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ABSTRACT 

Some of the most important problems in science and technology require the 

analysis of the behavior of dynamic systems, the states of which change continuously 

with time, typical areas being control system design, aerospace simulation, fluid flow, 

reservoir simulation. Continuous system simulation languages (CSSLs) are invaluable 

tools for simulating these systems, as they are non-procedural languages and possess 

many attractive features such as software support library, run-time monitor. 

One of the key issues in simulation is the execution time required to run the 

model. This is particularly important ,for models which require a lot of experimentation, 

as is usually the case. With the advent of supercomputers, many problems have come 

within the realm of solvability. These computers rely on vector pipeline architectures to 

yield a performance improvement of several orders of magnitude. 

It was logical and inevitable that such an important software tool as a continuous 

systems simulation language be ported to a supercomputer. Porting is really just a first 

step in a larger plan of optimizing human and machine performance. It is also 

important to know which classes of models are most suitable for simulation on the 

supercomputers and, if a model qualifies for such an endeavor, which techniques and 

algorithms are most appropriate. 

In the present work we have attempted to answer the above questions. We chose 

to port CSSL-W to the Cyber 205 supercomputer. The difficulties and problems faced 

in this task and the manner in which they were resolved have been discussed. A limited 

number of the most useful integration routines have been selected for vectorization. 
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This effort, we believe, is worthwhile because the integration operation is the heart of 

any CSSL. 

Next we selected a few benchmarks and recorded the execution times on the Cyber 

205 and the Cyber 175. For the Cyber 205, three versions of code were selected (i) the 

scalar version (ii) the semi-vectorized version (only integration routines vectorized), and 

(iii) the fully vectorized version (source code also vectorized). It was found that the 

fully vectorized version gives a reasonably good performance ratio. 

The question of suitability of various models has been examined in detail. Two 

classes of models were considered: those characterized by partial differential equations 

(PDEs) and those represented by a two point boundary value problem. For the second 

order PDEs, it was found that CSSL-IV is an excellent tool for simulation involving 

parabolic and hyperbolic PDEs. But for elliptical PDEs some modifications are 

necessary in the CSSL-IV software support library as the shooting methods which are 

commonly used in simulation with a CSSL are not suitable for an elliptical PDE. 

Of particular interest is the problem of magnetohydrodynamic flow through a 

rectangular duct when the boundaries parallel to the magnetic field are perfectly 

conducting. Using CSSL-1V we have been able to solve this problem for values of 

Hartmann number up to those for which results are currently available in the literature. 

The two point boundary value problem representing the model of squeezing of 

fluid between two parallel plates has been studied in detail. Many new solutions were 

discovered which have been overlooked so far. 

Finally, some observations have been made, indicating the areas in which CSSL-1V 

would be quite useful on the Cyber 205, provided some suitable additions are made in 

the software support library of CSSL-W. 
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1. INTRODUCTION 

1.1 Simulation 

With the advent of computers, simulation has come to be recognized as a very 

effective technique to evaluate the operations of various kinds of real-world facilities or 

processes. The facility or process of interest is usually called a system. Quite often a 

set of assumptions is made regarding the manner in which a system workds in order to 

study the system scientifically. These assumptions usually take the form of 

mathematical or logical relationships and constitute a model. By running the model, it 

is possible to gain an understanding of how the corresponding real system works, which 

in turn allows one to ascertain the feasibility of the system.. Of course to prove the 

validation of the simultion model, the real system must eventually be built and tested. 

However, simulations can prevent the construction of poorly designed systems by 

discovering their problems before they are built. Thus simulation is a very cost-effective 

technique for system modeling. 

For simple models, i.e., those for which the relationships describing the model are 

simple, one can use mathematical methods (such as algebra, calculus and the theory of 

probability) to obtain exact information on questions of interest. Such a solution is 

called an analytical solution. An example of a simpler model is carbon dating: a means 

of determining the age of certain fossils. For this model it is possible to obtain an exact 

mathematical relationship between the various variables describing the model. 

1 



However, most most real-world systems are far too complex to allow realistic models to 

be solved analytically. Some examples of such systems are air traffic management, 

communications networks, CAD/CAM, pattern recognition etc. 

One approach to studying such models is by means of simulation. Usually in 

simulation a computer is used to analyze the model numerically over some time interval 

of interest called the simulation time. The data generated during simulation is then 

used to estimate the desired true characteristics of the model. 

Since obtaining an analytical solution is no longer necessary in simulation, it is 

important that the model should be constructed as realistically as possible. This, 

however, entails substantial expertise on the part of the evaluator. Also simulators 

generate enormous amounts of data which must be analyzed by the evaluator either 

manually or on the computer. Naturally, for a detailed evaluation, which is extremely 

important, simulation takes a large amount of computer time. Moreover it is 

mandatory that a simulation model be validated to ensure that the model represents 

accurately the real system to be simulated. However, once a simulator is developed and 

validated, it can be run as many times as desired thus saving costs compared to the 

available alternatives such as building pilot plants etc. 

1.2 Various Types of Simulation 

In this section we shall first describe the terminology used in simulation. This 

terminology has become fairly standard in the literature on simulation. It will be 

followed by a description of various types of simulation. Note that some of the terms 

defined below have been mentioned earlier in an intuitive sense. They shall be defined 

more precisely now. 



-3-

According to Schmidt and Taylor [SCHM7O], a system is defined to be a collection 

of entities, e.g., people or machines, which act and interact together toward the 

accomplishment of some logical end. It must be stated here that the collection of 

entities depends upon the objectives of the study. For example, in the study of 

unsteady laminar flow of an incompressible fluid in a channel, the system consists of the 

velocity and pressure at any point in the fluid, but if heat transfer is also included in 

the study, the system must be enlarged to include the temperature of the fluid. We 

define the state of a system to be the collection of variables necessary to describe the 

system at a particular time, relative to the objectives of the study. A model is defined 

to be a representation of the system developed for the purpose of studying that system. 

For a dynamic system, one which changes with time, it is possible to classify the 

state variables as input and output variables of interest. The input variables relate the 

effects of the " external world" on the system while the output variables relate the effects 

of the system on the " external world". The classification takes place according to the 

following property. If the current state is known and the future input is known then 

the future state and output are determined uniquely. As a corollary it follows that the 

state variables of a system completely characterize the past of the system. For example, 

in the system of fluid flow, if the velocity and pressure are known at any time, it is 

possible to know the entire history of the motion. Unfortunately, it is not always clear 

how to choose the state variables; they may be some of the physical variables of the 

system but they need not be; further, there is no unique choice of state variables. In 

most of the physical processes the choice of the state variables may be direct and clear 

cut such as in electrical LRC circuits where the charge on each capacitor and the 

current through each inductor in the network are natural choices for state variables, but 

in some cases the choice of state variables may be extremely difficult. 
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Once the state variables are identified it is possible to write down the state 

equations in mathematical form, describing the interrelationship of the state variables. 

These equations can vary greatly in form and complexity. Time is usually one of the 

independent variables of the model. Sometimes time can take only discrete values, in 

which case the equations characterizing the model will be recursive in general. In other 

cases, time will be a real valued variable. Now if time is the only independent variable, 

the equations characterizing the model will be ordinary differential equations: in such 

cases the model is said to be lumped. On the other hand if there are other independent 

variables besides time, the equations characterizing the model will be partial differential 

equations: in such cases the model is said to be distributed. A model may contain 

random effects in which case it is stochastic, otherwise it is deterministic. We shall now 

describe various types of simulation. 

1.2.1 Discrete Event Simulation 

Discrete event simulation concerns the modeling of a system as it evolves over 

time by a representation in which state variables change only at a countable number of 

points in time. Here it is important to note that it is not necessary that a discrete 

model be used to model a discrete system and vice versa. The specific objectives of the 

study usually dictate whether to use a discrete or continuous model. Consider, for 

example, the model of traffic flow on a free way. If the characteristics and movement of 

individual cars were important, the model would be considered discrete. But if the cars 

can be treated in the " aggregate" the flow of the traffic can be described by differential 

equations in a continuous model. 

Since discrete event simulation is event driven, i.e., controlled by events happening 

at certain times, it is stochastic. Examples of discrete event simulation are customer 

service at banks, scheduling of jobs by the CPU, loading and unloading of ships at a 
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harbor etc.. There are several special languages dedicated to discrete event simulation, 

the most widely used of which is GPSS. Other commonly used languages are 

SIMSCRIPT, SIlvILIB, SIMULA, DEMOS etc.. 

1.2.2 Continuous Simulation 

Continuous simulation concerns the modeling over time of a system by a 

representation in which the state variables change continually with respect to time. 

Some of the most important applications in science and technology require the analysis 

of the behavior of a continuous system, typical areas being control system design, 

aerospace simulation, fluid flow, heat transfer analysis, petroleum reservoir simulation 

etc. In these applications the model describing the system comprises time dependent 

non-linear differential equations. The continuous system simulation languages (hereafter 

called CSSLs) are ideally suited to solve such problems. 

In this thesis the discussion will be restricted only to continuous simulation. 

1.2.3 Combined Discrete- Continuous Simulation 

Some of the real world systems can not be entirely categorized as either discrete or 

continuous, for the model describing them combines the aspects of both discrete-event 

and continuous simulation. Such a simulation is called combined discrete-continuous or 

hybrid simulation. 

Pritsker [PRIT74] and Pritsker and Pegden [PRIT7O] describe the three 

fundamental types of interactions which can occur between discretely changing and 

continuously changing state variables: (I) a discrete event may cause a jump in the value 

of a continuous state variable, (ii) a discrete event may cause altering of relationships 

involving a continuous variable at a particular time, and (iii) a continuous state variable 

may assume some critical value thus causing a discrete event to occur or to be 



scheduled. 

1.3 1.3 Continuous Systems Simulation Languages (CSSL) 

Continuous systems simulation languages are today available on computers 

varying from mainframes to micros. They are invaluable software aids in simulating the 

models of continuous systems. Most of these languages conform to the standards set by 

the Simulation Council Inc. [STRAG7]. 

Since the continuous systems simulation languages are primarily designed for 

scientists and engineers, who are not necessarily expert programmers, these languages 

are usually non-procedural languages, which express the model representing the system 

in appropriate mathematical terms. The program written in a CSSL is translated by a 

preprocessor into some intermediate code in a procedural language such as Fortran. 

Usually, the preprocessor itself is also written in Fortran. The compiled version of the 

program can then be run for a given set of data values. 

A very useful component of a CSSL is a run time interpreter. Since in most 

experiments a number of runs are made with different sets of data values, these changes 

can be conveniently effected through the runtime interpreter. Moreover, this facilitates 

one of the highly desired objectives, namely, the separation of data from the model. 

Besides the model definition language, a translator and a run-time interpreter, a 

CSSL also has a software support library which includes utilities for numerical analysis, 

simulation operators, data collection and data presentation. In addition, it must have 

an appropriate operating system interface to provide the control and commands required 

to insulate the user from the details of job sequence and control. 

Simulation models vary greatly in complexity. Some can he expressed in terms of 

a small number of well behaved ordinary differential equations (ODE), while others 



require a large number of non-linear, coupled, multi-dimensional partial differential 

equations (PDE). A continuous systems simulation language must be capable of 

handling situations on either end of the spectrum of complexity. In this connection, 

mention may be made of two languages CSSL-PsT [NILS85] and ACSL [M1TC81}. Both 

of these languages are extremely powerful with their preprocessors in Fortran and are 

available widely on mainframe computers. 

Nevertheless, continuous systems simulation languages generate a massive amount 

of code, not all of which is essential. Thus, if an expert programmer writes the code for 

simulation in Fortran it is likely to be smaller and more efficient than the corresponding 

code generated by the translator. This fact, coupled with the enormous complexity of a 

simulation model, can result in unacceptable execution times. A case in point is 

petroleum reservoir simulation where one has to deal with a large number of PDE's. As 

pointed out by Absar [ABSA85], a possible remedy to cut down the execution time is to 

use supercomputers. He has compared the performance of simulators (not to be 

confused with CSSLs) on various machines, both scalar and vector, and found that the 

computation times are reduced by an order of magnitude on vector machines, thereby 

raising the possibility of exploring problems which would not have been possible on 

scalar machines. With the increasing use of CSSLs in government, industry, universities 

and other organizations, the need to port the leading CSSLs to supercomputers has 

become obvious. In the present work an attempt has been made to port CSSL-IV to the 

Cyber 205 supercomputer. As a natural corollary, a limited number of integration 

routines have been vectorized. 
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1.4 A Brief Summary of the Thesis 

In chapter 2, we have briefly traced the evolution of continuous systems simulation 

languages from the days of their inception to the present day. Before the advent of 

digital computers continuous systems were simulated on analog computers. 

Accordingly, the structure and organization of early CSSLs was block oriented. 

Programs of this type came to be known as digital analog simulators. The last major 

language using the block diagram approach was 1130 CSMP which was developed for 

the IBM 1130. An example illustrating the simulation of liquid cooling, using 1130 

CSMP, has been given. Finally some observations have been made on availability of 

CSSLs on microcomputers. 

Chapter 3 describes the structure and organization of CSSLs. The purpose of this 

chapter is partly to acquaint the reader with the use of CSSLs. With that aim in view, 

an annotated example, simulating the boundary layer flow of an incompressible, viscous 

fluid along a fiat plate, using ACSL (Advanced continuous simulation language) is given. 

Finally, an evaluation of CSSLs as a programming language is made. The strengths of 

the CSSLs have been highlighted and their drawbacks have been pointed out. 

Chapter 4 is devoted to vector computing. Since vector computing is a very 

recent area of research, a fairly detailed account is given of its various aspects. After 

giving some of the historical developments of supercomputers, the architecture of the 

Cyber 205 is described. This is followed by a discussion of techniques for the 

optimization of scalar and vector codes. 

In chapter 5, the problems of porting CSSL-1V to the Cyber 205 supercomputer 

are illuminated in as much detail as was permissible under the circumstances. Because 

of the proprietary reasons it was not possible to give a detailed account of problems 

encountered in particular routines, nor was it necessary. 
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Next, a brief discussion is presented of attempts at vectorizing the appropriate 

algorithms. Because of time and other constraints, it was possible to vectorize only a 

limited number of integration routines. Again, because of proprietary reasons, no 

description is made of the vectorization of individual routines. However, some general 

discussion has been given explaining the crucial issues behind vectorization. The 

Runge-Kutta fourth order method was chosen to illustrate the ideas. 

Chapter 6 consists of some benchmarks and case studies. Comparisons of timings 

of various versions of code on the Cyber 205 on the one hand and the scalar code on 

other machines on the other hand are made. Applicability and suitability of CSSL-W 

on the Cyber 205 for various kinds of problems has been investigated. Due mainly to 

time constraints the scope of these problems was again limited. 

Specifically, the use of CSSL-W on the Cyber 205 to study the models 

characterized by second order linear partial differential equations has been considered. 

It is found that parabolic and hyperbolic PDEs, exemplified by the classical problems of 

heat conduction in a bar and vibration of strings, seem to lend themselves very well to 

the supercomputer. But the same can not be said about elliptical PDEs. Since machine 

overflow was experienced in studying elliptical PDE on the Cyber 205, which has as 

wide range of floating point numbers as any other machine, a mathematical 

investigation was undertaken of the classical Poisson's equation using the method of 

lines. It was discovered that CSSLs are not the best tool, or to be more precise, 

marching/shooting methods are not the best methods, for solving elliptical PDEs 

numerically. This simple fact, to the best of our knowledge, has not been pointed out, 

explicitly at any rate, in the literature before. 

Nevertheless, we were able to solve a very important problem of 

magnetohydrodynamic flow, using CSSL-W on the Cyber 205, for values of the 



Hartmann number up to 20. This problem remained unsolved for a long time because 

of the great complexity of the analytical solution and has been solved numerically only 

recently [SING84]. 

Finally a technique which converts a non-linear two point boundary value problem 

(BVP) to a set of initial value problems (fliPs) has been given, using the example of 

squeezing of fluid between parallel plates. This technique, which is based on Newton-

Raphson's iterative scheme, is particularly effective on a supercomputer, because of the 

multiplication of the number of state variables in the process of converting the B\P to 

PVPs. Using CSSL-IV and the above mentioned technique, several new solutions of the 

problem have been discovered for expansion of the fluid between the plates which have 

not been reported in the literature. The theoretical basis for the existence of these 

solutions is discussed. 

In Chapter 7 the conclusions of the investigations made in this thesis are 

presented. Finally in Chapter 8, a brief discussion of directions for future research is 

given. 



2. CSSLS - A BRIEF HISTORY 

2.1 Introduction 

Continuous systems simulation languages have been in vogue for nearly thirty 

years. They have undergone some basic changes over these years. In the next section 

we have traced the evolution of CSSLs from the days of analog computers to the 

present day. In section 2.3, an example is presented of the language 1130/CSMP which 

represents a watershed mark in the style of CSSLs. Finally in section 2.4, some 

observations have been made on the availability of CSSLs on microcomputers. 

2.2 Evolution of CSSLs 

Historically, the simulation of continuous systems was carried out on analog 

computers because they provide a natural vehicle for implementing the basic operations 

such as addition, integration and multiplication using appropriate electrical circuits. 

Another reason for preferring analog computers to digital computers was the high cost 

and slow speed of digital computers at the time of their inception. 

However as the cost and speed factors started favoring digital computers, a need 

was perceived for developing programs for simulation of continuous systems on digital 

computers. Since, at this time, analog simulation was still very much in vogue, the first 

few attempts centered around the idea of transferring the analog computer programs to 

digital computers. Thus, the digital computer was used to simulate an analog 

computer. 



Selfridge [SELFS5] published the first paper on digital-analog simulation in 1055. 

The program, written for an IBM 701, contains a single subroutine for each analog block 

corresponding to the basic operations of summing, integrating and multiplying, and is 

classified as an interpreter. Programs of this type are called digital-analog simulators. 

It may be mentioned here that for a digital computer, integration is an approximate 

process. A poorly selected integration routine can result in unacceptable levels of errors. 

At the time above mentioned paper was published, numerical analysis techniques for 

digital computers were still in their infancy. It was, therefore, not surprising that the 

primitive SImpson's rule was used for numerical integration of differential equations. 

A number of other digital-analog simulators were later developed which were 

usually interpreters and were improvements in that they used better numerical 

integration algorithms and also allowed new blocks. In 1963, Gaskill, Harris and 

McKnight announced DAS (Digital Analog Simulator) which operates like a compiler. 

However, the first digital simulator to gain wide-scale use was developed by Peterson 

and Sampson [PETE64] who christened it MIDAS (Modified Integration Digital Analog 

Simulator). MIDAS uses a fifth order Mime predictor-corrector integration and 

automatically varies the step size of integration. 

Not to be outdone, Brennan and Sano [BREN64} came up with PACTOLUS (the 

name of the river in which MIDAS washed away his curse) in 1964. It was implemented 

on an IBM 1620 and was designed to give the programmer hands on operation similar to 

analog simulation. A larger version of PACTOLUS was written for the IBM 7090 at the 

same time. 

IBM took another step forward, when in 1965 it initiated the development of 

Continuous System Modeling Program (CSMP). A small system version (1130 CSMP) 

based on PACTOLUS was developed for the IBM 1130 and it included CRT-graphic 
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input/output. 

By this time it became obvious that adherence to block oriented style of programs 

was imposing a restriction which did not allow the model to be expressed in a natural 

manner e.g., by means of a set of differential equations. IBM again took the lead and, 

as a result, two truly continuous system simulation languages were developed, namely, 

DSL/90 for the IBM 7090 by Syn and Linebarger [SYN6C] in 1965, and S/360 CSMP by 

Brennan and Silberberg EBRENG7] for the IBM 360 series in 1967. In both of these 

languages, mathematical equations replaced the blocks for analog simulation. 

The proliferation of continuous systems simulation languages continued, and by 

1967 more than thirty different simulation programs or languages had been reported. 

With the idea of promoting orderly growth and prescribing certain standards, the 

Society for Computer Simulation (SCS, formerly SCI) proposed CSSL (Continuous 

Systems Simulation Language) in 1967 [STRAC7]. The impact of these 

recommendations became evident as new languages conforming" to the prescribed 

standards evolved and have practically replaced the earlier languages of continuous 

simulation. In this respect one may mention ACSL [MITC81], CSSL-W [NILS8S], 

DSL/VS [DYNA85]. ACSL and CSSL-W are available on nearly all mainframe 

computers. IBM has decided to promote its own simulation language DSL/VS. 

Since 1130/CSMP represents the ultimate in digital-analog simulation and is also a 

watershed mark in CSSLs, we shall present a brief description of the language along 

with an example of its use in the next section. This example will highlight the 

differences in the programming approach followed in the earlier CSSLs represented by 

1130/CSMP and in the modern CSSLs which have been described in greater detail in 

the next chapter. 



2.3 The 1130 Continuous System Modeling Program (1130/CSMP) 

Problems in 1130 CSMP are programmed as block diagrams. The block diagram 

is reduced to a set of statements with each block corresponding to a statement. There 

are special sheets for coding the statements. The statements are key-punched and 

loaded into a computer as an input deck. There are 25 block types in 1130/CSMP, each 

of which is represented by a symbol in the block diagram and by a character in the 

programming language. Five of the most commonly used block types along with their 

representations are shown in Figure 2.1. 

Because of the ability of digital analog simulators to add and integrate voltages, 

they are particularly adept at solving linear differential equations with constant 

coefficients. As an illustration, consider the cooling of liquid with initial temperature of 

2000 and surrounded by a body of air at a constant temperature of 800. 

Newton's law of cooling states that the rate at which an object cools is 

proportional to the difference in temperature between the object and the surrounding 

medium. Thus if T (t) denotes the temperature of the cooling agent at time t and C is 

the constant temperature of the surrounding medium, according to Newton's law 

dT 

dt 
= — k(T - C), 

where k is a positive constant. The constant k depends on the properties of the liquid. 

We have chosen k = 1.1/hr. 

The differential equation of T is rearranged to minimize the number of blocks as 

dT 

dt 
=k(C—T). 
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This  eliminates one sign inverter. An 1130/CSMF block diagram to solve the 

stated problem is shown in Figure 2.2. Based on block data, the program is now written 

on two coding forms. One form, the configuration form is used to prepare cards 

describing the blocks and their interconnections. The other form is for initial conditions 

and parameter data associated with the blocks. In Figure 2.3 the coding for cooling 

problem is shown. 

On the configuration data form, there is one line for each block. For the sake of 

clarity, a name can be given to the output of any block in columns 1-16. The block 

numbers appear in columns 10 and 20 and the corresponding characters appear in 

column 30. Three fields are provided to record the numbers of the input blocks. Up to 

75 blocks numbering from 1-75 can be used. However they can be assigned arbitrary 

numbers and can be arranged in any order. The block numbers must be entered right 

justified. 

All parameters of the problem are initialized to zero so the fields for unused 

parameters can be left blank. Names can be assigned to each set of parameters in 

columns 1-16. The block numbers and the input parameters associated with them must 

appear in columns 10-20, 26-35, 41-50 and 56-65 respectively. The parameters are 

entered as 1-6 decimal digit numbers. The use of a decimal point is compulsory. 

The program deck is prepared by punching one card for each line on the coding 

forms. The deck is composed of three sections: (i) JCL cards, (ii) configuration deck and 

(iii) parameter cards, in that order. A blank card separates each section. Also a blank 

card is placed at the end of the parameter cards. 

After a job is submitted, the computer responds by printing several messages at 

the console asking user to furnish the information about (i) the time interval for 

integration, (ii) the total time for the run, (iii) the block outputs to he tabulated and 
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(iv) the time intervals at which results are to be printed. Also if the installation has 

plotter facilities, information is sought about the blocks to be plotted together with the 

maximum and minimum values of the plotter. 

2.4 CSSLs on Microcomputers 

With the proliferation of microcomputers it was inevitable that a CSSL would be 

made available on a microcomputer. Indeed all the major modern CSSLs are now 

available on personal computers. The continuous systems simulation language ISIM 

deserves a special mention because it has been designed to run exclusively on a personal 

computer [CR0 S84a]. 

ISIM is similar to other prominent languages available on the mainframe 

computers such as ACSL, CSSL-W, though, of course, one must hasten to add that it is 

not as powerful as the latter. Nevertheless ISIM has several new features which are very 

convenient. Besides providing the usual blocks (see the next chapter for organization of 

CSSLs), it also provides an extra control block which permits the evaluator to exercise 

better control over experiments. It also has nice interactive facilities thanks due to 

these facilities being essential part of current microcomputers systems. Thus the 

evaluator can immediately accept or reject an experimental run on the basis of graphical 

output. The main disadvantage of ISIM is that it can not handle complex models. At 

the time of writing, it appears that there is no provision for the use of arrays, which 

greatly hinders the simulation of models represented by partial differential equations and 

boundary value problems. 

Thus ISIM on the microcomputers and CSSL-IV on the Cyber 205 represent the 

two extremes in terms of handling complexity of models to be simulated. Whereas 

CSSL-W on the Cyber 205 is capable of solving the most complex problems, ISIM can 

only solve relatively simple problems. Precisely because of this reason, ISIM is an 
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excellent  tool for introducing the fascinating world of continuous simulation. 

With the passage of time, as microcomputers gain in speed and power and new 

chips are designed, it is expected that larger subsets of modern CSSLs will be made 

available on microcomputers thus making the computing power to simulate more 

realistic models available to a larger section of people. It bodes well for future of 

continuous simulation. 



3. CONTINUOUS SYSTEMS SIMULATION LANGUAGES 

AN OVERVIEW 

3.1. Introduction 

In the present chapter an overview of the continuous systems simulation 

languages, which are currently in vogue, is presented. First the structure and 

organization of CSSLs is described in sufficient detail for a novice user to program in 

CSSL. The salient features of CSSLs are highlighed next by considering the classical 

example from fluid dynamics of boundary layer flow past a flat plate. For this purpose, 

use has been made of the continuous systems simulation language ACSL which is similar 

to CSSL-W. Finally, a brief review is made of data types and sequence control 

mechanisms in CSSLs. 

3.2. Structure and Organization of CSSLs 

According to the specifications of a CSSL laid down by the Society for Computer 

Simulation, the simulation must comprise two sections: The model definition and the 

run-time commands. The advantage of this two part structure is that once the model is 

defined, it can be retained and analyzed repeatedly for different sets of data using the 

run-time commands. This separation of the model from experimentation has been 

implemented in nearly all modern CSSLs. Typically, a CSSL fulfills this requirement by 

providing a number of subsystems. Thus, CSSL-W, for example, consists of the 

following five major subsystems: 

- 21 - 
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1.  Model Definition Language - The language allows the user to express 
the model in equation form using the simple mathematical operation 
notation. 

2. Translator - converts the model definition into a syntactically 
correct set of programs in an intermediate procedural language such as 
FORTRAN. The programs are then compiled into computer executable 
form. 

3. Software Support Library - provides an extensive set of utilities for 
numerical analysis, linear algebra, simulation operators, data collection and 
data presentation (graphics etc.) 

4. Run Time Monitor - provides the user interface for controlling the 
simulation experiments. The user can change the parameters of the problem 
at run-time without compiling the model again. Also the results can be 
displayed graphically at run-time. 

5. Operating System Interface - provides the control and commands 
required to insulate the user from the details of job sequence and control. 

The model definition structure of a CSSL partitions the problem into natural and 

distinct regions (i.e., blocks) corresponding to hierarchies which appear naturally in 

model definition. In this sense, modern CSSLs are block structured languages as 

opposed to the block-diagram languages. Directives are used to define the blocks. Their 

use also improves model readability and eases model definition as well as facilitating the 

translation by informing the translator of model structure. The outline of the 

hierarchical structure is shown in Figure 3.1. The following paragraphs describe the 

individual blocks and their organization and context. 

PROGRAM block 

The purpose of the PROGRAM-END block structure is to identify and delineate 

the extent of the user's simulation program. The word PROGRAM is a key word and 

must be included, though when used after END, it merely serves as a comment to 

identify the block terminated by END and is not required. 
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PROGRAM  (title) 

INITIAL 

<Statements performed before the run 

begins. State variables do not contain 

the initial conditions yet.> 

END INITIAL 

DYNAMIC 

DERIVATIVE <name> 

<Statements needed to calculate 

derivatives of each INTEG 

statement. The dynamic model> 

END DERIVATIVE 

<Statements executed every communication 

Interval> 

END DYNAMIC 

TERMINAL 

<Statements executed when the terminating 

condition TERMT becomes true> 

END TERMINAL 

END PROGRAM 

Figure 3.1: Hierarchical structure of a CSSL 
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Title  can be any string of text used to identify the simulation and is useful for 

documentation purposes. 

INITIAL Block 

The purpose of the INITIAL-END block structure is to delineate and identify the 

extent of the statements and commands defining the action to be taken in setting up or 

initializing the user's simulation. The word INITIAL is a keyword and must be 

included, though when used after END, it acts as a comment to identify the block and 

is not required. 

The initial section includes all data definition statements for declaring and 

initializing parameters, constants, arrays and empirical table functions (The data types 

in CSSLs are described in detail in Section 3.4). The INITIAL region of a simulation is 

normally executed once just after a START directive is issued at run-time. All the 

executable code within the INITIAL region is procedural in nature and is executed in 

the sequential order. Branching into the INITIAL region is allowed by using a labeled 

statement. This feature is useful in an iterative model which occurs, for example, in 

optimization studies or parametric studies. 

DYNAMIC Block 

The purpose of the DYNAMIC-END block structure is to delineate and identify 

the statements and structures used to specify the system dynamics. It can be thought 

of as a large REPEAT UNTIL loop of Pascal with each iteration through the dynamic 

region incrementing the independent variable (usually the time) by an amount specified 

by the communication interval. At each communication interval, the solution is 

sampled, data saved for graphics output and outputs generated. 
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The  keyword DYNAMIC is required, though when used after the word END it 

acts as a comment to identify the block and can be omitted. 

The DYNAMIC region must contain at least one DERIVATIVE block plus control 

and data collection information. Control is needed to terminate the segment of 

simulation within the DYNAMIC block, and data collection information is necessary to 

specify the step-size. Starting with time to, the model solution is advanced by a value 

of communication interval for each iteration through the DERIVATIVE block and is 

thus calculated at times to, to + CI, to + 2*CI ... etc. 

DERIVATIVE Block 

The purpose of each DERIVATIVE block is to represent the parallel dynamics of 

the system or subsystem at hand. Each DERIVATIVE block has its own integration 

control vector specifying the independent variable, sample rate, integration algorithm 

(modern CSSLs have over a score of integration algorithms ranging from the primitive 

Euler's method to the highly sophisticated Hindmarsch's stiff integration method) and 

communication interval. Each system or subsystem has a corresponding DERIVATIVE 

block identified by a unique name restricted to a certain number of characters (6 for 

CSSL-IV). 

Statements in the DERIVATIVE block can be written in any order since they 

represent parallel events. The translator of the language takes care to sort these 

statements in a manner as to produce correct code for the computer. Cyclic or recursive 

code (e.g., A = B, B = C, C = A) must be avoided as this can not be sorted. The 

translator attempts to detect cyclic code, but it is user's responsibility to ensure that no 

such code occurs in the DERIVATIVE block. 
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TERMINAL  Block 

The purpose of the TERMINAL block is to allow the specifications of any post-

processing needed to filter or evaluate the data generated by the DYNAMIC block. 

Sometimes a branch is made back into the INITIAL block to repeat the experiment with 

a different set of data (An illustration is given in the annotated example given in the 

next section). TERMINAL is a keyword and is required, though in the accompanying 

END statement it is used as a comment to identify the block and can be ignored. 

RUN-TIME MONITOR 

Having defined the model definition of a CSSL language, next we turn our 

attention to experimentation aspects of the language. .As stated earlier in this section, a 

CSSL clearly separates model definition from model experimentation. For this reason, a 

run-time monitor is provided which reads and interprets user commands to modify or 

display variables or parameters, initiate experiments plus collect and display data. For 

interactive users, usually CSSLs support the " break key" whereby an experiment can be 

interrupted without leaving the CSSL environment. 

3.3. An Annotated Example 

Three continuous systems simulation languages are available at the University of 

Calgary, Calgary: ACSL, CSSL-IV and Bedsocs. CSSL-IV and Bedsocs are available on 

the Honeywell Multics, whereas CSSL-IV and ACSL are available on the Cyber 175. To 

get a flavor of a CSSL, we have chosen ACSL to simulate the classical problem of 

boundary layer flow in hydrodynamics. 

Consider the flow of a viscous, compressible fluid past a flat plate (Figure 3.2). 

The fluid is assumed to have a constant velocity U away from the plate. Due to 

viscosity of the fluid, the fluid particles will adhere to the plate and this will give rise to 



Figure 3.2 

Boundary layer flow along a flat plate 



- 28 -

a  boundary layer near the plate. By using a similarity transformation the Navier-Stokes 

equations governing the flow can be simplified to the following single non-linear ordinary 

differential equation 

1" + 1!" = 0. 

The boundary conditions on f are 

f (0) = 0, f'(o) = 0, 1' (oo) = 2. 

This problem was first treated by Blasius (see Schlichting [SOHL68]). It is a 

difficult two-point boundary value problem because of the asymptotic boundary 

condition at infinity. These difficulties have been discussed by Adams and Rogers 

[ADAM7S], who have pointed out that in order to find the missing initial condition 

f"(0), one must first choose a smaller range of the independent variable 77 and then 

extend it to a reasonable value only after an appropriate guess of f  1 (0) has been 

found; otherwise the solution may diverge. Also a criterion function, equal to 

I, 2() + II, 2() 

must be minimized to obtain the exact value of 1" (0). 

Thus at the experimentation level, there are two parameters which must be varied, 

the range of independent variable i, and the trial value of I" (0). Once a reasonable 

starting value of I" (0) has been found, the value of 71. can be extended, and a 

Newton like iterative scheme can be used to locate the value of f" (0) precisely. 

An ACSL program listing for solving the abovementioned problem is given in 

Figure 3.3. 
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PROGRAM BOUNDARY LAYER FLOW ALONG A FLAT PLATE 
COMMENT 

'I 

I' 
PURPOSE: TO SIMULATE THE BOUNDARY LAYER FLOW ALONG A FLAT 

PLATE. 
'I 

I' 
I  

'I 

I  

I  

I  

I' 

I  I  

METHOD: A SHOOTING METHOD IS USED TO SOLVE A TWO-POINT if 

BOUNDARY VALUE PROBLEM WITH ASYMPTOTIC BOUNDARY " 
CONDITIONS. If 

REMARKS: THE PROGRAM SOLVES THE TWO POINT BOUNDARY 
PROBLEM 

F''' + F * F'' = 0 
WITH THE BOUNDARY CONDITIONS 

F(0) = 0, F' (0) = 0, F(INEINITY) = 2 

IF IOPT 0, NO ITERATIONS TAKE PLACE AND TEE 
VALUES OF F', F'' AND F'**2 + E''**2 ARE 
PRINTED AFTER A RUN OF THE SIMULATION. 
IF IOPT = 1, ITERATIONS TAKE PLACE AND MISSING 
INITIAL CONDITION IS DETERMINED. IOPT TEEN CAN 
BE SET TO TWO TO GET THE EXACT SOLUTION. 
IF IOPT = 2, NO ITERATION TAKES PLACE, THIS 
OPTION MUST BE USED ONLY WHEN EXACT MISSING 
INITIAL CONDITION IS KNOWN. 

VALUE 

INITIAL 
INTEGER 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 

Lb.. 
END 

ITER, ITMAX, IOPT 
IOPT = 0 
EPS = 1.OE-10 
ITMAX = 20 
ETAMX = 2.0 
F2 = 2.0 

I  

I  

$ "OPTION PARAMETER" 
$ "ACCURACY CRITERION OF CONy" 
$ "MAXIMUM NO OF ITERATIONS" 
$ "NUMERICAL INFINITY" 
$ "GUESSED VALUE OF F'' 

INITIALIZE THE VARIABLES ( 
FO = 0.0 
DFO = 0.0 
D2FO = F2 
ITER = 0 
DELTA = 0.001 
CONTINUE 
$ "OF INITIAL" 

Figure 3.3 
ACSL program for the boundary layer flow 

along a flat plate. 
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DYNAMIC 
C INTERVAL CI = 0.125 
DERIVATIVE FLOW 

VARIABLE ETA = 0.0 
D2F = INTEG(-F*D2F, D2FO) 
DF = INTEG(D2F, DFO) 
F = INTEG(DF, FO) 

END $ "OF DERIVATIVE" 
TERMT (ETA . GE. ETANX) 

END $ "OF DYNAMIC" 

TERMINAL 
IF (IOPT . EQ. 2) GOTO L99 
CEN = (DF - 2.0)**2 + D2F**2 
PRINT L75, ITER, DF, D2F, CEN 

L75. FORMAT (1X, " ITER ", 1X,I3,4X,"DF ".. 1X,E15.8,4X,. 
"D2F =", lX, E15 . 8, 4X, "CEN ", lX, F15 . 8) 

IF (IOPT . EQ. 0) GOTO L99 
ITER = ITER + 1 
IF (ITER . GT. ITMAX) GOTO L98 
IF (ITER .EQ. 1) GOTO L20 
DDE = (DF - DF1)/(D2FO - D2FO1) 
DD2E = (D2F - D2F1)/(D2FO - D2FO1) 
DELTA = - ((DF-2 . 0) *DDE+D2E*DD2F)/(DDF**2+DD2F**2) 
IF (ABS(DELTA) . LT. EPS) GOTO L99 

L20. DEl = DE 
D2E1 = D2F 
D2FO1 = D2FO 
D2FO = D2FO + DELTA 
GOTO L10 

L98. PRINT L78 
L78. FORMAT (1X,"NO CONVERGENCE COULD BE ATTAINED.") 
L99.. CONTINUE 
END $ "OF TERMINAL" 

END $ "OF PROGRAM" 

Figure 3.3 (cont.) 
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We  shall be using this example to highlight some of the key features of a CSSL. 

The PROGRAM directive is the first statement in a CSSL program. It allows a 

title which can be used to specify the task of simulation. Any language must allow for 

comments for the purpose of documentation. In ACSL and CSSL-IV comments either 

start with the keyword COMMENT, or they are embedded within a pair of double 

quotes. They can be placed anywhere on a newline or after a dollar sign on a line 

containing another statement. Incidentally a dollar sign acts as a statement delimiter. 

The declarations and initializations of variables are placed in the INITIAL block. 

Since in scientific and technological applications, most of the variables are real, 

designers of CSSLs have assigned real as the default attribute of undeclared variables. 

The identifiers IOPT, ITER and ITMAX are declared of integer type. IOPT is an 

option parameter. It is set to zero initially when the experimentation is performed to 

guess an acceptable starting value of f" (0). Once this value is found, it can be 

switched to 1 and this will trigger automatic iterations to take place, which will produce 

an exact value of f" (0). A value of 2 then can be assigned to lOFT and another run 

of the simulation will generate the values of the important physical quantities 

represented by f and f 

After the declaration section follows the section of constant identifiers. These are 

the values that can be changed at run-time without retranslation and recompilation of 

the source code. It is a good programming practice to include only those identifiers in 

the constant section which need to be varied at the experimentation level. Other 

initializations such as the values of f (0) and f'(0) must not be included in the 

constant section for reasons of security of the data. These values must be initialized 

using variable assignment statements. 
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It  is possible to have labels in any block where a transfer of control of execution is 

made, though the user must refrain from entering into the DERIVATIVE block from 

outside. The reason is that in this block the statements are unsorted and there is no 

guarantee that they will be sorted in the manner user wishes them to be, by including 

the label. All labels start with the symbol L and are followed by usually two decimal 

digits and two periods. 

In the DYNAMIC block, the keyword CINTERVAL is used to define the 

communication interval. The communication interval must be specified for every 

system and subsystem whose dynamic behavior is investigated. 

Within the DERIVATIVE block, the independent variable ETA is defined and 

assigned an initial value. In ACSL and CSSL-W the default name and value of 

independent variable are T and 0 respectively. If any other name is used, it must be 

explicitly defined by using the VARIABLE directive. 

INTEG is probably the single most important directive in any modern CSSL. It 

accepts two parameters, the variable to be integrated and the initial value, and returns 

the integrated value. INTEG is a highly versatile directive in that it allows a large 

number of integration algorithms to be invoked. The choice of algorithms can be made 

within the source code or at run-time by assigning appropriate values to the parameters 

defining the algorithms. This facility is particularly convenient and useful. 

To complete a single run of the simulation, the directive TERMT is used. It 

accepts a boolean expression, say B_cxp, as the input parameter. The run is terminated 

as soon as B-exp becomes true and the control is passed to the TERMINAL block. As 

long as B_cxp remains false, the DERIVATIVE block is executed repeatedly with the 

value of the independent variable incremented by CI each time. 
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All  the post-processing of the information generated in the DYNAMIC block is 

done in the TERMINAL block. The amount of processing done for the present problem 

is determined by the option parameter IOPT. Initially the value of lOFT is 0, so the 

program outputs the value of the criterion function. By checking this value, a better 

value of f" (0) can be guessed for the next try. When a reasonable value of 1" (0) is 

obtained, lOFT is set to 1. This invokes an iterative scheme, which calculates a better 

approximation of f "(0) for the next iteration. Control is sent back to INITIAL block 

and the loop is repeated until the difference in the values of f " (0) at two consecutive 

runs becoms less than some prescribed tolerance factor. Finally, if lOFT is set to 2, 

another run is made to produce the final results which can be retrieved at run-time. 

In order to prevent the program from lapsing into an infinite loop, an upper limit 

is set on the number of runs. If the number of runs exceeds the limit, an error message 

is printed and the program is terminated. 

In Figure 3.4, the output of the program is given. The output includes runtime 

commands and some of the generated data and plots. Unfortunately, NOS on the 

Cyber 175 does not permit the kind of facilities offered by Multics or Unix on Honeywell 

and Vax respectively. So it was not possible to obtain an audit file of the terminal 

session. Therefore, some of the information displayed on the screen (e.g., the output 

produced by format L79) was not included in the file containing the simulation output. 

The run-time command SET TITLE displays the title of simulation on every page 

of the output. The command DISPLY (DISPLAY in CSSL-W) is quite useful. After the 

end of any run, it is possible to get the value of any identifier included in the program 

displayed on the screen. This value also goes in the file containing the simulation 

output. Thus, after the automatic iterations take place in the given example, it is 

possible to get the exact value of f 11(0) displayed by issuing the DISPLY (DISPLAY in 
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SET TIThE="BOIJNDARY LAYER FLOW PAST A FLAT PLATE" 
START 
INPUT IOPT=1, ETANX=4.99999999999 
START 
DISPLY D2FO 

D2FO 1.32822935 
INPUT IOPT=2,F2=1. 32822935 
PREPAR ETA, F, DF 
OUTPUT ETA,F,DF 
START 

ETA 0. EO. DE 0. 
ETA 0.12500000 F 0.01037634 DE 0.16601072 
ETA 0.25000000 F 0.04149282 DF 0.33177051 
ETA 0.37500000 F 0.09328235 DE 0.49663767 
ETA 0.50000000 F 0.16557173 DF 0.65956007 
ETA 0.62500000 F 0.25803246 DF 0.81911454 
ETA 0.75000000 F 0.37013853 DF 0.97357859 
ETA 0.87500000 F 0.50113534 DF 1.12103849 
ETA 1.00000000 F 0.65002437 IDE 1.25953148 
ETA 1.12500000 F 0.81556726 DF 1.38721142 
ETA 1.25000000 F 0.99631111 DF 1.50251941 
ETA 1.37500000 F 1.19063419 DF 1.60433570 
ETA 1.50000000 F 1.39680824 IDE 1.69208889 
ETA 1.62500000 F 1.61307068 DE 1.76580390 
ETA 1.75000000 F 1.83769860 IDE 1.82608078 
ETA 1.87500000 F 2.06907586 DE 1.87400932 
ETA 2.00000000 F 2.30574643 IDE 1.91103646 
ETA 2.12500000 F 2.54644937 IDE 1.93881064 
ETA 2.25000000 F 2.79013436 IDE 1.95902859 
ETA 2.37500000 F 3.03595924 DE 1.97330585 
ETA 2.50000000 F 3.28327368 IDE 1.98308381 
ETA 2.62500000 F 3.53159367 DE 1.98957707 
ETA 2.75000000 F 3.78057191 IDE 1.99375765 
ETA 2.87500000 F 4.02996790 IDE 1.99636698 
ETA 3.00000000 F 4.27962094 IDE 1.99794575 
ETA 3.12500000 F 4.52942731 IDE 1.99887171 
ETA 3.25000000 E 4.77932234 DF 1.99939814 
ETA 3.37500000 F 5.02926708 IDE 1.99968825 
ETA 3.50000000 F 5.27923883 IDE 1.99984321 
ETA 3.62500000 F 5.52922480 DF 1.99992345 
ETA 3.75000000 F 5.77921805 IDE 1.99996372 
ETA 3.87500000 F 6.02921488 IDE 1.99998332 
ETA 4.00000000 F 6.27921345 IDE 1.99999255 
ETA 4.12500000 F 6.52921282 IDE 1.99999678 
ETA 4.25000000 F 6.77921255 DF 1.99999865 
ETA 4.37500000 F 7.02921244 IDE 1.99999945 
ETA 4.50000000 F 7.27921239 IDE 1.99999979 
ETA 4.62500000 F 7.52921237 IDE 1.99999992 
ETA 4.75000000 F 7.77921237 IDE 1.99999997 
ETA 4.87500000 F 8.02921237 IDE 1.99999999 
ETA 5.00000000 F 8.27921237 IDE 2.00000000 

SET NPXPPL=50, NPPPL=50 , NGXPPL25, NCYPPL=25 
PLOT F 

Figure 3.4 
Output from program given in Figure 3.3 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 8D 
BOUNDARY LAYER FLOW PAST A FLAT PLATE 

86/04/24. 19.12.59. PAGE 2 

F A 0. 5.000000 
ETA XAXIS 
0. A  

A 

A 
A 

2.500000 

5.000000 

A 
A 
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A 
A 
A 
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A 
A 
A 
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A 
A 
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A 
A 
A 
A. 

A. 
A 

A 

A 
A 
A 
A 
A 

A 
A 
A 
A 

A 
A 

10.00000 
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ACSL RUN-TIME EXEC 
BOUNDARY LAYER FLOW 

PLOT DI? 

ACSL. RUN-TIME EXEC 
BOUNDARY LAYER FLOW 

VERSION 1 LEVEL 8D 86/04/24. 19.12.59. PAGE 3 
PAST A FLAT PLATE 

VERSION 1 LEVEL 8D 
PAST A FLAT PLATE 

86/04/24. 19.12.59. PAGE 4 

DI? A 0. 1.000000 
ETA XAXIS 
0. A  

2.500000 

A 

A 
A 

A 
A 

A 
A 

A 

A 
A 

2.000000 

A 
A 
A 
A. 

A. 
A. 

 A 
A 

A 
A 
A 
A 

A 
A 
A 
A 

A 
A 
A 
A 
A 

5.000000   

A 
A 
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A 

A 
A 
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CSSL-W) command. 

Now if the purpose of the simulation was to get the value of f "(0) only, the 

simulation session can be ended by typing the keyword STOP(or HALT in CSSL-1V). 

However, more often than not, the results of a simulation are required in tabular or/and 

graphical foi'm. To obtain these results, first the value of F2, the guessed value of 

f "(0) is updated and the value of lOFT is set to 2 by using the INPUT command. 

The INPUT command, in fact, can change the value of any identifier defined as 

CONSTANT in the INITIAL block. Moreover, INPUT can be used to specify other 

parameters of the simulation such as the algorithm of integration etc.. 

A run of the simulation is triggered by submitting the command START. If 

graphical output is sought then the graphical data must be saved or 'prepared' on a file 

before the command START is issued. This can be done by using the command 

PREPAR followed by the list of the variable names. On the other hand, the command 

OUTPUT enables the results to be displayed at each communication interval in tabular 

form. The OUTPUT command must also precede the START command. It may be 

mentioned that the results generated by OUTPUT command are not stored, they are 

simply output and displayed as soon as they are computed after the START command. 

ACSL provides excellent facilities for plotting the graphs on an on-line printer. It 

is possible to set the parameters related to plot at run-time. The plots can then be 

obtained by using the command PLOT. The tabulated output and the on-line printer 

plots are shown in Figure 3.4. 

3.4. Data Types in CSSLs 

CSSLs support a number of primitive data types and most of them also support 

some structured data types. However, at the time of writing, it appears that none of 
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the  CSSLs allow user defined data types. 

A primitive data type is one of the following: 

REAL 

INTEGER 

LOGICAL 

COMPLEX 

As remarked earlier, undeclared identifiers acquire the default type real. In spite 

of the claims made on behalf of CSSL-W that it is compatible with FORTRAN 77, 

character data types are not allowed. Similarly, multi-precision floating point data 

types are not permitted. If an identifier in not of type real, it must be declared 

explicitly as illustrated in the annotated example. 

The structured data types allowed in CSSLS are 

ARRAY 

TABLE 

Arrays can be formed from any of the four primitive data types and can have at 

the most three dimensions. For an example of a program in which arrays are used see 

[COLISGJ. 

TABLE is really a directive, which represents a function defined by empirical data. 

It is usually included in the INITIAL section. The syntax of the TABLE directive is as 

follows: 

TABLE <name>, NYAR, Dl, D2, D3, <independent variable values>, 

<dependent variable values> 
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Here  NVAR is the number of independent variables, Dl is the number of data 

points for first variable, D2 is the number of data points for second variable and D3 is 

the number of data points for third variable. D2 and D3 are omitted if NVAR = 1 and 

D3 is omitted if NVAR = 2. The value of function represented by the TABLE is 

calculated for any independent variable by using linear interpolation. For example, 

consider the statement 

TABLE VEL 1, 5, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0 

It declares the function VEL of one variable with five samples of the independent 

variable. An assignment 

Z = \1EL(3.5) 

returns a value 35 for Z as a result of linear interpolation between the node points 3.0 

and 4.0. 

CSSLs also provide a number of simulation operators which perform complex 

mathematical operations such as derivatives, transfer functions, delays, filters etc., 

3.5. Sequence Control 

The sequence control mechanisms in CSSLs are straight-forward and simple. Since 

CSSLs normally use FORTRAN for their pre-processor, all the rules of FORTRAN 

apply in the construction of expressions. 

Only one construct for controlling statement execution sequence is provided, 

namely, the FORTRAN go to. The labels where transfer takes place must start with a 

L and be followed by usually two decimal digits and two periods. 

Function subprogram calls and subroutine calls are identical to FORTRAN calls. 

Any function not found in the library of CSSL simulation operators is considered as a 
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user defined FORTRAN function and is treated as such. 

3.6. An Appraisal of CSSLs 

The last time any standards were set for a continuous systems simulation language 

was in 1967. Since then, though some suggestions have been made for new CSSL 

standards and they have been even implemented in new CSSLs, the suggestions are 

more of evolutionary nature rather than revolutionary. CSSLs are very widely used in 

various disciplines of science and technology. It appears that most of the researchers 

using CSSLs are satisfied with their performance. Nevertheless, it is possible to draw 

some general conclusions about the strengths and weaknesses of CSSLs. In the present 

section we shall discuss these with ACSL and CSSL-IV in view. 

Strengths of CSSL 

(1) Since most of the users of CSSL are scientists or engineers, who are not 

necessarily expert programmers, CSSL is a very handy tool which expresses the models 

in the most logical manner using mathematical equations. 

(2) A CSSL is a non-procedural language, at least, within the DERIVATIVE block, 

therefore, the user does not have to be concerned with the order in which the equations 

characterizing the dynamic behavior of the model are written. 

(3) The user is not encumbered by type declarations which the strict discipline of a 

language such as ADA or PASCAL demands. Most of the variables used in simulation 

are real and, therefore, need not be declared. 

(4) CSSLs have a very vast library of integration routines. Each CSSL chooses as 

default, a routine, which is able to handle mild stiffness of differential equations by 

varying the step size. So unless the user is dealing with a stiff system, he does not have 



to pay attention to the integration method. The language does it for him. 

(5) A number of special simulator operators are available in CSSLs, for which a 

user would need to write the necessary software if he were to code the program in a 

general purpose language. Using CSSL it is even possible to include user defined macros 

in the program. 

(6) CSSLs provide additional data types besides the primitive types in the form of 

array and table. The latter is useful when a function is defined empirically, whereas the 

former is useful when the system is defined by means of partial differential equations. 

The partial differential equations can be changed into a set of ordinary differential 

equations by discretizatIon in which the dependent variables can be assigned to an 

array. 

(7) The programs coded in CSSLs are extremely small in size compared to the 

FORTRAN intermediate code generated by the translator. On an average, one line of 

CSSL code corresponds to 50 - 250 lines of FORTRAN code. Moreover, nearly each line 

of CSSL code bears some meaning to some essential element of the model, hence the 

user is shielded from the details of programming. He can simply concentrate on defining 

and analyzing the model. 

(8) By separating the model from experimentation, CSSLs allow user to freely 

'play around' with the parameters in a search for optimum solution. This kind of 

flexibility is normally not available in general purpose languages such as FORTRAN, 

PL/1, ADA etc.. 

(9) The on-line printer plots allow the user to accept or reject the results of a 

model without much ado. It is, of course, possible to incorporate the routines to plot 

the graphs in the programs written in general purpose languages, but the interface of 
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the  routines with the programs is not so clean. 

(10) CSSLs are widely available, at any rate in North America. For example, 

CSSL-IV is offered through Control Data Corporation's CYI3ERNET services in both 

batch and interactive environments. 

(11) CSSL is a perfect tool for teaching some aspects of numerical analysis. Since 

a number of routines, implementing a vast variety of algorithms of numerical analysis, 

are included in the software support library of CSSL, the viability of an algorithm can 

be demonstrated by using CSSL. 

Drawbacks of CSSLs 

(1) CSSLs are less efficient compared to general purpose languages. The translator 

of a CSSL generally produces some redundant code in comparison to that written in a 

general purpose language such as FORTRAN. This comparison is somewhat similar to 

that between a higher level language and assembly or machine language. 

(2) Debugging is much more difficult. If the user makes a mistake in the source 

program, he has to trace its effect in the corresponding program in the intermediate 

language. Such a program is highly unreadable in view of poor mnemonics used by the 

translator. 

(3) No provision is made for user defined data types or character data types. 

(4) The availability of only the goto construct for controlling statement execution 

sequence can result in highly unstructured programs, especially if the programs are 

large. 
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(5)  Some of the models are numerically sensitive and require a multi-precision 

arithmetic which is not provided in CSSLs. 

(6) The interpolation technique used for tables is very crude and for some models 

can produce results at an unacceptable level of accuracy. 

(7) CSSLs almost exclusively rely on shooting methods for integration. This is all 

right for 'open ended' models, i.e., those characterized by initial value problems. 

However, for numerically sensitive boundary value problems, shooting methods are not 

the most appropriate. Other techniques such as quasilinearization and finite differences 

are preferable, which are not available in CSSLs. 

(8) Occasionally, extra runs of simulation are needed to produce the desired 

results. Thus, for example, in the annotated example, it was necessary to make an 

additional run with lOFT = 2 and the exact value of f"(o). In a FORTRAN program 

of the problem, all the values would have been available and this run would be 

unnecessary. 



4. VECTOR COMPUTING 

4.1. Introduction 

With the advent of commonly available computers in late 50s, there was a 

dramatic surge in seeking solutions of several problems in science and engineering which 

had earlier defied human effort. Kascic [KASC7O] relates that in 1053 Kawaguti 

published results for the classical fluid dynamics problem of two-dimensional flow past a 

circular cylinder based on calculation time of 105 minutes using a mechanical calculator. 

He further goes on to conclude that if according to what Hamming said " The objective 

of computing is insight, not numbers", the effort of Kawaguti was a valiant effort in the 

art of computing. 

The improvement in the design of chips led to increases in the speed of computers 

and by the mid 70s, the then state-of-art computers such as IBM 360/370 were able to 

achieve a speed of more than 10 million floating point operations per second (Mflops). 

According to Kascic [KASC7O], the above mentioned problem of flow past a cylinder 

could be solved on these computers in about 102 minutes, an improvement by 3 orders 

of magnitude. Still there were number of areas with diverse kinds of problems which 

were not amenable to the computers and the methodology of computing existing in 

1070s. There was a need for not only fabricating chips with faster processors but also 

for a new and fresh methodology which has come to be known as vector processing. 

The computers on which it was possible to implement vector processing are known as 

vector computers or supercomputers.' 

- 44 - 
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Cray  Inc. was the first corporation to introduce a vector computer into the market 

with its Cray-1 model. The lead was soon followed by other corporations. Control Data 

Corporation (CDC) came up with three models in quick succession, namely, STAR 100, 

Cyber 203 and Cyber 205. Cray's latest model CRAY X-MP has proved to be very 

versatile and effective and has been installed at number of sites in North America and 

Western Europe. Sensing a need of parallel computing in addition to that of vector 

computing, CDC has developed a new architecture for its latest model ETA1O, which is 

capable of supporting as many as eight processors with vector processing capabilities. 

The model ETA1O is on the verge of installation at some sites in the USA and is 

expected to provide a major breakthrough in the simulation of various areas of 

applications. 

Not to be outdone, other companies in UK and Japan also entered the market of 

super computers. The ICL of England, for example, came up with the model ICL DAP, 

and HE? with the model Deneclor HE?. However these machines started losing favor 

because of fears of the applicability of their architectures to a general suite of programs 

[DUFF8S]. 

The Japanese computer manufacturers, namely, Fujitsu, Hitachi and Nippon 

Electric Company, on the other hand seem to pose a real challenge to companies like 

CRAY and CDC with their vector computers which have an architecture similar to that 

of Cray-1 and the Cyber 205. It is perhaps still too early to fully appreciate the impact 

of Japanese supercomputers. 

Nevertheless the presence of supercomputers is already being felt in various circles. 

The US government considers supercomputers a vital part in their defense plans. The 

scientific community has also benefited by installation of supercomputers. Several 

problems which were considered unfeasible for existing scalar computers are now within 
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the  realm of solution using supercomputers. For example, Fornberg [FORN83] has been 

able to calculate the steady (but unstable) flow of viscous fluid past a circular cylinder 

for values of Reynold's number up to 400, whereas using scalar computers it was 

possible to get the solutions for values of Reynold's number up to 100 only. As another 

example from nuclear weather prediction (N\VP), a few years ago computing resources 

restricted prediction to two or three days into the future owing to coarse resolution 

grids covering limited areas of the globe. But now it is possible to run higher resolution 

global models ten days ahead. In the field of petroleum reservoir simulation Absar 

[ABSA8S] has reported an improvement by an order of magnitude on vector machines, 

which makes it possible to examine 3-D models whereas using scalar machines only 2-D 

simulation was feasible. 

Kobos [K0B085] has listed various areas in which supercomputers are expected to 

play a decisive role in assaulting the frontiers of future research. 

4.2. Philosophy of Vector Computing 

In order to understand the philosophy behind vector computing let us consider a 

simple example of addition of two arrays each comprising 1000 elements. A FORTRAN 

code effecting the addition is 

DO 10 I = 1, 1000 

0(I) = A(I) + B(I) 

10 CONTINUE 

On a scalar machine the code would be executed somewhat along following lines 

LOAD 

LOAD 

ADD 

STORE 
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INDEX 

BRANCH 

Thus the operands A and B would be fetched individually from memory into a 

staging area called the register file. The adder unit of processor would add the two 

operands, the processor would then send the results back to memory one at a time. 

Next, a decision would be made if any more of elements remain in the arrays A and B 

to be added. So we see that on a scalar processor it would take .5 to 6 thousand 

instructions to execute. The important point is that not all functional units are working 

most of the time. To illustrate the point, when the operands from arrays A and B are 

being loaded, the adder unit is idle. 

A vector processor, on the other hand, makes optimal use of all functional units 

needed to perform the required operation. A vector machine, as a rule, has both a 

scalar processor and a vector processor. 

It is, of course, possible to alleviate some of the drawbacks which are nearly 

inevitable on the scalar machines. However, vector machines use a different 

methodology. To fully understand the stated methodology, first a description will be 

given of architecture of a vector machine, the Cyber 205 in the present case. This will 

be followed by a detailed description of techniques which make use of the architecture 

of the Cyber 205 for optimizing both the scalar and the vector code. 

4.3. Architecture of the Cyber 205 

The Cyber 205 is a superscale, high speed scientific computer system with the 

following main components 

A scalar processor comprising segmented functional units 

A vector processor containing up to four floating-point pipelines (The Cyber 
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205  at the University of Calgary has two pipelines). 

Semi-Conductor memory up to four million 64-bit words (Two million words 

at the University of Calgary). 

Peak performance on the vector processor is 800 million 32-bit floating point 

operations per second (800 MFLPs) for linked multiply and add triads with four 

pipelines (400 MFLPs with two pipelines). Figure 4.1 is a diagram of the Cyber 205. 

The central processor unit consists of three functional units 

Scalar processor 

Vector processor 

Input/Output 

A description of each of above units follows 

4.3.1. Scalar Processor 

The scalar processor on the Cyber 205 can do anything which one expects from a 

"conventional" computer: issue, decode instructions from central memory, perform 

integer and floating-point arithmetic, perform logical operations, branch from one 

address to another etc., In fact we could totally remove the vector box, the physical part 

of the machine which houses the vector processor, and still have a very fast and 

functional computer. The scalar processor also directs all the vector/string instructions 

to the vector processor for execution. 

For our purposes, it is convenient to perceive the scalar processor as consisting of 

a central part surrounded by several functional units (arithmetic units, branch units 

etc.). The central part is instrumental in locating, fetching and issuing instructions 

which requires the usage and maintenance of an instruction stack. The size of the 

instruction stack is 8 swords, where "sword", a contraction of " super word", comprises 
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eight  consecutive words of 64 bits each in memory. Instructions are loaded in units of 1 

sword at sword boundaries. In addition, there is a look-ahead feature, that tries to 

maintain the content of the instruction stack two full swords ahead, as a result the 

processing of sequential code proceeds smoothly, with no extra delays for the loading of 

new instruction swords. From the point of view of performance programming, it is 

important to realize that if a branch instruction is encountered and the target address is 

out of the stack, it takes 15 to 18 extra cycles to bring in the appropriate sword. An 

"in-stack" branch takes 8 to 0 cycles. 

The scalar processor contains five independent functional units as described in 

Figure 4.2 given below 

tea ra/ memory Ceatrol memoly 

instruction 
stock 

Vector .;— Issue 

Process Unit  Input/output] 
unit J 

 (Short sto 

 -I 

Register 
file 

Fa PEI 
Odd MltpI5 t.5k.1 5I.5k Illd. 

t=nfunctional units   

Figure 4.2: Architecture of the scalar processor 

All the functional units are segmented and capable of accepting new operands 

every cycle with the exception of the divide/square root unit which must complete each 

operation before a new one can begin. All the units can be shortstopped: shortstop is a 

process in which a calculated result can be used as input for another arithmetic unit 

before it is stored. 
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The  scalar processor can execute scalar instructions in parallel with most of the 

vector instructions provided there are no memory references generated by the scalar 

instruction for operands. To minimize memory references a set of 256 64-bit working-

registers, called register file, is provided. The source operands for any scalar instruction 

(except LOAD) come from the register file, and that is where the result ends up (except 

for STORE). References to the main memory, in the scalar mode, are made exclusively 

by LOAD/STORE instructions. 

4.3.2. Vector Processor 

The vector processor on the Cyber 205 consists of the stream unit, the string unit 

and the segmented vector pipeline units. 

The stream unit receives the decoded instructions from the scalar processor and 

controls the data streams between central memory and vector pipelines. 

The string unit performs operations on bit and byte vectors, which are used for 

control vector (described later in this chapter) and logical vector operations. 

The segmented vector pipelines are probably the most important units of the 

vector processor and are used for vector operations. Each segment can only perform a 

small part of the operation, so that each pair of operands has to be processed in several 

steps. As an example, consider a floating point add, which can be split up into following 

six independent operations. 

(1) Sign Control 

(2) Compare the two exponents 

(3) Right shift the coefficient with smaller exponent to match the 

exponents 

(4) Add the coefficients 
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(5)  Normalize the result by left shifting the coefficient 

(6) Transmit the result to a memory bus 

From this we see that there are a certain number of steps for each operation and 

they must be performed sequentially. The operands have to traverse the corresponding 

segments in the appropriate order. A different vector instruction may utilize a different 

set of segments within the same pipe, some of which may be identical to some in the list 

above. Thus each pipe can be thought of as containing several arithmetic units, each of 

which functions as an independent unit. 

If a vector processor has two pipes as at the University of Calgary, both can 

perform a given operation, the data would be evenly divided. Pipe 1 processes the odd 

numbered 64-bit operands and pipe 2 processes even numbered 64-bit operands. If the 

operands are 32 bits long, data is further divided evenly into each pipe, thus doubling 

the processing rate. 

We shall now examine in detail how vector processing works in practice. For the 

sake of simplicity we shall assume that the vector processor has only one pipe. Consider 

once again the code for adding two arrays 

DO 10 I = 1, 1000 

C(I) = A(I) + B(I) 

10 CONTINUE 

The stream unit of the processor will cause the streaming of elements of arrays A 

and B into the pipe. The first elements of A and B will arrive the pipe in certain 

number of cycles. Since the analysis on the Cyber 205 would be quite complicated, we 

have chosen a hypothetical machine, for which the above time is chosen as 2 cycles. 

Now if the vector instruction is issued at cycle time 1, we shall have the snapshots at 

cycles 1, 2 and 3 as given in Figure 4.3. During the next cycle the pair (Al, Bi) will 
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Input path (Al, Bl) (A2, B2) (A3, B3) 

(Al, Bl) (A2, B2) 

Seg 1 (Al, Bi) 

Seg 2 

Figure 4.3 
Snapshots at cycles 1, 2 and 3 
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Figure 4.4 
Snapshots at cycles 9, 10 and 11 
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advance  to segment 2, (A2, 132) will move into the pipe to segment 1 and (A4, B4) will 

be streamed into the input path. Thus at each cycle, there will be an advancement by 

one step of each pair of operands. Since there are six segments through which 

processing will take place, it is only after eight cycles that the pipe will be filled. At 

this stage (Al, 81) having been processed by the last segment will take the path back to 

memory. If we further assume that the length of output path is two cycles, the 

snapshots at, cycle time 9, 10 and 11 will be as shown in Figure 4.4. 

The first result will thus be stored in the memory at cycle time 11. From now 

onwards there will be a new result every clock cycle and a streaming of results will take 

place back to memory until the DO loop is satisfied. 

In our particular example it can be easily seen that the time for executing the loop 

N times is 

10 + N cycles 

The timing is comprised of two parts: start up time (here 10 cycles) which is 

independent of the length of the arrays to be summed and a stream rate which is 

proportional to length N. With two pipes the streaming time would be reduced to half, 

but the start up time would still be the same. The time given above was, of course, an 

oversimplification. The actual times for various operations on the Cyber 205 are given 

in Table 4.1 

Table 4.1 

Add/Subtract 51 + N 

Multiply 52 + N 

Divide 80 + 25N/4 
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4.3.3  Input/Output Channels 

The input/output system consists of 8 or 16 I/O channels, each having 32 bit 

transfer width. The maximum transfer rate on each channel is 200 megabits per second. 

Total bandwidth for the I/O system is 3200 megabits per second. The memory 

bandwidth allows simultaneous peak rate on all channels plus full speed vector 

streaming. 

4.4 Optimization of Scalar Code 

There are three reasons why optimization of scalar code is important. Firstly, 

every program contains sections of code which can not be vectorized. If a non-vector 

code is not well adapted to the scalar processor the whole program may be slowed down 

to unacceptable levels. Secondly, the user, in general, is well acquainted with other 

scalar machines before using a vector machine and thirdly, a knowledge of the scalar 

processor and its usage can lead to a better understanding and appreciation of the 

vector processor. 

To illustrate the ideas behind optimization of scalar code let us return to our by 

now familiar example of addition of two arrays represented by the code 

DO 10 I = 1, 1000 

C(I) = A(I) + B(I) 

10 CONTINUE 

4.4.1 Unoptimized code 

Let us try to hand time above code without any optimization. The assembly 

listing of the unoptimized code in META, the assembly language of the Cyber 205 is 
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LOAD 

LOAD 

LOOP ADD 

STORE 

IBXLE 

The timing of the loop is summerized in Table 4.2. One can see from the table 

that in spite of segmentation of various arithmetic units, no overlapping of operations 

took place i.e., when any segment unit was busy all other segments were idle. This is, 

of course, the worst scalar performance one can expect. The timing of a single loop is 

35 clock cycles. Since on both the scalar and vector processor of the Cyber 205, a single 

cycle takes 20 nanoseconds, the total time to execute the loop 1000 times is 700 

microseconds. Incidentally, the actual timing recorded on the Cyber 205 was 706 

microseconds. Thus with unoptimized code, the peak performance rate is 1.43 MFLPs. 

4.4.2 Bottom Load/Top Store Technique 

Now let us make some attempts to optimize the code. One possible approach, and 

this is the one which the compiler uses when the option PRDS (P - Propagate compile-

time computable results, R - Remove redundant code, D - Optimize DO loops, S - 

Schedule instructions) is selected, is the so called bottom load top store technique. In 

accordance with this technique the loop is modified as follows 

LOAD 

LOAD 

JUMP 

STORE 

ADD 

LOOP LOAD 
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Table 4.2 

Timings for unoptimized scalar code 

is ST RF COMMAND OPERAND 

Pass 1: 
0 - 15 LOD [A_ADD,I],A 

1 - 16 LOD [B_ADD, I] , B 

16 21 24 ADDN A,B,C 

24 - - STO [c_ADD, I] ,C 

26 - 34 IBXLE..BRB I,ONE,LOOP,N,I 

Pass 2: 

35 - 50 LOD [A-.ADD, I] , A 
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LOAD 

IBXLE 

STORE 

The timings of the modified loop are given in Table 4.3. It can be seen from 

Table 4.3 that the execution time for a single iteration is reduced from 35 cycles to 17 

cycles and the total execution time to 340 microseconds, thus giving a peak performance 

rate of 2.94 MFLPs which is a reduction in execution time by 51%. On the Cyber 205 

the recorded time was 341 microseconds. The reason for this improvement is clear: at a 

given time more than one functional unit is working. Note that this improvement can 

be achieved by simply choosing the appropriate compiler options. But is this the 

maximum that we can expect through scalar optimization? Two loads, one add and one 

store take 5 cycles (Load and add take one cycle each while store takes two cycles). So 

theoretically, at any rate, it should be possible to generate a performance rate of nearly 

10 MFLPs. It appears that too much time is being spent in indexing and branching. It 

is indeed possible to cut down the time spent on indexing and branching by using the 

technique of unrolling of loops, which will be discussed in the next section. 

4.4.3 Unrolling of Loops 

The unrolling of loops consists of replicating the code of the body of the loop. It 

is then necessary, of course, to modify the subscripts in each of the copies of the loop 

and to change the increment in the DO loop. As an illustration, let us rewrite the 

FORTRAN code of the by now familiar loop as follows 

DO 10 I = 1, 1000, 4 

0(I) = A(I) + B(I) 

0(1+1) = A(I+1) + B(I+1) 

0(1+2) = A(I+2) + B(I+2) 
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Table 4.3 

Timings for Bottom Load/Top Store Technique 

is ST RE COMMAND OPERAND 

Pass 1: 

0 - - STO [CADD,J],C 

2 7 10 ADDN A,B,C 

3 - 18 LOD [&..ADD,J],A 

4 - 19 LOD [B—ADD, J] , B 

5 6 9 ADDX J,ONE,J 

6 - 14 IBXLE..BRB L,ONE,LOOP,N,L 

Pass 2: 

15 - - STO [CJiDD,J],C 

19 24 27 ADDN A,B,C 

20 - 35 LOD [kADD,J],A 

21 - 36 LOD [BADD,J],B 

22 23 26 ADDX J,ONE,J 

23 - 31 IBXLEBRB L,ONE,LOOP,N,L 
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C(1+3)  = A(I+3) + B(I+3) 

10 CONTINUE 

We shall not be giving the timing table for above loop. Suffice is to say that when 

corresponding code was run on the Cyber 205 without invoking the optimization option, 

it took 565 microseconds to execute, thus generating a performance rate of 1.77 IvIFLPs. 

This resulted in cutting down of the execution time for unoptimized code by 19%.'Are 

can, in fact, do better than this by further invoking the compiler option PRSD, which 

effectively implements the bottom load top store technique. In Table 4.4 the timings 

when both the techniques are combined are shown. From the Table 4.4 it is evident 

that the revised loop required only 36 cycles per pass. Since 250 passes are required to 

complete all the additions, the total execution time is 180 microseconds which gives a 

performance rate of 5.55 MFLPs. Thus by unrolling the loop and invoking the 

appropriate compiler options it is possible to obtain nearly optimum scalar performance. 

At this point the following question naturally arises. If a choice of 4 for the stride in 

the DO loop, above causes such an improvement in the performance, can we not choose 

a larger stride to get an even better performance? To answer this question it must be 

realized that by choosing a larger stride more instructions are added in the DO loop, 

which will result in (i) use of more registers in the register file and (ii) branching back a 

larger distance. Now the number of available registers is limited and an additional 15-

18 cycles will be incurred if a branch is made out of instruction stack. Hence we can 

not unroll the loop to an arbitrary extent. An optimum size of the stride can be found 

either by actually running the code on the machine or by hand timing the loop with 

different strides. 

The comparisons of various levels of optimization using scalar architecture of the 

machine is given in Table 4.5. 
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Table 4.4 

Timings for optimized scalar code 
with unrolling of loop 

is ST RE COMMAND 

0 - - STO 

2 - - STO 

4 - - STO 

6 11 14 ADDN 

7 - - STO 

9 14 17 ADDN 

10 15 18 ADDN 

11 16 19 ADDN 

12 - 27 LOD 

13 - 28 LOD 

14 - 29 LOD 

15 - 30 LOD 

16 - 31 LOD 

17 - 32 LOD 

18 - 33 LOD 

19 - 34 LOD 

20 21 24 ADDX 

27 - 35 IBXLE,BRB 

Next Pass: 

36 - - STO 



- 62 - 

Table 4.5 

Comparison of various levels of 
optimization using only the scalar architecture 

Version Cycles/Result Ratio MELOPs 

Unoptimized Fortran 35 1 1.43 

Unrolled Loop 
(Unoptimized Fortran) 

Optimized Fortran 

Unrolled Loop 
(Optimized Fortran) 

Vectorized Version* 
(2 Pipes) 

28.25 1.24 1.77 

17 2.06 2.94 

9 3.88 5.55 

0.552 63.4 90.66 

*Discussed in section 4.5 
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4.4.4  Merging of Short DO Loops 

A loop is classified as load-bound if it is dominated by 15 cycles needed for a load 

instruction. Similarly a loop is branch-bound if it is dominated by 8 cycles needed for a 

branch instruction. 

Busy loops i.e., those loops in which a lot of computational work is done during a 

single pass are never branch-bound. They are also not, in general, load bound, because 

if there are load instructions they can be issued sufficiently early such that the processor 

can do other useful work while loading is taking place. 

In contrast very short DO loops are nearly always either branch-bound or load-

bound, in which case it is a good practice to merge short loops into a single loop. It will 

lead to a significant improvement in scalar performance most of the time. To illustrate 

the point, consider the following segments of FORTRAN code 

DO1OI=2,N 

B(I) = B(I-1) + C(I) 

10 CONTINUE 

C 

D0201=2,N 

B(I) = B(I-1) + C(I) 

A(I) = A(I-1) + C(I) 

20 CONTINUE 

The theoretical results obtained by hand timing the above code, using various 

compiler options, are presented in Table 4.6. It is clear from Table 4.6 that merging of 

loops results in best performance particularly when the appropriate optimization option 

is chosen for the compiler. 
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Table 4.6 

Comparison of various levels of 
optimization using only the scalar architecture 

Version Cycles/Result Ratio MELOPs 

Single Loop 
(Unoptimized Fortran) 35.1 1 1.42 

Single Loop 
(Optimized Fortran) 30.1 1.16 1.65 

Two per Loop 
(Unoptimized Fortran) 30.95 1.13 1.61 

Two per Loop 
(Optimized Fortran) 16.2 2.17 3.08 

STACKLIB routine* 
(2 Pipes) 5.85 5.97 8.47 

*Discussed in section 4.5.2 
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There  are other general techniques such as use of data statements whenever 

possible, avoiding double precision calculations if possible, avoiding equivalence 

statements, minimizing of divide operations etc., which are well known to programmers 

using scalar machines. These techniques retain their validity on the Cyber 205. We 

shall not be discussing them any further. Instead we shall turn our attention to vector 

optimization. 

4.5 Vector Optimization 

There are two types of vector optimization (i) syntactic and (ii) semantic. Of 

greater fundamental importance is semantic vectorization because it involves rewriting 

of algorithms and replacing old algorithms. These aspects are beyond the scope of the 

present thesis and will not be discussed here. We shall be focusing our attention to 

syntactic vectorization which includes automatic vectorization and explicit or hand 

vectorization. 

First we define a vector on the Cyber 205. 

DEF: Vector - Contiguous set of memory locations 

Vectors can be real, integer, complex or bit. For real or integer vectors, the memory 

location are 64-bit words, for complex vectors pairs of words and for bit vectors they are 

bits. Note that a vector need not be a FORTRAN array. 

It is worth pointing out that the contiguity of memory locations is not only 

important for vector operations, it also is a significant factor in scalar programming. 

Consider following two segments of code 

DO10I=1,M 

DO10J=1,N 

A(I, J) = 0.0 
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10  CONTINUE 

and 

DO2OJ=1,N 

D0201=1,M 

A(I,.J) = 0.0 

20 CONTINUE 

The two codes look almost alike and even the syntax of the language completely 

hides the difference, but there is a significant difference in execution efficiency between 

two loops on most of the scalar machines. In accordance with the FORTRAN practice 

of storing two dimensional arrays in column major order the elements A(I, J) and 

A(I+1, J) will occupy contiguous memory locations. Therefore, on the machines which 

store the arrays in the traditional column major order, loop 20 will be faster while on 

machines which store the arrays in row major order, loop 10 will be faster. On the 

Cyber 205 which is a virtual memory machine this difference is even more important 

because a page fault may occur for large arrays if they are not accessed sequentially. 

4.5.1 Automatic Vectorization on the Cyber 205 

It should be emphasised that the nature of vector operations is such that the only 

construct which can qualify for automatic vectorization in FORTRAN is a DO loop. By 

simply choosing the V option of the compiler, automatic vectorization of all the 

admissible DO loops can be achieved. If the compiler is not able to vectorize a loop 

automatically it tries to convert it into a call to STACKLIB routine (explained later). If 

even this attempt fails and automatic vectorization is not possible, the user must 

consider explicit vectorization. 

We shall now state the preconditions for automatic vectorization. 
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(1)  For any outer loop to be vectorized, inner loop must be vectorizable. 

Thus the outer loop in the code 

DO 10 I = 1, 100 

DO 10 J = 1, 100 

A(I, J) = B(I, J) * C(I, J) 

10 CONTINUE 

can not be vectorized, because the inner loop is not vectorizable owing to references 

being non-contiguous. 

() Total iteration count must be less than 65535 for a nest of loops. 
The loop 

DO 10 J = 1, 330 

DO 10 I = 1, 200 

A(I, J) = 0.0 

10 CONTINUE 

is not vectorizable because the total number of iteration count is 66000 which exceeds 

65535. It must be noted, though, that the inner loop vectorizes. 

(3) There should not be any flow control statement in the loop besides DO and 

CONTINUE. 

Thus the code 

DO 10 I = 1, 100 

A(I) = B(I) * C(I) 

CALL SUB1(A, B, C) 

10 CONTINUE 

is not vectorizable. 
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(4)  The loop must contain only the arithmetic operators , , * and /, and the 

logical operators. It should not contain any relational operator. 

The loop 

DO 10 I = 1, 100 

IF (A(I) .LT. B(I)) A(I) = B(I) 

10 CONTINUE 

will not vectorize. 

('5) Only data of type integer, real, half-precision (32 bits floating point numbers) 

and logical must appear in the loop for vectorization. 

The code for the subroutine DIFF given below will not vectorize because of the complex 

data type 

SUBROUTINE DIFF(A, B, C) 

COMPLEX A(100), B(100), C(loo) 

DO 10 I = 1, 100 

C(I) A(I) - B(I) 

10 CONTINUE 

RETURN 

END 

(6) Any I/O in the loop will render it non-vectorizable. 

Thus the following segment of code 

DO 10 I = 1, 100 

A(I) = B(I) * C(I) 

PRINT *, A(I), B(I), C(I) 

10 CONTINUE 

will not vectorize. 
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(7)  For a loop to be vectorizable, no reference must be made to any external 

function or subroutines other than the FORTRAN library functions ABS, ACOS, ALOG, 

ALOG1O, ASIN, A TAN, COS, EXP, FLOAT, LABS, IFIX, SIN, SQRT and TAN. 

Thus if the user defines a function, say, CBRT which computes cube root of a real 

number and invokes the function in the loop 

DO 10 I = 1, 100 

B(I) = CBRT(A(I)) 

10 CONTINUE 

the loop will not vectorize. 

(8) The loop must not contain any vector assignment statement inside. 

We shall be discussing the vector assignment statements later in the chapter. For now, 

it suffices to mention that the loop must contain only scalar assignment statements 

whose right side is an integer, real, half-precision or logical expression. 

(9) The subscripts depending on the loop counter must be one of the forms c, c + 

n, c - n or c*n where c is the loop counter and n is an integer constant 

(10) Any data elements appearing on the left hand side of an assignment statement 

must not appear in the EQUIVALENCE statements. 

The code given below 

SUBROUTINE SUM1(A, B, C) 

REAL A(100), B(100), C(100), D(100) 

EQUIVALENCE (D(1), A(10)) 

DO 10 I = 1, 90 

D(I) = B(I) + C(I) 

10 CONTINUE 

will not vectorize normally. 
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(11)  No reference must be made to variably dimensioned arrays if the terminal 

value of the loop is a variable. 

Thus the code for the routine ADD given below 

SUBROUTINE ADD(N, A, B) 

REAL A(N), B(N) 

DO10I=1,N 

A(I) = A(I) + B(I) 

10 CONTINUE 

will not vectorize normally. 

Note that for restrictions (10) and (11), loops are not vectorizable normally 

because the compiler either does not have the values of the bounds of the array at 

compilation time as in the case of restriction (11), or it has to perform computations to 

check the values of the bounds as in the case of restriction (10). In either case it can 

not guarantee that the limits of the array bounds will not be exceeded. However, if the 

programmer takes over this responsibility from the compiler by choosing UNSAFE 

option, both the loops will be vectorized. 

It can be seen from the foregoing that the severity of the conditions for automatic 

vectorization would exclude many loops which would naturally qualify for vectorization. 

A better approach is clearly needed towards vectorization. One of such approach is 

found in STACKLIB routines. These routines derive their name from the fact that they 

were designed to fit in the instruction stack. They basically deal with the recursive 

loops. 

4.5.2 Recursive Loops 

In a departure from usual terminology CDC has defined a recursive loop on the 

Cyber 205 as a loop in which during an assignment of a data element a reference is 



made to the value of that data element computed in one or more of the previous passes. 

An example of a recursive loop would be 

DO10I=2,N 

L(I) L(I) + 

10 CONTINUE 

If each element of the array L is initialized to 1 and above code is run on a scalar 

machine, one would expect the following output 

L(2) = L(2) + L(1) = 1 + 1 = 2 

L(3) L(3) + L(2) = 1 + 2 = 3 

L(N)= L(N) + L(N-i)= 1+ (N- 1)= N 

or (L(J) = J, J = 1, N). 

However if the same code is run using the explicit vector syntax described later, 

result would be altogether different. To gain an insight into functioning of recursive 

loops let us use the model of the vector processor introduced in section 4.3.2. 

The values of vector L will start streaming into the pipes on issue of the vector 

instruction. These values will clearly be the old values, namely 1. Let us look at the 

situation at cycles 1, 2 and 3 given in Figure 4.5. At cycle 3, the first pair will enter 

segment 1. However it will take another 8 cycles before the " new" result L2 will be out 

of the pipe. By the time the " new" L2 pops out and heads for memory, the " new" L3 

which needs the value of " new" L2 will be in segment 6 at the end of the pipe about to 

finish its share of computation. Thus we have the situation at cycles 7, 8 and 9 as 

shown in Figure 4.6. 
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Input path (L2, Li) (L3, L2) (L4, L3) 

(L2, Li) (L3, L2) 

Seg 1 (L2, Li) 

Seg 2 

Figure 4.5 
Snapshots at cycles 1, 2 and 3 

Input path (L8, L7) (L9, L8) (Lb. L9) 

(L7, L6) (LB. L7) (L9, L8) 

Seg 1 (L6, L5) (L7. L6) (L8, L7) 

Seg 2 (L5, L4) (L6, L5) (L7, L6) 

Seg 3 (L4, L3) (L5, L4) (L6, L5) 

Seg 4 (L3, L2) (L4, L3) (L5, L4) 

Seg 5 (L2, Li) (L3, L2) (L4, L3) 

Seg 6 (L2, Li) (L3, L2) 

Output path L2 (new) 

Figure 4.6 
Snapshots at cycles 7, 8 and 9 



- 73 -

It  is clearly impossible for L3 to make use of the " new" L2 which has not even 

reached the memory. The compiler recognizes it and does not allow such loops to be 

vectorized. Note that the following loop 

DO10I=2,N 

L(I - 1) = L(I) + L(I - 1) 

10 CONTINUE 

is not recursive, because it refers to next element whose value is available at run time. 

We have dealt at length with recursive loops because most of the integration 

routines in CSSL are essentially marching in nature, which means that in order to 

calculate the value of a state variable at any time one needs the value of the variable at 

the preceding time. This naturally leads to a recursive loop and we are faced with the 

difficulties described above. 

The FORTAN compiler can 'vectorize recursive loops if they strictly conform to 

one of the following ten types by calling the appropriate STACKL1B routine which 

appeals directly to the architecture of the machine, provided the compiler option V is 

chosen. 

DO1I=L,M 

1 X(I) = X(I-1) + Y(I) 

D021=L,M 

2 X(I) = Y(I) + X(I-1) 

D031=L,M 

3 S=S+X(I) 

D041=L,M 

4 S=X(I)+S 
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DO 5 1 = L,M 

5 S = S + X(I)*Y(I) 

D061=L,M 

6 S = X(I)*Y(I) + S 

D071=L,M 

7 S = S + X(I)*X(I) 

D081=L,M 

8 S = X(I)*X(I) + S 

D091=L,M 

o S=S+X(I)**2 

DO 10I=L,M 

10 S = X(I)**2 + S 

Note the extremely restrictive nature of the loops. For our purposes these routines 

are not very useful. 

Having considered the possibility of automatic vectorization we should ask the 

question " Is it sufficient?". There is no doubt that in most cases if a segment of code 

can be vectorized automatically, it will lead to vast improvement in execution speed as 

exemplified in the Table 4.5. However, there is need to exercise some caution because of 

the following considerations 

(1) We saw in section 4.2.3 that a vector instruction typically needs a start-up 

time. Recalling the example of vector addition, the execution time for the 

corresponding loop is 
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51  + N cycles 

for a vector processor with one pipe. 

Now if N, the length of the vector is quite small, it is obvious that the scalar 

version of the loop will be executed more efficiently (One add instruction takes 5 cycles 

in scalar mode). When the compiler option V is selected, compiler attempts to vectorize 

all the loops regardless of value of N. It simply does not make any distinction 011 the 

basis of value of N. This is an important point and we shall return to it in Chapter 5. 

(2) The user may easily be tempted into believing that he/she is automatically 

getting the best performance the computer can offer by relying on automatic 

vectorizatIon. Such confidence, however, is completely misplaced. As we have seen 

earlier, the programmer can manually reorganize the code for optimum performance. 

Also FORTRAN is not the best language for recognizing vector structures because of 

limitations of the DO loop, the only repetitive construct available in the language. 

These considerations clearly show that any good vector processor must supply 

extensions to a language like FORTRAN which can directly address the architecture of 

the machine, besides providing the facility of automatic vectorization. These vector 

extensions are available on the Cyber 205 and are superimposed on the normal scalar 

language syntax. By using vector extensions it is possible to vectorize the code 

explicitly in suitable cases. We shall be considering the explicit vectorizatIon in the next 

section. 

4.5.3 Explicit Vectorization 

Recall a vector is defined as a contiguous set of memory locations. Therefore in 

order to completely specify a vector one needs to provide the following: the data type, 

starting address and the length. The starting address is conveniently represented by an 
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array  element. Since the data type of an array element is given either implicitly by 

FORTRAN's first letter convention or by explicit type declaration, the same can be 

used to define the data type of the array. The length is specified by an additional 

subscript preceded by a semicolon. The following examples illustrate the vector syntax 

described above 

DIMENSION A(100), K(50,50) 

COMPLEX C(100, 100) 

A(3; 80) is a vector of real type comprising the elements A(3),A(4),.. A(82). 

K(2,5; 100) is a vector of integer type comprising the elements K(2,5), K(3,5), 

...K(50,5), K(1,6), K(2,6), ...K(50,o), K(1, 7). 

C(1,1; 3*100) is a vector of complex type comprising the elements C(1,1), 

C(2,1) .... C(100,1), C(1,2), C(2,2) .... C(100,2), C(1,3), C(2,3) .... C(100,3) and occupies 800 

words of memory. 

Using vector syntax, the scalar loop 

DO 10 I = 1, 1000 

C(I)= A(I) + B(I) 

10 CONTINUE 

is transformed to a single vector instruction 

C(1; 1000) = A(1; 1000) + B(1; 1000) 

As far as the above loop is concerned, there will be no difference in the 

performance whether one uses the vector instruction or the scalar code vectorized 

automatically by the compiler. But consider the following loop 

DO10J=1,N 

DO10I=1,N 
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C(I, J) = A(I, J) + B(I, J) 

10 CONTINUE 

and the corresponding vector instruction 

C(1,1; N*N) = A(1,1; N*N) + B(1,1; N*N) 

The automatic vectorizer may catch both the loops, but assume that only the 

inner loop vectorizes, in which case it will result into N additions of vectors, each of 

length N. Hence we shall have N start-ups and 142 arithmetic operations. On the other 

hand, vector-syntax yields only one start-up and N2 arithmetic operations. Thus we 

shall have the following timings for two pipes 

SiN + A N for automatic vectorization 

and 51 + N2 for explicit vectorization. 

The ratio of these two times for N = 51 is nearly 3 to 1, from which it follows that 

wherever possible explicit vectorization must be preferred over automatic vectorization. 

There is another reason important for us. Suppose that the program contains 

certain loops which it is not worth vectorizing while there are other loops which must be 

vectorized. A solution to this this problem is as follows: First, the automatic 

vectorization option is turned off which will prohibit the vectorization of the loops which 

are not to be vectorized. Next the code of the loops to be vectorized is written using 

explicit vectorization syntax. This will coerce the compiler to vectorize the desirable 

code. 

4.5.4 Descriptors 

A descriptor is a memory word which on the machine level is a pointer to a vector. 

It is represented as a 64-bit word containing the length of the vector in the most 

significant 16 bits and the address of the starting location in the least significant 48 bits. 
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The  machine code produced generates a descriptor for a vector at run time. 

Descriptors are allowed as special data type in Fortran 200, the extended 

FORTRAN on the Cyber 205, and can be declared just like other data types. Their 

data type defaults according to usual FORTRAN first letter convention. 

The descriptor variables have the same attribute as vectors, namely, data type, 

length and base address. The later two are stored in the descriptor at load or execution 

time. 

It is possible to assign descriptor variables to arrays by ASSIGN statement. For 

example if BD is the descriptor variable, the statement 

DATA BD/B(1, 1:100)/ 

implicitly assigns descriptor BD to point to the first column of B. The statement 

ASSIGN BD, B(1,2; 100) 

reassigns BD to point to the second column of B. 

There are two advantages of using descriptors. First, the code with descriptor is 

elegant and saves programming effort. Returning again to our familiar example of 

addition of two arrays, the code using descriptors can be written as follows 

DIMENSION A(100), B(loo), C(ioo) 

DESCRIPTOR AD, BD, CD 

ASSIGN AD, A(1; 100) 

ASSIGN BD, B(1; 100) 

ASSIGN CD, 0(1; 100) 

AD=BD+CD 

Second, it is possible to create dynamic space using descriptors. The statement 

ASSIGN DYNAMO, .DYN. 100 
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allocates  dynamic space on the stack pointed to by the descriptor DYNAMO. If 

DYNAMO is of type real, 100 words of memory are reserved on the stack. All the 

dynamically allocated space can be released by the instruction FREE. 

We shall now briefly describe in the rest of this chapter the techniques involving 

control store and data motion. 

4.5.5 Control Store 

Consider the following segment of code 

DIMENSION A(100, 100), B(100, 100), 0(100, 100) 

N = 99 

DO10J=1,N 

DO1OI=1,N 

0(1, J) = A(I, J) + B(I, J) 

10 CONTINUE 

The auto-vectorizer will vectorize the inner loop, but since 100th element of every 

column is to be skipped, the two-dimensional arrays A, B and C do not qualify as the 

Cyber 205 vectors, and the outer loop will, therefore, not be vectorized. Clearly it is too 

big a prize to pay for not calculating one element for each 100 elements. This difficulty 

is obviated by the use of the technique called control store. 

In control store technique storage of data, as a result of vector operation, depends 

upon a bit vector. A bit vector is defined as a Cyber 205 vector whose elements consist 

of a contiguous set of bits, with each bit corresponding to an element in the data vector. 

When the vector operation is performed, only those results of data vector will be stored 

which have the corresponding bit in the bit vector set to 1, other results corresponding 

to bit 0 will be left unaffected. 
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Thus  using the vector routines Q8VMKO or Q8VMKZ, the bit vector BITD with 

desired periodic pattern can be created and now the instruction 

WHERE (BITD) CD = AD + BD 

will store the results in array pointed to by the descriptor CD, obtained by summing the 

vectors pointed to by AD and BD as determined by BITD. Note that using control 

store technique all the results are calculated, only those are stored which are needed, the 

rest are thrown away. 

If only a small portion of results are thrown out; we are quite willing to pay that 

price for vectorizing the otherwise non-vectorizahie code, but suppose we want to sum 

the elements of two arrays every M th element as exemplified by the following code 

DO10I=1,N,M 

C(I) = A(I) + ]3(I) 

10 CONTINUE 

Clearly if M > 1, using control store technique, the peak performance rate will be 

reduced by a factor of M. In such a case alternative techniques must be used, which 

will be described in the next section. 

4.5.6 Data Motion Techniques 

In data motion techniques, first temporary arrays are created to store the relevant 

data elements into contiguous memory locations. Next vector operations are performed 

on the temporary arrays and finally results are distributed to appropriate memory 

locations. 

To illustrate one such technique, which we shall choose vector compress/merge, let 

us again consider the DO loop 
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DO 10 1 1, N, M 

C(I) = A(I) + B(I) 

10 CONTINUE 

The first step is to create the bit vector which will map to the locations where 

results are to be stored. In present case it will be a periodic pattern with a single 1 

followed by M-1 zeros. The next step is to compress vectors A and B into AT and BT 

respectively with all entries blotted out which correspond to a zero in the bit vector. 

Now the vector instruction 

CT=AT+BT 

is performed. Finally the vector C is merged with vector CT with only those entries of 

C affected which correspond to 1 in the bit vector. 

The other technique is known as gather/scatter. Its ideas are similar to those of 

compress/merge. The only difference is in the manner bit vector is created. The bit 

vector can be generated either using periodic indices or using random indices. 

From the foregoing, one can see that the Cyber 200 vector extensions provide 

numerous tools and techniques for the vectorization of codes. If Intelligently used these 

can lead to an improvement in performance by orders of magnitude. The applicability 

of these tools and techniques to vectorization of integration routines in CSSL-W 

software library is discussed in the next chapter. 



5. CSSL-11V ON THE CYBER 205 

PORTABILITY AND VECTORIZATION 

5.1 Introduction 

One can not overemphasize the importance of porting a modern continuous 

simulation language to a supercomputer. Reduction of running time of a highly 

complex model to a realistic value alone is sufficient justification for porting. 

However porting a CSSL to a supercomputer in itself does not guarantee the 

expected reduction in execution time. Merely ported, the supercomputer will be merely 

used as a scalar computer. The maximum increase in performance from a 

supercomputer can be obtained only if the software support library in the CSSL is 

vectorized. 

The software support library of CSSL-IV is huge by any standards. Since the 

integration operation is the heart of any CSSL, it is imperative that integration 

routines, more than any other, be vectorized. It is a natural corollary of porting a CSSL 

to a supercomputer. 

In the present chapter we discuss the problems of porting CSSL-W to the Cyber 

205. Also a description of the attempts to vectorize the integration routines is given. 

5.2 Portability of CSSL-IV to Cyber 205 

For a program written in a CSSL, the language must provide complete machine 

independence for portability to various machines. This means that the language must 
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cater  to all translation features which are machine dependent. For this reason, the code 

for the translator and the run-time interpreter must be heavily dependent on machine 

architecture. 

Even though the translator and the run-time interpreter use Fortran for their 

intermediate language, for historical reasons they do not utilize the character handling 

facilities of modern versions of Fortran. At the time earlier versions of CSSL-W were 

developed, Fortran-77 had not yet become the standard; consequently, all the character 

values (variables and constants) were expressed in terms of Fortran integers. 

Although CSSL-W has been written in a manner to lessen machine dependence 

(e.g., symbolic parameters, rather than literal constants are used to specify such values 

as the number of characters per machine word) there are several aspects of the code 

which had to take machine architecture into account. Some of the problems 

encountered in this respect are described in the rest of the present section. 

The Cyber 205 is a 64 bit machine with 8 bit ASCII representation for characters. 

It is, therefore, 'natural' to store a number in hexadecimal form as opposed to the octal 

form preferred by some other machines such as Honeywell DPS8, Cyber 175 and PDP 

11. A significant part of the code of the translator stores massive data in either 

hexadecimal or octal form depending on the machine. This data pertains to various 

macros in the CSSL library and must be generated and put in a appropriate form for 

the Cyber 205. 

Most of the machines allow a character string in single quotes to be stored as an 

integer. The Cyber 205 does not permit it. Consequently, all the character strings must 

be stored in the form of hollerith strings of length eight. It may be noted that the 

length of a character string which can be stored in a single word of computer memory 

varies from computer to computer. Thus VAX and Honeywell can store four characters 
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in  a word, but the Cyber 175 can store ten characters, while the Cyber 205 can store 

eight characters. As remarked earlier, since the strings are represented as integers in the 

code for the translator and run-time interpreter, large scale modifications had to be 

made in their code. 

Perhaps the single most important factor which caused many problems in porting 

is the manner in which integers are stored in the Cyber 205 and the arithmetic 

performed on them. Even though the Cyber 205 is a 64-bit machine, it stores an integer 

essentially in the same manner as a floating point number. A floating point number on 

the Cyber 205 has its mantissa stored in the least significant 48 bits and its exponent 

stored in the most significant 16 bits. An integer is stored in the same manner, except 

that its exponent is set to zero. Incidentally, the CRAY supercomputers store integers 

the same way. 

The manner of storing integer as mentioned above is not disastrous in itself. The 

trouble stems from the fact that the Cyber 205 does not permit 64 bit integer 

arithmetic. It does allow a character string, 8 characters long to be stored as a 64 bit 

integer, but one can not perform full fledged comparisons on two strings. Thus using 

the normal compiler options it is not possible to distinguish the two stings 'CAT RUNS' 

and 'HAT RUNS'. Fortunately, the Cyber 205 compiler does have an option (called 

C64), which can be used to compare two eight-character strings for strict equality or 

inequality. The other comparisons (less than, greater than, less than or equal and 

greater than or equal), however, are not allowed. An important and considerable part of 

the translator code makes comparisons of strings to determine the type of variables in 

accordance with the standard Fortran practice of assigning integer type to those 

identifiers whose names start with one of the letters I through N. Consequently, a large 

amount of effort was directed in scanning the code for such comparisons. 
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This problem was further aggravated by two other factors. First, the code 

includes comparisons of integers of both types - the 'true' integers requiring 48 bits of 

storage and the integers representing the character strings which require 64 bits of 

storage. It was extremely difficult to make the distinction between the two cases. 

Second, the enormous size of code makes porting a tedious job. CSSL-W is a big 

language capable of handling complex models. Its code runs into approximately 30,000 

lines of Fortran code. On the Cyber 175, the run-time interpreter alone requires four 

overlays due to memory limitations. Also with each new revision more and more lines of 

code are added. 

The choice of Fortran for the translator and run-time interpreter may not he ideal. 

Perhaps a language such as Snobol, Icon or Prolog would be more suitable. However, 

this criticism is not entirely valid. A site implementing a CSSL must have a compiler 

for the language of the translator/interpreter in addition to that of Fortran, which may 

not always be feasible. 

5.3 Vectorization of Algorithms 

Currently, a lot of research is being carried out to devise algorithms which take 

advantage of vector instructions of supercomputers (see for example [ORTE85]). Many 

old algorithms have been revived and new algorithms have been modified. 

CSSL-W has an impressive software support library. It has an extensive collection 

of integration routines, simulation operators, linear algebra routines etc. The list is 

augmented with each revision. To realize the full potential of CSSL-W on 

supercomputers it is desirable to vectorize a substantial number of routines. 

So far we have carried out vectorization of a limited number of integration 

subroutines. This is partly due to the time constraint and partly due to the fact that 



- 86 -

this  area is still evolving and incorporation of a newly developed algorithm in the 

software support library is a far from trivial task. 

It may be remarked here that most of the integration algorithms implemented in 

CSSL-IV are 'shooting' or 'marching' algorithms. Thus to determine the value of some 

dependent variable at the ith step, one requires the value of that variable at the (I - 1)th 

step. This idea is clearly contrary to the spirit of vector pipelining. The vector 

processor simply can not 'wait' for the value of the variable to be calculated at the 

preceding step. 

However, suppose that we have a large number of dependent variables at a certain 

step. Then we can pipeline these variables for the vector processor and make use of the 

vector capabilities of the machine. In fact, the larger the problem, the greater will be 

the number of dependent variables, resulting in even better performance. Consequently, 

the Cyber 205 is ideally suited for complex problems such as those characterized by 

PDEs. 

The vectorization of the subroutines done so far is specially relevant for problems 

with a large number of dependent variables. The other areas in which vectorization is a 

good possibility are discussed in chapter 8. 

To protect proprietary information, it is not possible to give here the actual code 

of any of the routines vectorized. Nevertheless, the ideas used to vectorize the 

integration routines in CSSL-W software support library can be illustrated by taking 

the example of the Runge-Kutta fourth order algorithm. 

There are several variants of the Runge-Kutta method. At least three of them are 

implemented in CSSL-W software support library. The standard Runge-Kutta process 

applied to the initial value problem 
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dy 
dt 

=f(t,y), y(t 0)=y0 

uses the formulae [COLLGO] 

k1 f(t, y.) 

k2 =f(t + h,y + k1) 

k3 =f(t + h,y + k2) 

k4 =f(t + h,y +k3) 

++h(k1+2k2+2k3+k4). 

Here y denotes the vector (in the analytical sense!) of state variables. If the number of 

state variables is large, they can be arranged to occupy contiguous memory locations 

and, hence, form a vector on the Cyber 205. 

It is straightforward to code the above set of formulae in Fortran 200. The 

program using the vector extensions, particularly the descriptors, is given in Figure 5.1. 

Note that use of the vectorized version is justified only if the number of state 

variables is large. As pointed out in next chapter, partial differential equations naturally 

qualify for the use of the vectorized version of integration routines, because they can be 

cast into a system of ordinary differential equations using the method of lines. But how 

large must the system of ordinary differential equations one must have to 

advantageously use the vectorized version? 
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C 
C 
C 
C 
C 
C SUBROUTINE RK4V 
C 
C PURPOSE 
C TO OBTAIN ONE-STEP SOLUTION OF A SYSTEM OF FIRST ORDER 
C ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM DY/DX = F(X,Y) 
C WITH INITIAL CONDITIONS BY RUNGE-KUTTA FOURTH ORDER METHOD 
C 
C USAGE 
C CALL RK4V (N, FCN, X, Y, H, DY) 
C 
C DESCRIPTION OF PARAMETERS 
C N - NUMBER OF EQUATIONS (INPUT) 
C FCN - NAME OF SUBROUTINE FOR EVALUATING FUNCTIONS (INPUT) 
C THE SUBROUTINE ITSELF MUST BE PROVIDED BY THE USER 
C AND IT SHOULD BE OF THE FOLLOWING FORM 
C SUBROUTINE ECN(N,X,Y,DY,IER) 
C DIMENSION Y(N) , DY(N) 
C 
C 
C 
C FCN SHOULD EVALUATE DY(1),  DY(N) GIVEN N,X, AND 
C Y(1) ..... Y(N). DY(I) IS THE FIRST DERIVATIVE OF Y(I) 
C WITH RESPECT TO X 
C IF SOME ERROR OCCURS IN COMPUTING DERIVATIVES, IER 
C CAN BE SET TO SOME POSITIVE VALUE. FOR SERIOUS 
C TYPES OF ERROR, A SUGGESTED VALUE OF IER IS 129 
C IF NO ERROR OCCURS, IER MUST BE SET TO ZERO 
C FCN MUST APPEAR IN AN EXTERNAL STATEMENT 
C X - INDEPENDENT VARIABLE. (INPUT AND OUTPUT) 
C ON INPUT, X SUPPLIES THE INITIAL VALUE 
C ON OUTPUT, X IS REPLACED BY X+H 
C Y - DEPENDENT VARIABLES, VECTOR OF LENGTH N 
C (INPUT AND OUTPUT) 
C ON INPUT, Y (1) , Y (2),  Y (N) SUPPLY INITIAL VALUES 
C ON OUTPUT, Y(1) , Y(2),  Y(N) ARE REPLACED WITH AN 
C APPROXIMATE SOLUTION AT X+H 
C H STEP SIZE 
C DY - AN APPROXIMATE ESTIMATE OF DERIVATIVES AT THE 
C TERMINAL POINT (OUTPUT) 
C 
C REMARKS 
C NONE 
C 
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED 
C THE SUBROUTINE FCN MUST BE FURNISHED BY THE USER. 

Figure 5.1 
Listing of the subroutine RK4V 

- The vector version using descriptors. 



- 89 - 

C 
C METHOD 
C THE SOLUTION IS OBTAINED BY MEANS OF FOURTH-ORDER RUNGE-
C KUTTA FOURTH ORDER METHOD. FOR REFERENCE, SEE 
C ANTHONY RALSTON, A FIRST COURSE IN NUMERICAL ANALYSIS, 
C. MC-GRAW HILL, 1965, PP. 199-200. 
C 
C 
C 

SUBROUTINE RK4V (N, FCN, X, Y, H, DY) 
C 
C 

INTEGER N 
REAL X,H 
REAL Y(N),DY(N) 
REAL YD,DYD,WK1,WK2,W1C3,WK4 
DESCRIPTOR YD, DYD, WK1, WK2 , WK3, WK4 

C 
ASSIGN YD, Y(1;N) 
ASSIGN DY]), DY(1;N) 
ASSIGN WK1, . DYN. N 
ASSIGN WK2, .DYN. N 
ASSIGN WK3, .DYN. N 
ASSIGN WK4, . DYN. N 

C 
CALL FCN(N,X..Y,DY) 
X = X+0.5H 
WIC1 = H*DYD 
WK4 YD 
YD YD+O.5WK1 

C 

C 

C 

CALL FCN (N, X, Y, DY) 
WK2 = H*DYD 
YD = WK4+0.5*WK2 

CALL FCN(N,X..Y,DY) 
X = X+0.5H 
WK3 H*DYD 
YD = WK4+WK3 

CALL FCN (N, X, Y, DY) 
YD = WK4+ (WK1+2 . 0*WK2+2 . 0*WK3+H*DYD)/6 . 0 
RETURN 
END 

Figure 5.1 (cont). 



The  ahswer depends on several factors. First, attention must be paid to the 

amount of code that can be vectorized in the routine of the derivative. If the code of 

this routine is mostly scalar and requires a lot of computation time, clearly it does not 

help much to use the vectorized integration routines because the latter will form only a 

small percentage of total computation time. 

However, if the routine of the derivative is mostly vectorized or it does not require 

too much computation time, one may consider the use of vectorized integration routines. 

The next factor is the choice of algorithm which to a large extent depends on the 

model under consideration. If the model is well behaved, the Runge-Kutta method is a 

good choice, because a large portion of its code is highly vectorized as can be seen from 

Figure 5.1. On the other hand if the model is such that it necessitates the use of a stiff 

differential equations solver, as is the case with many chemical engineering problems, the 

use of a vectorized version may not be that efficient. The same remarks apply for 

models involving a discontinuity. 

One way in which the question of whether to use a vectorized or scalar version of 

an integration routine can be answered is by making a single run using both the 

versions. However this solution is not very practical from the point of view of software 

development. 

Of course, the user is in the best position to know the suitability or otherwise of 

his model for vector processing. Nevertheless, at the software development level, a 

decision must be made by the software/knowledge engineer, which should be able to 

prohibit a naive user from running a model involving only, say, one or two state 

variables on a vector computer and invoking vectorized integration routines. 
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It  is true that a user can not be stopped from running a model on a vector 

computer, nor may it even be desirable, for it is possible that the derivative routine may 

contain highly vectorized code. But surely a provision should be made which 

automatically switches to the scalar version of integration should the use of the vector 

version be not justified. 

The decision of scalar versus vector version in the CSSL-IV implementation can be 

made at either of two levels. Since the translator keeps track of number of the state 

variables, it can set up a flag when this number exceeds some suitable value. The 

control can now be directed to the scalar or vector version of the routine depending on 

the value of the flag. Needless to say, with this approach two versions of routines will 

have to be maintained in the software support library. 

Alternatively, the decision can be taken within the integration routine itself. Since 

the number of state variables is passed as a parameter to every integration routine, a 

two way branching can be effected in the code to the scalar or vector versions. It is the 

second approach that was adopted in vectorizing the integration routines. 

The question of the cut-off value at which the vectorized version must take over 

from the scalar version has not been answered as yet. A heuristic reasoning explaining 

the choice of cut-off value now follows. 

Recall from section 4.3.2 that the timing for the addition of two arrays on the 

vector processor of the Cyber 205 is 

51 + N cycles. 

where N is the size of the array and 51 cycles is the start-up time. Also recall that on a 

scalar processor it takes 5 clock cycles for an addition. From this it follows that up to 

ten additions the scalar processor will be faster than the vector processor and for more 

than ten additions the vector processor will be faster. So 10 appears to he the cut-off 
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value  up to which it is more efficient to use the scalar processor. Of course, the 

reasoning given above is quite primitive: nevertheless, it does give some idea about the 

size of the cut-off value. 

Consequently, we can now modify our program of the Runge-Kutta method given 

in Figure 5.1, such that if N, the number of dependent variables is greater than 10, use 

is made of the vectorized version, otherwise the scalar version is used. The revised 

listing is given in Figure 5.2. This was, incidentally, the general approach followed in 

vectorizing the integration routines in the CSSL-IV software support library. 
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C 
C 
C 
C 
C 
C SUBROUTINE RK4V 
C 
C PURPOSE 
C TO OBTAIN ONE-STEP SOLUTION OF A SYSTEM OF FIRST ORDER 
C ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM DY/DX = F(X,Y) 
C WITH INITIAL CONDITIONS BY RUNGE-K(JTTA FOURTH ORDER METHOD 
C 
C USAGE 
C CALL RK4V (N, FCN, X, Y, H, DY, WK) 
C 
C DESCRIPTION OF PARAMETERS 
C N - NUMBER OF EQUATIONS (INPUT) 
C FCN - NAME OF SUBROUTINE FOR EVALUATING FUNCTIONS (INPUT) 
C THE SUBROUTINE ITSELF MUST BE PROVIDED BY THE USER 
C AND IT SHOULD BE OF THE FOLLOWING FORM 
C SUBROUTINE FCN(N,X,Y,DY, IER) 
C DIMENSION Y(N) , DY(N) 
C 
C 
C 

C FCN SHOULD EVALUATE DY(1) DY(N) GIVEN N,X, AND 
C Y(1),  Y(N). DY(I) IS THE FIRST DERIVATIVE OF Y(I) 
C WITH RESPECT TO X 
C IF SOME ERROR OCCURS IN COMPUTING DERIVATIVES, IER 
C CAN BE SET TO SOME POSITIVE VALUE. FOR SERIOUS 
C TYPES OF ERROR, A SUGGESTED VALUE OF IER IS 129 
C IF NO ERROR OCCURS, IER MUST BE SET TO ZERO 
C FCN MUST APPEAR IN AN EXTERNAL STATEMENT 
C X - INDEPENDENT VARIABLE. (INPUT AND OUTPUT) 
C ON INPUT, X SUPPLIES THE INITIAL VALUE 
C ON OUTPUT, X IS REPLACED BY X+H 
C Y - DEPENDENT VARIABLES, VECTOR OF LENGTH N 
C (INPUT AND OUTPUT) 
C ON INPUT, Y (1) , Y (2)  , Y (N) SUPPLY INITIAL VALUES 
C ON OUTPUT, Y(1) , Y(2),  , Y(N) ARE REPLACED WITH AN 
C APPROXIMATE SOLUTION AT X-f-H 
C H - STEPSIZE 
C DY - AN APPROXIMATE ESTIMATE OF DERIVATIVES AT THE 
C TERMINAL POINT (OUTPUT) 
C WK - A TWO DIMENSIONAL WORKING AREA OF DIMENSION N X 4 
C 
C REMARKS 
C TO USE THIS ROUTINE AUTOVECTORIZATION OPTION MUST 
C BE TURNED OFF. 
C 

Figure 5.2 
Revised version of the subroutine RK4V 
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C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED. 
C THE SUBROUTINE ECN MUST BE FURNISHED BY THE USER. 
C 
C METHOD 

C THE SOLUTION IS OBTAINED BY MEANS OF FOURTH-ORDER RUNGE-
C KUTTA FOURTH ORDER METHOD. FOR REFERENCE, SEE 
C ANTHONY RALSTON, A FIRST COURSE IN NUMERICAL ANALYSIS, 
C MC-GRAW HILL, 1965, PP. 199-200. 
C 
C 
C 

C SUBROUTINE RK4V (N, FCN, X, Y, H, DY, WK) 

C 
INTEGER N,J 
REAL X,H 
REAL Y(N) , DY(N) ,WK(N,4) 

C 

C 

CALL ECN(N,X,Y,DY) 
X = X+0.5*H 
IF (N . LE. 10) TEEN 

DO 10 J = 1,N 
WK(J,1) = H*DY(J) 
WK(J,4) = Y(J) 
Y(J) = Y(J)+0.5*w((J,1) 

10 CONTINUE 
ELSE 

WK(1,1; N) = H*DY(1; N) 
WK(4,1; N) = Y(1; N) 

ENDIF Y(1; N) = Y(1; N)+0.5*WK(1,1; N) 

CALL FCN (N, X, Y, DY) 

IF (N . LE. 10) THEN 
DO 20 J = 1,N 

WK(J,2) = H*DY(J) 
Y(J) WK(J,4)+o.5*WIC(J,2) 

20 CONTINUE 
ELSE 

WK(1,2; N) H*DY(1; N) 

ENDIF Y(1; N) = WIC(1,4; N)+0.5*WK(1,2; N) 

CALL ECN(N,X,Y,DY) 
X = X+0.5H 

IF (N . LE. 10) THEN 
DO 30 J = 1,N 

WK(J,3) = H*DY(J) 
Y(J) = WK(J,4)-I-WK(J,3) 

30 CONTINUE 

Figure 5.2 (cont). 
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ELSE 
WK(1,3; N) = H*DY(1; N) 

ENDIF Y(1; N) = WK(1,4; N)+WK(1,3; N) 

CALL FCN (N, X, Y, DY) 

IF (N . LE. 10) THEN 
DO 40 J = 1,N 

Y(J) = WK(J,4)+(WK(J,1)+2.O*WK(J,2)+2.O*WI((J3)+H*Dy(J) 
& )/6.0 

40 CONTINUE 
ELSE 

Y(1; N) = WK(1,4; N)+(WK(1,1; N)+2.O*WK(1,2; N)+2.O*WK(1,3; 

& ENDIF N)+H*DY(1; N))/6.0 

RETURN 
END 

Figure 5.2 (cont). 



6. APPLICATIONS OF CSSL 

BENCHMARKS AND CASE STUDIES 

6.1 Introduction 

In this chapter we shall consider some applications of CSSL-IV on the 

supercomputer Cyber 205.. These applications will also serve as benchmarks for the 

purpose of comparison of timings of vectorized and non-vectorized versions of the 

program on the Cyber 205 on the one hand and on scalar machines such as the Cyber 

175 on the other hand. We have also studied some applications as case studies, in the 

sense that a detailed investigation has been made of these applications, with the 

applicability of CSSL-IV in mind. 

As pointed out in chapter 5 on the vectorization of the integration routines, the 

present vectorized version of CSSL-IV is most suitable for very large problems i.e., those 

characterized by a large number of ODEs. Partial differential equations (PDEs) 

particularly satisfy this requirement, for they can be naturally cast into a system of 

ODEs using the method of lines (Kantorovich and Krylov [KANT58]). Other candidates 

for the vectorized version of CSSL are two-point boundary value problems (BVPs) 

involving large numbers of equations with number of boundary conditions nearly evenly 

split at the two boundary points. 

Consequently, in this chapter we have studied a few problems characterized by 

PDEs and one two-point BVP defined by a system of seven ODEs with boundary 

conditions nearly evenly divided at the two boundaries. 
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At  this point, a few remarks about the classification of second order PDE will not 

be out of place. 

6.2 Classification of Second Order PDEs 

A second order quasi-linear PDE in the dependent variable u and independent 

variables x and y is said to be linear if it can be put in the form 

Au +Bi +Cu +Du +Eu +Fu +G =0, (6.2.1) 

where A ,.. G are functions of x and y and A 2+B2+C2 0 on M, the domain of (x ,y). 

Further if A ,B ,...F are real constants, A 2+B 2+C2 O and G = G (x ,ji) is a real 

valued function, then the PDE (6.2.1) is said to be of 

(a) parabolic type if B2 - 4A0 = 0. 

(b) elliptic type if B2 - 4A0 < 0, 

(c) hyperbolic type if B2 - 4AC > 0, 

Thus the heat diffusion equation 

- ttxx == 0 

is parabolic since B2 - 4AC = 0. 

The Laplace equation 

= uzz + 'uyy = 0 

is elliptic since B2 - 4AC = —4. 
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Finally,  the wave equation 

Uzz - tLy!/ = 0 

is hyperbolic since B2 - 4AC = 4. 

The parabolic and hyperbolic equations are usually initial value problems (IvP), 

with the conditions prescribed at time t = 0. On the other hand, elliptic equations are 

usually boundary value problems (BVP), with the conditions prescribed on the 

boundaries of region of interest. 

We shall now examine the applicability of CSSL-W to some of the classical PDEs. 

6.3 Heat Diffusion Equation 

The first benchmark concerns the heat diffusion equation in a thin metal bar of 

length I which is initially at a uniform temperature of 0 degrees Celesius. At time 

t = 0, one end of the bar is heated to 100 degrees, the other end of the bar is kept 

insulated. It is required to calculate the temperature distribution in the bar at any time 

t. A similar problem was considered by Crosbie and Huntsinger [CROS84b] and solved 

by using the continuous systems simulation languages ISIM on a microcomputer and 

CSSL-W on a mainframe computer. 

The partial differential equation governing the heat diffusion equation is 

(6.3.1) 

Here T is the temperature at a point in the bar at a distance x from the non-insulated 

end at time t. Ic 15 the non-dimensional measure of heat diffusivity. 
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The  initial and boundary conditions are 

T(x, 0) = 0 0 < x < 1, (6.3.2) 

T(O, t) = 100, 8x t) = 0 t > 0. (6.3.3) 

Define a partition of the interval (0,1) spanning the length of bar by 

xi = i 4x, i = 0,1,2,.. (6.3.4) 

where N is the number of subintervals and 

Ax = i/N. (6.3.5) 

Let the temperature at point x1 be Ti. Replacing a2 T by its finite difference 

equivalent, equation (6.3.1) can be rewritten as 

dT 
dt - fl(T11 - 2T1 + T1_1), 

where 

the discretization error in equation (6.3.5) being of order 0 (ix )2. 

Initial condition (6.3.2) becomes 

Ti (0) = 0 

and the boundary conditions (6.3.3) take the form 

(6.3.5) 

(6.3.6) 

(6.3.7) 
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TO(t)  = 100 (6.3.8) 

and 

TN+1 - TN-1 - 0 
2Lx 

or equivalently 

TN+1 = TN_i. (6.3.0) 

Note that we have chosen an extraneous point XN+1 in order to satisfy the derivative 

condition at the end x = 1. We could have also chosen the backward difference 

formula for the derivative at x = 1, but that would have given rise to error of 0 (Ax). 

The problem of the extraneous point is neatly resolved by considering an extra 

equation in the set of equations (6.3.5) at x = 1. Thus we have, at the end points 

and 

dT 1 
dt = fi(T2 - 2T 1 + 100) 

dTN 
dt = fl(2TNl2Tar) 

(6.3.10) 

(6.3.11) 

upon making use of conditions (6.3.8) and (6.3.9). At other mesh-points 

(i = 2,3,...N-1) equation (6.3.5) still holds. 

Thus it can be seen that the PDE governing the heat diffusion in the bar is 

replaced by a system of ODEs (6.3.5), (6.3.10) and (6.3.11), which is to be solved subject 

to initial condition (6.3.7). 
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The  CSSL-W program listing for the Cyber 205 is given in Figure 6.1. It may be 

noted that this problem is quite sensitive to the choice of step size of the time variable 

t. A step size of 1/16 th of a second proved too large for the Runge-Kutta-Gill method 

and resulted in a numerically unstable solution. Nevertheless, the timings recorded for 

this method are quite instructive. The point is that a substantial segment of the 

corresponding integration routine is vectorizable; therefore, it is not surprising to find 

that the use of Runge-Kutta-Gill algorithm gave a nearly 2 to 1 performance 

improvement for the vectorized code in comparison with the scalar code on the Cyber 

205. 

On the other hand, even though the Adam Moulton's method with automatic 

step-size control yielded quite an accurate solution, from Table 6.1, it can be seen that 

the improvement in the performance due to vectorization of code was not so impressive; 

the reason being that most of the overhead in terms of execution time was spent in 

adjusting the step-size to produce the acceptable results. The corresponding code in the 

integration routine is not vectorizable. 

It may be further seen that the increase in the size of the problem (effected by 

increasing the size of N, the number of mesh-points in discretization scheme) results in 

relatively better performance for vector code than for scalar code. 

6.4 Vibrations of a String 

The second benchmark is concerned with the vibrations of an elastic string 

stretched under uniform tension between two fixed points. The string is set vibrating 

by imparting a velocity perpendicular to the string initially. The hyperbolic PDE 

describing the motion is 
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PROGRAM HEAT CONDUCTION 
COMMENT 

THIS PROGRAM SIMULATES THE MODEL OF BEAT CONDUCTION IN A " 

BAR ONE END OF WHICH IS KEPT AT A FIXED TEMPERATURE " 

AND THE OTHER END IS INSULATED. ft 
INITIALLY, THE BAR IS KEPT AT A CONSTANT TEMPERATURE. H 

,I 

  I, 

INITIAL 
INTEGER N, J, ITIME, ITi, IT2 
ARRAY TE(100), TEIC(100), DTE(ioo) 
CONSTANT TEO = 100.0, DXSQ = 0.1, 

ALPHA = 20.0, TAUMAX = 1.0 
CONSTANT N = 100 $ "NUMBER OF MESHPOINTS" 
DO L19 J = 1, N 

TEIC(J) = 0.0 
L19.. CONTINUE 

BETA = ALPHA/DXSQ 
ITIME = 16000000 
CALL Q8WJTIME(ITIME) 
CALL Q8RJTIME (, - ITi) 

END $ "OF INITIAL" 
I  I  

f  I  

I  I  

I, 

I  I  

I  I  

DYNAMIC 
CINTERVAL DTAU = 0.0625 
DERIVATIVE BAR 

DTE (N) = BETA* (2. 0*TE (N-i) - 2. 0*TE (N)) 
DTE(i) = BETA*(TE(2)_2.0*TE(1)+ThO) 

PROCEDURAL (DTE:=TE) 
DO L20 J2,N-1 

DTE(J) = BETA* (TE(J+1) _2.0*TE(J)ITE(J1)) 
L20.. CONTINUE 
END $ "OF PROCEDURAL" 

TE = INTEG(DTE, TEIC) 
END $ "OF DERIVATIVE" 

TEPJVIT(T . GE. TAUMAX) 
TEl = TE(N/4) 
TE2 = TE(N/2) 
TE3 = TE(3*N/4) 
TE4 = TE(N) 

END $ "OF DYNAMIC" 

TERMINAL 
CALL QBRJTIME (, , IT2) 
PRINT L21, ITi - IT2 

L21.. FORMAT (ix, "THE EXECUTION TIME = ", 18, ix, "MICROSECONDS") 
END $ "OF TERMINAL" 

END $ "OF PROGRAM" 

Figure 6.1: CSSL-IV program for heat conduction 
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TABLE 6.1 

Illustrating the timings of heat conduction 
simulation in seconds 

Integration method Cyber 205 
and number of dis_   Cyber 175 
cretization points Scalar Semi-vec vectori-

version -torized ized 
version version 

Adam-Moulton' s 
variable step 
method, n = 50 

Runge-Kutta-Gill 
method, n = 50 

Adam-Moulton' s 
variable step 
method, n = 100 

1.999 1.665 1.485 3.125 

0.090 0.057 0.047 0.140 

3.709 2.670 2.384 5.801 

Runge-Kutta-Gill 

method, n = 100 0.096 0.064 0.052 0.150 

TABLE 6.2 

Illustrating the timings of string vibration 
simulation in seconds 

Cyber 205 
Integration method   Cyber 175 

Scalar Semi -vec vectori-
version -torized ized 

version version 

Adam-Moulton' s 
variable step 
method 

Runge-Kutta-Gill 
method 

3.450 2.518 

0.062 0.042 

2.377 5.391 

0.038 0.097 
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82y - c2 a2y 
at2 ax2' (6.4.1) 

where y is the displacement at a distance x from the endpoint x = 0 at time t and c 

is the so-called wave velocity defined by 

T91 
W . (6.4.2) 

Here T is the tension in the string, g is the acceleration due to gravity and I and W 

are respectively the length and weight of the string. 

The initial and boundary conditions under which equation (6.4.1) is to be solved 

are 

y (x, 0) = 0, 

Y (0, t) = 0, 

and 

(6.4.3) 

(6.4.4) 

(6.4.5) 

y(I,t)=O. (6.4.6) 

The last two equations imply that the two ends of the string are fixed throughout the 

time of motion. 

Equation (6.4.1) is again discretized along the length of the string by writing it as 

d 2y 
- K(y1 - 2ij + y_1), 

dt 2 (6.4.7) 
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where 

K =  
(AX )2 (6.4.8) 

Using the boundary conditions (6.4.5) and (6.4.6), we have at the ends of the 

string 

d2y1 

dt 2 
= K(y2 - 

d2yN_l 
- K(-2yN l + YN_2). 

dt 2 

(6.4.9) 

(6.4.10) 

where N is the number of subintervals of the interval (0, 1). At other mesh-points 

(1 = 2,3,..N-2) equation (6.4.7) still holds. 

Initial ,conditions for equations (6.4.7), (6.4.9) and (6.4.10) are 

y,.(0) = 0, 

dy1 
dt (0) = v0, 

for i = 1,2,..N-1. 

The CSSL-W program for the problem is given in Figure 6.2. 

(6.4.12) 

Once again the Runge-Kutta-Gill method did not produce a numerically stable 

solution for moderate values of the step size of time t . However, the method is quite 

effective in reducing the timing by using the vector code as can be seen from Table 6.2. 

For Adam-Moulton's method, which led to acceptable results, the use of vector code did 
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PROGRAM VIBRATION OF AN ELASTIC STRING 
COMMENT  
I  

THIS PROGRAM SIMULATES ThE VIBRATION OF AN ELASTIC STRING " 
TIED BETWEEN TWO FIXED POINTS AND IS SET VIBRATING it 

BY IMPARTING A TRANSVERSE VELOCITY TO IT. 

INITIAL 
INTEGER J, ITIME, IT1, IT2, IT3 
ARRAY Y(31) , DY(31) , D2Y(31) , YO (31) , DYO (31) 
CONSTANT TENS = 5.0 
CONSTANT G = 32.2 
CONSTANT L = 10.0 
CONSTANT W = 0.8 
CONSTANT 'INAX = 1.0 
NIJSQ = TENS*G*L/W 
DELX = 10.0/32.0 
DXSQ = DELX*DELX 
K = NUSQ/DXSQ 
CALL QBWJTIME(ITIME) 
CALL QBRJTIME(,,IT1) 
YO(1; 31) = 0.0 
DYO(1; 31) = 2.0 

END $ "OF INITIAL" 
DYNAMIC 

CINTERVAL DTAU = 0.0625 
DERIVATIVE VIB 

TT = T 
PROCEDURAL (D2Y = Y) 

D2Y(1) = K*(Y(2)_2.0*Y(1)) 
D2Y(31) = K*(_2.0*Y(31)+Y(30)) 
D2Y(2; 29) = K* (Y(3; 29)_2.0*Y(2; 29)+Y(1; 29)) 

END $ "OF PROCEDURAL" 
DY = INTEG(D2Y, DYO) 
Y = INTEG(DY, YO) 

END $ "OF DERIVATIVE" 
TERMT (T . GE. 'INAX) 
Y08 = Y(8) 
Y16 = Y(16) 

END $ "OF DYNAMIC" 
TERMINAL 

CALL Q8RJTIME (, , IT2) 
IT3 = ITi - IT2 
PRINT * IT3 

END $ "OF TERMINAL" 
END $ "OF PROGRAM" 

Figure 6.2 
CSSL-IV program for vibration of an elastic string 



- 107 -

not reduce the timing to the same extent. 

6.5 MHD Flow Through a Rectangular Duct 

The flow of an electrically conducting fluid through a rectangular duct in the 

presence of a magnetic field is one of the most important problems in the area of 

magnetohydrodynamics (MHD). It finds its applications in MHD power generation, 

dynamo theory etc. 

In its simplest setting when the walls of the duct are insulating and the magnetic 

field is perpendicular to two sides of the duct, the problem was solved analytically by 

Shereliff [SHERS3]. He obtained the solution in terms of Fourier series. 

From practical point of view, a more useful case is that in which the boundaries 

parallel to magnetic field are perfectly conducting as shown in Figure 6.3. For this 

problem it is not possible to obtain the solution in terms of Fourier series. Grinherg 

[GRIN61], [GRINO2], after exercising considerable mathematical ingenuity, was able to 

reduce the problem to Fredholms integral equation of first kind which was not solved, 

because of its complexity, until 1984, when it was numerically solved by Singh and 

Agarwal [SING84]. We shall solve the same problem using CSSL-W. 

Equations of motion and Ohm's law for the problem at hand are 

aB 
V2V + M----==-1, 

ax 

17 2B + av 
ôx 

(6.5.1) 

= 0, (6.5.2) 

with the boundary conditions 
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Y 

A 

½b 
CONDUCTING 

NON-CONDUCTING 

½a 

0 1 x 

Figure 6.3 

Geometry of the model 
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V(±a,y)=O, — b<!/<b, 

B(±va,y)=O, —' b<y<b, 

V(x,±b)=O, --36  

—*a<x<a, 

(6.5.3) 

(6.5.4) 

(6.5.5) 

(6.5.6) 

Here V and B are the velocity and induced magnetic field at any point (x, y) 

respectively. M is the Hartmann number, which is a measure of the strength of applied 

magnetic field. 

It may be noted that if M = 0, equations (6.5.1)-(6.5.6) simplify to the classical 

torsion problem 

17 2V = —1, 

with V vanishing on the boundaries. 

Equation (6.5.7) is an elliptical differential equation. We shall be examining this 

equation in detail later when we consider the applicability of CSSL to elliptical PDEs. 

Reverting back to equations (6.5.1)-(6.5.6), we note that 

V(x,y)=V(x,—y) and B(x,y)=B(x,—y). 

Therefore 

av 0) = 0 
ay 

and 

(6.5.7) 

(6.5.8) 



- 110-

aB 0) = 0 
ay 

It can be further seen that 

V(ic, y) = V(—x, y ) and B (x, y) = —B (—x, y). 

Therefore 

and 

(6.5.9) 

(6.5.10) 

B(0, y) = 0 (6.5.11) 

These symmetry considerations show that we need to solve equations (6.5.1) and 

(6.5.2) only in the quadrant O<x < a n O<y < b. The new boundary conditions 

are listed below again for the sake of convenience. 

O<y < b 

B(0,y)=0, O<y < b 

0<x < a 

0<x <ay  

(6.5.12) 

(6.5.13) 

(6.5.14) 

(6.5.15) 
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V(a, y)=0, 0< y < b  

B( a, y) = 0, 0 < y < b (6.5.17) 

V(x,b)=O, 0< y < a (6.5.18) 

aB b) 0, O<y < a 
ay 

Discretizing equations (6.5.1) and (6.5.2) in the y-direction, we obtain 

d2V1 dB. 

dx 2 dx h + V 1) 

d221 dv. 

dx 2 dx h 

Boundary conditions (6.5.12}-(6.5.19) become 

dV1 

(6.5.19) 

(6.5.20) 

(6.5.21) 

(0) = 0, (6.5.22) 
dx 

B1(0) = 0, (6.5.23) 

Vi (16 a) = 0, (6.5.24) 

B1 ( a) = 0, (6.5.25) 
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V2(X)  - V0(x) 
= 0 

2h , 

B2(x)_.B 0(x) 
 = 0 

2h , 

VN +l(x) = 0, 

BN +2(x) - BN(x) 
 —0. 

2h 

(6.5.26) 

(6.5.27) 

(6.5.28) 

(6.5.29) 

Here h is the mesh-size and N (= b /2h) is the number of sub-intervals of the interval 

(0, A b). 

In view of conditions (6.5.27)-(6.5.30), we can rewrite equations (6.5.20) and 

(6.5.21) as 

d2V1 dB 1 

dx 2+ M dx h 

d2B1 dV1 
+M + dx 2 dx —-(2B2-2B1)=o. 

d 2N dBN 
 + M + -2 -(-2VN + VN1)  
dx 2 dx h 

d2BN+l 1 
 dx2+ --(2BN - 2BN +l) = 0, 

(6.5.30) 

(6.5.31) 

(6.5.32) 

(6.5.33) 
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d 2 v,  dB. 
 + M— + —-(V11 - 2V1 + V1_1) = —1, i =2,3,...N-1, (6.5.34) 
dx 2 dx h 

d2B• dv. 
 + M---- + —-(B1+1 - 2B1 + B1_1) = 0, i =2,3,...N, 
dx 2 dx h 

The remaining boundary conditions are 

dV1 
dx (0) = 0, i = 12 N 

B1(0) = 0, 1 = 

V1(a)=O, i = 1,2,...N, 

B1(a)=0, i = 1,2,...N+1. 

(6.5.35) 

(6.5.36) 

(6.5.37) 

(6.5.38) 

(6.5.39) 

Thus we have a set of (2N + 1) ODEs in place of two PDEs. Further if we 

reduce the system of ODEs represented by equations (6.5.30)-(6.5.35) to a system of first 

order ODEs, we shall have (4N + 2) first order ODEs with (2N + 1) boundary 

conditions at either end x = 0 or x = a. Note that, we do not have a system of 

lYPs as we do not have all (4N + 2) initial conditions. 

In order to solve this difficult BVP using CSSL, we shall have to convert the BVP 

into a series of IVPs. Fortunately, the system (6.5.30)-(6.5.35) is a linear system, so we 

do not need an iterative scheme. We can simply use the principle of superimposition. 

For notational convenience let us write 
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v = (V IB1), (6.5.40) 

where i runs though appropriate range of integers. 

By the principle of superimposition 

2N+1 

V = V + r, CjVh.. 
5=1 

(6.5.41) 

Here v denotes the particular solution and Vh, denotes the j th homogeneous solution. 

The particular solution v, is obtained by solving equations (6.5.30)-(6.5.35) with 

the initial conditions 

d. 
Vi (0) = 0, B(0) = 0,._-_Lv (0) = 0,— dB'--.(0) = 0. 

dx dx (6.5.42) 

The homogeneous solution vh, for any j is obtained by solving equations (6.5.30)-

(6.5.35) with the right hand side set to zero. The boundary conditions are same as 

(6.5.42) except that 

v5 (0) = 1 

for the j th homogeneous solution. 

(6.5.43) 

In this way, we shall obtain 2N + 1 independent homogeneous solutions and one 

particular solution. The 2N + 1 constants cj can now be determined by using the 

terminal conditions (6.5.38) and (6.5.39). It is easy to verify that these constants simply 

give the missing initial conditions, i.e., the values of V1 and dB1 at x = 0. 
dx 
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A CSSL-IV program on the Cyber 205 is given in Figure 6.4. For solving the 

system of linear equations a call was made to the IMSL subroutine LEQT1F which uses 

Gauss' elimination method by partial pivoting technique. Only the Runge-Kutta-Gill 

method was used in this case. In successive runs M was increased. We were able to get 

reliable results up to M = 20, the same value upto which results are available in the 

literature. Beyond M = 20 there were errors which would not allow the boundary 

conditions (6.5.38) and (6.5.39) to be satisfied accurately. With the aim of locating the 

sources of these errors, h , the mesh-size was decreased with the expectation that it 

might improve the accuracy of the result. The result was most unexpected. Rather 

than matching the boundary conditions at terminal point, there resulted arithmetic 

overflow!! This occured for the particular solution and for some of the homogeneous 

solutions at some value of the independent variable. 

It is a cardinal principle in numerical solution of any problem characterizing a 

dynamical system that in the discretization process if the step size is decreased it must 

result into improvement of accuracy. Here we find that reducing the step-size leads to 

worsening of the results. We have made an investigation into this curious happening in 

the next section for the case M = 0. 

In Figures 6.5, 6.6, 6.7 and 6.8 equal velocity lines have been depicted for M = 0, 

5, 10 and 20 respectively. It is clear from these figures that the formation of boundary 

layer takes place near the boundaries perpendicular to the magnetic field. In Figures 

6.9, 6.10 and 6.11 current lines (equal magnetic lines) are drawn for M = 5, 10 and 20 

respecitvely. Current lines, it may be noted from Figures 6.9, 6.10 and 6.11, also exhibit 

the boundary layer behavior. But a quick glance at Figure 6.11 reveals that there are 

some problems in getting accurate solution for large values of M. 
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PROGRAM - MHD FLOW THROUGH A RECTANGULAR DUCT 
COMMENT  
I' 

THIS PROGRAM SIMULATES THE MHD FLOW OF A VISCOUS 
ELECTRICALLY CONDUCTING FLUID THROUGH A RECTANGULAR DUCT 
IN THE PRESENCE OF A MAGNETIC FIELD. 
THE BOUNDARIES PERPENDICULAR TO THE MAGNETIC FIELD ARE 
INSULATED AND THOSE PARALLEL ARE PERFECTLY CONDUCTING. 

INITIAL 
INTEGER IOPT, I, ISOL, IER 
ARRAY VO (10), DVO (10), V(10), DV(10), D2V (10) 
ARRAY B0(11), DBO (11), B(11), DB (11), D2B (ii) 
ARRAY C(21, 21), D(21), WK(21) 
CONSTANT A = 1.0, B = 1.0 
CONSTANT M = 20.0 
BETA = i.0/(0.05*B)**2 
ISOL = 0 
RHS = -1.0 
DO Lii I = 1, 10 

VO(I) = 0.0 
DVO(I) = 0.0 
BO(I) = 0.0 
BVO(I) = 0.0 

Lii.. CONTINUE 
BO(11) = 0.0 
DBO(11) 0.0 
Lb.. CONTINUE 

END $ "OF INITIAL" 
DYNAMIC 

CINTERVAL CI = 0.05 
DERIVATIVE ONE 

VARIABLE X = 0.0 
PROCEDURAL (D2V, D28 = V, B, DV, DB) 

D2V(i) = RHS - M*DB(i) - 2.0*BETA*(V(2) - V(1)) 
D2B(1) = - M*DV(i) - 2.0*BETA*(B(2) - B(1)) 
DO L20 I = 2, 9 

D2V(I) = RHS_M*DB(I) _BETA* (V(I+1) _ 2.0*V(I) +V(I-1)) 
D2B(I) = _M*DV(I)_BETA*(B(I+i)_2.o*B(I)i.B(I_1)) 

L20.. CONTINUE 
D2V(10) = RHS - M*DB(9) - BETA*(_2.0*V(10) + V(9)) 
D2B(10) = - M*DB(9) - BETA*(B(10) - 2.0*B(10) + B(9)) 
D2B(11) = - 2.0*BETA*(_B(10) + B(9)) 

END "OF PROCEDURAL" 
DV = INTEG(D2V, DVO) 
V = INTEG(DV, VO) 
DB = INTEG(D2B, DBO) 
B = INTEG(DB, BO) 

END $ "OF DERIVATIVE" 

Figure 6.4 
CSSL-IV program of MUD flow through a rectangular duct 
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TERMT (X . GE. 0.5*A) 
Vi = V(i) 
V2 = V(2) 
V3 = V(3) 
V4 = V(4) 
V5 = V(5) 
V6 = V(6) 
V7 = V(7) 
V8 = V(8) 
V9 = V(9) 
vio = V(10) 
El = B(1) 

= B(2) 
B3 = B(3) 
B4 = B(4) 
B5 = B(5) 
B6 = B(6) 
B7 = B(7) 
B8 = B(8) 
B9 = B(9) 
B1O = B(10) 
Bil = B(11) 

END $ "OF DYNAMIC" 
TERMINAL 

IF (ISOL . GT. 21) GOTO L50 
IF (ISOL .GT. 0) GOTO L27 
RHS = 0.0 
DO L25 I = 1, 10 

D(I) = -V(I) 
L25.. CONTINUE 
DO L26 I = 1, 11 

D(I+10) = -DB(I) 
L25.. CONTINUE 
GOTO L31 
L27.. CONTINUE 
IF (ISOL .GT. 10) GOTO L29 
DO L28 I = 1, 10 

C(I, ISOL) = V(I) 
L28.. CONTINUE 
GOTO L31 
L29.. CONTINUE 
DO L30 I = 1, 11 

C(I+10,ISOL) = DB(I) 
L30.. CONTINUE 

I  I, 

ISOL = ISOL + 1 
IF (ISOL . L. 21) GOTO L40 
IF (ISOL . EQ. 1) GOTO L35 

Figure 6.4 (cont.) 
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DO L35 I = 1,10 
VO(I) = 0.0 
DBO(i) = 0.0 

L35.. CONTINUE 
DBO(11) = 0.0 
IF (ISOL . GT. 10) GOTO L41 
v0(ISOL) = 1.0 
GOTO L42 
L41.. CONTINUE 
DBO(ISOL) = 1.0 
L42.. CONTINUE 
L40.. CONTINUE 
CALL LEQT1F(C, 1, 21, 21, D, 0, WK, IER) 
PBS = -1.0 
DO L45 I = 1, 10 

VO(I) = D(I) 
DBO(I) = D(I+10) 

L45.. CONTINUE 
DBO (11) = D(21) 
GOTO L10 
L50.. CONTINUE 

END $ "OF TERMINAL" 
I  •1 

END $ "OF PROGRAM" 

Figure 6.4 (cont.) 
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Figure 6.5 Equal velocity lines for a = b = land M = 0. 
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Figure 6.6 Equal velocity lines for a = b = 1 and N = 5. 
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Figure 6.7 Equal velocity lines for a = b = 1 and M = 10. 
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Figure 6.8 Equal velocity lines for a = b = 1 and M = 20. 
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Figure 6.9 Equal magnetic field lines for a = b = 1 and 

N = 5. 



Figure 6.10 Equal magnetic field lines for a = b = 1 and 

M = 10. 
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Figure 6.11 Equal magnetic field lines for a = b = 1 and 

M = 20. 
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6.6 Why CSSL is not Suitable for Elliptical PDE? 

We shall answer the question of why CSSL is not best for an elliptical PDE by 

delving deeper into the analytical solution of the discretized system of ODEs. For sake 

of simplicity, we shall take the case M = 0, for this will illuminate the essential 

features of the solution without generating complications arising due to the interaction 

of velocity and the magnetic field. 

Thus setting M = 0 in equations (6..5.30) to (6.5.39) we obtain the following 

system of ODEs 

d2V1 2V2-2V1 
 dx2+  h2 (6.6.1) 

and 

d2V1 V +1 -2V+V 1 

dx 2 h2 

d2VN 2VN - VN.1 

dx2 +  h2 

The boundary conditions on V are 

dv. 
--(o) = 0, 
dx 

(6.6.2) 

(6.6.3) 

(6.6.4) 

V.(a)=O. (6.6.5) 

Since, using CSSL, we shall be converting a BVP (6.6.1)-(6.6.5) into a series of 

IVPs, we shall need some initial conditions on V1 at x = 0. 
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Let 

V(o)= u0. 

Introducing the Laplace transform 

Co 

(6.6.6) 

v (s) = fe2 V(x )dx, (6.6.7) 
0 

we take Laplace transform of equations (6.6.1)-(6.6.3) to obtain 

s2v1 + .(2v 2 - 2v 1) = - + 

s2v1 + --(v1+1 - 2v1 + v1_1)- --- + u, i=2,..N-1 

S2VN + --(-2vN + VN_1) = - + UN 0' 

or in matrix notation, one can write 

where 

(6.6.8) 

(6.6.9) 

(6.6.10) 

Av = b, (6.6.11) 

a20 
1c1 

A= 0 1 a 

ooa 

00 
00 
00 (6.6.12) 
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and 

/ —1 

b = h2 

—1 
+tLNO 

In equation (6.6.12) a is given by 

(6.6.13) 

a = 82 h2 —2. (6.6.14) 

Equation (6.6.11) will be solved using Cramer's rule which requires the calculation 

of det(A. ). For calculation of det(A ), let us introduce 

Sn = 

alO •.. 00 
1a1 00 
01aOO 

666... i 

b.,, being a determinant of order n. 

In terms of S,, det(A) can be written as 

det(A) = a611_1 - 26N-2-

Hence it suffices to calculate S, to find det(A). 

Expanding 5, in terms of entries of first row, we get 

bn = aS_1 - 

(6.6.15) 

(6.6.16) 

(6.6.17) 
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Thus 6 satisfies the recurrence relation 

bn - a6_ + 6n_2 = 0. 

Also it may be noted that 

= a and 62 = a2 1. (6.6.10) 

One can also think of equation (6.6.18) as a difference equation. Setting 6 = 

we obtain the following auxiliary equation 

- aX + 1 = 0, 

which admits the solution 

4) if a2≥4 

112 = ½ (a ± I V'4 - a2) if a2<4 

The general solution of equation (6.6.18) can now be written as 

on = ciXi + c2X2. 

Using the conditions (6.6.20) we obtain 

C1X1 + C2X2 = a. 

C1X? + C2X = a2 - 1. 

which can be solved to give 

(6.6.20) 

(6.6.21) 

(6.6.22) 

(6.6.23) 

(6.6.24) 
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and 

1 a+V/a2 _4 

2 v'a2 _4 

1a\/a2 4 

2 2 /a2 _4 

(6.6.25) 

(6.6.26) 

if a2 > 4. For a2 < 4, appropriate changes must he made in equations (6.6.25) and 

(6.6.26). 

Substituting the values of C and C2 from equations (6.6.25) and (6.6.26) in 

equation (6.6.22), we obtain 

and 

on 

on 

1 

V'a2 4 

I V'4 - a2 

• 
2 - 2 )n+1] 1[ be  + V'a2_4  ) i: a- V'a2 _4 

Is/4_a2 fl+1 

2 ) -( 
)n+l ] a - I - a2  

2 

if a2 > 4 

if a2 < 4 (6.6.27) 

Equation (6.6.27) can be simplified to 

on 

— sh(n + 1)0 where chO = ---; if a2>4 — shO — sin(n +1)0 where cos0 = -s-; if a2<4 —  sInG 

Substituting for O, in equation (6.6.16), we obtain 

(6.6.28) 
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= 

det(A) = 2chNO if a2 > 4 2cosNO if a2 < 4}• 
(6.6.29) 

In first case when a2 > 4, clearly det(A) has no zeros, but in the second case 

a2 < 4, det(A) has infinitely many zeros. The corresponding values of s can be 

obtained by using equations (6.6.15) and (6.6.29). From equation (6.6.29), we have 

det(A) = 0 

f NO— 'r 3ir Sir 
- 

i.e.,if 0 = (2m —1)7r m  

Since cosO a , we have from equation (6.6.16) 

s2h2 —2 2cos0 

which gives 

2 0 
S = ± 1 cos--. 

Hence we can write 

NI 2 
det(A) = H s s - 7:-cosOm J [ + +c050m ) 

M = I.. 

where 

(6.6.30) 

(6.6.31) 

(6.6.32) 
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o (2m —1)7r 
m 2N 

Using Cramer's rule, now the solution of equation (6.6.11) can be written as 

V - 

det(A) 

det(A1) 

(6.6.33) 

(6.6.34) 

where det(A1) is obtained by replacing I th column of det(A) by entries of vector b. 

Since a occurs in each column of det(A), replacing any column of det(A )by 

entries of vector b will reduce the degree of polynomial representing det(A1) by at least 

two for every i. Of course, corresponding to the term -_, we shall be getting another 

polynomial of degree at least two less than that of det(A). 

Hence when v1 is resolved into partial fractions, we shall get the form 

vi = 
m=1 2 •9  — COSOm 

N d. 

m = 1 , 2 T cos OM 

where bj0,cim and dim are appropriate constants. 

Taking the inverse Laplace transform of equation (6.6.35), we obtain 

(6.6.35) 

N 2XCOSOm 2xcos0 1 
V1 (x) = b10 + c17 exp   + d12 exp m  

M=I ( h m=1 h J (6.6.36) 

From equation (6.6.36) it is clear that using a marching technique, we shall be 

getting exponentially growing solutions. Since the exponent factor is proportional to 

1/h., reducing the value of h, in fact, leads to larger exponential growths. 
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It may be noted that for parabolic and hyperbolic equations we shall not get the 

exponentially growing part of the solution. Whereas for hyperbolic equations the two 

solutions in equation (6.6.36) will be oscillatory in nature, for parabolic equations there 

will be only exponentially decaying term in the solution. In either case, there will be no 

problems of machine overflow in obtaining the solution by using CSSL. 

On the other hand, by converting the BVP characterized by elliptical PDE to a 

system of IVPs, which is the standard technique in the usage of CSSL, one has to 

reckon with exponentially growing solutions. Some amount of discretion is required in 

choosing the value of h. Large h may result into inaccurate solutions, whereas small 

values of h may cause machine overflow. 

If the choice is restricted to shooting methods, which is indeed the case while using 

CSSL, one possible solution to the problem of avoiding overflow is to use multiple 

shooting methods. In these methods, the interval of interest, namely (O, a) is further 

divided into sub-Intervals and a shooting technique is employed in each sub-interval. 

Since the size of interval in which a single integration is performed is reduced, there is a 

reduction in the exponential growth of the solution also. However, now more missing 

conditions have to be determined, for example, at the end-points of sub-intervals also. 

Thus, to illustrate, for the case M = 0, if the interval (0, a) is divided into two sub-

intervals, rather than determining N+1 missing conditions, now 3N+3 missing 

conditions will have to be found, effectively tripling the size of the problem. 

Using multiple shooting techniques it might have been possible to solve the 

original problem in MI-ID for values of M greater than 20. However, this has not been 

attempted in the present chapter. 

In Tables 6.3 and 6.4, particular solutions have been given for various values of x 

and for various values of h = 0.05 and 0.025 respectively. It is clear that halving the 



Table 6.3 

X Ui LJ3 US U7 U9 

.05 -, 12500000E--02 -. 12500000E-02 -. 12500000E-02 -. 12500000E-02 -, 12500000E-02 

.10 -.S0000000E-02 -, 50000000E-02 -, 50000000E--02 -,50000000E-02 -, 48090278E-02 
• 15 -, 11250000E-01 -, 11250000E-01 -• 11250000E-01 - .11233362E-01 -. 74348958E-02 
.20 -.200000OOE-01 -, 20000000E-01 -. 19998825E-01 -, 19171369E-Oi • 17278254E-01 
.25 -,31250000E-01 -, 31249926E-01 -, 31133448E-01 - . 15196084E-01 • 24628578E+00 
.30 -, 44999991E-Q1 -. 44987099E-01 -, 41180057E-01 • 15959520E+00 • 1795s2a6E+01 
.35 -,6124Z555E-Q1 -. 605?4601E-01 • 13409282E-01,, • 20132565E+01 • 11581542E+02 
.40 -.79818421E-01 -.61557952E-01 . 99971224E+00 . 1E272841E+02 . 72383022E+02-
.45 -.94209415E-01 , 26256313E+00 • 12763584E+02 . 14994460E+03 . 449718B3E+03 
.50 .58326652E-01 •55415913E+01 . 13420896E+03 . 1144789E+04 • 28007459E+04 

Table 6.4 

x ui 

.05 -. 12500000E-02 

.10 -, S0000000E-02 

.15 -. 11250000E-01 

.20 - . 20000000E-01 

.25 -. 31250000E-oj. 

.30 •-. 45000000E-01 

.35 -. 61249949E--01 

.40 - . 79776870E-01 

.45 • 17960415E-F00 

.50 . 17045047E+03 

U3 US tJ7 1 U9 

-.12500000E-02 -. 12500000E-02 -. 12500000E-02 -. 12500000E--02 
-,50000000E-02 -. 50000000E-02 -. 50000000E-02 -. 492B422E-02 
-,11250000E-01 -. 11250000E--01 -. 11246775E-01 . 39898001E-01 
-,20000000E--01 -. 19999974E-01 -, 15389514E-01 • 45682103E+01 
-.31250000E-01 -, 31110514E--01 . 13852583E+01 , 2619723E+03 
- . 44997641E-01 •71133157E-01 . 21764247E-F03 . 15285385E+05. 
- . 56675768E-01 • 39220228E+02 • 22886390E+05 • 758461•30E+06 
•30170943E+01 • 78243349E+04 • 19127920E+07 •36261633E+08 
•11050494E+04 • 11063984E+07 • 13789606E+09 • 17000424E+10 
.25681947E+06 • 12364941E+09 .89965369E+10 • 78876675E+11 
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value of h nearly doubles the exponential growth of the solution. 

6.7 Squeezing of Fluid Between Parallel Plates 

In this section we will consider the application of CSSL to a boundary value 

problem. Unsteady flow of fluids finds applications in many diverse areas such as 

engineering, medicine etc. The generalized Navier-Stokes equations characterizing the 

unsteady flow, it may be mentioned, are extremely difficult to solve and only a few 

exact solutions exist. However, under certain restrictions, using similarity 

transformations, it is possible to reduce the PDEs governing the fluid flow into a system 

of ODEs which can be solved using a CSSL. 

Amongst the various classes of unsteady fluid flow, the problems of squeezing of 

fluid from a tube or between two parallel plates are particularly interesting and 

important. Uchida and Aoki [UCHI77] have modelled the flow of blood from the heart 

by a semi-infinite circular pipe with one end closed. They calculated the flow produced 

by a single contraction or expansion of the wall carrying the blood. 

The problem of unsteady squeezing of a viscous fluid between two parallel plates, 

on the other hand, is encountered frequently in the unsteady loading of mechanical 

parts, such as, thrust bearings and squeeze films. In the earliest model describing the 

flow, Moore [M00R65] ignored the inertial effects. The Reynolds equation describing 

his model is 

a - (h' ap TX -•7x ) + -g_(h 3.r) = 12p dh 

which admits the solution 
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P — 12p dh x(x,y)+p0 
h3 dt 

(6.7.2) 

v2x = —1, x = 0 on the boundary (6.7.3) 

Here h (t) is the distance between the plates, p is the pressure and It is the coefficient of 

viscosity, Po denotes the pressure at the edges of the plate. 

Solution of equation (6.7.3) using CSSL for a rectangular region and the difficulties 

encountered in obtaining the solution are discussed in detail in the previous section. 

As pointed out by Wang [WANG7O], the Reynolds equation is quite inadequate for 

higher squeeze rates, because in this case the inertial effects represented by non-linear 

terms dominate. Wang [WANG76] and Uchida et al. [UCHI77] also showed that the full 

Navier-Stokes equations admit the similarity solutions for the problems considered by 

them if the boundary motion behaves as (1 - at P If a is positive, contraction takes 

place, while if a is negative, expansion occurs. 

By using a similarity transformation, the Navier Stokes equations are reduced to 

ODEs embedding a 'squeezing parameter' S, which is proportional to a. Wang 

[WANG76], by numerically Integrating ODEs demonstrated that the solution for large 

S I is substantially different from that for small I S I, which is obtained by using 

Reynold's equation (6.7.1). 

Wang and Watson [WANG7O] extended the investigation of Wang [WANG7O] to 

the case of squeezing of fluid between two elliptical plates. For small values of S, 

Reynolds [REYN1886] obtained the solution using equation (6.7.3). The governing 

equations for large I S I are however much more complicated, and it required a new 

homotopy method developed by Watson EWATS7O] to perform the numerical 

integration. The homotopy algorithm is globally convergent and does not require a 
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good initial approximation. It can also 'dig out' unexpected solutions, as for example, 

the dual solution for small negative S occurring for squeezing of fluid between elliptical 

plates. However, the method is not without flaws. One of the major considerations is 

the cost factor: the method is quite expensive. Another limitation is the restriction on 

the value of S. Wang and Watson were able to use their method only for values of S 

up to 20. Beyond this value, they had to resort to imbedding technique. 

Aziz and Na AZIZ8l] proposed a new continuation technique by which they were 

able to obtain the solution of the aforementioned problem for a wide range of 

S (-0.5 < S < 25) non-iteratively and inexpensively. Their method is particularly 

attractive as it generates the data systematically for a wide range of parameters 

characterizing the problem. However, the method is apparently guaranteed to work 

only if there is a unique solution of the problem, which is indeed the case, when S is 

positive. For negative S, the method may generate only one solution when multiple 

solutions exist and, worse still, may generate a "solution" when, in fact, no solution 

exists. 

What one, therefore, requires is a method which can find the multiple solutions 

and does so inexpensively. Since CSSL, as pointed out earlier, is heavily biased towards 

shooting methods, we have used Newton's method developed by Roberts and Shipman 

[ROBE71] for solving the difficult non-linear two-point boundary value problem. 

Newton's method eliminates the guess-work to a large extent, though it must be 

admitted that some idea about an initial guess is necessary. Further, the quadratic 

convergence of the method ensures that the solution, if it exists, will be obtained 

rapidly. 

It is true, that in Newton's method, the size of the problem grows considerably 

with the number of unknown initial conditions. Thus for the problem under 
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consideration, the seventh order system of ODEs is transformed to a system of twenty 

eight ODEs. This is where one can have an advantage in having a CSSL on a vector 

computer. Using vectorized integration routines, the system of equations can be solved 

in rapid succession. This, combined with quadratic convergence of Newton's method, 

admirably produces the required solution in a surprisingly short amount of time. The 

time saved in producing a solution for a single set of physical parameters can be used in 

tracking all possible solutions for other sets of parameters. 

Thus, using CSSL-W on the Cyber 205, numerous other solutions for negative S 

have been generated, which have not been reported in the literature so far. Also, we 

have tried to provide a possible explanation for the multiplicity of solutions, using the 

method of weighted residuals. Finally, an analytical solution is developed for large 

negative S using a matched asymptotic expansion technique. 

6.7.1 Formulation 

Consider the unsteady flow of a viscous fluid between two elliptical plates situated 

at  ==±h(t),x2 +/9y 2=D 2/4 where 

h(t)=av'1 - at (6.7.4) 

and a, /3 and D are given non-negative constants and t is the time. It is assumed that 

D >> a, so that edge-effects can be neglected. The geometry of the problem is 

depicted in Figure 6.12. 

For unsteady flow of incompressible viscous fluid, Navier-Stokes equations are 

Ut + UUX + VU Y + wuz = —Z /p + v(u + UYY + Uzz) 
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Figure 6.12 
Geometry of the model 
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Vt + uv + vv!, + wv = —pa /p + '-'(v + Vy!,, + Vzz) 

W t + tLWz + VWy + WW =-p/p+v(w + VIYY + Wzz) 

and the equation of continuity is 

Ux + Vy + Wz = 0 

(6.7.5) 

(6.7.6) 

In equations (6.7.5) and (6.7.6), (u , v ,w) represents velocity at a point, p, ji and p 

denote respectively the density, kinematic viscosity and pressure. Finally, subscripts are 

used to denote the partial derivatives. 

Using the similarity transformation variable 

z 
?7 

and the following forms for velocity and pressure 

= 4(1— at) (), v - 4(i— at) 

ct 
tO -  a    f+g 

4,/1 - at 

P = P(t)— Kpva(x 2 +/3y 2) pa 2a2  

8a 2(1— at)2 8(1 - at) 

I2v, )- n(f + g)+ (1 + g)2 1 
aa 4 ] 

(6.7.7) 

(6.7.8) 

(6.7.9) 

(6.7.10) 

where the function P (t) and constant K are to be determined by boundary conditions; 

equations (6.7.5) reduce to the pair of ODEs 
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+ic = s[2f' + ?if " + f' f' -  f" (f +g )] (6.7.11) 

+Ic=s[2g1 + g" + g 

Here S is a " squeeze number" defined by 

'g ' -- g"(f +g )] (6.7.12) 

= ca 2 (6.7.13) 
2v 

The boundary conditions of the probeim are 

u, v = 0 on the boundaries (no slip condition) (6.7.14) 

w = h (t) on the boundaries. (6.7.15) 

Substituting for v, v, w and h (t) from equations (6.7.8), (6.7.9) and (6.7.4) 

respectively, we obtain 

1 '(±1) = 0, g' (±1) = 0, 1 (1) + g(1) = 2, 1 (-1) + g (-1) = —2 (6.7.16) 

In view of the antisymmetry of the problem about z = 0, we need to consider the 

solution of the problem only in the region 0 < i < 1. Consequently the boundary 

conditions (6.7.16) modify to 

1 (0) = 0, g(0) = 0, f"(0) = 0, g" (0) = 0 (6.7.17) 

f '(1) = 0, g' (1) = 0, 1 (1) + g (1) = 2. (6.7.18) 

The seven boundary conditions (6.7.17) and (6.7.18) determine K and six 

constants of integration given by equations (6.7.11) and (6.7.12). In fact, we can match 

the number of boundary conditions with the order of the system of ODEs by adding the 
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equation 

K' = 0 

to the system. 

6.7.2 Numerical Solution Using Newton's Method 

(6.7.10) 

In the present ' sub-section we shall develop Newton's method for solving the 

system of equations (6.7.11), (6.7.12) and (6.7.10) subject to the boundary conditions 

(6.7.17) and (6.7.18). 

Firstly, we note that out of seven boundary conditions, four are given at 17 = 0, 

and the remaining three boundary conditions are given at 77 = 1. Thus the present 

problem is a two-point boundary value problem (BVP). There is a whole range of 

techniques and methods devoted to solving BVPs numerically. The interested reader is 

referred to the excellent monograph by Na [NA7O]. Because of the manner in which 

CSSLs are written, our choice is practically limited to Newton's method. 

Next, we realize that if the values of the missing initial conditions, namely, 

f' (0),g' (0) and K are known, the system of equations can he solved by a marching 

techñiue. The values of the missing initial conditions must be so chosen that the 

terminal conditions (6.7.18) are satisfied. 

In the shooting method, one chooses some trial values of the initial conditions and 

computes the amount by which the solution misses the boundary conditions at the 

terminal point. The idea is to minimize this amount. The shooting methods in which 

only one terminal condition needs to be satisfied are relatively easy to handle (see, for 

example, the annotated example in chapter 3). However, if the number of terminal 

conditions increases, the procedure of selecting the ' right trajectory' to hit the 'target' 
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becomes much more complicated. In the present case, we have to shoot in three 

dimensional space and clearly the hit and miss strategy is ruled out. 

To facilitate the ideas behind Newton's method, let us consider the solution of the 

vector equation 

f(r) = 0 

in N-dimensional space. 

(20) 

Let the desired solution of equation (20) be r = R. We start with a trial solution 

r = r0, where r0 is assumed to be 'sufficiently close' to R. 

Expanding equation (20) by Taylor series around r = r0, we obtain 

f(r0) + .!..(r0) (r - r0) + higher order terms = 0, ar 

where ar i - s the Jacobian matrix. 
8r 

(6.7.21) 

Now if we ignore the higher order terms in equation (6.7.21), we can obtain the 

following approximation r1 for R 

-1 

ri = r0 + I__(ro)] f(r0) (6.7.22) 

This is precisely the idea behind Newton's method. Kantorovich [KANTG4] has done 

extensive study of Newton's method and he has demonstrated amongst other things that 

when the method converges, it does so quadratically. Roughly speaking, it means that 

the number of digits for which the result is accurate is doubled every time an 

application is made of the method. Thus repeated application of scheme (6.7.22) will 

result in tremendous acceleration of convergence near the root. 
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We shall now put above idea into practice for the problem at hand. Let 

a = I' (0),b = g' (0) and c = K (6.7.23) 

then, the functions f and g will depend on the parameters a, b and c besides 

depending on the variable 77. We can, therefore, write 

I = I (n; a, b, c), g = g (ii; a, b, c) (6.7.24) 

Boundary conditions (6.7.18) dictate 

f'(l; a, b, c) = 0 

g' (1; a, b, c) = 0 

1 (1; a, b, c)+ g(1; a, b, c)= 2. 
(6.7.25) 

Solution of equations (6.7.25) yields the required values of a, 6 and c. In the 

iterating scheme presented below, let the values of a, b and c at ith iteration be 

a1, b1 and c8 respectively. Expanding equation (6.7.25) at (1 + 1)th iteration about 

(a1, b, C1) by Taylor series, we get 

11(1; a1, b1, C1) + Ia1 (1; a1, b1, c1)(a1+i - a1) + 

+ I b (1; a1, b , c1 )(b+ - 6 ) + Ic' (1; a1 , , c1)(c1+1 - c1 ) + 

g' (1; a1, bi I CI) + gal (1 a1, b1, C:. )( a1+i - a1) + 

+ g6 ' (1; a1, b, c1)(b1+1 - b1) + g ' (1; a1, b, c1)(c11 - c1) + 

= 0,(6.7.26) 

= 0,(6.7.27) 

1 (1; a1, b1, c1) + g(1; a1, b1, c1) + [fa(1; a1, b1, c1) + 

+ g (1; a1, b1, c1)](a11 - a1) + [lb (1; a1, b, c,.) + g (1; a1, b1, c1)](b11 — b) + 

+ If (1; a1, b1, C1) + g (1; a1, 61, c1)](c11 - c1) + . = 2. (6.7.28) 
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In equations (6.7.26)-(6.7.28), subscripts a, b and c stand for partial derivatives, 

whereas the subscript i denotes the number of iteration. 

Ignoring second order terms in equations (6.7.26)-(6.7.28), we obtain the following 

system of linear equations 

I ía' lb' IC' J lai+1_ai j f /I ) I I I 

g g - = - I g I 
ía + ga lb + 9b f  + g f + g — 2J 

(6.7.29) 

where for the sake of brevity we have abbreviated the value of a function at = 1 at 

the i th iteration by the corresponding symbol. 

If the coefficient matrix in equation (6.7.29) is invertible, the solution for a, b and 

c at next iteration is 

Ih1  [ ai) [ I' f' b I' 1' b1.1.1 = b1 - 9' b 9' c I g' 
fa + g, lb + g6 I c + g,, (. 1 + g —2) 

(6.7.30) 

Equation (6.7.30) embodies the iterative scheme needed to determine the values of 

a, b and c. Unfortunately, in such a scheme, we need to know the values of partial 

derivatives of I , g and f' and g' with respect to a, b and c at ?J = 1. 

It is, of course, possible to use approximate values of partial derivatives as was 

done in the annotated example of CSSL given in chapter 3. However, to ensure the 

quadratic convergence, these values must be calculated accurately. 
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Differentiating equations (6.7.11) and (6.7.12) partially with respect to a, b and C, 

we obtain the following additional systems of ODEs along with the corresponding 

boundary conditions 

System for ía' g, Ka: 

'I 

ía"  + K = S[2fa' + fl! g" +f'f' 3bf (fa + g)— 

I' 

fa (1 + g)} 

g + /3Ka == S [2gb' + ng" + g' g' - (Ja + g) - 

I' 

3b9a (I + g)] 

(6.7.31) 

(6.7.32) 

Ka' = 0 (6.7.33) 

ía (0) = 0, g (0) = 0, Ia (0) = 0, g' (0) = 0, 

fa' (0) = 0, ge" (0) = 0, Ka (0) = 0 

System for I b , g , 

lb II' +Kb = S[2f 6' + flfb " +1 lb —f "(f 6 
'I 

Ib (1 + g)] 

I', 

g6 + /3K6 = S [2g6' + n9b1' + g' g6' - g (h + g6 ) - 

11 

—;bg6 (I + g)] 

Kb' = 0 

(6.7.34) 

(6.7.35) 

(6.7.36) 

(6.7.37) 
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f b (0) = 0, g6 (0) = 0, 1 ' (0) = 0, g0' (0) = 0, 

lb (0) = 0, gb'1 (0) = 0, K0 (0) = 0 

System for f, g,,, K: 

'I' 

IC + Kc = S[2f ' + ?lfc " + 1' I ' —J" (f + gj— 
I' 

— 3J (I + g)] 

+ f3lCc = S [2gb' + fl9c 1' + g' g' - ;g" (I C + g ) - 

(6.7.38) 

(6.7.39) 

- g" (I + g)] (6.7.40) 

K' = 0 (6.7.41) 

f  (0) = 0, g, (0) = 0, f' (0) = 0, g' (0) = 0, 

Ic" (0) = 0, ge"  (0) = 0, IC (0) = 0 (6.7.42) 

Thus, we see that the original seventh order system of ODEs represnting a non-

linear two point BVP has been transformed to a twenty-eighth order system of ODEs, 

which, however, represents a non-linear IVP, and, therefore, can be solved using CSSL. 

The algorithm for obtaining the solution of the BVP can now be stated. 

(1) Assume trial values of a, b and c for the missing initial conditions 

f' (0), g' (0) and K. Let us denote these approximate values of a, b and c by a0, b0 

and c0 respectively. 

(2) Integrate the ]IVP represented by equations (6.7.11), (6.7.12), (6.7.17), (6.7.23), 

(6.7.31)-(6.7.41) from 77 = 0 to 17 = 1, getting the values of J , g, f' and g' and 

their partial derivatives at i = 1. 
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(3) Substitute these values in equation (6.7.30) to get the next approximation 

a , bl and  c 

(4) Repeat steps (1)-(3) until the values of a, b and c agree within the specified 

degree of accuracy. 

A CSSL program on the Cyber 205 implementing above algorithm is given in 

Figure 6.13. 

6.7.3 Numerical Results And Discussion 

The most interesting cases are the two-dimensional case (fl 0) and the axi-

symmetric case (= 1). In the present chapter, we have limited ourselves to these two 

cases only. 

We note that if C = 0, equation (6.7.12) admits a trivial solution g = 0. 

Similarly if 3 = 1, equations (6.7.11) and (6.7.12) are satisfied trivially by f = g. 

However as Wang and Watson [WANG79] have pointed out that by considering 

equations (6.7.11) and (6.7.12) for elliptical plates, non-trivial solutions also exist when 

S < 0, though their computations were restricted to only small negative values of 

S (-0.5 < S < 0). 

We have performed some extensive computations which ranged over all negative 

values of S. A number of new solutions were found, though, no new non-symmetric 

solution could be found for /3 = 1. We shall be dividing the discussion of numerical 

results obtained in two parts (a) 6 = 0 and (b) 8 = 1. 
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PROGRAM - SQUEEZING OF FLUID BETWEEN TWO ELLIPTICAL PLATES 
COMMENT  

,I I, 

PURPOSE: TO DETERMINE THE RESISTANCE DUE TO SQUEEZING OF A 
VISCOUS FLUID BETWEEN TWO ELLIPTICAL PLATES 

REMARKS: THE PROGRAM SOLVES THE TWO POINT BOUNDARY VALUE 
PROBLEM 

F''' + A = 5 * (2*F' + F'' + F'**2/2 + 
- F'' * (F + G)/2 

G''' + BETA * A = S * (2*G' + G'' + G'**2/2 
- G'' * (F + G)/2 

WITH THE BOUNDARY CONDITIONS 
F(0) = 0, G(0) = 0, F'' (0) = 0, G' '(0) = 0 
F' (1) = 0, G' (1) = 0, F(1) + G(1) = 2 

IF lOFT = 1, ITERATIONS TAKE PLACE AND MISSING 
INITIAL CONDITIONS ARE DETERMINED. lOFT THEN 
CAN BE SET TO TWO TO GET THE EXACT SOLUTION. 

IF lOFT = 2, NO ITERATION TAKES PLACE, THIS 
OPTION MUST BE USED ONLY WHEN EXACT MISSING 
INITIAL CONDITIONS ARE KNOWN. 

INITIAL 
ARRAY V(28) 1DV(28),VO(28),C(3 
INTEGER ITER, rINAX, IOPT, IER 
CONSTANT lOFT = 1 
CONSTANT TOL = 1. OE- 10 
CONSTANT IThAX = 20 
CONSTANT DFO = 1.0 
CONSTANT DGO = - 1.0 
CONSTANT A = 1.0 
CONSTANT BETA = 0.25 
CONSTANT S = 5.0 
CONSTANT ETAMAX = 0.999999 

DF]. = DFO 
DG1 = DGO 
B 

VO(1) = 0.0 
VO (2) = DF1 
VO(3) = 0.0 
VO(4) = 0.0 
VO(5) = DG1 
VO(6) = 0.0 
VO(7) = B 
VO(8) = 0.0 

'V 

'I 

'I 

I' 

I, 

,3),D(3) ,WK(3) 

"INPUT OPTION" 
"ACCURACY CRITERION OF CONy" 
"MAXIMUM NO OF ITERATIONS" 
"GUESSED VALUE OF E"(0)" 
"GUESSED VALUE OF G' (0)" 
"GUESSED VALUE OF A" 
"ECCENflUCIY OF PLATES" 
"SQUEEZING PARAMETER" 

INITIALIZE THE ARRAY" 

Figure 6.13 
CSSL-IV program for squeezing of fluid between parallel plates 
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VO(9) = 1.0 
VO(1O) = 0.0 
VO(11) = 0.0 
VO(12) = 0.0 
VO(13) = 0.0 
VO(14) = 0.0 
VO(15) = 0.0 
VO(16) = 0.0 
VO(17) = 0.0 
VO(18) = 0.0 
VO(19) = 1.0 
VO(20) = 0.0 
VO(21) = 0.0 
VO(22) = 0.0 
VO(23) = 0.0 
VO(24) = 0.0 
VO(25) = 0.0 
VO(26) = 0.0 
VO(27) = 0.0 
VO(28) = 1.0 

INITIALIZE TBE ITERATION COUNTER" 
ITER = 0 

Lb.. CONTINUE 
END $ "OF INITIAL" 

DYNAMIC 
CINTERVAL DELETA = 0.015625 
DERIVATIVE ONE 

VARIABLE ETA = 0.0 
PROCEDURAL (DV=V) 

DV (1) = V(2) 
DV(2) = V(3) 
DV(3) = -V(7) + S*(2.0*V(2) + ETA*V(3) + 

0.5*V(2)*V(2) - 0.5*V(3)*(V(1)+V(4))) 
DV (4) = V(5) 
DV(5) = V(6) 
DV(6) = - BETA*V(7) + s*(2.0*V(5)+ETA*v(6)+... 

0 . 5V(5) *V(5) _ 0.5*V(6) * (V(1)+V(4))) 
DV(7) = 0.0 
DV(8) = V(9) 
DV(9) = V(10) 
DV(10) = - V(14) + S*(2.0*V(9)+ETA*v(10)+... 

V(2) *V(9) -0 .5*V(3) * (V (8) +V (11))-... 
0.5*V(10) * (V(1)+V(4))) 

DV(11) = V(12) 
DV(12) = V(13) 
DV(13) = - BETA*V(14) + S*(2.0*V(12)+ETA* 

V(13)+V(5)*V(12)_0.5*V(6)*(V(8)+ 
V(11)) _ 0.5*V(13) * (V(1)+V(4))) 

DV(14) = 0.0 

Figure 6.13 (cont.) 
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DV (15) = V(16) 
DV (16) = V(17) 
DV(17) = - V(21) + S*(2.0*V(16)+ETA*V(17) 

+V(2) *V(16) -O 5*V(3) * (V(15) +V(18) 
_0.5*V(17) * (V(1)+V(4))) 

DV(18) = V(19) 
DV(19) = V(20) 
DV(20) = - BETA*V(21) + S*(2.0*V(19)+ETA* 

V(20)+V(2) *V(19) -0 . 5*V(6) * (V(15) 
+V(18)) - o . 5*V(20) * (V(1)+V(4))) 

DV(21) = 0.0 
DV(22) = V(23) 
DV(23) = V(24) 
DV(24) = - V(28) + S*(2.0*V(23)+ETA*V(24) 

+V(2) *V(23) _ 0.5*V(3) * (V(22)+V(25) 
_0.5*V(24) * (V(1) +V(4))) 

DV(25) = V(26) 
DV(26) = V(27) 
DV(27) = - BETA*V(28) + S*(2.0*V(26)+ETA* 

V(27)+V(2)*V(26)_0.5*v(6)*(v(22) 
+V(25)) -0.5*V(27) * (V(1)+V(4))) 

DV(28) = 0.0 
END "OF PROCEDURAL" 
V = INTVC(DV, VO) 

END $ "OF DERIVATIVE" 
F = V(1) 
DE = V(2) 
D2F = V(3) 
0 V(4) 
DO = V(5) 
D20 = V(6) 
TERMT (ETA . GE. ETAMAX) 

END "OF DYNAMIC" 

TERMINAL 
IF (IOPT . EQ. 2) GOTO L99 
FG1 = F + 0 
PRINT L75, ITER, DE, DG, FG1 

L75.. FORMAT (1X,"ITER :", I3,3X,"E' :", E15.8,3X,"G' :", F15.8, 
3X,"F+G : ", E15.8) 

IF (IOPT . EQ. 0) GOTO L99 
C(1, 1) = V(9) 
C(2, 1) = V(12) 
C(3, 1) = V(8) + V(11) 
C(1, 2) V(16) 
C(2, 2) = V(19) 
C(3, 2) V(15) + V(18) 
C(1, 3) = V(23) 
C(2, 3) = V(26) 
C(3, 3) = V(22) + V(25) 
D(1) = - V(2) 
D(2) = - V(5) 
D(3) = 2.0 - V(1) - V(4) 

Figure 6.13 (cont.) 
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L97. 

CALL LEQT1E (C, 1, 3, 3, D, 0, WIC, IER) 
IF (ABS(D(1)) . LT. TOL .AND. ABS(D(2)) 

ABS(D(3)) . LT. TOL) GOTO L97 
ITER = ITER + 1 
IF (ITER . GT. 
VO(2) = VO(2) 
VO (5) = VO (5) 
VO(7) = VO(7) 
DEl = VO(2) 
DG1 = VO (5) 
B = V0(7) 
GOTO L10 
PRINT L77, DEl, DG1, B 

L77.. EORMAT(1X,"DFO =", G18.10,3X, 
GOTO L99 

L98.. PRINT L79 
L79.. FORMAT (1X,"NO 
L99.. CONTINUE 
END $ "OF TERMINAL" 

$ "OF PROGRAM" 

ILMAX) GOTO L98 
+ D(1) 
+ D(2) 
+ D(3) 

.LT. TOL .AND. 

"DGO ", G18.10,3X, "A =", G18.10) 

CONVERGENCE COULD 

Figure 6.13 (cont.) 

BE ATTAINED.") 
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(a) Two dimensional case: /9 = 0. 

We shall further divide this case into two sub-cases (i) g = 0 and g 0. 

(i) Case g = 0 

In Figure 6.14, 1' (0) has been plotted against S. It appears that for this case, a 

unique solution exists for S > 0. When the solution curve was extented into the 

domain S < 0, it was found that the curve could go only as far as S = -3.495. As S 

was further varied, the curve turned back and rapidly advanced to infinity. This curve 

has been designated by 'a' in Figure 6.14. 

On the other hand, a family of infinitely many solutions was found for large 

negative S. These solutions are similar in nature. We have shown only two members 

of the family. They have been designated by 'b1' and 'b2' in Figure 6.14. 

The curve 'b ' approaches the value 6 asymptotically as S -* - co. As S 

increases from -60, 1' (0) decreases monotonically. The curve turns back at S = 

-9.705, then it turns back again at S = -11.817, finally dropping rapidly to - Co as S is 

further increased. 

Similarly, the curve 'b2 approaches the value 4 asymptotically as S -+ - oo. As 

S increases from -60, f' (0) decreases monotonically, attains its minimum value at S 

= -26.49, then it starts rising. The curve turns back for the first time at S = -22.175, 

it turns back for the second time at S = -25.083, finally rising rapidly to infinity as S 

is further increased. 

The analytical behavior of these solutions for-large negative S has been given in 

section 6.7.5. - 



- 154 - 

30-' 

20-
a 

d 

10-

C 

f,(o) 
b2 

0-

C 

-10 - 

-20 

b1 

I I I I I I I I I I I I I 

-40 -30 -20 - 10 0 
S 

Figure 6.14 Plot of f'(0) against S for = 0. 
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It is worth noting that no solution seems to exist in the range 

—9.705 < S < —3.495 

for which g = 0. 

(ii) Case g 0 

Wang and Watson [WANG7O] have reported that a dual solution exists in the 

range —1.15 < S < 0. They have, however, omitted to look into the possibility of the 

solution extending in the range S < —1.15. It appears that, using the homotopy 

method, they were not able to go beyond S = -1.15, the reason being that at this value 

of S, g becomes zero and the non-zero solution becomes identical with the usual 

solution for which g = 0 (see Figure 6.15). We have carried forward the investigation 

for values of S <-1.15 using CSSL. The initial values for f (ii), g (ii) were provided 

by the approximate method discussed in the next section. 

Once past the critical region of proximity of two solutions, the non-zero solution 

was obtained by slowly varying the value of S. It was found that this particular type 

of solution, marked by '' in Figure 6.14, could be obtained only for S > —2.068. In 

fact, as can be seen in Figure 6.14, the curve representing this solution turns back as S 

= -2.068 and rapidly rises to infinity with increasing value of S. 

For large negative S, there seem to he multiple solutions. In Figure 6.14, curves 

'd' and 'e' representing two such solutions are shown. For both the solutions 

f' (0) -+ 14, g' (0) -+ —4 as S - - oo. Curve 'd' falls monotonically as S is 

increased from -30. It turns back at two values of S, first at S = -6.385 and then at S 

= -6.451, after which, it descends sharply as S is further increased. Curve 'e' is 

peculiar and different. It runs parallel to curve 'd' for large negative S. However, it 

turns first at S = -11.534, then for the second time at ,S = -13.420, but before turning 
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for second time, it starts rising at S = -13.0. After turning for second time, the curve 

starts falling again at S = -13.1, which it continues to do till S = -12.4, at which 

value, it starts rising again, this time for good. The curve turns for the third and last 

time at S = -11.77, and then as S is further decreased, it approaches the curve 'b ' 

asymptotically. 

For curves 'a ,b and 'b 2' clearly gF (0) = 0, however, for curves For this 

reason, g' (0) has been plotted against S in Figure 6.16. 

(b) Axi-Symmetric Case: /3 = 1 

We shall further divide this case into two sub-cases (I) f = g and (ii) f g. 

(i) Case f = g 

In Figure 6.17, f'(0) has been plotted against S. Again it appears that a unique 

solution exists for S > 0. This time, though in contrast with the case /3 = 0, it was 

possible to extent the solution curve into the entire domain S < 0. This curve has 

been designated by ' a' in Figure 6.17. It approaches the value 4 as S - —oo. 

Besides the solution corresponding to curve ' a', a family of infinitely many other 

solutions exist for large negative S as in the case /3 = 0. In Figure 6.17, another 

member of the family, designated by 'b' has been drawn. For this curve f, (0) 

approaches the value 2 asymptotically as S -* - oo. In Figure 6.17, starting with S = 

-40, the curve 'b' falls monotonically as S increases. It turns back at S = -13.33 and 

then starts dropping steadily as S is further decreased. 
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(ii) Case f g 

As pointed out earlier, no additional solution, besides the one reported by Wang 

and Watson [WANG79] was found using CSSL. In Figure 6.17, the curve for f' (0) has 

been designated by 'c'. Further 1 (0) and g' (0) have been plotted against S for this 

solution in Figure 6.18. 

6.7.4 An Approximate Analytical Solution 

Normally we do not expect the 'unusual' solutions such as g 0 for /3 = 0 and 

f g for /3 = 1. However, these solutions have been found by Wang and Watson 

[WANG79] using homotopy method and also .by Newton's method using CSSL. In the 

present section, we have used the method of weighted residuals to obtain an 

approximate analytical solution, which sheds light on the nature of solutions, 

particularly for small negative values of S. 

Equations (6.7.11) and (6.7.12) comprise a sixth order system of ODEs, but there 

are seven boundary conditions (6.7.17) and (6.7.18). The parameter K, therefore, can be 

thought of as an eigen value of the BVP. It is not very convenient to deal with the 

eigen value K when use is made of the technique of weighted residuals. 

Eliminating K by differentiating equations (6.7.11) and (6.7.12), we obtain 

I IM 
- S [31 I,," + nf + ½f ' (I' + g' ) - " (1 + g)] = 0, (6.7.43) 

II,, I III 
g - S[3g" III + g + g" (f + g )- g (f + g 0 (6.7.44) 

Equations (6.7.43) and (6.7.44) constitute a system of eight first order differential 

equations. As there are only seven boundary conditions, the additional boundary 

condition is obtained by considering equations (6.7.11) and (6.7.12) at q = 1. We 
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obtain 

Ii' 

g (1) = /3f " (1). (6.7.45) 

We shall now be solving the BVP given by equations (6.7.43) and (6.7.44) and 

boundary conditions (6.7.17), (6.7.18) and (6.7.45) approximately, using an integral 

approach, which is one of the many techniques classified as a weighted residual method. 

Integrating equations (6.7.43) and (6.7.44) between i =o and i = 1, we have 

I " (i) - 1 " (0) + S [2!'(o) + f (o)] = 0, (6.7.46) 

g"(l) - g "  (0) + S [2g' (0) + -g' 2(0)] = 0, (6.7.47) 

We now assume the following trial functions for f and g 

I = E fi 1, g = E g1 if. (6.7.48) 

One can obtain additional equations, if needed, by integrating equations (6.7.43) 

and (6.7.44) over different intervals which need not be necessarily disjoint. 

In order to extract a qualitative information from the approximate solution, we 

shall keep the number of parameters in equation (6.7.40) to a minimum. By increasing 

the number of parameters, no doubt, more accurate solutions can be obtained. 

However, it may obscure the analysis and may suppress the revealing information that 

we want to bring out. Thus let us choose 

1 =1 ifl + I 31) + I 51), (6.7.40) 
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9 =g 117 + 9 3n + g5 5. 

which incidentally satisfies the boundary condition (6.7.17). 

The quantities 1 1, 1 3, 1 5 and g1, g3 and g5 can now be obtained by using the 

boundary conditions (6.7.18) and (6.7.45)and the equations (6.7.46) and (6.7.47). 

We have 

1 I + 3f 3 + 5f 5 = 0, 

g1 + 3g 3 + 5g 5 = 0, 

11+ 13 + 15 + g1+ g3 + g5 = 2, 

6g 3 + 60g 5 = fl(61 3 + 60! ), 

60f + S(21 I + f 2) = 0, 

609 5 + S(2g 1 + g) = 0. 

(6.7.50) 

(6.7.51) 

(6.7.52) 

(6.7.53) 

(6.7.54) 

(6.7.55) 

(6.7.56) 

Solving equations (6.7.51)-(6.7.54) for I 3,1 5,93 and g5 in terms of f I and g1, we 

obtain 

2(5+/3) 8 ___ 

15(1+fl) 1 5(1+) 1+13' 

93=  8/?  1 + 
5(1+13) g1 5(1+13) 

(6.7.57) 

(6.7.58) 
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25+,6  

15= 25(1±fl) 25(1+fl)' 1+fl' 

-  1+25/3 24/3 3/3  
g5— 25(1fl)l+ 25(1+fi)' 1+fl 

(6.7.50) 

(6.7.80) 

Substituting for 1 5 and g5 from equations (6.7.50) and (6.7.60) in equations 

(6.7.46) and (6.7.47), we finally arrive at the following pair of equations in f I and g 1 

+ [2 + 12(25+8') 1 . 288 180 
5S(1+0)  5S(1+/3)9' S+/3) = 0, 

g 2 + 12 + 12(1+25/3)  ] g 1 + 288/3 180/3  
5S(1+/3) 5S(1+/3)1' S(1+fl) = 0. 

(6.7.61) 

(6.7.62) 

Equations (6.7.61) and (6.7.62) represent two parabolas in the (1 1, g1) plane. The 

intersection of these two parabolas gives the values of f I and g1, which when 

substituted in equations (6.7.57) -(6.7.80) yield the approximate solution (6.7.40) and 

(6.7.50). 

Note that if /3 = 0, equation (6.7.62) not only satisfies g = 0, it also admits the 

non-zero solution 

= - 4(1 + 6 ). (6.7.63) 

The two solutions intersect at S = -1.2, which is surprisingly close to the value S 

= -1.15 obtained by Wang and Watson [WANG7O], considering the simple 

approximation chosen by us. 
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Similarly it can be seen that equations (8.7.61) and (6.7.62) have three identical 

solutions for 8 = 1 and S = -0.676, which is fairly close to S = -0.706 found by Wang 

and Watson [WANG7O]. For the range —0.676<S <0, equations (6.7.61) and (6.7.62) 

have non-trivial solutions f g besides the trivial solution f =g, but for S <-0.676 

only the trivial solution f =g can be found. 

In Figures 6.19 and 6.20, a comparison is made of the 'unusual' solutions, namely, 

g 0 for /9 = 0 and f g for /3 = 1 respectively with the corresponding solutions 

obtained by approximate method described above. There seems to be a fairly good 

agreement between the two solutions. 

6.7.5 Matched Asymptotic Solution For Large Negative S 

Even though the approximate method explains the existence of unusual solutions 

for small negative 5, it fails in predicting the solutions for large S. The main reason, 

of course, being that at large values of S, boundary layers develop and, therefore, the 

trial functions for f and g chosen in equations (6.7.49) and (6.7.50), being polynomials, 

are poor choices. We shall now develop matched asymptotic solutions for large negative 

S. We shall be restricting ourselves to the cases /3 = 0 and 9 1. Further only the 

'usual' cases (g = 0 when /3 0 and f = g when /3 = 1) will be considered. It may 

be remarked that Skalak and Wang [Si(AL7O] have given correctly the matched 

asymptotic solution for large positive S for these cases. However, as we shall show 

presently in this section, they have incorrectly assumed the asymptotic solution in 

[WANG76] for large negative S, the same as for large positive S. It is not surprising, 

that Wang was not able to match his numerical results in [WANG76] with those 

obtained by using the technique of matched asymptotic expansion and he 'omitted' to 

mention the results obtained by the latter technique. 
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We shall first seek the reason for obtaining a family of infinitely many solutions 

for large negative S. Let us consider the case = 0, g = 0 first. In this case equation 

(6.7.11) becomes 

I +K=S(2f' + 17! " 

The boundary conditions on f become 

' ' 
+! I -ff"). (6.7.64) 

f (0) = 0, 1" (0) = 0, 11(1) = 0, f (1) = 2. (6.7.65) 

Define a small parameter 

5=l/v'!S!. 

Expanding I and K in terms of 6, we write 

I = F0+8F 1+62F2+ 

K=fr2K0 +Er'K 1+K2+ 

The equation for zeroth order solution becomes 

(6.7.68) 

(6.7.67) 

(6.7.68) 

2F O'  F0 + F - F0F' = - K0. (6.7.60) 

Note that the order of equation (6.7.64) has been reduced by 1 in the zeroth order 

solution. Therefore we can not, in general, make the solution of equation (6.7.60) satisfy 

all the boundary conditions in (6.7.65). We will have to discard one boundary 

condition. 
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Since the boundary layers develop at ij = 1 for both positive large S and negative 

large S, we shall be discarding the condition I (1)=0 for solutions outside the 

boundary layer (also known as outer expansion). Thus, for outer expansion boundary 

conditions become 

F0(0) = 0, F' (0) = 0, F0(1) = 2. (6.7.70) 

One of the solutions of equation (6.7.60) satisfying boundary conditions (6.7.70) is, 

of course 

= 2 = - 4. (6.7.71) 

However, this is the asymptotic solution for fast transient squeezing, i.e., for large 

positive S given by Wang [WANG7G]. This'solution does not hold for large negative S. 

To obtain a proper solution for large negative S, we note that the solution must 

be properly behaved even for large negative S. Let us, therefore, assume the solution 

for F0 given by equation (6.7.68) as 

F0 = f 1 + r fni, (6.7.72) 

where the summation over j takes place over odd integers. 

Substituting for F0 from equation (6.7.72) in equation (6.7.60), and comparing the 

coefficients of ij and q Jl, we obtain 

2f I + ;f 2 = - 1(0, (6.7.73) 

f[i +1—(i-3)f]=0. (6.7.74) 
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If j L 3, equation (6.7.74) admits two solutions 

f=O or - 2j+2  
11— j-3 (6.7.75) 

Thus moving over all possible values of j starting with j = 5, we discover that 

1 i = F (0) takes successively the values 6, 4, 10/3.....The curves 'b ' and 'b2' in 

Figure 6.14, indeed, correspond to F0' (0) = 6 and (0) = 4 respectively. 

We shall now derive the asymptotic solution for large negative S corresponding to 

any admissible value of j. Substituting the value of f I in equation (6.7.69) we obtain 

K0 = 2  (j+1)(3j-5) (5 = 5,7,9,...) 
(5 3)2 

The substitution 

F0=277+  

(6.7.76) 

(6.7.77) 

reduces equation (6.7.69) to 

(j-3)H' + H 1 2_ HH" = 5-2, (6.7.78) 

with the boundary conditions 

H(0)=0,H' (0)=1,H(1)=0. (6.7.79) 

Let H' = Y. Transforming equation (6.7.78), such that the independent variable 

becomes H, we obtain 

(j-1)Y + y2 dY _HY 
dH 

= 5-2. (6.7.80) 
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Equation (6.7.80) can be readily integrated to give 

1 0 

cH = (1-Y)'(a+Y)'. (6.7.81) 

where 

a = 5-2, 

and c is the constant of integration. 

Differentiating equation (6.7.81) with respect to i, we get 

1 

dY 

dfl 
= - 

Using the substitution 

Y = Cos 20 - asin20 

reduces equation (6.7.83) to 

(6.7.82) 

(6.7.83) 

(6.7.84) 

0-1 

C n2f (cot O)'d 0. (6.7.85) 

Further on substituting 

cotO = t(') (6.7.88) 

equation (6.7.85) becomes 

0-1 t  
dt. 

1+to•+l 
(6.7.87) 
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Now using the identity 

j 

rn-i 

dx = -- L,cos 
x 1 rn1r(2i_1)lflfl2  cos 21_1.+2}+ 

I+x 2n 2n 1 .1 2n 2n 

21-1  
x—cos ir 

+ 1 sin m ir(21-1)  arctan 2n  

21-1 2n sin 
2n 

(6.7.88) 

(see Gradeshtyn and Ryzhik [GRADO5] p. 64), we obtain, after lengthy manipulations 

iT 
2cos ' .(o+Y)' (1—Y+' 

cos__iT_arcth  (7+1  
(7+1 -a-

(a+Y)' + (1—Y)' 

1 1 

1 
• uT 

2sin (+ Y) Or '(i—Y) Or ' 

+ sin 3 7  arctan  
(7+1 2 2 

(0+Y)' —(1—Y) °4 ' I 

1 
PT 

2cos (cr+Y'(1—Y' 
2'E ) (7+1  

1=1,3 .1 

= cos arcth 

(a+Y)' + (1—Y)+l 

1  
Pr 

2sin (a +Y'(i—Y)' ___  (7+1  
+ sin arctan 

2 2 

(,,+Y)' —(1—Y)' 

1 

( )•' 
+ 2arctanl i—i'  

+ 

if c=4k-1 

+ 

if or = 4k+1, (6.7.80) 
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the constant of integration vanishing owing to the boundary condition Y = = 1 

when i=O. 

Note that H also becomes zero when Y=-o (see equation (6.7.81)). But from the 

last boundary condition in (6.7.70), H becomes zero when ij=1. Hence Y=-cr when 

i=1. Using this fact and equation (6.7.80), we obtain 

ir 
C = (6.7.00) 

Equations (6.7.77), (6.7.81), (6.7.80) and (6.7.00) completely determine the 

asymptotic solution for large negative S. 

To obtain a uniformly valid solution, we shall follow treatment of Wang 

[WANG76] and assume 

(6.7.91) 

f = 2-sh !()-s2 h2(e) . (6.7.02) 

which stretches the variable q near 1 where the boundary layer is formed. 

Substitution of i and f from equations (6.7.01) and (6.7.02) in equation (6.7.64) 

yields the equation for inner expansion 

I/- 

h1 + eh ' + 2h + h 2-h 1h' =- K0. (6.7.03) 

By matching with the outer expansion, the boundary conditions on h1 become 
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h1(0)=O,h (0)=O,h ()= 2(3J-5)  
(j-3) 

(6.7.04) 

While dealing with the problem of squeezing of fluid through circular tube, Wang 

[WANG76] has erroneously concluded that there are oscillatory boundary layers for 

large negative S. He has also mentioned in the same paper that oscillatory boundary 

layers exist for large negative S in the problem of squeezing of fluid between parallel 

plates. Of course, he arrived at these conclusions by assuming F0=?7, which, as has 

already been pointed out, is not a valid solution for large negative S. We shall now 

show that for the present case (/9=0) oscillatory boundary layers are not possible. 

In view of boundary conditions (6.7.04), we can write 

2(3j -5)  
+c 1+q5 

j-3 
(6.7.05) 

where 0 is a small term representing the exponentially decaying terms away from the 

boundary layer. 

Substituting for h I in equation (6.7.03) and ignoring second order terms, we obtain 

+ [4_. ] ii 4(j-1) ' = 0 
j-3 — j-3 

which does not admit exponentially decaying periodic solutions. 

A uniformly valid solution can now be constructed 

(6.7.06) 

f = F(i) + 6F 1(77) — b[h1 + 2(3j-5) Cl] + O(o). (6.7.07) 
J-3 



- 175 -

Unfortunately,  because of the complicated nature of the solution for F0 it is not 

feasible to get an analytical solution for first order term Fl. Nevertheless, in 

determining the physical quantity of interest, namely, the resistance to squeezing, which 

is proportional to f '" (1), one does not require the contribution from F until the third 

order approximation. In fact it is easy to find 

I (1) = Sic  

from equations (6.7.97) and (6.7.93). 

A comparison of values of I " for the solution curves ' b i' and I b 21 in Figure 

6.14 obtained by using CSSL and by equation (6.7.98) is shown in Table 6.5. 

(6.7.08) 

It can be seen from the table that there is a very good agreement between the 

numerical values and the values obtained by the method of matched asymptotic 

expansion. As might by expected, the agreement gets better as S —'.—oo. 

In Figure 6.21, 1' has been plotted against 17 for various values of S. Also in 

Figure 6.22, boundary layer solutions of equation (6.7.93) have been given. 

We now turn out attention to the case j9 = 1, f == g. In this case equations 

(6.7.11) and (6.7.12) become identical. 

fill +K = S(21' +nf" + f' fl-If " ). (6.7.99) 

The boundary conditions on f become 

f (0) = 0, f"(o) = 0, f'(l) = 0, f (1) = 1. (6.7.100) 

Expanding f and K in terms of 5, defined by equation (6.7.66) we write 
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Table 6.5 

S 
curve 'b ' (j = 5) curve 'b' (j = 7) 

CSSL-IV Equation 
(6.7.98) 

CSSL-IV Equation 
(6.7.98) 

-80.0 
-70.0 - 

-60.0 -1786.3341 
-50.0 -1482.7617 
-40.0 -1176.5603 
-30.0 -863.4731 
-20.0 -519.7615 

- -1275.3588 -1280.0 
- -1113.3403 -1120.0 

-1800.0 -949.3415 -960.0 
-1500.0 -779.8594 -800.0 
-1200.0 -593.0174 -640.0 
-900.0 -347.7886 -480.0 
-600.0 - - 
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f'( n) 

6 

4 

0 

-2 

-4 

-6 

-8 

0.2 0.4 
n 

0.0 0.6 0.8 1.0 

Figure 6.21. Plot of f'() against n for = 0 and 
various values of S. Asymptotic solution is 
marked with  
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0.0 0.5 1 .0 1.5 2.0 2.5 

Figure 6.22 Asymptotic solution for h and h'. Two-dimen-
sional case. 
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f = F0+6F 1+öF 2 -i-

The equation of zeroth order approximation is given by 

2F + flF' + V2F0F0—F 0F' (6.7.103) 

Discarding the boundary condition F (0) = 0, we shall solve equation (6.7.103) 

with the boundary conditions 

F0(0) = 0, F' (0) = 0, F0(1) = 1. (6.7.104) 

Once again the existence of multiple solutions can be established by assuming a 

power series expansion for F0() given by equation (6.7.72). Proceeding as in the case 

/3 = 0, we obtain 

and 

2f I + = —x (6.7.105) 

11= 0 or 

Thus in the present case 

K o (I+1)(5J-7)  
2(j_2)2 

(j=3,5,7,...). (6.7.106) 

(6.7.107) 
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To  obtain an exact analytical solution for S -* —oo, we substitute 

F0=-l- ;:f i2 (6.7.108) 

which reduces equation (6.7.103) to 

2(j-2)H' + 1 2 21111" = 2j-3, (6.7.100) 

Boundary conditions (6.7.104) and (6.7.106) simplify to 

H(0)=0,H' (0)=1,H(1)=0. (6.7.110) 

By introducing H' = Y, equation (6.7.109) can he integrated to yield 

where 

2 

cH = (1-Y)'(o+Y)'.  

= 2j-3. (6.7.112) 

Another integration of equation (6.7.111) was carried out as in case / == 0. The 

detailed procedure of integration will not be repeated here. The final relation between 77 

and Y is as follows 

0-1 2 

c i = 2(a+Y) 01+ '(1-Y) 01+ ' + 

+ 4(a-1 

2 2 
2j 7r Cr+ - 
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2 2 
2 j ir  2sin (a+ Y) Or+1 (I- ),, )°' 

2jir o-+1  
+ sin arctan 
o•+1 _i_ -i-

(a+Y)' -(i-Y)"' 

if 

i-1 2 2 

C 97 = 2(a+Y)'(1-Y)' + 4(a-1)arctanl i-y + 
( CT+i) 

2j ir 
2cos (a+Y'(1-Y)' 

2jir  a+i  
cos arcth 

oH-i 
(0•+Y)+' + (1-Y) ° ' 

or = 

2 2 

2s1n 2jir (a+Y)' (i-Y)' 
2jir 

+ sin arctan  
oH-i 4 i_ 

(a+ Y' -(i-Y)' 

2 2 

Using the condition i = 1 when Y = -a, we obtain 

C = 2(a-1) "  
2ir  

sin 
a+i 

+ 

8k -1 

if a = 8k +3 (6.7.113) 

(8.7.114) 

Equations (6.7.108), (6.7.111), (6.7.113) and (6.7.114) complete the zeroth order 

asymptotic solution for S -* -oo. 

For the boundary layer solution, we assume 
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1-8h 1(e)-62h 2W (6.7.115) 

where e is the stretched variable defined by equation (6.7.01). 

Substituting for f in equation (6.7.09) and collecting the terms of highest order, 

we obtain, for inner expansion 

h" +' h +2h + h 2-h 1h' = -K 0.  

By matching with the outer expansion, boundary conditions on h1 become 

h1(0)=O,h (0)=o,h 1 5j-7 (oo)= 
j-2 

(6.7.117) 

Again it can be demonstrated that equation (6.7.117) does not admit any periodic 

solution, thus ruling out the possibility of oscillatory boundary' layer for large negative 

S. 

A uniformly valid solution for f is 

f = F0()+5F 1(n)-8 1(e)+  5j7  e c 1 ]+o(). 
j-2 

(6.7.118) 

where c I is defined in a manner similar to that in equation (6.7.05) by using the 

asymptotic boundary condition in equation (6.7.117). Equation (6.7.08) for f " (1), 

which measures the resistance to squeezing, incidentally, still holds. 

In Table 6.6, a comparison is made of the values of f" (1) for curves ' a' and 'b' 

in Figure 6.17, obtained by Newton's method using CSSL-W and by equation (6.7.08). 

In Figure 6.23, f' has been plotted against 77 for ,8 = 1 and various values of S. 

Also in Figure 6.24, boundary layer solutions of equation (6.7.116) are given. 
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Table 6.6 

curve ' a' (j = 3) curve ' b' (j = 5) 
S 

CSSL-IV Equation 
(6.7.98) 

CSSL-IV Equation 
(6.7.98) 

-100.0 
-75.0 
-50.0 -800.4278 
-40.0 -640.6152 
-30.0 -480.9464 
-25.0 -401.2576 

- -600.7997 
- -451.2203 

-800.0 -302.5719 
-640.0 -243.5430 
-480.0 -181.2703 
-400.0 -144.6441 

-600.0 
-450.0 
-300.0 
-240.0 
-180.0 
-150.0 
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-12 

S=-30 
S=-40 
S=-60 

I I I I I I I I I 

0.0 0.2 0.4 0.6 0.8 1.0 
TI 

Figure 6.23 Plot of f'(y1 ) against ii for 0 = 1, and 

various values of S. Asymptotic solution is 
marked with  
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h 

J = 5 

=3 

0.0 0.5 1.O1.5 2.0 2.5 

Figure 6.24 Asymptotic solution for h and ht. Axisymmetric 
case. 
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We have recorded the timings on the Cyber 205 of a typical run using the 

vectorized version and non-vectorized version of the integration routines in CSSL-W. It 

may be emphasized here that it was not possible to vectorize the code in the source 

program defining the model, unlike the earlier examples dealing with PDEs. For this 

reason, it was not possible to obtain an improvement in timing to the same extent as 

with PDEs. For example, it took 170 ms for the non-vectorized version of CSSL to 

make a single run of the program when S = —30 and /3 = 1. On the other hand, the 

vectorized version took 103ms. 

6.7.6 Final Remarks 

In closing, it may be remarked that we have carried out a limited investigation of 

the problem of squeezing of fluid between parallel plates. It is a problem which deserves 

to be studied in detail in its own right. In the present section, the cases /3 0 and 

/3 54 1 have been left out. Also no attention has been paid to the solutions for positive 

large values of S. For the general case (S > 0 , 0 < /3 < 1) results exist in the 

literature for values of S only up to 25. However, using CSSL-W, undoubtedly it is 

possible to go upto much higher values of positive S, as is evident from the fact that we 

were able to obtain solutions for large negative values of S, which in general are more 

difficult to find. 

Since in this section our main aim was to show the applicability and versatility of 

CSSL-W in obtaining relevant solutions, we have touched only those aspects of 

analytical solutions which helped in understanding and obtaining the corresponding 

solutions using CSSL-W. For properly utilizing the CSSL-W program given in Figure 

6.13, it was necessary to have some idea about initial guesses. The approximate solution 

for 'unusual' cases and the asymptotic solution for large negative S were instrumental 

in providing these initial guesses. Without these guesses it would have been extremely 
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difficult to track a solution. 

Once a solution for some set of parameters was located, solutions for other sets 

were derived by slowly varying the parameters. In this manner, it is hoped, that the 

entire range of parameter S (S < 0) has been explored to obtain the various solutions. 



7. CONCLUSIONS 

7.1 Introduction 

In the present thesis we have examined various aspects of CSSL-IV on the 

supercomputer Cyber 205. Specifically a study has been made of porting CSSL-IV to 

the Cyber 205, of vectorizing some routines, and of the suitability of CSSL_I\T for 

certain classes of problems. The conclusions of the study of these aspects are presented 

below. 

7.2 Porting of CSSL-W 

The source code of CSSL-W, running into a length of 30,000 lines of Fortran code 

on the Cyber 175, was handed over by the proprietor [NILSSS] for the purpose of 

porting it to the Cyber 205. The following difficulties were experienced in porting. 

(i) The Cyber 205 is a 64-bit machine with 8 bit ASCII representation of 

characters, which probably explains for its allowing the data to be stored in hexadecimal 

form rather than the octal form - a form preferred by the Cyber 175. This necessitated 

a large scale conversion of data from octal form to hexadecimal form. 

(ii) Only hollerith strings of eight are permitted by the Cyber 205 to be stored in a 

single word of computer memory. The Cyber 175, on the other hand, allows character 

strings of length 10 (its character set is limited, therefore it requires only 6 bits to store 

a single character) in single quotes to be stored in a single word of memory. This 

resulted in a large scale modification of the source code. 

- 188 - 
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(111) The Cyber 175 permits full 60-bit arithmetic on integers. Since the character 

strings are stored as integers in the source code of CSSL_flT, there is no difficulty in 

comparing two character strings on the Cyber 175. However, the Cyber 205 stores an 

integer essentially as a floating point number i.e., it stores an integer in the least 

significant 48 bits. Also it allows the arithmetic operations on only 48-bit integers. As a 

result, using normal compiler options, one can not distinguish two strings of eight 

characters each if they are different in the first two characters. Using a special option 

(called C64) It is possible to make a limited comparison (equal to and not equal to) of 

two eight-character strings. But in the original code of the CSSL-IV, there are several 

places where a comparison of two character strings is made using other relational 

operators. Further, similar comparisons are made between two actual integers. 

When the code was ported to the Cyber 205, a distinction had to be made 

between 64-bit comparison of two character strings and 48-bit comparison of two 

integers. This required an enormous amount of effort as each line of code had to be 

individually scanned in order to distinguish the two cases. 

Further, a special code had to be written for some of the basic routines to allow 

the full fledged comparison of two character strings. 

Because part of the CSSL-W systems is a translator, (translating the model into 

standard Fortran), it has to be able to deal with character strings, and hence the above 

procedures are quite significant. 

7.3 Vectorization of Algorithms 

Because of time constraints, it was possible to vectorize only a limited number of 

integration routines. The routine for the Adam-Moulton method with variable step size, 

which is the default integration routine in the software support library of CSSL-IV, has 
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been vectorized along with the routines for the other well known methods such as 

Euler's method, the Runge-Kutta-Gill method, etc. 

A safeguard has been provided for a naive user who may invoke a vectorized 

routine when the number of state variables is quite small. Thus for ten or less state 

variables (this was determined experimentally as the break-even point) the scalar version 

of the integration routine is implemented. Only when the number of state variables is 

large enough (greater than 10), the vector version can be employed. 

7.4 Suitability of CSSL-W on the Cyber 205 

The Cyber 205 is at its best for large systems. Based on vectorization of only the 

integration routines, it appears that the most suitable models for using the present 

version of CSSL-W on the Cyber 205 are those in which the number of state variables is 

quite large. 

Partial differential equations naturally qualify for benchmarks as they can be cast 

into a system of ordinary differential equations using the method of lines. For each of 

the three types of the linear partial differential equations of second order, a typical 

example was selected. Thus, for the parabolic PDE the benchmark of heat conduction 

through a bar was selected, and for the hyperbolic PDE, the benchmark .of vibration of 

string was selected. 

For each of these benchmarks extensive testing was carried out (i) by choosing 

different versions of the code, (ii) by choosing different algorithms for integration and 

(iii) by varying the number of mesh points. The optimum timing was recorded for the 

Runge-Kutta-GI1I method using the fully vectorized version of the code (vectorized 

source code and vectorized code for the integration routine). The reason for it is that a 

substantial part of the code for the Runge-Kutta-Gill algorithm is vectorizable, whereas 
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the code for the Adam-Moulton method caters for adjustment of step-size of integration 

in order to meet the accuracy criterion, and the corresponding segment of the code is 

not vectorizable. 

For the elliptical PDE we selected the physically important problem of 

magnetohydrodynamic flow through a rectangular duct in the presence of a transverse 

magnetic field when the conducting boundaries are parallel to the magnetic field. In the 

literature, this problem has been solved numerically for values of the Hartmann number 

up to 20. It was possible to solve the same problem more easily, using CSSL_I\T on the 

Cyber 205 for the same range of Hartmann number. An attempt was made to get the 

solution of the problem for larger values of Hartmann number by decreasing the mesh-

size of discretization scheme, which, however, led to arithmetic overflow. A 

mathematical investigation was made of this apparent paradox which was further 

supported by numerical results. 

The conclusions from these investigations can be summarized: CSSL-IV can be 

used advantageously on the Cyber 205 for simulation of models characterized by 

parabolic and hyperbolic PDEs, but the existing algorithms in the software support 

library are not ideal to simulate models characterized by elliptical PDEs. 

There is yet another class of models which can be simulated by using the present 

version of CSSL-W on the Cyber 205. When a model can be described by a two-point 

boundary value problem involving a large number of ODEs with the number of 

boundary conditions nearly evenly split, one can use Newton's method to transform the 

BVP to a much larger system of IVPs, and this can be solved advantageously on the 

Cyber 205 using CSSL-W. 

For the purpose of illustration, the flow of a fluid due to squeezing between 

parallel plates has been simulated. This problem has received insufficient attention in 



- 192 -

the literature for negative values of the squeezing parameter. Also some incorrect 

results have been reported. Using CSSL-W on the Cyber 205, a relatively detailed and 

correct treatment of the model was undertaken. It is found that these types of models 

are also worth simulating on the Cyber 205 using the existing version of CSSL-W. 



S. DIRECTIONS FOR FUTURE RESEARCH 

By porting CSSL-W to the supercomputer Cyber 205 and by vectorizing most of 

the important integration routines, it is believed the first step has been taken in the 

direction of simulation on supercomputers using a CSSL. Since only some of the 

routines in the software support library have been vectoi'ized so far, it is not yet possible 

to draw conclusions about all the advantages accruing from having a CSSL on a 

supercomputer. The benchmarks and the numerical algorithms used to test these 

benchmarks in the present thesis are by no means exhaustive and it is felt that more 

tests and benchmarks are required, especially in the areas of pertinent applications, 

before any final assessment is made. 

Other simulation models which deserve further attention are those which are not 

so much dependent upon integration. For these models the substantial part of the 

execution time is spent in computing the derivatives (e.g., in table lookups in two or 

three dimensions). Vectorization of the relevant code is expected to reduce the 

execution time considerably. 

Applications which require the use of fast fourier transform (FFT) are becoming 

increasingly important. Currently, vector algorithms for FFT have been reported in the 

literature [SWAR84]. Inclusion of these algorithms in the CSSL-1V software library 

must lead to improved performance in terms of execution time for those applications. 

Recently considerable research is being conducted in the application of finite 

element methods to the engineering problems in structure design, fluid flow etc. Since 
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the technique of finite element methods lends itself naturally to vectorization, it is a 

good idea to incorporate the necessary algorithms in the CSSL-W software support 

library. 

It has been shown that CSSL-W is an excellent tool to simulate models 

characterized by parabolic and hyperbolic partial differential equations. However, it has 

severe restrictions in dealing with models defined by elliptical PDE's. Since the trouble 

in solving elliptical PDE by using a CSSL stems from the shooting technique, it is 

worthwhile considering inclusion of special finite-difference software in the software 

support library of the CSSLs. At present, simulation languages do not seem to have 

sufficient software support for such models. However, considerable progress has been 

made in vectorizing the algorithms of finite-difference equations by using linear algebra. 

By incorporating these algorithms, it should be possible to solve many problems very 

efficiently, particularly those which are characterized by elliptical PDEs. 

There are some problems which are numerically sensitive to shooting methods. Of 

course, there are techniques, such as the multiple shooting, continuation method etc, 

which can alleviate problems of numerical sensitivity. Nevertheless, with minimal effort 

it should be possible to include the more reliable technique of quasilinearization. 
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