
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2018-05-23

New Approaches for Secure Distance- Bounding

Ahmadi Fatlaki, Ahmad

Ahmadi Fatlaki, A. (2018). New Approaches for Secure Distance- Bounding (Doctoral thesis,

University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/31947

http://hdl.handle.net/1880/106680

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

New Approaches for Secure Distance- Bounding

by

Ahmad Ahmadi Fatlaki

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

May, 2018

© Ahmad Ahmadi Fatlaki 2018

Abstract

In this thesis we design and implement three aspects of secure distance-bounding (DB) schemes as a

type of authentication scheme that considers distance as an extra verification parameter. By adding

this new parameter to authentication schemes, we can prevent certain attacks that are related to

distance, such as relay attack. In fact, the attacking scenarios can be much more complex than the

simple relay attack, in addition to the classic authentication scheme attacks. In this thesis we con-

sider the most advanced distance-bounding attack scenarios in a variety of authentication models.

We consider three authentication models in order to add the distance as an extra authentication fac-

tor: public-key and anonymous DB are the main fields of this thesis that consider strong adversary

with access to directional antenna, and we consider One-Shot DB as a one-message authentication

scheme. Each of these fields make a chapter of this thesis.

Public-Key Distance-Bounding. In a public-key DB scheme, a prover who owns a key pair and

is located within a distance bound to a verifier, who has access to the public-key of the prover, tries

to convince the verifier that it is authentic and located within the distance bound. We provide a

formal model and two protocols with security proofs.

Anonymous Distance-Bounding. In an anonymous DB scheme, a prover who owns a registration

certificate and is located within a distance bound to a verifier, who only has access to the public

parameters of the system, tries to convince the verifier that it is authentic and located within the

distance bound without revealing its identity. We provide a formal model and two secure protocols.

One-Shot Distance-Bounding. In an one-shot DB scheme, a prover who owns a secret key and is

located within a distance bound to a verifier, who has access to the corresponding key of the prover,

tries to convince the verifier that it is authentic and located within the distance bound without

receiving any message from the verifier. We provide a formal model and a secure protocol.

ii

Acknowledgements

I want to express how lucky I’ve been in life and specifically in the last era of my life that finishes

by this thesis. I’ve been gifted by some intelligence that helped me to generate ideas, great envi-

ronment that continuously exposed me to infinite knowledge, and learning abilities that helped me

to absorb some of them. Most importantly, I’ve been gifted by the feeling of appreciation to those

who gave these gifts to me.

First, I want to express my deepest thanks to God who provided existence to me with all these

shiny gifts. I’m thankful for the good and the bad of life that each taught me a lesson.

I want to thank my parents for always being there for me and believing in me. My patient dad,

Nemat Ahmadi, who taught me how to feel the power of free will. My loving mom, Goldasteh

Ebrahimpour, who taught me how to enjoy caring for people, by always putting my happiness

above hers. They provided a peaceful environment for my soul to grow.

I want to thank my PhD supervisor, Reyhaneh Safavi-Naini, who always cared for me by teaching

me discipline, hard working, taking responsibility, and having respect for my own time and others’.

It was a great opportunity for me to learn directly from her.

I don’t know if I deserve all these gifts, but I’m just so happy for having them :)

iii

Table of Contents

Abstract . ii
Acknowledgements . iii
Table of Contents . iv
List of Tables . vii
List of Figures . viii
List of Symbols . xi
1 Introduction . 1
1.1 Public-Key Distance-Bounding . 6
1.2 Anonymous Distance-Bounding . 7
1.3 One-Shot Distance-Bounding . 8
1.4 Thesis Organization . 11
2 Background and Notations . 12
2.1 Encryption . 13
2.2 Signature . 15
2.3 Authentication Protocol . 16
2.4 Identification . 19
2.5 Proof Systems . 23
2.6 Commitment . 26
2.7 Theorems . 29
2.8 Concluding Remarks . 30
3 Literature Review . 31
3.1 Distance-Bounding as Challenge-Response Entity Authentication 32

3.1.1 Symmetric Key Distance-Bounding . 35
3.1.2 Public-Key Distance-Bounding . 38
3.1.3 Anonymous Distance-Bounding . 45
3.1.4 Concluding Remarks . 49

3.2 Time-based Entity Authentication . 52
3.2.1 Bellare-Rogaway Model [BR93] . 52
3.2.2 Schwenk [Sch14] . 54
3.2.3 Barbosa-Farshim [BF09] . 57
3.2.4 Concluding Remarks . 60

3.3 Other Literature Reviews . 61
4 Public-Key Distance-Bounding . 62
4.1 Directional Attacks on Public-Key DB Protocols 65
4.2 Model . 72
4.3 DBID Construction: POXY . 87

4.3.1 (msk,gpk)← Init(1λ) . 87
4.3.2 (sk, pk)← KeyGen(msk,gpk) . 88
4.3.3 accept/re ject←Π{P(sk, pk)↔V (pk)} 88
4.3.4 (msk′,gpk′)← Revoke(msk,gpk, i) . 90
4.3.5 Security Analysis . 90

4.4 DBID Construction: ProProx [Vau14] . 98

iv

4.4.1 (msk,gpk)← Init(1λ) . 99
4.4.2 (sk, pk)← KeyGen(msk,gpk) . 99
4.4.3 accept/re ject←Π{P(sk, pk)↔V (pk)} 99
4.4.4 (msk′,gpk′)← Revoke(msk,gpk, i) . 99
4.4.5 Security Analysis . 100

4.5 Related Works . 106
4.6 Concluding Remarks . 109
5 Anonymous Distance-Bounding . 110
5.1 New Attacks . 113

5.1.1 Directional TF Attack on Anonymous DB 114
5.1.2 Collusion TF on Anonymous DB . 119

5.2 Model . 121
5.3 AnonDB Construction: dbid2anGM . 134

5.3.1 (msk,gpk)← Init(1λ) . 136
5.3.2 (s,msk′,gpk′)← CertGen(msk,gpk) . 136
5.3.3 accept/re ject← CertVer(s,gpk) . 137
5.3.4 accept/re ject←Π{P(s,gpk)↔V (gpk)} 137
5.3.5 (l)← Open(msk, transcript) . 138
5.3.6 (msk′,gpk′)← Revoke(msk,gpk, l) . 139
5.3.7 Security Analysis . 139

5.4 AnonDB Construction: dbid2anP . 148
5.4.1 (msk,gpk)← Init(1λ) . 149
5.4.2 (s,msk′,gpk′)← CertGen(msk,gpk) . 149
5.4.3 accept/re ject← CertVer(s,gpk) . 150
5.4.4 accept/re ject←Π{P(s,gpk)↔V (gpk)} 150
5.4.5 Security Analysis . 151

5.5 Related Works . 158
5.6 Concluding Remarks . 159
6 One-Shot Distance-Bounding . 160
6.1 Model . 161

6.1.1 Protocol . 162
6.1.2 Participants and Process Oracles . 164
6.1.3 Adversary . 165
6.1.4 Running the protocol in presence of the adversary 166

6.2 One-Shot DB Attacks . 168
6.3 Beacon-based Secure One-Shot DB Scheme . 172

6.3.1 Global Beacon . 173
6.3.2 Adversary . 175

6.4 Beacon-based One-Shot DB Construction: BShot 176
6.4.1 BShot Accuracy . 179
6.4.2 BShot Practicality . 180
6.4.3 BShot Security Analysis . 183

6.5 Concluding Remarks . 187
7 Concluding Remarks . 188
Bibliography . 190

v

A Extra Literature Review . 202
A.1 Symmetric Distance-Bounding . 202

A.1.1 Formalizing Security in Distance-Bounding 210
A.2 Implementation of Distance-Bounding . 211
A.3 Privacy in Distance-Bounding . 217

vi

List of Tables

3.1 Security of different DB protocols. The first column shows the name of protocol
and its type Symmetric-key/Public-key/Anonymous. The fifth column shows if
the protocol is noise resistant or not. The last column shows who the prover is
anonymous to: Eavesdropper, MiM, or Verifier. Two colored cells with same
color are referring to a single paper. The symbol ⇓ denotes this thesis. 51

A.1 Vulnerable DB protocols against PRF Programming Techniques [BMV12]. 206

vii

List of Figures and Illustrations

1.1 Legitimate Access . 1
1.2 Fraudulent Access . 1
1.3 Generic DB protocol. In shared-key setting, y = x. 2
1.4 Mobile participants in DB . 9

3.1 Distance Fraud Attack . 33
3.2 Mafia Fraud Attack . 34
3.3 Terrorist Fraud Attack . 34
3.4 Distance Hijacking Attack . 35
3.5 Impersonation Attack . 35
3.6 General sketch of symmetric key distance-bounding protocols. x is the shared key

with length λ. In initialization phase, the parties exchange randomness, that allows
them to generate a table. In fast phase, the verifier asks about half values of the
table and measures response time. In verification phase, the verifier checks validity
of responses in respect to the table. 36

3.7 Swiss-Knife distance-bounding protocol [KAK+08]. x is the shared key with
length λ, ID is identity of prover and {ID} is identity list of all provers. fx() is
a pseudo random function. 37

3.8 Brands-Chaum Protocol [BC94]. x is prover’s private key with length λ and y is
prover’s public key. Prover commits to a random table and then runs the fast phase.
In verification phase, prover opens the committed table. 39

3.9 DBPK-log Protocol. x is prover’s private key with length λ and y is prover’s public
key. t and λ are security parameters. 40

3.10 HPO Protocol. x j is prover’s private key with length λ and X j is prover’s public key.
y is verifier’s private key and Y is verifier’s public key. DB = {X j} is public-key
list of all provers. G is a generator point on elliptic curve and xcoord(.) returns
X coordinate of a point, which is statistically indistinguishable from the uniform
distribution. 42

3.11 VSSDB public-key DB protocol. (skP,x) is prover’s private key where x has random
distribution with length λ and pkP is prover’s public key. skV is verifier’s private
key and pkV is verifier’s public key. (Commit,COpen) is a commitment scheme.
(Enc,Dec) is a secure public key encryption scheme. (Sign,SVerify) is a sig-
nature scheme. (Prove,PVerify) is a proof-of-knowledge scheme. H is a secure
hash function with pseudo-random output. υ j = H j(x) and com j = Commit(x j,υ j)
for j = 1...λ. 43

3.12 ProProx public-key DB protocol. sk is prover’s private with length λ and pk is
prover’s public key. Com(., .) is Goldwasser-Micali encryption. τ is the minimum
threshold ratio of noiseless fast rounds. ZKP is an interactive zero-knowledge
proof. The number of fast rounds is nλ. In each fast round, the verifier sends
one-bit challenge, and receives the corresponding response. 44

viii

3.13 GOR anonymous DB protocol. λ is security parameter. sk j is prover’s private and
PK j is prover’s public key. skV is verifier’s private and PKV is verifier’s public key.
(HEnc,HDec) is a homomorphic encryption scheme. (ProveNIZK,Veri f yNIZK) is
a non-interactive zero-knowledge proof system. PRF is a pseudorandom functions.
G is a generator point on elliptic curve and xcoord(.) returns X coordinate of a
point. PKV = skVG; PK j = ∏

k
i=1;i 6= j skiG ; Q = ∏

k
i=1 skiG. 47

3.14 SPADE anonymous DB protocol. λ is security parameter. skP is prover’s private key
and gpk is group public key. skV is verifier’s private and pkV is verifier’s public
key. (GSignsk,GVeri f ygpk) is a group signature scheme. (Encpk,Decsk) is a secure
public-key encryption scheme. PRF : Zλ

2×Zλ
2 → Zλ

2 and PRF∗ : Zλ
2×Zλ

2×Zλ
2 →

Zλ
2 are pseudo-random functions. λ is the security parameter. NP and (NV,m) are

nonce values of prover and verifier, and (ci,ri) is a challenge and response round. . 48
3.15 TREAD public-key/anonymous DB protocol. λ is security parameter. skP is prover’s

private key and gpk is group public key. skV is verifier’s private and pkV is verifier’s
public key. (GSignsk,GVeri f ygpk) is a group signature scheme. (EncpkV ,DecskV)
is a secure encryption scheme. idgroup is name of the group that the prover belongs
to for anonymous authentication. 49

4.1 Directional TF . 65
4.2 Step (i). DBPoK-log+ Bit Commitment. r0 and r1 form the response table. 68
4.3 Step (ii). DBPoK-log+ Fast Challenge/Response 69
4.4 Step (iii). DBPoK-log+ Commitment Opening . 70
4.5 . 89

5.1 Collusion DF . 111
5.2 Collusion MF . 112
5.3 Collusion TF . 112
5.4 Collusion TF Attack Type 1 . 120
5.5 Collusion TF Attack Type 2 . 120
5.6 Π protocol in dbid2anGM scheme. C =ComHe(x,v) using Equation 5.3.1. 138
5.7 Π protocol in dbid2anP scheme for the lth user. CommitP(x,∆) is the Pedersen

commitment function as CommitP(x,∆) = gxh∆ mod p (Algorithm 2.6.1). Note
that we are using a non-interactive protocol CLSig.SPK, which allows us to break
down the protocol into two pieces CLSig.SPK= (SPK,Verify). Note that the value
of C is embedded inside π, and we use the notation C← π to indicate the extraction
of C from π. An instance of DBIDP.Π sub-protocol is shown in Figure 4.5. 151

6.1 Arrival time of a timestamp at different entities. t1, t2, t3 are three consecutive
beacon times. GB’s timestamp is received at P2 with δ second delay compared
to P1. P1 receives timestamp t1, and forms the message (t1,m) and sends to P2.
Distance (d(locP1, locP2)) calculated by P2 is (t2− t1)/C. 174

6.2 global beacon broadcasts unpredictable timestamps to users 176
6.3 BShot: One-shot distance bounding protocol. The query server can be replaced by

a local memory at each participant. C is the speed of light and f is the frequency
that GB is broadcasting the timestamps. 177

ix

6.4 Area covered by a beacon in height. 181

A.1 Hancke-Kuhn Protocol [HK05]. fx() is a pseudo random function. 203
A.2 Reid et al. distance-bounding protocol [RNTS07]. fx() is a pseudo random function.204
A.3 TDB Protocol [ALM11] . 205
A.4 TDB Protocol with PRF Masking [BMV12] . 206
A.5 Mutual Authenticated Distance Bounding protocol (MAD) [ČBH03] 208
A.6 Mutual Authenticated Distance Bounding protocol [SP07a] 209
A.7 The verifier measures the time between sending a challenge signal c(t) and receiv-

ing the reply signal r(t) = r1(t)+ r2(t). If c(t) = r(t), the distance bound to the
prover is then given by (tr− t0).c, where c is the speed of light. [RČ08] 213

A.8 Schematic of prover by using CRCS [RČ08] . 214
A.9 Overview of the switched challenge reflector with carrier shifting [RTŠ+12] 215
A.10 The channel shifter. The incoming signal c′(t) contains the challenges on either

carrier frequency w0 or w1. After mixing c(t) with w∆, the signal is filtered ap-
propriately to generate the four possible response channels: w0−w∆, w0 +w∆,
w1−w∆, w1 +w∆. [RTŠ+12] . 215

A.11 Switched channel activator. The registers R0 and R1, which are derived from the
key of prover, select which two of the four reply channels are used in this round.
The channel in which sufficient energy is encountered first gets enabled. After a
channel is activated, it stays active until the end of this rapid bit-exchange round
while the other channels remain deactivated until the end of this round. [RTŠ+12] . 216

A.12 Internals of channel activation. We obtain a DC component of the squared signal
to detect energy in the channel and store the value for this round in a latch-like
circuit. In summary, the “Energy Detector” returns 1 if there is a signal on the
input, and 0 otherwise. The channel activation can be disabled by pulling EN
(enable signal) low and is automatically reset at the beginning of each round of the
rapid-bit exchange (RST). [RTŠ+12] . 216

x

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

{0,1}∗ binary string

{0,1}L binary string of length L ∈ N

1λ security parameter of length λ ∈ N

V set of verifiers

U set of users, each identifiable with a secret certificate

P set of provers

Pi provers subset user i in U

T set of actors

X set of all participants in an experiment

X∗ set of corrupted participants

B distance upper bound used in a DB protocol

C speed of light; C≈ 3∗108 meters per second

GM group manager

GB group beacon

Π DB protocol between the prover and the verifier

Π.V algorithm of the honest verifier in the Π protocol

Π.P algorithm of the honest prover in the Π protocol

OutV output of the verifier a Π protocol

pnoise noise probability of the fast phase of DB protocol

stTime(Γ) execution start time of the protocol Γ

f shTime(Γ) execution finish time of the protocol Γ

exTime(Γ) time range from stTime(Γ) to f shTime(Γ)

exLen(Γ) execution length = f shTime(Γ)− stTime(Γ)

xi

ViewΓ
x (e) view of x right after the event e in the protocol Γ

ViewΓ
x short for ViewΓ

x (elast), where elast is the last protocol event

locx location of participant x ∈ X

d(a,b) distance between the two locations a and b

xii

Chapter 1

Introduction

Authentication is a prerequisite of any access control system. During an authentication protocol, a

prover must prove to the verifier that it has the correct credentials. The verifier will either accept

the prover as being legitimate, or reject if it is illegitimate. Authentication systems are consid-

ered secure if they prevent impersonation attacks, in other words, an illegitimate prover must not

succeed in authenticating itself to the verifier.

In some authentication scenarios, the distance between the verifier and prover needs to be less

than a certain threshold. For example, the customers of a grocery store should be located close

to the payment terminal for making the transaction with their credit card. The security models of

classic authentication do not capture man-in-the-middle (MiM) relay attacks, where an adversary

just forwards data between the prover and the verifier. In a MiM attack the adversary, who is

located within distance bound D to the verifier, commits the fraud and convinces the verifier that

the legitimate prover is located within the distance bound to the verifier, and as a result it can

relay the messages between the payment terminal and the credit card of a victim. Figure 1.1 and

Figure 1.2 show the difference between a legitimate and fraudulent access to a confidential area

that is controlled by a door.

prover
verifier

D

Figure 1.1: Legitimate Access

adversaryprover
verifier

D

Figure 1.2: Fraudulent Access

Distance bounding (DB) protocols were first proposed in [Des88] to provide security against Man-

1

in- the-middle (MiM) attack in authentication protocols, and later found wide applications in lo-

cation and proximity based services [BMV13b, RC10, FDC11, HPVP11, CRSC12]. All of the

existing secure DB protocols use the traveling time of messages to measure the distance between

the verifier and the prover. Figure 1.3 shows a generic DB protocol that includes "slow" and "fast"

phases. The fundamental difference between slow and fast phase is that in the fast phase, the ver-

ifier is measuring the time between the challenge and response messages, while there is no time

measurement in slow phase. In the first slow phase, a table is created by the prover (sometimes the

verifier calculates the table too). In the fast phase, the verifier asks for some values on the table.

And in the last slow phase, the verifier checks the validity of responses and the time measurements.

P V
(x) (y)

Initialization (slow phase)
based on secret input x and randomness r

table← f (x,r)
Challenge/Response (fast phase)

for i = {1...λ}, choose random ci •
start timer •ci

• ri← Lookup(table,ci) ri stop timer •
Verification (slow phase)

based on parameters of the "fast phase" and y

OutV

Figure 1.3: Generic DB protocol. In shared-key setting, y = x.

Most DB protocols are symmetric key protocols where the prover and the verifier share a secret

key. One of the main concerns in using these protocols in real life applications is privacy of

the user’s location information. More recently public-key DB protocols, where the prover has a

registered public-key, have been proposed [ASN14, Vau14, ASN17a]. In [ASN14] it is shown how

to extend the protocol to provide user anonymity, in the sense that transcripts of protocol execution

cannot be linked to a user, nor to any other transcript. This is a very attractive property that allows

user to enjoy location based services while their privacy is maintained. While much research has

2

been reported on formalizing security of DB protocols and designing protocols that have provable

properties [DFKO11, BMV13a], formalizing the security of the anonymous DB protocols is less

understood.

In a DB setting there are three types of participants: provers who are registered in the system and

have secret keys, a verifier who is honest and has access to correct public keys of provers, and

actors who are not registered in the system, but want to be accepted and may be in collusion with

a dishonest prover.

In a symmetric setting, the secret of the prover is shared with the verifier and so the challenge/response

table can be calculated by the verifier too. In a public-key setting, the verifier only has access to

the public-key of the prover, which does not allow them to calculate the challenge/response table.

In this case, the verifier checks the correctness of the responses of the prover using the relation

between them and the prover’s public-key.

For a DB protocol with distance bound B, we refer to participants whose distance to the verifier

is less than B as “close-by” participants and those who are farther away than B, as "far-away"

participants.

Important attacks against DB protocols are;

1. Distance-Fraud [BC94]; where a dishonest far-away prover tries to be accepted in

the protocol.

2. Mafia-Fraud (MF) [Des88]; a close-by actor tries to use the communications of a

far-away honest prover, to succeed in the protocol.

3. Terrorist-Fraud (TF) [Des88]; a dishonest far-away prover colludes with a close-by

actor, according to succeed in the protocol.

Most of the existing DB protocols are in shared-key setting, where any pair of verifier and prover is

assigned with a unique shared-key. In these models, the verifiers are assumed to be trusted and do

3

not deviate from the intended purpose.

The verifier algorithm is used by a service provider that provides some functionality in the system,

such as opening a door or make a payment. In order to have security guarantee, the service provider

needs to have tight control on the verifier devices and their communication channels, because the

shared-keys (the only asset of parties) are well used in the system and any successful attack on any

of the verifier can break the whole system. This setting limits the applications of DB protocols. One

of our general goals in this thesis is to design models and protocols that require less control on the

verifier, such as public-key and anonymous DB.

In most of existing DB protocols we have shared-key between prover and verifier. Although these

protocols are relatively simple, but there are key management problems and limitations in the

security models. As an example, we mention the following limitations;

• The DB authentication can only run by entities who are allowed to have the secret

shared-key. This makes the verifier as a target for the attacker, who is interested to

gain the secret shared-keys in possession of the verifier.

• Since the verifier should have the shared-key, there will be no privacy for prover

against the verifier.

Some authentication models need to overcome these limitations. For example in anonymous au-

thentication, prover’s privacy from the verifier is a requirement.

An alternative to the shared-key setting is public-key DB protocols in which provers have a long

term key pair and they just publish the public-key to the verifiers. This approach leaves no incentive

for an attacker to target the verifier. In this research we generally move towards models with less

trusted verifiers. At the time this research began, there was no public-key DB protocol that is secure

against all DB attacks.

Contributions. In this thesis, we consider three major topics: Public-Key DB, Anonymous DB, and

4

One-Shot DB. In public-key DB, input of the verifier is limited to the public-key of provers. In

anonymous DB, input of the verifier is limited to the public parameters of the system and verifier

must not identify the prover. In One-Shot DB, any two parties can form a prover and a verifier,

and the verifier does not transmit any message. We discuss each of these three topics in a separate

section.

In traditional symmetric key DB models, as the prover and verifier share a piece of data (shared-

key), it makes sense to define DB protocol as a special authentication scheme, which consists of

identification of prover and correctness of the shared-key that is used by prover in the protocol, and

the proof of distance. Some DB models design the protocol as a special proof-of-knowledge scheme

[Vau14]. However in public-key and anonymous DB schemes, since the verifier does not have the

secret of the prover, we are just interested in the proof of the identity of prover (identification). We

consider DB schemes as an identification scheme.

In the distance-bounding literature, it is assumed that all entities use omni-directional antennas

for wireless communication. This is too strong an assumption given that today’s communication

protocols have started to consider directional antenna [ARS16]. We propose a new class of attacks

that uses directional antenna to break the security guarantees of existing DB protocols. In fact,

we show specific attacks against some public-key DB protocols and all existing anonymous DB

protocols. We propose models that consider this type of attack and protocols that are secure in

these models.

In all attacking scenarios of distance-bounding literature, the agents of at most one user are in-

volved. In other words, the credentials of at most one user is used by the adversary. However in

some attack scenarios, the collusion of multiple users can help the adversary to break a DB protocol

with higher chance. In a collusion attack, multiple users (each with a secret key) participate in the

attack that can be in DF, MF or TF form. Note that there is difference between two multi party

attacks: 1. collusion between two legitimate provers (which is named as collusion attack) and, 2.

collusion between a legitimate user and an actor (which is called TF attack).

5

Collusion attacks had not been considered before and need not be considered as long as the secret

keys of two users are independently generated, because a protocol transcript (without anonymity)

can be linked to a user through their key information and so cannot be combined with other tran-

scripts to form a new forged transcript. In anonymous DB protocols however, the verifier should

not be able to link the transcript of a protocol to a single user and so combining protocol transcripts

can give advantage to colluders. We show that collusion TF attack can be used to subvert trace-

ability functionality of the anonymous DB. This functionality is necessary in all anonymous DB

protocols to ensure user accountability by allowing a third party that holds a master key, to “open"

a transcript and identify the user, when required. We propose models that consider collusion attack

and protocols that are secure in these models.

1.1 Public-Key Distance-Bounding

Considering public-key setting rather than existing symmetric key DB protocols is a step towards

having less trusted verifiers. In a public-key setting, the verifier only has access to the public keys

of provers.

There are only a few public-key DB protocols in the literature; The seminal DB protocol [BC94],

which is in fact a public-key DB protocol, is not TF resistant. Bussard-Bagga [BB04] protocol,

which was designed to provide TF resistance, is shown to be vulnerable against a TF attack

[BBM+13]. Hermans et al. [HPO13] protocol is not TF resistant. Vaudenay [Vau14] proposed the

first formal model for public-key DB, which is based on proof-of-knowledge schemes. Vaudenay

proposed a protocol that is secure against all DB attacks.

A challenging problem in public-key DB is having a model that is suitable for the type of attacks

in this literature. More specifically, in DB literature the MF attack (Attack 3.1.2) is a type of man-

in-the-middle attack that needs to be considered in the model. The proposed model in Vaudenay

[Vau14] is an extension of proof-of-knowledge schemes (Definition 2.5.3), which does not natu-

6

rally consider MiM attacks. We elaborate more in Chapter 4.

Another challenge in public-key DB compared to symmetric key DB is coming from the fact that

verifier does not know the private-key of the prover. The fast phase operations usually take place on

individual bits of prover’s private-key, however the verifier has access to the public-key of prover,

which is normally a mathematical operation on the whole private-key. The validation of every

single bit of the fast phase is a challenging task for the verifier, while in symmetric key DB the

verifier has access to every single bit of the shared-key, which makes validation of every bit of the

fast phase way easier.

We propose a formal model of public-key DB scheme that is inline with cryptographic identifi-

cation schemes (Definition 2.4.1), and propose different constructions that are secure against all

DB attacking scenarios. Each construction is using a specific well known public-key setting. The

diversity of public-key setting allows us to pair the DB schemes with different public-key systems.

1.2 Anonymous Distance-Bounding

In some authentication models, the provers need to have some level of privacy against the verifier.

The privacy of a prover can be either about hiding the behavior, or the identity of the prover from

the verifier. For example, in anonymous authentication models, although the prover needs to prove

its authenticity to the verifier, but the verifier does not learn the identity of the prover.

In authentication schemes that involve the location of provers, the privacy problem is either about

hiding the location behavior or the identity of the prover. In order to hide the location behavior, the

prover can modify its location data or provide inaccurate location data [Kru09, STLBH11]. How-

ever, in many location based application, accurate location information is required by the verifier.

In order to achieve both privacy and location accuracy, we can unlink the location data from the

identity of provers. Anonymous DB allows the verifier to have verifiable distance guarantee, while

the identity of the prover is hidden from the verifier.

7

In another class of studies, [Vau07, HPVP11] considered privacy against eavesdroppers or active

third parties, other than provers and verifiers. This problem has been studied in the presence of

MiM adversary, trusted verifiers and trusted registration authority. However, hiding the identity of

the prover from the verifier is yet an open problem.

Designing an anonymous DB scheme has extra challenges compared to public-key DB, because not

even the prover has to anonymously prove its membership to the verifier, but also the verifier has to

check that every single bit of the fast phase is involving a bit of the private certificate of the prover.

We elaborate more in Chapter 5.

We propose the first formal model of anonymous DB scheme inline with anonymous group identifi-

cation (Definition 2.4.5), and propose different constructions that are secure against all DB attacking

scenarios. Each construction is using a specific well known public-key setting. The first anony-

mous DB scheme of the literature that is secure against all DB is among these constructions. We

also propose a protocol that converts any public-key DB scheme that use a few public-key settings

to an anonymous DB scheme.

1.3 One-Shot Distance-Bounding

All existing distance-bounding systems consider some assumptions that are easily violated in real

scenarios. This fact dramatically limits the applications of this field. Here we mention some of

these assumptions;

Mobile Participants. In all existing distance-bounding models, it is assumed that the parties

are not moving during the execution of the protocol. However in some scenarios, the two parties

need to authenticate while they are moving. A good example of an application is ad-hoc network

applications that use distance-bounding (See Figure 1.4).

The non-mobile assumption of parties is because of the time of travel technique that is used in

8

D

Figure 1.4: Mobile participants in DB

the existing DB protocols. In order to measure the distance of a prover, as it is shown in the

fast phase of Figure 1.3, the verifier sends a challenge message that travels with speed of light.

Upon receiving the challenge message, the prover sends a response message. The verifier finds

the mutual distance by measuring the send/receive time of messages. However if the parties are

moving, the timing of each message will be different in each round, which causes measurement

inaccuracy.

Scalable and Continuous DB. As it is shown in Figure 1.3, a DB protocol includes multiple fast

phase challenge-response rounds, which is quite costly. The communications of the fast phase

are non-reliable, for example the existing implementations are suggesting use of silent channel

frequency range for each possible fast phase message [RTŠ+12]. Therefore, in order to run one

DB session, a few silent channels (4 channels in [RTŠ+12]) has to be maintained during the whole

session.

In a populated area with many provers, this leads to either congestion problem or very high cost.

This problem prevents having an scalable DB solution. Moreover, in some DB scenarios the prover

needs to prove the proximity continuously over time, for example in key-less entry car scenario

the prover needs to be always in the car for engine to work. We have the same cost problem in this

scenario, which prevents having continuous DB solution.

9

Implementation Difficulties. One of the main challenges in distance-bounding protocols, that

are secure against all DB attacks, is their implementation. Since distance measurement is done

based on speed of light, the processing time for responding to the challenges should be comparable

to the propagation time of signal. Unfortunately achieving this requirement is very hard.

There are just a few implementations of DB protocols in the literature [RČ08, Tip12, RTŠ+12], each

making specific hardware for the process of fast phase challenge-response at the prover. In all of

them the verifiers need to send a fast challenge to the prover, and the prover needs to compute the

proper response based on the challenge. Among these implementations, only one is secure against

all three of the mentioned attacks [RTŠ+12]. And even this implementation is enforcing some

response delay that makes the protocol a few meters inaccurate in all distance-bounding attacks.

Our Solution. In order to solve most of these problems, for the first time, we propose a syn-

chronous time model that considers the location of participants in authentication protocols. Based

on this time model, we propose the first One-Shot distance-bounding model. Despite all the ex-

isting secure distance-bounding models that use the challenge-response technique to measure the

distance between the participants, in One-Shot DB it is only the prover that sends a single message

and the verifier is passive in the protocol. This reduces the number of fast phase messages from

2.`, ` being the number of fast phase rounds, to just one message.

This drastic reduction in the communication cost, allows us to have more scalable system. More-

over, it allows the verifier to check the proximity of a single prover more often in the cases where

continuous presence of the prover is required, rather than the one-time proximity verification of

typical DB protocols. The location of the prover is only considered at one moment that is the

sending time of the message. In this model, the participants can move and yet the location mea-

surements are accurate as long as the parties move rather slower than the speed of light.

We propose a One-Shot DB constructions that is secure against all DB attacks. In this approach, we

consider a global clock that facilitates synchronization of participants, which allows us to build the

10

DB protocol. In this approach we still have implementation challenges.

1.4 Thesis Organization

In Chapter 1 we introduced the problems that we are looking in this thesis. In Chapter 2 we

describe the background and notations that we use throughout the thesis. In Chapter 3 we re-

view the more related works to the main concepts of the thesis, and leave the less related works

for Appendix A. Our contributions are presented in three chapters: Chapter 4 contains public-

key distance-bounding, Chapter 5 contains anonymous DB, and Chapter 6 contains one-shot DB.

Chapter 7 concludes the thesis.

11

Chapter 2

Background and Notations

In this chapter, we recall some of the background on cryptographic

primitives and mathematical theorems that will be used throughout

this thesis.

The notations that we use in this thesis follows the following standard: sets are denoted by the

font N. Operations are decision problems that are denoted by the font Alg, such as algorithms,

protocols and functions. Security parameter (λ) of an operation is a variable that measures the input

size of the computational problem. We denote the security parameter of an operation represented

in unary, as input Alg(1λ). The output of an operation is denotes by out ←Alg. Probabilistic

Polynomial Time (PPT) is the class of decision problems (or operations) solvable by a probabilistic

Turing machine in polynomial time. Considering Σ as a non-empty finite set of symbols, called

the alphabet. Σ∗ denotes a string from alphabet Σ that is a repeated selection from Σ, for example

{0,1}∗ denotes a binary string that is any consecutive binary text. Participant sets are denoted by

the font P. Language L is a set of strings of symbols together with a set of rules that are specific to

it.

The general security goals in this thesis are as follows; Confidentiality: Eve can eavesdrop on the

channel and get messages, but she cannot do the same computation as intended receiver, as she

does not know the key of intended receiver. Authentication: When Bob receives a message from

Alice, he knows that it is really Alice who sent the message. Integrity: Bob obtains assurance that

the message sent by Alice has not been altered by a third party. Non-repudiation: After Alice

sends a message to Bob, she cannot claim that she has not send it.

12

2.1 Encryption

We use encryption scheme in order to provide confidential communication as follows: Alice and

Bob agree on a secret key that they must share by means of a secure channel. At the end of key

agreement, Alice gets e ∈ K and Bob gets d ∈ K. Once the keys has been agreed on, Alice takes

the plaintext p and computes the ciphertext c = Ence(p) which then sends to Bob. Upon receiving

c, Bob computes p = Decd(c) = Decd(Ence(p)), recovering the plaintext.

Here we formally describe encryption schemes;

Definition 2.1.1 ((Encryption Scheme) [Buc04]) An encryption scheme is defined as a tuple (P,C,

K,E,D,KeyGen,Enc,Dec) as follows;

1. P is a set called the "plaintext space". Its elements are called plaintexts.

2. C is a set called the "ciphertext space". Its elements are called ciphertexts.

3. K is a set called the "key space". Its elements are called keys. The algorithm that picks

one or more keys is called "key generator" (KeyGen(1λ)).

4. E= {Enck : k ∈K} is a set of functions Enck : P→C. Its elements are called encryption

functions.

5. D= {Deck : k ∈K} is a set of functions Deck : C→ P. Its elements are called decryption

functions.

The properties of an encryption scheme is as follows:

• Correctness: Pr[(e,d)← KeyGen,c = Ence(p), p = Decd(c)] = 1 for all p ∈ P.

• Security: ∀p1, p2 ∈ P,{(e,d)← KeyGen,c1 = Ence(p1) : c1}= {(e,d)← KeyGen,c2 =

Ence(p2) : c2}, where the first formula refers to the distribution of all cipher texts c1

reached by randomly choosing key (e,d) and encrypting message p1, the second is the

same but for p2. A different security definition will be provided in Definition 2.1.2.

13

This definition often gets modified in order to distinguish an encryption scheme as being either a

symmetric-key or public-key encryption scheme. In symmetric-key encryption the same key is

used both for encryption and decryption functions. In public-key encryption however, the KeyGen

generates a key pair (sk, pk), where sk is know as private key and pk is known as public key.

The encryption function uses the public key as input (Encpk) and the decryption function uses the

private key as input (Decsk).

The security property of encryption schemes is defined in different ways. The basic approach of

Definition 2.1.1 in definition security is called "perfect security". However, in this thesis we are

interested in computational definitions of security. A well-accepted approach is defining a distin-

guishability game to define computational security. Intuitively, if an encryption scheme possesses

the property of indistinguishability, then an adversary will be unable to distinguish pairs of ci-

phertexts based on the message they encrypt. The property of indistinguishability under chosen

plaintext attack (IND-CPA) is considered a basic requirement for most provably secure public key

encryption, though some schemes also provide indistinguishability under chosen ciphertext attack

(IND-CCA1) and adaptive chosen ciphertext attack (IND-CCA2). In the following we describe

these properties in public-key encryption.

The classical goal of secure encryption is to preserve the privacy of messages: an adversary should

not be able to learn from a ciphertext information about its plaintext beyond the length of that plain-

text. A version of this notion, indistinguishability of encryptions (IND) is defined in [BDPR98]

through an experiment: Algorithm A1 is run on input the public key, pk. At the end of A1’s execu-

tion she outputs a triple (p0, p1,s), the first two components being messages with the same length,

and the last being state information (possibly including pk) which she wants to preserve. The chal-

lenger randomly selects b ∈R {0,1}, and returns c = Encpk(pb) to adversary A2. It is A2’s job to

determine the bit b. To make this determination A2 is given the saved state s and the challenge

ciphertext c.

We simultaneously define indistinguishability with respect to CPA, CCA1 and CCA2. The only

14

difference lies in whether or not A1 and A2 are given access to decryption oracles. We let the string

atk be replaced by any of the formal symbols cpa, cca1, cca2, while ATK is then the corresponding

formal symbol from CPA, CCA1, CCA2. The notation Oi =⊥, for i ∈ {1,2}, indicates that Oi is

the function which, on any input, returns the empty string ⊥.

Definition 2.1.2 (Indistinguishable Security [KL14]) Let Π = (P,C,K,E,D,KeyGen,Enc,Dec)

be a public-key encryption scheme according to Definition 2.1.1, where (sk, pk)← KeyGen(1λ)

and encryption/decryption functions take public/private keys respectively (Encpk/Decsk). And let

A= (A1,A2) be the adversary. For atk ∈ {cpa,cca1,cca2} and λ ∈ N we define

Advind−atk
A,Π (λ) := 2Pr[b←A

O2
2 (p0, p1,s,c)|event1]−1, where event1 is defined as

event1 := (pk,sk)← KeyGen(1λ);(p0, p1,s)←A
O1
1 (pk);b←R {0,1};c = Encpk(pb)

The adversaries A1 and A2 have oracle access to O1 and O2 respectively as follows:

if atk = cpa, then O1(.) =⊥ and O2(.) =⊥

if atk = cca1, then O1(.) = Decsk(.) and O2(.) =⊥

if atk = cca2, then O1(.) = Decsk(.) and O2(.) = Decsk(.)

In the case of CCA2, A2 does not ask its oracle to decrypt c. We say that Π is secure in the sense

of IND-ATK if for any polynomial-time A, Advind−atk
A,Π (λ) is negligible in terms of λ.

2.2 Signature

Another cryptographic primitive that we use is digital signature. Signature scheme is used for

demonstrating the authenticity of a messages. A valid signature gives a recipient reason to be-

lieve that the message was created by a known sender (authentication), that the sender cannot

deny having sent the message (non-repudiation), and that the message was not altered in transit

(integrity).

Definition 2.2.1 (Signature Scheme [Gol09]) A signature scheme is defined as a tuple (T,PK,

15

SK,S,V,KeyGen,Sign,Verify) as follows;

(I) T is a set called the "tag space". Its elements are called signature tags.

(II) PK and SK are the sets of "public-key space" and "private-key space", and their elements are

called public-keys and private-keys respectively. The algorithm that picks a public-key (pk)

and the corresponding private-key (sk) is called "key generator" ((pk,sk)←KeyGen(1λ)).

(III) S= {Signsk : sk ∈ SK} is a set of functions Encsk : {0,1}∗→ T. Its elements are called sign

functions, that generate a signature tag for any message.

(IV) V= {Verifypk : pk ∈ PK} is a set of functions Verifypk : {0,1}∗×T→{accept,re ject}.

Its elements are called verify functions that validate a signature tag corresponding to a

message.

The properties of a signature scheme is as follows:

• Correctness: Pr[(pk,sk)← KeyGen(1λ),Verifypk(x,Signsk(x)) = accept] = 1.

• Security: A signature scheme is secure if for every PPT adversary A we have

Pr[(pk,sk)← KeyGen(1λ);(x, t)← AOSignsk (.)(pk,1λ);x /∈ Q;Verifypk(x, t) = accept]<

negl(λ),

where OSignsk(.) denotes that A has oracle access to Signsk(.) function, and Q denotes

the set of queries on OSignsk(.) that already made by A. Note that the adversary cannot

directly query the string x on OSignsk(.).

2.3 Authentication Protocol

Unfortunately there is no universally accepted definition of entity authentication, so here we de-

scribe the most accepted definition. Bellare-Rogaway [BR93] proposed the first formal model of

security for the analysis of entity authentication protocols. It is a game-based definition, in which

16

the adversary is allowed to interact with a set of oracles that model communicating parties in a

network.

Let oracle πs
i, j, i, j ∈ I denote player i (called initiator) attempting to authenticate to player j (called

responder) in session s, where I ⊆ {0,1}k is the set of identities that defines players. The adversary

A is a probabilistic machine equipped with an infinite collection of oracles πs
i, j, i, j ∈ I and s ∈ N.

Adversary A communicates with the oracles via queries of the form (i, j,s,x) written on a special

tape. The query is intended to mean that A is sending message x to i, claiming it is from j in

session s. The query will, in our model, be answered by πs
i, j using the following experiment.

Definition 2.3.1 (BR Protocol) Running a protocol Π (with long-lived key generator G) in the

presence of an adversary A, using security parameter k, means performing the following:

1. Choose a random string rG ∈{0,1}∗, set ai =G(1k, i,rG) for i∈ I, and set aA=(1k,A,rG).

2. Choose a random string rA ∈ {0,1}∗, and for each i, j ∈ I and s ∈ N choose a random

string rs
i, j ∈ {0,1}∗.

3. Let κs
i, j = /0 for all i, j ∈ I and s ∈ N. This variable keeps track of the conversation that

Πs
i, j engages in.

4. Run adversary A on input (1k,aA,rA) answering oracle calls as follows: When A asks

a query (i, j,s,x) oracle Πs
i, j computes (m,δ,α) = Π(1k, i, j,ai,κ

s
i, j||x,rs

i, j) and answers

with (m,δ). Then κs
i, j gets updated to κs

i, j||x.

We point out that in response to an oracle call, A learns not only the outgoing message but also

whether or not the oracle has accepted or rejected.

An adversary is called benign if it is deterministic and restricts its action to choosing a pair of

oracles πs
i, j and πt

j,i and then faithfully conveying each flow from one oracle to the other, with

πs
i, j beginning first. In other words, the first query A makes is (i, j,s,λ), generating response α1;

the second query A makes is (j, i, t,α1) generating response β1 and so forth. In the presence of a

17

benign adversary, πs
i, j has a matching conversation to πt

j,i, that will be defined in Definition 2.3.2;

Let T i,s denote all messages sent and received by πs
i, j in chronological order. T i,s is known as the

transcript of πs
i, j. For two transcripts T i,s and T j,t , we say that T i,s is a prefix of T j,t , if T i,s contains

at least one message, and the messages in T i,s are identical to and in the same order as the first

|T i,s| messages of T j,t .

Definition 2.3.2 (Matching Conversation) πs
i, j has a matching conversation to πt

j,i, if

• T j,y is a prefix of T i,s and πs
i, j has sent the last message(s), or

• T i,s = T j,t and πt
j,i has sent the last message(s).

Two processes πs
i, j and πt

j,i have matching conversations if πs
i, j has a matching conversation to

process πt
j,i, and vice versa.

Now we are ready to define secure authentication, which is defined in a way that captures both

one-way and mutual authentication;

Definition 2.3.3 (Secure Authentication) Let NoMatchingA(k) denote the event that, when pro-

tocol P is run against adversary A, there exists an oracle πs
i, j with i, j /∈ Â (where Â denotes the

set of entities corrupted by A) which accepted but there is no oracle πt
j, j which has a matching

conversation to πs
i, j.

A protocol P is a secure (mutual) authentication protocol if for every adversary A:

1. (matching conversation ⇒ acceptance) if πs
i, j and πt

j,i have matching conversations,

then (both oracles) accept.

2. (acceptance⇒ matching conversation) the probability of NoMatchingA(k) is negligi-

ble.

The first condition says that if each party’s messages are faithfully relayed to one another, then the

parties accept the authentication of one another. The second condition calls an execution good if

18

for each accepting conversation K by an oracle πs
i, j there exists a matching conversation K′ by some

oracle πt
j,i, and otherwise it is a bad execution, which is required to have negligible probability.

2.4 Identification

Identification scheme (ID) is a cryptographic component that allows a prover P to convince a

verifier V that they know a witness x related to a public value z. Identification scheme guarantees

that a specific entity is involved in the protocol. The integrity of messages is not necessarily

required in identification, but the entity authentication consists of both identification and message

integrity. In the following, we describe a well known definition about identification schemes.

Definition 2.4.1 (Identification Scheme [KH06]) Identification scheme (ID) is an interactive pro-

tocol (P(ζ),V (z)) of PPT algorithms operating on a language L and relation R= {(z,ζ) : z∈ L,ζ∈

W (z)}, where W (z) is the set of all witnesses for z. Prior running this protocol, the inputs of par-

ties, (ζ,z), are generated by KeyGen function. In this scheme, the prover convinces the verifier that

it knows a witness in W (z). This properties of identification scheme is as follows:

• Completeness: Pr[OutV = 1 : P(ζ)↔ V (z)] = 1 for all (z,ζ) ∈ R, when P and V are

honest.

• κ-Soundness: Pr[OutV = 1 : P∗↔V (z)]≤ κ in any of the following two cases; (i) z /∈ L,

(ii) z ∈ L while algorithm P∗ is independent from any ζ ∈W (z).

Another important property that was considered later for identification schemes, is man-in-the-

middle resistance property;

Definition 2.4.2 (Identification MiM [LM13]) Consider the following two polynomial adversaries

in an identification scheme as in Definition 2.4.1: A1 interacts simultaneously with P(ζ) and V (z)

for polynomial number of times, and A2 only interacts with V (z) by having some input as A1.

• MiM resistant: the success chance of any A2, given the final view of any A1, is negligi-

19

ble. In other words, Pr[OutV = 1 : A2(ViewA1)↔V (z)]≤ negl.

A well-accepted framework for defining identification schemes, is using Σ-Protocol. A Σ-Protocol

is a 3-round cryptographic protocol between a prover P and a verifier V , in which the two parties

interact, and at the end of the protocol, V is convinced about validity of P’s statement. P has a

private input x that satisfies the relation (x,y) ∈ R, where y is a public value that is also known to

V .

Σ-Protocol [KH06] is defined as follows;

Definition 2.4.3 (Σ-Protocol) A prover P and verifier V execute three algorithms (Commit,Response,

Check) using inputs (x,y) and (y), respectively in the following order. x is private and y is public.

Let C, H and R denote three sets defined as follows. C is the set of possible input that is chosen by

the prover; H is the set of possible challenges chosen by the verifier; and R is the set of possible

responses of the prover. The steps of the protocol are as follows:

1. P randomly chooses a ∈ C, computes the commitment A = Commit(a), and sends A to V .

2. Challenge and Response messages that are defined as follows:

(a) V randomly chooses a challenge c ∈H and sends it to P,

(b) P computes r = Response(x,a,c) ∈ R and sends it to V ,

3. V calculates ret = Check(y,c,r,A), where ret ∈ {accept,re ject}.

At the end of the protocol, V outputs OutV = 1 if ret = accept, and OutV = 0 otherwise.

For implementing an identification scheme (Definition 2.4.1), we have y = z. We define an iden-

tification scheme in Σ-protocol framework as a tuple ID=(KeyGen;Commit;Response;Check).

KeyGen is a PPT algorithm that generates (x,z). The PPT algorithms Commit, Response and

Check specifying an interactive protocol between the prover P and the verifier V as a Σ-protocol

(Definition 2.4.3).

20

The properties are rephrased as follows: an identification scheme is complete if the Check function

outputs accept if (x,z) ∈ R holds, and re ject otherwise. An identification scheme is sound if an

adversary with access to a set of valid transcripts T= {(A,c,r)}, cannot generate a valid transcript

(A′,c′,r′) for a c′ that has not appeared in T. In another definition [KH06], the identification

scheme has soundness when it is hard to compute two valid transcripts (A,c,r) and (A,c′,r′) such

that c 6= c′. Note that a transcript (A,c,r) is valid according to the public key z, when the function

Check(z,c,r,A) returns accept.

Here, we propose an extended form of Σ-Protocols, called Σ∗-Protocols, in which the verifier

consecutively sends multiple challenges, each (except the first one) after receiving the response to

previous challenges. This form of protocol is needed in formalizing distance-bounding protocols,

since there is consecutive challenge-response rounds with small messages, e.g., bit size messages.

Definition 2.4.4 (Σ∗-Protocol) A prover P and verifier V participate in the following interactive

protocol.

Let C, H and R denote three sets defined as follows. C is the set of possible input that is chosen by

the prover; H is the set of possible challenges chosen by the verifier; and R is the set of possible

responses of the prover. The steps of the protocol are as follows:

1. P randomly chooses a ∈ C, computes the commitment A = Commit(a), and sends A to V .

2. Challenge and Response messages that are defined as follows:

(a) V randomly chooses a challenge c ∈H and sends it to P,

(b) P computes r = Response(x,a,c,¬c) ∈ R, where ¬c is the list of previous

challenges before c, and sends it to V ,

Steps 2-(a) and 2-(b) may be repeated a number of times.

3. V calculates ret = Check(y, [c], [r],A), where ret ∈ {accept,re ject} and [c] and [r] are

lists of all challenges and responses, respectively.

21

At the end of the protocol, V outputs OutV = 1 if ret = accept, and OutV = 0 otherwise.

Another notion of identification is when users can identify themselves anonymously as members

of a group.

Definition 2.4.5 (Anonymous Group Identification [DDP06]) anonymous identification scheme

is defined by tuple (KeyGen,Join,Prove), where KeyGen is a PPT algorithm, and both Join

and Prove are two party protocols of PPT algorithms. Initially, group manager runs (sk, pk)←

KeyGen(1λ) to get private-key sk and public-key pk such that they are in relation R = {(sk, pk) :

pk ∈ L,sk ∈W (pk)} where W (pk) is a witness function that generates all witnesses of pk. A new

user U, in order to join the system, executes Join= (U(pk),GM(sk, pk)) protocol with the group

manager GM. Common input is pk and the private input to GM is sk. Join protocol outputs to

GM either "reject” or a string id, and outputs to U either “reject” or a membership certificate

certU such that it is in relation R′ = {(certU , pk) : pk ∈ L,certU ∈W ′(pk)} where W ′(pk) is a

witness function that generates all witnesses of pk. An already joined user P, in order to prove the

membership, executes Prove= (P(pk,certU),V (pk)) protocol with a verifier V . Common input is

pk and the private input to P is certificate certU . At the end of Prove protocol V outputs either

"accept" or "reject”.

Security properties of anonymous identification scheme is as follows:

• Completeness: Pr[OutV = accept : P(pk,certU)
Prove↔ V (pk)→OutV ∧certU←U(pk) Join↔

GM(pk,sk)∧ (sk, pk)← KeyGen(1λ)] = 1, when group manager GM, user U, prover

P and verifier V are honest.

• κ-Soundness: Pr[OutV = accept : P∗ Prove↔ V (pk)→OutV] ≤ κ in any of the following two

cases; (i) pk /∈ L, (ii) pk ∈ L while algorithm P∗ is independent from any sk ∈W ′(pk).

• Anonymous: consider any PPT algorithm Ṽ , who will act as both GM and V in an

attempt to break the anonymity of honest users. Ṽ runs KeyGen and generates valid

(sk, pk). It then plays the following game: it interacts with a set of honest users, where

22

each user first Join and then multiple Prove. At some point Ṽ stops and outputs a bit.

Let preal,Ṽ (λ) be the probability that 1 is output.

Now we compare the above game to a different one, where Ṽ interacts with a simulator S.

The simulator gets as input the ordering and timing of Join and Prove protocols in the

first game, and simulates the execution of those protocols in the same order and timing on

behalf of users with random selection of inputs for Prove protocols from the generated

certificates of Join protocols. Let psim,Ṽ (λ) be the probability that 1 is the output of Ṽ in

this game.

We demand that there exists a PPT simulator S such that for any Ṽ , we have |psim,Ṽ (λ)−

preal,Ṽ (λ)| ≤ negl(λ).

This definition of anonymity hides the identity of user even from the group manager. How-

ever, there are less demanding definitions that only require anonymity from the verifier [BMW03,

NFHF09].

2.5 Proof Systems

The Σ-Protocol framework is also used for defining other cryptographic systems such as proof-of-

knowledge schemes [Dam02, Gen04, KH06, GQ88, Sch91]. The proof-of-knowledge schemes are

special proof systems that will be discussed in the following.

Definition 2.5.1 (Interactive Proof System [GMR89]) Let L be a language over {0,1}∗. Let

(P,V) be an interactive protocol. We say that (P,V) is an interactive proof system for L if it

satisfies the following two conditions:

• Completeness: If x∈ L, then the probability that (P,V) rejects x is negligible in the length

of x.

• Soundness: If x /∈ L then for any prover P∗, the probability that (P∗,V) accepts x is

23

negligible in the length of x.

The non-interactive version of a proof system is defined as follows: A non-interactive proof system

for a language L allows one party P to prove membership in L to another party V for any x ∈ L.

P and V initially share a string R of length polynomial in the security parameter λ. To prove

membership of a string x in Lλ = L∩{0,1}λ, P sends a message π as a proof of membership. Then

V decides if to accept or to reject the proof. The shared string R is generated according to some

distribution U(λ) that can be generated by a probabilistic polynomial time Turing machine.

Let L be in NP. For any x ∈ L there is a set of witnesses for its membership. Let WL(x) :=

{z|z is a witness for x}. P is given a witness z ∈WL(x), but it is not available to V . Let P(x,z,R)

be the distribution of the proofs that P generates on input x, witness z and shared string R. Suppose

that P sends V a proof π when the shared random string is R. Then the pair (R,π) is called the

conversation.

Definition 2.5.2 (Non-Interactive Proof System [NY90]) Let L be a NP language. We say that

a pair of probabilistic Turing machines (P,V), over distribution U(λ), is a non-interactive proof

system for L, if it satisfies the following two conditions:

• Completeness: (if x ∈ L then P generates a proof that V accepts). For all x ∈ Lλ, for all

z ∈WL(x), with overwhelming probability for R ∈R U(λ) and π ∈R P(x,z,R), V accepts

on input (R,x,π).

• Soundness: (if x /∈ L then no prover can generate a proof that V accepts). For all y /∈ Lλ

with overwhelming probability over R ∈R U(λ) and for all π, V rejects on input (R,x,π).

As we mentioned earlier, there is a variant of proof system (for both interactive and non-interactive),

known as "proof-of-knowledge", where the prover’s claim is a bit different: the prover claims to

know a certain piece of information (such as a secret key corresponding to a given public one).

Definition 2.5.3 (Proof-of-Knowledge System [BG92]) Let x be an element of language L in NP,

24

and W (x) the set of witnesses for x that should be accepted in the proof. Let R be a relation as

R = {(x,w) : x ∈ L,w ∈W (x)}, and κ be error function as κ : {0,1}∗ → {0,1}. The knowledge

error κ(x) denotes the probability that the verifier V accepts x, even though the prover does not

know a witness w ∈W (x). A pair of interactive probabilistic Turing machines (P(w,x),V (x)),

denoted as PoK[w : x], are proof of knowledge for the relation R with knowledge error κ if the

following two conditions hold:

• Completeness: Pr(P(x,w)↔V (x)→ 1) = 1, if (x,w) ∈ R.

• Soundness: (no prover that does not know the witness can succeed in convincing the ver-

ifier). The protocol is κ-sound if there exists a polynomial-time machine E, given oracle

access to P̃, such that for every P̃, it is the case that Pr[E P̃(x)(x) ∈W (x)] ≥ Pr[P̃(x)↔

V (x)→ 1]−κ(x).

A general property that is applicable to proof protocols, including identification, authentication

and proof-of-knowledge schemes, is zero-knowledge property. This property guarantees that the

verifier does not learn anything about the secret of the prover. A few interpretations of zero-

knowledge have been commonly considered in the literature [GMR89, For87], but here we describe

only the original interpretation;

Definition 2.5.4 (Zero-Knowledge Protocol [GMR89]) A pair of interactive probabilistic Tur-

ing machines (P(α),V (z)) is ζ-zero-knowledge for P(α), if for any PPT interactive machine

V ∗(z,aux) there is a PPT simulator S(z,aux) such that for any PPT distinguisher, any (α : z) ∈ L,

and any aux∈ {0,1}∗, the distinguishing advantage between the final view of V ∗, in the interaction

P(α)↔V ∗(z,aux), and output of the simulator S(z,aux) is bounded by ζ.

The key generation function (KeyGen) in Definition 2.4.1, that defines the relation between prover’s

private input and the verifier’s input. An important property of this function is being one-way (Def-

inition 2.5.5). This protects the secret key of the prover from other parties, including the verifier.

The key generation function is produced by some cryptographic elements, such as commitment

25

and encryption schemes. Here we define these elements;

Definition 2.5.5 (One-way Function [Gol01]) By considering λ as the security parameter, an ef-

ficiently computable function OUT ← f (IN), is one-way if there is no PPT algorithm that takes

OUT as input and returns IN with non-negligible probability in terms of λ.

2.6 Commitment

Another cryptographic primitive is commitment scheme that allows one to commit to a chosen

statement while keeping it hidden to others, with the ability to reveal the committed value later.

Commitment schemes are designed so that a party cannot change the statement after they have

committed to it. In the following, we formally define them.

Definition 2.6.1 (Commitment Scheme [Gol01]) A (non-interactive) Commitment Scheme (for a

message space M) is a triple (Setup,Commit,Open) such that:

(a) CK← Setup(1λ) generates the public commitment key.

(b) for any m ∈M,(c,d)←CommitCK(m) is the commitment/opening pair for m. c = c(m) serves

as the commitment value, and d = d(m) as the opening value. We omit mentioning the public

key CK when it is clear from the context.

(c) OpenCK(c,d)→ m̃ ∈ M ∪ {⊥}, where ⊥ is returned if c is not a valid commitment to any

message.

The security properties of commitment schemes are threefold: (1) honest opening of and honest

commitment of any m returns the same m, (2) c gives no information about m, and (3) It is not

possible to open c in two different ways. The properties stated above are correspondingly called

correctness, hiding and binding.

• Correctness: for any m ∈M and CK← Setup(1λ), OpenCK(CommitCK(m)) = m

26

• Hiding: it is computationally hard for any adversary A to generate two messages m0,m1 ∈

M such that adv can distinguish between their corresponding commitments c0,c1. That

is, c(m) reveals no information about m. In other words, for any PPT A = (A1,A2) we

require:

Pr

b = b̃
CK← Setup(1λ),(m0,m1,α)←A1(CK),

b←R {0,1},(c,d)←Commit(mb), b̃←A2(c,α)

≤ 1
2 +negl(λ)

• Binding: it is computationally hard for the adversary A to come up with a triple (c,d,d′),

referred to as a collision, such that (c,d) and (c,d′) are valid commitments for m and m′

when m 6= m′. In other word, for any PPT A we require:

Pr

m 6= m′∧

m,m′ 6=⊥

CK← Setup(1λ),(c,d,d′)←A(CK),

m← Open(c,d),m′← Open(c,d′)

≤ negl(λ)

The hiding property of commitment schemes is similar CPA-security (Definition 2.1.2) of public-

key encryption schemes. For this reason, some identification scheme use public-key encryption

schemes. On the other hand, the binding property of commitment schemes is similar to security of

signature scheme (Definition 2.2.1). In commitment schemes, since c = c(m) cannot be opened to

any other value that m, then it implies that in a sense c validates m.

Algorithm 2.6.1 (Pedersen Commitment [Ped92]) Commit(x,r)= gxhr mod p, where p is prime

chosen with λ bit security, g and h are prime group generator for Zp, and x,r ∈ Z∗p.

A special case of commitment scheme is bit commitment that is defined as follows:

Definition 2.6.2 (Bit Commitment [Nao91]) A commitment scheme (Definition 2.6.1), is a bit

commitment when the message space is M= {0,1}.

A general algebraic property is homomorphism that is used in many cryptographic primitives, such

as commitment, encryption and signature. Homomorphism is a structure-preserving map between

two algebraic structures of the same type.

Property 2.6.1 (Homomorphism [Bir40]) Consider a map f : A → B between two sets A, B

27

equipped with the same structure such that, if ∗ is an operation of the structure. f is homomorphic

if f (x∗ y) = f (x)∗ f (y) for every pair (x,y) of elements of A.

Here, we consider homomorphism of bit commitment schemes in a specific way;

Definition 2.6.3 (Homomorphic Bit Commitment [Gro03]) Consider a bit commitment scheme

(Definition 2.6.2), where algorithm Commit is taking b ∈ Z2 and ρ ∈ G as input, and returns

Commit(b,ρ)∈G. This scheme is homomorphic if the following holds: ∀b,b′ ∈Z2 and ∀ρ,ρ′ ∈G,

we have Commit(b,ρ)Commit(b′,ρ′) = Commit(b+b′,ρρ′).

Homomorphic bit commitment can be obtained using Goldwasser-Micali encryption, as follows;

Algorithm 2.6.2 (Goldwasser-Micali Bit Commitment [GM84]) Commit(b,ρ)= θbρ2 (mod N),

where N = pq for secret prime values of p and q chosen with λ bit security, θ is a quadratic residue

modulo N, b ∈ {0,1} and ρ ∈ Z∗N .

Camenisch and Lysyanskaya [CL04] proposed a special signature scheme (Definition 2.2.1), that

allows the users to commit to a message and then prove the knowledge of a signature on the

message without leaking information about the message. This scheme is based on the standard

definition of signature schemes due to Goldwasser, Micali, and Rivest [GMR88].

Definition 2.6.4 (CLSig [CL04]) CLSig is a tuple (T,PK,SK,S,V,KeyGen,Sign,Verify,BSign,

SPK), where the first eight parameters are as defined in (Definition 2.2.1), and the additional last

two parameters are as follows;

(V) BSign is a blind signature protocol between a prover P, who takes message M ∈ {0,1}∗

and public key pk as input, and the signature authority A, who takes private key sk as input.

The prover first commits to the message M, and then interact with the signature authority to

generate a valid signature σ on the message M, that satisfies accept← Verifypk(M,σ). At

the end of protocol, both prover and signature authority output a valid signature σ on the

message M, while the signature authority does not learn any information about M.

28

(VI) SPK is a protocol between a prover P, who takes message M ∈ {0,1}∗ and signature σ as

input, and a verifier V , who takes public key pk as input. The prover first commits to a

message M and then convinces the verifier that is in possession of the message M and a

signature σ that satisfies accept ← Verifypk(M,σ), without leaking information about M

or σ. At the end of protocol, V outputs the commitment of message M and OutV = 1 if they

accept, or OutV = 0 if they reject, while P outputs the randomness of the commitment.

Security properties of CLSig are:

• Correctness: Pr[OutV = accept : P(M,σ)
SPK↔ V (pk)→OutV ∧σ← P(M, pk)

BSign↔ SA(sk)∧

(sk, pk)← KeyGen(1λ)] = 1, when signature authority SA, prover P and verifier V are

honest.

• Unforgeability: Same as security property of signature schemes, as in Definition 2.2.1.

• κ-Sound: Pr[OutV = accept : P∗ SPK↔ V (pk)→OutV] ≤ κ if P∗ is independent from any

(M,σ) that accept← Verifypk(M,σ).

• Zero-Knowledge; both BSign and SPK are zero-knowledge protocols according to Defi-

nition 2.5.4.

BBS+ [CL04] is an example of CLSig scheme.

2.7 Theorems

Here we describe some mathematical theorems that will be used in security proofs.

Theorem 1 (Chernoff-Hoeffding Bound [Che52], [Hoe63]) For any values (ε,n,τ,q) where

ε > 0, n ≥ τ ≥ 0 and 1 ≥ q ≥ 0, we have the following inequalities about the following function

Tail(n,τ,q) :=
n
∑

i=τ

(n
i

)
qi(1−q)n−i;

• if τ

n < q− ε, then Tail(n,τ,q)> 1− e−2ε2n

29

• if τ

n > q+ ε, then Tail(n,τ,q)< e−2ε2n

2.8 Concluding Remarks

This chapter presented background concepts and definitions used throughout the thesis. We re-

viewed some basic definitions of cryptographic primitives such as proof systems, proof-of-knowledge,

authentication, identification, commitment, encryption, and signature schemes.

30

Chapter 3

Literature Review

In this chapter we describe two major class of authentication schemes;

challenge-response-based and timestamp-based. We discuss the ma-

jor works of the distance-bounding literature as a special class of

challenge-response authentication schemes and then we discuss some

of the existing models that consider the concept of time in entity au-

thentication.

Entity authentication is the process by which an agent in a distributed system gains confidence in

the identity of a communication partner. Authentication is one the most important security goal

in cryptographic protocols. In authentication schemes, time is used for many different purposes:

have expiry time for public keys and certificates, to reduce their breaking impact to guarantee the

message freshness. For each of these purposes, a special model is necessary to formally define the

security goals. Replay attacks are considered as major threat against authentication protocols, so

the message freshness need be guaranteed. In practice, this is achieved by including fresh values

into messages. These fresh values are in the form of nonces or challenges chosen by the other

party, or timestamps.

• Authentication with nonces. Nonces are given through messages to a party p,

and p replies with a message that includes the nonce value. This can be modeled by

input tape of a Turing machine. In one-sided authentication, this implies at least two

messages protocol, and for mutual authentication at least three messages protocol

[Sch14].

• Authentication with challenge-response. Challenges are considered as random

31

questions that are given through messages to a party p, and p replies with a message

that are considered as the answer. A correct answer guarantees the freshness of

response. This can be modeled by input tape of a Turing machine.

• Authentication with timestamps. Timestamps are more difficult to model, be-

cause a Turing machine cannot model real time [Sch14, Section 1]. However,

timestamps enable us to design more efficient protocols, with less latency. Thus

timestamps can be seen as a replacement for challenges, but they are not identical:

they allow us to design more efficient protocols in terms of number of messages,

and provide some ordering. On the downside, the receiver must keep an ephemeral

local state to detect the replay of valid messages within an acceptance window.

In the section (Section 3.1) we provide a brief review about different aspects of distance-bounding

literature, that can be classified as challenge-response-based authentication. And in the follow-

ing section (Section 3.2) we discuss some of the important models that consider time in entity

authentication.

3.1 Distance-Bounding as Challenge-Response Entity Authentication

In this section we introduce the fundamentals of distance-bounding, as a special class of entity

authentication. Then we describe three classes of distance-bounding protocols based on the input

setting of participants: symmetric key, public key and anonymous DB. All the existing distance-

bounding schemes, including the schemes that will be presented in this section, fit in "authenti-

cation with challenge-response" class. Later in this thesis, we propose the first distance-bounding

scheme that fits in "authentication with timestamps" class.

Distance-Bounding schemes have been introduced to defeat relay attack in authentication proto-

cols, where a MiM attacker only relays the messages between prover and verifier [BC94]. A DB

protocol relies on the fact that no message can travel faster than light. So the verifier can find

32

the distance of a prover to the verifier by measuring the round-trip time of a challenge and the

corresponding response. The main goal is that a prover, holding secret key, prove an upper bound

on their distance to a verifier. A general sketch of a typical DB protocol is shown in Figure 1.3

between a prover P and a verifier V .

Ideally, a distance-bounding scheme should have the properties of authentication schemes:

• Completeness: an honest prover who is located close to the verifier, will succeed in

the protocol with high probability.

• Soundness: if the verifier accepts in a protocol, then the information held by the

close-by participants to the verifier, includes the secret key.

• Security: if the prover behaves honestly in a protocol, then the provided information

by them, does not provide any advantage to defeat soundness.

There are three important attacking scenarios in the distance-bounding systems that are new com-

pared to the attack scenarios of authentication schemes. These three attacks are the main focus of

protocol designers in this field:

• Attack 3.1.1 Distance-Fraud Attack (DF)[BC94]. A dishonest prover P∗, which is

not located within distance bound B to verifier V, tries to convince V that she is

authentic and located within the distance bound B to V (See Figure 3.1).

VP∗
B

Figure 3.1: Distance Fraud Attack

• Attack 3.1.2 Mafia-Fraud Attack (MF)[Des88]. This is a Man-In-the-Middle at-

tack between honest prover P (far away) and verifier V. Adversary A, which is

33

located within the distance bound B to V, commits the fraud. This attack convinces

V that P is located within the distance bound B to V (See Figure 3.2).

A

VP B

Figure 3.2: Mafia Fraud Attack

• Attack 3.1.3 Terrorist-Fraud Attack (TF)[Des88]. This is a co-operative fraud

running by a far-away dishonest prover P∗ and a helper H that is located within the

distance bound B to V. The attack happens with minimal disclosure about secret-

key of the prover to the helper. P∗ and A co-operate to convince V that P∗ is located

within distance bound B to V (See Figure 3.3).

In the original TF-resistance, it’s assumed that the prover does not leak their secret

key to the actor. In the recent TF-resistance definition [Vau13] this restriction is

removed, but it is required that non-negligible success of TF attack results in non-

negligible improvement in future impersonation attacks by the actor.

A

VP∗ B

Figure 3.3: Terrorist Fraud Attack

There are two other minor attacking scenarios in this field that are considered as special case of the

above main attacks in some works:

34

• Attack 3.1.4 Distance-Hijacking[CRSC12]. In this attack a dishonest prover P∗,

which is not located within the distance B to a verifier V, exploits some honest

provers P1, . . . ,Pn with different secret-keys to mislead V about the actual distance

between P∗ and V (See Figure 3.4). This attack is considered as a special DF attack

in some models [VBM+13].

P1

...
Pn

VP∗
B

Figure 3.4: Distance Hijacking Attack

• Attack 3.1.5 Impersonation[ABK+11]. In this attack a close-by dishonest prover

P∗ purports to be another prover P in her interaction with V (See Figure 3.5). This

attack is considered as a special MF attack in some models [VBM+13].

VP∗(as P)
B

Figure 3.5: Impersonation Attack

3.1.1 Symmetric Key Distance-Bounding

In a symmetric key distance-bounding protocol, a prover and a verifier share a secret key value

and then they run the distance-bounding protocol. Although the seminal distance-bounding paper

Brands-Chaum [BC94] does not have symmetric settings, but majority of protocols in this field

are symmetric. The generic symmetric DB protocol is shown in Figure 3.6. This is an example

of the general protocol in Figure 1.3 where both parties take the same secret input. Because the

35

P V
(x) (x)

Initialization Phase:

pick nonce •• pick nonce

table = f (x,nonces) table = f (x,nonces)
Fast Challenge-Response Phase:

∀i ∈ {1, . . . ,λ}:
ai ∈R {0,1} •

Start Clockai

• bi← Lookup(table,ai) bi
Stop Clock

Check response times
Verification Phase:

Check {bi} according to table

Figure 3.6: General sketch of symmetric key distance-bounding protocols. x is the shared key with

length λ. In initialization phase, the parties exchange randomness, that allows them to generate a

table. In fast phase, the verifier asks about half values of the table and measures response time. In

verification phase, the verifier checks validity of responses in respect to the table.

focus of our work is on public-key DB, in this section we talk about only one symmetric distance-

bounding protocol, and leave the more comprehensive review of this literature in Appendix A.1.

Swiss-Knife [KAK+08] is one of the strongest symmetric key DB protocols that is secure against

all distance-bounding protocols.

Kim et al. [KAK+08] designed one of the first DB protocols that is secure in all three of DB security

models (i.e. DF, MF and TF). The presented protocol is named Swiss-Knife, which is based on

Map1 [BR93] mutual-authentication protocol, and inherits the mutual authentication property, in

which, both involved parties of protocol prove their authenticity to the other party. Moreover, this

protocol supports noisy channels and privacy of provers against any eavesdropper.

Kim et al. proposed a new MiM attack, which makes it hard to provide TF resistance protocol

36

P V
(secret: x)(public: ID) (secret: x)(public: {ID})

Initialization Phase:

pick NV •NV

• pick NP NP

d1 = fx(NP,NV),d2 = d1⊕ x d1 = fx(NP,NV),d2 = d1⊕ x
Fast Challenge-Response Phase:

∀i ∈ {1, . . . ,λ}:
ai ∈R {0,1} •

Start Clockai

• bi = āid1,i +aid2,i bi
Stop Clock

Check Responses
Verification Phase:

• t = fx(ID,a1, . . . ,aλ,NP,NV)

t,a1, . . . ,aλ

Check ID in database (O(|{ID}|))
Check #{i : bi and timeri correct} ≥ τ

Check t

OutV

Figure 3.7: Swiss-Knife distance-bounding protocol [KAK+08]. x is the shared key with length λ,

ID is identity of prover and {ID} is identity list of all provers. fx() is a pseudo random function.

without leaking information about the secret-key. This attack allows an adversary to recover the

long-term key x. In order to learn bit xi, the adversary can, during the fast bit exchange, flip the

value of challenge bit ai when it is transmitted from verifier to prover and leave all other messages

untouched. The adversary then observes the verifier’s reaction; if the verifier accepts, it means that

the prover’s answer bi was nevertheless correct, which may lead to leak the value of xi, as is does

in Tu-Piramuthu protocol [TP07].

37

3.1.2 Public-Key Distance-Bounding

In a public-key distance-bounding protocol, provers have a key pair and the verifier has access

to the public-key of provers before running the distance-bounding protocol. The direct way of

constructing a public-key DB protocol, is to first establish a shared session key between the prover

and the verifier by using the public-key setting, an then run a symmetric-key DB protocol. However,

by using the direct method we cannot achieve the TF resistance property, as the malicious prover

can run the key establishment phase and pass the session key to the helper.

The generic public-key DB protocol is shown in Figure 1.3. In this section we review some of the

important public-key distance-bounding protocols.

Brands-Chaum [BC94]

Brands-Chaum designed the first DB protocol in order to prevent relay attacks. In this model, each

prover has a key pair. The verifiers are trusted and have access to the public key of provers. The

proposed protocol (Figure 3.8) is designed to be secure against DF and MF attacks. This protocol

does not tolerate the presence of environment noise.

Bussard-Bagga [BB04] (DBPK-Log)

Bussard-Bagga proposed the first public-key DB protocol to be secure against TF attack.

This protocol combines a fast-exchange DB protocol, Pedersen commitment scheme [Ped92] and

zero-knowledge proof-of-knowledge [PHS03]. Before running the protocol, a prover chooses a key

pair and registers the public-key with a trusted authority. The verifiers are trusted and have access

to the public-key of provers. The system parameters are set by a trusted authority, which are shared

with all participants.

The main difference between this protocol compared to Brands-Chaum [BC94] is that the fast

challenge-response table is not completely random. In fact knowing the table allows to calculate

38

P V
(secret: x) (public: y = gx)

Initialization Phase:

• session key m ∈R {0,1}λ

• Cm = commit(m)
Cm

Fast Challenge-Response Phase:

∀i ∈ {1, . . . ,λ}:
ai ∈R {0,1} •

Start Clockai

• bi = mi⊕ai bi
Stop Clock

Verification Phase:

open commitment, Signx(a,b)
Check responses according to opened commitments

Check Signature

OutV

Figure 3.8: Brands-Chaum Protocol [BC94]. x is prover’s private key with length λ and y is

prover’s public key. Prover commits to a random table and then runs the fast phase. In verification

phase, prover opens the committed table.

the private-key of prover. This technique is used to makes the protocol resistant against TF attack.

The DB protocol combines the bitwise operations of the fast challenge-response phase, and mathe-

matical operations that are used in commitment schemes. This results in some security loss of the

secret-keys, while maintaining indistinguishability of the secret-keys. Figure 3.9 is showing the

construction of this protocol. Note that this protocol does not tolerate noisy channels.

In commitment opening phase, only half of commitments are opened and the other half are un-

used. Bay et al. [BBM+13] proposed TF and DF attacks on this protocol, which takes advantage

of poor auditing of un-used elements in the Commitment Opening phase, in which half of the bit

commitments would not be opened. See Bay et al. [BBM+13] for the details of this attack.

39

P V
(secret: x) (public: y = gx)

Commitment Phase:

• session key k ∈R {0,1}λ

• u ∈R Zp−1(:= {0,1}λ)
• calculate e = ux− k mod p−1
• ∀i ∈ {1, . . . ,λ}:
− vk,i,ve,i ∈R Zp−1

− Ck,i = Commit(k[i],vk,i) = gk[i].hvk,i

− Ce,i = Commit(e[i],ve,i) = ge[i].hve,i

v = ∑
λ
i=1(2

i−1.(vk,i + ve,i))
ck := [Ck,i]i∈{1,...,λ}
ce := [Ce,i]i∈{1,...,λ} ck,ce,u

z = ∏
λ
i=1(Ck,iCe,i)

2i−1
mod p •

Fast Challenge-Response Phase:

∀i ∈ {1, . . . ,λ}:
ai ∈R {0,1} •

Start Clockai

• bi = āik[i]+aie[i] bi
Stop Clock

Commitment Opening Phase:

∀i ∈ {1, . . . ,λ}:
• γi = āivk,i +aive,i γi

verify bit commitment: āiCk,i +aiCe,i
?
= gāik[i]+aie[i].hγi •

Proof of Knowledge (t times):

PoK[(x,v) : z = gu.x.hv∧ y = gx]

OutV

Figure 3.9: DBPK-log Protocol. x is prover’s private key with length λ and y is prover’s public key.

t and λ are security parameters.

Hermans et al. [HPO13]

Hermans et al. designed a public-key DB protocol that is secure against DF and MF attacks. How-

ever, it is vulnerable to TF attack, since it’s using the trivial construction method that is stated at

40

the beginning of this section.

The proposed protocol (Figure 3.10) has a public-key setting, which arises from the desire to design

a protocol without key updates, that guarantees stronger privacy. In this protocol all provers are

initialized with a private/public key pair (x,X = xP) and the provers’ public keys are registered

in the verifier’s database. The private/public key pair of the verifier is (y,Y = yG) of which the

public-key is known to all provers.

To generate the ephemeral shared secret, an anonymous Diffie-Hellman key agreement, with fresh

random values from both sides (R1 = r1G and R3 = r3G), takes place, resulting in a shared point

r1r3G on the elliptic curve.

Gambs et al. [GKL+14]

Gambs et al. [GKL+14] proposed a public-key DB protocol (called VSSDB) similar to Hermans et al.

[HPO13], that is claimed to be secure against DF, MF and TF. The presented protocol (Figure 3.11)

is between prover and verifier, where prover has access to the public-key of verifier and its own

secret key. The verifier has access to its private key and the public key of prover.

We later present a new TF attack against VSSDB protocol.

41

P V
(secret: x j)(public: Y = yG) (secret: y)(public: DB = {X j = x jG})

Initialization Phase:

• r1,r2 ∈R Z∗l R1 = r1G,R2 = r2G

check R1,R2 6= 0
r3 ∈R Z∗l •R3 = r3G

check R3 6= 0 a = [e]λ, e ∈R Z∗l •
d1||d2 = [xcoord(r1R3)]2λ u1||u2 = [xcoord(r3R1)]2λ

Fast Challenge-Response Phase:

∀i ∈ {1, . . . ,λ}:
ai ∈R {0,1} •

Start Clockai

• bi = āid1,i +aid2,i bi
Stop Clock

Check #{i : bi and timeri correct} ≥ τ

Verification Phase:
e

Check a1|| . . . ||aλ

?
= [e]λ

t = xcoord(r2Y) s = x j + er1 + r2 + t

t̂ = xcoord(yR2)

Check X̂ = (s− t̂)G+ eR1 +R2 ∈ DB

OutV

Figure 3.10: HPO Protocol. x j is prover’s private key with length λ and X j is prover’s public key. y

is verifier’s private key and Y is verifier’s public key. DB = {X j} is public-key list of all provers.

G is a generator point on elliptic curve and xcoord(.) returns X coordinate of a point, which is

statistically indistinguishable from the uniform distribution.

42

P V

(secret: skP,x,υ = {υ j}λ
j=1)(public: pkV) (secret: skV)(public: pkP,{com j}λ

j=1)

Initialization (slow phase)
k, l ∈R {0,1}λ,u,v ∈R {Z∗N}λ NV,M ∈R {0,1}λ

j = {1...λ}:
• e j = x j⊕ k j⊕ l j, w j = u−1

j v−1
j H j(x) mod N

• a j = Commit(k j,u j),b j = Commit(l j,v j),d j = Commit(e j,w j)

0,NV,Mreceive 0,N′V,M
′

• mP := {a j,b j,d j}λ
j=1||N′V;ω := {x,k, l,e,u,v,w,a,b,d,υ,skP}

• cP = EncpkV(mP||σ = SignskP(mP))

• π := Prove{ω : cP well formed ∧ consistent with {com j}λ
j=1}

cP,π receive c′P,π
′

(m′||N′V,σ
′) = DecskV(c

′
P); check N′V = NV;PVerify(π′,σ′,{com j}λ

j=1) •j = {1...λ}:
• f j(0)

4
= M′j.e j +M′j.k j; f j(1)

4
= M′j.k j⊕ l j +M′j.e j⊕ l j

• γ j(0,0)
4
= w j;γ j(0,1)

4
= (k j,u j, l j,v j);γ j(1,0)

4
= u j;γ j(1,1)

4
= (e j,w j, l j,v j)

Challenge/Response (fast phase)
∀ j ∈ {1, ...,λ} c j ∈R {0,1}

start timer •c j
receive c′j
• r j = f j(c′j) r j stop timer •

check #{i : ∆ti correct}= λ •
Verification (slow phase)

• ς = SignskP(M
′||{c′j,r j}λ

j=1||N′V)
• ϕ = {γ j(M′j,c

′
j)}λ

j=1
ς,ϕ receive ς′,ϕ′

SVerifypkP(ς
′,M||{c j,r′j}λ

j=1||NV) •
COpen(a,b,d,r′,ϕ′) •

OutV

Figure 3.11: VSSDB public-key DB protocol. (skP,x) is prover’s private key where x has random

distribution with length λ and pkP is prover’s public key. skV is verifier’s private key and pkV

is verifier’s public key. (Commit,COpen) is a commitment scheme. (Enc,Dec) is a secure public

key encryption scheme. (Sign,SVerify) is a signature scheme. (Prove,PVerify) is a proof-

of-knowledge scheme. H is a secure hash function with pseudo-random output. υ j = H j(x) and

com j = Commit(x j,υ j) for j = 1...λ.

43

Vaudenay [Vau14]

Vaudenay [Vau14] presents a formal model for public-key DB protocol that is an extension of

proof-of-knowledge schemes. They also propose a public-key DB protocol (called ProProx) that

uses Goldwasser-Micali encryption for public-key generation.

P V
(secret: sk)(public: pk) (public: pk)

Commitment (slow phase)
for j ∈ 1 . . .λ in parallel:

pick ai, j ∈R Z2,ρi, j ∈R Z∗N , i = 1, . . . ,n
• Ai, j =Com(ai, j,ρi, j) A1, j, . . . ,An, j

Challenge/Response (fast phase)
j = 1 · · ·λ and i = 1 · · ·n ci, j ∈R Z2

start timeri, j •ci, j
receive c′i, j
• ri, j = ai, j + c′i, jbi + c′i, jsk j ri, j

receive r′i, j
stop timeri, j •Verification (slow phase)

agree on I = (I1, . . . , Iλ), where ∀ j ∈ {1...λ} : I j ⊂ {1, ...,n}
∧
|I j|= dτne

check |I j|= dτne and timeri, j ≤ 2B for j = 1, . . . ,λ
∀ j ∈ {1, . . . ,λ}, i ∈ I j:

• v j = H(sk, j)

• αi, j = ρi, jv
c′i, j
j

zi, j = Ai, j(θ
biy j)

ci, jθ
−r′i, j •

ZKP(αi, j : zi, j = α2
i, j)

OutV

Figure 3.12: ProProx public-key DB protocol. sk is prover’s private with length λ and pk is

prover’s public key. Com(., .) is Goldwasser-Micali encryption. τ is the minimum threshold ratio

of noiseless fast rounds. ZKP is an interactive zero-knowledge proof. The number of fast rounds

is nλ. In each fast round, the verifier sends one-bit challenge, and receives the corresponding

response.

This protocol is presented in Figure 3.12. This protocol is proven to be secure against DF, MF and

44

TF attacks. An advantage of this work compared to the last two protocols, is that the verifier does

not need to be registered, which expands the range of applications.

In the verification phase of Figure 3.12, the prover and the verifier agree on a list I = (I1, ..., Iλ),

where each I j consists of dτne indices from 1 to n. Both parties believe ∀ j = {1...λ}, i ∈ I j :

ci, j = c′i, j and ri, j = r′i, j. The verifier then checks whether responses are within the required time

interval. The prover and the verifier then run an interactive zero-knowledge proof (ZKP) to show

that the responses ri, j, j = {1...λ}, i ∈ I j are consistent with the corresponding Ai, j’s and y j’s. If

the verification fails, the verifier aborts and outputs Outv = 0, otherwise, outputs OutV = 1.

3.1.3 Anonymous Distance-Bounding

Distance-bounding protocols reveal the identity of the prover to the verifier: in symmetric key

DB, the prover and the verifier share a secret key, and in public-key DB, the prover’s response is

compared against the public-key of a specific user. In anonymous DB however the goal is to prove

that the distance of a registered user is less than a prescribed bound, without revealing their exact

identity.

In an anonymous distance-bounding protocol, each registered prover has a certificate as proof of

membership of a group. By having a certificate, the prover starts the DB protocol with a verifier

who has only access to the public parameters of the system.

In this section we discuss all of the existing anonymous distance-bounding protocols. Some other

privacy notions of prover is discussed in Appendix A.3.

Gambs et al. [GOR14]

GOR is an anonymous DB system [GOR14] that authenticates the provers as a member of an au-

thorized group. The novelty of this work is in using the homomorphic EC+ElGamal encryption

scheme. GOR uses accumulation technique to provide anonymity of provers.

45

GOR is built based on the structure of HPO public-key DB protocol (Figure 3.10 [HPO13]), that does

not provide TF-resistance. As a result, GOR is not TF-resistance either. Figure 3.13 presents the

GOR protocol between the prover and the verifier, in which the prover has access to the public-key

of the verifier and a public and private key pair that is used for proving group membership, and

the verifier has access to its private-key and the public-key of all provers. The anonymity of this

scheme is shown to be broken in [Vau16].

Bultel et al. [BGG+16]

SPADE [BGG+16] is an anonymous DB system that authenticates a prover as a member of an

authorized group. This ensures anonymity, because authentication relies on a group signature. The

verifier in SPADE must be registered and have a key-pair of its own. Figure 3.14 presents the SPADE

protocol between the prover and the verifier. The prover has access to the public-key of the verifier

and a secret-key that is used for generating the group signature, and the verifier has access to its

private-key and the group public-key. This protocol is designed to be secure against DF, MF and

TF attacks. However, we later propose a TF attack against it in Section 5.1.1.

Avoine et al. [ABG+17]

TREAD [ABG+17] is an anonymous DB system that authenticates the provers as a member of an

authorized group. The protocol ensures anonymity because authentication uses a group signature.

The verifier needs to be registered and have a key-pair of their own. The structure of TREAD is

very similar to SPADE. Figure 3.15 presents TREAD protocol between the prover and the verifier, in

which the prover has access to the public-key of the verifier, a secret-key that is used for generating

group signatures and a pair if public and private identities, and the verifier has access to its private-

key and the group public-key. Note that TREAD is designed in a way that can operate as public-key

DB too. This protocol is designed to be secure against DF, MF and TF attacks.

46

P V

(secret: sk j)(public: PK j,PKV) (secret: skV)(public: {PKi}k
i=1,Q)

Initialization (slow phase)
• s,rP,r2 ∈R Zq,S = sG,RP = rPG,R2 = r2G
• c = HEnc(S,PK j),π = ProveNIZK(c well formed)

r,rV ∈R Zq •
RV = rV G •

RP,R2,S,c,π

Veri f yNIZK(c,π) •
check RP,R2 6= 0 •

c′ = cr = HEnc(S,rPK j) •RV ,c′

• rPK j = HDec(e,c′), check RV 6= 0 e ∈R Zq; set c = [e]λ •
• r0||r1 = [xcoord(rPRV)]2λ r̂0||r̂1 = [xcoord(rV RP)]2λ •

Challenge/Response (fast phase)
∀l ∈ {1, ...,λ}

Measure Time (t1) •c[l]Receive c′[l]

• r[l] = c′[l]r0[l]+ c′[l]r1[l] r[l] Receive r′[l]
Measure Time (t2) •
check t2− t1 ≤ ∆t •

check r′[l] = c[l]r̂0[l]+ c[l]r̂1[l] •
Verification (slow phase)

e

• check c′ = [e]λ
• D = r2PKV,S = sk j(rPK j)+ eRP +R2 +D D̂ = skVR2 •

S

check (S− D̂)− eRP−R2 = rQ •
If all checks succeed, then OutV = 1

otherwise OutV = 0

OutV

Figure 3.13: GOR anonymous DB protocol. λ is security parameter. sk j is prover’s private and PK j

is prover’s public key. skV is verifier’s private and PKV is verifier’s public key. (HEnc,HDec) is

a homomorphic encryption scheme. (ProveNIZK,Veri f yNIZK) is a non-interactive zero-knowledge

proof system. PRF is a pseudorandom functions. G is a generator point on elliptic curve and

xcoord(.) returns X coordinate of a point. PKV = skVG; PK j = ∏
k
i=1;i 6= j skiG ; Q = ∏

k
i=1 skiG.

47

P V
(secret: skP)(public: pkV) (secret: skV)(public: gpk)

Initialization (slow phase)
NP ∈R Zλ

2 NV,m ∈R Zλ
2

• σ = GSignskP(NP),e = EncpkV(NP,σ)
e

(NP,σ) = DecskV(e) •
GVeri f ygpk(NP,σ) •NV,m

• a = PRF(NP,NV) a = PRF(NP,NV) •
Challenge/Response (fast phase)

∀i ∈ {1, ...,λ}
ci ∈R Z2

start timer •ci

• ri =

ai if ci = 0

ai⊕NPi⊕mi if ci = 1
ri

stop timer •
store ∆ti •

Verification (slow phase)
• C := c1||...||cλ,R := r1||...||rλ C := c1||...||cλ,R := r1||...||rλ •
• ς = PRF∗(NP,C,R)

ς

check ς = PRF∗(NP,C,R) •
If #{i : ri and ∆ti correct}= λ, then OutV = 1 •

otherwise OutV = 0

OutV

Figure 3.14: SPADE anonymous DB protocol. λ is security parameter. skP is prover’s pri-

vate key and gpk is group public key. skV is verifier’s private and pkV is verifier’s public key.

(GSignsk,GVeri f ygpk) is a group signature scheme. (Encpk,Decsk) is a secure public-key encryp-

tion scheme. PRF : Zλ
2×Zλ

2 → Zλ
2 and PRF∗ : Zλ

2×Zλ
2×Zλ

2 → Zλ
2 are pseudo-random functions.

λ is the security parameter. NP and (NV,m) are nonce values of prover and verifier, and (ci,ri) is a

challenge and response round.

48

P V
(secret: sk, idgroup)(public: pkV) (secret: skV)(public: gpk)

Initialization (slow phase)
α,β ∈R Zλ

2 m ∈R Zλ
2

• σ = GSignsk(α||β||idgroup),e = EncpkV(α||β||idgroup||σ)
e||idgroup

(α||β||idgroup||σ) = DecskV(e) •
GVeri f ygpk(α||β||idgroup||σ) •m

Challenge/Response (fast phase)
∀i ∈ {1, ...,λ}

ci ∈R Z2
start timer •ci

• ri =

αi if ci = 0

βi⊕mi if ci = 1
ri

stop timer •
Verification (slow phase)

check #{i : ri and ∆ti correct}= λ •
OutV

Figure 3.15: TREAD public-key/anonymous DB protocol. λ is security parameter. skP is prover’s

private key and gpk is group public key. skV is verifier’s private and pkV is verifier’s public

key. (GSignsk,GVeri f ygpk) is a group signature scheme. (EncpkV ,DecskV) is a secure encryption

scheme. idgroup is name of the group that the prover belongs to for anonymous authentication.

3.1.4 Concluding Remarks

In this section we introduced symmetric DB protocols and showed that how the fast phase opera-

tions are running on every single bit of the secret. Then we described some important public-key DB

protocols and noticed that it is harder to make the fast phase operations depend to the private-key

of prover, compared to symmetric key DB protocols. A lot of public-key DB protocols fail to resist

against TF attack because of this. There are only two public-key DB protocols [Vau14, ASN14] that

49

are secure against all DB attacks, which have different public-key settings and have been published

at the same time. [ASN14] is a part of this thesis. The model of [Vau14] however, is considered

as extension of proof-of-knowledge models, which is not inline with DB attack scenarios, specially

MF as a man-in-the-middle attack.

We described all existing anonymous DB protocols. The first anonymous DB protocol that is secure

against TF attack is part of this thesis [ASN14]. We later introduce a special TF attack that breaks

all of the existing anonymous DB protocols, including [ASN14].

In Table 3.1 we summarize the security properties of the most important DB protocols. Note that

the definition of security properties in each paper of this table may be different.

50

Protocol Security Status Against Attack Noise Anonymous

S/P/A DF MF TF

[BC94] P sec [GAA11] sec insec No none

[ČBH03] S sec sec insec No Eav

[BB04] P insec [BBM+13] sec insec No Eav

[HK05] S sec sec insec - Eav

[RNTS07] S sec insec sec - Eav

[TP07] S sec[MP08] insec sec Yes Eav

[NV08] S sec sec insec No Eav

[KAK+08] S sec sec sec Yes Eav

[KA09] S sec sec insec Yes Eav

[ALM11] S sec sec sec - Eav

[FO13b] S sec sec sec Yes Eav

[BMV13b] S sec sec sec Yes Eav

[HPO13] P sec sec insec Yes MiM

[GOR14] A sec sec insec Yes none [Vau16]

[Vau14] P sec sec sec Yes Eav

[Vau15] P sec sec insec Yes Eav

[BGG+16] A sec sec insec ⇓ Yes Verifier

[ABG+17] A sec sec insec ⇓ Yes Verifier

Table 3.1: Security of different DB protocols. The first column shows the name of protocol and

its type Symmetric-key/Public-key/Anonymous. The fifth column shows if the protocol is noise

resistant or not. The last column shows who the prover is anonymous to: Eavesdropper, MiM, or

Verifier. Two colored cells with same color are referring to a single paper. The symbol ⇓ denotes

this thesis.

51

3.2 Time-based Entity Authentication

In this section we look at authentication schemes that use time as source of freshness. We can cat-

egorize the time-based protocols into two classes by looking at the way they handle the activation

of processes and the delivery of messages; In synchronous models, time is captured as a sequence

of rounds. In each round all processes are activated simultaneously, and messages are exchanged

instantly. In asynchronous models, there is no explicit assumption on the global passing of time,

and the focus is on the ordering of events. Process activation is usually message-driven and the

adversary controls message delivery and participant activation. The main difference between asyn-

chronous and challenge-response-based models is the level ordering of events. In asynchronous

distributed systems there is a form of ordering between different events. On the other hand, in

nonce-response-based systems, the ordering is only between challenge and response messages.

Synchronous models are usually adapted when the focus is on a timeliness guarantee, such as

termination of a process. However, asynchronous models are taken as better abstraction of real

communication systems, as they make no assumptions about network delays and the relative ex-

ecution speed of the parties, and they nicely capture the view that communications networks are

hostile environments controlled by malicious agents.

In this section we review some important models that consider time in entity authentication;

Bellare-Rogaway [BR93] proposed the first formal model of entity authentication. Schwenk [Sch14]

and Barbosa-Farshim [BF09] extend Bellare-Rogaway to model asynchronous systems using times-

tamp.

3.2.1 Bellare-Rogaway Model [BR93]

Bellare and Rogaway (BR) [BR93] proposed the first formal model of security for entity authenti-

cation, mutual authentication and authenticated key exchange (AKE) protocols. The problems that

are considered in this work come in various flavors: there maybe two parties involved or more, the

52

authentication may be unilateral or mutual, parties may or may not share a secret key.

This model considers two adversarial cases: In the first case, the communication is trusted and

it is one of the parties who may be adversarial, and in the second case, the individual parties

may be good or bad, but their communication is controlled by the adversary. In the latter case,

the adversary can deliver messages out of order and to unintended recipients, and can concoct

messages of their own choosing. The adversary can conduct as many sessions as she pleases

amongst the parties, and can control, for each, who is attempting to authenticate to whom.

The faithful relaying of messages among the communication partners does not constitute an attack;

indeed, the adversary has functioned just like a wire, and may as well not have been there. The

idea of mutual authentication is then simple but strong: a protocol is secure if the only way that

an adversary can get a party to accept is by faithfully relaying messages in this manner (called

benign adversary). In order to formalize this simple idea, the main tool in this model is a notion of

matching conversations (See Definition 2.3.2).

BR provides a general model, in which the communications among interacting parties is under the

adversary’s control. In particular, the adversary can read the messages produced by the parties,

provide messages of her own to them, modify messages before they reach their destination, and

delay messages or replay them. Most importantly, the adversary can start up entirely new “in-

stances" of any of the parties, modeling the ability of communicating agents to simultaneously

engage in many sessions at once. Each party is modeled by an infinite collection of oracles which

the adversary may run.

Note how this differs from the models underlying notions such as interactive proofs [GMR89] or

secure function evaluation [Yao82]. In the former case communication is trusted and it is one of

the parties who may be adversarial; in the later case, individual parties may be good or bad, but

their communication proceeds as the adversary is willing.

The notion of zero-knowledge proof of knowledge [GMR89] has underlined identification pro-

53

tocols, it does not attempt to model attacks in which responses of entities are played off against

one another, as is required for the distributed setting. Furthermore, unilateral authentication is not

proving knowledge of a secret insofar as it is fundamentally irrelevant that an agent A knows a in

the sense that it can be extracted by a simulator. All the focus in BR is that "the good party can

prove its identity and a bad part can’t".

The formal description of BR model is presented in Section 2.3 at Definition 2.3.1, Definition 2.3.2

and Definition 2.3.3. As defined in Section 2.3, oracle πs
i, j, i, j ∈ I denote player i (called initiator)

attempting to authenticate to player j (called responder) in session s, where I ⊆ {0,1}k is the set of

identities that defines players. Adversary E communicates with the oracles via queries as defined

in Section 2.3. These definitions formalize authentication protocol in a timeless manner. However,

BR model is compatible with time.

Modeling Time in BR [BR93]

BR provides an abstract idea of how their model can be compatible with time. In a particular

execution of a protocol (Definition 2.3.1), the adversary’s i-th query to an oracle is said to occur

at time τi ∈ R. We demand that τi < τ j when i < j. One notion of time that satisfies this demand

includes "abstract time" where τi = i, or "Turing machine time" where τi = the i-th step in E’s

computation, when parties are realized by interacting Turing machines. Another notion of time,

but a harder to formalize, is "real time", where τi is the exact time when the i-th query is made,

when parties are realized by interacting computers.

3.2.2 Schwenk [Sch14]

The main problem with time is that we cannot model real time (same as so called "physical time"

in [Lam78]) in a Turing Machine based model. Instead, [Sch14] considers timestamp to guarantee

freshness, and global clocks to provide asynchronous system, that uses interactive Turing Machines

model. This model tries to stay as close as possible to the definition for secure authentication

54

protocols given in BR [BR93].

Schwenk Time-Security

In the seminal paper BR [BR93], the security definition of authentication protocols is motivated

by introducing a benign adversary, who forwards all messages faithfully. Then they defined an au-

thentication protocol to be secure if "the winning probability of any adversary is (up to a negligible

difference) equal to the winning probability of the benign adversary".

They showed that this condition is, for many protocols using random nonces, equivalent to requir-

ing that both parties only accept if they have matching conversations (Definition 2.3.2).

The main goal of Schwenk [Sch14] is to find a replacement for the concept of matching con-

versations, since in one- and two-message protocols, this concept is not applicable. In one- and

two-message protocols, the responder oracle always has a matching conversation to the initiator

oracle, but due to replay attacks active adversaries may influence the system significantly: with a

benign adversary, there is at most one responder oracle that will accept on a single message; with

an active adversary, there may be arbitrary many.

Schwenk considers a protocol to be time-secure, if "for each initiator oracle that has sent a mes-

sage there is at most one responder oracle that accepts, and that this responder oracle will accept

only if the message was forwarded unmodified by the adversary".

This model facilitates an asynchronized mechanism to parties involved in one- or two-message

protocols, that are all modeled as Turing machines. Thus there always is one oracle (responder)

that has to decide whether to accept or reject after receiving a single message, and before (or

without) sending a message.

In a nutshell, in this model time is considered as a global counter that is delivered to a party on

request from an special party GB. This is similar to the idea of Network Time Protocol (NTP

[BMK10]). If a fresh message has to be sent, the sending TM request a timestamp ts = (t,aux)

55

from GB. Upon reception of such a request, GB first increases its local counter (t ← t + 1). Then

the actual value t is returned, optionally with auxiliary data aux appended. This auxiliary data may

e.g. be a digital signature, to validate the time value.

For two-message protocols, we can additionally base the acceptance condition for initiator oracles

(which send and receive one message) on the classical notion of matching conversations, or we can

also apply the notion of time-security here.

In the following we formally describe this model;

Schwenk Formal Model

The system consists of multiple parties {Pi}i={1...n} that may be located in different locations, and

process oracles {πi
j}

i={1...n}
j={1...li}, where πi

j is run by party Pi for all i = {1...n} and j = {1...li}. The

parties and the process oracles are modelled as Turing Machines. Oracles can be initialized, send

and receive messages, and terminate in any of the states {finished,accept,reject}.

Each party Pi has two local variables: a local timer ti and a long-term key ki, that can be either a key

pair (i.e., ki = (ski, pki)), or a list of n−1 symmetric keys (i.e., ki = {ki,1, ...,ki,i−1,ki,i+1, ...,ki,n}).

All the process oracles πi
1, ...,π

i
li of a process Pi; have access to the long-term key ki and can

increase the local timer ti.

The internal states of each process oracle (such as nonces, intermediate states and session keys)

are only knows to a single oracle, that is described in the following variables:

• the current state of the oracle is stored in the variable Λ,

• the session key value k is stored in the variable K when the oracle enters to accept

or finish states,

• the transcript of all sent and received messages are stores in variable T i
j (in chrono-

logical order).

56

There is an special party GB with local counter T with value t, that upon receiving a request,

increases the value of t by 1 and returns the actual value of t as a message ts = (t,aux) over the

network.

The adversary A is another special party, as a Turing Machine, which implements a strategy to

break the cryptographic protocol. The winning conditions of the adversary depends on the security

property.

When a process oracle πi
j receives a time stamp ts = (t,aux) checks the following: it rejects if

t ≤ ti, otherwise goes through and ti← t. When πi
j wants to send a message to Pk, it request a time

stamp ts = (t,aux) from GB, and if t > ti then ti← t gets used in the message to Pk. The time stamp

doesn’t need to be authentic if the adversary has complete control on the network, however if the

adversary only has partial control on the network, the authentic time stamp is useful.

This time model is used in the first message of a protocol. The ordering of the following messages

of the protocols is checked by nonces.

This model provides an ordering system that updates the local clock of parties with the help of a

third party GB. The only event that causes the parties (through their process oracle) to update their

local clock, is receiving a message with higher clock value.

The disadvantage of this model is that it adds a new global party that needs to generate and transmit

a new timestamp for every single message that is sent by the communicating parties.

3.2.3 Barbosa-Farshim [BF09]

Since it’s easier to formalize asynchronous models, such as the ones described earlier in this sec-

tion, they are much more used. This trend however, comes at the cost of abstracting away many

of the practical uses of time-variant parameters in cryptographic protocols, which rely on explicit

representations of time.

57

The security of timestamp based mechanism relies on the use of a common time reference. This

means that each party must have a local clock that must be synchronized to an extent with others

in order to accommodate the acceptance window. The local clocks must also be secure to prevent

adversarial modification: if an adversary is able to reset a clock backwards, then it might be able

to restore the validity of old messages; conversely, by setting a clock forward, the adversary might

have advantage in preparing a message for some future point in time. These assumptions on the

security and synchronization of local clocks may be seen as disadvantages of using timestamps,

since in many environments they may not be realistic.

In Barbosa-Farshim [BF09], a general approach is presented in modeling such system to per-

mit analyzing protocols relying on timestamps. They introduce two different models (one based

on Canetti-Krawczyk [BCK98] and one based on Bellare-Rogaway [BR93] entity authentication

models) to model AKE with timestamps.

Barbosa-Farshim models time as a local clock, which is incremented by sending TICK requests. To

preserve the common asynchronous trait in these models, where the adversary controls the entire

sequence of events occurring during an execution, Barbosa-Farshim does not allow the clocks to

progress independently. Instead, they leave it to the adversary to control the individual clocks of

parties: the adversary can query Tick (or activation) through which it can increment the internal

clock of an honest party (of course it has complete control of the clocks of corrupted parties). The

adversary is not allowed to reset or cause the internal clocks to regress in any way. This restriction

captures the real-world assumption, in which the internal clocks of honest parties must be, to some

extent, secure.

The addition of these elements to the BR and CK models allows to capture the notion of time and

internal clock drifts, while preserving the asynchronous nature of those models by allowing the

adversary to freely control the perception of time passing at the different parties.

58

Barbosa-Farshim Replay Resistance

In protocols that use timestamp to prevent replay attacks, the receiver defines an acceptance win-

dow and temporarily stores received messages until their timestamps expire. The width of the

acceptance window must be defined as a trade-off between the required amount of storage space,

the expected message transmission frequency, speed and processing time; and the required syn-

chronization between the clocks of sender and receiver. Received messages are discarded if they

have invalid timestamps, or if they are repeats within the acceptance window.

In this setting, the local clocks are not explicitly used to keep track of elapsed time, but simply to

ensure that the receiver does not have to store all previously received messages to prevent accepting

duplicates. In fact, for this purpose, timestamps are essentially equivalent to sequence numbers.

Furthermore, synchronization of clocks between sender and receiver is less of a timeliness issue,

and more of an interoperability problem.

For example, two honest parties using this mechanism might not be able to communicate at all,

even without the active intervention of any adversary, should their clocks values be sufficiently

apart. This is reminiscent of a Denial-of-Service attack, which is usually out of the scope of cryp-

tographic security analyses. Although the adversary may be able to prevent successful completions

of protocols (e.g. by driving internal clocks significantly out of synchronization, or simply by not

delivering messages), but in consistence with the original models, the security definitions for cryp-

tographic protocols using timestamps in this context remain unchanged.

Barbosa-Farshim Time-Security

For protocols that use timestamps to obtain timeliness guarantees on messages, the local clock

values are taken for what they really mean: time measurements. The receiver of a message may

require assurance that an accepted message was generated recently with respect to its own local

clock, where recently is quantifiable as a time interval.

59

In order to provide these guarantees, accuracy of internal clocks of the honest parties in the sys-

tem must be considered. In this work, a limit on the maximum pair-wise drift that the adversary

can induce between the internal clocks of different parties is imposed (see Definition 3.2.1). In

this modeling approach, a protocol with timeliness-security must guarantee that any adversary

breaking this requirement must be overstepping its maximum drift allowance with overwhelming

probability.

Definition 3.2.1 (δ-synchronization) An adversary satisfies δ-synchronization if it never causes

the clock variables of any two (honest) parties to differ by more than δ.

This definition captures the notion that clocks must be synchronized in order to achieve any sort

of timeliness guarantee. We are now in a position to state Barbosa-Farshim definition of entity

authentication that captures timeliness too.

Let πi
A and π

j
B be two partner oracles where the latter has terminated. Also, let tB(E) be the function

returning the value of the local clock at B when event E occurred. Finally, let acc(A, i) denote the

event that πi
A accepted, and let term(B, j) denote the event that π

j
B terminated.

Definition 3.2.2 (β-Barbosa-Farshim Authentication (β-BFA)) A key exchange protocol provides

β-BFA if it provides initiator-to-responder authentication, and furthermore for any honest respon-

der oracle π
j
B which has terminated with partner πi

A, for honest A, we have:

|tB(term(B, j))− tB(acc(A, i))| ≤ β

3.2.4 Concluding Remarks

Formalizing time in distributed systems is a difficult task and it is not possible to model real time

with Turing machine based models [Sch14]. This made most of the researchers to formalize the

concept of timestamp, as a limited notion of time, that provides ordering to the events of a dis-

tributed system and allows to guarantee freshness of messages without using challenge-response.

In this research we are interested in synchronization of participants as an important property of

60

time. This property is defined in different models and some implementations have been provided

to facilitate it.

In this thesis, we extend these models in order to add location synchronization (proximity) to

propose a new approach in distance-bounding.

3.3 Other Literature Reviews

In Chapter A we review some other literatures that are related to our research. First we describe

some the important symmetric key distance-bounding schemes in Section A.1 and then describe

difficulties and limitations of implementing accurate distance-bounding systems in Section A.2.

Then in Section A.3 we describe the notions of privacy that are considered in distance-bounding.

61

Chapter 4

Public-Key Distance-Bounding

In this chapter we first show that if protocol participants have ac-

cess to a directional antenna, many existing protocols that have been

proven secure, will become insecure, and then propose a model to

include this new capability of the users (called DBID). This approach

provides a natural way of modeling man-in-the-middle attack in line

with identification protocols, as well as other attacks that are com-

monly considered in distance-bounding protocols. We propose a

new DBID scheme, called Poxy, with security proof. We compare

the existing public key DB models, and prove the security of the

scheme known as ProProx, in our model.

Recently public key DB protocols have been proposed where the prover is only known through

their public keys, while their secret key remains private to them [ASN14, Vau14, ASN17a]. In

these models, the verifier only has access to system public parameters as well as public keys of the

participants.

In a DB setting there are three types of participants: provers who are registered in the system and

have secret keys, a verifier who is honest and has access to correct public keys of provers, and ac-

tors who are not registered in the system, but want to be accepted and may collude with a dishonest

prover. The distance between the prover and the verifier is measured by using a “fast challenge-

response phase" during which a sequence of one bit challenges are sent by the verifier to the prover,

and the corresponding responses by the prover is recorded and used for distance estimation. A

challenge-response table includes responses that are required for all possible challenges and is

62

calculated by the prover before the fast challenge-response rounds start. The challenge-response

table is constructed using the provers’ secret key, and some nonces that are communicated during

the slow phase of the protocol.

In symmetric key setting, the challenge-response table can also be constructed by the verifier and

used for the verification of responses. In public key setting however, the verifier only knows the

prover’s public key, and cannot calculate the challenge-response table. In this case, the verifier

verifies the correctness of the prover’s responses using their relation with the provers’ public key.

For a DB protocol with distance bound B, we refer to participants whose distance to the verifier

are less than B as close-by participants (set S) and those who are farther away than B, as far-away

participants (set F).

To prove security of the existing public key DB protocols, such as [ASN14, BC94, BB04, Vau14,

GOR14, ASN17a, GKL+14], PoPoK [Vau14] proposed a formal security model that uses a cryp-

tographic proof-of-knowledge system (Definition 2.5.3) and considers distance bound as an addi-

tional property of the system. In DBID [ASN17a] an alternative approach was proposed that follows

the security formalization of identification schemes (Definition 2.4.1) with the framework of

Σ-protocols (Definition 2.4.3), and includes distance-bound as an extra property. The ProProx

scheme [Vau14] was first proven secure in the former model [Vau14], and later in the latter model

[ASN17a].

ProProx uses polynomial times more fast phase operations, compared to normal DB protocols.

The communications of the fast phase of DB protocols are generally more expensive, less reliable

and more noise sensitive compared to the slow phase, as the data is sent in plain form. This fact

makes the ProProx protocol to be an inefficient scheme. DBPoK-log+ [ASN14] is another public

key DB protocol that uses a different cryptosystem and uses the normal amount of fast phase

communications, which makes it more efficient compared to ProProx. However, the security

proof of this protocol has not been yet provided and it is not reliable in presence of noisy channel.

63

Our work: This chapter describes the last state of our research in public-key distance-bounding,

which includes three publications [ASN14, ASN17a, ASN17b]. We consider provers that have

access to directional antennas. Such antennas allow point to point communication with minimum

interception by eavesdroppers who are outside the main transmission direction [ARS16]. Advances

in beamforming techniques and smart antennas in recent years [ARS16] have made these anten-

nas readily accessible to users. Distance bounding protocols, during the fast challenge-response

phase, rely on physical layer communication and so it is important to consider this extra attacking

capability for protocol participants.

We will show that indeed directional antenna affects the security evaluation of DB protocols, and in

particular effectively allows a malicious prover to launch a successful TF attack against protocols

that had provable security against this attack. In Section 4.1 we show how this extra capability can

be used by a malicious prover who is aided by a helper to break security of VSSDB [GKL+14] and

DBPoK-log+ [ASN14] schemes. Directional antennas had been previously considered for actors

during MF attack. In this paper we consider a dishonest prover with access to this type of antenna.

For distance fraud, a directional antenna does not appear to affect security. In TF however, the

dishonest prover is aided by a helper and directional antenna and this affects the security definition.

We extend the DBID formal security model [ASN17a] to include this new attacker’s capability. The

directional TF attack is captured in the revised TF-resistance (Property 4.2.4). We propose a new

DBID scheme, called Poxy, and provide the security proof. We also prove that the existing ProProx

scheme is indeed secure in this new model.

Organization. Section 4.1 shows directional TF attack on a public key DB protocol. Section 4.2

presents our model, Section 4.3 and Section 4.4 describe the construction of Poxy and ProProx,

respectively, and give security theorems and proofs. Section 4.5 gives a summary of related works,

and Section 4.6 concludes the chapter.

64

4.1 Directional Attacks on Public-Key DB Protocols

Directional attacks assume that participants have access to directional antennas that allow them

to direct messages to specific participants, and prevent other participants from receiving them.

Figure 4.1 shows how such an antenna can be exploited by a malicious prover in a TF attack. The

helper does not receive slow phase messages that are sent by the prover, as prover uses a directional

antenna (orange ribbon in Figure 4.1) for communication in this phase. Before the start of the fast-

phase, the prover sends all fast-phase responses (e.g. , the fast challenge-response table) to the

helper, making the helper in-charge of responding to the fast-phase challenges.

This means that the adversary is able to separate the slow phase messages of the protocol from

the fast-phase messages. In a vulnerable protocol, the prover may succeed in TF attack without

leaking their long term key to the helper, using this separation technique. Therefore, the attacker’s

success in TF will not imply success in future impersonation.

H

VP∗ B

(2) fast resp. (3) fast phase
(1) slow phase

Figure 4.1: Directional TF

In the following we describe how this setting helps a malicious prover to succeed in terrorist-fraud

against VSSDB [GKL+14] and DBPoK-log+ [ASN14].

Attack against VSSDB [GKL+14]

Using Definition 4.2.1 for a DB scheme, Figure 3.11 presents the Π protocol (Definition 4.2.1) of

VSSDB scheme. This is a protocol between the prover and the verifier where the prover has access

to the public key of the verifier and their own secret key, and the verifier has access to their private

key and the public key of the prover.

65

Lemma 1 In the Π protocol of VSSDB scheme (Figure 3.11), the fast challenge-response table does

not leak information about the secret value skP of prover, assuming that skP and x are indepen-

dently chosen.

Proof 1 The elements of the fast challenge-response table are calculated as r j = f j(c′j) ∈ {0,1}

for j = {1, ...,λ}. Therefore, by knowing the table, one can, at the most, extract the values of

e j,k j, l j for j = {1, ...,λ}. By finding these values, one can extract the value of x using the equation

x j = e j ⊕ k j ⊕ l j for j = {1, ...,λ}. Since k j and l j are chosen randomly, therefore, this table

only contains information about randomly chosen values k and l, and the value of x, which are

independent of the secret value skP. �

Attack 4.1.1 In this attack, the prover sends the messages of the slow phase (i.e., NV,M,cP,π,ς,ϕ)

to the verifier using directional antenna. The prover then sends the fast challenge-response table

(i.e., ∀ j ∈ {1, ...,λ} : either (e j,k j) or (k j⊕ l j,e j⊕ l j)) to the helper before running the fast phase.

Note that the fast challenge-response table does not leak the prover long-term secret skP according

to Lemma 1.

This allows the helper to respond to the verifier’s challenges during the fast phase. The collusion

of the prover and the helper will make the verifier to accept (i.e., OutV = 1) and this is without the

prover sending to the helper any information that is dependent on the secret key skP. The secret skP

is required to generate a valid signature σ in the message π. This means that the helper’s success

chance in a future impersonation attack will not improve. This completes a successful TF.

Attack against DBPoK-log+ [ASN14]

The presented model of [ASN14] follows the original definition of TF (Attack 3.1.3), and so our at-

tack can be seen as outside their model. In this section we present a TF attack against DBPoK-log+,

using the more recent definition of TF (Attack 3.1.3).

The Π protocol in DBPoK-log+ scheme consists of the following four sub-protocols between the

66

verifier (V) and the prover (P). The prover takes secret-key (ski,r) as input, and the verifier takes

prover’s public-key pki = gski
1 .gr

2 as input. The following is the scheme presented in [ASN14],

slightly modified to become noise resistant.

Step (i) Bit Commitment is a commitment protocol, in which the prover uses the secret key ski

as input. In this protocol, the prover decides on the "fast challenge-response table" and

commits to each bit in the table. The verifier learns the committed values of every single

bit of the fast challenge-response table. For security parameter λ, this table consists of

two rows: {rb[l]}l={1,...,λ},b∈{0,1}, where rb[l] is the response in the ith fast challenge-

response round. The corresponding committed values are two vectors C0 and C1 where

Cb = (Cb[1]...Cb[λ]) for b = {0,1}, and the corresponding randomness of commitments

are indicated by {vb[l]}l={1,...,λ},b={0,1}, where vb[l] ∈ Z∗p. The commitment values are

calculated as follows: Cb[l] = grb[l]
1 .hvb[l] for b ∈ {0,1}, l = {1...λ}, and g1,h ∈ Zp. The

committed table and the randomness is kept secret at the prover, while the commitments

are sent to the verifier. Figure 4.2 shows the details of this step. The parts that are shown

in a box, are sub-protocols whose details are omitted.

67

P V
(secret : ski)

• k ∈R Z∗p
• ∀l ∈ {1, . . . ,λ}:
− r0[l] = b k

2l−1 c mod 2, so we have r0[l] ∈ Z2

− v0[l] ∈R Z∗p,C0[l] = gr0[l]
1 .hv0[l]

C0

agree on u ∈R {1, . . . , p−2}

• e = u.ski− k mod (p−1), so we have e ∈ Z∗p
• ∀l ∈ {1, . . . ,λ}:
− r1[l] = b e

2l−1 c mod 2, so we have r1[l] ∈ Z2

− v1[l] ∈R Zp−1;C1[l] = gr1[l]
1 .hv1[l]

C1

∀l : check C1[l] 6=C0[l];C1[l] 6= g1.C0[l];C1[l].g1 6=C0[l] •
∀l ∈ {1, . . . ,λ}

PoK{(r0[l],v0[l]) : C0[l] = gr0[l]
1 .hv0[l]}

PoK{(r1[l],v1[l]) : C1[l] = gr1[l]
1 .hv1[l]}

r0,r1,v0,v1 C0,C1

Figure 4.2: Step (i). DBPoK-log+ Bit Commitment. r0 and r1 form the response table.

Step (ii) Fast Challenge/Response is the protocol in which the prover uses the calculated "fast

challenge-response table" {rb[l] : l = {1...λ},b= {0,1}}, generated in Bit Commitment

step, as input. They run the protocol in Figure 4.3.

68

P V
(secret : r0,r1)

for l = {1 . . .λ}
c[l] ∈R {0,1} •

Measure Time (t1) •c[l]Receive c′[l]

• r[l] = c′[l]r0[l]+ c′[l]r1[l] r[l] Receive r′[l]

Measure Time (t2) •
Verify Response Time (t2− t1) •

c,r′c′

Figure 4.3: Step (ii). DBPoK-log+ Fast Challenge/Response

Step (iii) Commitment Opening is used to open half of the commitments, that correspond to the

challenge bits sent by the verifier in Fast Challenge/Response step. In this step, the

prover uses the secret commitment randomness (i.e., {vb[l] : l = {1...λ},b= {0,1}}) and

the challenge values of Fast Challenge/Response step (i.e., c′). The verifier uses the

committed values (i.e., {Cb[l] : l = {1...λ},b = {0,1}}) and the challenge and response

values of step (iii) (i.e., c and r′) as input. This protocol is shown in Figure 4.4, which

improves the original PDB protocol [ASN14] by adding noise resistance to the protocol.

This step succeeds, if the noise counter is less than the threshold (i.e., countnoise < τ).

69

P V
(secret : v0,v1,c′) (public : c,r′,C0,C1,τ)

∀l ∈ {1, . . . ,λ}
• o[l] = c′[l]v0[l]+ c′[l]v1[l] o

∀l ∈ {1, . . . ,λ} •

if (check(c[l]C0[l]+ c[l]C1[l]
?
= gr′[l]

1 .ho[l]))

OutV = 1; terminate

else

if (check(c[l]C0[l]+ c[l]C1[l]
?
= gr′[l]

1 .ho[l]) or

check(c[l]C0[l]+ c[l]C1[l]
?
= gr′[l]

1 .ho[l]) or

check(c[l]C0[l]+ c[l]C1[l]
?
= gr′[l]

1 .ho[l]))

countnoise = countnoise +1

else

OutV = 0; terminate

if (countnoise > τ)

OutV = 0

else

OutV = 1

OutV

Figure 4.4: Step (iii). DBPoK-log+ Commitment Opening

Step (iv) Proof-of-Knowledge is a protocol for zero-knowledge proof of equality that shows the

secret key and the bitwise committed secret key of Bit Commitment step are the same.

In this protocol, the prover uses the secret key (ski,r) and the commitment randomness

of Bit Commitment step, and the verifier uses the public-key and bit committed values

of Bit Commitment step, as input. z is the accumulation of the committed values of

Bit Commitment step as z = ∏
λ

l=1(C0[l]C1[l])2l−1
mod p, and v is the accumulation of

the commitment randomness of step (ii) as v = ∑
λ

l=1 2l.(v0[l]+ v1[l]) mod (p−1).

70

For security parameter t, this protocol runs t iterations of zero-knowledge proof-of-

knowledge (Definition 2.5.4 and Definition 2.5.3) where z and pki satisfy the following

relation: PoK[(ski,v,r) : z = gu.ski.hv∧ pki = gski.gr
2].

If all steps terminate successfully, then the verifier outputs OutV = 1.

Lemma 2 In DBPoK-log+ scheme, the fast challenge-response table (i.e., r0 and r1) does not leak

any information about the randomness (r) of the secret-key of the prover, except with negligible

probability.

Proof 2 We know that by having the fast challenge-response table, we can calculate part of the

secret-key of the prover, as ski =
k+e

u mod (p−1) where k is fresh randomness. Note that the fast

challenge-response table is the output of the random function that takes ski as input. So it cannot

leak any information about other independent secrets of the prover, including r.

If there is an adversary A that can calculate the randomness r from the secret-key ski and pki =

gski.gr
2 , then A can solve the discrete log problem for gr

2. Therefore, since we assume discrete log

is a hard problem, then the success chance of A is negligible. �

Attack 4.1.2 In directional TF attack (Figure 4.1), a malicious far-away prover will use a direc-

tional antenna for the slow phase of DBPoK-log+ protocol (all steps except step (ii)) to communi-

cate directly with the verifier, without the helper being able to intercept the messages. The prover

sends the fast challenge-response table to the helper before running step (ii). Note that the fast

challenge-response table does not leak any information about r, according to Lemma 2. In this

way, the helper can respond in time and correctly to the challenges of the verifier during the fast

challenge-response rounds. This attack makes the verifier to accept the protocol.

Since the fast challenge-response table does not leak any information about the randomness r, the

helper will not be able to pass step (iv) in future and so it cannot impersonate the prover. This

completes a successful terrorist fraud on DBPoK-log+.

71

4.2 Model

First we define the settings of our system. This includes entities, their communication, their views,

and the adversarial capabilities. Then we define distance-bounding identification scheme (DBID)

and describe DBID experiment, which simulates an instance of DBID scheme. Finally we for-

malize four properties: (Completeness, Soundness, DF-resistance, and TF-resistance of distance-

bounding identification schemes, using a game-based approach and described as a DBID experiment

where adversary is active, and the game is between a challenger that sets up the system, taking into

account the adversary’s input. Finally in fundamental lemma, we discuss the relation between the

location of participants, the timing of messages and their content.

Entities. We consider a set U of users. The user u ∈U can have multiple provers that are denoted

by the set P. This captures the scenario that a single user has multiple devices.

A trusted group manger generates the public parameters of the system, and registers users and

issues a key pair to each user. The user u is identifiable by its’ private key. The private key, that

must be kept secret, forms the secret input of the user in providing authentication proof. The

private key of a user u is shared by all their provers P. The corresponding public key of the user is

published by the group manager.

There is a single verifier in the system, that for uniformity of notations, we refer to it as a set V that

has a single member. The verifier only access to the public parameters of the system.

There is a set of actors (T) that only have access to the public parameters of the system. In this

paper we refer to the members of the sets P, V and T as participants.

Each participant has a location loc = (x,y) ∈ R×R, that is an element of a metric space equipped

with Euclidean distance, and is fixed during the protocol. The distance function d(loc1, loc2)

returns the distance between two locations. Message travel time between locations loc1 and loc2

is d(loc1,loc2)
C , where C is the speed of light. A bit sent over the channel may flip with probability

72

pnoise (0≤ pnoise ≤ 1).

Participants that are located within a predefined distance bound B from the verifier, excluding the

verifier, are called close-by participants (set S), and those who are outside the distance bound from

the verifier are called far-away participants (set F).

Communication Structure. All participants have access to directional antennas: a participant A

in locA can send a message to participant B at locB, such that others who are not in the conic space

centered by the straight line connecting locA to locB, cannot intercept it. Using omni-directional

antenna however allows a message to be seen and modified by other participants. A participant may

have multiple antennas that can be either directional or omni-directional. We allow a participant to

send multiple messages to multiple parties at the same time, each from a separate antenna. Multiple

messages that are received at the same time on the same antenna are combined and received as a

single message.

View. The view of an entity at a point of a protocol consists of: all the inputs of the entity

(including random coin tosses) and the set of messages that they have received up to that point in

the protocol. Receiving a message is called an event. ViewΓ
x (e) is a random variable that denotes

the view of an entity (or a set of entities) x right after the event e in protocol Γ. The short notation

ViewΓ
x is used to indicate the view of x at the end of the protocol Γ, i.e., ViewΓ

x = ViewΓ
x (elast)

where elast is the last event in the protocol Γ.

Adversary. An adversary can corrupt a subset of participants X∗ ⊂ P∪V∪T. As we will see

later in this section, for each security property, X∗ will have certain restrictions;

in Completeness X∗ = /0, in Soundness X∗ ⊆ T, in DF-resistance X∗ ⊆ P, and in TF-resistance

X∗ ⊆ P∪T.

When a prover of a user u is compromised, the user u’s secret private key is compromised and

the adversary can choose devices with that key at locations of their choice. In other words, all

the provers in P become compromised. This is because all the provers of a user share the same

73

private key. We refer to them as corrupted provers, who are controlled by the adversary and may

be activated simultaneously. However, we assume the non-corrupted provers follow the protocol,

and a user only uses one of its devices at a time (i.e., the execution time of the provers P do not

overlap). This is because an honest user does not use multiple devices simultaneously.

Definition 4.2.1 (Distance-Bounding Identification Scheme) A distance-bounding identification

scheme (DBID) for security parameter λ, is defined by a tuple (X,Y,S,P,B, pnoise,Init,KeyGen,

Π,Revoke), where

(I) X and Y are the sets of possible master keys and public keys of the system, respectively,

chosen based on the security parameter λ. The system master key msk ∈ X, and group

public key gpk ∈ Y are generated using

(msk,gpk)← Init(1λ) algorithm;

(II) S and P are sets of possible private keys and public keys of the users respectively, chosen

according to the security parameter λ. The user private key sk∈ S, and public key pk∈Y are

generated using either (sk, pk)← KeyGen(1λ,msk,gpk) algorithm or KeyGen{U(1λ,gpk)↔

GM(1λ,msk)} protocol;

The KeyGen algorithm is run by the group manager and the output is a user key pair and

updated group public key. The user key pair is securely sent to the user, and the public

key is published by the group manager, i.e., gpk′ := gpk ∪ {pk}. However, the KeyGen

protocol is run between the group manager GM(1λ,msk) and a user U(1λ,gpk). The user

outputs a key pair (sk, pk), and the group manager outputs the updates group public key

gpk′ := gpk∪{pk}.

(III) Π is a Σ∗-protocol between a prover P(sk, pk,gpk) and the verifier V (pk,gpk), in which

V verifies if the prover is authentic and is located within the distance bound B ∈ R to the

verifier.

(IV) The transmitted bits of a fast challenge-response round in Π protocol are affected by noise

74

where pnoise ∈ [0,1] is the probability of a bit flip on each fast challenge-response message.

(V) (gpk′)← Revoke(msk,gpk, i) is an algorithm that takes the master secret key, the group

public key and the index of a user. The algorithm removes the corresponding user ui from

the system and updates the group public key accordingly, i.e., gpk → gpk′. The Revoke

operation is optional in DBID scheme.

Below we describe execution of an instance of the DBID scheme, which we call DBID experiment.

Definition 4.2.2 (DBID Experiment) A DBID experiment is defined by a tuple (DBID;U;P;V;T),

where

(i) DBID is a distance-bounding identification scheme as defined in Definition 4.2.1.

(ii) U is the set of users that are members of the group; each user u j ∈ U has three attributes:

• u j.Key that is a secret key generated by the group manager,

• u j.RT that is the registration time of the user that can be any time, and

• u j.Rev that is a flag that shows if the user is revoked.

(iii) P is the set of provers; each prover has access to the secret key of a single user.

(iv) V is the set of verifiers; that have access to the public parameters of the DBID system. We

consider the case where V has a single member.

(v) T is the set of actors; each actor has access to the public parameters of the DBID system.

Members of the set X = P∪V∪T are called participants of the system. Each of the participants

x ∈ X, has the following attributes:

a1. x.Loc is the location of the participant,

a2. x.Code is the code to run by the participant,

a3. x.St that is the start time of the x.Code execution, and

75

a4. x.Corr is a flag indicating if the participant is corrupted or not.

In addition to these attributes, each prover p ∈ P has one extra attribute:

a5. p.Key that is the secret key of the corresponding user, i.e., p.Key = u j.Key for user u j ∈ U.

The start time of all provers is after registration time of the user, i.e., ∀u∈U,∀p∈P : p.St > u.RT .

The provers of a user are either all honest or all dishonest. Because of users’ keys are indepen-

dently chosen, we can only consider a single user and so for simplicity we omit other users. i.e.,

∀p ∈ P : p.Corr = f lag, where f lag ∈ {true, f alse}. Honest provers p ∈ P follow the Π protocol

(i.e., p.Code = DBID.Π.P(.)) and there is no overlap in the execution time of the honest provers. If

the verifier is honest, then it follows the Π protocol (i.e., v.Code = DBID.Π.V (.) for v ∈ V).

The experiment is run by a simulator that sets the attributes of the participants, and interacts with

the group manager to assign keys to the provers of a user. If there is an adversary in the system,

the simulator interacts with the adversary and follow their requested operations, that will influence

the experiment.

The experiment, without an adversary, proceeds as follows:

1. Setup.

(a) Initialize: The group manager runs (msk/gpk)← DBID.Init(1λ) algorithm to generate

the master secret key and group public key.

(b) Generate Players: The simulator forms the sets (U,V,P,T) and sets their attributes.

The simulator interacts with the group manager obtain and assign keys of the provers.

2. Run: The simulator starts the execution of x.Code for all participants x ∈ X= P∪V∪T at

time x.St.

The simulation uses a clock. Time(e) indicates the time of event e. The start and finish time of

a protocol Γ is indicated as stTime(Γ) and f shTime(Γ) respectively, which form the execution

76

time exTime(Γ) = (stTime(Γ), f shTime(Γ)) as the range of time and the execution time period

exLen(Γ) = f shTime(Γ)− stTime(Γ). Different provers have different execution time period (i.e.,

they participate in a protocol from time t1 to t2), and possibly different locations.

In the following, we define security properties of DBID scheme, using a game between a challenger

and an adversary. This game is a DBID experiment that is run by the challenger who interacts with

an adversary. In this game we only consider one user, i.e., |U|= 1. The challenger plays both roles

of the simulator and the group manager in the DBID experiment (Definition 4.2.2). The adversary’s

capabilities is modelled as access to a query that it presents to the challenger.

Definition 4.2.3 (DBID Game) A DBID game between a challenger and adversary is a DBID ex-

periment that is defined by a tuple (DBID;U;P;V;T;CorruptParties) where

• DBID is a distance-bounding identification scheme as defined in Definition 4.2.1.

• U,P,V,T are the sets of users, provers, verifiers and actors as defined in Definition 4.2.2,

that are determined through interaction of the challenger and the adversary.

• CorruptParties(Q) is a query that allows the adversary to plan (program) their attack.

Q is a set of participants, that may exist in the system or be introduced by the

adversary.

The game setup phase is by the challenger while playing the roles of the simulator and the group

manager, and interacting with the adversary. In more details:

1. Setup:

(a) Initialize: Challenger runs (msk/gpk)← DBID.Init(1λ) and publishes gpk. Note that

the execution codes of an honest prover and verifier are known by the challenger and the

adversary at this point, and are referred to as DBID.Π.P and DBID.Π.V , respectively.

(b) Generate Players: The sets (U,V,P,T) are formed through the interaction of the chal-

lenger and the adversary as follows:

77

i. The challenger creates the sets (U,V,P,T) as follows:

• Chooses a verifier V= {v}, with the following attributes:

a1. v.Loc = loc0,

a2. v.Code = DBID.Π.V ,

a3. v.St = 0, and

a4. v.Corr = f alse.

• Runs (sk, pk)← DBID.KeyGen(1λ,msk,gpk) once and forms the set U= {u}. The

user key is set as u.Key = sk, the registration time of the user is set as u.RT = 0

and the revocation flag is set as u.Rev = f alse. The group public key is updated as

gpk′ := gpk∪{pk}.

• Creates a prover set P and for each member p of P, assigns their attributes as:

a1. p.Loc is set arbitrarily,

a2. p.Code = DBID.Π.P,

a3. p.St is set arbitrarily such that there is no overlap in the execution time of the

provers (i.e., @p1, p2 ∈ P : p1.St < p2.St ∧ p1.St + exLen(DBID.Π)> p2.St),

a4. p.Corr = f alse, and

a5. secret key p.Key = u.Key.

• T = /0

ii. The challenger sends the attributes (x.Loc,x.Code,x.St) for all x ∈ P∪V∪T to the

adversary. The size of the set X is n.

iii. The adversary forms the corruption query CorruptParties(Q) using the published

values, and sends it to the challenger. The secret information of the corrupted partic-

78

ipants in Q is given to the adversary and the behaviour (Code) of the corresponding

participants, is assigned according to the adversary instruction.

More specifically, the parameter of this query is Q = {q1, ...,qn′}. Each qi consists of the

location, the execution start time and the execution code of a participant. i.e., qi = (type,

location,code, time), where type∈{veri f ier, prover,actor,user} indicates the type of the

participant, location∈R×R, code∈{0,1}∗ indicates the location of the participant and

time ∈ N indicates the execution start time of the participant.

If qi ∈ X = P∪V∪T ∪U, it determines the settings of an existing participant, and if

qi /∈ X, it determines the settings of a new participant.

iv. Upon receiving the CorruptParties(Q) where Q= {q1, ...,qn′}, the challenger runs:

• For a qi that qi.type= veri f ier, then v.Code= qi.code and v.Corr = true for v∈V.

• For each qi that qi.type = user , sets the users’ revocation flag as u.Rev = true

where u ∈ U, runs (gpk′)← Revoke(msk,gpk,1), and then updates the group public

key gpk← gpk′. This applies only if the DBID scheme provides user revocation.

• If there is a qi that qi.type = prover, then for each member p of the set P, sets

their corruption flag p.Corr = true. If qi is not corresponding to an existing prover,

then create a new prover p and add it to the prover set P. Set the attributes of the

participant p as follows:

a1. location p.Loc = qi.location,

a2. execution code p.Code = qi.code,

a3. start time p.St = qi.time,

a4. corruption flag p.Corr = true, and

a5. secret key p.Key = u.Key.

79

• For each qi that qi.type = actor, add a new actor x to the set T, and assign its

attributes as follows:

a1. location x.Loc = qi.location,

a2. execution code x.Code = qi.code,

a3. start time x.St = qi.time, and

a4. corruption flag x.Corr = true.

v. The challenger sends the key of the corrupted provers and the key of revoked user to

the adversary, i.e., p.Key for all p ∈ P such that p.Corr = true and u.Key for all u ∈ U

such that u.Rev = true.

2. Run: Challenger activates all participants x ∈ X = P∪V∪T at time x.St for execution of

x.Code.

The game ends when the last participant’s code completes its execution.

Using the above game, we define four distinct properties for distance-bounding identification

schemes. The winning condition of the above game, varies for each property.

Property 4.2.1 (DBID Completeness) Consider a DBID scheme and a DBID game when Q = /0 in

the CorruptParties(Q) query and the set P is not empty.

The DBID scheme is (τ,δ)-complete for 0≤ τ,δ≤ 1, if the verifier returns OutV = 1 with probability

at least 1−δ, under the following assumptions:

• the fast challenge-response rounds are independently affected by noise and at least

τ portion of them are noiseless, and

• τ > 1− pnoise− ε for some constant ε > 0.

A complete scheme must have negligible δ to be able to function in the presence of communication

noises.

80

Property 4.2.2 (DBID Soundness) Consider a DBID scheme and a DBID game with the following

restrictions:

• P is nonempty and ∀p ∈ P,v ∈ V : d(p.Loc,v.Loc)> DBID.B, and

• in the CorruptParties(Q) query, qi.type ∈ {actor,user} for all qi ∈ Q.

In this game the verifier and provers are honest, while the adversary A corrupts a set of actors and

sets their locations (and, if applicable) revokes some users. The corrupted actors are controlled by

the adversary, and can simultaneously communicate with multiple provers and the verifier. They

can receive a message m from a prover and send m′ to the verifier, and vice versa. The certificate

of the revoked users are sent to the adversary.

The DBID scheme is γ-sound if the probability of the verifier outputting OutV = 1 is at most γ.

Lemma 3 A sound scheme according to Property 4.2.2 is resistant against relay attack [BC94],

mafia-fraud (Attack 3.1.2), impersonation attack (Attack 3.1.5), and strong-impersonation [ASN17a].

Proof 3 Here we show each of these attacks, separately:

• relay attack [BC94] where the MiM attacker only relays the messages between the

honest verifier and a far-away honest prover. The MiM attacker tries to convince

the verifier that the prover is located close to the verifier. This attack is achieved by

adding extra restrictions on the adversary of Property 4.2.2 as follows:

− ∀qi ∈ Q we have qi.code = ”relay messages”.

• mafia-fraud (Attack 3.1.2) is when there is an honest verifier, an honest far-away

prover, and a close-by MiM attacker who tries to convince the verifier that the

prover is located close to the verifier. The attacker listens to the legitimate commu-

nications for a while, before running the attack as the learning phase. This attack

corresponds to adding extra restrictions on the adversary in Property 4.2.2 as fol-

lows:

81

− P is nonempty, and

− ∀qi ∈ Q we have d(qi.location,v.Loc)≤ DBID.B for v ∈ V.

• impersonation attack (Attack 3.1.5) happens when there is an honest verifier and a

single close-by attacker who tries to convince the verifier that the prover is located

close to the verifier. The attacker can have a learning phase before running the

attack. We can achieve this attack by adding extra restrictions on the adversary of

Property 4.2.2 as follows:

− P is nonempty, and

− ∀qi ∈ Q we have d(qi.location,v.Loc)≤ DBID.B for v ∈ V, and

− among all the successful DBID.Π protocols (Πsucc set) during the game, ∃π ∈

Πsucc,∀p ∈ P : t = f shTime(π), t /∈ [p.St, p.St + exLen(p.Code)].

• strong-impersonation [ASN17a] happens when either mafia-fraud or imperson-

ation happens. We can achieve this attack by adding extra restrictions on the ad-

versary of Property 4.2.2 as follows:

− P is nonempty, and

− ∀qi ∈ Q we have d(qi.location,v.Loc)≤ DBID.B for v ∈ V, and

− among all the successful DBID.Π protocols (Πsucc set) during the game, at least

one of the following conditions hold:

(i) ∃π ∈Πsucc,∀p ∈ P : t = f shTime(π), t /∈ [p.St, p.St + exLen(p.Code)]

(ii) ∃p ∈ P,∃π ∈ Πsucc,v ∈ V : t = f shTime(π), t ∈ [p.St, p.St + exLen(p.Code)]

∧d(p.Loc,v.Loc)> DBID.B.

�

We consider two types of attacks by a dishonest prover: far-away dishonest provers (Property 4.2.3),

and far-away dishonest provers with a close-by helper (Property 4.2.4).

82

Property 4.2.3 (DBID Distance-Fraud) Consider a DBID scheme and a DBID game with the fol-

lowing restrictions:

• P is nonempty and ∀p ∈ P,v ∈ V : d(p.Loc,v.Loc)> DBID.B, and

• in the CorruptParties(Q) query, qi.type = prover and d(qi.location,v.Loc) >

DBID.B for all qi ∈ Q and v ∈ V.

The DBID scheme is α-DF-resistant if, for any DBID.Π protocol in such game, we have Pr[OutV =

1]≤ α.

In the following we define the TF-resistance of DBID protocols.

Property 4.2.4 (DBID Terrorist-Fraud) Consider a DBID scheme and a DBID game with the fol-

lowing restrictions:

• P is nonempty and ∀p ∈ P,v ∈ V : d(p.Loc,v.Loc)> DBID.B, and

• in the CorruptParties(Q) query, qi.type ∈ {prover,actor} and d(qi.location,

v.Loc)> DBID.B for all qi ∈ Q that qi.type = prover and v ∈ V.

The DBID scheme is µ-TF-resistant, if the following holds about the above game:

• If the verifier returns OutV = 1 in the Π protocol of game Γ with non-negligible probability κ,

then there is an impersonation attack as a DBID game Γ′ with honest verifier, no prover and

one close-by actor that takes the view of close-by participants (ViewΓ

S) as input, and makes the

verifier return OutV = 1 with probability at least κ−µ in the Π protocol of Γ′ game.

Note that this is a formal definition of the terrorist-fraud resistance (Attack 3.1.3) that is based on

the recent definitions (such as [Vau13]) and is different from the definition of TF in [Des88], which

is the original version of this work. This change in the definition of TF is necessary because here

we consider directional antennas. With this new capability, a malicious prover can use directional

communication with the verifier and the helper, such that although the TF succeeds, the leaked

information does not allow a response generator to be constructed. Using the original approach,

83

and removing contribution of the verifier’s view, allow us to define TF security.

In Lemma 4 we show that if a DBID scheme is TF-resistant (Property 4.2.4), using a directional

antenna (as in Figure 4.1) will not affect its security. We only provide an informal proof because a

formal proof needs formalizing properties of directional antennas.

Lemma 4 If a DBID scheme is TF-resistant (Property 4.2.4), it is directional TF-resistant.

Proof 4 The main observation is that in a TF attack (Property 4.2.4), all close-by participants,

except the verifier, are controlled by the adversary. So, using a directional antenna to communicate

with close-by participants such that the verifier is excluded, adds the transmitted message to the

view of adversary, and replacing the directional antenna with an omni directional one, does not

change this view.

The messages that are sent to the verifier using directional antenna, will not be included in the

impersonation adversary view, i.e., ViewΓ

S .

Using property 4.2.4, if there is a successful TF attack against a DBID scheme, the TF-resistant

property guarantees existence of an impersonation attacker with non-negligible probability that

takes the ViewΓ

S as input. Since the view of actors in a directional TF attack will include this view,

therefore, in a TF-resistant DBID scheme, having a successful directional TF attack implies future

impersonation attack. �

In fundamental lemma, we relate (i) the local timing of a received message at the verifier, (ii) phys-

ical distances traveled by the message, and (iii) the message content. It shows that any response

r for the challenge c, that is received by the verifier V, can be split into two parts rS and rF based

on the distance of the sender, and each part can be computed from two separate inputs; (a) rS from

the challenge c and the views of close-by participants before seeing c, and (b) rF from the views

of far-away participants before seeing c.

The difference between our fundamental lemma compared to the proposed fundamental lemma of

84

[Vau14] is twofolds: we allow a received message to be combination of multiple sent messages

which is more realistic in wireless communications, and we do not require a global clock.

Lemma 5 (Fundamental Lemma) Consider a multi-party protocol execution Γ with a distin-

guished participant v∈V that measures the local time of events, F and S denote the set of far-away

and close-by participants, respectively. At local time t, v broadcasts a random message c and waits

for a response r. Acc denotes the event that r was received by v at a local time t ′ ≤ t + 2B
C . The

message from a participant x is independent from c, if it is the result of running the participant

algorithm with view of x, just before seeing c, i.e., ViewΓ
x (
¬c).

If Acc occurs, then r consists of up to two components (rF,rS) (i.e., r = sum(rF,rS) for a determin-

istic accumulation function accumulation : M∗→M, where M is the set of all possible messages

that v may receive), rF is sent from members of F and rS is sent from members of S, then the

following holds:

rF = MsgF→v(t ′)(
¬c) and the exist algorithm J′ such that rS = J′(ViewΓ

S(
¬c),c,MsgF→S(

¬c)), where

MsgF→S(
¬c) is all messages from any member of F to any member of S that are independent of c,

and MsgF→v(t ′)(
¬c) is the accumulation of all messages from members of F that get received by the

verifier at time t ′, which are independent of c. Note that MsgF→v(t ′)(
¬c) ∈M.

Proof 5 We consider three cases for possible sources of the response r that is received by v; (i) r

is solely sent by a subset F ⊆ F, (ii) r is solely sent by a subset C ⊆ S, or (iii) otherwise. In this

proof, we show that the response can be generated according to the lemma in all cases.

Case (i) In the first case, let’s consider the received message r = rF by the verifier, as the ac-

cumulation1 of multiple messages (r1, ...,rl) that are sent by participants F = {F1, ...,Fl} at time

{t ′1, ..., t ′l}, respectively. All these messages arrive at the verifier at the same time, so the sending

times are according to the distance between the sender and the verifier. Without loss of generality,

1The accumulation of multiple messages that are received at the same time by the same antenna, depends on the
physical properties of the system. We assume it is a deterministic function.

85

we assume that for i = {1...l− 1}, the participant Fi is closer to v than participant Fi+1, and so

t ′i ≥ t ′i+1.

If Acc occurs, we have t ′1 ≤ t + 2B− d(v,F1)
C , and since d(v,F1) > B, then we have t ′1 < t + d(v,F1)

C

which is before the time F1 could see the challenge c. We have the same inequality for other

participants, so r = rF = MsgF→v(t ′)(
¬c) = sum(r1, ...,rl) is independent of c.

Case (ii) In the second case, consider the received message r = rS by the verifier, as the ac-

cumulation of multiple messages (r1, ...,rl) that are sent by participants C = {C1, ...,Cl} at time

{t ′1, ..., t ′l}, respectively. All these messages arrive at the verifier at the same time, so the sending

times are according to the distance between the sender and the verifier. Without loss of generality,

we assume that for i = {1...l− 1}, the participant Fi is closer to v than participant Fi+1, and so

t ′i ≥ t ′i+1.

We construct an algorithm J′ that simulates all close-by participants x ∈ S in the time range [t +

d(v,x)
C , t + 2B−d(v,x)

C] (i.e., from the event of seeing c, until before it’s too late to send a message to

the verifier and make Acc occur). The simulation is in parallel and in chronological order. The

output of J′ is the message r = rS delivered to v as the accumulation of messages sent from C ⊆ S

at time t ′ ≤ t + 2B−d(v,C1)
C , where C1 is the closest responder.

Here we claim that the input (m) of each responder x ∈ C is either part of the input of J′ in the

lemma. In order to prove it, we consider four cases about the source of m;

• m comes from the internal view of x before seeing c, i.e., ViewΓ
x (
¬c); since x∈ S, then

ViewΓ
x (
¬c) ∈ViewΓ

S(
¬c) that is included in the input of the simulator.

• m comes from far-away participants; in this case it must be independent from c due

to the distance constraints, and so m ∈MsgF→S(
¬c), that is included in simulator’s

input.

• m comes from v; since v only sends c before r, then the message m can be either c,

86

or already is in the view of the close-by participants before c, i.e., ViewΓ

S(
¬c).

• m comes from a close-by participant y ∈ S; then the above three cases about x, ap-

plies to y too. This part is a recursive argument till these is no close-by participant

left to send the message.

Case (iii) In the third case, consider the received message r by the verifier, as the accumulation

of messages sent from close-by participants (rS) and messages sent from far-away participants

(rF). Note that all messages are delivered at the same time t ′ to v. We have thus showed that there

are algorithms that can generate rS and rF separately. Therefore by applying the accumulation

function r = sum(rS,rF), the algorithm can compute the response message r with correct timing.

�

4.3 DBID Construction: POXY

In this section we present a new DBID construction as an extension of DBPK-log+ [ASN14] and

DBPK-log [BB04]. This protocol uses Pedersen [Ped92] cryptosystem (See Algorithm 2.6.1). As a

DBID (X;Y;S;Init;KeyGen;Π;B; pnoise) protocol, Poxy consists of all operations in DBID scheme

as follows;

4.3.1 (msk,gpk)← Init(1λ)

The group manager initializes a Pedersen commitment with λ bit security: chooses a large λ-bit

strong prime p, such that p = 2q+1 for a large prime q. It also chooses the group generator g for

Z∗p and a random element h ∈R Z∗p.

The group manager initiates a certificate mechanism for validating the public key of the user, i.e.,

creates a certificate key pair (skCert , pkCert). We omit this mechanism from the rest of this section

for simplicity. So we have msk = (skCert) and gpk = (p,q,g,h, pkCert ,Ξ) where Ξ = /0.

87

4.3.2 (sk, pk)← KeyGen(msk,gpk)

Assume l−1 users have joined the group and their public keys are in the set Ξ = {pk1, ..., pkl−1}

that is published by the group manager. For the lth user, the group manager generates a key

pair (sk, pk), such that sk ∈R Zp−1 and pk = Commit(sk;0) = gsk (mod p), where Commit(u;v)

is Pedersen commitment (= guhv (mod p)). The group manager securely sends the key pair to the

new user and adds the public key pk to the set Ξ.

4.3.3 accept/re ject←Π{P(sk, pk)↔V (pk)}

When a prover of a registered user wants to run the DBID.Π protocol with the verifier, they will

follow the protocol described in Figure 4.5.

The current form of the protocol is for better readability. However, the actual order of the messages

is in the order of Σ∗-protocol, that consists of three type of messages: commitment, challenge and

response. In Figure 4.5, the messages are mark by three signs; A© as commitment, c© as challenge,

and r© as response of a Σ∗-protocol. If we rearrange the messages (including the messages of

ZKP sub-protocols) based on the type, according to Definition 2.4.4, then Poxy.Π becomes a Σ∗-

protocol.

88

P V
(secret: sk) (public: pk,gpk)

Session key exchange
ξ,xV ∈R Zp−1 •

yV = gxV (mod p);x = pkxV (mod p) •
µ = Encx(ξ) •

repeat above until x 6= p−1c©yV,µ

• x = ysk
V (mod p);ξ = Decx(µ)

commitment phase (for i = 1...λ and j = 1...t)
• ki j ∈R {0,1};vk,i j,ve,i j ∈R Zp−1;ei j = ski⊕ ki j;cryi j = ki j.ei j
• Ak,i j = Commit(ki j;vk,i j);Ae,i j = Commit(ei j;ve,i j) = gei j .hve,i j

• v j = ∑
λ
i=1(2

i−1.(vk,i j + ve,i j)) mod (p−1)
• cry j = ∑

λ
i=1 2i.cryi j;Acry, j = gcry j .hv j (mod p)

A©Ak,i j, r©Ae,i j,Acry, j

z j = ∏
λ
i=1(Ak,i jAe,i j)

2i−1
= gsk+cry j .hv j (mod p); check z j = Acry, j.pk •

check Ae,i j 6= Ak,i j;Ak,i j 6= g.Ae,i j;Ae,i j 6= g.Ak,i j •
ZKP[(ki j,vk,i j,ei j,ve,i j) : Ak,i j = gki j .hvk,i j ∧Ae,i j = gei j .hve,i j]

fast challenge-response (for i = 1...λ and j = 1...t)
ci0,ci1 ∈R {0,1}

reset timer •c©ci j = ci j0||ci j1receive c′i j0,c
′
i j1

• ri j = (¯c′i j0ki j + c′i j0ei j)⊕ c′i j1 r©ri j receive r′i j
check timer ≤ 2B •

commitment opening (for i = 1...λ and j = 1...t)
• δi j = Encx({c′i j0,c

′
i j1,ri j}||ξ) r©δi j

check ξ′ = ξ ; ({c′i j0,c
′
i j1,ri j},ξ′)← Decx(δi j) •

for all i = 1 . . .λ, find set of noiseless rounds Ii ⊆ {1, ..., t}•
terminate if ∃i ∈ {1 . . .λ} with |Ii|< τ.t •• γi j = ¯c′i j0vk,i j + c′i j0ve,i j r©γi j

check ¯c′i j0Ak,i j + c′i j0Ae,i j = gri j⊕c′i j1.hγi j •
proof of knowledge (for j = 1...t)

ZKP[(sk,cry j,v j) : pk = gsk∧Acry, j = gcry j .hv j]

OutV

Figure 4.5

89

4.5 (previous page): Π protocol of Poxy scheme. Commit is Pedersen commitment scheme.

(Enc,Dec) is a secure symmetric encryption scheme. ZKP is a zero-knowledge proof-of-

knowledge protocol. The notation A© by a message, indicates that the message is considered as

commitment of Σ∗-protocol. The notations c© and r© indicate the challenge and response mes-

sages of Σ∗-protocol, respectively. cry j is the vector of carry-ons in addition of k j and e j.

4.3.4 (msk′,gpk′)← Revoke(msk,gpk, i)

The group manager removes the ith public key from the set Ξ. i.e., Ξ := Ξ\{pki}.

4.3.5 Security Analysis

In this section we provide the security analysis of Poxy protocol.

Theorem 1 Assuming ZKP is a κ-sound (Definition 2.4.1) and ζ-zero-knowledge identification

protocol (Definition 2.5.4) for negligible values of κ and ζ, and (Enc,Dec) is an IND-CCA sym-

metric encryption scheme;

Poxy is (τ,δ)-complete, µ-TF-resistant, γ-sound, α-DF-resistant and also zero-knowledge (Defini-

tion 2.5.4) DBID scheme for negligible values of δ, µ, γ and α, when t is linear in security parameter

λ, and λ.(1− pnoise− ε)> λ.τ≥ λ− (1
2 −2ε)dλ

2e for some constant ε > 0.

Lemma 6 (Completeness) By assuming 1− pnoise−ε> τ for some constant ε> 0, and (Enc,Dec)

is an IND-CCA symmetric encryption scheme;

Poxy is a (τ,δ)-complete DBID protocol for some negligible value of δ.

Proof 6 Consider a DBID game with Poxy scheme, in which there is no actor, and the provers

and the verifier are honest, i.e., ∀x ∈ P : x.Code = Poxy.Π.P(.)∧d(x.Loc,v.Loc) ≤ B for v ∈ V :

v.Code = Poxy.Π.V (.). The verifier has access to the correct public key of provers. In this proof,

we calculate the success chance of an honest prover in a Π protocol.

90

let’s assume the verifier sends the challenge sequence [c] = ([a], [b]), where [a] = [a1...aλ], and

[b] = [b1...bm] for m ≥ 0. The prover receives [c′] = ([a′], [b′]) such that ∀i ∈ {1, ...,λ}, j ∈

{1, ..., t} : Pr[ai j = a′i j] = 1− pnoise. Correspondingly, the prover sends the response sequence

[r] = ([d], [e]) and the verifier receives [r′] = ([d′], [e′]), where ∀ j ∈ {1, ...,λ},∀ j ∈ {1, ..., t} :

Pr[di j = d′i j] = 1− pnoise.

After the commitment opening phase, the verifier is able to find the noisy rounds (except with

probability AdvEncCorr that is negligible). The probability of having at least τ noiseless fast challenge-

response rounds for each j ∈ {1, ..., t} is Tail(λ,τ.λ,1− pnoise) (Tail function is defined in Theo-

rem 1). As a result, the failure chance of the protocol is t times 1−Tail(λ,τ.λ,1− pnoise), which

is less than e−2ε2λ based on Chernoff bound (Theorem 1). And we have t.e−2ε2λ < negl(λ) if t is

linear to λ. �

Lemma 7 (Distance-Bounding) By assuming τ.λ ≥ λ− (1
2 − ε)bλ

2c for some constant ε > 0,

Diffie-Hellman key exchange is computationally unforgeable, ZKP is a κ-sound (Definition 2.4.1)

and ζ-zero-knowledge identification (Definition 2.5.4) for negligible κ and ζ;

Poxy is an α-DF-resistant DBID protocol for negligible value of α.

Proof 7 Consider a DBID game of Poxy scheme with no actors (i.e., T = /0), honest verifier (i.e.,

v ∈ V : v.Code = Poxy.Π.V (.)) and far-away corrupted provers (i.e., ∀x ∈ P : d(x.Loc,v.Loc) >

B∧ x.Code 6= Poxy.Π.P(.)) that might overlap in their execution time (i.e., x,y ∈ P : y.St < x.St +

exLen(x.Code)≤ y.St + exLen(y.Code)).

In a successful Π protocol, the verifier gets ξ′= ξ at the end of commitment opening phase, which

implies that the prover has the correct value of x, unless negligible probability AdvDHf orge, as the

forgery chance of the semi-fresh Diffie-Hellman key exchange protocol [DH76], which is used in

session key exchange phase. If the adversary succeeds in commitment and proof-of-knowledge

phases, then they know a certain {(e′j,k′j)} j=1...t that satisfies “e′j⊕ k′j = sk” for all j ∈ {1, ..., t}.

Therefore, they can efficiently find sk, unless negligible probability (2λ+ t)AdvZKP
sound +AdvDH

f orge =

91

(2λ+ t)κ+AdvDH
f orge.

Since the value of sk is chosen randomly, then we have Pr[ei j = ki j] =
1
2 for i = 1...λ and j = 1...t.

In a DF attack, any collaboration of far-away provers in sending the response ri is independent

from the challenge bit ci, according to the fundamental lemma (Lemma 5). Therefore, for the cases

that ei j 6= ki j (i.e., half of the rounds), the success chance of adversary in sending the correct ri j

is 1
2 . As a result, the success chance of adversary in guessing the correct responses is limited by

Tail(bλ

2c,τ.λ−d
λ

2e,
1
2)

λ, which is negligible based on Chernoff bound (Lemm 1). �

We prove TF-resistance of Poxy in Lemma 9 that uses the following lemma.

Lemma 8 (Extractor) Consider a DBID game Γ of a TF attack (Property 4.2.4), for Poxy scheme.

If there is a Π protocol in the game Γ in which, the verifier returns OutV = 1 with non-negligible

probability p, then there is a PPT extractor E, that takes the view of all close-by participants,

except the verifier (ViewΓ

S) as input, and outputs sk′ = sk with probability p−µ for negligible value

of µ. This holds assuming that ZKP is κ-sound (Definition 2.5.4).

Proof 8 (Extractor) Let’s assume there is a TF adversary A that succeeds in Π protocol with non-

negligible probability p, i.e., generates a transcript ξ = (A, [c], [r]) that is accepted by the verifier

with probability p. We construct a PPT extractor algorithm E for the secret key.

In a Π protocol from game Γ, the sequence of all challenges [c] (slow and fast) is chosen randomly

and broadcasted by the honest verifier. We define [r] = [r] f ast ||[r]slow and [c] = [c] f ast ||[c]slow where

the superscripts show the type of the phase of the challenges.

Let S be the event that for all i = {1...λ}, and j ∈ Ii, the verifier’s check ri j ⊕ ci j1 = ¯ci j0ki j +

ci j0(ski⊕ki j) hold true, where ci = ci0||ci1. This can be verified by checking success of all ZKP’s in

commitment phase, all the ZKP’s in PoK phase and all the checks in commitment opening phase.

In other words, when in commitment opening phase all checks succeed, we have ri j ⊕ ci j1 =

¯ci j0ki j +ci j0(ei j). And when all ZKP’s of commitment phase succeed, we have the commitment to

every bit of ki j and ei j for i = {1...λ} and j = {1...t}, that builds z j as the commitment to e j⊕ k j.

92

And when all ZKP’s of commitment phase succeed, we have sk = e j⊕ k j for all j = {1...t}. This

implies the occurrence of S.

Since ZKP is κ-sound, we conclude that at least for one ZKP we have Pr[succ ZKP|¬S] ≤ κ and

then Pr[succ ZKP,¬S]≤ κ, where ¬S indicates negation of S. So we have Pr[valid ξ,¬S]≤ κ.

Based on the fundamental lemma (Lemma 5), any valid response ri j that is received by the verifier

consists of two parts rF and rS that rF = MsgF→v(t ′)(
¬ci j) and there exists algorithm J′ : rS =

J′(ViewΓ

S(
¬ci j),ci j,MsgF→S(

¬ci j)). We have ri j = sum(rF,rS), for a deterministic function sum()

that is determined by the physical communication channel. We assume there exist a deterministic

subtraction function sub() such that for any x = sum(z,y), we have z = sub(x;y) and y = sub(x;z).

We consider the view of close-by participants before sending the response ri j, i.e., ViewΓ

S(¬ri j),

relative to the view of the close-by participants before seeing the challenge ci j, i.e., ViewΓ

S(¬ci j).

In the time period between receiving the challenge ci j and sending ri j, the close-by participants

can receive messages from two different sources: the verifier, and the far-away participants. The

only message from the verifier in this period is ci j and we indicate the messages from the far-

away participants as MsgF→S(¬ci j) which is independent from ci j. So we have ViewΓ

S(¬ri j) =

ViewΓ

S(¬ci j)||ci j||MsgF→S(¬ci j).

We conclude that there is an algorithm J′ that takes ViewΓ

S(¬ri j) and generates rS, such that the

correct response ri j is calculated as ri j = sum(MsgF→v(t ′)(
¬ci j),rS). Note that ViewΓ

S(¬ri) includes

the challenge ci j.

Since there is an algorithm J′ that generates respi j = J′(ViewΓ

S(¬ci j)||ci j||MsgF→S(¬ci j)), then

we construct the algorithm J that calls J′ four times for different values of ci j with the following

inputs: respd
i j = J′(ViewΓ

S(¬ci j)||d||MsgF→S(¬ci j)) for d = {00,01,10,11}. As a result, J returns

{respd
i j}d={00,01,10,11} such that the output of the function sum(respd

i j,rF) is the correct answer

when the challenge is ci j = d, which makes correct respd
i j. Note that the value of rF is not known

to the extractor.

93

From the final view of the close-by participants, we can find their partial view at the time of sending

response ri j for all j = 1 . . .λ and i = 1 . . . t, and then call the algorithm J. So we can calculate

(resp00
i j ,resp01

i j ,resp10
i j ,resp11

i j) for all i = 1 . . .λ and j = 1 . . . t, from the final view of the close-by

participants.

Since we have sub(sum(resp11
i j ,rF);sum(resp01

i j ,rF)) = sub(resp11
i j ;resp01

i j), and

sub(sum(resp10
i j ,rF);sum(resp00

i j ,rF)) = sub(resp10
i j ;resp00

i j), then for all values of resp00
i j , resp01

i j ,

resp10
i j , resp11

i j and rF, calculating the difference between the two correct responses for both val-

ues of the challenge bit ci j0 given ci j1, is equal to the difference between resp
1||ci j1
i j and resp

0||ci j1
i j ,

which are computable from the final view of close-by participants (ViewΓ

S). In the following, we

use function sub⊕(.; .) that is defined as: sub⊕(a;b) := 0 if sub(a;b) = 0, and sub⊕(a;b) := 1

otherwise.

We build the extractor E as follows: E runs (resp00
i j ,resp10

i j)← J(ViewΓ

S) for all i = 1 . . .λ and

j = 1 . . . t, and finds ξi j = sub⊕(resp10
i j ;resp00

i j), and then calculates the key bits sk′i =ma jority(ξi j)

over j = {1...t}.

Note that in a simple case that the received message at the receiver is sent from a single source,

we have sub⊕(resp10
i j ;resp00

i j) = resp10
i j ⊕ resp00

i j and also for all d = {0,1} we have respd||1
i j =

respd||0
i j ⊕1. In the following we calculate the success chance of this extractor.

A received response rd||b
i j for d,b ∈ {0,1} is correct if rd||b

i j = (d̄.ki j + d.ei j)⊕ b. For succeeding

in the Π protocol (event S), for at least τ.t values of j ∈ {1...t} the received response should be

correct for all values of i ∈ {1, ...,λ}. Since the challenge ci, j is chosen randomly and we assume

the secret sk is chosen randomly too, then the distribution of a correct response is uniform. So

the messages of far-away provers, i.e., rF, have at most 1
2 chance of being the correct response.

Therefore, for at least τ.t values of j = {1...t}, the close-by actors help the prover.

An extracted response respd||0
i j for d ∈ {0,1} is correct if sum(respd||0

i j ,rF) = d̄.ki j + d.ei j. We

define Ri j ∈ {0,1,2} as the number of challenge bits d ∈ {0,1} for which the extracted response

94

respd||0
i j is correct. If we have Ri j = 2 then ξi j = ski, but if Ri j = 1 then we might have ξi j 6= ski.

Consider R= (R1, ...,Rλ) for vector Ri = (Ri1, ...,Rit), where Ri j is defined as above and calculated

by comparing the (resp00
i j ,resp10

i j) with correct responses for all i= 1 . . .λ and j = 1 . . . t. We define

the set R as all vectors in {0,1,2}t such that at least b t
2c+1 values are 2. For a vector Ri ∈ R we

have ξi j = ski.

Since the verifier selects the challenges randomly, then knowing Ri j allows us to find the probability

that the response ri j = sum(respi j,rF) is correct: if Ri j = 2 then this probability is 1, otherwise

this probability is at most 1
2 (a response can always be guessed randomly). For any Ri /∈ R,

at least d t
2e values of Ri, j 6= 2, and at least τ.t −b t

2c of them have to be guesses randomly for

success. Therefore, the probability of success in the ith round by having Ri /∈ R is limited by

pB = Tail(d t
2e,τ.t−b

t
2c,

1
2), where Tail(n,k,ρ) :=

n
∑

i=k

(n
i

)
ρi(1−ρ)n−i.

We define W as the random variable showing the number of i’s that vector Ri /∈ R. So we have

Pr[S|W = w]≤ pw
B . So Pr[S,W = w]≤ pw

B Pr[W = w] and then Pr[S,W ≥ w]≤ pw
B . As a result, we

have:

Pr[W ≥ w,valid ξ]≤ Pr[¬S,valid ξ]+Pr[S,W ≥ w]≤ κ+ pw
B

Each index j where sk j 6= sk′j, corresponds to R j /∈ R. Therefore, having the verifier outputting

OutV = 1 (i.e., ξ is valid) and the extractor giving at least w errors occurs with probability bounded

by µ = κ+ pw
B . This implies that we can build a key extractor from ViewΓ

S that follows the success

chance of the TF attack (i.e., p), except with probability µ, which is negligible due to Chernoff

bound (Lemm 1). �

Lemma 9 (TF-resistance) Assuming ZKP is κ-sound (Definition 2.5.4) for negligible κ;

Poxy is a µ-TF-resistance DBID scheme for negligible value of µ.

Proof 9 Consider a DBID game with single limitation of having honest verifier (i.e., V.Code =

ID.V (.)). Based on the TF definition (Property 4.2.4), here we show that if there is a TF attacker

95

that succeeds with probability p, then there exists an impersonator that take the view of close-by

actors and succeeds with probability p−µ for negligible value of µ.

If there is a TF attacker that succeeds with probability p, then based on Lemma 8, there is an

extractor that takes the view of close-by actors and returns the secret key of prover sk′ = sk with

success chance p−µ for negligible µ.

Therefore, the impersonator first runs the extractor and gets prover’s secret key sk′, and then runs

the prover protocol P(sk′) with the verifier. The success chance of the impersonator is at least

p−µ. �

Lemma 10 (Zero-Knowledge) By assuming ZKP and Enc operations are computationally negl-

zero-knowledge; Π protocol of Poxy scheme with honest prover is ζ-zero-knowledge protocol for

negligible ζ (Definition 2.5.4).

Proof 10 Here we show that in Π operation, given two participants P(sk) and V ∗(pk,gpk), there

exists a simulator S(pk,gpk) such that the view of V ∗(pk,gpk) in the interaction V ∗(pk,gpk)↔

P(sk) is computationally indistinguishable from the output of S(pk,gpk). We basically show that

there is a simulator that consist of some smaller simulators for each part of the protocol.

The view of adversary at the end is as follows: ∀ j ∈ {1, ..., t}, i ∈ {1, ...,λ},b ∈ {”k”,”e”} :

(ViewV(ZKP)
t.λ+t ,xV,yV,µ,ξ,Ab,i j,ri j,ci j,δi j,γi j) for ∀ j ∈ {1, ..., t}, i ∈ {1, ...,λ}, where the ad-

versary chooses values xV,yV,ξ,µ,{ci j}.

Since ZKP and Enc operations are assumed to be ζ-zero-knowledge for negligible ζ (Defini-

tion 2.5.4), then there exists a simulator for the view of V ∗ after these operations, that takes the

view of V ∗ as input and returns an output indistinguishable from the normal case. By this means,

we can remove the prover side of ZKP operations. In the Diffie-Helman key exchange session,

the verifier generates the values of (xV,yV,µ,ξ,δi j). Therefore, we can remove them from the

view of adversary, since it can re-generate them later. Therefore, view of adversary is reduced to:

∀ j ∈ {1, ..., t}, i ∈ {1, ...,λ} : (Ak,i j,Ae,i j,ri j,γi j,ci j), where the adversary chooses the values {ci j}.

96

Since the relation between e and k is no longer checked by the above removals, then we can make

their mutual relation to be random on the prover side. i.e., choose e randomly. Therefore both

values of e and k will be random and the view of verifier in this case is indistinguishable from the

case when e is computed as ei j = ski⊕ki j for j ∈ {1, ..., t}, i ∈ {1, ...,λ}. In this modified case, the

value of sk is no longer used. Therefore, we can replace sk at the prover with randomness and still

be indistinguishable at the verifier. As a result, we built a simulator that doesn’t use the secret of

prover (sk) and produces indistinguishable output from the output of verifier while it’s interacting

with real prover. �

Lemma 11 (Soundness) By assuming t is polynomial in λ, τ > 1
2 + ε for some constant ε > 0,

ZKP is a κ-sound (Definition 2.4.1) and ζ-zero-knowledge authentication (Definition 2.5.4) for

negligible κ and ζ in λ, and Enc is ζ-zero-knowledge;

Poxy is a γ-sound DBID (Property 4.2.2) protocol for negligible γ.

Proof 11 According to the DBID game settings, we have some lists of provers P j ∈ P that there is

no overlap in the execution time of any list P j, however the provers of two different lists P j 6= Pi

can run simultaneously. The corrupted actors T are controlled by the adversary. In this game, the

adversary succeeds if any of the following is true;

(i) ∃t ∈ N,∀p ∈ P : t = Time(OutV = 1), t /∈ [p.St, p.St + exLen(p.Code)], or

(ii) ∃(p, t) ∈ (P,N) : t = Time(OutV = 1), t ∈ [p.St, p.St + exLen(p.Code)],d(p,V)>B

In this proof, we calculate the success chance of the adversary in both conditions.

Here we introduce two time periods: the learning phase is from the beginning of the game till the

beginning of the first session that makes the adversary to win, and the attack session, that is right

after the learning phase till end of the ID operation that makes the adversary to win.

Let’s assume the adversary uses {Ae,i j} and {Ak,i j} in the commitment phase of the attack session,

which are the bit commitments of e and k. Let’s assume the response table used in fast phase is e′

97

and k′, which is known by the close-by participant.

In the first condition (i.e., no active prover during attack session), since there is ZKP for all 2λt

of the committed values ({Ae,i j} and {Ak,i j}), the adversary should know the committed values

e and k, unless with negligible probability 2λ.t.AdvZKP
sound = 2λ.t.κ. If e and k are correct (i.e.,

ei j = ski⊕ ki j for all j ∈ {1, ..., t}, i ∈ {1, ...,λ}), then the adversary can efficiently calculate the

value of sk, which is in contradiction with Lemm 10 unless with probability ζ = AdvZKP. If e and

k are incorrect, then the adversary would not be able to pass the ZKP of proof-of-knowledge

phase, unless with negligible probability t.AdvZKP
sound = t.κ.

In the second condition (all active provers are far-away from verifier during attack session), based

on Lemm 10, we know that the close-by participants (actors) have negligible information about

sk. In this case, for each row of the response table (i.e., the two bits e′i j and k′i j) there is one bit

uncertainty (Pr[ei j = e′i j,ki j = k′i j] =
1
2). Otherwise, the adversary would gain some information

about ski. Therefore, by assuming that the challenge bits of fast phase are chosen randomly, then

for half of the fast rounds, the verifier sends the challenge value that the actor needs to make a

guess for the correct answer. As a result, for each value of i ∈ {1, ...,λ} the success chance of

related round in fast phase is 1
2

t
2−(1−τ)t

= 1
2
(τ− 1

2)t . Therefore, the success chance of the adversary

is limited by 2λ.t.κ+ t.κ+ 1
2
(τ− 1

2)t.λ +ζ, which is negligible. �

4.4 DBID Construction: ProProx [Vau14]

ProProx scheme is a public key DB protocol [Vau14] that fits our DBID model. We also prove

security of the protocol in this model. The details of the operations of ProProx is given below. Let

λ and n be the security parameters that are linearly related.

98

4.4.1 (msk,gpk)← Init(1λ)

The group manager initializes a Goldwasser-Micali cryptosystem [GM84] with λ bit security:

chooses N = p.q and chooses θ that is a quadratic residue modulo N. It also chooses chooses

b ∈ {0,1}n with Hamming weight of bn
2c. The group master key is msk = (p,q); the group public

key is gpk = (N,b,θ,Ξ) where Ξ = /0.

4.4.2 (sk, pk)← KeyGen(msk,gpk)

Assume l−1 users have joined the group and their public keys are in the set Ξ = {pk1, ..., pkl−1}

that is published by the group manager. For the lth user, the group manager generates a key pair

(sk, pk), such that sk ∈R {0,1}λ and pk is the output of a homomorphic and deterministic commit-

ment scheme ComH() on sk=(sk1...skλ); that is pk=ComH(sk)= (Com(sk1;H(sk,1)), ...,Com(skλ;

H(sk,λ))), where Com(u;v) is Goldwasser-Micali encryption (= θuv2 (mod N)) and H is a one-

way hash function. The group manager securely sends the key pair to the new user and adds the

public key pk to the set Ξ.

4.4.3 accept/re ject←Π{P(sk, pk)↔V (pk)}

When a prover (Pl) of a registered user wants to run the DBID.Π protocol with the verifier, they

will follow the protocol described in Figure 3.12.

4.4.4 (msk′,gpk′)← Revoke(msk,gpk, i)

The group manager removes the ith public key from the set Ξ. i.e., Ξ := Ξ\{pki}.

99

4.4.5 Security Analysis

To prove that the above protocol satisfies our security definition, we first note that the Π protocol

of ProProx scheme (i.e., Figure 3.12) can be seen as a Σ∗-protocol (Definition 2.4.4). This is true

because, assuming the agreement step (on the value of I) and the ZKP step can be in the form of

Σ∗-protocols, therefore running them after each other is also a Σ∗-protocol. This is because we

can consider all first message commitment of the protocols as a single commitment phase, and

all verification functions stay at the end. The remaining challenge and response messages are run

sequentially and form the challenge and responses of the combined protocol.

Theorem 2 Assuming Com(u;v) is a perfect binding and computationally hiding homomorphic bit

commitment scheme (Definition 2.6.3), ComH() is one-way function (Definition 2.5.5), and ZKP

is a κ-sound (Definition 2.4.1) and ζ-zero-knowledge identification protocol (Definition 2.5.4) for

negligible values of κ and ζ;

ProProx is (τ,δ)-complete, µ-TF-resistant, γ-sound and α-DF-resistant DBID scheme for negligi-

ble values of δ, µ, γ and α, when n is linear in security parameter λ, and n.(1− pnoise−ε)> n.τ≥

n− (1
2 −2ε)dn

2e for some constant ε > 0.

ProProx is proven to be complete, DF-resistant and zero-knowledge (Definition 2.5.4) in [Vau14].

Our definitions of these properties remain unchanged. So we only need to prove TF-resistance and

soundness properties of ProProx scheme.

We prove TF-resistance of ProProx in Lemma 13 that uses the following lemma.

Lemma 12 (Extractor) Consider a DBID game Γ with TF attack (Property 4.2.4), for ProProx

scheme. If there is a Π protocol in the game Γ in which, the verifier returns OutV = 1 with non-

negligible probability p, then there is a PPT extractor E, that takes the view of all close-by par-

ticipants, except the verifier (ViewΓ

S) as input, and outputs sk′ = sk with probability p− µ, for

negligible value of µ. This holds assuming, Com(u;v) is a perfect binding computational hid-

100

ing homomorphic bit commitment scheme (Definition 2.6.3), and ZKP is a κ-sound identification

protocol (Definition 2.4.1).

Note that the extractor of this lemma, has a critical difference from the extractor that is considered

in security analysis of ProProx scheme in the original paper [Vau14]; the input of the extractor of

the original paper takes the view of the verifier is the view of all close-by participants, including

the verifier, but the input of the above extractor is the view of all close-by participants (excluding

the verifier). By excluding the view of the verifier of a TF attack from the view of the extractor,

the close-by participants can extract the secret-key of the prover, even when the prover is using

directional antenna to communicate directly to the verifier.

In the security analysis of the extractor of the original paper, it is assumed that a correct response

is solely sent from a single close-by participant. However, there might be a case that the received

message ri, j is the combination of a message that is sent from a far-away source and a message

that is sent from a close-by source. In our extractor, we include this case.

Proof 12 (Extractor) Let’s assume there is a TF adversary A that succeeds in Π protocol with

non-negligible probability p, i.e., generates a transcript ξ = (A, [c], [r]) that is accepted by the

verifier with probability p. We construct a PPT extractor algorithm E for the secret key.

In a protocol Π from game Γ, the sequence of all challenges [c] (slow and fast) is chosen randomly

and broadcasted by the honest verifier. We define [r] = [r] f ast ||[r]slow and [c] = [c] f ast ||[c]slow where

the superscripts show the type of the phase of the challenges.

Because of the perfect binding commitment (Definition 2.6.2), the value of the public key pk

uniquely determines sk=Com−1(pk), and the value of Ai, j uniquely determines ai, j =Com−1(Ai, j).

We emphasis that these values are not being calculate, but we just mathematically define them

based on the view of the verifier.

Let S be the event that for all j, and i ∈ I j, the verifier’s checks ri, j = ai, j + ci, jbi + ci, jsk j hold

true. This can be verified by checking success of ZKP, for all the corresponding j and i ∈ I j. In

101

other words, when ZKP succeeds for all j, and i ∈ I j, we have zi, j as commitment to ai, j + ci, jbi +

ci, jsk j− ri, j, which implies the occurrence of S.

Since ZKP is κ-sound, we conclude that Pr[succ ZKP|¬S] ≤ κ and then Pr[succ ZKP,¬S] ≤ κ,

where ¬S indicates negation of S. So we have Pr[valid ξ,¬S]≤ κ.

Based on the fundamental lemma (Lemma 5), any valid response ri, j that is received by the ver-

ifier consists of two parts rF and rS that rF = MsgF→v(t ′)(
¬ci, j) and ∃J′ : rS = J′(ViewΓ

S(
¬ci, j),

ci, j,MsgF→S(
¬ci, j)). We have ri, j = sum(rF,rS), for a deterministic function sum() that is deter-

mined by the physical communication channel. We assume there exist a deterministic subtraction

function sub() such that for any x = sum(z,y), we have z = sub(x;y) and y = sub(x;z).

We consider the view of close-by participants before sending the response ri, j, i.e., ViewΓ

S(¬ri, j),

relative to the view of the close-by participants before seeing the challenge ci, j, i.e., ViewΓ

S(¬ci, j).

In the time period between receiving the challenge ci, j and sending ri, j, the close-by participants

can receive messages from two different sources: the verifier, and the far-away participants. The

only message from the verifier in this period is ci, j and we indicate the messages from the far-

away participants as MsgF→S(¬ci, j) which is independent from ci, j. So we have ViewΓ

S(¬ri, j) =

ViewΓ

S(¬ci, j)||ci, j||MsgF→S(¬ci, j).

We conclude that there is an algorithm J′ that takes ViewΓ

S(¬ri, j) and generates rS, such that

the correct response ri, j is calculable as ri, j = sum(MsgF→v(t ′)(
¬ci, j),rS). Note that ViewΓ

S(¬ri, j)

includes the challenge ci, j.

Since there is an algorithm J′ that respi, j = J′(ViewΓ

S(¬ci, j)||ci, j||MsgF→S(¬ci, j)), then we con-

struct the algorithm J that calls J′ two times with the following inputs: resp0
i, j = J′(ViewΓ

S(¬ci, j)||

0||MsgF→S(¬ci, j)) and then resp1
i, j = J′(ViewΓ

S(¬ci, j)||1||MsgF→S(¬ci, j)). As a result, J returns a

pair (resp0
i, j,resp1

i, j) such that the output of the functions sum(resp0
i, j,rF) and sum(resp1

i, j,rF) are

the correct answer for the two possible cases of the challenge bit ci, j. We say resp0
i, j (or resp1

i, j) is

correct if sum(resp0
i, j,rF) (or sum(resp1

i, j,rF)) is the correct response to the challenge ci, j = 0 (or

102

ci, j = 1). Note that the value of rF is not known to the extractor.

From the final view of the close-by participants, we can find their partial view at the time of sending

response ri, j for all j = 1 . . .λ and i = 1 . . .n, and then call the algorithm J. So we can calculate

(resp0
i, j,resp1

i, j) for all j = 1 . . .λ and i = 1 . . .n, from the final view of the close-by participants.

Since we have

sub(sum(resp1
i, j,rF);sum(resp0

i, j,rF)) = sub(resp1
i, j;resp0

i, j),

therefore, calculating the difference between the two correct responses for both values of the chal-

lenge bit ci, j is equal to the difference between resp1
i, j and resp0

i, j, which are computable from the

final view of close-by participants (ViewΓ

S).

We build the extractor E as follows: E runs (resp0
i, j,resp1

i, j)← J(ViewΓ

S) for all j = 1 . . .λ and

i = 1 . . .n. Then it guesses the bits of secret sk′j = ma jority(δ1, j...δn, j) for j = {1...λ}, where

δi, j = sub(resp1
i, j;resp0

i, j)−bi for i = {1...n}.

Note that in a simple case that the received message at receiver is sent from a single source, we

have sub(resp1
i, j;resp0

i, j) = resp1
i, j− resp0

i, j. In the following we calculate the success chance of

this extractor;

A response respd
i, j for d ∈ {0,1} is correct if sum(respd

i, j,rF) = ai, j + d.bi + d.sk j. We define

R j = [R1, j...Rn, j] where R1, j is the number of challenge bits d ∈ {0,1} for which the response

respd
i, j is correct. If we have Ri, j = 2 then δi, j = sk j, but if Ri, j = 1 then we might have δi, j 6= sk j.

Consider R = (R1, ...,Rλ) for vector Ri = (Ri1, ...,Rin), where Ri, j is defined as above and calcu-

lated by comparing the (resp0
i, j,resp1

i, j) with correct responses for all j = 1 . . .λ and i = 1 . . .n.

We define the set R as all vectors in {0,1,2}n that have at least bn
2c+1 values of 2. For a vector

R j ∈ R, we have a majority of i’s that δi, j = sk j, which implies sk′j = sk j.

Since the verifier selects the challenges randomly, then knowing Ri, j allows us to find the prob-

ability that the response ri, j = sum(respi, j,rF) is correct: if Ri, j = 2 then this probability is 1,

103

otherwise this probability is at most 1
2 (this is true that a response can always be guessed ran-

domly). If W is the random variable giving the number R js that R j /∈R, we have Pr[S|W = w] = pw
B

where pB = Tail(dn
2e,τ−b

n
2c,

1
2), defined in Theorem 1. So Pr[S,W = w]≤ pw

B Pr[W = w] and then

Pr[S,W ≥ w]≤ pw
B . As a result, we have:

Pr[W ≥ w,validξ]≤ Pr[¬S,valid ξ]+Pr[S,W ≥ w]≤ κ+ pw
B

Each index j where sk j 6= sk′j, corresponds to R j /∈ R. Therefore, having the verifier outputting

OutV = 1 (i.e., ξ is valid) and the extractor giving at least 1 error occurs with probability bounded

by µ = κ+ pB. This implies that we can build a key extractor from ViewΓ

S that follows the success

chance of the TF attack, except with probability µ that is negligible because of Chernoff bound

(Theorem 1). �

Lemma 13 (TF-resistance) ProProx is a µ-TF-resistant DBID (Property 4.2.4) scheme for neg-

ligible value of µ, assuming Com is a perfectly binding computational hiding homomorphic bit

commitment (Definition 2.6.3), and ZKP is a κ-sound identification protocol (Definition 2.4.1).

Proof 13 According to the TF-resistance definition (Property 4.2.4), we need to show that if there

is a game Γ for a Π protocol in which that the verifier returns OutV = 1 with non-negligible

probability κ, then there exists a close-by actor R that for any challenge sequence [c] can create

a valid transcript with probability at least κ− µ for a negligible µ, using the view of all close-by

participants, excluding the verifier (ViewΓ

S).

Based on Lemma 12, the existence of TF attacker with non-negligible success probability κ, implies

the existence of a key extractor sk′ ← E(ViewΓ

S) with the success chance of at least κ− µ′ for a

negligible µ′.

So we make R as follows: After a successful TF attack, R calls the above extractor E to find sk′.

Then R runs the ProProx.Π.P(sk′,gpk) interactive algorithm in order to generate valid transcript

with correct timing for any challenge that is generated by the verifier. Since ProProx is (τ,δ)-

104

complete, the verifier outputs OutV = 1, unless negligible probability δ. Therefore, the success

chance of R is at least κ−µ for negligible µ = µ′−δ. �

Lemma 14 (Soundness) ProProx is a γ-sound DBID (Property 4.2.2) scheme for γ = negl(λ), if

the followings hold: τ.n ≥ n− (1
2 − 2ε)dn

2e for some constant ε > 0; ComH is one-way; Com is

homomorphic bit commitment with all properties of Definition 2.6.3; ZKP is a κ-sound (Defini-

tion 2.4.1) and ζ-zero-knowledge identification (Definition 2.5.4) for negligible κ and ζ.

Proof 14 In a Π protocol, the verifier receives a transcript ξ = (A, [c], [r]). There are two possible

participant arrangements for the winning conditions of a soundness adversary that result in the

verifier returning OutV = 1: (i) all active provers are far-away from the verifier, (ii) there is no

active prover during the Π protocol (i.e., there might be close-by provers but they are not active).

In the following we show that the success probability of the adversary in both cases is negligible.

In other words, the success probability of generating a valid transcript ξ = (A, [c], [r]) when the

challenge sequence [c] is generated by the verifier, is negligible.

In the first case, the adversary cannot simply relay the messages because of the extra delay and

the fact that the responses are from out of bound locations. In this case the verifier will reject the

instance. If there is a PPT adversary A that can guess at least τ.n out of n responses for each key

bit with non-negligible probability (i.e., guessing all bits of ∀ j ∈ {1, ...,λ}I j ⊂ {1, ...,n} such that

|I j| ≥ τ.n), then they can find the response table for at least τ.n elements for each j ∈ {1, ...,λ} with

the same probability. So for τ.n out of n values of i they can find correct sk j =
ri, j− ¯ri, j−(ci, j− ¯ci, j)bi

ci, j− ¯ci, j

with probability ≥ poly(λ). Therefore by taking the majority, they can find the correct key bit with

probability ≥ 1− (1− poly(λ))τ.n.

Thus if the adversary succeeds in the first case with non-negligible probability, then they can find

the secret key with considerably higher probability than random guessing and this contradicts the

zero-knowledge property of ProProx. Therefore, the adversary’s success chance will be negligible

in this case.

105

In the second case, the adversary succeeds in the protocol by providing the correct response to V

for at least τ.n correct queries out of n fast rounds for all key bits.

We noted that the learning phase of the adversary cannot provide information about the secret

key ({sk j}λ
j=1) or the committed values ({ai, j} j={1...λ},i={1...n}) as otherwise the zero-knowledge

property of the protocol, or the commitment scheme will be violated, respectively.

In order to succeed in the protocol with non-negligible probability, the adversary must succeed

in ZKP, for at least τ.n values of i, so they need to find at least τ.n valid tuples πi = (X ,Y,Z)

for random challenge bits such that Z2 = X(θbiy j)
ci, jθ−Y without having information about sk j.

For π = [πi] with size at least τ.n and [c], Pr[π is valid|[c] is random] = ∏
γ

i=1 Pr[πi is valid|[c] is

random]. So if Pr[π is valid |[c] is random]≥ negl, then there is a value of i that Pr[πi is valid |[c] is

random]≥ 1
2 + poly(λ).

Since X is sent to the verifier before seeing ci, j, therefore we have Pr[valid (X ,Y,Z)|ci, j = 0] ≥
1
2 + poly(λ) and also Pr[valid (X ,Y ′,Z′)|ci, j = 1]≥ 1

2 + poly(λ). Since both tuples are valid, then

we have Z2 = Xθ−Y and Z′2 = X(θbiy j)θ
−Y ′ . Therefore we have the following for pk j = θsk j(v j);

(
Z′

Z
)2 = pk jθ

bi−Y ′+Y = θ
sk j+bi−Y ′+Y (v j)

2

Therefore, the adversary can conclude sk j + bi−Y ′+Y /∈ {1,3} for the known bits bi, Y ′ and Y .

So they gain some information about sk j, which is in contradiction with zero-knowledge property

of ProProx. �

4.5 Related Works

The main models and constructions of public key DB protocols are presented in [HPO13], [ASN14],

[GKL+14], and [Vau14]. In the following, we discuss and contrast the security model of these

works to be able to put our new work in context.

106

[HPO13] presented an informal model for Distance-Fraud, Mafia-Fraud and Impersonation attack

and provided a secure protocol according to the model. [ASN14] formally defined Distance-Fraud,

Mafia-Fraud, Impersonation, Terrorist-Fraud and Distance-Hijacking attack. The Distance-Fraud

adversary has a learning phase before the attack session and is therefore stronger than the definition

in Attack 3.1.2. During the learning phase, the adversary has access to the communications of the

honest provers that are close-by. The security proofs of the proposed protocol have been deferred

to the full version, which is not available yet.

[GKL+14] uses an informal model that captures Distance-Fraud, Mafia-Fraud, Impersonation,

Terrorist-Fraud, Distance-Hijacking and Slow-Impersonation [DFKO11]. In their model, the def-

inition of Terrorist-Fraud is slightly different from Attack 3.1.3: a TF attack is successful if it

allows the adversary to succeed in future Mafia-Fraud attacks.

For the first time in distance-bounding literature, [DFKO11] considered normal MiM attacking

scenario where both the honest prover and the adversary are close to the verifier. The adversary

interacts with the prover in order to succeed in a separate protocol session with the verifier. The

adversary has to change some of the received messages in the slow phases of protocol in order

to be considered successful. The attack is called Slow-Impersonation and is inspired by the ba-

sic MiM attack in authentication protocols. In Slow-Impersonation, a close-by MiM actor that

communicates with both verifier and close-by prover, tries to succeed in the protocol. During the

slow-phase, the actor modifies the received messages from a party, and then sends it to the other

party. Although the basic MiM attack is proper for DB models, it may not be strictly possible in

one phase of the protocol as their action could influence or be influenced by other phases of the

protocol.

A MiM adversary may, during the learning phase, only relay the slow-phase messages but, by

manipulating the messages of the fast phase, learn the key information and later succeed in imper-

sonation. According to the definitions in [GKL+14] and [DFKO11], the protocol is secure against

Slow-Impersonation, however it is not secure against Strong-Impersonation [ASN17b].

107

This scenario shows that Slow-Impersonation does not necessarily capture Impersonation attacks

in general. Moreover, it’s hard to distinguish the success in slow phases of a protocol without

considering the fast phase, as those phases have mutual influences on each other.

As an alternative definition, [ASN17a] proposed Strong-Impersonation: a close-by actor learns

from past executions of the protocol by a close-by honest prover and tries to impersonate the

prover in a new execution when the prover is either inactive or is not close-by anymore.

In this attack, the MiM adversary has an active learning phase that allows them to change the

messages. Strong-Impersonation captures the MiM attack without the need to define success in

the slow rounds. One of the incentives of Strong-Impersonation is capturing the case when the

prover is close to the verifier, but is not participating in any instance of the protocol. In this case,

any acceptance by the verifier means that the adversary has succeeded in impersonating an inactive

prover.

In [Vau14] an elegant formal model for public key distance-bounding protocols in terms of proof

of proximity of knowledge has been proposed. The model captures Distance-Fraud, Distance-

Hijacking, Mafia-Fraud, Impersonation and Terrorist-Fraud. In this approach, a public key DB

protocol is a special type of proof of knowledge (proximity of knowledge): a protocol is considered

sound if the acceptance of the verifier implies existence of an extractor algorithm that takes the

view of all close-by participants and returns the prover’s private key. This captures security against

Terrorist-Fraud where a dishonest far-away prover must succeed without sharing their key with the

close-by helper.

According to the soundness definition in [Vau14] however, if the adversary succeeds while there

is an inactive close-by prover, the protocol is sound because the verifier accepts, and there is an

extractor for the key simply because there is an inactive close-by prover and their secret key is part

of the extractor’s view. Existence of an extractor is a demanding requirement for the success of

attacks against authentication: obviously an adversary who can extract the key will succeed in the

108

protocol, however it is possible to have an adversary who succeeds without extracting the key, but

providing the required responses to the verifier. Our goal in introducing identification based model

is to capture this weaker requirement of success in authentication, while providing a model that

includes realistic attacks against DB protocols.

4.6 Concluding Remarks

We proposed a new formal model (DBID) for distance-bounding protocols, inline with the cryp-

tographic identification schemes, that captures and strengthens the main attacks on public key

distance-bounding protocols. This approach effectively included physical distance as an additional

attribute of the prover in identification protocol. In our model for the first time, we allow the com-

munication channel to mix multiple sent messages into one message at the receiver, if they are

received at the same time. This is a more realistic wireless environment.

In this model, we assume a stronger adversary that has access to a directional antenna. We showed

this additional capability can break security of protocols that had been proven secure, by proposing

directional TF attack against VSSDB and DBPoK-log+ schemes. To include this capability of the

adversary, we needed to revise the definition of TF in [ASN17a] which resulted in proving a new

security proof for the ProProx protocol.

We showed that the ProProx scheme fits in our model and proved its security. We also proposed

Poxy, as a new DBID scheme, and provided the security proof. Poxy is an advanced edition of

DBPoK-log+, that we proposed earlier in this research [ASN14]. Poxy and ProProx use two

different cryptosystems, and the fast phase of the Π protocol in Poxy and ProProx schemes have

more computations compared to typical DB schemes. This is the price we pay for achieving TF-

resistance.

Some parts of this chapter are published in [ASN14, ASN17a, ASN17b].

109

Chapter 5

Anonymous Distance-Bounding

Anonymous Distance-Bounding (DB) protocols allow a prover to

convince a verifier that they are within a distance bound from them,

without revealing their identity. This is an attractive property that

enables the prover to enjoy proximity based services, while their

privacy is maintained. Combination of anonymity and distance-

bounding however introduces new security challenges. In this chap-

ter, we consider two new realistic attacks: a physical layer attack that

uses directional antenna, and a collusion attack that involves mul-

tiple users. We show all existing anonymous DB protocols become

insecure against at least one of these attacks, and then propose a new

security model that captures these new attacks, and finally construct

two protocols with provable security in this model. Our protocols

are the only known anonymous DB protocols with provable security

against known attacks.

Distance-bounding protocols leak the identity of prover to verifier: in symmetric key DB, prover

and verifier share a secret key, and in public-key DB, prover’s response is compared against the

public-key of a specific user. Anonymous DB can be used to prove that the distance of a registered

user is less than a prescribed bound, without revealing their exact identity. Security of anonymous

DB protocols has also been formalized [ASN14, BGG+16, ABG+17] against DF, MF and TF. In

these model that we refer to as single-user model, attack involves at most a single corrupted user,

possibly helped by an actor.

110

Our work: We introduce two new type of attacks that although applicable to all DB protocols,

become particularly effective against anonymous DB protocols.

Directional antennas. The use of directional antennas in consumer devices has grown tremen-

dously in recent years [ARS16]. We consider the effect of employing these antennas by a malicious

prover, on the security of anonymous DB. Note that verifiers need to use omni-directional antennas

because they want estimate the distance of the prover without knowing their location. However

malicious provers (or actors) may use directional antennas with a narrow beam to target messages

to the verifier. In Section 5.1.1 we show that using directional antennas by malicious provers can

break all existing anonymous DB protocols.

Collusion attacks. In a collusion attack multiple users, each with a secret key, participate in the

attack that can be on DF, MF or TF form as shown in Figure 5.1, Figure 5.2 and Figure 5.3. These

attacks had not been considered before and need not to be considered as long as the secret keys

of two users are independently generated, and so (without anonymity) a protocol transcript can be

linked to a user through their key information and so cannot be combined with other transcripts

to form a new forged transcript. In anonymous DB protocols however, the verifier should not be

able to link the transcript of a protocol to a single user and so combining protocol transcripts can

give advantage to colluders. In Section 5.1.2 we show that collusion TF attack can be used to

subvert traceability property of anonymous DB. This functionality is necessary in all anonymous

DB protocols to ensure user accountability by allowing a third party that holds a master key, to

"open" a transcript and identify the user, when required.

VP∗1(x1)

P∗2(x2)

B

Figure 5.1: Collusion DF

111

A

VP1(x1)

P2(x2)

B

Figure 5.2: Collusion MF

H

VP∗1(x1)

P∗2(x2)

B

Figure 5.3: Collusion TF

The above two classes of attacks are realistic. Directional antennas are widely used in modern

communication systems [ARS16] and there are strong incentive to launch collusion attacks, hiding

behind anonymity that is offered by anonymous DB protocols. None of the existing anonymous

DB protocols provide security against these attacks, and as shown later, there are concrete attacks

against all existing protocols.

We will then show how collusion TF attack succeeds on a modified version of SPADE that is secure

against a single-user non-directional TF attack. In this attack, a close-by user can interact with the

verifier and get accepted, while credentials of a far-away user is used. Thus the close-by user can

be authenticated, and later during the opening phase a far-away user be identified. The system fails

to provide security because the far-away user can present alibi that they have not been the protocol

participant.

Model. We propose a formal model that captures the above two new classes of attacks. Our formal-

ization uses a cryptographic approach and models an anonymous DB protocol as a cryptographic

identification protocol [DDP06] where the prover, in addition to proving their cryptographic cre-

112

dentials, prove that they are within a distance bound from the verifier. This builds on the model of

public-key DB [ASN17a], by including directional antennas and collusion DF, MF and TF.

We formalize anonymity in terms of indistinguishability of candidate provers, given the protocol

transcript. The challenge is to include sufficient information about the user in the transcript to

allow a third party that holds the master key be able to open the transcript and identify the user.

Construction. We construct two anonymous DB protocol and prove their security in our proposed

model. Our constructions can be seen as modular construction that adds anonymity and security

in the new model by introducing an additional layer of group identification to a public-key DB

protocol with provable security in a single-user model. The proposed protocols consist of a phase

in which the prover commits to a temporary public-key, followed by a public-key DB. These pro-

tocols are designed for two different cryptosystems; Goldwasser-Micali cryptosystem [GM84] and

Pedersen commitment [Ped92].

We refer to DBID schemes (Definition 4.2.1) with the property as these classes of DBID schemes

as DBIDGM and DBIDP, respectively. An example of DBIDGM scheme is ProProx [Vau14] and an

example of DBIDP scheme is POXY (Section 4.3).

Organization. Section 5.1.1 proposes new directional TF attack that breaks all anonymous DB

protocols and Section 5.1.2 proposes collusion DB attacks, generalizing traditional DB attacks.

Section 5.2 presents our model, Section 5.3 Section 5.4 give the constructions and security proofs.

Section 5.5 gives a summary of related works, and Section 5.6 concludes the chapter.

5.1 New Attacks

We present two new classes of attacks and show their effectiveness on anonymous DB protocols.

113

5.1.1 Directional TF Attack on Anonymous DB

DB protocols consist of - slow phases that are used during protocol initialization, and the final ver-

ification, and a fast challenge-response phase that is used for time (and so distance) measurement.

Using a directional antenna a malicious prover can target the messages of the two phases such that

the initialization messages are only received by the verifier and not the helper. This strategy allows

the prover to send the whole challenge and response table of a particular protocol run to the helper,

and so take advantage of the location of the helper, without leaking their long term key and so

succeed in TF attack. Note that the prover is not leaking its identity to the helper. Figure 4.1 shows

a directional TF, where the helper H does not receive slow phase messages sent by a malicious

prover P∗ to V using a directional antenna (orange ribbon in Figure 4.1). Before the start of the

fast-phase, P∗ sends the fast challenge-response table to H, making H in-charge of responding to

the fast-phase challenges.

In the following we describe how this setting helps a malicious prover to succeed in terrorist-

fraud against all known anonymous DB protocols: PDB [ASN14], SPADE [BGG+16] and TREAD

[ABG+17].

Directional TF on PDB [ASN14]

The presented model of [ASN14] follows the original definition of TF (Attack 3.1.3), and so our

attack can be seen as outside their model. However, we showed that the original definition of TF

is not suitable for anonymous distance-bounding protocols. In this section we present a TF attack

against PDB, using the more recent definition of TF (Attack 3.1.3).

Π protocol of PDB: The Π protocol in PDB scheme consists of the following five steps between

the verifier (V) and the prover (P). At the end of each step, the state of each of the two parties

become the starting state of the next step.

Step (i) SPK is a signature proof-of-knowledge protocol, in which the prover uses the secret key

114

ski and a secret membership certificate (σi), and the verifier uses group public-key (gpk),

as inputs. At the end of the protocol, the verifier will be convinced that the prover has a

valid secret-key ski and membership certificate σi, in zero-knowledge (i.e., the verifier

doesn’t learn anything about the prover’s secrets). The verifier also learns the value

of a commitment C = gski
1 .gr

2, that will be used in the last step. This protocol uses the

BBS+ signature scheme [CL04] for generating the membership certificate σi and the SPK

protocol.

Step (ii) Bit Commitment (Figure 4.2) is a commitment protocol, in which the prover uses the

secret key ski, and the verifier uses the group public-key (gpk), as input. In this protocol,

the prover decides on the "fast challenge-response table" and commits to each bit in the

table. The verifier learns the committed values of every single bit of the fast challenge-

response table. This table consists of two rows: {rb[l]}l={1,...,λ},b∈{0,1}, where rb[l] is

the response in the ith fast challenge-response round. The corresponding committed

values are {Cb[l]}l={1,...,λ},b={0,1}, and the corresponding randomness of commitments

are indicated by {vb[l]}l={1,...,λ},b={0,1}, where vb[l] ∈ Z∗p. The commitment function is

as follows: Cb[l] = grb[l]
1 .hvb[l] for b ∈ {0,1}, l = {1...λ}, and g1,h ∈ Zp. The committed

table and the randomness is kept secret at the prover, while the commitments are sent to

the verifier.

Step (iii) Fast Challenge/Response (Figure 4.3) is the distance-bounding protocol, in which

the prover uses the calculated "fast challenge-response table" {rb[l] : l = {1...λ},b =

{0,1}}, generated in step (ii), as input.

Step (iv) Commitment Opening (Figure 4.4) is used to open half of the commitments, that cor-

respond to the challenge bits sent by the verifier in step (iii). In this step, the prover

uses the secret commitment randomness (i.e., {vb[l] : l = {1...λ},b = {0,1}}) and the

challenge values of step (iii) (i.e., c′), and the verifier uses the committed values (i.e.,

{Cb[l] : l = {1...λ},b = {0,1}}) and the challenge and response values of step (iii) (i.e.,

115

c and r′) as input. This protocol improves the original PDB protocol [ASN14] by becom-

ing noise resistance. This step succeeds, if the noise counter is less than the threshold

(i.e., countnoise < τ).

Step (v) Proof-of-Knowledge is a protocol for zero-knowledge proof of equality that shows the

secret key of step (i) and the committed secret key of step (ii) are the same. In this

protocol, the prover uses the secret key ski and the commitment randomness of step (i)

and step (ii), and the verifier uses the committed values of step (i) and step (ii), as input.

C is the committed value of step (i), r is the commitment randomness of step (i), z is the

accumulation of the committed values of step (ii) as z=∏
λ

l=1(C0[l]C1[l])2l−1
mod p, and

v is the accumulation of the commitment randomness of step (ii) as v = ∑
λ

l=1 2l.(v0[l]+

v1[l]) mod (p−1).

For security parameter t, this protocol runs t iterations of zero-knowledge proof-of-

knowledge (Definition 2.5.4 and Definition 2.5.3) where z and C satisfy the following

relation: PoK[(ski,v,r) : z = gu.ski.hv∧ pki = gski.gr
2].

If all steps terminate successfully, then the verifier outputs OutV = 1.

Lemma 15 In the Π protocol of PDB scheme, the fast challenge-response table does not leak in-

formation about the membership certificate σi of the prover, unless negligible probability.

Proof 15 We know that by having the fast challenge-response table, we can calculate the secret-

key of the prover, i.e., sk = k+e
u mod (p− 1) where k is fresh randomness. Note that the fast

challenge-response table is the output of random function that takes sk as input. So it cannot leak

any information about other independent secrets of the prover.

A valid membership certificate σ is the signature of registration authority on the secret-key sk.

If there is an adversary A that can calculate the membership certificate from the secret-key sk,

then A is a successful forgery adversary of the signature scheme. Therefore, since we assume the

signature scheme is forgery resistant, then the success chance of A is negligible. �

116

Attack 5.1.1 P sends to V the slow phase messages of step (i) and step (ii), using directional

antenna. Before the start of the fast phase, P sends the fast challenge-response table ((r0[i],r1[i])

for i = 1...λ) to H, allowing H to respond to V ’s challenges. P sends to V the slow phase messages

of step (iv) and step (v), using directional antenna. In this way, the helper can respond in time and

correctly to the challenges of the verifier during the fast challenge-response rounds. This attack

makes the verifier to accept the protocol. Note that the fast challenge-response table does not leak

the membership certificate σi, according to Lemma 15.

Since the helper has no information about σi, it cannot succeed in step (i) of future impersonation

attacks. Therefore, it cannot impersonate the prove in future, which is required for a successful TF

attack (See Property 5.2.4).

Directional TF on SPADE

SPADE [BGG+16] is an anonymous DB system that use a group signature GSignskp() to register

users in an authorized group. A registered user can use their credentials to participate in the

protocol without leaking their identity, hence ensuring anonymity. Figure 3.14 presents the Π

distance bounding protocol of SPADE scheme.

Lemma 16 In the Π protocol of SPADE scheme, the fast challenge-response table does not leak

information about the secret of prover.

Proof 16 The fast challenge-response table is ri =

ai

ai⊕NPi⊕mi

for i = {1, ...,λ}. In each

instance of Π protocol, NP and m are fresh and chosen randomly, and a = PRF(NP,NV) is the

output of a pseudo-random function, fed with two fresh random inputs. Therefore, this table is

independent from the secret value skP. �

Attack 5.1.2 P sends to V the slow phase message e to V using directional antenna. Before the

start of the fast phase, P sends the fast challenge-response table ((ai,ai⊕NPi⊕mi) for i = 1...λ)

117

to H, allowing H to respond to V ’s challenges. The collusion of P and H makes V to accept (i.e.,

OutV = 1) and this is without P sending to H any information that is dependent on the secret key

of P (i.e., skP). Note that the secret key of P is required for generation of the message e which will

not be known by H.

According to Lemma 16, the fast challenge-response table does not leak any information about the

prover’s long-term secret skP. Since the helper has no information about skP, it cannot generate a

valid message e in future, as the secret of prover is required to generate it. So its’ success chance

in a future impersonation attack will not be improved. This completes a successful TF attack (See

Property 5.2.4).

Directional TF on TREAD

TREAD [ABG+17] is an anonymous DB system that use a group signature GSignsk() to register

users in an authorized group. The verifier needs to be registered and have a key-pair of their own.

The structure of TREAD is very similar to SPADE. A registered user can use their credentials to

participate in the protocol without leaking their identity, hence ensuring anonymity. Figure 3.15

presents the Π distance bounding protocol of TREAD scheme.

Lemma 17 In the Π protocol of TREAD scheme, the fast challenge-response table leaks no infor-

mation about the secret of prover.

Proof 17 The fast challenge-response table is ri =

αi if ci = 0

βi⊕mi if ci = 1
for i = {1, ...,λ}. In each

instance of Π protocol, β, α and m are fresh and chosen randomly. Therefore, this table is inde-

pendent from the secret value skP. �

Attack 5.1.3 P sends to V the slow phase message e||i fpub to V using directional antenna. Before

the start of the fast phase, P sends the fast challenge-response table ((αi,βi⊕mi) for i = 1...λ) to

H, allowing H to respond to V ’s challenges. The collusion of P and H makes V to accept (i.e.,

118

OutV = 1) and this is without P sending to H any information that is dependent on the secret key

of P (i.e., sk). Note that the secret key of P is required for generation of the message e which will

not be known by H.

According to Lemma 17, the fast challenge-response table does not leak any information about the

prover’s long-term secret sk. Since the helper has no information about sk, its’ success chance in

a future impersonation attack will not be improved, as the secret of prover is required to generate

a valid message e. So its’ success chance in a future impersonation attack will not be improved.

This completes a successful TF attack (See Property 5.2.4).

Concluding Remarks on Directional TF

In all existing anonymous DB protocols, the fast challenge-response table does not determine the

prover’s credential with overwhelming probability. Directional TF attack allows the prover to limit

the view of helper to the fast challenge-response table and so TF succeeds because the leaked

information to the helper, does not allow the helper to succeed in a future attack individually, as

required by the definition of TF attacks (see Property 5.2.4).

5.1.2 Collusion TF on Anonymous DB

In symmetric and public-key DB protocol attacks, collusion of a single registered user and an actor

(non-registered user) is considered. In these DB protocols, there is no need to consider collusion

of multiple registered users, as their keys are generated independently and each protocol session

is linkable to a single user. However in anonymous DB, different user keys are dependent and

protocol sessions are not linkable to a user by verifier. Here we show that in anonymous DB

protocols collusion of multiple registered users must be considered also.

We consider two types of collusion TF attacks:

Attack 5.1.4 In collusion TF type 1 attack, both colluding users are outside the bound and use a

119

helper that is inside the bound (See Figure 5.4).

Attack 5.1.5 In collusion TF type 2, the helper can be a prover of a user, that tries to help the

far-away provers of another user (See Figure 5.5).

Note that in type 2 attack there is a close-by prover P∗2 who can succeed in the protocol by them-

selves. However by colluding with P∗1, can succeed without being traced! (This attack also works

in public-key DB protocols such as [BB04], where users choose their own private-keys, and so can

collude and choose related keys that leads to the success of the above attack.)

H

VP∗1(x1)

P∗2(x2)

B

Figure 5.4: Collusion TF Attack Type 1

P∗2(x2)

VP∗1(x1) B

Figure 5.5: Collusion TF Attack Type 2

Both collusions can be used to increase the success chance of the attacker. Here we show how

Collusion TF Type 2 (Figure 5.5) can break a protocol that is secure against TF in a single-user

security model. As noted in Section 5.1.1, all existing anonymous DB protocols are vulnerable to

single-user TF attack (directional TF) and so to show that protection against single-user TF attack

does not imply security against collusion TF attack, we first modify SPADE protocol to make it

(intuitively) secure against single-user TF attacks (given in Section 5.1.1), and then describe how

a multi-user collusion TF attack succeeds against the modified protocol.

120

SPADE∗ (modified SPADE). We modify the challenge-response table of the SPADE protocol to the

following: ri =

ai if ci = 0

ai⊕ xi if ci = 1
, where x is part of the prover secret-key that is chosen indepen-

dent of skP, and |x| = λ. The verification phase will also be revised to accommodate this change

and allow the verifier can check if the correct parameters are used in the challenge-response ta-

ble. The challenge-response table of SPADE∗ contains the secret-key of the prover, which makes

the protocol intuitively secure against single-user TF attacks (let’s assume that). This if the whole

table is leaked to the helper, the helper can learn the secret key of the (malicious) prover by XOR-

ing the two response bits of each challenge. Now we propose a collusion TF Type 2 (Figure 5.5)

against SPADE∗;

Attack 5.1.6 (Collusion TF Type 2 Attack against SPADE∗) First, P∗1(x1) runs the "Initialization"

phase of SPADE∗ with the verifier from outside the distance bound, and sends a to P∗2(x2). Then

P∗2(x2) runs the challenge-response and verification phase with the verifier from inside the distance

bound with its own credentials (x2).

The intuition for the attack is that the challenge-response table is not linked to the long-term

secret key of the user (group signature key). The verifier sees σ which is the group signature of

the far-away prover P∗1, but runs the distance bounding phase using a key that is not related to

group signature key. Thus the tracing authority will link the session to x1, which is a violation of

TF-resistance (Property 5.2.4).

5.2 Model

Firstly we define the settings of the system, i.e., entities and how they communicate, protocol

and view of an entity, adversary and their capability. Then we provide a definition of anonymous

distance-bounding (AnonDB) and also describe AnonDB experiment, which captures an AnonDB

scheme in execution. Finally, we formalize six security properties (Completeness, MiM-resistance,

121

DF-resistance, Soundness, Traceability, Anonymity) of anonymous distance-bounding systems

based on a game (AnonDB game), which is an AnonDB experiment played between a challenger

and an adversary.

Relation with Public-Key DB Model: This model (Called AnonDB) is an extension of our model

about public-key DB (Section 4.2). The main difference between these models is the fact that

verifier does not know the identity of prover. This fact allows multiple provers to collude in attacks

against the verifier. Moreover, because of anonymity of provers, a new definition of TF attack is

considered.

Entities. There are m users in the system U = {u1, . . . ,um}. Each user in the system can have

multiple provers, which captures the practical scenario of a single person having multiple devices.

We denote the list of provers for a user ui as Pi. Thus, we have m list of provers forming the prover

set P= {P1, . . . ,Pm}.

A trusted group manger generates the public parameters of the system, registers users and issues

a unique group membership certificate to each user. A user ui (1 ≤ i ≤ m) is identifiable by their

certificate. The certificate, that must be kept secret, forms the secret input of the user in proving

their membership in the group. The certificate of user ui is shared by all provers of the list Pi.

We define three types of participants in the system: provers (P), verifiers (V) (a singleton set),

and actors (T), called helpers in TF attack. V and T have access to only the public parameters of

the system. Each participant has a location loc = (x,y) ∈ R×R, that is an element of a metric

space equipped with Euclidean distance, and is fixed during the protocol. The distance function

d(loc1, loc2) returns the distance between any two locations. Message travel time between loca-

tions loc1 and loc2 is d(loc1,loc2)
C , where C is the speed of light. A bit sent over the channel may flip

with probability pnoise (0≤ pnoise ≤ 1). Participants, if located within a predefined distance bound

B from V, are called close-by participants, otherwise they are called far-away participants.

Communication Structure. Each participant is equipped with a directional and an omni-directional

122

antennas. Having directional antennas enables them to choose the angle of the transmission beam

such that only the intended participants receive the message.

View. The view of an entity at any point (in time) of a protocol consists of: all the inputs of the

entity (including random coin tosses) and the set of messages received by that entity up to that

point. Any instance of receiving message is called an event. ViewΓ
x (e) is a random variable that

denotes the view of an entity x right after the event e in protocol Γ. ViewΓ
x denotes the view of x at

the end of the protocol Γ, i.e., ViewΓ
x =ViewΓ

x (elast) where elast is the last event in Γ.

Adversary. An adversary can corrupt any subset of participants X∗ ⊂ P∪V∪T. Corrupting one

prover from a prover subset (e.g., x ∈ P j) effectively corrupts the whole subset, since all members

of that subset share the same certificate (of user u j). Provers of uncorrupted subset follow the

protocol, and only one prover from the subset executes the protocol at a time. We do not restrict

provers of corrupted subset from doing this.

For each security property, the adversary has certain goals, which is reflected as restrictions of X∗;

• in Completeness X∗ = /0,

• in Soundness X∗ ⊆ T,

• in DF-resistance X∗ ⊆ P,

• in TF-resistance and Traceability X∗ ⊆ P∪T, and

• in Anonymity X∗ ⊆ V∪T.

Below we use the approach of [ASN17a] to define AnonDB scheme.

Definition 5.2.1 (Anonymous Distance-Bounding Scheme) For a security parameter λ, an anony-

mous distance-bounding (AnonDB) scheme is defined by a tuple (X,Y,S,B, pnoise,Init,CertGen,

CertVer,Π,Revoke,Open), where;

(I) X and Y are sets of possible system master keys and group public-keys, respectively.

123

Init(1λ) is the function that the group manager uses to generate the system master key msk,

and the group public-key gpk.

(II) S is set of possible user membership certificates.

CertGen(1λ,msk,gpk, i) generates a user membership certificate si, and CertVer(si,gpk)

validates a user’s certificate with respect to the group public-key.

(III) Π is a DB protocol between prover P(si,gpk) and verifier V (gpk), in which V verifies that a

group member is located within the distance bound B to the verifier.

(IV) The transmitted bits of a fast challenge-response round is affected by noise where pnoise ∈

[0,1] is the probability of a bit flip on each fast challenge-response message.

(V) Revoke(msk,gpk, i) is an algorithm that removes a user (ui) from the system and updates

the master secret-key and group public key accordingly.

(VI) Open(msk,ViewΠ

V) is an algorithm that identifies the user (ui) that is involved in the Π pro-

tocol, using view of the verifier.

The operations Open and Revoke are optional in an AnonDB scheme. Note that I−V above is the

same as I−V in DBID scheme (Definition 4.2.1), with the only difference that in DBID, each user

owns a key-pair, while in AnonDB, each user owns a membership certificate that allows them to

prove their membership according to the group public-key.

Adversary’s capability is modeled as their access to queries presented to the challenger. The se-

curity properties of an anonymous DB protocol are based on a game (AnonDB Game) between a

challenger and an adversary. Note that we allow provers to have access to directional antenna

(to captures the directional attack introduced in Section 5.1.1), and presence of multiple, possibly

colluding users (with different secret keys) in the system (to capture multiple user collusion attack

introduced in Section 5.1.2).

Below we describe a general execution of an instance of the AnonDB scheme, which we call AnonDB

124

experiment. And after that, we define AnonDB game as an special AnonDB experiment.

Definition 5.2.2 (AnonDB Experiment) An AnonDB experiment is defined by a tuple (AnonDB;U;

P;V;T), where

(i) AnonDB is an anonymous distance-bounding scheme as defined in Definition 5.2.1.

(ii) U is the set of users that are members of the group; each user u j ∈ U has the following

attributes:

• u j.Cert that is a secret group membership certificate generated by the group manager,

• u j.RT that is the registration time of the user that can be any time, and

• u j.Rev that is a flag that shows if the user is revoked.

(iii) P is the set of provers; each prover has access to the membership certificate of a single user.

(iv) V is the set of verifiers; that have access to the group public-key of the AnonDB system. We

consider the case where V has a single member.

(v) T is the set of actors; each actor has access to the group public key of the AnonDB system.

Members of the set X = P∪V∪T are called participants of the system. Each of the participants

x ∈ X has the following attributes:

a1. x.Loc is the location of the participant,

a2. x.Code is the code to run by the participant,

a3. x.St that is the start time of the x.Code execution, and

a4. x.Corr is a flag indicating if the participant is corrupted or not.

In addition to these attributes, each prover p ∈ P has one extra attribute:

a5. p.Key that is the secret certificate of the corresponding user, i.e., p.Key = u j.Cert for

user u j ∈ U.

125

All the provers that share the same certificate are called a prover subset, i.e., P j = {p : p ∈

P, p.Key = u j.Cert}. The start time of all provers is after registration time of the correspond-

ing user, i.e., ∀u j ∈ U,∀p ∈ P j : p.St > u j.RT .

Members of a prover subset are either all honest or all dishonest. i.e., ∀P j ∈P,∀p∈P j : p.Corr =

f lag, where f lag ∈ {true, f lase}. All members of an honest prover subset p ∈ P j follow the

Π protocol (i.e., p.Code = AnonDB.Π.P(.)) and there is no overlap in the execution time of the

members of an honest prover subset. If the verifier is honest, then it follows the Π protocol (i.e.,

v.Code = AnonDB.Π.V (.) for v ∈ V).

The experiment is run by a simulator that sets the attributes of the participants, and interacts with

the group manager to assign keys to the provers of a user. If there is an adversary in the system, it

interacts with the simulator to influence the experiment.

The experiment, without any adversary, proceeds as follows:

1. Setup:

(a) Initialize: The group manager runs (msk/gpk)← AnonDB.Init(1λ) algorithm to gener-

ate the master secret-key and group public-key.

(b) Generate Players: The simulator forms the sets (U,V,P,T) and sets their attributes.

The simulator interacts with the group manager obtain and assign keys of the provers. It

also simulates the behavior of malicious players by setting their code (x.Code).

2. Run: The simulator starts the execution of x.Code for all participants x ∈ X= P∪V∪T at

time x.St.

We assume the existence of a system clock that assigns time to events. The start and finish time of

a protocol Γ is denoted as stTime(Γ) and f shTime(Γ) respectively, which form the execution time

exTime(Γ) = (stTime(Γ), f shTime(Γ)) as a range of time and the execution length exLen(Γ) =

f shTime(Γ)− stTime(Γ). Members of a prover list (Pi, 1 ≤ i ≤ m) have different execution time

126

period (i.e., they participate in a protocol from time t1 to t2), and possibly different locations.

In the following, we define a game between challenger and an adversary. This game is a limited

AnonDB experiment that is run by the challenger who interacts with an adversary. In this game,

the challenger plays both roles of the simulator and the group manager in the AnonDB experiment

(Definition 5.2.2). The adversary’s capabilities is modeled as access to a query that it presents to

the challenger.

Definition 5.2.3 (AnonDB Game) An AnonDB game between a challenger and adversary is an

AnonDB experiment that is defined by a tuple (AnonDB;U;P;V;T;CorruptParties) where

• AnonDB is an anonymous distance-bounding scheme as defined in Definition 5.2.1.

• U,P,V and T are the sets of users, provers, verifiers and actors, as defined in Def-

inition 5.2.2, that are determined through interaction of the challenger and the ad-

versary.

• CorruptParties(Q) is a query that allows the adversary to plan their attack. Q is

a set of participants, that may exist in the system or be introduced by the adversary.

In more details:

1. Setup:

(a) Initialize: Challenger runs (msk/gpk)← AnonDB.Init(1λ) and publishes gpk. Note

that the execution codes of honest prover and verifier are known by the challenger and the

adversary at this point, and referred as AnonDB.Π.P and AnonDB.Π.V respectively.

(b) Generate Players: The sets (U,V,P,T) are formed through the interaction of the chal-

lenger and the adversary:

i. The challenger creates the sets (U,V,P,T) as follows:

• V= {v}, where:

127

a1. v.Loc = loc0,

a2. v.Code = AnonDB.Π.V ,

a3. v.St = 0, and

a4. v.Corr = f alse.

• U= {u j} j={1,...,m}, where u j.Cert is generated by AnonDB.CertGen(1λ,msk,gpk, j)

function. The registration time of the users are set as u j.RT = 0 and their revocation

flag is set as u j.Rev = f alse.

• P = ∪m
j=1P

j, where P j is created as the prover subset of u j ∈ U. For all p ∈

P
j
{ j=1...m} assigns their attributes:

a1. p.Loc is set arbitrarily,

a2. p.Code = AnonDB.Π.P,

a3. p.St is set arbitrarily such that there is no overlap in the execution time of the

provers in P j,

a4. p.Corr = f alse, and

a5. secret-key p.Key = u j.Cert.

• T = /0

ii. The challenger sends the attributes (x.Loc,x.Code,x.St) for all x ∈ X = P∪V∪T,

along with all prover subsets P j ∈ P to the adversary. The size of the set X is n.

iii. The adversary generates CorruptParties(Q) query and sends to the challenger. The

challenger sends the secret information of the corrupted participants in Q to the adver-

sary and their behavior (Code, Location and Start Time) is assigned according to the

adversary instruction and their corruption flag is set to True. For all values of j = 1...m,

if any prover p ∈ P j gets corrupted, then all provers in P j get corrupted too.

128

iv. Upon receiving the CorruptParties(Q) where Q= {q1, ...,qn′}, the challenger runs:

• For a qi that qi.type= veri f ier, then v.Code= qi.code and v.Corr = true for v∈V.

• For each qi that qi.type = user and qi.usr ≤ m, sets the users’ revocation flag as

u j.Rev = true where j = qi.usr, runs (msk′,gpk′)← Revoke(msk,gpk,qi.usr), then

update the group master key msk← msk′ and the group public key gpk← gpk′. This

applies only if the AnonDB scheme has user revocation.

• For each qi that qi.type = prover, find the prover subset P j for j = qi.usr. For

each member p of subset P j, set their corruption flag p.Corr = true. If qi is not

corresponding to an existing prover, then create a new prover p and add it to the

prover subset P j. Set the attributes of the participant p as follows:

a1. location p.Loc = qi.location,

a2. execution code p.Code = qi.code,

a3. start time p.St = qi.time,

a4. corruption flag p.Corr = true, and

a5. secret-key p.Key = u j.Cert.

• For each qi that qi.type = actor, add a new actor x to the set T, and assign its

attributes as follows:

a1. location x.Loc = qi.location,

a2. execution code x.Code = qi.code,

a3. start time x.St = qi.time, and

a4. corruption flag x.Corr = true.

v. The challenger sends the key of the corrupted provers and the certificate of revoked

129

users to the adversary, i.e., p.Key for all p ∈ P such that p.Corr = true and u.Cert for

all u ∈ U such that u.Rev = true.

2. Run: Challenger activates all participants x ∈ X = P∪V∪T at time x.St for execution of

x.Code.

The game ends when the last participant’s code completes its execution.

We define five properties for anonymous distance-bounding protocols based on AnonDB Game,

conditions to win the game varies from one property to another.

Property 5.2.1 (AnonDB Completeness). Consider an AnonDB scheme and an AnonDB game when

Q = /0 in the CorruptParties(Q) query and the set P is not empty.

The AnonDB scheme is (τ,δ)-complete for 0≤ τ,δ≤ 1, if the verifier returns OutV = 1 with proba-

bility at least 1−δ, under the following assumptions:

• the fast challenge-response rounds are independently affected by noise and at least

τ portion of them are noiseless, and

• τ > 1− pnoise− ε for some constant ε > 0.

A complete protocol must have negligible δ to be able to function in the presence of communication

noises.

Property 5.2.2 (AnonDB Soundness) Consider an AnonDB scheme and an AnonDB game with the

following restrictions:

• for all p in the nonempty set P, and v as the only member of V, we have d(p.Loc,

v.Loc)> AnonDB.B, and

• in the CorruptParties(Q) query we have qi.type = actor for all qi ∈ Q.

The AnonDB scheme is γ-sound if the probability of the verifier outputting OutV = 1 is at most γ.

Lemma 18 A sound scheme according to Property 5.2.2 is resistant against relay attack [BC94],

130

mafia-fraud (Attack 3.1.2), impersonation attack (Attack 3.1.5), strong-impersonation [ASN17a],

and collusion MF.

Proof 18 The first four attacks are already shown to be included in soundness property in Lemma 3.

Here we only show that for collusion MF.

• collusion MF: there is an honest verifier, multiple honest far-away provers, and a

close-by MiM attacker who tries to convince the verifier that one of the provers is

located close to the verifier. The attacker can have a learning phase before running

the attack. The extra restrictions on the adversary in Property 5.2.2 is as follows:

− the set of provers consists of a least two prover subsets, i.e., ∃p1, p2 ∈ P :

p1.Key 6= p2.Key, and

− ∀qi ∈ Q we have d(qi.location,v.Loc)≤ AnonDB.B for v ∈ V.

�

We consider two types of attacks by a dishonest prover: collusion far-away dishonest provers

(Property 5.2.3), and collusion far-away dishonest provers with close-by helpers (Property 5.2.4).

Property 5.2.3 (AnonDB Distance-Fraud) Consider an AnonDB scheme and an AnonDB game with

the following restrictions:

• for all p in the nonempty set P, and v as the only member of V, we have d(p.Loc,

v.Loc)> AnonDB.B, and

• in the CorruptParties(Q) query, qi.type = prover and d(qi.location,v.Loc) >

AnonDB.B for all qi ∈ Q.

The AnonDB scheme is α-DF-resistant if, for any AnonDB.Π protocol in such game, we have

Pr[OutV = 1]≤ α.

In the following we define the TF-resistance of anonymous DB protocols.

Property 5.2.4 (AnonDB Terrorist-Fraud) Consider an AnonDB scheme and an AnonDB game

131

with the following restrictions:

• for all p in the nonempty set P, and v as the only member of V, we have d(p.Loc,

v.Loc)> AnonDB.B,

• corrupted parties are either prover or actor, i.e., ∀qi ∈Q : qi.type∈ {prover,actor},

and

• at least for one value of j ∈ {1...m} we have d(qi.location,v.Loc)> AnonDB.B for

all qi ∈ Q∩P j.

The AnonDB scheme is µ-TF-resistant, if the following holds about the above game: if the verifier

returns OutV = 1 in the Π protocol of game Γ with non-negligible probability κ that is not traceable

to any user with close-by provers (Property 5.2.6), then there is an impersonation attack (as an

AnonDB game Γ′ with honest verifier, no prover and one close-by actor) that takes the view of

close-by participants of game Γ –excluding the verifier– as input, and makes the verifier return

OutV = 1 with probability at least κ−µ in the Π protocol of Γ′ game.

In this definition, any directional message that is sent to the verifier from outside the distance

bound, is not included in the input of the impersonator. Therefore any protocol that is secure

in this property, is also secure against directional TF attacks. Note that this definition captures

collusion TF (Figure 5.4 and Figure 5.5). In anonymous DB, breaking traceability is the only

target of the adversary in collusion TF Type 2. Lemma 19 formally shows this claim.

The above attacks define security of the DB game. Now we define anonymity in terms of the

distinguishing advantage of the adversary between two protocol sessions of two users.

Property 5.2.5 (AnonDB Anonymity) Consider an AnonDB scheme and an AnonDB game with the

following restrictions:

• P= {P1,P2} where the size of each of the sets P1 and P2 is equal to l > 0, and

• in the CorruptParties(Q) query, qi.type ∈ {veri f ier,actor} for all qi ∈ Q.

132

In this game, there are two subsets of honest provers of the same size, the adversary corrupts the

verifier and adds a set of actors and sets their locations. Before activating the participants, the

challenger randomly chooses b ∈R {0,1}l , and deactivates the ith prover in Pb[i], i.e., ∀1≤ i≤ l :

P
b[i]
i .Code =∅.

At the end of the game, A returns b′ ∈ {0,1}l . A protocol is α-anonymous if for any such experi-

ment, for all values of i ∈ {1, ..., l} we have |Pr[b[i] = b′[i]]− 1
2 | ≤ α.

We define traceability as a guarantee for the group manager to be able to identify the users from

their protocol transcripts.

Property 5.2.6 (AnonDB Traceability) Consider an AnonDB scheme and an AnonDB game with the

following restrictions:

• P is nonempty, and

• in the CorruptParties(Q) query, qi.type ∈ {prover,actor} for all qi ∈ Q.

A protocol is called γ-traceable, if the success chance of the AnonDB.Open algorithm in identifying

a user that has a prover in AnonDB.Π protocol, from the transcript that is seen by the verifier, is a

least as high as the chance of verifier outputting OutV = 1 in the AnonDB.Π protocol plus γ. i.e.,

Pr[identi f y user]≥ γ+Pr[OutV = 1].

Note that an AnonDB game considers multiple honest users being active at the same time. There-

fore, all properties are according to collusion scenarios.

Lemma 19 An AnonDB scheme that is µ-TF-resistant according to Property 5.2.4, is µ′-directional

TF-resistant for negligible values of µ and µ′.

Proof 19 The main difference between directional antenna and omni-directional antenna, from

information security perspective, is that omni-directional antenna allows the participants, within

the communication range, to have similar view from the transmitted messages, while the directional

antenna makes the view of those participant to be different.

133

The rationality of Property 5.2.4 is that the higher the chance of future impersonation is, the scheme

is more TF-resistant. So, the goal of a successful directional TF attack is to add the lowest amount

of information to the view of the impersonation attacker.

In a TF attack (Property 5.2.4), all close-by participants, except the verifier, are controlled by the

adversary. So, using any directional antenna to communicate with close-by participants that is

not towards the verifier, is adding the transmitted message to the view of adversary. As a result,

replacing that antenna with an omni-directional antenna does not reduce the knowledge of ad-

versary, and so does not decrease its’ chance in future impersonation. Therefore, we assume the

only communications that are done by directional antenna, are those that are sent directly to the

verifier.

Messages that are sent by directional antenna to the verifier, are not included in the view of imper-

sonation adversary, i.e., ViewΓ

β
. Based on Property 5.2.4, if there is a TF attack against a scheme,

the TF-resistant property guarantees the existence of impersonation attack by taking ViewΓ

β
as

input, which is the minimum view of the adversary from a directional TF attack. Therefore, in

a TF-resistant AnonDB scheme, a successful directional TF attack implies the existence of future

impersonation attack. �

5.3 AnonDB Construction: dbid2anGM

We refer to our AnonDB scheme as dbid2anGM to emphasize conversion of a DBID scheme to an

anonymous DBID. The DBID scheme has to use Goldwasser-Micali encryption system [GM84] for

key generation. We first give an overview of our proposed scheme and then provide the details. In

dbid2anGM, a user is first enrolled in the system and is provided with a verifiable "membership"

certificate. In addition to verifying the membership of a user, the certificate is used to generate a

temporary public-key, which is later used in a public-key DBID protocol. At the end of a successful

execution, the verifier is convinced that a valid member of the group is within the given distance

134

bound.

Recall (Definition 5.2.1) that for a security parameter λ, an anonymous distance-bounding (AnonDB)

scheme is defined by a tuple (X,Y,S,B, pnoise,Init,CertGen,CertVer,Π,Revoke,Open). For

our proposed AnonDB scheme, we denote these operations with dbid2anGM as the prefix of opera-

tion name, i.e., dbid2anGM.Init.

In dbid2anGM.CertGen, the group manager generates a membership certificate for a new user,

and accumulates the certificates of all users to form a public commitment on them. Then the

dbid2anGM.Π protocol takes place as below:

i) a prover of the user ui, i = 1..l, anonymously proves that it owns one of the accumulated

certificates (according to the public accumulated commitment).

ii) a temporary public-key is generated for the prover. The temporary public-key is generated

using Goldwasser-Micali encryption, i.e., we have C[j] = EncGM(xl[j],vl[j]) where for the

j = 1...λ: xl[j] is certificate of the user, vl[j] is a random value chosen by the prover, and

C[j] is temporary public-key. In this paper we refer to EncGM(., .), as CommitGM(., .) function.

This temporary public-key generation is equivalent to the DBIDGM.KeyGen function. After

establishing the temporary public-key, the prover and the verifier run a DBIDGM.Π protocol,

where the prover uses (xl,vl) as input, and the verifier uses C as input.

In our construction of dbid2anGM, we use ProProx [Vau14] as the DBIDGM scheme, which is proven

secure in the model of DBID schemes (directional antenna and single user attacks) [ASN17a].

In this scheme we use a hash function H making randomness for CommitGM, we define a determin-

istic commitment by

ComHe(x,v) := (cx1, ...,cxλ,cv1, ...,cvλ) for x,v ∈ Zλ
2, (5.3.1)

where cx j = CommitGM(x j,H(x, j).H(v, j)e), cv j = CommitGM(v j,H(v, j)), and CommitGM(., .) being

Goldwasser-Micali encryption function (Algorithm 2.6.2). We assume H(0, i) = 1 for all values

135

of i ∈ {1...λ}, and also assume that ComHe is a one-way function (Same assumption is made in

[Vau14, Section 4.1]).

Now we provide the details of the operations:

5.3.1 (msk,gpk)← Init(1λ)

The group manager initiates the system as follows:

• Initialize Goldwasser-Micali cryptosystem: (p,q,N,θ)← DBIDGM.Init(1λ) for λ bit secu-

rity choose N = p.q for random prime values of p and q, and θ as a quadratic residue modulo

N. Private: (p,q) and Public: (N,θ).

• Initialize RSA cryptosystem for the same N: generate (d,e) such that gcd(e,φ(N)) = 1 and

d = e−1(mod φ(N)). d is private and e is public.

The group master key is msk = (p,q,d,U) where U is the list of all user private-keys, initialized

to U = /0. The group public-key is gpk = (e,N,θ, ŷ, ỹ,Ξ) where ŷ is commitment accumulation

vector of user private-keys, ỹ is signature vector of group manager on ŷ and Ξ is the list of all user

membership signatures. These are initialized to ŷ = ỹ = [0]λ and Ξ = /0.

5.3.2 (s,msk′,gpk′)← CertGen(msk,gpk)

The group manager first generates a certificate s = (xl,σl) and sends it to a new user (xl is called

user private-key, and σl is called user membership signatures). And second, the system master

key and public-key get updated accordingly, i.e., msk← msk′ and gpk← gpk′. The details is as

follows, assuming l−1 users have already joined the group:

1. randomly choose xl ∈ Zλ
2 ,

2. yl =ComHe(xl,0) using Equation 5.3.1.

136

3. ∀ j ∈ {1, . . . ,λ}:

• sign σl[j] = (yl[j])d ,

• accumulate jth bit of all user private-keys into a single bit x̂[j] = x1[j]⊕ . . .⊕xl[j],

• accumulate hash values v̂[j] = ∏1≤i≤l H(xi, j), and

• commit to accumulated values ŷ[j] = CommitGM(x̂[j], v̂[j]) = θx̂[j]v̂[j]2 mod N.

4. Sign accumulated values ỹ = [ŷ[1]−d, ..., ŷ[λ]−d].

The updated group master key is msk′ = (p,q,d,U) where U = {x1, ...,xl}, and the updated group

public-key is gpk′ = (e,N,θ, ŷ, ỹ,Ξ) where Ξ = {σ1, ...,σl}. The certificate s = (xl,σl) is securely

sent to the new user.

5.3.3 accept/re ject← CertVer(s,gpk)

Upon receiving a certificate s = (x,σ), the user can check its validity. By reading the group public-

key gpk = (e,N,θ, ŷ, ỹ,Ξ), the user calculates y = ComHe(x,0) and checks y[j] ?
= (σ[j])e mod N,

for j = {1...λ}.

5.3.4 accept/re ject←Π{P(s,gpk)↔V (gpk)}

When a prover (Pl) of a registered user wants to run the AnonDB.Π protocol with the verifier, they

will follow the protocol described in Figure 5.6. The protocol consists of two main steps. The first

step is a message from the prover to the verifier (y′,π) that generates a temporary public-key (C),

and then provides a non-interactive zero-knowledge (NIZK), which proves that the prover knows

the privates related to the temporary public-key C. Note that in the non-interactive zero-knowledge

proof, the verifier does not send any message to the prover [BFM88, BG90]. The second step is

running the DBIDGM.Π protocol.

137

P V
(secret: x,σ)(public: e, ỹ) (public: e, ŷ)

• v ∈R Zλ
2,∀ j ∈ {1, . . . ,λ}: v′[j] = H(x, j).H(v, j)e and v′[λ+ j] = H(v, j), then y′[j] =

σ[j].ỹ[j].H(v, j)2 and y′[λ+ j] = CommitGM(v[j],H(v, j))

y′ = [y′[j]] j=1..2λ

∀ j ∈ {1, . . . ,λ}: check y′[j] /∈ {0,1, ŷ[j]}, then check C[j] 6= 1 for C[j] = •
(y′[j])e.ŷ[j] mod N = CommitGM(x[j],v′[j]), and C[λ+ j] = y′[λ+ j]

• ∀ j ∈ {1, . . . ,λ} π j = NIZK(x[j],v′[j] : C[j] = CommitGM(x[j],v′[j]))
π = [π j] j=1..2λ

Veri f yNIZK(C,π) •
DBIDGM.Π(x||v)(C)

OutV

Figure 5.6: Π protocol in dbid2anGM scheme. C =ComHe(x,v) using Equation 5.3.1.

5.3.5 (l)← Open(msk, transcript)

The tracing authority who holds the group master key msk, uses the verifier’s view of a successful

run of Π with the prover Pl , and returns index of the corresponding user in U. The algorithm runs

as follows, knowing that the group master key is msk = (p,q,d,U = {x1, ...,xm}):

1. ŷd = [ŷ[1]d, ..., ŷ[λ]d].

2. Parse verifier’s view of the protocol to obtain y′ and C.

3. Return the first i ∈ {1, . . . ,m} that all the following holds:

• for all j ∈ {1, . . . ,λ} calculate v′j from v′j
2 = y′[j].ŷ[j]d.(yi[j])−d (e.g. using Chi-

nese Remainder Theorem, assuming that v′j
2 is quadratic residue and the factorization

of N is known),

• then find v[j] = H(xi, j).v′j
e or v[j] = H(xi, j).(−v′j)

e, and

138

• check C[j] ?
= CommitGM(xi[j],v[j]).

5.3.6 (msk′,gpk′)← Revoke(msk,gpk, l)

In this operation, the entity holding the group master key msk, updates the group master key and

the group public key such that the provers of lth user (l ∈ {1...m}) cannot succeed in any Π protocol

anymore. The algorithm runs as follows, knowing that the group master key is msk = (p,q,d,U =

{x1, ...,xm}) and the group public key is gpk = (e,N,θ, ŷ, ỹ,Ξ) where Ξ = {σ1, ...,σm};

1. ∀ j ∈ {1, . . . ,λ}:

• x̂[j] = x1[j]⊕ . . .xl−1[j]⊕ xl+1[j]⊕ . . .⊕ xm[j],

• v̂[j] = ∏i∈{1,...,l−1,l+1,...m}H(xi, j),

• ŷ′[j] = CommitGM(x̂[j]; v̂[j]) = θx̂[j]v̂[j]2 mod N,

• ỹ′[j] = ŷ′[j]
−d

, and

2. Ξ′ = Ξ\{σl}.

After this operation, the group master key is msk′ = (p,q,d,U = {x1, ...,xl−1,xl+1, ...,xm}) and the

group public key is gpk′ = (e,N, ŷ′, ỹ′,Ξ′).

5.3.7 Security Analysis

In this section we provide the security analysis of dbid2anGM protocol, assuming that the adopted

DBID protocol is secure.

Theorem 3 (dbid2anGM Security Properties) If (i) the DBIDGM scheme is (τ,δ)-complete, γ′-

sound, θ-DF-resistant, µ′-TF-resistant and DBIDGM.Π is zero-knowledge, and (ii) the temporary

public-key (C) and the private key (xl,vl) of DBIDGM.Π are related as C = EncN(xl,vl) where

EncN(., .) is the Goldwasser-Micali encryption algorithm for modulus N with λ-bit security,

139

then dbid2anGM is an AnonDB scheme that is (τ,δ)-complete (Property 5.2.1), θ-DF-resistant

(Property 5.2.3), γ-Sound (Property 5.2.2), µ-TF-resistant (Property 5.2.4), α-anonymous (Prop-

erty 5.2.5) and γ-traceable (Property 5.2.6), for negligible values of α, δ, γ, γ′, µ, µ′ and θ, assuming

that quadratic residuosity, factorization and RSA problems are hard problems.

In the following, we prove each of the properties of the theorem in a separate lemma. We prove

security properties of the protocol based on the model described in Section 5.2. The underlying

DBIDGM protocol provides single user directional antenna security [ASN17a]. The main challenge

for the new model is to prove collusion security.

Lemma 20 (Completeness) dbid2anGM is a (τ,δ)-complete AnonDB (Property 5.2.1) scheme, if

the DBID scheme is (τ,δ)-complete.

Proof 20 Consider an AnonDB game with dbid2anGM scheme, in which the provers and the verifier

are honest. In each dbid2anGM.Π protocol, the steps before the DBID.Π protocol succeed. The

DBID.Π protocol succeeds with probability at least δ, since the DBID scheme is (τ,δ)-complete.

Therefore, the dbid2anGM.Π succeeds with probability at least δ, which implies (τ,δ)-completeness

of dbid2anGM scheme. �

Lemma 21 (DF-resistance) dbid2anGM is a θ-DF-resistant AnonDB (Property 5.2.3) scheme, if

the DBID scheme is θ-DF-resistant.

Proof 21 In this proof, we reduce any successful AnonDB DF adversary to a successful DBID DF

adversary. Consider an AnonDB game with dbid2anGM scheme, in which the provers are far-away

and the verifier is honest. In each AnonDB.Π protocol, the verifier gets a temporary public-key and

then participates in a DBID.Π protocol with that temporary public-key. Note that dishonest provers

of a single user can operate simultaneously, that implies they can generate different temporary

public-keys at the same time in different DBID.Π protocols. Therefore, having multiple users in the

system does not increase the chance of adversary against the DBID scheme.

Let’s consider the case that the verifier is simultaneously interacting with multiple provers (either

140

from one user or more) in different AnonDB.Π protocols. We assume all the temporary public-key

generations are successful. As a result, the verifier has access to a list of public-keys {C}, and

provers have access to the corresponding secret-key x and the related randomness ∆. The relation

between a public-key, secret-key and the corresponding randomness is C = Enc(x||∆,r), where

Enc is the Goldwasser-Micali encryption algorithm and r is pseudo-random.

After generation of the temporary public-keys, the adversary runs different DBID.Π protocols si-

multaneously with the verifier. Since the DBID scheme is θ-DF-resistant, then for all instances of

DBID.Π protocols, the acceptance chance of the verifier is limited by negligible value θ. As a result,

the acceptance chance of the dbid2anGM.Π protocol is limited by θ too. Note that the DF-resistant

property of DBID scheme is considering collusion scenario. �

Lemma 22 (TF-resistance) dbid2anGM is a µ-TF-resistant AnonDB (Property 5.2.4) scheme, if the

DBIDGM scheme is µ′-TF-resistant for negligible values of µ and µ′.

Proof 22 According to the TF-resistance definition, we need to show that for dbid2anGM scheme,

if there is a successful TF attack that is not traceable to any close-by prover, then one can imper-

sonate the far-away prover with the view of all close-by participants, excluding the verifier. This is

by assuming that the underlying DBIDGM.Π scheme is single-user TF-resistant.

We divide the dbid2anGM.Π protocol into two parts: (i) temporary public-key generation, that is

before the DBID.Π protocol, and (ii) the DBIDGM.Π protocol. In the first part, the verifier receives a

message y′ that allows it to calculate a temporary public-key C as a commitment on secret x and

random v. And then in the second part, the two parties run the DBIDGM.Π protocol based on the

provided public-key C.

In any valid transcript that uses y′ as the first commitment, the sub-transcript from the DBIDGM.Π

is a valid transcript according to the temporary public-key C, where for all values j = 1..λ we

have C[j] = CommitGM(x[j],H(x, j).H(v, j)e) and C[λ+ j] = CommitGM(v[j],H(v, j)). Because of

the binding property of commitment scheme CommitGM(,), finding any x′ 6= x such that C[j] =

141

CommitGM(x′[j],r) for all j = 1..λ is negligible, for any value of r. This implies finding any x′ 6= x

such that C = ComHe(x,v) is negligible. Therefore, succeeding in the DBIDGM.Π sub-protocol with

any prover input x′ 6= xl is negligible.

Collusion TF: The only difference between a close-by prover of another user with a close-by actor,

is the possession of secret value (xi,σi). The value of σi never gets used by the close-by prover,

because it makes the session to be traceable to the close-by prover, which is not a TF attack based

on definition. So we can consider the close-by prover owns the value xi, while in a normal TF

attack the close-by actor owns nothing (or a random value x′i). Since xi is randomly chosen by

the group manager in CertGen operation, the statistical difference between xi and x is the same

as the statistical difference between x′i and x. Therefore, possession of xi or x′i by a close-by party

in helping the TF attack against DBIDGM.Π sub-protocol with public-key C, makes no difference in

success chance of the attack. So we can replace the close-by prover of another user with an actor.

Let’s consider a successful TF attack J that succeeds with non-negligible probability κ. If the tran-

script is traceable to a close-by prover, this is not an attack according to the definition. Now we

consider success chance of attack when no close-by prover is traceable. Since J generates a tran-

script that is valid with probability κ, then the sub-transcript from DBIDGM.Π is valid with at least

probability κ. And according to the TF-resistance property of DBIDGM.Π, there is an impersonator

Edbid for the DBIDGM.Π protocol that succeeds with probability κ− µ for negligible µ. Edbid takes

the view of all close-by participants in the attack J, excluding the verifier, as input.

Impersonation: First we use Edbid to extract the secret x, then find the related σ as the first value

in the public list Ξ that accept ← CertVer(x,σ,gpk). By having (x,σ) one can impersonate the

prover.

Note that the key extraction x from impersonator Edbid , depends on the construction of DBIDGM.Π

protocol. In zero-knowledge based models, such as ProProx [Vau14], the impersonator Edbid

extracts the key x itself. However, in identification based models, Edbid generates a valid Σ-protocol

142

transcript, i.e., (A, [c], [r]) for random [c]. Here we use the following technique to extract the key:

We divide Edbid into two parts: J1 is from the beginning of attack up to after the verifier receives

A, and J2 is after that till the end. The first part J1 is run independent from the verifier, and the

challenge values [c] are randomly chosen by the verifier, where [c] is n bits.

Key extractor: Run J1 once, followed by polynomial ` times of J2. Before running J2 at any time,

we rewind the memory state of the algorithm to the end of J1. This generates the set Σ with `

transcripts (each valid with probability κ−µ), where [c] is randomly generated for each of them.

If ` is chosen polynomially large enough in n, then for every fast-phase challenge-response bit of

[c], there are at least two valid transcripts that have different values on that bit. An index i is called

bad index, if no pair of transcripts in Σ have complementary values in this challenge index, which

happens with negligible probability 2−`. This allows us to extract the whole fast-phase challenge-

response table with probability at least κ−µ−λ.2−`, where λ <= n is the length of the table (and

size of key x). Finally by having the table, we can find the key x. �

Lemma 23 (Soundness) dbid2anGM is a γ-sound AnonDB (Property 5.2.2) scheme for γ = negl(λ)

if DBID.Π is negl(λ)-sound and zero-knowledge, assuming that quadratic residuosity, factorization

and RSA problems are hard problems.

Proof 23 Before starting the proof, we need to note that since the dbid2anGM scheme does not

have user revocation, then the corruption query of adversary only consists of actors. i.e., there is

no user in the corruption query.

According to the AnonDB game settings, we have some prover subsets P j ∈ P that there is no

overlap in the execution time of any list P j, however the provers of two different subsets P j 6= Pi

can run simultaneously. The corrupted actors of T are controlled by the adversary.

In this game, the adversary succeeds if among all the successful AnonDB.Π protocols (Πsucc set),

at least one of the following conditions hold:

143

(i) ∃π ∈Πsucc,∀p ∈ P : t = f shTime(π), t /∈ [p.St, p.St + exLen(p.Code)]

(ii) ∃p∈P,∃π∈Πsucc,v∈V : t = f shTime(π), t ∈ [p.St, p.St+exLen(p.Code)]∧d(p.Loc,v.Loc)>

AnonDB.B.

In this proof, we calculate the success chance of the adversary in both conditions.

First we specify the view and effect of the adversary; as a Σ∗-protocol (Definition 2.4.4), the honest

parties expect three types of messages in the following order: (1) commitment A, (2) challenge

sequence [c], and (3) response sequence [r]. In protocol dbid2anGM.Π each of these messages are

as follows:

(1) A = DBID.Π.A,

(2) [c] = DBID.Π.c, and

(3) [r] = (DBID.Π.r,y′,π).

Based on the definition, the adversary is able to modify or generate any of these messages. Now

we consider the two winning conditions of the adversary:

Win Condition (i): No prover. The first condition for the adversary is equivalent to generating

a valid transcript (A, [c], [r]) with random challenges ([c]), without the help of any prover. In order

to succeed, A needs to successfully pass the DBID.Π protocol, i.e., generate a valid transcript

(DBID.Π.A,DBID.Π.c,DBID.Π.r) for public-key C[j] = (y′[j])e.ŷ[j] mod N and C[j + λ] = y′[j + λ]

for j = 1...λ, where y′ is included in [r].

A has to choose the value of y′ in a way that the components of derived temporary public-key

C[j] = CommitGM(X ,Z) for j = 1...λ is known to the them, as otherwise the success chance of

generating a valid ZKP π ∈ [r] is negligible. Therefore, A needs to find a tuple (x = X ,y′ = Y,∆ =

Z) such that it holds in the following relation with the public parameters: CommitGM(X [j],Z[j]) =

(Y [j])e.ŷ[j] mod N for j = 1...λ. In order to succeed, A needs to solve at least one of the following

144

problems; (a) find some information about the secret of a registered user, or (b) forge the tuple

(X ,Y,Z) such that X is independent from the secret of any registered user.

Case (i.a) We want to find the probability of any information leakage in dbid2anGM.Π experi-

ment. The provers sends three pieces of information that is dependent to the secret: DBID.Π.r,

y′, and π. The message π is zero-knowledge with independent randomness by definition and

same about the DBID.Π protocol according to the assumptions, so we can remove them from the

view of A.

As a result, we only need to find the probability of information leakage in the message y′.

Since the message y′ perfectly pads the private certificate values with fresh randomness, so

the collection of multiple messages of y′ does not help the adversary to leak any information

about the secrets (x,σ). Therefore the adversary is limited to break the computational hiding

of CommitGM(X ,Y) = θXY 2 mod N function in order to find the committed values. Note that

each bit of the secrets (x,σ) are independent in the protocol, so A’s chance in gaining any

information about the secrets is negligible.

Case (i.b) A has to find a tuple (X ,Y,Z) such that Y [j]e = CommitGM(X [j],Z[j])
ŷ j

= θX [j].Z[j]2
ŷ j

for

j = 1...λ. Note that the adversary have seen many values of Y in the learning phase, without

knowing the related values of X and Z. Moreover, the learning phase values of Y look random

to the adversary as they are perfectly padded by fresh randomness. So we can remove them

from the view of adversary, which makes the view of adversary to be completely random (i.e.,

ViewA = /0).

As a result, in order to find this tuple, A has to solve this equation that needs solving at least

one of the following three hard problems:

• Finding Y [j] as eth root of θX [j].Z[j]2
ŷ j

.

• Finding Z[j] as square root of ŷ[j].Y [j]e

θX [j] .

145

• Finding X [j] as discreet log of ŷ[j].Y [j]e

Z[j]2 .

Therefore, all possible ways of soundness adversary to succeed under the condition (i) have negli-

gible chance.

Win Condition (ii): Far-away provers. In the following we consider the condition (ii) by as-

suming that the adversary has no information about the secret of any of the provers involved in the

AnonDB game. Without loss of generality, we assume there are only two active provers with two

different secrets ((x1,σ1) and (x2,y2)). Since the provers are honest, then they generate two inde-

pendent values for y′1 and y′2 as each one is padded with fresh randomness. Let’s assume there is a

MiM adversarial algorithm A, in which the provers have (x1,∆1) and (x2,∆2) as their secret in the

DBID.Π protocols and the verifier accepts with non-negligible probability, while C is the temporary

public-key that the verifier calculates. Here we consider two cases; (a) there exists b ∈ {1,2} that

C =ComHe(xb,∆b), (b) otherwise:

Case (ii.a) Without loss of generality, we assume C = ComHe(x1,∆1). Now let’s consider the

DBID.Π sub-protocol in this setting. We name the related sub-procedure of A that runs dur-

ing the DBID.Π protocol, as ADBID. Since dbid2anGM.Π includes the DBID.Π protocol, then the

acceptance of the verifier in a dbid2anGM.Π session implies the acceptance of the DBID.Π sub-

protocol. Therefore, the ADBID algorithm is a successful MiM adversary for the DBID protocol

with non-negligible success chance. This is in contradiction with the negl(λ)-soundness prop-

erty of the DBID protocol.

Case (ii.b) Since both of the active provers generate non-interactive-ZKP for a different public-

key value than C, then the adversary cannot send those proofs to the verifier, because both

Veri f y(C,π1) and Veri f y(C,π2) fail. Therefore, the adversary has to generate a different π

such that Veri f y(C,π) succeeds. This implies that the related secret (x,∆) is different from the

secrets of the two far-away provers. As a result, in the sub-experiment of the DBID.Π protocol,

the two far-away provers are counted as actors. Therefore, any non-negligible success chance

146

in the DBID.Π protocol is in contradiction with the negl(λ)-soundness property of the DBID

protocol.

Therefore, all possible ways of soundness adversary to succeed under the condition (ii) have neg-

ligible chance. �

In above attacks, security against collusion attacks is obtained by simulating the credentials of extra

users without having considerable impact on the success chance of the attacker, hence reducing the

security to the case of single-user security model. To capture directional TF attack, we reduce the

view of the impersonator messages that are sent directly to the helper.

Lemma 24 (Anonymity) dbid2anGM is an α-anonymous AnonDB (Property 5.2.5) scheme for α=

negl(λ), if the DBIDGM scheme is zero-knowledge.

Proof 24 We consider users U= {u1,u2} where ub = (xb,σb) for b ∈ {1,2}, and two prover sub-

sets of the same size (i.e., P= P1∪P2 and |P1|= |P2|= n). There is no overlap in the execution

time of any prover subset P j, however the provers of two different subsets P j 6= Pi can run simul-

taneously. The corrupted actors T and the verifier V are controlled by the adversary. The view of

the adversary at the end of this game is: ∀i ∈ {1, ...,n},bi ∈R {1,2} : (y′bi
,πi,ViewDBIDGM.Π

A).

The values πi and ViewDBIDGM.Π
A are the outputs of the two zero-knowledge protocols. Therefore,

there is an efficient simulator S that can simulate both of these values without having access to

the secrets (xbi,vi), without decreasing distinguishing advantage of adversary by a non-negligible

amount. We thus consider the simulated view of adversary as: bi ∈R {1,2} : y′bi
for i = 1...n.

However, Since each element of y′bi
is padded with a fresh pseudo-random (i.e., padded with

H(x, j).H(v, j)e for 1 ≤ j ≤ λ and H(v, j) for λ < j ≤ 2λ, where v is random), the simulated

view of the adversary computationally looks random (i.e., ViewA = /0) and guessing bi will remain

random. �

Lemma 25 (Traceability) dbid2anGM is a γ-traceable AnonDB (Property 5.2.6) scheme for γ =

negl(λ).

147

Proof 25 Consider an AnonDB game with dbid2anGM scheme, in which the verifier are honest. In

each dbid2anGM.Π protocol that the verifier accepts, the Open algorithm identifies the user, unless

the prover doesn’t use the certificate of a user (i.e., forgery), which has negligible probability

according on soundness property (Lemma 23). So we have Pr[identi f y user]≥ γ+Pr[Π succeeds],

which implies negl(λ)-traceability. �

5.4 AnonDB Construction: dbid2anP

In this section we show how the approach in Section 5.3 can be used on a public-key protocol with

a different cryptosystem to construct another AnonDB scheme.

We refer to our AnonDB scheme as dbid2anP to emphasize conversion of a DBID scheme to an

anonymous DBID. The DBID scheme has to use Pedersen commitment scheme [Ped92] for key

generation. We first give an overview of our proposed scheme and then provide the details. In

dbid2anGM, a user is first enrolled in the system and is provided with a verifiable "membership" cer-

tificate. The membership certificate is generated by a CLSig signature scheme (Definition 2.6.4),

such as BBS+ [CL04].

In addition to verifying the membership of a user, the certificate is used to generate a temporary

public-key, which is later used in a public-key DBID protocol. At the end of a successful execution,

the verifier is convinced that a valid member of the group is within the given distance bound.

Recall (Definition 5.2.1) that for a security parameter λ, an anonymous distance-bounding (AnonDB)

scheme is defined by a tuple (X,Y,S,B, pnoise,Init,CertGen,CertVer,Π,Revoke,Open). For

our proposed AnonDB scheme, we denote these operations with dbid2anP as the prefix of oper-

ation name, i.e., dbid2anP.Init. Note that dbid2anP scheme does not have Open and Revoke

operations.

In dbid2anP.CertGen, the group manager generates a membership certificate for a new user, by

148

running the BSign protocol of CLSig signature scheme. Then dbid2anP.Π protocol takes place as

below:

(i) a prover of the user ui, i = 1..l, anonymously proves that it owns a membership certificate

signed by group manager, by running the SPK protocol of CLSig signature scheme.

(ii) a temporary public-key is generated for the prover. The temporary public-key is generated

by using Pedersen commitment, as a result of SPK protocol. So we have C =CommitP(x,∆)

where x is secret of the user, ∆ is a random value chosen by the prover, and C is temporary

public-key. This temporary public-key generation is equivalent to the DBIDP.KeyGen func-

tion. After establishing the temporary public-key, the prover and the verifier run a DBIDP.Π

protocol, where the prover uses (x,∆) as input, and the verifier uses C as input.

In our construction of dbid2anP, we use POXY (Section 4.3) as the DBIDP scheme, which is proven

secure in the model of DBID schemes (directional antenna and single user attacks).

Now we provide the details of the operations:

5.4.1 (msk,gpk)← Init(1λ)

The group manager initiates the system as follows:

• Initialize Pedersen commitment: (msk, pk, p)← CLSig.KeyGen(1λ) for λ bit secu-

rity choose large prime p. Private: (msk) and Public: (pk, p).

The group master key is msk; the group public-key is gpk = (pk, p,Ξ), where Ξ is the list of all

user membership signatures that is initialized to Ξ = /0.

5.4.2 (s,msk′,gpk′)← CertGen(msk,gpk)

The group manager generates a membership certificate (s = (x,σ)) and sends securely to the new

user.The public parameters of the system are updated accordingly, i.e., msk← msk′ and gpk←

149

gpk′. The details are as follows:

1. randomly chooses x ∈ CLSig.M, and

2. sign x using σ← CLSig.Sign(x,msk).

The group master key stays unchanged and is msk′ = msk. The updated group public-key is gpk′ =

(pk, p,Ξ′) for Ξ′ = Ξ∪σ. The certificate s = (x,σ) is securely sent to the new user.

This operation can also be implemented as a protocol between the user and group manager, i.e.,

CertGen{U(gpk)↔ GM(msk,gpk)}. The steps of protocol would be as follows

1. U randomly chooses x ∈ CLSig.M, and

2. U and GM run the blind signature protocol CLSig.BSign{U(x, pk, p)↔GM(msk)}.

At the end of this protocol, both the user and the group manager output a signature

σ on the message x.

5.4.3 accept/re ject← CertVer(s,gpk)

Upon receiving a certificate s = (xl,σl), the user can check its validity. By reading the group

public-key gpk = (pk, p,Ξ) for Ξ = {σ1, ...,σl}, the user checks if σ is included in Ξ and verifies

its’ validity using accept← CLSig.Verify(x,σ, pk, p) function.

5.4.4 accept/re ject←Π{P(s,gpk)↔V (gpk)}

When a prover (Pl) of a registered user wants to run the AnonDB.Π protocol with the verifier, they

will follow the protocol described in Figure 5.7. The protocol consists of two main steps. The

first step is a message from the prover to the verifier (π) that includes a temporary public-key C on

prover’s secret x and a non-interactive CLSig.SPK which proves that the prover knows a signature

of the group manager on the secret x without leaking information about the secret or the signature.

The second step is running the DBIDP.Π protocol.

150

P V
(secret: x,σ)(public: pk) (public: pk)

CLSig.SPK:

(∆,π)← SPK(1λ,x,σ) π

where C = CommitP(x,∆) accept← Verify(π, pk)
C← π

DBIDP.Π(x,∆)(C)

OutV = 1 if Π succeeds, OutV = 0 otherwise

OutV

Figure 5.7: Π protocol in dbid2anP scheme for the lth user. CommitP(x,∆) is the Pedersen com-

mitment function as CommitP(x,∆) = gxh∆ mod p (Algorithm 2.6.1). Note that we are using a

non-interactive protocol CLSig.SPK, which allows us to break down the protocol into two pieces

CLSig.SPK= (SPK,Verify). Note that the value of C is embedded inside π, and we use the nota-

tion C← π to indicate the extraction of C from π. An instance of DBIDP.Π sub-protocol is shown

in Figure 4.5.

5.4.5 Security Analysis

In this section we provide the security analysis of dbid2anP protocol, assuming that the adopted

DBID protocol and CLSig schemes are secure.

Theorem 4 (dbid2anP Security Properties) If (i) the DBIDP scheme is (τ,δ)-complete, γ′-sound,

θ-DF-resistant, µ′-TF-resistant and DBIDP.Π is zero-knowledge protocol, (ii) CLSig scheme is

complete, unforgeable, sound, and zero-knowledge with non-interactive SPK protocol based on the

CLSig model (Definition 2.6.4), and (ii) the temporary public-key C and the secret key x of DBIDP.Π

are related as C = CommitP(x,∆) for a known value of ∆ to prover, where CommitP(., .) is Pedersen

commitment,

151

then dbid2anP is an AnonDB scheme that is (τ,δ)-complete (Property 5.2.1), θ-DF-resistant (Prop-

erty 5.2.3), γ-Sound (Property 5.2.2), µ-TF-resistant (Property 5.2.4), and α-anonymous (Prop-

erty 5.2.5), for negligible values of α, δ, γ, γ′, µ, µ′ and θ, assuming that the discrete logarithm is a

hard problem.

In the following, we prove each of the properties of the theorem in a separate lemma. We prove

security properties of the protocol based on the model described in Section 5.2. The underlying

DBIDP protocol provides single user directional antenna security. The main challenge for the new

model is to prove collusion security.

Lemma 26 (Completeness) dbid2anP is a (τ,δ)-complete AnonDB (Property 5.2.1) scheme, if the

CLSig scheme is complete and the DBID scheme is (τ,δ)-complete.

Proof 26 Consider an AnonDB game with dbid2anP scheme, in which the provers and the verifier

are honest. In each dbid2anP.Π protocol, since the CLSig scheme is complete, then the verifier

accepts in the CLSig.SPK protocol and receives the correct value of C. Since the DBID scheme is

(τ,δ)-complete, then the verifier accepts the DBID.Π protocol with probability at least δ. Therefore,

the dbid2anP scheme is (τ,δ)-complete. �

Lemma 27 (DF-resistance) dbid2anP is a θ-DF-resistant AnonDB (Property 5.2.3) scheme, if the

DBID scheme is θ-DF-resistant.

Proof 27 In this proof, we reduce any successful AnonDB DF adversary to a successful DBID DF

adversary. Consider an AnonDB game with dbid2anP scheme, in which the provers are far-away

and the verifier is honest. In each AnonDB.Π protocol, the verifier gets a commitment and then

participates in a DBID.Π protocol with that commitment. Note that dishonest provers of a single

user can operate simultaneously, that implies they can generate different commitments at the same

time in different DBID.Π protocols. Therefore, having multiple users in the system does not increase

the chance of adversary.

Let’s consider the case that the verifier is simultaneously interacting with multiple provers (either

152

from one user or more) in different AnonDB.Π protocols. We assume all the commitment gener-

ations are successful. As a result, the verifier has access to a list of commitments {C}, and the

provers have access to the corresponding secret-key x and the related randomness ∆. The relation

between a commitment, secret-key and the corresponding randomness is C = CommitP(x,∆), where

CommitP is the Pedersen commitment.

After generation of the commitment, the adversary runs different DBID.Π protocols simultaneously

with the verifier. Since the DBID scheme is θ-DF-resistant, then for all instances of DBID.Π pro-

tocols, the acceptance chance of the verifier is limited by negligible value θ. As a result, the

acceptance chance of the dbid2anP.Π protocol is bounded by θ too. Note that the DF-resistant

property of DBID scheme is considering collusion scenario. �

Lemma 28 (TF-resistance) dbid2anP is a µ-TF-resistant AnonDB (Property 5.2.4) scheme, when

there is no close-by prover, if the DBID scheme is µ′-TF-resistant for negligible values of µ and µ′.

Note that since there is no traceability in dbid2anP scheme, then the case of having the special

case of TF attack as an AnonDB game (Property 5.2.4) with far-away provers of user u1 and close-

by provers of user u2 is meaningless. Therefore, as stated in this lemma, we do not consider any

close-by prover, which means the only close-by participants are actors and the verifier.

Proof 28 According to the TF-resistance definition, we need to show that for dbid2anP scheme,

if there is a successful TF attack, then one can impersonate the far-away prover with the view of

all close-by participants, excluding the verifier. This is by assuming that the underlying DBIDP.Π

scheme is single-user TF-resistant.

We divide the dbid2anP.Π protocol into two parts: (i) temporary public-key generation that is by

CLSig.SPK protocol, and (ii) the DBID.Π protocol. In the first part, the verifier receives a message

π that allows it to extract a temporary public-key C as a commitment on secret x. And then in the

second part, the two parties run the DBIDP.Π protocol based on the provided public-key C.

In any valid transcript that uses π as the first commitment, the sub-transcript from the DBIDP.Π

153

is a valid transcript according to the temporary public-key C, where C = CommitP(x,∆). Note

that because of the binding property of commitment scheme CommitP(,), finding any x′ 6= x such

that C = CommitP(x′,r) is negligible, for any value of r. Therefore, succeeding in the DBIDP.Π

sub-protocol with any prover input x′ 6= x is negligible.

Let’s consider a successful TF attack J that succeeds with non-negligible probability κ. Since J

generates a transcript that is valid with probability κ, then the sub-transcript from DBIDP.Π is valid

with at least probability κ. And according to the TF-resistance property of DBIDP.Π, there is an

impersonator Edbid for the DBIDP.Π protocol that succeeds with probability κ−µ for negligible µ.

Edbid takes the view of all close-by participants in the attack J, excluding the verifier, as input.

Impersonation: first we use Edbid to extract the secret x, then find the related σ as the first value

in the public list Ξ that accept ← CertVer(x,σ,gpk). By having (x,σ) one can impersonate the

prover.

We divide Edbid into two parts: J1 is from the beginning of attack up to after the verifier receives

A, and J2 is after that till the end. The first part J1 is run independent from the verifier, and the

challenge values [c] are randomly chosen by the verifier, where [c] is n bits.

Key extractor: run J1 once, followed by polynomial ` times of J2. Before running J2 at any time,

we rewind the memory state of the algorithm to the end of J1. This generates the set Σ with `

transcripts (each valid with probability κ−µ), where [c] is randomly generated for each of them.

If ` is chosen polynomially large enough in n, then for every fast-phase challenge-response bit of

[c], there are at least two valid transcripts that have different values on that bit. An index i is called

bad index, if no pair of transcripts in Σ have complementary values in this challenge index, which

happens with negligible probability 2−`. This allows us to extract the whole fast-phase challenge-

response table with probability at least κ−µ−λ.2−`, where λ <= n is the length of the table (and

size of key x). Finally by having the table, we can find the key x. �

Lemma 29 (Soundness) dbid2anP is a γ-sound AnonDB (Property 5.2.2) scheme for γ = negl(λ)

154

if (i) CLSig scheme is unforgeable, sound and zero-knowledge, and (ii) DBID scheme is negl(λ)-

sound and zero-knowledge, assuming that discrete logarithm is a hard problem.

Proof 29 Before starting the proof, we need to note that since the dbid2anP scheme does not have

user revocation, then the corruption query of adversary only consists of actors. i.e., there is no

user in the corruption query.

According to Property 5.2.2, we have some prover subsets P j ∈ P that there is no overlap in

the execution time of any list P j, however the provers of two different subsets P j 6= Pi can run

simultaneously. The corrupted actors of T are controlled by the adversary.

In this game, the adversary succeeds if among all the successful AnonDB.Π protocols (Πsucc set),

at least one of the following conditions hold:

(i) ∃π ∈Πsucc,∀p ∈ P : t = f shTime(π), t /∈ [p.St, p.St + exLen(p.Code)]

(ii) ∃p∈P,∃π∈Πsucc,v∈V : t = f shTime(π), t ∈ [p.St, p.St+exLen(p.Code)]∧d(p.Loc,v.Loc)>

AnonDB.B.

In this proof, we calculate the success chance of the adversary in both conditions.

First we specify the view and effect of the adversary; as a Σ∗-protocol (Definition 2.4.4), the honest

parties expect three types of messages in the following order: (1) commitment A, (2) challenge c,

and (3) response r. In protocol dbid2anP.Π each of these messages are as follows:

(1) A = (CLSig.SPK.πx̄,DBID.Π.A), where CLSig.SPK.πx̄ is the sections of message π that are in-

dependent from x,

(2) c = DBID.Π.c, and

(3) r = (CLSig.SPK.πx,DBID.Π.r), where CLSig.SPK.πx is the sections of message π that are de-

pendent to x.

Based on the definition, the adversary is able to modify or generate any of these messages. Now

155

we consider the two winning conditions of the adversary:

Win Condition (i): No prover. The first condition for the adversary is equivalent to generating

a valid transcript (A,c,r) with random challenges (c), without the help of any prover. In order

to succeed, A needs to successfully pass the DBID.Π protocol, i.e., generate a valid transcript

(DBID.Π.A,DBID.Π.c,DBID.Π.r) for a public-key C. Here we consider two cases about C: (a) C =

CommitP(x,∆) where x is the secret of a user in set U, (b) there is no user in U that has the secret

x, where C = CommitP(x,∆) and the adversary know the values of x and ∆.

Case (i.a) In order to succeed in the CLSig.SPK protocol, the adversary needs to either know

x based on the soundness property of the CLSig scheme, or replay an earlier valid message π.

Knowing x doesn’t happen in this case, unless negligible probability, because it is in contradic-

tion with the zero-knowledge property of the CLSig scheme and harness of discrete logarithm

problem. Replaying the π message of a valid legitimate prover p ∈ P, implies that the DBID.Π

protocol is running with the same public-key C as the prover p has used in earlier DBID.Π pro-

tocol. This doesn’t happen, unless negligible probability, because it is in contradiction with the

soundness property of the DBID scheme.

Case (i.b) This case doesn’t happen, unless negligible probability, because it is in contradic-

tion with the soundness property of the CLSig scheme.

Therefore, all possible ways of the MiM adversary to succeed under the condition (i) have negligi-

ble chance.

Win Condition (ii): Far-away provers. In the following we consider the condition (ii) by as-

suming that the adversary has no information about the secret of any of the provers. Without loss

of generality, we assume there are only two active provers with two different secrets (x1,σ1) and

(x2,σ2). Since the provers are honest, then they generate two different values of π1 and π2 that

implies two public-keys C1 = CommitP(x1,r1) and C2 = (x2,r2). The two values C1 and C2 are in-

156

dependent, because the inputs of the related commitment functions are independent keys and fresh

randomness.

Let’s assume that there is a MiM adversarial algorithm A, in which the provers have (x1,r1) and

(x2,r2) as their secret in the DBID.Π protocols and the verifier accepts with non-negligible proba-

bility, while C is the temporary public-key that the verifier calculates. Here we consider two cases;

(a) C = CommitP(x,∆) where x ∈ {x1,x2}, (b) there is no x ∈ {x1,x2} where C = CommitP(x,∆)

and the adversary know the values of x and ∆.

Case (ii.a) Without loss of generality, we assume C = CommitP(x1,∆). Now let’s consider the

DBID.Π sub-protocol in this setting. We name the related sub-procedure of A that runs during

the DBID.Π protocol, as ADBID. Since dbid2anP.Π includes the DBID.Π protocol, then the accep-

tance of the verifier in a dbid2anP.Π session implies the acceptance of the DBID.Π sub-protocol.

Therefore, the ADBID algorithm is a successful MiM adversary for the DBID protocol with non-

negligible success chance. This is in contradiction with the negl(λ)-soundness property of the

DBID protocol.

Case (ii.b) The active provers generate the messages π1 and π2 that respectively contain two

independent public-keys C1 and C2. Let’s assume the adversary sends the message π to the

verifier, that contains the public-key C. Based on the assumption of the case, the related x is not

among {x1,x2}. Therefore, the adversary does not have access to a valid signature on x, based

on the unforgeability property of the CLSig scheme. As a result, if the adversary succeed in the

CLSig.SPK protocol with non-negligible probability, then we can use it to break the soundness

property of the CLSig scheme.

Therefore, all possible ways of the MiM adversary to succeed under the condition (ii) have negli-

gible chance. �

Lemma 30 (Anonymity) dbid2anP is an α-anonymous AnonDB (Property 5.2.5) scheme for α =

negl(λ), if the CLSig scheme and the DBID scheme are zero-knowledge.

157

Proof 30 We consider users U= {u1,u2} where ub = (xb,σb) for b ∈ {1,2}, and two prover sub-

sets of the same size (i.e., P= P1∪P2 and |P1|= |P2|= n). There is no overlap in the execution

time of any prover subset P j, however the provers of two different subsets P j 6= Pi can run simul-

taneously. The corrupted actors T and the verifier V are controlled by the adversary. The view of

the adversary at the end of this game is: ∀i ∈ {1, ...,n},bi ∈R {1,2} : (πi,ViewDBIDP.Π
A).

The values πi and ViewDBIDP.Π
A are the outputs of two zero-knowledge protocols. Therefore, there is

an efficient simulator S that can simulate both of these values without having access to the secrets

(xbi,∆i), without decreasing distinguishing advantage of adversary by a non-negligible amount.

Therefore, the simulated view of the adversary computationally looks random (i.e., ViewA = /0)

and guessing bi will remain random. �

5.5 Related Works

There are three known anonymous DB protocols [ASN14, BGG+16, ABG+17], that are designed

to be secure against all distance-bounding attacks, which were all shown insecure against our

proposed attacks.

[ASN14] formally defines Distance-Fraud, Mafia-Fraud, Strong-Impersonation, Original Terrorist-

Fraud, Distance-Hijacking and considers Anonymity of provers. In this model, the verifier only has

access to the public parameters of the system. However it has some disadvantages: the scheme does

not provide revocation and uses the Original TF definition that is not appropriate for anonymous

DB.

[BGG+16] proposed an anonymous distance bounding model, which considers Distance-Fraud,

Mafia-Fraud and Terrorist-Fraud in addition to anonymity of provers against the verifier. This

model achieves anonymity and revocability by using a revocable group signature scheme, that al-

lows join, revocation and escrow operations for provers. However, in this protocol the verifier

must be registered in the system which makes its application more limited compared to that of

158

[ASN14]. [ABG+17] uses the same model and structure as [BGG+16].

5.6 Concluding Remarks

We showed the security challenges that arise when identity information is not directly used in DB

protocols, and proposed a new model that captures all known attacks and a construction with prov-

able security in this model. We introduced two attacks; directional attack that uses the capability

of an attacker at the physical layer of communication, and collusion attack that the provers of mul-

tiple user collude to deceive the verifier. And we showed that all existing anonymous DB schemes

are vulnerable against our attack.

We proposed two constructions for different cryptosystems that convert public-key DB protocols

to anonymous DB protocols. These constructions are modular and can use similar components that

follows the designed cryptosystem. These two protocols are the first that are resistant against all

distance-bounding attacks, including directional antenna attacks. The security properties of these

protocols are provided.

Some parts of this chapter are published in [ASN14, ASNRA18].

159

Chapter 6

One-Shot Distance-Bounding

In this section we introduce One-Shot DB, as a one message authen-

tication distance-bounding protocol, for the first time in the litera-

ture. In this model, we consider the concept of time and synchro-

nization between parties that allows them to be able to verify the

distance without using challenge-response. This technique reduces

the fast phase messages from polynomial down to constant value,

which makes the system very scalable. It also allows the parties

to run the protocol while they are moving. Overall, this approach

significantly widens the application of distance bounding protocols.

We also propose a One-Shot DB construction and provide security

proof and feasibility.

The goal of a distance bounding (DB) protocol is to provide assurance to an honest verifier that a

party who is located within a distance bound B from the verifier can prove their identity and that

they are within the distance bound from the verifier, while a far-away party cannot. One-shot DB is

a one-message protocol between a prover P with location locP and a secret key kP, and a verifier V

with location locV and matching kV , where the message is sent from P to V , allowing V to verify,

(i) P’s identity claim is valid, and (ii) d(locP, locV)≤B.

Traditional distance bounding protocols require multiple rounds of messages exchanged between

prover and verifier in a time-sensitive manner, which is sometimes not desirable. For example, in

some DB implementations it is suggested to use multiple “silent channels” for each time-sensitive

message [RTŠ+12]. This leads to congestion and increased communication cost in populated area

160

with many provers. Reduction from multiple to single message can significantly improve this

situation and can grant us scalability. For the same reason, one-shot DB protocols are also highly

suitable in scenarios where prover needs to prove their proximity continuously over time. For

example, in key-less entry car scenario, the user (prover) needs to be in the car all the time for the

engine to work. One-shot DB protocols have execution lifespan much shorter than the traditional

DB protocols, which makes them suitable for mobile prover scenarios, such as Mobile Ad-hoc

Network (MANET) and Vehicular Ad-hoc Network (VANET).

Our work: This chapter describes one-message DB for the first time in the literature.. We pro-

pose a synchronized distributed model that entangles physical distance with time. We propose a

construction that uses a global beacon system to orchestrate distributed parties.

Organization. Section 6.1 presents our model and in Section 6.2 we define typical distance-

bounding attacks in the new model. In Section 6.3 we describe a class of One-Shot DB schemes,

and in Section 6.4 we propose a specific construction for the scheme, and give security theorems

and proofs. Section 6.5 concludes the chapter.

6.1 Model

We consider a system of multiple participants X who can get involved in the protocol. A participant

can either be a party or an actor. The adversary A, which we describe later in this section, is not a

participant.

Parties. P denotes the set of n parties in the system, that can be either prover or verifier. Each

party in P has the following local variables: A local time Ti, a location loci and a long lived key ki.

The long-lived key is either a public key pair, or a list of n− 1 long-lived symmetric keys shared

with the other parties. In this work we mainly consider symmetric keys.

A prover wants to prove to a verifier that they (i) have valid cryptographic authentication creden-

161

tials, and (ii) the distance between their location and the verifier’s location is at most B (they are

within distance B). prover can be corrupted by the adversary, but the verifier is honest.

Actors. T denotes the set of actors with size n′, and each actor has following local variables: A

local time Ti and a location loci. An actor does not have sufficient cryptographic key to allow them

succeeding in an authentication claim. Adversary A has access to the state of all the actors in the

system, and can put algorithms/code of its choice inside any of them. Some of the actors are called

helpers. A helper H is associated with a prover p, and helps p to succeed in an authentication claim

to a verifier v. A prover may have multiple helpers, and we assume that all the helpers of a prover

are located within the distance bound B to the verifier that this prover is trying to be authenticated

to. So, the collusion between a prover who is not within the bound, and a helper within the bound,

may result in a successful authentication claim.

All participants run local clock processes clocki(), i ∈ {1, ...,n′+n} (e.g., internal computer clock)

whose output increments Ti at regular intervals. Clock processes run at similar rate but may slightly

drift over time - so although they can be initially synchronized, over time they can become out of

synchronization.

6.1.1 Protocol

We adopt the notion of protocol from Bellare-Rogaway (Section 2.3 [BR93]) and extend it to

model distance-bounding protocol. A protocol is a two party one, specified by a function Π on the

following inputs:

• 1λ — security parameter, λ ∈ N

• i — identity of the sender, i ∈ I ⊆ {0,1}λ

• j — identity of the intended receiver, j ∈ I ⊆ {0,1}λ

• a — secret information of the sender, a ∈ {0,1}∗

162

• locPi — location of a participant Pi

• T 0
Pi

— initial value of the local clock of participant Pi,

• r — the random coin flips of the sender, r ∈ {0,1}∗

The output value of (m,δ)←Π(1λ, i, j,a, locPi,T
0
Pi
,r) specifies:

• m — the next message to send out, m ∈ {0,1}∗∪{∗}

• δ — the decision of the protocol, δ ∈ {Acc,Re j,∗}

I is a list of participants in the protocol. Although only two parties can participate in a protocol,

the set of participants I could be larger. The value m = ∗ suggests that the participant sends no

message. The values Acc and Re j for δ suggest accept and reject, respectively. The value δ = ∗

suggests that the protocol has not reached a decision. Acceptance does not occur until the end of

the protocol, while rejection may occur any time.

a is the secret information given to a prover. This is usually a long-lived key (LL-key) of a prover.

In case of symmetric authentication, each pair of prover (Pi,Pj) will be given the same LL-key,

and the adversary will be denied this key. We assume that a protocol is associated with a long-lived

key generator, or LL-key generator G(1λ, ι,rG). Here, the inputs are - the security parameter 1λ,

the identity of a party ι, ι∈ I∪{A}, and an infinite string rG ∈ {0,1}∗, i.e., coin flips of the LL-key

generator. In this chapter, we consider the LL-key generator to be a symmetric one. For each pair

of parties Pi,P j ∈ I, we have G(1λ,Pi,rG) = G(1λ,P j,rG). We note that the adversary and the

actors do not receive any key from the generator, that is, G(1λ,A,rG) = G(1λ,T,rG) = {0,1}≤0.

Each participant is given a location locPi = (x,y) ∈ R×R, that is an element of a metric space

equipped with Euclidean distance, and is fixed during the protocol. Distance between any two

locations is returned by the distance function d(loc1, loc2). Travel time of a message between

locations loc1 and loc2 is d(loc1,loc2)
C , where C is the speed of light.

The participants that are located within a predefined distance bound B from a verifier are called

163

close-by participants, and those who are outside the distance bound from the verifier are called

far-away participants.

The local clock variable Ti of participant Pi is initiated with the value T 0
Pi

. This is same for all the

participants in a protocol.

6.1.2 Participants and Process Oracles

A participant Pi, i = 1 · · ·n, possibly with key set {ki, j, j = 1 · · ·n, j 6= i}, runs process oracles

πs
i, j,s ∈ [1, `], where πs

i, j models participant Pi attempting to authenticate itself to participant P j in

its session s.

Process oracles and the participant itself are modeled as Turing machines, each with an input and

output tape. Oracles can be initialized, can send and receive messages according to the protocol

specification, and terminate either in finished, and accept or reject state. The complete set of

states for oracles is Λ = { not initialized, finished, accept, reject}.

Long-lived keys of participant Pi and their clock value ti (read from variable Ti) are shared by all

process oracles (or oracles, for short) πs
i, j,s ∈ [1, `] of this participant.

Computed nonces, intermediate state values, and session keys are only known to a single oracle.

The current state of each oracle is stored in variable Λ and the transcript of all messages sent and

received (in chronological order) in variable T i,s.

Our security definitions consider one message protocols, and we need to distinguish between ini-

tiator and responding oracles.

Definition 6.1.1 An oracle who sends the first message in a protocol is called initiator (prover),

and an oracle who receives the first message is called responder (verifier).

164

Local states of oracles. An initiator oracle πs
i, j will, after being initiated, retrieves the actual

time value ti from its local clock variable, prepare and send a message of the form (Pi,Pj, ti,m,σ)

where Pj denotes the identity of the intended receiving party, ti is the local time of Pi, m is the

actual message, and σ the cryptographic protection of the message.

In a one-message protocol, πs
i, j will immediately switch to finished state, and can no longer be

activated. A responder oracle πt
i, j will be activated by a protocol message. The message will be

checked according to the protocol specification. If the check succeeds, πt
i, j will switch to accept

state.

6.1.3 Adversary

The adversary A controls all the communication and is implemented as a Turing machine, a strat-

egy to break a DB protocol and communicates with other processes that are described as Turing

machines also, through their input and output tapes. The adversary can create many oracles of par-

ties of its choice, and specify who wants to authenticate to whom. We model this by the adversary

having access to oracles πs
i, j , s ∈ N. Adversary can corrupt some of the parties.

The event(s) which define a protocol break are modeled as winning events in different games,

which are defined later in this section.

The capabilities of an adversary are modeled through queries: The Send query models that the

adversary completely controls the network: All messages are planned by A who initiates the trans-

mission of a protocol message by a process oracle of party Pi, and later plan its delivery as desired:

A may decide to drop the message, or store, delay or replay it, or to alter and forward it. Corrupt

query models real world attacks against parties, and Tick query models changes the clock of par-

ties.

The adversary communicates with a process oracle via queries of the form (Pi,Pj,s,x) written on

a special tape meaning that A is sending message x to Pi, claiming it is from Pj in session s.

165

Thus messages received through a Send query are handled by the process oracles exactly like real

protocol messages: They may be rejected, they may be answered, or they may start or terminate a

protocol session. Formal description of these queries are as follows:

• Send(πs
i, j,m): The adversary can use this query to send a message m of his own choice to

oracle πs
i, j. The oracle will respond according to the protocol specification, depending on

its internal state. If m => consists of a special symbol > then πs
i, j will respond with the

first protocol message. For other messages the process oracle will generate the response

by running the protocol.

• Corrupt(Pi): This query reveals all keys of party Pi to A. Upon receiving this query, a

party Pi returns its all long lived keys shared with other parties ki, j, i, j ∈ {1...n}, i 6= j, the

current state and transcript of each oracle in Pi to the adversary. That is, A has access to

the state of all corrupted parties and can generate all messages of this party. We assume

that A always has access to the state of all the helpers in the system.

• Tick(A): increments the clock variable at party A, and returns it. It models the adversarial

control of clocks at different parties.

6.1.4 Running the protocol in presence of the adversary

Consider a set of parties P, a set of actors C, with associated assigned locations in the set R×R.

A DB (distance bounding) configuration is specified by a tuple C = (P,C,R×R). For a configu-

ration C, running the protocol Π means performing the following experiment:

1. Choose random strings rG ∈ {0,1}∗, rA ∈ {0,1}∗ and, for each i, j ∈ I, s ∈ N, a random

string rs
i, j ∈ {0,1}∗.

2. Set ai = G(1λ, i,rG) for i ∈ I, and set aA = G(1λ,A,rG).

3. The adversary A will run on the input (1λ,C,aA,rA). When A issues a query Send(πs
i, j,m),

166

the process oracle πs
i, j computes a response (m,δ) = Π(1λ, i, j,a, locPi,T

0
Pi
,r).

For simplicity of presentation we assume the adversary can only corrupt parties that are not run-

ning a responder oracle (verifier). The model can be extended to include cases that sessions of a

party can be individually corrupted.

The adversary’s oracle call must satisfy Spatial Consistency Constraints (SCC) that reflect physical

location of participants, and the principle that information cannot travel faster than light.

Definition 6.1.2 (Spatial Consistency Constraint (SCC)) If we have a message m written on the

output tape of a party Pi located at locPi at time ti, then it cannot result in a correlated message m′

written on the input tape of a party Pj located at locp j at time t j, such that -

t j− ti < d(locPi, locPj)/C

ti, t j are the local clock values of Pi,Pj respectively. Here correlated means Pr(m.m′) 6=Pr(m)Pr(m′).

SCC ensures that A respects physical laws governing transmission of information.

Behavior of a corrupted party. We denote a corrupted party by P∗. All the LL keys, as well

as current state and transcript of each oracle of a corrupted party are exposed to the adversary.

However, P∗ still respects the SCC and responses with correct protocol messages upon receiving a

query from the adversary.

Definition 6.1.3 (δ-synchronization) An adversary in the one shot distance bounding authenti-

cation model satisfies δ-synchronization if it never causes the clock variables of any two (uncor-

rupted) parties to differ by more than δ.

In order to define the security of our one-message distance bounding protocol, we first need to

define a benign adversary.

Definition 6.1.4 (Benign Adversary) A benign adversary A is an adversary that forwards mes-

sages instantaneously without modifying them.

167

In the rest of this chapter, we consider an initiator oracle is always from a Prover party, and a

responder oracle is always from a Verifier.

Definition 6.1.5 (One-shot Distance Bounding Protocol) A one-shot Distance Bounding proto-

col authenticates a party and its location with respect to a trusted verifier. The protocol is a tuple

(P,V,B), where P is a randomized prover algorithm that takes a pre-shared secret key x, V is a

randomized verifier algorithm that takes pre-shared secret key y and B is the distance-bound.1

The protocol consists of one message in which the prover P initiate the protocol and the verifier V

corresponds to the responder. The protocol outputs 1 indicating accept and outputs 0 indicating

reject. The protocol satisfies two properties:

• Termination: (∀locV), in an execution of the protocol, the prover initiates the protocol,

sends a message, and immediately switches to finished. The verifier is activated by

receiving a message and finishes with an accept or reject state.

• p-Completeness: (∀locV , locP such that d(locV , locP) ≤ B), in all executions that are in

presence of a benign adversary, we have Pr [Outv = 1]≥ p.

6.2 One-Shot DB Attacks

For one message authentication protocols, the notion of matching conversation (Definition 2.3.2) in

Bellare and Rogaway [BR93] was given up by Canetti and Krawczyk [CK01] and also by Schwenk

(Section 3.2.2) [Sch14], since the responder is always subject to replay attack. We use Schwenk’s

approach in replacing the notion of matching conversation for one message authentication pro-

tocols. Schwenk had two-fold security goals for their one message authentication protocol - the

responder should be protected from replay attack, and a message modified by the adversary should

not be accepted by the responder. In addition to these two, our DB model has another security

1A randomized key generation algorithm KeyGen(1λ,r) that takes security parameter λ and randomness r, gener-
ates secret keys x and y before the protocol execution. When symmetric key scheme is used, x is identical to y.

168

goal: a message originated from a far-away initiator oracle should not be accepted by the respon-

der. An initiator oracle is far-away with respect to a responder oracle, if d(locI, locR) > B where

locI and locR are the locations of the initiator and the responder oracles, and B is the maximum

allowed distance between these two parties. The last security goal has been widely studied in dis-

tance bounding literature, and is believed to be achieved by providing security against three main

kind of DB attacks - Distance Fraud (Attack 3.1.1), Mafia Fraud (Attack 3.1.2) and Terrorist Fraud

(Attack 3.1.3). In DF, the initiator is corrupted who attempts to shorten its distance to the respon-

der; in MF attack, adversary A intercepts messages from sending oracles, and construct their own

message; in TF attack, A uses a combination of corrupted initiator and helper. We give formal

definition of security against these attacks later in this section.

We start by designing a security game that is used to formalize the above security goals.

Security Game GDB. In this game, the challenger R sets up a configuration C with n parties

P1, · · · ,Pn and m helpers of these parties, and prepares ` protocol oracles πi, i = 1 · · ·` for each

party. If initiated by the adversary by a special start message, these oracles act as initiator

oracles, and if initiated with a normal protocol message, they act as responder oracles. R uses

KeyGen(1λ) to generate long-lived keys (or long-lived key pairs, respectively) for each party

(for each pair of parties, respectively),

A may now ask up to q Send, Corrupt, and Tick queries. A wins the game if - 1) there are

at least two responder oracles of uncorrupted parties that accept the same message; or there

is a responder oracle of an uncorrupted party that accepts a message from an uncorrupted

expected sender which has not been issued by any sender oracle, or 2) A succeeds in Distance

Fraud, or Mafia Fraud, or Terrorist Fraud attack.

Definition 6.2.1 A DB protocol is (C,qs,qc,qt ,ε,εDF ,εMF ,εT F) secure, if for any configuration C,

and any execution in presence of an adversary A with access to qs,qc and qt send, corrupt and tick

queries, respectively,

1. with probability at least 1− ε we have that -

169

(a) for each responder oracle that accepts, there is exactly one uncorrupted finished ini-

tiator oracle, and

(b) for each finished uncorrupted initiator oracle, there is at most one responder oracle

that accepts. And

2. the protocol is secure against DF, MF and TF attack in Definition 6.2.2, 6.2.3 and 6.2.4

respectively with probability at least 1− εDF ,1− εMF and 1− εT F respectively.

Distance fraud (DF) attack. In this attack, a corrupted far-away initiator (i.e., who is further than

the distance bound B) wants to convince the responder that it has a distance at least B.

Security Game GDF . The game is as GDB with following exception- A acts as a benign

adversary. A wins the game if, there is an uncorrupted responder oracle that accepts at least

one corrupted, far-away initiator oracle.

Definition 6.2.2 (DF-security) A DB protocol Π is (τ,q,εDF)-secure against DF, if for any adver-

sary A that runs in time τ and asks at most q queries, the probability of winning the game GDF is

at most εDF .

Mafia Fraud (MF) attack. In the MF attack, adversary A attempts to make a responder oracle

accept a far-away uncorrupted initiator.

Security Game GMF . The game is as GDB but the winning condition is different. A wins

the game if, there is an uncorrupted responder oracle that accepts at least one uncorrupted,

far-away initiator oracle.

Definition 6.2.3 (MF-security) A DB protocol Π is (τ,q,εMF)-secure against MF, if for any ad-

versary A that runs in time τ and asks at most q queries, the probability of winning the game GMF

is at most εMF .

Mafia fraud and impersonation attack. Definition 6.2.3 is general and covers Mafia fraud and

impersonation attack as special cases. In Mafia fraud, there is no learning phase. The adversary

170

interacts with an uncorrupted initiator (through Send queries) and makes the responder accept. In

impersonation attack the adversary uses messages of multiple uncorrupted initiators to construct a

message that will be used by a helper that is located within the distance bound of B to the respon-

der to make the responder accept.

Terrorist Fraud (TF) attack. In TF attack the adversary corrupts a prover P∗i who is outside

the distance bound B, and has a helper Hi who is within the distance bound, and results in the

collusion of the two to succeed in the attack in the sense of resulting the verifier (responder oracle)

to output accept. In traditional DB protocol, protection against a TF attack is by requiring that if,

the attacker succeeds in TF attack, it will allow the helper to succeed in an impersonation attack by

itself. The intuition is that successful TF attack must leak key information to the helper. The key

point in the collusion above to be meaningful is that the computation that requires the key of the

prover, and the location of the helper, are at two physically separate location that satisfy the above

requirements.

Modeling this attack in our framework however is challenging. By allowing the adversary to use

Corrupt(Pi) query, the adversary can learn the key set and state of Pi, and so effectively compute

all messages that can be constructed by Pi. Assuming that the Hi algorithm is simply copying

the input tape to its output and sending the associated message, success in TF attack will become

straightforward: the adversary simply uses the state information of the helper and the key ki, j and

state information of P∗i to construct a valid protocol message from the location of the helper, and

send it to the verifier using a Send query to the helper, with appropriate argument. In other words

by allowing the adversary to obtain key information, and without any restriction on how this key

information can be used by the adversary, protecting against collusion attack becomes impossible.

The main requirement of DB protocols is that the combined resources of the prover, that holds the

key ki, j, and the helper, that holds the location information cannot break the protocol assuming the

spatial separation of computations that depend on the key, and the claimed location of the prover,

171

is maintained. That is, even if the adversary has the key information ki, j, the spatial separation

between the location that the key ki, j can be used in a computation, and the helper’s location must

be respected. Fortunately, our spatial consistency constraint SCC fulfill this requirement.

Security Game GT F . The game is as GDB but the winning condition is different. A wins the

game if,

1. an uncorrupted responder oracle accepts a message from an oracle πh
i, j of near-by

helper Hi, while an initiator oracle πs
i, j of the corresponding prover P∗i is far-away,

and

2. SCC is preserved on the timing of: writing on output tape of P∗i and writing on the

input tape of Hi, and

3. Hi is not able to succeed in a future impersonation of prover P∗i .

Definition 6.2.4 (TF-security) A DB protocol Π is (τ,q,εT F)-secure against TF, if for any adver-

sary A that runs in time τ and asks at most q queries, the probability of winning the game GT F is

at most εT F .

6.3 Beacon-based Secure One-Shot DB Scheme

In a distance bounding protocol a participant is represented by an interactive Turing Machine, that

is equipped with a local clock, and has a physical location. Participant may also have secret keys:

in the case of a prover or a verifier, they will have secret keys that is used for proving and verifying

the distance claims.

Local clocks are all initialized at 0, but can “drift" over time. Thus a Global Beacon (GB) broad-

casts timestamp messages to all participants that will be used by them to synchronize their local

clocks.

GB broadcasts timestamp messages with frequency f per second. We assume the local clock of

a participant P will tick fp times per second and fp� f . This means that participants expect to

172

receive a timestamp message every fp/ f tick of their local clock. By monitoring drift of their local

clock over time, this expected arrival time of the timestamp signal can be made more accurate. Let

the expected drift of the local clock tick of a participant in every fp/ f local clock ticks, be f δ
p .

That is, after synchronization of a received timestamp, the local clock ticks will increment at tick

rate fp, and after fp/ f ticks, the drift will be in the range (fp/ f)± f δ
p .

A GB timestamp message Bt = (t,rt) consists of time t that is incremented by one in consecutive

timestamps, and a random string rt that is used to ensure unforgeability of the timestamp.

When a participant receives a timestamp Bt = (t,rt), it does two things (i) it adjust its local clock

to t, and (ii) appends Bt = (t,rt) to a local database. The participant will also start a timestamp

verification process, which if fails the participants will declare an attacked state and quits.

Thus a participant effectively maintains two time values locally: (i) ts
p that is its (GB) synchronized

clock, and (ii) time t`p that corresponds to the number of its local clock ticks after the last ts
p. Both

local times have integer values. Without adversarial interference, ts
p has the same value for all

participants and t`p will be in a range given by 1/[(fp/ f)± f δ
p] seconds.

Similar to Lamport’s [Lam78] model of time, messages are used to order time- in this case syn-

chronize the participants’ local clocks with the GB’s clock. We also consider a real time that will

be used to study snapshots of message transfers in the system, as well as comparing drifts of local

clocks between timestamps.

In practice GB messages may take different amount of time to get to participants and so the real

time of reception of timestamp is different at different participants (See Figure 6.1).

6.3.1 Global Beacon

We assume GB generates timestamp messages that satisfy the following properties:

173

P2
t1 t2 t3

P1
t1 t2 t3

GB
t1 t2 t3

Real Time
δ

(t1,m)

Figure 6.1: Arrival time of a timestamp at different entities. t1, t2, t3 are three consecutive beacon

times. GB’s timestamp is received at P2 with δ second delay compared to P1. P1 receives timestamp

t1, and forms the message (t1,m) and sends to P2. Distance (d(locP1, locP2)) calculated by P2 is

(t2− t1)/C.

• Autonomy. The global beacon is autonomous and will run irrespective of the adversary.

It generates timestamps Bt = (t,rt), consisting of a time counter t that increments by one

in consecutive timestamps, and a (pseudo)-random string rt , that is used for verification.

• Accessibility. The global beacon broadcasts timestamps, and the messages can be re-

ceived within the region of the DB protocol.

• Verifiability. Timestamps are verifiable. This is because we assume the adversary con-

trols the communication of messages and so participants must be able to verify the re-

ceived timestamps.

• Unpredictability. We require timestamps to be unpredictable (except with negligible

probability). This is achieved by using a random sting rt that is attached to the time t to

be (pseudo)-random. An adversary can always guess rt and their success chance will be

2−a for an a-bit rt . Unpredictability also implies unforgeability.

174

6.3.2 Adversary

An adversary can corrupt a participant in which case it can set the local clock of the participant to

any desired value.

For non-corrupted participant, adversary can affect their local clock by manipulating timestamp

messages. In particular the adversary can delay, block or modify timestamp messages.

We assume blocking can be detected by a participant in which case the participant will declare

attacked and terminates the protocol. As noted earlier, assuming a local clock ticks fp � f , a

participant can calculate an expected reception time for timestamps and declare attacked state if it

is not received within this time.

We assumed timestamps are verifiable and unforgeable and so tampering of timestamp will be

detected by participants. With high probability the adversary’s success chance of forging a new

timestamp will be negligible.

The above two properties can be provided by using a broadcast authentication system that is used

by GB to append a tag to each timestamp. Each participant have their verification key that allows

them to verify a received timestamp. This can be constructed using shared key systems - the

verification key of each participant will be different. All time signals are recorded as they arrive,

but processed and verified later and offline. A protocol time is evaluated offline and when all time

signals are verified.

The MAC tag that is appended to a time counter t - for example by calculating MAC(kGB, t) where

kGB is the MAC generation key of the GB- will be pseudo random and can be used as challenge.

The adversary however can delay the timestamp signal by δ`p seconds, which correspond to the

expected clock tick drift of the local clock of participant P in every fp/ f ticks (tick drift is given

by the range (fp/ f)± f δ
p).

175

Figure 6.2: global beacon broadcasts unpredictable timestamps to users

6.4 Beacon-based One-Shot DB Construction: BShot

The basic protocol is a one-message protocol in which the prover sends a message that includes its

current synchronized time, together with other data that allows the verifier to verify the identity and

location claim of the prover. The verifier records the reception time of the message using its local

time, and by comparing its local time with the claimed synchronized time of the prover, estimates

the travel time of the message and so the distance of the prover.

To guarantee security, the prover’s message will depend on their shared secret key with the verifier.

We follow the approach of traditional shared key DB protocols but instead of using the secret key

of the prover to generate appropriate response for the verifier’s random challenges, we will take the

randomness from rt that is part of the timestamp, to construct the response. The prover’s protocol

message will include t which will allow the verifier to recover the same randomness and use their

shared key to verify the response.

The protocol is shown in Figure 6.3.

176

P V
(secret: x) (secret: x)

• decide on the time t in future
• rnd = F(x, t), tag = MAC(x,P|V |t)
• make response table RT [0, i] = rnd[i] and RT [1, i] = x[i]⊕ rnd[i] for i = 1..n
• upon obtaining timestamp Bt = (t,rt) from GB, calculate res = Lookup(RT,rt)

M = (P,V, t, tag,res)
receive M′ = (P′,V ′, t ′, tag′,res′)

obtain timestamp B′′t = (t ′′,r′′t) from GB •
rnd′ = F(x, t ′), tag′′ = MAC(x,P′|V ′|t ′) •

make response table RT ′[0, i] = rnd′[i] and RT ′[1, i] = x[i]⊕ rnd′[i] for i = 1..n •
obtain B′t = (t ′,r′t) from the query server QS(t ′) •

OutV = 1, unless any of the following •
mac′′ 6= mac′ −

t ′′ < t ′ −
(t ′′− t ′)Cf >B −

hamming_distance(res′;Lookup(RT ′,r′t))> τ −
OutV

Figure 6.3: BShot: One-shot distance bounding protocol. The query server can be replaced by

a local memory at each participant. C is the speed of light and f is the frequency that GB is

broadcasting the timestamps.

Protocol Notations:

RT is the Response Table. It has two rows labeled by 0 and 1, and n columns: that is a 2× n

binary table, RT [i, j] ∈ {0,1}, and calculated as, Row 0: RT [0, i] = rnd[i], and Row 1: RT [1, i] =

x[i]⊕ rnd[i].

x[i], i = 1, ..,n is a n-bit binary vector which is the shared secret key between P and V . rnd[i], i =

1, ..,n is an n-bit binary (pseudo) randomly generated vector calculated by F(x, t) where F is a PRF

(pseudo random function).

Lookup(RT,r) takes an n-bit binary vector r, and outputs res, an n-bit binary vector where res[i] =

177

RT [r[i], i]. That is row r[i] of RT is used to find the i-th response bit. MAC(x,m) is an algorithm

that takes a secret key x and a message m and generates a binary vector that is called tag. We use

m = P|V |t to show concatenation of binary strings corresponding to the identifiers of P,V , and the

value of t.

Protocol Description:

P (Prover) chooses a time t in the future (when they want to send the distance claim message) and

performs the pre-computation (1), that is, generating the table RT (response table).

At time t, P does the following -

• Receives beacon signal Bt = (t,rt)

• Uses the randomness rt to perform computation (2)

• Generate the response res corresponding to rt using the Lookup() function

• Forms and sends the message [P,V, t, tag,res] to V

The message is modified by the adversary and so V receives [P′,V ′, t ′, tag′,res′], V does the fol-

lowing -

• Performs steps 1 and 2 in (5) - receives beacon signal B′′t = (t ′′,rt ′′), calculates RT ′ using

the secret key x and the received message from the prover. V also calculates tag′ using

the received message and the secret key x.

• Makes a query QS(t ′) to a trusted query server that stores the timestamp messages from

GB and returns the corresponding randomness r′t for time value t ′. V uses this randomness

r′t to find res′. We assume that communication to the query server is secure. Note that

QS can be replaced with local memory of the verifier, that stores all received beacons in

a certain time window.

178

• Checks according to step 4 in (5). If all true, then Step 5 (distance estimation) is per-

formed, otherwise abort.

• If the measured distance dist is within the given distance bound B, accept, otherwise

reject.

Note that the verification of the received timestamps can be done offline - that is while other time

sensitive processes are underway.

6.4.1 BShot Accuracy

Assuming the length of rt is at least b bits, and assuming a benign adversary, the above protocol

can provide a secure and accurate estimate of travel time of the message (and hence distance of the

prover), assuming perfectly synchronized local clocks (i.e. timestamps are received at the same

real time at all participants) and negligible processing and transmission delay at the prover.

In practice the distance of GB to the provers are different and the real time of the arrival of times-

tamps are different. Also processing power of different provers is not ideal nor the same.

In traditional DB protocols, the accuracy of distance estimation is due to processing of response

and transmission only. The prover must decode the timestamp message, calculate res and transmit

the message M. Although the pre-computation of RT speeds up the processing time, decoding and

transmission introduce delays that can be estimated and taken into account by the verifier. Verifier

needs to consider an imperfection delay threshold for the received messages from the prover Tmax.

Practical implementations of these protocols have aimed at minimizing this delay. The accuracy of

a protocol is equal to the maximum distance that the adversary can be outside the distance bound,

and yet be accepted by the verifier.

In our setting, in addition to the processing time of the prover, we also need to consider different

positions of participants with respect to GB and time (real time) difference in receiving the same

timestamp.

179

Let δMG denote the maximum real time difference between arrival of message Bt at two provers

in the area under consideration (See Figure 6.1). Then the protocol time threshold must allow for

this difference: that is for distance upper bound B and the corresponding time B/C, the verifier

would accept responses that are received within time B/C+δMG. Now note that if P1 is closer to

GB than P2 by δMG, they will have 2δMG advantage in making location claim with respect to P2.

Let δP
x denote the time delay due to the processing limitations of prover x, and let δMP =maxx∈P δP

x ,

which we consider as maximum allowed processing delay. Then the total advantage (in abusing the

protocol tolerance) of a malicious prover will be Tmax = 2δMG +δMP seconds, and this determines

the time accuracy of the location claim, which allows (2δMG +δMP)C meters distance inaccuracy.

The delay threshold Tmax should be less than the time interval between two consecutive beacon

messages, i.e., Tmax ≤ 1/ f . This prevents the adversary to see future beacons while the verifier is

still processing past sessions.

6.4.2 BShot Practicality

Reducing protocol inaccuracy happens by reducing the value of Tmax = 2δMG+δMP; reducing δMP

happens by having fast provers in processing, and reducing δMG happens by proper positioning of

GB. More specifically, let’s consider a circular area with radius r = 20m (food court of a shopping

mall) where the beacon transmitter is installed on height h = 50m (top of 10th floor), as shown in

Figure 6.4.

In this setting, we have δMG = (Dmax−Dmin)/C =
√

r2+h2−h
C ≈ 3.8515

3.108 ≈ 10−8 seconds. This geo-

graphical setting is enforcing 2δMGC = 6 meters inaccuracy. Therefore, the more h and the less r

in Figure 6.4, then we can achieve more accurate system.

As the verifier needs to consider a processing delay for the prover, it allows the faster adversary

to take advantage of it. The processing time of the prover consists of (i) receiving a symbol from

the global counter, (ii) computing the proper message for the verifier, and (iii) transmitting the

180

Figure 6.4: Area covered by a beacon in height.

message to the verifier.

The most efficient implementation of the prover is presented by Ranganathan et al. (Appendix A.2

[RTŠ+12]) as a hybrid digital/analog implementation, which uses an analog circuit to reply the

correct response to the challenge without converting analog symbol to digital data and vice versa.

In this implementation the processing time of prover is about 30ns.

In the BShot protocol (Figure 6.3), the prover side time consuming processing elements are done

prior receiving the randomness rt . The only time-critical element is the calculation of response res,

that is a table lookup operation. The whole process of receiving rt , calculating res and transmitting

res is enforcing a delay that is not reduce-able. This process is same as a normal distance-bounding

protocols. The only difference is the length of the random string. However since each bit of rt and

res is designed independently from other bits, then the string of bits can be sent in parallel in order

to shorten the processing delay. As a result, a careful implementation can reduce the timing of this

phase to as low as δMP = 3∗10−8 seconds as proposed in Ranganathan et al. [RTŠ+12].

So far, the total delay in the proposed setting is Tmax = (2δMG + δMP) = 5 ∗ 10−8 seconds. This

makes accuracy of 15 = Tmax.C meters. In order to achieve this accuracy, besides the computation

power of the prover, we need to consider the communication factors to check feasibility. We

already know that Tmax ≤ 1/ f , so we require f ≥ 2 ∗ 107. The components of a timestamp is

181

Bt = (t,rt). For these components we have the following:

• Random string rt . The length of random string determines the success probability of

adversary in guessing a valid timestamp. The longer the random string, the less likely

the adversary can succeed in forging a future timestamp. For simplicity, we use a random

string of 20 bits, which gives the adversary a success probability of 2−20 in forging a valid

timestamp.

• Time value t. The time value is an increasing count that is used to measure intervals.

Assuming the lifetime of a timestamp is 30 minutes2. Hence, we need non-duplicate

counts that are enough for broadcasting for 30 minutes and the count will start over at

every 30 minutes. In order to achieve f = 2 ∗ 107, the same amount of timestamps need

to be broadcasted every second, which requires 2.107 different counts per second. For 30

minutes, 2∗107×60×30 = 3.6∗1010 indices is needed, which results in approximately

35 bits for time value field.

Hence, each timestamp will have length of 35+ 20 = 55 bits. However, since the time value t

has lots of redundancy because of being a simple counter, we can reduce the size of it in different

ways, such as sending the complete string of t every 1000 beacon and for the intermediate beacons

we just send the difference compared to the last full beacon. This technique reduces the size of the

time value t from 40 bits to about 10 bits. As a result, the whole timestamp is 30 bits on average.

Note that we consider the random string rt as the last part of the timestamp.

Network. We need a communication channel that sends 30 bits data package from the global

beacon in each 5 ∗ 10−8 seconds. According to the above calculations, the data transfer rate is

30× 2 ∗ 107 = 580 Mbits/s, in order to achieve the assumed security and accuracy. Current ad-

vanced wireless technology allows data to be transferred at multi Giga bit per second. For exam-

ple, the IEEE 802.11ad protocol enables devices to deliver data transfer rates up to 7 Gbit/s, while

2The time model we proposed is mainly used for measuring distance of few meters to few kilometers

182

maintaining compatibility with existing Wi-Fi devices [NCF+14].

Storage. In order to replace the query server (QS) from the protocol, the verifier can store the

timestamps of a time window (e.g., 30 minutes) in local storage. For a 30-bit timestamp, this

requires 30×30×60×2 ∗ 107 = 135GB memory space with 75MB/s speed of writing, which is

applicable with current technology.

Therefore, we can conclude this accuracy (15 meters) is applicable. Moreover, it can get even more

accurate if we increase the height of global beacon, i.e., h in Figure 6.4. If we put the beacon server

on top of a mountain (h = 1000 meters), then the accuracy forced by the geography of participants

reduces down to 40 cm. So the major remaining factor will be the processing delay of prover.

6.4.3 BShot Security Analysis

Lemma 31 BShot protocol is εDF -resistant in Definition 6.2.2 (DF-security), where εDF = 2−b, b

is length of a single row in the response table.

Proof 31 Consider a security game GDF , where a corrupted initiator oracle πs
p,v (of party P)

has been initiated by adversary A and generated a message m = (P,V, t, tag,res). That is, m

is written on the output tape of πs
p,v at time t. Let πt

p,v be an uncorrupted receiving oracle (of

party V) that reads m′ = (P′,V ′, t ′, tag′,res′) at time t ′′ from its input tape. Now, adversary A is

a benign adversary in game GDF , therefore m = m′ and m is not received by any oracle other

than πt
p,v. Therefore, due to the Spatial Consistency Constraint (SCC) (Definition 6.1.2), t ′′− t ≥

d(locP, locV)/C. The game requires P to be far-away from V , that is d(locP, locV) > B. Thus

the only way receiving oracle πt
p,v will accept the initiator oracle πs

p,v is if the initiator oracle can

forge a future timestamp t f , t f > t in its message m.

Recall that (protocol BShot) initiator oracle decides on the time t in future, which is input to a

keyed pseudo random function (PRF) in generating the response table RT . Using a PRF restricts

183

the corrupted initiator from influencing the distribution of RT by selecting t maliciously. res is

calculated using RT and the random string rt (broadcast by GB), therefore the only way for a

corrupted initiator oracle to forge a future timestamp in m is to guess rt . Given the length of a

single row in RT as b, πs
p,v must guess first b bit of rt correctly for the receiving oracle πt

p,v to

accept. Therefore, the winning probability εDF of A in GDF is εDF = 2−b. �

Lemma 32 For εMF = max(2−b,εPRF), BShot protocol is εMF -resistant in Definition 6.2.3 (MF-

security).

Proof 32 In a security game GMF , let πs
p,v (of party P) be a uncorrupted initiator oracle far away

from a receiving oracle πt
p,v of party V . Let πa

p,v be an oracle of close-by actor A. In MF attacks, a

common strategy of the adversary A is to act as a verifier for the far-away prover, obtain responses

and then use the gathered information to make the verifier accept a close-by actor. In BShot,

A could try to determine the response table of the uncorrupted oracle πs
p,v by sending protocol

initiating messages to the oracle. However, a keyed PRF is used in generating the response table

which takes a future time t as input, which restricts the adversary from determining the response

table. Therefore, security of BShot is reduced to security of the PRF.

A second strategy for A would be to utilize the close-by actor’s location to replace the old times-

tamp with a new one in the message originated in the far-away initiator oracle. That is, if πs
p,v

generates a message m = (P,V, t, tag,res) intended for πt
p,v , the actor oracle πa

p,v replaces (t,res)

with newer values (t ′,res′). However, in order to compute res′ correctly, the response table RT is

required res′ = lookup(RT,r′t). Now, res′ can either be guessed by the adversary with probability

2−b, or they can try to determine the response table. In the latter case, security of BShot is reduced

to security of the PRF that is used to generate RT . Therefore, we have εMF = max(2−b,εPRF). �

Lemma 33 BShot protocol is εT F -resistant in Definition 6.2.4 (TF-security), where εT F = 2−b.

Proof 33 In a security game GT F , let πs
p,v (of party P) be a corrupted initiator oracle far away

from a receiving oracle πt
p,v of party V . Let πh

p,v be an oracle of close-by helper H of party P.

184

Now, the Corrupt(P) query enables the adversary A to learn the key set and state of P, and so

efficiently compute all messages that can be constructed by P. Let us consider following strategy

of the adversary: H simply copies its input tape to its output and sends associated message, and

adversary uses the state information of H and the key x of the initiator oracle to construct a valid

protocol message from the location of the helper, and send it to the verifier using a Send() query

to the helper, with appropriate argument. However, this straightforward attack is restricted by the

Spatial Consistency Constraint (SCC, Definition 6.1.2). The second winning condition in the game

GT F is that SCC should be preserved between writing on output tape of πs
p,v and writing on the

input tape of πh
p,v. That is, even if the adversary has the key information x, the spatial relation

between the location of the key and the helper must be respected. This effectively reduce this attack

to a distance fraud attack, which has success probability 2−b.

A second strategy by A would be: in BShot, the corrupted far-away oracle πs
p,v chooses a time

t in a far-enough future (such that πs
p,v will be treated as close-by), generates the response table

for this t and hand over the response table to the close-by helper oracle πh
p,v. The helper oracle

is now responsible to obtain the timestamp Bt = (t,rt) and generate and send message m to the

responder oracle. However, doing this enables the helper oracle correctly compute the secret key

x, by bitwise XORing the two rows of the response table. This violates the third winning condition

of GT F , which is - the helper must not be able to succeed in a future impersonation of the prover

(initiator). Therefore, the helper must not be provided with the response table, and can only guess

res with probability 2−b. Thus, we have εT F = 2−b. �

Theorem 5 BShot is a (C,qs,qc,qt ,ε,εDF ,εMF ,εT F) secure DB protocol in Definition 6.2.1, where

ε≤ n2 �max(2−b,εPRF), εDF = 2−b, εMF = max(2−b,εPRF) and εT F = 2−b.

Proof 34 Consider the security game GDB. For the moment, let us ignore the winning condition

that involves distance bounding attacks (i.e., DF, MF and TF). Let G0 be the original game, where

adversary A attempts to make an oracle accept a message m which is either faked, or has already

been accepted by a different oracle. Thus we have ε0 = ε.

185

Let P be the initiator party and V be the responder party in game G1. P,V share secret x. We make

a guess that A will be successful in making one responder oracle πt
p,v accept a message m which

is either faked, or has already been accepted by a different oracle. If our guess is wrong, we abort

the game, and the adversary loses. Since there are n parties in the system, A’s winning probability

is reduced by a factor n2. Thus we have, n2 ∗ ε1 = ε0.

In G2, we abort the game if adversary A can forge a valid response res for a time value t in

message m = (P,V, t, tag,res) for the key x. This may happen with probability max(2−b,εPRF) (i.e.,

correctly guessing probability is 2−b). The simulator replaces all PRF computations involving key

x with calls to a PRF challenger RPRF which uses a randomly chosen PRF key x; if A forges a

valid response res for a time value t which has not been queried from the PRF challenger, then we

have broken the PRF challenge. Thus we have ε1 ≤ ε2 +max(2−b,εPRF).

Now that we have excluded PRF forgeries in this game, we are left with one-way messages m =

(P,V, t, tag,res) which were generated by non-corrupted oracles, where only the value t may be

influenced by adversary. Since this influence is detected by the verifier (because of MAC verifica-

tion), condition 1-(a) of Definition 6.2.1 is always true (i.e., holds with probability 1), and we are

left with condition 1-(b).

If A tries to send m to any oracle of a party V ′ 6=V , V ′ will not accept because the target identity

is different (i.e., MAC verification will fail). In our DB model, we do not consider the receiver

and initiator oracle being in the same party. Thus, also condition 1-(b) is fulfilled (i.e., holds with

probability 1). We have ε2 = 0, therefore ε≤ n2max(2−b,εPRF).

εDF ,εMF and εT F are determined in Lemma 31, 32 and 33 respectively. �

186

6.5 Concluding Remarks

We proposed the first one message distance-bounding model (called One-Shot DB), and construc-

tion (called BShot protocol) with formal definitions and security proof. With this approach we

solved some of the major problems in applying distance-bounding in real life:

• Despite traditional DB protocols, participants of One-Shot DB can run the protocol

even while they are moving.

• The DB system becomes highly scalable in a populated area for two reasons; first

reducing the number of fast phase messages from 2.` to just one message, and

second making a single beacon to be usable by all users in the area, instead of the

challenge message in traditional DB protocols that are generated for a single user.

• Verifier can check the location of provers continuously rather than one time check-

ing in traditional DB protocols.

Implementation of a prover is still a hard problem in this literature. Although our construction does

not improve the solutions of this problem compared to traditional DB, our model opens the horizon

to consider other techniques to solve this problem. For example, if we can replace randomness of

the beacon with randomness of the environment noise, then we can remove the prover processing

delay, which is the major limitation for achieving high accuracy. This is based on the assumption

that two parties are detecting similar environmental noise as long as they are close to each other.

We left this as a future research.

187

Chapter 7

Concluding Remarks

In this thesis we looked at three main problems: Public-Key distance-bounding, Anonymous

distance-bounding and One-Shot distance-bounding.

In public-key DB, we proposed a new formal model (DBID) for distance-bounding protocols, in-

line with the cryptographic identification schemes. For the first time, we allow the communication

channel to mix multiple messages into one message at the receiver, if they are received at the same

time. This is more realistic wireless environment and makes stronger adversary. Moreover, we

allow the adversary to have access to directional antenna. We show that this additional capability

allows to break security of protocols that had been proven secure.

We propose a public-key DB construction (POXY) that is secure in this new model. Moreover, we

prove that the existing public-key DB construction, ProProx, is in fact secure in this model. These

two constructions use different cryptosystems.

We consider optimizing the public-key protocols -specially reducing the redundancy of the fast

phase- as future work.

In anonymous DB, we show the security challenges that arise when identity information is not

directly used in DB protocol. We proposed a new model that captures all known attacks and a

construction with provable security in this model. We show that using directional antenna, the

adversary can break all existing anonymous DB protocols. Moreover, we propose a new attack

(called collusion attack), where the provers of multiple users collude to deceive the verifier.

We proposed two constructions for different cryptosystems that convert public-key DB protocols

to anonymous DB protocols. These constructions are modular and can use similar components

188

that follows the designed cryptosystem. These two protocols are the first that are resistant against

all distance-bounding attacks, including directional antenna attacks.

One of the presented AnonDB protocols (i.e., dbid2anP) does not support transcript opening and

user revocation. Designing an AnonDB scheme that uses Pedersen commitment scheme and facili-

tates these methods is considered as future work.

In One-Shot DB, we proposed the first one message distance-bounding model (called One−Shot

DB), and propose a construction (called BShot protocol). With this approach we solved some of the

major problems in applying distance-bounding in real life: (i) participants can run the protocol even

when they are moving, (ii) the DB system becomes highly scalable in a populated area because

of reducing the number of fast phase messages from 2.` to just one message, and also making a

single beacon to be usable by all users in the area, instead of the challenge message in traditional

DB protocols that are generated for a single user. (iii) the verifier can check the location of provers

continuously rather than one time checking in traditional DB protocols, since the cost of checking

is dramatically reduced.

One-Shot DB is a new domain and we can consider numerous future works. Here we mention

three of them; (1) Our construction still suffers from the need for implementation of a prover

that can reply instantly. Designing a scheme that removes this this limitation is still an open

problem. (2) In our construction, we need a trusted third party for generating the random beacons.

Designing a system that derives the random fast phase challenges from the environment (e.g.,

using environment wireless noise) is an open problem. (3) In our model, we are considering time

synchronicity, which is hard and complicated to model. However in distance-bounding, we only

need a form of location synchronicity. If we can use a technology that allows us to gain location

synchronicity of two entities, such as wireless channel state information (CSI), then we might have

simpler model and construction without any third party.

189

Bibliography

[ABG+17] Gildas Avoine, Xavier Bultel, Sébastien Gambs, David Gérault, Pascal Lafourcade,

Cristina Onete, and Jean-Marc Robert. A terrorist-fraud resistant and extractor-

free anonymous distance-bounding protocol. In Proceedings of the 2017 ACM on

Asia Conference on Computer and Communications Security, pages 800–814. ACM,

2017.

[ABK+11] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardaş, Cédric Lauradoux, and

Benjamin Martin. A framework for analyzing RFID distance bounding protocols.

Journal of Computer Security, 2011.

[ALM11] Gildas Avoine, Cédric Lauradoux, and Benjamin Martin. How secret-sharing can

defeat terrorist fraud. In Proceedings of the fourth ACM conference on Wireless

network security, pages 145–156. ACM, 2011.

[ARS16] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next generation 5g wireless

networks: A comprehensive survey. IEEE Communications Surveys & Tutorials,

2016.

[ASN14] Ahmad Ahmadi and Reyhaneh Safavi-Naini. Privacy-preserving distance-bounding

proof-of-knowledge. In 16th ICICS, 2014.

[ASN17a] Ahmad Ahmadi and Reihaneh Safavi-Naini. Distance-bounding identification. In

Proceedings of the 3rd International Conference on Information Systems Security

and Privacy - Volume 1: ICISSP,, pages 202–212. INSTICC, SciTePress, 2017.

[ASN17b] Ahmad Ahmadi and Reyhaneh Safavi-Naini. Directional distance-bounding iden-

tification. In Information Systems Security and Privacy, volume 867 of Commu-

nications in Computer and Information Science. Springer International Publishing,

190

2017.

[ASNRA18] Ahmad Ahmadi, Reyhaneh Safavi-Naini, and Mamunur Rashid Akand. New attacks

and secure design for anonymous distance-bounding. In Australasian Conference on

Information Security and Privacy. Springer, 2018.

[AT09] Gildas Avoine and Aslan Tchamkerten. An efficient distance bounding RFID au-

thentication protocol: balancing false-acceptance rate and memory requirement. In

Information Security, pages 250–261. Springer, 2009.

[BB04] Laurent Bussard and Walid Bagga. Distance-bounding proof of knowledge protocols

to avoid terrorist fraud attacks. Technical report, Technical report, Institut Eurecom,

France, 2004.

[BBM+13] Aslı Bay, Ioana Boureanu, Aikaterini Mitrokotsa, Iosif Spulber, and Serge Vaude-

nay. The bussard-bagga and other distance-bounding protocols under attacks. In

Information Security and Cryptology, pages 371–391. Springer, 2013.

[BC94] Stefan Brands and David Chaum. Distance-bounding protocols. In Advances in

Cryptology–EUROCRYPT’93, pages 344–359. Springer, 1994.

[BCEP04] Emmanuel Bresson, Olivier Chevassut, Abdelilah Essiari, and David Pointcheval.

Mutual authentication and group key agreement for low-power mobile devices.

Computer Communications, 27(17):1730–1737, 2004.

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the design

and analysis of authentication and key exchange protocols. In Proceedings of the

thirtieth annual ACM symposium on Theory of computing, pages 419–428. ACM,

1998.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations

among notions of security for public-key encryption schemes. In Advances in Cryp-

191

tology?CRYPTO’98, pages 26–45. Springer, 1998.

[BF09] Manuel Barbosa and Pooya Farshim. Security analysis of standard authentication

and key agreement protocols utilising timestamps. In International Conference on

Cryptology in Africa, pages 235–253. Springer, 2009.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge

and its applications. In Proceedings of the twentieth annual ACM symposium on

Theory of computing, 1988.

[BG90] Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures and mes-

sage authentication based on non-interactive zero knowledge proofs. In Advances in

Cryptology-CRYPTO’89, 1990.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Advances

in Cryptology – CRYPTO’92, pages 390–420. Springer, 1992.

[BGG+16] Xavier Bultel, Sébastien Gambs, David Gérault, Pascal Lafourcade, Cristina Onete,

and Jean-Marc Robert. A prover-anonymous and terrorist-fraud resistant distance-

bounding protocol. In WiSec ’16, 2016.

[Bir40] Garrett Birkhoff. Lattice theory, volume 25. American Mathematical Soc., 1940.

[BMK10] Jack Burbank, David Mills, and William Kasch. Network time protocol version 4:

Protocol and algorithms specification. Network, 2010.

[BMV12] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. On the pseudoran-

dom function assumption in (secure) distance-bounding protocols. In Progress in

Cryptology–LATINCRYPT 2012, pages 100–120. Springer, 2012.

[BMV13a] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Practical & provably

secure distance-bounding. In The 16th Information Security Conference, 2013.

[BMV13b] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Secure & lightweight

192

distance-bounding. In International Workshop on Lightweight Cryptography for Se-

curity and Privacy, 2013.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group

signatures: Formal definitions, simplified requirements, and a construction based on

general assumptions. In International Conference on the Theory and Applications

of Cryptographic Techniques, pages 614–629. Springer, 2003.

[BR93] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In

Annual international cryptology conference, pages 232–249. Springer, 1993.

[Buc04] Johannes Buchmann. Introduction to cryptography. Springer Science & Business

Media, 2004.

[ČBH03] Srdjan Čapkun, Levente Buttyán, and Jean-Pierre Hubaux. Sector: secure tracking

of node encounters in multi-hop wireless networks. In Proceedings of the 1st ACM

workshop on Security of ad hoc and sensor networks, pages 21–32. ACM, 2003.

[CH06] Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of mu-

tual authentication and key-exchange protocols. In Theory of Cryptography, pages

380–403. Springer, 2006.

[Che52] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based

on the sum of observations. The Annals of Mathematical Statistics, 23(4):493–507,

1952.

[CHKM06] Jolyon Clulow, Gerhard P Hancke, Markus G Kuhn, and Tyler Moore. So near and

yet so far: Distance-bounding attacks in wireless networks. In Security and Privacy

in Ad-Hoc and Sensor Networks, pages 83–97. Springer, 2006.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their

use for building secure channels. In International Conference on the Theory and

193

Applications of Cryptographic Techniques, pages 453–474. Springer, 2001.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous creden-

tials from bilinear maps. In Advances in Cryptology – CRYPTO’04, pages 56–72,

2004.

[CRSC12] Cas Cremers, Kasper Bonne Rasmussen, Benedikt Schmidt, and Srdjan Capkun.

Distance hijacking attacks on distance bounding protocols. In Security and Privacy,

2012.

[Dam02] Ivan Damgård. On Σ-protocols. Lecture Notes, University of Aarhus, Department

for Computer Science, 2002.

[DDP06] Ivan Damgård, Kasper Dupont, and Michael Østergaard Pedersen. Unclonable

group identification. In Advances in Cryptology-EUROCRYPT 2006, pages 555–

572. Springer, 2006.

[Des88] Yvo Desmedt. Major security problems with the ünforgeable(̈feige-)fiat-shamir

proofs of identity and how to overcome them. In Securicom’88, 1988.

[DFKO11] Ulrich Dürholz, Marc Fischlin, Michael Kasper, and Cristina Onete. A formal ap-

proach to distance-bounding rfid protocols. In International Conference on Infor-

mation Security, pages 47–62. Springer, 2011.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE trans-

actions on Information Theory, 1976.

[DLYZ11] Robert H Deng, Yingjiu Li, Moti Yung, and Yunlei Zhao. A zero-knowledge based

framework for rfid privacy. Journal of Computer Security, 19(6):1109–1146, 2011.

[FDC11] Aurélien Francillon, Boris Danev, and Srdjan Capkun. Relay attacks on passive

keyless entry and start systems in modern cars. In NDSS, 2011.

[FO13a] Marc Fischlin and Cristina Onete. Subtle kinks in distance-bounding: an analysis of

194

prominent protocols. In Proceedings of the sixth ACM conference on Security and

privacy in wireless and mobile networks, pages 195–206. ACM, 2013.

[FO13b] Marc Fischlin and Cristina Onete. Terrorism in distance bounding: modeling

terrorist-fraud resistance. In Applied Cryptography and Network Security, pages

414–431, 2013.

[For87] Lance Fortnow. The complexity of perfect zero-knowledge. In Proceedings of the

nineteenth annual ACM symposium on Theory of computing, pages 204–209. ACM,

1987.

[GAA11] Ali Özhan Gürel, Atakan Arslan, and Mete Akgün. Non-uniform stepping ap-

proach to RFID distance bounding problem. In Data Privacy Management and

Autonomous Spontaneous Security, pages 64–78. Springer, 2011.

[Gen04] Rosario Gennaro. Multi-trapdoor commitments and their applications to proofs of

knowledge secure under concurrent man-in-the-middle attacks. In Annual Interna-

tional Cryptology Conference, 2004.

[GKL+14] Sébastien Gambs, Marc-Olivier Killijian, Cédric Lauradoux, Cristina Onete,

Matthieu Roy, and Moussa Traoré. Vssdb: A verifiable secret-sharing and distance-

bounding protocol. In International Conference on Cryptography and Information

security, 2014.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer

and system sciences, 28(2):270–299, 1984.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme

secure against adaptive chosen-message attacks. SIAM J. Comput., pages 281–308,

1988.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity

195

of interactive proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

[Gol01] Oded Goldreich. Foundations of cryptography: volume 1, basic techniques. Cam-

bridge university press, 2001.

[Gol09] Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cam-

bridge university press, 2009.

[GOR14] Sébastien Gambs, Cristina Onete, and Jean-Marc Robert. Prover anonymous and

deniable distance-bounding authentication. In ASIA CCS ’14, 2014.

[GQ88] Louis C Guillou and Jean-Jacques Quisquater. A practical zero-knowledge proto-

col fitted to security microprocessor minimizing both transmission and memory. In

EUROCRYPT ’88, 1988.

[Gro03] Jens Groth. A verifiable secret shuffe of homomorphic encryptions. In International

Workshop on Public Key Cryptography, pages 145–160. Springer, 2003.

[Han11] Gerhard P Hancke. Design of a secure distance-bounding channel for rfid. Journal

of Network and Computer Applications, 34(3):877–887, 2011.

[Han12] G.P. Hancke. Distance-bounding for RFID: Effectiveness of ’terrorist fraud’ in the

presence of bit errors. In RFID-Technologies and Applications (RFID-TA), 2012

IEEE International Conference on, pages 91–96, 2012.

[HK05] Gerhard P Hancke and Markus G Kuhn. An RFID distance bounding protocol.

In Security and Privacy for Emerging Areas in Communications Networks, 2005.

SecureComm 2005. First International Conference on, pages 67–73. IEEE, 2005.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American statistical association, 58(301):13–30, 1963.

[HPO13] Jens Hermans, Roel Peeters, and Cristina Onete. Efficient, secure, private distance

bounding without key updates. In Proceedings of the sixth ACM conference on Se-

196

curity and privacy in wireless and mobile networks, pages 207–218. ACM, 2013.

[HPVP11] Jens Hermans, Andreas Pashalidis, Frederik Vercauteren, and Bart Preneel. A

new RFID privacy model. In Computer Security–ESORICS 2011, pages 568–587.

Springer, 2011.

[JP02] Markus Jakobsson and David Pointcheval. Mutual authentication for low-power

mobile devices. In Financial Cryptography, pages 178–195. Springer, 2002.

[JW09] Ari Juels and Stephen A Weis. Defining strong privacy for rfid. ACM Transactions

on Information and System Security (TISSEC), 13(1):7, 2009.

[KA09] Chong Hee Kim and Gildas Avoine. RFID distance bounding protocol with mixed

challenges to prevent relay attacks. In Cryptology and Network Security, pages 119–

133. Springer, 2009.

[KAK+08] Chong Hee Kim, Gildas Avoine, François Koeune, François-Xavier Standaert, and

Olivier Pereira. The swiss-knife rfid distance bounding protocol. In International

Conference on Information Security and Cryptology, pages 98–115. Springer, 2008.

[KH06] Kaoru Kurosawa and Swee-Huay Heng. The power of identification schemes. In

Public Key Cryptography-PKC 2006, pages 364–377. Springer, 2006.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC

press, 2014.

[Kru09] John Krumm. A survey of computational location privacy. Personal Ubiquitous

Comput., pages 391–399, 2009.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, 1978.

[LM13] Vadim Lyubashevsky and Daniel Masny. Man-in-the-middle secure authentication

schemes from lpn and weak prfs. In Advances in Cryptology – CRYPTO’13, pages

197

308–325. Springer, 2013.

[MLDL09] Changshe Ma, Yingjiu Li, Robert H Deng, and Tieyan Li. Rfid privacy: relation

between two notions, minimal condition, and efficient construction. In Proceedings

of the 16th ACM conference on Computer and communications security, pages 54–

65. ACM, 2009.

[MP08] Jorge Munilla and Alberto Peinado. Security analysis of tu and piramuthu’s protocol.

In New Technologies, Mobility and Security, 2008. NTMS’08., pages 1–5. IEEE,

2008.

[MPLDV13] Aikaterini Mitrokotsa, Pedro Peris-Lopez, Christos Dimitrakakis, and Serge Vaude-

nay. On selecting the nonce length in distance-bounding protocols. The Computer

Journal, 2013.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of cryptology,

4(2):151–158, 1991.

[NCF+14] Thomas Nitsche, Carlos Cordeiro, Adriana B Flores, Edward W Knightly, Eldad

Perahia, and Joerg C Widmer. Ieee 802.11 ad: directional 60 ghz communication

for multi-gigabit-per-second wi-fi. IEEE Communications Magazine, 52(12):132–

141, 2014.

[NFHF09] Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki. Revocable group

signature schemes with constant costs for signing and verifying. In International

Workshop on Public Key Cryptography, pages 463–480. Springer, 2009.

[NSMSN08] Ching Yu Ng, Willy Susilo, Yi Mu, and Rei Safavi-Naini. Rfid privacy models

revisited. In Computer Security-ESORICS 2008, pages 251–266. Springer, 2008.

[NV08] Ventzislav Nikov and Marc Vauclair. Yet another secure distance-bounding protocol.

IACR Cryptology ePrint Archive, 2008:319, 2008.

198

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against cho-

sen ciphertext attacks. In Proceedings of the twenty-second annual ACM symposium

on Theory of computing, pages 427–437. ACM, 1990.

[Ped92] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable

secret sharing. In Advances in Cryptology – CRYPTO’91, pages 129–140. Springer,

1992.

[PH12] Roel Peeters and Jens Hermans. Wide strong private RFID identification based on

zero-knowledge. IACR Cryptology ePrint Archive, 2012:389, 2012.

[PHS03] Josef Pieprzyk, Thomas Hardjono, and Jennifer Seberry. Fundamentals of computer

security. Springer, 2003.

[PV08] Radu-Ioan Paise and Serge Vaudenay. Mutual authentication in RFID: security and

privacy. In Proceedings of the 2008 ACM symposium on Information, computer and

communications security, pages 292–299, 2008.

[RČ08] Kasper Bonne Rasmussen and Srdjan Čapkun. Location privacy of distance bound-

ing protocols. In Proceedings of the 15th ACM conference on Computer and com-

munications security, pages 149–160. ACM, 2008.

[RC10] Kasper Bonne Rasmussen and Srdjan Capkun. Realization of rf distance bounding.

In USENIX Security Symposium, pages 389–402, 2010.

[RNTS07] Jason Reid, Juan M Gonzalez Nieto, Tee Tang, and Bouchra Senadji. Detecting relay

attacks with timing-based protocols. In Proceedings of the 2nd ACM symposium on

Information, computer and communications security, pages 204–213. ACM, 2007.

[Ros98] Christian Eric Ross. Vehicle passive keyless entry and passive engine starting sys-

tem, May 12 1998. US Patent 5,751,073.

[RTŠ+12] Aanjhan Ranganathan, Nils Ole Tippenhauer, Boris Škorić, Dave Singelée, and Srd-

199

jan Čapkun. Design and implementation of a terrorist fraud resilient distance bound-

ing system. In Computer Security–ESORICS 2012, pages 415–432. Springer, 2012.

[Sch91] C P Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,

1991.

[Sch14] Jörg Schwenk. Modelling time for authenticated key exchange protocols. In Euro-

pean Symposium on Research in Computer Security, pages 277–294. Springer, 2014.

[SP07a] Dave Singelée and Bart Preneel. Distance bounding in noisy environments. In Se-

curity and Privacy in Ad-hoc and Sensor Networks, pages 101–115. Springer, 2007.

[SP07b] Dave Singelee and Bart Preneel. Key establishment using secure distance bound-

ing protocols. In Mobile and Ubiquitous Systems: Networking & Services, 2007.

MobiQuitous 2007. Fourth Annual International Conference on, pages 1–6. IEEE,

2007.

[STLBH11] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J-P Hubaux. Quantifying

location privacy. In Security and Privacy (SP), 2011 IEEE Symposium on, pages

247–262, 2011.

[Tip12] Nils Ole Tippenhauer. Physical-Layer Security Aspects of Wireless Localization.

PhD thesis, ETH, 2012.

[TP07] Yu-Ju Tu and Selwyn Piramuthu. RFID distance bounding protocols. In First In-

ternational EURASIP Workshop on RFID Technology, Vienna, Austria (September

2007), 2007.

[Vau07] Serge Vaudenay. On privacy models for RFID. In Advances in Cryptology–

Asiacrypt 2007, pages 68–87. Springer, 2007.

[Vau13] Serge Vaudenay. On modeling terrorist frauds. In Provable Security. Springer, 2013.

[Vau14] Serge Vaudenay. Proof of proximity of knowledge. IACR Eprint, 695, 2014.

200

[Vau15] Serge Vaudenay. Private and secure public-key distance bounding. In Financial

Cryptography and Data Security, pages 207–216. Springer, 2015.

[Vau16] Serge Vaudenay. Privacy failure in the public-key distance-bounding protocols. IET

Information Security, 10(4):188–193, 2016.

[VBM+13] Serge Vaudenay, Ioana Boureanu, Aikaterini Mitrokotsa, et al. Practical & provably

secure distance-bounding. In The 16th Information Security Conference, 2013.

[WC01] Duncan S Wong and Agnes H Chan. Mutual authentication and key exchange

for low power wireless communications. In Military Communications Conference,

2001. MILCOM 2001. Communications for Network-Centric Operations: Creating

the Information Force. IEEE, volume 1, pages 39–43. IEEE, 2001.

[Yao82] Andrew C Yao. Protocols for secure computations. In Foundations of Computer

Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 160–164. IEEE, 1982.

201

Appendix A

Extra Literature Review

In this chapter we discuss the works that are indirectly related to the problem statements of this

thesis. The topics of this chapter have either less priority compared to Chapter 3, or are used as

application in the body of thesis.

In Section A.1 we review the symmetric key distance bounding literature. In Section A.2 we

review the difficulties implementation of a distance-bounding protocol on physical circuit. And In

Section A.3 we discuss the privacy concepts in distance-bounding literature.

A.1 Symmetric Distance-Bounding

Hancke-Kuhn [HK05]

Hancke-Kuhn proposed the classic DB model, which is used in most of DB protocols. In this model,

each pair of prover-verifier is given a shared-key and the prover is trying to convince the verifier

that she knows the shared-key, while she is close to the verifier. Verifier sends fresh challenge bits,

and the prover replies with the proper response as fast as possible in a fast-exchange phase.

Figure A.1 shows the scheme, which considers noisy channels for the first time in the literature.

This protocol is designed to be secure against DF and MF attacks.

Reid et al. [RNTS07]

Reid et al. extended Hancke-Kuhn’s protocol (Figure A.2) to be secure against TF attack, in which

the prover is far away from the verifier, but there is a close adversary who is collaborating with

the prover to succeed in the protocol. In a TF scenario, the prover sends the response table (i.e.

202

P V
(x) (x)

Initialization Phase:

pick NV •• pick NP NV

NP

d1||d2 = fx(NP,NV) d1||d2 = fx(NP,NV)
Fast Challenge-Response Phase:

∀i ∈ {1, . . . ,λ}:
ai ∈R {0,1} •

Start Clockai

• bi = āid1,i +aid2,i bi
Stop Clock

Check Responses

OutV

Figure A.1: Hancke-Kuhn Protocol [HK05]. fx() is a pseudo random function.

proper answer for each challenge) to the adversary prior the fast-exchange phase. And after that,

the adversary can answer to challenges of verifier successfully.

Based on this protocol, a malicious prover who is helping the adversary with the response table,

will end up leaking her own secret-key to the helper. Unfortunately Bay et al. [BBM+13] showed

that this protocol becomes vulnerable to a MiM attack [KAK+08], which makes the protocol to be

vulnerable against MF attack.

The idea of the attack as shown by Bay et al. [BBM+13] is that the adversary relays the communi-

cation between a close prover and a verifier, but flips one challenge ai. The value bi which is sent

as a response to the verifier is selected at random. Therefore, the adversary learns the response of

ai from prover, and by seeing the final output of the verifier (acceptance or rejection), the adversary

deduces what is the correct answer to 1−ai. So, he learns the ith bit of d1 and d1, which deduces

xi. He can repeat this for each i and infer x. Then, the attack phase just impersonates the prover.

Other instances of this protocol, where d2 = d1⊕ x get replaced by addition modulo some prime

203

P V
(x) (x)

Initialization Phase:

pick NV •• pick NP NV

NP

d1 = fx(NP,NV),d2 = d1⊕ x d1 = fx(NP,NV),d2 = d1⊕ x
Fast Challenge-Response Phase:

∀i ∈ {1, . . . ,λ}:
ai ∈R {0,1} •

Start Clockai

• bi = āid1,i +aid2,i bi
Stop Clock

Check Responses

OutV

Figure A.2: Reid et al. distance-bounding protocol [RNTS07]. fx() is a pseudo random function.

q or addition with a random factor, can also be broken, as shown in [BBM+13]. However, it is

suggested by Mitrokotsa et al. [MPLDV13] to step back to Hancke-Kuhn’s idea in calculating d1

and d2 (i.e. d1||d2 = fx(NP,NV)), but the prover releases (R,x⊕hR(d1,d2)) as an extra information,

where R is a random value and h() is a universal hash function. Unfortunately, the security proof

of this idea is not provided.

Avoine et al. [ALM11]

Avoine et al. proposed the TDB protocol (Figure A.3) that addresses the problem of MiM attack

that was brought up by Kim et al. [KAK+08]. TDB protocol [ALM11] addresses this problem

by adding an additional state to the challenge (i.e. ai ∈ {0,1,2}). The idea is to do a threshold

secret-sharing for splitting xi into three pieces, such that avoids leakage by having just two shares.

The main assumption of TDB protocol is that the function f is a pseudo-random function, but

Boureanu et al. [BMV12] showed that this assumption is not enough and they presented a PRF,

204

P V
(x) (x)

Initialization Phase:

• pick NP NP

pick NV •NV

d1||d2 = fx(NP,NV) d1||d2 = fx(NP,NV)
Fast Challenge-Response Phase:

∀i ∈ {1, . . . ,λ}:
ai ∈R {0,1,2} •

Start Clockai

• bi =

d1,i if ai = 0

d2,i if ai = 1

xi⊕d1,i⊕d2,i if ai = 2
bi

Stop Clock

Check Responses

OutV

Figure A.3: TDB Protocol [ALM11]

which makes the protocol insecure. The following PRF f is constructed, given a PRF g;

fx(Np,Nv) =

 x||x i f Np = x

gx(Np,Nv) otherwise

By having this PRF f , a malicious prover can choose Np = x and make all the responses to be the

same, which allows the prover to be able to send the response before getting the challenge from

verifier. The protocols that can be broken by this attack is shown in Table A.1.

Boureanu et al. [BMV12] solved this problem by using PRF Masking, as shown in Figure A.4.

In order to handle the noise in the communication channel, the idea in many protocols is to tolerate

some limited amount of wrong prover responses. Hancke [Han12] showed, this idea makes this

protocol vulnerable to TF attack. In this attack, the malicious prover runs the initial phase, and

205

Protocol Vulnerable to DF Vulnerable to MiM

Hancke-Kuhn [HK05] × -

Reid et al. [RNTS07] × ×

Avoine-Tchamkerten [AT09] × ×

Swiss-Knife [KAK+08] - ×

Dürholz et al. [DFKO11] × -

TDB [ALM11] × -

Table A.1: Vulnerable DB protocols against PRF Programming Techniques [BMV12].

P V
(x) (x)

Initialization Phase:

• pick NP NP
pick NV ,d •

M = d⊕ fX(Np,Nv)NV ,M
d = M⊕ fX(Np,Nv)

Fast Challenge-Response Phase:

∀i ∈ {1, . . . ,λ}:
ai ∈R {0,1,2} •

Start Clockai

• bi =

d1,i if ai = 0

d2,i if ai = 1

xi⊕d1,i⊕d2,i if ai = 2
bi

Stop Clock

Check Responses

OutV

Figure A.4: TDB Protocol with PRF Masking [BMV12]

206

then she sends a noisy version of the response table to the helper in such a way that the helper

passes the noise threshold. In this way, the helper still has a good amount of uncertainty about the

secret key of prover.

Čapkun et al. [ČBH03]

Bellare-Rogaway [BR93] introduced mutual-authentication in which the two participants of the

protocol play both of the authentication roles; prover and verifier. Based on their definition, at

least a three round conversation is needed to achieve mutual-authentication.

This definition brought the attention of researchers of low-power devices to use this concept to

make key-agreement protocols [WC01, CH06, BCEP04, JP02, SP07b] and distance-bounding pro-

tocols [ČBH03, SP07b, KAK+08]. In this literature, there are both symmetric-key and public-

key systems. In this section we discuss the existing mutual distance-bounding schemes. Mutual

distance-bounding is an extension of classic DB, in a way that both parties do the distance measur-

ing about the other party.

The practical cost of Mutual-DB is almost double the cost of classic DB. In classic DB, the main op-

eration at the verifier is time measurement, and the main operation at the prover is fast responding.

While in Mutual-DB, both partied need to do both of these operations.

Čapkun et al. proposed a mutual distance-bounding model. Any pair of parties, who have a shared-

key prior the protocol, can run the DB protocol. In this model, both ends of a DB session, prove their

authenticity and distance upper bound to each other. They proposed MAD protocol (Figure A.5),

which is secure against DF and MF attacks.

There are two technical challenges in this protocol; first, there is no time gap between challenge-

response rounds, which makes the implementation even harder than classic DB protocols, and sec-

ond, all challenge-response rounds are dependent to the previous rounds, which makes the protocol

more fragile in presence of noise.

207

U V
(secret: x) (secret: x)

Initialization Phase:

• r ∈R {0,1}λ,r′ ∈R {0,1}λ′
s ∈R {0,1}λ,s′ ∈R {0,1}λ′ •

• Cu = commit(r|r′) Cv = commit(s|s′) •
Cu

Cv

Fast Challenge-Response Phase:
• a1 = r1 a1

b1 = s1⊕a1 •b1
. . .

• ai = ri⊕bi−1 ai
measure delay between bi−1 and ai

bi = si⊕ai •bi
measure delay between ai and bi

. . .
• al = rl⊕bl−1 al

measure delay between bl−1 and al
bl = sl⊕al •bl

measure delay between al and bl

Authentication Phase:

Check all si
?
= ai⊕bi Check all ri

?
= ai⊕bi−1 and r1

?
= a1

• µu = macx(u|v|r|s) µv = macx(v|u|r|s) •
r′,µu

s′,µv

verify Cv and µv verify Cu and µu

OutU OutV

Figure A.5: Mutual Authenticated Distance Bounding protocol (MAD) [ČBH03]

Singelée-Preneel [SP07a]

Singelée-Preneel [SP07a] improved MAD protocol to support noisy channels. This protocol (Fig-

ure A.6) uses error correcting code (ECC) and MAC for noise tolerance. However, this protocol

inherits the technical difficulties of MAD [ČBH03].

208

U V
(secret: x) (secret: x)

Initialization Phase:

• r ∈R {0,1}λ

s ∈R {0,1}λ

ECC(n,λ)(r1, . . . ,rλ)→ r1, . . . ,rn ECC(n,λ)(s1, . . . ,sλ)→ s1, . . . ,sn
Cu = commit(r1| . . . |rn)

Cv = commit(s1| . . . |sn)

Fast Challenge-Response Phase:
• a1 = r1 a1

b1 = s1⊕a1 •b1
. . .

• ai = ri⊕bi−1 ai
measure delay between bi−1 and ai

bi = si⊕ai •bi
measure delay between ai and bi

. . .
• an = rn⊕bn−1 an

measure delay between bn−1 and an
bn = sn⊕an •bn

measure delay between an and bn

Authentication Phase:

si← ai⊕bi ri← ai⊕bi−1 and r1← a1

ECC(n,λ)(s1, . . . ,sn)→ s1, . . . ,sλ ECC(n,λ)(r1, . . . ,rn)→ r1, . . . ,rλ

• µu = macx(r1| . . . |rλ|s1| . . . |sλ) µv = macx(s1| . . . |sλ|r1| . . . |rλ) •
open commitment Cu,µu

open commitment Cv,µv

verify Cv and µv verify Cu and µu

OutU OutV

Figure A.6: Mutual Authenticated Distance Bounding protocol [SP07a]

As we discussed earlier, Čapkun et al. [ČBH03] designed the first DB protocol with mutual-

authentication. The parties run the protocol to make sure about the proximity and mutual au-

thentication. Note that mutual-authentication is different from mutual-DB and has no guarantee

about the distance between the parties.

209

Singelée-Preneel [SP07b] mixed the Diffie-Hellman [DH76] key establishment protocol and MAD

DB protocol [ČBH03]. In these two protocols, an ad-hoc network is considered where all parties

have the same role. Both sides of the protocol challenge the other side, for DB measurements. In

other words, these two works present mutual-DB as well as mutual-authentication.

Note that the Swiss-Knife protocol (Figure3.7) [KAK+08] modified the Map1 protocol [BR93] in

order to construct a classic distance-bounding protocol. However, since there is no mutual distance

measurement, then it is not a mutual-DB protocol.

A.1.1 Formalizing Security in Distance-Bounding

For the first time in DB literature, Boureanu et al. [BMV13b] and Fischlin-Onete [FO13b] proposed

formal distance-bounding models. Fischlin-Onete [FO13b] proposed three notions of terrorist-

fraud attack; GameTF, SimTF and strSimTF, respectively ordered from easy to strong. The latter

two models are simulation-based and Fischlin-Onete [FO13a] showed that none of the existing DB

protocols offer SimTF, due to the strong definition of SimTF. Fischlin-Onete [FO13b] provided

the only SimTF secure scheme by modification of Swiss-Knife protocol [KAK+08]. This proto-

col becomes more vulnerable to other attacks, which may indicate that SimTF security cannot be

achieved efficiently.

Boureanu et al. [BMV13b] proposed a simpler model, which is trying to be as general as possible

to capture all DB attacks. The proposed definitions of DF and MF are more general than classic

definitions, but the proposed TF model has a weaker adversary than classic TF models. Based on

this definition, if there is any PPT adversary who can win the TF game with probability γ, then

there exist a weaker MiM adversary who can succeed in an specific MiM game with probability γ′.

The proposed SKI protocol [BMV13b] extends the protocol of Avione et al. [ALM11]. It works

in noisy environments and resists against all DB adversaries. The formal security proof of this

protocol is provided in the paper, but despite the claim, this protocol is not proven to be secure

210

under the defined TF adversary. The provided proof is just for deterministic PPT adversaries in the

TF game, rather than any PPT adversary.

A.2 Implementation of Distance-Bounding

DB protocols make some computational assumptions about the underlying interfaces; (i) messages

travel with speed of light, (ii) the parties can send/receive messages that contain a single bit, and

(iii) the processing time at the challenged party (i.e., prover) is close to zero. These assumptions al-

low the high-level DB protocols to simply measure the mutual distance between prover and verifier,

by the following formula; distance = round trip time
speed o f light .

There has been many implementations in RFID environments, like keyless entry of cars [Ros98] or

[Han11, HK05], which are very restricted because of their abilities and settings, like memory size,

processing abilities, channel occupancy status, transmission frequency/rate, or etc. The nice fact

about RFID implementations is that there is not many layering in the transmission process (unlike

WiFi environment), which makes the time measurements more feasible.

When we want to implement a DB application, we notice that the latter two assumptions are either

not true in some environments, or very hard to achieve. That’s why the implementation of DB

protocols in the existing wireless platforms has been a challenging problem.

As noted in Hancke [Han11], conventional communication channels are designed for reliable data

transfer. As a result, these channels feature redundancy and timing tolerances to prevent bit errors.

Such latency introduces uncertainty into the distance-bounding measurement and can be exploited

by an attacker not adhering to the communication channel to gain a time advantage, which can be

used for DB attacks.

As Clulow et al. [CHKM06] notes, any DB protocol should consider the following principals to

optimize the communication:

211

• Use a communication medium with a propagation speed that approaches the speed

of light.

• Use a communication format in which the recipient can instantly react on the re-

ception of each individual bit. This excludes most traditional byte or block-based

communication formats, and in particular any form of redundancy such as error-

correction and packet delimiters such as headers and trailers.

• Minimize the length of the symbol used to represent each single bit, or if working

with a baseband signal, the verifier should sample as early as possible during the bit

period and base his decoding decision on the value of this single sample.

In the distance-bounding literature, there are just a few implementations. The main concern in the

implementation of DB protocols, is to reduce the time for receive, process and transmit signal at

the prover in order to generate the proper response for the received challenge. This timing should

be comparable with propagation time of the signal. There are two general ways for generating the

response at the prover; analog processing and digital processing.

The processing time in a digital implementation is consisting of (i) converting the analog symbol

of challenge signal to a digital bit, (ii) computing the proper response bit, and (iii) generation

and transmission of analog symbol for the response bit. The most efficient digital processing

DB implementation is presented in Tippenhauer [Tip12]. As expected, this implementation tries

to understand the challenge symbol and process the digital result by using her key bit, and then

transmit the response. The timing of this process is about 170ns. This timing allows the attacker to

cheat about 27m about the actual distance. Although the timing is not very good in this case, but it

supports TF resistance.

However, Rasmussen-Capkun [RC10] presented the fastest analog-processing implementation of

DB protocols, which takes 1ns for challenge reception, processing and response transmission. This

timing provides provides a tight security guarantee (15cm). This implementation cannot support

212

TF-resistance, because they don’t care about the information content of challenge signal. This de-

sign is based on a processing method, called Challenge Reflection with Channel Selection (CRCS).

This implementation uses three (non-overlapping) communication channels. The verifier sends its

challenge bits to the prover using one communication channel (C0), whereas the prover replies

using two communication channels (C1,C2) (Figure A.7). While it is receiving the verifier’s chal-

lenge bit (i.e., the signal that encodes it), the prover is responding with the same signal (bit), but it

is sending it on either channel C1 or channel C2, depending on its current input (i.e. key) bit Np[i].

Figure A.7: The verifier measures the time between sending a challenge signal c(t) and receiving

the reply signal r(t) = r1(t)+ r2(t). If c(t) = r(t), the distance bound to the prover is then given

by (tr− t0).c, where c is the speed of light. [RČ08]

The schematic of prover’s circuit is shown in Figure A.8. As it’s shown in the figure, the content of

the challenge signal is not important to the prover. The prover only makes two copy of the signal,

and chooses one of them based on her key bit. Although the timing of this implementation is very

good, but it just supports DF and MF resistance.

Ranganathan et al. [RTŠ+12] presents an implementation that makes a hybrid digital/analog cir-

cuit, called Switched Challenge Reflector with Carrier Switching (SCRCS), which enables the

implementation of TF-resistant DB protocols. In this implementation, the allowed TF inaccuracy is

reduces to 4.5m (30ns).

213

Figure A.8: Schematic of prover by using CRCS [RČ08]

The design of SCRCS is shown in Figure A.9, Figure A.10, Figure A.11 and Figure A.12.

In this design, the verifier transmits challenges on one of the two different carrier frequencies and

the prover duplicates the received signal into two different minor shifted carriers, and based on her

key bit, replies with one of the two copies Note that the verifier and prover are synchronized at

the beginning of each round, which can happen by transmitting some preamble at the beginning

of each round. It’s important to know that the length of the preamble and the processing related

to that, does not effect the distance-bounding security implications. Four possible reply channels

are created before activating the appropriate reflected carrier frequency. The verifier listens on the

expected channel (among four channels), and checks the time delay between the transmitted and

the received signal. This implementation allows DF, MF and TF resistance and at the same time,

the timing of prover’s operations is about 30ns, which allows only 4.5m distance cheating in TF

and 41cm distance cheating in DF and TF scenarios.

214

Figure A.9: Overview of the switched challenge reflector with carrier shifting [RTŠ+12]

Figure A.10: The channel shifter. The incoming signal c′(t) contains the challenges on either

carrier frequency w0 or w1. After mixing c(t) with w∆, the signal is filtered appropriately to

generate the four possible response channels: w0−w∆, w0 +w∆, w1−w∆, w1 +w∆. [RTŠ+12]

215

Figure A.11: Switched channel activator. The registers R0 and R1, which are derived from the key

of prover, select which two of the four reply channels are used in this round. The channel in which

sufficient energy is encountered first gets enabled. After a channel is activated, it stays active until

the end of this rapid bit-exchange round while the other channels remain deactivated until the end

of this round. [RTŠ+12]

Figure A.12: Internals of channel activation. We obtain a DC component of the squared signal to

detect energy in the channel and store the value for this round in a latch-like circuit. In summary,

the “Energy Detector” returns 1 if there is a signal on the input, and 0 otherwise. The channel

activation can be disabled by pulling EN (enable signal) low and is automatically reset at the

beginning of each round of the rapid-bit exchange (RST). [RTŠ+12]

Ranganathan et al. [RTŠ+12] mentioned a new attack model that can target the analog-processing

implementations. In “Double Read-out” attack, the attacker tries to simultaneously query both of

the registers (i.e. both possible responses of prover), which usually ends up in leaking the secret

key of prover. The analog implementations (e.g. CRCS [RČ08]) are typically vulnerable to this

216

attack, since they allow the challenge signal on both possible carrier frequencies at the same time.

A.3 Privacy in Distance-Bounding

In this section, privacy of a prover is considered as un-traceablility of different sessions of the

prover. We can consider two different cases in this scope;

• Pseudonymity: There is no PPT adversary AP, with a certain view and certain

capabilities, who can associate a DB session of a prover Pi to the registration session

of the same prover, better that a random guess.

• Unlinkability: There is no PPT adversary AU , with a certain view and certain ca-

pabilities, who can correlate any two different DB sessions of a single prover, better

than a random guess.

In general, both cases have been considered together as privacy. Obviously the important factors in

this definition is the view and capabilities of the adversary, which makes different privacy models.

This problem has been studied against Man-In-the-Middle (MiM) adversaries ([Vau07], [HPVP11]),

while verifiers are trusted. In these systems the location of provers are known by the verifiers,

but provers hide their identity in their interactions. However, since these works are on RFID plat-

forms, which need low computation cost, the existing protocols and privacy models are considering

symmetric-key structures.

Moreover, in a symmetric-key DB protocol, there is a shared-key between prover and registration

authority and so privacy is not achievable against an adversary who can have access the internal

state of the authority. One can always achieve prover privacy by giving the same key to all provers.

This however is unacceptable because of the high compromisation risk of the whole system.

Defining privacy in authentication protocols has attracted much research [Vau07, PV08, NSMSN08,

JW09, MLDL09, DLYZ11, HPVP11, HPO13, GOR14]. In the following we give an overview of

217

the related works.

Vaudenay [Vau07]

Vaudenay [Vau07] proposed one of the most general MiM privacy models in RFID communication

setting. In this model, the privacy adversary is a MiM attacker (A) between verifier and prover.

A can block the connection between the two parties and communicate with them separately. In

RFID protocols, there are multiple tags and readers, and they are distributed in many locations.

The security model of RFID protocols are similar to the security model of DB protocols.

In this model, the interactions of A is modeled with access to some oracles in the security model.

Other than the initiation and communication abilities of A, there are two special oracles as follows;

Result oracle gives the final result of a verification session to the adversary, and Corrupt oracle

returns the non-volatile internal state (i.e. secret key) of a prover to the adversary. In this model,

the adversary is willing to distinguish between the sessions of two provers.

In this model the adversaries are classified, based on their access to these two oracles. A wide

adversary has access to Result oracle, otherwise it will be a narrow adversary. In parallel, the

adversary can be weak (no access to Corrupt oracle), forward (Corrupt queries can only be

followed by other Corrupt queries), destructive (Corrupt queries destroys the access to the cor-

rupted prover), and strong (unlimited access to Corrupt oracle).

Therefore, the following order in the classification holds; narrow ⊆ wide, based on having access

to Result oracle. And weak⊆ forward⊆ destructive⊆ strong based on having access to the state

of Corrupt oracle. In this model, a simulation-based definition about privacy is considered, which

is too strong and Vaudenay proofs that it’s impossible to achieve the defined strong privacy.

218

Hermans et al. [HPVP11]

Hermans et al. presented a simpler game-based privacy model of MiM attacks. This work is an

extension of Vaudenay [Vau07]. In this model, privacy is defined as a game between an adversary

and a challenger. In this game, there are two provers, and the challenger chooses one of them

randomly and allows it to run the protocol. The adversary is willing to find out which one has been

chosen by the challenger. The adversary has access to the same oracles as in Vaudenay’s [Vau07]

model.

Peeters-Hermans [PH12] added a new oracle to the list of oracles in Hermans et al. [HPVP11],

by which the adversary can create insider prover and have control on it (CreateInsider). The

insider provers cannot be chosen by the challenger.

Hermans et al. [HPVP11] proved that the public-key RFID protocol of Vaudenay [Vau07] is wide-

strong private, if it uses an IND-CCA2 crypto-system. And also proved that the random-oracle

protocol of Vaudenay [Vau07] is narrow-destructive private.

Hermans et al. [HPO13]

Hermans et al. designed a public-key DB protocol, which is wide-forward-insider or narrow-strong

private in the privacy model of Hermans et al. [HPVP11]. This protocol is also secure in DF and

MF DB models. However, this protocol is trivially vulnerable to TF, which makes it hard to be

adopted for payment systems or etc.

Gambs et al. [GOR14]

Since Paise-Vaudenay [PV08] showed that destructive and strong privacy is not achievable in

symmetric-key systems. For the first time in the literature, Gambs et al. [GOR14] decided to

modify Hermans et al. [HPO13] protocol, in order to go beyond MiM privacy adversaries. The

proposed privacy model, protects the privacy of provers against malicious verifiers or honest-but-

curious registration authority.

219

They extended the protocol of Hermans et al. [HPO13] to propose a public-key DB protocol that is

privacy-preserving. This protocol is designed to be secure in DF and MF DB models and privacy-

preserving against three separate adversaries: (1) MiM adversary, (2) a malicious verifier, and (3)

an honest-but-curious adversary who knows the internal state of the verifier and the registration

authority.

Unfortunately, this protocol is broken by a simple MiM attack. However, although this is a stronger

form of privacy (than MiM privacy models), but since the protocol provides deniability to provers,

then it will be hard to be used in payment systems. Moreover, since this protocol is an extension

of [HPO13], then it inherits the trivial TF attack, which makes it even harder to be used in a

payment system. This protocol requires to update the public-key of all provers dynamically when

a new prover is added or removed from the system, which makes the protocol to have high cost per

operation.

220

