THE UNIVERSITY OF CALGARY

CSSL-IV ON THE CYBER 205
A STUDY IN PORTING, VECTORIZATION

AND SUITABILITY

by

DONALD ARIEL

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

AUGUST 15, 1986

© ©P. DONALD ARIEL 1986



Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

ISBN

L'autorisation a &té accordée
4 la Bibliothéque nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
£ilm.

L'auteur (titulaire du droit
d!'auteur) se réserve les
autres droits de publication;

ni la thése ni de 1longs
extraits de celle-ci ne
doivent @é&tre imprimés ou

autrement reproduits sans son
autorisation écrite.

#-315-35930-7



THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies for acceptance, a thesis entitled, '"CSSL-IV on the
Cyber 205, A Study in Porting, Vectorization and Suitability" submitted
by Donald Ariel in partial fulfillment of the requirements for the degree

of Master of Science.

Superviijg //

Dr. A.W. /Colijn
Department of Computer Science

Y s

Prof. M.A. Brebner
Department of Computer Science

peiL.

Prof. J.K. Parker
Department of Computer Science

(A),gmmj/

Dr. W.Y. Svrcek
Department of Chemical and
Petroleum Engineering

August 29, 1986



ABSTRACT

Some of the most important problems in science and technology require the
analysis of the behavior of dynamic systems, the states of which change continuously
with time, typical areas being control system design, aerospace simulation, fluid flow,
reservoir simulation. Continuous system simulation languages (CSSLs) are invaluable
tools for simulating these systems, as they are non-procedural languages and possess

many attractive features such as software support library, run-time monitor.

One of the key issues in simulation is the execution time required to run the
model. This is particularly important.for models which require 2 lot of experimentation, '
as is usually the case. With the advent of supercomputers, many problems have come
within the realm of solvability. These computers rely on vector pipeline architectures to

vield a performance improvement of several orders of magnitude.

It was logical and inevitable that such an important software tool as a continuous
systems simulation language be ported to a supercomputer. Porting is really just a first
step in a larger plan of optimizing human and machine performance. It is also
important to know which classes of models are most suitable for simulation on the
supercomputers and, if a model qualifies for such an endeavor, which techniques and

algorithms are most appropriate.

In the present work we have attempted to answer the above questions. We chose
to port CSSL-IV to the Cyber 205 supercomputer. The difficulties and problems faced
in this task and the manner in which they were resolved have been discussed. A limited
number of the most useful integration routines have been selected for vectorization.

- iid -



This effort, we believe, is worthwhile because the integration operation is the heart of

any CSSL.

Next we selected a few benchmarks and recorded the execution times on the Cyber
205 and the Cyber 175. For the Cyber 205, three versions of code were selected (i) the
scalar version (ii) the semi-vectorized version (only integration routines vectorized), and
(iif) the fully vectorized version (source code also vectorized). It was found that the

fully vectorized version gives a reasonably good performance ratio.

The ‘question of suitability of various models has been examined in detail. Two
classes of models were considered: those characterized by partial differential equations
(PDEs) and those represented by a two point boundary value problem. For the second
order PDEs, it was found that CSSL-IV is an excellent tool for simulation involving
parabolic and hyperbolic PDEs. But for elliptical PDEs some modifications are
necessary in the CSSL-IV software support library as the shooting methods which are

commonly used in simulation with a CSSL are not suitable for an elliptical PDE.

Of particular interest is the problem of magnetohydrodynamic flow through a
rectangular duct when the boundaries parallel to the magnetic field are perfectly
conducting. Using CSSL-IV we have been able to solve this problem for values of

Hartmann number up to those for which results are currently available in the literature.

The two point boundary value problem representing the model of squeezing of
fluid between two parallel plates has been studied in detail. Many new solutions were

discovered which have been overlooked so far.

Finally, some observations have been made, indicating the areas in which CSSL-IV
would be quite useful on the Cyber 205, provided some suitable additions are made in

the software support library of CSSL-IV.

- iy -



it

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to Prof. Anton W. Colijn, my supervisor, for
his invaluable help and guidance. It was a great privilege to be associated with him.
Not only did his critical comments about the thesis and the work ineluded in it prove to
be of great value, his advice regarding other facets of life were extremely encouraging

and beneficial.

I do not have words to express my sincere thanks to Prof. Ralph C. Huntsinger,
Professor of Computer Science, University of Chico. Searching for green pastures in
what looked like a barren desert, I stumbled into Dr. Ralph’s course and I saw the
waters from a distance; and I knew that it was not a mirage. It was he who introduced
me to the wonderful and exciting world of continuous systems simulation and my love
affair with the latter keeps on growing every day. Again it was Dr. Ralph who first

mooted the idea of porting the CSSL-IV to the supercomputer Cyber 205.

There are several other people to whom I owe a debt. To Prof. Ray Nilsen,
proprietor and owner of CSSL-IV, I am especially grateful for his spending hours with
me, making very useful suggestions and giving vital tips needed to port CSSL-IV to the
Cyber 205. I must also thank Prof. B.D. Aggarwala, Professor of Mathematics,
University of Calgary, who was a constant source of encouragement. Some of the

results in this thesis can be attributed mainly to discussions with him.

I wish to thank Super Computing Services, University of Calgary, Calgary and
Control Data Corporation for allocating time on the Cyber 205. Thanks are also due to

Mr. John McRae, Ms. Berryl Lin, Mr. Charles Herr and Mr. Brian Schack for their

- 7 -



ungrudging help from time to time. My friend Neil McDonald helped me in ironing out

my wrinkles of the "foreign” language. My thanks to him for his help.

Finally and not the least, I owe a great deal to my wife Asha who was always a
tower of strength. Her endurance and understanding during the times of my absence
from home, while I was working in front of the terminals at night, will be appreciated
for a long time to come. My sweet children Margaret and Isaac deserve special mention.

With their beautiful smiles they always lifted my spirits when things looked bleak.

And to my wife and children, I dedicate the present work.

Calgary, August 15, 1986.

- P. Donald Ariel

_vi—



TABLE OF CONTENTS

Y o L iii
ACKNOW1EAgEMENES & v vttt ittt ittt ittt ettt e v
Table 0f Contents . ..vutiiniiii ittt ittt ettt e e e, vii
L R o A ix
List Of FlQUres ...ttt ittt ittt et e, bd

B ¢ {01 e Lo b ot o) o 1
1.1 SimUdation «ui i i e e e e 1
1.2 Various Types of Simulation ..........uuoviemmuemnnunnnnnnn.. 2
1.2.1 Discrete Event Simulation ..........eevvemunmnnnnnnn... 4

1.2.2 Continuous Simulation ..........vvimuernnmmnnnnnnnnnn. 5

1.2.3 Combined Discrete-Continuous Simulation .............. S

1.3 Continuous Systems Simulation Languages (CSSL) v.vvvvvvnnn.. 6
1.4 A Brief Summary of the TheSis .....veirtennnnnnneeenunnnn. 8

2. CSSLs ~ A Brief HiStory .eivietininennnennneenneennnenannnnneii. 11
2.1 INnEroQUCEiON .ttt ittt ittt e e e 11
2.2 EVOLULIion Of COSLS titvittinnnntennnnneeeeenneesennennnnn, 11
2.3 The 1130 Continuous System Modeling Program (1130/CsMP) 14
2.4 CSSLs on MiCroCompUEErsS . .u.vviietvnneenneennernnnsennnnenn.. 19

3. Continuous Systems Simulation Languages - An Overview .......... 21
R & o et g1 L Lo i o o A 21
3.2 Structure and Organization of CSSLS +v.vvvverernnnennnnnnn... 21
3.3 An Amnotated EXamMPle . ..viuinttnteninnennreneenennennnnnnn. 26
3.4 Data Types 3N CSSLS ttvuttittnnneenneteneeeneennne i, 37
3.5 Sequence Control ....iuiutineeinnnennneeeneeennennnennnnn, 39
3.6 An APPraisal Of CSSLS .t .vivutrvneenneeenenenneneneennnnn, 40

4. Vector CompPUting ..v.tvnttiiittnetnnneenneeneeneneennnnnn, 44
4.1 INnErodUCEion .. i.tt ittt it i e e e, 44
4.2 Philosophy of Vector COompPULING «.vvuvuivn e nennrnnnnnnnnnn... 46
4.3 Architecture of the Cyber 205 ......vvivnnrnmnnnnnnn.. 47
4.3.1 Scalar ProCeSSOr . ..iveutenitrnnne e, 48

4.3.2 Vector ProCesSOor ....iuiuienue i s eeneeeeee . 51

4.3.3 Input/Output Channels . ........ouvvuemnennnnennnnnn .. 55

4.4 Optimization of Scalar COde .....uvvvureeemeennnnn .. 55
4.4.1 Unoptimized CoBe ...vvninn i e, 55

4.4.2 Bottom Load/Top Store TechniqUe ...................... 56

4.4.3 Unrolling Of LoOPS v vuventnntnneennenesees e, 58

4.4.4 Merging of Short DO LOOPS +uvvvveemnnnsmn e 63



4.5 Vector Optimization ........uiiiiiiiiiinnnrinenennennnenn,
5.1 Automatic Vectorization .......veveeeeeennnnennnennnn.
5.2 ReCUrsSive LOOPS vttt innnnnrerennnneeeeeeeaneennnnnns
.5.3 Explicity Vectorization ..........couviiuinennnnnnn..
5
5

B =l g A o ol o) o

N N N N

5. CSSL-IV on the Cyber 205 - Portability and Vectorization ........

5.1 INtroQUCEAiON 4 .utttiiiittittonennnneennesoeeeeonenennnnnnnnns
5.2 Portability of CSSL-IV to Cyber 205 ......cvvteiirennnnnnnnnn,
5.3 Vectorization of ALGOrithmS ....eu'uenennneneeonnnnnnennnns

6. Applications of CSSL - Benchmarks and Case Studi€s .............

8 2t gl T L Lo i o o L
Classification of Second Order PDES ........0vveeenennnnnn..
Heat Diffusion Equation .......iieiiinniinnnnnnnninnnnnnnnnn.
Vibrations of @ String ... e eernnnenennnnneeennnennnnns
MHD Flow Through Rectangular Duct ........oviiiininnnnnnnan.
Why CSSL is not Suitable for Elliptical PDE? .....ocvvunnn..
Squee21ng of Fluid Between Parallel Plates .................
T A o 11 - b < o S
.2 Numerical Sclution Using Newton's Method .............
.3 Numerical Results and DiSCUSSION ...vvrr i erennnnn..
-4 An Approximate Analytical Solution ............cevvuu..
.5 Matched Asymptotic Solution For Large Negative S .....
6 Final RemMarksS . .vvvtttittitttinteernnenererenenenonnees,

[N N Ner Ne) e Ne))
NOUIbh W

0\0\0\0\0\0\
\1\1\1\]\1\1

A e o o R = I o o T
AR SIS 5 1w gl Te | b U wh o’ o
7.2 Porting Of COSL-IV ..ttt inennnneeenennneenseennennnn.
7.3 Vectorization of Algorithms ...vevereneeneennnnnnneneeeennns
7.4 Suitability of CSSL-IV on the Cyber 205 .......ovvvrrnnnnnn.

8. Directions for Future ReSEarch ........oveerenonmennnenmnnnennni.

E R S B o B Koo -

- viii -



LIST OF TABLES

B =1 < 1 T 54
TADLE 4.2 ittt ineeenstonnseoasassnesoasecssnessnasecsasssossnnennsos 57
Table 4.3 ittt teeenenenrenenssenss U 59
D= o B T 61
B =1 < 2 T 62
TaLle 4.6 v e inieeneenneestonsesseneeasenseensonessesnesnsansnnsnss 64
Table .0 ittt iienteneeeeseesoeencennaonsensoaessensenseassnssans 103
Talble B.2 ittt ieieeeroeneneneneeeasossesosesasoneanenssnncnsnanenns 103
Table 6.3 1 iietieeietinuonosoenessanesoscensesssaseasssssnssasensasss 134
TaD1e 6.4 o vveeesseteneenosaneaseesensssnesesosesssssenssnssnnenss 134
Talble 6.5 et rreereeneenaneaassseneeesensenssonsssenasnnsnnsnneass 176
Talle 6.6 .o vititieineerieeneeeaeneonscensonseaasensanssssanssasensnsss 183

- ix -



LIST OF FIGURES

S e 65 ol 15
Figure 2.2 S et ettt e e e 17
B gUIrE 2.3 it i i i it e e et e e e i8
L e 1B o 23
B gUIrE 3.2 ittt i i ittt tenenrntene et 27
e 1B gl 29
e R o 34
e 1 g 49
e 1§ gl 52
EgUre 4.3 ittt i i it it et iot ettt 53
O e 1B o 53
i e b ol 72
E gUIre 4.0 ittt i ittt etetetenaneneeeeeeeeeeennenen. 72
e 3 ol 88
e 6§ ol D 93
e 1B o 102
B QU 6.2 ittt i i ittt ittt eaeenneeenesesenennnannes 106
B U B.3 ittt i i i ittt teeeeeeoenenennnneeenennnnnens 108
Eigure 6.4 ...ttt i i ettt i et e 116
BagUIE 6.5 ittt i i i i i ettt ettt ittt e 119
e D b ol I 120
e 1 1 ol 121
e B gl - 122
B gUIre 6.0 it i it ettt e ittt e e e e 123



Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Eigure

[ T o ) NN o ) WY o ) W @ N o ) S ) I ) T o I o R o I o) N o T o ) I )

....................................................... 124
L 125
L e i et e et ittt et e e e 139
e 149
L o e et e et e e e e 154
LS i e ettt et et e e e 156
LD i i i et i et e e e e 158
L e i i i i it e e et e e 159
I 16l
R 166
20 i i i e i i et ettt et e 167
3 177
2 i i et i e et e et e e e e 178
. 184
D 185

- xi -



1. INTRODUCTION

1.1 Simulation

With the advent of computers, simulation has come to be recognized as a very
effective technique to evaluate the operations of various kinds of real-world facilities or
processes. The facility or process of interest is usually called a system. Quite often a
set of assuﬁptions is made regarding the manner in which a system workds in order to
study the system scientifically. These assumptions usually take the form of
mathematical or logical relationships and constitute a model. By running the model, it
is possible to gain an understanding of how the corresponding real system works, which
in turn allows one to ascertain the feasibility of the system. Of course to prove the
validation of the simultion model, the real system must eventually be built and tested.
However, simulations can prevent the construction of poorly designed systems by
discovering their problems before they are built. Thus simulation is a very cost-effective

technique for system modeling.

For simple models, i.e., those for which the relationships describing the model are
simple, one can use mathematical methods (such as algebra, calculus and the theory of
probability) to obtain exact information on questions of interest. Such a solution is
called an analytical solution. An example of a simpler model is carbon dating: a means
of determining the age of certain fossils. For this model it is possible to obtain an exact

mathematical relationship between the various variables describing the model.

-1 -



However, most real-world systems are far too complex to allow realistic models to
be solved analytically. Some examples of such systems are air traffic management,

communications networks, CAD/CAM, pattern recognition etc.

One approach to studying such models is by means of simulation. Usually in
simulation a computer is used to analyze the model numerically over some time interval
of interest called the simulation time. The data generated during simulation is then

used to esttmate the desired true characteristics of the model.

Since obtaining an analytical solution is no longer necessary in simulation, it is
important that the model should be constructed as realistically as possible. This,
however, entails substantial expertise on the part of the evaluator. Also simulators
generate enormous amounts of data which must be analyzed by the evaluator either
manually or on the computer. Naturally, for a detailed evaluation, which is extremely
important, simulation takes a large amount of computer time. Moreover it is
mandatory that a simulation model be validated to ensure that the model represents
accurately the real system to be simulated. However, once a simulator is developed and
validated, it can be run as many times as desired thus saving costs compared to the

available alternatives such as building pilot plants ete.
1.2 Various Types of Simulation

In this section we shall first describe the terminology used in simulation. This
terminology has become fairly standard in the literature on simulation. It will be
followed by a description of various types of simulation. Note that some of the terms
defined below have been mentioned earlier in an intuitive sense. They shall be defined

more precisely now.



According to Schmidt and Taylor [SCHMT70], a system is defined to be a collection
of entities, e.g., people or machines, which act and interact together toward the
accomplishment of some logical end. It must be stated here that the collection of
entities depends upon the objectives of the study. For example, in the study of
unsteady laminar flow of an incompressible fluid in a channel, the system consists of the
velocity and pressure at any point in the fluid, but if heat transfer is also included in
the study, the system must be enlarged to include the temperature of the fluid. We
define the state of a system to be the collection of variables necessary to describe the
system at a particular time, relative to the objectives of the study. A model is defined

to be a representation of the system developed for the purpose of studying that system.

For a dynamic system, one which changes with time, it is possible to classify the
state variables as input and output variables of interest. The input variables relate the
effects of the "external world” on the system while the output variables relate the effects
of the system on the "external world”. The classification takes place according to the
following property. If the current state is known and the future input is known then
the future state and output are determined uniquely. As a corollary it follows that the
state variables of a system completely characterize the past of the system. For example,
in the system of fluid flow, if the velocity and pressure are known at any time, it is
possible to know the entire history of the motion. Unfortunately, it is not always clear
how to choose the state variables; they may be some of the physical variables of the
system but they need not be; further, there is no unique choice of state variables. In
most of the physical processes the choice of the state variables may be direct and clear
cut such as in electrical LRC circuits where the charge on each capacitor and the
current through each inductor in the network are natural choices for state variables, but

in some cases the choice of state variables may be extremely difficult.



Once the state variables are identified it is possible to write down the state
equations in mathematical form, describing the interrelationship of the state variables.
These equations can vary greatly in form and complexity. Time is usually one of the
independent variables of the model. Sometimes time can take only discrete values, in
which case the equations characterizing the model will be recursive in general. In other
cases, time will be a real valued variable. Now if time is the only independent variable,
the equations characterizing the model will be ordinary differential equations: in such
cases the model is said to be lumped. On the other hand if there are other independent
variables besides time, the equations characterizing the model will be partial differential
equations: in such cases the model is said to be distributed. A model may contain
random effects in which case it is stochastic, otherwise it is deterministic. 'We shall now

describe various types of simulation.
1.2.1 Discrete Event Simulation

Discrete event simulation concerns the modeling of a system as it evolves over
time by a representation in which state variables change only at a countable number of
points in time. Here it is important to note that it is not necessary that a discrete
model be used to model a discrete system and vice versa. The specific objectives of the
study usually dictate whether to use a discrete or continuous model. Consider, for
example, the model of traffic flow on a free way. If the characteristics and movement of
individual cars were important, the model would be considered discrete. But if the cars
can be treated in the "aggregate” the flow of the traffic can be described by differeﬂtial

equations in a continuous model.

Since discrete event simulation is event driven, i.e., controlled by events happening
at cerbtain times, it is stochastic. Examples of discrete event simulation are customer

service at banks, scheduling of jobs by the CPU, loading and unloading of ships at a



harbor etc.. There are several special languages dedicated to discrete event simulation,
the most widely used of which is GPSS. Other commonly used languages are

SIMSCRIPT, SIMLIB, SIMULA, DEMOS etc..
1.2.2 Continuous Simulation

Continuous simulation concerns the modeling over time of a system by a
representation in which the state variables change continually with respect to time.
Some of the most important applications in science and technology require the analysis
of the behavior of a continuous system, typical areas being control system design,
aerospace simulation, fluid flow, heat transfer analysis, petroleum reservoir simulation
etc. In these applications the model describing the system comprises time dependent
non-linear differential equations. The continuous system simulation languages (hereafter

called CSSLs) are ideally suited to solve such problems.
In this thesis the discussion will be restricted only to continuous simulation.
1.2.3 Combined Discrete-Continuous Simulation

Some of the real world systems can not be entirely categorized as either discrete or
continuous, for the model describing them combines the aspects of both discrete-event
and continuous simulation. Such a simulation is called combined discrete-continuous or

hybrid simulation.

Pritsker [PRIT74] and Pritsker and Pegden [PRIT79] describe the three
fundamental types of interactions which can occur between discretely changing and
continuously changing state variables: (i) a discrete event may cause a jump in the value
of a continuous state variable, (ii) a discrete event may cause altering of relationships
involving a continuous variable at a particular time, and (iii) a continuous state variable

may assume some critical value thus causing a discrete event to occur or to be



scheduled.
1.3 Continuous Systems Simulation Languages (CSSL)

Continuous systems simulation languages are today available on computers
varying from mainframes to micros. They are invaluable software aids in simulating the
models of continuous systems. Most of these languages conform to the standards set by

the Simulation Council Inc. [STRAG7].

Since the continuous systems simulation languages are primarily designed for
scientists and engineers, who are not necessarily expert programmers, these languages
are usually non-procedural languages, which express the model representing the system
in appropriate mathematical terms. The program written in a CSSL is translated by a
preprocessor into some intermediate code in a procedural language such as Fortran.
Usually, the preprocessor itself is also written in Fortran. The compiled version of the

program can then be run for a given set of data values.

A very useful component of a CSSL is a run time interpreter. Since in most
experiments a number of runs are made with different sets of data values, these changes
can be conveniently effected through the runtime interpreter. Moreover, this facilitates

one of the highly desired objectives, namely, the separation of data from the model.

Besides the model definition language, a translator and a run-time interpreter, a
_ CSSL also has a software support library which includes utilities for numerical analysis,
simulation operators, data collection and data presentation. In addition, it must have
an appropriate operating system interface to provide the control and commands required

to insulate the user from the details of job sequence and control.

Simulation models vary greatly in complexity. Some can be expressed in terms of

a small number of well behaved ordinary differential equations (ODE), while others



require a large number of non-linear, coupled, multi-dimensional partial differential
equations (PDE). A continuous systems simulation language must be capable of
handling situations on either end of the spectrum of complexity. In this connection,
mention may be made of two languages CSSL-IV [NILS85] and ACSL [MITCS81]. Both
of these languages are extremely powerful with their preprocessors in Fortran and are

available widely on mainframe computers.

Nevertheless, continuous systems simulation languages generate a massive amount
of code, not all of which is essential. Thus, if an expert programmer writes the code for
simulation in Fortran it is likely to be smaller and more efficient than the corresponding
code generated by the translator. This fact, coupled with the enormous complexity of a
simulation model, can result in unacceptable execution times. A case in point is
petroleum reservoir simulation where one has to deal with a large number of PDE’s. As
pointed out by Absar [ABSAS85], a possible remedy to cut down the execution time is to
use supercomputers. He has compared the performance of simulators (not to be
confused with CSSLs) on various machines, both scalar and vector, and found that the
computation times are reduced by an order of magnitude on vector machines, thereby
raising the possibility of exploring problems which would not have been possible on
scalar machines. With the increasing use of CSSLs in government, industry, universities
and other organizations, the need to port the leading CSSLs to supercomputers has
become obvious. In the present work an attempt has been made to port CSSL-IV to the
Cyber 205 supercomputer. As a natural corollary, a limited number of integration

routines have been vectorized.



1.4 A Brief Summary of the Thesis

In chapter 2, we have briefly traced the evolution of continuous systems simulation
languages from the days of their inception to the present day. Before the advent of
digital computers continuous systems were simulated on analog computers.
Accordingly, the structure and organization of early CSSLs was block oriented.
Programs of this type came to be known as digital analog simulators. The last major
language using the block diagram approach was 1130 CSMP which was developed for
the IBM 1130. An example illustrating the simulation of liquid cooling, using 1130
CSMP, has been given. Finally some observations have been made on availability of

CSSLs on microcomputers.

Chapter 3 describes the structure and organization of CSSLs. The purpose of this
chapter is partly to acquaint the reader with the use of CSSLs. With that aim in view,
an annotated example, simulating the boundary layer flow of an incompressible, viscous
fluid along a flat plate, using ACSL (Advanced continuous simulation language) is given.
Finally, an evaluation of CSSLs as a programming language is made. The strengths of

the CSSLs have been highlighted and their drawbacks have been pointed out.

Chapter 4 is devoted to vector computing. Since vector computing is a very
recent area of research, a fairly detailed account is given of its various aspects. After
giving some of the historical developments of supercomputers, the architecture of the
Cyber 205 is described. This is followed by a discussion of techniques for the

optimization of scalar and vector codes.

In chapter 5, the problems of porting CSSL-IV to the Cyber 205 supercomputer
are illuminated in as much detail as was permissible under the circumstances. Because
of the proprietary reasons it was not possible to give a detailed account of problems

encountered in particular routines, nor was it necessary.



Next, a brief discussion is presented of attempts at vectorizing the appropriate
algorithms. Because of time and other constraints, it was possible to vectorize only a
limited number of integration routines. Again, because of proprietary reasons, no
description is made of the vectorization of individual routines. However, some general
discussion has been given explaining the crucial issues behind vectorization. The

Runge-Kutta fourth order method was chosen to illustrate the ideas.

Chapter 6 consists of some benchmarks and case studies. Comparisons of timings
of various versions of code on the Cyber 205 on the one hand and the scalar code on
other machines on the other hand are made. Applicability and suita)bility of CSSL-IV
on the Cyber 205 for various kinds of problems has been investigated. Due mainly to

time constraints the scope of these problems was again limited.

Specifically, the use of CSSL-IV on the Cyber 205 to study the models
characterized by second order linear partial differential equations has been considered.
It is found that parabolic and hyperbolic PDEs, exemplified by the classical problems of
heat conduction in a bar and vibration of strings, seem to lend themselves very well to
the supercomputer. But the same can not be said about elliptical PDEs. Since machine
overflow was experienced in studying elliptical PDE on the Cyber 205, which has as
wide range of floating point numbers as any other machine, a mathematical
investigation was undertaken of the classical Poisson’s equation using the method of
lines. It was discovered that CSSLs are not the best tool, or to be more precise,
marching/shooting methods are not the best methods, for solving elliptical PDEs
numerically. This simple fact, to the best of our knowledge, has not been pointed out,

explicitly at any rate, in the literature before.

Nevertheless, we were able to solve a very important problem of

magnetohydrodynamic flow, using CSSL-IV on the Cyber 205, for values of the



-10 -

Hartmann number up to 20. This problem remained unsolved for a long time because

of the great complexity of the analytical solution and has been solved numerically only

recently [SING84].

Finally a technique which converts a non-linear two point boundary value problem
(BVP) to a set of initial value problems (IVPs) has been given, using the example of
squeezing of fluid between parallel plates. This technique, which is based on Newton-
Raphson'’s iterative scheme, is particularly effective on a supercomputer, because of the
multiplication of the number of state variables in the process of converting the BVP to
IVPs. Using CSSL-IV and the above mentioned technique, several new solutions of the
problem have been discovered for expansion of the fluid between the plates which have
not been reported in the literature. The theoretical basis for the existence of these

solutions is discussed.

In Chapter 7 the conclusions of the investigations made in this thesis are
presented. Finally in Chapter 8, a brief discussion of directions for future research is

given.



2. CSSLS - A BRIEF HISTORY

2.1 Introduction

Continuous systems simulation languages have been in vogue for nearly thirty
years. They have undergone some basic changes over these years. In the next section
we have traced the evolution of CSSLs from the days of analog computers to the
present day. In section 2.3, an example is presented of the language 1130/CSMP which
represents a watershed mark in the style of CSSLs. Finally in section 2.4, some

observations have been made on the availability of CSSLs on microcomputers.
2.2 Evolution of CSSLs

Historically, the simulation of continuous systems was carried out on analog
computers because they provide a natural vehicle for implementing the basic operations
such as addition, integration and multiplication using appropriate electrical circuits.
Another reason for preferring analog computers to digital computers was the high cost

and slow speed of digital computers at the time of their inception.

However as the cost and speed factors started favoring digital computers, a need
was perceived for devéloping programs for simulation of continuous systems on digital
computers. Since, at this time, analog simulation was still very much in vogue, the first
few attempts centered around the idea of transferring the analog computer programs to
digital computers. Thus, the digital computer was used to simulate an analog

computer.

- 11 -



-12-

Selfridge [SELF55] published the first paper on digital-analog simulation in 1955.
The program, written for an IBM 701, contains a single subroutine for each analog block
corresponding to the basic operations of summing, integrating and multiplying, and is
classified as an interpreter. Programs of this type are called digital-analog simulators.
It may be mentioned here that for a digital computer, integration is an approximate
process. A poorly selected integration routine can result in unacceptable levels of errors.
At the time above mentioned paper was published, numerical analysis techniques for
digital computers were still in their infancy. It was, therefore, not surprising that the

primitive Simpson’s rule was used for numerical integration of differential equations.

A number of other digital-analog simulators were later developed which were
usually interpreters and were improvements in that they used better numerical
integration algorithms and also allowed new blocks. In 1963, Gaskill, Harris and
McKnight announced DAS (Digital Analog Simulator) which operates like a compiler.
However, the first digital simulator to gain wide-scale use was developed by Peterson
and Sampson [PETE64] who christened it MIDAS (Modified Integration Digital Analog
Simulator). MIDAS wuses a fifth order Milne predictor-corrector integration and

automatically varies the step size of integration.

Not to be outdone, Brennan and Sano [BRENG64] came up with PACTOLUS (the
name of the river in which MIDAS washed away his curse) in 1964. It was implemented
on an IBM 1620 and was designed to give the programmer hands on operation similar to
analog simulation. A larger version of PACTOLUS was written for the IBM 7090 at the

same time.

IBM took another step forward, when in 1965 it initiated the development of
Continuous System Modeling Program (CSMP). A small system version (1130 CSMP)
based on PACTOLUS was developed for the IBM 1130 and it included CRT-graphiec



- 13-

input/output.

By this time it became obvious that adherence to block oriented style of programs
was imposing a restriction which did not allow the model to be expressed in a natural
manner e.g., by means of a set of differential equations. IBM again took the lead and,
as a result, two truly continuous system simulation languages were developed, namely,
DSL/90 for the IBM 7090 by Syn and Linebarger [SYNG66] in 1965, and S/360 CSMP by
Brennan and Silberberg [BRENG7] for the IBM 360 series in 1967. In both of these

languages, mathematical equations replaced the blocks for analog simulation.

The proliferation of continuous systems simulation languages continued, and by
1967 more than thirty different simulation programs or languages had been reported.
With the idea of promoting orderly growth and prescribing certain standards, the
Society for Computer Simulation (SCS, formerly SCI) proposed CSSL (Continuous
Systems Simulation Language) in 1967 [STRAG7]. The impact of these
recommendations became evident as new languages conforming to the prescribed
standards evolved and have practically replaced the earlier languages of continuous
simulation. In this respect one may mention ACSL [MITCS81], CSSL-IV [NILS85],
DSL/VS [DYNAS5]. ACSL and CSSL-IV are available on nearly all mainframe

computers. IBM has decided to promote its own simulation language DSL/VS.

Since 1130/CSMP represents the ultimate in digital-analog simulation and is also a
watershed mark in CSSLs, we shall present a brief description of the language along
with an example of its use in the next section. This example will highlight the
differences in the programming approach followed in the earlier CSSLs represented by
1130/CSMP and in the modern CSSLs which have been described in greater detail in

the next chapter.



-14 -

2.3 The 1130 Continuous System Modeling Program (1130/CSMP)

-

Problems in 1130 CSMP are programmed as block diagrams. The block diagram
is reduced to a set of statements with each block corresponding to a statement. There
are special sheets for coding the statements. The statements are key-punched and
loaded into a computer as an input deck. There are 25 block types in 1130/CSMP, each
of which is represented by a symbol in the block diagram and by a character in the
programming language. Five of the most commonly used block types along with their

representations are shown in Figure 2.1,

Because of the ability of digital analog simulators to add and integrate voltages,
they are particularly adept at solving linear differential equations with constant
coefficients. As an illustration, consider the cooling of liquid with initial temperature of

200° and surrounded by a body of air at a constant temperature of 80°.

Newton’s law of cooling states that the rate at which an object cools is
proportional to the difference in temperature between the object and the surrounding
medium. Thus if T (¢) denotes the temperature of the cooling agent at time ¢ and C is

the constant temperature of the surrounding medium, according to Newton's law

aT
— =-k(T -C
dt ( ),
where £ is a positive constant. The constant % depends on the properties of the liquid.

We have chosen £ = 1.1/hr.

The differential equation of T is rearranged to minimize the number of blocks as

dT



- 15 -

- DIAGRAMMA i¢

(S YMBOLEL S els

(’0—+£’l+£’2+e3

. o ; Only element where negative
SUMMER o 1" ‘o sign is permissible in
A — configuration specification
§ P P
INTEGRATOR €1 P, €0 = Py + f(ey + e,P,
€2 P €9 + ('_;P_))d’
e; 3
SIGN _ I~ _
INVERTER € ," €o € = —¢
€2 s
MULTIPLIER e n eo eo = €0,
Py
CONSTANT K @“eo ¢ = P,

Figure - .11130/CSMP biock types.



-16 -

This eliminates one sign inverter. An 1130/CSMP block diagram to solve the
stated problem is shown in Figure 2.2. Based on block data, the program is now written
on two coding forms. One form, the configuration form is used to prepare cards
describing the blocks and their interconnections. The other form is for initial conditions
and parameter data associated with the blocks. In Figure 2.3 the coding for cooling

problem is shown.

On the configuration data form, there is one line for each block. For the sake of
clarity, a name can be given to the output of any block in columns 1-16. The block
numbers appear in columns 19 and 20 and the corresponding characters appear in
column 30. Three fields are provided to record the numbers of the input blocks. Up to
75 blocks numbering from 1-75 can be used. However they can be assigned arbitrary
numbers and can be arranged in any order. The block numbers must be entered right

justified.

All parameters of the problem are initialized to zero so the fields for unused
parameters can be left blank. Names can be assigned to each set of I;arameters in
columns 1-16. The block numbers and the input parameters associated with them must
appear in columns 19-20, 26-35, 41-50 and 56-65 respectively. The parameters are

entered as 1-6 decimal digit numbers. The use of a decimal point is compulsory.

The program deck is prepared by punching one card for each line on the coding
forms. The deck is composed of three sections: (i) JCL cards, (i) configuration deck and
(iii) parameter cards, in that order. A blank card separates each section. Also a blank

card is placed at the end of the parameter cards.

After a job is submitted, the computer responds by printing several messages at
the console asking user to furnish the information about (i) the time interval for

integration, (ii) the total time for the run, (iii) the block outputs to be tabulated and



dT
dt

Figure 2.2
Block diagram for the cooling problem



llllllll
5 -
a

— A o H ] —~

w

- | I. — = -

]

] 16 19 20
LR UID ’I'EMP /

ALIR TEMP

-

[+ w
X
a
o z
@

NN -
mm
8
&

7///

Figure 2.3
MP coding for the cooling program



-19 -

(iv) the time intervals at which results are to be printed. Also if the installation has
plotter facilities, information is sought about the blocks to be plotted together with the

maximum and minimum values of the plotter.
2.4 CSSLs on Microcomputers

With the proliferation of microcomputers it was inevitable that a CSSL would be
made available on a microcomputer. Indeed all the major modern CSSLs are now
available on personal computers. The continuous systems simulation language ISIM
deserves a special mention because it has been designed to run exclusively on a personal

computer [CROS84a).

ISIM is similar to other prominent languages available on the mainframe
computers such as ACSL, CSSL-IV, though, of course, one must hasten to add that it is
not as powerful as the latter. Nevertheless ISIM has several new features which are very
convenient. Besides providing the usual blocks (see the next chapter for organization of
CSSLs), it also provides an extra control block which permits the evaluaf;o;' to exercise
better control over experiments. It also has nice interactive facilities thanks due to
these facilities being essential part of current microcomputers systems. Thus the
evaluator can immediately accept or reject an experimental run on the basis of graphical
output. The main disadvantage of ISIM is that it can not handle complex models. At
the time of writing, it appears that there is no provision for the use of arrays, which
greatly hinders the simulation of models represented by partial differential equations and

boundary value problems.

Thus ISIM on the microcomputers and CSSL-IV on the Cyber 205 represent the
two extremes in terms of handling complexity of models to be simulated. Whereas
CSSL-IV on the Cyber 205 is capable of solving the most complex problems, ISIM can

only solve relatively simple problems. Precisely because of this reason, ISIM is an



-920-

excellent tool for introducing the fascinating world of continuous simulation.

With the passage of time, as microcomputers gain in speed and power and new
chips are designed, it is expected that larger subsets of modern CSSLs will be made
- available on microcomputers thus making the computing i)ower to simulate more
realistic models available to a larger section of people. It bodes well for future of

continuous simulation.



3. CONTINUOUS SYSTEMS SIMULATION LANGUAGES

AN OVERVIEW

3.1. Introduction

In the present chapter an overview of the continuous systems simulation
languages, which are currently in vogue, is presented. First the structure and
organization of CSSLs is described in sufficient detail for a novice user to program in
CSSL. The salient features of CSSLs are highlighed next by considering the classical
example from fluid dynamies of boundary layer flow past a flat plate. For this purpose,
use has been made of the continuous systems simulation language ACSL which is similar
to CSSL-IV. Finally, a brief review is made of data types and sequence control

mechanisms in CSSLs.
3.2. Structure and Organization of CSSLs

According to the specifications of a CSSL laid down by the Society for Computer
Simulation, the simulation must comprise two sections: The model definition and the
run-time commands. The advantage of this two part structure is that once the quel is
defined, it can be retained and analyzed repeatedly for different sets of data using the
run-time commands. This separation of the model from experimentation has been
implemented in nearly all modern CSSLs. Typically, a CSSL fulfills this requirement by .
providing a number of subsystems. Thus, CSSL-IV, for example, consists of the

following five major subsystems:

- 21 -



1. Model Definition Language - The language allows the user to express
the model in equation form using the simple mathematical operation
notation.

2. Translator - converts the model definition into a syntactically
correct set of programs in an intermediate procedural language such as
FORTRAN. The programs are then compiled into computer executable
form.

3. Software Support Library - provides an extensive set of utilities for
numerical analysis, linear algebra, simulation operators, data collection and
data presentation (graphics ete.)

4. Run Time Monitor - provides the user interface for controlling the
simulation experiments. The user can change the parameters of the problem
at run-time without compiling the model again. Also the results can be
displayed graphically at run-time.

5. Operating System Interface - provides the control and commands
required to insulate the user from the details of job sequence and control.

The model definition structure of a CSSL partitions the problem into natural and
distinct regi.ons (i.e., blocks) corresponding to hierarchies which appear naturally in
model definition. In this sense, modern CSSLs are block structured languages as
opposed to the block-diagram languages. Directives are used to define the blocks. Their
use also improves model readability and eases model definition as well as facilitating the
translation by informing the translator of model structure. The outline of the
hierarchical structure is shown in Figure 3.1. The following paragraphs describe the

individual blocks and their organization and context.
PROGRAM block

The purpose of the PROGRAM-END block structure is to identify and delineate -
the extent of the user’s simulation program. The word PROGRAM is a key word and
must be included, though when used after END, it merely serves as a comment to

identify the block terminated by END and is not required.



PROGRAM (title)
INITIAL
< Statements performed before the run
begins. State variables do not contain

the initial conditions yet.>

END INITIAL

DYNAMIC
DERIVATIVE <name>
<Statements needed to calculate
derivatives of each INTEG

statement. The dynamic model>

END DERIVATIVE

<Statements executed every communication
interval >

END DYNAMIC

TERMINAL
<Statements executed when the terminating
condition TERMT becomes true>
END TERMINAL
END PROGRAM

Figure 3.1: Hierarchical structure of a CSSL



-924 -

Title can be any string of text used to identify the simulation and is useful for

documentation purposes.

INITIAL Block

The purpose of the INITIAL-END block structure is to delineate and identify the
extent of the statements and commands defining the action to be taken in setting up or
initializing the user’s simulation. The word INITIAL is a keyword and must be
included, th<->ugh when used after END, it acts as a comment to identify the block and

is not required.

The initial section includes all data definition statements for declaring and
initializing parameters, constants, arrays and empirical table functions (The data types
in CSSLs are described in detail in Section 8.4). The INITIAL region of a simulation is
normally executed once just after a START directive is issued at run-time. All the
executable code within the INITIAL region is procedural in nature and is executed in
the sequential order. Branching into the INITIAL region is allowed by using a labeled
statement. This feature is useful in an iterative model which occurs, for example, in

optimization studies or parametric studies.
DYNAMIC Block

The purpose of the DYNAMIC-END block structure is to delineate and identify
the statements and structures used to specify the system 'dynamics. It can be thought
of as a large REPEAT UNTIL loop of Pascal with each iteration through the dynamic
region incrementing the independent variable (usually the time) by an amount specified
by the communication interval. At each communication interval, the solution is

sampled, data saved for graphics output and outputs generated. |



95 .

The keyword DYNAMIC is required, though when used after the word END it

acts as a comment to identify the block and can be omitted.

The DYNAMIC region must contain at least one DERIVATIVE block plus control
and data c.ollection information. Control is needed to terminate the segment of
simulation within the DYNAMIC block, and data collection information is necessary to
specify the step-size. Starting with time b the model solution is advanced by a value
of communication interval for each iteration through the DERIVATIVE block and is

thus calculated at times t’o’ to + CI, b, + 2*(CI ... ete.
DERIVATIVE Block

The purpose of each DERIVATIVE block is to represent the parallel dynamics of
the system or subsystem at hand. Each DERIVATIVE block has its own integration
control vector specifying the independent variable, sample rate, integration algorithm
(modern CSSLs have over a score of integration algorithms ranging from the primitive
Euler’s method to the highly sophisticated Hindmarsch’s stiff integration method) and
communication interval. Each system or subsystem has a corresponding DERIVATIVE

block identified by a unique name restricted to a certain number of characters (6 for

CSSL-IV).

Statements in the DERIVATIVE block can be written in any order since they
represent parallel events. The translator of the language takes care to sort these
statements in a manner as to produce correct code for the computer. Cyclic or recursive
code (e.g., A = B, B = C, C = A) must be avoided as this can not be sorted. The
translator attempts to detect cyclic code, but it is user’s responsibility to ensure that no

such code occurs in the DERIVATIVE block.



-926--

TERMINAL Block

The purpose of the TERMINAL block is to allow the specifications of any post-
processing needed to filter or evaluate the data generated by the DYNAMIC block.
Sometimes a branch is made back into the INITIAL block to repeat the experiment with
a different set of data (An illustration is given in the annotated example given in the
next section). TERMINAL is a keyword and is required, though in the accompanying

END statement it is used as a comment to identify the block and can be ignored.
RUN-TIME MONITOR

Having defined the model definition of a CSSL language, next we turn our
attention to experimentation aspects of the language. As stated earlier in this section, a
CSSL clearly separates model definition from model experimentation. For this reason, a
run-time monitor is provided which reads and interprets user commands to modify or
display variables or parameters, initiate experiments plus collect and display data. For
interactive users, usually CSSLs support the ”break key” whereby an experiment can be

interrupted without leaving the CSSL environment.
3.3. An Annotated Example

Three continuous systems simulation languages are available at the University of
Calgary, Calgary: ACSL, CSSL-IV and Bedsocs. CSSL-IV and Bedsocs are available on
the Honeywell Multics, whereas CSSL-IV and ACSL are available on the Cyber 175. To
get a flavor of a CSSL, we have chosen ACSL to simulate the classical problem of

boundary layer flow in hydrodynamics.

Consider the flow of a viscous, compressible fluid past a flat plate (Figure 3.2).
The fluid is assumed to have a constant velocity U away from the plate. Due to

viscosity of the fluid, the fluid particles will adhere to the plate and this will give rise to



- 27 =

Figure 3.2

Boundary layer flow along a flat plate



-98.

a boundary layer near the plate. By using a similarity transformation the Navier-Stokes
equations governing the flow can be simplified to the following single non-linear ordinary

differential equation

f/// +ff” = 0.

The boundary conditions on f are

J(0)=0,1"(0)=0, f' (c0)=2.

This problem was first treated by Blasius (see Schlichting [SCHL68]). It is a
difficult two-point boundary value problem because of the asymptotic boundary
condition at infinity. These difficulties have been discussed by Adams and Rogers
[ADAM73], who have pointed out that in order to find the missing initial condition
7" (0), one must first choose a smaller range of the independent variable 5 and then
extend it to a reasonable value only after an appropriate guess of f! (0) has been

found; otherwise the solution may diverge. Also a criterion function, equal to
f ! 2(00) + f n 2(00)
must be minimized to obtain the exact value of f " (0).

Thus at the experimentation level, there are two parameters which must be varied,
the range of independent variable 7., and the trial value of /" (0). Once a reasonable
starting value of f” (0) has been found, the value of Moo Canl be extended, and a

Newton like iterative scheme can be used to locate the value of I (0) precisely.

An ACSL program listing for solving the abovementioned problem is given in

Figure 3.3.



_29...

PROGRAM BOUNDARY LAYER FLOW ALONG A FLAT PLATE
GO N T = = = = = = e e e e e el
1"

" PURPOSE: TO SIMULATE THE BOUNDARY LAYER FLOW ALONG A FLAT "
" PLATE. "

" METHOD: A SHOOTING METHOD IS USED TO SOLVE A TWO-POINT "
" BOUNDARY VALUE PROBLEM WITH ASYMPTOTIC BOUNDARY "
" CONDITIONS. "

" REMARKS: THE PROGRAM SOLVES THE TWO POINT BOUNDARY VALUE "
" PROBLEM "
1" F' L + E * Ell = 0 "
" WITH THE BOUNDARY CONDITIONS "
. E(0) =0, F'(0) = 0, F(INFINITY) = 2 "

" IF IOPT = 0, NO ITERATIONS TAKE PLACE AND THE "
" VALUES OF F', F'' AND F'#*2 + F''%%2 ARE "
" PRINTED AETER A RUN OF THE SIMULATION. "
" IF IOPT = 1, ITERATIONS TAKE PLACE AND MISSING "
" INITIAL CONDITION IS DETERMINED. IOPT THEN CAN "
" BE SET TO TWO TO GET THE EXACT SOLUTION. "
" IF IOPT = 2, NO ITERATION TAKES PLACE, THIS "
" OPTION MUST BE USED ONLY WHEN EXACT MISSING "
" INITIAL CONDITION IS KNOWN. "

INITIAL

INTEGER ITER, ITMAX, IOPT

CONSTANT IOPT =0 $ "OPTION PARAMETER"

CONSTANT EPS = 1.0E-10 $ "ACCURACY CRITERION OF CONV"

CONSTANT ITMAX = 20 $ "MAXIMUM NO OF ITERATIONS"

CONSTANT ETAMX = 2.0 $ "NUMERICAL INFINITY"

CONSTANT E2 = 2.0 $ '"GUESSED VALUE OF F'' o)"
" INITIALIZE THE VARIABLES "

| ) = 0.0

DEO = 0.0

D2F0 = F2

ITER =0

DELTA = 0.001

L10.. CONTINUE
END $ "OF INITIAL"

Figure 3.3
ACSL program for the boundary layer flow
along a flat plate.



END $

_30_

DYNAMIC

END

CINTERVAL, CI = 0.125
DERIVATIVE FLOW
VARIABLE ETA = 0.0
D2F = INTEG(-F*D2F, D2F0)
DF INTEG (D2F, DFO0)
F INTEG (DE, FO0)
END ¢ "OF DERIVATIVE"
TERMT (ETA .GE. ETAMX)
$ '"OF DYNAMIC"

I

TERMINAL

L75..

L20..

Igs8..
L78..
L99..
END #

IF (IOPT .EQ. 2) GOTO L99
CEN = (DF - 2.0)**2 + D2F*%2
PRINT L75, ITER, DF, D2F, CEN

FORMAT (1X, "ITER =",1X,I3,4X,'"DF =", 1X,F15.8,4X, ...

"D2F =",1X,F15.8,4X,"CEN =",1X,F15.8)

IF (IOPT .EQ. 0) GOTO .99

ITER = ITER + 1

IF (ITER .GT. ITMAX) GOTO L98

IF (ITER .EQ. 1) GOTO L20
DDF (DE - DF1) /(D2F0 - D2F01)
DD2F (D2F - D2F1)/(D2F0 - D2F01)
DELTA = - ((DF-2.0) *DDE+D2F *DD2F) / (DDE** 2+DD2F **2)
IF (ABS(DELTA) .LT. EPS) GOTO L99
DF1 DF
D2F1
D2F01
D2F0
GOTO L10
PRINT L78
FORMAT (1X,"NO CONVERGENCE COULD BE ATTAINED.")
CONTINUE

"OF TERMINAL"

IR

H]

D2F
D2EO
D2E0 + DELTA

i

"OF PROGRAM"

Figure 3.3 (cont.)



-31-

We shall be using this example to highlight some of the key features of a CSSL.

The PROGRAM directive is the first statement in a CSSL program. It allows a
title which can be used to specify the task of simulation. Any language must allow for
comments for the purpose of documentation. In ACSL and CSSL-IV comments either
start with the keyword COMMENT, or they are embedded within a pair of double
quotes. They can be placed anywhere on a newline or after a dollar sign on a line

containing another statement. Incidentally a dollar sign acts as a statement delimiter.

The declarations and initializations of variables are placed in the INITIAL block.
Since in scientific and technological applications, most of the variables are real,

designers of CSSLs have assigned real as the default attribute of undeclared variables.

The identifiers IOPT, ITER and ITMAX are declared of integer type. IOPT is an
option parameter. It is set to zero initially when the experimentation is performed to
guess an acceptable starting value of f " (0). Once this value is found, it can be
switched to 1 and this will trigger automatic iterations to take piéce, which will produce
an exact value of f " (0). A value of 2 then can be assigned to JOPT and another run
of the simulation will generate the values of the important physical quantities

represented by f and f .

After the declaration section follows the section of constant identifiers. These are
the values that can be changed at run-time without retranslation and recompilation of
the source code. It is a good programming practice to include only those identifiers in
the constant section which need to be varied at the experimentation level. Other
initializations such as the values of f (0) and f'(0) must not be included in the
constant section for reasons of security of the data. These values must be initialized

using variable assignment statements.



-39 -

It is possible to have labels in any block where a transfer of control of execution is
made, though the user must refrain from entering into the DERIVATIVE block from
outside. The reason is that in this block the statements are unsorted and there is no
guarantee that they will be sorted in the manner user wishes them to be, by including
the label. All labels start with the symbol L and are followed by usually two decimal

digits and two periods.

In the DYNAMIC block, the keyword CINTERVAL is used to define the
communication interval. The communication interval must be specified for every

system and subsystem whose dynamic behavior is investigated.

Within the DERIVATIVE block, the independent variable ETA is defined and
assigned an initial value. In ACSL and CSSL-IV the default name and value of

independent variable are T and O respectively. If any other name is used, it must be

explicitly defined by using the VARIABLE directive.

INTEG is probably the single most important directive in any modern CSSL. It
accepts two parameters, the variable to be integrated and the initial value, and returns
the integrated value. INTEG is a highly versatile directive in that it allows a large
number of integration algorithms to be invoked. The choice of algorithms can be made
within the source code or at run-time by assigning appropriate values to the parameters

defining the algorithms. This facility is particularly convenient and useful.

To complete a single run of the simulation, the directive TERMT is used. It
accepts a boolean expression, say B_exp, as the input parameter. The run is terminated
as soon as B-exp becomes true and the control is passed to the TERMINAL block. As
long as B_exp remains false, the DERIVATIVE block is executed repeatedly with the

value of the independent variable incremented by CI each time.



-33.

All the post-processing of the information generated in the DYNAMIC block is
done in the TERMINAL block. The amount of processing done for the present problem
is determined by the option parameter IOPT. Initially the value of IOPT is 0, so the
program oubputs the value of the criterion function. By checking this value, a better
value of [ (0) can be guessed for the next try. When a reasonable value of " (0) is
obtained, JOPT is set to 1. This invokes an iterative scheme, which calculates a better
approximation of /" (0) for the next iteration. Control is sent hack to INITIAL block
and the loop is repeated until the difference in the values of S " (0) at two consecutive
runs becomes less than some preseribed tolerance factor. Finally, if JOPT is set to 2,

another run is made to produce the final results which can be retrieved at run-time.

In order to prevent the program from lapsing into an infinite loop, an upper limit
is set on the number of runs. If the number of runs exceeds the limit, an error message

is printed and the program is terminated.

In Figure 3.4, the output of the program is given. The output includes runtime
commands and some of the generated data and plots. Unfortunately, NOS on the
Cyber 175 does not permit the kind of facilities offered by Multics or Unix on Honeywell
and Vax respectively. So it was not possible to obtain an audit file of the terminal
session. Therefore, some of the information displayed on the screen (e.g., the output

produced by format L79) was not included in the file containing the simulation output.

The run-time command SET TITLE displays the title of simulation on every page
of the output. The command DISPLY (DISPLAY in CSSL-1V) is quite useful. After the
end of any run, it is possible to get the value of any identifier included in the program
displayed on the screen. This value also goes in the file containing the simulation
output. Thus, after the automatic iterations take place in the given example, it is

possible to get the exact value of f " (0) displayed by issuing the DISPLY (DISPLAY in



SET TITLE="BOUNDARY LAYER FLOW PAST A ELAT PLATE"

START

INPUT IOPT=1,ETAMX=4.99999999999

START
DISPLY D2FO

D2F0 1.32822935

INPUT IOPT=2,EF2=1.32822935

PREPAR ETA,F,DF
OUTPUT ETA,FE,DFE

START
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
-ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA

SET NPXPPL=5

PLOT E

0.

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2.
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
0

.12500000
.25000000
.37500000
.50000000
.62500000
.75000000
.87500000
.00000000
.12500000
.25000000
.37500000
.50000000
.62500000
.75000000
.87500000
.00000000
.12500000
.25000000
.37500000
.50000000
.62500000
75000000
.87500000
.00000000
.12500000
.25000000
.37500000
.50000000
.62500000
.75000000
.87500000
.00000000
.12500000
.25000000
.37500000
.50000000
.62500000
.75000000
.87500000
.00000000

..34:._

R R L L L R R T T R R R E o Lo b e e e e ke e R e R e Lo R R R B e R R

G)m~4\1Q~40\m<hO\m(ﬂ01Mrb¢>®}h0Jw(»OJNboh)N!JFJHPJC>O<DC>O<3c>o<3c>?

.01037634
. 04149282
.09328235
.16557173
.25803246
.37013853
.50113534
.65002437
.81556726
.99631111
.19063419
.39680824
.61307068
.83769860
. 06907586
.30574643
. 54644937
.79013436
.03595924
.28327368
.53159367
.78057191
.02996790
.277962094
.52942731
.77932234
.02926708
.27923883
.52922480
.77921805
.02921488
.27921345
.52921282
.77921255
.02921244
.27921239
.52921237
.77921237
.02921237

27921237

', NPYPPL=50, NGXPPL=25, NGYPPL=25

Figure 3.4

Output from program given in Figure 3.3

NHREEHEREHER R R R R R RER R RERPEERPRO0000000

.16601072
.33177051
.49663767
.65956007
.81911454
.97357859
.12103849
.25953148
.38721142
.50251941
.60433570
.69208889
.76580390
.82608078
.87400932
.91103646
.93881064
.95902859
.97330585
.98308381
.98957707
.99375765
.99636698
. 99794575
.99887171
.99939814
.99968825
.99984321
.99992345
. 99996372
.99998332
.99999255
. 99999678
.99999865
. 99999945
.99999979
. 99999992
.999993997
. 99999999
.00000000



_35_

ACSL RUN-TIME EXEC VERSION 1 LEVEL 8D 86/04/24. 19.12.59. PAGE 2
BOUNDARY LAYER FLOW PAST A FLAT PLATE
FA O. 5.000000 10.00000
ETA XAXIS . .
0. A e e e
A
A
A
A
A
. A
A
A
A
A
A
A
A
A
A
A
A
A
. A
2.500000 ......000iinnn, A e e e e,
. A .
A .
A .
A .
A .
A.
A
A
A
A
A
A
A
A
A
A
A
A
A
5.000000 ..utttiiiii ittt ittt e e e, AL,



_36 -

ACSL RUN-TIME EXEC VERSION 1 LEVEL 8D 86/04/24. 19.12.59. PAGE 3
BOUNDARY LAYER ELOW PAST A FLAT PLATE :
PLOT DFE
ACSL RUN-TIME EXEC VERSION 1 LEVEL 8D  86/04/24. 19.12.59. PACE 4
BOUNDARY LAYER FLOW PAST A FLAT PLATE
DE A 0. 1.000000 2.000000
ETA XAXIS | . .
0. PP
. A .
A :
A .
A .
A .
A.
A
A
A
A
A
A
A
A
A .
: A .
A
A.
: A.
2500000 .ttt ettt e e e e e A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
5.000000



-37-

CSSL-IV) command.

Now if the purpose of the simulation was to get the value of f” (0) only, the
simulation session can be ended by typing the keyword STOP(or HALT in CSSL-IV).
However, more often than not, the results of a simulation are required in tabular or/and
graphical form. To obtain these results, first the value of F2, the guessed value of
/" (0) is updated and the value of TOPT is set to 2 by using the INPUT command.
The INPUT command, in fact, can change the value of any identifier defined as
CONSTANT in the INITIAL block. Moreover, INPUT can be used to specify other

parameters of the simulation such as the algorithm of integration etc..

A run of the simulation is triggered by submitting the command START. If
graphical output is sought then the graphical data must be saved or 'prepared’ on a file
before the command START is issued. This can be done by using the command
PREPAR followed by the list of the variable names. On the other hand, the command
OUTPUT enables the results to be displayed at each communication interval in tabular
form. The OUTPUT command must also precede the START command. It may be
mentioned that the results generated by OUTPUT command are not stored, they are

simply output and displayed as soon as they are computed after the START command.

ACSL provides excellent facilities for plotting the graphs on an on-line printer. It
is possible to set the parameters related to plot at run-time. The plots can then be
obtained by using the command PLOT. The tabulated output and the on-line printer

plots are shown in Figure 3.4.
3.4. Data Types in CSSLs

CSSLs support a number of primitive data types and most of them also support

some structured data types. However, at the time of writing, it appears that none of



-38-
the CSSLs allow user defined data types.

A primitive data type is one of the following:
REAL
INTEGER
LOGICAL
COMPLEX

As remarked earlier, undeclared identifiers acquire the default type real. In spite
of the claims made on behalf of CSSL-IV that it is compatible with FORTRAN 77,
character data types are not allowed. Similarly, multi-precision floating point data
types are not permitted. If an identifier in not of type real, it must be declared

explicitly as illustrated in the annotated example.

The structured data types allowed in CSSLs are
ARRAY
TABLE

Arrays can be formed from any of the four primitive data types and can have at

the most three dimensions. For an example of a program in which arrays are used see

[COLIs8].

TABLE is really a directive, which represents a function defined by empirical data.

It is usually included in the INITIAL section. The syntax of the TABLE directive is as

follows:

TABLE <name>, NVAR, D1, D2, D3, <independent variable values>,

< dependent variable values>



-39 -

Here NVAR is the number of independent variables, D1 is the number of data
points for first variable, D2 is the number of data points for second variable and D3 is
the number of data points for third variable. D2 and D3 are omitted if NVAR = 1 and
D3 is omitted if NVAR = 2. The value of function represented by the TABLE is
calculated for any independent variable by using linear interpolation. For example,

consider the statement

TABLE VEL 1, 5, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0

It declares the function VEL of one variable with five samples of the independent
variable. An assignment
Z = VEL(3.5)
returns a value 35 for Z as a result of linear interpolation between the node points 3.0

and 4.0.

CSSLs also provide a number of simulation operators which perform complex

mathematical operations such as derivatives, transfer functions, delays, filters etc.,
3.5. Sequence Control

The sequence control mechanisms in CSSLs are straight-forward and simple. Since
CSSLs normally use FORTRAN for their pre-processor, all the rules of FORTRAN

apply in the construction of expressions.

Only one construct for controlling statement execution sequence is provided,
namely, the FORTRAN go to. The labels where transfer takes place must start with a

L and be followed by usually two decimal digits and two periods.

Function subprogram calls and subroutine calls are identical to FORTRAN calls.

Any function not found in the library of CSSL simulation operators is considered as a



©.40-

user defined FORTRAN function and is treated as such.

3.6. An Appraisal of CSSLs

The last time any standards were set for a continuous systems simulation language
was in 1967. Since then, though some suggestions have been made for new CSSL
standards and they have been even implemented in new CSSLs, the suggestions are
more of evolutionary nature rather than revolutionary. CSSLs are very widely used in
various disciplines of science and technology. It appears that most of the researchers
using CSSLs are satisfied with their performance. Nevertheless, it is possible to draw
some general conclusions about the strengths and weaknesses of CSSLs. In the present

section we shall discuss these with ACSL and CSSL-IV in view.

Strengths of CSSL

(1) Since most of the users of CSSL are scientists or engineers, who are not
necessarily expert programmers, CSSL is a very handy tool which expresses the models

in the most logical manner using mathematical equations.

(2) A CSSL is a non-procedural language, at least, within the DERIVATIVE block,
therefore, the user does not have to be concerned with the order in which the equations

characterizing the dynamic behavior of the model are written.

(8) The user is not encumbered by type declarations which the strict discipline of a
language such as ADA or PASCAL demands. Most of the variables used in simulation

are real and, therefore, need not be declared.

(4) CSSLs have a very vast library of integration routines. Each CSSL chooses as
default, a routine, which is able to handle mild stiffness of differential equations by

varying the step size. So unless the user is dealing with a stiff system, he does not have



- 41 -

to pay attention to the integration method. The language does it for him.

(6) A number of special simulator operators are available in CSSLs, for which a
user would need to write the necessary software if he were to code the program in a
general purpose language. Using CSSL it is even possible to include user defined macros

in the program.

(6) CSSLs provide additional data types besides the primitive types in the form of
array and table. The latter is useful when a function is defined empirically, whereas the
former is useful when the system is defined by means of partial differential equations.
The partial differential equations can be changed into a set of ordinary differential
equations by discretization in which the dependent variables can be assigned to an

array.

(7) The programs coded in CSSLs are extremely small in size compared to the
FORTRAN intermediate code generated by the translator. On an average, one line of
CSSL code corresponds to 50 - 250 lines of FORTRAN code. Moreover, nearly each line
of CSSL code bears some meaning to some essential element of the model, hence the
user is shielded from the details of programming. He can simply concentrate on defining

and analyzing the model.

(8) By separating the model from experimentation, CSSLs allow user to freely
'play around’ with the parameters in a search for optimum solution. This kind of
flexibility is normally not available in general purpose languages such as FORTRAN,

PL/1, ADA etc..

(9) The on-line printer plots allow the user to accept or reject the results of a
model without much ado. It is, of course, possible to incorporate the routines to plot

the graphs in the programs written in general purpose languages, but the interface of



- 42 -

the routines with the programs is not so clean.

(10) CSSLs are widely available, at any rate in North America. For example,
CSSL-IV is offered through Control Data Corporation’s CYBERNET services in both

batch and interactive environments.

(11) CSSL is a perfect tool for teaching some aspects of numerical analysis. Since
a number of routines, implementing a vast variety of algorithms of numerical analysis,
are included in the software support library of CSSL, the viability of an algorithm can

be demonstrated by using CSSL.

Drawbacks of CSSLs

(1) OSSLs are less efficient compared to general purpose languages. The translator
of a CSSL generally produces some redundant code in comparison to that written in a
general purpose language such as FORTRAN. This comparison is somewhat similar to

that between a higher level language and assembly or machine language.

(2) Debugging is much more difficult. If the user makes a mistake in the source
program, he has to trace its effect in the corresponding program in the intermediate
language. Such a program is highly unreadable in view of poor mnemonics used by the

translator.
(8) No provision is made for user defined data types or character data types.

(4) The availability of only the goto construct for controlling statement execution
sequence can result in highly unstructured programs, especially if the programs are

large.



- 43 -

(6) Some of the models are numerically sensitive and require a multi-precision

arithmetic which is not provided in CSSLs.

(6) The interpolation technique used for tables is very crude and for some models

can produce results at an unacceptable level of accuracy.

(7) CSSLs almost exclusively rely on shooting methods for integration. This is all
right for ’'open ended’ models, i.e., those characterized by initial value problems.
However, for numerically sensitive boundary value problems, shooting methods are not
the most ap.propriate. Other techniques such as quasilinearization and finite differences

are preferable, which are not available in CSSLs.

(8) Occasionally, extra runs of simulation are needed to produce the desired
results. Thus, for example, in the annotated example, it was necessary to make an
additional run with JOPT = 2 and the exact value of /" (0). In a FORTRAN program
of”the problem, all the values would have been available and this run would be

unnecessary.



4. VECTOR COMPUTING

4.1. Introduction

With the advent of commonly available computers in late 50s, there was g
dramatic surge in seeking solutions of several problems in science and engineering which
had earlier defied human effort. Kascic [ICASC79] relates that in 1953 Kawaguti
published results for the classical fluid dynamics problem of two-dimensional flow past a
circular cylinder based on calculation time of 10° minutes using a mechanical calculator.
He further goes on to conclude that if according to what Hamming said ” The objective
of computiné is insight, not numbers”, the effort of Kawaguti was a valiant effort in the

art of computing.

The improvement in the design of chips led to increases in the speed of computers
and by the mid 70s, the then state-of-art computers such as IBM 360/370 were able to
achieve a speed of more than 10 million floating point operations per second (Mflops).
According to Kascic [KASC79], the above mentioned problem of flow past a cylinder
could be solved on these computers in about 102 minutes, an improvement by 3 orders
of magnitude. Still there were number of areas with diverse kinds of problems which
were not amenable to the computers and the methodology of computing existing in
1970s. There was a need for not only fabricating chips with faster processors but also
for a new and fresh methodology which has come to be known as vector processing.
The computers on which it was possible to implement vector processing are known as

vector computers or supercomputers.

- 44 -



- 45 -

Cray Inc. was the first corporation to introduce a vector computer into the market
with its Cray-1 model. The lead was soon followed by other corporations. Control Data
Corporation (CDC) came up with three models in quick succession, namely, STAR 100,
Cyber 203 and Cyber 205. Cray’s latest model CRAY X-MP has proved to be very
versatile and effective and has been installed at number of sites in North America and
Western Europe. Sensing a need of parallel computing in addition to that of vector
computing, CDC has developed a new architecture for its latest model ETA10, which is
capable of supporting as many as eight processors with vector processing capabilities.
The model ETA10 is on the verge of installation at some sites in the USA and is
expected to. provide a major breakthrough in the simulation of various areas of

applications.

Not to be outdone, other companies in UK and Japan also entered the market of
super computers. The ICL of England, for example, came up with the model ICL DAP,
and HEP with the model Deneclor HEP. However these machines started losing favor

because of fears of the applicability of their architectures to a general suite of programs

[DUFF85).

The Japanese computer manufacturers, namely, Fujitsu, Hitachi and Nippon
Electric Company, on the other hand seem to pose a real challenge to companies like
CRAY and CDC with their vector computers which have an architecture similar to that
of Cray-1 and the Cyber 205. It is perhaps still too early to fully appreciate the impact

of Japanese supercomputers.

Nevertheless the presence of supercomputers is already being felt in various circles.
The US government considers supercomputers a vital part in their defense plans. The
scientific community has also benefited by installation of supercomputers. Several

problems which were considered unfeasible for existing scalar computers are now within



- 46 -

the realm of solution using supercomputers. For example, Fornberg [FORNS3] has been
able to calculate the steady (but unstable) flow of viscous fluid past a circular cylinder
for values of Reynold’s number up to 400, whereas using scalar computers it was
possible to get the solutions for values of Reynold’s number up to 100 only. As another
example from nuclear weather prediction (NWP), a few years ago computing resources
restricted prediction to two or three days into the future owing to coarse resolution
grids covering limited areas of the globe. But now it is possible to run higher resolution
global models ten days ahead. In the field of petroleum reservoir simulation Absar
[ABSAS85] has reported an improvement by an order of magnitude on vector machines,
which makes it possible to examine 3-D models whereas using scalar machines only 2-D

simulation was feasible.

Kobos [KOBO85] has listed various areas in which supercomputers are expected to

play a decisive role in assaulting the frontiers of future research.
4.2. Philosophy of Vector Computing

In order to understand the philosophy behind vector computing let us consider a
simple example of addition of two arrays each comprising 1000 elements. A FORTRAN
code effecting the addition is

DO 10I =1, 1000
C(I) = A(l) + BQ)
10 CONTINUE

On a scalar machine the code would be executed somewhat along following lines
LOAD
LOAD
ADD
STORE



- 47 -

INDEX
BRANCH

Thus the operands A and B would be fetched individually from memory into a
staging area called the register file. The adder unit of processor would add the two
operands, the processor would then send the results back to memory one at a time.
Next, a decision would be made if any more of elements remain in the arrays A and B
to be added. So we see that on a scalar processor it would take 5 to 6 thousand
instructions to execute. The important point is that not all functional units are working
most of the time. To illustrate the point, when the operands from arrays A and B are

being loaded, the adder unit is idle.

A vector processor, on the other hand, makes optimal use of all functional units
needed to perform the required operation. A vector machine, as a rule, has both a

scalar processor and a vector processor.

It is, of course, possible to alleviate some of the drawbacks which are nearly
inevitable on the scalar machines. However, vector machines use a different
methodology. To fully understand the stated methodology, first a description will be
given of architecture of a vector machine, the Cyber 205 in the present case. This will
be followed by a detailed description of techniques which make use of the architecture

of the Cyber 205 for optimizing both the scalar and the vector code.
4.3. Architecture of the Cyber 205

The Cyber 205 is a superscale, high speed scientific computer system with the
following main components
A scalar processor comprising segmented functional units

A wvector processor containing up to four floating-point pipelines (The Cyber



- 48 -

205 at the University of Calgary has two pipelines).
Semi-Conductor memory up to four million 64-bit words (Two million words

at the University of Calgary).

Peak performance on the vector processor is 800 million 32-bit floating point
operations per second (800 MFLPs) for linked multiply and add triads with four

pipelines (400 MFLPs with two pipelines). Figure 4.1 is a diagram of the Cyber 205.

The central processor unit consists of three functional units
Scalar processor
Vector processor
Input/Output

A description of each of above units follows
4.3.1. Scalar Processor

The scalar processor on the Cyber 205 can do anything which one expects from a
"conventional” computer: issue, decode instructions from central memory, perform
integer and floating-point arithmetic, perform logical operations, branch from one
address to another etc., In fact we could totally remove the vector box, the physical part
of the machine which houses the vector processor, and still have a very fast and
functional computer. The scalar processor also directs all the vector/string instructions

to the vector processor for execution.

For our purposes, it is convenient to perceive the scalar processor as consisting of
a central part surrounded by several functional units (arithmetic units, branch units
etc.). The central part is instrumental in locating, fetching and issuing instructions
which requires the usage and maintenance of an instruction stack. The size of the

instruction stack is 8 swords, where "sword”, a contraction of "super word”, com rises
M b ? p



- 49 -

}  3Nowoas i
L _ AHOWIW Yeis

——————ila

et R

\ 512K MEMORY i
SECTIOND

512K MEMORY
SECTION G

’

VECTOR STPEAM & STRING
SECT ONP

/

VECTOR
PROCESSOR

z
Qo
5x
u
1%}
>0
[+ o4
on 1NOILO3S
8 yvivas
=k :
z V
2 «
o~ o
w ns
(7] As
=2y
339
SR
Q.
x
Oz
(&)
suly
a

VO & VECTOR SETUP AND
RECOVERY
SECTIONN

CYBER 205

Figure 4 -1.



- 50 -

eight consecutive words of 64 bits each in memory. Instructions are loaded in units of 1
sword at sword boundaries. In addition, there is a look-ahead feature, that tries to
maintain the content of the instruction stack two full swords ahead, as a result the
processing of sequential code proceeds smoothly, with no extra delays for the loading of
new instruction swords. From the point of view of performance programming, it is
important to realize that if a branch instruction is encountered and the target address is
out of the stack, it takes 15 to 18 extra cycles to bring in the appropriate sword. An

?in-stack” branch takes 8 to 9 cycles.

The scalar processor contains five independent functional units as described in

Figure 4.2 given below

Central memory Centrol memory

Yactor Issue
Processor unit

|

l Register

file

= ',Short ﬂoEil
|_ Add Muitiply togical Single Bivide v]
==

functionot units

Figure 4.2: Architecture of the scalar processor

All the functional units are segmented and capable of accepting new operands
every cycle with the exception of the divide/square root unit which must complete each
operation before 2 new one can begin. All the units can be shortstopped: shortstop is a
process in which a calculated result can be used as input for anoi;her arithmetic unit

before it is stored.



-51 -

The scalar processor can execute scalar instructions in parallel with most of the
vector instructions provided there are no memory references generated by the scalar
instruction for operands. To minimize memory references a set of 256 64-bit working
registers, called register file, is provided. The source operands for any scalar instruction
(except LOAD) come from the register file, and that is where the result ends up (except

for STORE). References to the main memory, in the scalar mode, are made exclusively

by LOAD/STORE instructions.
4.3.2. Vector Processor

The vector processor on the Cyber 205 consists of the stream unit, the string unit

and the segmented vector pipeline units.

The stream unit receives the decoded instructions from the scalar processor and

controls the data streams between central memory and vector pipelines.

The string unit performs operations on bit and byte vectors, which are used for

control vector (described later in this chapter) and logical vector operations.

The segmented vector pipelines are probably the most important units of the
vector processor and are used for vector operations. Each segment can only perform a
small part of the operation, so that each pair of operands has to be processed in several
steps. As an example, consider a floating point add, which can be split up into following
six independent operations.

(1) Sign Control

(2) Compare the two exponents

(3) Right shift the coefficient with smaller exponent to match the
exponents

(4) Add the coefficients



(5) Normalize the result by left shifting the coefficient

(6) Transmit the result to a memory bus

From this we see that there are a certain number of steps for each operation and
they must be performed sequentially. The operands have to traverse the corresponding
segments in the appropriate order. A different vector instruction may utilize a different
set of segments within the same pipe, some of which may be identical to some in the list
above. Thus each pipe can be thought of as containing several arithmetic units, each of

which functions as an independent unit.

If a vector processor has two pipes as at the University of Calgary, both can
perform a given operation, the data would be evenly divided. Pipe 1 processes the odd
numbered 64-bit operands and pipe 2 processes even numbered 64-bit operands. If the
operands are 32 bits long, data is further divided evenly into each pipe, thus doubling

the processing rate.

We shall now examine in detail how vector processing works in practice. For the
sake of simplicity we shall assume that the vector processor has only one pipe. Consider
once again the code for adding two arrays

DO 101 =1, 1000
C(I) = A(I) + B(D)
10 CONTINUE

The stream unit of the processor will cause the streaming of elements of arrays A
and B into the pipe. The first elements of A and B will arrive the pipe in certain
number of cycles. Since the analysis on the Cyber 205 would be quite complicated, we
have chosen a hypothetical machine, for which the above time is chosen as 2 cycles.
Now if the vector instruction is issued at cycle time 1, we shall have the snapshots at

cycles 1, 2 and 3 as given in Figure 4.3. During the next cycle the pair (A1, B1) will



_53..

Input path (A1, B1) (A2, B2) (A3, B3)
(A1, B1) (A2, B2)
Seg 1 (A1, B1)
Seg 2
Figure 4.3

Snapshots at cycles 1, 2 and 3

Input path (A9, B9) (A10, B10) (Al1l1, B11)
(A8, B8) (A9, B9) (A10, B10)
Seg 1 (A7, B7) (A8, B8) (A9, B9)
Seg 2 (A6, B6) (A7, B7) (A8, B8)
Seg 3 (A5, BS) (A6, B6) (A7, B7)
Seg 4 (A4, B4) (AS, BS) (A6, B6)
Seg 5 (A3, B3) (A4, B4) (A5, BS)
Seg 6 (A2, B2) (A3, B3) (A4, B4)
Output path Cl Cc2 C3
Cl1 C2
Figure 4.4

Snapshots at cycles 9, 10 and 11



-54 -

advance to segment 2, (A2, B2) will move into the pipe to segment 1 and (A4, B4) will
be streamed into the input path. Thus at each cycle, there will be an advancement by
one step of each pair of operands. Since there are six segments through which
processing will take place, it is only after eight cycles that the pipe will be filled. At
this stage (A1, B1) having been processed by the last segment will take the path back to
memory. If we further assume that the length of output path is two cycles, the

snapshots at cycle time 9, 10 and 11 will be as shown in Figure 4.4.

The first result will thus be stored in the memory at cycle time 11. From now
onwards there will be a new result every clock cycle and a streaming of results will take

place back to memory until the DO loop is satisfied.

In our particular example it can be easily seen that the time for executing the loop

N times is
10 + N cyecles

The timing is comprised of two parts: start up time (here 10 cycles) which is
independent of the length of the arrays to be summed and 2 stream rate which is
proportional to length N. With two pipes the streaming time would be reduced to half,
but the start up time would still be the same. The time given above was, of course, an
oversimplification. The actual times for various operations on the Cyber 205 are given

in Table 4.1

Table 4.1
Add/Subtract 51+ N
Multiply 524+ N

Divide 80 + 25N/4



- 55 -

4.3.3 Input/Output Channels

The input/output system consists of 8 or 16 I/O channels, each having 32 bit
transfer width. The maximum transfer rate on each channel is 200 megabits per second.
Total bandwidth for the I/O system is 3200 megabits per second. The memory
bandwidth allows simultaneous peak rate on all channels plus full speed vector

streaming.

4.4 Optimization of Scalar Code

There are three reasons why optimization of scalar code is important. Firstly,
every program contains sections of code which can not be vectorized. If a non-vector
code is not well adapted to the scalar processor the whole program may be slowed down
to unacceptable levels. Secondly, the user, in general, is well acquainted with other
scalar machines before using a vector machine and thirdly, a knowledge of the scalar
processor and its usage can lead to a better understanding and appreciation of the

vector processor.

To illustrate the ideas behind optimization of scalar code let us return to our by

now familiar example of addition of two arrays represented by the code

DO 101 =1, 1000
C(I) = A(I) + B()
10 CONTINUE

4.4.1 Unoptimized code

Let us try to hand time above code without any optimization. The assembly

listing of the unoptimized code in META, the assembly language of the Cyber 205 is



- 56 -

LOAD
LOAD
LOOP ADD
STORE
IBXLE

The timing of the loop is summerized in Table 4.2. One can see from the table
that in spite of segmentation of various arithmetic units, no overlapping of operations
took place i.e., when any segment unit was busy all other segments were idle. This is,
of course, the worst scalar performance one can expect. The timing of a single loop is
35 clock cycles. Since on both the scalar and vector processor of the Cyber 205, a single
cycle takes 20 nanoseconds, the total time to execute the loop 1000 times is 700
microseconds. Incidentally, the actual timing recorded on the Cyber 205 was 706

microseconds. Thus with unoptimized code, the peak performance rate is 1.43 MFLPs.
4.4.2 Bottom Load/Top Store Technique

Now let us make some attempts to optimize the code. One possible approach, and
this is the one which the compiler uses when the option PRDS (P - Propagate compile-
time computable results, R - Remove redundant code, D - Optimize DO loops, S -
Schedule instructions) is selected, is the so called bottom load top store technique. In

accordance with this technique the loop is modified as follows

LOAD
LOAD
JUMP
STORE

LOOP LOAD



_57_

Table 4.2

Timings for unoptimized scalar code

IS ST RE COMMAND OPERAND
Pass 1:
0 - 15 LOD [A_ADD,I]. A
1 - 16 LOD {B_ADD,I],B
16 21 24 ADDN A,B,C
24 - - STO [C_ADD,I],C
26 - 34 IBXLE, BRB I,ONE,LOOP,N,I
Pass 2:

35 - 50 LOD [A_ADD,I],A



-58-

LOAD
IBXLE
STORE

The timings of the modified loop are given in Table 4.3. It can be seen from
Table 4.3 that the execution time for a single iteration is reduced from 35 cycles to 17
cycles and the total execution time to 340 microseconds, thus giving a peak performance
rate of 2.94 MFLPs which is a reduction in execution time by 51%. On the Cyber 205
the recorded time was 341 microseconds. The reason for this improvement is clear: at a
given time more than one functional unit is working. Note that this improvement can
be achieved by simply choosing the appropriate compiler options. But is this the
maximum that we can expect through scalar optimization? Two loads, one add and one
store take 5 cycles (Load and add take one cycle each while store takes two cycles). So
theoretically, at any rate, it should be possible to generate a performance rate of nearly
10 MFLPs. It appears that too much time is being spent in indexing and branching. It
is indeed possible to cut down the time spent on indexing and branching by using the

technique of unrolling of loops, which will be discussed in the next section.
4.4.3 Unrolling of Loops

The uﬁrolling of loops consists of replicating the code of the body of the loop. It
is then necessary, of course, to modify the subscripts in each of the copies of the loop
and to change the increment in the DO loop. As an illustration, let us rewrite the
FORTRAN code of the by now familiar loop as follows

DO 101 =1, 1000, 4
C(I) = A(M) + B(I)
CI+1) = A(I+1) + B(I+1)
C(I+2) = A(I+2) + B(I+2)



Timings

Pass 1:

Pass 2:

Is

8]

a0 h W

15
19
20
21
22
23

for Bottom Load/Top Store Technique

ST

24

23

._59_

Table 4.3

10
18

1is

14

27
35
36
26

31

COMMAND

STO

ADDN

LOD

LOD

ADDX
IBXLE, BRB

STO
ADDN
LOD
LoD
ADDX

IBXLE, BRB

OPERAND

[C_ADD,J].,C
A,B,C
[A_ADD,J] ,A
[B_ADD, J],B
J,ONE,J
L,ONE,LOOP, N, L

[C_ADD, J],C
A,B,C
[A_ADD,J] A
[B_ADD, J],B
J,ONE, J
L,ONE,LOOP, N, L



- 60 -

C(I+3) = A(I+3) + B(I+3)
10 CONTINUE

We shall not be giving the timing table for above loop. Suffice is to say that when
corresponding code was run on the Cyber 205 without invoking the optimization option,
it took 565 microseconds to execute, thus generating a performance rate of 1.77 MFLPs.
This resulted in cutting down of the execution time for unoptimized code by 19%. We
can, in fact, do better than this by further invoking the compiler option PRSD, which
effectively implements the bottom load top store technique. In Table 4.4 the timings
when both the techniques are combined are shown. From the Table 4.4 it is evident
that the revised loop required only 36 cycles per pass. Since 250 passes are required to
complete all the additions, the total execution time is 180 microseconds which gives a
performance rate of 5.55 MFLPs. Thus by unrolling the loop and invoking the
appropriate compiler options it is possible to obtain nearly optimum scalar performance.
At this point the following question naturally arises. If a choice of 4 for the stride in
the DO loop. above causes such an improvement in the performance, can we not choose
a larger stride to get an even better performance? To answer this question it must be
realized that by choosing a larger stride more instructions are added in the DO loop,
which will result in (i) use of more registers in the register file and (i) branching back a
larger distance. Now the number of available registers is limited and an additional 15-
18 cycles will be incurred if a branch is made out of instruction stack. Hence we can
not unroll the loop to an arbitrary extent. An optimum size of the stride can be found
either by actually running the code on the machine or by hand timing the loop with

different strides.

The comparisons of various levels of optimization using scalar architecture of the

machine is given in Table 4.5.



- 61 -

Table 4.4

Timings for optimized scalar code
with unrolling of loop

Is ST RF COMMAND
0 - - STO
2 - - STO
4 - - STO
6 11 14 ADDN
. 7 - - STO
9 14 17 ADDN
10 15 18 ADDN
11 16 19 ADDN
12 - 27 1L.OD
13 - 28 LOD
14 - 29 LOD
15 - 30 1L.OD
16 - 31 LoD
17 - 32 LoD
18 - 33 LOD
19 - 34 LOD
20 21 24 ADDX
27 - 35 IBXLE, BRB

Next Pass:

36 - - STO



...62_

Table 4.5

Comparison of various levels of
optimization using only the scalar architecture

Version Cycles/Result Ratio MFLOPs
Unoptimized Fortran 35 1 1.43

Unrolled Loop

(Unoptimized Fortran) 28.25 1.24 1.77

Optimized Fortran 17 2.06 2.94

Unrolled Loop

(Optimized Fortran) 9 3.88 5.55

Vectorized Version*

(2 Pipes) 0.552 63.4 90.66

*Discussed in section 4.5



- 63 -

4.4.4 Merging of Short DO Loops

A loop is classified as load-bound if it is dominated by 15 cycles needed for a load
instruction. Similarly a loop is branch-bound if it is dominated by 8 cycles needed for a

branch instruction.

Busy loops i.e., those loops in which a lot of computational work is done during a
single pass are never branch-bound. They are also not, in general, load bound, because
if there are load instructions they can be issued sufficiently early such that the processor

can do other useful work while loading is taking place.

In contrast very short DO loops are nearly always either branch-bound or load-
bound, in which case it is a good practice to merge short loops into a single loop. It will
lead to a sighiﬁcant improvement in scalar performance most of the time. To illustrate

the point, consider the following segments of FORTRAN code

DO 101 =2, N
B(I) = B(I-1) + C(I)
10 CONTINUE
c
DO 201 =2, N
B(I) = B(I-1) + C(I)
AQ) = A(-1) + C(I)
20 CONTINUE

The theoretical results obtained by hand timing the above code, using various
compiler options, are presented in Table 4.6. It is clear from Table 4.6 that merging of
loops results in best performance particularly when the appropriate optimization option

is chosen for the compiler.



_64:_

Table 4.6

Comparison of various levels of
optimization using only the scalar architecture

Version Cycles/Result Ratio MFLOPs
Single Loop

(Unoptimized Fortran) 35.1 1 1.42
Single Loop

(Optimized Fortran) 30.1 1.16 1.65
Two per Loop

(Unoptimized Fortran) 30.95 1.13 1.61
Two per Loop

(Optimized Fortran) 16.2 2.17 3.08
STACKL.IB routine*

(2 Pipes) 5.85 5.97 8.47

*Discussed in section 4.5.2



-85 -

There are other general techniques such as use of data statements whenever
possible, avoiding double precision calculations if possible, avoiding equivalence
statements, minimizing of divide operations et;:., which are well known to programmers
using scalar machines. These techniques retain their validity on the Cyber 205. We
shall not be discussing them any further. Instead we shall turn our attention to vector

optimization.
4.5 Vector Optimization

There are two types of vector optimization (i) syntactic and (ii) semantic. Of
greater fundamental importance is semantic vectorization because it involves rewriting
of algorithms and replacing old algorithms. These aspects are beyond the scope of the
present thesis and will not be discussed here. We shall be focusing our attention to
syntactic vectorization which includes automatic vectorization and explicit or hand

vectorization.
First we define a vector on the Cyber 205.

DEF: Vector - Contiguous set of memory locations
Vectors can be real, integer, complex or bit. For real or integer vectors, the memory
location are 64-bit words, for complex vectors pairs of words and for bit vectors they are

bits. Note that a vector need not be a FORTRAN array.

It is worth pointing out that the contiguity of memory locations is not only
important for vector operations, it also is a significant factor in scalar programming.
Consider following two segments of code

DO10I=1,M
DO10J=1,N
A(I, J) = 0.0



- 66 -

10 CONTINUE
and
DO20J=1,N
DO20I=1,M
A(I,.J) = 0.0
20 CONTINUE

The two codes look almost alike and even the syntax of the language completely
hides the difference, but there is a significant difference in execution efficiency between
two loops on most of the scalar machines. In accordance with the FORTRAN practice
of storing two dimensional arrays in column major order the elements A(I, J) and
A(I+1, J) will occupy contiguous memory locations. Therefore, on the machines which
store the arrays in the traditional column major order, loop 20 will be faster while on
machines which store the arrays in row major order, loop 10 will be faster. On the
Cyber 205 which is a virtual memory machine this difference is even more important

because a page fault may occur for large arrays if they are not accessed sequentially.
4.5.1 Automatic Vectorization on the Cyber 205

It should be emphasised that the nature of vector operations is such that the only
construct which can qualify for automatic vectorization in FORTRAN is a DO loop. By
simply choosing the V option of the compiler, automatic vectorization of all the
admissible DO loops can be achieved. If the compiler is not able to vectorize a loop
automatically it tries to convert it into a call to STACKLIB routine (explained later). If
even this attempt fails and automatic vectorization is not possible, the user must

consider explicit vectorization.

We shall now state the preconditions for automatic vectorization.



-67 -

(1) For any outer loop to be vectorized, inner loop must be vectorizable.
Thus the outer loop in the code
DO 10I =1, 100
DO 10 J =1, 100
AL, J) =B(L, J) * C(1, J)
10 CONTINUE
can not be vectorized, because the inner loop is not vectorizable owing to references

being non-contiguous.

(2) Total iteration count must be less than 65535 for a nest of loops.
The loop
DO10J=1, 330
DO 10 I = 1, 200
A, J)=0.0
10 CONTINUE
is not vectorizable because the total number of iteration count is 66000 which exceeds

65535. It must be noted, though, that the inner loop vectorizes.

(8) There should not be any flow control statement in the loop besides DO and
CONTINUE.
Thus the code
DO 10I=1, 100
A(l) = B{) * C(D)
CALL SUBL1(A, B, C)
10 CONTINUE

is not vectorizable.



- 68 -

(4) The loop must contain only the arithmetic operators +, - * and [, and the
logical operators. It should not contain any relational operator.
" The loop
DO 101 =1, 100
IF (A(I) .LT. B(I)) A(I) = B(I)
10 CONTINUE

will not vectorize.

(5) Only data of type integer, real, half-precision (32 bits floating point numbers)

and logical must appear in the loop for vectorization.
The code for the subroutine DIFF given below will not vectorize because of the complex
data type

SUBROUTINE DIFF(A, B, C)

COMPLEX A(100), B(100), C(100)

DO 10I=1, 100

C(I) = A(I) - B(D)
10 CONTINUE
RETURN
END

(6) Any I/ O in the loop will render it non-vectorizable.
Thus the foliowing segment of code
DO 10I=1, 100
A(D) = B(I) * C(1)
PRINT *, A(I), B(I), C(I)
10 CONTINUE

will not vectorize.



- 69 -

(7) For a loop to be wvectorizable, no reference must be made to any external
Junction or subroutines other than the FORTRAN library functions ABS, ACOS, ALOG,
ALOG10, ASIN, ATAN, COS, EXP, FLOAT, LABS, IFIX, SIN, SQRT and TAN.

Thus if the user defines a function, say, CBRT which computes cube root of a real
number and invokes the function in the loop
DO 101I=1, 100
B(I) = CBRT(A(I))
10 CONTINUE

the loop will not vectorize.

(8) The loop must not contain any vector assignment statement inside.
We shall be discussing the vector assignment statements later in the chapter. For now,
it suffices to mention that the loop must contain only scalar assignment statements

whose right side is an integer, real, half-precision or logical expression.

(9) The subscripts depending on the loop counter must be one of the forms ¢, ¢ +

n, ¢ - n or ¢c*n where ¢ is the loop counter and n is an integer constant

(10) A'ny data elements appearing on the left hand side of an assignment statement

must not appear in the EQUIVALENCE statements.
The code given below

SUBROUTINE SUM1(A, B, C)

REAL A(100), B(100), C(100), D(100)

EQUIVALENCE (D(1), A(10))

DO 101 =1, 90

D(I) = B(I) + C(I)
10 CONTINUE

will not vectorize normally.



- 70 -

(11) No reference must be made to variably dimensioned arrays if the terminal

value of the loop is a vartable.
Thus the code for the routine ADD given below

SUBROUTINE ADD(N, A, B)

REAL A(N), B(N)

DO10I=1,N

Ay = A(I) + B(I)
10 CONTINUE

will not vectorize normally.

Note that for restrictions (10) and (11), loops are not vectorizable normally
because the compiler either does not have the values of the bounds of the array at
compilation time as in the case of restriction (11), or it has to perform computations to
check the values of the bounds as in the case of restriction (10). In either case it can
not guarantee that the limits of the array bounds will not bé exceeded. However, if the
programmer takes over this responsibility from the compiler by choosing UNSAFE

option, both the loops will be vectorized.

It can be seen from the foregoing that the severity of the conditions for automatic
vectorization would exclude many loops which would naturally qualify for vectorization.
A better approach is clearly needed towards vectorization. One of such approach is
found in STACKLIB routines. These routines derive their name from the fact that they
were designed to fit in the instruction stack. They basically deal with the recursive

loops.
4.5.2 Recursive Loops

In a departure from usual terminology CDC has defined a recursive loop on the

Cyber 205 as a loop in which during an assignment of a data element a reference is



71 -

made to the value of that data element computed in one or more of the previous passes.

An example of a recursive loop would be

DO 101 =2, N
L(I) = L(I) + L(I-1)
10 CONTINUE

If each element of the array L is initialized to 1 and above code is run on a scalar
machine, one would expect the following output
L@2)=L@2)+LA)=1+1=2
LB)=LB)+L(2)=1+2=3

---------

L(N) =L(N) + LN-1) = 1 + (N- 1) = N
or (L{J) = J, J = 1, N).

However if the same code is run using the explicit vector syntax described later,
result would be altogether different. To gain an insight into functioning of recursive

loops let us use the model of the vector processor introduced in section 4.3.2.

The values of vector L will start streaming into the pipes on issue of the vector
instruction. These values will clearly be the old values, namely 1. Let us look at the
situation at cycles 1, 2 and 3 given in Figure 4.5. At cycle 3, the first pair will enter
segment 1. However it will take another 6 cycles before the *new” result L2 will be out
of the pipe. By the time the "new” L2 pops out and heads for memory, the "new” L3
which needs the value of ”-new” L2 will be in segment 6 at the end of the pipe about to
finish its share of computation. Thus we have the situation at cycles 7, 8 and 9 as

shown in Figure 4.6.



_72_

Input path (L2, L1) (L3, L2) (L4, L3)
(L2, L1) (L3, L2)
Seg 1 (L2, L1)
Seg 2
Figure 4.5

Snapshots at cycles 1, 2 and 3

Input path (L8, L7) (L9, L8) (L10, L9)
(L7, Lé) (L8, L7) (L9, L8)
Seg 1 (L6, L5) (L7, L6) (L8, L7)
Seqg 2 (L5, L4) (L6, L5) (L7, L6)
Seg 3 (L4, L3) (LS, L4) (L6, L5)
Seg 4 (L3, L2) (L4, L3) (LS, L4)
Seg 5 (L2, L1) (L3, L2) (L4, L3)
Seg 6 (L2, L1) (L3, L2)
Output path L2  (new)
Figure 4.6

Snapshots at cycles 7, 8 and 9



-73-

It is clearly impossible for L3 to make use of the "new” L2 which has not even
reached the memory. The compiler recognizes it and does not allow such loops to be
vectorized. Note that the following loop

DO10I=2,N
LI-1)=L{I) +L{I-1)
10 CONTINUE

is not recursive, because it refers to next element whose value is available at run time.

We have dealt at length with recursive loops because most of the integration
routines in CSSL are essentially marching in nature, which means that in order to
calculate the value of a state variable at any time one needs the value of the variable at
the preceding time. This naturally leads to a recursive loop and we are faced with the

difficulties described above.

The FORTAN compiler can ‘vectorize recursive loops if they strictly conform to
one of the following ten types by calling the appropriate STACKLIB routine which
appeals directly to the architecture of the machine, provided the compiler option V is

chosen.

DO1I=L,M
1 X() = X(-1) + Y(I)

DO 21 =L, M
2 X(I) = Y({) + X(-1)

DOSI=L,M
3  S=8+X{

DO4I=1,M
4 S=XI+S



- 74 -

DO 5I=L,M
5 S =S8+ XI*Y()

DO6I=L,M
6 S=XO*Y{I)+S

DO7I=L,M
7 S =S8+ XO¥X()

DOSI=L,M
8 S =X + 8

DO 9I=L,M
9 S =S8+ X(I*2

DO 10I=1L,M
10 S=3XI**2+8

Note the extremely restrictive nature of the loops. For our purposes these routines

are not very useful.

Having considered the possibility of automatic vectorization we should ask the
question "Is it sufficient?”. There is no doubt that in most cases if a segment of code
can be vectorized automatically, it will lead to vast improvement in execution speed as
exemplified in the Table 4.5. However, there is need to exercise some caution because of

the following considerations

(1) We saw in section 4.2.3 that a vector instruction typically needs a start-up
time. Recalling the example of vector addition, the execution time for the

corresponding loop is



- 75 -

51 4+ N cycles '

for a vector processor with one pipe.

Now if N, the length of the vector is quite small, it is obvious that the scalar
version of the loop will be executed more efficiently (One add instruction takes 5 cycles
in scalar mode). When the compiler option V is selected, compiler attempts to vectorize
all the loops regardless of value of N. It simply does not make any distinction on the

basis of value of N. This is an important point and we shall return to it in Chapter 5.

(2) The user may easily be tempted into believing that he/she is automatically
getting the best performance the computer can offer by relying on automatic
vectorization. Such confidence, however, is completely misplaced. As we have seen
earlier, the programmer can manually reorganize the code for optimum performance.
Also FORTRAN is not the best language for recognizing vector structures because of

limitations of the DO loop, the only repetitive construct available in the language.

These considerations clearly show that any good vector processor must supply

extensions to a language like FORTRAN which can directly address the architecture of
the machine, besides providing the facility of automatic vectorization. These vector
extensions are available on the Cyber 205 and are superimposed on the normal sealar
language syntax. By using vector extensions it is possible to vectorize the code
explicitly in suitable cases. We shall be considering the explicit vectorization in the next

section.
4.5.3 Explicit Vectorization

Recall 2 vector is defined as a contiguous set of memory locations. Therefore in
order to completely specify a vector one needs to provide the following: the data type,

starting address and the length. The starting address is conveniently represented by an



- 76 -

array element. Since the data type of an array element is given either implicitly by
FORTRAN's first letter convention or by explicit type declaration, the same can be
used to define the data type of the array. The length is specified by an additional
subscript preceded by a semicolon. The following examples illustrate the vector syntax
described above

DIMENSION A(100), K(50,50)

COMPLEX (100, 100)

A(3; 80) is a vector of real type comprising the elements A(3),A(4),.. A(82).

K(2,5; 100) is a vector of integer type comprising the elements K(2,5), K(3,5),
K(50,5), K(1,6), K(2,6), ... K(50,6), K(1, 7).

C(1,1; 3*100) is a vector of complex type comprising the elements C(1,1),
C(2,1),...C(100,1), C(1,2), C(2,2),...C(100,2), C(1,3), C(2,3),...C(100,3) and occupies 600

words of memory.

Using vector syntax, the scalar loop
DO 101 =1, 1000
C(I)y= A®I) + B()
10 CONTINUE
is transformed to a single vector instruction

C(1; 1000) = A(1; 1000) + B(1; 1000)

As far as the above loop is concerned, there will be no difference in the
performance whether one uses the vector instruction or the scalar code vectorized
automatically by the compiler. But consider the following loop

DO10J=1,N

DO10I=1,N



-77 -

C{I,J)=A({, J) + B, J)
10 CONTINUE
and the corresponding vector instruction

C(1,1; N¥N) = A(L,1; N*N) + B(1,1; N*N)

The automatic vectorizer may catch both the loops, but assume that only the
inner loop vectorizes, in which case it will result into N additions of vectors, each of
length N. Hence we shall have N start-ups and N2 arithmetic operations. On the other
hand, vector-syntax yields only one start-up and N2 arithmetic operations. Thus we

shall have the following timings for two pipes

5IN +» N2 for automatic vectorization
and 51 +» N2 for explicit vectorization.
The ratio of these two times for N == 51 is nearly 3 to 1, from which it follows that

wherever possible explicit vectorization must be preferred over automatic vectorization.

There is another reason important for us. Suppose that the program contains
certain loops which it is not worth vectorizing while there are other loops which must be
vectorized. A solution to this this problem is as follows: First, the automatic
vectorization option is turned off which will prohibit the vectorization of the loops which
are not to be vectorized. Next the code of the loops to be vectorized is written using
explicit vectorization syntax. This will coerce the compiler to vectorize the desirable

code.
4.5.4 Descriptors

A descriptor is 2 memory word which on the machine level is a pointer to a vector.
It is represented as a 64-bit word containing the length of the vector in the most

significant 16 bits and the address of the starting location in the least significant 48 bits.



-78 -

The machine code produced generates a descriptor for a vector at run time.

Descriptors are allowed as special data type in Fortran 200, the extended
FORTRAN on the Cyber 205, and can be declared just like other data types. Their

data type defaults accordiné to usual FORTRAN first letter convention.

The descriptor variables have the same attribute as vectors, namely, data type,
length and base address. The later two are stored in the descriptor at load or execution

time.

It is possible to assign descriptor variables to arrays by ASSIGN statement. For
example if BD is the descriptor variable, the statement
DATA BD/B(1, 1:100)/
implicitly assigns descriptor BD to point to the first column of B. The statement
ASSIGN BD, B(1,2; 100)

reassigns BD to point to the second column of B.

There are two advantages of using descriptors. First, the code with descriptor is
elegant and saves programming effort. Returning again to our familiar example of
addition of two arrays, the code using descriptors can be written as follows

DIMENSION A(100), B(100), C(100)
DESCRIPTOR AD, BD, CD
ASSIGN  AD, A(1; 100)

ASSIGN  BD, B(1; 100)

ASSIGN  CD, C(1; 100)

AD =BD + CD

Second, it is possible to create dynamic space using descriptors. The statement

ASSIGN DYNAMC, .DYN. 100



-79 -

allocates dynamic space on the stack pointed to by the descriptor DYNAMC. If
DYNAMC is of type real, 100 words of memory are reserved on the stack. All the

dynamically allocated space can be released by the instruction FREE.

We shall now briefly describe in the rest of this chapter the techniques involving

control store and data motion.
4.5.5 Control Store

Consider the following segment of code
DIMENSION A(100, 100), B(100, 100), C(100, 100)
N =99
DO10J=1,N
DO10I=1,N

CI J)=A(L J)+ B J)
10 CONTINUE

The auto-vectorizer will vectorize the inner loop, but since 100th element of every
column is to be skipped, the two-dimensional arrays A, B and C do not qualify as the
Cyber 205 vectors, and the outer loop will, therefore, not be vectorized. Clearly it is too
big a prize to pay for not calculating one element for each 100 elements. This difficulty

is obviated by the use of the technique called control store.

In control store technique storage of data, as a result of vector operation, depends
upon a bit vector. A bit vector is defined as a Cyber 205 vector whose elements consist
of a contiguous set of bits, with each bit corresponding to an element in the data vector.
When the vector operation is performed, only those results of data vector will be stored
which have the corresponding bit in the bit vector set to 1, other results corresponding

to bit 0 will be left unaffected.



-80 -

Thus using the vector routines Q8VMKO or Q8VMIKZ, the bit vector BITD with
desired periodic pattern can be created and now the instruction
WHERE (BITD) CD = AD + BD
will store the results in array pointed to by the descriptor CD, obtained by summing the
vectors pointed to by AD and BD as determined by BITD. Note that using control
store technique all the results are calculated, only those are stored which are needed, the

rest are thrown away.

If only a small portion of results are thrown out; we are quite willing to pay that
price for vectorizing the otherwise non-vectorizable code, but suppose we want to sum
the elements of two arrays every M th element as exemplified by the following code

DO10OI=1,NM
C(I) = A(I) + B(I)
10 CONTINUE

Clearly if M > 1, using control store technique, the peak performance rate will be
reduced by a factor of M. In such a case alternative techniques must be used, which

will be deseribed in the next section.
4.5.6 Data Motion Techniques

In data motion techniques, first temporary arrays are created to store the relevant
data elements into contiguous memory locations. Next vector operations are performed
on the temporary arrays and finally results are distributed to appropriate memory

locations.

To illustrate one such technique, which we shall choose vector compress/merge, let

us again consider the DO loop



-81 -

DO10I=1,N, M
C(I) = A(I) + B(I)
10 CONTINUE

The first step is to create the bit vector which will map to the locations where
results are to be stored. In present case it will be a periodic pattern with a single 1
followed by M-1 zeros. The next step is to compress vectors A and B into AT and BT
respectively with all entries blotted out which correspond to a zero in the bit vector.
Now the vector instruction

Cp = Ap + By
is performed. Finally the vector C is merged with vector CT with only those entries of

C affected which correspond to 1 in the bit vector.

The other technique is known as gather/scatter. Its ideas are similar to those of
compress/merge. The only difference is in the manner bit vector is created. The bit

vector can be generated either using periodic indices or using random indices.

From the foregoing, one can see that the Cyber 200 vector extensions provide
numerous tools and techniques for the vectorization of codes. If intelligently used these
can lead to an improvement in performance by orders of magnitude. The applicability
of these tools and techniques to vectorization of integration routines in CSSL-IV

software library is discussed in the next chapter.



5. CSSL-IV ON THE CYBER 205
PORTABILITY AND VECTORIZATION

5.1 Introduction

One can not overemphasize the importance of porting a modern continuous
simulation language to a supercomputer. Reduction of running time of a highly

complex model to a realistic value alone is sufficient justification for porting.

However porting a CSSL to a supercomputer in itself does not guarantee the
expected reduction in execution time. Merely ported, the supercomputer will be merely
used as a scalar computer. The maximum increase in performance from a
supercomputer can be obtained only if the software support library in the CSSL is

vectorized. .

The software support library of CSSL-IV is huge by any standards. Since the
integration operation is the heart of any CSSL, it is imperative that integration
routines, more than any other, be vectorized. It is 2 natural corollary of porting a CSSL

to a supercomputer.

In the present chapter we discuss the problems of porting CSSL-IV to the Cyber

205. Also a description of the attempts to vectorize the integration routines is given.
5.2 Portability of CSSL-IV to Cyber 205

For a program written in a CSSL, the language must provide complete machine

independence for portability to various machines. This means that the language must

- 82 -



-83-

cater to all translation features which are machine dependent. For this reason, the code
for the translator and the run-time interpreter must be heavily dependent on machine

architecture.

Even though the translator and the run-time interpreter use Fortran for their
intermediate language, for historical reasons they do not utilize the character handling
facilities of modern versions of Fortran. At the time earlier versions of CSSL-IV were
developed, Fortran-77 had not yet become the standard; consequently, all the character

values (variables and constants) were expressed in terms of Fortran integers.

Although CSSL-IV has been written in a manner to lessen machine dependence
(e.g., symbolic parameters, rather than literal constants are used to specify such values
as the number of characters per machine word) there are several aspects of the code
which had to take machine architecture into account. Some of the problems

encountered in this respect are described in the rest of the present section.

The Cyber 205 is a 64 bit machine with 8 bit ASCII representation for characters.
It is, therefore, 'natural’ to store a number in hexadecimal form as opposed to the octal
form preferred by some other machines such as Honeywell DPS8, Cyber 175 and PDP
11. A significant part of the code of the translator stores massive data in either
hexadecimal or octal form depending on the machine. This data pertains to various
macros in the CSSL library and must be generated and put in a appropriate form for

the Cyber 205.

Most of the machines allow a character string in single quotes to be stored as an
integer. The Cyber 205 does not permit it. Consequently, all the character strings must
be stored in the form of hollerith strings of length eight. It may be noted that the
length of a character string which can be stored in a single word of computer memory

varies from computer to computer. Thus VAX and Honeywell can store four characters



-84 -

in a word, but the Cyber 175 can store ten characters, while the Cyber 205 can store
eight characters. As remarked earlier, since the strings are represented as integers in the
code for the translator and run-time interpreter, large scale modifications had to be

made in their code.

Perhaps the single most important factor which caused many problems in porting
is the manner in which integers are stored in the Cyber 205 and the arithmetic
performed on them. Even though the Cyber 205 is a 64-bit machine, it stores an integer
essentially in the same manner as a floating point number. A floating point number on
the Cyber 205 has its mantissa stored in the least significant 48 bits and its exponent
stored in the most significant 16 bits. An integer is stored in the same manner, except
that its exponent is set to zero. Incidentally, the CRAY supercomputers store integers

the same way.

The manner of storing integer as mentioned above is not disastrous in itself. The
trouble stems from the fact that the Cyber 205 does not permit 64 bit integer
arithmetic. It does allow a character string, 8 characters long to be stored as a 64 bit
integer, but one can not perform full fledged comparisons on two strings. Thus using
the normal compiler options it is not possible to distinguish the two stings *CAT RUNS’
and 'HAT RUNS’. Fortunately, the Cyber 205 compiler does have an option (called
C64), which can be used to compare two eight-character strings for strict equality or
inequality. The other comparisons (less than, greater than, less than or equal and
greater than or equal), however, are not allowed. An important and considerable part of
the translator code makes comparisons of strings to determine the type of variables in
accordance with the standard Fortran practice of assigning integer type to those
identifiers whose names start with one of the letters I through N. Consequently, a large

amount of effort was directed in scanning the code for such comparisons.



-85 -

This problem was further aggravated by two other factors. First, the code
includes comparisons of integers of both types - the ’true’ integers requiring 48 bits of
storage and thé integers representing the character strings which require 64 bits of
storage. It was extremely difficult to make the distinction between the two cases.
Second, the enormous size of code makes porting a tedious job. CSSL-IV is a big
language capable of handling complex models. Its code runs into approximately 30,000
lines of Fortran code. On the Cyber 175, the run-time interpreter alone requires four
overlays due to memory limitations. Also with each new revision more and more lines of

code are added.

The choice of Fortran for the translator and run-time interpreter may not be ideal.
Perhaps a language such as Snobol, Icon or Prolog would be more suitable. However,
this criticism is not entirely valid. A site implementing a CSSL must have a compiler
for the language of the translator/interpreter in addition to that of Fortran, which may

not always be feasible.
5.3 Vectorization of Algorithms

Currently, a lot of research is being carried out to devise algorithms which take
advantage of vector instructions of supercomputers (see for example [ORTES5]). Many

old algorithms have been revived and new algorithms have been modified.

CSSL-IV has an impressive software support library. It has an extensive collection
of integration routines, simulation operators, linear algebra routines ete. The list is
augmented with each revision. To realize the full potential of CSSL-IV on

supercomputers it is desirable to vectorize a substantial number of routines.

So far we have carried out vectorization of a limited number of integration

subroutines. This is partly due to the time constraint and partly due to the fact that



- 86 -

this area is still evolving and incorporation of a newly developed algorithm in the

software support library is a far from trivial task.

It may be remarked here that most of the integration algorithms implemented in
CSSL-IV are ’shooting’ or 'marching’ algorithms. Thus to determine the value of some
dependent variable at the ith step, one requires the value of that variable at the (i-1)th
step. This idea is clearly contrary to the spirit of vector pipelining. The vector
processor simply can not 'wait’ for the value of the variable to be calculated at the

preceding step.

However, suppose that we have a large number of dependent variables at a certain
step. Then we can pipeline these variables for the vector processor and make use of the
vector capabilities of the machine. In fact, the larger the problem, the greater will be
the number of dependent variables, resulting in even better performance. Consequently,
the Cyber 205 is ideally suited for complex problems such as those characterized by

PDEs.

The vectorization of the subroutines done so far is specially relevant for problems
with a large number of dependent variables. The other areas in which vectorization is a

good possibility are discussed in chapter 8.

To protect proprietary information, it is not possible to give here the actual code
of any of the routines vectorized. Nevertheless, the ideas used to vectorize the
integration routines in CSSL-IV software support library can be illustrated by taking

the example of the Runge-Kutta fourth order algorithm.

There are several variants of the Runge-KKutta method. At least three of them are
implemented in CSSL-IV software support library. The standard Runge-Kutta process

applied to the initial value problem



- 87 -

d
-'% = (t> }’), y(tO) =Yoo

uses the formulae [COLLGS]

k1.=f(t’ yn)

ko =1t +8h,y, +1k,)

Yn41 =¥a + 1h(ky + 2k, + 2k; + k).

Here y denotes the vector (in the analytical sense!) of state variables. If the number of
state variables is large, they can be arranged to occupy contiguous memory locations

and, hence, form a vector on the Cyber 205.

It is straightforward to code the above set of formulae in Fortran 200. The

program using the vector extensions, particularly the descriptors, is given in Figure 5.1.

Note that use of the vectorized version is justified only if the number of state
variables is large. As pointed out in next chapter, partial differential equations naturally
qualify for the use of the vectorized version of integration routines, because they can be
cast into a system of ordinary differential equations using the method of lines. But how
large must the system of ordinary differential equations one must have to

advantageously use the vectorized version?



aaaaaaaaaaaaaaaaaaaaaaaaaaaOoaaaOaaaOQOOOOQOOOQOOnn

_88_.

......................................................

SUBROUTINE RK4V

PURPOSE

TO OBTAIN ONE-STEP SOLUTION OF A SYSTEM OF FIRST ORDER
ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM DY/DX = F (X,Y)
WITH INITIAL CONDITIONS BY RUNGE~KUTTA FOURTH ORDER METHOD

USAGE

CALL RK4V (N,ECN,X,Y,H,DY)

DESCRIPTION OF PARAMETERS

N

- NUMBER OF EQUATIONS (INPUT)

FCN - NAME OF SUBROUTINE FOR EVALUATING FUNCTIONS (INPUT)

REMARKS
NONE

THE SUBROUTINE ITSELF MUST BE PROVIDED BY THE USER
AND IT SHOULD BE OF THE FOLLOWING FORM

SUBROUTINE ECN (N, X,Y,DY, IER)

DIMENSION Y (N),DY (N)

FCN SHOULD EVALUATE DY (1),....DY(N) GIVEN N,X, AND
Y(1),....Y(N). DY(I) IS THE FIRST DERIVATIVE OF Y (I)
WITH RESPECT TO X

IF SOME ERROR OCCURS IN COMPUTING DERIVATIVES, IER
CAN BE SET TO SOME POSITIVE VALUE. FOR SERIOUS
TYPES OF ERROR, A SUGGESTED VALUE OF IER IS 129

IF NO ERROR OCCURS, IER MUST BE SET TO ZERO

ECN MUST APPEAR IN AN EXTERNAL STATEMENT
INDEPENDENT VARIABLE. (INPUT AND OUTPUT)

ON INPUT, X SUPPLIES THE INITIAL VALUE

ON OUTPUT, X IS REPLACED BY X+H

DEPENDENT VARIABLES, VECTOR OF LENGTH N

(INPUT AND OUTPUT)

ON INPUT, Y(1),Y(2),..... ,Y(N) SUPPLY INITIAL VALUES
ON OUTPUT, Y(1),Y(2),..... ,Y(N) ARE REPLACED WITH AN
APPROXIMATE SOLUTION AT X+H

STEP SIZE

AN APPROXIMATE ESTIMATE OF DERIVATIVES AT THE
TERMINAL POINT (OUTPUT)

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
THE SUBROUTINE FCN MUST BE EURNISHED BY THE USER.

Figure 5.1
Listing of the subroutine RK4V

- The vector version using descriptors.



aa aanoaaaaaan

_89_

METHOD
THE SOLUTION IS OBTAINED BY MEANS OF FOURTH-ORDER RUNGE-
KUTTA FOURTH ORDER METHOD. FOR REFERENCE, SEE
ANTHONY RALSTON, A FIRST COURSE IN NUMERICAL ANALYSIS,
MC-GRAW HILL, 1965, PP. 199-200.

.................................................................

SUBROUTINE RK4V (N,FCN,X,Y,H, DY)

INTEGER N
REAL X,H

REAL Y (N) , DY (N)

REAL YD,DYD, WK1, WK2, WK3, WK4
DESCRIPTOR YD,DYD,WK1,WK2,WK3, WK4

ASSIGN YD, Y(1:N)

ASSIGN DYD, DY (1;N)
ASSIGN WK1, .DYN. N
ASSIGN WK2, .DYN. N
ASSIGN WK3, .DYN. N
ASSIGN WK4, .DYN. N

CALL ECN(N,X,Y,DY)

X = X+0.5*H
WK1 = H*DYD

WK4 = YD

YD = YD+0.5*WK1
CALL ECN(N,X,Y,DY)
WK2 = H*DYD

YD = WK4+0.5*WK2
CALL ECN(N,X,Y,DY)
X = X+0.5*H

WK3 = H*DYD

YD = WK4+WK3

CALL ECN(N,X,Y,DY)

YD = WK4+ (WKL1+2.0*WK2+2.0*WK3+H*DYD) /6.0
RETURN

END

Figure 5.1 (cont).



-90-

The answer depends on several factors. IF irst, attention must be paid to the
amount of code that can be vectorized in the routine of the derivative. If the code of
this routine is mostly scalar and requires a lot of computation time, clearly it does not
help much to use the vectorized integration routines because the latter will form only a

small percentage of total computation time.

However, if the routine of the derivative is mostly vectorized or it does not require

too much computation time, one may consider the use of vectorized integration routines.

The next factor is the choice of algorithm which to a large extent depends on the
model under consideration. If the model is well behaved, the Runge-Iutta method is 2
good choice, because a large portion of its code is highly vectorized as can be seen from
Figure 5.1. On the other hand if the model is such that it necessitates the use of a stiff
differential equations solver, as is the case with many chemical engineering problems, the
use of a vectorized version may not be that efficient. The same remarks apply for

models involving a discontinuity.

One way in which the question of whether to use a vectorized or scalar version of
an inbegration routine can be answered is by making a single run using both the
versions. However this solution is not very practical from the point of view of software

development.

Of course, the user is in the best position to know the suitability or otherwise of
his model for vector processing. Nevertheless, at the software development level, a
decision must be made by the software/knowledge engineer, which should be able to
prohibit a naive user from running a model involving only, say, one or two state

variables on a vector computer and invoking vectorized integration routines.



-91 -

It is true that a user can not be stopped from running a model on a vector
computer, nor may it even be desirable, for it is possible that the derivative routine may
contain highly vectorized code. But surely a provision should be made which
automatically switches to the scalar version of integration should the use of the vector

version be not justified.

The decision of scalar versus vector version in the CSSL-IV implementation can be
made at either of two levels. Since the translator keeps track of number of the state
variables, it can set up a flag when this number exceeds some suitable value. The
control can now be directed to the scalar or vector version of the routine depending on
the value of the flag. Needless to say, with this approach two versions of routines will

have to be maintained in the software support library.

Alternatively, the decision can be taken within the integration routine itself. Since
the number of state variables is passed as a parameter to every integration routine, a
two way branching can be effected in the code to the scalar or vector versions. It is the

second approach that was adopted in vectorizing the integration routines.

The question of the cut-off value at which the vectorized version must take over
from the scalar version has not been answered as yet. A heuristic reasoning explaining

the choice of cut-off value now follows.

Recall from section 4.3.2 that the timing for the addition of two arrays on the
vector processor of the Cyber 205 is
51 + N cycles.
where N is the size of the array and 51 cycles is the start-up time. Also recall that on a
scalar processor it takes 5 clock cycles for an addition. From this it follows that up to
ten additions the scalar processor will be faster than the vector processor and for more

than ten additions the vector processor will be faster. So 10 appears to be the cut-off



value up to which it is more efficient to use the scalar processor. Of course, the
reasoning given above is quite primitive: nevertheless, it does give some idea about the

size of the cut-off value.

Consequently, we can now modify our program of the Runge-Iutta method given
in Figure 5.1, such that if N, the number of dependent variables is greater than 10, use
is made of the vectorized version, otherwise the scalar version is used. The revised
listing is given in Figure 5.2. This was, incidentally, the general approach followed in

vectorizing the integration routines in the CSSL-IV software support library.



acaaoaaaaaaaaaaaaoaaaaaaaaaaaaaaaaOaaOOaOOQOQQOOO0n

_93...

.................................................................

SUBROUTINE RK4V

PURPOSE

TO OBTAIN ONE-STEP SOLUTION OF A SYSTEM OF FIRST ORDER
ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM DY/DX = F(X,Y)
WITH INITIAL CONDITIONS BY RUNGE-KUTTA FOURTH ORDER METHOD

USAGE

CALL RK4V(N,ECN,X,Y,H, DY, WK)

DESCRIPTION OF PARAMETERS

N

ECN -

H
DY

WK

REMARKS

NUMBER OF EQUATIONS (INPUT)
NAME OF SUBROUTINE FOR EVALUATING FUNCTIONS (INPUT)
THE SUBROUTINE ITSELF MUST BE PROVIDED BY THE USER
AND IT SHOULD BE OF THE FOLLOWING FORM

SUBROUTINE ECN (N, X,Y,DY, IER)

DIMENSION Y (N),DY (N)

FCN SHOULD EVALUATE DY (1), ....DY(N) GIVEN N,X, AND
Y(1),....Y(N). DY(I) IS THE FIRST DERIVATIVE OF Y (I)
WITH RESPECT TO X

IF SOME ERROR OCCURS IN COMPUTING DERIVATIVES, IER
CAN BE SET TO SOME POSITIVE VALUE. FOR SERIOUS
TYPES OF ERROR, A SUGGESTED VALUE OF IER IS 129

IF NO ERROR OCCURS, IER MUST BE SET TO ZERO

ECN MUST APPEAR IN AN EXTERNAL STATEMENT
INDEPENDENT VARIABLE. (INPUT AND OUTPUT)

ON INPUT, X SUPPLIES THE INITIAL VALUE

ON OUTPUT, X IS REPLACED BY X+H

DEPENDENT VARIABLES, VECTOR OF LENGTH N

(INPUT AND OUTPUT)

ON INPUT, Y(1),Y(2),..... ,Y(N) SUPPLY INITIAL VALUES .
ON OUTPUT, Y(1),Y(2),..... .Y(N) ARE REPLACED WITH AN
APPROXIMATE SOLUTION AT X+H

STEP SIZE

AN APPROXIMATE ESTIMATE OF DERIVATIVES AT THE
TERMINAL POINT (OUTPUT)
A TWO DIMENSIONAL WORKING AREA OF DIMENSION N X 4

TO USE THIS ROUTINE AUTOVECTORIZATION OPTION MUST
BE TURNED OEF.

Figure 5.2
Revised version of the subroutine RK4V



aQaQ a0

10

20

30

_.94:..

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED.
THE SUBROUTINE FCN MUST BE FURNISHED BY THE USER.

METHOD
THE SOLUTION IS OBTAINED BY MEANS OF FOURTH-ORDER RUNGE-
KUTTA FOURTH ORDER METHOD. FOR REFERENCE, SEE
ANTHONY RALSTON, A FIRST COURSE IN NUMERICAL. ANALYSIS,
MC-GRAW HILL, 1965, PP. 199-200.

.................................................................

SUBROUTINE RK4V (N,ECN,X,Y,H,DY, WK)

INTEGER N, J
REAL X,H
REAL Y (N) ,DY (N) , WK (N, 4)

CALL FCN(N,X,Y,DY)

X = X+0.5*H

IF (N .LE. 10) THEN
DO 10 J = 1,N

WK (J,1) = H*DY (J)
WK(J,4) = Y(J)
Y(J) = Y(J)+0.5*WK(J, 1)
CONTINUE
ELSE
WK(1,1; N) = H*DY(1; N)
WK(4,1; N) = Y(1; N)
Y(1; N) = Y(1; N)+0.5*WK(1,1; N)
ENDIF

CALL ECN(N,X,Y,DY)

IF (N .LE. 10) THEN
DO 20 J = 1,N
WK (J,2) = H*DY (J)
Y(J) = WK(J,4)+0.5*WK(J, 2)
CONTINUE
ELSE
WK(1,2; N) = H*DY(1; N)
Y(1; N) = WK(1,4; N)+0.5*WK(1,2; N)
ENDIF
CALL FCN(N,X,Y,DY)
X = X+0.5%H

IF (N .LE. 10) THEN
DO 30 J = 1,N
WK (J,3) = H*DY (J)
Y (J) = WK(J,4)+WK (J, 3)
CONTINUE

Figure 5.2 (cont).



_95_

ELSE
WK(1,3; N) = H*DY(1; N)
Y(1; N) = WK(L,4; N)+WK(1,3; N)
ENDIF
CALL FCN(N,X,Y,DY)

IF (N .LE. 10) THEN
DO 40 J = 1,N
Y(J) = WK(J,4)+(WK(J,1)+2.0%WK(J, 2) +2.0*WK (J, 3) +H*DY (J)
)/6.0

&
40 CONTINUE

ELSE

Y(1; N) = WK(L,4; N)+(WK(1,1; N)+2.0*WK(L,2; N)+2.0%WK(L,3;
N) +H*DY (1; N)) /6.0

ENDIF

RETURN

END

Figure 5.2 (cont).



6. APPLICATIONS OF CSSL
BENCHMARKS AND CASE STUDIES

6.1 Introduction

In this chapter we shall consider some applications of CSSL-IV on the
supercomputer Cyber 205.. These applications will also serve as benchmarks for the
purpose of comparison of timings of vectorized and non-vectorized versions of the
program on the Cyber 205 on the one hand and on scalar machines such as the Cyber
175 on the other hand. We have also studied some applications as case studies, in the
sense that a detailed investigation has been made of these applications, with the

applicability of CSSL-IV in mind.

As pointed out in chapter 5 on the vectorization of the integration routines, the
present vectorized version of CSSL-IV is most suitable for very large problems i.e., those
characterized by a large number of ODEs. Partial differential equations (PDEs)
particularly satisfy this requirement, for they can be naturally cast into a system of
ODEs using the method of lines (Kantorovich and Krylov [KANT58]). Other candidates
for the vectorized version of CSSL are two-point boundary value problems (BVPs)
involving large numbers of equations with number of boundary conditions nearly evenly

split at the two boundary points.

Consequently, in this chapter we have studied a few problems characterized by
PDEs and one two-point BVP defined by a system of seven ODEs with boundary

conditions nearly evenly divided at the two boundaries.

- 96 -



-97 -
At this point, a few remarks about the classification of second order PDE will not
be out of place.
6.2 Classification of Second Order PDEs

A second order quasi-linear PDE in the dependent variable « and independent

variables  and y is said to be linear iff it can be put in the form
Ay, +Buy, +Cuyy +Du, +Eu, +Fu +G =0, (6.2.1)

where A ,..G are functions of z and y and A4 24+B2+C?%5£0 on M, the domain of (z,y ).
Further if A ,B,..F are real constants, A?+B2+C?%0 and G = G (z,y) is 2 real
valued function, then the PDE (6.2.1) is said to be of

(2) par.abolic type iff B2 - 4AC = 0.
(b) elliptic type iff B2 - 44C < 0,
(¢) hyperbolic type iff B2 - 44C > 0,
Thus the heat diffusion equation
Uy = Uy = 0
is parabolic since B2 - 44C = 0.
The Laplace equation

ViU = uy, +u, =0

is elliptic since B2 — 44C = —4.



-98-

Finally, the wave equation

is hyperbolic since B2 - 44C = 4.

The parabolic and hyperbolic equations are usually initial value problems (IVP),
with the conditions prescribed at time ¢ = 0. On the other hand, elliptic equations are
usually boundary value problems (BVP), with the conditions prescribed on the

boundaries of region of interest.
We shall now examine the applicability of CSSL-IV to some of the classical PDEs.

6.3 Heat Diffusion Equation

The first benchmark concerns the heat diffusion equation in a thin metal bar of
length ! which is initially at a uniform temperature of 0 degrees Celesius. At time
t == 0, one end of the bar is heated to 100 degrees, the other end of the bar is kept
insulated. It is required to calculate the temperature distribution in the bar at any time
t. A similar problem was considered by Crosbie and Huntsinger [CROS84b] and solved
by using the continuous systems simulation languages ISIM on a microcomputer and

CSSL-IV on a mainframe computer.

The partial differential equation governing the heat diffusion equation is

aT 8T

E{- =K ax2 (6.3.1)

Here T is the temperature at a point in the bar at a distance z from the non-insulated

end at time ¢. & is the non-dimensional measure of heat diffusivity.



-99 -

The initial and boundary conditions are

T(z,00)=0 0<gz <I, (6.3.2)
T(0, t) = 100, %(z, t)=0 ¢ >o. (6.3.3)

Define a partition of the interval (0,/) spanning the length of bar by
g =i Az, i =0,12,. : (6.3.4)
where IV is the number of subintervals and

Az =1/N. (6.3.5)

9

]

Let the temperature at point z; be T;. Replacing T

by its finite difference

dz?

equivalent, equation (6.3.1) can be rewritten as

dT;

— = AT - 2T + T;), (6.3.5)
where

K
= 6.3.6
g (Az )2’ (6:5.6)

the discretization error in equation (6.3.5) being of order O (Az )2
Initial condition (6.3.2) becomes
T;(0) =0 (6.3.7)

and the boundary conditions (6.3.3) take the form



- 100 -

T'(t) = 100 (6.3.8)
and
TN = T _
2Az

or equivalently
Tny= Ty (6.3.9)

Note that we have chosen an extraneous point Zpy.; in order to satisfy the derivative
condition at the end z = [. We could have also chosen the backward difference

formula for the derivative at £ = [, but that would have given rise to error of O (Az).

The problem of the extraneous point is neatly resolved by considering an extra

equation in the set of equations (6.3.5) at #+ = /. Thus we have, at the end points

dT,
% = B(T; - 2T + 100) (6.3.10)
and
dT
—E;V— = f@Ty_ - 2Tx) (6.3.11)

upon making use of conditions (6.3.8) and (6.3.9). At other mesh-points
(¢ = 2,3,...N -1) equation (6.3.5) still holds.

Thus it can be seen that the PDE governing the heat diffusion in the bar is
replaced by a system of ODEs (6.3.5), (6.3.10) and (6.8.11), which is to be solved subject
to initial condition (6.3.7).



- 101 -

The CSSL-IV program listing for the Cyber 205 is given in Figure 6.1. It may be
noted that this problem is quite sensitive to the choice of step size of the time variable
t. A step size of 1/16 th of a second proved too large for the Runge-Kutta-Gill method
and resulted in a numerically unstable solution. Nevertheless, the timings recorded for
this method are quite instructive. The point is that a substantial segment of the
corresponding integration routine is vectorizable; therefore, it is not surprising to find
that the use of Runge-Kutta-Gill algorithm gave a mnearly 2 to 1 performance
improvement for the vectorized code in comparison with the scalar code on the Cyber

205.

On the other hand, even though the Adam Moulton’s method with automatic
step-size control yielded quite an accurate solution, from Table 6.1, it can be seen that
the improvement in the performance due to vectorization of code was not so impressive;
the reason being that most of the overhead in terms of execution time was spent in
adjusting the step-size to produce the acceptable results. The corresponding code in the

integration routine is not vectorizable.

It may be further seen that the increase in the size of the problem (effected by
increasing the size of NV, the number of mesh-points in discretization scheme) results in

relatively better performance for vector code than for scalar code.

6.4 Vibrations of a String

The second benchmark is concerned with the vibrations of an elastic string
stretched under uniform tension between two fixed points. The string is set vibrating

by imparting a velocity perpendicular to the string initially. The hyperbolic PDE

describing the motion is



- 102 -

PROGRAM HEAT CONDUCTION

O N T = = = = = = = e e e e e
1"t 1"
" THIS PROGRAM SIMULATES THE MODEL OF HEAT CONDUCTION IN A "
; BAR, ONE END OF WHICH IS KEPT AT A FIXED TEMPERATURE "
" AND THE OTHER END IS INSULATED. "
" INITIALLY, THE BAR IS KEPT AT A CONSTANT TEMPERATURE. "
7" 1"
o e 1
INITIAL

INTEGER N, J, ITIME, IT1, IT2
ARRAY  TE(100), TEIC(100), DTE (100)
CONSTANT TEO = 100.0, DXSQ = 0.1, ...
ALPHA = 20.0, TAUMAX = 1.0
CONSTANT N = 100 $ "NUMBER OF MESHPOINTS"
DOL19 J =1, N
TEIC(J) = 0.0
L19.. CONTINUE
BETA = ALPHA/DXSQ
ITIME = 16000000
CALL Q8WJTIME (ITIME)
CALL QS8RJTIME (,,IT1)
END ¢ "OF INITIAL"

DYNAMIC
CINTERVAL DTAU = 0.0625
DERIVATIVE BAR

DTE (N)

BETA* (2.0*TE (N-1) -2. 0*TE (N) )
DTE (1)

BETA* (TE (2) -2 . 0*TE (1) +TE0)

PROCEDURAL (DTE=TE)
DO L20 J = 2, N-1
DTE (J) = BETA* (TE (J+1) -2.0*TE (J) +TE (J-1))
L20.. CONTINUE
END $ "OF PROCEDURAL"

TE = INTEG(DTE, TEIC)
END $ "OF DERIVATIVE"

1"non

TERMT (T .GE. TAUMAX)

TE1 = TE (N/4)
TE2 = TE (N/2)
TE3 = TE (3*N/4)
TE4 = TE (N)

END & "OF DYNAMIC"

TERMINAL
CALL Q8RJTIME (,,IT2)
PRINT L21, IT1 - IT2
L21.. FORMAT (1X, "THE EXECUTION TIME = ", I8, 1X, "MICROSECONDS")
END $ "OF TERMINAL"

LI ] ]

END & "OF PROGRAM"

Figure 6.1: CSSL-IV program for heat conduction



- 103 -

TABLE 6.1

Illustrating the timings of heat conduction
simulation in seconds

Integration method Cyber 205
and number of dis_ Cyber 175
cretization points Scalar Semi-vec vectori-
version -torized ized
version version

Adam-Moulton's
variable step 1.999 1.665 1.485 3.125
method, n = 50

Runge~Kutta-Gill
method, n = 50 0.090 0.057 0.047 0.140

Adam-Moulton's
variable step 3.709 2.670 2.384 5.801
method, n = 100

Runge-Kutta-Gill
method, n = 100 0.096 0.064 0.052 0.150

TABLE 6.2

Illustrating the timings of string vibration
simulation in seconds

Cyber 205
Integration method Cyber 175
Scalar Semi-vec vectori-
version -torized ized
version version

Adam-Moulton's
variable step 3.450 2.518 2.377 5.391
method

Runge-Kutta-Gill
method 0.062 0.042 0.038 0.097




- 104 -

Py _ 2%
at? oz’

(6.4.1)

where y is the displacement at a distance z from the endpoint £ = 0 at time ¢ and ¢

is the so-called wave velocity defined by

o Tgl

Cco = -W- (6.4.2)

Here T is the tension in the string, ¢ is the acceleration due to gravity and ! and W

are respectively the length and weight of the string.

The initial and boundary conditions under which equation (6.4.1) is to be solved

are
y(z,0) =0, (6.4.3)
%(x, 0) = v,, (6.4.4)
y(0,t)=0, (6.4.5)
and
y(l,t)=o0. (6.4.6)

The last two equations imply that the two ends of the string are fixed throughout the

time of motion.

Equation (6.4.1) is again discretized along the length of the string by writing it as

d?y;

dt?

= K (441 - 29 + 9;_1), (6.4.7)



- 105 -

where

(6.4.8)

Using the boundary conditions (6.4.5) and (6.4.6), we have at the ends of the

string
d%y
— = K (y,-2y)), (6.4.9)
dt
d2y1v_
3 L = K (-2n_y + Uy o). (6.4.10)

where N is the number of subintervals of the interval (0, ). At other mesh-points

(¢ = 2,3,..IN-2) equation (6.4.7) still holds.

Initial conditions for equations (6.4.7), (6.4.9) and (6.4.10) are

y:(0) =0, (6.4.11)
dy;
—(0) = v,, (6.4.12)

for: =1,2,.N-1.
The CSSL-IV program for the problem is given in Figure 6.2.

Once again the Runge-Kutta~-Gill method did not produce a numerically stable
solution for moderate values of the step size of time . However, the method is quite
effective in reducing the timing by using the vector code as can be seen from Table 6.2.

For Adam-Moulton's method, which led to acceptable results, the use of vector code did



- 106 -

PROGRAM VIBRATION OF AN ELASTIC STRING

QO N T = = = = = = = = = = = e e e e e
" "
" THIS PROGRAM SIMULATES THE VIBRATION OF AN ELASTIC STRING "
. TIED BETWEEN TWO FIXED POINTS AND IS SET VIBRATING "
" BY IMPARTING A TRANSVERSE VELOCITY TO IT. "
" 1
e e e e e e e e e n
INITIAL

INTEGER J, ITIME, IT1, IT2, IT3
ARRAY Y (31), DY(31) D2Y (31) , Y0 (31) , DY0 (31)
CONSTANT TENS =

CONSTANT G = 32 2
CONSTANT L = 10.0
CONSTANT W = 0.8
CONSTANT TMAX = 1.0

NUSQ = TENS*G*L/W

DELX = 10.0/32.0
DXSQ = DELX*DELX
K = NUSQ/DXSQ

‘ CALL Q8WJTIME (ITIME)
CALL Q8RJTIME (,,IT1)
YO(1; 31) = 0.0
DYO (1; 31) = 2.0
END § "OF INITTIAL"
DYNAMIC
CINTERVAL DTAU = 0.0625
DERIVATIVE VIB
TT = T
PROCEDURAL (D2Y = Y)
D2Y (1) = K*(Y(2)-2.0%Y (1))
D2Y (31) = K* (-2.0*Y(31)+Y(30))
D2Y(2; 29) = K*(Y(3; 29)-2.0*Y(2; 29)+Y(1; 29))
END  $_"OF PROCEDURAL"
= INTEG(D2Y, DYO)
Y = INTEG (DY, YO)
END & "OF DERIVATIVE"
TERMT (T .GE. TMAX)

Y08 = Y(8)

Y16 = Y(16)
END & "OF DYNAMIC"
TERMINAL

CALL Q8RJTIME (,,IT2)
IT3 = IT1 - IT2
PRINT *, IT3
END $ "OF TERMINAL"
END & "OF PROGRAM"

Figure 6.2
CSSL-IV program for vibration of an elastic string



- 107 -

not reduce the timing to the same extent.
6.5 MHD Flow Through a Rectangular Duct

The flow of an electrically conducting fluid through a rectangular duct in the
presence of a magnetic fleld is one of the most important problems in the area of
magnetohydrodynamics (MHD). It finds its applications in MHD power generation,

dynamo theory ete.

In its simplest setting when the walls of the duct are insulating and the magnetic
field is perpendicular to two sides of the duct, the problem was solved analytically by

Sherecliff [SHER53]. He obtained the solution in terms of Fourier series.

From a practical point of view, a more useful case is that in which the boundaries
parallel to magnetic field are perfectly conducting as shown in Figure 6.3. For this
problem it is not possible to obtain the solution in terms of Fourier series. Grinberg
[GRING61], [GRING2], after exercising considerable mathematical ingenuity, was able to
reduce the problem to Fredholms integral equation of first kind which was not solved,
because of its complexity, until 1984, when it was numerically solved by Singh and

Agarwal [SING84]. We shall solve the same problem using CSSL-IV.

Equations of motion and Ohm'’s law for the problem at hand are

8B

ViV + Mo =1, (6.5.1)
v’B + M%—Z— =0, (6.5.2)

with the boundary conditions



v

~ 108 -

Y
A
1., CONDUCTING
*b
NON-CONDUCTING
La
4
0 X
Figure 6.3

Geometry of the model



- 109 -

V(tra,y)=0, b <y <ub, (6.5.3)
B(tta,y)=0, +b <y <nb, (6.5.4)
V(z,d2b)=0, —xa <z <wa, . (6.5.5)
g—f—(x,:hkb)=0, +a¢ <z <pa, (6.5.6)

Here V and B are the velocity and induced magnetic field at any point (z, y)
respectively. M is the Hartmann number, which is a measure of the strength of applied

magnetic field.

It may be noted that if M = 0, equations (6.5.1)-(6.5.6) simplify to the classical

torsion problem
2V = -1, (6.5.7)
with V vanishing on the boundaries.

Equation (6.5.7) is an elliptical differential equation. We shall be examining this

equation in detail later when we consider the applicability of CSSL to elliptical PDEs.
Reverting back to equations (6.5.1)-(6.5.6), we note that
V(z,y)=V(z,~y) and B(z,y)= B(z,-y)
Therefore

Z—yv(x ,0=0 (6.5.8)

and



0B

It can be further seen that

Viz,y)=V(-z,y) and B(z,y)=-B(-z,y).

Therefore

av

a—y(O, y)=0
and

B(O’y)=0

-110 -

(6.5.9)

(6.5.10)

(6.5.11)

These symmetry considerations show that we need to solve equations (6.5.1) and

(6.5.2) only in the quadrant 0<z <t a () 0Ly <#b. The new boundary conditions

are listed below again for the sake of convenience.

oV
oz

(0,y)=0, 0<y <u»bd

(6.5.12)

(6.5.13)

(6.5.14)

(6.5.15)



Viea,y)=0,
Bta,y)=0,
V(iz,2b)=0,
dB
a—y(.’b‘,’/ﬁb)—o,

Discretizing equations (6.5.1) and (6.5.2) in the y-direction, we obtain

d2v; dB;
+ M

- 111 -

1

dz? dz

d2B; dv;
+ M

+

h2"

1

dx? dz

Boundary conditions (6.5.12)-(6.5.19) become

aV;

—t=o,
B;(0) =0,

Vilka) =0,
Bi(sa) =0,

+

(Viea -2V + Vi) = -1,

12 (Bi+1-2B; + B;_;) = 0.

(6.5.16)

(6.5.17)

(6.5.18)

(6.5.19)

(6.5.20)

(6.5.21)

(6.5.22)

(6.5.23)

(6.5.24)

(6.5.25)



-112-

Vy(z) - Vo(z)
2h

=0,

By(z) - By(z) —
2h ’

Vnslz) =0,

Byyolz) - By(z)
2h

(6.5.26)

(6.5.27)

(6.5.28)

(6.5.29)

Here h is the mesh-size and N (= b /2h) is the number of sub-intervals of the interval

(0,2 b).

In view of conditions (6.5.27)-(6.5.30), we can rewrite equations (6.5.20) and

(6.5.21) as
d::;l + Mchl + %(2‘/2 -2V,) =-1,
ddzai1 * Mdczl + hlz (2B, - 2B,) = 0.
d:!:;N * Mdf:::v + hlz (=2Vy + Vo) =1,
d®By 44

1
5+ 5By - 2By.) =0,

(6.5.30)

(6.5.31)

(6.5.32)

(6.5.33)



- 113 -

a?v,  dB; 1 .

=t M—— + 3 (Vier -2V + Vi) =-1, i =23,.N-1, (6.5.34)
a*B; 4V, g .

de + M d:z; + h2 (Bi+1 - 2B' + Bi—].) - 0, ? =2,3,...N, (6.5.35)

The remaining boundary conditions are

Vi 0)=0, i=12,.N, (6.5.36)
dz

B;(0)=0, i =12,.N+1, (6.5.37)

Viba)=0, i=12,..N, (6.5.38)

Bi(ta)=0, i =12,.N+1. (6.5.39)

Thus we have a set of (2N + 1) ODEs in place of two PDEs. Further if we
reduce the system of ODEs represented by equations (6.5.30)-(6.5.35) to a system of first
order ODEs, we shall have (4N +2) first order ODEs with (2N + 1) boundary
conditions at either end z = 0 or £ =% a. Note that, we do not have a system of

IVPs as we do not have all (4N + 2) initial conditions.

In order to solve this difficult BVP using CSSL, we shall have to convert the BVP
into a series of IVPs. Fortunately, the system (6.5.30)-(6.5.35) is a linear system, so we
do not need an iterative scheme. We can simply use the principle of superimposition.

For notational convenience let us write



-114 -

v = (V; | B;), (6.5.40)
where ¢ runs though appropriate range of integers.

By the principle of superimposition

2N +1
v =Vp + Z ijhj. (6.5.41)
i=1

Here v, denotes the particular solution and Vi, denotes the jth homogeneous solution.

The particular solution v, is obtained by solving equations (6.5.30)-(6.5.35) with

the initial conditions

” dv; dB;

The homogeneous solution Vi, for any j is obtained by solving equations (6.5.30)-

(6.5.85) with the right hand side set to zero. The boundary conditions are same as
(6.5.42) except that

v;(0) =1 (6.5.43)
for the jth homogeneous solution.

In this way, we shall obtain 2N + 1 independent homogeneous solutions and one
particular solution. The 2N + 1 constants ¢; can now be determined by using the
terminal conditions (6.5.38) and (6.5.39). It is easy to verify that these constants simply

dB-
give the missing initial conditions, i.e., the values of V; and (l, at z = 0.
z




-115-

A CSSL-IV program on the Cyber 205 is given in Figure 6.4. For solving the
system of linear equations a call was made to the IMSL subroutine LEQT1F which uses
Gauss’ elimination method by partial pivoting technique. Only the Runge-Kutta-Gill
method was used in this case. In successive runs M was increased. We were able to get
reliable results up to M = 20, the same value upto which results are available in the
literature. Beyond M = 20 there were errors which would not allow the boundary
conditions (6.5.38) and (6.5.39) to be satisfied accurately. With the aim of locating the
sources of these errors, h, the mesh-size was decreased with the expectation that it
might improve the accuracy of the result. The result was most unexpected. Rather
than matching the boundary conditions at terminal point, there resulted arithmetic
overflow!! This occured for the particular solution and for some of the homogeneous

solutions at some value of the independent variable.

It is a cardinal principle in numerical solution of any problem characterizing a
dynamical system that in the discretization process if the step size is decreased it must
result into improvement of accuracy. Here we find that reducing the step-size leads to
worsening of the results. We have made an investigation into this curious happening in

the next section for the case M = 0.

In Figures 6.5, 6.6, 6.7 and 6.8 equal velocity lines have been depicted for M = 0,
5, 10 and 20 respectively. It is clear from these figures that the formation of boundary
layer takes place near the boundaries perpendicular to the magnetic field. In Figures
6.9, 6.10 and 6.11 current lines (equal magnetic lines) are drawn for M = 5, 10 and 20
respecitvely. Current lines, it may be noted from Figures 6.9, 6.10 and 6.11, also exhibit
the boundary layer behavior. But a quick glance at Figure 6.11 reveals that there are

some problems in getting accurate solution for large values of M.



- 116 -

PROGRAM - MHD EFLOW THROUGH A RECTANGULAR DUCT

GO N T = = = = = = = = = = o e e e
"

" THIS PROGRAM SIMULATES THE MHD FLOW OF A VISCOUS

; ELECTRICALLY CONDUCTING FLUID THROUGH A RECTANGULAR DUCT

" IN THE PRESENCE OF A MAGNETIC FIELD.

; THE BOUNDARIES PERPENDICULAR TO THE MAGNETIC FIELD ARE

" INSULATED AND THOSE PARALLEL ARE PERFECTLY CONDUCTING.

"

1 e e e e e e e e e e e e e e e e e e e e e e e e
INITIAL

INTEGER IOPT, I, ISOL, IER

ARRAY VO (10), DVO(10), V(10), DV(10), D2V (10)
ARRAY BO (11), DBO(11), B(11l), DB(11), D2B(11)
ARRAY C(21, 21), D(21), WK(21)

CONSTANT A = 1.0, B = 1.0

CONSTANT M = 20.0

BETA = 1.0/(0.05%B) **2

ISOL = 0

RHS = -1.0

DO L1l I =1, 10
VO(I) = 0.0
DVO(I) = 0.0
BO(I) = 0.0

L10.. CONTINUE
END § "OF INITIAL"
DYNAMIC
CINTERVAL CI = 0.05
DERIVATIVE ONE
VARIABLE X = 0.0
PROCEDURAL (D2V, D2B = V, B, DV, DB)
D2V (1) = RHS - M*DB(1l) - 2.0*BETA*(V(2) - V(1))
D2B(1) = - M*DV(1) - 2.0*BETA*(B(2) - B(1))
DO L20 I = 2,
D2V(I) = RHS-M#*DB(I)-BETA* (V(I+L1)-2.0*V (I)+V(I-1))
D2B(I) = -M*DV(I)-BETA* (B(I+1)~-2.0*B(I)+B(I~1))
L20.. CONTINUE
D2V (10) = RHS - M*DB(9) - BETA* (~2.0*V(10) + V(9))
D2B(10) = - M*DB(9) - BETA*(B(10) - 2.0*B(10) + B(9))
. D2B(11) = - 2.0*BETA* (-B(10) + B(9))
END & "OF PROCEDURAL"

DV = INTEG(D2V, DVO0)
V = INTEG(DV, V0)
DB = INTEG(D2B, DBO)
B = INTEG(DB, BO)

END $ "OF DERIVATIVE"

Figure 6.4
CSSL-1IV program of MHD flow through a rectangular duct



- 117 -

TERMT (X .GE. 0.5%*A)

Vi = V(1)
V2 = V(2)
V3 = V(3)
V4 = V(4)
V5 = V(5)
V6 = V(6)
V7 = v (7)
V8 = v(8)
V9 = V(9)
V10 = V(10)
Bl = B(1)
B2 = B(2)
B3 = B(3)
B4 = B(4)
B5 = B(5)
B6 = B(6)
B7 = B(7)
BS = B(8)
B9 = B(9)
B10 = B(10)
Bll = B(11)
END § "OF DYNAMIC"
TERMINAL

IF (ISOL .GT. 21) GOTO LS50
IF (ISOL .GT. 0) GOTO L27
RHS = 0.0
DO L25 I =1, 10
D(I) = -V (I)
L.25.. CONTINUE
DO 126 I =1, 11
D(I+10) = -DB(I)
L25.. CONTINUE
GOTO L31
L27.. CONTINUE
IF (ISOL .GT. 10) GOTO L29
DO L28 I =1, 10
C(I, ISOL) = V(I)
L28.. CONTINUE
GOTO 131
L.29.. CONTINUE
DO L30 I = 1, 11
C(I+10,ISOL) = DB(I)
L30.. CONTINUE

ISOL = ISOL + 1

IF (ISOL .GT. 21) GOTO L40
IF (ISOL .EQ. 1) GOTO L35

Figure 6.4 (cont.)



- 118 -

DO L35 I = 1,10
VO (I) = 0.0
DBO (i) = 0.0

L35.. CONTINUE

DBO (11) = 0.0

IF (ISOL .GT. 10) GOTO L4l

VO (ISOL) = 1.0

GOTO L42

L4l.. CONTINUE

DBO (ISOL) = 1.0

L.42.. CONTINUE

1.40.. CONTINUE

CALL LEQTIF(C, 1, 21, 21, D, 0, WK, IER)

RHS = -1.0
DOIL45 I = 1, 10
VO (I) = D(I)

DBO (I) = D(I+10)
L45.. CONTINUE
DBO (11) = D(21)
GOTO .10
L50.. CONTINUE
END & "OF TERMINAL'

" 1"

END & "OF PROGRAM"

Figure 6.4 (cont.)



10

- 119 -

Figure 6.5 Equal velocity lines for

a

10

b=1,and M = 0.



- 120 -

Figure 6.6 Equal velocity lines for a=b =1 and M = 5.



- 121 -

10
ﬁ'nnnn a 1
] 0.0180 ]
0.0270
8

et 0 , 036 0

ane®
00° 0

0

Figure 6.7 Equal

velocity lines for a

b=1and M= 10.

10



10 - Y T T T v
0.0060 W 4
0.0060 . }
8r 0.0120 'HEOT
0.0180 \ 1
et °
0,00
D
c
-
214
>
4F
=
2
o
o
b33
[ é 4 ) 8

- 122 -

Figure 6.8 Equal velocity lines for a =b = 1 and M = 20.

10



- 123 -

Figure 6.9 Equal magnetic field lines for a = b = 1 and

M = 5.



- 124 -

10

-0.008

Figure 6.10 Equal magnetic field lines for a = b = 1 and

10

10.






- 126 -

6.6 Why CSSL is not Suitable for Elliptical PDE?

We shall answer the question of why CSSL is not best for an elliptical PDE by

delving deeper into the analytical solution of the discretized system of ODEs. For sake

of simplicity, we shall take the case M =0, for this will illuminate the essential

features of the solution without generating complications arising due to the interaction

of velocity aﬁd the magnetic field.

Thus setting M = 0 in equations (6.5.30) to (6.5.39) we obtain the following

system of ODEs

= -1,
dz? h*
d2v. Vi1 =2V, 4+ V. _

{ t+1 ! i-1 =_1’ 3 == 2,3,..N,
dz? h?
d*Vy  2Vy - Vy,
= -1.

dz? h?

The boundary conditions on V are

il 0 0

W( )'_' ’
and

Vilka)=0.

(6.6.1)

(6.6.2)

(6.6.3)

(6.6.4)

(6.6.5)

Since, using CSSL, we shall be converting a BVP (6.6.1)-(6.6.5) into a series of

IVPs, we shall need some initial conditions on V; at z = 0.



- 127 -

Let

Vi (0) = u;.

Introducing the Laplace transform
o0

v(s)= e V(z)dz,
0

we take Laplace transform of equations (6.6.1)-(6.6.3) to obtain

1 1
82'01 + 'ﬁ-(2’02 - 2’01) = - : + % 10y
2 1 1 ;
s*vy + 72-(”:41 =20 + 0)- = + Yo, 1=2,.N-1

1 1
suy + 7;2—(—2% + oy) =~ < T wo

or in matrix notation, one can write

Av = b,
where

a 20 00
1 ol 00

A= |01 « oo},
000 1 a
8|
Vg

VvV =

UN

(6.6.6)

(6.6.7)

(6.6.8)

(6.6.9)

(6.6.10)

(6.6.11)

(6.6.12)



- 128 -

and

b = h? : . (6.6.13)

In equation (6.6.12) « is given by

a=s2h?-2. (6.6.14)

Equation (6.6.11) will be solved using Cramer’s rule which requires the calculation

of det(A ). For calculation of det(A ), let us introduce

a 10 00
1 al 00
6, = [0 1 « 00| (6.6.15)
000 1«
8, being a determinant of order n.
In terms of 6, , det(A4 ) can be written as

det(A ) = OZ(SN_]_ - 25N—2' (6.616)
Hence it suffices to calculate §, to find det(4 ).
Expanding 6, in terms of entries of first row, we get

5n = Oz5n_1 - 511—2' (6.6.17)



-129 -

Thus §, satisfies the recurrence relation

§, — b,y + 6,5 =0. (6.6.18)

Also it may be noted that
6, =o0o and 8 =o?-1. (6.6.19)
One can also think of equation (6.6.18) as a difference equation. Setting 6§, = \",
we obtain the following auxiliary equation
NN+ 1=0, (6.6.20)
which admits the solution

p(a+ Va?-4) if o?>4 }

Ny o = 6.6.21
27 y(a+i Va-0o?) if oP<4 ( )
The general solution of equation (6.6.18) can now be written as
5n el 01)\1" + CQ)\Zn. (6.6.22)
Using the conditions (6.6.20) we obtain
Cl>‘l + C2>\2 = . (6.6.23)
CAE+ C g =0a?-1. (6.6.24)

which can be solved to give



- 130 -

_la+vVat-4

“1= 2 \/a2—4 ’

(6.6.25)

and

Co=-5—"F57 (6.6.26)

if o® > 4. For o? < 4, appropriate changes must be made in equations (6.6.25) and

(6.6.26).

Substituting the values of C; and C, from equations (6.6.25) and (6.6.26) in

equation (6.6.22), we obtain

+1 +1

1 a+Val-4 ! a-Vao?-4 " .o 0
5,,:\/2 5 -l ifa* > 4

a‘ -4

and
+1 +1

5. — 1 [a+iv4—a2]n _[a—iv4—a2]n }
" iV4-a? 2 2

if o < 4 (6.6.27)

Equation (6.6.27) can be simplified to

__ sh(n+1)¢ y — Q. e 2
6 =7 where chf = 5 if >4 6:628)
A mil_)ﬂ_ where cost = —; if o?<4 ‘ N
siné 2

Substituting for §, in equation (6.6.16), we obtain



-131-

= 2¢chN§ if o> 4
det(4 ) .

= 2cosN¢ if o? < 4 (6.6.29)

In first case when o? > 4, clearly det(4 ) has no zeros, but in the second case
a? < 4, det(4 ) has infinitely many zeros. The corresponding values of s can be

obtained by using equations (6.6.15) and (6.6.29). From equation (6.6.29), we have

det(A) =0

= T, m =1,2,3... (6.6.30)

Since cosf = %, we have from equation (6.6.16)

§2h% — 2 = 92¢0sf

which gives

§ = %cos%. (6.6.31)
Hence we can write
N 2 2
det(A)= T |s - 71-0050,,, s + zcosﬂm (6.6.32)
m=1

where



- 132 -

0 — (2m -1)r

m SN (6.6.33)

Using Cramer’s rule, now the solution of equation (6.6.11) can be written as

_ det(A,- )

v = To(d) (6.6.34)

where det(4; ) is obtained by replacing ¢ th column of det(4 ) by entries of vector b.

Since & occurs in each column of det(4 ), replacing any column of det(A )by
entries of vector b will reduce the degree of polynomial representing det(A;) by at least

“two for every 7. Of course, corresponding to the term —l’—, we shall be getting another

polynomial of degree at least two less than that of det(4 ).

Hence when v; is resolved into partial fractions, we shall get the form

d:

b 10 N Cim m

N
’U,"-'—"T'*' E_——‘i' E

5 (6.6.35)
m=lg —Icos()m m=l1g +7cos 0.,

where b;,¢;, and d,, are appropriate constants.

Taking the inverse Laplace transform of equation (6.6.35), we obtain

N 2z cosf,, ] N 2z cosf,,
Vi(z) = b;o + Y} cimexp ——h-—) + 3 dip exp — (6.6.36)
m =] m=1

From equation (6.6.36) it is clear that using a marching technique, we shall be
getting exponentially growing solutions. Since the exponent factor is proportional to

1/k, reducing the value of &, in fact, leads to larger exponential growths.

&l
Y

PSSyt SR



- 133 -

It may be noted that for parabolic and hyperbolic equations we shall not get the
exponentially growing part of the solution. Whereas for hyperbolic equations the two
solutions in equation (6.6.36) will be oscillatory in nature, for parabolic equations there
will be only exponentially decaying term in the solution. In either case, there will be no

problems of machine overflow in obtaining the solution by using CSSL.

On the other hand, by convertflng the BVP characterized by elliptical PDE to a
system of IVPs, which is the standard technique in the usage of CSSL, one has to
reckon with exponentially growing solutions. Some amount of discretion is required in
choosing the value of A. Large A may result into inaccurate solutions, whereas small

values of A may cause machine overflow.

If the choice is restricted to shooting methods, which is indeed the case while using
CSSL, one possible solution to the problem of avoiding overflow is to use multiple
shooting methods. In these methods, the interval of 'interest, namely (O @) is further
divided into sub-intervals and a shooting technique is employed in each sub-interval.
Since the size of interval in which a single integration is performed is reduced, there is a
reduction in the exponential growth of the solution also. However, now more missing
conditions have to be determined, for example, at the end-points of sub-intervals also.
Thus, to illustrate, for the case M = 0, if the interval (0% a ) is divided into two sub-
intervals, rather than determining N +1 missing conditions, now 3N 43 missing

conditions will have to be found, effectively tripling the size of the problem.

Using multiple shooting techniques it might have been possible to solve the
original problem in MHD for values of M greater than 20. However, this has not been

attempted in the present chapter.

In Tables 6.3 and 6.4, particular solutions have been given for various values of z

and for various values of A = 0.05 and 0.025 réspectively. It is clear that halving the



<05
010
13
+20
+ 25
«30
«35
'40
45

«S0

« 05
.10
15
+20
25
+ 30
3G
+40
'45
+30

ui

~,12500000E~02
-.50000000E-02
-.11250000E-01
-.20000000E-01
~,31250000E~01
~144999991E-Q1
~161247555E~01
-, 79819421E~01
~.94209415E-01
" 5B83264652E~01

153

—.12500000E~02
~+50000000E-02
-+11250000E-01
—.20000000E~01
-+31250000E-01
=+ 45000000E~01
-, 61249949E-01

u3

—+12500000E-02
=+50000000E~02
=+11250000E-01
~+20000000E-01
~+31249926E-01
—+44987099E-01
-+ 60524601E-01
~+ 61TG79G2E-01

+242F46313E+00

+ 5541591 3E+01

u3

=+12500000E~-02
—+50000000E-02
~¢11250000E-01
=+20000000E-01
=+31250000E-01
~¢44997641E-01
~+T4475768E-01

= 797746870E-01

«17960418E+00
«17045047E+03

+30170943E+01
«11050424E+04
«25481247E+06

Table 6.3

us

~+12500000E-02
=+50000000E~-02
~+11250000E-01
-19998825E-01
=+¢31133448E-01
-+41180057E-01
«13409282E-01 |

99971224E+00
+12763584E+02
«13420896E+03

Table 6.4

ugs

—+12500000E-02
~+J0000000E-02
—+11250000E-01
=+ 192929974E~01
—=+¢31110514E-01

«71133157E-01

+«392220228E+02

«78243349E+04
«11063984E+07
+«12364941E+09

uz

=+12500000E-02
~+50000000E-02
~¢11233362E-01
~+19171369E~01
=+151946084E-01
+15959520E+00
+20132563E+01
«18372841E+02
«14894440E+03
+11447889E+04

uz

—=+12500000E-02
~+50000000E-02
~+112446775E-01
=+153892514E-01

»13852583E+01
+21764247E103
+22886320E+05

ue

=+12500000E~02
~+480920278E-02
-:74348958E-02

+17278254E~-01

+24628578E+00:

+17955286E101
+115815462E+02
+72383022E+02
+44971883E+03
+28007459E+04

ue

=+12500000E~-02

~«47928422E-02
«39898801E~01
«45682103E+01
«28619723E+03
+15285385E+05.
+75846130E+06

+12127920E+07
«13789606E109
«89245369E1+10

+36261633E+00
+17000424E+10
+78876675E+11

- €T -



- 135 -

value of 2 nearly doubles the exponential growth of the solution.
6.7 Squeezing of Fluid Between Parallel Plates

In this section we will consider the application of CSSL to a boundary value
problem. Unsteady flow of fluids finds applications in many diverse areas such as
engineering, medicine etc. The generalized Navier-Stokes equations characterizing the
unsteady flow, it may be mentioned, are extremely difficult to solve and only a few
exact solutions exist. However, wunder certain restrictions, using similarity
transformations, it is possible to reduce the PDEs governing the fluid flow into a system

of ODEs which can be solved using a CSSL.

Amongst the various classes of unsteady fluid flow, the problems of squeezing of
fluid from a tube or between two parallel plates are particularly interesting and
important. Uchida and Aoki [UCHI77] have modelled the flow of blood from the heart
by a semi-infinite circular pipe with one end closed. They calculated the flow produced

by a single contraction or expansion of the wall carrying the blood.

The problem of unsteady squeezing of a viscous fluid between two parallel plates,
on the other hand, is encountered frequently in the unsteady loading of mechanical
parts, such as, thrust bearings and squeeze films. In the earliest model describing the
flow, Moore [MOORG65] ignored the inertial effects. The Reynolds equation deseribing
his model is

%[h?*—g—z—] + —a—[lﬂ@] — 19490 (6.7.1)

which admits the solution



- 136 -

—_12u dh )
p=-"7% g X@:¥) + 1o (6.7.2)
v2x = -1, x = 0 on the boundary (6.7.3)

Here h (¢) is the distance between the plates, p is the pressure and p is the coefficient of

viscosity, p, denotes the pressure at the edges of the plate.

Solution of equation (6.7.3) using CSSL for a rectangular region and the difficulties

encountered in obtaining the solution are discussed in detail in the previous section.

As pointed out by Wang [WANG76], the Reynolds equation is quite inadequate for
higher squeeze rates, because in this case the inertial effects represented by non-linear
terms dominate. Wang [WANG76] and Uchida et al. [UCHI77] also showed that the full
Navier-Stokes equations admit the similarity solutions for the problems considered by
them if the boundary motion behaves as (1 - at)? If o is positive, contraction takes

place, while if « is negative, expansion occurs.

By using a similarity transformation, the Navier Stokes equations are reduced to
ODEs embedding a ’squeezing parameter’ S, which is proportional to «. Wang
[WANG?76], by numerically integrating ODEs demonstrated that the solution for large
| S| is su't;sta.ntially different from that for small |S |, which is obtained by using

Reynold’s equation (6.7.1).

Wang and Watson [WANG79] extended the investigation of Wang [WANG76] to
the case of squeezing of fluid between two elliptical plates. For small values of S,
Reynolds [REYN1886] obtained the solution using equation (6.7.3). The governing
equations for large | S | are however much more complicated, and it required a new
homotopy method developed by Watson [WATS79] to perform_ the numerical

integration. The homotopy algorithm is globally convergent and does not require a



- 137 -

good initial approximation. It can also 'dig out’ unexpected solutions, as for example,
the dual solution for small negative S occurring for squeezing of fluid between elliptical
plates. However, the method is not without flaws. One of the major considerations is
the cost factor: the method is quite expensive. Another limitation is the restriction on
the value of S. Wang and Watson were able to use their method only for values of S

up to 20. Beyond this value, they had to resort to imbedding technique.

Aziz and Na [AZIZ81] proposed a new continuation technique by which they were
able to obtain the solution of the aforementioned problem for a wide range of
S (0.5 < 8 < 25) non-iteratively and inexpensively. Their method is particularly
attractive as it generates the data systematically for a wide range of parameters
characterizing the problem. However, the method is apparently guaranteed to work
only if there is a unique solution of the problem, which is indeed the case, when S is
positive. For negative S, the method may generate only one solution when multiple
solutions exist and, worse still, may generate a ”solution” when, in fact, no solution

exists.

What one, therefore, requires is a method which can find the multiple solutions
and does so inexpensively. Since CSSL, as pointed out earlier, is heavily biased towards
shooting methods, we have used Newton’s method developed by Roberts and Shipman
[ROBE71] for solving the difficult non-linear two-point boundary value problem.
Newton’s method eliminates the guess-work to a large extent, though it must be
admitted that some idea about an initial guess is necessary. Further, the quadratic
convergence of the method ensures that the solution, if it exists, will be obtained

- rapidly.

It is true, that in Newton’s method, the size of the problem grows considerably

with the number of unknown initial conditions. Thus for the problem under



- 138 -

consideration, the seventh order system of ODEs is transformed to a system of twenty
eight ODEs. This is where one can have an advantage in having a CSSL on a vector
computer. Using vectorized integration routines, the system of equations can be solved
in rapid succession. This, combined with quadratic convergence of Newton’s method,
admirably produces the required solution in a surprisingly short amount of time. The
time saved in producing a solution for a single set of physical parameters can be used in

tracking all possible solutions for other sets of parameters.

Thus, using CSSL-IV on the Cyber 205, numerous other solutions for negative S
have been generated, which have not been reported in the literature so far. Also, we
have tried to provide a possible explanation for the multiplicity of solutions, using the
method of weighted residuals. Finally, an analytical solution is developed for large

negative S using a matched asymptotic expansion technique.
6.7.1 Formulation

Consider the unsteady flow of a viscous fluid between two elliptical plates situated

at z == +h(t), 22 + By? = D2/4 where
h(t)=av1-at (6.7.4)

and a, f and D are given non-negative constants and ¢ is the time. It is assumed that
D >> a, so that edge-effects can be neglected. The geometry of the problem is
depicted in Figure 6.12.

For unsteady flow of incompressible viscous fluid, Navier-Stokes equations are

U+, + vy, + wu, =-p, [p+ (v, + Uy + U



- 139 -

—

- o
' N

et v

7 >

: A

Figure 6.12
Geometry of the model



- 140 -

v+ vy + vy +wy, =-p, [p+ (v, + vy + vy, (6.7.5)

Wy + UWy + va + ww, == "pz/p + V(wx:c + wyy + wzz)
and the equation of continuity is
U, +v, +w, =0 (6.7.6)

In equations (6.7.5) and (6.7.6), (u,v,w) represents velocity at a point, p, v and p
denote respectively the density, kinematic viscosity and pressure. Finally, subscripts are

used to denote the partial derivatives.

Using the similarity transformation variable

z

= — 6.7.7
K V1-at ( )
and the following forms for velocity and pressure
. oz , _ oy
ao
= = + 6.7.9
V=Tt (6.7:9)
2 2) 2.2
p=P(t)_Kpu;x(:v +ﬂ§/ __paia
8a*(1 — at) 8(1 — at)
2 2
Yt e Yol +g)+ L E LD (67.10)
aa? 4

where the function P (¢) and constant J are to be determined by boundary conditions;

equations (6.7.5) reduce to the pair of ODEs



- 141 -

i

/" YK =S[2f’ +af" e f T —wf"(f +g )] (6.7.11)

1

g +K =S[2g' + ng" +rg ¢ -» g" (f +g¢ )] (6.7.12)

Here S is a "squeeze number” defined by

2
aa
§ = (6.7.13)
The boundary conditions of the probelm are
%, v = 0 on the boundaries (no slip condition) (6.7.14)
w = k(t) on the boundaries. (6.7.15)

Substituting for u, v, w and A(¢) from equations (6.7.8), (6.7.9) and (6.7.4)

respectively, we obtain
FTE)=0¢" (F)=0,/ () +g(1)=2,f (1) +g(-1)=-2  (6.7.16)

In view of the antisymmetry of the problem about z = 0, we need to consider the
solution of the problem only in the region 0 < # < 1. Consequently the boundary
conditions (6.7.16) modify to

f(0)=0,g(0)=0,/"(0)=0,¢"(0)=0 (6.7.17)
fT1)=0,¢"(1)=0, f (1) +g(1) = 2. (6.7.18)

The seven boundary conditions (6.7.17) and (6.7.18) determine K and six
constants of integration given by equations (6.7.11) and (6.7.12). In fact, we can match

the number of boundary conditions with the order of the system of ODEs by adding the



equation

K' =0 (6.7.19)
to the system.
6.7.2 Nume'rica.l Solution Using Newton’s Method

In the present sub-section we shall develop Newton’s method for solving the
system of equations (6.7.11), (6.7.12) and (6.7.19) subject to the boundary conditions
(6.7.17) and (6.7.18).

Firstly, we note that out of seven boundary conditions, four are given at n = 0,
and the remaining three boundary conditions are given at # = 1. Thus the present
problem is a two-point boundary value problem (BVP). There is a whole range of
techniques and methods devoted to solving BVPs numerically. The interested reader is
referred to the excellent monograph by Na [NA79|. Because of the manner in which

CSSLs are written, our choice is practically limited to Newton’s method.

Next, we realize that if the values of the missing initial conditions, namely,
7' (0),¢' (0) and K are known, the system of equations can be solved by 2 marching
technique. The values of the missing initial conditions must be so chosen that the

terminal conditions (6.7.18) are satisfied.

In the shooting method, one chooses some trial values of the initial conditions and
computes the amount by which the solution misses the boundary conditions at the
terminal point. The idea is to minimize this amount. The shooting methods in which
only one terminal condition needs to be satisfied are relatively easy to handle (see, for
example, the annotated example in chapter 3). However, if the number of terminal

conditions increases, the procedure of selecting the ’'right trajectory’ to hit the ’target’



- 143 -
becomes much more complicated. In the present case, we have to shoot in three
dimensional space and clearly the hit and miss strategy is ruled out.

To facilitate the ideas behind Newton’s method, let us consider the solution of the

vector equation
fr) =0 (20)
in N-dimensional space.

Let the desired solution of equation (20) be r = R. We start with a trial solution

r = ry, Where ry is assumed to be 'sufficiently close’ to R.

Expanding equation (20) by Taylor series around r = ry, we obtain

f(ro) -+ —g{-(ro) (r—1ry) + - - - higher order terms = 0, (6.7.21)

where % is the Jacobian matrix.

Now if we ignore the higher order terms in equation (6.7.21), we can obtain the

following approximation r; for R

-1
r; =71y + [%(ro)} f(ro) = (6.7.22)

This is precisely the idea behind Newton’s method. Kantorovich [ILANTG64] has done
extensive study of Newton’s method and he has demonstrated amongst other things that
when the method converges, it does so quadratically. Roughly speaking, it means that
the number of digits for which the result is accurate is doubled every time an
application is made of the method. Thus repeated application of scheme (6.7.22) will

result in tremendous acceleration of convergence near the root.



- 144 -

We shall now put above idea into practice for the problem at hand. Let
a =f"(0,b =¢ (0)and ¢ =K (6.7.23)

then, the functions f and g will depend on the parameters @, b and ¢ besides

depending on the variable . We can, therefore, write

=f(ma,b,c)g=g(ma,b,c) (6.7.24)

Boundary conditions (6.7.18) dictate

f’(l;a,b,c)==0

g (13a,b,c)=0 (6.7.25)
fFLa,b,c)+g(5a,b,c)=2.

Solution of equations (6.7.25) yields the required values of a, 6 and ¢. In the
iterating scheme presented below, let the values of a, b and ¢ at ¢th iteration be
a;, b; and c; respectively. Expanding equation (6.7.25) at ( + 1)th iteration about

(a;, b;, ¢i) by Taylor series, we get

PP ey by ey + o (5 aqy by ¢ )40~ a) +
+ F8 (L e, by )by = bs) + £ (1 ay by e )eigr— i)+ - = 0,(6.7.26)

g 15 a5 b;, )+ gal (15 a1, by, ¢ )(@541 ~ @;) +

+ 0 (L 0, by e)(biga = b)) + 0. (15 @i, by, ei)(ean = ) + -+ = 0,(6.7.27)

S (L5 a5, b5y ¢0)+ 9(1; a5, by ¢;) + [ (35 05, b5, ;) +
+ 9. (15 a5 b5 ¢ )01 — a;) + [ (15 a5, by, ¢) + g (15 a5, b; 4 ;)] (B g — b;) +
2.

+ [fe (L5 aiy b5 ¢) + g0 (15 a5, byy ¢)(ciqp =€) + - - - = 2. (6.7.28)



- 145 -
In equations (6.7.26)-(6.7.28), subscripts a, b and c¢ stand for partial derivatives,
whereas the subsecript ¢ denotes the number of iteration.

Ignoring second order terms in equations (6.7.26)-(6.7.28), we obtain the following

system of linear equations

! ' /
fa, fb/ fc’ Gl — G fl'
9a [/} /P bi+1'—bi =- g
fa+ga fb+gb fc+gc Cit1— G f+g—2

where for the sake of brevity we have abbreviated the value of a function at n = 1 at

the 7 th iteration by the corresponding symbol.

If the coefficient matrix in equation (6.7.29) is invertible, the solution for a, b and

¢ at next iteration is

a4 a; f’a f'b f’c _1[ ! ]
b | ={b|-]| ¢ 7 g . d (6.7.30)
€yl ¢ Jo+9, fo+a fo+g, \f +9¢-2)

Equation (6.7.30) embodies the iterative scheme needed to determine the values of
a, b and ¢. Unfortunately, in such a scheme, we need to know the values of partial

derivativesof f , ¢ and f' and ¢ with respect to @, b and ¢ at n = 1.

It is, of course, possible to use approximate values of partial derivatives as was
done in the annotated example of CSSL given in chapter 3. However, to ensure the

quadratic convergence, these values must be calculated accurately.



- 146 -

Differentiating equations (6.7.11) and (6.7.12) partially with respect to @, b and ¢,
we obtain the following additional systems of ODEs along with the corresponding

boundary conditions

System for f,, g,, K,

1t

+I{a =S[2fal +77fa” +flfa’ —sz”(fa +ga)"
~uf, ([ +9) (6.7.31)

"

9. +BK, = S[2¢ +ng." +¢ 9. -vg" (fo +9.)-
~vg, (f +9¢) (6.7.32)

K, =0 (6.7.33)

f4(0)=0,g,(0)=0, f, (0)=0, g, (0) =0,
f. (0 =0, g, (0) =0, K,(0)=0 (6.7.34)

System for f,, g5, I} ¢

1

+ Ky =S[2f) +afy" + 11y -wf "y +a)-
—uf" (f +9) (6.7.35)

f

1t

9 +BK, =S5[2¢, +ng," +9 ¢ -w" (fy +g)-
~vg, (f +9) (6.7.36)

K,' =0 (6.7.37)



- 147 -

fb(0)=0, gb(0)=0a fb’ (0)=::0’ gbl (0)=0a
fy' (0)=0,g," (0)=0, K, (0) =0 (6.7.38)

System for f ., g., K, :

11

+ K, =8f, +af " +1 1) -wf"(f. +9,)-
~ef. (f +9) (6.7.39)

PO -

fe

11

g, +PBK, =529, +ng." +9 g -vg"(f, +9.)-
—ug, (f +9) (6.7.40)

K, =0 (6.7.41)

fe(0)=0,¢.(0) =0, fc’ (0) =0, gc’ (0) =0,
f'©=0,4"(0)=0K,(0)=0 (6.7.42)

Thus, we see that the original seventh order system of ODEs representing a non-
linear two point BVP has been transformed to a twenty-eighth order system of ODEs,

which, however, represents a non-linear IVP, and, therefore, can be solved using CSSL.
The algorithm for obtaining the solution of the BVP can now be stated.

(1) Assume trial values of a,b and ¢ for the missing initial conditions
f" (0), ¢ (0)and K. Let us denote these approximate values of @, b and ¢ by ¢g by

and c respectively.

(2) Integrate the IVP represented by equations (6.7.11), (6.7.12), (6.7.17), (6.7.23),
(6.7.31)-(6.7.41) from n =0 to n = 1, getting the values of f, g, /' and ¢ and

their partial derivatives at n = 1.



- 148 -

(8) Substitute these values in equation (6.7.30) to get the next approximation

al, b]. and Cl.

(4) Repeat steps (1)-(8) until the values of a, b and ¢ agree within the specified

degree of accuracy.

A CS8L program on the Cyber 205 implementing above algorithm is given in

Figure 6.13.
6.7.3 Numerical Results And Discussion

The most interesting cases are the two-dimensional case (A= 0) and the axi-
symmetric case (f= 1). In the present chapter, we have limited ourselves to these two

cases only.

We note that if § = 0, equation (6.7.12) admits a trivial solution ¢ = O.
Similarly if f = 1, equations (6.7.11) and (6.7.12) are satisfied trivially by f =g.
However as Wang and Watson [WANG79] have pointed out that by considering
equations (6.7.11) and (6.7.12) for elliptical plates, non-trivial solutions also exist when
S < 0, though their computations were restricted to only small negative values of

S (05 < 8§ < 0).

We have performed some extensive computations which ranged over all negative
values of S. A number of new solutions were found, though, no new non-symmetric
solution could be found for § = 1. We shall be dividing the discussion of numerical

results obtained in two parts (a) § = 0 and (b) # = 1.



- 149 -

PROGRAM - SQUEEZING OF FLUID BETWEEN TWO ELLIPTICAL PLATES

" PURPOSE: TO DETERMINE THE RESISTANCE DUE TO SQUEEZING OF A "
" VISCOUS ELUID BETWEEN TWO ELLIPTICAL PLATES "

" REMARKS: THE PROGRAM SOLVES THE TWO POINT BOUNDARY VALUE "
" PROBLEM "
" EI'I +A=S * (z*EI +E'l +El**2/2 + 1"
1t - Ell * (E + G)/z 11"
" G''* + BETA * A =8 * (2*G' + G'' + G'**2/2 "
1"t - Gl LI ) (E + G) /2 "
" WITH THE BOUNDARY CONDITIONS "
" F(0) =0, G(0) =0, E''(0) =0, G''(0) = 0 "
L F'(l) =0, G'(1) =0, F(1) + G(1) = 2 "

" IF IOPT = 1, ITERATIONS TAKE PLACE AND MISSING "
" INITIAL CONDITIONS ARE DETERMINED. IOPT THEN "
" CAN BE SET TO TWO TO GET THE EXACT SOLUTION. "
" IF IOPT = 2, NO ITERATION TAKES PLACE, THIS "
" OPTION MUST BE USED ONLY WHEN EXACT MISSING "
" INITIAL CONDITIONS ARE KNOWN. "

INITIAL
: ARRAY V(28),DV(28),V0(28),C(3,3),D(3),WK(3)
INTEGER ITER, ITMAX, IOPT, IER

CONSTANT IOPT =1 $ "INPUT OPTION"
CONSTANT TOL = 1.0E-10 & "ACCURACY CRITERION OF CONV"
CONSTANT ITMAX = 20 § "MAXIMUM NO OF ITERATIONS"
CONSTANT DF0 = 1.0 $ "GUESSED VALUE OF E'(0)"
CONSTANT DGO = - 1.0 $ "GUESSED VALUE OF G' (0)"
CONSTANT A =1.0 $ “GUESSED VALUE OF A"
CONSTANT BETA = 0.25 § V"ECCENTRICTY OF PLATES"
CONSTANT S = 5.0 $ "SQUEEZING PARAMETER"
CONSTANT ETAMAX = 0.999999

" "
DF1 = DFO
DGl = DGO
B = A

" INITIALIZE THE ARRAY"
VO(1) = 0.0
V0(2) = DF1
VO(3) = 0.0
V0(4) = 0.0
V0 (5) = DGl
Vo (6) = 0.0
vo(7) =B
Vo(8) = 0.0

Figure 6.13
CSSL-IV program for squeezing of fluid between parallel plates



- 150 -

V0 (9)

=1.0

VO (10) = 0.0
Vo (11) = 0.0
Vo (12) = 0.0
Vo (13) = 0.0
Vo (14) = 0.0
VO (15) = 0.0
VO (16) = 0.0
Vo (17) = 0.0
Vo (18) = 0.0
Vo (19) = 1.0
V0 (20) = 0.0
vo(21) = 0.0
V0 (22) = 0.0
V0 (23) = 0.0
V0 (24) = 0.0
VO (25) = 0.0
V0 (26) = 0.0
V0 (27) = 0.0
Vo (28) = 1.0
INITIALIZE THE ITERATION COUNTER"
ITER = 0

L10.. CONTINUE
END $ "OF INITIAL"

DYNAMIC
CINTERVAL DELETA = 0.015625
DERIVATIVE ONE
VARIABLE ETA = 0.0
PROCEDURAL (DV=V)
DV(L) = V(2)

DV(2) = V(3

DV(3) = -V(7) + S*(2.0%V(2) + ETA*V(3) + ...
0.5%V(2) *V(2) - 0.5%V(3)* (V(1)+V (4)))

DV(4) = V(5)

DV(5) = V(6)

DV(6) = - BETA*V(7) + S*(2.0%*V(5)+ETA*V(6)+...
0.5%V (5) ¥V (5) -0.5*%V (6) * (V (1) +V (4) ) )

DV(7) = 0.0

DV(8) = V(9)

DV(9) = V(10)

DV(10) = - V(14) + S*(2.0%V(9)+ETA*V (10)+. ..
V(2) ¥V (9) -0.5%V(3) * (V(8) +V (11) ) -. . .
0.5%V (10) * (V (1) +V (4)))

DV (11) = V(12)

DV (12) = V(13)

DV(13) = - BETA*V(14) + S*(2.0%V(12)+ETA* ...
V(13) +V (5) *V (12) -0.5*V (6) * (V (8) + ...
V(11))-0.5%V(13) * (V (1) +V (4)))

DV(14) = 0.0

Figure 6.13 (cont.)



- 151 -

DV (15) = V(16)

DV (16) = V(17)

DV(17) = - V(21) + S*(2.0*V(16)+ETA*V (17) ..
+V (2) *V (16) =0.5*V (3) * (V (15) +V (18) . ..
) =0.5*V (17) * (V (1) +V (4)))

DV (18) = V(19

DV (19) = V(20)

DV(20) = - BETA*V(21) + S*(2.0*V(19)+ETA* ...
V (20) +V (2) ¥V (19) =0.5%V (6) * (V (15) ...
+V (18) ) ~0.5%V (20) * (V (1) +V (4) ))

DV(21) = 0.0

DV (22) = V(23)

DV (23) = V(24)

DV(24) = - V(28) + S*(2.0%V(23)+ETA*V (24) ...
+V (2) *V (23) -0.5*V (3) * (V (22) +V (25) . ..
) =0.5%V (24) * (V (1) +V (4)))

DV (25) = V(26)

DV (26) = V(27)

DV(27) = - BETA*V(28) + S*(2.0%V(26)+ETA* ..

V(27) +V (2) *V (26) -0.5*V (6) * (V (22)
+V (25) ) ~0. 5%V (27) * (V (1) +V (4) ))
DV(28) = 0.0
END § '"OF PROCEDURAL"
V = INTVC(DV, VO0)

END & "OF DERIVATIVE"
F = V(1)
DF = V(2)
D2F = V(3)
G = V(4)
DG = V(5)
D2G = V(6)

TERMT (ETA .GE. ETAMAX)
END & "OF DYNAMIC"
11"t 11}
TERMINAL
IF (IOPT .EQ. 2) GOTO L99
FGL = F + G
PRINT L75, ITER, DF, DG, FG1

L75.. FORMAT (1X,"ITER :",I3,3X,"F' :",F15.8,3X,"G' :",F15.8, ...

3X,"F+G : ",F15.8)
IF (IOPT .EQ. 0) GOTO L99
c(1, 1) = V(9)

12
8) + V(11)
16)
15
23

Q
-
Ly
T T T O 0 O O
Nll<<<<<<<<

) +

3

) + V{(25)
2

5

- V(@) - v@E

Figure 6.13 (cont.)



- 152 -

CALL LEQTIE(C, 1, 3, 3, D, 0, WK, IER)
IF (ABS(D(1)) .LT. TOL .AND. ABS(D(2)) .LT. TOL .AND.
ABS(D(3)) .LT. TOL) GOTO L97
1

IF (ITER .GT. ITMAX) GOTO L98
V0 (2) = V0(2) + D(1)
VO (5) = VO0(5) + D(2)
VO (7) = Vo (7) + D(3)

DEL = V0 (2)
DG1 = VO (5)
B = VO0(7)
GOTO L10

L97.. PRINT L77, DF1, DG1l, B

L77.. FORMAT (1X, "DEO =",G18.10, 3X, "DGO =",G18.10,3X,"A =",G18.10)
GOTO L99

L98.. PRINT L79 -

L79.. FORMAT (1X,"NO CONVERGENCE COULD BE ATTAINED.")

L99.. CONTINUE

END $ '"OF TERMINAL"

"OF PROGRAM"

Figure 6.13 (cont.)



- 163 -

(¢) Two dimensional case: f = 0.
We shall further divide this case into two sub-cases (i) ¢ = 0 and g 540.
(i) Case ¢ =0

In Figure 6.14, f' (0) has been plotted against S. It appears that for this case, a
unique solution exists for S§ > 0. When the solution curve was extented into the
domain S < 0, it was found that the curve could go only as far as S = -3.495. As S
was further varied, the curve turned back and rapidly advanced to infinity. This curve

has been designated by ’a’ in Figure 6.14.

On the other hand, a family of infinitely many solutions was found for large
negative S. These solutions are similar in nature. We have shown only two members

of the family. They have been designated by *b 1 and b, in Figure 6.14.

The curve b, approaches the value 6 asymptotically as § — —co. As S
increases from -60, f’ (0) decreases monotonically. The curve turns back at S =—
-9.705, then it turns back again at S = -11.817, finally dropping rapidly to — co as S is

further increased.

Similarly, the curve '8, approaches the value 4 asymptotically as § — — co. As
S increases from -60, f’ (0) decreases monotonically, attains its minimum value at S
== -26.49, then it starts rising. The curve turns back for the first time at S — -22.175,
it turns back for the second time at § = -25.083, finally rising rapidly to infinity as S

is further increased.

The analytical behavior of these solutions for.large negative S has been given in

section 6.7.5. ' ' -



30

20

10

£'(0)

—-10

- 154 -

=40 -30 -20 -10

Figure 6.14 Plot of £'(0) against S for B = 0.

O



- 155 -

It is worth noting that no solution seems to exist in the range
-9.705 < S < -3.495

for which ¢ = 0.

(#) Case g 540

Wang and Watson [WANG79] have reported that a dual solution exists in the
range -1.15 < § < 0. They have, however, omitted to look into the possibility of the
solution extending in the range S < -1.15. It appears that, using the homotopy
method, they were not able to go beyond S = -1.15, the reason being that at this value
of S, g becomes zero and the non-zero solution becomes identical with the usual
solution for which ¢ = O (see Figure 6.15). We have carried forward the investigation
for values of § < —-1.15 using CSSL. The initial values for f (n), g(n) were provided

by the approximate method discussed in the next section.

Once past the critical region of proximity of two solutions, the non-zero solution
was obtained by slowly varying the value of S. It was found that this particular type
of solution, marked by ’c¢’ in Figure 6.14, could be obtained only for § > -2.068. In
fact, as can be seen in Figure 6.14, the curve representing this solution turns back as S

= -2.068 and rapidly rises to infinity with increasing value of 3.

For large negative S, there seem to be multiple solutions. In Figure 6.14, curves
'd’ and ’e.’ representing two such solutions are shown. For both the solutions
f! (0)—14,¢ (0)— -4 as S — —co. Curve ’d’ falls monotonically as § is
increased from -30. It turns back at two values of §, first at S = -6.385 and then at S
= -6.451, after which, it descends sharply as S is further increased. Curve ‘e’ is
peculiar and different. It runs parallel to curve 'd’ for large negative S. However, it

turns first at S = -11.534, then for the second time at S = -13.420, but before turning



80 —

40 -

~ 156 -

"80 T
-2.5

2.0 -1.5 -1.0 -0.5

S

Figure 6.15 Plot of £'(0), g'(0) and K against S for
B=0 and g # 0. )




- 157 -

for second time, it starts rising at S = -13.0. After turning for second time, the curve
starts falling again at S = -13.1, which it continues to do till S = -12.4, at which
value, it starts rising again, this time for good. The curve turns for the third and last
time at S = -11.77, and then as S is further decreased, it approaches the curve b’

asymptotically.

For curves ’a,b,’, and 'b,’, clearly ¢ (0) = 0, however, for curves For this

reason, ¢ (0) has been plotted against S in Figure 6.16.
(b) Azi-Symmetric Case: f =1

We shall further divide this case into two sub-cases (i) f/ = g and (i) f £ ¢.
(i) Case [ = ¢

In Figure 6.17, f' (0) has been plotted against S. Again it appears that a unique
solution exists for S > 0. This time, though in contrast with the case f = 0, it was
possible to extent the solution curve into the entire domain § < 0. This curve has

been designated by ’a’ in Figure 6.17. It approaches the value 4 as § — —co.

Besides the solution corresponding to curve ’a’, a family of infinitely many other
solutions exist for large negative S as in the case § = 0. In Figure 6.17, another
member of the family, designated by 'b’ has been drawn. For this curve [’ (0)
approaches the value 2 asymptotically as S — — co. In Figure 6.17, starting with § =
-40, the curve ’b°’ falls monotonically as S increases. It turns back at § = -13.33 and

then starts dropping steadily as S is further decreased.



- 158 -

12 —

g' (0 -

-20 -16 -12 -8 -4

Figure 6.16 Plot of g'(0) against S for B = 0 and g # O.



- 159 -

£'(0)

-40 -30 =20 =10

Figure 6.17. Plot of £'(0) against § for B = 1.



- 160 -

(i1) Case [ ¢

As pointed out earlier, no additional solution, besides the one reported by Wang
and Watson [WANG79] was found using CSSL. In Figure 6.17, the curve for f' (0) has
been desigﬁated by 'c¢’. Further f' (0) and g' (0) have been plotted against S for this

solution in Figure 6.18.
6.7.4 An Approximate Analytical Solution

Normally we do not expect the 'unusual’ solutions such as ¢ £ 0 for # = 0 and
f 5% g for p = 1. However, these solutions have been found by Wang and Watson
[WANG79] using homotopy method and also by Newton’s method using CSSL. In the
present section, we have used the method of weighted residuals to obtain an
approximate analytical solution, which sheds light on the nature of solutions,

particularly for small negative values of S.

Equations (6.7.11) and (6.7.12) comprise a sixth order system of ODEs, but there
are seven boundary conditions (6.7.17) and (6.7.18). The parameter K , therefore, can be
thought of as an eigen value of the BVP. It is not very convenient to deal with the

eigen value X' when use is made of the technique of weighted residuals.

Eliminating K by differentiating equations (6.7.11) and (6.7.12), we obtain

i 1

f””—s[3flll+77f +%f//(fl +g/)—¥éf (f +g)]=0’ (6.7.43)

Hi

—S[3g" +779m +%gu (f/ +g')—%gm(f +!])]=0, (6.7.44)

Equations (6.7.43) and (6.7.44) constitute a system of eight first order differential
equations. As there are only seven boundary conditions, the additional boundary

condition is obtained by considering equations (6.7.11) and (6.7.12) at = 1. We



- 161 -

30 —

20 =] ,/‘/

1 0 ] /‘/’/ \

=20 T T 1T rrrrprrrr e T T T
-0.75 -0.70 -0.65 -0.60 -0.55 -0.30

S

Figure 6.18 Plot of £'(0) and g'(0) against S for
=1, f #¢g.



obtain

g ()y=p5" (. (6.7.45)

We shall now be solving the BVP given by equations (6.7.43) and (6.7.44) and
boundary conditions (6.7.17), (6.7.18) and (6.7.45) approximately, using an integral

approach, which is one of the many techniques classified as a weighted residual method.
Integrating equations (6.7.43) and (6.7.44) between # = 0 and 5 = 1, we have

U@ =-1" )+ 82" (0)+2r 0) =0, (6.7.46)

Hi

9 (V-g

"

(0) + S[2g' (0) +x¢' “(0)] =0, (6.7.47)

We now assume the following trial functions for f and ¢

f =% fine= Y an. (6.7.48)

i=13.. i=13..

One can obtain additional equations, if needed, by integrating equations (6.7.43)

and (6.7.44) over different intervals which need not be necessarily disjoint.

In order to extract a qualitative information from the approximate solution, we
shall keep the number of parameters in equation (6.7.49) to a minimum. By increasing
the number of parameters, no doubt, more accurate solutions can be obtained.
However, it may obscure the analysis and may suppress the revealing information that

we want to bring out. Thus let us choose

f=lm+ [+ [, (6.7.49)



- 163 -

g=g1n+ gsn° + g57°. (6.7.50)
which incidentally satisfies the boundary condition (6.7.17).

The quantities f 4, f 3, f 5 and ¢4, g3 and g5 can now be obtained by using the

boundary conditions (6.7.18) and (6.7.45)-and the equations (6.7.46) and (6.7.47).

We have
[1+3fa+5f5=0, (6.7.51)
g1t393+ 595 =0, (6.7.52)
i+ 7s+fs+g1+93+95=2, (6.7.53)
695 + 6095 = B(6f 5 + 60/ 5), (6.7.54)
60f 5+ S(2f  +xf 2)=0, (6.7.55)
60g5 + S (29, +%9s)=0. (6.7.56)

Solving equations (6.7.51)-(6.7.54) for f 3,f 5,03 and g5 in terms of f ; and ¢, we

obtain

2(5+4)
5(1+8)

8 5
sa+p) 1t e

fa= fa- (6.7.57)

2(1-+50) 84

_ : 50
98 = "5+p) I 7 B5(+h)

f 1 + m, (6.7.58)




- 164 -

_ 2548 24 3

Ts= 25(1+9) ot %51+h) ' 1+’ (6.7.59)
14258 248 _ 38

95 = 25048 7 T A LT T (6.7.60)

Substituting for fs and g5 from equations (6.7.59) and (6.7.60) in equations

(6.7.46) and (6.7.47), we finally arrive at the following pair of equations in fiand g,

9 12(254-8) 288 180

SRS Ly 53 (14+4) fat 55048 TS n (6.7.61)
2 12(14-250) 2880 1808

kg + 2+w g1+5s(1+ﬁ)f1 S(l-}-ﬁ),_o' (6.7.62)

Equations (6.7.61) and (6.7.62) represent two parabolas in the (f ;, ¢;) plane. The
intersection of these two parabolas gives the values of f 1 and g¢,;, which when
substituted in equations (6.7.57) -(6.7.60) yield the approximate solution (6.7.49) and
(6.7.50).

Note that if § = 0, equation (6.7.62) not only satisfies ¢, = 0, it also admits the

non-zero solution

6
=-4|1+ —=1. 6.7.63
=41+ ) (67,69
The two solutions intersect at S = -1.2, which is surprisingly close to the value §

== -1.15 obtained by Wang and Watson [WANG79|, considering the simple

approximation chosen by us.



- 165 -

Similaxlly it can be seen that equations (6.7.61) and (6.7.62) have three identical
solutions for f =1 and § = -0.676, which is fairly close to S = -0.706 found by Wang
and Watson [WANG79]. For the range -0.676<.5 <0, equations (6.7.61) and (6.7.62)
have non-trivial solutions f 5%£g¢ besides the trivial solution f =g, but for S <-0.676

only the trivial solution f =g can be found.

In Figures 6.19 and 6.20, a comparison is made of the 'unusual’ solutions, namely,
g 20 for f =0 and f 5% g for § =1 respectively with the corresponding solutions
obtained by approximate method described above. There seems to be a fairly good

agreement between the two solutions.
6.7.5 Matched Asymptotic Solution For Large Negative S

Even though the approximate method explains the existence of unusual solutions
for small negative S, it fails in predicting the solutions for large S. The main reason,
of course, being that at large values of S, boundary layers develop and, therefore, the
trial functions for / and g chosen in equations (6.7.49) and (6.7.50), being polynomials,
are poor choices. We shall now develop matched asymptotic solutions for large negative
S. We shall be restricting ourselves to the cases § = 0 and # = 1. Further only the
'usual’ cases (¢ = O when # =0 and f = ¢ when f§ == 1) will be considered. It may
be remarked that Skalak and Wang [SKAL79] have given correctly the matched
asymptotic solution for large positive S for these cases. However, as we shall show
presently in this section, they have incorrectly assumed the asymptotic solution in
[WANG76] for large negative S, the same as for large positive S. It is not surprising,
that Wang was not able to match his numerical results in [WANG76] with those
obtained by using the technique of matched asymptotic expansion and he ’omitted’ to

mention the results obtained by the latter technique.



2.8

2.4

2.0

1.6

1.2

0.8

0.4

- 166 -

s ™ -
-
-

\\ ‘f'

- -
- -
-
-

Figure 6.19 Comparison of exact numerical and approximate
analytical solution for the case S = -1.0,,
B=0 and g # O. exact solution,
——————— approximate solution.

1.0



16

12

- 167 -~

- - -
- -
- -

-
-

-
-

. -
- -

o

f'

Figure 6.20 Comparison of exact numerical and approximate
analytical solution for the case S = - (.6
B =1and f# g. ______ exact solution, ————-
approximate solution.



- 168 -

We shall first seek the reason for obtaining a family of infinitely many solutions
for large negative S. Let us consider the case § = 0, ¢ = 0 first. In this case equation

(6.7.11) becomes

1

S+ K =8@f" +af" +uf' f -wrs"). (6.7.64)

The boundary conditions on f become

F@=0,7"(©=0,f (1)=0,f(1)=2 (6.7.65)

Define a small parameter
§=1/VI|S]. (6.7.66)
Expanding f and K in terms of §, we write

f =Fq+086F +8&Fy+ -, (6.7.67)
K=§Ky+5K,+Ky+ --- . (6.7.68)

The equation for zeroth order solution becomes

2_[?3 +17F(;' +;¢F(; F(; _;QFOFOH = - K. (6.7.69)

Note that the order of equation (6.7.64) has been reduced by 1 in the zeroth order
solution. Therefore we can not, in general, make the solution of equation (6.7.69) satisfy
all the boundary conditions in (6.7.65). We will have to discard one boundary

condition.



- 169 -

Since the boundary layers develop at 7 = 1 for both positive large S and negative
large S, we shall be discarding the condition f, (1)=0 for solutions outside the
boundary layer (also known as outer expansion). Thus, for outer expansion boundary

conditions become
Fy0)=0,F, (0)=0, Fy1)=2. (6.7.70)
One of the solutions of equation (6.7.69) satisfying boundary conditions (6.7.70) is,
of course
Fo(n) = 277, I{o = - 4. (6.7.71)
However, this is the asymptotic solution for fast transient squeezing, i.e., for large
positive S given by Wang [WANG76]. This solution does not hold for large negative S.

To obtain a proper solution for large negative S, we note that the solution must
be properly behaved even for large negative S. Let us, therefore, assume the solution

for F' given by equation (6.7.68) as
Fo=/f1+ /07, (6.7.72)
where the summation over ;7 takes place over odd integers.

Substituting for F o from equation (6.7.72) in equation (6.7.69), and comparing the

coefficients of 7 and 7771, we obtain

2f 1 +uf £ =-Kq (6.7.73)

fili +1-%j -3) 14 =0 (6.7.74)



- 170 -

If 7 5 3, equation (6.7.74) admits two solutions

_ 2542 .
f] =0 or f 1= j—3 . (6./.75)
Thus moving over all possible values of j starting with 7 = 5, we discover that

/1= F, (0) takes successively the values 6, 4, 10/3,... . The curves 'b,’ and ’b,’ in

Figure 6.14, indeed, corréspond to 'y (0) = 6 and F, (0) = 4 respectively.

We shall now derive the asymptotic solution for large negative S corresponding to

any admissible value of 5. Substituting the value of f | in equation (6.7.69) we obtain

o HBIS) (o
Ko=-2 s (j = 5,7,9,..) (6.7.76)

The substitution

F=2 —_ ..7
=21+ ——3 (6.7.77)

reduces equation (6.7.69) to
(j-3)H +H'°-HH" = j-2, (6.7.78)
with the boundary conditions

H (0)=0,H" (0)=1,H (1)=0. ' (6.7.79)

Let H' = Y. Transforming equation (6.7.78), such that the independent variable

becomes H, we obtain

(j-1)Y + Y2 HY% — j-a. (6.7.80)



- 171 -

Equation (6.7.80) can be readily integrated to give

1 o

cH = (1-Y)o+ (g+Y )7+ (6.7.81)
where

o= j-2, (6.7.82)
and ¢ is the constant of integration.

Differentiating equation (6.7.81) with respect to %, we get

4 1
cz—;l =~ (1-Y) " (o+Y) o+, (6.7.83)

K

Using the substitution
Y = cos®f — osin? (6.7.84)

reduces equation (6.7.83) to
o-1

¢ =2 [ (cot )"+ d 6. (6.7.85)

Further on substituting
cot§ = ¢#(o+) (6.7.86)

equation (6.7.85) becomes

o-1
cn = —(o+1) f Tf-t_““_dt' (6.7.87)



- 172 -

Now using the identity

g1 1 & m (27 1) 27 -1 2
dz = M) 1nd 1-27 cos 224
f T T 5 iglcos o n T cos—— m+x% ) +
Z —Ccos 21 T
1 m (21 -1) 2n
— t . .
+ ; sin oy arctan———-— (6.7.88)
1=l sin T
2n

(see Gradeshtyn and Ryzhik [GRADGS5] p. 64), we obtain, after lengthy manipulations

1 1
Jjm T+l T+
B(o-1) in 2¢os ) (o+Y )0+ (1-Y)o+
cn=2 cos arcth +
i=13 o+1 2 2
(O.+Y)0'+1 + (1_Y)0’+1
1 1
) 2sin—2 2 (0+Y)""'1 (1- Y)""‘1
+ sin 0‘7_:1 arctan o+l 5 5 if o = 4k-1
(o+Y)o* — (1-Y )+
1 1
o-3) i 2cos—2 (<7+Y)""’1 (1- Y)"'H
=2 Z(V‘J arcth otl 5 5 +
=1,3.. —_— -
] (0.+Y)0+1 + (1_Y)0'+1
. 1 1
oogm o+1 o+1
2sin 7 (6+Y)oH (1-Y)
+ sin J T arctan ot 5 3 +

(o+Y)oH — (1-Y) o+

1

. . 1-Y }o+i
t if = 4k+1, 6.7.89
+ 2arc an[0+Y] i o + ( )




- 173 -

the constant of integration vanishing owing to the boundary condition ¥ = A’ =1

when n=0. -

Note that H also becomes zero when Y =-¢ (see equation (6.7.81)). But from the
last boundary condition in (6.7.79), H becomes zero when n=1. Hence Y =-o when

n==1. Using this fact and equation (6.7.89), we obtain

¢ =—"_ - (6.7.90)

. T
sin
o+1

Equations (6.7.77), (6.7.81), (6.7.89) and (6.7.90) completely determine the

asymptotic solution for large negative S.

To obtain a uniformly valid solution, we shall follow treatment of Wang

[WANG?76] and assume

§=(1-n)/é (6.7.91)

J = 2-6h(€)-8hy(8) - - - (6.7.92)
which stretches the variable # near 1 where the boundary layer is formed.

Substitution of # and f from equations (6.7.91) and (6.7.92) in equation (6.7.64)

yields the equation for inner expansion

111

hy'' +€h{" +2h] +wh| -vhh, =-K, (6.7.93)

By matching with the outer expansion, the boundary conditions on &, become



- 174 -

2(37-5)

h,(0)=0,h; (0)=0,h, (co)= - Go)

(6.7.94)

While dealing with the problem of squeezing of fluid through circular tube, Wang
[WANG?76] has erroneously concluded that there are oscillatory boundary layers for
large negative S. He has also mentioned in the same paper that oscillatory boundary
layers exist for large negative S in the problem of squeezing of fluid between parallel
plates. Of course, he arrived at these conclusions by assuming F o=, which, as has
already been pointed out, is not a valid solution for large negative S. We shall now

show that for the present case {(=0) oscillatory boundary layers are not possible.

In view of boundary conditions (6.7.94), we can write
2(37-5)
hy=— p E+c,+ ¢ (6.7.95)

where ¢ is a small term representing the exponentially decaying terms away from the

boundary layer.

Substituting for A in equation (6.7.93) and ignoring second order terms, we obtain

¢III +

11(1—.’_—?2)—6 — e, ]d/’ - 4(1.’—__31)45' =0 (6.7.96)

which does not admit exponentially decaying periodic solutions.

A uniformly valid solution can now be constructed

[ = Fon)+ 6F () - 6 [hl(o + 286 oy |+ o) (6.7.97)



- 175 -

Unfortunately, because of the complicated nature of the solution for F it is not
feasible to get an analytical solution for first order term F;. Nevertheless, in
determining the physical quantity of interest, namely, the resistance to squeezing, which
is proportional to f . (1), one does not require the contribution from F | until the third

order approximation. In fact it is easy to find

1t

[ ()= 8K, (6.7.98)
from equations (6.7.97) and (6.7.93).

. " . . .
A comparison of values of f/ for the solution curves’ b, and’ b, in Figure

6.14 obtained by using CSSL and by equation (6.7.98) is shown in Table 6.5.

It can be seen from the table that there is a very good agreement between the
numerical values and the values obtained by the method of matched asymptotic

expansion. As might by expected, the agreement gets better as S —-co.

In Figure 6.21, f ' has been plotted against n for various values of S. Also in

Figure 6.22, boundary layer solutions of equation (6.7.93) have been given.

We now turn out attention to the case f =1, f = g. In this case equations

(6.7.11) and (6.7.12) become identical.
FU K =8@f wnf s =11 "). (6.7.99)
The boundary conditions on f become

fO=0,1"(©)=0/"(1)=0,f(1)=1 (6.7.100)

Expanding f and K in terms of §, defined by equation (6.7.66) we write



- 176 -

Table 6.5
curve 'b ' (j = 5) curve 'b ' (j = 7)
S L 2
CSSL-1IV Equation CSSL-1IV Equation
(6.7.98) (6.7.98)
-80.0 - - -1275.3588 -1280.0
-70.0 - - -1113.3403 -1120.0
-60.0 -1786.3341 -1800.0 -949. 3415 -960.0
-50.0 -1482.7617 -1500.0 =775.8594 -800.0
-40.0 -1176.5603 -1200.0 -593.0174 ~640.0
~30.0 -863.4731 -S00.0 -347.7886 -480.0
-20.0 -519.7615 -600.0 - -




- 177 -

£'(n)

1 l 1 l L
0.0 0.2

! ' I '
0.4, 0.6 0.8

Figure 6.21. Plot of £'(n) against n for B = 0 and

various values of S. Asymptotic solution is
marked with -.-.-.-

1.0



-10

-12

- 178 -

0.0

Figure 6.22 Asymptotic solution for h and h'.
sional case,

Two-dimen~—



- 179 -
] =Fg+06F +&8Fy+ - - (6.7.101)
K=K§?*+K§5 '+ Ko+ --- (6.7.102)

The equation of zeroth order approximation is given by
2Fy +nFy +uFgFo-FoFy =-K,. (6.7.103)

Discarding the boundary condition F (0) = 0, we shall solve equation (6.7.103)

with the boundary conditions

Fo0)=0, Fy' (0)=0, Fo(1)=1. (6.7.104)

Once again the existence of multiple solutions can be established by assuming a
power series expansion for Fy(n) given by equation (6.7.72). Proceeding as in the case

A = 0, we obtain
2f 1 +8f £ =-K,, (6.7.105)

and

fi=0 o f,=21 (j=357,..). (6.7.106)

Thus in the present case

—_ G+YE-T)
Ko= o (6.7.107)



- 180 -

To obtain an exact analytical solution for § — ~co, we substitute
Fo=n + <4 (6.7.108)
which reduces equation (6:’7.103) to
2(j-2)H + H'*-2HH" =2;5-3, (6.7.109)
Boundary conditions (6.7.104) and (6.7.106) simplify to

H (0)=0,H" (0)=1,H (1)=0. (6.7.110)

By introducing H' = Y, equation (6.7.109) can be integrated to yield

2 20
cH = (1-Y )t (o+Y )7+, (6.7.111)

where

o =27-3. (6.7.112)

Another integration of equation (6.7.111) was carried out as in case § = 0. The
detailed procedure of integration will not be repeated here. The final relation between 7
and Y is as follows

o1 2
cn=2c+Y)"(1-Y)o* +

2 2
257 1 +1
H(0-3) 9jn 2cos ) (c+Y)ot (1-Y)“
+ 4(0-1) cos T arcth 7 ” +
f=1,3.. — =
J (0+Y)0'+1 + (1_Y)0'+1




- 181 -

2
n (O‘-i-Y)J'H (1 Y)a'+1

25
9sin—=
larctan if o = 8ktk-1

. 297
-+ sin J
c

4 4

(0_+ Y)a+1 _ (l_y)'éﬁ

o-1 2
cn = (0+Y)"+1(1 Y)""~1 + 4(0-1 arctan[

Lo
2 . 2 .__2__.
H(0=7) o 2cos J71r(a-i-Y)“‘H (1-y )+t
+ 4(0-1) (Z cos=L T areth ot +
iSa| T et 4 4
(U-i-Y)a'H + (1_Y)0’+1
Y 2
o 2sin I T (o+Y)o+ (1- Y)‘”'1
+ sin 0:71-1 ———arctan ot " " if o =8k+3 (6.7.113)
(0’+Y)a+1 _ (1_Y)m
Using the condition » = 1 when Y = -0, we obtain
¢ = 2(0-1)-——”2—— (6.7.114)
sin—="
o+1

Equations (6.7.108), (6.7.111), (6.7.113) and (6.7.114) complete the zeroth order

asymptotic solution for § — —oo0.

For the boundary layer solution, we assume



- 182 -

[ = 1-6h,(6)-ho(€) - - - (6.7.115)
where £ is the stretched variable defined by equation (6.7.91).

Substituting for f in equation (6.7.99) and collecting the terms of highest order,

we obtain, for inner expansion

111

hy' +€hy +2h; 4uh|*-hh, =-K, (6.7.116)

By matching with the outer expansion, boundary conditions on 4, become

557
mi0)=0,h1 (0)=0,h] (o0)=~ I,

(6.7.117)

Again it can be demonstrated that equation (6.7.117) does not admit any periodic
solution, thus ruling out the possibility of oscillatory boundary layer for large negative

S.

A uniformly valid solution for f is

] = Foa)+6P (n)-6 | () +0(8). (6.7.118)

557
2 & <

where ¢; is defined in 2 manner similar to that in equation (6.7.95) by using the
asymptotic boundary condition in equation (6.7.117). Equation (6.7.98) for /" (1),

which measures the resistance to squeezing, incidentally, still holds.

In Table 6.6, a comparison is made of the values of /" (1) for curves 'a’ and b’

in Figure 6.17, obtained by Newton’s method using CSSL-IV and by equation (6.7.98).

In Figure 6.23, /' has been plotted against # for § == 1 and various values of 5.

Also in Figure 6.24, boundary layer solutions of equation (6.7.116) are given.



- 183 -

Table 6.6
.curve 'a' (j = 3) curve 'b' = 5)
S

CSSL-IV Equation CSSL-1IV Equation
(6.7.98) (6.7.98)
-100.0 - - -600.79397 -600.0
-75.0 - - -451.2203 -450.0
-50.0 -800.4278 -800.0 -302.5719 -300.0
-40.0 -640.6152 -640.0 ~-243.5430 -240.0
-30.0 -480.9464 -480.0 ~-181.2703 -180.0
-25.0 -401.2576 -400.0 -144.6441 -150.0




- 184 -

£'(n)

"]2 T I T [ T [ T I I ]
0.0 0.2 0.4 n0.6 0.8 1.0

Figure 6.23 Plot of f'(yn ) against n for f= 1, and
various values of S. Asymptotic solution is
marked with —.-.-.-.



0.0

0.5 1.0_,,1.5 2.0 2.5

Figure 6.24 Asymptotic solution for h and h'. Axisymmetric
case.



- 186 -

We have recorded the timings on the Cyber 205 of a typical run using the
vectorized version and non-vectorized version of the integration routines in CSSL-IV. It
may be emphasized here that it was not possible to vectorize the code in the source
program defining the model, unlike the earlier examples dealing with PDEs. For this
reason, it was not possible to obtain an improvement in timing to the same extent as
with PDEs. For example, it took 170 ms for the non-vectorized version of CSSL to
make a single run of the program when S = -30 and # = 1. On the other hand, the

vectorized version took 103ms.
6.7.6 Final Remarks

In closing, it may be remarked that we have carried out a limited investigation of
the problem of squeezing of fluid between parallel plates. It is a problem which deserves
to be studied in detail in its own right. In the present section, the cases £ 0 and
B 7% 1 have been left out. Also no attention has been paid to the solutions for positive
large values of S. For the general case (S >0,0< g < 1) results exist in the
literature for values of S only up to 25. However, using CSSL-IV, undoubtedly it is
possible to go upto much higher values of positive S, as is evident from the fact that we

were able to obtain solutions for large negative values of S, which in general are more

difficult to find.

Since in this section our main aim was to show the applicability and versatility of
CSSL-IV in obtaining relevant solutions, we have touched only those aspects of
analytical sc'>lutions which helped in understanding and obtaining the corresponding
solutions using CSSL-IV. For properly utilizing the CSSL-IV program given in Figure
6.13, it was necessary to have some idea about initial guesses. The approximate solution
for 'unusual’ cases and the asymptotic solution for large negative S were instrumental

in providing these initial guesses. Without these guesses it would have been extremely



- 187 -

difficult to track a solution.

Once a solution for some set of parameters was located, solutions for other sets
were derived by slowly varying the parameters. In this manner, it is hoped, that the

entire range of parameter S (S < 0) has been explored to obtain the various solutions.



7. CONCLUSIONS

7.1 Introduction

In the present thesis we have examined various aspects of CSSL-IV on the
supercomputer Cyber 205. Specifically a study has been made of porting CSSL-IV to
the Cyber 205, of vectorizing some routines, and of the suitability of CSSL-IV for
certain classes of problems. The conclusions of the study of these aspects are presented

below.
7.2 Porting of CSSL-IV

The source code of CSSL-IV, running into a length of 30,000 lines of Fortran code
on the Cyber 175, was handed over by the proprietor [NILS85] for the purpose of

porting it to the Cyber 205. The following difficulties were experienced in porting.

(i) The Cyber 205 is a 64-bit machine with 8 bit ASCII representation of
characters, which probably explains for its allowing the data to be stored in hexadecimal
form rather than the octal form - a form preferred by the Cyber 175. This necessitated

a large scale conversion of data from octal form to hexadecimal form.

(ii) Only hollerith strings of eight are permitted by the Cyber 205 to be stored in 2
single word of computer memory. The Cyber 175, on the other hand, allows character
strings of length 10 (its character set is limited, therefore it requires only 6 bits to store
a single character) in single quotes to be stored in a single word of memory. This

resulted in a large scale modification of the source code.

- 188 -



- 189 -

(ili) The Cyber 175 permits full 60-bit arithmetic on integers. Since the character
strings are stored as integers in the source code of CSSL-IV, there is no difficulty in
comparing two character strings on the Cyber 175. However, the Cyber 205 stores an
integer essentially as a floating point number i.e., it stores an integer in the least
significant 48 bits. Also it allows the arithmetic operations on only 48-bit integers. As a
result, using normal compiler options, one can not distinguish two strings of eight
characters each if they are different in the first two characters. Using a special option
(called C64) it is paséible to make 2 limited comparison (equal to and not equal to) of
two eight-character strings. But in the original code of the CSSL-IV, there are several
places where a comparison of two character strings is made using other relational

operators. Further, similar comparisons are made between two actual integers.

When the code was ported to the Cyber 205, a distinction had to be made
between 64-bit comparison of two character strings and 48-bit comparison of two
integers. This required an enormous amount of effort as each line of code had to be

individually scanned in order to distinguish the two cases.

Further, a special code had to be written for some of the basic routines to allow

the full fledged comparison of two character strings.

Because part of the CSSL-IV systems is a translator, (translating the model into
standard Fortran), it has to be able to deal with character strings, and hence the above

procedures are quite significant.
7.3 Vectorization of Algorithms

Because of time constraints, it was possible to vectorize only a limited number of
integration routines. The routine for the Adam-Moulton method with variable step size,

which is the default integration routine in the software support library of CSSL-IV, has



- 190 -

been vectorized along with the routines for the other well known methods such as

Euler’s method, the Runge-Kutta-Gill method, etec.

A safeguard has been provided for a naive user who may invoke a vectorized
routine when the number of state variables is quite small. Thus for ten or less state
variables (this was determined experimentally as the break-even point) the scalar version
of the integration routine is implemented. Only when the number of state variables is

large enough (greater than 10), the vector version can be employed.
7.4 Suitability of CSSL-IV on the Cyber 205

The Cyber 205 is at its best for large systems. Based on vectorization of only the
integration routines, it appears that the most suitable models for using the present
version of CSSL-IV on the Cyber 205 are those in which the number of state variables is

quite large.

Partial differential equations naturally qualify for benchmarks as they can be cast
into a system of ordinary differential equations using the method of lines. For each of
the three types of the linear partial differential equations of second order, a typical
example was selected. Thus, for the parabolic PDE the benchmark of heat conduction
through a bar was selected, and for the hyperbolic PDE, the benchmark of vibration of

string was selected.

For each of these benchmarks extensive testing was carried out (i) by choosing
different versions of the code, (ii) by choosing different algorithms for integration and
(iii) by varying the number of mesh points. The optimum timing was recorded for the
Runge-Kutta-Gill method using the fully vectorized version of the code (vectorized
source code and vectorized code for the integration routine). The reason for it is that a

substantial part of the code for the Runge-ICutta-Gill algorithm is vectorizable, whereas



- 191 -

the code for the Adam-Moulton method caters for adjustment of step-size of integration
in order to meet the accuracy criterion, and the corresponding segment of the code is

not vectorizable.

For the elliptical PDE we selected the physically important problem of
magnetohydrodynamic flow through a rectangular duct in the presence of a transverse
magnetic field when the conducting boundaries are parallel to the magnetic field. In the
literature, this problem has been solved numerically for values of the Hartmann number
up to 20. It was possible to solve the same problem more easily, using CSSL-IV on the
Cyber 205 for the same range of Hartmann number. An attempt was made to get the
solution of the problem for larger values of Hartmann number by decreasing the mesh-
size of discretization scheme, which, however, led to arithmetic overflow. A
mathematical investigation was made of this apparent paradox which was further

supported by numerical results.

The conclusions from these investigations can be summarized: CSSL-IV can be
used advantageously on the Cyber 205 for simulation of models characterized by
parabolic and hyperbolic PDEs, but the existing algorithms in the software support

library are not ideal to simulate models characterized by elliptical PDEs.

There is yet another class of models which can be simulated by using the present
version of CSSL-IV on the Cyber 205. When a model can be described by a two-point
boundary value problem involving a large number of ODEs with the number of
boundary conditions nearly evenly split, one can use Newton’s method to transform the
BVP to a much larger system of IVPs, and this can be solved advantageously on the

Cyber 205 using CSSL-IV.

For the purpose of illustration, the flow of a fluid due to squeezing between

paralle] plates has been simulated. This problem has received insufficient attention in



- 192 -

the literature for negative values of the squeezing parameter. Also some incorrect
results have been reported. Using CSSL-IV on the Cyber 205, a relatively detailed and
correct treatment of the model was undertaken. It is found that these types of models

are also worth simulating on the Cyber 205 using the existing version of CSSL-IV.



. 8. DIRECTIONS FOR FUTURE RESEARCH

By porting CSSL-IV to the supercomputer Cyber 205 and by vectorizing most of
the important integration routines, it is believed the first step has been taken in the
direction of simulation on supercomputers using a CSSL. Since only some of the
routines in the software support library have been vectorized so far, it is not yet possible
to draw conclusions about all the advantages accruing from having a CSSL on a
supercomputer. The benchmarks and the numerical algorithms used to test these
benchmarks in the present thesis are by no means exhaustive and it is felt that more
tests and benchmarks are required, especially in the areas of pertinent applications,

before any final assessment is made.

Other simulation models which deserve further attention are those which are not
so much dependent upon integration. For these models the substantial part of the
execution time is spent in computing the derivatives (e.g., in table lookups in two or
three dimensions). Vectorization of the relevant code is expected to reduce the

execution time considerably.

Applications which require the use of fast fourier transform (FFT) are becoming
increasingly important. Currently, vector algorithms for FFT have been reported in the
literature [SWARS4|. Inclusion of these algorithms in the CSSL-IV software library

must lead to improved performance in terms of execution time for those applications.

Recently considerable research is being conducted in the application of finite

element methods to the engineering problems in structure design, fluid flow etc. Since

- 193 -



- 194 -

the technique of finite element methods lends itself naturally to vectorization, it is a
good idea to incorporate the necessary algorithms in the CSSL-IV software support

library.

It has been shown that CSSL-IV is an excellent tool to simulate models
characterized by parabolic and hyperbolic partial differential equations. However, it has
severe restrictions in dealing with models defined by elliptical PDE’s. Since the trouble
in solving elliptical PDE by using a CSSL stems from the shooting technique, it is
worthwhile considering inclusion of special finite-difference software in the software
support library of the CSSLs. At present, simulation languages do not seem to have
sufficient software support for such models. However, considerable progress has been
made in vectorizing the algorithms of finite-difference equations by using linear algebra.
By incorporating these algorithms, it should be possible to solve many problems very

efficiently, particularly those which are characterized by elliptical PDEs.

There are some problems which are numerically sensitive to shooting methods. Of
course, there are techniques, such as the multiple shooting, continuation method etc,
which can alleviate problems of numerical sensitivity. Nevertheless, with minimal effort

it should be possible to include the more reliable technique of quasilinearization.



BIBLIOGRAPHY

[ABSA85] Absar llyas Applications of Supercomputers in Petroleum Industry,
Simulation, 44, 247-251, 1985.

[ADAM73] Adams J.A. and Rogers D.F. Computer-Aided Heat Transfer Analysis,
McGraw-Hill, New York, 1973.

[AZIZ81] Aziz A. and Na T.Y. A Numerical Scheme For Unsteady Flow of a Viscous
Fluid Between Elliptic Plates, J. Comp. Appl. Math., 7, 115-119, 1981.

[BRENG64] Brennan R.D. and Sano H. PACTOLUS - A Digital Analog Simulator
Program for the IBM 1620, Proceedings AFIPS, Fall Joint Computer
Conference, 299-312, 1964.

[BREN67] Brennan R.D. and Silberberg M.Y. Two Continuous System Modeling
Programs, IBM System Journal, 6, 242-266, 1967.

[COLI8S] Colijn A.W. and Ariel P.D. Continuous Systems Languages on
Supercomputers, Proceedings of the 1986 Summer Computer
Conference, Reno, Nevada, July 28-30, The Society For Computer
Simulation, La Jolla, 3-7, 1986.

[COLL66] Collatz L. Numerical Treatment of Differential Equations, Springer Verlag,
1966.

[CROS84a] Crosbie R.E. ISIM - A Continuous System Simulation Language, Byte, 9

’

400-403, 1984.

[CROS84b] Crosbie R.E. and Huntsinger R.C. Using the ISIM Simulation Language with
CP[M Systems, Proceedings 1984 SCS Conference on Microcomputers in

Simulation and Modeling, San Diego, 1984.

- 195 -



- 196 -

[DUFF84] Duff 1.S. The Use of Supercomputers in Europe, Proceedings of the Second
International Conference on Vector and Parallel Processors in

Computational Science, Oxford, England, 15-25, 1984.

[DYNAS85] Dynamic Simulation Language/ VS, Language Reference Manual (SH20-6288-
0), IBM Corporation, GPD, San Jose, California, 1985.

[FORNS3] Fornberg Bengt Steady Viscous Flow Past a Circular Cylinder, Proe. Cyber
200 Applications Seminar, Lanham, Mayland, 201-224, 1983.

[GRADG5) Gradshteyn I.S. and Ryzhik LM. Tables of Integrals, Series and Products,
Academic Press Inc., New York and London, 1965.

[GRING61] Grinberg G.A. On Steady Flow of a Conducting Fluid in a Rectangular Tube
with Two Non Conducting Walls and Two Conducting Ones Parallel to
an External Magnetic Fiels, PMM, 25, 1024-1034, 1961.

[GRING62] Grinberg G.A. On Some Types of Flow of a Conducting Fluid in Pipes of
Rectangular Cross-Section Placed in e Magnetic Field, PMM< 26, 80-
87, 1962.

[KASC79] Kascic M.J. Jr. Vector Processing, Problem or Opportunity, COMPCON ’80,
IEEE, November 1979.

[KOBO85] Kobos AM. Supercomputer Dawn and Its Applications, SUPER*C
Newsletter, 1, 3-4, 1985.

[KANTS8] Kantorovich L.V. and Krylov V.L. Approzimate Methods of Higher Analysts,

Interscience, New York, 1958.

[KANT64] Kantorovich L.V. and Akilov G.P. Functional Analysis in Normed Spaces,



- 197 -

Pergamon Press, 1964.

MITC81] Mitchell E.E.L. and Gauthier J.S. ACSL User Guide/Reference Manual,
Mitchell and Gauthier Assos., Inc., P.O.Box 685, Concord, Mass. 01742,
1981.

[MOOR65] Moore D.F. A Review of Squeeze Films, Wear, 8, 254-263, 1965.

[NA79] Na T.Y. Computational Methods in Engineering Boundary Value Problems,
Academic Press, 1977.

[NILS85] Nilsen R.N. Continuous System Simulation Language, Version Four (CSSL-
IV), User’s Guide and Reference Manual, Simulation Services, 20926

Germain St., Chatsworth, California 91311, 1985.

[ORTES85] Ortega J.M. and Voigt R.G. Solution of Partial Differential Equations on
Vector and Parallel Computers, NASA Contract Report 172500, ICASE
Report No. 85-1, NASA Langley Research Center, Hampton, Virginia,
1985.

[PETE64] Peterson H.E., Sansor W., Harnett R.T. and Warshavsky M. MIDAS - How it
Works and How It’s Worked, Proceedings AFIPS, Fall Joint Computer
Conference, 1964.

[PRIT74] Pritsker A.A.B The GASPIV Simulation Language, Wiley, New York, 1974.

[PRIT79] Pritsker A.A.B and Pegden C.D. Introduction to Simulation and Slam, Systems
Publishing, West Lafayette, Ind., 1979.

[REYN1886] Reynolds O. On the Theory of Lubrication and its Applications to Mr.

Beauchamp Tower’s FEzxperiments, including an Ezperimental



- 198 -

Determination of the Viscostty of Olive Oil., Phil. Trans. Roy. Soc.
London, 177, 157-234, 1886.

[ROBE71] Roberts S.M. and Shipman J.S. Two Point Boundary Value Problems,

American Elsevier, New York, 1971.

[SCHM?70] Schmidt J.W. and Taylor R.E. Simulation and Analysis of Industrial Systems,
Irwin, Homewood, Ill., 1970. '

[SELF55] Selfridge R.G. Coding a General Purpose Digital Computer to Operate as a
Differential Analyzer, Proceedings 1955 Western Joint Computer
Conference, 1955.

[SCHL60] Schlichting H. Boundary Layer Theory, 4th edition, McGraw-Hill, New York,
1960.

[SHERS3] Shercliff J.A. Steady Motion of Conducting Fluids in Pipes Under Transverse
Magnetic Fields, Proc. Camb. Phil. Soc., 49, 136-44, 1953,

[SING84] Singh Bani and Agarwal P.K. Numerical Solution of a Singular Integral
Equation Appearing in Magnetohydrodynamics, ZAMP, 35, 760-770,
1084.

[SKAL79] Skalak F.M. and Wang C.Y. On the Unsteady Squeezing of a Viscous Fluid
From a Tube, J. Aust. Math. Soc., 21, 65-74, 1979.

[STRA67] Strauss J.C. et. al. The SCi Continuous System Simulation Language (CSSL),
Simulation, 9, 281-303, 1967.

[SWARS84] Swartrauber P.N. FFT Algorithms for Vector Computers, Parallel
Computing, 1, 45-63, 1984.



-199 -

[SYN66] Syn W.M.. and Linebarger R. DSL/90 - A Digital Simulation Program for
Continuous System Modeling, Proceedings AFIPS, Fall Joint Computer
Conference, 165-189, 1966.

[UCHI?7] Uchida S. and Aoki H. Unsteady Flows in a Semi_Infinite Conltracting or
Ezpanding Pipe, J. Fluid Mech., 82, 371-387, 1977.

[WANG76] Wang C.Y. The Squeezing of a Fluid Between Two Plates, J. Appl. Mech.,
43, 579-583, 1976.

[WANG79] Wang C.Y. and Watson L.T. Squeezing of a Viscous Fluid Between Elliptic
Plates, Appl. Sci. Res., 35, 195-207, 1979.

[WATS79] Watson L.T. A Globally Covergent Algorithm For Computing Fized Points of
C® Maps, Appl. Math. Comp., 5, 207-311, 1979.



