. 
Distance between a, b E Y. dy(a, b) Depends on Y. 
Open Line Segment between a, b E Y. 
Closed Line Segment between a, b E Y. 

(a, b)y 
[a, b]y 

Depends on Y. 

k-dimensional Open Ball centered at a E Y. 
k-dimensional Closed Ball centered at a E Y. 
k-dimensional Sphere centered at a E Y. 
k-dimensional Open Ball Operator on X C Y. 
k-dimensional Closed Ball Operator on X C Y. 

B(a) or By (a) 
B [a] or B [a] 
S, (a) or Sy (a) 
B, (X) or By(X) 
B,[X] or By[X] 

Depends on Y. 
Depends on ry. 
Depends on k, 
whenever k 
is omitted. 

Open Spindle between a, b E Y. 
Closed Spindle between a, b E Y. 

spin (a, b)y 
spin [a, b]y 

Depends on Y. 
Depends on ry. 

Open Spindle-Geodesic between a, b E Y. 
Closed Spindle-Geodesic between a, b E Y. 

geo(a, b)y 
geo[a, b]y 

Depends on Y. 
Depends on ry. 

Spindle-Distance in Y between a, b E Y. py(a, b) Depends on ry. 
Circumradius of X C Y. cry Depends on ry. 
r-Spindle-Convex Hull of X C Y. conv (r,y) X Depends on r,Y. 

Table 2.1: Summary of Simplified Notation. 

To demonstrate the new notation we restate Remarks 2.3.3, 2.4.4 and 2.5.3 and 

examine the proof in detail here. 

Remark 2.8.1 Let ry E D y. If dy(a, b) ≤ 2ry, then spin[a,b,ry]y = B[B[{a, b}, ry], ry], 

and spin(a, b,ry)y = B(B[{a, b}, ry] ,ry). 
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Proof. We prove spin[a, b, ry]y = B[B[{a, b}, ry], ry]; the other equality 

is similar. The set B[B[{a, b}, ry], ry] is the intersection of spindle-convex sets 

and is therefore spindle-convex. Since it contains a and b, it contains the spindle 

spin [a, b, ry]y. 

Suppose that x E B[B[{a,b}]], then for every c E B[{a,b},ry] we note that 

x E B[c, ry]. If Y {TRTh, S'} and there is geo[a, b, T]y, with r ≥ ry such that 

x E geo[a, b, T]y then spin[a, b, ry]y 2 B[B[{a, b}, ry], ry] and there is nothing to 

prove. If Y = Hn and there is geo[a, b, r]Rm, with r ≥ f where f is the euclidean radius 

of the circle in the Poincaré Ball with hyperbolic radius ry such that x E geo[a, b, r]Rn 

then spin[a, b, ry]y B[B[{a, b}, ry], ry] and again there is nothing to prove. 

Suppose, for a contradiction, that the points a, b and x determine a circle with 

radius r <ry and the plane, H, determined by the points a, b and x contains a point 

c such that x 0 B, 2 [c, ry] but {a, b} E bd B, [c, ry]. There are two circles of radius 

ry in H passing through a and b. One circle has its center in the same half plane in 

H determined by the line through a and b containing x and the other has its center 

in the half plane in H determined by the line through a and b not containing x. The 

latter center is the point c. Now, {a, b} E B[c, ry] which implies c E B[{a, b}, ry] 

but x 0 B [c, ry] and this contradicts our earlier observation. 
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Chapter 3 

Planar Results 

3.1 Introduction 

In this chapter, we explore several fascinating planar results pertaining to spindle-

convexity and related objects. Since the setting is the plane, Y E {H2, H2, s2}. Unless 

otherwise specified, we assume ry E D. 

The euclidean version of Lemma 3.2.2 and a special case in euclidean space of 

Corollary 3.4.2 are found in [10]. Furthermore, the definition of spindle-polygons and 

the corresponding proofs presented here expand on the ideas of [10], [28], [24] and 

[12]. These results are applied in Lemma 3.5.2. 

3.2 Spindle-distance is Not a Metric. 

Thus far we have referred to the length of a spindle-geodesic as spindle-distance, and 

this reference might casually suggest that it is a metric. We now develop a series of 

results which we combine to demonstrate that the spindle-distance is not a metric. 

This idea is a very important consideration in many of the results examined later. 

Claim 3.2.1 [Arm Lemma] Let a, c, b and b' be points in Y such that 

(1) b and b' lie in the same open half plane bounded by the line through a and c, 

(2) dy(b, c) = d(b', c) and Lacb < Lacb'. 

Then, dy(a,b) <dy(a,b'). 
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Figure 3.1: A Demonstration of the Arm Lemma. 

The left diagram in Figure 3.1 demonstrates the configuration of Claim 3.2.1 in 

the euclidean plane, where the sides opposite c are the dashed line segments. In the 

Poincaré Disk Model, this figure accurately demonstrates the hyperbolic case after c 

is mapped to the origin of the hyperbolic plane. In this case the sides opposite c are 

the dashed circular arcs. The diagram on the right in Figure 3.1 demonstrates the 

configuration of Claim 3.2.1 in the spherical plane. The lengths, in Y, of the sides 

opposite a, b and c are denoted by A, B and C, respectively. We show that if the 

angle 0 increases, which corresponds with b moving to b', then the length C increases. 

Proof. For the triangle determined by the points a, b and c in Y let A (resp. B, 

resp. C) be the length of the side opposite the vertex a (resp. b, resp. c). Thus, 

A = d(b, c), B = dy(a, c) and C = dy(a, b). Furthermore, let 0 be the angle Zacb. 

Since the models we are using are conformal, we see that 0 e (0, ir) in all three spaces. 

See Figure 3.1. 

The euclidean law of cosines states that C2 = A2 + B2 - 2AB cos 9. The hyperbolic 

law of cosines states that cosh C = cosh A cosh B - sinh A sinh B cos 0. And the 

spherical law of cosines states that cos C = cos A cos B + sin A sin B cos 0. Thus, in 

all three spaces, we may express C as a function of 0 and readily obtain that dc > 0. 
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Since C is an increasing function of 9 it follows that Lacb < Lacb' implies that 

dy(a, b) <dy(a, b'). • 

The spindle-distance is not a metric in general. However, it is a metric in the cases 

Y E {R2, 1H12} and Ty = co or Y = S' and ry = ir/2. In these instances, spindle-

distance corresponds to the straight line distance. The remaining possibilities require 

that ry be in the restricted radial domain and are examined in the next lemma. 

Lemma 3.2.2 Let ry E Dy and a, b, c E Y be points such that dy(a, b) < 2ry, dy(a, c) 

2ry, and dy(b, c) < 2ry. Then, 

(i) py(a, b) + p(b, c) > py(a,c) <—> b spin[a, cjy; 

(ii) py(a,b) +py(b,c) = py(a,c) <— bE bdspin[a,c]y; 

(iii) py(a,b)+py(b,c) < py(a,c) =* bEspin(a,c)y. 

Proof. We begin by examining the case b E bdspin[a, C]y. The boundary of 

spin[a, C]y is the union of two closed spindle-geodesics connecting a to c. Thus, b is 

an element of one of these spindle-geodesics, say geo [a, c] y. Furthermore, geo [a, c] y 

may be expressed as the union of two closed spindle-geodesics. One of these spindle-

geodesics connects a to b, denoted geo[a, b]y, and the other connects b to c, denoted 

geo[b, c]y. Since geo[a, b]y and geo[b, c]y have only the point b in common, it readily 

follows that 

py(a, b) + p(b, c) = py(a, c). 

Next, we examine the case b 0 spin[a, c]y. In this setting there are two possibilities, 

either 

dy(a, c) dy(a, b) or dy(a, c) > dy(a, b). 

Figure 3.2 demonstrates the case where b V spin [a, c]y and dy(a, c) > dy(a, b). 

On the left, is the euclidean case. In the Poincaré Disk Model, the figure on the 
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Figure 3.2: A Demonstration for Lemma 3.2.2. 

left accurately demonstrates the hyperbolic case after c is mapped to the origin of 

the hyperbolic plane. The figure on the right demonstrates the case in the spherical 

plane. 

If dy(a, c) < dy(a, b) then, depending on which space Y is, one of the Re-

marks 2.3.7, 2.4.8 or 2.5.7 may be used to show that py(a, b) ≥ py(a, c). Conse-

quently, the desired inequality, 

py(a,b) +py(b,c) > py(a,c), 

follows immediately. If dy(a, c) > dy(a, b), then we proceed in the following manner. 

Let geo(a, C)y be the open spindle-geodesic which lies in the half plane containing b 

and bounded by the line through a and c. Now, rotate the point b about a, keeping 

dy(a, b) constant, until it intersects geo(a, C)y in a new point which we label b', see 

Figure 3.2. Note that 

py(a,b) =py(a,b'). (3.2.1) 

Using the Arm Lemma (Claim 3.2. 1) we obtain d(b, c) > d(b', c). Then, depending 

on which space Y is, one of the Remarks 2.3.7, 2.4.8, 2.5.7 may be applied to obtain 

py(b,c) > py(b',c). (3.2.2) 
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Now, b' E bd spin [a, c]y is a case we have already examined and established that, 

py(a, b') + py(b', c) = py(a, c). 

Finally, by combining 3.2.1, 3.2.2, 3.2.3 we obtain 

py(a, b) + p(b, c) > py(a, b') + py(b', c) = py(a, c). 

(3.2.3) 

The proof that b E spin (a, C)y implies py(a, b) + py(b, c) < py(a, c) is a similar 

application of the Arm Lemma. 

For a contradiction, suppose py(a, b) + py(b, c) > py(a, c) and b € spin [a, c]y. 

Then, b E spin [a, c]y implies 

py(a, b) + py(b, c) ≤ py(a, c) 

by the first part of the proof, which provides an immediate contradiction. The re-

maining two implications are analogous. 

3.3 Spindle-Polygons 

Let V be the vertex set and E the edge set of a graph G = (V, E). We assume that 

the graph G is drawn in Y, meaning that V C Y. Thus, the vertex set is a collection 

of points, say V = {x0, Xi,. . . Xm}, where xi is a point in the plane Y for each i. The 

collection of edges satisfies 

E ç {{ xi, x} : xi, xj E V and  j} 

and any two vertices lying on an edge are joined by a continuous curve in Y. 

Suppose that the graph C satisfies the following properties. (1) C is a Hamiltonian 

circuit. (2) d(x, x) 2ry for each edge {x, x3} E E. Property (2) ensures that 



32 

each pair of vertices lying on an edge of C may be joined by a spindle-geodesic. In 

fact, there are two spindle geodesics joining such vertices. Suppose that for each edge 

{x, x} E E, we select one closed spindle-geodesic, say geo[xj, xj]y. Let 0 be the 

union of these spindle-geodesics. In particular, 

= U geo{xj,xjjy. 
{x,x}EE 

Definition 3.3.1 If Y = 1R2 (resp. y = resp. Y = S2), then C is called a 

euclidean (resp. hyperbolic, resp. spherical) ry-spindle-polygon corresponding to the 

graph G(V,E). 

The object G depends on the space Y, the radius ry and the graph G(V, E). In this 

context, where we are using the generic space Y and understand these dependencies, 

we simply call C a spindle-polygon corresponding to the graph G or even more simply 

a spindle-polygon. The points Xo, x1, . . . , Xm € V are the vertices of the spindle-

polygon. The spindle-polygon G is a union of spindle-geodesics. The collection of 

these spindle-geodesics, 

= {geo[x, x]y : {x, x} 

is called the side set of the spindle-polygon. The spindle-geodesics in E are the 

sides, of the spindle-polygon. Clearly, the elements in the collection of sides E of the 

spindle-polygon C is in one-to-one correspondence with the elements in the collection 

of edges E of the graph C. 

Definition 3.3.2 The graph C = (V, E) is the underlying graph of C. The under-

lying polygon of a, which we denote by C, is the union of all line segments between 
each pair of vertices joined by an edge of C. In particular, 

= U 
{x ,x}€E 
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A spindle-polygon is called regular if the underlying polygon is regular. 

Figure 3.3: Euclidean Spindle-Polygons. 

This collection of spindle-polygons in Figure 3.3 is located in the euclidean plane. 

The underlying polygons are demonstrated using dashed lines. Notice self intersec-

tions are possible. The two six sided spindle-polygons demonstrate how the same 

graph is the underlying graph of two distinct spindle-polygons. 

Let cry e 75y and suppose that the graph G = (V, E) is the underlying graph of 

the ry-spindle-polygon C. Now, for any edge in E, say {a, b}, there are two spindle-

geodesics joining a and b, say 9i and 92. One of these spindle-geodesics is a side of C, 

say g1 C . Replacing g1 by 92 produces a new spindle-polygon, distinct from C. If 

ry = 00 (resp. ry = 00, resp. ry = ir/2) when Y = R2 (resp. Y = 1E12, resp. Y = §2) , 

then this does not occur because there exists a unique spindle-geodesic joining the 

vertices of any edge in E. We collect these observations in the following remark. 

Remark 3.3.3 If ry = 00 (resp. cry = 00, resp. ry = 7/2) when Y = ]R2 (resp. 

= ]f] 2, resp. Y = §2) then C is a polygon in 1R2 (resp. IH[2, resp. §2). In this 
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case, there exists a unique spindle-polygon corresponding to the graph C = (V, B). If 

ry E D y, then there exist more than one distinct spindle-polygons corresponding to 

the graph C = (V, E). 

Recall that a set of points X C Y is in spindle-convex position in Y if x 

conv(r,y) (X \ x) for all x E X. 

Definition 3.3.4 Let C be a spindle-polygon in Y, where C = (V, B) is the under-

lying graph. Suppose V = {x0, x1, . . . , X} is in spindle-convex position in Y. Then, 

we call G a weakly spindle-convex spindle-polygon. Suppose G is a weakly spindle-

convex spindle-polygon and the underlying polygon T7 has no self-intersections. Then, 

we call a a cyclic spindle-polygon. Finally, if a is a cyclic spindle-polygon such that 
it is the boundary of the spindle-convex hull of G, then G is called a spindle-convex 

spindle-polygon. 

A weakly spindle-convex spindle-polygon need not be a spindle-convex spindle-

polygon, only the vertices are in spindle-convex position. Furthermore, a cyclic 

spindle-polygon a may have sides which intersect. It is not necessary for a to 
be devoid of self-intersections, only that the underlying polygon have no self-

intersections. See Figure 3.4 for examples. 

Figure 3.4: Weakly Spindle-Convex Spindle-Polygons. 
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The solid arcs in Figure 3.4 represent the spindle polygon and the underlying 

polygons are denoted by the dashed lines. All three of these four-sided spindle-

polygons are weakly spindle-convex, because the vertices are in spindle convex posi-

tion. Even though the sides of the second one intersect the underlying polygon has 

no self-intersection and therefore all three are cyclic. However, only the third one is 

spindle-convex. 

Suppose V = {x0, Xi,. . . , Xm} is the vertex set of an arbitrary weakly spindle-

convex spindle-polygon G. Without loss of generality, we assume that the vertices 

of a are labeled based on their cyclic order of appearance on the boundary of the 
spindle-convex hull of V. Thus, the the edge set of a cyclic spindle-polygon is simply 

E = {{x0, x1}, {x1, x2}, {x2, x3},. . . , {x_, Xm}, {Xm , x0}}. 

3.4 A Result on Spindle-Quadrilaterals 

For simplicity, we call a weakly spindle-convex spindle-polygon with four vertices a 

spindle-quadrilateral. Recall that a convex quadrilateral in the plane Y is a polygon 

with four vertices such that no vertex is contained in the Y convex hull of the other. 

three. In the case that r = oo when Y = R2, r = oo when Y = 1H12 or r = ir/2 

when Y = S2, a spindle-quadrilateral is just a convex quadrilateral and vice versa. 

Lemma 3.4.1 states that in a convex quadrilateral the total length of the diagonals 

is greater than the total length of an opposite pair of sides. The generalization to 

spindle-quadrilaterals, Corollary 3.4.2, requires the additional constraint that the 

circumradius of the vertices be at most ry. This ensures that there is a spindle-

geodesic joining the diagonal vertices. For example, consider a square in the euclidean 

plane with euclidean side length 2. Now, join each pair of points connected by a 
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side of the square with a 1-spindle-geodesic. In this way we obtain a euclidean 1-

spindle-polygon, see Figure 3.5. However, the euclidean distance between a pair of 

diagonal vertices is greater than 2.82. The longest 1-spindle-geodesic joining two 

points in R2 is rr and the maximum straight line distance between these two points 

is 2. Consequently, there is no spindle-geodesic joining vertices lying on a diagonal. 

The vertices, of the spindle-quadrilateral in Figure 3.5, lying along a diagonal cannot 

be connected by a spindle-geodesic, because they are too far apart. 

Figure 3.5: A Quadrilateral and a Spindle-Quadrilateral. 

The points a, b, c, d e Y are the vertices of an arbitrary spindle-quadrilateral and 

they are given in this cyclic order; which means that, without loss of generality, they 

are labeled in their clockwise order of appearance on bd COflV( r,y) {a, b, c, d}. 

Lemma 3.4.1 Let a, b, c, d E Y be vertices of a convex quadrilateral, in this cyclic 

order. Then, 

dy(a, c) + dy(b, d) > dy(a, b) + dy(c, d) and 

dy (a, c) + dy (b, d) > dy (a, d) + dy (b, c). 

That is to say, the total length of the diagonals is greater than the total length of an 

opposite pair of sides. 

Proof. Let m be the intersection of the diagonal line segments, namely m = 

[a, c] fl[b, d], see Figure 3.5. By the triangle inequality dy(a, m)+dy(m, b) > dy(a, b) 
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and dy(d, m) + dy(m, c) > dy(c, d) which implies 

dy(a, c) + d(b, d) = dy(a, m) + dy(m, c) + dy(m, b) + d(d, m) > dy(a, b) + dy(c, d). 

The other inequality is proved similarly. • 

Corollary 3.4.2 Let a, b, c, d E Y be vertices of a spindle-quadrilateral, in this cyclic 

order, where cry{a, b, c, d} < ry. Then, 

py(a,c) +py(b,d) > py(a,b) +py(c,d) and 

py(a,c) +py(b,d) > py(a,d) +py(b,c). 

That is to say, the total spindle-distance between diagonal points is greater than the 

total spindle-distance between points joined by an opposite pair of sides. 

Proof. We show the first inequality. The second is obtained from the first by 

permuting the labeling on the vertices and repeating the following argument. Suppose 

that a, b, c, d E Y are vertices of a spindle-quadrilateral in this cyclic order where 

cry {a, b, c, d} ≤ Ty. Since the vertices are in spindle-convex position, they are also in 

convex position. Thus, the underlying polygon is a convex quadrilateral. 

Figure 3.6 provides a schematic representation of the configuration. It accurately 

reflects one possible configuration when Y = 2• The diagram can be used to infer 

the result in the remaining two spaces. 

As noted earlier a, b, c, d are the vertices of a convex quadrilateral. By Lemma 3.4.1 

one of the sides, [a, b]y or [c, d]y, of the quadrilateral is shorter than one of the 

diagonals, [a, c]y or [b, d]y, of the quadrilateral. Without loss of generality, we assume 

that dy(a,b) <d(b,d). 

Since no three vertices are collinear, there exists a closed half-plane, bounded by 

the line through b and d, that contains a in its interior. Call this closed half-plane H. 
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Figure 3.6: Schematic Spindle-Quadrilateral. 

Let geo[b, d]y be the spindle-geodesic joining b to d which is contained in H. Since 

dy(a, b) <dy(b, d), there is a point in E geo(b, d)y such that 

py(b,m) =py(a,b). (3.4.1) 

Because the points a, b, c, d are in spindle-convex position, a is not in the closed 

spindle spin[b, d]y. However, m E geo(b, d)y c .spin[b, d]y. So, a and m are distinct 

points. Thus, the acute angles Lmbd and Labd are also distinct. Since a and m are 

in the interior of H and a spin[b, d]y we see that Lmbd < Labd. Thus, 

Lmbc = Zmbd + Ldbc < Labd + Ldbc = Labc. 

Since our models of Y are conformal, the inequality Lmbc < Labc holds in all spaces. 

Finally, applying the arm-lemma gives dy (m, c) <dy (a, c) which yields 

py(m,c) <py(a,c). (3.4.2) 
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If m V spin[c, d) y, then by Lemma 3.2.2 py(c, d) < py(d, m) + py(m, c). Now, 

using 3.4.1, 3.4.2 and this last inequality we carry out the following computation, 

py(c)d) < py (d, m) + py (m, c) 

< py(d,m) + py(a, c) = py(b, d) - py(m, b) + py(a, c) 

= py(b, d) - py(a, b) + py(a, c), 

and rearranging this expression gives the desired result 

py(a,b)+py(c,d) < py (a, c) + py (b, d). 

So, to complete the proof we need only to verify that rn spin[c, d]y. 

Suppose that x and y are vertices of the spindle-quadrilateral joined by a side and 

u and v are the remaining two vertices. Since the convex hull of the vertices forms a 

convex quadrilateral, x and y lie in the interior of a closed half plane bounded by the 

line through a and v. Denote this closed half plane by H(u, v). 

If geo[c, d]y is the spindle-geodesic contained in H(c, d), then let S, (x, ry) be the 

circle containing geo[c, d]y. By Remark 2.8.1, spin[c, djy c: clS(x, ry). Since we 

have already established that m E geo(b, d)y, to show that m V spin[c, d]y we need 

only demonstrate that geo(b, d)y C Y \ cl S, (x, ry). 

The intersection of the disk clS,(x, ry) and the half plane H(c, d) is a subset of 

spin[c, d]y. Since b E H(c) d), if b was also in the disk clS,(x, ry), then 

bE clS,(x,ry) flH(c,d) c spin[c,d]y, 

which contradicts the spindle-convexity of the vertices. Thus, b V clS(x, ry) and if 

S' (y, ry) denotes the circle containing geo(b, d)y, then S' (x, ry) S' (y, ry). 

If y = J2 then §,(x, ry) and S' (y, ry) are congruent circles. Thus, geo(b, d) 

and geo[c, d]y have the same curvature. Since they are no longer than a semi-circle, 

it is readily apparent that they do not intersect. Hence, geo(b, d)y C Y \ cl S1 (x, ry). 
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If Y = H2 then we may assume, without loss of generality, that d is at the origin, 

o. By embedding the Poincaré Disc in the euclidean plane we see S (x, ry) and 

S' (y, ry) are congruent as euclidean circles. Let the euclidean centers of S' (x, ry) 

and S, (y, ry) be and g, respectively, and let the common euclidean radius be f . 

The preceding argument applied to the circles ) and ) in the euclidean 

plane yields the desired result. 

If Y = S2 then consider the stereographic projection proj : 52 ,' j2 where 

proj(d) = ORn. This map takes the circles S' (x, ry) and S,(y, ry) to the circles 

proj(S,(x, ry)) and proj(S,(y, ry)), respectively, which are congruent as euclidean 

circles. Let the euclidean centers of proj(S,(x, ry)) and proj(S,(y, ry)) be and 

, respectively, and let f be the common euclidean radius. The preceding argument 

applied to the circles proj(S7(x, ry)) = ) and proj(S,(y, ry)) = ) in the 

euclidean plane yields the desired result. i 

The main result obtained in this section is Corollary 3.4.2. It is used several 

times in this thesis and we have isolated it here in this section. Contrast the proof of 

Corollary 3.4.2 and the proof of the classical result from which it follows, Lemma 3.4.1. 

3.5 Isoperimetric Inequalities 

The following proposition, based on the work in [10], is a generalization of Corol-

lary 3.4.2. The result says that, amongst all weakly spindle-convex spindle-polygons 

with the same vertex set the one with the least perimeter is a cyclic spindle-polygon. 

Proposition 3.5.1 Let 0 be a cyclic spindle-polygon, where G = (V, E) is the un-

derlying graph. Furthermore, suppose that cry V < ry. Then, for all weakly spindle-
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polygons C', with underlying graph C' = (V, E'), 

Perimeter(C') ≥ Perimeter(C). 

Equality is achieved if, and only if, C' is a cyclic spindle-polygon. 

Proof. Let the collection of vertices be V = {x0, Xi,. . . , Xm} and suppose that 

cry V < Ty. If m = 3, then the result is trivial. If m = 4, then the result follows 

from Corollary 3.4.2. Thus, we may assume m ≥ 5. 

Recall that the underlying graph of a spindle-polygon with vertices in V is a 

Hamiltonian cycle on the vertices. Since cry V < ry, every Hamiltonian cycle on 

V corresponds to a spindle-polygon. Furthermore, there are only finitely many such 

Hamiltonian cycles, because V is finite. By examining each one, we find a spindle-

polygon G such that Perimeter(a) is minimal. 

Let C = (V, E) be the underlying graph of G. After possibly relabeling the 

vertices, we may assume the graph G is directed with edge set, 

E = {(x0, x1), (XI, X2), (X2, X3)) . . . , (Xm _i,Xm ), (m,Xo)}. 

Given an edge (xi, x+1) it is understood that the indices are taken modulo m. 

Either there exist vertices xi and x4.1 such that the line through them strictly 

separates two points in V \ {x, x+1}, or not. If this condition is not satisfied, then 

for each edge (xi, x+1) there exists a closed half plane bounded by the line through x 

and containing V\ {x, x+1}. Now, the vertices are in spindle-convex position and 

therefore they are in convex position. Consequently, no three vertices are collinear 

which implies that for each edge (xi, x 1) the points in V \ {x, x+1} lie in the 

open half plane, denoted H(x, x+1), bounded by the line through xi and The 

intersection of all such half planes is a convex polyhedron, 

I = H(xo,xi) fl H(xi,x2) fl... fl H( m _i, Xm) fl H( ,,,,, x0). 
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Since the vertices are in convex position, I is also the convex hull of the vertices. 

Thus, bd I is a polygon with vertex set V and from the construction of I, 

bdl = (x0, x1) U (x1, x2) U (X2, X3) U..., (X,,,— 1, Xm) U (Xm , x0). 

In particular, bd I is the underlying polygon of C. Since the underlying polygon has 

no self intersections, C is a cyclic spindle-polygon, and there is nothing left to prove. 

Suppose the line through xi and x 1 strictly separates two points of V \ {x, xi E 

say xj and Xk. Let H be the closed half plane bounded by the line through xi and 

x 1 containing x. Let path(xa, Xb) denote the directed path joining Xa to Xb. In 

particular, 

path(xa,xb) = (Xa,Xa+i) U (Xa+1,Xa+2) U... U (Xb_1,Xb). 

If path(x 1, x) C H then the the Hamiltonian cycle on the vertices does pass through 

Xk. Hence, there exist vertices x1 and x1 in V \ {x, x+1} such that either x1 E H 

and x11 E Y \ H or x1 E Y \ H and x 1 E H. Without loss of generality, assume 

that it is the former. 

Starting at xi we move to x 1 along an edge, see Figure 3.7. Now, following a 

sequence of edges, path(x+1, x1), we reach x1. From x1 we go to x1+1 along an edge. 

Finally, x11 is joined to xi by path(xi+i, xi), passing through the remaining vertices. 

Thus, the underlying graph, which is a (directed) Hamiltonian cycle, is given by 

{ (xi, x+1)} U path(x 1, x1) U {(x1, x1+1)} U path(xi+i, xi). 

Since x1 and x1 are not already joined by an edge and neither are x 1 and x11, 

we replace the edges (xi, x+1) and (x1, x1+1) by (xi, x1) and (x+1, xi+1), respectively. 

If we permute the labeling of the vertices so that 0 ≤ i + 1 < 1 < m, then the 

inequality i + 1 < p < 1 is unambiguous. We replace the directed edges (xv, +i) 
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Figure 3.7: Schematic of the edge replacement described in Proposition 3.5.1.. 

where i + 1. < p < 1, by (x 1, xv). Informally, we reverse the direction of the path 

path(x+i, x1) to get the new path path(x1, x+1). This leads to a new (once again 

directed) Hamiltonian cycle 

= (Xi) X0 Upath(xj,x 1) U (x 1,xj+i) Upath(xj 1,x). 

We denote the edge set of the graph corresponding to this new Hamiltonian cycle 

by E'. The new graph is denoted G' = (V, E'). As we noted earlier, every Hamiltonian 

cycle on V corresponds to a spindle-polygon. In this case we obtain G' a spindle-

polygon with underlying graph C' = (V, E'). 

Finally, if we view x, x 1, xj and x 1..1 as the vertices of a spindle-quadrilateral, 

then the procedure described above amounts to replacing the diagonals, (xi, x+1) and 

(x1, xi+1), by a pair of opposite sides, (xi, x1) and (x+1, xi+1). Corollary 3.4.2 ensures 

Perimeter(G) > Perimeter(G'). 

This contradicts the minimality of Perimeter(C). N 

Next, we examine theorems concerning cyclic spindle-polygons that are analogous 

to those studied by Dowker in [24] and L. Fejes Toth in [28] for polygons. The 

arguments extend the ideas of ([28], pp.162-170), by using [10] and [21]. 
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Let C = S(oy2, r) be a circle of radius r < Ty. A spindle-polygon C, with 

underlying graph C = (V, E), is inscribed in C if, and only if, V C C. Notice that 

the condition r < ry implies a c cony C, which is just the disk B (0y2, r). For 

each positive integer n, a standard compactness argument ensures the existence of an 

n-sided cyclic spindle-polygon of largest perimeter inscribed in C. 

Lemma 3.5.2 Let C be a circle of radius r < 1. Let P, where n is a positive integer, 

be an n-sided cyclic spindle-polygon of largest perimeter inscribed in C. Then, 

Perimeter(P_1) + Perimeter(P 1) <2 Perimeter(P), for all n ≥ 4. (3.5.1) 

Proof. Let Q be an (n - 1)-sided cyclic spindle-polygon and R be an (n + 1)-

sided cyclic spindle-polygon, both inscribed in C. To prove the theorem we need only 

construct two n-sided cyclic spindle-polygons S and T such that 

Perimeter() + Perimeter() ≤ Perimeter() + Perimeter(). (3.5.2) 

Without loss of generality, inscribe Q and R into C so that their respective vertices 

do not coincide. Any arc of C with length at least irr contains a vertex from each 

of Q and R. Otherwise, there exists an (n - 1)-sided cyclic spindle-polygon (resp. 

(n + 1)-sided cyclic spindle-polygon) with larger perimeter than (resp. .). 

Suppose that a, b, 1 and m are points on C such that a is joined to b by a 

spindle-geodesic and 1 is joined to m by a spindle-geodesic. Furthermore, suppose 

that the closed r-spindle-geodesics geo[a, b, r]y C C and geo[l, m, r]y C C satisfy 

geo[l, m, r]y c geo[a, b, r]y, see Figure 3.8. Let seg(a, b) = conv([a, b]y U geo[a, b, r}y) 

and seg(l, m) = conv([l, m]y U geo[l, m, r]y), both of which are just segments of the 

disc cony C. Then, 

seg(l,m) c seg(a,b). 
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Figure 3.8: Schematic configuration for Lemma 3.5.2. 

This configuration, where a segment is contained in another segment, may arise 

when two spindle-polygons, say C1 and a2, are inscribed in a single circle, or when a 
single self-intersecting spindle-polygon, say F, is inscribed in a circle. Suppose that 

we start with the former and, as in the figure, assume that the cyclic ordering of the 

vertices is a, 1, m, b. 

Let path(a, b) (resp. path(l, m)) be the collection of edges in the underlying graph 

of G, (resp. C2) joining a to b (resp. 1 to m) not including the edge {a, b} (resp. 

{l, m}). Let a3 be the spindle-polygon with underlying graph 

path(a, b) U [b, l]y U path(l, m) U [m, a]y. 

Now, by Corollary 3.4.2, 

py(a,b) +py(l,m) <py(a,m) +p(b,l). 

Thus, replacing geo [a, b] and geo [1, m] with geo [a, m] and geo [b, 1] results in a single, 

possibly self-intersecting, spindle-polygon. Furthermore, the total perimeter of 03 is 

strictly larger than the total perimeter of C1 and 02. Finally, had we started with F 

the same argument applied to P results in the construction of two spindle-polygons, 

say P1 and P, where the total perimeter of F1 and F2 is strictly larger than the total 
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perimeter of F. This completes the description of an algorithm we use to carry out 

the proof. 

Suppose .P and C are cyclic spindle-polygons inscribed in a circle. Now, suppose 

we can apply the preceding algorithm at least twice to F and C. In other words there 

are at least two instances where a segment is contained in another segment. On the 

even iterations we obtain two spindle-polygons and we claim that their underlying 

polygons have no self-intersections. Let F = (VP, EF) and = (VG, EG) be the 

underlying graphs of F and G, respectively. Suppose that the vertex sets VF = 

{x0, x1,. .. , Xce  and VG = {yo, yi,. .. , y} are labeled based on the, say clockwise, 

order of appearance of the vertices on the circle. There are at least two instances of a 

segment contained in another. So, by a permutation of the vertices if necessary, one 

of 

seg(xo,xi) c seg(yo,yi) or seg(yo,yi) c seg(xo,xi) 

holds. Furthermore, there exist integers i, j, 1, m where 1 < i < j ≤ a and 1 < 1 < 

M < /3 such that one of 

seg(xj,xj) C seg(yj,ym) or seg(yj,ym) C seg(xj,xj) 

holds. Regardless of which case we consider, after two applications of the algorithm 

we obtain two spindle-polygons with vertex sets 

V1 = {x0, Yi, Y2,. .. Yk, xj, . . . Xa} and 

V2 ={ Yo, Xi,X2, ... , Xi) yl,yl+i,...yp} 

In both vertex sets, the vertices appear in ascending order based on the clockwise 

ordering imposed earlier. Thus, neither underlying polygon has any self-intersections. 

Finally, suppose that after 27 applications of the algorithm, where is a positive 

integer, we obtain two spindle-polygons where at least one of the underlying polygons 
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has self-intersections. Then, on the 2'y-2-th iteration we start with two cyclic spindle-

polygons, but after two more applications of the algorithm they are no longer cyclic. 

This contradicts the preceding discussion. Hence, the two spindle-polygons obtained 

on every even iteration are cyclic. 

Starting from the cyclic spindle-polygons Q and k, we carry out the algorithm for 

each segment contained in another segment. After every odd numbered iteration of 

the algorithm we obtain a single, self-intersecting spindle-polygon and after every even 

numbered iteration we obtain two cyclic spindle-polygons. Since we have finitely many 

vertices and the perimeter increases strictly with each step, the algorithm terminates. 

A simple counting argument shows that the process terminates with two spindle-

polygons. Since the algorithm terminates when there is no segment contained within 

another segment, the only possibility is that each of the the two spindle-polygons 

obtained is n-sided. Since the perimeter increased at each step of the process these 

n-sided cyclic spindle-polygons are the desired S and T. i 

Theorem 3.5.3 Let C be a circle of radius r < 1. Let P be an n-sided cyclic spindle-

polygon of largest perimeter that can be inscribed in C. Then P is regular. 

Proof. Suppose that P is not regular. Starting with P and a suitable rotation of P 

we modify the argument in the proof of the preceding lemma to construct two n-sided 

cyclic spindle-polygons Q and R inscribed in C. By construction, Perimeter(Q) + 

Perimeter(R) > 2 Perimeter(P). Hence, one of Q or R has larger perimeter than P. 

I 

Theorem 3.5.4 Let C be a circle of radius r < 1. Let P be an n-sided cyclic spindle-

polygon of largest area that can be inscribed in C. Then P is regular. 
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Proof. Suppose P is not regular. Let P0 be the regular n-sided cyclic spindle-

polygon with the same perimeter as P. By the discrete isoperimetric inequality for 

spindle-polygons proved in [21], Area(P) <Area(Po). Furthermore, by the preceding 

theorem, P0 is inscribed in a circle CO with radius r0 < r. Thus, P1, the regular 

n-sided cyclic spindle-polygon inscribed in C, clearly satisfies Area(Po) < Area(P1) 

which completes the proof. • 
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Chapter 4 

Generalizing Results in Convexity to Spindle Convexity 

Inspired by classical results in the study of convex sets, this chapter attempts to 

generalize these ideas to spindle-convex sets. 

4.1 Separation 

The idea of supporting a convex set by a hyperplane or separating two convex sets 

by a hyperplane is of fundamental importance in the classical theory. Motivated by 

the following example, we would like to extend the idea of separation and support. 

Suppose that we have a sufficiently small convex body in ]R3 supported by a plane. 

We now replace our surface of zero curvature, the plane, with a surface that has non-

zero curvature. We might wonder under which circumstances is this always possible? 

As first approximation we might try surfaces of constant curvature, spheres. In the 

current framework, where our spindle convex sets arise from intersections of balls this 

idea is very natural. 

This section describes results dealing with the separation and support of spindle 

convex sets by spheres motivated by the basic facts about separation and support of 

convex sets by hyperplanes as they are introduced in standard textbooks; e.g., [17]. 

In this context Y E {R, Htm, §Th}, ry is fixed and in the appropriate radial domain. 

The spheres that we consider as potential candidates for support and separation have 

radius ry. 

Lemma 4.1.1 Let a spindle convex set C C Y be supported by the hyperplane H in 
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Y at x E bd C. Then, the closed ball of radius ry supported by H at x and lying in 

the same half-space as C contains C. 

Figure 4.1: Support by a ball. 

Proof. We use the following initial setup in all spaces Y. Let B[c] be the ball of 

radius ry that is supported by H at x and is in the same closed half-space bounded 

by H as C. We show that BI [c] is the desired ball. Assume that C is not contained 

in B' [q]. So, there is a point y C, y B[c]. 

Consider the euclidean case Y = 1I. By taking the intersection of the configura-

tion with the plane that contains x, y and c, call this plane P, we reduce the general 

problem to a planar problem. The intersection of P and B [c] is a disk, [c, ry], 

which contains x. Furthermore, P fl H is a line in P that supports B, [c, ry] at x 

(Figure 4.1). Let P be the open half-plane contained in P bounded by the line 

P fl H that does not contain B, 2 [c, ry]. Now, the spindle-geodesic connecting x and 

y that does not intersect By (c) ry) intersects Hence, H cannot be a supporting 

hyperplane of C at x, a contradiction. 

Next, consider the hyperbolic case Y = H. We exploit the embedding of the 

Poincaré Ball Model in euclidean space as follows. By translating x to the origin and 
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taking the intersection of the configuration with the euclidean plane that contains x, y 

and c, call this plane F, the current problem reduces to a problem in the euclidean 

plane already examined. As a result of translating x to the origin there are two key 

observations that we now make. First, after the translation, the hyperbolic hyperplane 

H is embedded in a euclidean hyperplane, say H. Thus, the intersection of H and the 

euclidean plane P is a line, call it 1, in P. Second, the spindle-geodesic connecting x 

and y in P is part of a hyperbolic circle with radius ry. Hence, the boundary of the 

disk B [c, ry] and the circle containing the spindle-geodesic connecting x and y are 

congruent as euclidean circles. Thus, if [c, ry] is identified with a euclidean disk, 

embedded in the euclidean plane P where the euclidean line 1 supports the disk at x, 

then the problem reduces to the one in the euclidean plane examined in the preceding 

paragraph. 

Finally, consider the spherical case Y = S. Using stereographic projection, where 

the point x is taken to the origin, reduces the current problem to one in euclidean 

space. The stereographic projection transforms the spherical hyperplane H into a 

euclidean hyperplane. This hyperplane supports the image, under the projection, of 

B [c, ry] at the origin. Furthermore, the projection of the spherical spindle connect-

ing x and y is the euclidean spindle connecting the projections of x and y. Since 

the stereographic projection preserves containments, we may apply the result in the 

euclidean case, proved earlier, to obtain the desired result. • 

The following definition clarifies the notion of a supporting sphere in this context. 

Accordingly, the ball obtained in Lemma 4.1.1 supports C at x and it's boundary 

also supports C at x. 

Definition 4.1.2 If a ball B[c,r] contains.a set Cc Y and a point x E bdC is on 

S 1(c, r), then we say that S'(c, r) supports C at x. If S'(c) r) supports C at x, 
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then we say B[c, r] supports C at x. 

Casually, we may call such a ball a supporting ball and it's boundary a supporting 

sphere. However, it should be noted that there are in fact two kinds of supporting 

spheres that arise in the course of this discussion. The ones that have been identified 

in Definition 4.1.2 can be distinguished as generic supporting spheres. While those 

that arise in the context of ball-polyhedra, and in particular standard ball-polyhedra, 

can be distinguished as standard supporting spheres. We have not discussed standard 

ball-polyhedra, but the idea of standard supporting spheres has a highly specialized 

meaning as we shall see. The generating spheres of a ball-polyhedron are also generic 

supporting spheres according to Definition 4.1.2. However, not all of the standard 

supporting spheres of a standard ball-polyhedron are generic supporting spheres. We 

explore these relations in subsequent chapters. 

The euclidean version of the following corollary appears in [37] without proof. 

Corollary 4.1.3 Let A C Y be a closed convex set. Then the following are equivalent. 

(i) A is spindle-convex. 

(ii) A is the intersection of all balls with radius ry containing A; 

that is, A = B  [By [A]]. 

(iii) For every boundary point of A, there is a ball 

with radius ry that supports A at that point. 

Proof. The implication (i) = (iii) is a restatement of Lemma 4.1.1. Since the 

intersection of spindle-convex sets are themselves spindle-convex, the implication (ii) 

== (i) is trivial. So, all that remains to be checked is (iii) == (ii). 

Since A C By[By[A]], we suppose that there exists x E B[B[A]], but x A. 

Since A and x are closed and convex they can be strictly separated a hyperplane H. 

By applying an appropriate translation to H we may assume that it intersects the 
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boundary of A at a point, say p. By (iii) there is a ball B [c, ry] which supports A 

at p. Clearly c E B [A] so B [B [A]] C B [c, ry] but H strictly separates B [c, ry] 

and x which implies x B [By [A]] for a contradiction. Thus, A D B [B [A]]. I 

Corollary 4.1.4 Let C C Y be a spindle convex set. If cr(C) = ry then C = 

B[q,ry] for some q E Y. 

Proof. Observe that if C has two distinct supporting balls of radius ry then 

cr(C) <ry and if C is not contained in a ball of radius ry, that is cr(C) > ry then 

C = Y. Thus, the assertion follows, a 

Theorem 4.1.5 Let C, D C Y be spindle convex sets. Suppose C and D have disjoint 

relative interiors. Then there is a closed ball B [c, ry] such that C B [c, ry] and 

D C Y\B(c,ry). 

Furthermore, if C and D have disjoint closures and one, say C, is not a ball of 

radius ry, then there is a closed ball B[c, ry] such that C C B(c, ry) and D C 

Y\B [c, ry]. 

Proof. Since C and D are spindle convex, they are convex, bounded sets with 

disjoint relative interiors. So, their closures are convex, compact sets with disjoint 

relative interiors. Hence, they can be separated by a hyperplane H that supports C 

at a point, say x. The closed ball, say B, obtained from Lemma 4.1.1 satisfies the 

conditions of the first statement. 

For the second statement, we assume that C and D have disjoint closures, so the 

ball B, as constructed in the preceding paragraph, is disjoint from the closure of D 

and remains so even after a sufficiently small translation. Furthermore, C is a spindle 

convex set that is different from a unit ball, so there is a sufficiently small translation 

of B that satisfies the second statement. a 
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Definition 4.1.6 Let C, D C Y, c E Y, r > 0. We say that S'' (c, r) separates C 

from D if C C B[c,r] and D Y\B(c,r), or D B[c,r} and C Y\B(c,r). 

If C C B(c, r) and D Y\B[c, r], or D B(c, r) and C Y\B[c, r], then we 

say that C and D are strictly separated by S 1 (c, r). 

4.2 Radon's Theorem 

The following theorem is a generalization of Radon's Theorem. 

Theorem 4.2.1 Let X be a collection of n + 2 points in Y E {RTh, lIP, ?} such 

that cry(X) < ry. Then, the points can be partitioned into two sets such that the 

spindle-convex hulls of these two sets have non-empty intersection. 

Proof. If Y = R n, then by Radon's Theorem the points can be partitioned into 

two sets, say A and B, where the convex hulls of these sets intersect. Since the 

spindle-convex hulls of A and B contain the respective convex hulls of A and B the 

result is immediate. 

Next, if Y = IHITh, then using the embedding of TIP in lR we apply Radon's Theorem 

to the points in euclidean space. Thus, the points can be partitioned into two sets, 

say A and B, where the convex hulls of these sets intersect. In general, the hyperbolic 

spindle joining any two points in JHP contains the euclidean line segment joining the 

two points . In particular, the hyperbolic spindle-convex hull of a collection of points 

in lH[ contains the euclidean convex hull of the same collection of points under the 

embedding of lIP in r. Thus, the spindle-convex hulls of A and B intersect. 

Finally, if Y = STh, then apply a central projection. The projection of X, denoted 

proj(X), is a collection of n + 2 points in R. By Radon's Theorem proj(X) can 
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be partitioned into two sets, say A and B, where the convex hulls of these sets in-

tersect. The pre-images of A and B, denoted proj' (A) and proj' (B) respectively, 

partition X. The spindle-convex hulls of these sets, namely conv (r,y)[proj'(A)] and 

conv (r,y)[proj'(B)], are spherically convex sets in S'. In particular, proj conv (r,y)[proj' (A)] 

and proj conv(r,y)[proj' (B)] are convex sets in RI that contain A and B respectively. 

Thus, 

proj conv(r,y) (proj '(A)] fl proj conv(r,y) [proj 1(B)] 0 

which completes the proof. • 

4.3 Carathéodory's Theorem 

The next theorem is a generalization of Carathéodory's Theorem to ball polytopes. 

Before dealing with the theorem we examine the following lemma. 

Lemma 4.3.1 Let A C IRTh and contained in a unit ball. Then, COflVr A = U COflVr F. 
RCA 
FI≤oo 

Proof. Clearly, cony,. A D U convr F. Next, we show B = U cony,. F is 
FçA Fç A 
IFI≤oo IF]≤oo 

spindle-convex. Let p E B and q E B, then there exist sets F1 and F2 both finite 

and contained in A such that p E cony,. F1 and q E convr F2. Now, F1 U F is finite 

and contained in A and convr(Fi U F) is a spindle-convex set containing p and q. 

Therefore, spin (p, q] g convr(Fi U F2) C B. Thus, B is a spindle-convex set and 

A C B, together these two facts imply that convr A C B. . 

Theorem 4.3.2 Let A C R 2 and contained in a unit ball. Then, convr A = U cony,. F. 
FCA 
IFI≤3 

Proof. We show that cony,. F = U convr C. Let P be the set obtained from F 
GCFCA 
JGI≤3 

by removing all points which do no contribute to convr F. In particular, we remove all 

points of F which are not in spindle-convex position. Observe that convr F = convr P. 
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If JPJ <3 then we are done; otherwise we proceed inductively on the cardinality 

of F. Suppose convr F = U convr C whenever JFJ ≤ k. Next, let IF1 = k + 1. 
GCFCA 
IGI≤3 

There is a natural cyclic ordering of the points in F, so take three consecutive points 

a, b, c E F. Let H be the closed half space bounded by the line through a and c 

containing b and let 112 be the closed half space bounded by the line through a and c 

not containing b. Let C = {a, b, c} and'O = P \ {b}. Since G and 0 are contained in 

F, they are also contained in convr F. Thus, convr F conv , C U convr G. Let x E 

convr F. Without loss of generality assume that x E H. If x 0 cony,, C then the point 

x is not in either of the two circles, one determined by the points a and b and the other 

determined by the points b and c, both containing cony,. C in their closures. These 

two circles also contain cony,. P in their closures, which contradicts the assumption 

x E convr F. Thus, X E COflVr G which implies COflV,. F C COflVr C U COflVr G. 

Thus, COflVr F = COflVr C U cony,. 0. Now, ll ≤ k 50 COflVr 0  = U COflVr G 
GCFA 
IGI≤3 

and IGI = 3, therefore the result is immediate. • 

A rigorous treatment of the higher dimensional case is found in [12]. 

4.4 Helly's Theorem 

A straightforward application of Helly's Theorem provides a proof of the following 

result. 

Theorem 4.4.1 Given a finite family of spindle-convex sets in JRTh containing at least 

n+ 1 members, if every subfamily of at least n+ 1 members has non-empty intersection 

then the whole family has non-empty intersection. 

In an effort to explore Helly type results we look to the next theorem, due to 

Maehara [39], as a possible direction for study. 
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Theorem 4.4.2 Let a be a family of at least n + 3 distinct (n - 1)-spheres in RTh. If 

any n + 1 of the spheres in a have a point in common, then all of the spheres in ' 

have a point in common. 

Maehara points out that neither n+3 nor n+1 can be reduced in Theorem 4.4.2. In 

particular, there is a planar configuration of four circles such that any three intersect 

but not all four share a common point of intersection. This configuration of circles 

in the euclidean plane can be seen in Figure 4.2 and forms part of the proof of our 

next result. First, we prove a variant of Theorem 4.4.2. 

Theorem 4.4.3 Let a be a family of (rt - 1)-spheres in Rn, and k be an integer such 

that 0 ≤ k ≤ m - 1. Suppose that 3 has at least n - k members and that any n - k 

of them intersect in a sphere of dimension at least k + 1. Then they all intersect in 

a sphere of dimension at least k + 1. Furthermore, k + 1 cannot be reduced to k. 

Proof. Amongst all the intersections of any n - k spheres from the family, let 

S be such an intersection of minimal dimension. By assumption, S is a sphere of 

dimension at least k + 1. Now, one of the n - k spheres is redundant in the sense 

that S is contained entirely in this sphere. After discarding this redundant sphere, 

S is now the intersection of only (n - k) - 1 members of the family, but any n - k 

members intersect in a sphere of dimension at least k + 1. So, the remaining members 

of the family intersect S. Since the, dimension of S is minimal, S is contained in these 

members. In particular, ma = S. 

Fixing n and k, 0 ≤ k < n - 1, we show that k + 1 cannot be reduced to k by 

considering a regular n-simplex in R', with circumradius one, and a family of n + 1 

unit spheres centered at the vertices of this simplex. The intersection of any n - k of 
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them is a sphere of dimension at least k, but the intersection of all of them is a single 

point which, as we recall, is not a sphere in the current setting. U 

Theorem 4.4.4 Given a family, a, of at least four congruent circles in the hyperbolic 

plane such that any three intersect then they all intersect. 

Proof. Let A, B, C, D be congruent circles in the hyperbolic plane such that 

any three intersect but not all four do. Consider the conformal ball model of the 

hyperbolic plane. In this model our four circles are euclidean circles. Observe that 

any two circles intersect in exactly two points, because a single point of intersection 

implies all the circles intersect. Also, we may assume that any three circles intersect 

in exactly one point because if any three intersect in two points then all the circles 

intersect. 

Let u and v be points in the conformal ball model of the hyperbolic plane. These 

points are also points in the euclidean plane. Thus, there are two distances between 

these points, the euclidean distance, denoted IuvI8, and the hyperbolic distance, de-

noted IuvIh. 

The circles in our present setting may be interpreted as euclidean circles with a 

euclidean center and a locus of points that are the same euclidean distance from the 

euclidean center. Circles are congruent as euclidean circles if and only if the euclidean 

length of the radii are the same. In this case we say the circles are euclidean congruent. 

The circles may also be interpreted as hyperbolic circles with a hyperbolic center and 

a locus of points that are the same hyperbolic distance from the hyperbolic center. 

Circles are congruent as hyperbolic circles if and only if the hyperbolic length of the 

radii are the same. In this case we say the circles are hyperbolic congruent. 

Let x be the point of intersection of A, B and C. Translate so that x coincides 

with the center of the circle at infinity. Following this translation all four circles 
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remain congruent as hyperbolic circles. Furthermore, the properties that any two 

circles intersect in exactly two points and that any three circles intersect in exactly 

one point continue to hold. Since x lies on the circles A, B and C, the hyperbolic 

centers of A, B and C are the same hyperbolic distance from x. Now, the symmetry 

of the configuration of the circles A, B and C ensures that the euclidean centers of 

these circles is the same euclidean distance from x. Thus, the circles A, B and C 

are congruent as euclidean circles. Furthermore, using the three circle problem D is 

euclidean congruent to A, B and C. 

Suppose that the center of D coincides with x (see Figure 4.2). In this case we 

can easily check that the euclidean centers of A, B and C lie on D. Let e denote the 

euclidean center of B and h the hyperbolic center of B. The hyperbolic radius of D 

is IxeI,,, and the hyperbolic radius of Ixhh. Now, IxeIh < IxhIh, so the four circles are 

not congruent as hyperbolic circles, which contradicts the original assumption. 

Figure 4.2: Center of D coincides with x. 

Thus, the center of D does not coincide with x (see Figure 4.3). Consequently, 

one of the euclidean centers of A, B or C does not lie in the interior of D. Suppose 

that the euclidean center of A, denoted by E, does not lie in D. Let H denote the 
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hyperbolic center of A, e denote the euclidean center of D and h denote the hyperbolic 

center of D. The points x, e and h all lie on a diameter of D with e and h on one side 

of x. Let p denote the point where the diameter meets D on the side opposite e and 

h. 

Figure 4.3: Center of D does not coincide with x. 

Given two circles U and V in the conformal ball model of the hyperbolic plane 

such that they are euclidean congruent but the euclidean distance of the euclidean 

center of U to the center of the circle at infinity is less than the euclidean distance of 

the euclidean center of V to the center of the circle at infinity. Then, the euclidean 

distance and hyperbolic distance between the hyperbolic center of U and the euclidean 

center of U is less than the euclidean distance and hyperbolic distance between the 

hyperbolic center of V and the euclidean center of V. Thus, 1HEIh > IheIi. 

Since, IExI6 = lepl, and both segments contain x which coincides with the center 

of the circle at infinity we get IExIh ≥ jeph. 

The hyperbolic radius of A is 1HEIh + IExIh and he hyperbolic radius of D is 

helh + IepIh, but I HEIh + I ExIh > I he  + Ieph. Thus the circles are not congruent 

as hyperbolic circles, a contradiction. • 
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Theorem 4.4.5 Given a family, %, of at least four horocycles in the hyperbolic plane 

such that any three intersect then they all intersect. 

Proof. Suppose there are four horocycles, A, B, C, D, such that any three in-

tersect, but not all four. Observe that no two intersect in a single point, ideal or 

otherwise. Hence, A and B intersect in two points x and y. Take the three horocycles 

A, B, C. By assumption they intersect in at least a point. Suppose C intersects x and 

y. Since A, B and D have a point in common, and that point must be either x or y, 

we have that A, B, C, D all have a point in common. Thus, C can only intersect one 

of x or y. We may assume it does so at y which means that D intersects x. As noted 

earlier, the horocycle D intersects each of A and B in points other than x, let a and b 

be these points respectively. Since any three horocycles have non-empty intersection, 

C intersects A fl D. However not all four circles intersect, so C passes through a. 

Similarly, C passes through b. 

Line at infinity 

Figure 4.4: The circle through y, a, b is not tangent to the line at infinity. 

Consider the half space model of the hyperbolic plane where the horocycle D is 

one of the horocycles parallel to the line at infinity. In this model we can readily 

observe (see Figure 4.4) that the unique circle through y, a, b is not tangent to the 

line at infinity. In fact, it can be strictly separated from the line at infinity by a 

line parallel to it. However, this circle is C which contradicts the fact that C is a 

horocycle. i 

Similar proofs to the above can be constructed to show the following theorem. 
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Theorem 4.4.6 Given a family, 3, of at least four hypercycles in the hyperbolic plane 

such that any three intersect then they all intersect. 

Finally, the above results can be extended to higher dimensions as demonstrated 

in the following series of theorems. 

Theorem 4.4.7 Given a family, a, of at least n + 2 congruent spheres in hyperbolic 

n-space such that any n + 1 intersect then they all intersect. 

Proof. Suppose there is a family of n +2 congruent spheres in hyperbolic n-space 

such that any n + 1 intersect, but not all do. In this case, translate so that the point 

of intersection of n +1 spheres is at the center of the circle at infinity in the conformal 

ball model of hyperbolic space. These n + 1 spheres are now euclidean congruent but 

from the proof above the last sphere is a smaller euclidean sphere. Furthermore, it 

contains the center of the circle at infinity. Thus, these spheres are not congruent as 

hyperbolic spheres. • 

Theorem 4.4.8 Given a family, !3', of at least n + 2 horospheres in hyperbolic space 

such that any n + 1 intersect then they all intersect. 

Theorem 4.4.9 Given a family, a, of at least n +2 hyperspheres in hyperbolic space 

such that any n + 1 intersect then they all intersect. 
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Chapter 5 

Conclusion 

This thesis has presented a variety of results that are based on topics encountered 

in the study of convexity. They have been examined in the more general context 

of spindle convexity and further broadened by looking beyond euclidean space to 

hyperbolic and spherical spaces as well. Some results followed easily while others 

were not nearly as transparent or simply did not hold. 

In Chapter 2 definitions, notation and preliminary results were laid out. The 

definitions provided the necessary foundation for the subsequent discussion. The 

notation provided for a streamlined discussion and many results that held in all three 

spaces were easily presented. 

The next chapter, Chapter 3, was the starting point of our exploration into this 

subject. The key results dealt with the monotonicity of the perimeter of spindle poly-

gons. In particular, we showed that the perimeter of spindle polygons is minimal for 

cyclic spindle polygons and extended Dowker's results to inscribed spindle polygons. 

We concluded the journey in Chapter 4 by demonstrating the failure of certain 

Helly type theorems in hyperbolic space. The failure was the result of a particular 

configuration of circles in euclidean space. This result is surprising in light of the fact 

that the planar euclidean equivalent holds. 
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