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Abstract 

The generalized Pareto distribution (GPD) is one of the most important distributions in 

the analysis of extreme values, especially in modeling the exceedances over thresholds in 

environment, geology, reliability and insurance, etc. 

Most of the existing methods for estimating the scale and shape parameters a and k 

of the GPD suffer from theoretical and computational problems. Among these methods, 

the maximum likelihood (ML) estimators may not possess the classical properties be-

cause the Cramer's regularity conditions fail to hold for 1/2 < k < 1, and does not exist 

for k > 1. Even when ML estimators exist in a restricted parameter space, it may still 

give convergence problem. The maximum goodness-of-fit (MGF) estimators introduced 

by Luceflo (2006) can always be found, but its efficiency is always low, and its bivariate 

numerical optimization can be complex. To improve the estimation in terms of bias and 

mean square error (MSE), and to simplify the computation, a new hybrid estimation 

method for the GPD is proposed in this thesis, which is mainly based on the idea of 

minimizing a goodness-of-fit measure and incorporating useful maximum likelihood in-

formation. Compared with the original ML and MOF methods, we show that this new 

hybrid method can not only reduce the estimation bias but also improve the MSE in the 

range —6 ≤ k'< 2, and our new hybrid estimators also perform well compared with other 

estimators suggested in the recent literature. 

Key Words: EIJF statistics; Estimation bias and MSE; Exceedences over threshold; 

Extreme values; Maximum goodness-of-fit estimators; Maximum likelihood estimators; 

Minimum distance estimators; Parameter profiling. 
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Chapter 1 

Introduction 

The extreme value theory (EVT) is a branch of probability and statistics that studies the 

behaviors of unusually large or small values, called extremes, in a sequence of random 

variables. In traditional data analysis, such extremes are often negligible and labelled 

as outliers. But if the questions asked are related to some rare events that do not 

occur very frequently, the information contained in such extremes is often important. 

For example, the analysis of peaks over a high threshold level is of particular interest 

in many statistical applications. According to Pickands (1975), the distribution of the 

extreme values exceeding a given high threshold is found to be the generalized Pareto 

distribution (GPD), which is the model we will concentrate on in this thesis. 

1.1 The Generalized Pareto Distribution 

The Generalized Pareto Distribution (GPD) is a two-parameter family of distribu-

tions first introduced by Pickands (1975) [15] with the distribution function (cdf) 

11 - (1 - kx/cT)'/' F(x;cr,k) , if k 0, 
= 

1. 1 - exp(—x/a) , if k=0, 

and the probability density function (pdf) 

I r'(l - kx/a)'/`1 , if k 0, 
f(x;o,k) = (1.2) 

1. cr'exp(—x/a) , if k = 0, 

where the ci > 0 and —oo < k < co are the scale and shape parameters, respectively, 

and the domain of x is (0, oo) when k ≤ 0 or (0, a/k) when k > 0. We denote the above 

distribution by GPD(o-, k). 
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The quantile function of the GPD is given by 

Q(u;o,k) = = —o.T(1—u,k), 0< u < 1, 

where T(.) is the Box-Cox transformation (or Power transformation) defined by 

( if A0, A 

ln(z), if A=0. 

The mean of the GPD is a/(1 + k) and the variance is a2/[(1 + k)2(1 + 2k)], but the 

mean and variance exist only if k> —1 and k> —1/2, respectively. In general, the rth 

central moment of the GPD exists only if k > —1/r. 

The GPD is important because of its versatility and flexibility. It contains the uni-

form, the exponential and the standard Pareto distributions as its special cases. Specifi-

cally, when k = 1, the GPD becomes the uniform distribution in the range [0, 0]; when 

k tends to 0, the GPD becomes the exponential distribution with mean 0 as taken the 

limit; and when k < 0, the GPD reduces to the Pareto distribution (PD). In the situa-

tions where the exponential distribution might be used but some robustness is necessary 

against heavier or lighter tail, the GPD is considered as an appropriate alternative. 

Also, some distributions often used in fitting heavy-tailed data may be approximated 

by a GPD through suitable choice of k and o. As shown in Choulakian and Stephens 

(2001), the GPD provides a good approximation to the standard half-Cauchy, Lognormal 

and Weibull distributions. 

We plot the density functions of the GPD for different values of the shape parameter 

k in Figure 1.1, where the scale parameter a is fixed at 1. From Figure 1.1, we can 

see the two special cases of the GPD: the exponential distribution (k = 0) and the 

uniform distribution (k = 1). Also it is easily noticed that, when k > 0, the range of 

x is bounded by a/k. In particular, when k> 1/2 the GPD has finite end-points with 

the pdf f(x; a, k) > 0 near each end-point. As k gets bigger, the right tail of the GPD 
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increases sharply. On the other hand, when k <0, x can take any positive number, and 

as k gets smaller, the right tail of the GPD becomes heavier. Especially, when k ≤ —1/2 

the GPD has infinite variance, and when k < —1 the mean of the GPD does not exist. 

u-
0 

Plot of GPD density, with a = I fixed, and k > 0 

:1 

0.5 

k0.1 

k=0.5 

k=0.75 

k=l 

W.25 

0.0 1.0 1.5 2,0 

x 

Plot of GPD density, with a = I fixed, and k <= 0 

Figure 1.1: The shape of the density functions of the GPD for different values of k. 

Besides the uniform, the exponential and the standard Pareto distributions, there 

are some connections between the GPD and other familiar distributions. As shown by 

Pickands ( 1975), an interesting such connection is given below. 

Suppose that X1, X2,... , X are independent and identically distributed (iid) random 

variables from the GPD(a, k) given in ( 1.1), and suppose that the number N of Xi exceed-

ing a level t follows a Poisson distribution with mean A. Let ZN = max(X1, X2,.. . , XN). 

Then ZN converges to the generalized extreme value distribution (GEVD) as t increases, 

that is, 
- \ i/k) 

P(ZN ≤ z)=exP k(x t)  
{_(1 ) 1' (1.3) 

where the parameter b = cr/Alx. And the location parameter t in the GEVD is actually 

called a threshold of interest in the GPD, which will be discussed in the next section. 
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Furthermore, it is useful to notice from ( 1.3) that the shape parameters of the GEVO 

and the GPO are equal. 

1.2 Application: Peaks Over Thresholds 

In extreme value theory, there are generally two methods for modeling the maximum or 

minimum observations. Originally introduced by Fisher and Tippett (1928), the classical 

approach to model the extreme values is based on the limiting distribution of the maxima 

or minima of a sequence of independent and identically distributed random variables, 

which turns out to be the GEVO. Because of this, the GEVO is appropriate when the 

data contain a set of maxima or minima during some fixed periods. Using only the 

maxima or minima information, this method was criticized by many authors, due to the 

loss of information contained in other extreme order statistics (see Smith (1990) for a 

general review of these two most widely used methods). The problem can be addressed 

by considering the limiting distribution of observations that exceed a given threshold in 

order to use several largest order statistics rather than the maxima. Hence the GPO 

was first introduced by Pickands (1975) to model the exceedences over a high threshold, 

such that the distribution of the exceedences (X - t) converges to the GPO, where {X} 

are the sample observations and t is a given threshold. For this reason, in extreme value 

theory the GPO is often referred to as the "Peaks Over Thresholds" (POT) model. 

There are many examples of this application. Hosking and Wallis (1987) used the 

GPO to model the annual maximum flood levels of the River Nidd in England. Smith 

(1989) discussed an application of the GPO to study the ozone levels in the upper at-

mosphere. Castillo and Hadi (1997) fit the GPO. to the heights of sea waves in the Bay 

of Biscay, Spain. Choulakian and Stephens (2001) applied the GOP to model the flood 

levels for 238 Canadian rivers, among others. 
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An attractive and useful property of the application of GPD in POT is its stability. 

If X follow a GPD (a, k) as defined in (1. 1), then the conditional distribution of the 

exceedence X - t given that X > t for any level t, follows the GPD (a - kt, k). This can 

be shown as follows 

P(X—t<xiX>t) 
P(t < X ≤ x+t)  

P(X>t) 

F(x+t; a,k)—F(t; u, k)  

1—F(t; u, k) 

(1 -  k(x + t)/a)h/k - (1 - kt/a) l/k 

—(1 - kt/a)h/k 

kx 1/k 

a_kt) 

GPD(a - kt, k). (1.4) 

This property implies that the model is consistent with the data for any given thresh-

olds, that is, the shape parameter k of the GPD stays unchanged with the level of different 

thresholds. So if a GPD model is appropriate, the shape of the distribution will be stable 

for any chosen levels of threshold, and E(X - t ≤ xix > t) = (a - kt)/(1 + k). 

1.3 Framework of This Thesis 

The GPD has received a lot of attention in both practical applications and theoret-

iêal research. The existing parameter estimation methods and their drawbacks will 

be discussed in the next Chapter. We will especially focus on the Maximum Likeli-

hood (ML) method, the Maximum Goodness-of-Fit (MGF) method and the Empirical 

Bayesian Method (EBM). Then a new hybrid estimation method for the GPD will be 

developed at the end of Chapter 2. In Chapter 3, the finite-sample performances of the 

various estimators will be studied, and we will compare our proposed new estimator with 

other existing estimators in terms of bias and mean squared error (MSE). In Chapter 4, 

the new hybrid method will be illustrated through analyzing the sea waves data in the 
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Bay of Biscay, Spain. Finally in Chapter 5, some advantages of our new hybrid estima-

tors will be highlighted, and some challenges encountered in working on this thesis and 

possible future works will be summarized. 
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Chapter 2 

Estimation of the GPD Parameters 

In this Chapter, we will consider the parameter estimation methods for the GPD intro-

duced in Chapter 1. Most of the existing methods have some theoretical or computational 

issues. In general, the estimation of the GPD parameters o and k is not an easy task, 

which still receives great attention in the most recent literature. 

2.1 A Review of Literature 

For the GPD, the most classical and important method of estimation, the maximum 

likelihood (ML) method, has been considered by DuMouchel (1983) [9], Davison (1984) 

[7], Smith (1984, 1985) [18, 19], Hosking and Wallis (1987) [13], Grimshaw (1993) [12], 

Choulakian and Stephens (2001) [5], and the references therein. In general, the maximum 

likelihood estimators may not exist in some region of the parameter space, and even when 

they exist, they may not possess the usual asymptotic properties and may give some 

computational difficulties. We will present the ML method in more details in Section 

2.2. 

Hosking and Wallis ( 1987) [13] and Dupuis and Tsao (1998) [10] studied some alterna-

tive estimates to the method of moment (MOM) estimates, and the probability-weighted 

moment (PWM) estimates of the GPD parameters. The MOM estimates of the GPD 

parameters are defined as 

5MOM = j( 2/s2 + 1)/2 and ICMOM = ( 2/2 - 1)/2, 

and the PWM estimates of the GPD parameters are defined as 

(2.1) 

0PWM = 2Xa/(X - 2a) and kpWM = 9/(9 - 2a) - 2, (2.2) 



8 

where . and 2 are the sample mean and sample variance, respectively, and one possible 

choice of a is a = n 1 E n 1pX(), where pi = (n - i)/(n - 1), and X() is the i' order 

statistic of a random sample of size n. 

In Hosking and Wallis (1987) [13], the MOM estimators and the PWM estimators 

were compared with the ML estimators when the range of the shape parameter k is 

restricted to — 1/2 < k < 1/2. They concluded that the MOM is unreliable for k < —0.2, 

the PWM method performs well only when —1/2 < k < 0, and the ML method needs. 

a sample size as large as n = 500 to possess its asymptotic efficiency. Additionally, 

when k < —1/2 the MOM estimates do not exist since the GPD has infinite variance, 

and similarly the PWM estimates do not exist when k ≤ —1 because the mean of the 

GPD does not exist. Even when both of the MOM and PWM estimates exist, they 

may not be acceptable because some of the sample values may fall, outside the range 

0 < x The infeasible problem of the PWM estimates has been pointed out by 

Chen and Balakrishnan (1995) [4]. 

To remedy this problem of unacceptable estimates from the MOM and the PWM 

method, Dupuis and Tsao (1998) [10] derived a hybrid method by incorporating a simple 

constraint on feasibility into the MOM and PWM etimates. They showed that their 

method can always give valid estimates. However, all of the estimates based on moments 

have low large-sample efficiencies and can be found only on a very restricted region of the 

parameter space. Hosking and Wallis (1987) obtained the asymptotic variances for the 

MOM and PWM estimators given in (2.1) and (2.2) (see formulas (4) and (6) in their 

paper). 

Castillo and Hadi (1997) [3] proposed an elemental percentile method (EPM) to 

solve the invalid estimation problem for the GPD. This method expanded the estimable 

parameter space to all possible values of the parameters. The idea was to make full use 

of the order statistics by initially equating the GPD distribution function to all pairs of 
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the order statistics, and then use the median as the overall estimates of ci and k. Finally, 

compared with the MOM and the PWM method in terms of bias and root mean squared 

error (RMSE), their simulation results indicated that there was no dominant method for 

the considered range of the shape parameter values —2 ≤ k ≤ 2. 

Luceflo (2006) [14] brought out a maximum goodness-of-fit (MGF) method based on 

the family of the empirical distribution function (EDF) statistics. By minimizing any of 

the EDF statistics measuring the specific distance between the GPD distribution function 

and the EDF with respect to unknown parameters a and k, this method can always give 

estimates for any possible values of the parameters. This technique was shown to be 

able to deal with the GPD parameters estimation for a given sample, as well as in the 

context of generalized linear model, even when the ML method and other methods failed. 

However, the bivariate search for the minimum could be complex and considerably time-

consuming. We will carefully investigate the MGF method in Section 2.3, and borrow 

some of its ideas to develop our new hybrid estimation method. 

Zhang (2007) [26] suggested a likelihood moment estimation (LMB) method for the 

GPD to overcome the computational problems faced by the ML method. However, the 

evaluation of performance of this method is dependent on a careful choice of a constant 

r (r < 1) without any knowledge of the true value of k. Only if the assumption of r = k 

is true, the LME was proved to be asymptotically efficient for k < 1/2. A possible robust 

choice of r is r = - 1/2, which was recommended by the author. 

Zhang and Stephens (2009) and Zhang (2010) [25, 27] provided a new efficient es-

timation method based on the likelihood and the empirical Bayesian method (EBM). 

It is computationally friendly and the data-driven prior can ensure that the parameter 

estimates are valid. However, it was indicated in their paper that the performance of 

the EBM estimates are quite sensitive to the choice of the shape parameter of the prior 

distribution as observed from extensive simulation. In Zhang and Stephens (2009), the 
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prior distribution was chosen as the GPD itself with the shape parameter k = —1/2. 

Then to improve the poor performance of the EBM estimators in the heavy-tailed situ-

ation (such as k < —1), a modified EBM (EBM*) was introduced in Zhang (2010). The 

main conclusion of the paper was that this EBM* generally outperforms the other exist-

ing estimation procedures in the extended range —6 ≤ k ≤ 1/2, in terms of estimation 

efficiency and bias. We will study this method further in Section 2.4. 

The formal tests of Goodness-of-Fit for fitting the data to the GPD have been studied 

by Choulakian and Stephens (2001) [5]. 

2.2 The Maximum Likelihood Estimation 

As the most important and widely used estimation method in statistics, the maximum 

likelihood estimation of GPD has drawn much attention in the literature. It is pre-

ferred because when k < 1/2, Smith (1984) showed that under Cramer's regularity 

conditions the ML estimators possess the classical asymptotic properties, such as con-

sistency, asymptotical normality and asymptotical efficiency. However, problems arise 

when k ≥ 1/2, which Smith (1984) identified as the non-regular case since the regularity 

conditions fail to hold, and also the convergence problems may occur in this case. When 

k> 1, the ML estimators do not exist because the likelihood function near the endpoint 

tends to infinity as x approaches a/k. Therefore the ML method is only reliable in a 

restricted range of k < 1/2, and a special examination on the convergence issue is also 

necessary. 
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2.2.1 The Estimating Equations 

Given a random sample X = (X1, X2,. .. , X,) from the GPD with the cdf given in 

the log-likelihood function is given by 

l(cr,k;X)=—nlogcr— (1_)log (1_i) 

If k > 1, it is easy to check that 

urn l(a, k; X) = +oo. 
o/k—*X() 

(2.3) 

Hence, the effort to find the ML estimators should be performed over a constrained 

parameter space d = {k < 0, a> 0} U {k> 0, cr/k > X() }. To find the maximum of 

the log-likelihood on d, consider the first derivatives of the GPD log-likelihood given in 

(2.3) with respect to k and o-, and set them to be zero to have the following estimating 

equations 

( n(k— 1) = .1log (1— ) + (k— 1)E1(1— &)' 

I 

{ 
1 = [I+ n :i:  k-Xi)-1] -  log (1 - . [n -1 (1 — or 

k=—n'.11og(1—)or 

(2.4) 

As pointed out by Davison (1984), the above bivariate maximization over d can be 

reduced to a one-dimensional search because in (2.4) the first equation is only dependent 

on the ratio 9 = k/cr (9 < 1/X() ), and then given a value of 9, a close-form expression 

for k is available. So it is natural and convenient to reparameterize the (a, k) to (9, k), 

which is a one-to-one mapping defined on the parameter space d. Based on (0, Ic) the 

'For k — 0, the GPD is reduced to the exponential distribution, so the result is already well known. 
So we will only consider the k 54 0 case in this Section. 
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log-likelihood function is 

l*(O,k;X) = —nlog(k/O) - (i - 

Substituting k in (2.5) with 

n 

log (1— OX) 

we have the profile log-likelihood function of 0 given by 

l(O;X) = —n— log (1—OX)—nlog 

log (1 - 9X) . (2.5) 

i=1 

(2.6) 

log (1_9Xi)] . (2.7) 

Suppose that a local maximum of (2.7) can be found at OMLE numerically on the 

parameter space = {6' < 1/X() }, then the corresponding kMLE and & MLE of (2.3), 

which are the ML estimators of a and k, are given by 

kMLE = —n 1 109(1 - OMLEX) and &MLE = kMLE/OMLE. (2.8) 

It is important to emphasize that the local maximum of the GPD profile log-likelihood 

of 0 over .% corresponds to the local maxima of the GPD log-likelihood over d, since 

we can easily express a and k as the one-to-one functions of a single parameter 0, which 

is actually a ratio containing both k and a. Then the unique value of MLE maximizing 

(2.7) gives the estimates of &MLE = cr(OMLE) and kMLF, = 

When k < 1/2, Smith (1984) proved that the ML estimators given in (2.8) is asymp-

totically normally distributed with the asymptotic variances achieving the Cramer-Rao 

lower bound under some proper regularity conditions. Specifically, we have 

I &MLE 1 r.jAf( L I / 1 o- 1 r 2a2(1 - k) a(1 - k) ]) kMLE j k j L a(1 - k) (1— k < 1/2. (2.9) 
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2.2.2 Computing the ML Estimates 

However, the numerical maximization of (2.7) could still be complex. An algorithm for 

computing the ML estimates based on (2.7) was designed in Grimshaw (1993). As proved 

in Grimshaw (1993), there could have more than one root for the first derivative of (2.7) 

to be zero, and some convergence problem may occur when 0 gets closer to its boundary 

because 

urn l(O;X)=oo. 

Also, our simulation results indicate that Grimshaw's algorithm for computing ML 

estimates is sensitive to the starting values. Therefore, a well chosen initial value 0(0) is 

critical. In Grimshaw (1993), the initial value is suggested to be 

OL = 2(X(l) - .)/ (X) or Ou = 1/X() - with e = 10_6/. 

We use the algorithm provided by Dr. Grimshaw and carry out a simulation study 

with 10, 000 replications. The scale parameter 0. is taken as 1 since the results are 

invariant for different values of o. The convergence problem encountered is summarized 

in the following Table 2.1. 

Table 2.1: Number of times a convergence problem occurred when computing the ML 
estimates based on 10, 000 replications, and 0. = 1 is fixed. 

n k=-3 k=-2 k=-1 k=-0.2 k=0.2 k=0.4 k=0.9 k=1.2 

10 96 315 1310 4501 7680 8949 9889 9973 
20 5 0 26 449 1998 4159 9464 9924 
50 8 0 0 1 13 107 7619 9914 
100 14 1 0 0 0 0 5386 9953 
200 29 0 0 0 0 0 2719 9986 
500 50 0 0 0 0 0 395 10000 
*The algorithm used here is provided by Dr. Grimshaw as proposed in his paper (1993). 

The simulation results in Table 2.1 are in agreement with the conclusions of Grimshaw 

(1993) tnd Hosking and Wallis (1987). In many real cases where k> 0 and n < 25, the 



14 

ML method of GPD may have convergence problem, and the situation of no maximum 

can occur when k approaches and beyond 0.5. However, from the above table we can 

also find that in some very heavy-tailed cases, that is, k < —2, some extremely large 

observations may significantly alter the convergence of the algorithm even though the 

sample size is large. To overcome this computational problem in such cases, a carefully 

selected initial point o° is recommended. 

2.3 The Maximum Goodness-of-Fit Estimation 

The essential idea to assess the Goodness-of-Fit (GOF) of fitting a continuous probability 

distribution to data is based on measuring certain "distance" between the empirical 

distribution function (EDF) and the underlying distribution function. In Luceño (2006), 

the idea of GOF was borrowed for the parameter estimation purpose for the GPD. The 

proposed estimator is obtained by minimizing any of the EDF statistics, and is therefore 

called the maximum goodness-of-fit (MGF) estimation method. 

In fact, this method can be dated back to Wolfowitz (1953, 1957) under a more general 

name of minimum distance estimation method. However, to be consistent with the name 

used in Luceflo (2006), and to avoid confusing with other "distance" which is not directly 

related to EDF statistics', we prefer to use the name of MGF method in this thesis. 

Most of the materials in Luceflo (2006) are under the framework of generalized linear 

model where the parameters are estimated at the presence of some covariates, which will 

not be discussed in this thesis. 

2For example, the Hellinger distance is defined as a measure of the similarity between two probability 
distributions; and the Mahalanobis distance is defined as a measure of the similarity of a test sample 
point to a known sample set. 
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2.3.1 EDF Statistics 

Let F(x) denote the right-continuous empirical distribution function (EDF) of a given 

random sample X = (X1, X2,... , X,) from a continuous distribution function F(x; 0), 

that is, 
n 

F(x)=. 
i=1 

where Ix (x) = 1 if X x, and Ix (x) = 0 if X, > x. 

Then any statistic that measures the discrepancy between F(x) and F(x; 0) is called 

an EDF statistic. The following Glivenko-Cantelli theorem will make sure that as 

m - 00, F(x) converges uniformly to F(x, 0). 

Lemma 1 As n —* 00, 

sup F(x) - F(x; 0)1 0 a.s.. 

There are mainly two classes of EDF statistics: the supremum EDF statistics which 

include the Kolmogorov-Smirnov (KS) statistic, the Kuiper statistic; and the integral 

EDF statistics which include the Crarfier-von Mises (CM) statistic, the Anderson-Darling 

(AD) statistic, etc. In particular, Luceflo (2006) introduced some modified Anderson-

Darling statistics, such as the right-sided and left-sided Anderson-Darling (ADR, ADL) 

statistics and the Anderson-Darling statistics of higher degree. However, due to the non-

differentiability of the KS statistic and the poor performances of the second degree AD 

statistics, we will only discuss the CM statistic, the AD statistic, the modified ADR and 

ADL statistics in the rest of this section. In terms of the GPD with cdf F(x; a, k), the 

definition of these four EDF statistics are 

00 
JiT2(a, k; cc) = n foo {F(x) - F(x; (7, k)}2 dF(x; a, k), (2.10) 
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00 A2(a, k; = foo - F(x; a, k)}2 {F(x; a, k)(1 - F(x; a, k))}' dF(x; a, 

(2.11) 

00 
R2(a, k; x) =  foo  {F(x) - F(x; a,k)}2 (1 - F(x; a, k))'dF(x; a, k), (2.12) 

L2(a, k; x) = n r-00 {F(x) - F(x; a, k)}2 F(x; a, k)'dF(x; a, k). (2.13) 

The AD statistic A2 assigns more weight to the observations in two tails of the distri-

bution than the CM statistic W 2. Similarly, the modified ADR R2 and ADL L2 statistics 

give more weight to observations in the corresponding tail of the distribution function. 

So these EDF statistics can do different job in detecting the departure of the data from 

the GPD. 

Since the F(x) is a step function with jump at each order statistics, the above EDF 

statistics can be easily expressed in alternative forms for computational purposes. De-

noting the i1h order statistic by X() and applying the probability integral transformation 

to the ordered sample to get Zi = F(X(); a, k), i = 1,. . . n. Then we can rewrite the 

EDF statistics defined in (2.10) to (2.13) as functions of a and k as follows: 

W 2 (a,k) = (z - i - 1/2 2 
n ) 

A2(a,k) = —n-- 
i=1 

R2(a,k) = —2 
i=1 

n 

{(2i-1)lnZ+(2n-i-1-2i)1n(1—Z)} 

(2n+ 1-2i)ln(1— Z) 
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2.3.2 Computing the MGF Estimates 

Let X = (X1, X2,... , X,) be a random sample from the GPD with cdf F(cr, k; X) given 

in (1.1). The & MGF and kMGF of the GPD parameters will be obtained by minimizing any 

of the EDF statistics defined in Section (2.3. 1) with respect to the unknown parameters 

a and k. The minimization should be carefully performed with respect to the parameter 

space ,q/ = {k < 0, a > 0}u{k> 0, a/k > X()}. Again, this two-dimensional numerical 

optimization may cause convergence problems in some cases, and a well specified starting 

point (o.(0), k(°)) could be very useful. The following Table 2.2 summarizes the convergence 

problem for computing the MGF estimates using the R fuhction gpdmgf in the R package 

"POT" based on the paper of Lucefio(2006). The default starting values used in the 

algorithm are (a(°), k(°)) = (., 0). The simulation study is based on 10,000 replications 

and the tolerance level is set to be e = 10_6/. . The scale parameter a is taken as 1 

because of its invariant property. 

Table 2.2: Number of times a convergence problem occurred when computing the MGF 

estimates using the R function 'gpdmgf'in the package "POT" with the default starting 
values based on 10, 000 replications, and a = 1 is fixed. 

Method n k=-3 k=-2 k=-1 k=-0.2 k=0.2 k=0.4 k=0.9 k=1.2 
CM 20 6087 4269 495 0 0 0 0 10 

50 7759 5692 354 0 0 0 0 0 
100 8484 6741 239 0 0 0 0 0 
200 8676 7593 156 0 0 0 0 0 

AD 20 3581 1461 40 0 0 0 3 212 
50 7517 4029 718 0 0 0 0 53 
100 9539 7973 3019 3 0 0 0 16 
200 9990 9782 6237 8 0 0 0 5 

ADR 20 3978 2455 158 0 0 0 1 322 
50 7820 4730 722 0 0 0 3 128 
100 9727 8099 3019 3 0 0 0 50 
200 9993 • 9783 6237 8 0 0 0 11 

ADIJ 20 7259 4198 295 0 0 0 0 0 
50 8636 4889 143 0 0 0 0 0 
100 9077 5327 76 0 0 0 0 0 
200 9116 5705 42 0 0 0 0 0 
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According to the results in Table 2.2, the MGF method generally works well in the 

cases when k approaches and beyond 0.5, where the ML method has severe problems. 

But in turns, the MGF method can not successfully deal with the very heavy-tailed cases, 

e.g., k < —2, and it is relatively slow as expected. 

In Luceño (2006), the MGF method was also compared with the ML method, MOM, 

PWM and EPM in terms of bias and root mean squared error (RMSE) in the simulation 

study. The results showed that the MGF method can successfully handle the estimation 

of GPD parameters, even for the cases where the other estimation methods may fail. In 

addition, the results also indicated that there does not exist a unique EDF statistic that 

can perform uniformly best in the range —2 ≤ k < 2 considered in the paper. 

To evaluate the performance of the MGF estimators further, we also conduct a similar 

simulation study, but the range of the shape parameter k is extended to —6 ≤ k ≤ 2. 

Without loss of generality, the scale a = 1 is fixed. The results of estimation bias and 

MSE are displayed in Figure 2.1 and Figure 2.2 based on 10,000 simulation samples of 

size n. = 50 and the tolerance level is set at e = 10 6/X. 

The simulation results in Figure 2.1 and Figure 2.2 verify again that in the wider range 

of shape parameter —6 ≤ k ≤ 2, there is no MGF estimator that can outperform the 

others. However, it appears that the MGF estimator based on the CM statistic generally 

has the worse performance, and the MGF estimator based on the ADL statistic performs 

better dnly in the very heavy-tailed case, e.g., k ≤ —2, while the MGF estimator based 

on the ADR statistic performs better in the common range —2 ≤ Ic ≤ 2. So from the 

practical point of view, the MGF estimator based on the ADR would be more desired. 

But above all, the MGF estimator based on the AD statistic has the most balanced 

performance in the whole considered range —6 ≤ k ≤ 2 compared with other estimators, 

because it gives weights equally to both tails. These results confirm again the conclusions 

of Luceño (2006), and the MGF method when the AD statistic is used is preferred in the 
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Figure 2.1: Bias for estimating the GPD parameters using four MGF estimators and the 
ML estimatbrs based on 10,000 replications with size n = 50 and o = 1. 

rest of this thesis. 

In general, the MGF method is based on the EDF statistics to make full use of the 

information contained in the sample order statistics, so it is always possible to give more 

robust estimates, even when other methods fail. Moreover, in Pollard (1980) the MGF 

estimators 'c,kTere proved to be consistent. Nevertheless, the insufficient use of the likeli-

hood information determines that the MGF estimators have low large-sample efficiency, 

especially when Cramer's regularity conditions hold, in which case, as we have already 

known that ML estimators is asymptotically optimal. 

2.4 The Empirical Bayesian Method 

In order to improve the ML method for estimating the CPD parameters and to avoid 

the computational difficulties, Zhang and Stephens (2009) proposed a new estimation 

procedure based on the maximum likelihood to gain efficiency, but borrowed the idea 
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Figure 2.2: MSE for estimating the GPD parameters using four MGF estimators and the 
ML estimators based on 10,000 replications with size n = 50 and o• = 1. 

from the empirical Bayesian method (EBM) to take the data-driven prior information 

into account. This proposed method has a simple approximated computational formula, 

which can result in never producing invalid estimates. Furthermore, in Zhang (2010) the 

EBM was modified (denoted as EBM*) to be more adaptive for the heavy-tailed cases 

in a wider range —6 ≤ k ≤ 1/2. As shown by the simulation results in these papers, the 

EBM and EBM* outperformed the other existing methods in terms of bias and efficiency. 

2.4.1 The Prior Information 

As mentioned in Section 2.2.1, it is convenient to use the reparameterization of (o, k) into 

(0, k), where 0 = k/cT. If the ML estimate 0MLE is known from maximizing the profile 

likelihood function given in (2.7), the ML estimates kMLE and ÔMLE can be obtained 

by using the relation (2.8). Similarly, the EBM estimation procedure is based on the 

profile likelihood function of 0, and uses the sample-driven prior information through the 
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empirical Bayesian method. The EBM estimate of 9 is defined as the posterior mean 

°EBM = Jo. ir(0)L(0)dO/ f ir(0)L(9)dO, (2.14) 

where ir(9) is a data-driven prior distribution of 9, and 1(0) = log(L(0)) is the profile 

log-likelihood function. 

Then a key issue is to choose a reasonable prior distribution for 0 to reduce bias and 

keep efficiency. Zhang and Stephens (2009) pointed out that the EBM estimates are in 

fact sensitive to the shape of the prior distribution as revealed by extensive simulation 

studies. To make sure the boundary constraint 0 < 1/X( ) is satisfied, a prior ir(0) = 

g(1/X( ) - 0) is considered such that the constraint becomes the requirement that the 

density function g must have a positive support (0, oo). Based on the simulation results 

of Zhang and Stephens (2009), a good choice of the prior distribution turned out to be 

the GPD density itself, with the data-driven scale 6 = 1/6Q and shape k = —1/2, 

where Q = X(Lfl/4+o.5J) is the first quartile of the sample data and Li denotes the floor 

function. 

Zhang (2010) modified this prior distribution by introducing a more reliable and adap-

tive prior. The updated EBM* was shown to be able to overcome the poor performance 

of the estimates in the heavy-tailed cases. The modified prior distribution is still the 

GPD itself, but instead the data-driven prior becomes ir*(0) = g* (n+l-"'(n) - o) with 

the prior scale and shape parameters replaced by & 1/2median(ô-o.3, &o.4,. . . , o0.9) and 

= —1, where 

= ,_/(1 - pkP), £ = - 1), and 

2.4.2 Computing the EBM Estimates 

For a given prior distribution, the integrals in (2.14) is not easy to compute. To be 

computatioiially friendly and without loss of accuracy, an approximated version of (2.14) 
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is worked out, which is actually a weighted average 

7Th 

9EBM 

j=1 

(2.15) 

where the weights wj are given by w(6J) = L(Ot), m = 20 + [\/j, and 

the Oj arethe 1. 5th quantile of the proposed prior distribution, given by 2. = 1 - 

— O) which leads to the solution 

o= _L + (-   X() Vj 05) /(3Q), for  = 1,... ,m. 

For the modified prior distribution in Zhang (2010), the are given by 

____ -1 (j-0.5 
- n+1 fl m 

)*] 
for j=1,...,m. 

The above Oj and can be always within the boundary point 1/X(). 

Once the EBM estimators OEBM or 0EBM are calculated through (2.15), the EBM 

estimators (ôE3M, kEBM) or A BM, kEBM) are obtained by using the reparameterization 

given in (2.8). 

2.5 A New Hybrid Estimation Methqd 

To reduce the estimation bias by using the EDF statistics, and to improve the estimation 

efficiency by incorporating the maximum likelihood information at the same time, a new 

hybrid estimation method for the GPD is proposed in this section. Compared with the 

original MOF method, the ML method and other available methods, it is generally less 

computationally intensive and it performs well in the common situations as well as in 

the heavy-tailed and non-regular cases. 

2.5.1 Motivation 

As discussed in Section 2.2 and Section 2.3, the ML estimator are consistent and asymp-

totically efficient provided that it exists under certain regularity conditions. The MGF 
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estimators are shown to be consistent as well and can always be found provided a well 

chosen initial point, with small bias but they have low efficiency compared with the ML 

estimators. However, in order to find the estimates, the numerical optimization required 

for these two methods can both be troublesome without an appropriate initial value. 

For computing the ML estimates, some convergence or existence problems always occur 

when k ≥ 1/2 which has been identified as the non-regular case. On the other hand, for 

computing the MGF estimates, the computational problems mostly happen in the very 

heavy-tailed cases where k < —2. 

We like the small biases and the availability over the entire parameter space of the 

maximum goodness-of-fit estimators. We also like the high efficiency of the ML esti-

mators. We, however, do not want the convergence problems associated with both the 

maximum goodness-of-fit method and the ML method. Motivated by the idea to take 

advantage of both the MGF and the ML methods, we propose a new hybrid estimation 

method, which primarily relies on the MGF method to maintain the small bias and then 

improves the efficiency by incorporating the useful likelihood information. At the same 

time, the computational effort is also greatly reduced. 

Under the reparameterization of U = k/u for the GPD, the maximum likelihood 

estimators of k and 0 must satisfy (2.6) 

k=- log (1-0X) 
i=1 

For any of the four EDIT statistics W2 (a, k; x), A2(u, k; x), R2(u, k; x) and L2(o, k; x), 

we can consider the reparameterized version and substitute the above relationship into 

it to have a simplified univariate minimization problem. In this thesis, we will only focus 

on the Anderson-Darling EDF statistic A2(u, k; X) as recommended in Section 2.3.2, 

which has the most balanced performance among all the EDIT statistics. Specifically, we 
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consider minimizing the target function C, which is the univariate minimization problem 

min G(0;X) = mm A2(cr,k;X), 
0494 ci,kEd 

where 0 = k/a and k is replaced by the right side of (2.6). Our new hybrid estimator 

0HYB of 0 is defined to be the value of 0 at which G(0; X) is minimized over the parameter 

space 9 = {0 < 1/X() }. 

2.5.2 Computing the New Hybrid Estimates 

Given a sample X = (X1, X2,... , X,) is from the GPD with the distribution function 

defined in ( 1.1). A target function G* based on AD statistic can be written in a simple 

computational form 

G*(0;X) = —m -  ' t •  (2i - 1) log [i - (1 - 0X )_f1 ib0(l_oxi)] 
n 

i=1 

—n(2n + 1 - 2z)  log(1 - 0X)Ej log(1 - 0X) 

—n - { (2i - 1) log [1 - (1 - 0X)'° (°)] - n(2n +1 - 2i) log(1-0X) } 
where g(0) = 1log(1— 0X). 

In POT applications, special attention is needed for the small sample case. According 

to Pickands (1975), as the threshold t gets larger, the conditional distribution of X - t 

given X > t converges to the GPD. But the number of observations exceeding a given 

high threshold will decrease as the threshold increases, so the sample size of exceedences 

is usually small in the real applications. Our extensive simulation reveals an small but 

effective adjustment in the above G* (0; X) can keep the biases even smaller for small n, 

say n ≤ 50, which is to replace the first n by (n - 0.5) to ensure that as n gets larger, 
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this adjustment vanishes. Then the adjusted target function G becomes 

G(O; X) = { (2i - 1)log [i —(1-

-(n - O.5)(2n + 1 - 2.)log(1 -  ex) 
g(0) 

(2.16) 

Consider the continuous function G(O; X) defined in (2.16) and its first derivative 

given in Appendix A. On the parameter space R = {9 < 1/X() }, the numerical search 

for the value of 0 that minimizes G(O; X) can be performed using the standard Newton-

type algorithm or the bisection search algorithm. Hence by minimizing G(O; X) with 

respect to 0 subject to the boundary condition 0 < 1/X(), the optimal 0HYB is obtained 

and it is always feasible. Finally, the new hybrid estimates &HYB and kHYB can be 

calculated as 

kl.JyB = —n-
i=1 

2.5.3 Inference 

109(1 - HYBX) and &HYB = kFIYB/OHYB. (2.17) 

After getting the estimators of the GPD parameters, it is often useful to find the vari-

ances of the estimators for the purpose of constructing confidence intervals or testing 

statistical hypotheses. Because the new hybrid method combines both the maximum 

goodness-of-fit and the maximum likelihood methods, it seems not easy to derive the 

asymptotic variances of these new estimators. Fortunately, the bootstrap resampling 

method introduced by Efron (1977) provides us a reasonable, though computationally 

intensive, alternative to find useful approximations to the distributions of the new hybrid 

estimators. The bootstrap samples can be drawn directly from the data nonparametri-

cally, or drawn parametrically from the GPD. Then based on the bootstrap samples we 

can calculate the standard errors of the new estimators. 

Actually, the use of bootstrap method to find the standard error for other different 

estimators for the GPD has already been suggested by many authors, such as Castillo 
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and Hadi (1997) for their EPM estimates and Zhang and Stephens (2009) for their EBM 

estimates, etc. A reason for preferring the bootstrap method is that the confidence in-

tervals obtained for the parameters can always make sense by satisfying the endpoint 

constraints. In Chapter 4, we will employ a real-world data set to illustrate the compu-

tational advantages of the new hybrid estimation method, together with the bootstrap 

standard errors and confidence intervals based on the new hybrid estimators. 

In Appendix C, an R function called gpdhyb is provided for computing the new hy-

brid estimators of the GPD parameters. As an option, standard errors and confidence 

intervals are also provided using the parametric bootstrap method. The other optional 

arguments include a graphical tool to check the convergence of the minimization of the 

target function G, and the probability-probability (pp) plot and quantile-quantile (qq) 

plot as elementary Goodness-of-Fit assessments when fitting the GPD model to data. 
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Chapter 3 

Simulation Study 

In this Chapter a finite-sample Monte Carlo simulation study will be conducted to com-

pare the performances of the new hybrid estimators proposed in Section 2.5 with other 

estimators. As the widely accepted criteria for evaluating the quality of an estimator, 

the estimation bias and mean squared error (MSE) are calculated for some finite sample 

sizes. 

It is well known that the MOM and the PWM method have extremely poor perfor-

mance unless IkI < 1/2. The EPM was compared with MGF method in Luceflo (2006), 

but the author did not identify preferable estimators. The LME was studied in Zhang 

and Stephens (2009), and was shown to be no better than the EBM. However, the EBM 

was then outperformed by the improved EBM* in Zhang (2010), which performed as well 

as its first version in the common range but had significant improvements in the heavy-

tailed cases. Following these facts, in this Chapter we will only consider the classical ML 

method, the MOF method and the improved EBM* in the finite-sample comparisons. 

More detailed tables summarizing the performances of all possible estimators are given 

in Appendix B. 

3.1 Comparisons of Finite-Sample Performances 

Our finite-sample simulation comparisons are based on 10, 000 random samples where 

each random sample is generated from the GPD(cT, k) with size n = 20, m = 50, n = 100 

or n = 200. Without loss of generality, the scale parameter o' is taken to be 1 because 

the estimates for the GPD are invariant with respect to the values of a. To be consistent 
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with the algorithms computing the ML and the MGF estimates, and to guarantee the 

minimum is reached, the tolerance level is set to be e = 10-6/. . The range of the 

shape parameter k considered in this Chapter is —6 < k ≤ 2, which covers all the ranges 

used previously in the literature. For example, in Luceño (2006) the range of k used was 

—2 ≤ k < 2 for the MGF method; in Zhang (2010) the range of k used was —6 ≤ k ≤ 1/2 

for the EBM*, and also the commonly used range of k is —1 <k < 1/2; the non-regular 

range of k where the ML method has trouble is k ≥ 1/2; the range of k where the GPD 

has infinite variance is k < —1/2. 

Although there are many arguments to restrict the range of k to the most commonly 

used range —1 <k < 1/2, we have many practical and theoretical reasons to extend the 

range wider. First of all, as an important distribution encountered in a lot of applications, 

the uniform distribution is a special case of the GPD with k = 1. Furthermore, there 

are real-world examples supporting the range of k > 1/2, such as in Waishaw (1990) 

where an example was given to illustrate that an estimate of k> 1/2 is possible. Also in 

Castillo and Hadi (1997), two examples were provided and the corresponding estimates 

were shown to be k > 1/2 and k > 1. One of these examples, the Bilbao waves data, 

was adopted again in Luceflo (2006) and also in Zhang and Stephens (2009) and the 

possibility of k > 1/2 was verified. Similarly, an estimate of k ≤ —1 could be observed 

in many real-life examples, such as in heavy-tailed data and truncated data. 

It is already known in Section 2.2.2 that the ML method may have severe conver-

gence problems when k ≥ 1/2, and has no solution when k> 1. In our simulation, these 

problems actually begin to happen as early as k approaches 1/2. To deal with such un-

usual behavior of the ML method in simulation, Luceflo (2006) and Zhang and Stephens 

(2009) gave two different treatments. In Zhang and Stephens (2009), the ML estimates 

of (ÔMLE, kMLE) was replaced by (X(), 1) whenever the algorithm fails to converge or 

kMLE> 1. However, as a result this treatment may cause unnecessary reduction of the 
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standard errors of the estimates. In Luceflo (2006), a quasi-maximum likelihood (QML) 

method was used which is a combination of the standard ML method and a modified ML 

method. The idea of this QML method is that as k gets larger, approximately we can 

assume 0 MLE = kMLEX(n). Introduce this relation to the log-likelihood function defined 

in (2.3) based on the remaining sample (X(i) ,... , X_i ), and maximizing this quasi 

log-likelihood with respect to k leads to 

n-i X()\ 
kQML = —(n— 1)'log (i and &QML = kQMLX(). 

Actually the treatment of Zhang and Stephens (2009) is just a special case of the 

QML of Lucefl (2006). Therefore, in this section we prefer the QML method and will 

apply it in the simulation if the ML iterations do not converge or the estimated k̂MLB> 1. 

3.1.1 Bias Comparisons 

In measuring the accuracy of different estimators, the unbiasness is always desired. The 

biases for different estimators of o and k are plotted against k in Figure 3.1 and Figure 

3.2 for sample sizes n. = 20, ri = 50, n = 100 and m = 200. From Figure 3.1 and Figure 

3.2, we see that the biases of ÔMLE and kMLE are always positive and relatively larger 

compared with those of the other estimators. The biases of the EBM* estimators are 

generally small when k is around 0, and become larger as k gets smaller, and increase 

dramatically towards the negative side when k is greater than 0.5. The new hybrid 

method has significantly improved the estimation biases for ci and k, especially when 

compared with the MGF method and the ML method which supply the original ideas 

behind it. 

3.1.2 MSE Comparisons 

In evaluating the overall performance of different estimators, Luceflo (2006) used the 

criterion of root mean squared error (RMSE) for the MOF method, while Zhang and 
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Figure 3.1: Bias comparisons for estimating the GP.D parameters, based on 10,000 repli-
cations with sample size n = 20 and n = 50, and a = 1. 
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Stephens (2009) and Zhang (2010) defined the relative efficiency for the EBM and EBM*, 

which is the MSE divided by the Cramér-Rao lower bound. In our simulation studies, 

the RMSEs are usually too close to each other to tell the differences graphically, and the 

Cramér-Rao lower bound does not exist for k ≥ 1/2. So for our illustration purpose, 

we use the mean squared error (MSE) for comparing different estimators. The MSE is 

defined as the average squared difference between the estimates and the true parameter, 

which is a measure incorporating both the variability and accuracy of an estimator. 

The MSEs for different estimators of o' and k are plotted against k in Figure 3.3 and 

Figure 9.4for sample sizes m = 20, n = 50, n = 100 and n = 200. From Figure 3.3 and 

Figure 3.4, we see that the MSEs of the EBM* estimators are the smallest only when 

k falls in a small neighborhood of 0, and become larger than the rest estimators when 

k> 1. The new hybrid estimators always possess comparable MSEs, and improve over 

the ML method for estimating the scale parameter o, and over the MGF method for 

estimating the shape parameter k. 

In both the bias comparisons and the MSE comparisons, when the sample size in-

creases from m = 20 to ri = 200, the estimation bias and MSE for all estimators become 

smaller, implying that all estimators are consistent. 

The new hybrid method totally outperforms the traditional ML method by always 

giving smaller biases and keeping the MSEs as good as those of the ML method. Besides, 

the new hybrid estimators are free from computational or existence problems in the non-

regular case' of k ≥ 1/2. 

Compared with the MGF method in Luceflo (2006), which supplies the basis idea of 

our new hybrid method, the new hybrid method still improves over the MGF method 

in terms of both estimation bias and MSE in the range —6 ≤ k ≤ 2, especially for the 

estimation of the shape parameter k. Moreover, the computation of the new hybrid 
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Figure 3.3: MSE comparisons for estimating the GPD parameters, based on 10,000 repli-
cations with sample size n = 20 and n = 50, and o = 1. 
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Figure 3.4: MSE comparisons for estimating the GPD parameters, based on 10,000 repli-
cations with sample size n = 100 and n = 200, and a = 1. 
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estimators is much faster and tractable. 

Finally, compared with the improved EBM* in Zhang (2010), although the bias and 

MSE curves cross each other, the new hybrid method generally has a better performance 

in most of the range —6 ≤ k ≤ 2, especially when n is small. 
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Chapter 4 

An Example 

To illustrate the advantages of the new hybrid estimation procedure, a real-world example 

will be presented in this Chapter. The data considered here is originally analyzed in 

Castillo and Hadi (1997), which consists of the zero-crossing hourly mean periods (in 

seconds) of the sea waves measured in a Bilbao buoy, Spain, in January, 1997. Later on, 

this data set was revisited in Luceño (2006) and in Zhang and Stephens (2009). One 

purpose of the study was to see the influence of periods on beach morphodynamics and 

other problems related to the right tail. Only the 197 observations with periods above 7 

seconds wer taken into consideration, and shown in Table 4.1. 

Table 4.1: The Bilbao waves data: the 
sea waves measured in the Bilbao bay, 

zero-crossing hourly mean periods (in seconds) of 
Spain, in January, 1997. 

7.05 
7.31 
7.55 
7.72 
7.85 
7.97 
8.15 
8.32 
8.53 
8.74 
9.06 
9.30 
9.66 

7.12 
7.31 
7.58 
7.72 
7.88 
7.99 
8.18 
8.33 
8.54 
8.79 
9.12 
9.32 
9.74 

7.15 
7.32 
7.59 
7.72 
7.88 
8.00 
8.18 
8.40 
8.56 
8.81 
9.16 
9.33 
9.75 

7.18 
7.33 
7.59 
7.72 
7.90 
8.03 
8.18 
8.41 
8.58 
8.84 
9.17 
9.36 
9.78 

7.19 
7.37 
7.61 
7.77 
7.90 
8.03 
8.19 
8.42 
8.59 
8.85 
9.17 
9.38 
9.79 

7.20 
7.40 
7.63 
7.77 
7.91 
8.05 
8.20 
8.43 
8.59 
8.86 
9.18 
9.43 
9.79 

7.20 
7.46 
7.65 
7.79 
7.93 
8.06 
8.21 
8.43 
8.60 
8.88 
9.18 
9.46 
9.80 

7.20 
7.46 
7.66 
7.79 
7.93 
8.06 
8.23 
8.45 
8.65 
8.88 
9.18 
9.47 
9.84 

7.20 
7.47 
7.66 
7.82 
7.93 
8.07 
8.23 
8.48 
8.69 
8.94 
9.21 
9.59 
9.85 

7.25 
7.48 
7.67 
7.83 
7.94 
8.10 
8.30 
8.49 
8.71 
8.98 
9.22 
9.59 
9.89 

7.26 7.27 7.28 
7.48 7.52 7.54 
7.67 7.68 7.69 
7.83 7.83 7.84 
7.95 7.95 7.97 
8.11 8.12 8.15 
8.30 8.31 8.31 
8.50 8.50 8.51 
8.72 8.74 8.74 
8.98 8.99 9.01 
9.23 9.24 9.27 
9.60 9.61 9.62 
9.90 

7.30 
7.55 
7.72 
7.85 
7.97. 
8.15 
8.32 
8.52 
8.74 
9.03 
9.29 
9.63 

*The data is from Castillo and Hadi (1997), and only those observations above 7 seconds are listed. 

It is reasonable to model this data set by the GPD because the data points are 

the exceedences over some fixed thresholds. To demonstrate the use of the new hybrid 

method, we will fit the data using thresholds at t = 7.0, 7.5, 8.0, 8.5, 9.0 and 9.5, following 
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the above mentioned authors. In Table 4.2, the parameters a and k are estimated using 

different estimation methods (see also Table 4 in Castillo and Hadi (1997), Figure 3 in 

Luceflo (2006) and Table 3 in Zhang and Stephens (2009)). 

Table 4.2: The estimated GPD parameters for the Bilbao waves exceedences at given 
thresholds using different estimation methods. 

t m MOM PWM MLE EBM* MGF HYB MOM PWM MLE EBM* MGF HYB  

7.0 179 2.748 2.778 2.501 2.331 2.451 2.445 1.052 1.074 0.861 0.782 0.838 0.837 
7.5 154 1.622 1.618 1.860 1.722 1.632 1.626 0.606 0.602 0.768 0.686 0.614 0.620 
8.0 106 1.385 1.371 1.647 1.462 1.417 1.410 0.647 0.630 0.864 0.731 0.682 0.688 
8.5 69 1.130 1.115 NA 1.146 1.176 1.168 0.722 0.700 NA 0.767 0.789 0.792 
9.0 41 0.814 0.809 NA 0.756 0.846 0.837 0.833 0.823 NA 0.760 0.900 0.895 
9.5 17 0.626 0.601 NA 0.361 0.521 0.507 1.709 1.601 NA 0.736 1.291 1.257 

*m  is the number of observations exceeding the given threshold t. 

It is easy to see from Table 4.2 that all the estimation methods give estimates of k 

outside the commonly used range -1 <k < 1/2. From Chapter 2, we know that in such 

a non-regular range of k, the MOM and the PWM estimates are not reliable and may 

give infeasible results, and the ML estimates are also computationally unstable for the 

small sample size. 

For the threshold at t = 7.5, the following Figure 4.1 shows the EDF of the Bilbao 

waves data, versus the fitted GPD cdf with the parameters estimated as in Table 4.2 

using six different methods (see also Figure 2 in Luceño (2006) and Figure 4 in Zhang 

and Stephens (2009)). From the plots in Figurd 4. 1, we see that the new hybrid estimators 

give an overall good fit to the Bilbäo data, which improve the fits using the ML estimators 

and the EBM'! estimators. 

To check graphically whether the minimum of the target function G(9; X) defined in 

(2.16) is reached at °HyB = kHyB/aHYB = 0.3812 , the G(0) and its first derivative are 

plotted in Figure 4.2 for threshold at t = 7.5. The boundary condition for this given 

data set is e < 1/X(fl) = 1/2.4 = 0.4167. In addition, Figure 4.3 shows the histograms of 

13 = 1000 parametric bootstrap samples of & HYB and kHYB for the Bilbao waves data at 
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the threshold t = 7.5. The parametric bootstrap standard errors for the hybrid estimates 

are calculated to be Se(ÔHYB) = 0.167 and 8e(IHYB) = 0.090, and the corresponding 

95% bootstrap confidence intervals for ci- and k are ( 1.288, 1.949) based on &IJyB and 

(0.413,0.771) based on kHYB . The bootstrap confidence interval for the GPD shape 

parameter k indicates that it is significantly different from 0 and 1, therefore there is no 

evidence that this data is from exponential or uniform distribution. 

'This bootstrap standard errors and 95% confidence intervals can be obtained using the R function 
gpdhyb provided in Appendix C. 



39 

The estmated GPD vs EDF: MOM 

0.0 0.5 1.0 1.5 2.0 

U 

The estmated GPO vs EDF: MLE 

'U 
0 

0 

0 

2,5 

The estmated GPO vs EDF: PWM 

I I I 

0,0 0.5 1.0 1.5 2.0 2.5 

0 
o 

0.0 

0 
0 

0 

I I I I 

0,5 1.0 1.5 2,0 

x 

The estmated GPO vs GOP: MGF 

2.5 

I I i i I I 

0.0 0,5 1.0 1.5 2.0 2.5 

x 

S 

The estmated GPO vs EDF: EBM* 

I I 

0.0 0.5 1.0 1.5 2.0 2.5 

The estmated GPD vs EDF: 11YB 

0.0 0.5 1.0 1.5 2.0 2.5 

x 

Figure 4.1: The fitted GPD cdf using different methods, versus the EDF for the Bilbao 
waves data at the threshold t = 7.5. 
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The plot of 6 for the Bilbao waves data 
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Figure 4.2: The plot of G(O; x) and its first derivative to check whether the minimum is 
reached for the Bilbao waves data at the threshold t = 7.5. 
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Figure 4.3: Histograms of 1000 parametric bootstrap samples of cTHyB and /CHYB for the 
Bilbao waves data at the threshold t = 7.5. 
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Chapter 5 

Final Conclusions and Future Research 

There are many difficulties in dealing with the parameters estimation of the GPD, espe-

cially for the non-regular case of k ≥ 1/2 where Cramer's regularity conditions are not 

satisfied. Besides, the difficulties also lie in the numerical optimization of complicated 

nonlinear functions. A lot of research has been done to overcome these theoretical and 

computational problems since the GPD was first introduced in 1975. 

In this thesis, a new hybrid estimation method has been proposed for estimating the 

GPD parameters. It is based on the MOF method, but combines the reparameterization 

revealed by the maximum likelihood equations. This new hybrid estimation method has 

several advantages. First, the new hybrid method does not suffer from the convergence 

problem, and is easy and fast to implement by optimizing a single variable function using 

some standard algorithms, and the existence and feasibility of the hybrid estimates can 

even be verified graphically. Second, unlike some other existing methods, the new hybrid 

method can always provide valid estimates for the entire parameter space. Third, coupled 

with the parametric bootstrap method, our new hybrid method can allow practitioners 

to conduct reliable and accurate data inference using the generalized Pareto distribution. 

Although the proposed hybrid method in this thesis mainly focuses on the Anderson-

Darling statistic among other EDF statistics, this hybrid idea can be similarly carried 

out for any other EDF statistic. 

To evaluate the finite-sample performance of this new hybrid method and to compare 

it with other existing methods, we have carried out a simulation study in a wider range 

of shape parameter values —6 ≤ k ≤ 2. We have found that the proposed hybrid 

method can greatly improves over the ML method and the MGF method in terms of the 
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estimation bias and MSE, and that the new hybrid estimators are well compared with 

the EBM* estimators in most of the cases considered, although their bias and MSE cross 

each other for a small range of k around 0. In particular, the new hybrid estimators work 

well in the non-regular case, where the ML estimators have no solution and the EBM* 

estimators drastically underestimate the GPD parameters. 

Finally, this proposed hybrid estimation procedure has been applied to analyze a 

real-world data set from Castillo and Hadi (1997).The results show that the new hybrid 

method is easy to use in practice and provides an overall good fit when fitting the GPD 

to real data. 

A useful R program for computing the hybrid estimates and making statistical infer-

ence when using the GPD is given in Appendix C. 

For future research, the following issues are worth to be worked on: 

Develop a large-sample theory for the proposed hybrid estimators. 

• Prove the uniqueness of the new hybrid estimators, that is to prove the target 

functiOn G(O; X) defined in (2.16) and its first derivative given in the Appendix A 

satisfy the following properties on the parameter space .% = {o < 1/X() } 

1. 

lim G(O;X) = +oo and lim G(O;X) = +oo, 
O—*—oo O—*1/X() 

2. 

lim ÔG(9;X) aG(e;X) - 

and lim   + 00, 
O—*—oo ao - O_*1/X(n) 50 - 

SG(0;X) 190 >0 for 0 E (, 1/X()) and DG(0;X) 50 <0 for 0 E (—oo, O). 

• Explore the robustness of the new hybrid method according to the mechanism of 

contamination faced in real extreme value applications. 
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• Generalize the hybrid, estimation method and apply it to some other distributions 

suffering from the finite parameter-dependent endpoint problem. 

• Develop the idea of this hybrid method for the generalized linear model, where the 

GPD parameters to be estimated depend on some other covariates, for example, 

when spatial information is available. 

• Improve the performances of the new hybrid estimators when k is around 0. 



Appendix A 

Derivative of the Target Function G 

The first derivative of the target function G(0; X) based on AD statistic defined in 2.16 

in the section (2.5.2) is given by 

I (—W) DG(0;X) = —1). [i - (1— 0X)'9(°)]' InX (1— 
80 n  

—(1 0X)I9(°) log(i - 0X). m  
g(0)2 (m—O.5)(2n± 1— 2i). ] 

[g ()2 (I  g(0) - log(' - ox) . '(o)) ] } 

where the 
n 

g(0) = 
=1 

for simplification. 

0 

log(1 - 0X) and g'(0) = 

44 



Appendix B 

Finite-Sample Performances of Different Estimation Methods 

The following two tables summarize the performances of several estimation methods for 

the GPD parameters that have been frequently referred in recent literature, together with 

the proposed new hybrid estimation method based on the ordinary Anderson-Darling 

statistic and the right-sided Anderson-Darling statistic. The simulated estimation bias 

and RMSE are from 10,000 time replications with sample size n = 50 and n = 200. The 

random seed used in the simulation is #2011. The scale parameter ci is fixed to be 1 due 

to its invariance property. 
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Table B.1: Summary of the finite-sample performances for different estimation methods based on 10,000 times simulation 

with sample size n = 50, and o- = 1 fixed. 

Methods MOM PWM MLE LME EBM EBM* CM AD ADR ADL HYBAD HYBADR 

k=-5 
Bias(a) . Inf Inf 0.1787 0.4062 0.8552 0.2163 0.2061 0.1398 . 0.2309 0.1442 0.1258 0.1801 
RMSE(o) (Inf) (Inf) (0.6747) (1.1650) (1.4204) (0.7047) (0.7735) (0.6551) (0.8933) (0.6502) (0.6489) (0.8504) 
k=-3 
Bias(o) Inf Inf 0.1166 0.2022 0.2309 0.1267 0.1197 0.0815 0.1207 0.0905 0.0688 0.0880 
RMSE(o) (Inf) (Inf) (0.4945) (0.6418) (0.5694) (0.4978) (0.5190) (0.4730) (0.5518) (0.4901) (0.4657) (0.5309) 
k=-1 
Bias(a) 7.1646 0.2704 0.0667 0.0770 0.0581 0.0408 0.0570 0.0317 0.0446 0.0452 0.0217 0.0271 
RMSE(o) (196.93) (0.4570) (0.3252) (0.3282) (0.3095) (0.3078) (0.3364) (0.3115) (0.3178) (0.3505) (0.3057) (0.3114) 
k = -0.5 
Bias(o) 0.3919 0.0503 0.0607 0.0557 0.0165 0.0184 0.0450 0.0195 0.0294 0.0358 0.0109 0.0154 
RMSE(o) (06334) (0.2562) (0.2835) (0.2720) (0.2544) (0.2587) (0.2985) (0.2716) (0.2691) (0.3189) (0.2672) (0.2657) 
k = 0.2 
Bias(a) 0.0290 0.0125 0.0717 0.0317 -0.0236 -0.0181 0.0319 0.0029 0.0116 0.0250 -0.0036 0.0018 
RMSE(o) (0.2097) (0.2269) (0.2338) (0.2101) (0.1945) (0.1889) (0.2523) (0.2181) (0.2092) (0.2779) (0.2162) (0.2088) 
k=1.5 
Bias(o-) 0.0362 0.0203 NA 0.0077 -0.0756 -0.1969 0.0236 0.0005 0.0066 0.0257 -0.0123 -0.0060 
RMSE(o) (0.2776) (0.2515) (NA) (0.1645) (0.1457) (0.2176) (0.2033) (0.1739) (0.1630) (0.2379) (0.1697) (0.1611) 

k 

k=-5 
Bias(k) 4.5146 4.0097 0.0607 0.1277 0.4896 0.0922 0.0409 -0.0402 -0.0126 -0.0038 0.0090 0.0066 
RMSE(k) (4.5146) (4.0097) (0.8589) (0.9634) (0.8331) (0.8570) (0.9629) (0.9006) (0.9064) (1.0474) (0.8640) (0.9063) 
k=-3 
Bias(k) 2.5202 2.0266 0.0490 0.0895 0.1493 0.0591 0.0326 -0.0268 -0.0056 -0.0017 0.0047 0.0054 
RMSE(k) (2.5203) (2.0269) (0.5754) (0.6222) (0.5533) (0.5677) (0.6565) (0.6056) (0.5995) (0.7392) (0.5746) (0.5968) 
k=-1 
Bias(k) 0.5950 0.2818 0.0440 0.0538 0.0387 0.0205 0.0264 -0.0171 -0.0004 0.0009 -0.0009 0.0042 
RMSE(k) (0.5996) (0.3234) (0.2981) (0.2953) (0.2778) (0.2878) (0.3820) (0.3260) (0.3044) (0.4679) (0.2977) (0.2968) 
k = -0.5 
Bias(k) 0.2243 0.0742 0.0482 0.0453 0.0076 0.0087 0.0255 -0.0174 -0.0010 0.0027 -0.0035 0.0030 
RMSE(k) (0.2542) (0.1934) (0.2348) (0.2237) (0.2131) (0.2196) (0.3282) (0.2633) (0.2378) (0.4157) (0.2373) (0.2298) 
k = 0.2 
Bias(k) 0.0293 0.0090 0.0714 0.0323 -0.0245 -0.0174 0.0266 -0.0215 -0.0036 0.0073 -0.0098 -0.0002 
RMSE(k) (0.1567) (0.1872) (0.1750) (0.1574) (0.1493) (0.1409) (0.2794) (0.1985) (0.1702) (0.3655) (0.1810) (0.1650) 
k = 1.5 
Bias(k) 0.0615 0.0238 NA 0.0121 -0.1247 -0.3565 0.0432 -0.0053 0.0083 0.0525 -0.0219 -0.0093 
RMSE(k) (0.5137) (0.4517) (NA) (0.2516) (0.2263) (0.3818) (0.3426) (0.2751) (0.2513) (0.4455) (0.2654) (0.2474)  



Table B.2: Summary of the finite-sample performances for different estimation methods based on 10,000 times simulation 

with sample size n = 200, and a = 1 fixed. 

0 

Methods MOM PWM MLE LME EBM EBM* CM AD ADR ADL HYBAD HYBADR  

k=-5 
Bias(c) Inf Inf 0.0386 0.0865 0.3013 0.0490 0.0437 0.0304 0.0487 0.0312 0.0272 0.0376 
RMSE(o) (Inf) (Inf) (0.2607) (0.3848) (0.4635) (0.2646) (0.2808) (0.2619) (0.3128) (0.2605) (0.2616) (0.3079) 
k=-3 
Bias(a) Inf Inf 0.0261 0.0458 0.0650 0.0289 0.0267 0.0183 0.0272 0.0200 0.0152 0.0195 
RMSE(c) (Inf) (Inf) (0.2093) (0.2557) (0.2296) (0.2099) (0.2169) (0.2076) (0.2287) (0.2138) (0.2068) (0.2262) 
k=-1 
Bias(o) 7.3732 0.1948 0.0148 0.0177 0.0139 0.0094 0.0130 0.0071 0.0103 0.0100 0.0045 0.0059 
RMSE(o) (111.48) (0.2616) (0.1463) (0.1486) (0.1448) (0.1447) (0.1553) (0.1482) (0.1487) (0.1641) (0.1465) (0.1479) 
Ic = -0.5 
Bias(u) 0.2736 0.0178 0.0129 0.0126 0.0026 0.0038 0.0101 0.0042 0.0066 0.0076 0.0019 0.0029 
RMSE(o) (0.3591) (0.1260) (0.1268) (0.1258) (0.1236) (0.1243) (0.1402) (0.1317) (0.1287) (0.1509) (0.1299) (0.1282) 
Ic = 0.2 
Bias(a) 0.0063 0.0022 0.0170 0.0060 -0.0092 -0.0062 0.0066 -0.0020 -0.0002 0.0047 -0.0034 -0.0024 
RMSE(o) (0.0995) (0.1090) (0.0979) (0.0982) (0.0932) (0.0930) (0.1194) (0.1053) (0.0997) (0.1319) (0.1048) (0.1002) 
k=1.5 
Bias(a) 0.0074 0.0039 NA -0.0033 -0.0673 -0.1037 0.0039 -0.0019 -0.0007 0.0027 -0.0085 -0.0055 
RMSE(o) (0.1249) (0.1181) (NA) (0.0770) (0.0902) (0.1171) (0.0920) (0.0812) (0.0767) (0.1042) (0.0786) (0.0759) 

k 

k=-5 
Bias(k) 4.5036 4.0024 0.0176 0.0343 0.2350 0.0276 0.0122 -0.0073 -0.0001 0.0011 0.0050 0.0045 
RMSE(k) (4.5036) (4.0024) (0.4265) (0.4821) (0.3930) (0.4257) (0.4769) (0.4441) (0.4474) (0.5182) (0.4284) (0.4482) 

Bias(k) 2.5050 2.0067 0.0137 0.0237 0.0497 0.0165 0.0094 -0.0049 0.0006 0.0008 0.0029 0.0032 
RMSE(k) (2.5050) (2.0068) (0.2845) (0.3108) (0.3004) (0.2836) (0.3243) (0.2983) (0.2962) (0.3638) (0.2844) (0.2950) 
k=-1 
Bias(k) 0.5373 0.2002 0.0111 0.0137 0.0104 0.0058 0.0069 -0.0034 0.0007 0.0004 0.0004 0.0016 
RMSE(k) (0.5382) (0.2234) (0.1438) (0.1453) (0.1412) (0.1427) (0.1866) (0.1598) (0.1507) (0.2263) (0.1458) (0.1460) 
Ic = -0.5 
Bias(k) 0.1476 0.0282 0.0114 0.0112 0.0013 0.0024 0.0063 -0.0037 0.0001 0.0003 -0.0007 0.0007 
RMSE(k) (0.1643) (0.1093) (0.1094) (0.1080) (0.1066) (0.1076) (0.1586) (0.1286) (0.1177) (0.1980) (0.1148) (0.1119) 
k=0.2 
Bias(k) 0.0068 0.0019 0.0182 0.0065 -0.0083 -0.0051 0.0055 -0.0085 -0.0041 0.0005 -0.0048 -0.0027 
RMSE(k) (0.0730) (0.0897) (0.0685) (0.0703) (0.0651) (0.0644) (0.1301) (0.0902) (0.0785) (0.1671) (0.0814) (0.0745) 
k = 1.5 
Bias(k) 0.0125 0.0041 NA -0.0055 -0.1104 -0.1752 0.0072 -0.0043 -0.0018 0.0046 -0.0139 -0.0087 
RMSE(k) (0.2318) (0.2132) (NA) (0.1167) (0.1425) (0.1929) (0.1482) (0.1241) (0.1162) (0.1764) (0.1197) (0.1148)  



Appendix C 

An R Function for Computing the New Hybrid Estimates 

gpdhyb <- function(data, threshold, start, std.err=FALSE, 

cony . plot=FALSE, ppqq=FALSE) -C 

if(missing(threshold))-C threshold = 0 } 

exceed <- (data > threshold) 

dat <- data[exceed]-threshold; m <- length(dat) 

#ll define the main function G depends on single parameter \theta; 

G <- function(dat, theta){ 

x <- sort(dat); n <- length(x) 

c <- 1-theta*x; d <- 1-theta*rev(x) 

# based on adjusted AD statistic; 

dis <- -n-mean((2*(1:n)-1)*(log(1-c(-n/sum(log(c))))-(n-O.5)*log(d)/sum(log(c)))) 

return(dis) 

} 

if(missing(start))-C start = -0.5 } 

## constrained minimization of the target G to obtain the estimate of \-theta; 

# the 'optimize' function can be alternative which leads to almost same result; 

e <- le-6/mean(dat) 
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mm <- nlminb(start, G, upper=1/max(dat)-e, control=list(abs.tol=e), dat=dat) 

# based on minimum of \theta to get the final estimates of (\sigma,k); 

k <- -mean(log(1--min$par*dat)) 

par <- c(scale=k/min$par, shape=k) 

convergence <- min$convergence 

iter <- min$iterations 

## graphical assessment of the algorithm convergence; 

if ( cony. plot==T) { 

t <- c(seq(min$par-median(dat), min$par, length=30), 

.seq(min$par, 1/max(dat)-(le-12) , length=30) ) 

out <- NULL 

for(j in 1:length(t)){ 

out <- c(out, G(dat, tEj])) 

} 

X11() 

plot(t, out, type="l", ylim=c(mmn(out), quantile(out,O.9)), xlab='thet&', 

ylab=h1G(theta)tt, main="The plot of G to assess if the minimum is reached1t) 

abline(v=min$par, co18) 

## the p-p and q-q plot to assess the fit of GPD to data using the hybrid method; 

if(ppqq==T){ 

n <- length(dat); x <- sort(dat) 

Sample <- pgpd(x, , par[1], -par[2]) 
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Empirical <- NULL 

for(j in 1:n)-C Empirical[j] <- j/(n+1) } 

X11O; par(mfrow=c(1,2)) 

plot(Empirical, Sample); title(main=1tProbability Plot of the GPD") 

abline(0, 1, col="red") 

Sample <- x 

Empirical <- NULL 

for(j in 1:n){Empirical[j] <- qgpd(j/(n-i-1),, par[1], -par[2]) } 

plot(Empirical, Sample); title(main='tQuantile Plot of the GPD't) 

abline(O, 1, co1"red") 

} 

## bootstrap standard error, and confidence intervals; 

if ( std. err==T) -C 

B <- 1000 # number of independent bootstrap samples; 

b.se <-NULL 

for(j in 1:B){ 

b <- rgpd(m, , par[l] , -par[2]) 

b.min <- nlminb(min$par, G, upper=1/max(b)-e, 

contro1=list(abs.tole), dat=b) 

b.k <- -mean(log(1-b.min$par*b)) 

b.par <- c(b.k/b.min$par, b.k) 

b.se <- rbind(b.se, b.par) 

} 
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se <- apply(b.se, 2, Sd); names(se) <- c("se.scale", " se.shape") 

CI <- rbind(quantile(b.se[,1], c(O.025, 0.975)), 

quantile(b.se[,2], c(0.025, 0.975))) 

names <- c("95%CI . scale", " 95°hCI. shape") 

dimnames(CI) <- list(names, c("2.5%", "97.5°!,")) 

list(param=par, std. err=se, CIs=CI, convergence=convergence, iterations=iter) 

} 

else{ 

list (param=par, convergence=convergence, iterations=iter) 

} 

} 

0 
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