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Prions are most often discussed in the context of transmissible 
spongiform encephalopathies (TSEs) which encompass a range 
of neurological disorders that include human Creutzfeldt-Jakob 
disease (among others), sheep scrapie and bovine spongiform 
encephalopathy.1,2 It is well established that these disorders 
arise from a progressive conversion of the normal, mainly heli-
cal form of cellular prion protein (PrPC) into a different PrPSc 
protein conformation with a high beta sheet content.3 In their 
PrPSc form, prions act as templates that catalyze misfolding of 
PrPC to produce increasing levels of PrPSc, which likely represents 
several or even many different conformational states of the same 
source protein, resulting in diverse clinical phenotypes. This in 
turn leads to accumulation of PrPSc deposits in the brain that 
can appear as aggregates and amyloid-like plaques4 and which 
disrupt normal neurophysiology.5 While the neuropathology of 
TSE’s has been explored in great detail dating back to the 1920s,6 
less effort has perhaps been expended on understanding the cel-
lular and physiological function of PrPC which is ubiquitously 
expressed, and found even in simple organisms.5,7,8 A number 
of mouse lines either lacking PrPC or overexpressing PrPC have 
been created, including the widely used Zurich I PrPC knock-
out strain.9,10 Despite the wide distribution of PrPC in the mam-
malian CNS, it perhaps surprisingly has only a relatively mild 
behavioral phenotype that appears to include some deficits in 

spatial learning at the behavioral level11,12 as well as alterations 
in long term potentiation at the cellular level.13-17 In addition, it 
has been shown that these mice show an increased excitability 
of hippocampal neurons.13,18-20 In contrast, deletion of certain 
parts of the PrPC protein in vivo can have serious physiological 
consequences. For example, deletion of a stretch of amino acids 
between just upstream of the octarepeat copper binding motifs 
produces a lethal phenotype, that can be rescued by overexpres-
sion of increasing levels of normal PrPC.21,22 Of particular note, 
these deletion mutants show degeneration of axons and myelin, 
both in the CNS and in peripheral nerves; indeed some mutants 
show a predilection for axomyelinic degeneration with little neu-
ronal pathology,21 suggesting that certain mutated forms of PrP 
have a direct toxic effect on oligodendrocytes and/or myelin.23 
Moreover, activation of the Dpl1 gene in mice lacking PrPC leads 
to an ataxic phenotype, that is not observed in the presence of 
PrPC.24 Collectively, this indicates that PrPC may act in a protec-
tive capacity and in contrast, certain abnormal forms of PrP are 
“toxic”, promoting much more injury to various elements of the 
CNS and PNS than outright absence of wild-type PrPC.

This notion is further corroborated by a number of studies 
in PrPC knockout mice, both in vivo and in cell culture mod-
els. Cultured hippocampal neurons from PrPC null mice display 
greater apoptosis during oxidative stress.25 Moreover, overexpres-
sion of PrPC in rats protects them from neuronal damage during 
ischemic stroke, whereas PrPC null mice show greater damage.27-29 
When PrPC null mice are subjected to different types of seizure 
paradigms, they showed increased mortality and increased num-
bers of seizures.30 This increased neuronal damage can be dimin-
ished by the NMDA receptor blocker MK-801,31 potentially 
implicating glutamate receptors in this process. Finally, it was 
recently shown that the absence of PrPC protein protects neurons 
from the deleterious effects of beta amyloid, a protein involved in 
Alzheimer disease.32 It is important to note that NMDA recep-
tors have been implicated in seizure disorders and in cell death 
during ischemic stroke.33-35 Indeed, our own work has shown that 
NMDA receptors expressed endogenously in myelin contribute to 
myelin damage and may be one of the first steps leading to demy-
elination.36 Furthermore, the NMDA receptor blocker meman-
tine is used to treat Alzheimer disease, implicating NMDA 
receptors. The observations above suggest that there may be an 
interplay between NMDA receptor activity and the physiological 
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both cases, increasing the expression of normal PrPC would be 
expected to outcompete the deletion variants, thus reestablish-
ing the protective function. A similar mechanism could perhaps 
apply to TSEs. It is possible that the PrPSC form, perhaps in a 
manner reminiscent of the PrPC deletion mutants, may be unable 
to inhibit NMDAR function, or perhaps would even enhance it. 
Any excess glutamate that may be released as a result of cell dam-
age due to PrPSc aggregates, or even normally released amounts 
glutamate during the course of physiological neuronal signaling, 
could be sufficient to cause NMDAR mediated cell death and 
neuronal degeneration. In this context, it is interesting to note 
that chronic administration of the weakly NR2D selective inhib-
itor memantine delays death as a consequence of scrapie infec-
tion in mice.39 In the context of Alzheimer disease, binding of 
PrPC to beta amyloid may prevent the inhibitory action of PrPC 
on NMDA receptor function, thus increasing NMDA receptor 
activity and promoting cell death. This then may perhaps explain 
the beneficial effects of memantine in the treatment of Alzheimer 
disease.

In summary, despite the fact that PrPC is one of the most 
abundantly expressed proteins in the mammalian CNS, its physi-
ological role is uncertain. Recent observations from our labs have 
established an unequivocal functional link between normal prion 
protein and the ubiquitous excitatory NMDA receptor. Thus, 
one of the key physiological roles of PrPC may be regulation of 
NMDA receptor activity. The presence of abnormal species of 
prion protein, whether acquired via “infection”, spontaneous con-
formational conversion or genetically inherited, may in turn alter 
normal function and regulation of NMDA receptors, leading to 
chronic “cytodegeneration” of elements in both gray and white 
matter regions of the CNS. This key functional link between PrP 
and glutamate receptors may provide our first opportunity for 
rational therapeutic design against the devastating spongiform 
encephalopathies and potentially other neurodegenerative disor-
ders not traditionally considered as TSE’s.
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function of PrPC. In support of this hypothesis, our recent work 
has directly identified a common functional and molecular link 
between NMDA receptors and PrPC.37 Brain slices obtained from 
Zurich I PrPC null mice showed an increased excitability of hip-
pocampal slices, which could be ablated by blocking NMDA 
receptor activity with amino-5-phosphonovaleric acid. Removal 
of extracellular magnesium ions to enhance NMDA receptor 
activity resulted in stronger pro-excitatory effects in slices and 
cultured neurons from PrPC null mice compared with those from 
normal animals. Synaptic recordings indicate that the amplitude 
and duration of NMDA mediated miniature synaptic currents is 
increased in PrPC null mouse neurons, and evoked NMDA recep-
tor currents show a dramatic slowing of deactivation kinetics in 
PrPC null mouse neurons. The NMDA current kinetics observed 
in these neurons were qualitatively consistent with NMDA recep-
tors containing the NR2D subunit.38 Consistent with a possible 
involvement of NR2D containing receptors, siRNA knockdown 
of NR2D normalized current kinetics in PrP-null mouse neurons. 
Furthermore, a selective co-immunoprecipitation between PrPC 
and the NR2D, but not NR2B subunits, was observed. This then 
may suggest the possibility that under normal circumstances, 
PrPC serves to suppress NR2D function, but when PrPC is absent, 
NR2D containing receptors become active, and because of their 
slow kinetics, may contribute to calcium overload under circum-
stances where excessive (or even normal) levels of glutamate are 
present. This would include conditions such as epileptic seizures, 
ischemia and Alzheimer disease, thus providing a possible molec-
ular explanation for the link between PrPC and neuroprotection 
under pathophysiological conditions. Indeed, NMDA promoted 
greater toxicity in PrPC null mouse neurons, and upon injection 
into brains of PrPC null mice. It is interesting to note that one 
of the major NMDA receptor subtypes expressed in myelin is 
NR2D, thus bridging the observations of Micu et al.36 of NMDA 
receptor mediated cell death in ischemic white matter, and those 
of Baumann and colleagues21 showing that PrPC deletion mutants 
can cause damage to myelin.

How might PrPC deletion mutants affect neuronal survival? 
One possibility may be that these deletion mutants compete with 
normal PrPC for NMDA receptors, but are unable to function-
ally inhibit them. Alternatively, it is possible that the PrPC dele-
tion mutants, by virtue of binding to the receptors, may in fact 
increase receptor activity, thus causing increased cell death. In 
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