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Abstract 

Multiple-input-multiple-output (MIMO) antenna architecture has the 

ability to increase capacity and reliability of a wireless communication system. 

Orthogonal frequency division multiplexing (OFDM) is well-known for efficient 

high speed transmission and robustness to frequency selective channels. Hence, 

the integration of the two technologies has the potential to meet the ever growing 

demands of future communication systems. A major challenge of implementing 

MIMO-OFDM is the complicated receiver design. This thesis focuses on the 

simplification of the channel estimation component of the receiver structure. 

Low-complexity estimation techniques using QR decomposition are proposed for 

estimating time-invariant frequency selective channels. In addition, the QR 

decomposition methods are recursively implemented to estimate time-varying 

channels. The results show that the application of QR decomposition greatly 

reduces the complexity of channel estimation. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Overview 

Wireless communication has exhibited explosive growth in the past two decades 

and has become an essential part of everyday communication. The growing 

acceptance and dependence on wireless communication has driven the need for 

higher data rates and stricter reliability requirements. To support emerging 

multimedia applications researchers must look for better ways of exploiting the 

limited radio spectrum while maintaining the quality of service required by the 

users. Recent developments suggest that the use of multiple transmit and receive 

antennas can significantly enhance the performance and reliability of a wireless 

communication system. Multiple input multiple output (MIMO) systems take 

advantage of spatial diversity obtained through the spatially separated antennas 

in a dense multipath scattering environment [1]. Theoretical studies indicate that 

the capacity of MIMO systems grows linearly with the number of transmit 

antennas used. Many recent works have focused on exploiting the added spatial 

dimension to increase capacity [2]-[5]. In particular, the revolutionary vertical 

Bell Laboratory Layered Space Time (V-BLAST) architecture proposed by 

Foschini achieved the theoretical capacity limits of the MIMO architecture [6]. 

The multiple antennas configuration exploits the multipath effect to accomplish 

the additional spatial diversity. However, the multipath effect also causes the 

negative effect of frequency selectivity of the channel. Orthogonal frequency 

division multiplexing (OFDM) is a promising multi-carrier modulation scheme 
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that shows high spectral efficiency and robustness to frequency selective channels. 

In OFDM, a frequency-selective channel is divided into a number of parallel 

frequency-flat subchannels, thereby reducing the receiver signal processing of the 

system. OFDM has been adopted in many wireless standards such as digital 

audio broadcasting (DAB) [7], digital video broadcasting (DVB) [8], 

HIPERLAN/2 [9], IEEE 802.11a wireless local area networks (WLAN) [10], IEEE 

802.16a metropolitan area network (MAN) [11], and a potential candidate for 

fourth-generation (tIC) mobile wireless systems. The combination of OFDM and 

MIMO is a promising technique to achieve high bandwidth efficiencies and 

system performance. In fact, MIMO-OFDM is being considered for the upcoming 

IEEE 802.11n standard, a developing standard for high data rate WLANs [1]. 

1.2 Motivations 

MIMO-OFDM has the potential to meet the increasing high speed and 

reliability demands of the future. In order for this technology to truly succeed in 

commercial deployment there are still several technical obstacles that must be 

tackled. A major impediment in MIMO-OFDM is the complicated receiver signal 

processing. The simultaneous emission of the signals from the multiple transmit 

antennas increases the mutual interference imposed on the signals, therefore, 

much more complex detection schemes are required to extract the transmitted 

signals. For example, the complexity of a maximum likelihood detector increases 

exponentially with the number of transmit antennas. Spatial equalizers and 

space-time coding has been proposed to simplify the detection for MIMO-OFDM 

systems [12]-[14]. Note, coherent detection requires knowledge of the channel; 

therefore, accurate channel estimation is crucial in realizing the full potential of 
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MIMO-OFDM. Channel estimation for OFDM has been well researched in 

literature. The extension of the results to MIMO-OFDM channel estimation is 

substantially more complicated. In a MIMO system, multiple channels have to be 

estimated simultaneously. The increased number of channel unknowns 

significantly increases the computational complexity of the channel estimation 

algorithm. Previous works have investigated the problem of channel estimation in 

MIMO-OFDM [15]-[18]. The most common approach is training-based 

estimation, where a known pilot sequence is transmitted and used at the receiver 

to determine the channel. The least square (LS) approach and the minimum 

mean square error (MMSE) approach are the usual methods for training-based 

estimation. The LS and MMSE solutions are relative simple compared to other 

estimation techniques such as blind estimation. However, both solutions still 

require complex matrix inversions, which are undesirable in real time 

implementation. In [18], specific training sequences design and pilot placement 

patterns are used to obtain the channel frequency response (CFR) of the channel 

in attempt to reduce the estimation complexity. Note that the number of 

unknowns of the CFR is usually significantly greater than the number of 

unknowns in the channel impulse response (CIR). In [19], it is proven that 

computational complexity can be reduced by estimating the CIR as opposed to 

the CFR. The proposed solution reduces the number of unknowns to be solved, 

but the solution still requires a matrix inversion. The main objective of our 

research is to explore methods for reducing the complexity of the channel 

estimation for MIMO-OFDM. We propose the use of QR decomposition to solve 

for the channel unknowns, which eliminates the matrix inversion operation. The 
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QR decomposition is low in complexity, stable and can be efficiently implemented 

in hardware. 

1.3 Thesis Contributions 

The main contributions of this thesis are described below. 

• A QR decomposition method is introduced to reduce the complexity of LS 

estimation of a time invariant channel for a MIMO-OFDM. Complexity 

comparisons indicate that the QR decomposition method reduces the 

complexity substantially. Similarly, a novel QR decomposition method is 

developed for MMSE channel estimation. The MMSE solution is modified into 

the LS form so that QR decomposition can be efficiently applied. The results 

show a significant reduction in complexity as compared to the standard 

MMSE solution. 

• A decoupled QR decomposition which requires no square root and fewer 

division operations is implemented to further reduce that complexity of the 

channel estimation. 

• Investigation of the recursive implementation of the QR decomposition LS 

and MMSE for time-varying channels. The results show that the adaptive 

methods have better performance than the block based methods with the use 

of fewer pilot tones. In addition, simulations demonstrate that the QR 

decomposition methods converge faster that the recursive least squares (RLS) 

methods. The low complexity inverse-QR method is also applied to further 

reduce complexity. 
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1.4 Thesis Outline 

In Chapter 2, background information on wireless communication channels 

is provided to aid the understanding of the problem of channel estimation. Also, 

an introduction of OFDM and MIMO system is given and the important 

characteristics of both technologies are emphasized. Finally, a complete system 

model of an MIMO-OFDM system is presented. 

In Chapter 3, a literature survey of previous works on channel estimation 

for MIMO-OFDM is presented. Basic estimation theory of classical and Bayesian 

estimation is discussed. Representative methods of both classes are highlighted 

and in particular, the derivation of the LS and MMSE estimators are presented. 

The LS and MMSE solutions are adapted to the OFDM and MIMO-OFDM 

channel estimation. A performance analysis is performed to compare the LS and 

MMSE method for estimating the CIR of MIMO-OFDM systems. 

In Chapter 4, first a review of QR decomposition and the different 

methods of determining the QR decomposition are provided. The details of using 

the Householder method, Givens rotation methods, and the decoupled Givens 

rotation method to solve for LS channel estimates are described. A performance 

and complexity analysis is performed to demonstrate the complexity reductions of 

the proposed implementations. Moreover, the MMSE solution is modified into the 

LS form in order to implement the QR decomposition mentioned. Similarly, the 

QR decomposition MMSE solution is compared with the standard MMSE 

solution. 

In Chapter 5, adaptive channel estimation techniques are studied for time 

varying environments. The previous proposed QR decomposition method is 
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recursively implemented to track the changes of the channel. The adaptive 

algorithms are compared with block-based channel estimations. 

In Chapter 6, a conclusion of the work presented in this thesis is given and 

some possible future works are suggested to extend this research. 
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CHAPTER TWO 

BACKGROUND 

In this chapter, basic wireless propagation theory is provided with emphasis on 

the impact of the small-scale fading effects on the wireless channel. In Section 

2.2, an introduction of MIMO systems is given, and the various gains of MIMO 

systems are highlighted. Section 2.3 discusses the basics of OFDM modulation. 

Finally, in Section 2.4 a system model of a MIMO-OFDM is described. 

2.1 Wireless Propagation Characteristics 

The wireless propagation environment places fundamental limitations on 

the performance of the wireless communication system because the transmitted 

signal travels through different paths and interact with objects in the 

environment. These interactions include reflection, refraction, diffraction, and 

scattering which cause attenuation and variations in the received signal power 

and phase of the transmitted signal. In addition, the relative movement between 

the transmitter and receiver generates a Doppler shift which also impact the 

fading characteristics of the signal [20]. 

The effects of the wireless environment can be categorized as path loss or 

attenuation, large-scale (long-term) fading, and small-scale (short-term) fading 

[21]. The path loss effect refers to the decrease in signal power as the distance of 

the receiver increases with respect to the transmitter. The term fading describes 

the fluctuations in the envelope of the transmitted signal as it travels from the 
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transmitter to the receiver. Although channel fading is unpredictable, stochastic 

models have been developed to accurately predict the fading characteristics. 

Channel models are useful for designing communication systems. Large-scale 

fading, as the name implies, is the observations of the signal envelope over a large 

distance, i.e. several kilometres. In large-scale fading the signal varies slowly and 

has a lognormal distribution over distance as shown in Figure 2.1(a). Small-scale 

fading is observed within shorter distances or over a short period of time. In 

small-scale fading, rapid fluctuations of the signal envelope are observed. Small-

scale fading can be described by the Rayleigh distribution, which is depicted in 

Figure 2.1(b). When a strong line-of-sight path exists, the Rician distribution is 

used to describe the small-scale fading [20]. 

Distance (seeSsat kiss) 
Distance (s few mofers) 

Figure 2.1: (a) Attenuation and lognormal fading effect on a signal over several 
kilometres. (b) Small-fading effects over a shorter distance of several meters. 
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In order to model a wireless communication system we first need to 

understand the wireless propagation characteristics so that a correct channel 

model can be developed. Generally, path loss and large-scale fading are frequency 

independent and more relevant for cell-site planning [21]. Combating small-scale 

fading is more pertinent in the design of reliable and efficient communication 

system. The three most important effects of small-scale fading is rapid 

fluctuations in signal strength over short time interval, random frequency 

modulation caused by Doppler shifts on different multipath signals, and time 

dispersion due to the arrival delays of the multipath signals [20]. In the following 

section, the two major causes, multipath and Doppler shift, of these effects will 

be described, 

2.1.1 Multipath Effect 

The multipath effect is a phenomenon that causes multiple versions of the 

transmitted signal to arrive at the receiver at different time delays. Reflecting 

objects and scatterers in the transmission environment generate multiple versions 

of the transmitted signal as shown in Figure 2.2. Each of the paths will have 

different characteristics, such as amplitude, phase, arrive time, and angle of 

arrival. The multiple signals may constructively or destructively add up at the 

receiver, thus creating the rapid fluctuations in the received signal envelope. 

When the signals add up constructively it will increase the signal power at the 

receiver, but destructive summation will cause fades in the received signal, which 

corresponds to the sudden drops in received power shown in Figure 2.1(b). 
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Figure 2.2: The multipath effect 

Multipath does not only cause fluctuations in the received power, but it 

also affects the shape of the pulse as it is transmitted through the channel [21]. 

The arrival of the multiple versions will broaden the transmitted signal. As 

illustrated in Figure 2.3, the transmitted signal arriving at different times will 

overlap with each other and lead to a broadening of the envelope of the pulse. 

(a) (b) 

Figure 2.3: (a) A transmitted pulse. (b) Multiple copies of the transmitted signal 
arriving at different times causing a widened envelope of the pulse [21]. 
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The signal power and arrival times of the multipath signals are used to 

characterize the channel. The typical impulse response of a channel is as shown 

in Figure 2.4, which is also known as the power delay profile of the channel. 

Assuming a narrow impulse is transmitted, each of the spikes in Figure 2.4 

represents one of the multipath components. The parameters used to describe the 

power delay profile are the mean excess delay, root-mean square (rms) delay 

spread, and excess delay spread (X dB). The mean excess delay is defined as 

- Pkk 

(2.1) 

where p, is the power of the ktl path and ; is the arrival time of the kth path. The 

rms delay spread is defined as 

where 

O_' 
=V;_()2 , 

- Pk2 
k 

Yj Pk 

(2.2) 

(2.3) 

is the mean square delay. Finally the excess delay spread (X dB) refers to the 

time between the highest power signal and the arrival of a signal that is X dB 

below the maximum [20]. 
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P2 

P1 

T P4 

•1 '2 

Time 

Figure 2.4: An impulse response of a wireless channel [21] 

In the frequency domain, the channel can be described in terms of the 

coherence bandwidth. The coherence bandwidth, B0, is a measure of the range of 

frequencies within which the amplitude is highly correlated. The coherence 

bandwidth is inversely proportional to the rms delay spread, and the specific 

relationship depends on the particular channel impulse response. The delay 

spread parameters and the coherence bandwidth determine whether the signal 

experience flat fading or frequency selective fading. 

Flat fading occurs when the bandwidth of the signal, B, is much smaller 

than the B0 . Correspondingly, in the time domain the symbol period, 2's, is 

significantly larger than the rms delay spread. In' flat fading, the spectral 

characteristics of the transmitted signal are maintained at the receiver. However, 

in the time domain, the transmitted signal will vary in amplitude over time due 

to the channel gains. The Rayleigh distribution is commonly used to describe the 

amplitude distribution [20]. Flat fading can cause deep fades, which will require 

increasing the signal power at the transmitter to compensate the power lost due 

to the deep fades. 
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A transmitted signal with a bandwidth greater than the coherence 

bandwidth of the channel will experience frequency selective fading. This causes 

different frequency components of the transmitted signal to experience different 

gains, hence the term frequency selective. From the time domain perspective, the 

symbol period is shorter than the rms delay spread. The channel will spread the 

signal beyond the symbol period and induce intersymbol interference (1ST) onto 

the next transmitted symbol. Frequency selective fading is harder to model than 

flat fading since each multipath component must be modeled [20]. 

2.1.2 Doppler Effect 

Another effect that causes small-scale fading of a transmitted signal is the 

Doppler Effect. The motion of the receiver with respect to the transmitter results 

in a Doppler shift in the frequency, which changes the channel. Looking at Figure 

2.5, where a mobile is moving at velocity, v, the Doppler shift is defined as 

Id' = cos(0), (2.4) 

where c is the velocity of the electromagnetic wave propagation in free space and 

9 is the angle as depicted in Figure 2.5. Taking into account the Doppler shift, 

the instantaneous frequency, f, will be 

fin =fC±fd , (2.5) 

where f is the carrier frequency. Depending on the direction the receiver is 

moving with respect to the transmitter, the Doppler shift may be positive or 

negative. From Equation (2.4) it is clear that the value of the Doppler shift 

depends on the velocity of the receiver. Moreover, the significance of the Doppler 

shift depends on the carrier frequency of the signal. The coherence time, T, is 
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inversely proportional to the Doppler shift, which is the time interval in which 

the channel impulses are highly correlated. Evidently, the Doppler shift will 

affect how fast the channel is changing. The rate of change of the channel is 

classified as slow fading or fast fading. 

The transmitted signal experiences slow fading when the symbol period is 

much smaller than the coherence time of the channel. In the frequency domain, 

this implies that the signal bandwidth is much greater than the Doppler shift. 

This means that the Doppler spread is negligible at the receiver. 

Fast fading occurs when the symbol period is greater than the coherence 

time of the channel. Time changing of the channel within one symbol period will 

distort the transmitted signal. In the frequency domain, the signal bandwidth is 

smaller than the Doppler shift [20]. 

Figure 2.5: A receiver moving at velocity v, thus causing a Doppler shift. 



15 

As discussed above, small-scale fading can be described in two different 

ways due to two different phenomena. First, small-scale fading can be flat or 

frequency selective due to the multipath behaviours of the environment. This 

refers to the behaviour of the channel in the frequency domain. Secondly, it can 

be described as slow or fast fading due the Doppler shift caused by the motion of 

the receiver. Slow and fasting fading describes the rate the channel changes in the 

time domain. 

2.2 Introduction to MIMO 

A MIMO communication system uses multiple antennas at the transmitter 

and receiver to achieve various advantages. Traditionally, antenna arrays have 

been used at the transmitter and receiver to achieve array gain, which increases 

the output SNR of the system. In the mid-1990s, adaptive antennas and smart 

antennas were introduced to describe antennas arrays that are made adaptive in 

a manner that it changes its transmission and reception characteristics when the 

radio environment changes. Array antennas have been implemented in GSM 

networks [22], fixed broadband wireless access (BWA) networks [23], and third 

generation (3G) CDMA networks [24]. More recently, a new way of using the 

multiple antennas has been discovered to achieve diversity and multiplexing gain 

by exploiting the once negative effect of multipath. Under suitable conditions, i.e. 

a scatter rich environment, the channel paths between the different transmit and 

receive antennas can be treated as independent channels due to the multipath 

effects caused by the scatterers. Initial works in this research area ([6] ,[2]), 

suggests that MIMO effectively takes advantage of the random fading and 

multipath delay spread to increase the transfer rates of the system. The 
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exploitation of this additional 'spatial' degree of freedom can increase the 

throughput and improve the performance of the system [25]. In summary, the 

main advantages of MIMO systems can be categorized as array gain, diversity 

gain, and spatial multiplexing gain. 

2.2.1 Array Gain 

Array gain is achieved by coherently combining the signals from the 

multiple antennas to increase the average output signal to noise ratio (SNR), 

which will improve the range and coverage of the system. Figure 2.6 illustrates a 

simple case of a system consisting of one transmit antenna and a set of receive 

antenna array. Assume the distance between the transmitter and receiver is 

significantly larger than the antenna separation of the array at the receiver, then 

the received signal at each antenna will differ in phase due to the relative delay 

caused by the antenna separation. To maximize the received signal energy, an 

optimal receiver will use beamforming techniques to adjust for the different 

delays of the multiple antennas so that the received signals can be constructively 

combined [25]. This will yield a MrfOld power gain, where Mr is the number of 

receive antennas. In a MIMO case where antenna arrays are used at the 

transmitter and receiver, then a MM-fold power gain is achievable, where M is 

the number of transmit antennas. Beamforming requires knowledge of the 

channel state information (CSI) at the transmitter and receiver to appropriately 

compensate for the delays. Typically, the channel can be estimated at the 

receiver; however, the CSI is harder to obtain at the transmitter. 
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_Y Y_2 

Tx Y-M, 

Rx 

Figure 2.6: Single transmit and multiple receive antenna system 

2.2.2 Diversity Gain 

Diversity is a technique used to mitigate fading in wireless links by 

transmitting a signal over multiple independently fading paths. The main idea 

behind diversity is that by transmitting multiple copies of the signal increases the 

probability that at least one copy is received correctly at the receiver. Diversity 

can be obtained through time, frequency, or space. Time diversity assumes that a 

signal will experience independent fading at different times due to changes in the 

channel. To achieve time diversity a signal is coded and interleaved so that 

multiple copies of the signal are transmitted at intervals greater than the channel 

coherence time. The benefit of time diversity is that it does not require additional 

hardware. However, it requires memory storage of the repeated signals for 

processing [21]. Frequency diversity is achieved when the carrier frequencies are 

sufficiently separated such that each carrier frequency will experience 

independent fading. In frequency diversity, the same signal is transmitted on 

various independent carrier frequencies. Multiple receivers are used to detect the 

multiple signals at different carrier frequencies, and the one with the highest 
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signal energy will be selected. Alternatively, a multi-antenna system can exploit 

the independent multipath channels to achieve spatial diversity. The benefit of 

spatial diversity is that no additional receiver hardware is required as in 

frequency diversity, or memory storage as in time diversity. The diversity order is 

the total number of independent fading signal paths between the transmitter and 

receiver, which depends on the spatial separation of the antennas and the 

scatterness of the environment. The maximum spatial diversity gain of a MIMO 

system is MM,. Joint diversity schemes such as space-time and space-frequency 

coding at the transmitter and receiver has been developed to increase the 

diversity order of the system. In 1998, independent pioneer work by Alamouti in 

[26] and Tarokh et al. in [27] developed a breakthrough space-time transmitter 

diversity system that provides diversity gain without sacrificing the bandwidth. 

2.2.3 Spatial Multiplexing Gain 

Multiplexing gain is achieved through transmitting different signals on 

independent channels in a MIMO system. The multiplexing gain order is the 

number of parallel independent spatial data pipes in the same frequency band 

between the transmitter and receiver. As shown in Figure 2.7, a signal is split 

into two parts and transmitted on two separate antennas. At each receive 

antenna it will detect a signal from a specific transmit antenna and the signals 

from other antennas will be seen as interference. Combining techniques are 

required at the receiver to eliminate the interference and to multiplex the signal 

back together. As demonstrated, capacity gain is achieved by reducing the 

transmission time without using additional bandwidth. In [6], Foschini proposed 

the groundbreaking BLAST (Bell Laboratories Layered Space-Time) architecture 
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which utilizes the multiple transmit and receive antennas to achieve multiplexing 

gains. It was shown under scatter-rich environments the achievable gain is linear 

with the number of independent channels. Since then, many other works have 

further investigated the performance and capacity limits of BLAST in various 

environments and system requirements. 

S S S S 

Figure 2.7: Multiplexing gain 2x2 MIMO system 

In summary, the use of MIMO has many benefits. However, it is not 

possible to achieve all the above benefits of MIMO techniques in one system as 

some of them are mutually conflicting goals. In general, a MIMO system 

improves 

• Spectral efficiency: multiplexing gain 

• Link reliability: diversity gain 

• Coverage: Diversity gain and array gain 

• Capacity: multiplexing gain 
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2.3 Introduction to OFDM 

In recent years, OFDM has gained considerable attention as it shows to be 

a promising technique for high data rate transmission. In OFDM, a broadband 

signal is split into multiple parallel narrowband signals, and then modulated onto 

orthogonal subcarriers for transmission. One of the most attractive features of 

OFDM is its robustness against frequency selective channels. The OFDM 

operation converts a frequency selective channel into multiple parallel flat fading 

channels, which greatly simplifies the channel estimation and equalization tasks 

of the receiver. When a wideband signal passes through a frequency selective 

channel as shown in Figure 2.8(a), a significant portion of the signal is lost due to 

the deep fades in the channel. However, when the wideband signal is OFDM 

modulated, the frequency spectrum will be a composition of overlapping 

narrowband signals as shown in Figure 2.8(b). Now, when the OFDM modulated 

signal passes through the frequency selective channel only the narrowband signals 

at the location of the fades will be affected. In addition, it can be observed that 

each of the narrowband signals experiences flat fading; therefore, the channel 

response can be obtained simply by dividing the output signal by the input 

signal. Moreover, OFDM is bandwidth efficient since the subchannels can 

overlap yet still be separated due to the use of orthogonal subcarriers. With the 

current advancements in digital signal processor (DSP) and integrated circuit 

(IC) technology OFDM can be efficient implemented by using the inverse fast 

Fourier transform (IFFT) and fast Fourier transform (FFT) for modulation and 

demodulation, respectively. 
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(a) 
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X [F 7 fades - 

(b) 

Figure 2.8: (a) A wideband signal multiplied with a frequency selective channel. 
(b) A OFDM signal multiplied with a frequency selective channel. 

A schematic diagram of the complete structure of an OFDM system is 

shown in Figure 2.9. The blocks on the top row correspond to components in the 

transmitter and the bottom row to the receiver. The input data stream is 

modulated using regular modulation techniques such as phase shift keying (PSK) 

or quadrature amplitude modulation (QAM). The modulated signal X(m) (n = 0, 

.1, ... N, where N is the number of subcarriers) is converted into parallel signals 

and passed to the IFFT block. The IFFT operation modulates the parallel signals 

onto orthogonal subcarriers as a group. The narrowband signals outputted are 

x(k) (k = 0, 1, ... N), where 

N-I 

1 X(n)ei2IN, O≤k≤N-1 (2.6) 
sJ:ic7n=o 

When an OFDM signal passes through the channel it will experience 1ST and 

interchannel interference (ICI). The ISI arises from channel delay spread and ICI 
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is caused by the loss of orthogonality of the subcarriers due to the frequency 

response of the channel. In order to eliminate the effects of 1ST and ICI a cyclic 

prefix (CP) of length N , where NP is greater than the channel order, is 

appended to the beginning of the signal. The total length of the signal becomes 

N+Ncj,. In the cyclic prefix extension, the end portion of the signal will be copied 

and appended to the beginning of the signal. Repeating the last elements at the 

beginning converts the linear convolution of the channel into circular convolution 

thereby preserving the orthogonality of the subcarriers [28]. At the receiver the 

inverse operations are performed to recover the transmitted bits. 
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Figure 2.9: Schematic diagram of OFDM system 
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2.4 MIMO-OFDM System Model 

OFDM is a promising physical layer technology for high data rate wireless 

communication due to its effectiveness in frequency selective fading, high spectral 

efficiency, and low computational complexity. MIMO systems have the ability to 

improve spectral efficiency, link reliability, coverage or capacity depending on 

how the system is implemented. Clearly, OFDM integrated with MIMO 

transceivers will further enhance the performance and throughput of a system. 

A typical MIMO-OFDM system is depicted in Figure 2.10. The system 

consists of Allt transmit antennas and M. receive antennas. At time t, a block of 

binary input data stream is modulated, and then passed through the MIMO 

encoder to produce M data streams for transmission over the multiple antennas. 

The data can be space-time coded for diversity gain, or de-mulitplexed for spatial 

multiplexing gain. Each of the M data streams is grouped into blocks of N 

symbols, and then OFDM modulated for transmission across the MIMO 

channels, The received signal at each antenna will be a summation of all the 

signals from the multiple paths plus the noise. The noise process is additive white 

Gaussian noise (AWGN) with zero mean and variance . It is assumed that the 

signal and noise are independent of each other, which is a common assumption 

made in literature. 
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Figure 2.10: MIMO-OFDM system 

2.4.1 Channel Model 

MIMO 

Decoder ± 
Data 
Out 

The channel considered in this thesis is a frequency selective Rayleigh 

fading channel. The radio channel can be modeled as a linear filter with a time 

varying impulse response [20]. Characterizing the channel as an impulse response 

will provide all the necessary information required for simulation and analysis of 

signal transmission through the channel. The impulse response for a fading 

multipath channel is modeled as 

h(, t) = a1(t) 8(r - rj (t)), (2.7) 

where a(t) is the complex amplitude, r('t) is the delay of the hIL path and L is the 

length of the channel. The amplitude and the number of paths are dependent on 

the dispersiveness of the wireless channel. The frequency response at time t is 

H(t,f) = Jh(i, t)e 22nh1d1. (2.8) 
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In an OFDM system, the channel frequency response can be expressed as 

L-1 

H [n, k] = h [n, 1] e -J2ak1/K 
1=0 

(2.9) 

where K is the number of tones of the OFDM block. 

In general, wireless communication channels are time-varying either due to 

the motion of the transmitter or receiver, or the change in the wireless 

environment. However, in indoor environments under lower mobility scenarios 

the channel variations are slow and can be ignored for the duration of a packet. 

Then Equation (2.9) can be rewritten as 

L-1 

H[k] = h[l] e12'1'111 . 
10 

2.4.2 Mathematical Model of System 

(2.10) 

Consider the MIMO-OFDM system, diagrammed in Figure 2.10, consisting 

of M transmit and Mr receive antennas operating in a Rayleigh frequency 

selective fading environment. The tap-delay channel model of the multiple 

channels is shown in Figure 2.11. Let be the frequency domain input block of 

N complex-valued symbol prior to OFDM processing at time t at the transmit 

antenna, where = [s (0), S' (1), ... , S° (N - 1)]H i = 1, 2, ... M and is the 

time domain representation after the IFFT operation with N,, CP symbols 

H 
inserted, where s(i) = [s° (0), s° (1), , s (N + —1)] , i = 1, 2, . . . M. 
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Tx I 

Tx M 

Figure 2.11: Tap delay line model of MIMO channel 

2.4.2.1 Received Signal Prior to OFDM Demodulation 

The time domain received signal at the j' antenna before OFDM 

demodulation depicted in Figure 2.11 can be represented as 

M, L,-1 

y,(j)(n) = h(j')(l) s(n —l) +v'(n), n=O,l,..., (N+N)—1 (2.11) 
1=1 /=0 

where (1) (1 = 0,1, . . .,L,) is the channel response between the i' transmitter 

and the j' receiver, and Ljj is the channel order and v (m) is the AWGN. In 

vector form the received signals for all M. receive antennas can be written as 

Mi L-1 

y, (n) n=O,l, ..., (N+ NP) —1 (2.12) 
1=1 /=0 



27 

where, y(n) [y (1)(n ) y2)(n), ... ,y(Mr)(n)]", h(" (1) = [h(") (1), h2'1(l), ••, 

and v(n) = [v1)(n), v2(n), ,vM(n)]", all with dimensions (Mr x 1). By 

changing the summation order of Equation (2.12) the received vector can be re-

written as 

L-1 

y, (n) =h(l)s(n—l)+v1(n), 
1=0 

(2.13) 

where h(l) = [b(1.(l), h2"(l), , h(m-')(l)] is a matrix of size (Mr x M ) and 

S, (n -1) = ISO) (n —1), s 2 (n —1),..., s(Mt)(n 1)]H is 

matrix form Equation (2.13) can be expressed as 

y = Gs, +v, 

(M x 1) vector. Finally, in 

t=O,1,2,... (2.14) 

where y = [y  (0), y(1), , y1(N+N _1)]" is a vector of size (M('N+P) x 1), 

- h(0) 

h(1) h(0) 

h(1) 

h(L-1) 

h(L-1) 

• h(0) 

h(1) 

h(L-1) 

is a block toeplitz matrix with dimensions of (M(N+N) X M7JV), 

S,  [s, (0), s (1), ... , s (N - l)] is a (M,.I\T x 1) vector and 

V, [v, (0), v(1), ••, v(N+N _l)1"is a (M('N+N7,) x 1) vector. 
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2.4.2.2 Received Signal after OFDM Demodulation 

After Yt is OFDM demodulated by the FFT transformation and the CP is 

removed, the signal at receive antenna jt1 in the frequency domain representation 

is 

M1 

vCi) = + 
k "k k ' 

j1 

0,1,... N—i 
(2.15) 

where, Hk't is the frequency response at the ktlt subcarrier, is the transmitted 

signal in the frequency domain, and VP) is the noise in the frequency domain. 

The frequency response of the channel H't is obtained as described in Equation 

(2.9). The is defined as 

i N-I 

= ---- 'c v (n) e_j2hh/IC. 

The vector form equation for all N subcarriers can be expressed as 

M, 

= + 

where Y — - [v(i)0 ' y(i)I ' ' y(iN-)I] " is a vector of size (N x 1), 

(2.16) 

(2.17) 

= diag ISO(  1 ' ' ... is a diagonal matrix with dimensions (N x N), '  

V V U) H = H(J' ) H'" H1 H  
0 ' I '' V1 ] and H'1 [HO (j"),  • N-l] is (N x 1) vector. 

The received signal for all the receive antennas can be expressed in the following 

form 

(2.18) 

where i = [y(I) y(2) ...y(Mr)] , Z=[X(1),X(2),...,X(Mt)] , V=[V0V2...VM], and 
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- 11( 1,1) 11( 1,2) 1jj(I,M,.) - 

H (2") 11(2,2) 
= 

2.5 Summary 

In this chapter, we discussed the effects imposed on the wireless channel 

due to small-scale fading. The multipath effect and Doppler shift causes the 

channel to be flat, frequency selective, slow, or fast fading. A scatter-rich 

environment generates multiple copies of the transmitted signal and causes them 

to be received at different times at the receiver. The multipath delays cause the 

signal to experience frequency selectivity as explained in Section 2.2. In Section 

2.3, we discussed that this negative effect of multipath signals can be exploited to 

improve the capacity and reliability of the system. We discovered in Section 2.4 

that OFDM techniques are very robust in combating frequency selective 

channels. Therefore, combining MIMO and OFDM is beneficial to future 

communication system. We thoroughly described and mathematically modeled a 

MIMO-OFDM system in Section 2.5. 
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CHAPTER THREE 

CHANNEL ESTIMATION 

In this chapter, a general overview on estimation theory is provided and the 

problem of channel estimation in a communication system is investigated. In 

Section 3.2, the training-based least squares (LS) estimator and Bayesian 

minimum mean square error (BMMSE) estimator are derived. Finally, simulation 

results of LS and BMMSE estimation for a MIMO-OFDM system is shown in 

Section 3.3. 

At the receiver, the ultimate goal is to recover the signal that was 

originally transmitted. A variety of equalization and signal detection techniques 

have been developed for MIMO systems depending on whether it is a diversity or 

spatial multiplexing system. Regardless of the type of MIMO system, most of the 

equalization/detection schemes require knowledge of the channel information in 

order to recover the signal. Hence, developing an efficient method of 

approximating the transmission channel between the transmitter and receiver is 

an essential component of the receiver design. There are some studies on joint 

channel estimation and detection and blind detection where the channel estimates 

are not required [29] and [30]. Generally, these schemes are higher in complexity 

or lead to performance loss. In this thesis, we will only focus on the channel 

estimation component of the receiver design. 
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3.1 General Channel Estimation Overview 

Channel estimation can be categorized into two classes, training-based or 

blind channel estimation, each with its benefits and disadvantages. In training-

based estimation a pilot sequence known to the receiver is embedded into the 

signal block and transmitted over the channel. At the receiver, the channel is 

estimated using the received signal and the known training sequence. Some 

advantages of training based estimation are high accuracy, relative lower 

complexity, and many existing standards such as GSM and IEEE 802.11a have 

allocated time slots for training sequence transmission. A drawback of training-

based estimation is reduced bandwidth efficiency due to the wasteful transmission 

of training sequence. Blind estimation on the other hand does not require a 

training sequence; instead it estimates the channel based solely on the received 

signal. Through the exploitation of the statistical properties of the received signal 

and channel structure an estimate of the channel is generated. A widely studied 

blind estimation technique is the subspace method using second order statistics 

(SOS). In the subspace method, the autocorrelation matrix of the received signal 

is decomposed into the signal and noise subspace. Due to the orthogonality of the 

noise and signal subspace, the channel estimates can be calculated based on the 

noise subspace [31]. There are several issues to be noted when using this blind 

technique. Firstly, the subspace method requires knowledge of the channel order. 

Some subspace methods can fail if the channel is over estimated. More 

importantly, the decomposition of the autocorrelation function via eigenvalue 

decomposition (EVD) or singular value decomposition (SVD) is highly complex. 

In real-time systems, these blind estimation techniques cannot be practically 

implemented due to their intense computational complexity. In addition, blind 
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methods rely on time averaging over a constant period, thus requiring the 

channel to be slow varying over a large packet of symbols. This makes blind 

algorithm not suitable for fast varying channels. In general, blind channel 

estimation techniques are restrictive since it relies on some data or channel 

assumptions, and it is high in computational complexity. Due to these 

impracticalities of blind estimation, we focus our research on the more practical 

technique of training-based channel estimation. 

3.2 Estimation Theory 

This section will provide some basic background knowledge on estimation 

theory. In estimation theory there are two general types of estimation 

approaches: 1) classical estimation, and 2) Bayesian estimation. In the classical 

approach, the vector to be estimated is viewed as a deterministic but unknown 

vector and the estimate is determined based on the probability density function 

(PDF). In Bayesian estimation the unknown vector is regarded as a random 

vector and prior infOrmation such as the mean, variance, and apriori PDF are 

used to determine the estimate. The following section briefly summarizes the 

derivation of the two types of estimators. For more detailed derivations refer to 

[32]. 

3.2.1 Classical Estimation 

In classical estimation, the optimal estimator is one that is unbiased with 

minimum variance. In general as mentioned in [32], the minimum variance 

unbiased estimator (MVUE) does not always exist. A popular suboptimal 
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estimator is the maximum likelihood (ML) estimate which approaches optimality 

for large data sets. In the ML approach, the estimation problem is posed as the 

maximization of the likelihood function parameterized by the unknown CIR 

vector. However, a closed-form solution for this problem might not always exist. 

In [15], an expectation maximization (EM) algorithm is proposed to solve this 

incomplete problem. The EM algorithm breaks the ML problem into a sequence 

of quadratic optimizations that can be iteratively solved to give an estimate that 

approaches the ML estimate. The performance of the EM algorithm largely 

depends on the initial estimate. The EM algorithm was used for channel 

estimation for a MIMO-OFDM system in [33]. The drawback of the ML 

estimator is that the PDF of the unknown vector must have a maximum or else 

the estimate might not converge. Also, this method only approaches optimality 

when a large set of data is available. 

3.2.1.1 Least Squares Estimation 

In practice, the least squares (LS) estimator is more commonly used due 

to its ease of implementation and acceptable performance. The criteria for a good 

estimator are that it is unbiased and has minimum variance. The LS estimator 

uses variance as a measure of performance by choosing an estimate that 

minimizes the error between the estimate and the true value. We will briefly 

present the derivation of the LS estimator using the following general linear data 

model: 

Y=HO+W (3.1) 
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where H is a known N x P matrix, 0 is P x 1 vector, and W is a N x 1 vector. 

The objective is to determine an estimate 0 vector. The LS approach tries to 

solve the estimation problem by minimizing the following cost function: 

J(0) = (Y_HO)H(Y_HO). (3.2) 

The gradient of the above equation is 

J(0) = —2H HO + 2(H)H HO. 
ao 

Equating the gradient to zero will yield the LS estimate 

(3.3) 

= (HhfJ1) 1(J1)FIY. (3.4) 

3.2.1.2 Least Squares Estimation MSE Bound 

Given the estimate, Ô, the mean square error (MSE) of the estimate is 

defined as 

MSEo = 1 E110_Oh'2 
P U (3.5) 

Substitute the LS estimate from Equation (3.4) into Equation (3.5). Then, the 

MSE of the LS estimator becomes 

MSELS =-E{D(HH)(H)Y_00} 

=1 Trace I (JJHH)1 (H)" W)(H'1H)1 (fl)H W)H } } 
P 

= iTrace1((HHH)-1Ht1E{WWJJ}H(HHH)-I} 
P 

= 2- Trace (Hh1H)-1 }. 
P 

(3.6) 
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3.2.2 Bayesian Estimation 

When some prior knowledge about the unknown vector of the system is 

available it can be incorporated into the estimator to enhance the performance. If 

the prior knowledge is accurate, a Bayesian estimator will outperform the optimal 

classical estimator. This comes at the price of added computational complexity 

and dependence on additional information of the unknown vector. 

3.2.2.1 Minimum Mean Square Error Estimation 

The MMSE estimator is a popular Bayesian approach that uses the prior 

knowledge of the PDF of the unknown vector. The MMSE estimator is developed 

using the same linear model as in Equation (3.1). The Bayesian MSE is defined 

as 

Bmse(Ô) =E[(O—Ô)2]. (3.7) 

In Bayesian estimation, 0 is a random variable, therefore the expectation 

operation is with respect to the joint PDF p(Y,0). So the estimator can be 

rewritten as 

Bmse(Ô) = JJ(o_O)2p(Y,o) dYd0. (3.8) 

Using the Bayes' theorem 

p(Y,0) = p(0 I Y)p(Y) 

the estimate becomes 

Bmse() = $[ J(O - ö)2p(O I Y) do] p(Y)dY. 

(3.9) 

(3.10) 
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Taking the gradient of Equation (3.10) and equating it to zero will give the 

Bayesian MMSE estimate of 

o= jop(OIY)dO (3.11) 

or 

9=E(OIY), (3.12) 

which is simply the mean of the posterior PDF p (01 Y). If the unknown vector 

and the noise vector are Gaussian with zero mean and uncorrelated, then the 

posterior PDF p (01 Y) is also Gaussian with mean defined as 

E(0 I Y) = E(Y) + COHH (IIC0H" + C, )1(Y - E(Y)) 
= COW (HCOH 11 + C r' . 

which is the solution of MMSE estimation of 0. 

3.2.2.2 Minimum Mean Square Estimation MSE Bound 

In MMSE estimation the error is defined as 

e=0—O 

=0—E(OIY). 

The error covariance matrix is defined as 

C6 =E 0(cs') 

= E 0 {(o —E(0 I Y))(0 —E(0 IY))11 } 
= EE01 {(o —E(0 I Y))(0 —E(0 I y))H} 
= 

where C01 ,, the covariance matrix of the posterior PDF p (0 1 Y), is 

(3.13) 

(3.14) 

(3.15) 
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C oly =C _ç* i-i—I -i (3.16) 
00 '-'0Y'YY'Y0 

Since the C0 does not depend on Y, then 

CC=ChIY. (3.17) 

Note that, C00 = C , ' 0Y = ' 0.L.L C = H C OH H + C, and C,0 = HC0 so, '  

C =C0 —00H11(HC0H" +C)'HC0 

or 

C, = (Co-'+ H h1C 1H) ' 

The diagonal elements lc,](,,,), where i = 0, 1, . . . , F, are defined as 

{C 1(11) = ff(O — E(0j I Y))2p(Y,t91)dYd, 

which are the minimum MSE for O• 

3.2.3 Remarks of LB and MMSE Estimation 

(3.18) 

(3.19) 

(3.20) 

1. In LS estimation, according to Equation (3.4), the known matrix H must be 

full rank to ensure the invertibility of (H'1H). On the contrary, in MMSE 

estimation, H does not need to be full rank to ensure the invertibility of 

(H COHH + C) in Equation (3.11). 

2. If there is no prior knowledge about the channel, CI' = 0, then the MMSE 

estimator reduces to the same form as a classical estimator. 

3. The MMSE estimator has better performance than LS estimation at the cost 

of higher complexity. But in the MMSE approach apriori knowledge of the 

unknown vector is required. The calculation of the unknown covariance 
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matrix and the inverse operation significantly increases the computational 

complexity. 

The LS and MMSE estimator represent estimators from separate classes 

with different underlying assumptions; therefore, they can not be compared 

equivalently. There is not a straightforward answer as to which is a better 

estimation technique. The MMSE estimator requires additional prior knowledge 

about the unknown vector and additive noise. With such information the 

performance will exceed that of the best classical estimator. The LS makes no 

assumption of the unknown vector and provide adequate result at a lower 

computational cost. 

3.3 Channel Estimation 

In Section 3.2, the LS and MMSE estimator for general linear data models 

was presented. Now, we will discuss the application of the LS and MMSE 

estimation to channel estimation in MIMO-OFDM systems. First, a literature 

review of previous work on channel estimation for MIMO-OFDM is provided. 

Then the channel estimation problem structure for OFDM will be developed, and 

finally it will be extended to a MIMO-OFDM system. 

In training-based channel estimation the pilot symbols can be placed in 

block-typed structures or comb-typed structures. As shown in Figure 3.1(a), for 

block-type arrangement the entire OFDM symbol is dedicated to carry pilot 

symbols on all the subcarriers. The estimate obtained with the training symbol 

will be used to detect the data symbols within the OFDM packet. This 

arrangement is most suitable for static or slow varying channels. However, in a 

time varying channel the comb-type structure as depicted in Figure 3.1(b) is 
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Figure 3.1: (a) Block-type pilot arrangement. (b) Comb-type pilot arrangement. 

more suitable. In the comb-type arrangement, pilot symbols are sparsely spread 

on selected subcarriers and repeated over multiple symbols. Channel estimation is 

performed at each symbol and interpolation is required to infer the channel 

frequency values of the non-pilot subcarriers. In [34], a study of various 

interpolation techniques was performed for OFDM systems. The choice of pilot 

arrangement depends on the channel environment. 

3.3.1 Literature Review 

Channel estimation for OFDM received significant amount of attention 

since the mid 1990's. Van de Beck et al. were one of the first to look at the basic 

solutions of LS and MMSE estimation for OFDM in [35]. In this work, van de 

Beck used the property that the channel is a finite-length impulse response to 

develop a system model so that the LS and MMSE estimator can be applied. He 

showed the CIR can be estimated in the frequency domain by structuring the 

CFR as a linear transformation of the CIR through the IFFT operation. This 
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type of estimators became know as transform-domain estimators. To further 

reduce the complexity, van de Beek proposed a rank reduced method which only 

considers the channel multipaths with significant energy. Transform-domain 

channel estimation was further researched by Edfors et al. in [36]. He studied the 

performance of the low-complexity LS and MMSE estimators of van de Beek and 

showed that at high SNR there is an irreducible MSE floor. In [37], Edfors 

proposed the use of SVD to achieve an optimal low-rank channel estimator. 

However, implementation of the SVD operation is high in complexity. 

The works mentioned so far only take into consideration the frequency-

domain correlations of the frequency response of the channel. In [38], Yi et al. 

derived a MMSE channel estimator which made full use of the time and 

frequency domain correlations of the CFR of time-varying dispersive channels. He 

showed his robust channel estimator can significantly improve the performance of 

OFDM systems in rapid dispersive fading channels. However, this estimator 

requires at least one entire OFDM system for initial training and continual 

feedback of the detected signal to track the channel changes. In [16], Yi extended 

this work to obtain a channel estimator for MIMO-OFDM systems. This method 

is highly complex because of the inversion of a large matrix due to the increase in 

number of channels. To resolve this, Yi proposed complexity reduction by means 

of training sequence design and signal processing simplifications in [39]. In [17], 

Minn et al. also proposed a reduced complexity channel estimator by exploiting 

the correlation of the adjacent subchannel responses. The size of the matrix 

inversion was reduced by half, but the performance of the system showed a slight 

BER degradation. However, all these solutions still required the complicated 

inverse operation which is not well-suited for real-time implementation. 
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Thus far, the methods discussed are based of block-type arrangement of 

the pilot symbols. In [40], Yi studies the comb-type arrangement for channel 

estimation and proposed an MMSE interpolator for obtaining the non-pilot 

subcarriers. He was able to show that the performance of interpolation-based 

method was better than the decision-directed method in his previous work found 

in [38]. In [41], Jones et al. proposes that L pilot symbols are sufficient for 

estimating the channel frequency response with a channel impulse response of £ 

multipath components. Different and exclusive equi-spaced pilots were assigned 

to each transmitter branch for MIMO-OFDM systems. Similar work was 

proposed by Jeon et al. in [42]. In Jeon's method, the pilot symbols of each 

transmitter are chosen such that they are orthogonal. 

In summary, there has been a handful of research in the area of channel 

estimation for MIMO-OFDM. Earlier works were only applicable to OFDM 

systems, but in recent years, the works have been extended to MIMO-OFDM due 

to the promising potentials of combining MIMO-OFDM. In much of the works 

reviewed, performance of the channel estimation scheme is the primary concern. 

Channel estimation in MIMO-OFDM is a complicated problem because there are 

more unknowns to be determined. Usually the solution involves an inversion of a 

large matrix. The problem of complexity has to be addressed because ultimately 

the algorithm needs to be implemented in hardware. In some recent works, the 

complexity problem has been addressed. In [17], complexity reduction was 

achieved by reducing the matrix by half through the exploitation of the 

correlation between the subcarriers. Another technique proposed in [39] uses 

specially design training sequence to avoid the complex matrix inversion. 

However, the need for specific training sequence reduces the robustness of the 
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algorithm. The work presented in Chapter 4 focuses on the development of a low 

complexity channel estimation technique that eliminates matrix inversion without 

setting limitations on the design of the training sequence. 

3.3.2 OFDM Channel Estimation 

One of the main attractions of OFDM for frequency selective channels is 

its ability to simplify the channel estimation process. It was shown in Figure 

2.8(b) that in the frequency domain the transmitted signal on each subcarrier is 

multiplied by a small portion of the channel frequency response, where each 

subcarrier only experiences flat fading. Referring to the schematic diagram of an 

OFDM system found in Figure 2.9, the channel estimation can be performed after 

the FFT block in the frequency domain. The received signal can be modeled with 

the following equation: 

Y=xH+v, (3.21) 

where Y is the received signal vector, X is a diagonal matrix of the transmitted 

signal, H is the channel frequency response vector, and V is the noise vector in 

the frequency domain. The received signal in Equation (3.21) has the same 

structure as the general linear data model described by Equation (3.1). Using the 

results of the LS and MMSE estimator developed in Section 3.2, the LS estimator 

for an OFDM system is described as: 

= (Xh1X) 1 XHY. 

Since X is a diagonal matrix, the estimate is reduced to 

11LS — XY. 

(3.22) 

(3.23) 
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This indicates that the LS estimate of the frequency response channel is simply 

the division of the received signal by the transmitted signal. 

The MMSE estimator for OFDM is defined by 

HMMSE =CH X(XCHX +C)'Y, (3.24) 

where 0H and C, is the covariance of the channel frequency response and noise, 

respectively. 

3.3.3 MIMO- OFDM Channel Estimation 

The problem of channel estimation for OFDM has been well researched; 

however, the results are not directly applicable to MIMO-OFDM systems. In 

MIMO systems, the number of channels increases by MM-folds, where M  and Mr 

is the number of transmit and receive antenna, respectively. This significantly 

increases the number of unknowns to be solved. Conventional estimation 

techniques for single input single output (SISO) systems have to be modified to 

be applicable in MIMO systems. 

Using the MIMO-OFDM system model described in Chapter 2, we will 

develop the channel estimator for MIMO-OFDM. We will assume a 2-by-2 

MIIMO system to illustrate the added complexity of MIMO-OFDM channel 

estimation. The received signal at the jr" antenna for the kt11 subcarrier in 

expanded form is defined as: 

= H'°S'[n] + + k=O,1,...,N—l. (3.25) 

The above equation is under determined. There are two unknown elements (Hk(j,' 

and Hk"2') from different channels, however the unknowns cannot be solved with 
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just one equation. In a 2-by-2 system, two samples of the received signal, 14 [n] 

and 1'[n + 1], are required to estimate HJ" and If we examine one 

OFDM block of N subcarriers, the received signal at the j' antenna is represented 

by the following equation 

yJ() S(n) 0 0 S' (n) 0 0 - 

yJ() = 0 S(n) 0 S" (n) 

0... ... 0 

Yvl  - 0 0 S.' (n) 0 0 S' (n) 

N 

• 

(3.26) 

Note, the vector contains NM unknown elements but there are only N 

equations available in a block. In general, for M transmit antennas we need to 

collect a minimum of M blocks to solve for the channel unknowns. The 

complexity of the estimation problem increases significantly since the matrix size 

is increased by M -folds. This problem can be reduced by looking at an alternate 

representation of the received signal, called the transform-domain estimator that 

was first proposed by van de Beek in [35] for OFDM systems. Basically, we know 

that the CFR is a Fourier transform of the CIR, which is a linear transformation 

through the IFFT operation. In other words, the CFR can be expressed in terms 

of the CIR through the Fourier transformation. Hence, the received signal model 

in Equation (3.26) can be expressed in terms of the CIR. The benefit of this 

representation is that usually the length of the CIR is much less then the number 
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of subcarriers of the system. In order to model the received signal in terms of the 

CIR we first need to express the CFR as a function of the CIR. In Equation 

(2.9), the Fourier transform of a single CIR is defined. The equation can be 

rewritten in vector form as 

where F = 

= Fh'j" 

1 1 1 
j2r(1)(1) j22r(1)(2)  

1 e N e N 

j2,r(2)(1) j22r(2)(2) 

1 e N e N 

j2,2(N-1)(1) 12,r(N-1)(L-1) 

1 e N . e N 

(3.27) 

is the called the Fourier transform matrix of size (N x L), and 

h11 =[hd/(0), h(j,')(1), ,h10(L_l)]" is the (I, x 1) channel impulse vector. To 

extend the Fourier transformation to multiple channels we need to define the 

following: 

F 0 0 

OF 

...0 

O••OF 

is a block diagonal matrix of M F's, and 

= [h(11), h''2, ... is a (ML x 1) vector. Then the alternate received 

signal of the j antenna in terms of the CIR can be expressed as 

Y(j) = ZI: h' + y(i) 

= + y(i) (3.28) 
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In this representation, the number of elements in 0 to be resolved are ML. If we 

assume that the number of subcarriers, N, in an OFDM block is greater than 

ML, then only one OFDM is required to solve for h. 

Using the received signal model in Equation (3.28) the LS estimate is 

expressed as: 

fj(i) = (W"W)' w"yj (3.29) 

The (W"W) 1 term has the dimensions of (ML x ML) which is still full rank if 

ML ≤ N. Using the same model, the MMSE estimate becomes 

= ChW H(WChW H +C)'Y'. (3.30) 

Assume the noise is AWGN (C = oI) and using the matrix inversion theorem 

the MMSE channel estimate can be alternatively written as 

= (oC 1 + W'W)' w"yj. 11 

3.4 Simulation Results 

(3.31) 

A simulation of an MIMO-OFDM system was developed to compare the 

performance of the LS and MMSE estimator under different circumstances. 

9.4.1 System Parameters 

i. Number of transmitter, M = 2 

ii. Number of receiver, M = 2 

iii. 16-QAM modulation 

iv. Number of subcarriers, N = 64 
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v. Cyclic Prefix, N 1, = N/4 

vi. OFDM block size, N + 

vii. Sampling time, T8= 1/80 MHz 

viii. RMS delay spread, Tr,ijs = 25 ns 

ix. The exponential decaying Rayleigh fading channel model proposed by 

Naftali Chayat for the IEEE 802.11-98/156r2 standard is used [45]. The 

channel has L paths where the amplitude of each path varies 

independently according to the Rayleigh distribution with an exponential 

power delay profile, and can be represented as 

= .N(0, 1/2o2) + j N(0, 1/2,2), 1 = 0, 1, . . . , L-1 (3.32) 

Ti ITS 

where o = (1— e) e' and N(0, 1/2U 1 is a zero mean Gaussian 

random variable with variance 1/2a. The l— e TrmS J is chosen such that 

the channel gain is unity i.e. 2: 1  = iJ where L, the length of the 

channel is approximated by 

(3.33) 

In addition, the channel assumed to be quasi-static, meaning that the 

channel remains relatively constant for the duration of the OFDM packet. 

3.4.2 Performance Analysis 

A training symbol is placed at the beginning of the OFDM block. The 

channel estimate obtained from the training symbol will be used to detect the 



48 

remaining data symbols within the block. The training symbol is composed of 

random Gaussian numbers constrained by the total power used to transmit a 

single OFDM signal. According to system parameters, the channel is gain is 

unity, so the SNR is defined as 

SNR= - , 
o.v 

(3.34) 

where E8 is the symbol power. The performance of the two estimation techniques 

is measured in terms of the MSE of the channel estimates and the bit error rate 

(BER) of a zero-forcing detector based of the channel estimates. 

Figure 3.2 shows the MSE curve of the simulated results of the LS and 

MMSE estimators and the theoretical bounds of both estimators as derived in 

Section 3.2.1.2 and 3.2.2.2, respectively. It confirms that MMSE estimator has a 

better performance, and that at high SNR (i.e. 30 dB) the MMSE estimator has 

equivalent performance as the LS estimator. This can be explained by looking at 

the MMSE estimation in Equation (3.31). When the SNR is high, the noise 

power (o,) is low, it will reduce the effect of C'. Therefore, when the noise 

power approaches zero, the MMSE estimator will approach the LS estimator. 

Also, from Figure 3.2, we observe that there is a performance gap between the 

simulated estimators and the theoretical bounds. The can be explain by looking 

at the MSE bounds defined by Equation (3.6) and (3.20), which indicates that 

the minimum MSE depends on the training sequence transmitted. Since in our 

simulated case a random training sequence was used, it will not achieve the 

minimum MSE. From this observation we can see that optimal training sequence 

can be selected to minimize the error of the channel estimates. In [18], a thorough 

analysis is presented on the selection of optimal training design for MIMO-OFDM 
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Figure 3.2: MSE curve for simulated LS estimation and minimum theoretical 
MSE 

systems. However, as mentioned before, a fixed training sequence design limits 

the robustness of the system. For this thesis, we will not restrict our channel 

estimation analysis to assume some fixed training sequence design. 

Figure 3.3 shows the performance of the LS and MMSE estimator in terms 

of BER in comparison to perfect channel knowledge. Due to the estimation errors 

of the LS and MMSE estimators, it will have a higher BER than when the exact 

channel is known. The results of the BER curve in Figure 3.3 agree with the 

results observed for the MSE curve in Figure 3.2, where the MMSE has better 

performance than the LS method. 
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Figure 3.3: BER curve for LS and MMSE Estimator and Perfect CIR 

The performance of the estimators for various channel lengths was 

investigated. The length of the channel is determined by the according to 

Equation (3.33) the greater the T7 the longer the channel length. Figure 3.4 

show the results of the LS estimator for channel lengths of 21, 15, 11, 9, 6, and 2. 

The accuracy of the estimates increased as the number of channel lengths 

decreased. Mathematically, a larger L implies that there are more unknown to be 

solved for a given set of equations, hence the accuracy will decrease. The results 

for the MMSE estimator are shown in Figure 3.5. For the MMSE estimator, the 

performance degradation due to increase in channel length varies for different 

SNR values. At low SNR, the channel length does not seem to affect the MSE 

value. However, for higher SNR the trend is similar to that of the LS estimator, 
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Figure 3.4: MSE curve for LS estimator for various channel lengths 

which is expected because the MMSE estimator approaches the LS estimator at 

high SNRs. Again, according to Equation (3.31) when the noise power is high, 

the impact of the C' is emphasized. This implies that the performance of the 

MMSE estimator at low SNRs largely depend on the C'. 
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Figure 3.5: MSE curve for LS estimator for various channel lengths 

From the simulation results obtained in this section, several conclusions 

can be drawn regarding the performance of the LS and MMSE estimator. First, 

at low SNRs the MMSE outperforms the LS and it is more robust to the channel 

length. However, at high SNR, the MMSE is equivalent to LS. When taking 

complexity into account, the MMSE estimation is not a good choice under high 

SNR scenarios. 

3.5 Summary 

In this chapter, we discussed the options for channel estimation and 

concluded that training-based estimation is preferable to blind estimation due to 

its relative low complexity. Two representative training-based estimation 
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techniques, LS and MMSE, were presented for MIMO-OFDM channel 

estimation. Our analysis confirmed that in terms of performance the MMSE 

estimator is better than the LS estimator. However, the complexity of the 

MMSE is significantly higher than LS. Moreover, the MMSE requires some prior 

knowledge of the channel, which may not be available in real-time applications. 

Taking all this into consideration, the MMSE may not always be the best 

choice. 
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CHAPTER FOUR 

QR DECOMPOSITION CHANNEL ESTIMATION 

In the Chapter 3, the general solutions for LS and MMSE channel estimation 

were developed. The LS and MMSE solution involved matrix inversions, which 

are high in computational complexity. In this chapter we propose a low-

complexity LS and MMSE channel estimator using QR decomposition. First, the 

application of QR decomposition for LS estimation will be described in Section 

4.1. In Section 4.2 low complexity techniques are proposed for MMSE estimation 

4.1 QR Decomposition for LS Channel Estimation 

Direct computation of the LS solution involves a matrix inversion, which 

is high complexity and undesirable for hardware implementation. Matrix 

decomposition-based least square schemes such as Cholesky, lower upper (LU), 

SVD, and QR decomposition (QRD) avoid explicit inversions and are more 

robust and well suited for hardware implementation. The details of these schemes 

can be found in [46]. The QR decomposition is preferable because of the clever 

implementation of the scheme in a highly parallel systolic array architecture by 

Gentleman and Kung [47]. In addition, QRD guarantees numerical stability by 

minimizing errors caused by machine roundoffs [46]. 

QR decomposition is an orthogonal matrix triangularization technique 

that reduces a full rank matrix into a simpler form. Consider a matrix A of size 

(m x nj), then the QR decomposition is defined as 
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[Ri 
A=Q[j (4.1) 

where Q is a (m x m) unitary matrix, R is a (n x m) upper triangular matrix 

and 0 is a null matrix. A unitary matrix is one that satisfies the following 

condition 

JQHQ (4.2) 

To apply QRD to the problem of channel estimation we recall the MIMO-

OFDM system model 

Y=Wh+V. (4.3) 

As stated in Chapter 3, the LS estimation solution is found by minimizing the 

norm square of error function c = Y - wfl to give the estimate 

ii = (W'W)1 WHY. (4.4) 

The inversion of WHW of size (LN x LN) is high in complexity and will 

significantly increase when the size of W increases, which is dependent on the 

channel length or the number of transmit antennas. To avoid the matrix 

inversion we can directly apply QR decomposition to the error equation as 

follows 

Wh=Y 

QRh=Y 
pJQHy 

(4.5) 

Note, R is an upper triangular matrix, hence Ii can be solved through back-

substitution. The QR solution is a numerically stable low complexity solution to 
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LS channel estimation of an MIMO-OFDM system. In summary, the solution is 

obtained through the following steps: 

1. QR decompose W into QR 

2. Premultiple Y by Q} 

3. Solve for ii by back-substitution 

The QR decomposition can be calculated via Gram-Schmidt decomposition, 

Householder transformation, or Givens rotation. These methods can be separated 

into two categories: block-based and recursive-base. The classification of the 

QRD methods is shown in Figure 4.1. The block-based approach based on the 

Householder method and Gram-Schmidt method requires the entire matrix, W, 

to be formed before the decomposition is performed. This implies that the 

received signal must wait for N samples to form W before the data is sent to the 

processor, where the QRD is calculated and the channel estimates are solved. The 

total time required to obtain the channel estimates is NT plus the processing 

time as shown in Figure 4.2. The second approach is the recursive method 

achieved through Givens rotation, which does not require the buffering of the 

data. The time required to obtain the channel estimates is just based on the 

processing time of the processor. In the Givens rotation method, orthogonal 

rotations are performed to annihilate the incoming elements individually. Givens 

rotation requires a larger number of floating point operations (FLOPs) as 

compared to the block-based methods. However, the rotations can be 

implemented in parallel using systolic arrays, which can reduce the overall 

execution time as compared to the block techniques. 
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Figure 4.2: (a) Block estimation process. (b)Symbol-based estimation process 



58 

Next, we briefly describe the Householder method and Givens rotation 

method for QR decomposition. The Householder is chosen over the Gram-

Schmidt because the Gram-Schmidt is not numerically stable. 

4.1.1 Householder Method 

In the Householder approach, a series of reflection matrix is applied to the 

matrix, W, column by column to annihilate the lower triangular elements. The 

reflection transformations are orthonormal matrices that can be written as 

U=(I+fivv'') (4.6) 

where v is the Householder vector and /7 = -211 v 112 . For a given matrix W of size 

(m x n), to annihilate the lower elements of the kth column the 11k is constructed 

as follows: 

1. Let v equal the ktI column of W 

2. Update v by v x 112 e1, where e1 = [1, 0, . . 

3. Determine /7 by /7 = —211 v 

4. H, is calculated according to Equation (4.6). 

The 11k (for k = 1,2, ... ,n) formed from the above steps are pre-multiplied by W 

sequentially as follows 

rR1' (4.7) 
H,1....H1W= 

] 
Lo 

Q JI 

where, R is the upper triangular matrix and the sequence of rotation matrices 

form the complex transpose of the orthogonal matrix Q. 
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4.1.2 Givens Rotations Method 

In the Givens rotations (GR), the 

achieved by annihilating a single element 

triangularization of the matrix is 

at a time. For simplicity we will 

illustrate the algorithm with a (2 x 2) matrix W = WH 
[Wki 

k1 
To annihilate w, 

Wk/C 

the W matrix is premultiplied by a rotational matrix 

following manner, 

[c* sl[wjj k1 [i k 

L—s c ] Lwkl W j [rk rkk 

J W R 

[ * c S ]in  the 
—s c 

(4.8) 

The objective is to choose c and s such that the rki element becomes 0. From 

Equation (4.8), the required condition is 

+ CW,1 0. 

Moreover, c and s are constrained by 

IC 1, +ls 12= 1. 

Therefore, substituting Equation (4.10) into (4.9) we get 

c= 

and 

Wi1 Wii Vi 12 + I W 12 

Wk. 
S = -1- C. 

W ii 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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The non-zero terms of the R matrix are determined as follows 

7' i 

= Cs Wjk +SW 

rkk =  —sail, + cakk  

(4.13) 

To extend this approach to a general matrix of size (m x n), the 

rotational matrix in the general form for annihilation of the (k,i)thl element is 

defined as 

ki = 

0 •••0••• 0 

0 ... c 

0 ... — s •• C •.. 0 

0 

<kt1 row 

row 

where J1, , a (m x m) matrix, is used to pre-multiply the original matrix and 

sequentially annihilate the desired elements. The sequence of ration matrices is 

represented by 

[R]m,n-l",n2"32rn.....J21 '\V  
 I o 

Qll 

(4.14) 

where R is an upper triangular matrix and Q is the complete rotation matrix. 
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4.1.3 Decoupled Givens Rotation QRD 

The CR method for QRD has been deemed a good approach for hardware 

implementation due its highly parallel architecture. However, CR requires square 

root operations as shown in Equation (4.11), which require more processing time 

in hardware implementations. To reduce the complexity of Givens rotation, we 

investigated approaches to eliminate the square root opertion and reduce the 

over FLOP count of the algorithm. In [48], a decoupled QRD method was 

developed for MIMO detection. The standard QRD is reformulated to avoid the 

square-root and division operations for MIMO detection. We will adapt this 

square-root and division free method to channel estimation. In the following 

section we will briefly describe the algorithm of the decoupled Givens rotation 

QR decomposition (DGR-QRD) described in [48]. Using equation (4.8), (4.11), 

and (4.12) the QRD of W in expanded form is defined as 

W=QR 

Vi M 1 2 +lWklI2 

Wkl 

Vi1i2 +1 Wkl 12 
wii 

w 12 + I W 2 2 + Wkl 12 

i WH 12 +iWkl 12 
jIT4ii2 +1 Wkl 12 

0 

W 11 VYik + W k, Wkk  - 

Vi Wii 12 +1 WkI 12 

+ 14)j1WkJC 

Vi Wii 12 + I W 1 2 

(4.15) 

The DGR-QRD is based on a new representation of the R matrix elements 

defined as 

(4.16) 
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The division and the square root operations are avoided by computing and 

storing pij and k separately. Applying this idea the decomposition can be 

rewritten as 

LWkj W II 

1 

41 Wii 12 +IWkj I 

0 

0 

1 

JI Wii 12 +1 Wk! 12 

LLr WIi* 

Wkl WIi 

'V 

=IIz -IP 

Q 

1 

Jl WI 12+1 w 

0 

0 

1 

[I WIi 2 +1 W 1 12 

0 

Vi WI 12 +1 W1 12 
_ 

0 

X 

2 2 * * IWIiI +IWkjI WIiWIk+WW 

1 1 0 

  WI  l2 +I141kj I2  V  
V 

z -1 

(4.17) 

where I' is an orthogonal matrix, Z' is a diagonal matrix with elements 1/k-i and 

P is an upper triangular matrix. 

The algorithm for the decoupled QR decomposition of a (m x n) complex 

matrix W is as follows: 

1. Initialize the P matrix to equal W and k = 1 for i = 1, . . ., m. 

2. The p element is annihilated by the following rotation matrix 

PkiI Pa - * Pu j [ ir hIi 
PiiZk PkiZi II I = I Pu I 

] [0] 
(4.18) 
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where j5ji is the updated element. 

3. The denominator terms Zk and z1 are updated by 

Tk = + PkiZkPkl = PH 

Z,, = ZjZ ( puZkpuu + P;uZkPki) = ZuZkPII. 
(4.19) 

4. From the above equation we can see that as the iterations increase the z 

and p values will increase exponentially which might eventually cause the 

system to become unstable. Scaling is performed on the new elements of p 

and z after every update to avoid overflow. The z values are limited to the 

range 0.25 to 4, thereby limiting the deviation of P matrix values from the 

original matrix W. As described in [48], scaling can be achieved with only 

binary shift operations which are low in complexity. 

Applying the DGR-QRD, the channel estimate procedure becomes 

wii=y 
cHy 

pjjpHy 

(4.20) 

where I"I' = Z. Since P is an upper triangular matrix then fi can be solved by 

back-substitution. 

4.1.4 Performance Analysis 

Using the simulation parameters in Chapter 3, a MIMO-OFDM system 

was simulated to evaluate the performance of the proposed QR decomposition 

methods for LS channel estimation. The plot in Figure 4.3 suggests that the QRD 
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methods and LS channel estimation have the same performance in terms of the 

MSE of the estimate. This is expected because the QRD method essentially 

solves for the least square solution, but it achieves it through matrix 

decomposition. Whereas, in standard LS channel estimation, a pseudoinverse is 

used to solve for the channel unknowns. The use of QRD methods does not 

improve the performance in terms of lower channel estimation error. However, in 

the next section we show the benefit of QRD, which is the significant reduction 

of the complexity of the system. 

—t.S E 
---QRD : 
-6-- DORD - 

1U 4 

5 10 15 
SNR (dB) 

20 25 30 

Figure 4.3: MSE curve for the various channel estimation algorithms 
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4.1.5 Complexity Analysis 

The main advantage of using QR decomposition is to reduce the 

computational complexity of the LS channel estimation. In this section, we 

measure the computational complexity in terms of number of operations for each 

method. Our derivations are based on an M-by-M MIMO-OFDM system with N 

subcarriers and a channel length of L. The known matrix W has dimensions (N x 

LM). For simplicity in notation we denote LM with just M. For a consistent 

comparison, the complex operations are converted to real operation equivalents. 

Table 4-1 shows the real equivalent operations for the various complex 

operations. In addition, each type of real operations has different levels of 

complexity when implemented in hardware. We will set multiplications, 

additions, and subtractions to 1 FLOPs, divisions to 6 FLOPs, and square roots 

to 10 FLOPs. It should be emphasized that counting of the number operations is 

only an estimate of the computational complexity of the algorithms. A more 

exact measure would be to implement the algorithm in hardware and count the 

number of instructions and processing time required. However, in computer 

simulations, FLOP counts can give a good indication of the relative complexity of 

different algorithms. 

Table 4-1: Complex to Real Operation Equivalents 

Complex 
Operations 

Number of Real Operations 

Multiplication Division Addition/ 

Subtraction 

Multiplication 4 2 0 
Division 6 3 2 
Addition/ 
Subtraction 

0 0 2 

Complex 
Magnitude 

2 0 1 
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The operation counts were derived for the LS channel estimation, 

Householder QRD (H-QRD), Givens Rotation QRD (GR-QRD), and decoupled 

Givens Rotation QRD (DGR-QRD) channel estimation. Details of the LS 

channel estimation algorithm used in this comparison can be found in Appendix 

A. The complexity equations are derived by counting each type of operations in 

the various algorithms. The final equations for operation counts are presented in 

Table 4-2, Table 4-3, Table 4-4 and Table 4-5. 

Table 4-2: LS Channel Estimation Operation Count 

Operation # of Complex 
Mult. 

# of Complex 
Add/Sub 

# of Complex 
Div. 

# of 
Sq. 
Root 

A=(W11W) NM 2 NM2—M2 0 0 

K 1 M 3 M 3 3M2/2 + M /2 0 

B=A-'W' NW NM 2—NM 0 0 

h=BY NM NM—M 0 0 

Table 4-3: Householder QRD Channel Estimation Operation Count 

Operation # of Complex 
Mult. 

# of 
Complex 
Add/Sub 

# of 
Complex 

Div. 

# of 
Complex 
Magnitude 

# of 
Sq. 
Root 

Determine 

lvii 
0 NM /2 - M 

2/4 —M/4 
0 NM - M 2/2 

+M/2 
M 

Update v(1) M M M M M 

Determine 0 0 M 0 0 

Update W NM 2 + 2NM 
- M 3/3 —M 
2/2 + 5M/6 

NM 2 + NM 
- M 3/3 —M 
2/2_ M/6 

0 O 0 

Update Y 2(NM— M 2/2 
+M/2) 

2NM— M 2 

Back 
substitution 

M 2/2 - M /2 M 2/2 + M 
/2 - 1 

M 
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Table 44: Givens Rotation QRD Channel Estimation Operation Count 

Operation # of Complex 
Mult. 

# of Complex 
Add/Sub 

# of Complex 
Div. 

# of Sq. 
Root 

Calculate 
rotation 
matrix 

5(NM— M 2/2 
—M /2) 

2(NM— M 2/2 
—M /2) 

2(NM— M 2/2 
—M /2) 

NM— M 2/2 
—M /2 

Update R 4(NM 2/2 - 

NM /2 
- M /6 + M 

/6) 

2(NM 2/2 - NM 

/2 

- M 3/6 + M16) 

0 0 

Update Y 4(NM— M 2/2 
—M/2) 

4(NM— M 2/2 
—M/2) 

0 0 

Back 
substitution 

M '12 - M /2 M 2/2 + M 12 - 

1 
M 0 

Table 4-5: Decoupled Givens Rotation QRD channel estimation operation count 

Operation # of Complex 
Mull. 

# of Complex 
Add/Sub 

# of Complex 
Div. 

# of Sq. 
Root 

Calculate 
rotation 
matrix 

2(NM— M 2/2 
—M /2) 

0 0 0 

Calculate z, 

;) p, and 
Rij values 

2(NM - M 2/2 
—M /2) 

2(NM - M 2/2 
—M /2) 

0 0 

Update P 4(NM 2/2 - 

NM /2 
- M /6 + M 
/6) 

2(NM 2/2 - NM 

/2 
- M 3/6 + M16) 

0 0 

Update Y 4(NM— M 2/2 

—M/2) 

2(NM— M 2/2 
—M/2) 

0 0 

Back 
substitution 

M '12 - M /2 M '12 + M /2 - 

1 
M 0 
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Using the system parameters for the MIMO-OFIJM system specified in 

Chapter 3, we calculated the number of operations for a 2 transmit antenna 

system with a channel length of 5 for the various algorithms. In the following 

section, the complexity comparison in terms of FLOPs count is performed for the 

block-based methods and recursive-based methods separately. To accurately 

determine the complexity would require hardware implementation of the 

algorithms. However, FLOPs counts are legitimate for comparison of the relative 

complexity of the methods within the sub-categories. The intent of this analysis 

is to demonstrate that within the block-based schemes, the H-QRD method is 

lower in complexity than the LS method, hence a better alternative. Moreover, 

comparison of the recursive-based schemes demonstrates that the DGR-QRD has 

lower complexity than standard GR-QRD. 

4.1.5.1 Block-Based Methods 

First, we compare the block-based schemes which include the LS channel 

estimation scheme and the Householder QRD scheme. The results in Table 4-6 

shows that the total number of operation for the LS method is much higher than 

the H-QRD method. For this simulation scenario using H-QRD achieves a 

complexity reduction by approximately 40%. This verifies that the H-QRD has 

significantly lower complexity than that of direct LS estimation via the 

pseudoinverse, hence a better option for channel estimation. 
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Table 4-6: Operation count of a 2 transmitter system with channel length of 5. 

Algorithm Complex 
Mult. 

Complex 
Add./ Sub. 

Complex 
Div. 

Complex 
Magnitude 

Square 
Root 

Number 

of 

FLOPS. 

LS 14440 13690 155 0 0 262450 

Householder 
QRD 

8550 8192 30 605 20 155999 

The impacts of varying antenna configurations and channel lengths on the 

algorithms were studied. First, retaining a constant channel length of 5, the 

operation counts were calculated for various number of transmitters. Figure 4.4 

shows the results for one to four transmit antenna systems. As expected, when 

the number of antennas increases, both estimation techniques increase in 

complexity because the size of the unknown matrix W increases. The general 

trend of the H-QRD method is that it increases almost linearly with the number 

of transmit antennas of the system. The LS method increases exponentially at a 

considerably higher rate than the H-QRD methods. Overall, the H-QRD is lower 

in complexity and it is especially preferable for higher number of transmit 

antennas since it does not explode in complexity as the LS solution. 

In Figure 4.5, the operation counts for channel estimation for a two 

transmit antenna system with varying channel lengths are shown. Increasing the 

channel length increases the number of unknown parameters, thereby will 

increase the complexity of the channel estimation. Again, it shows that the LS 

increases exponentially as the channel length increases and has much higher 

complexity than the H-QRD for long channel lengths. 



70 

—*— LS-INV 
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4.5 

3.5 

0) 
0 

E 
2-z 

01 

Number of transmit antennas 
4 

Figure 4.4: FLOP counts for LS and H-QRD for various antennas configurations 

10 12 14 16 18 20 22 
Channel length 

Figure 4.5 : FLOP counts for LS and H-QRD for various channel lengths 
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4.1.5.2 Recursive-based Methods 

Now, we compare the complexity of the recursive methods: standard GR-

QRD and DGR-QRD. The DGR-QRD was proposed to reduce the complexity of 

the standard GR-QRD by reducing the number of complex divisions and 

eliminating the square root operations. From Table 4-1, we see that the complex 

division corresponds to 11 real operations which have almost twice as much as a 

complex multiplication. Therefore, it is beneficial to minimize the number of 

complex division operations. The FLOP count of the GR-QRD and DGR-QRD is 

shown in Table 4-7. From Table 4-7, it can be observed that the DGR-QRD 

slightly reduces the number of complex multiplications and additions/ 

subtractions. The bulk of the reduction results from reducing the 1180 complex 

divisions to 10 and eliminating of all the square root operations. The overall 

number of FLOP count is reduced by about 15%. 

Table 4-7: Operation count of a two transmit antenna system with channel 
length of 5. 

Algorithm Complex 
Multiplication 

Complex 
Addition/ 
Subtraction 

Complex 
Division 

Square 
Root 

Number of 

FLOPS 

GR-QRD 16170 8994 1180 585 313823 

Decoupled 
GR-QRD 

15585 7824 10 0 265268 
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Next, we investigate the complexity of the GR-QRD and DGR-QRD 

algorithms for various lengths of the channel. The result in terms of number of 

FLOPs is shown in Figure 4.6. When the channel length increases, there are more 

unknowns to be determined; hence the complexity is expected to increase. The 

two schemes increase with similar trends. 

Finally, the complexity of the block and recursive techniques is compared 

and the results are shown in Figure 4.7. It clearly shows all the QRD techniques 

have fewer number of FLOPs than the LS method. 

35 x 10  

—I'— LS-GRQRD 
-- LS-deGRQRD 

3 

2.5 

I 

0.5 

0  
2 4 6 8 10 12 14 

Channel length 
16 18 20 22 

Figure 4.6: FLOP counts for GR-QRD and DGR-QRD for various channel 
lengths 
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Channel length 

22 

Figure 4.7: FLOP counts for LS, H-QRD, GR-QRD and DGR-QRD for various 

channel lengths 

4.2 QR Decomposition MMSE Channel Estimation 

It was mentioned in Chapter 3 that through the use of prior knowledge 

about the channel the MMSE estimator outperforms the LS solution at the cost 

of higher complexity. There are several factors that contribute to the high 

complexity of MMSE estimation. Usually in practice the covariance matrix of the 

channel is unknown; therefore, it needs to be calculated at the receiver. The 

covariance matrix can be approximated by performing a time average of the 

instantaneous covariance matrix of the channel determined at the receiver. The 

determination of the instantaneous covariance is high in complexity, and the 

convergence time of the average covariance matrix results in high latency. In 

addition, the noise variance of the AWGN has to be calculated. Even if the 
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channel covariance and the noise level is known, the computation of the MMSE 

solution is higher in complexity than the LS solution due to the added inverse 

operation of the channel covariance matrix (refer to Equation 3.31). If the 

channel has a large number of taps it will significantly increase the complexity of 

the algorithm due to the large inversion. The computational complexity can be 

reduced by considering the characteristics of the channel delay profile. For 

example, the channel length can be shortened by limiting to only the significant 

paths. However, it might impact the accuracy of the estimates. The tradeoff 

between computational complexity and estimation accuracy must be considered 

when choosing the number of significant channel taps. Alternatively, in hopes of 

retaining estimation accuracy we explore methods of reducing the computational 

complexity of the MMSE by simplification of the solution by QRD. 

In this section, we will assume the channel covariance is known and the 

complexity of its calculation is not taken into account. Given the channel 

covariance matrix, the MMSE solution can be determined by the following 

equation 

= (4 C' + W"W)1 WHY. (4.21) 

The added complexity of the MMSE estimation over the LS method is largely 

due to the inversion of the channel covariance matrix and the inversion of the 

(o C' + WHW) term. The system construction and channel environment affect 

the structure of the channel covariance matrix. The fundamental assumption in 

MIMO-OFDM systems is that the transmit and receive antennas are sufficiently 

separated such that the multiple channels are independent. In addition, the 

multipath components of each channel are assumed to be independent and 
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uncorrelated. Under these assumptions the covariance matrix of the channel is a 

diagonal matrix of the following form 

Ch =E{hh"} 

_o.;2 0 0 

0 o 

0 

LN, 

=diag(ci), l=l,...,LIV. 

(4.22) 

Since Ch is diagonal, the inversion of Ch is simply the inversion of the diagonal 

elements. This will amount to a total of LIV division operations for the inversion 

of Ch, which is significantly lower than the complexity of a full matrix inversion. 

Having accounted for the Ch' operation the MMSE solution, there still exists the 

(O-V2 o- diag 4 + W"W)' operation which poses high computational complexity. 

We will propose the use of QRD to eliminate the inversion in the MMSE 

solution. 

4.2.1 QR Decomposition for MMSE Channel Estimation 

The obvious approach would be to manipulate the MMSE solution into a 

form that we can directly apply QRD. The MMSE equation is rewritten as 

(4 C1 + WHW) ii = WHY. 

Let A=c4C'+W"Wand B=W"Y,we get 

Ah=B. (4.24) 

(4.23) 
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We can apply QRD to A, (A = Q'R'), substituting into Equation (4.24) to get 

Rth = QFIB, (4.25) 

and the channel estimates can be obtained by back substitution. However, the 

direct implementation of the QRD in place of the inverse actually has higher 

complexity due to the addition computations to form the A and B matrices. The 

QRD LS estimation described in Section 4.1 has significantly lower complexity 

because the QRD is directly operates on the known matrix W as oppose of the 

WHW. In order to lower the complexity of the MMSE solution using QRD we 

need to restructure the MMSE solution to eliminate the W"W operation. First 

we will define the following 

w 
w = 

and 

(i 
odzag -

(4.26) 

(4.27) 

which are the extended form of the known matrix, W, and received vector, Y, 

respectively. Now, we show that the LS solution of the ' and is equivalent 

to the MMSE solution shown in Equation (4.21). 
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11= (W'W)1 WH 

( 

1w H 
( 1 

crdiagI - 

W 

• (1 
crdzag - 

cr, 

= [WHW + 4 diag WHY (712 

Applying QRD to 'T to get, 

W=QR 

I 

1w H U1 [Y] (4.28) 

(4.29) 

then the QRD solution of the MMSE channel estimates in terms of the extended 

matrices is 

Q H IV (4.30) 

hence, the channel estimates can be solved for by back substitution. 

It was discovered that the channel estimates can be extracted from the 

partitioned forms of the extended matrix W without further back substitution. 

The extended matrices are defined in the following partitioned form: 

W= 

W 

(i 
odzag - 

Q - = [ ] rq1, q12 1 ,and I = ['1 Then equation (4.30) can be 
q21 q22 

represented in the partition as follows 

H q11 21 

22 

From Equation (4.31) we can see that 

[y] . 

R*h=q Y 

(R 1 qY 
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The QR decomposition of Win partition form is 

W 

• ( 
crdzag - 

kcTi1 )-

qll 

q21 

q12 [R* 

q22][ 0 

From Equation (4.33) we can extract this relationship 

cidiag - =q2iR* 

y 71 ) 

crdiag 1 i) (R* )1 = q21 
O) 

-J--diag(o-1)q21 
o-v 

Substituting Equation (4.34) into (4.32) we get 

il = _diag(o1)q21qY 
av 

(4.33) 

(4.34) 

(4.35) 

The derivation above shows that after QRD of the extended matrices, the 

channel estimation can be extracted from the orthogonal matrix Q. This 

eliminates the back substitution process which reduces processing time and 

hardware. The drawback of solving for the channel estimates using the above 

method is that it has higher computational cost. In the previous QRD methods, 

the Q matrix is not explicitly calculated or stored as it is not required to solve for 

the unknown. To calculate Q will require approximately 4(N 2M  - NM2 + M3/2) 

FLOPs using the Householder method [46]. 



79 

4.2.2 Performance Analysis 

The proposed implementation of the QRD-MMSE was tested through 

simulation using the same system parameter as before. As expected, the QRD 

implementation gives the same results as the standard MMSE solution. The 

benefit of QRD-MMSE is in terms of the complexity reduction through QRD. In 

the next section complexity comparison will be performed between the standard 

MMSE and QRD-MMSE solution. 

4.2.3 Complexity Comparison 

The complexity in terms of number of operations of the MMSE channel 

estimation and the HQRD-MMSE channel estimation was derived. The results 

are listed in Table 4-8 and Table 4-9. 

Table 4-8: FLOP counts for MMSE channel estimation 

Operation # of Complex 
Mult. 

of Complex 
Add/Sub 

# of Complex 
Div. 

# of 
Sq. 
Root 

AcrC' M 0 M 0 

B=W"W NM  NM2—M2 0 0 

A+B 0 M 0 0 
M 3 M 3 3M2/2 + M/2 0 
NM2 NM 2—NM 0 0 

h=DY NM NM—M 0 0 
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Table 4-9: FLOP counts for QRD-MMSE channel estimation 

Operation # of 
Complex 
Mult. 

# of 
Complex 
Add/Sub 

# of 
Complex 

Div. 

# of 
complex 
magnitud 

e 

# of 
Sq. 
Root 

Form  0 0 M M+1 

QRD of W by 
Householder 

N 2M+ 3NM 
+ 3N - M 2 

+4M+3 

N 2 M + 

7NM /2 + N 
+M 

2 M NM M 

Back 
substitution 

M 2/2 - M 
/2 

M 2/2 + M 
/2 - 1 

M 0 0 

The FLOP counts were calculated for the MMSE channel estimation and 

QRD-MMSE implementation of the MMSE solution. The results of a two 

transmit antenna system with channel length of 5 is shown in Table 4-10. QRD-

MMSE requires about half the complexity of the standard MMSE method. 

Additionally, the effect of the channel length on the complexity of the methods is 

in shown in Figure 4.8. We observe that the complexity of the MMSE method 

increases exponentially as the number of channel increase due to the added 

complexity of a large matrix inversion. However, the QRD method increases in a 

more linear manner. This demonstrates that the proposed QRD-MMSE method is 

lower in complexity and is more robust to varying channel length. 

Table 4-10: Operation count of a two transmit antenna system with channel 
length of 5 

Algorithm Complex 
Multipli- 
cation 

Complex 
Addition/ 
Subtraction 

Complex 
Division 

Complex 
Magnitude 

Square 
Root 

Number 

of 
FLOPS 

MMSE 14450 13700 165 0 0 262890 

QRD-MMSE 9155 8715 30 660 31 166980 
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6x106 

-*- MMSE 
-h-- MMSE-HQRD 

5 

4 
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Number of transmit antennas 
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Figure 4.8: Operation count for various channel lengths for a 2 transmitter 
system 

4.3 Summary 

In this chapter, we have addressed the complexity issues of the standard 

LS and MMSE channel estimation schemes. For LS channel estimation, the 

pseudoinverse calculation is undesirable due to high computational complexity. 

We suggested the use of QRD to avoid the matrix inversion. The results showed 

the Householder implementation of the QRD has almost half the complexity of 

the standard LS solution. Moreover, the recursive Givens rotation method also 

showed lower complexity than the LS method, especially in long channel length 

situations. The decoupled Givens rotation method was applied to further reduce 

the complexity of the recursive Givens rotation approach. The MMSE channel 

estimation has better performance but with higher complexity. We proposed a 

QRD-MMSE method that significantly reduces the standard MMSE. 
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CHAPTER FIVE 

ADAPTIVE CHANNEL ESTIMATION 

In the previous chapters, low-complexity channel estimation techniques 

were developed for time-invariant channel. In a time-invariant channel, channel 

estimation is performed at the beginning of the frame and the estimates are used 

in the remainder of the frame for signal detection or equalization. In a time 

varying environment such an approach is not sufficient since the channel changes 

within the frame. In this chapter, low-complexity adaptive techniques are 

investigated for estimation of time varying channels. First, the time varying 

channel will be described and a system model is developed in Section 5.1. In 

Section 5.2, the comb-type pilot arrangement will be discussed for time varying 

channels. In Section 5.3, we will present various adaptive techniques for channel 

estimation in a time varying environment. Finally, performance analysis is 

performed on the various algorithms. 

OFDM has been adopted in many current standards, such as IEEE 

802.11a and HIPERLAN/2, due to its ability of high data rate transmission and 

robustness to frequency selective fading. In IEEE 802.11a, the OFDM frame is 

structured such that block-type pilots are placed at the beginning of the frame 

for channel estimation. This is suitable for a WLAN, where the transmitters and 

receivers are assumed to be mostly stationary. Under such an assumption the 

channel can be viewed as time invariant, therefore block-typed pilot arrangement 

is sufficient. However, when the transmitter or receiver units are mobile, the 

channel becomes time varying due to large Doppler shifts as discussed in Chapter 
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2. Depending on the Doppler shifts, the channel can vary significantly within the 

frame. Therefore, in mobile OFDM systems an alternate method of comb-typed 

pilot arrangement is required to estimate the channel over the frame duration. 

5.1 Time Varying System Model 

The frequency response of a frequency selective Rayleigh fading channel can 

be model as 

L-1 j22rk1  

H[n,k]=h[n,l]e K 

1=0 

(5.1) 

as described in Section 2.4.1. In our previous discussions it was assumed that the 

channel is invariant; therefore, the channel stays constant for all m with in the 

duration of the frame. In a time varying channel, the CIR changes for different 

values of n which complicates the channel estimation. The rapid changing of the 

channel parameters can induce 101. Consider the received signal of the MIMO-

OFDM system under a time-varying channel for the j received antenna, 

M, L, -1 

Y; (n) = hC(n,l) s1(n—l) + v1(n), n=O,l, .., N—1 (5.2) 
1=1 1=0 

This is similar to the received signal presented in Equation 2.11, except that in 

Equation 5.2, the channel is now also a function of time m. Note that the time 

domain transmitted signal s(n-1) can be represented as a summation of the 

frequency components as described by Equation 2.6. Substituting :the equivalent 

representation of s/V(n 1) into equation (5.2) we get 
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1 M, L11 -I N-i 

Y (n) -JN___ hU(n,l) + v(n), 
i=i 1=0 k=0 

1 M, N-i L,-i 

=  _ S' (k)e. 2h1ldIN hu (n, 1) e_i2nlkhi\T + v 1 (n) 

i=i k=0 1=0 

It can be observed that the above equation contains the Fourier transform of the 

CIR. Therefore substituting equation (5.1) into yt (n) we get 

1 M, N-1 
i) (n) = .-j= I SHu ) (n, k)ei2rId/1'f + (n) (5.4) 

The time domain received signal, (n), is demodulated by FFT transformation 

and the frequency domain received signal can be defined as 

NI 1 MIN-1 
i;() (k) = [ S° (m)H'° (n, m)e.22nhuhhh/s + v (n) e_j2IC/l%Y 

,n=0 

N-i 
= - ,1) ( ,-j2,r(k-rn)n/N') -- __L. 'c-' 1,(i) (n)e_i21r/N j Al, (nj=O 

N-iN-ii)(\ T-T(i 

,r"-' "'V i=i  n=0 ) \JLV n0 

( 

7" 

N-I N-i N-i 

S1 (k) H'° (n, k) + S' (m) H'-"1 (n, m)e 2°'" 

n=0 7,1=0 110 

n;4 
' V  

'CI 

(5.5 

) 

The first term is the desired received signal at subcarrier k, and the second term 

is the ICI from the other subcarriers caused by the time-varying channel. Note in 

the time invariant case, the H ''(k) is not a function of n. Hence, as expected the 

second term becomes zero, therefore no ICI is observed. 

The time-varying characteristic of the channel is determined by the 

Doppler spread of the system, which depends on the relative motion of the 
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transmitter and receiver. The normalized Doppler frequency is fdTB, where fd is 

the Doppler shift as described in Equation (2.5) and TB is the duration of the 

OFDM block. From [20], we know that the power spectrum of a Rayleigh fading 

process with Doppler is 

I  0-12 
If I<fd 

s1(f)=f_f2' 

to,  otherwise 

The correlation of the CIR can be characterized as 

E{1i1(n1)h(n2)} = oJo(2nfd In, —fl2l) 

where T3 = TB/N and J(.) is the order Bessel function of the first kind 

k 

J0(x)= (_1) X2k. 

,cO 22/c (k !)2 

(5.6) 

(5.7) 

(5.8) 

The Jake's model is a well-known method of simulating a time-correlated 

Rayleigh fading channel. The time varying channels in our simulations are 

created according to the Jake's model found in [49]. 

In general, a channel with a normalized Doppler frequency less than 0.01 

can be considered constant. We calculated the normalized Doppler frequencies for 

one OFDM block at various velocities and the results are summarized in Table 

5-1. A OFDM block contains 64 subcarriers and has a block duration of 4 psec, 

adhering to the IEEE 802.11a standard. At realistic velocities, the normalized 

Doppler frequency is significantly lower than 0.01 for one OFDM block. It 

requires a speed of 500 km/h for the normalized Doppler frequency to be close to 

0.01, which then causes the channel to be time varying within an OFDM block. 
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For practical purposes an OFDM system operating under IEEE 802.11a 

standards can be treated as time-invariant within one OFDM block. Since the 

channel is stationary for the duration of one block, then the ICI within the 

OFDM block is negligible. 

Table 5-1: Normalized Doppler frequency for one OFDM block 

Velocity (km/h) FdT 

5 9.9047 x 10-

30 5.7778 x iO 

100 1.9259 x i0' 

500 9.6296 x iO 

From Table 5-1, we concluded that the channel can be assumed to be 

time-invariant within an OFDM block. Now, we must consider the time variation 

with an OFDM frame, which contains a certain number of OFDM blocks. The 

general structure of an OFDM frame is diagrammed in Figure 5.1. The frame is 

partitioned into two parts, the preamble and the data domain. In the preamble, 

time and frequency synchronization, and channel estimation is performed. Once, 

the channel estimates have been determined it is used in the data domain to 

detect the transmitted signals. The maximum length of the data domain is 

restricted to 4096 bytes, but the actual number of symbols depends on the 

modulation scheme used. The maximum number of symbols is calculated as 

follows: 
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4096 x 8 

number of bits per symbol x number of subcarriers 
(5.9) 

For example, an OFDM system using 16-QAM can have a maximum of 

approximately 196 symbols in the data domain of one frame. Under maximum 

load conditions, the normalized Doppler frequencies of such a system are shown 

in Table 5-2. Evidently, we can see that even at very slow traveling speeds the 

f1T is higher than 0.01, therefore the channel cannot be considered to be time 

invariant for the duration of the frame. Figure 5.2 shows the variations of the 

channel over one OFDM frame. Under low mobility systems, such as 5 km/h, the 

change in the channel between the beginning and the end of the frame is very 

slight. When the mobile is moving at 30 km/h, the channel variations become 

significant. As the speed of the mobile increases the variations are more rapid as 

demonstrated in Figure 5.2. This implies that for higher velocities the existing 

channel estimation approach in IEEE 802.11a is not sufficient. Channel 

estimation has to be performed throughout the OFDM frame in order to track 

the channel variations over the frame. 

Preamble Data 

sync Chánn& OFDM OFDM 

estimation Block 1 Block 2 

Figure 5.1: Structure of an OFDM frame 

OFDM 

Block M 
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Table 5-2: Normalized Doppler frequency for one OFDM frame 

Velocity (km/h) FdT 

5 0.01941 

30 0.1132 

100 0.3774 

500 1.8874 
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Figure 5.2: Channel variation of a Rayleigh fading channel at different velocities 
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Now that we have established that in a mobile OFDM system, it is 

reasonable to assume that the channel is constant within one OFDM block, but 

will vary within one OFDM frame contenting X number of OFDM blocks. Next, 

we focus on estimating the channel as it changes over the OFDM frame using the 

comb type pilot arrangement. 

5.2 Comb-Type Pilot Arrangement 

The basic idea of the comb-type arrangement is that fewer pilots are used 

per channel estimation but most frequently. As shown in Figure 3.1(a), selected 

subcarriers are reserved for pilots and channel estimation is calculated at each 

time interval. How often the channel estimation is performed will depend on the 

severity of the channel variations. Since only a few of the subcarriers contain 

pilot signals, only the channel response at those frequencies can be determined. 

Interpolation is required to estimation the channel response of the remaining 

frequencies. There are various methods for performing the interpolation, namely 

linear interpolation, second order interpolation, low pass interpolation, spline 

cubic interpolation, and time domain interpolation. The performance of the 

various approaches was tested in [34]. In general, low pass interpolation achieved 

the best performance and linear interpolation had the worst performance. In 

Section 3.3.2, it was determined that for MIMO-OFDM systems it is more 

convenient to estimate the CIR and then perform Fourier transform to obtain the 

CFR, which is equivalent to time domain interpolation. Hence, time domain 

interpolation is chose for our analysis. Recall the MIMO-OFDM system model, 
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Y=ZIh+V (5.10) 

In the comb-type arrangement, Np pilots are placed in the transmitted symbol. 

To ensure that the LS problem is full rank, the minimal number of pilots 

required is 1VL. The location of the pilots affects the performance of the channel 

estimates. It was proven in [15] that equi-spaced pilots resulted in the lowest 

channel estimation errors. Therefore, the pilots are uniformly inserted into the 

signal 

Y(k) Z(mL + 1) 

1=0 

ldata  

(5.11) 

where L = N/Nt and v(m) is the pilot value at the mth location. Using the 

received signal vector, Y,,, at the pilot locations, the channel can be estimated by 

the following 

= ()HH?Y.IJHZH Y (5.12) 

where with the Fourier transform matrix at the pilot locations. The CFR can 

be obtained by taking the FFT of the estimated CIR in Equation (5.12). The 

impact of number of pilots used in the estimation was studied. A 2-by-2 MIMO-

OFDM system where each individual channel consisted of 6 delay paths was 

considered. The mobile is assumed to be traveling at 100 km/hr and the SNR is 

set to 30 dB. The pilots were uniformly spread over the OFDM block. The 

results of the performance of using different number of pilots are shown in Figure 

5.3. First of all, the block LS estimation was included to illustrate that in a time 

varying channel, estimating at the beginning of the frame is insufficient. It can be 

observed in Figure 5.3 that the MSE for block estimation increases significantly 
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over the course of the frame. Also, as reference, the MSE curve using all 52 

subcarriers for pilots was calculated. This, as expected, maintains the lowest 

MSE throughout the frame duration. According to linear algebra, the minimum 

required number of pilots must equal the number of unknowns to be solved. In 

this simulation, with 2 transmit antennas and 6 delay paths, the minimum 

number of pilots required is 12. From Figure 5.3, we can see that the 

performance of minimum of 12 pilot subcarriers is quite poor; however, it is able 

to maintain the same level of performance over the entire frame as the channel 

varies. Increasing to 24 pilots improves the MSE of the estimates substantially. 

10' 

100 

10•' 

10•' 

10 0 
0 10 20 30 40 50 60 

Number of Blocks 

- BLOCK 
  12-Pilots 
- 24-Pilot 

52-Pilot 

70 80 90 100 

Figure 5.3: MSE curve for time varying channel for various number of pilots 
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In addition, our simulation confirmed that the placement of the pilots in 

fact affects the MSE of the estimate. In Figure 5.4, we have the MSE curve for 

using 24 and 36 pilot subcarriers. The 24 pilots were evenly spread throughout 

the subcarriers, with the following placement pattern: { 1,3,5,7,9,11,13,15,17,19,21, 

23,25,27,29,31,33,35,37,41,43,45,47}. In the case of 36 pilots, they were place on 

the first 36 subcarriers. Even though 36 pilot subcarriers were used, the 

performance of the 24 pilots was better due to the pilot placement pattern. 

Several important conclusions can be drawn from our analysis. First, using the 

minimum number of pilots does not give good performance. Seconely, twice the 

minimum number of pilots significantly improves the performance. However, we 

have to take into account the bandwidth efficiency of the system. For example, if 

24 pilots are required to provide reasonable performance, then almost half the 

available bandwidth (52 subcarriers) is used to transmit pilots. Moreover, when 

using comb-type estimation the placement pattern of the subcarriers affects the 

overall MSE of the channel estimates. Due to the inefficiencies of the comb-type 

pilot arrangement approach to channel estimation in a time varying channel, we 

need to look for alternative methods to improve the performance with the 

minimum number of pilots. In the following section, we proposed the use of 

adaptive techniques to estimate the time varying channel with only the minimum 

required number of pilots. 
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Figure 5.4: MSE curve for 24 pilots and 36 pilots. 

5.3 Adaptive Filtering 

70 80 90 100 

When the channel varies from block to block adaptive filtering techniques 

are suitable for tracking the channel variations. In adaptive filtering problems, 

recursive algorithms are used to find the filter coefficients that produces the 

minimum error between the desired value and received value. Since the channel 

can be modeled as a tap-delay line filter, the channel estimation problem can be 

formulated as that of an adaptive filtering problem. Figure 5.5 illustrates the 

process of adaptive filtering to estimate the channel taps. The pilot symbols, 

x(n), are passed into the transversal filter and an estimate of the received signal, 

5(n), is outputted. The error between the actual received signal and the 

estimated received signal are fed into the adaptive weight control mechanism 
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where some recursive algorithm is used to update the channel weights. 

Commonly used recursive algorithms are least mean square (LMS) and recursive 

least squares (RLS). The LMS algorithm is a statistical approach to solving the 

wiener filter problem. The objective of the algorithm is to find the optimal weight 

vector that gives the minimum mean-squared error [47]. The LMS algorithm uses 

the steepest decent method to iteratively search the quadratic surface of the MSE 

curve for the minimum point. RLS follows the fundamental idea of LS estimation 

that was developed in Chapter 3; however, instead of calculating the estimate at 

each iteration, the previous value of the estimate is used to determine the current 

estimate. The RLS algorithm performs a time averaging instead of statistical 

averaging as in the LMS algorithm. In general, the LMS is known to have low 

complexity, but it suffers from slow convergence as compared to the RLS 

approaches. Due to the fast convergence of the RLS, we will concentrate on the 

implementation and analysis of the RLS for MIMO-OFDM. 

/ 
x(n) Transversal Filter 

/ 
Adaptive Weight 

Control Mechanism 

Figure 5.5: Block diagram of the adaptive filtering process. 
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5.3.1 Recursive Least Squares for MIMO-OFDM 

The application of adaptive filtering for channel estimation in MIMO-

OFDM is more complex due to the multiple channels. The tap-delay line channel 

model of a MIMO system was shown in Figure 2.11. To adaptively adjust the 

estimates of each multipath channel requires the use of multichannel adaptive 

filtering techniques. In multichannel filtering the error between the received 

signal and the sum of each channel output is used to adjust the channel 

estimates. In [50], a fast multichannel QR decomposition least squares adaptive 

algorithm was introduced to solve for the CIR. In the case of MIMO-OFDM, we 

have established that it is more convenient to process the received signal in the 

frequency domain. The received signal in the frequency domain can be 

represented as a multiplication of the channel frequency response and the 

transmitted signal. In the following section, we investigate the use of adaptive 

filtering in the frequency domain to estimate the channel impulse response. 

5.3.1.1 RLS Algorithm in the Frequency Domain 

In the frequency domain, the objective of adaptive filtering is to use the 

values of the previous subcarriers to estimate the current subcarrier. In the 

recursive approach, the ktI inputs and outputs, and the previous value of the 

channel h(k1) are used to estimated h(k). To better illustrate this idea, recall the 

system model of the frequency domain received signals represented in Equation 

(3.25). The received signal of a single subcarrier is given as 

Y(k)= W(k)n+V(k) (5.13) 
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where 

Y(k) =[Y")(k) y(2) (k) Y(Mr)(k)] 

W(k) = [W1) (k) W21 (k) ••• (k) 

h"2 

h2'2 

h(M1l) hMl ,M, 

- 

W M'(k) wL(MI)(k)1 

With the above equation for the 1' subcarrier, the LS solution for the estimated 

CIR matrix, fl, is obtained by minimizing the cost function 

J(fl) = (Y(k)—w(k)11)11 (Y(k)—w(k)n) (5.14) 

Taking the gradient of cost function and equating it to zero we get 

=( w"(k)w(k)) ' W' (k)Y(k). (5.15) 

In a time variant channel, the channel changes over time, and it is not 

practical to calculate the LS estimate at every block. Therefore, RLS algorithms 

are used where the LS solution is not explicitly calculated. A prescribed initial 

condition is assumed and the information in the new data samples is used to 

update the old estimates [47]. RLS uses the technique of least square filtering 

with a cost function defined as the sum of weighted error squares, 

f(k) = (Y(k)_w(k)n'f (Y(k)_w(k)i%) (5.16) 
k=1 

where, 11 is the CIR matrix to be estimated, 2 is the exponential weight factor or 

forgetting factor and m is the variable length of the observation data. The 

forgetting factor provides time-weighting of the input data so that more emphasis 
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is placed on more recent data points. The value of 2 is a positive constant close 

to, but less than unity. With the known (pilot) vector, W(k), and the received 

signal, Y(k), where k = .1, Np, the exponentially weighted RLS algorithm 

described in [47] can be used to adaptively track the CIR matrix. The algorithm 

is summarized in Table 5-3. The inverse correlation matrix, P (k), is of size (LII/I 

x LM,) and the Kalman gain vector, G(k), is of size (LM x 1). 

The RLS method has good performance, but it has the problem of 

numerical instability. This motivates the application of stable orthogonal linear 

transformations to the original RLS problem. In [47], it states that the QRD is a 

numerically stable method of solving the LS estimation. And in Chapter 4, we 

have shown that the QRD LS lower in complexity. In the following section, QRD 

will be applied to solve the RLS problem. 

Table 5-3: Summary of RLS algorithm for MIMO-OFDM channel estimation 

Initialization: 

P(0) = ö'I, where 8 is a small positive constant (i.e. 0.001) 

11(0) = ° M rXLMi 

For each pilot vector W(k), k =1,2,. .., Ni,, compute 

G(k) A,'W(k)P(k—l)  
1 + )L 1 W(k)P(k _ 1)W" (k) 

e(k) = Y(k) - W(k)fl(k —1) 

11(k) =11(k) + Gt' (k)e(k) 

P(k —1) = 2 1P(k —1)— 2'G" (k)W(k)P(k —1) 
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5.3.1.2 QR Decomposition Recursive Least Squares 

In the QR decomposition recursive least squares (QRD-RLS) algorithm, 

triangular transformation using Givens rotations is used to recursively solve the 

LS problem. The adaptive filtering performed directly to the data matrix as 

oppose to the RLS method, which works on the time averaged correlation matrix 

of the input data. The numerical dynamic range of the QRD-RLS method is half 

the range of the RLS problem, thereby making the QRD-RLS more numerically 

stable [47]. Another benefit of the QRD-RLS, is the ability to efficiently 

implement the algorithm in parallel using systolic array structures. 

To develop the QRD-RLS algorithm for channel estimation in MIMO-

OFDM systems the RLS cost function described in Eqiation (5.16) needs to be 

rewritten in matrix-vector notation. Assuming a prewindowing of N samples of 

the input data, the data matrix at time n is defined as 

W(n) = 

W'(n—N1, +1) W,.'(n—N +1) 14'(n—N,, +1) 

W(n—N,,+2) W'(n—N+2) 

WL'(n) 

W1(M,) (n - N + 1) (M,) (n - N + 1) ... WL(M,) (n - N + 1) 

W"(n—N+2) r(Mt)(fl_N+2) 

(n) 

and the weighting factor matrix is 

A(n) = 

0 •.. 0 

0 J2NP+1 ... 0 

- 0 0 ... l_ 

The cumulative squared error can be written in matrix form as 

(5.17) 

(5.18) 



99 

= IIA(n)'I(n) —A(n)W(n)11(n)II2. (5.19) 

Now, we apply QRD to A(N)W(N) to get 

- 1 QH (n)A(n)W(n) [R(n) 
-[ oj (5.20) 

where QF (n) is the complex transpose of the orthogonal matrix of size JV x 

and R(n) is a ML x ML upper triangular matrix. The same orthogonal matrix is 

applied toA(n)?/(n) to give 

r1 
QH (n)A(n)f(n) =IA(n)] 

z(n) 
• 

(5.21) 

where z(n) is a ML x Mr matrix and A(n) is (N-ML) x Mr matrix. Since Q is 

orthogonal, it can premultiply each vector within the norm without altering the 

value of the norm. Substituting in Equations (5.20) and (5.21) into the cost 

function in Equation (5.19) we get 

J(n) IQ(n)A(n)y(n) - Q(n)A(n)W(n)k(n)I2 

z(n)—R(n)1(n) 2 
A(n) 

Minimization of the top partition in the above function gives 

(5.22) 

R(n)If(n) =z(n). (5.23) 

In recursive algorithms the previous values are assumed to be known and the new 

input data are used to solve for the current values. Assume that R(n1) and z(m-

1) are known, then the current values can be obtained by 



100 

T(n) [V—AR(n - 1)]  [R(n) 
[W(n) i —LOT (5.24) 

where T(n) is an orthogonal matrix that zeros the new data vector. Similarly, 

z(n) is updated as 

T(n) [Y(n) 
fz(n - 1)  [z(n) 

J L() 
(5.25) 

where Y(n) is the received signal vector from all the received antennas, and ö(n) 

is the last row on the right hand side matrix. With the current values of R(n) 

and z(n) the new channel estimates can be easily obtained by back substitution 

since R(n) is an upper triangular. In Figure 5.6, a systolic implementation of the 

QRD-RLS algorithm using parallel processing cells is shown. At each sampling 

time, the pilot signal vector and the received signal vector is passed into the first 

row of processing units. Each cell processes the data and relays the necessary 

information to adjacent cells according to a common clock of the systolic array. 

The systolic arrays are well-suited for implementing the QRD-RLS algorithm 

under real-time and high data bandwidth requirements. 
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Figure 5.6: A systolic implementation of QRD-RLS for MIMO-OFDM 

5.3.1.3 Inverse QR Decomposition Recursive Least Squares 

The QRD-RLS algorithm is computationally efficient and numerically 

stable, nonetheless, the back substitution procedure to obtain the channel 

estimates adds time delays to the algorithm. In [51], a better alternative was 

developed to eliminate the need for back-substitution by updating the inverse of 

R(n). In the following section the inverse QR decomposition recursive least 

squares (IQRD-RLS) algorithm will be adapted to a MIMO-OFDM system. From 

Equation (5.23), we see that the channel is given as 

PL(n) = R' (n)z(n). (5.26) 
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Assuming that R 1(n —1) is known, the R' (n) needs to be updated recursively. 

To determine the orthogonal updating matrix D(n), we must first define a 

intermediate matrix 

a(n) - 
- R_H (n - 1)1(n)  

JA 

(5.27) 

The orthogonal matrix D(n) is different from the T(n) of the QRD-RLS 

algorithm in that it is not obtained in a straightforward manner through the 

zeroing of the new data vector by a sequence of Givens rotations. The D(n) is 

obtained by performing Given rotations to zero the n elements of the augmented 

a(n) matrix as follows 

= [b(n)]0 D(n) [a(n)1j  1T  (5.28) 

where 1 = [1, 1, . . . ,1] and b(n) is the resulting vector of the series of Givens 

rotations. It turns out that the D(n) obtained in the above equation also satisfies 

the following equation 

2_112R (n - 1)   oT 1 I R'' (n)l ] =  uH(n)] 
(5.29) 

Therefore, using D(n), the R1(n) matrix can be recursively updated. With the 

updated R'(n) matrix, the channel estimates can be obtained by simply 

multiplications as shown in Equation (5.26). 

5.4 Simulation Results 

In the previous section, three different algorithms, RLS, QRD-RLS, and 

IQRD-RLS, were presented for recursively estimating the channel for a MIMO-

OFDM system. These three methods use different approaches to solve the 
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recursive LS problem. In our first analysis, we study the convergence time and 

final MSE value of the three methods. Figure 5.7 shows the MSE curves of the 

three algorithms applied to estimate the time varying channel of a MIMO-OFDM 

system with. All three algorithms have similar performance in that they all 

converge to the same MSE value. However, the QRD-RLS and IQRD-RLS 

implementation converges faster than the RLS method. In addition, the QRD 

method can be implemented in a highly parallel systolic array structure which 

makes it desirable for real-time implementations. 
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Figure 5.7: MSE curve of recursive adaptive algorithms 
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Next, the recursive algorithms are compared with block-based LS methods. 

Figure 5.8 illustrates the structural difference between of the recursive methods 

and the straightforward block LS estimation using the pilots. The method of 

block LS estimation using the pilots subcarriers is diagramed in Figure 5.8(a) 

over two consecutive OFDM blocks. The transmitted pilot symbols are collected 

and buffered until the end of the th block, and then all the pilot information is 

used to calculate the channel estimate A(n). The estimation is performed at the 

end of every block to get the most accurate estimate of the channel. The second 

method of recursive channel estimation is illustrated in Figure 5.8(b). Basically, 

at each pilot subcarrier an updated channel estimate is obtained using the 

previous channel estimates and the current pilot information. As the diagram 

shows, a new estimate is obtained at each pilot subcarrier. It should be noted 

that it is valid to use the last estimate of the previous block as initial conditions 

of the current block, since the channel does not change drastically between 

adjacent blocks. 
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Figure 5.8: Block-type vs Adaptive 

Using the same simulation parameters as those given in Section 3.3.1 a 

time-variant MIMO-OFDM system was simulated. The time varying nature of 

the channel due to the Doppler Effect was simulated using the Jake's model as 

described previously in this chapter. The performance of the recursive algorithm, 

measured in terms of MSE of the estimated channel, is shown in Figure 5.9. The 

system has 2 transmit antennas, and each channel consists of 10 delay taps. The 

mobile unit is assumed to be traveling at a speed of 100 km/h and the received 

SNR is 30 dB. The block LS solution was calculated using the minimum number 

of pilots (20 subcarriers), twice the minimum (40 subcarriers), and all the 
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subcarriers as pilots (52 subcarriers) as benchmarks. The RLS, QRD-RLS, and 

IQRD-RLS adaptive algorithms were implemented using only the minimum of 20 

pilots. All three algorithms converge to a MSE that is lower than the LS solution 

of using 20 and 40 subcarriers. The adaptive algorithms are able to achieve a 

better performance than the block LS solutions using fewer pilot symbols. The 

improvement in performance of the recursive techniques comes at the cost of 

increased complexity, since the channel estimate is updated at each pilot 

subcarrier. However, the QRD-RLS and IQRD-RLS algorithms have been proved 

to be very efficient for real-time implementations, thereby making the estimation 

in recursive manner feasible. 
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Figure 5.9: Velocity = 100km/hr at SNR 30 dB 
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The performance of the recursive algorithm for various mobile speeds is 

shown in Figure 5.10. As expected for slower changing channels, such as the 5 

km/hr case, the performance is better. Conversely, in the extremely fast changing 

channel of 500 km/hr. the performance degrades. 
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Figure 5.10: MSE curve of the recursive algorithms for various mobile speeds. 
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5.5 Summary 

In this chapter we discussed channel estimation of a time-varying channel 

for MIMO-OFDM systems. The channel and system model described show that 

channel estimation needs to be performed adaptively in order to capture the 

variations in the channel. We implemented three recursive algorithms, RLS, 

QRD-.RLS, and IQRD-RLS, to adaptively track a time-varying channel. The 

results showed that the adaptive algorithms adequately estimated the channel. 

Additionally, the QRD-RLS and IQRD-RLS can be implemented efficiently using 

the systolic array architecture. Furthermore, the IQRD-RLS is preferable since it 

tracks the inverse correlation matrix therefore would not require back 

substitution to solve for the channel matrix. 
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CHAPTER SIX 

CONCLUSION AND FUTURE WORKS 

6.1 Thesis Summary and Conclusions 

MIMO-OFDM has the potential to significantly increase the capacity and 

reliability of a system due to the added spatial degree of freedom from the 

multiple independent paths. Moreover, the use of OFDM techniques makes the 

system robust to frequency selective channels. The promising prospects of 

MIMO-OFDM are hindered by the complicated receiver processing due to the 

additional unknown parameters. In particular, channel estimation is extremely 

complicated for MIMO-OFDM systems. In this thesis, the problem of channel 

estimation of a frequency selective channel for MIMO-OFDM systems was 

studied. The main objective was to develop low complexity channel estimation 

techniques suitable for real-time implementations. 

In Chapter 3, it was established that for MIMO-OFDM systems training-

based channel estimation is preferable over blind estimation due to its simplicity. 

The two main approaches in training-based estimation are the least squares (LS) 

method and minimum mean square error (MMSE) method. Our analysis 

confirmed that the MMSE outperforms the LS estimation at the expense of 

increased complexity. In addition, our simulation results showed that at high 

SNR, the performance of the MMSE estimator approaches the performance of the 

LS estimator. Therefore, the LS method is preferable for high SNR circumstances 

since it has the same performance as the MMSE estimator but with much lower 

complexity. 
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The LS and MMSE estimation technique is relatively low in complexity 

compared to blind estimation methods. However, the LS and MMSE still involves 

complex matrix inversions, which are not well-suited for real-time hardware 

implementations. In Chapter 4, we applied QR decomposition (QRD) to 

eliminate the matrix inversion to simplify the overall channel estimation 

complexity. Our simulations showed that the Householder implementation of the 

QRD has the same performance as the standard LS method in terms of MSE. 

The complexity analysis suggested the QRD-LS reduce the number of FLOPS by 

40%. Also, we studied the performance of the recursive Givens rotation (GR) 

method for QR decomposition. The results indicated the GR algorithm is higher 

in FLOP counts than the Householder algorithm, but the efficient hardware 

implementation of the GR method using highly parallel systolic arrays can reduce 

the overall execution time over the Householder technique. In order to reduce the 

complexity of the GR algorithm, a decoupled GR (DGR) method was adopted. 

Complexity analysis showed that the elimination of the square root operation and 

minimization of divisions of the DGR algorithm reduces the overall complexity 

compared to the GR algorithm. 

QR decomposition was applied to the MMSE solution in the second part 

of Chapter 4. Direct implementation of the QRD to the MMSE solution does not 

reduce the computational complexity. Mathematical manipulations were proposed 

to modify the MMSE solution into the LS form, where the QRD can be directly 

applied. Complexity analysis showed that the proposed QRD implementation of 

the MMSE solution is significantly lower in complexity (by 36%) as compared to 

the standard MMSE solution. 
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In Chapter 5, adaptive channel estimation was investigated for time-

varying channels. Recursive implementation of the low-complexity QRD 

estimation techniques presented in Chapter 4 was applied to MIMO-OFDM 

systems. The results indicated that adaptive channel estimation outperforms 

block-based channel estimation with the use of fewer pilot tones. Furthermore, 

the inverse QRD recursive LS (IQRD-RLS) algorithm was implemented to reduce 

the complexity. Simulation results suggested that the recursive QRD methods 

have faster convergence than the RLS methods. 

Channel estimation is highly complicated in MIMO-OFDM systems. In 

this thesis, we have proposed the use of QRD to reduce the complexity of the LS 

and MMSE estimator for time-invariant channels. Complexity analysis showed 

the use of QRD significantly reduces the LS and MMSE estimators. In addition, 

the efficient implementation of the GR QRD will further reduce the execution 

time. Lastly, the recursive QRD is implemented and demonstrated better results 

for estimating time-varying channels. 

6.2 Future Works 

Due to the limited time frame of this research, there are still some 

important issues that have not been dealt with. The following is a list of 

suggested future works that can be investigated: 

• Complexity analysis of the proposed algorithm through hardware 

implementation. It was mentioned in this thesis that FLOP count only 

provides a relative comparison of the complexity of the algorithms. It will 

require real-time hardware implementation to accurately determine the exact 

processing time of the channel estimation algorithms. 
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• Investigation of channel estimation in fast-varying channels where the channel 

changes within an OFDM block. In this thesis, we have limited the time-

varying channel to change within an OFDM frame, but not within an OFDM 

block. When the channel changes within an OFDM block, ICI occurs. The 

effects of ICI on channel estimation can be studied. 

• Study the effect of frequency offsets on channel estimations. In our analysis, 

we have assumed perfect frequency synchronization; therefore, the negative 

effect of ICI has not been analyzed. 
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APPENDIX A 

STANDARD LEAST SQUARES ALGORITHM 

This appendix presents the standard LS algorithm and computes the complexity 

of the algorithm. Given a general system model, 

Y=Wh+V (A.1) 

where Y is N x 1, W is N x M, h is M x 1 and V is N x 1. The LS solution is 

given as 

JI = (vv?w) WHY. (A.2) 

To obtain the LS solution specified in Equation (A.2), the WHW term has to be 

inverted. The LU decomposition is a common method of implementing the 

matrix inverse operation. To invert the square matrix WHW, the LU 

decomposition is applied such that WHW = L*U, where L is lower triangular 

with unit diagonal elements and U is an upper triangular matrix. The inverse of 

WHW can be obtained by the multiplication of the inverse of L and U as follows 

(w"w)' = U'L'. Once the (WHW)-1 is determined, then the LS estimate of 

can be obtained according to Equation (A.2). 
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A.1 LU Decomposition Algorithm 

In this section, the LU decomposition algorithm is presented. Let A be a (MxM) 

matrix defined as follows: 

A 

a11 a12 

a21 a22 

aMl aMM 

To LU decompose A, perform the following algorithm on A to get a modified A: 

Let A=A 
for k = 1: M— 1 

for r= k+ 1: M 

- 

a (Step a.1) 
k,k 

for s= k+ 1: M 

ar,s = ar,s - ar,k ak,S (Step a.2) 

end 

end 

end 

After performing the above algorithm, the modified A is defined as follows: 
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A 

a11 a12 

a21 a22 

a 1 aMM 

From A the U and L matrix can be extracted. The U matrix is equal to the 

upper triangular elements of A, 

U 

all a12 alM 

0 a22 

. . . 0 amm 

and the L matrix is composed of the remaining lower triangular elements of A 

and unit diagonal elements, 

L 

10 

a21 1 

a 1 aMM1 

0 

The multiplication of the L and U matrix will give the original A matrix, 
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a11 a12­aim 

a21 a22 

• aMM 

1 

A L 

a21 

- 0 

aMMl 1 - 0 •.. 0 a j 

 --  V 

U 

a11 a12 a im 

0 a22 

Now that the L and U matrices have been determined, the inverse of L and U 

has to be calculated. The sample algorithm for calculating the inverse of the 

upper triangular matrix U is given as follows: 

Initialize U' = mv - U = 

1 

a11 

0 

0 

0 

1. 

a22 

0 

0 

0 

1 

aMM 

The upper elements are inverted as follows: 

for k = 2 to M 

for r= k—i :4 : 1 

sum = 0 

for m = r+ 1 : k 

sum = sum + iflV - Uk Urn, 

end 

end 

end 

sum 
mV - UJ,k =   

(Step b.1) 

(Step b.2) 

(Step b.3) 
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The triangular matrix inversion algorithm can be similarly applied to invert the 

L matrix. Then we can obtain A-'= U'L' . 

In summary, the complete process for calculating the inverse of an (Mx M) 

matrix A can be summarized by the following steps: 

1. Decompose A into L and U matrices 

2. Invert L and U 

3. Multiple U' and L' to get A' 
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