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Abstract 

This thesis evaluates the ability of Wilkie's stochastic investment models to predict TSX 

price index yield. In the Wilkie Model, correlated econometric indices were modeled 

through a cascade structure. 

The empirical study of TSX price index yield in this thesis shows the following 

results with regard to the Wilkie Model: 

• The advised multivariate models by the Wilkie Model do not make significantly 

better prediction than univariate models do. 

• The dividend yield model is not suitable for prediction based on recent data ana-

lysis. 

• The suggested new model structure based on vector autoregressive method in this 

thesis is similar to the Wilkie's structure, but not a cascade one. There are some 

significant feedback relationships between different components. 

Therefore this thesis suggests a multidirectional model structure without dividend yield. 

The models are used to predict the movement of the components within the structure. 

The models for those variables is constructed from the linear relationship on their own 

lagged values and other variables in the structure. 
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Chapter 1 

Introduction 

For insurance companies, modeling the future values of assets and their interactions 

is useful for setting up asset strategies and managing reserves for liabilities. In the 

literature there are a number of different methods to model the return of assets. 

Panjer (1998) classifies those models into three categories: financial models, econometric 

models, and actuarial stochastic investment models. Generally we can classify them 

based on short term and long term application due to the argument that long term 

movements of asset returns could be very different from their short term movements. For 

example, Independent Log—normal models (ILN) can be used to represent the random 

walk, a type of movement for short term share price movement; ARIMA models can 

detect the long term trend for time, series, after some transformation is made for the 

original series. Also, many well-know asset pricing models are based on Black—Scholes 

model, which is in turn based on the ILN assumption for the movements of short term 

asset returns. We can further classify them as univariate models and multivariate 

models. For example, the Wilkie Model is used to detect the movements of multiple 

assets and their correlation, while other models mentioned above can be used to model 

single variables such as TSX Total Return Index yield. 

Even though there are many financial and econometric models for investment returns, 

U.K. actuary David Wilkie is the first person who developed stochastic investment 

models for the long term return of multiple assets for actuarial application. His models 

is known as "The Wilkie Model". Wilkie originally carried out such researches for the 

Maturity Guarantees Working Party of the Institute of Actuaries from 1980 to 1981. As a 
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result of those researches, Wilkie (1986) published his cascade structured models. Those 

models are designed for four basic assets: inflation rate, dividend yield, dividend, and 

consols yield. Wilkie (1992) developed this method into modeling exchange rate. Later 

on Wilkie (1995) developed the models for wages and property yield, and applied those 

models to other countries such as Canada and the United States. Wilkie (1995) also 

discussed GARCH models and Vector Autoregressive models with correlated errors for 

inflation and wages. The application to TSX index yield based on the four basic models 

is the topic of this thesis. Even though Wilkie (1986) and Wilkie (1995) both discussed 

asset modeling, there are no significant changes for the models of those four basic as-

sets. Therefore we use the basic assets models presented by Wilkie (1986) for the analysis. 

Since the introduction of the Wilkie Model 20 years ago, there has been much re-

search into his hierarchy structural modeling method and related structured multivariate 

assets pricing models. Research in this area is still ongoing. Mulvey and Thor-

lacius (1996) introduced a cascading set of differential equations, developed by Towers 

Perrin, for the future financial scenario generating based on simulating multiple assets 

and indices. Sharp (1992) applied the Wilkie Model into Canadian inflation and wages. 

Tomson (1996) applied the Wilkie Model to South Africa by developing a method to 

determine the structure of multiple time series models. 

Beside application and development, there are also some critical voices for the 

Wilkie Model. Whitten and Thomas (1999) refined the Wilkie Model by introducing a 

non—linear Threshold Autoregressive (TAR) model to analyze investment series. They 

applied both threshold techniques and the ARCH modeling method in the cascade 

structure. Chan and Wang (1998) used the impulse function to make adjustment of 

outliers for the inflation rate series. They showed that this adjustment is closer to 
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reality and decreases the variance of prediction after removing the impulses. This works 

better than the AR—ARCH model used by Wilkie (1995). However this methods will 

produce lower cumulative yield for the future. Huber (1995) criticized the Wilkie Model 

regarding to its data resources and manipulation, model construction and calibration, 

and its parameter estimation. These are valid criticism. However we still want to study 

the advantages and problems in the Wilkie Model in order to improve it. Some summary 

of the comparison of the Wilkie Model, TAR model, GARCH model and Outlier models 

are done by Rambaruth (2003). 

With the recent development of financial markets, the series of Wilkie's models 

also needs to be reviewed for its validation in today's markets. That is why we 

investigate the validity of the Wilkie Model by testing its application to the latest TSX 

Total Return Index. The following is an outline of different chapters. 

Chapter two is the validation of the Wilkie Model. This chapter includes two 

sections. The first section is a brief introduction to the cascade structure of the Wilkie 

Model and its multivariate models for 4 basic indices: inflation rate, dividend yield, 

dividend, and consols yield. The second section is an evaluation of the performance 

of the Wilkie Model. This evaluation is based on the prediction of TSX Total Return 

Index yield. In this chapter we also use other methods as a comparison. Those methods 

include Independent Log-normal models, univariate ARIMA - GARCH models, and 

Regime - Switching models. 

In the third and fourth chapters we discuss some updates for the Wilkie Model. 

In the third chapter we investigate the validation of the component dividend yield in 

the Wilkie Model. After reconsidering the involvement problem for dividend yield, 
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we try to test a similar model structure based on the Wilkie Model without dividend 

yield. Therefore in chapter four, the structure is constructed based on the testing of 

relationship between different components and their lagged values, and some rollover 

values. The testing includes multivariate regression models, test of the residuals of 

univariate time series models, 'and Vector Autoregressive models. 

Due to the complexity of the movement for multiple indices, and the significant 

changes in the world markets which have strong impact on the values of financial assets, 

we need to keep up the calibration of the multivariate models in the future, in order to 

make their prediction valuable. 



Chapter 2 

Validation of the Wilkie Model 

The key point in the Wilkie Model is to construct a multi—level hierarchy structure for 

multiple variables. The models are built on the linear relationships between dependent 

variables and predictors and their lagged values. 

2.1 Introduction to the Wilkie Model 

2.1.1 Structure of the Wilkie Model 

The fundamental parts of the Wilkie Model for the UK market include four variables as 

follows: 

• Retail price index (Q) 

• Share dividends index (D) 

• Dividend yield (Y) on share price index (F) 

• Consols yield or long—term government interest rate (C). 

The models of those four variables axe built within a cascade structure such that those 

variables are ordered from the top level to the lower levels. The values of the lower level 

variables depend on the lagged value of themselves and the values of the variables in the 

upper levels. From the structure plot following this paragraph, we can see that inflation 

rate, which is calculated from the change of retail price index, depends on its own lagged 

values and is placed on the top layer of the structure. Its prediction is based on its 

own historical performance. Dividend yield is in the second layer, and its prediction is 

5 
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based on both the historical performance of itself and that of inflation rate. The third 

layer includes dividend and consols. Their prediction is based on the historical data of 

themselves, that of dividend yield, and that of inflation rate. 

Retail Price Index 

Share Dividend Yield 

Share Dividend Consols Yield 

The variables of the Wilkie Model were modeled under the following procedures. Firstly 

the variables are modeled by the regression on the upper level variables. Secondly the 

models' residuals were tested and constructed through the standard Box—Jenkins univari-

ate time series modeling method. Beside four basic variables mentioned above, Wilkie 

expanded his model to some other econometric factors like wages, short-term interest 

rate, property yield and exchange rate. Also he tested other methods such as Vector 

Autoregressive (VAR) modeling of two correlated variables, and GARCH modeling for 

the variance of residuals. There are two features of the Wilkie Model that we need to 

pay attention: 

• Wilkie (1995) stated that there is a cointegration relationship between the logarithm 

of dividend log(D) and the logarithm of share price log(P). So the model uses 

dividend yield Y(t), where logY(t) = log(D) - log(P), as a stationary variable to 

model this two variables. 

• The Wilkie Model chooses one way influence from the higher level variables to the 

lower level variables, even though there is some two - way interaction. Wilkie 

claimed that two - way interaction models in this structure would not improve the 
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accuracy of prediction but make the models much more complicated. An advantage 

of the Wilkie Model is that its structure could expand easily to be a larger system 

with more layers and more variables in those layers. This expansion does not need 

to change the models for the upper level variables. However any errors from the 

prediction of upper level variables could also be transferred to the prediction of 

lower level variables; the effects of this error transferring depend on the weight 

given to upper level variables in modeling lower level variables. In general, the 

upper level variables play more important roles in the structure. 

Beside the structural problems, and the problems mentioned by, Huber (1995), there 

are some other facts to consider when applying the Wilkie Model into North American 

markets. 

• The selection of variables is lack of direction. As we see, Wilkie did not tell us 

how to select the component variables into his models. So we need to check the 

validation of current components at first. For example dividend yield is not a good 

choice based on the recent stock market performance where dividend yield is not 

very stationary. Intuitively, dividend yield is not a listed financial product in the 

stock market. It is a latent variable in the Wilkie Model. Dividend and share price 

are two products in the financial markets. Dividend yield is a financial derivative 

calculated from those two products. When the stock market adjusts share price and 

share dividend separately, it is possible that both share price and share dividend 

show some stationary quality, but dividend yield does not. In another words, it 

is highly probable for dividend yield not be a very stationary when in the market 

either share dividend or share price departures from their expected movement. This 

fact could lead to the change of the structure of the Wilkie Model into a new one 

having fewer components. 
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• Through the comparison of the Wilkie Model with univariate models such as ILN 

model, ARIMA—GARCH model and Regime—Switching model, we want to test the 

ability of prediction based on the multi—variate Wilkie Model. The test was done 

by calculating the log—likelihood values of the Wilkie Model and the other models. 

Usually models with more parameters have high log—likelihood values. However 

this is not met by the Wilkie Model when compared with other univariate models. 

• Compared with Wilkie's cascade structure, Vector Autoregressive models with re-

gression part (VARX) could be more robust. The coefficients of each variables will 

determine whether these variables are independent, have unidirectional relation-

ship, or have feedback relationship. Transforming VARX models into a structured 

VARX models [17] could end up with a structure similar to the cascade structure 

of the Wilkie Model. But it is possible that the components in the new structure 

may be latent variables created from the original indices, not the indices them-

selves. Similarly we could think of cointegrated VARX models for multi-variate 

non-stationary series. Adding some long memory components could also be a good 

consideration for modeling those indices with long memory quality. For simplicity, 

we just used rollover means and rollover variance here as variables of memory input 

into some models. Wilkie use the exponentially weighted average as a long memory 

input in his models. 

2.1.2 Formulas of the Wilkie Model 

In the Wilkie Model, the four basic variables are modeled as follows: 

• The first model is for retail price index Q (t). Its model uses a logarithmic transfor-

mation of Q(t), where V log Q(t) follows AR(1) process. The formula is as follows: 

V1ogQ(t) = QMU + QA(VlogQ(t —1) - QMU) + QSD * QZ(t) 
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where: VX(t) = X(t) - X(t - 1) 

QZ(t) CC& N(O, 1), QMU is the mean 

QA is the AR coefficient, with JQAJ <1 

QSD is the standard deviation of residuals 

• The second model is for dividend yield Y(t). This model uses logarithmic trans-

formed dividend yield log Y(t) as the response variable. As we know, logarithmic 

transformation requires the non—negative value of Y(t). After taking regression on 

V log Q(t), the residuals follow MA(1) process. The formula is as follows: 

log Y(t) 

YN(t) 

where: 

= YW*VlogQ(t)+YN(t) 

= log YMU + YA(YN(t —1) - logYMU) + YE(t) 

YW is the coefficient of regression of log Y(t)on V log Q(t) 

log YMU is the mean of YN(t) 

YA is the AR coefficient of YN(t), with IYAJ <1 

YE(t) is the residuals, with YE(t) = YSD * YZ(t) 

YSD is the standard deviation of residuals YZ(t) 4 N(O, 1) 

• The third model is for dividend index D (t). This model uses the force of divi-

dend V log D(t) as the response variable, which has regression on the inflation 

rate V log Q(t), and the residual of dividend yield model of the previous period 

YE(t - 1). The residuals of the regression follow MA(1) process. The formula is 

as follows: 

VlogD(t) = DW(  DD 1 - (1 - + DX * V log Q(t) 

+DMU+DY* YE(t —1)+DE(t)+DB*DE(t-1) 

where:  DD is exponential weighted average 
1—(1—DD)B 
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BX(t) = X(t - 1), DD is an coefficient of weight 

DE(t) = DSD * DZ(t) 

DSD is the standard deviation of residuals DZ(t)'1N(0, 1) 

DW, DX, DY, are coefficients of regression, with DW + DX = 1 

DMU is the mean factor 

DB is the MA coefficient of residuals, with IDBI < 1 

therefore The weight for V log Q(t - i) is DD(1 - DD) for i ≥ 1 

if we use DM(t) = DD * V log Q(t) + (1 - DD) * DM(t - 1) 

then 

V log D(t) = DW * DM(t) + DX * V log Q(t) 

+DMU + DY * YE(t —1) + DE(t) + DB * DE(t —1) 

• The fourth model is for the Consols yield 0(t). The model is based 

on CN(t), which is 0(t) adjusted the long memory effect of inflation rate 

CD ( - )VlogQ(t) logCN(t) follows an AR(1) process, and has regres-

sion relationship on the current period error of dividend yield model YE(t). 

C(t) CW(1 -  (1C)))V log Q(t) + CN(t), 

log CN(t) log CMU + CA * (log CN(t - 1) - log CMU) 

+CY * YE(t) + CSD * CZ(t) 

where: CW, CY are the coefficients of regression 

log CMU is the mean factor, CA is the AR coefficient of log CN(t) 

CSD is the standard deviation of residuals, CZ(t) N(0, 1) 
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2.1.3 Log-likelihood of the Wilkie Model 

The derivation of the log—likelihood function for total return index yield Rt from the 

Wilkie Model is as follows: 

Dt = Dividend at time t 

Yt = Dividend yield at time t 

Tt = Total return index at time t 

Here, let f denotes density function, which is different for different variables 

let represents the information up to time t - 1, i.e. the information 

T 

f(Tti) 

f(YtIJi) 

f(Dtl_i) 

then 

we get based on the values of D, Yj, and T. with i ≤ t - 1 

= 

= f((1 - )DtI._i) = f(] - 

Since Yt and Dt are independent according to the Wilkie Model 

f(log()) 
Yt 
1 1rCV - VW 7 1"' - i)(' - 1-V iT1T - VA Vw( - 1 ' 

"  

YSD 

f(log(Dt)) 
Dt 
i (log(D1) - DW * DM(t) - (1 - DW) * V log Q(t) 

Dt DSD 
—DY*YE(t-1)—DMU--DB*DE(t-1)  

+ DSDDtYt 
f(Tt.'Ft_i) = f(YtlJ i)f(Dt _i) IJI 

= f(bog() i)f (log(Dt) li) I J 

where Iii 
dY 1  

= IIk=1+ = (k— 1)21 =Y2 
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then 

f(TtIi) 
1 

-   * Yt2 
DY 
Yt 

= -f(1og(Yt) J_i)f (1og(D) I'-1) 

Pt 

Dt 

therefore 

logf(TtIJ_i) = log(Y) - log(D) + E log f(1og()I._i) + E log f(log(Dt)I._i) 

From the above we get the log—likelihood value of the Wilkie Model based on the cal-

culation of the log—likelihood function of total return T. Since other models use index 

yield Rt as the variable to calculate log—likelihood values, we need further calculation. 

since: 

Rt = log( T—) 

f(Rt) = = Ttf(Tt) 

therefore 

logf(RtIJ_i) 

therefore 

log f(TtIJ_i) + E log(Tt) 
t t 

D+DY  
= logf(TtI.Ft...i) + log( , 

=E log f(TtI.F.i) + log(Dt + DY) - log() 
t t t 

log f(RtI.i) = log(Dt + DY) - log(D) 
t t t 

+ E log f(log() + E log f (log(Dt) I-1) 
t t 

where: 
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logf(log(Dt).2 i) = logf(log(Dt) —log(Dt— 1)IJ_i) 

= log f(V log(Dt)._1) 

therefore 

log f(Rtl.2.i) = log(Dt + D) - >1og(Dt) 
t t 

+ E log f(log(Y) + E log f(V log(Dt)J_i) 
t t 

Note: 

• When we calculate the log—likelihood of the Wilkie Model for R, we use only 

dividend yield model and dividend model, but no inflation model. That is to say, 

the number of parameters in the estimation is 10, not 13. 

• The difference between Et log f(Rt _1) and Et log f(log(Yt)_i)+ 

t log f(V log (Dt)_i) is only some constant terms. Thus when we maximize the 

log—likelihood of dividend yield and dividend to estimate the parameters, we actu-

ally also maximize that of TSX Total Return Price yield. In another words, what 

we get as the maximized log—likelihood estimator (MLE) of parameters based on 

Wilkie's dividend yield model and dividend model are also the MLE of parameters 

based on the information of R. 

Now, we get the log—likelihood function of R, and we can compare the maximized log— 

likelihood value of the Wilkie Model with those of other models, even though the esti-

mated parameters and log-likelihood value for the Wilkie Model is not obtained from the 

TSX Total Return Index yield Rt directly. 

2.1.4 Simulation and Prediction of the Wilkie Model 

Before estimating parameters of the Wilkie Model and applying those models to simulate 

and to predict the Total Return Index yield R, we need to do some data manipulation 
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and calculation. The data we used include both Canadian data and US data. Because 

the Wilkie Model is treated as a long term model, monthly data are considered to have 

too much noise for this long term analysis. Therefore we need to use quarterly data and 

yearly data for the models. Since the data set for the Canadian Market is as short as 50 

years, we also use the US data set, which is over 80 years, to test the model. The data 

structure is as follows: 

. The data used in the models for the Canadian market are as follows: 

- Inflation rate VlnQ(t) = log(  cPlt, ), where CPI is the consumer price 

index; 

- Dividend yield and dividend. Because there are not many historical data of 

dividend yield available, we followed the method of Wilkie (1995) to create 

them. On one side, these manipulated data are not the same dividend yields 

as published in recent years by Standard & Poors, and there could be negative 

values for some countries, which is a contradiction to the reality. Fortunately 

no negative values were found for the dividends we get from the Canadian 

and US data. On the other side, those calculated dividend yields provide a 

meaningful representation of dividend yield for the models, and the path of 

the calculated yield is very close to that of real dividend yield provided by 

Standard & Poors, which is available for most countries for recent years. The 

calculation is, as follows under continuous assumption of dividend yield: 

= log(1-)— log( ) 

where T' : TSX Total Return Index, Pt: TSX Price Index 

Dividend: 

D = Pt-1 * (en-' - 1) 
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where Dividend is assumed to be discrete at the end of each period 

Dividend Yield: 

Yt = log( +1) 
Pt 

The calculation under discrete assumption of dividend yield is as follows: 

Dividend: D = (TI - TI ....1)' - (P - P_1) 

D (TI - T 1) (P 1) Pt - 
Dividend Yield. 1' = =  Pt T / 1P Pt 

The Wilkie Model is thought to use discrete data due to its long term features, 

and it uses logarithm transformation for inflation rate, dividend yield and consols 

rate. This logarithmic transformation requires the non-negative property of the 

variables. For inflation, the logarithmic transformed value also assumes a force of 

increasing, which comes from continuously increase. Continuous assumption does 

not make much difference for the manipulated data when the data are small, and 

stationary without many extreme values. This situation is suitable for monthly 

yield data. But for quarterly and yearly data, we have to be careful when the 

yield rate is not that small. Continuous assumption for logarithmic transformation 

could enlarge the scale of negative values. Therefore we prefer to use discrete 

assumption for the calculations of yearly data, and continuous assumption for the 

calculation of monthly data in this thesis. For specific cases, the choice of continuous 

assumption or discrete assumption for data transformation will also depend on what 

the resource data we got. 

. The data used in the models for the US market are as follows: 

- Inflation rate V log Q(t) 

- Dividend yield and dividend are calculated based on the monthly data for US 

stock market obtained from the Center for Research in Security Prices (CRSP) 
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* Value-Weighted Return - all distributions (rn) 

* Value-Weighted Return - excluding dividends ('rr2) 

* S&P Composite Index P 

The calculation of dividend and dividend yield is as follows under continuous 

assumption of dividend yield for monthly data: 

under constant yield assumption 

= e' - e 2 

Dividend: D 

under discrete dividend assumption 

= Pt-1 * (e'-' - 1) 

under constant yield assumption 

Dividend Yield: Y = lm( + 1) 
Pt 

• For the quarterly US data of indices, we used the index of March, June, September 

and December of every year. For the yearly US data of indices, we used the index 

of June of every year. 

o The prediction and simulation include: 

- Prediction and simulation of future inflation rate V log Q(t) with AR(1) 

process. 

- Prediction and simulation of dividend yield Y(t), which is in turn based on 

the prediction and simulation of log Y(t). This step also simulate and predict 

an intermediate variable YN(t), whose residuals are used to predict dividend. 

- Prediction and simulation of dividend D (t) from the prediction and simulation 

of V log D(t). 
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• The next step is the simulation and prediction of total return T, which is used to 

calculate the total return index yield R. The Rt is used to analyze the fitness of 

the Wilkie Model and the tails' thickness of the simulated distribution from the 

Wilkie Model. The calculation of T is as follows: 

T, = D(1 + -), under discrete assumption for dividend yield 

T = D (1 + i under continuous assumption for dividend yield 

The choice of continuous and discrete assumption for Rt is based on the approximation 

of the simulation to the real world values, and the errors between log(x) and x when x 

is small. The following ,is my choice of different assumptions for use: 

• Rt under continuous assumption is used to compare short term models. Continuous 

assumption means i = log T 
Pt-i . 

• Rt under discrete assumption is used to illustrate and compare long term results. 

Discrete assumption means Rt = Tt 1 

• Wilkie (1995) advised a method to create discrete data for share dividend yield. 

As we know, log-transformation could enlarge the scale when Rt is negative, and 

IRtl is large enough. So we need to be careful and to be consistent when selecting 

discrete or continuous assumption for R, and interpret them correctly. For US 

data we can see that, while mean rate under discrete assumption is positive, it 

could be negative under continuous assumption of yield rate. This is because log-

transformation enlarges the effect when there are many times of sharp decrease in 

the index price. 

Therefore when there are many extreme cases in the yield data, which makes log(x) 

quite different from x, we need to take the inverse of the log-transformation of x to show 
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the result. The following are the plots for the distribution of yield based on the same 

price series. The top two plots are yield based on discrete assumption for yield rate, 

but the bottom two are growth force of index, which often represents yield, based upon 

continuous assumption. We can see from the plots that different assumption changed the 

distribution of the yield. Therefore what we discussed before for the choice of continuous 

assumption and discrete assumption for dividend yield also applied in calculation of R 

here. In summary, for the calculation of monthly index yield, it does not really matter 

which assumption you choose, because the yield rate is small; however for the calculation 

of yearly yield, it is better to choose discrete assumption for your calculation if you are 

not sure about the assumption of resource data. If you know the assumption of resource 

data, you can just keep the same assumption for the future calculation. 

Because there are many other choices of data manipulation, due to the lack of published 

historical data, there would be more arguments with regard to the results. Therefore 

we learned that for a complicated model, the availability and reliability of data source 

are important for testing and implementation of the models, which was pointed out by 

Huber (1995). 

The estimation of parameters could also be further argued for two different me-

thods based on the dependence of multiple equations. 

• In one way, parameters were estimated for each model separately. This method is 

used when there are no common parameters for two models, or no variables which 
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are estimated from one model and will be transferred into another model as input, 

or no correlation among residuals of different models. The example model of this 

type is the inflation rate model. The variables in this model are published inflation 

rate values, which are not estimated values. Inflation rate is on the top of the 

structure, so no residual effect will be transferred into its model for the top-down 

structured multi-variate models. 

• In the other way, if there are common parameters, or if there are estimated trans-

ferred variables, we better estimate parameters of the two models together, even 

if these models are at different levels. Common parameter is not the case in the 

Wilkie Model, but there exist estimated transferred variables. The examples are 

dividend yield model and dividend model. There is a transfer variable YN(t) from 

dividend yield model to dividend model. Even though there is only slightly differ-

ence between these two methods for parameter estimation in dividend yield model 

and dividend model, the parameter estimation based on the second method is more 

reasonable. The difference is very slight because in this structure dividend values 

have only minor influence on the parameters' estimation of dividend yield model. 

Correlation of residuals will change the models for each variable in the Wilkie 

Model. Based on the assumption of the Wilkie Model, residuals are independent. 

Though they are not independent for many models in the Wilkie Model, which 

will be seen in the later sections, we did not consider it right now when estimating 

parameters. 

From the results, we can see that our parameters' estimates are different from those 

of Wilkie's estimation for the Wilkie Model. This could attribute to different data 

sources or different time periods. Wilkie (1995) does not specify the data source for 

Canadian Market, and he used some combined data series from various resources for 
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different periods. Another reason for the difference of the parameter estimates is that 

there are no historical data available for dividend yield. We followed the suggestion 

from Wilkie (1995) to manipulate the so-called dividend yield in Wilkie's models. But 

the calculated dividend is different from the real dividend yield published for recent years. 

Comments based on our analysis are as follows: 

• Based on the parameters estimated for the Canadian yearly data of 1956-2005 

and for the US year data of 1926-2006, we can see, from the tables at the end of 

this chapter, that for the dividend yield model, the AR1 parameter of YN(t) is 

close to 1. That is to say, the YN(t) is not very stationary. It will produce many 

outliers of the residuals if we try to predict YN(t) using stationary ARMA models. 

This would end up with errors in the prediction of dividend yield Y(t) and other 

following indices. 

• For the dividend, we can see that the sign of parameter DY is positive as opposed 

to Wilkie. Wilkie claimed that if dividend yield is high in the preceding term, 

it will end up with lower dividend yield in the current term, which will result in 

a lower dividend growth rate in the current term. However the negative sign is 

not necessary for DY, if we think that the dividend growth is determined by both 

the change of price and that of dividend yield. Since the dividend growth rate 

P * Y(t) - Pt-i * Y(t -  1) Pt Y(t) 
P_1 * Y(t - 1) = * Y(t - 1) 1, if the dividend yield goes down, 

the dividend growth force could also goes up if the price goes up more quickly. In 

another words, if previous Y(t) is high, then if it leads to the decrease of current 

Y(t), it does not necessarily result in decreasing of dividend growth force if the 

price rises faster. Another reason to suspect Wilkie's claim is that the dividend 

yield is not very stationary. This is because the price movement is not at the 
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same speed as that of dividend. Therefore the deviation of dividend yield from the 

expected value, which is estimated from historical data, may not be an indicator 

for the deviation advised by Wilkie. In another words, when the share price grows 

faster, the current dividend yield will decrease, but this decrease is not because of 

the high level of dividend yield in previous term, and this decreasing may happen 

when the dividend increases faster. As a result, we see the positive relationship 

between dividend yield of preceding term and the dividend force of the current 

term. 

The estimation of the MLE of parameters assumes the model residuals to be indepen-

dently normally distributed. Detailed calculation is as follows based on the advice given 

for simulation in Wilkie (1986): 

. Inflation rate model, with AR(1) process fitting inflation rate: 

VlogQ(t) = CPI(t - 1) 

log L = ' V log Q(t) IJ'V log Q(t) ) 

i=1 UV log Q(t) 

CPI(t) 

where 

VlogQ(t) r'J N(QMU+QA*VlnQ(t-1),QSD), t=2 ... n 

VlogQ(t) N(QMU,V QSD ,i - QA2)' t =1 

. Dividend yield model: 

log L 

where 

in: (log(Y(t)) - /J'log(Y(t)) ) 

i1 0 1og(Y(t)) 

mi log(Y(t)) - YW * V log Q(t) - log YMU - YA * YN(t - 1) 

j1 Ulog(Y(t)) 

fl/( YN(t) —YA*YN(t— 1) ) 

i=1 Ulog(Y(t)) 

) 



22 

VYN(t) N(YA * YN(t - 1)), u = 0log(Y(t)) = YSD), t = 2 

VYN(t) '' N(YA * YN(0), a = 01og(Y(t)) = YSD '1 - y.'' t= 1 

Y(0) : using the real values 

. Dividend model: 

n 
log L = 11 (log(D(t)) - /4log(D(t)) ) 

i=1 Olog(D(t)) 

- 1 log() - DW * DM(t) - (1 - DW) * V log Q(t) 

- Dt  Ulog(D(t)) 

-flYVR(*-1i-fliTTT-flR*fl1iH-_1' -I-. - •1 . •_._'\" 1) 

5 log(D(i)) 

where 

DM(t) DD*VlogQ(t)+(1-DD)*DM(t-1), t=1••ri 

DM(0) = QMU, which is the neutral value of DM(t) 

YE(t) YN(t) - YA * YN(t -1) 

YE(t) is not the standardized value. YE(0) is a real value 

DE(t) V log(D(t)) - PV1og(D(t)) 

DE(t) is not the standardized value. DE(0) = 0 

where 

01og(D(i)) = DSD, t = 2. . . 

Olog(D(t)) = DSD/(1 + DB2), t = 1 

The estimated parameters of the Wilkie Model for Canadian and US markets are listed in 

the tables at the end of this chapter. The following are the plots of confidence intervals of 

prediction and real values of quarterly Canadian inflation rate, dividend yield, dividend, 

and share price. The real value plots are those zigzag curves. The parameters' estimation 

is based on 1956-1995 quarterly data, and the prediction is for 1996-2005. 
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The following plots are the predictions from the updated parameters based on Canadian 

quarterly data during 1956-2005. The predictions are the mean values of the simulation 

for each year over 10 years with the initial value of October 1995. The parameters of 

dividend yield model and dividend model are estimated simultaneously, not one by one 

in order, because there is an estimated transfer variable YN(t). 
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We can see some changes in the above plots as follows: 

elnlu & real Canada price gd-OS 
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40 

40 

• The mean value of dividend yield Y(t) decreases from 0.009 to less than 0.008. This 

makes the predicted share price index rise from less than 4500 up to around 5000. 
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• The variance of dividend yield increase a little bit, thus it covers the values of real 

dividend yield. 

• The predicted model for dividend is not bad, but the prediction for dividend yield 

and share price is really poor. 

Similar results can be obtained for yearly data. The following plots are based on the 

yearly Canadian data. The prediction is for 10 years with the initial value of 1995. 
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The following plots are the Wilkie Model with update parameters estimated from the 

yearly Canadian data during 1956-2005. 
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From the plots, we did not see any significant difference between using yearly data and 

using quarterly data for the Wilkie Model. 
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The following plots are the predictions and real values for 17 years in US market. 

The parameters' estimation is based on US data during 1926-1989, and the prediction 

is for, the period of 1990-2006. We can see the similar results as those of Canadian data. 
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The following plots are based on parameters estimated from yearly data of 1926-2006. 

From the plots we can get the similar results as those of Canadian data. 
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From these plots, we can see that the share price prediction is poor as given by the 

Wilkie Model. The variance analysis of prediction of price is not easy to obtained due 
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to the nonlinear relationship between price, dividend and dividend yield. 

In order to predict total return index, we could use one of the following three 

methods: 

1. Construct an univariate model for index price yield, if the yield is stationary 

and ergodic. 

2. Use VAR method to model stationary multivariate relations, and cointegrated 

VAR to model non-stationary multivariate relations. In the cointegrated modeling, we 

construct a model for two or more closely related factors, such as shareF price index 

and total return index, and use cointegrated factors as a latent variable to transfer the 

prediction of one variable, e.g. share price index, into the prediction of another one, 

e.g. total return index. Since this requires the cointegration relationship to be veiy 

significant, which is not a good application for dividend and share price. 

3. Assume the price is not stationary or not predictable, it could be determined 

by two or more other variables, which are stationary and predictable. This actually is 

not the case in the Wilkie Model , because price is even more stationary than dividend 

yield in the Wilkie Model. 

Therefore we need to reconsider the structure of the Wilkie Model. 
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2.2 Other Selected Models 

Regarding the predictability of the Wilkie Model for the stock market yield R, 

we conducted a comparison test with Independent Log-Normal model (ILN), fitted 

univariate ARIMA-GAROR model, and Regimes-Switching Log-Normal model with 

two regimes (RSLN2). 

The data used in these tests are TSX Total Return Index Tt. The period cov-

ered is 1956-2005. The data used are monthly data and quarterly data for different 

models. Quarterly data are the values of January, April, July and October of every 

year. The choice of quarterly data is preferred because these models are used to predict 

medium terms like 10-year period, not short terms. Wilkie (1995) also preferred the 

choice of quarterly or yearly data, because he thought monthly data brings too much 

noise for longer term analysis. The fitted models for TSX total return index with 

various methods are listed in the following subsections. Those models include ILN, 

ARIMA-GARCH, and RSLN2. 

2.2.1 ILN Model 

Independent log-normal model was developed for financial application when the continu-

ous Brownian motion was used in assets pricing. The continuous Brownian motion B(t) 

is a continuous-time stochastic process for a time-dependent variable such as TSX Total 

Return yield R. Then the TSX Total Return index is a geometric Brownian motion 

= T[ * eB(t). Since B(t) could have a drift y and volatility a. Then cumulatively 

= T*e1Lt (t), where W(t) is a standard Brownian motion, and E(Tfl = 

When we estimate the parameters for R, we use conditional density for Rt given 

all the information up to time t - 1, which is denoted by The density function for 
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total return index yield RtI.21 is as follows: 

f(Rt) =  ), with the MLE of and a 

The results from the fitted model by ILN are plotted as follows. The top four are plots 

of the fitted ILN model for quarterly TSX yield, and the bottom four are plots of the 

fitted ILN model for monthly TSX yield. 

From the following plots, we can see that ILN method is good for modeling the 

trend of total return index. The prediction of index price is unbiased for real value. The 

real values are within the 95% confidence intervals. Ljung—Box tests for residuals are not 

significant. The estimated parameters are in the tables at the end of this chapter. But 

we can also see from the Q-Q plots that ILN does not catch the thick tail of TSX yield. 

However when we use ILN to model index yield, we have more concern with quarterly 

data. ILN model is based on the continuous assumption. Its result is the force of yield, 

not real yield. However in other models, it is better to use discrete assumption to model 

quarterly data, as in the Wilkie Model. The worst result from this comparison is that 

ILN enlarge the absolute values of the negative yield values. In another words, ILN has 

the lower percentiles than the corresponding values under the discrete assumption, and 

lower percentiles are just what we care about. Therefore when we compare the results 

of percentiles, we have to keep this error in mind. One solution for this problem in 

comparison is to use yield under the continuous assumption for all models, even though 

it does not make sense for some models. But at least the results are comparable. 
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The ARIMA-GAROR model is used to model the dynamic structure of long term time 

series, which are stationary, ergodic, and dependent on lagged values. ARIMA or Au-

toregressive Integrated Moving Average model is used to model the conditional mean of 

the series. This part includes three components: difference of time series, Autoregressive 

models, and Moving Average models. The method of model construction is through ob-

serving the Autocorrelation Function (ACF) and the Partial Autocorrelation Function 



30 

(PACF) performance of the time series and their residuals after fitting a model. P—values 

of Ljung-Box Chi-Squared statistics of residuals are also used to test the dependence be-

tween residuals. GARCH or Generalized Autoregressive Conditional Heteroscedasticity 

model is used to model the variance of the residuals of ARMA models. The ARCH 

model was introduced in Engle (1982), and GARCH model was introduced in Boiler-

slev (1986). Ljung—Box statistics for squared residuals can be used to test the ARCH 

effect of residuals. Based on GARCH models, mathematicians developed many similar 

models. For example, Tsay (1987) suggested Conditional Heteroscedastic Autoregres-

sive Moving Average models (CHARMA), and Nelson (1991) came up with Exponential 

GARCH models (EGARCH). Because our model is for the long term time series with 

wider time gap for two consecutive values, the GARCH effect for residual variance is not 

very significant. However we still test it as a modeling process. The models and the 

relative density function used to estimate parameters are as listed below. 

. AR(1) model: Rt = + a(Rt_i - ) + ott. 
Its conditional density function is f(RtI..i) = /,(Rt - i..t - a(Rt_i - '), with the 

0• 

MLE of M, aand o. 

. MA(1) model: Rt = + o + Oo_ 

Its conditional density function is f(R/1) = (Rt - - Oat_i 
0. 

• GARCH(1,1) model: Rt = + o, at2 = a0 + ai(R1 -Ij )2 + /30. 4 . 

Its conditional density function is f(Rt -) = ( Rt /ao+ai(Ri_i _)2+/3 2 

By repeated trials, we obtained different time series models fitting the TSX index yield. 

The final choice of the univariate ARIMA—GARCH model for TSX total return index 

is: ARMA(1,1) and ARMA(1,1)+GARCH(1,1I) for monthly data, and ARIMA(0,0,0) x 
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(0,0,1) for quarterly data. The following is what we did for the modeling according to 

Tsay (2005): 

. Find the stationary mean model; 

. Test the ARCH effect of residuals. If there is ARCH effect, fit the ARIMA-GARCH 

model. 

The modeling process is illustrated as follows. We can see that in the ARMA(1,1) model, 

parameters are significant, and the maximized log-likelihood value increases the value of 

6 from the random walk model. When Box-Ljung P-value shows no further modifications 

are necessary to the modeling of mean part, we choose ARMA( 1,1) as the fitted univariate 

models for the mean. 

# Modeling for the original TSX return rate 

> Modell = arima(rate, c(0,0,0)) 

4 Random Walk model for mean 

# Ljung-Box tests are significant, so there is necessary for 

# further modeling. This model's log likelihood = 1013.26 

> Model4 

Call: 

arima(x = rate, order = c(1, 0, 1)) 

Coefficients: 

arl mal intercept 

-0.7356 0.8309 1.0088 

s.e. 0.1874 0.1574 0.0019 

sigma-2 estimated as 0.001948: log likelihood = 1019.12, aic = -2030.24 

Box-Ljung test for fitted ARMA(1,1) has p-value = 0.7678 
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After finding the stationary mean model for the monthly data, we took the Ljung—Box 

test for squared residuals e to test the ARCH effect. This method was introduced in 

Tsay (2005). From the following plots of test, we can see that ARCH effect is significant 

before modeling of mean based on the first plot. But this ARCH effect is a false one, 

because the volatility in variance is mainly due to the change of the mean level of the 

TSX yield. After the mean is stationary, we took the ARCH effect test of the residuals 

again based on Ljung—Box statistics for squared residual series. In this case the Ljung— 

Box tests for the residual series are not significant. From the third plot we can see that 

the Autocorrelation Function (ACF) of the residuals after fitting ARMA( 1,1) model does 

not show any significant patterns. That means the values of residuals are independent. 

The Partial Autocorrelation Function (PACF) does not show any significant process 

patterns either. That means the variance of residuals is independent too. Therefore we 

use ARMA(1,1) model for the TSX yield. 
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Similar results were obtained from Engle's test in Matlab, which are the plots given 

below. The left one is the ARCH effect test plot for the raw data; the middle on is the 

ARCH effect test plot after fitting ARMA(1,1) model, and the right one is the Ljung—Box 
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test for residuals. 

The following are the plots of simulation and prediction based on ARMA( i. , 1) model for 

monthly data. The simulated values were based on 10,000 times simulation. From the 

top three plots, we can see the standardized residuals (or innovations ) and values of 

yield rate. From the middle four plots, we can see the histogram plots for the final value, 

yearly or cumulative yield, of the 10 years and the fitness of price prediction based on 

this model. We can see that the prediction is as good as ILN model, But we will see in 

the tables that the distribution of the simulated values has thicker tails for yield rate. 
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Even though GARCH effect is not significant under ARMA(1,1) model, the 

ARMA( 1,1) +GARCH(1,1) model does improve some features of simulation. The fol-

lowing is the plot of simulation based on ARMA( 1,1) +GARCH(1, 1) model for monthly 

data. It creates thicker tail with minimum value of -0.3558, while minimum value of the 
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simulation by ARMA(1,1) model is -0.2153. Probability of market crash is 0.0008, while 

that of ARMA(1,1) is 0. This part will be further explained in next section. 

mo 

120 

With regard to quarterly TSX total return index, the univariate ARIMA-GARCH model 

was obtained as follows: 

The ARIMA modeling for mean is as follows: 

> ModelO # Random Walk Model 
Coefficients: 

intercept 

1.0267 

s.e. 0.0058 

log likelihood = 216.23 

Box-Pierce test for lag 1: p-value = 0.4948 

> Modell # ARIMA(1,0,5) 

Coefficients: 

arl mal ma2 ma3 ma4 ma5 intercept 

-0.3226 0.3846 -0.1096 -0.0713 0.0063 -0.2815 1.0265 

s.e. 0.2565 0.2627 0.0863 0.1051 0.0866 0.0913 0.0039 

log likelihood = 223.48 

> Mode12 # ARIMA(1,0,2) x (0,0,1) seasonal period is 8. 

Coefficients: 

arl mal ma2 smal intercept 

0.8896 -0.8771 -0.1229 0.1338 1.0277 

s.e. 0.0381 0.0782 0.0764 0.0625 0.0010 

log likelihood = 222.31 

> Model7QQ # ARIMA(0,0,0) x (0,0,1) seasonal period is 5. 

Coefficients: 

smal intercept 
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s.e. 

-0.2371 1.0265 

0.0792 0.0044 

sigma-2 estimated as 0.006378.: log likelihood = 220.44 

The plots Ljung-Box tests for residuals of different fitted models are as follows: 

residual p-value Random Walk Model ARIMA(1,0,5) for 56-05 
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From the results we can see that if we use ARIMA model to fit the mean of quarterly 

data during 1956-2005, there are at least three model's fit the data: ARIMA(1,0,5), 

ARIMA(1,0,2)x(0,0,1)8, and ARIMA(0,0,0) x (0,O,i). We can see that the best 

model here available is the last one ARIMA(0,0,0) x (0,0,1) with seasonal periods 

of 5. Although this result does not make much sense, it is statistically significant 

based on Ljung-Box statistic. This result may come from many reasons such as 

the choice of the value of certain month as quarterly data. But we can see that 

even if the model constructed from the data which may not be selected correctly 

according to financial practice, the statistically optimized model could still simulate 

and predict the future movement of the index pretty well. 
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• This model was also confirmed in the prediction model based on data during 1956-

1995. We can see from the following models that the model ARIMA(0,0,0) x (0,0,1) 

suit the selected quarterly data best. The model data is as follows: 

> Model0Q2 # Random Walk Model 
log likelihood = 172.84, 

> ModeliQQ2 # ARIMA(0,0,0) x (0,0,1) with seasonal period of 5. 

Coefficients: 
smal intercept 

-0.1975 1.0261 

s.e. 0.0870 0.0051 

sigma-2 estimated as 0.006444: log likelihood = 175.34 

> Model8QQ2 # ARIMA(0,0,0) x (0,0,1) with seasonal period of 8. 

Coefficients: 

sinai intercept 

0.1253 1.0258 

s.e. 0.0681 0.0072 

s1gma2 estimated as 0.006517: log likelihood = 174.47 

• Test of heteroscedasticity by Ljung-Box test. The tests have high p-values for 

original quarterly data, and for the residuals after fitting the models ARIMA( 1,0,0) 

x (0,0,1)1, so we does not reject the constant variance assumption. If we apply 

GARCH(1,1) to fit the data, the parameters are not significant. 
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The forecasting plots for the period of 1996-2005 based on the data from 1956 to 1995 

are as follows: 
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From the plots we can see that the prediction is as good as other models we have done. 

And the parameters are listed in the following tables at the end of this chapter. From 

the tables we can see that the tails of ARIMA model is a little thicker than ILN. 

2.2.3 RSLN2 Model 

Regime—Switching (RS) model assumes there are different regimes of distribution for 

the stock price yield movement. The advantage of the model is to model a regime using 

partial information in the historical data, and model another regime using another part 

of information. The switching between different regimes is assumed to be Markov. This 

method could create more accurate models for different parts of the historical data. As a 

result, this method could create thick tails in many applications. This regime-switching 

model was first introduced by Hamilton (1989). Log—normal Regime Switching (RSLN) 

model was then used by Bollen (1998). Because it can be fitted to many thick tail 

distribution, it is widely recommended to model equity index yield. Here we used the 

model RSLN2 recommended by Hardy (2003). The model of RSLN2 is as follows: 

RtIpt N(,up, where p represents the regime. There are transition probabilities 

between regimes Pjj = Prob(pt+i = jipt = i), j = 1,2 j = 1, 2. 
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Hardy (2003) describes a method to compute log—likelihood function for RSLN2 

models. The procedure is to maximize the log—likelihood of TSX yield at time t based on 

the conditional distribution given information up to t - 1. The difficult part is that the 

conditional distribution involves both the distribution of regimes and the distribution of 

yield rate given the condition of certain regime. The estimated parameters are in the 

tables at the end of this chapter. The plots of prediction are as below, which are similar 

to what we did with the JLN and ARIMA—GARCH models. The middle two plots are 

the simulation of quarterly data, and the bottom two are the simulation of yearly data. 

The distribution of stock price yield is unbiased to the mean level and has thicker tails. 
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With regard to RSLN model, we still have two concerns as follows: 

30 40 

• The first concern is about the volume of data with respect to the total 6 parameters. 

In quarterly data, we have only 200 data values, which results in 30 data values 

for each parameter on average. That will make the model unreliable for prediction, 

especially in this long term situation for prediction over 10—year period. 

• The second problem for the modeling is that the constructed regimes based on a 

Markov chain are not observable. When we modeled RSLN, the commonly used 
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test is the LRT test, which is used to compare maximized log—likelihood values 

with other models such as ILN, ARIMA models. Fortunately when we compare 

RSLN models with other models, our purpose here is to check the estimation of 

variance or thickness of tails. Therefore our test is not used to find the Markov 

chain probability matrix, but to find the variance or tails. After taking the residual 

of the variance, we want to see: 

- Whether the standardized residuals are white noise, which could be verified 

from the histogram plots of rate residuals of each regime. 

- Whether the tails are significantly increased, or whether the yield distribution 

has lower 5% percentiles. 

2.3 Model Validation 

To evaluate various methods of modeling TSX index yield, we took a look at their fitness 

of trend, checked the behavior of residuals, and compared the measures of percentiles 

after simulation. 

The first step of testing is to check the fitness of TSX Total Return Index yield. 

The tests include: 

• Testing the predictability for the period of 1996-2005, total 10—year period, based 

on the information given by the Canadian data during 1956-1995. The plots are 

done in the previous sections. From the results, we can see that ILN, ARIMA 

and RSLN model are quite similar in predicting the moving trend of the index. 

Unfortunately the Wilkie Model does not provide a good prediction for the TSX 

Total Return Index yield based on the prediction of dividend yield and dividend. 
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• We also calculated and compared the values of maximized log-likelihood function, 

AIC, SBC, and LRT test for each model. 

- For log-likelihood function log  = 1 = fl f(RtIJ_i), its maximized 

values of different models are computed and compared, which are used to 

compare the fitness of index variables. 

- Akaike Information Criterion (AIC) : AIC = log L - k , where k is the number 

of parameters. In this criterion, the penalty of AIC value for each parameter 

is one. 

- Schwarz—Bayesian Infomation Criterion (BIC): BIC = log L - k log(m), 

where n is the number of observations. In this criterion, the penalty of BIC 

value for each parameter is 1 log(n). 

- P—value of Log—likelihood Ratio test (LRT) : LRT = 2 * (log L1 - log L2) 

X 1, where degree of freedom (d.f.) is the difference of the number of para-

meters in two models. This test is used to see whether the models with more 

parameters are significantly better based on the p—value of X f. distribution. 

From the results shown in the tables, we can see that for monthly data, RSLN2 model 

is significantly better than ILN and ARIMA models. For quarterly data, RSLN also has 

the highest log—likelihood values. However it does not significantly perform better than 

ARIMA. ILN is significantly worse than RSLN and ARIMA models. This is because 

ILN model does not consider the dependence features of the time series. The Wilkie 

Model does not show any improvement compared to other models, even though it has 

more parameters. Actually we can see that the Wilkie Model is the worst among all 

these four methods in fitting the data. 

The second step of testing is for the residuals after fitting the models. The cal-
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culation of residuals is listed as follows. We did not use standardized residuals, because 

the residuals were obtained from the same TSX index yield. Whether the residuals are 

standardized or not does not affect their qualitative characters such as independence 

and the shape of distribution. What is more, the non-standardized residuals can be used 

to compare the variance of each group of residuals. 

. ILN model. 

residuals = Rt - E(R) = - 

• ARIMA model. 

residuals = Rt - E(Rt I.Ft-1). There is no further residual test for this method, since 

we know that they are white noise when we construct the models. 

• RSLN model 

residuals = - Prob(p = 1) * p. - Prob(p = 2) * /22, where p is the regime. 

• The Wilkie Model 

residuals = Rt predicted (price + dividend) at time t IJ..i  
real index price at time t-1 

• Other residuals in the Wilkie Model used to predict TSX index yields, such as YE(t) 

from dividend yield model and DE(t) from dividend model, were also obtained for 

the test. 

The following are the plots of residuals and their ACF, PACF, and Q-Q normal plots. 

From the following plots, we can see that the residuals of the Wilkie Model for TSX index 

yield show some dependence relationship with previous residuals. YE(t) and DE(t) are 

not white noise at all. They are dependent on the previous values of their own. These 

results contradict the assumptions of the Wilkie Model. 
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• Residuals of RSLN and ILN model are closer to each other. That is to say, their 

predictions are close, while the residuals of the Wilkie Model show less correlation 

with them. 

• The residuals YE(t) and DE(t) in the Wilkie Model show a strong correlation, 

which displays their dependence on each other, and implies some other information 

should be added to the models. 

Correlations: 

ILN RSLN Wilkie YE 

RSLN 0,732 

0.000 

Wilkie 0.559 0.501 

0.000 0,000 

YE -0.067 -0.151 -0.617 

0.349 0.033 0.000 

DE 0.430 0.269 0.159 0.671 

0.000 0.000 0.025 0.000 

Cell Contents: Pearson correlation 

P-Value 

The third testing was conducted after simulation of 10,000 times. We tested the per-

formance of each model. The interested statistics include mean, standard deviation, 

skewness, kurtosis, minimum value, percentiles of 2.5%, 5%, 10% The standards of per-

centiles are set up by CIA SFTF report 2000 are listed as follows: 

period 2.5th 5th 10th percentile 

10-year 0.85 1.05 1.35 

For monthly data, we also used the statistic Pr(Crash): 

Pr(Crash) = Pr{ min Y < —0.2552} 
1<t<120 

The Prob(crash) is based on the event in October 1987 when the TSE index 
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crashed with the historical low yield value of -0.2552. This test was not done for the 

quarterly data, because I have no crash value for quarterly yield. The calculation of 

skewness and kurtosis is as follows: 

Skewness = 

Kurtosis = 

(0 under normal distribution) 

(3 under standard normal distribution) 

From the table, we can see that the simulation of RSLN2 shows the best performance. 

It does not only improve the probability of crash and has lower percentile values, but it 

also fits the data best. Of course RSLN method has its disadvantages. It does not behave 

smoothly when it switches from one regime to the other one, which is a contradiction to 

reality. 

2.4 Tables 

In this section I listed all the tables we obtained for the previous models. 

• Table 2.1-2.6 are the estimated parameters for each model. 

• Table 2.7-2.8 are the comparisons of the values of model selection statistics for each 

model. 

• Table 2.9-2.12 are the summary of statistics based on the simulation of 10,000 

times for each model. 
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Table 2.1: Estimated Parameters of the Wilkie Model for Canadian Quarterly Data 

Models Excel Parameters 56-05 56-95 56-05 sim 56- sim 
Inflation QMU 0.010058 0.011161 0.010058 0.011161 

QA 0.598371 0.605274 0.598371 0.605274 
QSD 0.007225 0.007502 0.007225 0.007502 

Dividend Y\?\T 2.412561 5.022816 2.035675 4.795301 
Yield YA 0.89686 0.604646 0.906966 0.631055 

YMU 0.007261 0.008357 0.007367 0.008376 
YSD 0.159886 0.157827 0.159913 0.157874 

Dividend DW 1 1 1 1 
DD 1 1 1 1 
DMU 0.00129 0.0000705 0.00107 0.0000708 
DY -0.15644 -0.11854 -0.16682 -0.1277 
DB -0.66449 -0.68753 -0.66031 -0.68413 
DSD 0.1258548 0.136015 0.125749 0.135897 

Table 2.2: Estimated Parameters of the Wilkie Model for Canadian Yearly Data 

Models Parameters Wilkie's values My values 56-95 sim values 56-05 sim 
Inflation QMU 0.034 0.043819 0.038636 

QA 0.64 0.804559 0.821502 
QSD 0.032 0.018062 0.016788 

Dividend YW 1.17 -2.274744033 -2.616794131 
Yield YA 0.7 0.847249498 0.966969169 

YMU 0.0375 0.039639689 0.038402052 
YSD 0.19 0.129959649 0.13815021 

Dividend DW 0.19 0.860235993 0.554153424 
DD 0.26 0 0 
DMU 0.0010 0.004341127 0.007470869 
DY -0.11 0.430619503 0.353427584 
DB 0.58 -0.969651819 -0.99 
DSD 0.07 0.127028916 0.119019924 

Notes: 

• The Canadian data for all variables have the same length between 1956 to 2005, or 
between 1956 to 1995. 

• Parameters of different models are estimated one by one in order (sep), or simul-
taneously (sim) for dividend yield model and dividend model. 
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Table 2.3: Estimated Parameters of the Wilkie Model for US Quarterly Data 

Models Parameters Data 26-89 Data 26-06 Data 26-89 sim Data 26-06 sim 
Inflation QMU 0.007604 0.07395 0.007604 0.07395 

QA 0.625884 0.593821 0.625884 0.593823 
QSD 0.010894 0.010212 0.010894 0.010212 

Dividend YW 0.761259 1.696026 1.864281 2.519933 
Yield YA 0.694283 0.891736 0.768182 0.925786 

YMU 0.010485 0.008829 0.010471 0.009639 
YSD 0.197583 0.193611 0.198853 0.194404 

Dividend DW 1 1 1 1 
DD 1 1 0.999792 0.999902 
DMU 0.003892 0.003694 0.003282 0.001204 
DY -0.28056 -0.29176 -0.33527 -0.32668 
DB -0.52753 -0.52858 -0.52399 -0.5331 
DSD 0.146562 0.135818 0.144477 0.134476 

Table 2.4: Estimated Parameters of the Wilkie Model for US Yearly Data 

Models Parameters Wilkie's values 26-89 Data 26-89 sim Data 26-06 sim 
Inflation QMU 0.030 0.030621 0.03012 

QA 0.65 0.621124 0.620844 
QSD 0.035 0.036179 0.032398 

Dividend YW 0.5 0.354067 0.389223 
Yield YA 0.7 0.820782 0.953086 

YMU 0.0430 0.043148 0.032163 
YSD 0.21 0.144368 0.145177 

Dividend DW 1 1 1 
DD 0.38 0.73576 0.75731 
DMU 0.0155 0.013279 0.014013 
DY -0.35 0.142592 0.203263 
DB 0.50 -0.3014 -0.28749 
DSD 0.09 0.13983 0.138464 

Data source: 

• The US yearly data for all variables have the same length between 1926 to 2006. 

• Parameters of different models are estimated one by one in order based on the one 
way direction cascade structure of the Wilkie Model, or simultaneously (sim) for 
dividend yield model and dividend model. 
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Table 2.5: Parameters of Fitted Models for Quarterly TSX Return of 1956-2005/1995 

Models Parameters Data 56-05 95%CI Data 56-95 95%CI 
ILN /4 0.0231 (0.012, 0.034) 0.0225 ( 0.010, 0.035) 

ci 0.0809 (0.074, 0.090) 0.0810 (0.073, 0.091) 
ARIMA(0,0,0) 0.0265 (0.022, 0.031) 0.0261 (0.021, 0.031) 
x(0,0,1)5 smal -0.2371 (-0.392, -0.819) -0.1975 (-0.111, -0.285) 

0.001948 
RSLN2 P12 0.388005657 0.51686224 

P21 0.313011721 0.321146443 

PI 0.05191 0.052867 
Ul 0.046991 0.038279 

/42 -0.00011 0.003641 
72 0.093703 0.093437 

Table 2.6: Parameters of Fitted Models for Monthly TSX Return of 1956-2005 

Models Parameters Data 56-05 95%CI Data 56-95 95%CI 
ILN A 0.00781 (0.004,0.011) 0.00760 (0.004, 0.012) 

ci 0.04503 (0.043, 0.048) 0.0810 (0.042, 0.047) 
ARMA(1,1) p 0.0088 (0.007, 0.011) 0.0086 (0.005, 0.013) 

an -0.7356 (-1.103, -0.368) -0.8348 (-1.003, -0.667) 
mal 0.8309 (0.495, 1.112) 0.9172 (0.793, 1.042) 

0.001948 0.001879 
ARMA(1,1) it 0.0148 (0.008, 0.219) 0.0137 (0.006,0.021) 
+Garch(1,1) an -0.7629 (-1.042, -0.484) -0.8426 (-1.050,-0.635) 

mal 0.8380 (0.607,1.070) 0.9078 (0.748,1.068) 
K* 10-4 2.6599 (0.160,5.160) 2.5445 (-0.544,5.633) 
Garch 0.7591 (0.589,0.930) 0.7755 (0.558,0.994) 
ARCH 0.1129 (0.044, 0.182) 0.0932 (0.014,0.172) 

RSLN2 P12 0.193244986 0.193901148 

P21 0.042154273 0.040173968 

Al -0.015944318 -0.012303931 
cr1 0.072537313 0.073023395 

/42 0.013034636 0.011762245 
0.034086235 0.033750334 
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Table 2.7: Comparison of Fitted Models for Quarterly TSX Return during 1956-2005 

Statistics ILN ARMA(0,0)x(0,1)5 RSLN the Wilkie Model 

# of Parameters 2 2 6 10 
logL 218.43 220.44 224.28 212.58 
SBC 212.17 214.17 205.48 181.24 
AIC 216.43 218.44 218.28 202.58 
LRT p-value 0.0197 0.104 N/A N/A 

Table 2.8: Comparison of Fitted Models for Monthly TSX Return during 1956-2005 

Statistics ILN ARMA ARMA-GARCH RSLN the Wilkie Model 

# of Parameters 2 3 3 6 N/A 
logL 1013.04 1019.12 1024.8 1049.22 N/A 
SBC 1006.65 1009.72 1005 1034.42 N/A 
AIC 1011.04 1016.12 1018.8 1043.22 N/A 
LRT p-value <10-8 <10-8 <10-8 N/A N/A 

Note: 

• The number of parameters of the Wilkie Model for prediction of Total Return yield 
is 13. But when we calculated the log-likelihood of total return yield, we use only 
dividend yield model and dividend model, no inflation model. Therefore there are 
10 parameters here for the Wilkie Model. 

• The LRT test is based on the comparison with the log-likelihood value of RSLN2 
model, because it is the highest among the values of all used models. The test 

statistics = 2(1RSLN - 1others) 

• We can see that the Wilkie Model does not improve the maximized log-likelihood 
values significantly, even though it has much more parameters. The main reason 
is the poor fit of recent 10 years, which can be seen from the plots for the Wilkie 
Model. 

• The maximized log-likelihood values will not be comparable when the calculation 
of distribution density is different, based on different methods. So in the calculation 
we need to keep consistent in computing the log-likelihood function based on normal 
density function, i.e. use the standardized normal f(z) = = in all cases, 
or use normal f(x) - N(p, a) in all cases. Do not mix these two methods. 
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Table 2.9: Simulation of 10-Year Monthly TSX Return under Continuous Assumption 

Statistics ILN ARMA(1,1) ARMA-GARCH(1,1) RSLN 

mean 0.0092 0.0074 0.0085 0.0079 
std.dv 0.0456 0.0452 0.0458 0.0450 
Skewness 0.1430 0.0450 0.0005 -0.6437 
Kurtosis 2.9685 2.9779 3.1870 5.6144 
Minimun accumulated value -0.7563 -1.1553 -1.3169 -2.3717 
2.5 percentile accumulated -0.0401 -0.0675 -0.0108 -0.3254 
5 percentile accumulated 0.1192 0.0836 0.1578 -0.0908 
10 percentile accumulated 0.3446 0.2724 0.3495 0.1791 
Minimun value -0.1986 -0.2153 -0.3558 -0.3463 
2.5 percentile -0.0806 -0.0803 -0.0817 -0.0958 
5 percentile -0.0663 -0.0661 -0.0663 -0.0677 
10 percentile -0.0500 -0.0497 -0.0492 -0.0444 
Pr(crash) 0 0 0.0008 0.0088 

Table 2.10: Simulation of 10-Year Quarterly TSX Return under Continuous Assumption 

Statistics ILN ARMA(0,0)x(1,1)5 RSLN 

mean 0.0273 0.0231 0.0229 
std.dv 0.0829 0.0811 0.0807 
Skewness 0.2306 -0.0284 -0.4634 
Kurtosis 3.1670 3.0082 3.6518 
Minimun accumulated value -0.6952 -0.6478 -1.6515 
2.5 percentile accumulated -0.0806 0.1197 -0.1366 
5 percentile accumulated 0.0909 0.2608 0.0316 
10 percentile accumulated 0.3053 0.4106 0.2342 
Minimun value -0.3683 -0.3700 -0.4215 
2.5 percentile -0.1357 -0.1356 -0.1586 
5 percentile -0.11010 -0.1099 -0.1258 
10 percentile -0.0808 -0.0806 -0.0864 

Comments: 

• From the results, we can see that ILN model has smallest tail for monthly data, 
and RSLN model has the thickest tail for both monthly data and quarterly data. 



50 

Table 2.11: Simulation of the Wilkie Model for Yearly TSX Return over 10 years 

Statistics Wilkie CA CA 56-05 Wilkie US US 26-06 

mean 0.0475 0.0721 0.0747 0.0755 
std.dv 0.2589 0.2127 0.3463 0.2024 
Skewness 0.6996 0.6158 1.0254 0.5414 
Kurtosis 3.8159 3.6865 4.7640 3.5715 
Minimun accumulated value -0.8840 -0.6556 -0.8888 -0.8093 
2.5 percentile accumulated -0.7040 -0.3241 -0.7207 -0.4976 
5 percentile accumulated -0.6454 -0.2504 -0.6616 -0.4044 
10 percentile accumulated -0.5735 -0.1623 -0.5870 -0.2942 
Minimun value -0.6433 -0.5615 -0.7419 -0.5385 
2.5 percentile -0.3701 -0.2905 -0.4512 -0.2663 
5 percentile S -0.3218 -0.2441 -0.3963 -0.2233 
10 percentile -0.2614 -0.1879 -0.3242 -0.1681 

Note: 

• The parameters used here include Wilkie's parameters for Canadian market, para-
meters estimated based on Canadian data of 1956-2005, Wilkie's parameters for 
US market, and parameters estimated based on US data of 1926-2006. 

• Updated parameters were estimated from data up to 2005 and the estimation for 
the parameters of dividend yield and dividend models were made simultaneously. 

• The initial values are based on Canadian market 1995 data, and US market 1995 
data. 

• The final calculation of Rt is based on discrete assumption. 

Comments: 

• Updated US and Canadian models have higher TSX Total Return Index yield, 
which is due to the recent development of the market. Updated US modes also 
has smaller deviance, smaller kurtosis, smaller skewness, and thinner tails. These 
improvement not only comes from the more data and the development of their dis-
tribution, but also comes from the updated parameters which makes the simulation 
more reasonable. 

• We can see that the Wilkie Model for yearly data underestimates the confidence 
intervals, which create too thick lower tails, even for updated parameters. 
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Table 2.12: Simulation of the Wilkie Model for Quarterly TSX Return over 10 years 

Statistics based on CA 56-95 CA 56-05 US 26-89 US 26-06 

mean 0.0107 0.0145 0.0127 0.0139 
mean2 0.0422 0.0410 0.0592 0.0517 
std.dv 0.2730 0.2556 0.3498 0.3248 
Skewness 0.7879 0.7146 1.0286 0.9510 
Kurtosis 3.9965 3.8208 4.8726 4.7542 
Minimun accumulated value -0.7905 -0.9120. -0.9516 -0.9848 
2.5 percentile accumulated -0.5868 -0.6500 -0.8203 -0.8718 
5 percentile accumulated -0.5250 -0.5789 -0.7699 -0.8295 
10 percentile accumulated -0.4433 -0.4739 -0.6930 -0.7598 
Minimun value -0.7171 -0.6826 -0.7964 -0.7515 
2.5 percentile -0.3948 -0.3709 -0.4650 -0.4449 
5 percentile -0.3441 -0.3220 -0.4081 -0.3888 
10 percentile -0.2785 -0.2590 -0.3357 -0.3182 

Note: 

• The parameters used here are parameters estimated based on Canadian data 1956-
1995, on Canadian data 1956-2005, on US data 1926-1989, and on US data 1926-
2006. 

• Estimation for the parameters of dividend yield and dividend models were made 
simultaneously. 

• The initial values are based on Canadian market October 1995 data, and US market 
October 1995 data. 

• The final calculation of Rt is based on discrete assumption 

• mean = average(Pt+i+Dt+i)  
average(Pt) 

mean2 = average( t+it+)  
Pt 

Comments: 

• We can see that parameters are different. The difference is because of different 
length of series and different markets. This result makes us doubt the method of 
linear modeling for those series. 

• Compared with RSLN model, we can see that the Wilkie Model for quarterly data 
have bigger kurtosis, thus has wider confidence intervals, and too thick tails. Also 
the Wilkie Model underestimates TSX yield values and is biased. 



Chapter 3 

Discussion of Dividend Yield 

3.1. Test of Dividend Yield 

Dividend yield = Dividend shows the meaning of dividend yield Y(t). Dividend yield 
Price 

could display the property of a stationary series through fitting some ARIMA models. 

However, it need to be more stationary than stock price such that its models has better 

prediction ability than stock price models, and it also needs to be an ergodic process in 

order to be valid for prediction. 

The data is from CRSP monthly index. This database provides access to 

NYSE/AMEX/Nasdaq daily and monthly security prices. What I used to calcu-

late dividend yield are two indices "Value weighted return-all distributions" rr1, and 

"Value weighted return-exclude dividends" rr2, and "S&P Composite Index" P. Since 

it does not matter whether we use discrete assumption and continuous assumption 

for monthly data, here we calculated dividend yield based on discrete assumption for 

dividend yield according to Wilkie (1995). The calculation is as follows: 

dividend yield for month t-1: Yt-i = rr1 -  rr2 (3.1) 

dividend yield for month t: Yt = Yt-i * Pt-1 (3.2) 
Pt 

12 

Yearly dividend yield Yt = fl(i + lIt) (3.3) 

logarithm of dividend yield = log() (3.4) 

The equation (3.2) above may be unnecessary, which actually does not make any sig-

nificant difference from those data series produced by the methods without considering 
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equation (3.2). 

The following plots are based on the data series for US dividend yield Y(t) of 

1927 - 2006. 
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From the above plots we can see that: 

• The time series for dividend yield is not very stationary. 

• The time series from 1927 to 1996 fits very well with a AR(1) model, which is 

verified by the residual analysis through Ljung—Box test. 

• The prediction of the periodfrom 1997 to 2006 by the model inferred from the data 

1926 to 1996 is poor based on this simple ARIMA model. The actual values are 

outside the 95% CI from the prediction. 

From the above information, we have to suspect the validity of using dividend yield 

as a stationary time series to predict price. Let us look at what is the Wilkie Model 
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for logY(t). It is a regression model with AR(1) residuals. The regression part is 

log(Y(t)) V log Q(t), where Y(t) is dividend yield and V log Q(t) is the inflation rate. 

The accuracy of prediction depends on two factors. One is the prediction of inflation 

rate, which is independent of dividend yield in the Wilkie Model; the other is the 

regression model with AR(1) residuals. 

We start with the regression model. That is to say, we assume the prediction of 

inflation rate is perfect and we use the real value of inflation as a replacement for the 

predicted values. The inflation index is calculated based on the Consumer Price Index 

from CRSP database. The price of June is chosen as the representation of annual index. 

The calculation of inflation rate is as follows: VlnQ(t) = log( 0 '). 

The following are some notes for using the Wilkie Model to predict share price. 

• The model parameters are estimated based on US stock market from 1927 to 1989. 

• The inflation rate is from the real values of 1990 to 2006. It is an input for dividend 

yield and dividend model. Stock Price is defined as: P(t) = 

• All simulated values are based on repeated 1000 simulations. 

The following are the plots of the results: 
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The values calculated are as follows: 
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predicted dividend level = 30.9675 

real dividend = 23.76869 

predicted mean Yield = 0.0459 

95%CI predicted mean Yield = 0.0450 0.0467 

95°hCI predicted yield = 0.0185 0.0732 

mean Real Yield = 0.0222 

range of Real Yield = 0.0117 0.0401 

real-price = 1276.7 

sim_price = 672.5140 

10 16 

From the above plots and results, we can see that in the Wilkie Model, even though the 

prediction for dividend is good, because of the poor prediction for dividend yield Y(t), 

the price index of S&P is poorly predicted. As a result, we doubt whether dividend 

yield would be a good component in the structure of the Wilkie Model. 

Another interesting part that we want to compare is whether the aggregated mo-
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dels from the Wilkie Model which includes inflation rate, dividend yield and dividend 

will improve the total prediction than the separate models for each single component of 

the structure. Unfortunately, I could not find the any improvement for the prediction 

based on the aggregated models of the Wilkie Model, when I use predicted inflation 

rate, dividend yield and dividend together to predict price. Actually his prediption for 

inflation rate needs an evaluation too. The following are the plots of the aggregated 

prediction. 
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The values of the 17—year predicted inflation rate from the Wilkie Model are as follows: 

>> Thesis_US_simlnf_DivY_Div_Price(1000) 

meanQ2 = 228.1643 

CImeanQ2 = ( 223.8392 , 232.4895 ) 

CIQ2 = (91.3908, 364.9379 ) 

The mean of simulated results for 17 years inflation rate are close to the real values. 

From the plots below, we can clearly see that, for dividend yield and share price, the 

simulated long run values are far from the real values in recent development. 
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If we just treat the dividend yield as a nuisance variable, we find that the reason 

for the poor prediction of price is not due to the poor modeling of dividend yield. 

It is more likely due to the structure of the Wilkie Model. Actually the share price 

prediction based on the prediction of dividend and dividend yield is not a good method. 

Based on the parameters of the ARIMA model and of the Wilkie Model for the 

Canadian quarterly data during 1956-2005, we can see that the AR coefficient for 

stock price in the ARIMA model is —0.1975, and the AR coefficient for the dividend 

yield in the Wilkie Model is 0.906966. From these two numbers we can see that 

the stock price is more stationary than dividend yield, based on the fit of ARIMA— 

Regression models. In another words, using dividend yield to predict share price will 

not be better than predicting share price directly, with the regression on other predictors. 

Why are the degrees of stationary for the price and dividend yield different? In 

the stock market, share price and dividend tend to be stationary, while dividend yield 

may have no such process. In recent years, the sharp decrease of dividend yield was due 

to the quick increase of stock price. In the stock market where share price determines 
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dividend yield, it may not be a good idea to model dividend yield first, then model the 

price based on the output of dividend yield. However the interaction between dividend 

yield and stock price could be considered when modeling share price. 

Another reason to discard dividend yield as a predicting factor for share price is 

that the dividend yield keeps going down and is at a low level already. If the percentage 

of dividend is at a really low level, how much weight can you give to dividend to help 

predict price? A reasonable one is to treat it as a trivial one. We think this is a more 

reasonable suggestion for the market with higher risks. That is why many financial 

managers try to keep the dividend payments more stationary to keep the risk feeling at 

a lower level. However, the stock market is a risky market, if the dividend yield reaches 

a low level, the power of dividend to predict the share price could decrease to a very low 

level. The following paired data bootstrap method was used to test the decreasing trend 

for the dividend yield based on the historical data, especially those in recent years. 

The structured paired data bootstrap method is based on monthly data for S&P 

dividend yield. Its process is as follows: 

• Obtaining smoothed yearly dividend yield based on monthly yield rate. 

• Bootstrapping the paired data of 10—year period. That is to say if data one was 

taken from the year 1 June index yield, then data two was taken from the year 11 

June index yield. The sample size is 2000. 

• Using the nonparametric test of two sample paired sign—rank test for the median 

values. The advantage of this test is that we do not have to know the distribution 

of the difference. We only need to know that they come from the same distribution. 

And we want to test whether the difference of the means from two index yield sets 
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of 10-year period is zero. 

>> Thesis_bootstrap_DivYield_lyr() 

mean_Q = 0.0399 0.0394 °h 0.0399 is year 1 mean, 0.0394 is year 11 mean 

median_Q = 0.0397 0.0392 °h 0.0397 is year 1 med, 0.0392 is year 11 med 

P = 9.7316e-007 % p-value < 0.05 

h = 1 % this means reject the HO: median of the 

difference is zero. 

The plot below is the Q-Q plot of the paired values with dividend yield of year 11 as y 

coordinate, and those of year 1 dividend yield as x coordinate. 

From the above paired sign-rank test results, we can see that the dividend yield shows 

decreasing trend after 10 years. That is to say, the weight for using dividend yield to 

evaluate share price is decreasing. From the above Q-Q plot, we can see that dividend 

yield of year 11 ( y coordinate ) has lower values in percentiles, compared to those of 

year 1 dividend yield (x coordinate ). This downside trend can also be seen from the 

following plots. The left plot is the time series plot with trend for data from 1956 to 

2005, and the right plot below is for data from 1956 to 1995. 
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But if we do not use dividend yield as a factor to predict share price, it will be impossible 

to use dividend only to predict share price. The following known as Variance Bound Test 

verifies this claim, even if dividend could be predicted well. 

3.2 Variance Bound Test for Dividend-Price 

Variance bound is introduced by Shiller, LeRoy and Porter ( see LeRoy (1996)). The 

idea is as follows: 

Pt 

where: 

let 

therefore 

therefore 

Dt 
/3E(d +i +pt+i) 

Yt 

/3E(d +1 + 

r' (,.j i 1J i I 
-r .Lt+2 r... m p (At+m+1 m p Pt+n+1 

Pt : price of stock price d : dividend ,8 = max(market PV rate) 
00 

*_ ami 
Pt— Pt+n 

n=1 

Pt = Et(pfl 

V(pt) ≤ V(pfl 

Since the calculation of Pt*involves the evaluation of an infinite series in its final form, 

we use the original form Pt = /3E  (d +1 + pt+i). The test is based on monthly data from 

Jan. 1926 to Dec. 2006, S&P share price index and monthly, dividends. 

# This result shows that: 

variance of Price > variance of discounted(Dividend + Price) 

> var(dividend) -O.5 

[1] 0.5410521 

> var(Dist_price_Dividend) # variance of discounted(Dividend+Price) 

[1] 113076.0 

> var(price) # variance of (Price) 
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[1] 137861.9 

This verification will be more significant if we use higher lags of share price with the sum 

of related dividend in previous periods. So the price prediction must be based on another 

model. The new model structure will discard the component of dividend yield Y(t). 



Chapter 4 

Discussion of New Model Structure 

For the current analysis, we used Canadian data of Consumer Price Index (Q) as inflation 

index, 10+ years government bond yield (C) as long term interest rate, and TSX Total 

Return Index (T) as Price. All the items were available on various time spans, but the 

time period 1956.01-2005.12 is common. The data obtained is as follows: 

• Consumer Price Index (Q) monthly data are from 1914.0 to 2006.11, total 1115. 

Its Quarterly data are from 1914.01 to 2006.10, total 372, and Yearly data are from 

1914 to 2006, total 93. 

• TSX Total Return Index monthly data are from 1956.01 to 2005.12, total 600, 

quarterly data are from 1956.01 to 2005.10, total 200, and yearly data are from 

1956 to 2005, total 50. 

• Consols return index monthly data are from 1950.10 to 2006.11, total 674, quarterly 

data are from 1950.10 to 2006.10, total 225, and yearly data are from 1951 to 2006, 

total 56. 

• Data from the common period of 1956.01 - 2005.12 will be used for the multi— 

variable analysis of the three factors 

• All the quarterly data are taken from the index of January, April, July and October 

of every year. All the yearly data use the index of June. 

• Data of other periods will be used to calibrate the models for respectively compo-

nent. The model construction will be based on the data from 1956.01 to 1995.12, 
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prediction will be made for 1996.01 to 2005.12. From this idea, the model construc-

tion is still for a medium term prediction. 

Since we are interested in dropping the dividend yield from the model, we need to test 

the relationship between each of the variables. 

Before considering the new structure, we change the variable of share price by 

the TSX Return Index yield. The motivation for Wilkie to model the price based on 

the dividend model is due to the difficulty in modeling price directly and the feasibility 

to model dividend easily. Our suggestion is to use Total Return Index Tt. Here in 

our models the dividend represents all distributions (Distt)the investors get other than 

capital gain from the price increasing. 

since:  - Pt+i Dist 1  
Tt' Pt Pt 

then: P+1=P(--) - Dist +1 

Distt=Pt(Tt+1—-)—Pt+1 

The reasons for us to choose Tt instead of Pt are as follows: 

• The distributions Distt mainly consists of dividends and moves in a more stable 

path. Therefore I keep the idea to model dividend. 

• Total return index T1 is a martingale = E(T'+1l.) and can be predicted in a 

more predictable way. 

Now we want to consider each variable before we select it into the structure. The following 

are the plots of inflation rate, TSX yield and Consols yield. They are ordered from the 

top to the bottom, and we include their ACF and PACF. 
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• The inflation rate and the Consols yield show the long memory character with long 

lag effects. But the TSX yield shows a random walk property. So the models for 

inflation rate and Consols could include some memory factors of themselves, but 

the TSX yield should not. 

The Consols yield are more stable for a short period. 

Consols yield and inflation rate show some cointegration relationship, which can be 

seen in their covariance. 

4.1. New Model Structure Based on Regressions 

Here we plots eight variables: 

• CPI growth rate ( QCPIyield) 

• TSX Return Index yield ( QtseYield) 
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• Share dividend yield ( QdivY) 

• Share dividend growth rate ( Qdivf) 

• Consols yield (Consols) 

• Rollover mean of CPI growth rate obtained from previous 2 years or 8 quarters 

(rollmeanCPlf). This variable works as a medium memory factor for the mean 

level of inflation rate. 

• Rollover standard deviation of CPI growth rate from previous 2 years or 8 quarters 

(rollstdCPlf). This variable works as a medium memory factor of the variance of 

inflation rate. 

• 50% rollover standard deviation of CPI growth rate for 4 years or 16 quarters 

(ro11std2). This variable also works as a medium memory factor of the variance of 

inflation rate. 

Overall relationships can be built up through the correlation test among all variables. 

Here I use 15 variables. The data used are quarterly data. Those variables include the 

variables mentioned above and the following: 

• Previous term TSX Return Index yield (lagTseYield) 

• Previous term CPI growth rate (lagCPlyield) 

• Previous term share dividend growth rate (lagQdivf) 

• Previous term share dividend yield (lagQdivY) 

• Previous term share Consols yield (lagConsols ) 

• Lagged rollmeanCPlf (lagRolimean) 
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• Lagged rollstdCPlf (lagRollstd) 

The plots are as follows: 
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The correlation values are listed as follows: 

Cell Contents: Pearson correlation 
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-0.046 
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0.549 -0.081 

0.000 0.258 
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QdivY 0.472 0.045 0.506 

0.000 0.527 0.000 

Qdivf -0.014 0.383 0.064 0.287 

0.841 0.000 0.371 0.000 

lagConsols 0.980 -0.007 0.510 0.470 

0.000 0.918 0.000 0.000 

lagTseYield -0.017 0.050 0.053 -0.190 

0.813 0.484 0.461 0.007 

lagCPlyield 0.571 -0.119 0.600 0.507 

0.000 0.094 0.000 0.000 

1agQdivY 0.469 0.073 0.455 0.828 

0.000 0.309 0.000 0.000 

lagQdivf -0.005 -0.120 -0.007 -0.146 

0.943 0.093 0.918 0.041 

rollmeanCPlf 0.749 -0.019 0.777 0.696 

0.000 0.797 0.000 0.000 

rollstdCPlf 0.086 -0.001 0.114 0.310 

0.235 0.992 0.114 0.000 

Qdivf lagConsols lagTseYield lagCPlyield 

lagConsols 0.007 

0.922 

lagTseYield -0.367 -0.048 

0.000 9.505 

lagCPlyield -0.044 0.550 -0.081 

0.536 0.000 0.257 

1agQdivY -0.226 0.467 0.043 0.507 

0.001 0.000 0.546 0.000 

lagQdivf -0.742 -0.023 0.384 0.058 

0.000 0.746 0.000 0.418 
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rollmeanCPlf 0.019 0.732 -0.014 0.794 

0.796 0.000 0.847 0.000 

rollstdCPlf 0.008 0.080 0.028 0.133 

0.910 0.269 0.701 0.066 

1agQdivY lagQdivf rollmeanCPlf 

lagQdivf 0.282 

0.000 

rollmeanCPlf 0.683 0.029 

0.000 0.689 

rollstdCPlf 0.318 0.007 0.258 

0.000 0.921 0.000 

From the above table we can see that: 

• There is close relationship among inflation rate (QCPlyield), dividend 

yield (QdivY), dividend force (Qdivf) and Consols. 

• There is some relationship between dividend force (Qdivf) and TSX yield (QtseY). 

Based on the above results and the judgement to discard dividend yield, we can see the 

new structure for the model. This structure is further confirmed by stepwise regressions 

built for each variable. 

• if we discard dividend yield from the structure, we get the following structure plot. 
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Retail Price Index 

Share Dividend force Consols Yield 

Return Index Yield 

Now we can see a really simple structure for the models, but we do not connect all 

the variables. 

. If we restore the dividend yield in the structure, we get another structure. 

Retail Price Index 

Share Dividend Yield 

Share Dividend force 

Consols Yield 

Return Index Yield 

We can see that the dividend yield is really a complicated variable which has re-

lationships with all other variables. Therefore, it is not easy to predict dividend 

yield. Also, there should not be both dividend yield and share price in the structure 

if we keep the dividend, because we can easily get one of them from the other. 

With regard to stepwise regression, we came up with linear relationships for four depen-

dent variables: inflation rate (QCPIyie1d), Consols yield, dividend growth rate (Qdivf), 

and TSE yield (QtseY). The predictors are all the other variables. There are some more 

explanation as follows: 

The predictor selection is guided by the structure. 

9 In modeling, except the inflation rate which is modeled based on all the other 
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variables, we model current variables based on the lagged values of all variables 

and the current value of the inflation rate. 

• Inflation rate is modeled based on the following predictors: Consols, QtseYield, 

QdivY, Qdivf, lagConsols, lagTseYield, lagCPlyield, lagQdivY, lagQdivf, la-

gRollmean, lagRollstd. However the final model for inflation rate is an univariate 

model with some medium memory factors. 

• Consols yield is considered for two conditions. In one case there is no information 

about current TSX index yield. In this situation, the model is based on: QCPIyield 

lagConsols, lagTseYield, lagCPlyield, lagQdivf, lagRolimean, lagRollstd, lagQ-

divY, rollmeanCPlf, rollstdCPlf. In the other situation there is information about 

current TSX index yield: QtseYield, Qdivf,and QdivY. 

• Dividend yield is based on the information of QCPIyield, Consols, lagConsols, lagT-

seYield ,lagCPlyield, lagQdivf , lagRolimean, lagRollstd, lagQdivY, rollmeanCPlf, 

rollstdCPlf. 

Dividend growth rate is based on the same information as that of dividend yield. 

• TSX Return Index yield is not necessary if we know both current dividend and 

current dividend yield. Therefore, we drop of the current information of dividend 

yield when modeling TSX Return Index yield. 

The regression equations selected based on the minimum value of Mallows C—p are as 

follows: 

Inflation rate:  

QCPIyield = 0.003084 + 0.8 * lagRollmean - 0.43 * lagRollstd 

+0.127 * lagCPlyield + et 
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Consols rate:  

1. no information of QtseYield 

Consols = 0.002133 + 0.0089 * lagTseYield + 0.945 * lagConsols 

+0.194 * QCPIyield + Et 

2. given information of QtseYield 

Consols = 0.002516 + 0.0096 * lagTseYield + 0.946 * lagConsols 

—0.041 * QtseYield + 0.184 * QCPIyield + €t 

Dividend yield:  

QdivY = 0.0007408 + 0.866 * lagQdivY - 0.0055 * lagQdivf 

+0.151 * rollmeanCPlf - 0.00273 * lagTseYield - 0.108 * lagRolimean + € 

Dividend force:  

Qdivf = 0.02494 - 0.718 * lagQdivf - 0.19 * lagTseYield + et 

TSX yield:  

1. has information of lagQdivY 

QtseYield = —0.01572 + 0.321 * Qdivf+ 0.103 * lagQdivf 

+0.197 * lagTseYield + 10.7 * lagQdivY - 1.73 * QCPIyield 

—4.3 * lagRollstd - 1.16 * lagCPlyield + c 

2. no information of lagQdivY 

QtseYield = 0.02603 + 0.311 * Qdivf+ 0.139 * lagQdivf 

+0.181 * lagTseYield - 1.08 * QCPIyield + c 

Our comments of the relationship: 

• The inflation rate has positive relationship with its rollover mean level and negative 

relationship with its rollover variance level. 



72 

• Consols rate has a positive relationship with previous TSX yield and inflation rate, 

and has a negative relationship with current TSX yield. 

• Dividend yield has a relationship with many other factors. 

• Dividend growth force has a negative relationship with its lagged values due to its 

seasonal behavior. It also has a negative relationship with previous TSX yield. 

• TSX Return Index yield has interaction with inflation rate and dividend force. The 

relationship with inflation rate is negative. 

Base on the linear regression relationship, we now can simplify the structure as: 

Retail Price Index 

Share Dividend force 

'V 

Consols Yield 

Return Index Yield 

4.2 Analysis of Residuals of Univariate ARIMA Models 

Because quarterly data processes need to consider seasonal effect, I use yearly data to 

simplify the modeling. The following are the plots of the four basic components in the 

structure. 
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From the plots we can see that the time series structure shows the pattern of AR( 1) for 

inflation rate and Consols yield, MA(1) pattern for dividend growth rate. Those results 

are consistent with the Wilkie Model. Also we can see AR(1) pattern for TSX yield 

series. All this model are significant for each series and relevant residuals show white 

noise pattern. The models are as follows: 

Inflation rate:  
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V log Q(t) = 0.0364 + 0.8242 * V log Q(t - 1) + 0.017 * e 

Consols:  

C(t) = 0.0644 + 0.92 * C(t - 1) + 0.012 * et 

Dividend growth force:  

V log D(t) = 0.0903-0.38 *VlogD(t - l)+0.165 *et 

TSX yield:  

R(t) = 0.0449 - 4.012 * at_i + 0.14 * ct 

we can see that: 

• Inflation rate and Consols yield have high value of AR coefficient, which make their 

behavior like random walks and create larger waves in their historical performance. 

• TSX yield shows the mean reverting character with the negative AR coefficient. 

• Dividend growth rate has some correlation in variance, however there is no 

significant ARCH effects. 

After taking the univariate time series model, let us take a look at the residuals from 

each models. We already know that all residuals show the property of white noise. The 

results of their correlation are as follows: 

Correlations: 

resi-Inf resi-Consols resi-Divf 

resi-Consols 0.417 

0.003 

resi-Divf -0.092 0.042 

0.532 0.775 

resi-TseY 0.092 -0.152 0.482 

0.529 0.298 0.001 
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From the results we can see the correlation between inflation rate residuals and Consols 

rate residuals, and the correlation between TSX yield residuals and dividend force 

residuals. This correlation structure of residuals is exactly the same as that one based 

on original values. 

Through the stepwise regression of residuals based on the minimum values of 

Mallows C—p, we get the correlation map as follows: 

Retail Price Index 

Share Dividend force Consols Yield 

Return Index Yield 

This structure of time series model's residuals is very close to that of original values we 

get based on in section 4.1. The only difference is that dividend force has influence on 

Consols rate. This difference does not change the flow of calculation for dividend force 

and the calculation for Consols rate. 

4.3 VAR Analysis of The Structure 

VAR analysis is an extension of AR time process into vector variables. In order to 

compare the results using other methods, we used yearly data to compute the relationship 

structure of those components. The VAR regression equations are as follows: 

Yt = 

1 

where: Yt : represents response time series variables 

X, : represents the trend matrix, which is consist of deterministic components. 
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XX : represents the matrix of exogenous variables. 

H I, C :represent the parameter matrices. 
1 

Even though this method is based on matrix calculation, it is fine to calculate the 

regression equations separately for each of the variables. The best regression for each 

variable is based on the minimum Mallows C-p values. After getting residuals from 

each regression model, we can do some correction for those models based on the correla-

tion matrix for residuals. Thus we change the VAR model into the structured VAR model. 

The variables used here are the same as what we did in section 4.1. So the re-

sponse variables are TSX yield (YtseYield), dividend growth force (Ydivf), Consols 

rate (Consols), and inflation rate (CPlforce). The predictors are the lagged values of 

those variables, rollover mean, and rollover variance of inflation rate. The difference 

between VAR and the method in section 4.1 is that we use yearly data in this section 

instead of quarterly data. 

YtseYleld = 0.126 - 0.388 lagTseY 

S = 0.170545 R-Sq = 15.0% R-Sq(adj) = 13.1% 

Ydivf = 0.0733 - 0.328 lagTseY 

S = 0.144304 R-Sq = 14.9% R-Sq(adj) = 13.1% 

Consols = 0.00737 + 0.222 lagCPlforce + 0.749 lagConsols + 0.0381*lagTseY 

S = 0.00924065 R-Sq = 89.7% R-Sq(adj) = 89.0% 

CPlforce = 0.00357 + 0.847 lagCPlforce + 0.0273 lagTseY 

S = 0.0167509 Ft-Sq = 71.8% R-Sq(adj) = 70.5% 

Correlations: Cell Contents: Pearson correlation 

P-Value 

RESILtsx RESILdivf RESllconsol 
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RESI1_divf 0.493 

0.000 

FtESI1_consol -0.125 

0.396 

RESI1_CPI 0.066 

0.658 

0.008 

0.955 

-0.062 

0.674 

0.330 

0.022 

Because the correlation between dividend growth force residuals and TSX yield residuals 

are significant with the value of p being 0.493. Therefore additional term could be add 

up to the equation of YtseYield if we predict YtseYield based on dividend force. 

8div force 

8TSX yield 

TSX yield 

where: 

Therefore: 

- 0.144304 

= 0.170545 

0.170545 
= 0.493 * 0.144304 " dividend force + t 

t and 6dividend force are independent noise 

YtseYield = 0.126 - 0.388lagTseY + 0.493 * 0.170545 0.144304 * 6dividend force + t 

Since: 

6dividend force = Ydivf - 0.0733 + 0.328lagTseY 

Therefore: 

YtseYield = 0.126 - 0.3881agTseY 

+0.493 * 0.170545 * (Ydivf— 0.0733 + 0.328lagTseY) + € 
0.144304 

= —0.083292+0.58265 *Ydivf - 0.19689 *lagTseY+ et 

Base on the VAR models, we now can simplify the structure as: 
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Retail Price Index 

Share Dividend force Consols Yield 

Return Index Yield 

Through the Comparison of the the above plot and the structure in section 4.1, we can 

see that the yearly data and the quarterly data show the very similar results. This could 

be treated as the final structure of ours for these four variables: inflation rate, dividend, 

Consols rate, and TSX total return index yield. 

Based on what we get from the VAR models, we did the simulation of 10 years 

and 47 years. The simulation procedure is as follows: 

• Creating correlated random numbers for residuals. In this step, we use the Cholesky 

decomposition ( denoted as V) of the covariance matrix E. Then for the random 

multi—variate normally distributed numbers (denoted as N) with identity matrix of 

covariance I, the new random numbers VN are multi-variate normally distributed 

with covariance matrix E. 

• Using loops to create TSX values from VAR models 

• Repeating this procedure for 10000 times 

The plots of prediction are listed as below. The top two are the predictions for 47 years, 

1959-2005, with the initial value of 1958, and the bottom two are the predictions for 10 

years, 1996-2005, with the initial value of 1995. The zigzag curves are real values. 
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Price of VAR for 10 years 
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Dividend of VAR for 47 years 

40 10 20 30 

Dividend of VAR for 10 years 

50 

The relevant statistics from the simulation of year TSX yield are listed in the following 

table. 

Statistcs Values Statistcs Values 

Mean 0.0898 Minimum value -0.7535 

St. dev. 0.1972 2.5 percentile -0.2984 

Skewness -0.0252 5 percentile -0.2351 

Kurtosis 3.0202 10 percentile -0.1622 

As a comparison, we also list the results from the simulation of TSX year yield using 

RSLN2 model as follows: 
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Statistcs Values Statistcs Values 

Mean 0.0906 Minimum value -1.2167 

St. dev. 0.1780 2.5 percentile -0.2660 

Skewness 0.0819 5 percentile -0.1762 

Kurtosis 6.9630 10 percentile -0.1033 

From the above plots and table information, we can see that VAR models predict quite 

well for stock price and dividend over 10 years period and 47 years based on multiple 

variables. The variance of the prediction of the yearly TSX yield is greater than RLSN2 

model, if we assume the independent of quarterly data. However, the its variance is 

less than that of the Wilkie Model. The tail of the distribution for TSX yield is not 

necessarily thicker than that of RSLN2 models. 



Chapter 5 

Conclusions 

From the analysis presented, we draw the following conclusions: 

• Based on the Canadian stock market, the Wilkie Model overestimates the inflation 

for recent years, overestimates the dividend yield for recent years, and closely pre-

dicts the dividend. As a result, the Wilkie Model underestimates the share price. 

Thus the Wilkie Model has too thick lower tails in its simulation. 

• Univariate models could predict trend quite well, while the multivariate models 

could produce larger variance. Both VAR models and the Wilkie Model create 

larger variance for TSX yield than any of the univariate models. This is due to the 

aggregated variance of multiple variables. 

• Neither dividend yield nor dividend is suitable for predicting TSX yield. Dividend 

yield is not very stationary, and is less stationary than share price in the long term, 

thus it is hard to predict. Dividends are much more stable than TSX yield, thus 

they have different behaviors. Also dividend yield has decreased to a low level, 

while capital gain rate increased a lot. This makes it poor for dividend yield to 

predict share price in a risky market. 

• The monthly data and the quarterly data could have different results for modeling, 

even based on the same method. For using univariate ARIMA—GARCH models 

to model TSX yield, monthly data has ARMA(1,1) model to fit. However in the 

quarterly data, we can find long term pattern easier. There are a couple of different 

models to fit the quarterly data, and we choose ARIMA(O,O,O) x (O,O,1). Quarterly 

data and yearly data have close results for prediction, except that quarterly data 
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may have seasonal effects. In general, the continuous assumption and discrete 

assumption are suitable for monthly data and quarterly data respectively. 

• Even a historically stationary model may not be predictable for future period, 

because of the non—ergodic problem. This will be seen in the future prediction 

of dividend yield, which is modeled using ARMA models with changing parameters. 

There are still other methods for modeling TSX total return yield. For example, Gilles 

and LeRoys (1992) suggested predicting TSX price by adding a bubbles term onto divi-

dend. These are still problems left for future work: 

• Specifying any measurement for the degree of stationarity of time series for different 

periods, and testing the ergodicity of the time series. 

• Improving RSLN models with smoothed regimes and for multiple variables, and 

providing better methods for testing RSLN effects 

• Updating models by taking more consideration of realities as constraints input of 

the models. 

• Modeling more specific information for the prediction, such as the movement pat-

terns of those indices through different time points. 



Appendix A 

Program Code 

1. the R code of "test of heteroscedasticity" 

#--test of heteroscedasticity for monthly data 56-05 

data <- read.csv('cointegration2.csv',header = TRUE) 

TSEreturn <- data$TSEreturn length(TSEreturn) temp = embed(TSEreturn,2) 

rate = temp[,1]/temp[,2 #--data of 56-05 

rate2testl = rate2 

Modeltesti = arima(rate2testl, c(0,0,1))#--fit garch(0,1) for 56-05 

ttemp = c(1:100) 

for (1 in 1:100){ 

ttemp[i] = Eox.test(rate2testl, lag=i, type = "Ljung-Box')$p.value 

} 

par(mfrow = c(2,2)) 

plot(ttemp, main = 'Ljung-Box ARCH test 56-05't,pch=20, ylim = c(0,1)) 

lines( matrix(0.05,100,1) ) 

text(40,0.15,"5% line") 
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2.. the Matlab code of simulation for TSX index yield based on Wilkie's model 

function Thesis_simulation2_Wilkie_Y(n) 

% this simulation use parameters estimated from Yearly data of Wilkie model 
 parameters from CA 56-05 in Excel 

QSD =0.016788021; QMU = 0.038636152; QA =0.821501371; 

YMU = 0.038402052; YA = 0.966969169; YW -2.616794131; YSD 

=0.138155021; 

DW =0.554153424 ; DD =0 ; DMU =0.007470869; DY = 0.353427584; DB = 

-0.99; DSD = 0.119019924; 

m=1O; t = m; QZ = randn(t+1,n); 

DlnQ = zeros(t+1,n);% delta ln(Q) values 

Q = zeros(t+1,n); 

%----produce delta ln(Q) values: DlnQ 

temp = ones(1,n); for i = 1:t 

DlnQ(i+1,:)= QMU + QA * C DlnQ(i,:) - QMU 

temp = exp(DlnQ(i+1,:)); 

Q(i+1,:) = Q(i,:) .* temp 

end 

) + QSD * QZ(i+1,:); 

 model for dividend yield 

DlnQ(1,:) = 0.02718614; °h---initial value from Canadian 1995 

°h----modelling initial values for yield Y(0) and YN(0) 

infForce = DlnQ; Y = ones(m+1,n); YN = ones(m+1,n); 

Y(1,:) = 0.023955937; °h --- intial values of Y(0), using real Canadian value for year 

YN(1,:) = log(Y(1, :))-YW*infForce(1,:); 

%--loops for YN(t) from t=1:m 

YE = YSD * randn(m,n); for t = 1:m 

YN(t+1,:)= log(YMU) + YA * (YN(t,:)- log(YMU))+ YE(t,:); 

end Y(2:m+1,:)=exp(YW*infForce(2:m+1,:)+YN(2:m-i-1,:)); 

 Dividend Model 

%---set initial values 

D = ones(m+1,n); 
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D(1,:)= 97.40454826;%----initial value from Canadian 1995 

DM = ones(m+1,n); 

°hinfForce = inflation(m,n); 

DM(1,:) = infForce(1,:); YE2 = [zeros(1,n);YE]; YE2 = YE(i:m,:); 

%---modelling 

for t=1:m 

DM(t+i,:) = DD*infForce( t+1, :) + (1-DD) * DM(t,:); 

end 

infForce2 = mean(infForce')'; °h --- for testing of mean at last 

DM = DM(2:m+i,:); infForce = infForce(2:m+1,:); DEl = DSD * 

randn(m+1,n); 

DE2 = DEI(1:m,:);%--DE(t-1) 

DE = DE1(2:m+1,:); °h---DE(t) 

Dforce = ones(m,n); Dforce = DW * DM + (1-DW) * infForce + DY * YE2 

+ DMU + DE + DB*DE2; 

Df 2 = Dforce; for ± = 2: m 

Df2(±,:) = Df2(i-1,:)+Dforce(i,:); 

end D2 = D(1,1)*exp(Df2); 

 after get T(t) for mxn, m=1O 

D3 = [D(1,:);D2]; 

T = D3./Y; % --- price index 

TO = T + D3; Ti = TO(2:m+1,:); T2= T(1:m,:); 

rate = Ti./T2 -1; °h---price index yield 

meanRateWhole = mean(mean(rate')) 

sedevRateWhole = (mean(var(rate')) + var(mean(rate')))O.5 %--var 

meanRate = mean(rate(m,:)); 

sedevRate = var(rate(m,:)) -O.5 ;°h--var of the last period only 

skewRate = suin((rate(m,:) - meariRate).3) /((10000-1)*sedevRate3) 

KurtosisValue = sutri((rate(m,:) - meanRate).'4) 

/((10000-1)*sedevRate4) 

temp = rate(i,:); 

for ± =1:10 °h change for yearly/quarterly 

temp = [temp,rate(i,:)]; 

end minRate = min(temp) percenti1e2_5RO = prctile(temp,2.5) 
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percentile5RO =prctile(temp,5) percentilelORO = prctile(temp,1O) 

%-- values of cumulative yield 
cumRate = T(m+1,:)./T(1,:)-1; meanCuniRate = mean(cumRate); 

sedevCurnRate = var(cumRate) -O.5; minCuniRate = min(cuniRate) 

percentile2_5C = prctile(cumRate,2.5) percenti1e5C 

=prctile(cumRate,5) percentilelOC = prctile(cuinRate, 10) 

crash = 0; for i = 1:10000 

if min( rate(:,i)) <= -0.2552, crash = crash+1; end; 

end crash probCrash = crash/10000 

subplot(2,2,1), hist(temp),title('hist of rates for US-disc') 

subplot(2,2,2), hist(rate(m,:)),title('hist of cum rates for 

US-disc') 
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