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Abstract 

 

It has been over a decade since Rosenblatt published his seminal paper on modelling the dynamic 

facility layout problem (DFLP). Since then, there have been improvements to Rosenblatts 

original dynamic programming model. Alternate solution methods have also been proposed. 

However, no comprehensive review of the research in the DFLP has been undertaken. In this 

paper we categorize the different works of research that have followed and discuss them. They 

include improved and more flexible  solution methods, fathoming procedures, bound 

determinations and, method comparisons. 
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 Dynamic Layout Algorithms : A State-of-the-art Survey 

 

1. Introduction 

This paper investigates the design of facility layouts based on  multiperiod planning horizons. 

During this horizon, the material handling flows between the different departments in the layout 

may change. This necessitates a more sophisticated approach than the much researched static 

facility layout problem (SFLP) approach. The dynamic facility layout problem (DFLP)  extends 

the SFLP by assuming that the material handling flows can change over time. This in turn might 

require layout rearrangement. 

 

In the static problem, given a group of departments, material flow between each pair of 

departments, and the cost per unit of flow per unit distance, the departments have to be arranged 

into a layout such that the sum of the costs of flow between the departments in the layout is 

minimized. The material flows between pairs of departments or relative material flows are 

assumed to be constant over time. 

 

The dynamic approach to layout corrects the above deficiency. In the dynamic approach, the 

layout plan is  based on a multiperiod time horizon. During this time if the material flow changes 

warrant it, layout rearrangements may be planned in one or more periods. The analysis is based 

on the trade offs between the costs of excess material handling if a layout is not rearranged when 

required and the costs of such  rearrangements. The cost of layout rearrangement would include 

out-of-pocket moving expenses as well as the cost of operational disruptions. 
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The next section explains the importance of the dynamic layout problem. Section 3 explains the 

dynamic problem through an example adopted from Rosenblatt [29]. Section 4 discusses the 

various solution approaches for the DFLP. A summary of these is given in Table 2. Finally, 

Section 5 concludes the paper. 

 

2. Importance of Dynamic Layout 

 In an environment where material handling flows do not change over a long  time, a static layout 

analysis would be sufficient. In today's market based and dynamic environment, such flows can 

change quickly. Page [26] reports that on average, 40% of a companys sales come from new 

products, i.e., products that have only recently been introduced. Any change in product mix can 

result in changes in flow and thus affect layouts.  

 

In a dynamic environment, the static approach may still be used, though there are disadvantages. 

One method is to use a short planning horizon so that during this horizon the flows are fairly 

constant. The disadvantage is that after the short horizon, if the relative flows change, the layout 

may have to be rearranged to maintain the effectiveness of the layout. However, rearranging 

layouts frequently without prior planning can result in operational disruptions and excess 

rearrangement costs. Another approach is to use a long planning horizon and disregard the 

changes in flow. The total flow over the planning horizon can be determined by adding the 

material flows in each period to get the total flow. There will be no rearrangement costs, but this 

may result in the layout being inefficient throughout the horizon. The dynamic approach to layout 

corrects these deficiencies by striking a balance between the material handling and layout 
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rearrangement costs and planning future layout rearrangements if necessary. 

 

However, dynamic layout analysis may not be justified in every situation. When the cost of 

layout rearrangement is negligible, dynamic layout  analysis is not necessary. The layout can be 

redesigned as necessary when demand changes require it, without any prior planning. Examples 

of such layouts can be found in Hirano [13] . At the other extreme, if the rearrangement costs are 

prohibitive, such as in the case of very heavy machinery, we may use the same layout for the 

entire planning horizon. In this situation also a dynamic analysis is not necessary. This paper 

concentrates on the intermediate settings where the costs of layout rearrangement are neither 

negligible nor prohibitive. Examples of such layouts can be found in Kouvelis et al. [16]. They 

describe examples in flexible manufacturing systems (FMS) and semiconductor manufacturing. 

 

3. The Dynamic Facility Layout Problem (DFLP) 

A rectangular layout with six locations is shown in Figure 1a. The locations are all equal in size. 

There are six departments that have to be assigned to the six locations in each of the five periods 

in the planning horizon. The  assignment of departments to locations for one period shown in 

Figure 1a  is designated by the sequence 1-2-3-4-5-6. Figure 1b shows another possible 

assignment and is designated by the sequence 2-6-3-4-1-5 

 

This is only one out of the 6! or 720 combinations or sequences that exist for this layout. Each 

combination represents a different static layout and is a candidate layout in each period of the 

five period dynamic problem.  Each layout is also denoted by a sequence indicated in Figures 1a 
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and 1b. We are interested in determining the assignment of departments in this layout over five 

periods.  A period could represent any length of time such as a year, a quarter, or a month. The 

varying relative flows between pairs of departments along with the shifting cost for each 

department are shown in Table 1 

  

In this example, the shifting cost depends only on the department shifted and not on the distance 

of the move. This assumption is valid where the fixed costs of the move (such as removing the 

machine, reinstalling it, and the cost of lost production) dominate the variable costs such as the 

cost to move the machine  unit distances. 
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 Figure 1a: An example layout 
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 Figure 1b: An example layout 
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  Period 1 
To --   1  2  3  4  5  6 
From 
1 0  63   605  551  116  136 
2 63  0  635  941  50  191 
3 104  71  0  569  136  55 
4 65  193  622  0  77  90 
5 162  174  607  591  0  179 
6 156  13  667  611  175  0 
 Period 2 
1 0  175  804  904  56  176 
2 63  0  743  936  45  177 
3 168  85  0  918  138  134  
4 51  94  962  0  173  39  
5 97  104  730  634  0  144 
6 95  115  983  597  24  0 
 Period 3 
1 0  90  77  553  769  139 
2 168  0  114  653  525  185 
3 32  35  0  664  898  87 
4 27  166  42  0  960  179  
5 185  56  44  926  0  104  
6 72  128  173  634  687  0 
 Period 4 
1 0  112  15  199  665  649 
2 153  0  116  173  912  671 
3 10  28  0  182  855  542 
4 29  69  15  0  552  751 
5 198  71  42  24  0  758 
6 62  109  170  90  973  0 
 Period 5 
1 0  663  23  128  119  50 
2 820  0  5  98  141  66 
3 822  650  0  137  78  91 
4 826  570  149  0  93  151 
5 915  515  53  35  0  177 
6 614  729  178  10  99  0 
 
 Shifting cost for departments 

887  964  213  367  289  477 
 
 Table 1: Material Flow and Shifting Costs 
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The layout also shows flow dominance. Some departments have higher material handling inflows 

than the others. These flow dominant departments change during the planning horizon. For 

example, in Table 1, departments 3 and 4 have high material inflows during the first period 

whereas in the fifth period, it is departments 1 and 2 that have the high material inflows. This 

results in the dynamic nature of the problem and implies that the optimal static layout may also 

change during the planning horizon.  

 

The optimal static layouts,  based on the notation in Figures 1a and 1b, for the problem in Table 1 

are 135642, 142536, 153246, 164253 and 326415 in periods 1 through 5 respectively. If the 

layout rearrangement cost was negligible, the optimal solution would have been to rearrange the 

layout to the optimal static layout in each period. However, layout rearrangement  incurs costs. 

Based on the entire planning horizon, if the savings in the cost of material handling due to 

rearrangements is greater than the cost of shifting the departments, we might rearrange the layout.  

 

So the dynamic problem involves selecting a static layout for each period and then deciding 

whether to change to a different layout in the next period. If the shifting costs are relatively low, 

the layout configuration would tend to change  more often to retain material handling efficiency. 

The reverse is true for high shifting costs.  
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4. Discussion of the Dynamic Layout Literature 

4.1 Equal Sized Departments 

4.1.1 Deterministic Material Flow 

A majority of the research that has been done in the DFLP assumes equal department sizes and 

deterministic material flow . Often, solving the DFLP includes solving the SFLP. For most 

realistic SFLPs, where a large number of departments are present, obtaining the optimal solution 

will not be possible. So  various heuristic  algorithms have been proposed which can solve fairly 

large static layout  problems in reasonable amounts of time. Heuristic algorithms can be 

classified into two major types - construction type algorithms where a solution is constructed 

from scratch and, improvement type algorithms, where an initial layout is improved.  CRAFT 

[2], is a popular improvement algorithm that uses pair-wise interchange (exchange). For  a 

comprehensive review of the static layout literature, see Kusiak and Heragu [18]. More recent 

work can be found in Meller and Gau [21].  

 

Less literature is available in the dynamic facility layout area. The following formulation of the 

DFLP is adopted from Balakrishnan et al. [4]: 
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The objective is to minimize the sum of the layout rearrangement costs (first term) and the 

material handling costs (second term) over the planning horizon. (1)  requires every department 

to be assigned. (2) requires every location to have a department assigned to it. (3) assigns Ytijm a 

value of 1 only if a department has been shifted in the period. This formulation is nonlinear and  

can be solved optimally only for small problems. 

  

This formulation is an extension of the well-known quadratic assignment problem (QAP) [15] 

formulation for the SFLP. Although, many solution techniques for the DFLP involve solving 

embedded SFLPs, the optimum solution to the dynamic problem might not involve any of the 

static optimum solutions. 

 

Sahni & Gonzalez [31] show that the QAP formulation for the SFLP is a NP-complete problem. 

layout the in sdepartment of Number :      N

horizon planning the in periods of Number :      P
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t period inj  at i locating for variable 0,1 :   X

0) = A(where         

t period in m toj  from i  shiftingof cost Fixed :  A

t period in m toj  from i  shiftingfor variable 0,1 :  Y

layout the in Locations :   mj,

layout the in sDepartment :   ki,

tijkm

tij

tijj

tijm

tijm

 



 

 11 

Thus the DFLP is also a very difficult problem to solve optimally. We would have to explicitly or 

implicitly evaluate (n!)
t
 combinations where  t is the number of periods, which even for a six 

department, five period problem is very large (1.9310
14

). Thus most realistic problems will have 

to be solved suboptimally, i.e., not all the possible layouts in a period are explicitly or implicitly 

evaluated. In this case, there is no guarantee of optimality for the dynamic problem. 

 

The optimum solution for the problem shown in Table 1, based on the notation in Figures 1a and 

1b, is to employ layout 246135 in the first two periods, then shift to layout 246153 for period 3. 

In period four, layout 264153 will be used and finally in period 5, layout 214653 will be 

employed. Thus, the layout is changed three times during  the five periods. None of these layouts 

are statically optimal in their respective periods. The total cost of this plan is $71187. Had the 

static optimal solutions been used, the savings in material handling cost would have been more 

than offset by the increased layout rearrangement  costs, and the total five period cost would have 

increased to $75384. 

 

4.1.1.1 Dynamic Programming Approaches 

Rosenblatts model of the DFLP is adopted from Ballou [5] who considers the dynamic nature of 

demand in locating warehouses. Location decisions are generally made based on horizons of 

twenty years or more. Thus, the changes in demand during that time (dynamic nature) can be 

important. In the dynamic plan, the  warehouse location for each period is different from the 

location that would have been used if  that period's demand was considered in isolation (static 
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location). The objective here is to trade off the costs of warehouse relocation against  the 

distribution costs saved. 

 

Sweeney and Tatham [32] provide a fathoming procedure for the dynamic facility location 

problem that allows us to eliminate some of the static locations or states that would be required 

in each period. The rule is applicable to dynamic layout also. One disadvantage of this  method is 

that a good feasible solution is required before the rule can be applied effectively. 

The DFLP is similar to dynamic warehouse location. The trade off here is between the  material 

handling flow  cost within the facility and the shifting costs for the departments that may need to 

be relocated within the facility. Rosenblatt uses DP to solve a six department problem optimally. 

Let: 

Li           Layout i 

 

Aij         Rearrangement (sum of department shifting costs) cost when changing from layout Li to  

               layout Lj,. This cost is independent of the period in which it occurs. 

 

Fit        Material handling cost for layout Li in period t. This is obtained from the  SFLP solution. 

 

C
*
it      Minimum total costs (material handling and shifting) for all periods up to t where Li is     

               used in period t. 

 

 The combination of layouts with the minimum total cost is chosen based on the following 

recursive relationship: 
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or 

C
*
jt   =  Mini {C

*i
i(t-1) + Aij} + Fjt   

 

The DP is solved using backward recursion. Each period in the planning horizon forms a stage 

and each static layout forms a state. He reports that in  his experiments, the fathoming procedure 

of Sweeney and Tatham did not help in eliminating any state. 

 

For small problems,  N = n!, where n! is the number of possible static layouts (given n 

departments) in each period and N is the number of static layouts included in the DP.  The 

solution will be optimal in this case. For larger problems N < n!,  since using all n! static layouts 

will result in an intractable problem. The DP procedure still gives the optimal solution for the 

layouts included. However, as not all the possible static layouts are included,  i.e. ( N < n!), the 

resultant procedure (with static and dynamic stages) cannot guarantee the optimal solution.  N in 

each period depends on the capability of the software and hardware used to solve the problem. 

The more powerful these are, the larger N can be.  Logically, larger N should lead to better 



 

 14 

solutions. In most practical sized problems N << n!.  Rosenblatt discusses different methods of 

selecting the N layouts when  N < n!. One method is to choose them randomly. This is 

computational efficient but the resulting solution quality is usually poor.  

 

 

Another method suggested by Sweeney and Tatham is to use the  N best static layouts from each 

period.  The assumption is that since we are including the best layouts from each period, the 

overall dynamic solution should be better than if we chose the static layouts randomly. This was 

borne out by Rosenblatts tests, where using the best layouts resulted in better solutions than 

when using random layouts. But generating the best layouts  involves solving N QAPs in each 

period, each with more constraints than the previous QAP (to prevent the recurrence of the 

previous static optimal solution). This can be very time consuming and will not be practical for 

larger problems.   

 

It is also important to have any static layout included in one period to be duplicated in every 

other period. Otherwise, we may eliminate the possibility of using  the same layout in more than 

one period, which may be preferable when layout rearrangement costs are high. 

 

Though Rosenblatt did not conduct  any experiments using  large problems, this paper is 

frequently cited in dynamic layout as it defines the problem clearly and discusses directions for 

solving practical sized problems in the field. 
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Balakrishnan et al. extend the dynamic layout problem of Rosenblatt. They consider the existence 

of budget constraints and conduct a detailed experiment to investigate the problem. Their 

formulation is called  the constrained dynamic plant layout problem (CDPLP).  They point out 

that layout rearrangement requires funds and these funds may be limited. So the dynamic layout 

problem is solved under this constraint. The simplex based constrained shortest path (CSP) 

algorithm of Mote et al. [25] is used to solve the problem.  

 

In addition, an experiment involving the number of static layouts, the method of static layout 

selection, and constraint tightness  was undertaken. Problems with fifteen and twenty 

departments were also solved. Thus, this paper illustrates two important aspects of the dynamic 

layout problem: 1) When constraints are added to the dynamic layout problem, shortest path 

algorithms are much faster than dynamic programming in realistic situations; 2) A heuristic 

approach to the dynamic layout problem can be effective. CRAFT was used in the experiments to 

generate static solutions. For realistic problems, as it will not be possible to find the N best static 

solutions by solving the QAP,  the ability of CRAFT to provide N good solutions allows large 

size DFLPs to be solved effectively. 

 

Another implication of this research is that instead of CRAFT, we could use other algorithms 

such as SPIRAL [11] which is useful for unequal department sizes. This means that although the 

Rosenblatt model assumes equal size departments, this drawback can be circumvented by using a 



 

 16 

procedure such as SPIRAL in the static stage. The dynamic programming stage is of course 

independent of the shapes or sizes of the departments as it deals with only the costs of material 

handling and rearrangement.  

 

The use of incomplete dynamic programming [36] for the DFLP, where the rearrangement costs 

are assumed to be fixed regardless of the departments rearranged,  is discussed by Urban [35]. 

For example, this may occur when the whole facility has to be shut down for any rearrangement 

and this cost dominates the cost to shift individual departments. Thus, the decision in each period 

can be reduced to  (0,1) depending on whether rearrangement occurs.  This then leads to a 

rearrangement vector for a multiperiod problem. The solution is found in two phases. In the first 

phase, a series of QAPs have to be solved to find the solution to the static sub-problems. In the 

second phase, the solutions from the first phase form the arcs on a shortest path formulation with 

each period represented by a node.  For larger problems two heuristics are proposed. The first 

one, GRASP, uses a construction algorithm with neighbourhood search to come up with good 

solutions for the QAP. The second algorithm, the initialized multigreedy algorithm, is very 

similar to GRASP, except that it shares information between the static subproblems. In tests both 

these heuristics performed well, generating solutions within 1% of optimal. 

 

4.1.1.2  Pair-wise Interchange Heuristics 
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The pair-wise interchange procedure proposed by Urban [34]  is the multiperiod 

equivalent of CRAFT and incorporates layout rearrangement costs. This heuristic makes use of 

forecast windows, m, to find different sets of good layout plans for the planning horizon. The  

m ranges from 1 to the number of periods in the planning horizon. The forecast window is the 

number of periods being considered when the pair-wise exchange is performed. Using an initial 

layout and pair-wise exchanges, one set of layouts is obtained for the given planning horizon for 

each forecast window. 

 

For example, when the forecast window is 1, i.e., m=1, in each run of the pair-wise interchange 

procedure, only material flows from one period are considered. An assumed or existing  initial 

layout is used to find the most appropriate layout for period 1 by considering the material flows 

for  period 1 only. Then this newly generated layout for period 1 is used as the initial layout for 

period 2. Pair-wise interchange is now used to determine a good layout for period 2 by 

considering the material flow of period 2 only. This process is repeated for each period in the 

planning horizon using the newly generated layout for the previous period as the initial layout for 

pair-wise interchange. Thus, a  layout plan for the entire  planning horizon is obtained. The total 

cost of the plan is the sum of the material handling flows for every period in the planning horizon 

and the costs of rearranging the layout at the end of each period if necessary. 

 

The next stage of the procedure involves using a forecast window of 2. This is shown in Figure 2 

for a five period problem. The material flows of periods 1 and period 2 are combined to 



 

 18 

determine the layout for period 1 from an initial layout using pair-wise interchange. This final 

layout for period 1 serves as an initial layout for the next periods analysis. Similarly, the flow 

costs for periods 2 and  3 are combined and used to determine the layout for  period 2, and so on. 

Thus,  a look ahead principle is used. Note that in period 5, only the material flow for period 5 is 

used as period 6 does not exist. As was the case with m=1, the total cost of the plan is the sum of 

material handling flows for every period in the planning horizon and the costs of rearranging the 

layout at the end of each period if necessary. In a five period problem, this process is repeated for 

 m = 1,2,3,4,5. For each m, a layout plan and an associated cost  is obtained. The plan with the 

lowest cost is selected as  the solution. 

 

 

 

Figure 2    

Pair-wise exchange when forecast window m = 2 
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Test problems ranging in size from six departments and four periods to thirty departments and 

twenty periods were solved. The performance of the heuristic (using two initial layouts) was 

compared to dynamic programming using; 1) one hundred random static layouts in each period 

and; 2) four best layouts from each period (Ballou method). The  results indicate that the 

proposed heuristic performs better than DP (using random static layouts) especially for larger 

problems. In these problems DP is solved as a heuristic since N<< n!. The second best method 

 was the Ballou method. However, it could not provide solutions for problems with more than 

twelve departments. On the other hand the Urban heuristic was able to solve a thirty department, 

twenty period problem in a little more than 1000 CPU seconds on 10-MHz 386 computer.  On 

problems where an optimal solution was available, the exchange heuristic performed only 

slightly worse than optimal. In addition, since different forecast windows are used, this method 

might be more suitable than DP under rolling planning horizons. Thus, Urbans heuristic is an 

extremely practical approach. The only disadvantage is that it can handle only equal sized 

departments. However, the concept of the forecast window can be applied to unequal sized 

department heuristics such as SPIRAL, which would result in an Urban-like procedure 

incorporating unequal sized departments.  

 

4.1.1.3 Genetic Algorithms 

Conway and Venkataramanan [8] examine the suitability of genetic algorithms (GA) for the 

CDPLP. A genetic search uses the mechanics of natural selection and natural genetics to evolve a 
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population of initial solutions into a near-optimal solution. This approach is suited to handle 

multiple and  nonlinear objective functions as well as side constraints.  

 

In their procedure, for a six department, five period problem, a string in the population would 

consist of nt, or 30 digits, representing every department in each period. There would also be n! 

or 720 such strings in the population. To crossbreed, two strong strings (based on fitness 

function) from the population are selected. Then a random splicing position is generated and the 

strings are split. The substrings are then swapped. Since these swaps may create infeasible 

solutions (eg. two occurrences of department 5 in one period), additional digit swaps are done to 

ensure feasibility. The string with lower cost is allowed to survive to the next generation.  In 

tests, where cross-breeding was done for up to 100 generations using population sizes of up to 

800, the algorithm performed well compared to dynamic programming for six and nine 

department problems. No computation times were given. 

 

4.1.1.4 Tabu-Search 

The DFLP lends itself well to tabu-search. In the method proposed by Kaku and Mazzola [14], 

pairwise interchange is used to evaluate candidate moves in a local neighbourhood search. A 

tabu-list is maintained to prevent cycling and in each iteration the best non-tabu move is 

implemented if it results in a better solution. The procedure stops when the incumbent solution 

does not improve after a number of moves or if an iteration limit is reached. Diversification 

strategies are used to ensure that different regions of the search space are explored for better 
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solutions. Intensification strategies which allow the procedure to do more searches in a 

neighbourhood, by actions such as reducing the tabu list length, also proved helpful. The 

algorithm has two stages. Diversification allows for a number of starting solutions. The tabu-

search then generates good solutions which are fed into the second stage for a more intensive 

search. The best solution found in the second stage is  the final solution. Computational 

experiments showed that the tabu-search procedure provided solutions that were as good as or 

slightly better than the best solutions for different algorithms  in Lacksonen and Enscore [20]. 

Problems with 30 departments and 5 periods took about 3 hours on an average to solve on a 

Pentium 200 Mhz PC. 

 

4.1.1.5 Comparison of Algorithms  

Lacksonen and Enscore conduct tests on various methods of solving the quadratic  assignment 

formulation of the dynamic layout problem. The authors modified these methods for use in 

dynamic layout. The procedures were:  

 

 

1. Exchange algorithm 

Each run starts with eight random layouts. Then pairs of departments are analysed for exchanges 

over all consecutive blocks of time in a CRAFT based method. This converts the static pair-wise 

exchange into a dynamic one. 

2. Cutting planes 
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Based on Bukard and Bonniger [7], this method combines cutting planes with an exchange 

routine. At each iteration, an assignment and exchange routine are implemented. The process is 

repeated for different starting solutions. For simplicity, the assignment routine does not consider 

department changes between time periods.  This is done by the exchange routine. 

3. Branch and bound 

Based on the algorithm of Pardolos and Crouse [27], this method employs the cutting plane  

results as an upper bound. The procedure is run as a heuristic by storing on the best nodes and by 

terminating after a certain number of nodes are analysed. 

4. Dynamic Programming 

This is the DP method of Rosenblatt . N in the DP ranged from 30 to 700. It was larger for the 

bigger problems. The exchange algorithm is used to find the best static layouts. Hybrids between 

the best layouts of consecutive time periods are also used as static layouts. 

5. Cut trees 

This is based on the research in [22]. Each department in each time period is represented by a 

node. Arcs represent material flow and layout rearrangement. Cut tree arcs are then manually 

converted into layouts. This manual layout is then fed into the exchange algorithm to obtain 

better results. 

 

Problems ranging in size from six departments and three periods to thirty departments and five 

periods were tested. In the larger problems optimality could not be proved. They found that the 

cutting plane and branch and bound algorithms performed better than the exchange algorithm. 
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DP and cut tree performed poorly. In addition the cut trees were not applied to the thirty 

department problems as its implementation became difficult. The branch and bound was not able 

to solve the thirty department problems within the allotted CPU time. On the thirty department 

problems the exchange algorithm and DP provided solutions that were respectively, 1.3% and 

3.7% more costly on average than the cutting plane solution. However the cutting plane method 

required 27 times and 70 times respectively as much computation time on average than the 

exchange algorithm and DP (on an IBM 3070, the cutting plane took between 172.47 and 235.97 

CPU seconds to solve a thirty department, five period problem). Further, the cutting plane is 

limited to equal sized layouts. 

 

4.1.1.6  Bounds and Fathoming 

Balakrishnan [3]  proposes a fathoming procedure to reduce the number of possible static layouts 

in  the DFLP. One advantage of this method is that this can be applied before any feasible 

solution is available. The disadvantage is that effectiveness of this fathoming method depends on 

the magnitude of the rearrangement costs. For high rearrangement costs it is not likely to be 

effective. Batta [6] shows that if the same layout is used in every period, then the DFLP reduces 

to an  SFLP in which the interdepartmental  flow can be determined by adding the flow data for 

all the periods.  

 

Urban [33] examines the application of lower bounds to the DFLP. This is useful in eliminating 

solutions when using procedures such as branch and bound, and also in testing the effectiveness 
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of heuristics when optimal solutions are not available. Rosenblatt suggests using the sum of the 

static optimal solutions as a bound. This ignores the rearrangement costs and so forms a lower 

bound. However, this bound requires the static optimal solutions, which may be difficult to 

obtain for large problems.  

 

Urban therefore examines other lower bounds such as Gilmore type bounds [10] and 

probabilistic bounds [12]. The computations required for the Gilmore type are less than that for  

Rosenblatts bounds. A probabilistic bound is of the type μ - kσ, where  μ and σ are the mean and 

standard deviation of the material handling flow distribution.  The computational performances 

of these different lower bounds were compared in  an experiment.  In general, these bounds are 

more effective when the variations in work flow between departments and variations in 

interdepartmental distances are low.  

 

Rosenblatts bound is usually the most effective but works only for small problems due to 

excessive computation time. The probabilistic method is computational the most efficient and 

can perform better than Rosenblatts under small k and low flow variability. Gilmore type 

bounds are dominated by Rosenblatt bounds but are close in some cases.  

 

In a more recent paper, Urban [35] proposes another set of lower and upper bounds. The bounds 

would involve solving more QAPs than the bounds in Rosenblatt, Batta, and Balakrishnan. 

However, the extra effort results in more states being fathomed on some problems. In tests on 
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problems with up to 15 departments and 8 periods, the proposed bounds dominate the 

Rosenblatt, and Batta bounds. It  eliminates more static solutions than the Balakrishnans 

fathoming procedure for shorter planning horizons. Under longer horizons Balakrishnans 

fathoming procedure performs better. 

 

4.1.2 Stochastic Material Flow 

4.1.2.1 Robustness 

All the procedures discussed so far assume a deterministic scenario as in Table 1. Clearly, this 

may not be true in many situations. Kouvelis et al. [16] address this problem by using the concept 

of robust layouts [30]. The robustness of a layout is an indicator of its flexibility in handling 

demand changes. This can be measured by whether a designed layout is within a Δ% of the 

optimal solution for every possible demand scenario. Under uncertainty, it may be better to 

choose a layout which performs well under all possible situations rather than one that is optimal 

for one possible scenario (which may not occur) but does poorly for the scenario that actually 

occurs. They also introduce the concept of monuments; those departments that are 

prohibitively expensive to shift once they are located. 

 

Their method involves using a branch and bound (B&B) procedure for finding a list of solutions 

for the static problem in each period that is within Δ% of optimality. Then families from these 

solutions are identified. A family is a set of multiperiod layouts in which the monuments are not 

shifted during the planning horizon.  Then solutions from families that are common across all 
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scenarios are identified. These form the candidate list of solutions which can then be evaluated 

for deviation from optimality for each scenario, given the Δ% . 

 

 

Experiments indicate that for more than 15 departments, the B&B procedure would have to be 

terminated before optimality confirmation.  The authors do solve thirty department problems, but 

only for the static case. The B&B procedure is limited to equal sized departments. However, in 

the dynamic stage, the procedure is independent of the method used to generate the Δ% solutions 

for the static problems. So, conceptually, heuristics such as CRAFT or SPIRAL could be used in 

the static stage. 

 

 

4.1.2.2 Markov Processes 

Another paper that deals with uncertainty in dynamic layout is one by Kouvelis and Kiran [17]. 

However, the methodology described in that paper is specific to automated manufacturing 

systems.  The basic model is a modification of the QAP which incorporates a close queueing 

network. This network allows the authors to model stochastic factors such as setup and material 

transportation times, alternate process plans, and product mixes. For the dynamic model, a 

transitional matrix is used to update the probabilities of the product mixes in each time period. 

Computational however, this leads to a Markov process resulting in large problems becoming 

intractable. The authors are able to solve only a special case of the problem using dynamic 
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programming. 

 

4.1.2.3 Simulation 

In one of the few discrete event simulation approaches to dynamic layout, Afentakis et al. [1] 

model a flexible manufacturing system. The main objective of the research is to compare a 

strategy of rearranging a layout every n periods (periodic policies) with a strategy of rearranging 

it when the product volume, product mix or product routing  changes by a threshold percentage 

value (threshold policies).  Factors incorporated include the number and routing of parts and the 

number of machines. The volume of parts and stability of this volume along with the frequency 

of change in the part mix were also considered. Each factor had two levels. In this research, the 

authors do not use the sum of material handling and rearrangement costs as the measure of 

performance.  Each is considered a separate measure of performance. In analysing the results, 

they identify some dominant situations when considering both measures. They also focus on the 

tradeoff between the two. The optimal static layouts were determined by complete enumeration. 

The results showed that given a dynamic situation, the material handling performance 

deteriorated as n increased in the periodic policy and as the threshold percentage increased,  

while the number of rearrangements decreased. Also when the part mix changes, the threshold 

policies work better than the periodic policies. Overall, the results show that a poor layout can 

add as much as 36% to the material handling requirements. Therefore, given that FMSs are 

installed to perform better than job shops or dedicated lines under conditions of uncertainty, it is 

important to monitor them continuously on a layout basis to ensure its efficiency. 
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4.2 Unequal Size Departments 

Montreuil and Venkatadri [23] deal with a situation where the departments in a facility 

show growth or decline over time. This growth or decline is divided into phases or periods. They 

employ strategic interpolative design [9] in which  the designer develops  a goal layout for the 

facility at the end of the growth stage. This layout is an input to the model and the intermediate 

layouts are generated from this layout. It is also assumed that once a department is located, it is 

never moved. The size of each department may grow at different rates but their relative positions 

do not change over time.  They model this dynamic situation using linear programming.  

 

The variables are coordinates along the X and Y axes and are bounded by the dimensions of the 

building also along the X and Y axes. The objective function minimizes a weighted average of 

the flow costs where the weight assigned to a phase depends on the duration of the phase and the 

time value of money. Though the initial formulation considers only rigid facilities, they also 

discuss modifications required to incorporate expansion and phasing out of the building and,  

phased construction. Since the formulation is linear, the model can solve problems of realistic 

size. A twelve department problem required 504 variables and 648 constraints and was solved 

within 10 minutes on a IBM AT computer. This research addresses the inability of the QAP 

based models to address the case where department sizes may be unequal. But it does so only by 

restricting the dynamic layout plan to a predefined skeleton. This formulation handles unequal 

department sizes. Thus, it addresses the deficiency in the formulation of Balakrishnan et al. 
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However, this formulation has a disadvantage of its own. To maintain the tractability of the 

formulation,  an initial design skeleton that  fixes the relative positions of the departments has to 

be specified. In later periods, only  the sizes and shapes of the departments can be changed. The 

relative positions  remain the same. This can be seen in the formulation where there is no term 

for the layout rearrangement cost as departments cannot be shifted relative to each other. 

 

Montreuil and Laforge [24] extend the work by Montreuil and Venkatadri  by presenting  a more 

general procedure to analyse the design of layouts under conditions of uncertainty. The authors 

consider a set of probabilistic future scenarios to design the layout. The formulation is shown 

below. Let: 

Indices: 

c,i, j:   A cell. 

e:   A facility, referring to a cell or the building 

f:   A future state in the scenario tree. 

m,n,s:   An Input/Output (I/O) station of a cell. 

p:   A pair of I/O stations, referring to station m of cell i and station n of cell j. 

p(f):   Future preceding future f in the scenario tree. 

 

Parameters: 

Ipf:   Positive interaction between the I/O stations of pair p during future f. 

LUef,Lef:  Minimum and maximum allowed length for the X-axes of facility e in 

future f. 

LSef,Lef:  Minimum and maximum allowed length for the Y-axes of facility e in 

future f. 

Pf:   Probability of occurrence of future f according to the scenario tree. 

Oef, ef:  Minimum and maximum allowed perimeter for facility e in future f. 

WDUef, WDSef: Marginal cost associated to a unit-distance displacement of the centroid of 

facility e along the X- and Y-axes, from its location in future p(f) to its 

location in future f. 

WDUef, WDef, 

 WDSef, WDef: Marginal cost associated to a unit-distance displacement of the west, east, 
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south and north sides of facility e from their location in future p(f) to their 

location in future f. 

 

Wf:   Weight associated to future f considering its duration, start time and 

associated discounted value of money, etc. 

 

(Zcf, Zcf), 

  (Zcf, Zcf)  Extreme lower and upper coordinates of a rectangular zone within which 

cell c is imposed to be laid out in future f. 

Sets: 

B:   The building. 

C:   Set of cells c. 

If:   Set of pairs p of I/O stations such that there is a positive flow between the 

two I/O stations during future f. 

Ni\if:   Set of cells i and j such that the design skeleton for future f states that, in 

future f, cells i and j are to be neighbours, with cell i west of cell j. 

Ni/if:   Set of cells i and j such that the design skeleton for future f states that, in 

future f, cells i and j are to be neighbors, with cell i north of cell j. 

Sc:   Set of I/O stations s of cell c. 

 

Variables: 

DU
+

ef,DU
-
ef,D

+
ef,D

-
cf:  Positive and negative components of the displacement of 

the west and east sides of facility e, from their location in 

future p(f) to their location in future f. 

DU
+

ef,DU
-
ef,DS

+
ef,DS

-
ef:  Positive and negative components of the displacement of 

the centroid of facility e from its location in future f, along 

the X-axis and the Y-axis. 

DS
+

ef, DS
-
ef,D

+
ef,Def:  Positive and negative components of the displacement of 

the south and north sides of facility e, from their location in 

future p(f) to their location in future f. 

(xcsf,ycsf):    Coordinates of I/O station s of cell c in future f. 

(Uef,Sef), (ef,ef):   Extreme lower and upper coordinates of rectangular facility 

e in future f, along the X-axis and the Y-axis. 

x
+

pf,x
-
pf,y

+
pf,y

-
pf:   Positive and negative components of distance between the 

Input/Output stations im and jn of pair p, along the X-axis 

and the Y-axis, as the stations are location in future f. 
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Formulation: 

 

Minimize   PfWf    [  Ipf (x
+

pf + x
-
pf + y

+
pf + y

-
pf) 

                      f           pIf 

 

                  +         (WDU ef (DU 
+

ef + DU
-
ef) + WD ef  (D

+
ef + D

- 
ef) 

               eCUB 

 

                                +   (WDS ef (DS 
+

ef + DS
-
ef) + WD ef  (D

+
ef + D

- 
ef)                               (1) 

 

                                +   WDS ef (DS 
+

ef + DS
-
ef) + WDS ef  (DS

+
ef + DS

- 
ef)] 

 

Subject to 

 

  LUef  ef - Uef  L ef                        e, f                          (2) 

 

  LSef  ef - Sef  L ef                        e, f                          (3) 

 

 Oef  2 (ef - Uef + ef - Sef)   ef)                                                           e, f                         (4) 

 Uef  xcsf  cf                                           c, f         sS c                                       (5) 

 

 Sef  ycsf   cf                                           c, f         sS c                                       (6) 

 

 UBf  ZUcf   cf   Zcf  Bf                                                                 c, f                        (7) 

 

  SBf  ZScf  cf   Zcf  Bf                                                                    c, f                        (8) 

 

ximf - xjnf = x
+

pf  - x
-
 pf                                                                       f;  p = (im,jn) If                 (9) 

 

yimf - yjnf = y
+

p f  - y
-
 pf                                                                       f;  p = (im,jn) If                (10) 

 

1/2 ((U ep(f) +  ep(f))  -  (Uef +  ef)) = DU
+

ef - DU
-
 ef                         e, f                               (11)   

    

1/2 ((S ep(f) +  ep(f))  -  (Sef +  ef)) = DS
+

ef - DS
-
 ef                           e, f                                 (12)  

     

Uep(f) - Uef = DU
+

ef - DU
-
 ef                                              e, f                                 (13)    
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ep(f) - ef = Def - D
-
 ef                                              e, f                                 (14)    

  

 Sep(f) - Sef = DS
+

ef - DS
-
 ef                                              e, f                                 (15)     

ep(f) - ef =   D
+

ef - D
-
 ef                                              e, f                                 (16)    

 if   U jf             (i,j)  N ij\ f    :  f               (17) 

 

 jf  S if                              (i,j)  N ij/f    :  f               (18) 

 

 

 

 

The objective function minimizes the weighted sum of material flow and layout rearrangement 

over some future scenarios. Constraints 2 through 4 define cell shapes. 5 and 6 contain I/O 

constraints and cell-within-zone-within- buildings constraints are in 7 and 8. Constraints 9 and 

10 define interstation distance computation. Constraints 11 through 16 relate to interfuture cell 

displacement constraints. Finally, constraints 17 and 18 are design skeleton based relative 

positioning constraints. The future scenarios have probabilities associated with them and are part 

of a scenario tree [28]. The weights are a combination of these probabilities and factors such as 

the duration of the future scenario and discounted value of money. Since the formulation does 

not guarantee the noninterference of cells, initial skeletons are proposed. So, the relative 

positions of the departments do not change. Only the shape and sizes of the departments change. 

As well the size of the facility may also change. While these initial skeletons may appear to 

restrict the model, the authors suggest an interactive approach in which different skeletons for the 

different futures can be proposed. This is possible as the model is linear and thus large problems 

can be solved. In their experiments, solving a twelve department, seven future case required a 

maximum of 252 CPU seconds on a SUN SPARC workstation. The model gives the resulting 

optimal layout for each future scenario in the scenario tree. As in decision trees, the authors 

suggest testing the robustness by changing factors such as the probabilities and the structure of 
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the tree. They also suggest that this model is best used  as a tool within other generalized layout 

design procedures. 

 

Most of the algorithms in dynamic layout either assume equal department sizes, or if they handle 

different department sizes, require the decision maker to provide skeleton layouts.  Lacksonen 

[19] proposes a two-stage algorithm that incorporates the advantages of both the formulations 

discussed above. Stage 1 of his procedure involves solving the equal sized department 

formulation. A cutting plane and exchange routine is used to determine the relative locations of 

layouts in each period. The exchange routine reduces cost by swapping pairs of departments for 

blocks of consecutive time periods by considering material flows as well as layout rearrangement 

costs. Departments that are stationary in this stage are required to remain stationary in the second 

stage also. By setting the relative positions of the layouts, the rearrangement costs are completely 

defined in this stage. In Stage 2, these departments are modified to give the various sizes and 

shapes as required for each periods data. A modified version of the formulation of Montreuil 

and Venkatadri is used. This involves using a mixed integer linear programming model to 

minimize flow costs. The integer variables are used to define the non-overlapping constraints. 

Other constraints define area requirements and stationary departments. Improved linearizations 

for non-linear departmental area constraints and improved departmental overlapping constraints 

over previous formulations are provided. Most of the tests were performed on the static version 

of the model as existing problems deal mainly in that area.  Tests on twelve department problems 

proved the ability of the proposed two-stage algorithm to provide good solutions. Time 

constraints prevented the algorithm from finding solutions to problems with more than twelve 

departments. Since no other similar algorithm is available to solve the dynamic layout problem, 
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no comparisons were possible. Again, due to time constraints, the largest problem solved had 

only twelve departments and three time periods. 

 

Thus, the model by Lacksonen addresses the deficiencies of  the formulations in [4] and [24]. 

Departments of unequal sizes can be accommodated and there is no need to specify an initial 

skeleton layout. However, it is still restricted as the relative positions determined in the first stage 

cannot be changed in the second stage, as well as problem size. So the formulations discussed in 

this section illustrate the difficulty in obtaining optimal solutions for realistic problems in 

dynamic layout. Therefore, heuristic (suboptimal)  algorithms  play an important role in dynamic 

layout. 

 

5.  Conclusion 

In the past decade some issues regarding the DFLP have been addressed by various researchers. 

This paper attempted to categorize  them. The advantages, disadvantages and importance of each 

research were also discussed in this paper. A summary is given in Table 2. Different basic 

models for equal and unequal department sizes were presented. The survey shows that given the 

intractability of the problem, heuristics are important in solving realistic problems. Further, 

research incorporating  uncertainty in material handling flow data was also considered. In these 

situations, one can use the robustness approach or the scenario of futures approach. It is 

important to incorporate uncertainty since many dynamic layout situations are likely to be 

uncertain. Opportunities also lie in simulating these uncertain environments under a general 

manufacturing or service organization framework. The only simulation paper discussed dealt 
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with FMSs. Finally as suggested  while discussing the different research, opportunities exist for 

creating hybrids of the different models. This will allow researchers to combine the advantages 

of the different models. 
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Category 

 
Algorithm 

 
Authors 

 
Equal Size  

Departments 

 
Deterministic 

Material Flow 

 
Dynamic 

Programming 

 
Rosenblatt (1986) 

Balakrishnan et al. (1992) 

Urban (forthcoming) 
 
Pairwise- 

Interchange 

 
Urban (1993) 

 
Genetic  

 
Conway and Venkataramanan (1994) 

 
Tabu-search 

 
Kaku and Mazzola (forthcoming) 

 
Comparison, 

Branch and 

Bound 

 
Lacksonen and Enscore (1993) 

 
Bounds and 

Fathoming 

 
Sweeney and Tatham (1976) 

Batta (1987) 

Urban (1992) 

Balakrishnan (1993) 

Urban (forthcoming) 
 
Stochastic 

Material Flow 

 
Branch and 

Bound, 

Robustness 

 
Kouvelis et al. (1992) 

 
Markov 

Processes 

 
Kouvelis and Kiran (1991) 

 
Simulation 

 
Afentakis et al. (1990) 

 
Unequal Size 

Departments 

 
 

 
Linear 

Programming 

 
Montreuil and Venkatadri (1991) 

Montreuil and LaForge (1992) 
 
Mixed Integer 

Programming 

 
Lacksonen (1994) 

 

 

 Table 2 

 

 Summary of the Different Algorithms in the Dynamic Facility Layout Problem 
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