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Abstract 

This thesis is concerned with entanglement in quantum systems and representation of 

the states of these systems using finite Abelian groups called stabilizers. In particular, 

n-qubit pure states are studied. Because entanglement plays a very important role 

in the theory of quantum information processing it is a topic of much interest in this 

field. 

Entangled states are classified using physically possible operations under a typical 

configuration; spatially separated parties who each hold part of the quantum system 

over which a possibly entangled state is distributed. The most general of these 

operations are stochastic local operations and classical communications (SL000). 

Entanglement is quantified using functions of the density matrix of a state which 

behave monotonically under local operations and classical communication (LOCC). 

Although entangled states usually depend on an exponential number of parame-

ters, a special subclass of n-qubit pure states known as stabilizer states can efficiently 

be represented by finite Abelian groups known as stabilizers. This formalism plays 

a crucial role in quantum error correction [16] and stabilizer states are used in a 

revolutionary scheme for quantum computation known as measurement based com-

putation [32, 34]. A homomorphism between stabilizer states and simple graphs has 

been found which opened up a new way of studying their properties [36, 40] in an 

intuitive and efficient manner. Using this representation, equivalency classes under 

local unitary operations can be defined by only n2 real parameters. The research 

done for this project was driven by the wish to generalize the conventional stabilizer 

formalism for all n-qubit pure states and the idea of using it to distinguish SLOCC-
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inequivalent states. What is presented in chapters 1, 2 and 3 of this thesis is an 

overview of the topics that are relevant to the research in this project. The original 

work and findings are contained in chapter 4. 
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Chapter 1 

Introduction 

1.1 Classical states of natural systems 

One can naturally describe everything in the world in terms of systems and their 

states. A system is an isolated part of nature with which one can interact in some 

way. One way to mathematically represent the state of a classical system is by a 

vector. This thesis is concerned with computational states, so only systems which 

can be in a discrete number of different states will be considered. Therefore, the only 

vector representations of physical states will be discrete ones, which can be written 

down as either row, or column vectors. A simple example is the state of a bit, a 

two-level system that lies at the heart of modern day computation. The two possible 

states can be represented by the two dimensional vectors () and (fl. These vectors 
are linearly independent, which means that there is no non-trivial linear combination 

of them that sums to zero. These two vectors are said to be part of a two dimensional 

vector space, which means that the maximum number of linearly independent vectors 

in this space is two. It also means that any vector in this space can be expressed 

as a linear combination of two linearly independent vectors. A set of two linearly 

independent vectors is called a basis for this vector space. The vector representations 

of distinguishable states must be chosen such that there is no ambiguity in which 

state they represent. This requirement can be satisfied by choosing the vectors such 

that they are not only linearly independent, but also have an inner product of zero. 

1 
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The inner product associates a scalar with a pair of vectors and for discrete vector 

spaces can be defined as 
n 

i=1 

where v and w are vectors in an n-dimensional vectors space and v denotes the 

complex conjugate of the i'th entry of v. In the example of a bit given above, it can 

be seen that the vectors indeed have an inner product of zero. Of course bits are not 

the only possibility. General systems which can be in a discrete number of states 

can be referred to as n-level systems. 

1.2 Quantum states 

If the state of a system is not known with complete certainty, the best way to 

possibly describe it is in terms of a probabilistic distribution of states it might be 

in. The outcome of a coin flip is an easy example of such a distribution, and can be 

represented in vector form as (3g) = 0.5 ( ) + 0.5 ( ). This says that each outcome, 
heads = () and tails = () can be expected with equal probability. Naturally, the 
sum of all probabilities must equal unity. This ensures that the system is certainly 

in one of the states of the probabilistic distribution. 

Although a probabilistic distribution of states might seem to provide the most in-

formation possible if the exact state is not known, there are processes in nature that 

indicate that this is in fact not sufficient to accurately describe them. These are pro-

cesses which only be understood if the states of the systems involved are described in 

terms of a superposition of states, as opposed to a probabilistic distribution of states. 

A superposition of states is a probabilistic distribution of states whose probabilities 



3 

of occurrence are given in terms of probability amplitudes. A probability amplitude 

is a complex number, whose absolute square represents a probability. 

1.2.1 The qubit 

The basic building block of the theory of quantum information and computation is 

the quantum bit, or qubit. A qubit is a superposition of the states of a regular bit. 

A regular bit can only be in one of two separate states which can be represented by 

the Dirac kets or two dimensional vectors 

1°) M (1) and Ii) (°. 
0 '\1) 

This representation is called the computational basis. Note that this representation 

is not unique. Any set of two orthonormal vectors would provide an equally valid 

reprentation. A qubit can now be represented as a probabilistic distribution 

I)=aI0)+/3I1) (/3) ' a 

where the coefficients a and /3 are probability amplitudes, whose squares represent 

the probabilities to find the qubit in one of the bit states. Since the total probability 

of the qubit being in one of the two possible states of a classical bit must be one, the 

coefficients must satisfy a 2 + /312 1. This requirement implies that all vectors 

representing qubits have unit length, or an inner product of one. Qubits are often 

represented graphically inside of a unit sphere known as the Bloch sphere. A qubit 

is drawn as a directed line connecting the center of the sphere to somewhere on 

its surface. The point where it touches the surface corresponds to the probability 

amplitudes of each of the bit states. 
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1.2.2 The qudit 

After the introduction of the qubit, the generalization to higher-level quantum sys-

tems is easily understood. A qudit, which is a d-level quantum system that can be 

represented in terms of the basis 

I 

0 1 0 

\1J 

A general quantum state would in this case take the form 

Iv') =coIO)+a1Il)+"+ad_lId -1) = 

/ co 

Cel 

(1.2) 

(1.3) 

\d-1J 

As might be noticed, the number of possible states of a quantum system is vastly 

larger than those of a classical system with the same number of levels. For example, 

an n-bit system can be in 2n different possible states. An n-qubit system however, 

can assume many more states because of the possibility of superposition of states, 

and another property which is the topic of the next chapter; entanglement. 

One of the major problems in the theory in quantum information processing is the 

classification of entangled states and the quantification of this property. In chapter 

2, a broad introduction is presented of entangled pure states, their representations, 

the effect of the operations under which entanglement classes are defined, basic en-

tanglement quantifying functions, a detailed description of the three-qubit pure state 
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case, the problem with classifying pure states of larger systems and two important 

examples of applications of this property in states of large systems. The theory of 

Pauli stabilizers is contained in chapter 3. A different representation of a subclass of 

entangled m-qubit pure states in terms of a finite Abelian group turns out to yield a 

highly useful tool for the description and construction of highly entangled states, of 

which two important applications are given as examples. The work done to attempt 

to generalize the stabilizer description of pure states and its possible use is presented 

in chapter 4. Particularly, its use for the description of two- and three-qubit pure 

states is analyzed using simple examples and information contained in the previous 

two chapters. 



Chapter 2 

Entangled pure states 

2.1 Introduction 

In the previous chapter the concept of single multi-level systems, in particular qubits, 

was introduced. In this chapter, the study of the properties of systems which are 

composed of conjunctions of multi-level systems is discussed. Section 2.2 presents the 

description two-body pure states; a simple example that illustrates basic properties 

of multi-body pure states. These states can be divided into two classes, separable 

and entangled. Separable states are those which can be described as a concatenation 

of single-body states. Entangled states possess the interesting property that they 

can only be attributed to an overall state of the system which can not be broken 

down in terms of a conjunction of parts. The Schmidt decomposition is presented as 

a mathematical tool which allows a two-body pure state to be written in a standard 

form. In section 2.3 the generalization of this is discussed. Entanglement in quantum 

systems has been found to be a powerful resourse for myriad information processing 

related tasks, for examples see [18, 37, 16, 19, 33, 23, 32, 34, 22, 39]. Because of 

this, the quantification of entanglement and classification of pure states are topics of 

much interest. Section 2.4 presents a mathematical description of the most general 

operations that can be performed on a quantum system. A very important subclass 

of general quantum operations are those known as local operations and classical 

communication (LOGO), and stochastic LOGO (SL000). It is these operations that 

6 
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are used to define entanglement quantifying functions, entanglement monotones, and 

under which pure state classes are identified. In section 2.5, the properties that 

two quantum states must posses in order to belong to the same entanglement class 

are presented. For three-qubit pure states there turn out to be only two SLOCC-

inequivalent classes. A discussion of how these can be identified is contained in 

section 2.8. The classification of inequivalent pure states is in general far from 

trivial. The biggest problem which lies at the heart of general multi-qubit pure state 

classification is explained in section 2.9. Section 2.10 presents two examples of major 

applications in the theory of quantum information processing. 

2.2 A two-body system 

This section introduces a system composed of two quantum subsystems, interchange-

ably referred to as bodies or constituents. The properties of such systems are intro-

duced using the simplest example: a system of two qubits. The states of this system 

can be described by vectors in C2 (g C2. A simple example of a two-qubit state is one 

where both qubits are in the state 0), in which case the state of the whole system 

can be represented by 10) (0 0) or 00). In regular vector notation this state would 

be represented by the vector 

I00)( 0 1 
kO 

)®(1)= 0 



8 

As will be shown shortly, this type of state is part of a special subclass of all the 

possible two-qubit states. Because the states of the individual qubits are separately 

well defined, this type of state is usually referred to as separable. A general separable 

state of two qubits in states l) = a1 0) + Ii) and q) = a2 0) + 02 1) is written 

as 

(ai'\ (a2 

kb)Iq5)I I®I = 

\t3i) \j32 
,8 

\ \/32)/ \I31I32j 

The other class of two-qubit states is comprised of all the states which cannot be 

written in the form of a tensor product of individual qubit states. These states are 

not separable, but entangled. The most important difference is that entangled states 

cannot be prepared by single qubit operations, which will be discussed in detail in 

section 2.4. The most familiar examples of two-qubit entangled states are the Bell 

states 

1000) - - 1 (100) + Jil)) = 

Ii3oi) - 1 —(J01)+J10))= 

I/310) - 1 

I'3'1) - 1 (101) - 10)) = 
- 

The key property of entangled states is that they can only be described as a 

whole, and not as a conjunction of parts. As can be seen from the Bell states, if a 

collection of systems is in an entangled state, there ceases to be a single identifiable 

state of each of its constituents. 
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2.2.1 The Schmidt decomposition 

The Schmidt decomposition is a powerful tool which can be used to put pure states 

of a conjunction of two systems in a standard form [38]. The following theorem 

shows how this works by introducing a pure state I) E Cn ® cm of two systems 'a' 

and 'b' which have n and m levels respectively. 

Theorem 2.1. Let ) (=- en ® cm be a vector representation of the state of some 

two-body system whose two constituents are labeled by 'a' and V. With coefficients 

Aij and orthonormal bases jai) and Ib), the state is explicitly written as 
n,m 

Iv') = :: Aij Iai)Ibj). (2.1) 
1,5=1 

Then the matrix A can be decomposed in a way such that Iv') can be written as 
no 

EAk Ia)Ib), no ≤ min(n, m). (2.2) 
1=1 

Proof. Start by considering the singular value decomposition (SVD) of the ma-

trix A. If A is an m x n matrix, then the SVD-theorem says that there exists a 

min(n, m) x min(n, m) diagonal matrix A such that 

A=UAVt, (2.3) 

where U and V are unitary matrices. These matrices can be constructed by letting 

the eigenvectors of the matrix AAt make up the columns of U, the eigenvectors of 

AtA make up the columns of V and the entries of A be the square roots of the 

eigenvalues of AAt and AA. Using this, the state ) can be written as 
n,m,n 

Iv') = UlkAkkVk5 Iai)Ibj) (2.4) 
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Define the unitary transformations U and V such that 

a) = >UjkIaj) 

b) = 

and let Akk = k to get 

j=1 
m 

j=1 

fm \fm \ Thp 

Iv') = E Akk (1 Uik Iai)) (j=1 V Ibi) = Ak a)Ib) (2.5) 
k=1 i=1  k=1 

as asserted in the theorem. [J 

The coefficients Ak are referred to as the Schmidt coefficents. The total number 

of non-vanishing Ak's, nv,, is known as the Schmidt number of the state I). A very 

useful feature of this decomposition is that it allows for quick distinction of separable 

and entangled states. All states with Schmidt number equal to unity can be written 

in the form k) = Ia) b), which implies that they are separable. All states with 

higher Schmidt numbers can not be represented in such a form and must therefore 

be entangled states. This property of the Schmidt number indicates that it could be 

a useful tool to study entanglement. 

If the two systems Ca and 'b' are both qubits, then the Schmidt decomposition of 

their combined state again takes on the general form 5) = Ak Iak)Ibk), where 

Ia) and b) are orthonormal basis vectors for the states of the individual qubits. 

Although it may be self-evident, it should be noted that classical systems and systems 

with zero degrees of freedom (single-level systems) can not be in an entangled state 

because they can not be in a superposition of states, as reqiired for entanglement. 
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2.3 n-body systems 

With the attempt to generalize the notion of a standard representation to pure 

states of n-qubit systems comes the disappointing realization that this is far from 

trivial. The highly useful Schmidt decomposition turns out to only be generalizable 

to multi-body systems for a very limited number of states. 

2.3.1 Higher order Schmidt decompositions 

The Schmidt decomposition merely asserts that a double sum of the form (2.1) can 

be converted into a single sum like (2.2) through unitary operations U and V. A 

possible higher order Schmidt decomposition would imply writing a higher order 

sum as a single sum. This is generally not possible, however [29, 30]. Consider for 

example the triple sum 

I°) = >Ajjk Ia)Ib)Ick). (2.6) 
ijk 

The desired higher order Schmidt decomposition would thus be of the form 

Ai a)Ib)Ic), (2.7) 

where I a), I b) and I c) are new orthonormal basis vectors. But Schmidt's theorem 

only asserts that the triple sum (2.6) can be unitarily converted in to 

Aila)Ibc), AjJb'j)Iac), or )jIc)Iab), 

where Ibc), Jac) and lab) are the states of the conjoined systems 'bc', 'ac' and 

'ab' respectively. A decomposition of the form (2.7) is only possible if the vectors 

Ibc), Jac) and lab) are product vectors. That is Ibc) = Ib)Ic), Jac) = Ia)Icj) and 
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Iab) = Ia)Ib). In other words, this says that the vector 

Ibc) = E WjkIbj)Ick) (2.8) 
jk 

is such that the rank of W is one for all i and WWj = WWt = 0 if i j and 

similarly for Jac) and lab). This shows that a generalized Schmidt decomposition 

of the form (2.7) is only possible for a very select set of states. 

2.3.2 Minimal product decomposition 

Since the Schmidt decomposition is such a powerful tool, a generalization of it for 

multipartite systems is desirable. A literal generalization of it was proved impossible, 

but the next best thing seems to be the minimal product decomposition [14, 20]. The 

minimal product decomposition of a higher order sum is defined as 

nip 

= EAj Ia)Ib)• .. (2.9) 
i=1 

where vectors la'), Ib'), etc., are such that np has the lowest possible value (in this 

case these vectors are only orthonormal if a higher order Schmidt decomposition is 

possible). The minimal value of n,1, is a generalization of the Schmidt number called 

the Schmidt rank. The calculation of the Schmidt rank is unfortunately a difficult 

task. Consider the following example. 

Example 2.1. A given 3-qubit pure state I) can be written in Dirac notation and 
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vector form as 

(Ce •2' / (3)A 10) +i3j' ii>) I0)+I3%2) Ii)) 10) Ii)) 

(1) (2) (3) •1Aa a 

Enp (1) (2) =1 )cx c 

In order to find the Schmidt rank of this state-vector, the values for all coefficients 

A, aj and Pi have to be found for which n1, is minimal. 

For general n-qubit pure states, this starts off as a non-linear system of 2n equa-

tions of (2n + 1) polynomials for which common null spaces have to be found. 

2.4 General quantum operations 

The goal of this chapter is to introduce quantification of entanglement and clas-

sification of entangled pure states. Since these topics are highly intertwined with 

the notion of state-transformations, a rigorous mathematical description of physi-

cally reasonable operations is introduced first. What is presented in this section is 

an adapted version of part of the work in [42]. Let us first consider all admissible 

operations 9 on a single quantum system with density matrix p. 



14 

2.4.1 Density matrices 

The representation of pure states can take on the form of various mathematical 

objects. Besides the vector representation, another commonly used representation 

is a density matrix p. In this representation, a pure state is now represented by 

a matrix p = I)(I where Il) is its vector representation and (I is its complex 

transpose. This is an object which satisfies the properties of an orthogonal projector: 

p2 = p and pt = P. 

2.4.2 Operations on a single system 

An operation E. on a state p is said to be admissible if its yield, S(p) is also a density 

matrix. Admissible operations can be physically described as the set of the following 

four procedures. 

1. Unitary operations. The state p is transformed by an operation which is math-

ematically represented by a unitary matrix U. The effect can be represented 

by 

P -+ p' = UpU. (2.10) 

This is a process that simply rotates the eigenvectors of P. Any unitary matrix 

is invertible and thus leaves the Hubert space 1-1 in which p lives invariant. 

2. von Neumann measurements. A von Neumann measurement is a set of op-

erations {M} such that for all indices i, M = i4 and M = M and 

Ei MM = I. These are also known as projective measurements. The matri-

ces {M} are orthogonal projectors, just like density matrices of pure states. 

The effect of a von Neumann measurement {M} on a density matrix p is that 
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it maps it to an ensemble 

pF-4{pj,pj}, (2.11) 

where pi is the probability of p being transformed into a new density matrix p 

after the operation M. These type of operations are not necessarily invertible 

and it is therefore possible that they decrease the size of the Hubert space. 

Example 2.2. Consider the von Neumann measurement {M1, M2} and the 

density matrix p such that 

(1 o) (o o) 1(1 i M1= ,M2= and  
00 01 2 ii) 

(2.12) 

Here p = '/')(I is the density matrix of the pure state Iv') = 3(I0) + I1). The 

conditions of a von Neumann measurement are satisfied and these operations 

map p to 

MIPMII 

M2pIV4 = P2 - 1 

which can be interpreted as p being mapped to pi or P2 each with probability 

Pi P2 = , hence the ensemble {, p1; , p2}. 

3. Addition of an uncorrelated ancilla. An extra quantum system 'a' in a state p 

is added to the existing system. The overall density matrix is transformed as 

P'" P®Pa. (2.13) 
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This operation is does not leave the Hubert space invariant, but is reversible 

because simply removing the system a, which is the next point, brings us back 

to the original state. 

4. Dismissal of information. All information of the state p of a system is dismissed 

as if it ceases to exist. This is mathematically equivalent to taking the trace 

over all degrees of freedom of the density matrix. 

P E-4 Trp. (2.14) 

After information has been lost it can not be retrieved, hence an operation of 

this sort is not reversible. 

Any admissible operation E can be decomposed into a combination of these four. 

Its action on a density matrix p is 

P S(p) = (2.15) 

where the Kraus operators Ej satisfy Ej EE = I. This implies that the operation 

is trace-preserving and therefore indeed maps a density matrix p to a new density 

matrix E(p). This describes the most general quantum operation and assumes that 

any possible measurement outcomes are not registered, therefore leaving the state in 

an ensemble {p, pi}. If actual measurements are performed however the operations 

ceases to be trace-preserving. Some possible outcomes pi = EipE.1 are then simply 

disregarded. A general non-trace-preserving operation utilizes an incomplete set of 

Kraus operators Ej with indices w C {i}, where in a complete set of Kraus operators, 

all indices in the set {i} would appear. The non-trace-preserving operation & on p 
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is represented as 

p i-p 5,(p) = )EpE, (2.16) 
iEw 

where the incomplete set of Kraus operators E satisfy EitEi < I. As a 

result of this, the trace of p is decreased to some value pt,, = Tr[&(p)] < 1, which 

means that this operation yields the density matrix 

Pw   
Pw 

(2.17) 

with probability pw. In terms of measurements this can be understood as only 

regarding an incomplete set of all possible measurement outcomes. As an example, 

consider the non-trace-preserving operation go = OXOIpIOXOJ, which utilizes only 

a single Kraus operator OXO. It maps the state p to Po = OXOI with probability 

P0 = Tr[IO)(OIpIO)(0 ]. Because the set operations {&, ErJ, where cD is the complement 

of w such that the union w  = {i}, must together still form an admissible quantum 

operation, the condition E€ EEj+>jE Ei•Ei = I is satisfied because this involves 

a complete set of Kraus operators. 

2.4.3 Operations on composite systems 

When the system is composed of a collection of subsystems, the form of the allow-

able operations is not much different. The exception is however, that measurement 

outcomes may or may not be shared between the parties that are in possession these 

subsystems. This additional operation is called classical communication. Consider 

for example a quantum state p of a conjunction of two subsystems 'a' and 'b' in pos-

session of parties A and B. Each party can perform admissible operations on their 

subsystem, whose states are represented by density matrices Pa and Pb respectively. 



18 

An admissible operation which is performed only by party A, while party B leaves 

its subsystem alone is called a local operation. It is implemented by means of an 

operator SA,, using Kraus operators of the form EA, ® 'B, where the EA,i satisfy 

>. EEA, ≤ IA as before and the index A indicates that it only affects the state 

Pa The general multi-local operations on a composite system are implemented by 

means of operators of the form EA, (D EB, ®.... 

In conjunction the with classical communication of measurement outcomes, the 

amount of information about the state for all the parties increases. If measurement 

outcomes were kept private or were dismissed completely, the state would have to 

be described as a probabilistic distribution of outcomes. From now on (multi-) local 

operations and classical communications will be referred to as the single abbreviation 

LOCC. Two states Iv') and 10) which can be transformed into each other, either 

one way or both ways, with certainty using only LOCC, are said to belong to the 

same class under LOCO. If however, if this transformation only works with some 

probability, the states are said to belong to the same class under stochastic LOCC, 

which from now on will be referred to as SL000. 

2.5 Entanglement and reduced density matrices 

The partial trace of a density matrix of a multi-body system is a tool which can be 

used to determine the state of a subsystem which may be entangled with the rest. 

The density matrix which represents the state of a subsystem is called a reduced 

density matrix. As will be shown, the form of a reduced density matrix reveals if a 

subsystem is entangled with the rest of the system or not. It plays an important role 
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in the study of entanglement quantification and pure state classification. 

2.5.1 Reduced density matrices 

The concept of a reduced density matrix is important for describing the state of 

a subsystem of a larger, possibly entangled many-body system. As introduced in 

no section 2.4.1, a density matrix of some pure state Iv') = A x) can be written 

as 
no no no 

= = (A (,\ xiI) = IxXxI. 
i=1 j=l i,j1 

The reduced density matrix of a subsystem 'a', now is calculated by taking the 

partial trace over the part of the system which is complementary to 'a'. For example, 

let I) = EZIa)Ib) be the Schmidt decomposition of the state of the combined 

subsystems 'a' and 'b', then the reduced density matrix of system 'a' can be found 

by computing 

Pa 

no no 

= (bi b) = >I lajXaI. 

(2.18) 

Note that if the state is entangled, the reduced density matrix p' is not one of a 

pure state as introduced in section 2.4.1. 

2.5.2 Entanglement and density matrix rank 

Together with the Schmidt decomposition theorem a connection can be made be-

tween the rank of a reduced density matrix and its entanglement properties with the 

complement of the system. The following proposition shows this with the example of 

an n-qubit system. It is readily generalized to states of larger many-body systems. 
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Proposition 2.1. Let Pa be the reduced density matrix of a single qubit with label 

'a' of an n-qubit pure state. Then qubit 'a' is unentangled if the rank r(pa) = 1 and 

entangled with at least one other qubit if r(pa) = 2. 

Proof. Let the Schmidt decomposition of the n-qubit pure state be 

fl,1' 

F) =Ai jai) Ixi), 
i=1 

(2.19) 

where jai) are (is) the orthonormal vector(s) of the single qubit state Pa, and x) 

the orthonormal vector(s) of the state Ps = TraP of the system complementary to 

'a', which is temporarily labeled 'x'. This representation can always be achieved by 

applying a unitary transformation on the states Ia) such that the reduced density 

matrix Pa is diagonal 1. Note that unitary transformations can not change the 

entanglement properties of the state. Then if qubit 'a' is not entangled with the rest 

of the system, there will only be a single term in the Schmidt decomposition (2.19), 

and the state will just be I) = Ia) Ix). The reduced density matrix of this pure state 

will then just be of the form 

Pa = IaXaI(xlx) = IaXaI, (2.20) 

which is a rank-one matrix. If the Schmidt decomposition (2.19) has two terms, 

which means that qubit 'a' is entangled with at least one other part of the rest of 

the system, then the reduced density matrix will be 

Pa = AiI2IaiXaiI(xilxi) + IA2I2Ia2Xa2I(x21x2) + 

A1A a2)(ai I (x2x1) + )¼2A;:IaiXa2I (x1x2) 

= IAiI2IaiXaiI + IA2I2Ia2)(a21, 
'Proof of this can be found on pages 59-60 of [31] 
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since jx)(xI = öj. This is a rank-two matrix because it has two non-zero terms in 

its spectral decomposition. D 

This shows that there is an intimate relationship between the rank of a reduced 

density matrix of some subsystem and its entanglement with another. Intuitively it 

can be reasoned that if some system 'a' is entangled with system 'b', the converse 

must also be true. The established connection between entanglement and the rank 

of reduced density matrices leads us to the following lemma which confirms this idea 

in a mathematical sense. 

Lemma 2.1. The rank of a reduced density matrix of some system is equal to the 

rank of the complementary reduced density matrix. 

Proof. Consider a conjunction of subsystems 'a' and W. The density matrix of its 

pure state 1') = iml Ai Jai) Ib) can be represented by 
flip 

pl = L )A Iai)IbXajI(bjI 
i,j=1 

(2.21) 

The partial traces Pa = TrbpO and Pb = Trap give rise to the density matrices 
flip flip 

= IAI2Ia)(aI and p = > IAI2IbXbI (2.22) 
i=1 i=1 

which have an equal number of non-zero terms I)iI2 and thus have equal ranks. 0 

This not only shows that the systems 'a' and 'b' must indeed be entangled with 

each other since r(pa) = no implies r(pb) no and vise versa, it has also become 

apparent that Pa and Pb have equivalent spectral decompositions up to a possible 

difference in orthonormal basis. Yet another thing which can be deduced is that the 

maximal Schmidt number of a two-qubit state is 2 which follows from the fact that 

the maximal rank of a single-qubit reduced density matrix is 2. 



22 

2.5.3 Effect of operations on reduced density matrix rank 

The following proposition, lemma and corollary are here to show what the effect 

of admissible multi-local operations is on the rank of reduced density matrices of 

multi-body pure states. The facts they convey are used for the study of pure state 

classification. The following proposition introduces an operator representation which 

greatly simplifies the demonstration of the effects of operators on state-vectors. 

Proposition 2.2. Any linear operator A (=- cm><Th which acts on an n-dimensional 

vector space V € Cn can be written in the form 

n 

A = E lj)(Xj, (2.23) 

where Ix) is an orthonorrnal basis for V. 

Proof. The singular value decomposition (SVD) of the matrix A ensures that it can 

be written in the form 

A = UAVt = 57  Aj'ajvt, (2.24) 

where uj E Cn and vj E cm are the j'th column vectors of the matrices U E cm>m 

and V E CTh>< respectively (see Appendix A). This is the spectral decomposition of 

A. Using the orthonormal basis vectors x) for the vector space V, each vector v 

can be expressed as v = Fn i= lciii Ii), which in turn allows A to be written as 

A Ajuj(c 73 (xI 

= (iaui) (xLI 

= IiiXxI, 
i=1 



23 

where j) = E3 Note that two different representations were used for a 

vector, for example uj and j). U 

With this in hand, it can now be shown what the effect is of a general local 

operation S, composed of a single Kraus operator EA, on a reduced density matrix 

Pa of an n-level quantum system 'a'. This is what is presented in the following lemma 

and corollary. 

Lemma 2.2. Let ii (C®Cm be bipartite vectors with reduced density matrices 

p, Pb', p and p respectively, and let EA E CTh><1' be a Kraus operator such that 

Icb)=EA®I.uk1'). (2.25) 

Then the ranks of the reduced density matrices satisfy r(p) ≥ r(p) and r(4) ≥ 

r(p). 

Proof. [13] Appendix A. Consider the Schmidt decomposition of state I&), 

I) = L  Aj Ii)Ii), np ≤ min(m,n). 
.i=1 

(2.26) 

Then the reduced density matrix of system 'a' is p = E= IAI2IiXiI. As shown in 

lemma 2.2, the operator EA can be written as BA = E n 1  ij)(i. So the effect of 

this operation on p' can then be concisely written as 

= EAPE 

= 

It follows now that the rank r(p) ≤ n•b because the vectors u) are not neces-

sarily linearly independent. The equalities only hold if all vectors Ji) ,. . ., jii,,) are 

linearly independent. 
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0 

Corollary 2.1. If the vectors I) and Iq) E HA ® flB .... ® 7lN are connected by 

a multi-local operator as q) = EA (9 EB ® ® EN I'b), then the local ranks satisfy 

r(p') ≥r(pr. ), i=a,b,...,n. 

Proof. [13] Appendix A. The operator EA ® EB ® ... 0 EN can be implemented by 

subsequent applications of the operators EA 0 1B ®.. 0 IN, 'A 0 EB ® 0 IN, etc. 

Repeated application of the previous lemma and lemma 2.1 then shows that the local 

ranks r(pa), r(pb), etc. either stay invariant or decrease under these operations. 0 

What this implies is that for multi-qubit systems, the number of entangled qubits 

can only stay the same, or decrease under (multi-) local operations. This supports the 

idea that entanglement is a trait which cannot be attributed to individual properties 

of a many-body entangled system. 

2.6 Quantifying entanglement 

Entanglement is a property of multi-body systems, and can not be understood in 

terms of the aggregate properties of individual constituents. Therefore it can be 

intuitively understood that operations which only affect a multi-body state multi-

locally can not increase the degree of quantum correlations between the separated 

constituents of the system. This is a powerful idea which is integral to the notion of 

entanglement quantification and pure state classification. The knowledge of the ef-

fects of general quantum operations is now used for the introduction of entanglement 

monotones, functions which serve to quantify the amount of entanglement present 

in multi-body systems. 
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2.6.1 Entanglement monotones 

A quantitative measure of entanglement carries with it the requirement of being 

a monotonic function whose behavior depends highly on the action of multi-local 

operators. Consider the state p of a multi-body system and the admissible local 

operator SA,,, which acts on a subsystem 'a', in conjunction with identity operators 

of the other subsystems. An entanglement monotone f : p i-* f(p) satisfies 

I. For an admissible local quantum operation EA,(p) = iEw EA,PE per-

formed by party A on a density matrix p 

f(p) ≥ > pif(p), 
iEW 

(2.27) 

where pi = and p = Tr[EA,PE ,] = T[EA,E,] since Trp = 1. 

2. For any ensemble {qj, p} such that p = > qip 

qf(pi) ≥ f(p). 
z 

(2.28) 

N.B. This is a different statement than 1. because in this case p is a probabilistic 

ensemble of the pi and in 1. p is equal to a single pi. 

3. The value of an entanglement monotone is constant for separable states under 

LOCC and SLOCC. This value can artificially be set to zero for the sake of 

simplicity, f(p) = 0 if p is separable. 

These two properties define the appropriate behavior of an entanglement mono-

tone. As will be elaborated on in section 2.7, an entanglement monotone must be 

invariant under reversible LOCC. This is a result of the fact that LOCC keep the 

degree of quantum correlation invariant if they can be applied reversibly. 
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2.6.2 Entropy of entanglement 

For two-qubit or more general two-body states entanglement was suggested to be 

parameterized by the Shannon entropy of the squares of the Schmidt coefficients [1], 

= - IAI2 1092 IAI2. (2.29) 

This is equivalent to the von Neumann entropy of the reduced density matrices of 

one of the two subsystems, E(p) = —Tr(plog2(p)). This function is maximal when 

the Schmidt coefficients have equal absolute values of . Equivalently this function 

achieves its maximal value of unity when the eigenvalues of one of the reduced density 

matrices p are both 1. If this is the case, the two systems are in this thesis said to 

be maximally entangled. The simplest example of maximally entangled systems are 

those in one of the Bell states. 

2.6.3 Concurrence 

The concurrence came about when defining another measure for entanglement for 

bi-partite pure states [21, 43]. For two-qubit pure states the starting point is a 

canonical orthonormonal basis, referred to as the 'magic basis'. This basis is defined 

in terms of the four Bell states as follows 
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Figure 2.1: A plot of the entropy of entanglement E(p) = —TrPa log2(p) for all 
possible absolute values of the two-qubit pure state density matrix eigenvalues. The 
reduced density matrix is given by Pa = xlai)(ail + (1 - x)Ia2)(a21, where x E [0, 1] 

Using this basis, any two-qubit pure state &) can be expressed in the form 

10) = cj lei), where E = 1 so that ) is normalized. The concurrence 

C() is then defined as the value C() = E 4 I c . The concurrence for general 
two-qubit density matrices p is expressed in terms of the square roots Ai of the 

eigenvalues of the matrix pp = p(o, ® cTyp*0y ® on). Here p' denotes the complex 

conjugation of p when expressed in the computational basis {I00) , 01) , 10) , 11)} 

and cr = ( ). The concurrence is now the function - 

C(p) = max{ 0, Al - A2 - A3 - A4}, (2.30) 

where the eigenvalues Ai are represented in decreasing order according to the index 

1 (Al ≥ A2 ≥ A3 ≥ A4). 
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2.6.4 Tangle 

Tangle is an entanglement monotone which can be used to quantify entanglement 

of two- and three-qubit systems. For two-qubit states the function can be expressed 

as the square of the concurrence Tab = C2. For two-qubit pure states it reduces to 

= 4 det (I Pal), where Pa is the reduced density matrix of one of the qubits [8, 13, 25]. 

The 3-tangle is an entanglement monotone of 3-qubit states and uses the concurrence 

of the subsystems. The 3-tangle for 3-qubit pure states of systems 'a', 'b' and 'c' is 

given by 

r = 4det(IPal) - C - Ca., (2.31) 

where Pa 15 the reduced density matrix of a single qubit (after qubits 'b' and 'c' have 

been traced out), and Cab and Cac are the concurrence values of reduced density 

matrices Pab and Pac (here qubits 'c' and 'b' have been traced out respectively). 

2.6.5 Schmidt measure 

The Schmidt measure is an entanglement monotone that has extensively been used 

in the study of entanglement in graph states [15, 20, 19], which will be introduced 

in the next chapter. The Schmidt measure is a function of the Schmidt rank nv,, 

introduced in section 2.3.2 and is defined as P(#'1') = log2(np). Note that this is a 

discontinuous function of the integer nv,. Of this list, this is the only entanglement 

monotone which is invariant under SLOCC, as opposed to LOOC. 
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2.7 Entangled pure-state classification 

Two n-qubit pure-states I) and ) are said to belong to the same entanglement 

class if there exists a multi-local operation under which a single copy of one can 

be converted into a single copy of the other with some non-zero probability. That 

is, if this is true for SLOCC operations. If a transformation can be achieved by 

LOCO, it can be done with certainty (i.e., probability one). Two states are said to 

be equivalent under a certain type of multi-local operation if they can be transformed 

into each other in both directions. This implies that a reversible operation relates 

them. The orbit of states of a certain reversible multi-local operation constitutes 

an entanglement class. The fact that these operations must be reversible places a 

restriction on the possible operators under which entanglement classes can be defined, 

namely that these operators must be invertible. It was shown in [42, 13, 3] that the 

only LOCC operations which leave the entanglement class invariant are multi-local 

unitary operations, from now on referred to as LU. Reversible SLOCC operations 

are shown to fall under the group of invertible multi-local operators, which is the 

multi-local general linear group. 

Theorem 2.2. Let I/') and I) be two pure states of the same quantum system. Then 

the existence of an invertible multi-local operator which can transform them into each 

other is a necessary and sufficient condition for these states to be SLOCC-equivalent. 

Proof. [13] Appendix A. As preliminary remark, it is worthwhile to evoke lemma 2.2 

which shows that the Schmidt numbers must be equal, n,1, = n. This is because the 

lemma shows that if this in not the case, one of the transformations Jb) -+ q) or 

- I) is impossible. Additionally, it is assumed that any SLOCC operation can 
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be represented by a multi-local operator. 

For simplicity, but without loss of generality, let I) , h7) E C2 ® C2 be two-qubit 

states with equal Schmidt numbers n. The two qubits, labeled 'a' and 'b', are held 

by parties A and B. Let the Schmidt decompositions of F') and ) by such that 

I) = )?Ia?)Ib?) 

I) = A at) I bt), 
i=1 

where a?), b?), at) and bt) are orthonormal basis vectors. In order to simplify 

the argument a little more, set Ib?) = Ibt) = Ib). This does not take away from the 

validity of the generalized argument, but does make it easier to convey. An operator 

which converts I'') into ) can readily be defined with the operator 
n 

EA = — at)(a?I (2.32) 

and the identity operator I, so that EA (9 1B I) = q). If the operator EA only has 

one non-zero eigenvalue, it can always be made invertible by adding to it the term 

so that 

EA = Iat)Ka?I + Ia)(a'I. 

The inverse of this matrix is then 

- 5-IaiXaii+IaX4I, EA' {A / 

IaiXaiI + Ia')(aI, 

m=2 

n=1 

(2.33) 

(2.34) 

if n = 1, which gives EAE' = = 'A. The operator EA 0 1B is now an 

invertible operator which transforms I) to and its inverse E 1 (9 1B does the 

reverse operation. This proof is easily generalized to the case in which I b?) bt) 
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and pure states of the form I) , q5) E CTh' 0 Cn2 0... by iteratively following the 

proposed procedure with operators of the form EA 0 'B ®, 'A 0 EB 0 •••, etc. 

The overall invertible multi-local operator will then have the form EA 0 EB 0 , 

with inverse E' 0 E' 0•••. 0 

A general invertible operator of the form EA = En  Ailbj)(aI with lb) and aj) 

being orthonormal basis vectors for an n-dimensional vectors space, satisfies 

EA 

= Ajl2lajXajl ≤ IA- (2.35) 
i=1 

This implies that the probability with which an invertible operator converts some 

pure state into another is generally less than one because Tr(EEA) = E 

This means that states which are related by an invertible multi-local operator are 

SLOCC-equivalent. The operation can be performed with certain success only if the 

equality holds. The equality holds only when IAI2 = 1 for all A,. States which can 

be transformed into each other with certainty are LOCC equivalent, and since only 

unitary matrices have the required properties, LOCC-equivalent states are related 

by multi-local unitary operators, LU. 

The existence of an invertible multi-local operator which transforms two states 

into each other, in order for the two states to be SLOCC-equivalent says that such an 

operator must be in the general linear group GL2 (C)On if these are states of multi-

qubit systems. The general linear group is the set of all invertible square matrices. 

These matrices all have non-zero determinants because they would otherwise not be 

invertible. For all intents and purposes, it suffices to limit the attention to matrices 

in the special linear group SL2 (C)®", which are all invertible matrices with deter-

minant 1. The reason for this is that the determinant only introduces a physically 
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insignificant complex constant in the transformed states. 

Theorem 2.3. Two states are LO CC equivalent if and only if they are L  equivalent. 

Proof. This was shown in the above discussion. Other proofs exist however, see 

[3, 42]. D 

2.7.1 Invertible operations and the minimal product decomposition 

Besides asking what properties the operations must possess in order to respect an 

entanglement class, it is natural to ask what properties two states must possess in 

order to possibly belong to the same entanglement class. It is now shown that equal 

Schmidt rank is a necessary, however not sufficient condition. 

Proposition 2.3. An invertible local operator cannot change the number of terms 

in a minimal product decomposition of a pure state. (This is given as an observation 

in [13]). 

Proof. Let the minimal product decomposition of some state kb) E Cm ® C'' be 

Iv') = a1) Ibi) + Ia2)Ib2), (2.36) 

where I a) and I b) are sets of orthonormal vectors. The effect of an invertible operator 

EA ® EB, where EA and EB act on the subspaces defined by orthonormal vectors 

Ia) and b) respectively, then is 

EA®EBI'b) = EAIal)(9EBlb2)+EAIa2)®EBIb2) 

= a)lb) + Ia)Ib). 
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Since EA (D EB is an invertible operator, the vectors a) and Ib) are linearly 

independent and EA ® EB F) has the same number of terms in its minimal product 

decomposition as ). 

This shows that the Schmidt rank is invariant under invertible local operations 

and therefore that states with different Schmidt rank belong to different equivalency 

classes. 

2.7.2 A two-qubit example 

It may be helpful to study a simple concrete example of an invertible operation on 

a two-qubit system. 

Example 2.3. Consider the Schmidt decoposition of a two-qubit pure state 

10) = ) i ai) Ib1) + A2 Ia2)Ib2). (2.37) 

Here the fact is used that the maximal Schmidt number of a two-qubit system is .2, 

as deduced in section 2.5.2. An invertible local operation EA®IB can be represented 

by its spectral decomposition, 

/Xau B + — Ia2X A / EA 0 'B = r1ai1 0 ' a2I 0 'B, A2 
(2.38) 

so that its effect on I'') is 

BA ®'B I'b) = )4 Ia)Ibi) +)4 Ia)lb2). (2.39) 

Here neither A or A are zero since BA 0 lB is assumed to be invertible, so the 

Schmidt number indeed stays the same. The probability of this operation succeeding 

is 

p = Tr(EA 0 1B I V))(V) I EAt 0 'B) = II2 + IAl2, (2.40) 
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which is unity only if the operation was a local unitary transformation and is 

less otherwise. Although this system is still in an entangled state if the value of p 

is not unity, the value of an entanglement monotone will have changed. For ex-

ample, the entropy of entanglement changed from -()i2 1092 JAIl2 + JA22 1092 1A212) 
'2 42 '212). . . to - (I 12 log2 J + I I log2 I Since this operation is invertible it now be-

comes apparent that the value of an entanglement monotone can decrease, but also 

increase. The pitfall of this is, however, that such an operation can only succeed with 

finite probability. This illustrates that SLOCU operations can be used to define larger 

entanglement classes than LOCC operations. 

From the above example it becomes apparent that there are only two SLOCC-

inequivalent two-qubit pure state classes, namely separable states and entangled 

states. If no entanglement is present in the state at all, there is no multi-local 

operation that can change that. But if the state is only the slightest bit entangled, 

there exists an invertible operator which can transform it to any other two-qubit 

pure state that is also entangled. 

2.8 Genuine tripartite entanglement 

It turns out that for two-qubit systems, there is only a single class of entangled 

states. A surprising result in [13] however shows, that for three-qubit pure states, 

there are two genuine tripartite entanglement classes which are inequivalent under 

SLOCC. These are three-qubit pure states whose reduced density matrices all have 

rank 2, implying that all three qubits are somehow entangled with the rest of the 

system. The two classes are represented by the canonical three-qubit entangled 
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states I GHZ and 1W). The formalisms already presented in this chapter, and the 

following lemmas are used to show that I GHZ) and 1W) indeed belong to different 

entanglement classes under SLOCC. 

2.8.1 Product vectors 

A key ingredient for the study of classes of fully entangled three-qubit pure states is 

the existence of product states in a subspace of C2 ® C2. What sets the two classes 

apart is the difference in their Schmidt ranks. The following lemma is used to prove 

that there indeed exist two fully entangled three-qubit pure states with different 

Schmidt ranks. The term fully entangled is introduced to describe pure states in 

which all the reduced density matrices have rank larger than one. 

Lemma 2.3. For every two-dimensional subspace of C2 (9 C2 there is a basis that 

contains at least one product state, i.e., a state Iir) = Jiri) hr2).2 

Proof. [18]. Let the subspace be generated by {Ibi) Ib2)}. A product state jir) E 

C2 ® C2 satisfies 

(OOhir)(llhir) = (Olhir)(lOhir). (2.41) 

Inserting ir) = ii Ibi) + 772 1b2) in equation (2.41) yields a quadratic equation for 

the complex coefficients 77, and 772: 

0 = C177 + C12771?72 + C27/ (2.42) 

2This is the way this lemma is posed in [181. It seems however that the proof shows that it should 
hold true for any basis of a two-dimensional subspace. 
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with 

C1 = (001b1)(111b1) - (011bi)(101bi), 

C12 = (OOlbi)(111b2) + (lllbi)(001b2) - (O1b1)(1OIb2) - (101bi)(011b2), 

c2 = (001b2)(111b2) - (011b2)(101b2). 

If e1 vanishes then Ibi) is a product state and the lemma holds. Similarly, Ib2) is a 

product state if c2 = 0. Now consider the case c1 =A 0 and c1 0 0. The solutions of 

equation (2.42) are given by 

—c12 ± i/c 2 -  4c1c2 
?72. 2c1 

(2.43) 

For c1 =A 0 and c2 0 0 there is at least one nontrivial solution with ql 0 0 and 772 =A 0 

and thus a product state exists. 0 

A two-dimensional subspace in C2 (& C2 can be seen as a plane defined by two 

orthonormal unit vectors, which lies in a four-dimensional space. According to equa-

tion (2.43), there exists only one product vector in the plane defined by orthogonal 

vectors Jb1) and I b) if c = 4c1c2 and two otherwise. If two product vectors exist, 

then they are orthogonal when c2 = -c1. This is precisely the reason why a higher 

order Schmidt decomposition as proposed in section 2.3.1 is sometimes impossible. 

2.8.2 Two inequivalent classes under SLOCC 

A fully entangled three-qubit pure state l'b) of qubits 'a', 'b' and 'c' has the property 

that its reduced density matrices Pa, Pb and p, all have rank 2 (by proposition 2.5.2). 

Therefore its Schmidt decomposition must have at least two terms. Let jai) and bc) 
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be orthonormal bases for the vector spaces of qubit-systems 'a' and 'bc'. The Schmidt 

decomposition of a fully entangled three-qubit pure state can then be represented by 

k') = A0 Iao)Ibco) + A1 ai) bci). (2.44) 

The vectors bco) and bci) define a two-dimensional subspace in C2 (D C2 since 

they are two orthonormal two-qubit state vectors. As shown in lemma 2.3 there 

are either one, or two product vectors in this subspace. This means that only two 

SLOCC-inequivalent fully entangled three-qubit pure state classes exist; one which 

has Schmidt rank 2, and one which has Schmidt rank 3. If these vectors are such 

that two orthonormal product vectors I b0) I co) and I b1) I cj.) exist in the subspace, then 

there is a state 

F') = ao)Ibo)Ico) + ai)Ibi)Ici), (2.45) 

which is a state with only two terms in its minimal product decomposition and 

falls under the class defined by I GH2) = (IOOO) + 111)). On the other hand, if 
7 2 

I bco) and bci) define a subspace in which there exists only a single product vec-

tor, the state I) has more than two terms in its minimal product decomposition. 

All states with this property tun out to be SLOCO equivalent to the canonical 

1W) = (IOO1) + 010) + I100))-state [13]. The fact that these two states have a dif-

ferent number of terms in their minimal product decomposition proves that they are 

SLOCC-inequivalent by theorem 2.2 and proposition 2.3, and that there are indeed 

two SLOCC-inequivalent fully entangled three-qubit pure state-classes. 
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2.9 Entanglement classes of larger systems 

Finding exactly what the minimal product decomposition for a certain state is, how-

ever, far from trivial, as discussed in [20]. Not only does this pose a considerable 

problem for finding entanglement classes, the rate at which the number of possible 

classes grows with the number of qubits is perhaps what causes the most important 

obstacle. Defining entanglement classes by means of LU or SLOCC operations has 

an important implication for the number of classes in n-qubit systems. A general 

n-qubit pure state requires 2m+1 - 1 real parameters to be defined, disregarding an 

overall phase. An n-qubit LU operator requires only 3n - 1 parameters, and an 

element from SL2(C)®, representing an SLOCC operation, requires 6n parameters. 

This implies that it takes at least 2Th+l_3n_2 or 2Th+l_6n_2 real numbers to param-

eterize inequivalent pure states. For systems composed of more than three qubits, 

this number is greater than one. As soon as a continuous parameter is needed to 

classify inequivalent states, this results in an infinite number of inequivalent classes. 

2.10 Utilizing entanglement 

2.10.1 Quantum teleportation 

Quantum teleportation of an unknown pure state 'b) from a party A, call her Alice, to 

a party B, call him Bob, is most easily explained using the circuit model of quantum 

computation. The protocol was originally conceived in 1993 [2]. It provides a means 

to transport a quantum state between parties without attempting to copy it, which 

was proved impossible by the no-cloning theorem, or having the parties physically 

exchange the medium on which it is stored. A Bell state of which each party holds 
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one qubit is the physical resourse which allows for this transaction. The protocol is 

graphically depicted in figure 2.2. 

RI') 

RI') 

Figure 2.2: Quantum circuit diagram of the single qubit-state teleportation protocol. 

Initially, Alice holds qubits ) = a 0) + 8 Ii) and one of the qubits in the Bell 

state L800) = (I00) + 11)), and Bob holds the other qubit of Ii3oo). So the initial 

three-qubit state is 

Iro) = Rb)II3oo) = 0) (100) + I11))+I1) (IOU) + Ill))]. (2.46) 

The protocol is completed in four steps: 

1. Alice performs a controlled-not operation in which 'I') is the control and her 

Bell qubit is the target. The matrix form of this operation is 

0 0 ON 

0100 
CNOT = 

0001 

0 1 oj 

which in the circuit diagram is depicted as 

(2.47) 
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Bob effectively performs an identity operation 'B on his qubit, so the Overall 

effect on the entire state is 

ri) = CNOTA ® 'B I) loo) = [ 10) (100) + Ill)) + 1) (1 10) + 101))]. 

(2.48) 

2. Next, Alice performs a Hadamard operation on her first qubit, represented by 

H. The matrix representation of this operator is 

The state is now transformed to 

1T2) = HA®IA(9IBI11) 

1 
= [a(l0) + 11))(100) + I11))+(I0) - I1))(I'°) + 101))] 

= [I 00)(al0) +l')) +101) (a 11)+l0)) 

+ 10) (a 10) — 0 I1))+ lii) (all) - 8 10))], 

(2.49) 

where the terms have simply be rearranged to obtain r2) in its final form. 

3. Alice performs a von Neumann measurement {10)(0I, l)(ll} on her two qubits 

(  ), obtaining the outcomes {13182)}, si, Sj E {0, 1} each with proba-

bility . 

4. Depending on the outcomes .s1 and 82, Bob performs the operations 

= ,, 1 = (0 i) , = (i 0) , (2.50) 

1 0 0 —1 

obtaining the state Ib) with 100% probability. 
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This is not the way the protocol was originally described in [2], but it allows for 

an easy-to-understand pictorial description. The way it was originally presented does 

not involve a Hadamard transformation or a CNOT-gate. The only two operations 

are a von Neumann measurement 

{II3ooXi3ooI, I/3oiXI3oiI, P10)(010 1, 1011)(011 11 (2.51) 

by Alice, and then X and/or Z by Bob depending on Alice's outcome. This protocol 

can be generalized to mixed states and states of higher level systems. But the reader 

is referred to the original paper for these discussions. 

2.10.2 Shor's algorithm 

Perhaps the most dramatic manifestation of the power of quantum computation is 

the efficiency with which Shor's algorithm factors any integer [39]. Up until now, the 

algorithm is exponentially faster than the best known classical algorithms, which run 

in exponential time or super-polynomial time, depending on the factorization. It has 

however not been proven that a classical polynomial time algorithm does not exist. 

It has been shown by several authors that the speed-up of this algorithm over the 

classical algorithm is greatest if entanglement is present during some of its operations 

[22]. More generally, it was shown that the presence of multi-partite entanglement 

is necessary for a quantum algorithm to require exponentially less resources than an 

equivalent classical algorithm. Since this thesis is not concerned with computation 

specifically, the reader is referred to [27, 31] for more detailed discussions of quantum 

algorithms. For an analysis of where in the algorithm entanglement plays a role, 

consider the article [24]. 



Chapter 3 

Pauli stabilizers 

3.1 Introduction 

An important subclass of n-qubit pure states is formed by the so-called stabilizer 

states. These states have the special property that they can be described with only 

0(n) parameters, as opposed to general quantum states which require an exponen-

tial number of parameters. This does not take away from their usefulness however. 

They came about in the theory of quantum error correction [16, 6, 5] (and others) 

and are crucial in one-way model of quantum computation [33]. These states can be 

represented by Abelian groups known as stabilizers, which are composed of tensor 

products of the Pauli matrices. To avoid confusion it should be noted that, with the 

eye on the generalization of this in Chapter 4, the name Pauli stabilizer might be 

more appropriate. However, in quantum information processing, the word stabilizer 

is generally reserved for the objects defined in this chapter and this will be respected 

throughout this thesis. A consequence of this representation is that these states 

are LU-equivalent to some graph state, states which can be represented by n-vertex 

undirected simple graphs [36, 40]. In this chapter, properties of stabilizers, stabilizer 

states and graph states are presented. Section 3.2 introduces stabilizers and stabi-

lizer states. Section 3.3 discusses an interesting finding regarding SLOCC-classes of 

stabilizers states, namely that these can be easily found using only LU operations. 

Graph states and graph-state classes are introduced in section 3.4. A few short words 
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about the applications of stabilizer states and graph states are found in section 3.5. 

3.2 Stabilizer States 

The stabilizers and stabilizer states presented in this section are represented by 

Abelian groups in 9, the group of tensor products of n elements of the Pauli group, 

which will be introduced shortly. This is not the only possible representation, but 

it allows for some of the basic properties to be readily derived. To begin this, 

the foundation of all stabilizers is presented first. The basic building blocks of the 

stabilizer theory are the Pauli matrices, 

Ux = 
o (o -A ( o 

I'°'yI I,°z1 
1 0) ki 0) \0 1). (3.1) 

These are Hermitian and unitary so their squares all equal the identity, aj2 = I 

with i E {x, y, z}. Pairs of these matrices anti-commute, 

{0i, u } = ooj + OjUj = 0 (3.2) 

for all i 0 j. The product of two Pauli matrices yields another Pauli with a complex 

phase, for example crcr, = iorz.From this example it is clear that (cio,)t = oo' = 

—io, which in turn confirms that these matrices anti-commute. The rest of the 

product relations can be readily derived from this example and the fact that Ui2 = I. 

The Pauli group g, is composed of the set of all possible products of the Pauli 

matrices, 

ci Lef {±I, ±il, ±cr, ±ia ) ±a, ±iu, ±u, ±i}. (3.3) 
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This group is also known as the quaternionic group. Its non-trivial elements anti-

commute, like the Pauli matrices. The elements written with a factor i are now 

anti-Hermitian however. For these matrices (±io)2 = —I. 

Next, the group 2 is composed of the set of tensor products of elements from 

c1. Therefore this group can be represented by 92 =910!91. Its elements can either 

commute, or anti-commute. As before, its elements can be either Hermitian or anti-

Hermitian. The properties of of 2 are common to any of the groups gn = with 

n ≥ 2. Now that this mathematical tool has been gathered, it is time to define what 

a stabilizer is. It should be noted that no distinction is made between a (state-) 

vector I) and a ray, which is the set {a l) a E C, a O}. 

Definition 3.1. The stabilizer S is an Abelian (which means commuting) subgroup 

of that has a set of common eigenvectors T = {)} with eigenvalue +1. The 

set T will be referred to as the coding space, which is a term borrowed from quantum 

error correction. 

S Lef {M:Ml)= j), (3.4) 

A stabilizer must be an Abelian group because only commuting operators have 

complete sets of common eigenvectors (as required by the definition). Besides this, 

all elements M of a stabilizer S have the following properties. 

Proposition 3.1. All elements M of a stabilizer S are Hermitian and are not equal 

to —I. 

Proof. Let Ib) E T be a vector in the coding space of the stabilizer S. Then the op-

erator —I satisfies —I J) = - I) immediately excluding this as a possible element 

of S. By contradition it can be proved that any M E S is a Hermitian operator. 
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To this end, suppose that M is anti-Hermitian. Since M E S, M 1i) = I) and 

therefore 

M2I)=MI)=Ib). (3.5) 

But since M is assumed to be anti-Hermitian, the following should also be true: 

M2I)= —I lip) =— I). (3.6) 

The assumption has led to contradictory statements, showing that it was wrong. 

Since any M E 9, is either Hermitian or anti-Hermitian, it can be concluded that 

any stabilizer element M E S must be a Hermitian operator. El 

A stabilizer S can be defined by a subset of its elements known as the generator. 

This is a collection of its elements such that any element of S can be written as a 

product of them. The smallest generator is a subset of elements M1, M2,.. . , M with 

o ≤ 1 ≤ I S, where IS I denotes the cardinality, which is the total number of elements, 

of S, such that these elements are independent. A set is said to be independent if 

no non-trivial product of its elements yields the identity. A consequence of this is 

that no product of generator elements can yield a matrix which is already in the 

generating set. If this were the case then there would be a non-trivial product of 

generator matrices yielding the identity because of the fact that all stabilizer elements 

are unitary and Hermitian. Using the notion of a generator and the fact that any 

stabilizer is an Abelian group, the following lemma can be formulated. 

Lemma 3.1. Let S be a stabilizer in 9n. Then its cardinality ISI = 21 for some 

0<l<n. 



46 

Proof. Let S have a generator of 1 independent elements M1, M2,. . , M1. Then, 

since S is Abelian, and all M are Hermitian, any element M E S can be written as 

Mx = MM2 ... ML , (3.7) 

where x, E {O, 1} and x E {O, 1}1. There are 21 different vectors x, so S contains 

at most 21 different elements Mc. 

Suppose now, that 1 ≤ ISI <21. This means that there are at least two different 

vectors x1, x2 which give rise to the same stabilizer element MX1 = 1ypc2• But since 

any element M' E S is Hermitian and unitary, it is then possible for a non-trivial 

product of the generator elements to give rise to the identity. This is in contradic-

tion with the properties of a generator, as described above and it can therefore be 

concluded that the cardinality ISI = 21 exactly. El 

A stabilizer can be used as an alternative representation of a special class of pure 

states known as stabilizer states. In order to prove that this is possible, the following 

proposition and lemma are used. 

Proposition 3.2. Let S E be a stabilizer of cardinality ISI = 2' with 0 < 1 ≤ n. 

Then the normalized sum 

(3.8) 
M€S 

satisfies the properties of an orthogonal projector up to a normalization factor. 

Proof. Recall that an orthogonal projector P satisfies Pt = P and P2 = P. Firstly, 

since all M E S are Hermitian, pt = p, satisfying the first property of an orthogonal 

projector. Secondly, 

I P 2 = S' (MP) = P. 
MES 

(3.9) 
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This follows from the fact that for any M E 8, Mp >iis MM = 

è >MES M , since S is a closed group. This shows that the second property of 

an orthogonal projector is satisfied up to a factor isi. LI 

What can be deduced from these properties of an object p is that it is a positive 

semi-definite matrix, meaning that it only has eigenvalues which are greater than or 

equal to zero. It also has unit trace. It is no coincidence that these properties are 

is also satisfied by density matrices. The second property was somewhat artificially 

implemented by using the normalization factor , which causes the trace of p to 

be one. The only element of gn which has a non-zero trace is the 2n x 2n identity 

matrix, hence the factor normalizes p. This now leads to the following lemma 

and theorem. 

Lemma 3.2. Let S E Gn be a stabilizer of cardinality 181 = 2. Then the projector 

= >MES' has a unique non-zero eigenvalue +1, which occurs with multiplicity 

one. 

Proof. Consider the spectral decomposition 

p = (3.10) 

for some 0 ≤ m ≤ 2', whose value is as yet unknown, and orthonormal 2-dimensional 

vectors I). Proposition 3.2 tell us that p2 = p because 181 = 2'. This implies that 

Trp = Tr(p2) = 1 and since the trace is simply the sum of eigenvalues, 

(3.11) 

Since all Xj are positive, this can only be true if m = 1 and the only eigenvalue is 

A = 1. This shows that p = I)(I and thus only has a single eigenvector ). LI 
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Theorem 3.1. A stabilizer S e with cardinality 181 = 2 uniquely stabilizes a 

single vector kb). 

Proof. A contradictory assumption that the coding space of S contains more than a 

single element can be shown to lead to contradictory statements, proving the theorem 

to be correct. To this end, consider the stabilizer to stabilize two vectors 1'i) and 

10 2). This means that in the spectral decomposition of the operators M E S, both 

these vectors appear as eigenvectors with eigenvalue +1. Subsequently, the sum 

p=>M= 
MES i=1 

1 
(3.12) 

contains the term '?/.'i)('iI +102)(0 21 .  This implies, however that p has at least two 

eigenvectors with non-zero eigenvalues, which is contradictory to what was proved 

in lemma 3.2. This proves that the assumption was wrong, and that S indeed only 

stabilizes a single vector. 0 

Since a stabilizer S E 9,, with cardinality 2n stabilizes only a single vector, it can 

be used to uniquely define this vector and thus be used as a different representation. 

States which allow such a representation are commonly referred to as stabilizer states. 

Of course, introducing an overall factor or phase would not change the stabilizer of 

a stabilizer state. This is however physically insignificant and will therefore not 

be taken in consideration. If a stabilizer S E has cardinality 0 < ISI < 

it stabilizes multiple pure states, and therefore also some mixed states. This is a 

property which is applied in the theory of quantum error correction, which will be 

briefly discussed in section 3.5.1. 
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3.3 Stabilizer states, SLOCC LU 

Defining equivalency classes for stabilizer states turns out to be a great deal simpler 

then for most other entangled states. Unlike for general n-qubit states, for stabilizer 

states, SLOCC-equivalence implies LU-equivalence. The key realization leading to 

this conclusion originated from the construction of a so-called normal form of fully 

entangled states [41]. 

3.3.1 A normal form 

In [41] an algorithm is presented which, when performed on a fully entangled n-qubit 

pure state vector, converges to a vector which is called the normal form of that state 

vector'. This normal form can be defined as follows. 

Definition 3.2. The normal form of a fully entangled n-qubit pure state I) is such 

that the reduced density matrices pi of qubits labeled 'i' where i E {1,. . . , n}, are 

proportional to the identity matrix pi = ci, where c is some proportionality factor. 

Since the assumption is made that the state is fully entangled, all the reduced 

density matrices pi must have rank 2, as proved in lemma 2.1. The following is part 

of the proof of the existence of an SLOCC operator which can bring a fully entangled 

n-qubit pure state into its normal form, adapted from the proof as presented in [40]. 

The original more in-depth version can be found in [41]. 

Theorem 3.2. Let p be an n-qubit density operator such that all its single-qubit 

reduced density matrices are of rank 2. Then there exists an SLOCC operator which 

11t should be noted that many different normal forms can be defined. So what it referred to in 
this thesis as the normal form is by no means unique. 
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transforms p into its normal form. 

Proof. Let p be an n-qubit pure state whose single-qubit reduced density matrices 

are of rank 2, and let A1 ®.. ® At.,, be a multi-local operator in SL2(C)®. The 

operators Ai which will bring p in its normal form can be determined by an iterative 

process by which in each step, the trace of p is minimized by a single party using 

SLOCC operations. Consider the reduced density matrix p' = Tr2,...,p. If this 

matrix is indeed non-singular then the operator 

X = det(p1) p1 (3.13) 

has the property that when acted on p, it yields 

1 1 t xplxt = det(p1)p PIP-1 

= det(pi)I 

=cl. 

Here the fact was used that p1 is an orthogonal projector, thus p = p. Since 

Trp= 1) 

Trp' = Tr(X®I ... ®I)p(X®I ... ®I)t 

= 2det(p1) 

≤ &(p) = Tr(p) = 1 (3.14) 

If the eigenvalues of p' are denoted by ) and A2 then the inequality 3.14 can be 

written as 

2A/A,1\2 ≤A1+A2. 
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Equality of these two terms is only satisfied if A1 = A2, or equivalently if Pi = ci. 

The inequality indicates that the operation X is trace decreasing. So if this type of 

operation is performed by each of the parties in an iterative fashion, the trace of p 

will keep decreasing unless all the reduced density matrices are proportional to I. 

Since the eigenvalues of p' are always positive, they are bounded from below, which 

implies that all the reduced density matrices converge to operators arbitrarily close 

to I. And since the matrices of the form X are elements of SL2 (C), the existence of 

SLOCC operators which bring a density operator to its normal form is proved. 0 

In the case where one of the qubits is not entangled with the rest of the system, 

according to proposition 2.1 its reduced density operator has rank one, and its cor-

responding operator X will have infinite norm which results in Xp1Xt = 0 and thus 

a zero normal form of p. The matrix p' which the normal form of some pure state 

p was pointed out to be unique up to local unitary transformations (LU) in [4], as 

was originally conjectured in [41]. A local unitary transformation on a matrix p' can 

be defined analogously to such a transformation on a state vector 1'). It is simply a 

mapping U E U(2)0 : p' i--• U(p'). A corollary of this and theorem 3.3.1 is that two 

states p and PO can only be SLOOC equivalent if they have LU-equivalent normal 

forms. 

3.3.2 Reduced stabilizers 

It turns out that the reduction to a normal form has a particularly nice consequence 

for stabilizer states, namely that SLOCC-equivalence reduces to LU-equivalence be-

cause stabilizer states are already in their normal forms. To prove this, a concept is 

needed which is interesting in its own right, the reduced stabilizer. 
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Consider what happens to the stabilizer of some n-qubit pure state when part 

of the system is traced out. This is an adapted version of the presentation in [40]. 

First consider a two qubit pure state of qubits 'a' and 'b', represented by its density 

matrix p, and its stabilizer S. The stabilizer elements M E S are of the general form 

M = 0a ® crb. When qubit 'b' is traced out, the reduced density matrix Pa = Trb(P) 

is obtained, representing the state of qubit 'a'. But since the mathematical objects 

p and S can be used to describe the same state, tracing out the operators 5b in 

all M E S yields the stabilizer Sa for the state represented by the reduced density 

matrix Pa This stabilizer is the reduced stabilizer for the state of qubit 'a'. The 

effect of tracing out the operator 0b in an M E S is 

TrbM = 9.j ®Tr(o), (3.15) 

which is non-zero only if ob = I since the Pauli matrices all have zero trace. Note that 

for matrices A1, A2,..., A, Tr(A10A2® ... (9A,) = Tr(Ai)ØTr(A2)® ... Ø92r(A). 

This leads to the concept of the support of a stabilizer element. Suppose for simplicity 

that the qubits of an n-pure state with stabilizer S are labeled with numbers 1 to 

n, and that some subset @ C {1,.. . ,n} of these are traced out. The only elements 

M E S which yield non-zero reduced stabilizer elements after this operation are those 

which act with an identity operation I on the qubits with labels D. The support of 

an element M = ul ® 2 Ø ® c e S is defined as the set of number labels j such 

that u 0 I. This is written as 

supp(M) {j C= {1,.. I,— , n}: uj I}. (3.16) 

Using this it becomes much simpler to define the reduced stabilizer of a state of 

which qubits have been traced out. The complement of 0 are the numbers between 
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1 and n, which are not in Co, call this set w. So qubits with labels w are the ones that 

are not traced over. The only stabilizer elements M E S that yield non-zero reduced 

stabilizer elements are those whose support is in w, so the reduced stabilizer S can 

be represented by 

= {M E 8: supp(M) C w}. (3.17) 

This has an important implication for the normal form of stabilizer states, which 

is presented in the following lemma. 

Lemma 3.3. Let I) be a fully entangled n-qubit stabilizer state. Then the reduced 

density matrices p of qubits with labels i E {1,. . . , n} are such that p = ci, which 

means that I) is already in its normal form. 

Proof. Following the discussion on reduced stabilizers, let w = i and thus Iwl = 1. 

The rank r(p?) is either 1 or 2 because it is a 2 x 2 matrix. But since it was assumed 

that the state is fully entangled r(p) = 2. What this says about the cardinality 

of the reduced stabilizer is that jSjj = 1 because if ISI was 2, r(p) would be 1 

since 4  would be a pure state by theorem 3.1, which it is not. Therefore Si= I® 

since it must form a closed group under matrix multiplication. Using the identity 

= MESM it can then be concluded that pi = ci. El 

This shows that all stabilizer states are already in a SLOOC normal form and 

therefore that SLOCC-equivalence is equal to LU-equivalence for these types of 

states. 
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3.4 Graph states 

Graph states [37, 36, 10] are a subset of the stabilizer states. These states have the 

property that the generator of their stabilizer takes the form of an n x n adjacency 

matrix 0 of some graph, concatenated with an n x n identity matrix, [0 1]T• 

3.4.1 Finite, undirected, simple graphs 

A finite, undirected, simple graph G is defined as a pair of mathematical objects 

G = (V, E). The first is a finite set of vertices V which can be labeled by numbers 

11,21  . . . , n} and represented by points on a piece of paper. The second object is a 

set of vertex pairs of vertices in V called edges . It is denoted by E C [V]2 and can 

be represented by lines which connect the point representations of V on the piece 

of paper. A graph is simple if there are no edges connecting vertices to themselves, 

resulting in loops. Hence E is a proper subset of [VJ2, not all elements of [V]2 are 

included in E. 

A different way to represent such graphs is by an n x n adjacency matrix 0. Its 

elements &j E {0, 1} reflect whether an edge between vertices i and j exists or not, 

by taking on value 1 or 0 respectively. 

The number of these types of graphs on an n vertex set can be derived as follows. 

The number of different possible edges is equal to the number of different pairs of 

vertices, which is () = n(m-1) Since an edge either exists or not, there are a total 

of 2(a) different graphs. Note that the number of possible graphs therefore increases 

exponentially with the number of vertices. 
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Figure 3.1: a. A five vertex star graph'. b. The adjacency matrix 9 of the five 
vertex star graph. c. The generator of the star graph-state, written in the form of 
a matrix. Each row corresponds to a generating matrix in which the adjacent Pauli 
matrices are related by a tensor product ®. 

3.4.2 Graph state stabilizers 

The adjacency matrix 0 of an n-vertex graph S can be used to define the generator 

of a stabilizer S. The elements M1, M2.... Mi,, of the generator of S are defined as 

= cr ®(Q.Oii)W , (3.18) 

where the superscripts (j) and () indicate that the operator ax or o acts on the i'th 

and j'th qubit respectively, and the symbol ® indicates that there is tensor product 

0 between all terms If Ojj = 0 then the operator U.Oij = I. This is a generator of 

n independent elements and therefore gives rise to a stabilizer of cardinality ISI = 2. 

As proved in theorem 3. 1, this stabilizer represents single state, which in this case 

would be referred to as a graph state. Since the generator of the stabilizer, which 

completely defines the stabilizer group, which in turn completely defines a graph 

state, is now represented by a 2n x n matrix containing only zeros and ones, any 

graph state can be specified by only 2n2 bits of information. 
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3.4.3 Binary description of stabilizer states 

The efficient description of n-qubit pure states is not restricted to graph states only, 

but is also allowed by all stabilizer states. The graph representation does not apply 

anymore, but stabilizer states can still be represented by 2n x n binary matrices. 

Similar to the representation of a graph state-stabilizer, the generator of a general 

stabilizer state is a concatenation of an n x n "u,,-matrix" and an n x n "as-matrix". 

It is perhaps best explained with a simple example. 

Example 3.1. Consider the stabilizer of the I GHZ -state, which can be represented 

in the form of a generator matrix 

02, 0x Ox 

I , (3.19) 

o•z o•z • 

where the three rows represent the three generators M1 = a oagor,, M2 = o®oI 

and M3 = 10 o 0 o. This matrix can now be represented by the binary matrix 

000 

110 

011 

111 

000 

000 

(3.20) 

where the left n x n matrix represents o 's by I's, and the right n x n matrix represents 

o 's by Vs. 

3.4.4 Local Clifford equivalence 

The single qubit Clifford group, C1 is the name given to the normalizer of the Pauli 

group N(g1). This means that all elements of the clifford group r E C1 are 2 x 2 
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matrices which have the property rcr'rt = oj for i,j E {x, y, z}. This group is 

considerably larger than the Pauli group, but can be generated by only two matrices 

1'\ (o\ 
I and P= I, 

—1) \0 i) 
(3.21) 

and consists of 192 different elements. The local Clifford group LC is defined similarly 

to the group , as LC = CTh. To avoid confusion, it should be noted that there 

does not seem to be a direct connection between the Clifford group and Clifford 

algebras. The group was given this name because this connection was speculated to 

exist, however it has thus far not been found [17]. 

It has been shown that all stabilizer states as defined above are LU-equivalent 

to a graph state [40]. The LU-mapping between stabilizer state and graph state 

is not unique however. This makes the study of LC-equivalence of graph states 

more interesting then studying equivalence classes of general stabilizer states because 

the set of graph states lies higher in the LC-equivalence hierarchy. An important 

open problem is to determine whether LU-equivalence of two graph states implies 

that they are LC-equivalent. An efficient (i.e., polynomial running time) algorithm 

2 4 2 

b. 

4 

Figure 3.2: a. The five-vertex star graph. b. The five-vertex star graph after local 
complementation has been performed about vertex 1. The result is the five-vertex 
full graph. 



58 

has been found which is capable of recognizing whether two graph states are LC 

equivalent or not [9]. This makes the question of whether LU-equivalence implies 

LC-equivalence of graph states very interesting, since if this is indeed that case, one 

could efficiently distinguish locally in-equivalent stabilizer states/codes. It turns out 

that all LC-equivalent graph states can be found through local complementation of 

their pictorial graph representations, an operation which has an operator equivalent 

in the local Clifford group [40, 19]. 

Local complementation is most easily explained by a simple example. It is an 

operation involving a single vertex on a graph, for example vertex 1. on the five 

vertex star graph in figure 3.4.2. The operation has the effect that it inverts the 

edges of the qubits in the neighborhood of vertex 1. The neighborhood of some 

vertex i is defined as all vertices j which appear in a pair with i in the edge set. 

Pictorially, these are the vertices j which are connected to vertex i by a line. In the 

case of the five vertex star graph, local complementation about vertex 1 yields the 

graph depicted in figure 3.2 b. 

3.5 Utilizing stabilizer states 

3.5.1 Error correction 

Quantum error correction codes were designed to prevent information stored in quan-

tum states from being lost due to unwanted interactions with the environment. For a 

complete account or introduction the reader is referred to [16, 40]. As was explained 
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in Chapter 2, a general operation E on a quantum state p can be represented by 

p1-4 e(p) = )'EapE, (3.22) 
a 

where the set Ea are Kraus operators. It is these operations that error correction 

codes are designed to protect against. A code that encodes k logical qubits in n phys-

ical qubits is a set of k pure states l) that are a superposition of 2k different basis 

vectors. The general form of a codeword is thus I) EI ci . . 

where Xj {O, 1}. If two errors Ea and Eb can be corrected, then any combination 

Ea + f3Eb can be corrected as well. So only a complete basis of errors needs to be 

taken into account. The basis of choice is that which is composed of tensor products 

of Pauli's, which is the group . In order to preserve a code, it must be possible to 

distinguish between two errors Ea and Eb. This means that an error Ea on codeword 

1,0j) must not be confused with an error Eb on codeword Therefore 

( EE ) = 0, (3.23) 

for i =A j if the code can distinguish these two errors. Another requirement is that 

the quantity (b4 EaEt I'?7b) must be the same for all the codewords when measuring 

the errors. This is because no information about the codewords should be gained 

in order for their delicate superposition of states not to get ruined. The two given 

conditions can be represented simultaneously by the equation 

(Oil EEb 'b) = Caböab, (3.24) 

where Cab E C. 

The stabilizer construction involves the type of stabilizer introduced in this chap-

ter. An n-qubit stabilizer S of cardinality stabilizes exactly 2' orthogonal states 
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/j) which constitute the coding space T. These are the codewords of the stabilizer 

code. This code is robust against any error operator E = EEb that anti-commutes 

with a stabilizer element M. This is because for any state '/j) T, 

(bIEkb) =('bIEMkb) = — (IEMI)= — (IEk), (3.25) 

which can only be true if (b4 E l) = 0 as required by equation (3.24). Of course, 

if the error E is in the stabilizer S, the code will not be affected by it. In general, a 

stabilizer code is protected against errors that are in the stabilizer, or anti-commute 

with an element of the stabilizer. 

3.5.2 Cluster States and Measurement Based Computation 

[x) 
output 

d. 

Figure 3.3: This is an example of a cluster-state version of the CNOT gate given 
in [34]. a. A cluster of twenty-one qubits, in a graph-state entangled state. b. 
Unwanted entangled qubits are removed from the cluster by measurements in the 
ui-basis. c. The input state lb) is encoded in the left most qubits. d. A series of 
measurements is done resulting in an output state on the right most qubits. 

The cluster-state model of quantum computation has made David Deutsch (next 

to Richard Feynman arguably the father of quantum computation) conclude that 



61 

universal quantum computers are only years away from being realized [11]. This 

model is an invention by Robert Raussendorf and Hans Briegel and for a complete 

account of it the reader is referred to the articles [32, 34]. The main resource of 

this model is a highly entangled state shared among a large number of qubits. The 

state takes on the form of a graph state which can be pictorially by a 1D (chain), 

2D or 3D cluster (see figure 3.3). The state is prepared by initializing all qubits in 

the 1+) = (10) + I1))-state and then performing an entangling operation between 
72 

adjacent qubits. The entangling operation can be represented by the two-qubit 

operator 

0 0 

0100 
cz = (3.26) 

0010 

\0 0 0 —1) 

Parts of the cluster that will not be used in the process are removed by measuring 

qubits in the basis of the a,.-matrix. This corresponds to a von Neumann measure-

ment presented in example 2.2. This is represented in figure 3.3 by the symbol M 

The input state is encoded on the left most qubits. Next, a series of measurements 

in different bases is performed sequentially, disentangling all qubits in the cluster. 

The result is an output state on the right most qubits which are not measured. After 

the procedure is completed the cluster has been completely destroyed and has to be 

rebuilt for the next computation. This is the reason why this model is also known 

as one-way measurement based computation. The example presented in figure 3.3 

is a special one because all the measurements are done in a basis of operators be-

longing to the Clifford group, introduced in section 3.4.4. What is so special about 
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these measurements is that they can all be performed simultaneously. If the proce-

dure involves more general measurement bases, then the exact steps depend on the 

outcomes of the measurements. In this case the computation is performed stepwise. 

The most important properties of stabilizers as subgroups of have been studied 

and discussed. The next chapter is a discussion of a possible generalization of the 

stabilizer formalism. New stabilizing objects will be defined and will be given the 

names general stabilizer and observable stabilizer. The stabilizers presented in this 

chapter will be referred to as either conventional stabilizers, or simply stabilizers. 



Chapter 4 

General Stabilizers 

4.1 Introduction 

It is the stabilizer representation that make stabilizer states easy to work with and 

describe. They form a class of states which allow for elegant and intuitive description 

in terms of simple graphs; all stabilizer states were shown to be LU-equivalent to 

graph-states [40]. Moreover, stabilizer states are efficiently defined by a number of 

parameters that is only linear in the number of qubits using the binary description. 

This chapter is a presentation of the work that was done to attempt to generalize 

the stabilizer formalism. A more general definition of a stabilizer is formulated and 

then explored to see in what forms it can be used to represent different n-qubit 

pure states. In particular, the result of this generalization to two- and three-qubit 

pure states is discussed. In section 4.2 a more general definition of a stabilizer is 

presented and the most important implications of this generalization are derived. 

Section 4.3 contains an example of a stabilizer whose definition deviates slightly 

from the conventional one. It is studied for two- and three-qubit pure states. The 

generalization is expanded in section 4.4. Here the difference from conventional 

stabilizers becomes significant and is demonstrated by two examples. A recipe to 

construct a stabilizer as defined in this chapter for any n-qubit pure state is presented 

in section 4.5. Section 4.6 is a short discussion on finding a stabilizer for the 1W)-

state. This work originated from the idea that since this and the I GHZ)-state are 

63 
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SLOCC-inequivalent, they might have general stabilizer representations which differ 

in form such that the inequivalence becomes apparent from it more obviously then 

from the arguments presented in chapter 2. 

4.2 General stabilizer groups 

To generalize the stabilizer formalism, a more general definition of a stabilizer needs 

to be formulated. As a start, the condition of a stabilizer to be a subgroup of 9,, is 

dropped to yield the following formal definition. 

Definition 4.1. A general stabilizer S is a finite Abelian group of operators which 

share at least one common cigenvector with eigenvalue +1. 

It should again be noted that (like in chapter 3), no distinction is made between 

a (state-) vector and a ray. Any vector which is an eigenvector with eigenvalue 

+1 for all elements of a stabilizer S is said to be stabilized by the elements of 

S. The operator —I can of course not be an element of a general stabilizer since 

—I b) = - ). Relaxing the definition of a stabilizer by dropping the requirement 

of it having to be a subgroup of has as a consequence that its elements are not 

necessarily Hermitian anymore. What can be said however is the following. 

Proposition 4.1. Let S be a general stabilizer which stabilizes a set of vectors T 

{l) : M I) = I'') VM E S}. Then there exists a stabilizer S' whose elements 

{M'} are Hermitian and unitary and stabilize only the vectors in T. 

Proof. Consider the spectral decomposition of an element M E 

m 

M = (4.1) 
j=1 
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Since all vectors j) E T are stabilized by M, they have eigenvectors Xj = +1. 

All M E S must be of finite order because S is a finite group. This implies that 

there is some (finite) integer g such that M 9 = E, where E acts as the identity 

on all elements M E S. Here a distinction between E and I is made because the 

eigenvalues of an element M E S can be zero, in which case Mg is a diagonal 

matrix with entries 0 and 1. But this implies that all eigenvalues are of the form 

Ai E {0, e21/9}, where 0 < ki E N < g. This way, if for all i Ai > 0, then 

Mg = > = = I. So the order of the operator M depends on 

the eigenvalues of the eigenvectors which are not in T. The only difference between 

the elements M E S are the eigenvalues Xj of the corresponding eigenvectors k'i) 0 T. 

An operator M can be defined to have eigenvalues Ai = +1 for all Ib) E T 

and Ai = ±1 for all ) 0 T. This operator stabilizes all vectors 1/'j) E T and 

will have order at most 2. If it has order 2, then M'2 = I, which implies that it is 

Hermitian and unitary. Any set of operators M' in which all eigenvectors 'I'i) 0 T 

have eigenvalue -1 for at least one M' forms a stabilizer 5', as asserted to exist in 

the proposition. 0 

Operators which are Hermitian are used to mathematically represent quantum 

observables, properties of physical systems which can be experimentally measured or 

detected. This is a fact that will shortly be used to define a general stabilizer with 

more desirable properties. A direct result of the proposition is that with 1 generating 

operators of order 2, a stabilizer S has a cardinality ISI = 21 (recall the definition 

of a generator in section 3.2). This is essentially what is asserted in lemma 3.1. 

The assumption was that S E , but the only property that was used of this was 
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that operators of this type of stabilizer are Hermitian and unitary. The lemma can 

therefore be generalized for general stabilizers, without having to adjust the proof. 

Lemma 4.1. Let S be a general stabilizer whose generating elements are Hermitian, 

unitary operators M1, • , M1. Then its cardinality 181 = 21 for some 1 N. 

Proof. See proof to lemma 3.1. Li 

The effect of the generating operators having higher orders is that the cardinality 

of stabilizer increases. Having in mind that the interest lies in the states which are 

stabilized, the stabilizer might as well be chosen to be as compact as possible because 

all the information about it is already contained in the generator. 

The goal is now to devise a general stabilizer formalism under which general 

stabilizers can be defined which uniquely represent a single n-qubit pure state. It 

turns out that for general stabilizers, proposition 3.2, lemma 3.2 and theorem 3.1 are 

readily generalized, but can be proved in exactly the same way. This is because the 

properties of Q, that are required by the proofs, are that its elements are Hermitian, 

unitary and (with the exception of I) traceless. So the following three, already proved 

statements can be made. 

Proposition 4.2. Let S be a general stabilizer of cardinality 151 = 21 with 0 ≤ 1 ≤ n, 

whose elements are traceless, Hermitian, unitary operators M1, 

Then the normalized sum 

,...,.M1 EC2n ><2n. 

(4.2) 
MES 

satisfies the properties of an orthogonal projector up to a normalization factor. 

Proof. See proof of proposition 3.2. 0 
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Lemma 4.2. Let S be a general stabilizer of cardinality ISI = 2n for some n E N, 

whose elements but the identity are traceless, Hermitian, unitary operators M E 

(r22Th . Then the projector p = EMESM has a unique non-zero eigenvalue +1, 

which occurs with multiplicity one. 

Proof. See proof to lemma 3.2. 0 

Theorem 4.1. Let S be a general stabilizer of cardimality ISI = 2 n for some n E N, 

whose elements but the identity are traceless, Hermitian, unitary operators 

M1, M2,.. . , M2n E C2'><2'. Then S stabilizes a unique vector Iv'). 

Proof. See proof to theorem 3.1. 0 

In section 4.5 it will be shown that general stabilizers with the appropriate prop-

erties and a generator of size n indeed exist for all possible n-qubit states. Now that 

the desired properties of a general stabilizer have been narrowed down, a definition 

can be formed of a more desirable subset of the general stabilizers. 

Definition 4.2. An observable stabilizer S is an Abelian group, whose elements but 

the identity {M} are traceless, Hermitian, unitary operators which have at least one 

common eigenvector with eigenvalue +1. 

4.3 A first generalization 

Consider an element M = m1 ® M2 ® ® Mn of an observable stabilizer. This 

element is Hermitian and unitary, and so its constituents mi can also be chosen to 

be Hermitian and unitary. A first generalization of the Pauli stabilizers can thus be 

general stabilizing groups in SU(2) On instead of 9,n. For two- and three-qubit pure 
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states this will turn out to have no significant consequences. What this means for 

pure states of more qubits is still somewhat of an open question. The following two 

lemmas reveal the most important implications of this generalization. 

Lemma 4.3. A multi-local unitary transformation preserves the commutativity of 

an Abelian group. 

Proof. Let S be an Abelian group composed of matrices {M}, and let U E U(d) 

be a unitary operator which transforms S to S', the group of transformed elements 

{UMUt}. Then any two elements M = UM1Ut and M = UM2Ut, where M1, IkE2 E 

5, satisfy the commutation relations 

[Mj, Iv4] = [UM1Ut, UM2Ut] 

= UM1UtUM2Ut - UM2UtUM1Ut 

= U(M1M2_M2M1)Ut 

= U[M1,M2]Ut=O. 

Since M and M can represent any two elements of SI, this transformed group is 

also Abelian. U 

Now consider an observable stabilizer S such that S E SU(2)®Th. Since an element 

M = m1 ® ® Mn E S is Hermitian and unitary, its constituents can always be 

chosen to have the same property, i.e. m? = I for all labels i. This is what is done 

to prove the following lemma. 
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Lemma 4.4. Let M, N E SU(2)®'be Hermitian, unitary matrices, such that 

M = m1 ® m ® ® m 

N = ni®n2® ... ®n 

m=n = I 

[M, N] = 0. 

Then the pairs {m, n} either commute or anti-commute. 

Proof. From the commutation relation 

[M, N] = [mi ® M2 ®. 0 Mn, n1 0 n2(8) . 0 n] 

= min, 0 0 mn - n1m1 0 0 rtm 

=0, 

and mi2 = n = I it follows that 

mini = ei0inimi, (4.3) 

such thatEn 1 0i = 2kv, k E N. But since nit = ni which follows from nj2 = I, 

(mnmt)t = 

= mnm it 

= e'1'n, 

which implies that Oi = mit, m E N. It subsequently follows that if Oi = 0 mod 2ir, 

mi and ni commute, but anti-commute if Oi = it mod 2ir. LI 
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In the following theorem, the concept of the support of a stabilizer is introduced. 

This is a generalization of the support of a stabilizer element (see section 3.3.2) and 

it is defined as follows. 

Definition 4.3. The support of a stabilizer S is the union of supports of all its 

elements M E 8, 

supp(S) d =ef supp(M). (4.4) 
MES 

The support of a stabilizer S is thus the set of labels j such that the j'th constituent 

mj of at least one stabilizer element M = m1 ® ® m,, E S is not equal to I. 

Consider now an observable stabilizer S whose elements M = m1 (D ... ® Mn are 

such that their constituents mi are Hermitian and unitary. Let U be an LU operator 

which maps at least one element mj 0 I to an element ai with i E {x, y, z}, for each 

j E supp(S). The other transformed elements are labeled m. From lemma 4.4 it 

follows that all constituents M il must either commute, or anti-commute with o. The 

only matrices which can anti-commute with the Pauli matrices and have order 2, are 

the Pauli matrices themselves, or sums of the form (oj ± oj) : j 54 i. Because all 

observable stabilizers in SU(2)®Th are LU-equivalent to observable stabilizers whose 

elements are composed of Pauli matrices and matrices of the form (oj ± 0j), a 

name will be given to this set. 

cj'- ±z),(ov±oz)}. (4.5) 

So the operator U transforms all constituents m, j E supp(S) to elements of 

the set , and therefore the stabilizer S to 5' E , where ( For 

convenience, states with observable stabilizers in SU(2)®Th will be referred to as 

stabilizer states. 
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Recalling what was derived in section 3.3.2, the following statements can be 

made about states with stabilizers in . Since all elements of j1 are traceless, 

all elements of are traceless, with the exception of the identity of course. This 

means that these kinds of states are already in the normal form defined in section 

3.3.1, and that the only multi-local operation under which equivalence classes can be 

defined are LU-operations (SLOCCLU). What can also be concluded from this is 

that any qubit 'a' which is entangled with part of the system, can only be maximally 

entangled (see section 2.6.2). This is because its reduced density matrix p" would be 

equal to I and therefore its entropy of entanglement would be 1. 

4.3.1 92+-stabilizer states 

For two-qubit pure states there are only two SLOCC-inequivalent classes; separable 

states and entangled states, as was shown in section 2.7.2. Because ct-stabilizer 

states are already in their normal form, their Schmidt decompositions will always 

look like (laibi) + Ia2b2)) if they are entangled. This follows from the fact that 

their reduced density matrices Pa/b always take on the form I. This means that they 

are LU-equivalent to the Bell states, which are stabilizer states. So the !921-stabilizer 

description provides no class of states which is not already defined by conventional 

stabilizer states. Nor does it provide any new class of states because the Bell states 

are LU-equivalent to all possible maximally entangled two-qubit pure states. 

4.3.2 93+-stabilizer states 

For three qubit pure states the question of which class the cg--stabilizer states be-

longs to becomes a little more interesting because there are two SLOCO-inequivalent 
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classes of fully entangled pure states, represented by I GHZ) and 1W). If one of the 

qubits is not entangled, the problem simply reduces to the LU-equivalence of a 

state and a Bell state, which was presented above. This leads to the following claim. 

Claim 4.1. Fully entangled 931 -stabilizerstates are LU-equivalent to 1GHZ). 

Proof. Since G3+-stabilizer states are in their normal form, they are LU-equivalent 

to any state which they are SLOCC-equivalent to. This means that they are LU-

equivalent to either I GHZ or 1W), which represent the two SLOCO-inequivalent 

three-qubit pure state classes. 1W) was shown to have a normal form equal to zero 

in [41]. This means that the constant of proportionality c between the reduced 

density matrices of 1W) in its normal form, and I is zero. The normal form of a fully 

entangled 9+-stabilizer state is therefore not LU-equivalent to that of 1W), and so 

these states are not SLOCC equivalent to 1W). From this it can be deduced that 

the normal forms of 93+-stabilizer states are LU-equivalent to that of I GHZ) because 

if this were not so, they would constitute a new class of fully entangled 3-qubit pure 

states under SL000. Since these states are already in their normal form, and I GHZ) 

is too because it is a stabilizer state, they are LU-equivalent. 0 

As mentioned before, for two- and three-qubit pure states this generalization of 

the stabilizer description does not cause the number of represented states to increase. 

In order for this generalization of the stabilizer definition to make a difference for 

two-and three qubits, they have to assume a different form than just described. 
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4.4 Further generalizations 

The form of observable stabilizers suggested above turned out to be useful for the 

representation of maximally entangled pure states. The next step is to find an ob-

servable stabilizer representation for pure states which are not maximally entangled. 

The requirements of an observable stabilizer leads to the use of larger constituents 

in the stabilizer elements. For not-fully entangled two-qubit pure states for exam-

ple, an observable stabilizer of the form S E C4X4 would be required such that the 

generating matrices have non-zero partial traces. 

Example 4.1. Consider a two-qubit pure state ) which is entangled, but not max-

imally entangled and has a Schmidt decomposition 

10) = Al IOU) + A2 11), (4.6) 

such that 0 < JAII < IA2I < 1 so that its entropy of entanglement 0 < E()) < 

1. The observable stabilizer Sp of this state requires two generators M1 and M2 

and consists of the elements {I, M,, M2, M1M2}. These generating matrices can not 

be of the form SU(2) ® SU(2) because then the state would be LU-equivalent to a 

maximally entangled state, which it is not. The reduced density matrix of qubit 'a' 

is Pa = IA, 1210)(OI + P2I2I1)(hI = (1,,,12 I2I2) Now since 

(I+M,+M2+M,M2), 

the reduced density matrix can be written as 

Pa = Tr  (p) = (Trb(I) + (M,) + Tr(M2) + T(M,M2)). 

(4.7) 

(4.8) 



74 

The partial trace of the 4 x 4 identity matrix is simply the 2 x 2 identity matrix. So 

Pa = 211 + (Tri,(Mi) + Trb(M2) + Trb(MiM2)). Therefore 

(Trb(Ml) + Trb(M2) + Trb(MlM2)) = 
(Au 

2_i ). (4.9) 

0 A212- 21 

0 

From this example it becomes clear that an observable stabilizer for a not-fully 

entangled two-qubit pure state must have elements of which at least one has non-zero 

partial trace. 

Example 4.2. Consider now a three-qubit pure state b) in which a qubit 'a' is 

maximally entangled with two more weakly entangled qubits 'b' and 'c'. This type of 

state can easily be created by methods applied in the cluster-state model. As the state 

is created, the transformation of the generator of the observable stabilizer is analyzed. 

.1. Start with a separable stabilizer state Iv') = 1+) 1+) 1+). The generator of its 

stabilizer is 

o.z I I 

I cr I 

I I :r 

(4.10) 

. Apply the CZ operation on qubits 'a' and 'b' which will fully entangle them and 

do nothing to qubit 'c'. This transforms the generator of the stabilizer to 

I 

I 

o.x 

(4.11) 

Here each element M of the generator is transformed as (CZ(DI)M(CZ®I)t. 
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S. Next, apply an 'imperfect CZ-gate' of the form 

ui ü 
0100 

(4.12) 
0010 

0 0 eJ 

to qubits 'b' and 'c'. This has the effect that it entangles a separable two-qubit 

state I+)I+) such that the entropy of entanglement is increases from zero to 
one as 0 ranges from zero to ir. This transforms the generator to 

crA 

I 

where A and .8 are now two-qubit operators, 

A= 

10 01 

0 0 0 e 

1000 '' \0 e'' 0 Oj 

andB = 

10 0 

100 0 

0 0 0 e 

0 e' 0j 

(4.13) 

(4.14) 

which operate on qubits 'b' and 'c'. The transformation (I® CZ,)M(I ® OZ)t 

had no effect on the first generator o ® o ® I. It is easily checked that 

these generating elements indeed still commute and are traceless, Hermitian 

and unitary, and they therefore still generate a proper observable stabilizer of 

the transformed state. 
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Note that the observable stabilizer for 1W) must be of this general form, that is 

composed of multi-qubit constituents. It can not be of the form presented in example 

4.2 because this would require that one of the qubits is maximally entangled. 1W) 

does not have this property because all its reduced density matrices have the form 

Pab/c I0X0I + il 11)(11, and so the entropy of entanglement is E(p') = E(p') = 

E(p) 0.9183. 

4.5 Construction of an observable stabilizer 

The foregone discussion described the desired properties of observable stabilizers in 

order to allow for a generalized stabilizer representation of all possible n-qubit pure 

states along with two basic examples. This section is devoted to showing a method 

to construct an obseivab1e stabilizer for a known n-qubit state J1'). To make the 

discussion easier, n-qubit pure states are now represented by their 2-dimensional 

vectors, which will be given the name v1. To start, the elements of an observable 

stabilizer will be constructed in terms of their spectral decompositions, which is 

demonstrated in the following lemma. 

Lemma 4.5. For any vector v1 E C there exist an infinite number of operators 

for which this vector is an eigenvector with eigenvalue +1. 

Proof. Let v1 E C be some normalized vector and the set v2,. . . , V2n be normal-

ized vectors which are orthogonal to each other and v1. This implies that the set 

{vi, v2,. . . , v2n} forms an orthonormal basis for a 2n-dimensional linear vector space 

V. Consider now the set of orthogonal projectors {pj = vvfl which are formed from 
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the basis for V. Then any linear superposition 

2 

(4.15) 
i=2 

has the property that it has the vector v1 as an eigenvector with eigenvalue +1, since 

PjV1 = 0 

This somewhat trivial observation can now be used to show how to narrow down 

the number of stabilizing matrices in order to form an observable stabilizer for some 

n-qubit pure state. The next step is to restrict the value of the coefficients ai to 1 

or —1. The result of this is that a linear superposition M of orthogonal projectors 

will always be Hermitian. This can easily be seen by taking its complex transpose 

2 

Mt = 

i=2 

=M, 

since pt = (vjvl)t = p and x {O, 1}. It is also not difficult to show that an 

operator of this form is in fact unitary. This can be done by taking its square 

Here 

M 2 = 
2 

(Pi ± _1)xP) (P1 + 
i=2 

= 

i=2 

i=1 

we the fact was used that PiPj = äijPj and that the v form a complete or-

thonormal basis. Note that such a reduction limits the operators to the realm of 

quantum observables. Given a basis {v1, . . . , v2 }, this construction still allows for 

22n_1 different operators M such that Mv1 = v1. 

The way observable stabilizers can be constructed is by letting the coefficients aj 

in the sums ajpj be the elements of the rows of a Walsh-Hadamard transform 
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matrix (WHT). The stabilizer elements are essentially constructed by applying the 

Walish-Hadamard transform to the basis {pi}, 

[M1, M2'.. . ' ivi2]" = WHT[pi,p2,. (4.16) 

The first step is to show that this yields proper observable stabilizers in the sense 

that they have a cardinality of 2 and can be fully defined by a subset of n generating 

elements. To this end consider a binary representation of the orthogonal row vectors 

ho=(1,1) and h1=(1,-1) ofa2x2WHT 

(i i ho 
WHT = I = . (4.17) 

\1 —.1) h1 

When multiplying two general stabilizer elements M1 and M2, the coefficients 

12i of M1M2 = aliftPi can be found by simply multiplying those of M1 and 

M2. Since these coefficients are the elements of the rows of the 2 x 2 WHT, define 

the products 

h 2 = (12, 12) = ho 

1i2 i2\ i. 
I&i = ,i. )= Ito 

h0h1 = h1h0=hi. (4.18) 

Looking at how the subscripts change under these operations, it can be seen that 

they can be represented with a binary construction. Since h1 h2 = h12, were 

Xi E {O, 1} and the symbol @ denotes addition modulo 2, this type of multiplication 

can be represented by the indices and addition modulo 2 as follows 

0 

'— f 1. (4.19) 
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A 2'' x 2 WHT is represented by the matrix ( )on and its row vectors then 
are simply tensor products of h0 and h1. Using this, any 2n dimensional WHT can 

be represented by a binary array. 

Example 4.3. Consider the 8 x 8 WHT 

(1 1 
WHT(2n) = I 

\1-1 

)03 

h0 0 h0 0 ho 

h0 0 h0 0h1 

h0 ®h1 ® ho 

h1 0h1 0 

h1 0 h0 0 h 

h1 0 h 0 hi 

h1 0h1 0h0 

h1 0 h1 0 hi 

000 

001 

010 

011 

100 

101 

110 

111 

This mapping becomes even more obvious by writing h1 0 h2 0 h3 

binary vector then appears as a subscript of the row vectors. 

XjX2X3 

(4.20) 

The 

The product of two elements M1 and M2 constructed using a WHT can thus be 

represented by the addition of two binary vectors modulo 2. From this it follows that 

all rows of a WHT, and therefore all elements of an observable stabilizer constructed 

with it, can be generated by a subset of any n elements excluding the zero-element, 

which is the identity element in the stabilizer. 

Lemma 4.6. The row vectors of an 2 n x 2 n WHT can be generated by a subset of n 

non-trivial row vectors. 

Proof. Using the mapping F-* x = X1 • Xn and the n-bit binary operation ED 



80 

such that 

(4.21) 

it follows that n linearly independent vectors x1,... , x, of such a form, and the 

operation , span a space of size 2'. Since there are only 2 n different n-dimensional 

binary vectors it can be concluded all row vectors of WHT can be generated by a 

subset of size n because this mapping shows that all row vectors can be 

generated with products of the form 4.18. El 

Lemma 4.6 shows that all the row vectors of a 2 x 2' Walsh-Hadamard transform 

matrix can be generated by a linearly independent subset of size n. This leads to 

the following theorem that proves the aforementioned claim. 

Theorem 4.2. For any n-qubit pure state I) there exists an observable stabilizer 

that only stabilizer ). 

Proof. From the results of lemma 4.5 and the form of the WHT it is apparent that 

a set of operators S = {M1, M2,.. . , Mn} such that 

Mi— [WHT[p1,p2,...,p2 ]T], (4.22) 

where i denotes the i'th element in the vector [M1, M2, JT, is indeed a group 

of stabilizing elements for some vector v1. Noting that using this construction, any 

subset of n elements M E 8, excluding the identity element is independent, and 

evoking theorem 4.1, S can stabilize only a single vector. This is the vector v1 such 

that p' = vivi. D 

Similar to a vector or orthogonal projector (density matrix), a stabilizer can 

therefore also be used as a mathematical representation of the state of a physical 
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object. At least if this state is an n-qubit pure state. The correspondence between 

the state-vector and its stabilizer is however, one-to-many because the choice of the 

- 1 basis vectors {v2,.. . , Vn} is arbitrary. 

Example 4.4. Consider one of the Bell states 

1000) = (I00)+l 11)) 

= 

In order to form a stabilizer for this state-vector, a complete orthonormal basis is 

needed. To start, choose the basis 

fo 

10 1 0 1 0 

0 0 0 1 

'1J \-1J \0J \0J 

Following the construction described above, this yields stabilizer elements 

M1 = 

M3 = 

0 

0 

\0 

'l 

0 0 0 0 

100 0100 
Ikt2 

0 1 0 0 0 —1 0 

0 0 1) \1 0 0 Oj 

0 0 o\ bo 

0 —1 0 0 

0 0 —1 0 

0 0 1) 

M4 = 

o 0 

0 —1 0 0 

0010 

0 0 Oj 

(4.23) 
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As mentioned however, this choice of basis is arbitrary. Another possible choice could 

be 

1 
= 

fo 

0 1 0 11 1 1 
V2 V3 V4 

o o —1 

v'I \0j 0 J 
in which case the stabilizers take on a completely different form. 

0 

0 

\0 

o o ON 

100 

010 

0 0 11 

0 0 

0 —1 0 0 

0 0 —1 0 

0 0 1) 

M 4 = 

/0 0 0 1" 

0010 

0100 

0 0 Oj 

0 0 

0 0 —1 0 

0 —1 0 0 

0 0 Oj 

(4.24) 

These matrices all have the form of tensor products of two 2 x 2 Hermitian unitary 

matrices, namely the Pauli matrices: 
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It becomes apparent in this example that for general stabilizer states, the form 

of the conventional stabilizer can be retrieved when using the right choice of basis. 

ftying to obtain an observable stabilizer with the smallest constituents turns out to 

be a problem of similar difficulty to finding the minimal product decomposition (see 

subsection 2.3.2). 

4.6 The W -stabilizers 

In section 4.3 it was shown that a fully entangled three-qubit !93+-state can not be 

LU-, nor SLOCC-equivalent to the IW)-state. What this also indicates is that an 

observable stabilizer of 1W) can not be in . A different way to come to this 

conclusion is by looking at the reduced density matrices of its individual qubits. 

These are readily verified to have the form 

w— w— w -
- Pb -  Pc - 

Pa  IOXQI + I1X1I. (4.25) 

This shows that the qubits of the IW)-state are not maximally entangled in the 

sense that the von Neumann entropy of the reduced density matrices is not equal to 

unity, but about 0.9183. As was explained by the examples in section 4.4, general 

stabilizer states in which less-than-maximal entanglement is present require multi-

qubit constituents whose partial trace is not equal to zero. In particular, example 

4.2 shows how an imperfect CZ-gate E20 can be used to create these types of states 

from a separable state 1+)I+). An actual stabilizer for 1W) can of course easily 

be constructed using the method prescribed in section 4.5. A measurement based 

procedure using the circuit model to create 1W) from I+)I+)I+) is given in [12]. In 
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[26] a very nice representation of a possible IW)-state stabilizer is given in terms of 

the Pauli matrices. A set of generating matrices of this stabilizer is 

M1= 

M2=(2t7z® or. ®ox+2uv®ay®az+I®crz®I) 

Because the form of the general stabilizer of 1W) can not take on the form of a 

stabilizer, at least the LU-inequivalence of I GHZ and 1W) is implied from this rep-

resentation. SLOCO-inequivalence can however not be deduced from the stabilizer 

representation as was originally hypothesized. It has become clear that the general 

stabilizer representation obscures the difference between non-maximally entangled 

I GH2)-class states and IW)-class states. This distinction can be made however by 

using the construction of the normal form. The observable stabilizers of the I GH2)-

class states should reduce to normal forms which assume the shape of a 931-stabilizer 

up to a possible factor c, as mentioned in section 3.3.1. When the procedure is 

performed on W)-class observable stabilizers, it should yield zero, as mentioned in 

section 4.3.2 and [41]. A possible further generalization of the stabilizer description 

to subgroups of the special linear group seems to allow for efficient distinction be-

tween the I GHZ)- and IW)-classes. This has not been studied in great detail however 

and more research is needed to make more definite statements about this possibility. 



Chapter 5 

Conclusions 

This is a brief overview of the topics that have been introduced and studied in this 

thesis and the findings that were made during the course of this project. Sections 

5.1 to 5.3 presented the most important subjects that were discussed in the previous 

chapters and section 5.4 contains a list of open questions resulting from this project. 

5.1 Entangled pure states 

Entanglement is a property of multi-body systems that is unique to the quantum 

theory of nature only. Whether a system in a pure state is entangled with another 

can easily be verified by computing the reduced density matrix which represents 

the state of this system alone. Multi-local operations and classical communication 

(LOOC/SLOCO) were defined in a mathematical manner so that their effects could 

be rigorously studied. Entanglement classes are defined under these operations, as 

are the desired properties of entanglement monotones, monotonic functions tailored 

to quantify entanglement between multiple systems. For two-body systems, the 

Schmidt decomposition turns out to be a most useful tool for the study of entangle-

ment. To fully grasp the entanglement properties of many-body systems however, is 

far from trivial. The Schmidt decomposition can not capture all the ways entangle-

ment between many bodies can be viewed. A generalization, the minimal product 

decomposition can accomplish this, but is very difficult to compute and the num-

85 
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ber of non-local parameters which are needed to fully define multi-body pure states 

grows much more rapidly than those than describe the multi-local operations under 

which classes can be defined. The largest multi-qubit system for which this prob-

lem does not yet limit the ability to define classes without continuous parameters 

is that of three-qubit pure states. Two classes of fully entangled three-qubit pure 

states were found and defined by the representative states 1GHZ) and 1W). The two 

most influential applications of entanglement in quantum information processing, 

.state-teleportation and Shor's factoring algorithm were presented in section 2.10.2. 

5.2 Pauli stabilizer representations 

An important subclass of n-qubit entangled pure states are the stabilizer states. 

Using Abelian subgroups of , the group of n-tensor products of elements from the 

Pauli group, n-qubit pure states can be uniquely represented if the cardinality of the 

group is 2''. Such a group has the property that the equivalent vector representation 

of the pure state is an eigenvector with eigenvalue +1 of all the elements contained 

in it. All elements of such a group are said to stabilize the vector which equivalently 

represents the pure state. It is because of this that these groups are called stabilizers. 

Stabilizer states have the property that all the reduced density matrices of entangled 

qubits are equal to 11, which means these all maximize the von Neumann entropy of 

entanglement at a value of unity. Another consequence of this is that stabilizer states 

are in their normal form. Two states were found to be SLOCC-equivalent only if they 

have LU-equivalent normal forms. So for stabilizer states, the search for SLOCC-

equivalency classes can be reduced to finding classes of LU-equivalent states. It turns 
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out that all stabilizer states are LU-equivalent to a subclass known as graph states. 

The stabilizer representation of an n-qubit pure state can be reduced to a binary array 

of size 2n x n. Graph states are those for which part of this array can be interpreted 

as an n x n adjacency matrix of a finite, simple, undirected graph. An important, 

so far only partially answered question which arises from this is whether the study 

of LU-equivalency classes of stabilizer states can be reduced to the study of LC-

equivalency classes of graph states. LC operators are composed of operations in the 

mulit-local Clifford group, which is the normalizer of . An efficient algorithm has 

been found to recognize the LC-equivalence of two graphs using a simple operation 

known as local complementation. Two beautiful examples of applications of stabilizer 

theory, error correction and measurement based computation were introduced and 

roughly explained. 

5.3 Observable stabilizers 

The power and simplicity of the stabilizer representation of n-qubit pure states led to 

the idea to try to generalize it for different n-qubit pure states and the hypothesis that 

it could be used to efficiently identify SL000-inequivalent classes. The stabilizer 

formalism was generalized by defining an observable stabilizer as an Abelian group 

of Hermitian unitary operators which have at least one eigenvector with eigenvalue 

+1 in common. The application of this generalization as yielded no new insights 

for two- and three-qubit pure states. This is because - and c-stabilizer states 

have the property that any present entanglement is maximal in terms of the entropy 

of entanglement (having a value of unity). Following the discussions from chapters 2 



88 

and 3, it could be concluded that these states are LU equivalent to stabilizer states of 

the same dimension. For general no clear conclusions could be drawn as a result 

of the realizations regarding LU-incomparability or LU-incommensurability [28, 23, 

3, 7, 41]. A broader generalization was made to accommodate the construction of an 

observable stabilizer description for all n-qubit pure states. States in which present 

entanglement is not maximal (i.e., those for which the reduced density matrices have 

von Neumann entropy 0 < E(pa) < 1) turn out to only have stabilizer descriptions 

in which the elements are composed of multi-qubit constituents (operators). It was 

deduced that the stabilizer for the W)-state can only have observable stabilizers of 

this class. The plural is used because it was also found that any n-qubit pure state 

can be stabilized by an infinite number of different observable stabilizers. Only for the 

special subclass mentioned above are !9,,-stabilizer representations also possible (up 

to multi-local unitary transformations). Observable stabilizers are easily constructed 

for any n-qubit pure state by performing a Walsh-Hadamard transform on a basis of 

orthogonal projectors, including that which is the density matrix of the state-vector. 

The pure-state classification under SLOCO using the observable stabilizer description 

did not turn out to be possible in the manner that was hoped for. It appears that 

the observable stabilizer description merely gives a means to quickly distinguish LU-

inequivalent pure states if composed of the smallest possible constituents. 

5.4 Future directions 

Since the observable stabilizer description yields a new representation of n-qubit pure 

states, it may be possible that previously obscured properties can be more clearly 
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presented in this way. An interesting question is which type of states belong to 

the 9,+,--stabilizer states and wether or not these are LU-equivalent to 9"-stabilizer 

states (conventional stabilizer states). Although not as efficient as the conventional 

stabilizer formalism, observable stabilizers may be used as an efficient representation 

of some subclasses of n-qubit pure states. The binary description of the conven-

tional stabilizer description may be generalizable to observable stabilizers in order to 

yield representations in terms of matrices in finite fields. Although non-maximally 

entangled states required multi-qubit constituents in the stabilizer elements, their 

representation may be simplified for those which are SLOCC equivalent to conven-

tional stabilizer states, or stabilizer which have observable stabilizers with smaller 

constituents. This is because the transformation of a stabilizer by invertible oper-

ators is easily analyzed, and so may yield more insight in the difference between 

observable stabilizers for states in the 1GHZ)- and IW)-classes for example. A very 

recent result indicates that this might indeed be possible by using stabilizing sub-

groups of the special linear group. It would also be interesting to find out if an 

efficient algorithm exists to find the observable stabilizer with the smallest possible 

constituents, given any n-qubit pure state. Another possibility may lie in the ap-

plication of the generalization of the stabilizer formalism to the measurement based 

model of quantum computation. 



Appendix A 

SVD and spectral decomposition 

The singular value and spectral decompositions are invaluable to the study of entan-

glement. That they are both very useful is of no surprise since they are actually the 

same decomposition expressed in different ways. This is what the following theorem 

and proof demonstrate. 

Theorem A.I. Let the singular value decomposition (SVD) of a complex matrix 

A E Cmxn be 

A=UAV, (A.1) 

where U is the matrix whose columns are composed of the eigenvectors of the matrix 

AA, A is the diagonal matrix whose elements are Ai and V is the matrix whose 

columns are composed of the eigenvectors of the matrix AtA. Then this is equivalent 

to a spectral decomposition 

A 

where u E cm and vi E Cn are the columns of matrices U E cmxm and V E 

(A.2) 

Proof. This can be proved by showing that both expressions give rise to identical 
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elements Aij of the matrix A. The SVD of A can be written element by element as 

Aij = [UAVt] ij 

= 

= EUik,\kVktj 

= 

= 

Using the fact that Uik and Vik are the i'th and j'th elements of vectors Uk and Vk, 

the matrix can also be written as A = Ek AkukV. From this it becomes apparent 

that the SVD and spectral decomposition of A are equivalent. U 



Appendix B 

Product vectors 

Lemma B.1. For any plane P1 in C2 0 C2 defined by two product vectors lvi) and 

Iva), either all the states in this plane are product vectors, or there is no other product 

vector in it. 

Proof. [35], page 827. With the help of SU(2)®SU(2) transformations, lvi) and 1v2) 

can always be expressed so that 

(i'\ ('\ (cos A'\ (cos B 
Piai( lol I+i3i1 lot 

\O) \O) k\sinA) sin  
(B.1) 

with 0 ≤ A, B ≤ ir/2; A and B are not simultaneously vanishing, and o.i, 01 (-= C. 

All vectors in 7' are product vectors if and only if sin A sin B = 0. If sin A sin B 54 0, 

then the only product vectors in P1 are the generators of the plane lvi) and 1v2). El 

According to this proof, if all vectors in Pi are product vectors, then they are 

LU equivalent to either 

(i (ai +,31 cos B (' +,81 cos ( 
I 101 I or I 101 
k0) /3 sin B ) 31 sin A ) 0 

The normalization condition on state vectors imposes restrictions on a and /3i in 

this case, which are c1)3 + c4/31 = 0 and I a, 12 + 113112 = 1. 

Lemma B.2. Any plane P2 in C2 0 C2 contains at least one product vector. Some 

planes contain only one. 

92 
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Proof. [35], page 827. Consider the plane P2 generated by two orthogonal vectors. 

Again, with the help of SU(2)®SU(2) transformations, it can be expressed as 

1 CB 

0 
+132 

0 5 

\Bj \—CAJ 

(B.2) 

with A, B, C E R and y, 5, a2, 02 E C. Assume that none of the generating vectors 

is a product vector, that is, AB 0 0 and C2 AB + yS 0 0. Then a vector in P2 is a 

product vector if and only if 

aAB + a2j32C(B2 - A2) - /3(C2AB + 'ys) = 0 (B.3) 

With the above restrictions on A, B, C, 'y and 5, there is always at least on nonvan-

ishing solution (i.e., a2, 02 such that a2/32 0 0) of Eq.B.3. There is sometimes only 

one nonvanishing solution (see also Ref. [18]) 0 
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