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Abstract

Three-dimensional terrain models play a key role in many applications. Line-of-sight queries,

which are important operations in some applications (e.g. battlefield simulations), test

whether or not two entities can see each other over the terrain. Given enough entities and a

large enough terrain, computing these queries can be expensive. Terrain simplification can be

used to speed up the queries, with a penalty to accuracy. To take advantage of the especially

fast algorithms that exist for regular terrain models, we introduce regularity-preserving ter-

rain simplification methods based on reverse subdivision and examine their effect on query

accuracy. Furthermore, we develop a novel feature preserving reverse subdivision scheme

that attempts to improve query accuracy over the pre-existing methods.

Additionally, we have examined the problem of where entities should be located after ter-

rain simplification to maximize accuracy. Using iterative methods that attempt to maximize

accuracy, we show that room for improvement exists over the standard projection method.

Then, we develop practical relocation methods designed to maximize accuracy over regular

simplified terrain models, the first taking a hybrid approach between projection and no re-

location and the second using residual vectors to map entities onto the simplified terrain.

Accuracy improvements over these basic methods can be achieved by making use of the

iterative methods in a pseudo-optimization pre-processing step.

Finally, we introduce a practical line-of-sight algorithm based on hierarchies of simplified

terrains that is both fast and accurate. Our approach combines two existing algorithms,

using each of their strengths to achieve highly efficient line-of-sight queries in local areas.
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Chapter 1

INTRODUCTION

Any application modeling a virtual world with a ground deals with some notion of a terrain

model. Given modern three-dimensional graphics technologies, representing and process-

ing three-dimensional terrain models have become especially important. These models are

often found in two different data formats: digital elevation models (DEMs) and triangu-

lated irregular networks (TINs) [Duvenhage, 2009]. Digital elevation models, also known as

height maps, are quadrilateral (i.e. valence 4) grids of terrain elevation values, and are a

well-accepted format for storing terrain data (see Figure 1.1(a)). Data from NASA’s Shuttle

Radar Topography Mission (SRTM) and the U.S. Geological Survey (USGS), for instance,

can be found in height map format. Triangulated irregular networks are polygonal meshes

composed of triangles, and are irregular in general (see Figure 1.1(b)).

(a) DEMs are regular grids of elevation values. (b) TINs are polygonal meshes composed of trian-
gles.

Figure 1.1: An illustration of the two data formats for terrain models.

An important quality of DEMs is the quality of regularity. A terrain model is said to be

1



Figure 1.2: A line-of-sight query tests if two entities can see each other over a terrain.

regular if it has a grid-like structure, i.e. its interior vertices all have the same valence, and

the connectivity of the boundary vertices is consistent with the connectivity of the interior

vertices.

A data structure specifically designed for regular terrains offers several advantages over

those for general (regular and irregular) terrains. Firstly, a regular terrain’s connectivity

is implicit, and need not be stored in memory. Secondly, in cases where the terrain’s ele-

vation values are evenly spaced along latitudes and longitudes, the lat/long coordinates of

each elevation point can be calculated and would also not need to be stored. Finally, and

quite importantly, a terrain with regular structure lends itself well to two-dimensional array

indexing, allowing for faster data access than on a comparable irregular terrain.

Among computer graphics applications that make use of terrain models (such as video

games and GIS), real-time simulations have high performance requirements. All computa-

tions and rendering must be done in real-time, and a high degree of accuracy is expected.

Line-of-sight (LoS) queries compute whether or not a sight line between two entities inter-

sects and is thus obstructed by the terrain (see Figure 1.2),1 and they can slow down such

a simulation to unacceptable levels. The problem is exacerbated when given a high number

of testing entities and/or a large, detailed terrain model. These situations respectively in-

troduce additional LoS queries to compute and additional faces/elevation values over which

1Although we treat entities as points, it is possible to compute visibility between 3D objects by cast-
ing multiple lines-of-sight from the observer position (e.g. an eye) to the viewed object, as in viewshed
computation and supersample anti-aliasing.
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LoS queries must check for obstruction.

While LoS queries can raise an application’s run time, they are a vital computation in

certain applications and can not simply be discarded. In a military battlefield simulation,

for example, the entities’ (soldiers, tanks, planes, etc) decision-making process often relies

on whether or not their target is visible. In such applications, ensuring the LoS queries can

be performed in real-time is a pressing issue.

One approach that has been taken to speed up the LoS queries is terrain simplification

[Ben-Moshe et al., 2002]. As noted in [Heckbert and Garland, 1997], simplifying a terrain

model has many practical uses. Reduced model complexity lowers the memory require-

ments, rendering time, and network transmission time of a terrain. In addition, a simpler

terrain results in gains in speed and efficiency for computations involving shape information;

such as finite element analysis, collision detection, and shape recognition. Particularly im-

portant to our research is the gains in speed and efficiency for LoS queries resulting from

terrain simplification. Simplifying the terrain model produces a speed-up in LoS query per-

formance by a constant factor, but also introduces inaccuracies into the computation, and

is particularly useful if the terrain is more detailed than is needed by the application or is

simply too large to fit comfortably into main memory.

One of the questions that arises in this situation is which terrain simplification method

should be used. In most applications, terrain simplification is expected to produce a com-

binatorially simpler model that minimizes the vertical distance error or is visually similar

to the original model [Ben-Moshe et al., 2002]. Within this problem domain, however, the

simplification is expected to maximize visibility test accuracy. The resulting model can be

transformed and deformed in any way so long as accuracy is preserved.

Due to the fast data access for regular terrains (i.e. DEMs), LoS algorithms over DEMs

have superior run times to those over irregular terrains [Seixas et al., 1999]. Hence, as regular

terrains feature both low memory usage and fast visibility algorithms, it is particularly

3



(a) A regular grid of
data points.

(b) The rows of the
grid are simplified us-
ing a curve scheme.

(c) The columns are
simplified using a curve
scheme

(d) The resulting sim-
plification.

Figure 1.3: An illustration of regularity preserving simplification, achieved by applying curve
simplification (represented by the red rectangles) on the rows and columns of the regular
terrain. The white dots represent data points/elevation values. The outlines of data points
removed during simplification are shown on the rectangles.

desirable to preserve regularity in the simplification process.

An easy way to achieve regularity preservation in a terrain simplification scheme is to

begin with a curve simplifying scheme and apply it to the rows and columns (u-curves and v-

curves) of the regular terrain (see Figure 1.3). This is the approach we have taken. A suitable

curve simplification scheme would need to ensure that curves with equal numbers of points

before simplification will still have equal numbers of points after simplification, otherwise it

will be impossible to connect the curve points in a regular manner. Additionally, DEM data

points are often equally spaced along two dimensions, allowing the terrain to be specified

almost entirely using only the data for the third dimension (i.e. the elevation values). Though

not required, the curve simplification scheme should maintain or approximate this equal

spacing between the data points, if it exists, for the memory savings and to avoid dealing

with any spacing differences within the LoS algorithms.

A simplification scheme that satisfies these requirements is reverse subdivision. Forward

subdivision introduces new points into a curve or surface in a deterministic manner. Reverse

subdivision simplifies a curve or surface as an approximate inverse of this process. These

two techniques can be combined into a multiresolution framework that provides a multiscale

representation of a curve/surface, allowing an application to transition between several levels

4



of resolution without loss of data.

Although simplification methods attempt to preserve the shape of the terrain, changes

are inevitable. Therefore, it is also important to preserve the accuracy of the LoS queries.

The accuracy of a LoS computation is the ratio of queries computed correctly to the total

number of queries (see Section 2.1). After simplification, the entities should be mapped to

new positions to account for changes in the terrain geometry. Standard practice is to project

entities vertically onto the terrain, which makes sense for simplified terrains that minimize

vertical distance to the original terrain. However, for terrain simplifications that maximize

visibility test accuracy instead, projection may not be the wisest choice. Because the shape

of the terrain and the entity positions together determine the LoS query results, it would

seem that different simplification methods require different point relocation schemes.

1.1 Motivation

The primary motivation of our work is the use of LoS queries in real-time simulation appli-

cations, particularly military battlefield simulations. Early on, we were approached by C4i

Consultants, our industrial collaborator on this work, who have been developing a construc-

tive simulation for the purposes of training leaders and command staff.

In battlefield simulations, numerous mobile combatants (or entities) are spread over a

terrain. Whether a combatant can see its target or not is vital to its decision making process,

requiring many different LoS queries to be performed from each combatant to its enemies.

Additionally, as combatants move the visibility information will change from moment to

moment.

Hence, LoS query computations must be

• fast on a local scale, as combatants will tend to converge on key locations/battlefields

(see Figure 1.4) and may have limitations on effective sight-line distance (to

simulate visual acuity limitations);
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Figure 1.4: A map of the Western Front, 1914. Notice how the majority of combatants are
locally concentrated along the front. This image was downloaded from [Wikipedia, 2013b]
and is in the public domain.

• fast on a global scale, for when combatants are spread out or do not have such

limitations (e.g. when visual acuity is enhanced by binoculars, telescopes, etc);

and

• accurate, so that the query results are consistent with the simulated world.

Existing LoS query approaches were not meeting the needs of our industrial collaborator,

as they were prohibitively slow. Moreover, the initial algorithm used by C4i did not attain

an acceptable rate of accuracy. The need to meet these requirements was a strong motivator

of our research into this area.
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1.2 Problems and Challenges

Due to the presence of fast visibility algorithms over DEM terrain models, and the ubiquity of

such models, we have chosen to focus our work on regular terrains and LoS query algorithms

over them. An important challenge arose from this choice; namely, the problem of preserving

a DEM’s regularity during terrain simplification. Ensuring that a terrain remains regular

after simplification places an enormous restriction on the scope of simplification methods

that may be considered and any modifications that may be applied to them. At the outset

of this research, it was unclear if the restriction to simplification methods that preserve

regularity would have a significantly adverse effect on LoS query accuracy in comparison to

more general simplification methods.

The nature of our LoS queries presented additional challenges. Unlike video games and

flight simulators, in which LoS queries are usually conducted on a one-to-many basis (from

the user-controlled entity to non-user entities), military simulations (the focus of our re-

search) feature many-to-many LoS queries. Given n entities, the task of such a simulation

is to compute O(n2) LoS queries in real time with a high degree of accuracy. The main

challenge of our work has been to meet these requirements without placing any restrictions

on the number of entities n.

The many-to-many nature of the problem reduces the utility of techniques that compute

visibility with respect to a single entity (e.g. view-frustum culling and occlusion culling).

Furthermore, many methods related to visibility computation operate on static scenes, and

cannot efficiently handle the dynamic environment of a military simulation wherein entities

are constantly changing position in an open-space environment. Pre-computing the visibility

information would require the storage, for each vertex of the terrain, a viewshed map for

the region of the terrain within viewing distance of the vertex (in the case of no sight line

distance limitations, this would be the entire terrain). For particularly large terrains, this

method is impractical.

7



Speeding up LoS queries using terrain simplification has some weaknesses, which pre-

sented an additional challenge during our research. A simplification offers a constant increase

in speed in LoS queries; further speed increases require further simplification, and therefore

further loss in accuracy. This accuracy drop affects even localized LoS queries, which may

be fast enough even without terrain simplification.

1.3 Methodology

Methods studied in the field of terrain simplification have been applied to the problem

of LoS query speed optimization in the work of [Ben-Moshe et al., 2002]. We have used

this methodology in our work and applied regularity-preserving terrain simplification in the

context of LoS query optimization.

We introduce reverse subdivision (from the field of curve and surface modeling; see

[Samavati and Bartels, 1999]) to the visibility problem domain (see Figure 1.5(a)). In this

work, we study several reverse subdivision schemes to achieve regularity-preserving ter-

rain simplification. Taking inspiration from the ridge and valley preservation technique in

[Ben-Moshe et al., 2002]’s novel simplification method, a novel reverse subdivision algorithm

is developed that uses least squares error minimization to preserve the ridges and valleys of

the terrain after regularity-preserving simplification.

Point relocation, as we refer to it, is the mapping of entities to new positions to improve

visibility test accuracy after applying terrain simplification (Figure 1.5(b)). To relocate

entities after simplification, we consider several point relocation methods and their impact

on LoS query accuracy.

We first consider an optimization framework for point relocation to show that room for

improvement exists over the standard projection method. Using iterative methods inspired

by iterative optimizations, we estimate the optimal positions for entities, with emphasis on

a theoretical perspective rather than a practical real-time implementation. Afterwards, we
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(a) Regularity-preserving terrain simplifica-
tion can be used to speed up queries.

(b) Point relocation adjusts the positions of
the entities in the simplified space.

(c) Based on the expected run-time of a
query, a simplified terrain can be chosen from
a hierarchy such that the query will be both
fast and reasonably accurate over the terrain.

Figure 1.5: We approach line-of-sight query optimization via three techniques: regularity-p-
reserving terrain simplification, point relocation, and a hierarchical algorithm.

shift our focus from general theory to improving accuracy over simplified regular terrains

in real-time. Specifically, we develop two practical relocation methods for regular terrains.

The first is a simple hybrid approach of projection and no relocation. The second, which

generalizes projection, uses residual vectors as relocation vectors to map entities to the

simplified terrain. A pre-processing step based on our iterative estimation methods can be

used to improve the methods’ overall accuracy.

Unfortunately, terrain simplification and point relocation — even when paired with fast

LoS query algorithms — can only offer a constant speed up. Further gains in speed are offset

by drops in accuracy for all LoS queries. We identified a solution to this issue: only those

LoS queries that require speed optimization would be expedited and affected by a drop in

accuracy.
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We formalize our solution to this problem in a LoS query algorithm that combines existing

techniques to compute local visibility information quickly with a low cost to accuracy. Using

terrain simplification, we generate a hierarchy of progressively simpler versions of the original

terrain (Figure 1.5(c)). Each LoS query between two entities is computed over one of the

terrain variants in this hierarchy based on the expected run time of the query.

1.4 Contributions

Our work introduces reverse subdivision to the context of speeding up LoS queries using

terrain simplification and examines the impact on LoS query accuracy. Due to the regularity-

preserving simplification behaviour of reverse subdivision, fast LoS algorithms that operate

exclusively on regular terrains may still be used on terrains simplified in this way.

Additionally, we contribute a novel reverse subdivision method, feature aware reverse

subdivision, specifically designed to improve LoS query accuracy. The method attempts to

preserve features identified as critical to visibility (ridges and valleys).

Secondly, our work defines and explores the concept of point relocation. Using our

iterative estimation methods, we show that projection may not always be the best choice for

relocating entities onto a simplified terrain. We introduce practical relocation methods for

reverse subdivided terrains that preserve LoS query accuracy well, and apply our iterative

estimatation methods in a pre-processing step to improve the resulting accuracy.

Finally, we have developed a hierarchical LoS query algorithm that addresses the needs of

military battlefield simulations. The algorithm combines two existing algorithms, using the

strengths of each to overcome the weaknesses of the other. A hierarchy of reverse subdivided

terrains allows LoS queries to be computed with a level-of-detail approach. Queries expected

to be fast are computed on higher-resolution versions of the terrain, resulting in higher overall

accuracy.

These contributions have been published in two separate venues. In our conference pa-
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per, Reverse Subdivision for Optimizing Visibility Tests [Alderson and Samavati, 2012], we

present our feature aware reverse subdivision method and explore the concept of point re-

location using the projection, identity, and half projection methods. Our journal paper,

Optimizing Line-of-sight Using Simplified Regular Terrains [Alderson and Samavati, 2014],

introduces our iterative estimation methods, residuals relocation method, and hierarchical

LoS algorithm.

1.5 Thesis Overview

We begin in Chapter 2 with background and related work. Chapter 3 follows with an

overview of the terrain simplification methods used throughout the work, including our novel

reverse subdivision algorithm designed to maximize visibility test accuracy. In Chapter 4, we

describe point relocation — what it is, why we have chosen to study it, and our approaches

to it. A description of Bresenham’s line algorithm and the min/max quad tree algorithm for

computing LoS queries, and the hierarchical LoS algorithm we developed around them, may

be found in Chapter 5. Finally, Chapter 6 contains our comparison results and discussion,

followed by Chapter 7 with our conclusions and directions for future work.
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Chapter 2

BACKGROUND AND RELATED WORK

There exists a wealth of literature on the subjects of line-of-sight computation, terrain sim-

plification, and subdivision methods. However, there appear to be few works that combine

all three. Here we provide necessary background on these three topics, including related

work and a brief overview of subdivision and multiresolution. First, however, we present the

various mathematical definitions used throughout the paper.

2.1 Definitions

As in the work of [De Floriani and Magillo, 1993], a terrain model T is defined as a function

T : R2 → R that takes points (x, y) in a rectangular region D ⊂ R2 and maps them to

elevation values T (x, y).

Consider a terrain model T and a set of 3D points P = {p1, p2, . . . , pn} on T (see Fig-

ure 1.2, for example). Let O(p) be the observer position for any p ∈ P , which is offset by

a certain height from p. We define a line-of-sight query over terrain T to be a function,

VT : R3 × R3 → {0, 1}, such that

VT (p1, p2) =


1 if the sight line between O(p1) and O(p2)

is unobstructed by T ,

0 otherwise.

Note that VT (p1, p2) = VT (p2, p1). For the purposes of this work, we ignore all factors other

than the terrain (such as weather, eyesight impairments and limitations, the direction in

which an entity is facing, etc) that can impact visibility for either entity.

We define a LoS query algorithm to be a function A such that
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A(T, p1, p2) =


1 if the sight line between O(p1) and O(p2)

is thought to be unobstructed by T ,

0 otherwise.

Note that this definition allows for some inaccuracies in the computation of VT using algo-

rithmA. We define the accuracy of algorithmA acting on T and P , as in [Ben-Moshe et al., 2002],

to be the ratio of the number of queries computed correctly to the total number of queries.

More formally,

Acc(A, T, P ) = 1−
∑n−1

i=1

∑n
j=i+1 |VT (pi, pj)− A(T, pi, pj)|(

n
2

) .

Accuracy can additionally be given in terms of the rate of true positives (resp. true nega-

tives). This is the ratio of the number of queries correctly computed as unobstructed (resp.

obstructed) to the total number of unobstructed (resp. obstructed) queries.

A terrain simplification method is a function S that accepts a terrain model T and

outputs a simplified version S(T ). A relocation method is a function R that accepts a point

p ∈ R3 and outputs a relocated point R(p) ∈ R3.

We can approximate VT by computing VS(T ) with point set R(P ). Given a LoS query

algorithm A, the computation of such an approximation is implicitly performed using a new

algorithm AS,R, defined such that

AS,R(T, p1, p2) = A(S(T ), R(p1), R(p2)).

2.2 Line of Sight

[De Floriani and Magillo, 1993] identified three variants of the visibility problem and pre-

sented some algorithms for solving them. Given an observer position p, the three problems

are given as follows:
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• Point visibility, which determines from a set of candidate points Q the subset

Q′ ⊆ Q visible from p (called the discrete visible region of p).

• Line visibility, which computes the horizon of the terrain with respect to p.

That is, we determine the function φ = h(θ) such that, for each azimuthal

angle θ ∈ [0, 2π), φ is the maximum polar angle such that the ray defined by

spherical coordinates (r, θ, φ) for all r ∈ R+ does not intersect the terrain.

• Region visibility, also known as viewshed analysis, which finds the regions of

the terrain that are visible from p.

Our research concerns point visibility in the many-to-many case. Here, we consider a set

of positions P and, for each p ∈ P , wish to find the subset Qp ⊆ P visible to p.

Several fast algorithms have been developed for point-to-point LoS computations over

DEMs and TINs. The main challenge that any LoS algorithm must address is the question

of how to efficiently identify and traverse the region(s) of the terrain that lie along the path

of the sight line. Higher resolution terrains feature more faces that must be culled from the

computation or traversed, increasing algorithm run-time.

Bresenham’s line algorithm [Bresenham, 1965] is a well-known algorithm developed to

plot a line segment on a raster grid (see Figure 2.1). The algorithm traverses and colours the

raster cells along the path of the line segment by using the line’s slope to increment/decrement

the raster indices of the current cell. It can be optimized to use only integer operations by

considering the difference in x and y coordinates between the two endpoints (which are used

to calculate the slope).

The algorithm can be adapted for DEMs to traverse the path of a sight line and, rather

than colour the cells, compare elevation values along that path against the sight line (as

described in [Seixas et al., 1999], see Figure 2.2). The algorithm is linear in the Manhattan

length of the sight line. An efficient implementation of Bresenham’s line algorithm can be

found in Michael Abrash’s book on graphics programming [Abrash, 1997].
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Figure 2.1: An illustration of Bresenham’s line algorithm. This image was downloaded from
[Wikipedia, 2014] and is in the public domain.

Spatial subdivision can be used to produce an algorithm that is asymptotically faster

than Bresenham’s algorithm, on average. [Duvenhage, 2009] uses a min/max quad tree

to quickly cull regions of the terrain that lie completely under or over the sight line (see

Figure 2.3). Each leaf node of the quad tree holds an elevation value. At each non-leaf node,

the minimum and maximum elevation values of the node’s descendants are stored. If the

sight line over a node lies above its maximum elevation, then it does not intersect the terrain

over that node and its children need not be traversed. If part of the sight line over the node

lies under its minimum elevation, then the sight line definitely intersects and the result may

be returned. The algorithm is logarithmic (in terms of the Manhattan length of the sight

line) on average. The quad tree used by the algorithm can also prove useful for other spatial

queries.

An R-Tree [Guttman, 1984], which tracks spatial data objects in a multi-dimensional

space, can be used to implement an efficient LoS algorithm on TINs. Each node of an R-

Tree contains a set of data pairs, each containing a pointer to either a spatial data object

(in this case, the triangle faces of the terrain) or a child node paired with a bounding

rectangle that encapsulates the object or child. The LoS algorithm using R-Trees described

in [Seixas et al., 1999] proceeds in two steps. First, the sight line is intersected with the

bounding rectangles of the tree nodes. Then, the sight line is intersected with those terrain
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p1
p2

p1
p2

(a) LoS query returning visible under Bresenham’s algorithm.

p1 p2
p1 p2

(b) LoS query returning not visible under Bresenham’s algorithm.

Figure 2.2: An illustration of Bresenham’s algorithm adapted to LoS queries. The
line-of-sight is shown as a dashed line.

p1
p2

maximum elevation

minimum elevation
(a) The sight line lies completely above a re-
gion of the terrain covered by a quad tree
node, hence the sight line is known to be un-
obstructed over this region.

p1

p2

maximum elevation

minimum elevation

(b) Part of the sight line lies below a region of
the terrain covered by a quad tree node, hence
the sight line is known to be obstructed.

Figure 2.3: An illustration of the min/max quad tree algorithm. The line-of-sight is shown
as a dashed line.
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faces whose bounding rectangles were intersected in the first step. If an intersection is found,

the entities are not visible to each other.

The implicit connectivity of regular models allows for data structures featuring efficient

storage, addressing, and data access. This would suggest that visibility algorithms over

DEMs should be computationally more efficient than visibility algorithms over TINs. In

[Seixas et al., 1999], the authors compared the run times of two LoS algorithms which oper-

ate on similar principles — Bresenham’s line algorithm for regular terrains and the R-tree

algorithm for irregular terrains — and found Bresenham’s algorithm to be more efficient in

both run time and memory usage.

[Franklin and Ray, 1994] present a fast algorithm for computing viewshed analysis on

regular terrains, known as Xdraw. Given an observer position p, the algorithm grows a

square ring out from the observer. For each elevation point e along the perimeter of the ring,

a LoS r is cast from p to e. If the slope of r is less than the greatest LoS slope encountered in

the same direction as r, then e is not visible from p, else e is visible from p and the greatest

slope is updated to the slope of r. See Figure 2.4 for an illustration of the fundamental idea

behind the algorithm.

In [Andrade et al., 2011], the authors adapt Franklin and Ray’s algorithm to perform

viewshed queries on terrain in external memory. I/O operations on external memory form

the bottleneck for the algorithm, and so were minimized to keep the algorithm fast. In

general, because of the slow speed of I/O operations on external memory it is preferable for

the terrain to reside completely in main memory. For particularly large terrain data sets,

terrain simplification can prove useful.

2.2.1 Occlusion Culling

A related field of work is occlusion culling and hidden surface removal in rendering, which

determines what objects are visible from a viewpoint so that time is not wasted rendering oc-

cluded objects. See [Cohen-Or et al., 2003] for a survey of occlusion culling for walkthrough
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p

(a) A square ring of elevation val-
ues (highlighted in green) is considered
about p.

p

(b) The square ring grows with each it-
eration.

p e

(c) Point e is not visible to p because the LoS between
them has a smaller slope than the greatest LoS slope yet
encountered.

Figure 2.4: An illustration of Franklin and Ray’s Xdraw algorithm.

applications. Notably, many of these techniques are designed to operate on static scenes

with many occlusions (e.g. urban environments or building interiors), and are not suited

to the dynamic and wide-open environment of simulations with many entities on a terrain

model. Furthermore, several techniques are designed for use from a single viewpoint and do

not scale well to LoS queries from multiple entities.

For instance, [Wonka, 2001] presents three algorithms for computing occlusion culling

in an urban environment for real-time walkthroughs: the first an online algorithm that

uses occluder shadows, the second a precalculation of visibility between view cells that dis-

cretize the scene, and the third an algorithm that runs parallel to the rendering pipeline

which uses occluder shrinking to compute a visible set that is valid for several frames.

[Funkhouser et al., 1992] use spatial subdivision, visibility analysis and a display database

containing objects at several levels-of-detail to implement real-time walkthroughs through a
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high-resolution building interior.

In [Greene et al., 1993], the authors use a hierarchical z-buffer that combines an object-

space octree with an image-space z-pyramid (i.e. z-buffer quad tree) to perform occlusion

culling. This technique is useful for rendering from a single viewpoint, but is ineffective at

performing LoS queries between many entities.

[Sudarsky and Gotsman, 1999] present a technique to efficiently handle mobile entities

within data structures designed for static scenes (e.g. the object-space octree of Greene

et al.). When an object/entity becomes hidden from view, it is replaced within the data

structure by a temporal bounding volume (TBV) — a volume guaranteed to contain the

entity for some length of time. Until that length of time expires or the TBV enters the

view, the hidden entity is ignored, significantly reducing the number of updates to the data

structure. As with other methods, this technique is useful for a single viewpoint, but the

presence of multiple entities conducting LoS queries is likely to invalidate TBVs fairly rapidly.

2.3 Terrain Simplification

The study of terrain model simplification has existed for decades, and research into this area

has produced a number of unique simplification algorithms. See [Heckbert and Garland, 1997]

for a survey. Simplification methods are usually categorized into refinement methods, which

continually refine an initial coarse approximation of the terrain, and decimation methods,

which continually remove elements of the original terrain model.

Many simplification methods introduce irregularities in the general case. A sampling of

several such methods are described here.

2.3.1 Refinement Methods

[Garland and Heckbert, 1995]’s greedy insertion algorithm is a generalization to 3D polyg-

onal surfaces of [Douglas and Peucker, 1973]’s algorithm for approximating curves. The
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algorithm starts with a coarse approximation of the terrain model and iteratively refines the

mesh by adding to the approximated terrain the mesh vertex that is vertically furthest from

it.

Often, this process will result in long, thin triangles. Hence, to ensure mesh quality, the

mesh is restricted to a Delaunay triangulation. After the addition of each new vertex, the

surrounding faces are evaluated for the Delaunay condition in 2D (ignoring elevation). If the

condition is not satisfied, the faces are re-triangulated by flipping edges.

Of note is that the greedy insertion algorithm will prioritize approximating high energy

areas of the terrain, as vertices in these areas will generally be furthest from the approxima-

tion. Thus, low energy areas of high energy terrains are approximated relatively poorly.

The greedy cuts algorithm of [Silva et al., 1995, Silva and Mitchell, 1998] incrementally

removes regions (or, in Silva et al.’s terminology, takes “bites”) out of the yet-to-be-triangulated

original terrain using three basic operations: ear cutting, greedy biting, and edge splitting.

To form the simplified terrain model, each bite region is approximated with a triangle with

some user-specified error tolerance ε. A triangle t is said to be feasible with respect to ε (and

thus meets the error tolerance) if, for every vertex v of the regular terrain T that lies in the

projection of t onto T , the vertical distance from v to t is at most ε.

The algorithm maintains a list of untriangulated simple polygons P . If there exists

a triangle uniquely defined between two boundary edges of P that is feasible, then that

triangle is removed from P and added to the simplification. This operation is known as ear

cutting.

If no feasible “ear” can be found, greedy biting traverses the boundary edges of P and

searches for a point v within P such that the triangle formed between v and the edge is

feasible. This operation may divide P into two disjoint polygons.

Edge splitting is a last resort operation for cases in which ear cutting and greedy biting

fail. Here, the algorithm searches for an edge of P to split, starting with the longest edge,
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such that a feasible triangle results. This operation is noted to produce skinny triangles,

which are undesirable.

2.3.2 Decimation Methods

Iterative vertex contraction, or edge collapsing, is a mesh decimation paradigm in which

edges deemed to be unimportant via some importance metric have their endpoints merged

into a single point [Garland, 1999].

Edge collapse schemes differ from each other primarily in the metrics used to select edges

for contraction. A shape preserving edge collapse scheme based on Garland and Heckbert’s

quadric error metric [Garland and Heckbert, 1997, Garland, 1999] is one such method, which

we refer to as quadric error metric-based edge collapse (or QEC, for short).

In QEC, a set of planes Fv is associated with each vertex v of the terrain model, obtained

by extending the faces incident to the vertex to infinity. For a given edge e, let p be the

point that e will collapse to. The error resulting from collapsing the edge to p is computed

as the sum of the squared distances from p to each of the planes in Fe1 and Fe2 , where e1

and e2 are the endpoints of e. This squared distance sum can be efficiently computed using

matrix multiplication. Ideally, p should be chosen as a point that minimizes the error.

QEC carries no guarantees for boundary preservation. The effects of boundary degenera-

tion can be reduced by applying some boundary constraints, as described in [Garland, 1999].

This is accomplished by associating an additional plane with Fv for vertices v along the ter-

rain boundary.

For each boundary edge e, an additional plane passing through e and perpendicular to

the boundary face incident to e is added to Fei , for each endpoint ei of e. Note that this is a

soft constraint, and does not eliminate boundary degradation. While boundary preservation

is important to visual quality, its effect on LoS accuracy preservation is uncertain.
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2.4 Subdivision, Reverse Subdivision and Multiresolution

The processes of subdivision, reverse subdivision, and multiresolution are highly important

to our work. Here we provide an overview of work done in the field, followed by a brief

description of these processes.

Forward and reverse subdivision have gained prominence in recent years as an important

geometric modeling technique, the latter of which can be used for simplification. Together

these schemes form the basis of multiresolution frameworks [Samavati et al., 2007]. Mul-

tiresolution provides a multi-scale representation of a model and has several applications,

the most obvious of which is multi-scale editing.

Multiresolution has additional use in synthesis applications. In [Brosz et al., 2008], the

authors use multiresolution details to synthesize terrains by example. They apply a decom-

position process on a detailed terrain and then apply the resulting multiresolution details

onto a target terrain, producing a terrain with the shape of the latter but the details of

the former. The work of [Wecker et al., 2010] uses a similar process to synthesize new iris

images.

For the sake of simplicity, we limit our discussions of subdivision and multiresolution

to curve schemes. It is easy to generalize a curve simplification scheme to a regularity-

preserving terrain simplification scheme, as one need only apply the curve scheme to the

rows and columns (i.e. the u-curves and v-curves) of the regular terrain.

2.4.1 Subdivision

Subdivision is a family of methods that introduce new points into an existing curve, with a

continuity constraint. The resulting curve can be subdivided as well, ad infinitum.

Several subdivision schemes are derived from knot insertion into B-Spline curves. Ap-

plying such a subdivision scheme to a curve’s control points will return the set of control

points for a curve with identical shape but additional knots at the midpoints of the original
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knot values. The limit curve of such schemes when repeatedly applied will be a discretized

B-Spline curve. The subdivision schemes that converge to first-order, second-order, third-

order, and fourth-order B-Spline curves, respectively, are Haar, Faber, Chaikin, and Cubic

subdivision.

Curve subdivision schemes are simple to understand and can be easily represented in

matrix notation. Given a vector of curve points c, a subdivision scheme is a linear transfor-

mation P that produces a refined vector of curve points f = Pc. An alternative Lindenmayer

system (L-system) notation also exists, presented by [Prusinkiewicz et al., 2003], which bet-

ter reflects the local nature of many subdivision schemes.

Consider, for instance, Faber subdivision. This scheme, which is named after Georg

Faber [Samavati and Bartels, 1999], forms the basis for our reverse subdivision schemes, for

reasons outlined in Section 2.4.4. It replicates the behaviour of knot insertion into a second-

order B-Spline curve. Put simply, when applied to a curve the scheme introduces midpoints

between the existing vertices, producing a new curve with C0 continuity (see Figure 2.5).

If c is a vector containing the points of the starting curve, and f is a vector containing

the points of the resulting curve, then Faber subdivision is a linear transformation P with

matrix form:

P =



1 0 0 · · · 0

1
2

1
2

0 · · · 0

0 1 0 · · · 0

0 1
2

1
2
· · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1



(2.1)

and f = Pc. Note that P is rectangular, so that P applied to c will yield a greater number
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Figure 2.5: Faber subdivision applied to a curve. The shape of the curve remains unchanged;
only the number of vertices is affected. Orange vertices are introduced after one application
of subdivision, blue vertices after two.

of points. Note also that in this case P is sparse and banded, with a repeating local pattern.

Many subdivision schemes share this behaviour and can be implemented in linear time, and

can additionally be represented compactly by an ordered list of filter values which capture

the repeating pattern of the columns of P . For Faber subdivision, these filter values are

{1
2
, 1, 1

2
}.

Better known curve subdivision schemes include [Chaikin, 1974]’s corner cutting scheme

(see Figure 2.6) and the interpolatory scheme of [Dyn et al., 1987]. The limit curves of these

schemes (a B-Spline curve in the case of Chaikin) both have C1 continuity. Their filter values

are

{1
4
, 3

4
, 3

4
, 1

4
}

for Chaikin subdivision, and

{− 1
16
, 0, 9

16
, 1, 9

16
, 0,− 1

16
}

for Dyn-Levin subdivision.

Subdivision schemes are not limited to curves, and can be generalized to arbitary topology

surfaces. Of particular note is [Catmull and Clark, 1978]’s scheme; a generalization of cubic

B-spline subdivision to surfaces. The generalization of Chaikin’s corner-cutting curve sub-

division scheme to surfaces was described in [Doo and Sabin, 1978]. Dyn-Levin subdivision
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Figure 2.6: Chaikin’s corner cutting scheme applied to a curve.

was extended to surfaces by [Dyn et al., 1990]. See citeCashman2012 for a survey.

2.4.2 Reverse Subdivision

Reverse subdivision attempts to reverse the subdivision process. These schemes simplify a

curve or surface (i.e. remove points) such that the simplified version, once subdivided by the

corresponding subdivision scheme, will yield an approximation of the original curve/surface.

However, as with any simplification, high resolution details of the original are lost in the pro-

cess. Hence, reversing subdivision rules on an arbitrary (i.e. not subdivided) curve/surface

is not unique, and several different approaches to reverse a given subdivision scheme exist.

One of the methods used to reverse subdivision, developed by [Samavati and Bartels, 1999],

is global least squares optimization. The least squares error, ||Pc−f ||2, can be minimized by

solving the overdetermined linear system Pc = f for c. The optimization solution is a reverse

subdivision matrix, A, such that c = Af . However, the matrix A must be recomputed for

each size of f , which is both slow and does not reflect the local nature of most subdivision

schemes.

An alternative exists: local least squares reverse subdivision [Bartels and Samavati, 2000].

In this method, the local behaviour of a subdivision scheme is captured within a local sub-

division matrix PL that acts on fixed-size c and f . Using local least squares minimization,

we can obtain a local reverse subdivision matrix AL. The repeating row pattern of AL can

be extracted to a list of mask values and used to construct reverse subdivision matrices A

for any size of f .

For our local least squares reverse Faber subdivision (LSSRFS) scheme, we use the coef-
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ficients resulting from reversing a 3×5 local Faber subdivision matrix (refer to Equation 2.1

for the non-local matrix), which is the smallest affine local subdivision matrix that can be

formed for Faber subdivision. The general form of the reverse subdivision matrix is

A =



. . .

−1
6

1
3

2
3

1
3
−1

6
0 0

0 0 −1
6

1
3

2
3

1
3
−1

6

. . .


and has mask values

{−1
6
, 1

3
, 2

3
, 1

3
,−1

6
}.

Both the global least squares and local least squares schemes apply reverse subdivision

in linear time.

Reversing a subdivision scheme often results in shape exaggeration to offset any smooth-

ing introduced by the forward scheme. After several levels of reverse subdivision, it is

possible for a simplified model to bear little visual resemblance to the high-resolution model,

which makes it difficult to perform tasks that benefit from a visual resemblance between

the high-resolution and low-resolution data, such as multiscale editing. To address this,

[Sadeghi and Samavati, 2009] introduces energy minimization to the reverse subdivision pro-

cess in order to achieve smooth reverse subdivision. The models resulting from smooth reverse

subdivision are smoother and, visually, better resemble the original models.

2.4.3 Multiresolution

While details necessary to reconstruct the original curve or surface are lost after reverse

subdivision, a means of saving these details allows the subdivision process to be made to be

perfectly invertible. Matrices Q and B can be found such that
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A
B

[P Q

]
= I

(see [Samavati et al., 2007] for a full explanation of the derivation process). Then, c = Af ,

d = Bf (where d is a collection of detail vectors), and f = Pc+Qd. The process of reverse

subdividing a curve/surface and determining the details is called decomposition; the process

of subdividing a curve/surface and restoring lost details is called reconstruction. Together

these operations form the basis of a multiresolution framework.

For the local Faber scheme we employ, the multiresolution matrices B and Q have the

general form

B =



. . .

−1
2

1 −1
2

0 0

0 0 −1
2

1 −1
2

. . .


and

Q =



. . .

−1
6

0

−1
3

0

2
3
−1

6

−1
3
−1

3

−1
6

2
3

0 −1
3

0 −1
6

. . .



.
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p

p′

(a) Under the Laplacian smoothing operation,
a vertex p is smoothed to its new position p′.

p

p′

w

(b) Under weighted Laplacian smoothing, a
vertex p is smoothed to its new position p′,
according to a weight parameter w. p’s neigh-
bours remain fixed.

Figure 2.7: The Laplacian and weighted Laplacian smoothing operations.

In [Sadeghi and Samavati, 2013, Sadeghi, 2013], the authors incorporated smooth reverse

subdivision into the multiresolution framework through the introduction of local fairing

matrices with local inverses. Here, multiresolution matrices Â = SA, B̂ = TB, P̂ = PS−1,

and Q̂ = QT−1 are employed, where S and T are local fairing matrices with banded inverses

and A, B, P , and Q are the multiresolution matrices for a given multiresolution scheme.

The most promising result of this work is a weighted Laplacian smoothing operation with

a local inverse. Regular Laplacian smoothing moves a point pi on a curve to the midpoint of

its neighbours pi−1 and pi+1 (i.e. p′i = 1
2
pi−1 + 1

2
pi+1). See Figure 2.7(a) for an illustration.

The matrix that represents this operation is given by

SL =



0 1
2

0 · · · 1
2

1
2

0 1
2
· · · 0

0 1
2

0 · · · 0

...
...

. . . . . .
...

1
2

0 · · · 1
2

0


.

SL is singular and, thus, not invertible. By fixing one of the points, the matrix can be made

invertible, but the inverse will be a full matrix.

However, it is possible to produce a fairing operation with banded inverse by fixing every
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other point and moving pi towards the midpoint of its neighbours, but not all the way (i.e.

p′i = (1− w)pi + w(1
2
pi−1 + 1

2
pi+1), where 0 ≤ w < 1 is a weighting parameter that controls

the smoothness of the final curve). This operation is given by the matrix

F1 =



1− w 1
2
w 0 0 · · · 1

2
w

0 1 0 0 · · · 0

0 1
2
w 1− w 1

2
w · · · 0

0 0 0 1 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · 1



.

See Figure 2.7(b) for an illustration. When combined with a corresponding fairing operation

(say, F2), that fixes the points moved and moves the points fixed by F1 (F2 is a shifted

version of F1), a smoothing operation S = F1F2 is obtained that operates on all points in

the curve and has a banded inverse.

2.4.4 Why Reverse Faber Subdivision?

Different subdivision and multiresolution schemes satisfy the needs of different applications.

For our work, we focus specifically on reverse Faber subdivision.

Smooth subdivision schemes alter the shape of the curve/surface to which they are ap-

plied. To compensate, reverse subdivision schemes that minimize least squares error (i.e.

the ones we consider) exaggerate the shape of the curve/surface. Intuitively, for best LoS

accuracy preservation, we want to keep the shape of the simplified and original terrains as

similar as possible. While energy minimization may be used to smooth out the result, as in

[Sadeghi and Samavati, 2009], we suspect that this would negatively impact the LoS query

accuracy by smoothing important features (e.g. ridges and valleys) of the terrain. Hence,

we instead consider only non-smooth subdivision schemes.
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Faber subdivision, which converges to a second-order B-Spline with C0 continuity (i.e.

a polyline), is one such scheme. It does not affect the shape of the curve/surface, so its

least squares minimizing reverse schemes are expected to not have much of an effect on the

curve’s/surface’s shape.

Preliminary tests comparing local least squares reverse Faber subdivision against local

least squares reverse Chaikin and Cubic subdivisions indicated that, while simplifying with

the Faber scheme results in lower total query accuracy, in general it features a more equitable

ratio of true positives to true negatives. Local least squares reverse Dyn-Levin-Gregory

subdivision is more equitable still but has even lower total accuracy. We do not assert that

reverse Faber subdivision is the best choice for all situations, but use it rather to give a

general sense of the performance of reverse subdivision in the context of LoS optimization.

As with other reverse subdivision methods, reverse Faber subdivided terrains do not

suffer from a shrinking boundary and feature an intuitive correspondence between the rows

and columns of the simplified and original terrains.

2.5 Related Work

The application of terrain simplification to optimize LoS queries has been studied previously

in [Ben-Moshe et al., 2002]. In their paper, Ben-Moshe et al. present a measure of visibility

similarity between a terrain and its simplifications and describe a novel method designed to

maximize the measure. Put simply, this measure is defined as the ratio between the number

of LoS queries computed correctly over the simplified terrain (that is, the results are the

same as LoS queries over the original terrain) against the total number of queries. We use

the same visibility measure in our work to assess the results of our research.

Ben-Moshe et al.’s algorithm is a modified version of the greedy insertion algorithm of

[Garland and Heckbert, 1995]. The algorithm identifies a network of features important to

visibility (the “ridge network”), approximates this network, and then uses greedy insertion
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— with the ridge network edges as constraints — to simplify the terrain. They found their

algorithm preserved LoS query accuracy better than three other tested simplification meth-

ods: the greedy insertion algorithm on which their algorithm is based, the QEC scheme

from [Garland and Heckbert, 1997, Garland, 1999], and the greedy cuts method described

in [Silva et al., 1995, Silva and Mitchell, 1998]. Note that both their algorithm and the com-

parison algorithms introduce irregularities into the terrain model in the general case.

Several previous works have achieved regularity-preserving terrain simplification through

the use of image compression algorithms. In these works, the regular terrain is first con-

verted into a grayscale image, then simplified using one of these algorithms. In the work of

[Rane and Sapiro, 2001], the authors simplified terrains using lossless JPEG-LS compression.

[Owen and Grigg, 2004], similarly, applied state-of-the-art JPEG-2000 compression on their

terrains. [Ben-Moshe et al., 2007, Serruya, 2011] introduce a presetting stage to determine

the compression algorithm parameters based on the geometric nature of the terrain prior to

simplifying using the DCT (discrete cosine transform).

In this presetting stage, global and local properties of the terrain’s geometry are com-

puted. Such properties include the minimum/maximum elevation, the average elevation

difference (with standard deviation) between a pixel and its local neighbourhood, and a

rough approximation of the watershed. Based on these properties, the terrain is classified

as either flat, dune-filled, hilly, mountainous, natural with artifacts, natural without a wa-

ter flow, or artificial. The parameters of the compression algorithm are set based on this

information.

In [Losasso and Hoppe, 2004], the authors propose the geometry clipmap, used for level-

of-detail control in rendering a height map. A geometry clipmap is a hierarchical set of

n×n regular terrain regions (clip regions) centered about a viewer position p. A clip region

at level l of the clipmap represents a section of the original terrain at resolution l centered

about p, and is nested within the clip region at level l − 1. The data for these clip regions
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comes either from the original terrain (for coarser levels) or synthesized using Dyn-Levin

subdivision (for finer levels). Areas of the terrain closest to the viewer are rendered using

the finest clip region in the clipmap, neighbouring areas are rendered using the next finest

level, and so on. As the viewer position p changes, the clip regions are updated accordingly

to remain centered on p.

Our hierarchical algorithm bears some similarity to geometry clipmaps; however, rather

than rendering, our work is concerned with the application of a reverse subdivided hierarchy

to LoS queries. In a sense, our hierarchical algorithm takes a level-of-detail approach to LoS

queries. We use reverse Faber subdivision to generate coarse versions of the terrain to try

and minimize shape exaggeration by reverse subdivision and preserve LoS query accuracy

better.
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Chapter 3

SIMPLIFICATION METHODS

As technology advances and terrains can be mapped at higher and higher resolutions, it is

often necessary to simplify large terrain data sets for application use [Ben-Moshe et al., 2002].

To improve the speed and/or memory usage of LoS algorithms, it is possible to simplify the

terrain and reduce the amount of data that must be traversed between pairs of points.

Simplification methods can alter the characteristics of a terrain model, and not all sim-

plifications preserve regularity. For LoS algorithms that operate on regular terrains, it is

important that the terrain simplification method be regularity-preserving. A regularity-

preserving terrain simplification scheme is any terrain simplification scheme which, given an

input regular terrain, outputs a simplified regular terrain. Subsampling, for instance, or sev-

eral reverse subdivision methods could be used as regularity-preserving terrain simplification

methods.

In this chapter, we briefly describe our approaches to simplifying terrains in the context of

LoS query optimization. Several simplification methods used for comparison are described,

followed by the reverse subdivision methods we have used to speed up LoS queries.

3.1 Irregular Simplification Methods

For comparison purposes, we have tested our reverse subdivision methods against several

simplification schemes that do not preserve regularity. For the sake of ease, since such

methods introduce irregularities to the terrain model (in general) we refer to them as irregular

simplification methods.

The irregular simplification methods we have looked at are the same as those used for

comparison in [Ben-Moshe et al., 2002]. These are
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1. The greedy insertion algorithm [Garland and Heckbert, 1995]. This algorithm

iteratively refines a coarse terrain approximation by adding the vertex of the

original terrain that is furthest from the approximation to the simplified ter-

rain.

2. The greedy cuts algorithm [Silva et al., 1995, Silva and Mitchell, 1998]. Each

iteration of this algorithm sees a triangular “bite” region removed from the

original terrain, approximated with a single triangle, and added to the terrain

approximation.

3. The QEC algorithm [Garland and Heckbert, 1997, Garland, 1999], both with

and without soft boundary constraints. The quadric error metric is used to

assess edges’ importance to terrain shape and, in each iteration of the algo-

rithm, the least important edge is collapsed to a single point. Note that in our

implementation of the algorithm, edges are collapsed to their midpoints.

Hence, our work may be compared with theirs.

3.2 Reverse Subdivision Methods

Preserving regularity through the simplification process offers several benefits. Regular ter-

rains (height maps) are used extensively throughout the field of GIS, and so are widely

supported. The implicit connectivity of regular structures allows the storage of terrain data

in array-like data structures, which are easily accessed and have low memory usage beyond

that needed for the raw data. Fast data access results in fast LoS query algorithms for

regular terrains.

As terrain models become larger and more detailed with advances in terrain mapping

technology, the run time of LoS queries deteriorates. Simplifying these models while pre-

serving their regularity allows for continued use of fast LoS algorithms that operate on regular
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terrains, but with a faster run time.

Reversing a subdivision scheme allows a curve or surface to be simplified in a manner

that preserves regularity. There are several ways to reverse a subdivision scheme. We have

tested four variants of reverse Faber subdivision for their impact on LoS query accuracy, and

compared these results against those for several irregular simplification methods.

3.2.1 Subsampling

Before After

Figure 3.1: Reverse subdivision via subsampling. This scheme is not sensitive to the shape
of the curve/surface.

Subsampling can be considered to be a reverse subdivision scheme. Since Faber subdivi-

sion introduces midpoints between vertices, the simplest scheme to reverse it assumes every

other curve point is a midpoint and discards it. That is, we can reverse Faber subdivision

by performing a downsampling of the curve points by a factor of 2.

3.2.2 Global Least Squares Reverse Faber Subdivision (GLSRFS)

Before After

Figure 3.2: GLSRFS minimizes the least squares error between the original and the reverse
subdivided curve/surface.

To better approximate the original curve, the global least squares scheme (GLSRFS)

adjusts the positions of the vertices to minimize the least squares error, ||Pc− f ||2, between

35



the simplified and original curves. This entails solving the overdetermined linear system

Pc = f for c.

Pc = f

P TPc = P Tf

c = (P TP )−1P Tf

However, while the reverse subdivision matrix A = (P TP )−1P T gives a valid result, since

P is banded it is often faster to solve for c directly from the linear system Pc = f .

3.2.3 Local Least Squares Reverse Faber Subdivision (LLSRFS)

The third Faber scheme used for this work minimizes the local least squares error between

the simplified and original curves [Bartels and Samavati, 2000].

The subdivision matrix P is different for different lengths of the vectors c and f , despite

the uniform structure of the underlying subdivision scheme. Analysis of subdivision schemes

independent of the size of c and f is facilitated by the use of a local subdivision matrix, PL,

which has the same structure as P but operates on fixed-size c and f . AL = (P T
L PL)−1P T

L

is the local reverse subdivision matrix that minimizes ||PLcL − fL||2, where cL = ALfL and

fL is a vector containing a local neighbourhood of points from f . Using the (precomputed)

coefficients of AL, the reverse subdivision operation can be done efficiently in linear time.

Consider a vector, c, of n coarse points and a vector, f , of 2n fine points (where n is a

positive integer). Let ci and fj (0 ≤ i ≤ n−1, 0 ≤ j ≤ 2n−1) be the indexed points of c and

f , respectively. The coarse points c resulting from local least squares on neighbourhoods of

five fine points is given by

ci = −1

6
f2i−2 +

1

3
f2i−1 +

2

3
f2i +

1

3
f2i+1 −

1

6
f2i+2.

for i = 1, . . . , n− 2. Coarse points at the boundaries (i.e. c0 and cn−1) require special treat-

ment. To handle these boundary cases we use the symmetric extension technique presented
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di−1 di

ci

f2i

Figure 3.3: Computation of ci under LLSRFS.

by [Hasan, 2013], based on the work of [Kiya et al., 1994]. The technique considerably sim-

plifies the reconstruction and decomposition of boundary points and the computation of

multiresolution details.

Notice that, given multiresolution detail vectors

di = −1

2
f2i + f2i+1 −

1

2
f2i+2,

ci can be equivalently computed as

ci = −1
6
f2i−2 + 1

3
f2i−1 + 2

3
f2i + 1

3
f2i+1 − 1

6
f2i+2

= 1
3
(−1

2
f2i−2 + f2i−1 − 1

2
f2i) + f2i + 1

3
(−1

2
f2i + f2i+1 − 1

2
f2i+2)

= 1
3
di−1 + f2i + 1

3
di.

See Figure 3.3 for an illustration.

3.2.4 Feature Aware Reverse Faber Subdivision

Our novel reverse subdivision algorithm attempts to preserve terrain features using global

least squares error minimization. Based on the observation that peaks and valleys in a

terrain are important features that affect visibility, our algorithm identifies the critical points

that define these features and uses least squares error minimization to preserve the spatial

relationships between them.1

1Our definition for critical points is only one of many possibilities. So long as the critical points are taken
to be a subset of f , the formulation of the augmented linear system Pc = f remains unchanged.
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Identification of the “critical points” is closely related to the ridge network computation

that lies at the heart of the novel simplification algorithm in [Ben-Moshe et al., 2002], which

is inspired by drainage network computation. In their work, an edge is said to be a ridge or a

valley if the faces incident to the edge have opposite slopes. Similarly, we consider a point on

a curve to be critical if its incident edges have opposite slopes (i.e. if it is a local extremum).

We additionally consider the endpoints of the curve to be critical. See Figure 3.4 for an

illustration. These local extrema are found with a simple direction test: if the slopes of the

edges incident to a point have opposite signs, then the point is a critical point. That is,

consider point fi and its neighbours fi−1 and fi+1, and let up be a vector in the up direction.

Then fi is a local extremum if sgn((fi − fi−1) · up) 6= sgn((fi+1 − fi) · up).

a

b

c

Figure 3.4: Identification of critical points. Points a and b are critical, since their incident
edges have opposite slopes, whereas point c is not critical.

Let f̂i ∈ f denote the critical points. Then, the vectors between the critical points (say

~vi = f̂i+1 − f̂i), which define the spatial relationships between them, are calculated (see

Figure 3.5).

f0

f1

f2

f3

f4

f5

f6

f7

f8

~v0
~v1

~v2

f̂0

f̂1

f̂2

f̂3

Figure 3.5: Critical points (shown in red) and the vectors between them (shown in blue).
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To preserve these spatial relationships, we augment the linear system Pc = f with

additional constraints. For example, the linear system for the curve shown in Figure 3.5

would be



1 0 0 0 0

1
2

1
2

0 0 0

0 1 0 0 0

0 1
2

1
2

0 0

0 0 1 0 0

0 0 1
2

1
2

0

0 0 0 1 0

0 0 0 1
2

1
2

0 0 0 0 1

−1 1 0 0 0

0 0 −1 1 0

0 0 0 −1 1





c0

c1

c2

c3

c4


=



f0

f1

f2

f3

f4

f5

f6

f7

f8

~v0

~v1

~v2



.

The vectors ~vi are appended to the end of f and additional rows (one for each of the ~vi)

are appended to the matrix P . These rows have exactly two non-zero entries, −1 and +1,

for the points in coarse space that correspond to the critical points used to calculate the ~vi.

That is, for ~vi = fj − fk, the coarse point cbj/2c receives entry +1 in the matrix row and

coarse point cdk/2e receives entry −1, so that equations ~vi = cbj/2c − cdk/2e are added to the

linear system. Critical point collisions (i.e. when bj/2c = dk/2e) are discarded, resulting in

the removal of rows from the augmented system.

By solving the augmented linear system, a coarse point vector c can be obtained that

minimizes the error between the original and simplified curves and preserves the spatial

relationships between the critical points.

Additionally, a weighting parameter can be used to control the impact of the feature-
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preservation. Let w ∈ R where w > 0 be a “feature weight” parameter. The weighted linear

system for the curve shown in Figure 3.5 becomes



1 0 0 0 0

1
2

1
2

0 0 0

0 1 0 0 0

0 1
2

1
2

0 0

0 0 1 0 0

0 0 1
2

1
2

0

0 0 0 1 0

0 0 0 1
2

1
2

0 0 0 0 1

−w w 0 0 0

0 0 −w w 0

0 0 0 −w w





c0

c1

c2

c3

c4


=



f0

f1

f2

f3

f4

f5

f6

f7

f8

w · ~v0

w · ~v1

w · ~v2



.

In this case, we augment the linear system Pc = f by appending the vectors w ·~vi to the

end of f and append additional rows to P such that, for ~vi = fj − fk, the coarse point cbj/2c

receives entry +w and coarse point cdk/2e receives entry −w.

3.2.5 Smooth Reverse Faber Subdivision

During our research, we wondered what the impact of smooth reverse subdivision would be

on LoS query accuracy. While smoothing can be important to preserving visual similarity

between an original model and its simplification (as noted in [Sadeghi, 2013]), we suspect

that its effect on LoS query accuracy would be negative. As LoS query results depend heavily

on the features of terrain, it stands to reason that smoothing these features would negatively

impact query accuracy.

The smooth reverse subdivision methodology we apply is a modified version of the
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weighted Laplacian smoothing proposed in [Sadeghi and Samavati, 2013, Sadeghi, 2013].

As we are not concerned with invertibility, we do not fix points. After each application

of reverse subdivision, all points pi are concurrently moved to their smoothed position

p′i = (1− w)pi + w(1
2
pi−1 + 1

2
pi+1), where 0 ≤ w < 1.

That is, we use a reverse subdivision matrix Â = SA, where A is the reverse subdivision

matrix of one of the above Faber schemes, and

S =



. . .

1
2
w 1− w 1

2
w 0 0

0 1
2
w 1− w 1

2
w 0

0 0 1
2
w 1− w 1

2
w

. . .


.
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Chapter 4

POINT RELOCATION

After terrain simplification, the shape of the terrain (which is a key factor in LoS query

results) is changed. This change in the terrain requires a corresponding change in the entity

positions to ensure accurate LoS queries, specified by some “point relocation” scheme.

Vertically projecting entities onto the simplified terrain is an obvious choice, and well-

supported by mathematical definitions of terrain models. In [Ben-Moshe et al., 2002], for

instance, the projection relocation scheme is built directly into the mathematical notation.

Let T be a terrain model defined over a rectangular domain D ⊂ R2 and T ′ be a simplification

of T also defined over D. Given a point p = (x, y) ∈ D, let pT = (x, y, T (x, y)) ∈ R3

(respectively pT ′ = (x, y, T ′(x, y)) be the point obtained by “lifting” p onto T (respectively

T ′). Two points p and q ∈ D are said to be visible with respect to T (respectively, T ′)

if the sight line between points pT and qT (respectively pT ′ and qT ′) does not intersect T

(respectively, T ′). What the authors refer to as lifting, we refer to as projection relocation.

We consider point relocation to be a perturbation of the entity positions to match pertur-

bations in the terrain shape due to simplification, or alternatively as a mapping from entity

positions in the original terrain space to the simplified terrain space. We suspect that the

performance of a point relocation method depends a great deal on the choice of simplification

method. A move to simplifications that maximize LoS query accuracy rather than minimize

vertical distance error suggests a move away from projection relocation.

In this chapter, we present our approaches to studying point relocation. We first con-

sider point relocation from a theoretical standpoint to establish that there exists room for

improvement over projection relocation. We then present a simple relocation method that

provides a middle ground between projection relocation and no relocation (i.e. identity).
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Before After

(a) Illustration of the projection function.

Before After

(b) Illustration of the identity function.

Figure 4.1: Illustration of the behaviour of our comparison relocation methods, applied after
terrain simplification. Entities are shown as triangles before relocation (in pink) and after
(in red).

Afterwards, we generalize projection to a relocation method designed for use with regular

simplified terrains and introduce a modification to the scheme in order to improve accuracy

further. Our final discussion describes a pre-processing step that attempts to optimize the

relocation vectors.

4.1 Comparison Methods

For comparison, our relocation methods are tested against the following two standard point

relocation methods.

The projection function is the commonly accepted relocation method projecting all

entities vertically onto the simplified terrain. This method makes sense particularly for

simplification methods that minimize vertical distance error, and is well supported by math-

ematical definitions of terrain models.

The identity function is a “do nothing” relocation scheme that leaves the entities in

their original locations. We use it to establish an accuracy-preservation baseline for the
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relocation methods.

It remains an open question whether or not it is possible to preserve LoS query accuracy

better than the already accepted method of projection. Hence, we have pursued a path based

on optimization in order to determine whether or not room for improvements in accuracy

exist over these two methods.

4.2 Point Relocation by Iteration

To maximize the visibility test accuracy after simplification, a key component in the test

results, i.e. the entity positions, may be optimized. We wish to find a relocation function

R such that the accuracy of a LoS algorithm A on relocated points R(P ) over a simplified

terrain S(T ) (i.e. Acc(AS,R, T, P )) is maximized. That is, we wish to solve an optimization

problem:

min
R

∑
i 6=j

|VT (pi, pj)− A(S(T ), R(pi), R(pj))|. (4.1)

Note that the presence of VT in Equation 4.1 implies the visibility test results are already

known, meaning that direct use of such an optimization is impractical for most purposes.

Additionally, a closed form solution to the problem does not appear to exist.

However, the optimal solution can be estimated using discrete, iterative methods. Per-

forming this estimation is quite slow and far below real-time levels. We describe here our

approaches to estimating the optimal solution.

4.2.1 Estimation Methods

Our discrete, iterative approach to estimating the optimal entity positions is inspired by

iterative numerical optimization. In iterative optimization, an initial guess for the optimal

solution is provided. Then, the guess is refined iteratively until it converges to the optimal

solution. Similarly, we begin with a guess for the optimal entity positions and iteratively
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(a) The entity’s local neighbourhood of can-
didate positions (shown in green) is dis-
cretized.

(b) The position that produces the highest
accuracy is determined.

(c) The entity is relocated.

Figure 4.2: Illustration of our iterative method in 2D. The entity’s current position is high-
lighted in red. The terrain is represented by the curved line.

adjust positions to maximize accuracy. See Figure 4.2 for an illustration.

In our approach, the entities’ original positions are used as an initial guess for the optimal

entity positions. In each iteration, each entity’s local neighbourhood is discretized into a

set of candidate positions, evenly spaced in a grid pattern. From each entity’s candidate

positions, sight lines are cast to the other entities’ current position and the visibility test

accuracy is calculated. The entities are then moved to the candidate position that produces

the highest accuracy, with preference given to those candidate positions that lie closest to the

original position. This process is repeated iteratively until no further accuracy improvement

can be found, or an iteration threshold is passed.

As we do not conduct an exhaustive search of the entire space, the optimal solution is

not guaranteed to be found, and there can be considerable difference between the results of

different implementations. We have tested four implementations of this general method to

determine which implementation will produce the best results.
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(a) Local neighbourhoods discretized with a
constant distance.

(b) Entities relocated all at once.

Figure 4.3: Illustration of the Jacobi approach in 2D.

(a) Local neighbourhoods discretized with a
constant distance.

(b) Entities relocated one at a time.

Figure 4.4: Illustration of the Gauss-Seidel approach in 2D.

Jacobi Iterative Estimation: Our first implementation of the general method is in-

spired by Jacobi’s iterative method for solving linear systems of equations. The local neigh-

bourhood of each entity is discretized using a constant distance. Entities in this method are

relocated only after the best candidate position has been determined for every entity. See

Figure 4.3 for an illustration.

Gauss-Seidel Estimation: Our second implementation takes inspiration from the

Guass-Seidel iterative method for solving linear systems of equations. As with the above im-

plementation, candidate positions are calculated using a constant distance. In this method,

however, each entity is relocated immediately after its best candidate position is identified,

and this new entity position is used in subsequent calculations to determine test accuracy.

See Figure 4.4 for an illustration.

Decreasing Distance Estimation: Our decreasing distance implementation is inspired

by the process of simulated annealing. After each iteration, the distance used to calculate

candidate positions is decreased by a constant factor. Entity relocation occurs as in the

Gauss-Seidel method. See Figure 4.5 for an illustration.
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(a) Local neighbourhoods discretized with a
constant distance.

(b) Distance descreased with each iteration.

Figure 4.5: Illustration of the descreasing distance approach in 2D.

(a) Local neighbourhoods discretized with
the distance to the terrain.

(b) Entities relocated one at a time.

Figure 4.6: Illustration of the projection distance approach in 2D.

Projection Distance Estimation: Our final implementation of the general method is

based on the commonly-accepted method of projecting the entity positions vertically onto

the simplified terrain. Here, the distance used to discretize the local neighbourhood is taken

to be the vertical distance between the original entity position and the simplified terrain (i.e.

the distance the entity would be moved were it to be projected). Entity relocation occurs,

again, as in the Gauss-Seidel method. See Figure 4.6 for an illustration.

See Section 6.1.4 for accuracy results for our estimation and comparison methods paired

with several terrain simplification schemes. Our results indicate that there does exist room

for accuracy improvement over the comparison relocation methods.

However, as previously noted these methods cannot be used directly as relocation schemes

in a real-time application, although it is possible to use the methods in a pre-processing

step. We present two practical point relocation schemes we have developed in the following

two sections; first, one that combines projection and identity, and a second that generalizes

projection. Then, we describe the use of our iterative pseudo-optimization in a pre-processing

step that attempts to optimize the relocation vectors.
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Before After

Figure 4.7: Illustration of the half projection relocation function.

4.3 Point Relocation by Half Projection

Our first practical relocation scheme that attempts to improve LoS accuracy over the pro-

jection method is a hybrid of identity and projection we refer to as half projection, so called

because the entities that lie in the half-space beneath the simplified terrain are projected up

onto the terrain under this relocation, whereas entities above the simplified terrain are left

in place. See Figure 4.7 for an illustration.

The method is intended to address perceived flaws with the identity and projection meth-

ods. The unexpectedly strong accuracy performance of the identity function, particularly on

LLSRFS terrains, lends support to its use for point relocation. However, the allowance of en-

tities beneath the terrain is potentially problematic, as these entities are rendered effectively

invisible to all entities above the terrain.

Before After

Figure 4.8: The flattened sharp feature problem. An entity from atop a sharp feature cannot
see a formerly visible entity after being projected to the flattened sharp feature.

For entities above the simplified terrain, the problem of flattened sharp features emerges

(see Figure 4.8). If an entity atop a sharp feature (which can see many entities below it) is

projected to a flat face resulting from the simplification of the sharp feature, then that face
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can obstruct the entity’s view of lower entities.

Taken together, these observations motivate us to leave entities above the simplified

terrain in their original positions and project entities that lie below the simplified terrain.

The result is a relocation scheme that favours false positives more strongly than either

projection or identity, which may prove desirable for some applications.

In a sense, the identity, projection, and half projection relocation methods impose con-

straints on the set of entity positions P . Whereas identity is unconstrained, projection

relocation imposes the initial condition constraint that “all entities must lie on the terrain”.

Our proposed half projection method satisfies the constraint that “no entity may lie beneath

the terrain”.

Naturally, these relocation methods are not the only ones that satisfy these constraints.

In the next section we present a generalization of projection relocation that additionally

satisfies the “all entities must lie on the terrain” constraint.

4.4 Point Relocation by Residual Vectors

Consider a curve of fine points f after a single application of reverse subdivision, resulting in

a curve of coarse points c. Notice that since forward Faber subdivision does not change the

shape of any curve to which it is applied, all changes in geometry between the original curve

and the simplified curve are encapsulated by the residual vectors r = Pc − f . To compute

these residuals directly from the given curves, it is trivial to note that

ri =

 c i
2
− fi if i is even

1
2
cb i

2
c + 1

2
cd i

2
e − fi if i is odd.

Hence, by using the residual vectors as translation vectors for relocation, we can project

entities from the original curve onto the simplified curve. (Notice that f+r = f+(Pc−f) =

Pc, which are points on the simplified curve.) That is, rather than a blind vertical translation,
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we can use these residual vectors to better project entities onto the simplified curve in a

geometrically-informed manner based on the simplification.

Our word choice here of “project” is quite deliberate, as this relocation scheme is a gen-

eralization of vertical projection. Residual vector relocation responds to changes in (x, y, z)

coordinates between f and Pc, whereas projection relocation does not. If the x and y co-

ordinates for the points in f and Pc are the same, then residual vector relocation acts as a

vertical projection.

Generalizing to n steps of subdivision is a simple matter. Let ck (for k = 0, . . . , n − 1)

be the vector of coarse points after n− k applications of reverse subdivision on f . Then the

residual vectors are given by r = P nc0 − f , or equivalently,

ri = (1− w) · cb i
2n
c + w · cd i

2n
e − fi

where w = i mod 2n

2n
.

Further generalization to regular surfaces (e.g. height map terrains) results in the follow-

ing residual vectors:

ri,j = (1− wj)(1− wi) · cb i
2n
c,b j

2n
c + (1− wj)wi · cd i

2n
e,b j

2n
c+

wj(1− wi) · cb i
2n
c,d j

2n
e + wjwi · cd i

2n
e,d j

2n
e)− fi

where wi = i mod 2n

2n
and wj = j mod 2n

2n
.

Special consideration needs to be given to what should be done with entities that do

not lie at one of the vertices of the original curve/surface (i.e. that are not in f). Let p

be the position of such an entity, lying on a edge (in the curve case) or face (in the surface

case) with vertices qi (for some i). For the sake of affineness, we desire that R(p) have the

same barycentric coordinates with respect to the R(qi) as p has with the qi. Hence, we

take the relocation vector R(p)− p to be a barycentric combination of the relocation vectors

corresponding to the qi.
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Together with the residual relocation vectors, this defines a vector field over a curve/surface

from which we can assign relocation vectors to every entity in real time.

4.4.1 Multiresolution Details and Residual Vectors

There is a very close relationship between the residual vectors and multiresolution details.

In fact, the residual vectors can be computed directly from the details. See Figure 4.9 for a

visual illustration. Hence, given a reverse subdivided curve/surface and associated details,

we do not need to reconstruct the original curve/surface to compute the residuals.

The process to compute these residuals from the details is conceptually simple: using the

given detail vectors, we apply the reconstruction process on a trivial (all zero) vector field

and negate the results.

To see why this works mathematically, consider n steps of reverse subdivision on a curve.

Let ck and dk be the vectors of coarse points and details at various resolutions, respectively,

after n− k reverse subdivisions. Then

f = Pcn−1 +Qdn−1

= (P 2cn−2 + PQdn−2) +Qdn−1

= ((P 3cn−3 + P 2Qdn−3) + PQdn−2) +Qdn−1

...

= P nc0 + P n−1Qd0 + . . .+ PQdn−2 +Qdn−1.

After some formula rearrangement, we see that the residuals vectors can be computed as

r = P nc0 − f = −(P n~0 + P n−1Qd0 + . . .+ PQdn−2 +Qdn−1),

which are precisely the negations of the detail vectors applied to the reconstruction of a

trivial terrain.
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(a) Computation of the details (shown in green)
from the original terrain (shown in black).

(b) The original terrain (red) is simplified to a new
version (black) using linear combinations of the de-
tails (green).

(c) The original terrain (black) can be recon-
structed from the simplified terrain (red) using lin-
ear combinations of the details (green).

(d) The reconstruction details (green) can be re-
versed to map points onto the simplified terrain
(black).

Figure 4.9: The negation of the detail vectors used for reconstruction can be used to map
entities from the original terrain to the simplified terrain.
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Relocation

Average Residual Vector Length

Average Difference in Accuracy vs Identity

Max. Sight Line Distance N/A

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

0.00 0.50 1.00 1.50 2.00 2.50 3.00 Residuals

Figure 4.10: The average length of residual vectors plotted against the difference in accuracy
(after simplification by LLSRFS) between the identity and residuals relocation functions.
Each data point corresponds to a tested terrain model. Notice that as the average length
of residual vectors increases, the accuracy of residuals relocation improves in comparison to
identity.

4.4.2 Scaled Residual Vector Relocation

We realized that, under certain conditions, identity preserves LoS accuracy better than the

proposed residuals relocation method. Our gathered results indicate that this occurs when

the average length of the terrain’s residual vectors is low (see Figure 4.10). This makes sense,

as short residual vectors imply that geometric changes between the simplified and original

terrains are small, therefore the simplified terrain is close enough to the original that identity

performs well (see Figures 4.11 and 4.12 for example terrains).

If identity is suspected to perform best over a section of the terrain, then we want the

relocation over that section to behave more like identity. We sought to implement this

behaviour on a face-by-face basis by scaling down relocation vectors if the vectors’ average

length falls below a certain threshold.

Hence, for each face of the simplified terrain we compute the average length of the residual
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(a) Original terrain mesh. (b) Simplified terrain mesh.

Figure 4.11: The “Eagle Pass” terrain, which features a small average residual vector length.
The simplified and original terrains are similar enough to each other that identity performs
well.

(a) Original terrain mesh. (b) Simplified terrain mesh.

Figure 4.12: The “Seattle” terrain, which features a large average residual vector length.
Geometry changes between the simplified and original terrain are quite significant, resulting
in poorer performance for identity.
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vectors associated with the entities corresponding to the face. Then, if the computed average

falls below a given threshold, we scale the residual vectors over that face.

Consider a simplified terrain face F . Let R(p) denote the unmodified residuals relocation

function, r(p) = R(p)−p denote the unscaled residual vector for a given point p, and avg(F )

denote the average length of unscaled relocation vectors over F . Then, the scaled residuals

relocation function R′(p) acting on p (the position of an entity associated with face F ) is

given by

R′(p) =

 p+ avg(F )
threshold

r(p) if avg(F ) < threshold

p+ r(p) otherwise

where threshold ∈ R.

Note that the average length of residual vectors is dependent on the scale of the terrain

models, and so the value of threshold will vary between applications. The problem of deter-

mining a threshold value is non-trivial and would benefit from normalization of the lengths

and/or an algorithmic approach. The threshold value used in our tests was determined from

Figure 4.10 in an ad-hoc manner (see Section 6.1.5).

In the next section, we present an algorithmic approach that determines scaling factors

for each relocation vector, rather than a length threshold. How to determine such a threshold

value remains an open question.

4.5 Pseudo-Optimization Pre-Processing Step

To improve the accuracy preservation quality of our practical relocation methods, we propose

using our estimation relocation technique in a pre-processing step after the initial relocation

vectors have been computed. This modification attempts to optimize the relocation vectors,

but it is not a true optimization. Hence, we refer to this pre-processing method as pseudo-

optimization.
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Our iterative estimation methods, as described, consider a set of particular entity po-

sitions and output a corresponding pseudo-optimized set of entity positions. We wish to

generate a set of relocation vectors that can be used with any set of entity positions and

output a corresponding set of pseudo-optimized entity positions. To accomplish this we can

consider a set of entities, one for each relocation vector, and take the pseudo-optimized relo-

cation vectors to be the differences between the original entity positions and the final entity

positions after the estimation.

However, since the number of relocation vectors in the vector field is equal to the number

of vertices of the original terrain, it is impractical to pseudo-optimize all of them. Hence, we

pseudo-optimize only a subset of these–namely those that correspond to vertices of the sim-

plified terrain. Starting from a vector field of relocation vectors as an initial solution, we use

the results of the pseudo-optimization to perturb the relocation vectors to an approximation

of the optimal solution.

Relocation vectors fluctuate noticeably in direction and size, hence it makes little sense to

blend them with a perturbation vector computed from a different relocation vector. For this

reason, we find pseudo-optimal scaling factors for each relocation vector rather than pseudo-

optimal perturbation vectors. This restricts the space in which we discretize candidate

positions for each entity to lie in the direction of its initial relocation vector. Hence, our

pre-processing step operates similarly to line-search optimization.

Furthermore, to keep the run-time of the pre-processing step from spiralling out of control

on larger terrains, we estimate the optimal scaling factor for each entity with respect to a

local neighbourhood of entities. Because entities that are far apart are likelier to be unable

to see other, this additionally helps avoid biasing the relocation too heavily towards false

negatives.

We consider a set of entities ei that exists solely for the purposes of the pre-processing

step; one for each vertex of the simplified terrain, initially placed at each vertex’s corre-
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sponding position on the original terrain (say, e0
i ). For each entity ei, we estimate its optimal

position along the line passing through ei in the direction of its initial relocation vector ri,

with LoS accuracy computed relative to a local neighbourhood of entities ej.

Given optimized positions for each entity ei, we can determine optimized relocation

vectors for the ei. These relocation vectors have the form siri, where si is a scaling factor.

Finally, we distribute scaling factors to all the relocation vectors in the vector field and scale

them.

That is, at each iteration (see Figure 4.13), the following happens for each ei

1. Consider a local neighbourhood of entities ej around ei.

2. Candidate positions for ei are discretized along a line passing through ei in the

direction of ri. (Note that if ri is zero, all candidate positions will be located

at the same position as ei.)

3. The candidate position (say c) for ei that produces the highest LoS accuracy

with respect to the ej is identified.

4. The scaling factor si =
(c−e0i )·ri

ri·ri , such that e0
i + siri = c, is calculated.

5. The position of ei is updated to c.

The iterations continue until no further improvement can be found, or a maximum num-

ber of iterations is reached. Once the si have all been calculated, each relocation vector ri

is scaled by si (i.e. r′i = si · ri).

To scale the relocation vectors that do not correspond to one of the ri, consider a face

of the simplified terrain. Each of the face’s four vertices has an associated entitiy ej with a

corresponding scaling factor sj. The scaling factors for relocation vectors over the face (i.e.

those vectors in the vector field which lie between the rj) are bilinearly interpolated from

these sj.
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ei

(a) Entity ei is considered, along with a local
neighbourhood of entities ej .

ri

ei

(b) Candidate positions for ei are determined
along a line in the direction of ei’s relocation
vector, ri.

ri

ei

siri

c

(c) The candidate position producing the
highest accuracy, c, is identified. The scal-
ing factor si is found.

si

(d) The scaling factor si is distributed to the
relocation vectors in a local area about ei.

Figure 4.13: Illustration of the pseudo-optimization pre-processing step.
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This pre-processing step can be adapted for use with irregular terrains. From a relocation

scheme suitable for irregular terrains (such as projection), a vector field over that terrain can

be generated and the pre-processing applied. However, as our focus in this work lies with

regular terrains, we have not explored this avenue of research.

Note that we have only tested this pre-processing step in conjunction with residual vector

relocation.
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Chapter 5

LINE-OF-SIGHT QUERY ALGORITHMS

While point relocation can be used to improve accuracy after simplification, there are inac-

curacies introduced by terrain simplification for which point relocation cannot compensate.

Simplification schemes reduce local regions of the terrain down to single faces. Hence, any en-

tities originally in the region will be able to see each other over the simplification, regardless

of their original LoS relationships.

Furthermore, although terrain simplification can be used to speed up individual LoS

queries using a given algorithm, additional speed gains require further simplification. This

results in lower accuracy for all LoS queries on the simplified terrain, which is undesirable.

In this chapter, we describe a hierarchical algorithm that combines existing techniques

and uses simplified terrains for query acceleration only when acceleration is needed, thus

improving the accuracy over a straight application of terrain simplification. Our algorithm

is a combination of the Bresenham line algorithm adapted to LoS queries and the min/max

quad tree algorithm. We take advantage of the strengths of each to reduce the impact of

either of their weaknesses.

5.1 Bresenham’s Line Algorithm

The Bresenham line algorithm is a well-known algorithm originally designed to plot a line

segment on a raster image given its two endpoints (refer to Figure 2.1). It can be efficiently

implemented using only integer operations [Bresenham, 1965]. Treating a regular terrain

as a raster grid, the sight line between two entities can be traversed using the Bresenham

algorithm and the height of the sight line compared against the terrain elevation values (see

Figure 2.2).
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Note that the original formulation of the Bresenham algorithm does not traverse all

elevation points along the sight line’s path, skipping elevation points that share a small

intersection with the sight line, and so is slightly inaccurate. While it is possible to modify

this behaviour and increase Bresenham’s accuracy, our implementation uses the inaccurate

version, since it is fast and accurate enough for our purposes.

Our implementation of Bresenham’s line algorithm is based off of efficient pseudocode

from Wikipedia’s page on Bresenham’s algorithm [Wikipedia, 2013a]. We reproduce a mod-

ified version of the pseudocode here for posterity (see Algorithm 5.1).

Algorithm 5.1 BresenhamVisibility(T, p1, p2) :

Determine grid indices (i1, j1) for point p1 on T
Determine grid indices (i2, j2) for point p2 on T
di := abs(i2 − i1)
dj := abs(j2 − j1)
si := sgn(i2 − i1)
sj := sgn(j2 − j1)
err := di− dj
while i1 6= i2 AND j1 6= j2 do
z := Estimate of the sight line’s elevation at cell (i1, j1) of T
if z ≤ T (i1, j1) then
return 0 (Not Visible)

end if
e2 := 2 ∗ err
if e2 > −dj then
err := err − dj
i1 := i1 + si

end if
if e2 < di then
err := err + di
j1 := j1 + sj

end if
end while
return 1 (Visible)

To estimate the height of the sight line at a given cell, our implementation computes the

point on the sight line that is closest (with respect to the x − y plane) to the center of the

cell, and takes the z coordinate of that point to be the elevation of the sight line. That is,
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given sight line endpoints p1 and p2 in R3 with grid indices q1 = (i1, j1) and q2 = (i2, j2)

respectively, then the elevation z of the sight line at the cell with index qcell = (icell, jcell) is

z = w ∗ p1.z + (1− w) ∗ p2.z where w = (q2−q1)·(q2−qcell)
(q2−q1)·(q2−q1)

.

The Bresenham algorithm runs in O(d) time, where d is the L1 or Manhattan distance

between the sight line’s endpoints. Hence, the Bresenham algorithm runs fastest when the

endpoints are close together on an elevation grid or, due to early algorithm termination when

the sight line is occluded, when the terrain has many sharp features. Additionally, since the

algorithm has no overhead, its memory footprint is equivalent to the memory footprint of

the terrain it’s executed on.

5.2 Min/Max Quad Tree Algorithm

The min/max quad tree algorithm, by comparison, avoids visiting all elevation values along

the sight line’s path by visiting regions of the terrain first before recursing down into the

finer data. A min/max quad tree is used to gather minimum and maximum elevation data

for regions of the terrain (see Figure 5.1(a)).

Each leaf node of the quad tree corresponds to an elevation value in the original terrain.

Each interior node records the minimum and maximum elevation values of its children nodes.

Using this information, regions of the terrain that definitely lie below or above the sight line

can be quickly culled from the computation [Duvenhage, 2009].

The algorithm is inherently recursive. Starting with the root node, the following occurs:

1. If the height of the sight line’s endpoints is greater than the maximum elevation

for a node, then the sight line lies completely above the region covered by the

node, and so the algorithm may safely return a value of true for that node

without traversing the children. See Figure 2.3(a).

2. If one or both of the sight line’s endpoints lie below the node’s minimum

elevation, then the sight line is obstructed by the terrain in the region covered
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(a) Quad tree structure. (b) Quad tree laid out as mip-maps. Notice that
the quad tree and terrain take up less than twice
the space of the terrain.

Figure 5.1: Illustration of the min/max quad tree structure. The terrain is shown in gray.
Each node of the quad tree has a minimum elevation component (shown in red) and a
maximum elevation component (shown in green).

by the node, and the algorithm may return a value of false for the entire

computation. See Figure 2.3(b).

3. If neither of the above cases holds, then it is possible that the sight line is

obstructed within one of the child nodes. Hence, each must be visited recur-

sively. If the sight line passes through a given child node, determined using an

intersection test between the line and the node, then the algorithm is recur-

sively called on the child node with the sight line segment passing through it.

At the leaf node level, the algorithm behaves similarly to the Bresenham line

algorithm.

The min/max quad tree algorithm can be implemented efficiently using the technique

described in [Langetepe and Zachmann, 2006] for intersecting a ray with the cells of a quad

tree (see Figure 5.2). Consider a sight line between two points p1 and p2 extended to an

infinite ray r(t) = (1 − t) ∗ p1 + t ∗ p2, for t ∈ R. Now consider the root node of a quad

tree covering a rectangular domain D = {(x, y) : xleft ≤ x ≤ xright, ybottom ≤ y ≤ ytop}
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x = xleft x = xright

y = ybottom

y = ytop

tbottom

tleft

ttop

tright

Figure 5.2: A quad tree node (shown in green) with bounding lines
x = xleft, x = xright, y = ybottom, y = ytop intersected with a sight line (shown in
blue) using the technique from [Langetepe and Zachmann, 2006]. The sight line’s intersec-
tions with the bounding lines are shown as red dots, with associated intersection parameter
values tleft, tright, tbottom, ttop.

for some xleft, xright, ybottom, ytop ∈ R. We can intersect r(t) with the vertical and horizontal

lines x = xleft, x = xright, y = ybottom, y = ytop to obtain intersection parameter values

tleft, tright, tbottom, ttop. The intersection parameters for child nodes of the quad tree can be

easily found using these four values.

For each quad tree node, given its tleft, tright, tbottom, ttop values, the intersection parameter

values for the vertical and horizontal lines bisecting the node are tv = 1
2
· tleft + 1

2
· tright and

th = 1
2
· tbottom + 1

2
· ttop. Then the given node’s top left child has intersection parameters

tleft, tv, th, ttop; the top right child has values tv, tright, th, ttop; and so on.

This technique allows us to quickly and efficiently intersect the sight line with each child

node and, hence, quickly and efficiently determine the height of the sight line at each node.

Furthermore, while the min/max quad tree algorithm is inherently recursive, it can be

implemented efficiently using stacks. The pseudocode for our implementation can be found

in Algorithm 5.2.

This algorithm runs in O(log(d)) time on average [Duvenhage, 2009], however, the worst
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Algorithm 5.2 QuadTreeVisibility(T, p1, p2) :

stack := An empty stack
r(t) := (1− t) ∗ p1 + t ∗ p2, for t ∈ R
N := The min/max quad tree node at T
tleft := Parameter for intersection between r(t) and x = N.xleft
tright := Parameter for intersection between r(t) and x = N.xright
tbottom := Parameter for intersection between r(t) and y = N.ybottom
ttop := Parameter for intersection between r(t) and y = N.ytop
Push N, tleft, tright, tbottom, ttop onto stack
while stack is not empty do

Pop N, tleft, tright, tbottom, ttop off stack
tlower := max(min(tleft, tright),min(tbottom, ttop))
thigher := min(max(tleft, tright),max(tbottom, ttop))
{Note: if tlower ≥ thigher, then the node is not intersected}
if tlower < thigher then
q1 := r(tlower)
q2 := r(thigher)
if q1.z ≤ N.min OR q2.z ≤ N.min then
return 0 (Not Visible)

end if
if q1.z ≤ N.max OR q2.z ≤ N.max then
tv := 1

2
· tleft + 1

2
· tright

th := 1
2
· tbottom + 1

2
· ttop

Push N ’s top left child, tleft, tv, th, ttop onto stack
Push N ’s top right child, tv, tright, th, ttop onto stack
Push N ’s bottom right child, tv, tright, tbottom, th onto stack
Push N ’s bottom left child, tleft, tv, tbottom, th onto stack

end if
end if

end while
return 1 (Visible)

65



case run time is O(dlog(d)). Due to overhead (including intersection computations), when d

is small the quad tree algorithm tends to be slower than the Bresenham algorithm. Hence,

this algorithm is preferred for use when the endpoints are far apart on an elevation grid or,

due to region culling when the sight line lies above the maximum elevation, when the terrain

is fairly flat. This algorithm features a larger memory footprint than that of the original

terrain (less than double), as the maximum and minimum elevation mipmaps for each level

of the quad tree must be stored (see Figure 5.1(b)).

5.3 Hierarchical LoS Algorithm

While both algorithms are fast under the right conditions, Bresenham’s algorithm is not

optimal when the terrain is flat and entities are far apart, whereas the min/max quad tree

algorithm is not optimal when the terrain has many obstructing features and entities are

close together. While terrain simplification can be used to speed each up, accuracy suffers

as a result. Working with a static simplified terrain results in accuracy loss even for LoS

queries that don’t require speed-ups in the first place.

However, dynamically selecting a degree of simplification to match speed requirements

for each query would address this problem. We present here an algorithm that makes use of

this idea. The algorithm is a combination of Bresenham’s line algorithm, the min/max quad

tree algorithm, and regularity-preserving terrain simplification intended to use each of their

respective strengths to develop a fast algorithm that is more accurate than either algorithm

applied to a static simplified terrain (see Figure 5.3).

5.3.1 Algorithm Details

We wish to determine an algorithm A that is both fast and accurate when working on large

terrain models T with large point sets P ⊂ R3.

The Bresenham algorithm works best when points are close together, whereas the min/max
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Terrain T Points p1,
p2

Reverse Subdivision
S

Point Relocation R
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Distance d

R(p1), R(p2)Is d small?

Bresenham’s
Algorithm

Min/Max Quad
Tree Algorithm

YES NO

Result Result

Figure 5.3: Simplified flowchart of our hierarchical algorithm for an LoS query.

quad tree algorithm works comparitively better when they are far apart. We expect that by

combining the two we can create an algorithm that works well in either case.

Each simplification of the terrain reduces the accuracy of the LoS queries. For points that

are close enough for the Bresenham algorithm to work fast we do not want to lose accuracy

by using a simplified terrain. Hence, for points with a sufficiently small L1 distance d between

them, we use the Bresenham algorithm on the original terrain. When d is sufficiently large,

we use a min/max quad tree. If d is not sufficiently small to use Bresenham’s algorithm

nor sufficiently large to use the quad tree, terrain simplification can be applied to repeatedly

reduce d, bringing some far points close enough to be used with the Bresenham line algorithm.
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Using terrain simplification in this way, we generate a hierarchy of simplified terrains

(say T1, T2, . . . , Ttop where T1 = T ) with a min/max quad tree on one of the levels (say Ttree).

Each level of the hierarchy below the quad tree handles LoS queries using the Bresenham

algorithm. The min/max quad tree handles LoS queries for points that are sufficiently far

apart. Two distance thresholds, tB and tQ, respectively determine when points are sufficiently

close together and sufficiently far apart.

Note that we build the quad tree based on a simplified terrain rather than the original.

This is done both to reduce memory usage by the quad tree and to ensure consistent accu-

racy between the quad tree algorithm and Bresenham’s algorithm running on the simplified

terrain. The level index tree may be computed as dlog2(
tQ
tB

)e+ 1.

The choice of terrain simplification method is an important one, as it has ramifications for

algorithm accuracy and memory usage. Firstly, the method must be regularity-preserving.

Secondly, it is ideal that a correspondence exist between the elevation values of the simplified

and original terrains. Our work uses a 1 to 4 correspondence (i.e. every elevation value of a

simplified terrain represents four elevation values from the terrain immediately below it in the

hierarchy, similar to the structure of a quad tree), which means that with each application

of simplification d is cut in half.

Subsampling by a factor of 2 is an obvious choice, and has the advantage that the

simplified terrains need not be stored in memory. One could simply increase the step size

of the Bresenham algorithm. Another possibility is to subsample by taking the maximum

or minimum elevation values, which would respectively force all errors to be false negatives

or false positives. The resulting hierarchy would have the same structure as a max or min

quad tree, respectively, and could support quad tree queries.

For our tests, we have used local least-squares reverse Faber subdivision (LLSRFS) to

generate the hierarchy of simplified terrains. This type of simplification can be applied in

linear time (based on the size of the terrain model), and our results show that it preserves
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LoS query accuracy better than subsampling. In our preliminary tests, both the identity

and projection relocation functions produced low rates of true positives, hence we use the

half projection hybrid approach — which produces high rates of true positives — to relocate

entities onto the layers of the hierarchy.

Pseudocode for the algorithm is given in Algorithm 5.3.

Algorithm 5.3 Hierarchical(T, p1, p2) :

Determine grid indices (i1, j1) for point p1 on T1

Determine grid indices (i2, j2) for point p2 on T1

k := 1
dist := sqrt((i2 − i1)2 + (j2 − j1)2)
if dist > tQ then
return QuadTreeVisibility(Ttree, p1, p2)

else
while dist > tB AND k < top do
k := k + 1
dist := dist/2

end while
return BresenhamVisibility(Tk, p1, p2)

end if.

To reduce the number of expensive square root calls in our pseudocode, a more efficient

version of the algorithm compares squared distances (see Algorithm 5.4).

Algorithm 5.4 EfficientHierarchical(T, p1, p2) :

Determine grid indices (i1, j1) for point p1 on T1

Determine grid indices (i2, j2) for point p2 on T1

k := 1
distSq := (i2 − i1)2 + (j2 − j1)2

if distSq > tQ
2 then

return QuadTreeVisibility(Ttree, p1, p2)
else
while distSq > tB

2 AND k < top do
k := k + 1
distSq := distSq/22

end while
return BresenhamVisibility(Tk, p1, p2)

end if.

Note also that it is possible to use the algorithm without the quad tree by setting tQ =∞.
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5.3.2 Run Time Analysis

The average run time of our algorithm is given piecewise as

 O(tB) when d ≤ tQ

O(log(d)) otherwise.

The wost case run time is

 O(tB) when d ≤ tQ

O(dlog(d)) otherwise.

Note that the asymptotic run time of the algorithm with tQ = ∞ is simply O(tB).

Notably, this run time is independent of both the terrain model size and entity positions.

If this version of the algorithm is used with a constant tB, the algorithm run time will be

effectively constant.

We show the derivation for the run time of the algorithm without the quad tree (i.e.

tQ =∞); the run time for the version with the quad tree follows from this and the run time

of the min/max quad tree algorithm.

Let di denote the Manhattan distance between the sight line’s endpoints over Ti. Notice

that d1 = d and di = (1
2
)i−1d for all i = 1, 2, . . . , top.

The bottleneck of the algorithm is the call to Bresenham’s algorithm. Whenever di ≤ tB,

we use the O(di) time Bresenham line algorithm on Ti. Hence, the run time of our algorithm

can be given piecewise as



O(d1) when d1 ≤ tB

O(d2) when 1
2
tB < d2 ≤ tB

· · ·

O(dtop) when 1
2
tB < dtop ≤ tB.

(5.1)
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Notice that di ≤ tB in each case. Hence, we can replace theO(di) byO(tB) in Equation 5.1

to yield



O(tB) when d1 ≤ tB

O(tB) when 1
2
tB < d2 ≤ tB

· · ·

O(tB) when 1
2
tB < dtop ≤ tB.

(5.2)

Equation 5.2 collapses down to

O(tB), (5.3)

which is what we wished to show.

It should be noted that, since the Bresenham line algorithm reaches its worst-case run

time when the sight line is unobstructed, the performance of our algorithm will deteriorate

quickly on terrains with large, flat regions. Indeed, in such cases it would be wise to use

the min/max quad tree algorithm alone. Aside from these types of terrain, however, our

algorithm is specially designed to perform well.
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Chapter 6

RESULTS AND DISCUSSION

In this chapter, we present our LoS query accuracy comparison results and discussions of

such for the various methods and algorithms described throughout this thesis. Results are

divided between two sections: one for the simplification methods from Chapter 3 and the

relocation methods from Chapter 4, and a second results section for the algorithms described

in Chapter 5. Results tables and charts may be found at the end of the chapter.

In our tests, we have attempted to reflect the conditions of a real simulation by taking

a small number of entities in comparison to the number of terrain vertices, partly too for

speed concerns. As LoS accuracy is dependent on the underlying terrain, the number of

entities, and their distribution, it is difficult to extrapolate with any certainty what the

query accuracy for a given entity count and distribution would be given the query accuracy

for another entity count and distribution (even one covering the entire terrain). Hence, our

results serve better as a comparison between methods than as an indicator of expected LoS

accuracy.

6.1 Simplification and Relocation Results

In this section we describe and discuss our results from comparing the LoS query accuracy of

the various simplification methods and relocation schemes described throughout the paper.

LoS queries were conducted using a ray casting approach on five different terrain models

(120 × 120 height maps, shown in Figure 6.1) with varying levels of sharp features, each

tested using six random distributions of fifty test points (1,225 sight lines). The terrain

models were each tested at three levels of simplification: 25% of the original terrain size, 6%

of the original terrain size, and 1.5% of the terrain size (which correspond to the terrain size
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(a) The “Seattle” terrain (b) The “Denver” terrain

(c) The “Eagle Pass” terrain (d) The “Jackson” terrain

(e) The “Buffalo” terrain

Figure 6.1: The 120× 120 height map terrains used in our tests.
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after 1, 2, and 3 iterative applications of reverse subdivision, respectively).

Tests were conducted on a global scale, wherein no limits were placed on effective sight

line distance. In several cases, additional tests at a local scale, wherein LoS queries had limits

placed upon effective sight line distance, were also conducted. The distance limit used in our

tests was 30 units for every entity (where 1 unit represents the horizontal spacing between

elevation values); entities exceeding this distance from each other were automatically deemed

to be invisible to each other. Hence, entities in our local tests can see up to one quarter of

each 120× 120 height map terrain.

6.1.1 Comparison of Simplifications

See Tables 6.1 through 6.3 for the LoS query accuracy results after simplification by each

of the methods described in Chapter 3. Each simplification method was paired with the

identity, projection, and half projection relocation methods. Rates of true positives and

true negatives are shown in Table 6.4. Chart summaries of these results may be found in

Figures 6.3 through 6.4.

Our results indicate that, while the reverse subdivision methods have a more restrictive

nature than the irregular simplification methods, the restriction to regular surfaces does not

significantly diminish the query accuracy. Indeed, these reverse subdivision methods appear

to preserve LoS accuracy roughly on par with or, in some cases, superior to the irregular

methods.

Of the regularity-preserving methods tested, the subsampling scheme performed unex-

pectedly well. The other three variants (GLSRFS, LLSRFS, and feature aware) have ap-

proximately equal rates of total accuracy, however, due to its superior run time the LLSRFS

scheme emerges as the preferred reverse subdivision scheme. Unfortunately, our novel algo-

rithm does not appear to have shown significant improvement in average accuracy over the

other subdivision methods.

Interestingly, the identity relocation function also performed unexpectedly well, particu-
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larly when paired with LLSRFS. Overall, however, projection appears to preserve LoS query

accuracy better than identity. Additionally, it has superior rates of true positives, albeit with

slightly lower rates of true negatives. Both relocations, however, tend to favour false nega-

tives over false positives. Ultimately, it seems that the false-positive-favouring behaviour of

half projection tends to result in poorer LoS query accuracy results when compared against

identity and projection. The reason for this, and likely the reason for identity’s strong results,

appears to be that the majority of LoS queries (especially without limitations on effective

sight line distance) tend to return not visible.

6.1.2 Comparison of Feature Weights

To identify the best feature weight w to use when applying feature aware reverse subdivision,

we conducted several tests to examine the impact of different weights on LoS query accuracy.

See Figure 6.5 for LoS query accuracy results plotted against various feature weight values.

Our results indicate that LoS query accuracy over terrains reverse subdivided with feature

aware reverse subdivision peaks in the vicinity of w = 0.75. Hence, for other results detailed

in this chapter, those regarding feature aware reverse subdivision are computed using a

feature weight of 0.75.

6.1.3 Comparison of Smoothing Weights

We tested the effect of the smoothing on LoS query accuracy using two smooth reverse

subdivision schemes: smooth LLSRFS and smooth feature aware reverse subdivision with

various smoothing weights w. See Figure 6.6 for a summary of our results.

Our results indicate that, at least when used with reverse Faber subdivision methods, the

effects of smoothing are detrimental to LoS query accuracy results. As the smoothing effect

increases with w, the LoS query accuracy decreases. This is consistent with our expectations

regarding the effect of smoothing upon LoS query accuracy.
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6.1.4 Comparison of Iterative Relocation Methods

For each ierative point relocation method, the local neighbourhood of each entity was dis-

cretized into a 5 × 5 × 5 grid. A distance of 0.5 units was used for the constant distance

methods. The decreasing distance method decreased the distance by a factor of 0.75 each

iteration. The maximum number of iterations allowed was 10.

See Table 6.5 for the average LoS query accuracy and for the average number of iterations

for each iterative relocation method, and Figure 6.7 for a chart summary. Due to speed

concerns, the iterative relocation methods were only tested at simplification to 1.5% and at

a global scale.

We have found that point relocation by iteration is very powerful, making it possible to

achieve over 90% accuracy despite simplification to 1.5% of the original terrain size. Of the

various implementations tested, the projection distance method performed the strongest,

featuring the lowest average number of iterations, and generally higher accuracy averages.

This would suggest that the distance of projection plays an important role in an optimal

point relocation.

The results clearly show that there is room for improvement over the projection and

identity methods. However, whether a practical point relocation method can achieve results

similar to the iterative methods remains an open question.

6.1.5 Comparison of Residual Vector Relocation Methods

We tested the residuals relocation method (with and without modifications) against the

identity and projection functions at a global and local scale.

Figure 4.10 indicates that, as the average length of residual vectors for a given terrain

increases, the performance of residuals relocation on that terrain improves in comparison to

the identity function. The relationship appears to be somewhat linear, with a maximum

occuring when the average length of the residuals is around 1.5. Hence, we conducted our
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tests on scaled residual vector relocation taking threshold = 1.5.

Figure 6.8 compares the accuracy of the residuals relocation schemes, relative to identity.

Given a set of entities ei, each corresponding to a vertex of the simplified terrain, our

pre-processing step of the pseudo-optimized residuals scheme does the following. For each i,

an entity ej is considered to be in the local neighbourhood of ei if at most three simplified

terrain faces lie between the vertices corresponding to ei and ej. At each iteration, nineteen

candidate positions are distributed randomly along the line segment from ei − 2(1− si)ri to

ei+2(1−si)ri, where si is the current scaling factor and ri is the residual vector for ei. (Notice

that (1 − si)ri is a vector in the direction of ri that projects ei onto the simplified terrain.

Hence, this scheme behaves similiarly to projection distance relocation.) Our implementation

uses up to a maximum of five iterations.

Note that, since the vertices of a subsampled terrain are equal to their corresponding

vertices on the original terrain, the residual vectors at these vertices will equal the zero vector.

Hence, by construction, our pseudo-optimized residuals scheme will behave equivalently to

identity over a subsampled terrain.

See Tables 6.1 through 6.3 for the average LoS query accuracy results for the residual

vector relocation methods and Figures 6.3 through 6.4 for chart summaries. Table 6.4 il-

lustrates the rates of true positives/negatives under our residuals relocation methods. Our

results indicate that our pseudo-optimized residuals relocation method improves the LoS

query accuracy over the identity and projection functions on both a global and local scale,

especially on LLSRFS terrains. The unscaled residuals relocation method offers slight im-

provement over the projection function, but on a global scale the identity performs stronger.

6.2 Hierarchical Algorithm Results

For our hierarchical algorithm tests, distance thresholds tB = 40 and tQ = 320 were used.

Preliminary testing indicated that the performance of Bresenham’s algorithm deteriorates
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against the run time of the min/max quad tree algorithm when d > 40. The quad tree

threshold was chosen to allow four hierarchy levels on which to run Bresenham’s algorithm,

as accuracy results in Section 6.1.1 indicate that four levels can be used without too much

loss in accuracy. All results were obtained on a computer with an Intel Core i7 CPU, 12 GB

of RAM, and a 64-bit architecture running Windows 7.

Our tests were run on three different large height map terrain models ranging from very

flat to very mountainous. These are shown in Figure 6.2. Tests were run with random

distributions of 300 test points (44,850 sight lines) on the Camp LeJeune and Kingston

terrains, and 500 test points (124,750 sight lines) on the Rocky Mountains terrain. Tests

were conducted on a global and local scale, with a maximum Manhattan distance of 320

allowed for sight lines in the local case.

Refer to Table 6.6 for the average query accuracy, rates of true positives and negatives,

and average run time of each visibility algorithm. A graphical summary of the results can

be found in Figure 6.9. Because of the thoroughness of the min/max quad tree approach, we

consider the quad tree algorithm to be 100% correct, and compare the results of the other

two algorithms against it.

Our results indicate that our hierarchical approach can perform faster than Bresenham’s

algorithm and the min/max quad tree algorithm on average, with a fairly minimal impact

on the accuracy. For our particular tests, visibility accuracy for the hierarchical approach

never dropped below 95%. Since LoS queries between close points are performed on terrains

that produce higher accuracy, our algorithm can clearly produce superior accuracy results

than if all LoS queries were performed on a single terrain with a constant drop in accuracy

(i.e. if reverse subdivision alone had been applied).
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(a) The 7201x3601 “Camp LeJeune” terrain. Featuring both flat
and rough regions, the Camp LeJeune terrain is suited primarily
to the quad tree algorithm and secondarily to the Bresenham
algorithm.

(b) The 7201x3601 “Kingston” terrain. As a terrain with many
features, the Kingston terrain is well-suited to LoS queries using
the Bresenham line algorithm.

(c) The 9608x6005 “Rocky Mountains” terrain. As a very moun-
tainous and feature-heavy terrain, despite its large size the Bre-
senham algorithm runs very fast on this terrain.

Figure 6.2: The three test terrain maps for the hierarchical algorithm.
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Figure 6.3: Summary of accuracy for the simplification methods (excepting smooth reverse
subdivision) averaged over the identity, projection, half projection, residuals, and scaled
residuals relocation schemes.
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Figure 6.4: Summary of accuracy for the relocation methods averaged over the subsampling,
LLSRFS, GLSRFS, feature aware, QEC, constrained QEC, greedy insertion, and greedy cuts
simplification schemes.
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(a) Global query results.

Max. Sight Line Distance N/A

Average Accuracy

Identity Projection Half Projection Residuals Scaled Residuals

25.00%

Subsampling 94.50% 94.37% 94.85% 93.99% 94.68%

LLSRFS 93.61% 93.95% 94.85% 93.71% 93.62%

GLSRFS 93.71% 94.00% 94.85% 93.59% 93.62%

Feature Aware (0.75) 93.85% 93.81% 94.67% 93.46% 93.96%

QEC 93.64% 94.47% 95.23%

Constrained QEC 94.58% 95.18% 95.92%

Greedy Cuts 90.59% 93.71% 94.13%

Greedy Insertion 95.16% 96.00% 96.68%

Grand Total 93.71% 94.44% 95.15% 93.69% 93.97%

(b) Local query results.

Max. Sight Line Distance 30

Average Accuracy

Identity Projection Half Projection Residuals Scaled Residuals

25.00%

Subsampling 90.74% 90.79% 91.39% 90.56% 91.54%

LLSRFS 89.56% 90.01% 91.32% 89.50% 89.88%

GLSRFS 89.42% 90.12% 91.44% 89.48% 89.56%

Feature Aware (0.75) 89.36% 89.56% 90.91% 89.23% 90.36%

QEC 89.24% 91.09% 92.01%

Constrained QEC 90.75% 92.04% 92.77%

Greedy Cuts 84.62% 88.67% 89.18%

Greedy Insertion 91.60% 92.78% 94.00%

Grand Total 89.41% 90.63% 91.63% 89.69% 90.34%

Table 6.1: Average accuracy results after simplification to 25% of the original terrain size.
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(a) Global query results.

Max. Sight Line Distance N/A

Average Accuracy

Identity Projection Half Projection Residuals Scaled Residuals

6.00%

Subsampling 88.48% 89.46% 88.41% 88.99% 89.73%

LLSRFS 90.84% 89.82% 90.01% 89.49% 90.99%

GLSRFS 90.36% 89.64% 89.93% 89.59% 90.91%

Feature Aware (0.75) 90.44% 89.60% 89.83% 89.38% 90.70%

QEC 88.88% 90.41% 89.86%

Constrained QEC 89.74% 91.49% 90.30%

Greedy Cuts 84.23% 87.93% 86.55%

Greedy Insertion 88.45% 89.77% 90.37%

Grand Total 88.93% 89.76% 89.41% 89.36% 90.58%

(b) Local query results.

Max. Sight Line Distance 30

Average Accuracy

Identity Projection Half Projection Residuals Scaled Residuals

6.00%

Subsampling 80.20% 82.95% 80.92% 82.78% 83.49%

LLSRFS 82.26% 82.39% 82.25% 83.06% 84.21%

GLSRFS 81.99% 83.30% 82.87% 83.22% 84.54%

Feature Aware (0.75) 82.12% 83.05% 82.87% 82.71% 84.44%

QEC 81.36% 84.62% 82.98%

Constrained QEC 82.27% 86.08% 83.71%

Greedy Cuts 73.47% 77.68% 75.04%

Greedy Insertion 80.00% 82.85% 83.16%

Grand Total 80.46% 82.87% 81.72% 82.94% 84.17%

Table 6.2: Average accuracy results after simplification to 6% of the original terrain size.
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(a) Global query results.

Max. Sight Line Distance N/A

Average Accuracy

Identity Projection Half Projection Residuals Scaled Residuals
Pseudo-Optimized

Residuals

1.50%

Subsampling 80.53% 82.94% 78.51% 82.99% 84.24% 80.54%

LLSRFS 84.38% 82.88% 80.29% 83.67% 85.87% 86.23%

GLSRFS 82.62% 82.77% 79.93% 83.16% 84.23% 83.79%

Feature Aware (0.75) 82.91% 83.72% 81.15% 83.44% 84.44% 84.30%

QEC 81.93% 84.67% 81.72%

Constrained QEC 82.40% 85.15% 81.01%

Greedy Cuts 76.17% 77.31% 72.40%

Greedy Insertion 80.50% 79.00% 77.10%

Grand Total 81.43% 82.30% 79.01% 83.31% 84.70% 83.71%

(b) Local query results.

Max. Sight Line Distance 30

Average Accuracy

Identity Projection Half Projection Residuals Scaled Residuals
Pseudo-Optimized

Residuals

1.50%

Subsampling 68.16% 73.01% 67.13% 72.50% 74.81% 68.14%

LLSRFS 72.83% 72.98% 68.97% 73.85% 76.80% 75.43%

GLSRFS 70.07% 72.83% 68.90% 73.05% 74.79% 73.03%

Feature Aware (0.75) 70.36% 73.06% 69.10% 72.79% 74.75% 73.25%

QEC 71.41% 75.57% 71.20%

Constrained QEC 70.31% 76.04% 69.51%

Greedy Cuts 62.79% 61.80% 57.32%

Greedy Insertion 64.43% 65.31% 63.43%

Grand Total 68.79% 71.32% 66.94% 73.05% 75.29% 72.46%

Table 6.3: Average accuracy results after simplification to 1.5% of the original terrain size.
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(a) Global query results.

Max. Sight Line Distance N/A

Identity Projection Half Projection Residuals Scaled Residuals
Pseudo-Optimized

Residuals

1.50%

Rate of True Positives 54.81% 69.34% 87.69% 50.53% 51.09% 53.59%

Rate of True Negatives 85.88% 83.59% 76.99% 88.36% 89.86% 88.79%

6.00%

Rate of True Positives 59.90% 69.66% 87.87% 56.55% 59.03%

Rate of True Negatives 93.39% 92.22% 89.11% 93.64% 94.64%

25.00%

Rate of True Positives 65.75% 75.52% 88.14% 69.94% 64.59%

Rate of True Negatives 97.86% 97.03% 96.10% 96.73% 97.82%

(b) Local query results.

Max. Sight Line Distance 30

Identity Projection Half Projection Residuals Scaled Residuals
Pseudo-Optimized

Residuals

1.50%

Rate of True Positives 58.80% 74.19% 87.38% 55.80% 54.07% 54.97%

Rate of True Negatives 70.33% 67.00% 56.46% 76.14% 79.93% 76.72%

6.00%

Rate of True Positives 61.11% 72.76% 86.90% 61.87% 60.84%

Rate of True Negatives 84.64% 83.79% 77.39% 87.47% 89.15%

25.00%

Rate of True Positives 67.60% 77.44% 87.99% 71.06% 66.79%

Rate of True Negatives 94.97% 93.81% 91.78% 94.17% 95.56%

Table 6.4: Average rates of true positives and true negatives after simplification.
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Figure 6.5: Average accuracy results after simplification to 1.5% using feature aware reverse
subdivision with different feature weights.
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(a) Smooth LLSRFS results.
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(b) Smooth feature aware results.

Figure 6.6: Average accuracy results after simplification to 1.5% of the original terrain size
using smooth reverse subdivision.
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Figure 6.7: Summary of global accuracy vs iterations for the iterative estimation reloca-
tion methods averaged over the subsampling, LLSRFS, GLSRFS, feature aware, QEC, con-
strained QEC, greedy insertion, and greedy cuts simplification schemes.
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(a) Average accuracy results.

Max. Sight Line Distance N/A

Average Accuracy

Jacobi Gauss-Seidel
Decreasing

Distance

Projection

Distance

1.50%

Subsampling 93.83% 93.39% 93.43% 95.05%

LLSRFS 94.61% 94.34% 94.79% 95.82%

GLSRFS 94.16% 93.90% 94.46% 95.31%

Feature Aware (0.75) 94.54% 94.04% 94.58% 95.58%

QEC 94.25% 93.94% 94.35% 94.41%

Constrained QEC 94.54% 94.53% 95.28% 95.67%

Greedy Cuts 88.51% 88.57% 89.50% 92.58%

Greedy Insertion 91.25% 91.24% 91.30% 93.68%

Grand Total 93.21% 92.99% 93.46% 94.76%

(b) Average rates of true positives and true negatives.

Max. Sight Line Distance N/A

Jacobi Gauss-Seidel
Decreasing

Distance

Projection

Distance

1.50%

Rate of True Positives 77.37% 76.83% 76.36% 76.96%

Rate of True Negatives 95.16% 94.97% 95.61% 96.93%

(c) Average number of iterations.

Average Iterations

Jacobi Gauss-Seidel
Decreasing

Distance

Projection

Distance

1.50%

Subsampling 5.37 4.10 5.17 3.57

LLSRFS 4.87 3.20 4.13 2.67

GLSRFS 5.47 3.47 4.63 2.73

Feature Aware (0.75) 5.13 3.37 4.47 3.07

QEC 6.23 3.83 4.90 3.87

Constrained QEC 5.20 3.13 4.27 3.07

Greedy Cuts 6.13 3.33 4.57 2.97

Greedy Insertion 5.50 3.17 4.17 2.90

Grand Total 5.49 3.45 4.54 3.10

Table 6.5: Average accuracy results and average number of iterations for the iterative relo-
cation methods after simplification to 1.5%.
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Figure 6.9: Summary of accuracy vs run-time for the LoS algorithms on each test terrain.
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(a) Global algorithm results.

Max. Sight Line Distance N/A

Bresenham’s

Algorithm

Hierarchical

Algorithm

Min/Max Quad

Tree

Camp LeJeune

Average Time (ms) 884.9 415 486.7

Rate of True Positives 97.35% 99.40% 100.00%

Rate of True Negatives 99.84% 96.09% 100.00%

Average Total Accuracy 98.98% 97.25% 100.00%

Kingston

Average Time (ms) 473.9 449.8 571.1

Rate of True Positives 83.53% 80.06% 100.00%

Rate of True Negatives 99.90% 98.96% 100.00%

Average Total Accuracy 99.71% 98.74% 100.00%

Rocky Mountains

Average Time (ms) 361.9 168 433.7

Rate of True Positives 81.79% 72.07% 100.00%

Rate of True Negatives 99.97% 99.79% 100.00%

Average Total Accuracy 99.96% 99.76% 100.00%

(b) Local algorithm results.

Max. Sight Line Distance 320

Bresenham’s

Algorithm

Hierarchical

Algorithm

Min/Max Quad

Tree

Camp LeJeune

Average Time (ms) 78.9 25.8 42.2

Rate of True Positives 97.30% 98.40% 100.00%

Rate of True Negatives 99.88% 97.39% 100.00%

Average Total Accuracy 98.75% 97.84% 100.00%

Kingston

Average Time (ms) 17 10.9 55

Rate of True Positives 93.69% 91.44% 100.00%

Rate of True Negatives 99.89% 99.03% 100.00%

Average Total Accuracy 99.80% 98.91% 100.00%

Rocky Mountains

Average Time (ms) 31.6 26.2 120.7

Rate of True Positives 90.77% 87.21% 100.00%

Rate of True Negatives 99.84% 99.28% 100.00%

Average Total Accuracy 99.81% 99.23% 100.00%

Table 6.6: Average accuracy and run-time results for the LoS algorithms. The min/max
quad tree algorithm is considered to provide the correct result.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

Within this thesis, we have applied reverse subdivision methods as regularity-preserving ter-

rain simplification to regular terrains in the interest of reducing the run time of LoS queries

while preserving query accuracy. Using regularity-preserving simplification as opposed to

irregularity-introducing simplification allows one to continue using the efficient data struc-

tures and algorithms associated with regular terrains.

Despite the additional constraint to preserve regularity that must be met by these

schemes, our simplification methods have been shown to preserve LoS query accuracy com-

parably well to simplifications without such constraints. In particular, we have identified

local least squares Faber reverse subdivision as a fast regularity-preserving simplification

scheme that preserves LoS query accuracy well.

In the interest of improving upon these results, we introduced a novel reverse subdivision

scheme intended to preserve features of the terrain that are important to visibility. Our

feature aware reverse subdivision scheme adds additional constraints for maintaining the

spatial relationships between the local minima and maxima of the terrain to the global least

squares formulation of reverse subdivision. A feature weight parameter can be used to control

the impact of these constraints on the final result.

LoS query accuracy is additionally impacted by the positions of the entities after simpli-

fication. We have explored the concept of point relocation and challenged the tacit use of

projection relocation. Using an optimization framework for relocating entities to maximize

LoS query accuracy after terrain simplification, we presented iterative estimation methods

inspired by iterative numerical optimization techniques and showed that room for accuracy

improvement exists over the standard projection function.
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Achieving these improvements, however, remains a challenging task. To meet this chal-

lenge, we developed two practical relocation schemes. Half projection replaces the implicit

constraint that “all entities must lie on the terrain” with the more permissive constraint that

“no entity may lie beneath the terrain.” Residual vector relocation uses the residual vectors

resulting from simplification as relocation vectors, generalizing projection. A pre-processing

step that makes use of our estimation methods can be used to improve LoS accuracy further.

Unfortunately, each degree of simplification can only offer a constant improvement in

run time while globally impacting LoS accuracy. To combat this, we have introduced a hier-

archical approach to line-of-sight queries that combines these techniques with Bresenham’s

algorithm and the min/max quad tree algorithm. The resulting algorithm has been shown

to improve upon the speed of the min/max quad tree algorithm, with more consistent run

times than the Bresenham algorithm, and a low drop in LoS query accuracy.

7.1 Future Work

Although we simplify all regions of the terrain uniformly in this work, the prospect of ap-

plying adaptive subdivision to allow different regions of the terrain to be approximated at

different levels of fidelity is intriguing. While our hierarchical algorithm handles this in some

respect, integrating level-of-detail directly into the simplification method is an avenue that

we’ve yet to explore.

The concept of point relocation has proved to be a source of interesting research questions,

and provides the bulk of our research contributions in this work. Further work into this area

could be of potential interest, particularly in the area of developing new relocation methods

for irregular terrains.

The distance threshold used in our formulation of the hierarchical algorithm has room

for further exploration. For one, it could be interesting to consider the effect of different

thresholds at each level of the hierarchy on the algorithm’s run time and accuracy, or a
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threshold based on something other than distance (e.g. the complexity of the terrain between

two entities). Furthermore, while we keep the distance threshold constant throughout all our

experiments, there exists the possibility to adjust the threshold on the fly to compensate for

changes in an application’s available resources. Using adaptively subdivided terrains within

the hierarchy opens up further possibilities.

Although we place entities slightly above the terrain before simplification, the distance is

kept constant and small. One wonders what the impact of our research would be in situations

where entities are allowed to be airborne. Whether or not the same results will hold remains

an open question.

The metric for LoS accuracy we have used is mathematically sound and features in

existing literature, however it has some weaknesses. For instance, we have touched upon its

strong bias towards negative results. While it goes beyond the scope of this work, it could

be potentially interesting to examine the impact of different metrics for LoS accuracy.
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