
THE UNIVERSITY OF CALGARY

S - Logic: A Higher-Order Logic For Deductive

Databases

BY

Mengchi Liu

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

AUGUST, 1990

© Mengchi Liu 1990

National Library Bibliothèque nationale
of Canada du Canada

Canadian Theses Service Service des theses canádiennes

Ottawa. Canada
KIA 0N4

The author has granted an irrevocable non-
exclusive licence allowing the National Ubrary
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any meahs and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

i- 1

uanacta

L'auteur a accordé une licence irrevocable et
non exclusive permettant a la Bibliothèque
nationale du Canada de reproduire, prêter,
distribuer ou vendre des copies de sa these
de quelque manière et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent être
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-61976-7

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "S-Logic: A Higher-Order Logic

for Deductive Databases" submitted by Mengchi Liu in partial fulfillment of the

requirements for the degree of Master of Science.

Date Aiiguct 27, 1990

D'in Gaines

11

ervisor,-Dh John Cl
partmeii of Computer Science

Department of Computer Science

Department of Computer Science

Dr. Anf?ony Kusalik
Department of Computational Sci-
ence
University of Saskatchewan

'

Abstract

In this thesis, I discuss the significant problems inherent in deductive databases which

result from the integration of relational database and logic programming techniques.

I examine two broad areas where problems are apparent: complex object modeling

and higher-order features. By complex object modeling, I mean the ability to natu-

rally represent object identity, data abstractions, and inheritance. By higher-order

features, I mean the ability to uniformly represent schema and sets.

A summary is given of attempts, in both the database and logic programming

fields, to solve these problems separately. Among them are semantic data models

which use data abstractions and inheritance, and extended logic terms which can

represent the existence and internal structure of complex objects.

Besides addressing these problems, this thesis also tries to solve them. It proposes

a new higher-order logic language called S-logic which results from the integration of

the semantic data model and extended logic term approaches. It shows that S-logic

naturally models complex objects, and represents desired higher-order features and

sets. It also shows that an S-logic program can be transformed into Prolog so that

S-logic is implementable in practice.

The major original contributions of the research presented here are twofold. First,

a language, S-logic, is defined which has expressive syntax. Second, a well-defined

least fixpoint semantics is given for definite S-logic programs.

111

Acknowledgements

I would like to thank my supervisor, Dr. John Cleary, for his valuable advice and sup-

port throughout this research project. His insight and knowledge were fundamental

to the success of this thesis. I have been most impressed by his quick understanding

of tricky points and his tiny but forcible counter-examples.

Thanks are also due to my friend Vinit Kaushik for the many discussions and for

his patience in correcting my English mistakes.

I am also grateful to the Department of Computer Science, The University of

Calgary, for financial support.

Love and appreciation to my wife Hongbo Liang for her tremendous support and

sacrifice enabling me to dedicate myself to the completion of this thesis.

Finally, I would like to thank my parents whose encouragement began long before

my work on this thesis.

iv

Contents

Abstract iii

Acknowledgements iv

List of Figures vii

1 Introduction 1
1.1 Organization of Thesis 4

2 Background 5
2.1 Relational Databases 5
2.2 Logic Programming 8

2.2.1 Semantics: Interpretation and Model 9
2.2.2 Proof Theory 11

2.3 Deductive Databases 13

3 Motivation 17
3.1 Complex Object Modeling 17

3.1.1 Object Identity 18
3.1.2 Data Abstractions and Inheritance 19
3.1.3 Solutions 23

3.2 Higher-Order Features 30
3.2.1 Uniformity of Schema and Data 31
3.2.2 Set Expressions 32

3.3 Motivation of S-logic 35

4 Informal Presentation and Examples 37
4.1 Type Systems 37
4.2 Database 45
4.3 Rules and Queries 49

5 Formal Presentation 56
5.1 Syntax of S-logic 56
5.2 Semantics 62
5.3 Herbrand Interpretations 77

V

6 Transformation into First-Order Logic 88
6.1 Transformation of Type System 88

6.1.1 Transformation of Basic Types 89
6.1.2 Transformation of Set Types 90
6.1.3 Transformation of Record Types 91
6.1.4 Transformation of the Built-in Types 92

6.2 Transformation of the Database 93
6.3 Transformation of S-terms 95
6.4 Transformation of Rules 97
6.5 Transformation of Queries 100

IT Conclusion and Further Work 103
7.1 Updates 104

Bibliography 109

A Transformation of Sample Type System 113

B Transformation of Sample Database 118

C Transformation of Sample Rules 122

D Transformation of Sample Queries (I) 126

E Transformation of Sample Queires (II) 129

vi

List of Figures

2.1 Examples of Relations 6
2.2 Example of Resolution 11

3.1 Examples of Semantic Database Schema 25
3.2 Examples of -Terms 26

4.1 A Sample Type System 43
4.2 The Lattice Over the Sample Type System 45
4.3 A Sample Database 49
4.4 Sample Rules 52
4.5 Sample Queries and Answers (I) 53
4.6 Sample Queries and Answers (II) 54

vii

Chapter 1

Introduction

Databases and logic programming are two independently developed areas in com-

puter science. Database technology has evolved in order to efficiently organize, man-

age and maintain large amounts of data. The relatively slow speed of secondary

devices holding the data is one of the main limitations of database systems in the

past. Hence, the internal organization of databases has been the primary focus of

research in the past. Besides, the need to share information among a variety of users

requires strict rules governing the manipulation of data to be imposed to preserve

the integrity of the database and to guarantee privacy for each user. This led to the

development of several basic models.

A data model is a collection of well-defined concepts that helps the database

users to understand and express the static and dynamic properties of applications.

It determines the types of data structures visible to the user and the operations

allowed on these structures. It also provides the conceptual basis for thinking about

the applications and provides a formal basis in developing and using the database

systems. A typical data model consists of two parts: a set of generating rules for

constructing structural properties and a set of operations for expressing behavioral

properties of applications [6, 7, 43]. A database schema consists of the definition of

structural properties of all application object types based on the concepts provided

by the corresponding data model. Corresponding to the schema is a data reposi-

tory called a database which is an instance of the database schema. The process

1

CHAPTER 1. INTRODUCTION 2

of capturing the information requirements of applications and producing the corre-

sponding database schema is called data modeling. Obviously, the complexity of the

data modeling depends on the data model used.

Conventional data models, which include relational, hierarchical and network

models, are machine-oriented. They arrange data in fixed linear sequences of field

values and thus provide an efficient basis for storing and processing data. Each of

the conventional models is based on some idealized data structure and has a set of

operations associated with this structure. Of them, the relational data model is the

most significant and widely used. The main attraction of the relational model is its

mathematical clarity, which facilitates non-procedural, high-level queries and thus

separates the user from the internal organization of data. In the last two decades, a

great deal of thought and ingenuity has been invested in the efficient processing of

queries and updates of relational databases in secondary memory.

Logic programming began in the early 1970's as a direct outgrowth of earlier

work in automatic theorem proving and artificial intelligence. Logic programming

is based on mathematical logic, which is formalized in terms of proof theory and

model theory. Proof theory provides formal specifications for correct reasoning with

premises, while model theory prescribes how general assertions may be interpreted

with respect to a collection of specific facts. Logic programming is programming

by description. It uses logic to represent knowledge and uses deduction to solve

problems by deriving logical consequences. Most logic programming is based on the

Horn-clause form, which is a variant of first-order logic. Horn-clause logic has well

defined model-theoretic and procedural semantics [29]. The state of the art in logic

programming is represented by Prolog in its various manifestations.

CHAPTER 1. INTRODUCTION 3

Relational database and logic programming techniques have been found to be

strongly similar in their representation of data. In the last few years, a lot of effort

has been made toward the application of logic to relational databases. They are also

found to be complementary. The combination of logic programming and relational

database techniques has led to the active research area of deductive databases. It

combines the benefits of these two approaches, such as representational and opera-

tional uniformity, deductive power, efficient secondary storage access, etc.

Unfortunately, significant problems remain inherent in this synthesis. There are

several broad areas where problems are apparent. The first problem area is that

deductive databases based on relational databases and Prolog cannot naturally model

complex objects, which include object identity, data abstractions and inheritance.

The second problem area is that it cannot naturally deal with higher-order features

which include schema and sets. Traditionally, a separate language is provided to

specify and manipulate the schema information, and sets are not directly supported

at all. These problems result from the underlying relational data models and pure

Prolog which uses inexpressive flat structures.

To improve the expressiveness of the relational data model, semantic data models

have been proposed which use data abstractions and inheritance. So do extended

terms with internal structure in logic programming. But, none of them can indepen-

dently solve the above problems of deductive databases.

This thesis proposes a higher-order logic language for deductive databases called

S-logic which is based on the semantic data model and extended term approaches.

S-logic can naturally support object identity, semantic data abstractions and inher-

itance, and allows the definition and manipulation of database schema and data in

CHAPTER 1. INTRODUCTION 4

an integrated framework.

1.1 Organization of Thesis

In order to make this thesis as self-contained as possible, in Chapter 2, I first intro-

duce the relational database and logic programming techniques. Then I introduce

the deductive database technique based on these two approaches.

Chapter 3 analyzes the problems of the deductive databases. Since the problems

result from the underlying relational data model and pure Prolog, I then discuss

some solutions to these problems in these two areas. This results in the motivation

of S-logic.

The core of the thesis lies in Chapter 4 and Chapter 5 where a higher-order logic

language is introduced first informally and then formally.

Chapter 6 presents a transformation algorithm which converts S-logic to Prolog.

Finally, I summarize and discuss further research directions in Chapter 7.

Chapter 2

Background

2.1 Relational Databases

Here, a briefly introduction is given to the basic concepts and definitions which

underlie the relational data model.

A domain is a usually finite set of values. The Cartesian Product of domains

D1, D2, ..., D, (not necessarily distinct) is denoted by D1 x ... x Dn and is the set

of all tuples (v1, ..., x,) such that Xi E D, i = 1, ..., n. A relation is a subset of the

Cartesian product of one or more domains. The arity of a relation R C D1 x ... x D

is n. The number of tuples in R is called its cardinality. A relation is finite if its

cardinality is finite. A database is a finite set of finite relations.

It is customary (though not essential) when discussing relations to represent a

relation as a table in which each row represents a tuple. Examples of this represen-

tation are shown in Figure 2.1, which illustrates a relation describing employees. In

the tabular representation of a relation, the following properties, which derive from

the definition of a relation, should be observed:

1) no two rows are identical;

2) row order is insignificant;

3) column order is significant; and

4) every entry is an atomic value.

In the tabular representation of a relation, it is customary to name the table and

5

CHAPTER 2. BACKGROUND 6

to name each column, as shown in Figure 2.1. The table is named by a relation name.

Each column of the table is called an attribute and has an attribute name. It should

be noted that different attributes can draw values from the same domain in a relation.

person name age address
Bob 40 257 9th Av SW
Henry 50 128 2nd St NW
John 62 439 5th Av NE
Jenny 24 725 6th Av SW
Smith 30 283 4th St SE

speaks name language
Bob English
Henry Chinese
Henry Spanish
John English
Smith Franch

Figure 2.1: Examples of Relations.

A column (or set of columns) whose values uniquely identify rows of a relation is

called a candidate key of the relation. It is possible for a relation to have more than

one candidate key. In this case, it is customary to designate one as the primary key.

Often a column or set of columns in one relation will correspond to a key of

another relation so that different relations can be related. It is called a foreign key.

A foreign key need not be (and often is not) a key of its own relation.

The structure of a relation is represented by its relation schema which consists

of a relation name and all its attribute names, whereas the specific relation is said

to be an instance of the relation schema.

Not all instances of a relation schema have meaningful interpretations; that is,

they do not correspond to valid sets of data according to the intended semantics of

the database. One therefore introduces a set of constraints, referred to as integrity

constraints, associated with a relation schema to ensure that the database meets the

intended semantics. There are two major kinds of integrity constraints: type con-

straints, which require the arguments of relations to be belong to specified domains,

CHAPTER 2. BACKGROUND 7

or dependency constraints, which express structural properties of relations.

To summarize, a database schema consists of a collection of relation schemes to-

gether with a set of integrity constraints. A database instance, also called a database

state, is a collection of relation instances, one for each relation schema in the database

schema. A database state is said to be valid if all relation instances that it contains

obey the integrity constraints.

Over the relational data model, there are three major relational languages to

manipulate data in a relational database: relational algebra, domain calculus, and

tuple calculus. All of them are equivalent [45]. Among them, relational algebra has

strong origin in mathematics. The relational algebra is a collection of operators that

deal with whole relations, yielding new relations as a result. The major operators of

relational algebra include the following:

• Projection: Given a relation .fl and A a set of attribute names of .11, the pro-

jection operation represented by 7rA(R) returns only the specified columns of

the given relation, and eliminates duplicates from the results.

• selection: Given a relation R and P a collection of conditions over the relation,

the selection operation represented by crp(R) selects only those tuples of a

relation which satisfy the given conditions.

• (Natural) Join: Given two relations R and S, the natural join operation repre-

sented by 11*S is formed by computing the Cartesian product, II x 5, selecting

out all tuples whose values on each attribute common to R and S coincide, and

projecting one occurrence of each of the common attributes.

CHAPTER 2. BACKGROUND 8

Of these three major operators, join is most frequently used to draw relationships

between different relations via common attributes. However the join operator is also

quite time consuming. A lot of efforts have been made to improve its performance.

2.2 Logic Programming

Mathematical logic is the study of the relationship between beliefs and conclusions.

For example, if we believe that Art is the father of Bob and that fathers are parents,

then we can conclude that Art is the parent of Bob. The first two sentences logically

imply the conclusion. In logic programming the programmer encodes in a logic

program a set of beliefs about the application area by using clauses, and the machine

applies rules of inference to known beliefs and derives conclusions that are logically

implied by those beliefs. Subsequent applications allow a program to derive further

conclusions. And so forth.

Most logic programming is based on Horn-clause form, which is a variant of

first-order logic. A Horn-clause logic program [29] is a set of clauses of the form

P0 4-- P1, ...,p,. Each p, 1 ≤ i < n is called either a positive literal (atom) if it has

the form j(ti, ..., tm) or negative literal if it has the form —ip(t1, ..., t,,), where p is an

rn-place predicate symbol and t1, ..., t,, are terms. A term can be either a constant,

a variable, or a function which takes terms as its arguments. Normally, constants,

functions and predicates are represented by a lower-case letter, while variables by

upper-case letters or the underscore symbol. The positive literal Po is called the head

or conclusion, and pi through Pn form the body or conditions of the clause. A term

which contains no variables is called a ground term. A clause (a literal) in which no

CHAPTER 2. BA CKGRO UND 9

variables appear is called a ground clause (ground literal). In terms of operational

semantics, the meaning of a clause may be paraphrased as follows: in order to prove

that po is true, it is sufficient to prove that pi through p are true. A clause with an

empty set of conditions is always true; it is called a fact. A clause with non-empty

head and conditions is called a rule. A clause with an empty head, on the other

hand, is called a goal which the system tries to prove.

Two complementary aspects of clauses are of interest. One deals with semantics

or model theory, the specification of truth values to clauses, whereas the other deals

with syntax or proof theory, the derivation of a clause from a given set of clauses.

2.2.1 Semantics: Interpretation and Model

The declarative semantics of a logic program is given by the usual model-theoretic

semantics of formulas in first-order logic.

In semantics we are concerned with interpretation, where an interpretation of a

set of clauses consists of the specification of a nonempty set (or domain) D, over

which the variables range. Every constant is assigned to an element of D. Each

n-ary function symbol is assigned a mapping from D' to D. And every n-place

predicate is assigned an n-ary relation on D. An interpretation thus specifies a

meaning for each symbol in the formula. A variable assignment assigns each variable

an element in the domain. Given an interpretation I with domain D, and a variable

assignment V, the truth value, true or false, of a clause can be obtained as follows. If

R is the relation assigned to an n-place predicate symbol p, then the positive literal

p(ti, ..., tm) evaluates to true if < ti, tm >E R; otherwise it evaluates to false. A

negative literal -'p evaluates to true if p is false; otherwise it evaluates to false. P1, P2

CHAPTER 2. BACKGROUND 10

evaluates to true if both pi and P2 are true; otherwise it evaluates to false. Pi - P2

evaluates to true if either p, is false or P2 is true; otherwise it evaluates to false.

A model of a program is an interpretation in which all clauses are true. A clause

G is said to be a logical consequence of a program P iff G is true in all models of P.

This is denoted by P = G. However, it is impossible to prove that G is true in all

models of P. The question can be changed to another one and we get a useful result

which states that G is a logical consequence of P if P U {-G} is unsatisfiable, that

is, if no interpretation is a model.

It turns out that there is a small and convenient class of interpretations, which

can show us unsatisfiability. These are the Herbrand interpretations. Given a set of

clauses F, the domain U of a Herbrand interpretation is the Herbrand universe, which

is the set of all ground terms in P. A Herbrand interpretation is any interpretation

based on the Herbrand universe, in which each constant is assigned itself in U, while

every n-ary function symbol is assigned a mapping Un to U denoted by itself. A

Herbrand model of P is a Herbrand interpretation which is a model for P. A very

useful theoretical result is that in order to prove unsatisfiability of a set of clauses,

it suffices to consider only Herbrand interpretations.

Of the Herbrand models, we are most interested in the exact one called the least

Herbrand model (or minimal model) which is the intersection of all Herbrand models.

It has a very important property: every atom in the least Herbrand model is a logical

consequence of the set of clauses.

Let P be a program, H is the set of all Herbrand interpretations of P which forms

a complete lattice under the partial order of set inclusion C, we define a mapping

T : H -* H as follows. Let I be a Herbrand interpretation. Then T(I) = {p E H:

CHAPTER 2. BACKGROUND 11

P - P1, ...,Pn is a ground instance of a clause in P and {pi, ...,pn} 9 I}. If I is a

model of P, then we have T(I) C I. Since T is defined over a complete lattice and it

is monotonic, it has a least fixpoint ifp(T). a is a least fixpoint of T if a is a fixpoint

(that is, T(a) = a) and for all fixpoints b of T, we have a C b. An interesting result

is that the least Herbrand model is equal to ifp(T).

2.2.2 Proof Theory

The first-order predicate calculus is a formal system that can create, or deduce new

clauses, which are logical consequence of a given set of clauses by using the rules of

inference. Of the rules that have been invented, resolution is the most extensively

studied and used in logic programming.

Two literals are said to be unifiable if they can be made identical by some sub-

stitution to the variables. For example, literals p(X, bob) and p(art, Y) are unifiable

with the substitution {X/art, Y/bob} which is to be read: substitute art for X, bob

for Y. Literals AX, bob) and p(Y, art), however, are not unifiable.

(1)parent(X, bob) father(X, bob).
(2)grandpareni(art, Z) +— parent(art, Y),parenI(Y, Z).
(3)grandparent(art, Z) <— fat her(art, bob),parent(bob, Z).

Figure 2.2: Example of Resolution

Given two clauses with unifiable literals on different sides of two clauses, the

resolution rule can be used to create, or deduce a new clause in which the left- and

right-side are the unions of the left- and right-hand sides of the two original clauses,

with the unified expressions deleted and the unifying substitution applied to the

remaining expressions. An example of resolution is given in Figure 2.2, where a

CHAPTER 2. BA CKGRO UND 12

new clause (3) is deduced from the clauses (1) and (2) using resolution which unifies

parent(X, bob) and pareni(art, Y).

Resolution is used mostly to carry out refutation proofs: Given a program P and

a goal G, in order to prove G is deducible from F, written as P F G, we can try to

show that P and -iG are not simultaneously satisfiable. If we can derive the empty

clause, that is, a clause with no conditions and no conclusions, then P and G cannot

simultaneously be satisfiable, thus we have proved the goal P F G. When a goal

contains variables and the empty clause can be derived, then we have proved the

goal, and furthermore found desired answers from the substitution.

The most important two results we can get here is that if P and -iG have a

refutation, i.e. P F G, then G E ifp(T), where ifp(T) is the fixpoint of the mapping

T described earlier, which implies that G is a logical consequence of F, that is,

P 1= G. This means that the resolution refutation is sound in that any conclusion it

draws is guaranteed to be correct so long as its premises are correct. On the other

hand, if P = G, then G E ifp(T), which implies that P U {-,G} has a refutation

and hence P F C. This means that resolution refutation is also complete in that it

can derive any logical implication from a given set of premises. We note here that

the mapping T provides a link between the model theory and proof theory of a set

of clauses. The semantics of Horn-clause logic can thus be described declaratively as

well as operationally.

Logic programming is programming by description [17]. In traditional program-

ming, one builds a program by specifying the operations to be performed in solving

a problem, that is, by saying how the problem is to be solved. In logic program-

ming, however, a program is constructed by describing its application area, that is,

CHAPTER 2. BA CKGRO UND 13

by saying what is true in terms of clauses which has the requisite declarative seman-

tics. The system will use the rules of inference to choose specific operations to draw

conclusions about the application area and to answer questions even though these

answers are not explicitly recorded in the description.

The most often used logic programming language is top-down, left-right back-

tracking Prolog.

2.3 Deductive Databases

Deductive databases result from the integration of relational database and logic

programming techniques. To show this clearly, let us first analyze the difference

and connection between relational databases and Prolog, and the advantages and

disadvantages of each.

Pure Prolog is based on Horn-clause logic and a sequential execution-control

model. Rules are searched and goals are examined in the order in which they are

specified (SLD resolution). Thus, the responsibility for the efficient execution and

termination of programs rests with the programmer: an improper ordering of the

predicates or rules may result in poor performance or even in a non-terminating

program. In addition, a number of extra-logical constructs (such as the cut) have

been grafted onto the language, turning it into an imperative, rather than a purely

declarative language.

Relational systems are superior to standard implementations of Prolog with re-

spect to ease of use, data independence, suitability for parallel processing and sec-

ondary storage access [44]. The control over the execution of query languages is

CHAPTER 2. BA CKGRO UND 14

the responsibility of the system which, via query optimization and compilation tech-

niques, ensures efficient performance over a wide range of storage structures and

database demographies. The working assumption is that the volume of data to be

manipulated is too large to be contained in the memory of a computer and hence,

that special techniques for secondary memory data access and update must be em-

ployed.

However, the expressive power and functionality offered by a relational database

query language is limited compared with the logic programming languages. Besides,

relational query languages are often powerless to express complete applications, and

are thus embedded in traditional programming languages. This method causes an

impedance mismatch [31, 48] between programming and relational query languages.

Prolog, on the other hand, can be used as a general-purpose programming lan-

guage. It is in fact being used so with great success in varied applications such as

symbolic manipulation, rule-based expert systems and natural language parsing.

Now let us see the inherent connection between the relational model and Prolog.

A logic program can be considered as a natural and powerful generalization of the

relational model [18, 46, 38] because any relational tuple can be expressed as an atom,

i.e., a predicate of the form p(ti, ...tm). Relational databases can be considered from

the viewpoint of logic in two different ways: either the model-theoretical view or the

proof-theoretical view. When considered from the model-theoretical view, queries

and integrity constraints are clauses that are to be evaluated on the interpretation

using the semantic definition of truth. From the proof-theoretical view, queries and

integrity constraints are considered to be clauses that are to be proved. In order to

determine answers to queries, using the latter view, one can derive data from the

CHAPTER 2. BACKGROUND 15

given clauses, therefore achieving the desired deductive power.

The use of mathematical logic in describing relational database models has helped

to solve a number of important problems, including the definition of formal query

languages, the treatment of incomplete information (null values) in databases, and

the definition and enforcement of integrity constraints. The primary attraction of

logic here is the elegant formalism capable of expressing facts, deductive information,

integrity constraints, and queries in a uniform way. Besides, by using first-order

logic as a database language, it is possible to explore well-developed techniques of

theorem proving for providing powerful deductive tools. Lastly, logic provides a firm

theoretical basis upon which one can pursue the conventional data model theory in

general.

Based on the above comparison, it seems possible and productive to combine

these two approaches and get the benefits of both. This combination did result in a

new topic in computer science called deductive databases.

The advantages of deductive databases can be summarized as follows:

(1). Representational and operational uniformity. Horn-clause form can be used

to express facts, integrity constraints, deductive information, and queries in a uniform

way.

(2). By using first-order logic as a database language, it is possible to use well-

developed techniques of theorem proving to provide powerful deductive tools.

(3) Logic provides a firm theoretical basis upon which one can pursue problems

of relational data model theory in general such as the treatment of incomplete in-

formation (null values) in databases, and the definition and enforcement of integrity

constraints.

CHAPTER 2. BACKGROUND 16

(4). It has great potential to be efficiently implemented based on the existing

relational database and Prolog technology.

As the theoretical basis has been formed, the next thing is to efficiently implement

deductive databases. There are two ways. One can be termed as loosely-coupled

Prolog and relational databases. The other as tightly-coupled Prolog and relational

databases.

In loosely-coupled systems, the connection between Prolog and relational databases

is obtained by building an interface. The large collection of Prolog facts is managed

in secondary storage by using the existing relational database technology, for exam-

ple, NU-Prolog does this [42]. This approach suffers from a mismatch between the

computational models of these coupled subsystem: Prolog is oriented towards a fact

(or tuple) at a time model, while relational model is oriented towards a set at a time.

Tightly-coupled systems, on the other hand, use a logic-based language like Pro-

log, but is free of the sequential execution model and other spurious constructs

of Prolog. It is based on bottom-up, fixpoint computation by extending database

compilation and optimization techniques to handle the richer functionality of the

language. LDL [44] is an example of this kind.

Chapter 3

Motivation

Even though deductive databases have the advantages given in the previous chapter,

they have significant inherent problems. Here I will discuss two broad areas where

problems are apparent: one is complex object modeling; the other is higher-order

features. These problems lie in the expressiveness of deductive database languages.

Since their expressiveness depends on the underlying relational database and first-

order logic languages, I will focus my discussion on relational databases and first-

order languages. Interweaved with the discussion of the problems, I will also survey

some of the attempts that have been made to solve these problems. This gives the

motivation for S-logic.

3.1 Complex Object Modeling

In many novel applications, such as CAD/CAM, office information systems, decision

support systems, knowledge systems, and database management systems, it has been

realized that there are a host of powerful data modeling concepts which need to be

introduced in both programming languages and database models. One of these

concepts is the need to model arbitrarily complex objects. The ability to model

complex objects is a main feature of modern object-oriented programming languages.

The goal of complex object modeling is to naturally represent object identity, data

abstractions and inheritance [20, 26, 31]. Relational data model using fiat relation

17

CHAPTER 3. MOTIVATION 18

structures and primary keys is not suitable for complex object modeling. In recent

years, it has been recognized that Prolog is also not rich enough to naturally represent

object identity, data abstractions and inheritance. The following subsections will

show the reasons.

3.1.1 Object Identity

With Prolog, two facts cannot share subparts. Let us first see an example. Suppose

we have two facts in Prolog:

book ("Prolog", aut hor(name("Bob" , "Su"), address("257 9th Av SW")).
book ("Databases", aut hor(name("Bob" , "Su"), address("257 9th Av SW")).

both talking about the same individual, and if he moves, both facts should be up-

dated. Further more, the change is made by retracting those facts and asserting new

facts:

book ("Prolog", aut hor(name("Bob" , "Su"), address("128 2nd St NW")).
book("Databases", author (name("Bob", "Su"), address("128 2nd St NW")).

In interpreting these new facts, nothing about them requires that the domain element

representing name("Bob" , "Su") in the first case is the same as in the second. There

is no way to say that everything stayed the same except the address. The problem

here is that two facts cannot share subparts in the Horn clause logic programming

language Prolog. The subpart is an object. We need something to identify it and we

should be able to refer to its identity. A solution to this problem requires explicitly

using a meaningless identifier to represent each object. For example, we can use:

book ("Prolog", ml).
book("Databases",ml).
author(ml, name("Bob", "Su"), address("257 9th Ày SW")).

This solution requires systematically introducing "meaningless" terms such as ml

CHAPTER 3. MOTIVATION 19

to identify the corresponding object by the user. There ought to be some way of

doing this without exposing the inner organization of the database. This capability

is called object identity [16].

Object identity is the property of an object that distinguishes it from all others

regardless of their content, location, or addressability [30, 16]. Two criteria are used

to measure the degree of content and location independence which the object identity

provides: data independence which means that identity is preserved through changes

in either data values or structure; location independence which means that identity is

preserved through movement of objects among physical locations or address spaces.

The solution given above which uses ml to identify the object is not data inde-

pendent. Some programming languages using variables to represent identity are not

location independent.

In relational databases, the notion of user-defined primary (identifier) keys is used

to represent the identity of an object. This representation of identity is supported

in many existing database systems. However, it is not data independent either. Any

change to the identifier keys will cause a discontinuity in identity.

As discussed in [16], the most powerful technique for supporting object iden-

tity is using surrogates. Surrogates are system-generated globally unique identifiers,

completely independent of any physical location and data associated with objects.

3.1.2 Data Abstractions and Inheritance

The growing demand for systems of ever-increasing complexity and precision has

stimulated the need for higher-level concepts, tools and techniques in every area of

Computer Science. Many of these techniques are based on abstraction mechanisms

CHAPTER 3. MOTIVATION 20

that advocate the development of software in a stepwise fashion, each step involving

only some of the details of the whole problem while others, hopefully the less relevant

ones, are suppressed until some later step. An abstraction is a simplified description

that emphasizes some of the system's details or properties while suppressing others

[8]. Abstractions can be used to organize and structure pieces of information into

some natural and conceptually meaningful units (usually hierarchies). All the details

of representing or implementing such a structure can be ignored at this abstracted

level by the user of the structure so that the user can then just concentrate on objects

and relationships between them and obtain more meaningful units. Each such unit

of information is easily accessible in the system.

Essential to modeling complex objects are the following four abstractions which

are used to describe properties of different aspects of objects [2, 3, 8, 19, 21, 36, 40,

41].

Classification is a form of abstraction in which a collection of objects is considered

as a higher-level object class. An object class is a precise characterization of all

properties shared by each object in the collection. An object is an instance of an

object class if it has the properties defined in the class. Classification represents an

instance-of relationship between an object class in a schema and an object in a

database. For example, an object class employee that has properties name, age, and

address may have as an instance the object with property values "Bob", 25, "p57

9th Av SW". For another example, a Best-Selling-Book object class consists of all

Book objects with sales greater than $10,000. Classification provides a mechanism

for the specification of the type of a specific object. In the reminder of the chapter,

"object" is used to refer to object classes and the associated objects except when the

CHAPTER 3. MOTIVATION 21

two concepts must be distinguished.

Aggregation, generalization, and association are used to relate objects. Some

properties of an object are determined through inheritance by the role it plays in

one or more of these relationships. Aggregation is a form of abstraction in which a re-

lationship between component objects is considered as a higher-level aggregate object.

This is a part-of relationship. For example, class person could be an aggregate of

its component class name, age, and address.

Generalization is a form of abstraction in which a relationship between category

objects is considered as a higher-level generic object. It represents the is-a relation-

ship. For instance, employee, is a generalization of the classes secretary, manager

and accountant.

Association is a form of abstraction in which a relationship between member

objects is considered as a higher-level set object. This is the member-of relationship.

For example, the set object trade-union is an association of the member class

employee, each object in trade-union is a set in which each element belongs to

employee.

Inherent in these four abstractions is property inheritance. Property inheritance

means that all properties of an object class are passed on to other objects or ob-

ject classes. Generalization and classification support downward inheritance. For

example, class secretary, manager and accountant inherit all properties of the

class employee, while j ohn inherits all the properties its object class person pos-

sesses such as name, age, and address. Aggregation and association support upward

inheritance. For example, the properties of name, age, and address are inherited

by the aggregate class employee, while the properties of employee such as name,

CHAPTER 3. MOTIVATION 22

address and profession are inherited by its set class trade-union.

Property inheritance enables us to reduce the redundancy of the specification

while maintaining its completeness. Using some of the four abstractions for relating

objects and constructing new objects, we can express very complex objects and take

advantage of inheritance.

There are other abstraction mechanisms, but the four above have received the

most attention in both the programming language and database areas and are espe-

cially suitable for databases applications.

The relational model has been found inadequate to support complex object mod-

eling. Its structure is too simple to naturally support sets, general hierarchies or

class (or type), subclass and instance taxonomies. Relationships between objects

have to be kept in the user's mind and obtained by using join operations. From the

implementation point of view, using relational databases for complex object model-

ing is very costly in both speed and storage space because of the join operations and

redundant information in the relationships.

It is argued in [38] that Prolog could use logical implication to express data

abstractions and inheritance. However Hassan and Nasr claim in [20] that using

logical implication to represent data abstractions and inheritance does not naturally

represent what we mean. For example, when it is asserted that "whales are mam-

mals", we understand that whatever properties mammals possess should also hold

for whales. In traditional logic, this meaning of inheritance can be well captured by

the semantics of logical implication:

VxWhale(x) = Mammal(x)

CHAPTER 3. MOTIVATION 23

This is indeed semantically satisfactory. However, it is argued that it is not prag-

matically satisfactory. In a first-order logic deduction system using this implication,

inheritance from "mammal" to "whale" is achieved by an inference step. But the

special kind of information expressed in this formula somehow does not seem to be

meant as a deduction step—thus lengthening proofs. Rather, its purpose seems to

be to accelerate, or focus, a deduction process—thus shortening proofs. I do not

intended to enter the debate here as to whether implication can be made efficient or

not. Rather, I have, as a practical measure, assumed that some other more specific

mechanism will be needed.

3.1.3 Solutions

As a result of the lack of expressiveness in both relational databases and first-order

languages, some attempts have been made to provide the missing functionalities.

Semantic Data Models Based on conventional data models, a number of new

data models called semantic data models have been developed to provide increased

expressiveness to the modelers and incorporating a richer set of semantics into the

stored data [6, 7, 8, 21, 36].

Many semantic data models support object identity by classifying objects into

two kinds: abstract objects and printable objects. Abstract objects are referenced

using internal identifiers while printable objects are referenced by themselves, i.e.

printable objects are also their object identifiers. The primary reason for this is that

abstract objects may not be uniquely identifiable using printable attributes that are

directly associated with them.

CHAPTER 3. MOTIVATION 24

Most semantic data models support the four data abstractions and inheritance in

the way discussed earlier. The complex objects are first classified into object classes,

then, generalization is used to represent the isa relationships between object classes,

association is used to represent set classes and aggregation is used to describe the

properties of each object class. The result of using these abstractions forms the

schema of the semantic database.

Figure 3.1 shows part of a schema definition based on TAXIS [33], where each

class is an aggregation which defines a class and its properties by using other classes.

Generalization is represented by the isa relationship over the classes. If (A isa B)

then every definitional property of B is also a definitional property of A. Moreover,

A can have additional properties that B does not have at all, or it can redefine some

of the properties of B. Entity is an metaclass with no property, Person is defined

as a class with four properties: name, sex, age, and address. Person is also a gen-

eralization of student and employee, therefore student inherits the name, sex, age,

and address properties of person but redefines the age property by restricting age

value. Besides, Student has its own properties, such as studying-in a Dept, taking a

number of Courses, and borrowing a number of Books, where set of Course and set

of Book are associations. In TAXIS, inheritance can be multiple. workingstudent is

an example in Figure 3.1, which inherits all the properties of Student and Employee

and redefines the salary property. A class defined by f 1 :: 120j} is called finitely

defined. It has a finite collection of instances including all integers from 0 to 120.

In semantic data models, objects are directly related by these abstractions, so

the relationship between objects can be obtained without using the join operation.

CHAPTER 3. MOTIVATION 25

class Person isa Entity with
name: String;
sex: {I'Male' 'Femalel};
age: {I1 :: 1201};
address: String;

end Person.

class Student isa Person with
age: {I15 :: 301);
studying-in: Dept;
taking: set of Course;
borrowing: set of Book;

end Student.

class Employee isa Person with
age: {I20 651};
working-in: Dept;
salary: {j0 :: 500001};

end Employee.

class Workingstudent isa Student, Employee with
salary: {I0 :: 150001);

end Workingstudent.

class Dept isa Entity with
name: String;
head: Employee;

end Dept.

class Course isa Entity with
name: string;
credit: {I0:: 101};

end Course.

class Book isa Entity with
name: string;
author: person;
price: 110 :: 150);

end Book.

Figure 3.1: Examples of Semantic Database Schema

CHAPTER 3. MOTIVATION 26

0-Terms In logic programming, extended first-order terms called -terms are pro-

posed in [20] to replace traditional terms. A 0-term consists of a type constructor,

labels, and sub-0-terms. Examples of sb-terms analogous to those in Figure 3.1 are

given in Figure 3.2. It should be noted that 0-terms do not support set classes so

that taking a number of courses and borrowing a number of books can not be directly

represented.

(l)person(name = string;
.sex ['Male', 'Female'j;
age = [0...120];
address => string).

(2)student = person(age = [15...30];
studying-in => dept).

(3)employee = person(age [20...65];
working-in => dept;
salary [0...50000]).

(4)workingstudent <student.

(5)workingstudent = employee(salary = [0...15000]).

(6)dept(name = string;
head = employee).

(7)course(name = string;
credit = [0...10]).

(8)book(name string;
author => string;
price {I0 1501)).

Figure 3.2: Examples of -Terms

In Figure 3.2, the first entry defines a,0-term called person which has attributes

name, sex, age and address, and sub-1'-terms string, { 'Male', 'Female, [1...120],

CHAPTER 3. MOTIVATION 27

and siring. The second entry defines student as a subtype of person which inherits

all the properties of person but redefines age, and has its own property studying-in

a dept. The third entry defines employee as a subtype of person. The fourth entry

defines workingstudent as a subtype of student without any redefinition. The fifth

entry defines workingstudeni as a subtype of employee with redefinition of salary.

And so on.

A /'-term differs from a traditional term. It is not a fixed-arity term. Its argu-

ments are identified by attribute labels, not by position. It allows information to

be organized into a meaningful hierarchy not just over flat structures. A 0-term in

fact is an aggregation hierarchy. The aggregates are called type constructors. Asso-

ciation is not supported. Generalization is represented either by the partial order <

on the set of type constructors like (4), or by a 0-term definition like (2), (3) and

(5) in Figure 3.2. Both are used to define the subtype relationships. The subtype

relation in a 0-term reflects a set inclusion interpretation, i.e., if the set of students

is contained in the set of persons, then the type student is a subtype of the type

person.

The motivation of the 'b-term approach is to extend the unification algorithm to

compute the 0-term that is the greatest lower bound of two given0-terms. The major

contributions of the paper [20] is that a &-term is more meaningful and expressive

than the traditional term. Besides, the extended unification algorithm can replace

costly resolution to draw inheritance information which might result in more efficient

Prolog systems. The?k-term approach can support classification, aggregation, and

generalization with set inclusion semantics. But, it does not support object identity

and association. Besides, the paper only considers unification and is not general

CHAPTER 3. MOTIVATION 28

enough for the object-oriented aspects of deductive databases.

0-Logic family An extended first-order logic called 0-Logic (logic for objects) is

described in [31]. The kernel of 0-logic is the 0-term, which is used to represent

complex objects. An 0-term is similar to a 0-term, with a class name, a variable

or a data value, labels and sub-0-terms. Following is an example of 0-terms where

employee, person, dept, string, and number are class name; E, D, and P are vari-

ables; "Bob", "Male", 40, "CPSC", and "John" are data values; and name, sex, age,

working-in and head are labels.

employee:E(name -+ string: "Bob ";

sex - string: "Male";
age - num:40;
working-in - dept:D(name -4 string: "CPSC";

head - person:P(name -4 string: "John"))).

Clearly, 0-logic supports aggregation and classfication. The class information

can be generalized into a schema for the database. But it does not support asso-

ciation. Also generalization and the corresponding inheritance are not well-defined.

Besides, object identity is represented by a variable in 0-logic which has the problems

discussed in Section 3.1.1.

C-logic [12] extends 0-logic by introducing function symbols to represent object

identity so that the quantification problem can be expressed explicitly. For example,

to represent the quantification VXVY2C in C-logic, one can use id(X, Y) directly

to stand for the object C. This is consonant with the surrogate representation of

object identity. Besides, C-logic can be transformed to first-order logic so that the

semantics is well-defined. However, C-logic cannot represent inheritance naturally

CHAPTER 3. MOTIVATION 29

because it still uses logical implication for that purpose.

Based on 0-logic, an extended 0-logic was first presented in [25], followed by a

more general F-logic (frame logic) in [26] as a solution to the problems of 0-logic. An

F-term consists of a class to which the complex objects belong, an object constructor,

labels and sub-F-terms which can be single-v.alued or set-valued. An example of the

F-term is given below where student, string, mi, dept, course, and book are class

objects, bob, cpsc, cs433, cs521, prolog, databases, and math are object identities,

name, sex, age are single-valued labels and taking and borrowing are set-valued

labels. It says that object bob identifies a student called Bob, male, aged 25, studying

in the computer science department, who takes a number of courses identified by

cs433 and, cs521 and borrows a number of books identified by prolog, databases,

and math.

student: bob[name - string: "Bob";
sex -+ string: "Male";
age -* mt : 25;
studying-in - dept : cpsc};
taking -* {course : cs433, course : cs521};
borrowing -+ {book : prolog, book : databases, book: math}].

F-terms can support both aggregation and association. A generalization hier-

archy is represented by specifying F-terms. For example, to represent person is a

generalization of student and employee in F-logic, we can use person:student[...]

and person: employee[...]. In this way, all classes and objects form a lattice, and

thus inheritance can be reasoned about. In order to avoid higher-order semantics,

F-logic does not support classification. There is no distinction between an individual

object and an object class. An object can play dual roles: an instance of its class

and a èlass of its instances. For example, student has dual roles in student:bob[...]

CHAPTER 3. MOTIVATION 30

and person:student[...]. In this way F-logic achieves its so-called higher-order syntax

with first-order semantics.

F-logic is a general logic language compared to the -term approach, and has

a well-defined semantics compared to 0-logic. However, it has several problems

which prevent it from being a feasible deductive database language. It is impossible

to define an overall schema for the database in F-logic because object classes and

individual objects are interwoven together. But the database schemas are essential

to many database applications. We can only have individual objects with arbitrary

properties in F-logic databases. Besides, the dual roles of objects make the semantics

of F-logic quite complicated and unintuitive. Also, the lattice of F-logic is over all

objects not just over object classes, to specify a complex object we should also put it

into the lattice by specifying its class and its instances. Besides, the lattice of F-logic

is in reverse order from normal. However, specifying a lattice is quite different from

specifying an object. This makes F-logic non-uniform, difficult to use, and hard to

update to maintain integrity.

3.2 Higher-Order Features

In this section, I discuss two important higher-order features needed in deductive

databases. One is how to define and manipulate database schema and data in an

integrated framework. The other is how to deal with set expressions.

CHAPTER 3. MOTIVATION 31

3.2.1 Uniformity of Schema and Data

In traditional deductive databases, the definition and manipulation of data is done

in a uniform way. However, the definition and manipulation of schema (or meta)

information and data is not supported in such an integrated framework. To reason

about schema information we need the capabilities of higher-order logic. For example,

we might need to express a query which contains a higher-order variable X to list

all the predicates in the database. The substitution for X should range over all

the predicates. Similarly, we might need to express queries containing higher-order

variables to list all attributes in the database or attributes in a predicate, etc. But

higher-order logic have been met with skepticism since the unification problem is

undecidable. So normally, a separate language is provided to specify and manipulate

the schema information.

In fact, deductive database applications require a rather restricted form of higher-

order logic. Can we provide a direct semantics for them?

A higher-order language for deductive databases is proposed in [27] which en-

compasses meta-data and data by allowing higher-order predicates to be defined in

the language. The solution to higher-order unification is based on a bottom up se-

mantics where unification is replaced by matching, i.e. only one of the two terms

contains variables. The higher-order variables are limited to range over database

attributes and predicates. A rule with higher-order variables can be rewritten by re-

placing variables with attributes or predicates. The rewritten rules are in first-order

logic and their meaning is well-defined. Since the number of database attributes and

predicates have to be finite, this makes the language decidable. This semantics is

CHAPTER 3. MOTIVATION 32

called replacement semantics in that paper. Even though the higher-order language

proposed in that paper is not rich enough to represent object identity, data abstrac-

tions and inheritance, etc., the replacement semantics for higher-order variables in

that paper is of great value. It provides a natural way toward the integration of the

definition and manipulation of schema and data.

F-Logic [26] has an appearance of a higher-order logic, but it is tractable and

has first-order semantics. It is capable of modeling certain higher-order features

such as sets, class/subclass hierarchy and schemas. The first feature is modeled by

means of set-valued functions described in Section 3.1.3. F-logic reifies classes and

model membership by means of a lattice ordering instead of the true set-theoretic

membership. It does not distinguish between individual objects and classes. All the

objects are taken from the same domain and are organized into a lattice. The same

object can be viewed as an instance of its superclass which is below it in the lattice,

and at the same time, as a class of all objects located above it in the lattice. So,

any element p may appear in an F-term in the instance position, q:p[...] and in the

class position, p:r[...]. This gives F-Logic a feel of a higher-order language, but it is

essentially first-order.

3.2.2 Set Expressions

The addition of set expressions to Prolog is very important because many problems

cannot be expressed in pure Prolog without such an extension [47]. The extension

takes the form of a built-in predicate:

.setof(X, F, S)

which is read as "The set of instances of X such that F is provable is S". The term

CHAPTER 3. MOTIVATION 33

P represents a goal or goals. The term X is a variable occurring in P. The set S

is represented as a list whose elements are sorted into a standard order without any

duplicates.

Unfortunately, there is no published formal semantics for for the setof predicate

in Prolog. Besides, the usage of lists as sets is not expressive enough. The simple

membership predicate has to specify details about implementation, such as how to

iterate over the sets. When a predicate involves more than one set, the program

can become quite complicated and unintuitive, which is contrary to the general

philosophy of logic programming [28].

LDL [4, 44] proposed a different way of expressing sets based on bottom-up

fixpoint computation. Set terms can be generated in LDL by using two constructors:

set-enumeration and set-grouping. Set enumeration is the process of constructing a

set by listing its elements. For example, if we want to derive a relation on sets of

book titles from the book base relation such that their total price does not exceed

$100. We can use the following rule in LDL:

book_deal({X, Y, Z}) - book(X, Ps), book(Y, Pu), book(Z, F2),
XY,X5LZ,Y 54 Z,
Fv+Py+Fz <100.

The same thing can not be directly represented in Prolog.

Unlike set-enumeration, in set-grouping, the set is constructed by defining its

elements by a property (i.e., a conjunction of predicates) that they satisfy. The

following example shows a set-grouping in which all of the parts supplied by a supplier

are grouped with the supplier number, where < P# > represents the constructed

set.

CHAPTER 3. MOTIVATION 34

parL.sets(S#,< P#>) - .supplier(S#,P#).

LDL is based on traditional first-order logic, so the problems of complex ob-

ject modeling discussed in the previous section still exist. Besides, its use of sets

and grouping has other severe semantic problems which result from LDL's syntactic

limitations.

Let's first look at a program which consists of a single fact in Prolog:

q(2).

The possible models for the program are {q(2)},{q(1),q(2)},{q(1),q(2),q(3)}.

The intersection of these models is the minimal model {q(2)}. However this property

does not hold for LDL because of the sets. Consider the following example:

q(2).

P(< X >) : —q(X).

This program may have the following models:

{q(1),q(2),p({1,2})},
{q(2), q(3), p({2) 3})},
{q(1), q(2), q(3), p(11) 2, 3})},

The intersection of the above models is not a model as it does not contain p({2}).

The reason is that the predicate p freezes its arguments such that p({1, 2}) and

p({1, 2,3}) are not comparable. To solve this problem, LDL introduces the unnatural

and complex concept on top of the notion of minimality.

Let us look at another example in LDL which is equivalent to the famous set-

theoretic paradox:

p(X).

X< X >) : —P(X)-

There is no model for this program because p has to contain the set of all sets as

CHAPTER 3. MOTIVATION 35

an element. The main reason for this problem is that the same field can have both a

set value and a single value. To cope with these kinds of problems, LDL introduces

a restriction called stratification on its programs which would forbid the program

above.

C-logic [12], Extended 0-logic [25], and F-logic [26] support sets by using set-

valued (or multi-valued) labels. They combine set-enumeration and set-grouping

into a single form. For the above set grouping example of LDL, the equivalent in

F-logic is:

supplier-set: id(S#)[sno - S#, supply..set - {P&}] 4=
supplier: X[sno - S#, supply - P#].

where id(S#) is an object constructor which stands for exactly one object identity

for each S#, supply-set is a set-valued label, sno, supply are single-valued labels

and {F#} is a set grouping notation. The rule groups all of the parts supplied by a

supplier into a set represented by {P#}.

As discussed in [25], the sets here are flat, i.e., a set may contain only object

identities as its elements, not other sets. But an object identifiers may represent a

set, so that sets of arbitrary depth can be modeled. The use of single-valued labels

and set-valued labels can syntactically avoid the semantic problems of LDL. More

discussions on these aspects can be found in [25].

3.3 Motivation of S-logic

Approaches to deductive databases are torn by two opposing forces. On one side

there are the stringent real-world requirements of actual databases. The requirements

include efficient processing as well as the ability to express complex and subtle real-

CHAPTER 3. MOTIVATION 36

world relationships. On the other side are the simple and clear semantics of logic

programming and its deductive power. The need for expressiveness has forced the

deductive databases away from their simple roots in logic programming and relational

techniques.

In this chapter, I have discussed two problems underlying the deductive databases,

and shown a number of solutions, such as semantic data models, -terms, 0-logic,

C-logic, F-logic, and LDL. But none of them can solve all three problems. Is it

possible to obtain an uniform language which is expressive enough to solve all these

two problems? The answer is yes. The rest of this thesis proposes a language for

deductive databases called S-logic, which can meet these needs. To model complex

objects, the proposed language should be able to model object identity, data ab-

stractions and inheritance, i.e. represent semantic data models in general. Besides,

it is also a logic language. It should be able to logically represent the existence and

internal structure of complex objects. I term this language S-logic. To represent

schema and sets, S-logic should also be a higher-order language.

Chapter 4

Informal Presentation and Examples

An S-logic program consists of four parts: type system, database, rules, and queries.

The type system is the schema of the database and rules, which consists of all type

definitions, and a lattice via the subtype (i.e. subset) relationship over all types.

The database consists of all objects that satisfy the type system. Rules are used

to represent deductive information over the database. Queries are defined over the

database, rules, and type system in a uniform way to obtain information from the

program.

4.1 Type Systems

A type in S-logic is a named class object which has two aspects. Under the dynamic

aspect, a class object denotes the set of objects (object identities) in the class, and

such membership may be changed by updates. This aspect is called the extension of

the class object (or type). The static aspect represents common structural properties

of all objects in the class, i.e., the properties an object needs in order to belong to

a certain class. This may be changed if the type system is modified. This aspect is

called the intension of the class object (or type). A type here naturally corresponds

to a classification as discussed in Chapter 2. That an object belongs to a type

means its object identity belongs to the set denoted by the type. In S-logic, objects

are divided into two non-overlapping kinds: abstract objects and printable objects.

37

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 38

Abstract objects are identified by their object identities, while printable objects are

identified by themselves.

A type based on printable objects is normally defined by specifying all the objects

belonging to this type, i.e., its extension. A type based on abstract objects is defined

by specifying the properties which should be satisfied by all of its objects, i.e., its

intension, and leaving the extension with the database.

There are four kinds of types in S-logic: basic types, record types, set types, and

built-in types.

The basic types include integer, string, and their subsets. Subsets are defined

either by enumerating or by specifying the ranges and have type names associated

with them. For example, agetype = integer({1..120}) specifies a subset of integer,

each element of which is between 1 and 120 inclusive, while gender = string({ 'Male

'Female '}) specifies a subset of string called gender which has only two elements

Male and Female. All objects of basic types are also called printable objects.

A record type consists of a root type and a collection of properties which have

to be satisfied by all the objects belonging to this root type. A record type is used

to define the intension of a root type. A property is described by an attribute label

associated with a type called a component type. An attribute is a function from the

root type to the component type.

An example of a record type is

person(name - siring,
sex - gender,
age - agetype).

Here person is a record type which has the attributes name, age, and sex. name is

a mapping from person to siring, read as every object in person has a name which

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 39

is an object in string, age is a mapping from person to agetype which is a subtype

of integer, read as every object in person has an age which is a integer between 1 to

120. sex is a mapping from person to gender, read as that the sex of every object

in person is either male or female.

A record type naturally corresponds to an aggregation as discussed earlier. Be-

sides, a generalization can also be represented by a record type via the isa label

in S-logic. The isa label is just an identical mapping from the root type to its su-

pertype. It is useful here because it represents a subtype (or subset) relationships

between the root type and its super type and allows automatic property inheritance.

Besides, properties of the super type can be redefined and additional properties can

be introduced. This representation is quite similar to that in semantic data models

such as TAXIS [33]. Look at the following example in S-logic:

student(isa -4 person,
age - young,
studying-in - dept,
taking - p {eourse},
borrowing - {book}).

The example defines that student is a subtype of person. Every definitional property

of person is also a definitional property of student via the isa label, except age prop-

erty of person is redefined. Moreover, student has additional properties that person

does not have at all, like studying in a department, taking a number of courses, and

borrowing a number of books. The properties of student from inheritance are called

inherited properties, which are name, sex, and age. The redefined properties and own

properties of student are called direct properties which are age, studyingJn, taking,

and borrowing. The intended meaning here is that every object belonging to the

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 40

type student also belongs to the type person, i.e., the extension of student is set-

included in the extension of person. If an object, say John, is a student then he has

to be a person first via the isa label. As a person, he should have all the properties

of person with his age between 15 and 30. As a student, he also has all the prop-

erties of student. So, the isa label here can allow all the properties of person to be

inherited by student without any duplication in the type system.

Based on the above discussion, we know that when an object belongs to person

it does not mean that it has only the definitional properties of person, it means that

it has at least those properties of person because it may belong to student and has

all the properties of student. That a type has few properties means its objects have

few restrictions and therefore are more general than those having more properties.

In fact, here I give a set-inclusive interpretation to the subtype relationships. The

subtype relation is reflexive, asymmetric, and transitive. Therefore it is a partial

order. Using an isa label in record types might seem confusing, but I think it is

syntactically expressive and semantically sound.

A set type specifies a structure consisting of elements of an identical type called

the set element type. Each object of a set type is a subset of its set element type.

The extension of a set type is the power set of the extension of its set element type.

To prevent infinite construction of set types, S-logic only allows a set type to be

constructed from a set element type which is not a set type itself. For example, book

is a type which denotes all the books (in a library), then {book} is a set type whose

set element type is book. Each object of {book} is a subset of book. Using a set type

{ book}, we can easily relate a person to a set of books. A set type corresponds to

an association as discussed in Chapter 2.

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 41

There are two built-in types in S-logic. One is called all which has no properties

at all but includes all the possible objects. According to the above discussion, an

object in a type that has few properties means it may have other properties. It may

belong to another type with more properties. So objects in all can belong to other

types and every type in the type system is a subtype of all. The other built-in type

is called none which has no object but has all the possible properties. Therefore, it

is a subtype of all the possible types in the type system.

Figure 4.1 shows an example of a sample type system which defines seventeen

types for database and rules. The first defines a record type person which has

attributes: name, age, sex, spouse, address, father, and mother. Note that person

is recursively defined. The second defines a record type student who is a subtype

of person with a redefinition of the age and who studies in a department and takes

a number of courses and borrows a set of book. The third defines a record type

employee who is also a subtype of the person with a redefinition of his age and who

works in a department and heads a number of people, who has a property salary.

The fourth defines a record type workingstudent who is a subtype of both student

and employee with two redefinitions of his age and salary. The fifth, sixth, seventh

and eighth define agetype, young, midage and ymage as subtypes of integer. The

ninth employeesalary as a subtype of integer, while the tenth also defines support

as a subtype of integer. The eleventh defines gender as a subtype of string. The

twelfth defines a record type dept which has a department name and a head who is

an employee, and the staff who are employees working in the dept. The thirteenth

defines a record type course which has a course name, its credit, and a number

of students who take the course. The fourteenth defines a record type book which

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 42

consists of the four parts: the book's name, its author, its publisher, and its price.

The fifteenth defines a record type family which has a father, a mother, and a

number of children. The sixteenth defines a record type house which has a location

in which a number of people live. The last defines a record type sameage which is

intended to describe how many people have the same age.

Not all subtype definitions are useful. Suppose we have subtype relationships

defined by following type definitions:

(1) employee(isa - tourist).
(2) tourist(isa -* businessman).
(3) businessman(isa - employee).

According to the set-inclusive interpretation, these three types will contain the same

set of objects. Therefore, these types are redundant.

Besides, not all redefinitions of the properties of a subtype are meaningful. Let

person(age -* agetype) be a record type, student be a subtype of person. Since the

age property of person is agetype, the age property of student has to be a subtype

of agetype. Multiple inheritance makes things a little tricky. Suppose student has

an attribute called social insurance number (SIN) of which the range is from 100000

to 199999, employee also has a SIN of which the range is from 200000 to 399999, and

worlcingstudent is a subtype of both student and employee, then worlcingstudent

can not inherit the SIN property but redefine the SIN property. According to the

set-inclusive interpretation, an object in worlcimgstudent is also the same object in

both student and employee. Its SIN should belong to the range from 100000 to

199999 and the range from 200000 to 399999. So, no objects of workingstudent can

have this property. On the other hand, if the intersection of both ranges is not empty,

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 43

(1) person(name -4 string,
sex - gender,
age -4 agetype,
spouse - person,
address -4 string,
father - person,
mother -+ person).

(2) student(isa -4 person,
age -4 young,
studying-in -+ dept,
taking -+ {course},
borrowing -+ {book}).

(3) employee(isa -* person,
age -+ midage,
working-in - dept,
heading -+ {person},
salary -* employees alary).

(4) workingstudent(isa -+ student, isa -+ employee,
age -4 ymage, salary -* support).

(5) agetype = integer ({1..120})

(6) young = integer ({15..30})

(7) midage = integer (125..60})

(8) ymage = integer({25..30})

(9) employ cesalary = integer({O..50000})

(10) support = integer({0..15000})

(11) gender = string({'Male', 'Female'}),

(12) dept(name -* string, head -• employee, staff - 4 {employee}).

(13) course(name -4 string, credit -* integer, taken-by -4 {student}).

(14) boolc(name -f string, author -+ person,
published-by - string,price - integer).

(15) family(father -4 person, mother - person, children -+ {person}).

(16) house(location -* string, occupied-by {person}).

(17) sameage(number - agetype, shared-by -* {person}).

Figure 4.1: A Sample Type System

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 44

then workingstudent can only have an non-empty subset of the intersection as the

range of its SIN. In Figure 4.1, the range of the attribute age of workingstudent

is redefined as ymage, a subset of both young and midage which are ranges of the

attribute age of both supertypes student and employee respectively. In general, if

several types have a common attribute, their subtype can not inherit but redefine this

common attribute of which the component type must be a subtype of the component

types of the common attribute of its supertypes. Look at another example. Let

a(l -p student) and b(l -p employee) be two record types and c is a subtype of

both a and b. If workingstudent is a subtype of both student and employee, then

c(isa -+ student, isa - employee, 1 - workingstudent) is a meaningful record type.

All types except set types in the S-logic's type system forms a (complete) lat-

tice based on subtype relationships. A partially-ordered set < 5, ≤> is a lattice, in

mathematical sense, if the least upper bound and the greatest upper bound exist for

every subset of S. Types in the lattice are either built-in, user-defined, or inferred

from what the user has defined. The top element of the lattice is all and the bot-

tom element is none. Every type has its biggest subtypes under it in the lattice.

Figure 4.2 shows a lattice based on the type system of Figure 4.1. In the lattice, all

has as biggest subtypes string, sameage, dept, family, integer, course, person, book

and house; string has gender as its biggest subtype; integer has agetype and

employeesalary as its biggest subtypes; person has student and employee as its

biggest subtypes; gender, sameage, dept, family, ymage, support, course, book,

workingstudent, and house have none as their biggest subtypes; and so on.

In summary, a type itself corresponds to a classification and its elements inherit all

the properties of the type if there are any. A set type corresponds to an association.

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 45

all

stri zg sameage deot family

gender age

inte

none

er course peron boo

pe employee alary student empkyee

yoqng m:qage supp workin student

Figure 4.2: The Lattice Over the Sample Type System

house

A record type definition with labels other than isa corresponds to an aggregation.

A record type with isa labels corresponds to a generalization, and the properties of

a super type are automatically inherited by this type. The type system consists of

all type definitions and a lattice over all the types based on subtype relationships.

4.2 Database

The type system determines the extension of basic types, set types, and built-in

types, and the intension of record types. The extension of record types is determined

by the database and rules. The database in S-logic consists of all record objects, i.e.,

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 46

objects of the record types. Such membership can be changed by updates. So the

database is not fixed, it can be changed from time to time. But here, I assume that

there is a fixed database.

In the database, every record object belonging to a record type has all the prop-

erties of this type. According to the type system, a type inherits the properties of

its supertypes via an isa label, individual objects in this type should have all the

properties of this type, either of its own or from inheritance. Therefore, there can

be no isa labels in the database. If a property of an object is not specified in the

database, S-logic will assume an uninstantiated value, i.e, the attribute value exists

but unknown. If a conflict happens, then fail will be inferred in the queries. There

are two kinds of objects in S-logic, printable objects which are identified by them-

selves, and abstract objects which are identified by their identities (or surrogates)

which are data independent and location independent. It is easy to tell whether an

object is printable or abstract according to the type system. In S-logic, the database

only tells what is known. The unknown information can be inferred directly from

the type system. Besides, the order of properties of each object is not important at

all. The component types are omitted in the database for convenience.

Figure 4.3 shows a database corresponding to the type system of Figure 4.1, where

abstract objects are represented by meaningful identities for a better understanding.

The first says that sally stands for an object in the type person, called Sally, aged 14,

female, whose father is an object in person represented by bob, whose mother is also

an object in person represented by mary, whose spouse and address are unknown.

The second says that john stands for an object also in the type person, called John,

aged 62, male, and living at 439 5th Av NE. Other information about this person is

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 47

unknown. The third says that jenny stands for an object in student, called Jenny,

aged 24, female, whose spouse is the object represented by smith in person, who is

studying in a department represented by math and taking three courses represented

by m203, m321, and cs213. The fourth also talks about a student called Phil,

aged 18, female, whose father is bob, whose mother is mary, who is studying in a

department represented by cpsc and taking two courses represented by cs213 and

c.s450, who has borrowed two books represented by pascal and prolog. The fifth

says that mary stands for an object in employee, called Mary, aged 39, female,

whose spouse is the object represented by bob, who is working in a department,

identified by bookstore, and whose salary is $35000 a year. The other information

about this employee is unknown. The sixth says that henry stands for an object in

employee called Henry, aged 50, male, living at 128 2nd St NW, who is working in a

department represented by cpsc, and whose salary is $50,000 a year. The seventh says

that bob is also an object in employee, aged 40, male, living at 257 9th Av SW, whose

father is an object in person identified by john and who is working in a department

represented by math, and whose salary is $40,000 a year. The eighth says that smith

stands for an object in workingstudent, called Smith, aged 30, male, who lives at

3 7th Ày SW and whose father is an object in person represented by john, who

is studying in a department represented by cpsc, and taking a course represented

by cs450, who is working in a department represented by cpsc, and whose salary is

$12,000 a year. The ninth says that dennis is also an object in workingstudent, male,

living at 3 7th Ày SW, whose father is henry, who is studying in math department,

who is working in bookstore, whose salary is $8,000 a year. And so on.

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 48

(1) sally: person(name - 'Sally', age - 14, sex -* 'Female',
father -+ bob, mother - mary).

(2) john : person(name —+ 'John', age -s 62, sex —* 'Male',
address - '$39 5th Ày NE').

(3) jenny : student(name —+ 'Jenny', age - 24, sex -+ 'Female',
spouse —+ smith, father —+ henry,
studying-in —+ math, taking — {m203, m321, cs213}).

(4) phil: student(narne -s 'Phil', age -s 18, sex -s 'Male', father -s bob,
mother -s mary, studying-in —* cpsc,
taking -s {cs213, cs450}, borrowing -s {pascal, prolog}).

(5) mary : employee(name -s 'Mary', age -4 39, sex -s 'Female',
spouse bob, working-in - bookstore, salary -s 35000).

(6) henry: employee(name -s 'Henry', age -s 50, address —+ '128 2nd St NW')
sex -+ 'Male', working-in —* cpsc, salary —* 50000).

(7) bob: employee(name -s 'Bob', age -s 40, address —+ '257 9th Ày SW',
sex —+ 'Male', father -s john, working-in - math,
salary —+ 40000).

(8) smith: workingstudent(name -s 'Smith', age -s 30, address -s '8 7th Ày SW',
sex -s 'Male', father —* john, studying-in —+ cpsc,
taking -4 {cs450}, working-in -* cpsc).

(9) dennis : workingstudent(name - 'Dennis', age -s 30, sex -s 'Male',
father -s henry, studying-in -s math
working-in -s bookstore, salary —+ 8000).

(10) cpsc: dept(name —* 'Computer Science', head -s henry).

(11) math: dept(name - 'Mathematics', head —+ bob).

(12) bookstore : dept(name -+ 'Book Store', head -s mary)

(13) cs213 : course(name -s Programming Language', credit —* 2)-

(14) cs450 : course(name 'Artificial Intelligence', credit —* 3).

(15) m203 : course(name -s 'Calculus', credit - 6).

(16) m321 : course(name -s 'Algebra', credit -s 4).

(17) pascal: book(name -s 'Pascal', author -s henry,
published-by - Prentice', price -s 35).

(18) prolog : book(name -s Prolog', author -s john,
published-by -s 'Springer', price -s 50).

Figure 4.3: A Sample Database

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 49

4.3 Rules and Queries

Based on the database, deductive information can be defined by using rules in S-

logic. A rule in S-logic is of the form p = p1, ... ,Pn. Every p(1 ≤ i ≤ n) in the

body is either a positive literal which is a record object with variables, a comparison

expression over variables and objects, or a negative literal which consists of a negation

sign (-i) and a positive literal. The head p is a positive literal.

A rule can be used to deduce attribute values for existing objects, or to describe

how to construct objects and obtain their attribute values. S-logic provides functions

called object constructors to construct objects. For example, id(mary, bob) is an

object constructor which denotes an object of proper type in the context.

Figure 4.4 shows several rules defined on the database given in Figure 4.3. The

first rule obtains an address by assuming that a person lives with their father if

they are less than 20 years old. With this rule, we do not need to repeat address

information for a person under 20 in the database. If we specify address information

in the database and we also can deduce address information, then two address values

should be exactly the same because the address attribute is a single-valued label.

Otherwise a fail will be returned. X and Z are variables over objects of person, A

is a variable over objects of ageiype, and Y is a variable over objects of type string.

The second rule obtains an address by assuming that if a person is married they are

assumed to live with their spouse. With this rule, we do not need to repeat address

information for each couple in the database. The third rule says that the spouse

relation is reflexive so that we need only describe one party, for example, the wife,

instead of both parties. The fourth rule says that all students who take a certain

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 50

course can be derived from each individual student who takes this course. Note

here {Y} is a set grouping notation which represents a set over which the variable Y

ranges. The fifth rule says that all employees that are managed by an employee X can

be derived from each employee whose department head is X. The sixth query says

that all the staff who are working in a dept can be derived from each employee object

who is working in this dept. The above six rules are used to deduce attribute values

for existing objects. The other three rules are used to describe how to construct

objects and obtain their attribute values. The seventh rule says that objects in type

family are constructed by an object constructor id(X, Y). For every pair of X, Y

which are known, id(X, Y) obtains exactly one object identity (surrogate) which is

also referred to by id(X, Y). It also says that the attribute values of each object

of family can be obtained from the existing objects of person. The eighth rule

says that objects in type house are constructed by object constructor id(X) and

the attribute values of each object are obtained from the existing objects in person.

Rule 9 is similar.

Queries are defined over the database, rules, and the type system in a uniform way

in S-logic. A query starts with the question mark? and is followed by a conjunction

of literals. A positive literal in a query is either a type with variables, an object

with variables, a comparison expression over variables and types, or a comparison

expression over variables and objects. A negation literal in a query consists of a

negation sign and a positive literal. Note literals in a query are more general than

those in a rule, which contains types and type variables.

Queries are used to ask for information which is either in the database, derivable

from rules, or in the type system. If an attribute value is unknown, then an unbound

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 51

variable will be returned to a query. We can omit uninteresting variables in queries

for convenience.

(1) X : person(address -+ Y) =: A ≤ 20
X : person (age - A, father - Z),
Z : person(address -+ Y).

(2) X : person(address -+ Y) =

X : person(spouse

Z : person(address - Y).

(3) X person(spouse -+ Y) <--
Y : person(spouse -* X).

(4) X : course(taken_by -.+ {Y}) '=
Y : student (taking X}).

(5) X: ernployee(heading - {Y}) =

Y: cmployee(working_in - D), D : dept(head -* X).

(6) X dept(staff - {Y}) --

Y: emplyee(working..in - X).

(7) id(X, Y) : family(father -* X, mother - Y, children -+ {Z}) .=
Z person(father -+ X,mother - Y).

(8) id(X) : hou.se(address X, occupied-by -+ {Y})
Y: person(address -* X).

(9) id(X) : sameage(age -4 X, shared-by Y}) =

Y : person (age -+ X).

Figure 4.4: Sample Rules

Figure 4.5 shows 9 sample queries and the corresponding answers based on the

sample database and sample rules. The first query asks for information about all

persons who are over or equal to 50 years old. The printed answer to this query,

based on the database, is given in answers 1.1 and 1.2. The second query asks for

information about all workingstudents who study and work in the same department.

The only answer is given in answer 2.1. The third query asks for information about

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 52

(Query 1.)
(Answer 1.1.)
(Answer 1.2.)

(Query 2.)
(Answer 2.1.)

(Query 8.)

(Answer 3.1.)
(Answer 3.2.)

(Query 4.)
(Answer .4.1.)
(Answer .4.2.)

(Query 5.)
(Answer 5.1.)
(Answer 5.2.)
(Answer 5.3.)
(Answer 5.4.)
(Answer 5.5.)
(Answer 5.6.)

(Query 6.)
(Answer 6.1.)
(Answer 6.2.)

(Query 7.)
(Answer 7.1.)
(Answer 7.1.)

(Query 8.)
(Answer 8.1.)
(Answer 8.2.)
(Answer 8.3.)
(Answer 8.4.)

(Query 9.)
(Answer 9.1.)

?X: person(age - p Y, sex - Z), Y ≥ 50.
X = john, Y = 62,Z = 'Male'.
X = henry,Y = 50,Z = 'Male'.

?X : workingstudent(studying..in -+ Y, working-in - p Y).
X = smith, Y = cpsc.

student(name - 'Phil', borrowing --+ {X}),
X: book(author --+ Y, price - Z).
X = pascal, Y = henry,Z = 35.
X = prolog, Y = john, Z = 50.

?cs213 : course(taken_by - {X}), X : student(studying..in - Y).
X = jenny, Y = math.
X = phil, Y = cpsc.

.student(takirtg -+ {Y}), Y: course(name -+ Z).
X =jenny,Y = m203,Z = 'Calculus',
X = jenny, Y = m321, Z = 'Algebra',
X = jenny, Y = cs213, Z = Programming Language
X = phil, Y = cs213, Z = Programming Language',
X = phil, Y = cs450, Z = 'Artificial Intelligence',
X = smith, Y = cs450, Z = 'Artificial Intelligence',

family (mother -+ mary, children -+ {Y}),Y: (age -+ Z).
X = id(mary, bob), Y = sally, Z = 14.
X id(mary, bob), Y = phil, Z = 18.

?bookstore: dept(staff - {X}),X : employee(salary - Y).
X = mary,Y = 35000.
X = dennis,Y = 8000.

? : house(address -+ X, occupied-by -* Y).
X —('257 9th Av SW'), Y = {mary, bob, sally, phil}.
X =('489 5th Av NE'), Y = {john}.
X =('3 7th Av SW'), Y = {jenny, smith}.
X =('128 2nd St NW '), Y = {henny}.

sameage(age -+ 30, shared-by - p Y).
X = id(30),Y = { smith, dennis}.

Figure 4.5: Sample Queries and Answers (I)

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 53

(Query 1.) ?sally: X(L -+ Y).
(Answer 1.1.) X = person, L = name, Y = 'Sally'.
(Answer 1.2.) X = person, £ = sex, Y = 'Female'.
(Answer 1.3.) X = person, L = age, Y = 14.
(Answer 1.4.) X = person, L = address, Y = '257 9th Av SW,
(Answer 1.5.) X = person, £ = spouse, Y = Y
(Answer 1.6.) X = person, £ = father, Y = bob.
(Answer 1.7.) X = person, L = mother,Y = mary.

(Query 2.) ?.student(L - Y).
(Answer 2. 1.) £ = name, Y = string.
(Answer 2.2.) £ = sex, Y = gender.
(Answer 2.3.) £ = age, Y = young.
(Answer 2.4.) £ = spouse, Y = person.
(Answer 2.5.) £ = address, Y = string.
(Answer 2.6.) £ = father, Y person.
(Answer 2.7.) £ = mother,Y = person.
(Answer 2.8.) £ = studying..in,Y = dept.
(Answer 2.9.) £ = taking, Y = {course}.
(Answer 2.10.) £ = borrowing,Y = {book}.

(Query 3.) ?X(isa -+ Y).
(Answer 3.1.) X = student, Y = person.
(Answer 3.52.) X = employee, Y = person.
(Answer 3.3.) X = wor kingstudent , Y = student.
(Answer 3.4.) X = wor kingstudent , Y = employee.

(Query 4.) ?employee := X.
(Answer 4.1.) X = {bob, dennis, henry, mary, smith}.

(Query 5.) ?person := X!, employee := Y!, Z = X - Y.
(Answer 5.1.) Z = { sally, john, jenny, phil}.

(Query 6.) ?student := X!, employ ee := Y!,X < Y.
(Answer 6.1.) fail.

(Query 7.) ?ymage := X.
(Answer 7.1.) X = {25, 26, 27, 28, 29, 30}.

(Query 8.) ?gender := X.
(Answer 8.1.) X =f 'Male', 'Female'}.

Figure 4.6: Sample Queries and Answers (II)

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 54

books which have been borrowed by a particular student called Phil. The expected

information is who the book's author is and what the price is. Here {X} is a set

grouping variable and X is bound to an object. The fourth query asks for who are

those students taking the cs213 course and in which dept they are studying. The

answer to this query is obtained via rule 4 in Figure 4.4. The fifth query asks for the

information about courses which each student is taking. The sixth query asks for

information about mary's family, especially her children and their ages. The answer

is obtained via rule 7. The seventh query asks for information about the staff of

the bookstore dept and their salary. The answer is obtained via rule 6. The eighth

query asks for information about each house. The expected information about this

house is what is the location of the house and who lives there. Here Y is a set-valued

variable which has to be bound to a set. The answer is obtained via rule 1, 2 and 8.

Rule 1 finds that sally lives with his father bob because he is under 20; rule 2 finds

that mary lives with her spouse bob; rule 8 puts the persons living at same address

into a set. The ninth asks for information about people who have the same age, 30.

The answer is obtained via rule 9. These examples also show the difference between

set grouping variables and set-valued variables.

Figure 4.6 shows 8 queries over the meta-information and the corresponding an-

swers based on the sample type system, database, and rules. The first query asks

for information about sally's type, attribute labels, and corresponding values. If

an attribute value is unknown, an uninstantiated variable is returned. The second

query asks for property information about student in the type system. Note that

student is a subtype of person, and therefore all properties of person are given as

answers to the query. The third query asks for the subtype relations in the type

CHAPTER 4. INFORMAL PRESENTATION AND EXAMPLES 55

system. The fourth query asks for the extensions of employee. The fifth query asks

for the difference of the extensions of person and employee, i.e., those objects in

person not in employee. Note X! and Y! are just S-logic notation for not displaying

their values which is called projection in relational databases. The sixth query asks

for whether or not the extension of student is included in the extension of employee.

The seventh query asks for the extension of ymage. The eighth query asks for the

extension of gender.

Chapter 5

Formal Presentation

S-logic is a logic language for deductive databases. This chapter defines the formal

syntax and semantics of S-logic. The syntax is concerned with valid programs ad-

mitted by the grammar of S-logic. The semantics is concerned with the meanings

attached to the valid programs and the symbols they contain.

5.1 Syntax of S-logic

This section introduces the syntax of S-logic, i.e., its alphabet, types, database,

terms, rules and queries.

Definition 5.1 The alphabet of S-logic consists of eleven classes of symbols:

(1). the set A= fall, none};
(2). the set L = {integer, string};
(3). a countably infinite set Z of integers;

(4). a countably infinite set S of strings;

(5). a countably infinite set 0 of symbols called object identifiers;

(6). a countably infinite set C of symbols called type constructors;

(7). a countable infinite set L of symbols called attributes labels containing isa;

(8). a countable infinite set F of function symbols, called object constructors;

(9). a countably infinite set V of symbols called variables;

(10). logical connective ; logical comparatives =, ≤, ≥, <, >, ; and
(11). comma, dot, f }, (,), ', ', -+, :, ?, !, -, &, I.

Here the sets A, B, Z, 5, 0, C, C, .T, V are assumed to be pairwise disjoint.

56

CHAPTER 5. FORMAL PRESENTATION 57

Definition 5.2 all and none are types of S-logic called built-in types, which repre-

sent the biggest type and the smallest type respectively.

Definition 5.3 The basic types of S-logic are defined as follows:

• Every element of 5 is a basic type, i.e. integer and string are basic types.

• If t is a type constructor in C, then t = string({ai, ..., a,}), (n ≥ 1) is a basic

type and a1, -, an E S are called objects of the type t.

• If t is a type constructor in C, then t = integer({lb..rb}) is a basic type and

lb, rb E Z are called the left bound and right bound of the range of the type i.

Definition 5.4 If P,Pi, ...,Pn, n ≥ 1 belong to C or 13, isa,lm, ...,l, 0 ≤ m ≤ n are

labels of C, and we have p(isa—+pi,...,isa-- pm, lmi 4 Pm+i,...,ln.Pn),

then p is a type of S-logic called a record type. Each Ii pi, m < i ≤ n is called a

direct property of p, each pi is called a component type of p. For each direct property

Ii - pi of p, the label Ii is called an attribute and is either a set-valued label if pi is

a set type, or a single-valued lable if pj is not a set type. If l - p1, ..., lj,. -*

1 < i < m are properties of p, and 1k l, 1 ≤ Ic ≤ n, m + 1 ≤ j ≤ n, then

they are also properties of p called inherited properties, each p, 1 ≤ i < m is called

a supertype of p.

According to above definition, a record type inherits all the properties of its

supertypes (if any) but may redefine them and may have its own properties.

Definition 5.5 If s is a type of S-logic other than a set type, then {s} is a type of

S-logic called set type and s itself is called a set element type.

CHAPTER 5. FORMAL PRESENTATION 58

Here I exclude the possibility of infinite useless set types, such as {...{person}...}.

Intuitively, {all} is the biggest set type and {none} is the smallest set type.

Definition 5.6 The type system S of S-logic consists of a finite set of types defined

according to the definition 5.2 to 5.5.

Definition 5.7 The objects of S-logic are defined as follows:

• Every element of Z, S and 0 is an object, called a basic object. Every element

of Z and S is called a printable object and every element of 0 is called an

abstract object.

• If f is a n-ary function symbol from T, 0 1, --- , On

f(oi, ..., o,) is also called a basic object.

are basic objects, then

• If c, ...,o, are basic objects, then {o, ...,o} is called a set object. {} denotes

the empty set object.

• Let p C C, l, ...,i, E £,n ≥ 1, o be a basic object and 01,..., on be basic objects

or set objects. Then o : p(ii —4 01, ..., in — p o) is called a record object of p.

Each o, 1 ≤ i ≤ m is called an attribute value of Ii of the object o.

Definition 5.8 The database of S-logic consists of a finite set of record objects.

Next I will define rules and queries which are based on S-terms.

Definition 5.9 The variables of S-logic are defined as follows:

• Every element of V is called a variable. V is divided into four disjoint kinds:

basic variables (or single-valued variables), set-valued variables, type variables

and label variables.

CHAPTER 5. FORMAL PRESENTATION

• If X is a basic variable, then {X} is a set grouping variable.

Definition 5.10 An object constructor is defined inductively as follows:

59

If f is an n-ary function symbol from .F, Y1, ..., Y, (n ≥ 1) are basic vari-

ables, basic objects, or object constructors, then f(Y1, ..., Y,) is also an object

constructor.

Definition 5.11 The typed S-terms are defined as follows:

• If P is a type or type variable and S is either a set object or a set-valued

variable, then P := S is a typed S-term.

• If P,P1,...,P,Th ≥ 0 are types or type variables, then P(isa - P1,..., isa -+

P) is a typed S-term.

• If P is a record type or a type variable, Pi,..., P, are types or type variables,

and L1, ..., L(n ≥ 1) are labels (not isa) or label variables, then P(L1 -

F1, ..., L, -+ F) is a typed S-term.

• If P is a type or type variable, L1, ...,L, (n ≥ 0) are label variables or labels

other than isa and at least one of F, L1, . . .L, is a variable, and X is either

a basic variable, a basic object or an object constructor, X1, ..., X, are either

basic variables, set-valued variables, set grouping variables, basic objects, set

objects, or object constructors, then X : P(L1 -+ X1,..., L -f X) is a typed

S-term.

The typed S-terms are used only in queries to ask information about the type

system. Note that a type in the type system is a closed typed S-term, i.e., without

variables.

CHAPTER 5. FORMAL PRESENTATION 60

Following are examples of typed S-terms where X, Y, L are variables.

person := X.
X(isa -+ person).
X(L - Y).
X: ernployee(L -* Y).

Definition 5.12 The basic S-terms are defined as follows:

• If p is a type, X is either a basic variable, a set-valued variable, a set grouping

variable, a basic object, or an object constructor, then X : p is a basic S-term.

• If p is a type in C, X a basic variable, a basic object, or an object constructor,

X, 1 < i < n is either a basic variable, a basic object, an object constructor

a set-valued variable, a set grouping variable or a set object, then X : p(li -

..., l, - X,) is a basic S-term.

For example, chiidren(X,Y):family(i -+ Z) and X:student (taking - Y) are

two examples of basic S-terms where X and Y are examples. Note that there are no

isa labels in basic S-terms.

The basic S-terms are used in both rules and queries. Note that a record object

in the database is a closed basic S-term.

Definition 5.13 The S-terms consists of all typed S-terms and basic S-terms.

Let X : p be a basic S-term where X is a variable and p is type. If X is not of

interest, then X : p can be replaced by : P for convenience. If p is not of interest,

then X : p can be replaced by X : for convenience.

Definition 5.14 A basic literal is defined as follows:

CHAPTER 5. FORMAL PRESENTATION 61

(1). A basic S-term is a positive basic literal.

(2). '&i = 02, 01 ≤ 02, 01 ≥ b2, 01 < 02, 01 > 02, and 7k, 0 02 are basic

literals, where 01, 02 are basic variables or basic objects. They are also called

comparison expressions.

(3). If p and q are basic literals, then the disjunction of p and q denoted as p; q is

a disjunctive basic literal.

(4). If p is a positive basic literal, then -'p is a negative basic literal.

Definition 5.15 A rule is an expression of the form p = pi,..., p, where the body

p is a conjunction of basic literals, the head p is a positive basic literal and all

variables in the head must occur in the body.

According to the definition, a rule has no type variables or label variables. Rules

are used to derive information about objects and object attributes. Following is an

example rule:

f(X, Y) : family(children - {Z}) =

Z : person(faTher - X,mother - Y).

Definition 5.16 A literal is defined as follows:

(1). An S-term is a positive literal.

(2). 01 = b2, ,1'i ≤ 02, 01 ≥ t'2, b1 < ?)2, bi > 1'2 &i 54 0 2, are literals, where

&i, 2 are either basic variables, basic objects, set variables or set objects.

(3). If p and q are literals, then p; q is a disjunctive literal.

(4). If p is a positive literal, -'p is a negative literal.

CHAPTER 5. FORMAL PRESENTATION 62

The basic literals are subset of literals, the later allows type variables, label

variables, set variables or set objects occur.

Definition 5.17 A query is a conjunction of literals starting with the question mark

?Pi, ... ,Pn.

A query is used to ask information about objects, object attributes and the type

system.

Definition 5.18 A program P is a triple P = (S, DB, R).

(1). S is a type system,

(2). DB is a database,

(3). R is a finite collection of rules.

5.2 Semantics

Definition 5.19 Let L be a set, a binary relation R on L is a subset of the cartesian

product L x L.

Unless specified otherwise, all relations will implicitly considered to be binary

from now on. The notation xRy stands for (x, y) € R.

Definition 5.20 A relation R on a set L is

• reflexive if xRx for all x E L.

• symmetric if xRy implies yRx, for all x, y E L.

• antisymmetric if xRy and yRx imply x = y, for all x,y € L.

CHAPTER 5. FORMAL PRESENTATION 63

• transitive if zRy and yRz imply xRz, for all x, y, z E L.

Definition 5.21 A relation on a set L is a partial order if it is reflexive, antisym-

metric and transitive.

Definition 5.22 Let S be a set with a partial order ≤. Then a E S is an upper

bound of a subset X of S if x ≤ a, for all x E X. Similarly, b E S is a lower bound

ofXifb≤x, for all xEX.

Definition 5.23 Let S be a set with a partial order < Then a E S is the join or

least upper bound (abbreviated lub) of s subset X of S if a is an upper bound of X

and, for all upper bounds a' of X, we have a ≤ a'. Similarly, b E S is the meet or

greatest lower bound (abbreviated gib) of s subset X of S if b is a lower bound of X

and, for all lower bounds b' of X, we have b' ≤ b.

Definition 5.24 A partial ordered set L is a meet-semilattice if for every subset X

of L, there is a gib.

Definition 5.25 A partial ordered set L is a join-semilattice if for every subset X

of L, there is a lub.

Definition 5.26 A partial ordered set L is a lattice if it is both a meet-semi-lattice

and a join-semi-lattice.

Definition 5.27 Given a program P of S-logic, its interpretation I is a tuple

(U, YJ)P,lr,u.gc,gL,gO,gF). 1

'This definition and some of the following definitions are based on [26]

CHAPTER 5. FORMAL PRESENTATION 64

(1). U is a universe of all objects.

(2). E is a finite set of semantic types of which each denotes a class of objects of U

under the mapping ir.

(3). r is a finite set of semantic labels, which is divided into three kinds: r, r,

a. I' is the set of single-valued labels.

b. I is the set of set-valued labels.

c. Ij is a singleton set {Sisa }.

(4). ir interprets each semantic type as a subset of U, i.e., 7r : E -+

(5). o interprets each semantic label as a partial mapping as follows:

a. for each f E r, o(f) is a single-valued mapping U - U,

b. for each f € T, o(f) is a set-valued mapping U - 2, and

C. o-(Sj) is an identity mapping U - U, i.e., for each u E U, cr(8j3a)(u) = U.

(6). ga is a homomorphic function which interprets each syntactic type in C as a

semantic type in E, i.e., ga : C -+ E.

(7). gj, is a homomorphic function which interprets each syntactic label in £ as a

semantic label in r, i.e., gi, : £ -+ F, especially, ilL : isa -*

(8). go is a homomorphic function go : 0 U S U Z -* U.

(9). gp' is a function which interprets each k-ary object constructor as a mapping

Uk_U.

CHAPTER 5. FORMAL PRESENTATION 65

An interpretation I gives a denotational semantics to a program. It maps every

syntactic object to a semantic object by the mapping go; every syntactic type to a

semantic type by the mapping go; every syntactic label to a semantic label by the

mapping 9L; every syntactic function to a semantic function by the mapping gF. It

interprets every semantic type as a class of objects by the mapping ir; every semantic

label as a function by the mapping o.

Definition 5.28 Given an interpretation I, the intended semantics of types is given

by ir o gc as follows:

(1). For the basic types, 7r(go(integer)) = Z C U; ir(gc(.string)) = S C U;

if s = string ({ai, ...,a}), then lr(go(s)) = {go(al), ..., go(an)} C S;

if s = integer ({ib..rb}), then lr(go(s)) = {x : go (lb) ≤ x ≤ go(rb)} C Z.

(2). For a set type {s}, lr(go({s})) = 2(9C(8)) C 2.

(3). For a record type with definition p(ii - i, ..., l -+

lr(gc(p)) = {x : gj(l) E I', o(gL(ii))(x) E lr(gc(pj)), 1 ≤ i < n, }.

(4). For built-in types, r(gc(all)) = U; lr(go(none)) = {}.

Note that 7r o go determines the extensions of types in S-logic.

Definition 5.29 Two types p and q have a subtype relation based on some interpre-

tation I denoted by p ≤ q if lr(gc(p)) c lr(go(q)).

So two types have subtype relation if their extensions have subset relation. Im-

mediately, we have following theorems.

CHAPTER 5. FORMAL PRESENTATION 66

Theorem 5.1 Let S be a type system of a program P. Then the subtype relation

is a partial order on S.D

Theorem 5.2 Let S be a type system of a program P.

(1). If s = integer({ib..rb}) € 5, then s < integer.

(2). If t = string({a1,...,a}) € S, then s ≤ string.

(3). Ifp≤q,p,q€S, then {p}≤{q}.

(4). none <p for all p E S.

(5). p 5 all for all p E S.

Proof: (1) (2) (4) (5) are trivial. For (3), since p ≤ q, we have lr(ga(p)) 9 lr(gc(q)).

For every x C lr(gc(p)), we have x i-(ga(q)). So we have 21r(gc(q)) 2-(9c (q)) i.e.,

{p}≤{q}. 0

Record types have the following properties.

Theorem 5.3 Let p be a record type with p(isa - P1, S.., isa Pm, 1m+1

Pm+1, ..., ii,, -* p,),1 < in < n, Then p ≤ pi, 1 ≤ i ≤ in, i.e., p is a lower bound

of p', ..•,Pm under the relation ≤, and lr(gc(p)) flj=l5r(ga(p)).

Proof: we have that for each x € lr(gc(p)), cr(gL(isa))(x) € lr(gc(pj)), 1 ≤ m

by the definition. Since 0(gL(isa))(x) = 0(5j8a)(X) = x € lr(gc(pj)), so lr(gc(p)) c
lr(gc(pj)). Therefore we have p ≤ p, 1 ≤ i < m and 7r(gc(p)) c flir(ga(p)). 0

This theorem says that the extension of p is a subset of the intersection of the

extensions of P1, ...,Pm.

CHAPTER 5. FORMAL PRESENTATION 67

Theorem 5.4 If pi(.... isa _+ p, ...),...,pm(.... isa p,...) are m record types in the

type system S. Then p ≤ p,1 ≤ i ≤ in, i.e., p is a upper bound of pi, under

the relation ≤, and flir(ga(p)) 9 ir(gc(p)).

Proof: Since lr(ga(pj)) 9 ir(gc(p)), so pi p,1 ≤ i ≤ in. Therefore lr(gc(p)) 2

/ I

3=1 (gc(pi)), 1 ≤ i ≤ M. 0

This theorem says that the extension of p is a superset of the union of the ex-

tensions of Pi, ",Pm, or p is an upper bound of pj, ...,p,. For example, person is an

upper bound of student and employee in Figure 4.1.

Theorem 5.5 Let p be a record type with p(i.sa - Pi, ..., isa - p, 1in+1

Pm+1)••,1n _-pn),1 ≤ in < ii, i .-p3 be a redefined property of p, in <s < ii. and

Psi) ... ,p, 1 ≤ S1 ≤ ... s ≤ m have properties 13 - pt, J, - Pt respectively.

Then 0(9L(13))(lr(ga(p))) n:tk (ga(p1)).

Proof: We have that

lr(ga(p)) ç ir(yc(p3)), 1 ≤ j ≤ Ic and

o(gL(i3))(1r(gc(p3))) 9 ir(gc(pt)), 1 ≤ i ≤ Ic.

0(gL(13))(lr(ga(p))) 9 ir(ga(pt)), 1 ≤ i ≤ Ic.

Therefore o-(gL(13))(lr(gc(p))) c flr(gc (PA .0
Not all redefinitions are meaningful. The following theorem shows us the reason.

Theorem 5.6 Let p be a record type with p(isa - p, ...,isa " Pm, 1m+1

Pm+1) ..., in - p4,1 < in < n, i -+ p be a redefined property of p, m + 1 < s < n.

and p. 1, ..., p, 1 ≤ s1 ≤ ... ≤ sk m have properties l - Pt1, . . .13 -4 pt,, respec-

tively. Then 'Jr(gc(p3)) c flr(gc(p)).

CHAPTER 5. FORMAL PRESENTATION 68

Proof: Suppose not lr(gc(p3)) fl fl_ 1ir(ga(p)) c fl 1r(gc(p1)), then there may

exist an x, x E lr(gc(p)) such that o(gL(l3))(x)= y E lr(gc(p8)) \ fl 1ir(gc(p)). So

we have x E lr(gL(p)) but not x E lr(gL(pj)), 1 ≤ i ≤ m, which contradicts our in-

tended semantics (by theorem 5.3). Therefore, we have 7r(gc(p3)) fl fl 1ir(gc(pj))

flt ir(ga(p)), which implies 7r(gc(p3)) ir(gc(pj)).D

For example, look at the record type workingstudent in Figure 4.1. It is a

subtype of student and employee of which both have property age -+ young and

age - midage respectively. workingstudent redefines the property to be age -+

yrnage where lr(ga(ymage)) = lr(gc(young) fl ir(g0(midage)). Besides, employee

has a property salary - employeesalary, workingstudent redefines this property

to be salary -+ support and ir(ga(support) C ir(ga (employ eesalary)). Therefore

this record type is meaningful.

Definition 5.30 A record type is acceptable if it satisfies the theorem 5.6. A type

system is acceptable if each record type in it is acceptable.

Theorem 5.7 If that all types except set types in a type system S form a lattice

under the subtype relation and for each record type p with p(isa -* P1, ..., isa -

Pm, 1m+1 "Pm+i, -4 p,,), 1 ≤ m < n, where i -* i is a redefined property of p,

m <S < n and pS1, ... ,pS ,1≤ si ≤ ... Sk ≤ m have properties l

respectively, and p, is a greatest lower bound of Pt1, ..., Pt,,

type system S is acceptable. 0

in the lattice, then the

This theorem shows how to syntactically check whether a type system is mean-

ingful or not. Clearly, the sample type system in Chapter 4 is acceptable. In the

following discussions, all type systems of programs are assumed to be acceptable.

CHAPTER 5. FORMAL PRESENTATION 69

In the above discussion, we exclude set types. But directly from theorem 5.2(3),

we have

Theorem 5.8 If all types except set types in a type system S form a lattice under

the subtype relation ≤ with all as the biggest element and none as the smallest

element, then all set types also form a lattice with fall} as the biggest element and

{none} as least element. 0

Definition 5.31 Given an interpretation I, the intended semantics of objects is as

follows:

(1). For each basic object o E $ U Z U 0, its intended semantics is given by an

unique element u E U such that 90(o) = U.

(2). For each basic object f(oj, ...,o,j, its intended semantics is given by a unique

element u E U such that go(f(oi,...,On) = U.

(3). For each set object {Oi, ..., o,}, its intended semantics is given by a subset

of U which is {go(oi),...,go(op)} C U. We use go({oj,...,op}) to stand for

{go(oi),...,go (OX .

(4). For each record object in the database,

0: p(li 4 O1, ---,lm-1 °m-1, 1m {0m,1, •.., Om,km }, in) {0,i, ... O,k}),

the intended semantics is

(a.) go (o) E lr(ga(p));

(b.) for each single-valued lable li3 O(YL(lj)) E r, a(gL(li))(go(o)) = 90 (0 i),

1<i<m;

CHAPTER 5. FORMAL PRESENTATION 70

(c.) for each set-valued label ij,

g(lj) E I, gO({oj,i, ..., Oj,iq }) g 0(gL(lj))(go(o)), m ≤ i:5 n;

Definition 5.32 Let P = (S, DB, R) be a program and I be an interpretation. A

record object in the database DB, 0 : p(li —+ 0, ... i, — On) is well-typed if there

exist a record type p with p(li — pi, ..., in) pn) in the type system such that

go(oi) E lr(gc(pj)), 1 ≤ i ≤ n. The database DB is well-typed if every record object

of it is well-typed.

Unless specified otherwise, all DBs are assumed to be well-typed.

Definition 5.33 A variable assignment, ii, is a ground substitution which assigns

an element in U to a basic variable, a subset of U to a set-valued variable, a type in

E to a type variable, and a label in r other than r3 to a label variable. Besides, it

is extended to non-variable elements as follows:

(1). if 0 E 0 U S U Z, then v(o) = go(d);

(2). if 1 E £, then v(l) = 9L (1);

(3). if c E C, then v(c) = gc(c);

(4). if I E F, then v(f) = gp(f);

= Igo (oi),...,go(on)};

if t is an S-term, then v(t) is still an S-term resulting from t by applying v to

every object, label, type, variable, and object constructor of t.

CHAPTER 5. FORMAL PRESENTATION 71

Now I define the notion of well-typed basic S-terms, satisfaction of S-terms, rules

and programs.

Definition 5.34 Given an interpretation I and a variable assignment 11 well-typed

basic S-terms are defined as follows:

(1). For a basic S-term X : p, it is well-typed if u(X) E lr(gc(p)).

(2). For a basic S-term t = X : p(li —+ X1, ..., i, -+ X,), it is well-typed iff there

is a record type p with p(ii - P1, ..., in) p) in the type system such that

zi(X) E 7r(gc(p)), zi(X) E lr(z.'(pj)), (1 ≤ i ≤ n).

Definition 5.35 Given an interpretation I and a variable assignment v, the satis-

faction of an S-term 1' by I and ii, denoted by =r u(5), is defined as follows:

(1). For a basic S-term X : p, =' v(X : p) if X : p is well-typed.

(2). For a basic S-term t = X : p(ij. - X1, ..., i, -+ Xn), H, 71(t) iff

(a.) t is well-typed;

(b.) o(gL(i))(u(X)) = u(X), 1 ≤ i ≤ n, if .q(l) E r;

a(gL(i))(z1(X)) zi(X), 1 ≤ i ≤ n, if g(l) E T;

(c.) if Xi is a set grouping variable and X2 = {Y}, then v(Y) E gL(i)zJ(X),

(1<i<n).

(3). For a typed S-term P := S, I=i zi(P := S) if u(P) E E, ir(v(P)) = u(S).

(4). For a typed S-term 1= P(isa—* P1,...,isa—* Pm), iu(t) if

u(P), v(Pi), ..., (Pn) E E, and ir(zi(P)) C ir(v(P)), 1 ≤ i ≤ n.

CHAPTER 5. FORMAL PRESENTATION 72

(5). For a typed S-term t = P(L1 —* F1, ...,L —* Ps), 1=' v(t) iff

v(P), zi(Fi), ..., zi(P,) € F,, v(Li) € r — {Sisa}, and

o(v(L))(ir(u(F))) 'ir(u(P1)), 1 ≤ i ≤ n.

(6). For a typed S-term t = X : P(L1 — X1, ..., L — X), =i v(t) iff

1=1 X: zi(P)(v(Li) —* X1, ..., v(L) —* X)).

Definition 5.36 Given an interpretation I and a variable assignment 71, the satis-

faction of literals other than S-terms are defined as follows:

(1). I=iu('bi =b2) iff v(b1) =u(02).

(2). J=' V(i 0 02) iff u(&i) V(02)-

(3). i z.'(bi ≤ 02) iff v(b1) ≤ ii('2), if V(i), V(2) € Z, or

v(bi) ç U(02) if v('i),zi(b2) CU.

(4). = i v(1'i ≥) iff V(i) ≥ V(02), if V(01), V(02) € Z, or

V(01) 2 V(2) if V(01)) V(02) CU.

(5). 1=' V(01 <&2) iff v(&i) <U(2), u(i), v(&2) € Z, or

V(01) C u() if V(01), V(02) CU.

(6). = i V(01 >) iff u(1i) > v(b2), z4&i), U(2) € Z, or

ii(&) D v(&) if u(vi), u(&2) C U-

(7)- 1=' u(p; q) if Hi v(p) or Ii v(q)

(8). If & is an S-term, = j v(-?k), iff not j=' v(b).

Clearly, for a ground S-term '/', i.e, an S-term without variable, its satisfaction is

independent of a variable assignment, and it can be simply written as =j- b.

CHAPTER 5. FORMAL PRESENTATION 73

Theorem 5.9 Let P = (S, DB, R) be a program and DB be well-typed. Then for

each type p in the type system and each record object r in the database, we have

I=ip and =ir. 0

Definition 5.37 Let I be an interpretation r = p = pi, ...,p a rule, r if for

each variable assignment ii, if =,- v(pi) for each p,l ≤ i ≤ n, then =i u(p), or for

some variable assignment z.', not H1 v(pi) for some pi, 1 ≤ i < n.

Note here that the treatment of attribute values of the set-valued labels of a

record object or a basic S-term is different to those of the single-valued labels. Look

at following example.

phil : .student(name - p 'Phil', taking - {es213, es3ll}).

jenny : student (taking - {X}) = phil: student (taking - {X}).

Here, the first record object says that phil's name is exactly 'Phil' and can not be

anything else. But the courses which phil takes include cs213 and cs3ll but is not

restricted to them. There may be other courses. The rule says that all courses which

phil takes are also taken by jenny, i.e., all courses which phil takes are included in

the courses which jenny takes, but not the only courses which jenny takes. This

representation of the attribute values of set-valued labels is natural.

If we want to represent that all courses which phil takes are only {cs213, cs3ll}

and all courses which jenny takes are only those which phil takes, i.e., the set in a

record object or a basic S-term is exactly the attribute value of some set-valued label,

then we have to introduce stratification on sets as LDL [4] does. In LDL, a program

is stratified if we are able to label the predicate symbols of the program with non-

negative integers such that for every rule p(...) - Li,..., L, the label of a predicate

CHAPTER 5. FORMAL PRESENTATION 74

symbol appearing in the body within a negative literal or a literal containing set

terms is less than the label of p, and the labels of the other predicate symbols in the

body are less than or equal to the label of p.

Also note that there is a major difference between S-logic and Horn-clause logic

in their satisfaction of a rule. In Horn-clause logic, a rule is always satisfied by all

interpretations, while in S-logic, a rule may not be satisfied by any interpretation.

Two reasons for a rule in S-logic not to be satisfied based on the above definition.

One is that the head of the rule which is a basic S-term is not well-typed. The other

is that the head of the rule contains variables which do not occur in the body of the

rule, or occur in the comparison expressions in the body. For example, suppose we

have a rule f(X) : p(li -+ X, 12 - Y) X : q, where 11 and 12 are single-valued

labels. This rule has a variable Y in the head but not in the body. For each variable

assignment, we can assign Y a different value but assign X to the same one. So the

head of the rule is not satisfiable but the body is. Therefore this rule is not satisfiable

by any interpretation. Similarly, rules like

f(X) : p(li - X, 12 - Y) X : q, Y = Z,

f(X) :p(lj - 4 X,12 - Y) =X : q,Y> 5,

f(X) : p(l -+ X, 12 -+ Y) X : q, Y 5, etc.

are also not satisfiable.

Clearly, we can have a syntactic restriction on rules to guarantee their satisfia-

bility.

Theorem 5.10 A rule is satisfiable if all of its variables in the head also occur in

the body rather than comparison expressions.

CHAPTER 5. FORMAL PRESENTATION 75

Since all variables in the head of a rule occur in the body, the type information

is easy to obtain. Therefore it is straightforward to check whether the head is well-

typed or not.

From here on, we assume that all rules are satisfiable.

Definition 5.38 Let I be an interpretation and T be a set of S-terms or rules, T

iffI=i Ti, TET.

Theorem 5.11 Let P = (S, DB, R) be any program and DB well-typed. Then we

have I=xSand =1 DB. °

In this thesis, I will only consider definite programs [29], i.e., the body of a rule

has no negative basic literals. Programs with negative basic literals in the body of

rules are quite complicated and will be explored later. Unless specified otherwise, all

programs will be implicitly considered as definite programs from now on.

Definition 5.39 Let I be an interpretation and P = (S, DB, R) a program,

iffjSUDBUR.

Based on theorem 5.11, we have 1=1 P ifF =' R.

Hi P

Definition 5.40 A model M of a program P is an interpretation such that I=M P.

Definition 5.41 Let P be a program and F be a ground S-term. We say F is a

logical consequence of P written as P J= F, if for every interpretation I of F, =i P

implies that =' F.

It is impossible to prove P H F by proving that for every interpretation I =i P

implies =i F. The question can be changed to another one which is possible.

CHAPTER 5. FORMAL PRESENTATION 76

Definition 5.42 Let P be a program, we say P is unsatisfiable if no interpretation

of P is a model.

Theorem 5.12 Let P be a program and F be a ground S-term. Then F is a logical

consequence of P iff P U {-iF} is unsatisfiable. 2

Proof: Suppose that F is a logical consequence of S. Let I be an interpretation of

P and suppose I is a model for P. Then I is a model for F. Hence I is not a model

for P U {-iF}. Thus P U {,F} is unsatisfiable.

Conversely, suppose P U {-'F} is unsatisfiable. Let I be any interpretation of L.

Suppose I is a model for P. Since P U {-'F} is unsatisfiable, I can not be a model

for -'F. Thus I is a model for F and so F is a logical consequence of P. 0

Definition 5.43 Given a program P = (5, DB, R) and a query Q, an answer to

the query Q is a variable assignment ii for all variables of Q such that P ii(Q).

Applying these definitions to programs, we see that when we give a goal Q to the

system, with program P loaded, we are asking the system to show that P U {-Q} is

unsatisfiable. Theorem 5.7 states that showing P U {,Q} is unsatisfiable is exactly

the same as showing that there exists v such that u(Q) is a logical consequence of

P.

To prove that P = Q where P is a program and Q is a query, the basic problem

is that of determining the unsatisfiability, or otherwise, of P U {-iQ}. According

to the definition, this implies showing every interpretation of P U {-iQ} is not a

model. Needless to say, this still seems to be a formidable problem. However, like

'The whole theory from here on is based on [29]

CHAPTER 5. FORMAL PRESENTATION 77

first-order logic, it turns out that there is a much smaller and more convenient class

of interpretations, which are all that need to be investigated to show unsatisfiability.

These are the so-called Herbrand interpretations.

5.3 Herbrand Interpretations

Definition 5.44 An interpretation H = (U, r, ga, g) go, g) is a Herbrand

interpretation if the following conditions hold:

(1). U=UU2 I*.

IT - 1100Z=l IT.
1* -

U2=U2_l U{f(ol,...,ok):fisafunctorofarityk,andoEU_l,1≤j≤k}

Uo=suzuo,

(2). >=C.

(3). r=c.

(4). gc(p) = p, for every p E C.

(5). gr..,(l) = 1, for every 1 E £.

(6). go(o) = o, for every E ZUSUO.

(7). g(f) = f, for every f E F.

The domains of different Herbrand interpretations are the same, which are U U

E U r. Besides, types, labels objects and and object constructors are interpreted

as themselves in Herbrand interpretations. Only the extensions of types and the

mappings of labels may be interpreted differently. So we can just represent an

interpretation by listing all the extensions of types and all mappings of labels.

CHAPTER 5. FORMAL PRESENTATION 78

Example 1: Suppose we have following program.

(a). Type System

p(f — integer).
q(s —+ {integer}).

(b). Database

p(f
02: p(f - 2).

(c). Rules

0: q(s —+ {X}) = P: p(f - X).

Clearly the database and rules are well-typed. An interpretation for this program

is

I = 7r (P) = {oi,o2,o3},o'(f)(oi) = 1,0(f)(02) = 2,o(f)(o3) = 3,

r(q) = {o}, cr(.$)(o) 2 {1,2,3}}

It is more intuitive to represent the interpretation in the following way:

I = f 0 : p(f - 1), 02 : p(f —i. 2), 03 : p(f —+ 3), o: q(s — {1, 2, 3})}.

Later on, interpretations will be represented by listing all the extensions of types

and all mappings of labels in the record object form.

Definition 5.45 Given a program F, a Herbrand model is a Herbrand interpretation

which is a model for P.

For example 1, the interpretation I is obviously a model for the given program.

Theorem 5.13 Let P be a program and suppose p has a model. Then P has a

Herbrand model.

Proof: Let I be an interpretation of P. We define a Herbrand interpretation I' as

follows:

CHAPTER 5. FORMAL PRESENTATION 79

I'=IUI.

I={s:s=p(li—.pj,...,l--+p)andI=is}

It t o : All -+ -+ and I=:i t}

It is straightforward to show that if I is a model, then I' is also a model. 0

Theorem 5.14 (Herbrand Theorem) Let P be a program. Then P is unsatisfi-

able if P has no Herbrand models.

Proof: If P is satisfiable, then the above theorem shows that it has a Herbrand

model. 0

To prove that P 1= Q where P is a program and Q is a query, the basic problem

has now changed to prove that P U {-iQ} has no Herbrand models. We will see

that we only need to consider a special Herbrand model which is the least Herbrand

model. This model is precisely the set of record objects plus the type system. We

will also obtain an importan.t fixpoint characterisation of the least Herbrand model.

Unless specified otherwise, all interpretations from here on will be implicitly

considered as Herbrand interpretations and all models as Herbrand models.

Example 2: Look at the following program of which the type system is omited.

f(P, H) : q(s -+ X) = P : p(s - X), H: h(s - X).
Pi : AS -* {X}) = R: r(f - X).

r(f - 1).
h(s - {1}).

Possible models for the program are:

M1 = {ri : r(f -+ 1), h1 : h(s -+ {l}),pi : p(s - {1}), f(pi, h1) : q(s

M2 = {r1 : r(f -+ 1), r2 : r(f -+ 2), h1 : h(s - 4 {1}),p' : p(s -* {l, 2}),
f(pi, h1) : q(s -+ {l})}.

M3 = {r1 : r(f - 1), r2 : r(f -+ 3), h1 : h(s -+ 1}), pi : p(s 1, 3}),
f(pi, h1) : q(s - {1})}.

CHAPTER 5. FORMAL PRESENTATION 80

Definition 5.46 Let P be a program, I = (U, E, r, ir1, 0 i) ga, g, go, g) and 12 =

(U) E, F, 72, 2, gc, gL, go, g) be two models of P. Then Ii is a sub-interpretation of

12, denoted by I 12 if the following conditions hold:

(1). 71 (P) C 72(P), for every p E E.

(2). if o1(l) is defined on o E U then o-(l)(o) = o2(l)(o), for every single-valued

label 1 E F+.

(3). if o-j(1) is defined on o E U then cri(l)(o) C 02(l)(o), for every set-valued label

1 E r.

Clearly, M1 g M2, M1 g M3 but not M2 C M3 or M3 g M2 for Example 2.

Immediately, we have the following theorem.

Theorem 5.15 The sub-interpretation relation over all possible interpretations of

a given program is a partial order. 0

Definition 5.47 Let P be a program and 11 = (U,E,F,?r1,o-1,gc,gL,go,gp') and

12 = (U, E, F,7r2,o2,gc) g, go, g) be two interpretations of P. The intersection

I = (U,E,F,1r,o',gc,gL,go,gF), of 11 and 12, denoted by I = 11 fl 12, is defined as

follows:

(1). 7r (p) c iri(p) fl 112(p), for every p E E.

(2). o'(l) is defined on o E U if both oi(l) and o2(l) is defined on o, and cri(l)(o) =

E ir1(p), o e 7r2 (P), for some p E E, then o(l)(o) = o1(l)(o) and

o E ir(p) for every single-valued label 1 E 1.

CHAPTER 5. FORMAL PRESENTATION 81

(3). o, (1) is defined on o € U if both cri(l) and 02(l) is defined on o, and o E ir1({p})

and o E ir2({p}) for some p e J, then o(l)(o) = c.ri(l)(o) fl 02(l)(o) and o E

ir({p}), for every set-valued label 1 E r.

The intersection of interpretations has the following properties.

Theorem 5.16 The relation fl over interpretations of a given program is commuta-

tive and idempotent i.e., I fl 12 = '2 nIl and I nh = I for any two interpretations

11 and '2. 0

Theorem 5.17 The relation fl over interpretations of a given program is associative,

i.e., I fl ('2 fl 13) = (11 fl '2) fl 13 for any three interpretations Ii, '2 and 13.

Proof: Let

= (u,E,r,'/rl,l,gc,gL, go, gF),

'2 = (u,>,r,2,2,ga)gL,go,gp),

13 = (U,E,r,R-2,o-2,yo)YL,go,gp),

'23 = '2 fl 13 = (U, r,r,1r23,4723,gC,gL)go,gF),

112 = I, n 12 = (u,E,r,11-12,012,gc,gL)go,gF),

1123 'in 123 = (u,E,r, -123,l23,gc,gL,gO)gF),

1123 = 112 fl 13 = (U,E,F,7r 23 ,o 23,gc,gL,go,gF),

Now we prove that 1123 =

For 123 we have

R23(p) 9 ir2(p)

023(l)(0) = a2(l)(o) = 03(l)(o) if 02(l)(o) = cr3(l)(o) for every 1 E r,

023(1)(o) = a2(l)(o) fl a3 (l) (o) if 02(l) and o,3(l) are defined on o for every 1 € F;

CHAPTER 5. FORMAL PRESENTATION 82

So for '123 we have

7r123(p) g 7ri(p) n ir23(p) c iri(p) fl ir2(p) fl ir3(j),
c7123(l)(0) = oi(l)(o) = r23(l)(o) if o1(l)(o) = r23(l)(o) for every 1 E r, i.e.,
0123(l)(o) = cri(l)(o) if oi(l)(o) = 02(l)(o) = o3(l)(ô) for every 1 E F+,

0123(l)(o) o1(l)(o) fl cr23(l)(o) = or, (l)(o) fl o2(l)(o) fl 03(l)(o) if o(l), o'2(l) and

0-3(l) are defined on o for every 1 E T;

Similarly for '123 we have

i423(p) iri(p) fl ir2(p) fl 7r3(p),

0123(l)(o) = o1(l)(o) if ai(l)(o) = o2(l)(o) = o3(l)(o) for every 1 e

o-123(l)(o) = o-i(l)(o) fl cr(l)(o) fl o3(l)(o) if o'i(l), 0-2(l) and 0-3(l) are defined on o

for every 1 E r;
Therefore we have p123 = 123• Now we prove that ir123 = r123. In fact, we

only need to prove that for every record type p E E 7r123 (p) = ir123 (p). For every

object o E ir123(p), it has to satisfy all the properties of p under the mapping l23.

Since 0 l23 = o also satisfy all the properties of p under the mapping 0-123, so

o E 11123(p). For the same reason, for every object o C ir123(p) we have o C

Therefore 11123 = 11123. 0

Theorem 5.18 (Model Intersection Property) Let P be a program and {M} 1 be

a non-empty set of models for P. Then the intersection fl€iM is also a model for

P.

Proof: Let M = fljEIMj. Clearly, M is an interpretation for P. If M is not model

for F, then either some record types, record objects or rules are not satisfied by M.

It is trivial to show that M must satisfy the type system of the program F.

CHAPTER 5. FORMAL PRESENTATION 83

Suppose that a record object t = o : p(f --+ 01, .s -* {o31 , ..., o8 }) can not be

satisfied by M. Since M, i E I are models of F, then I=M1 t. That is, o E lrj(p),

cr1(f)(o) = 01, {o31, ... ,o3 } o(s)(o), for all i El, i.e., fliElo-i(s)(0).

Therefore I=M d, which is a contradiction.

Suppose a rule r = p = Pi, ...,p, can be satisfied by M1, but not M. If one of M

can not satisfy the body of the rule, then M can not satisfy the body therefore satisfy

the rule. So suppose all Mi can satisfy the body. Let X1, ..., Xm be all the basic

variables and }', ..., Y, be all the set-valued variables in the body of the rule. Let

111,i E I be a variable assignment such that 1M1 vi (r) If all variable assignments are

the same, then I=M vj(r), which is a contradiction. If some variable assignments are

different only on some of I', ..., Y,, then we still have =M vi (r) based on the definition

of the satisfaction of the basic S-terms for set-valued variables, which is another

contradiction. If some variable assignments are different on some of X1, ..., Xm, let

ii = fljzij, then there must be some pi such that not IM v(pj), therefore J=M r,

which is still a contradiction. 0.

Definition 5.48 A model M of F is minimal if for each model N of F, if N C M

then N=M.

Theorem 5.19 If a program P has a model, then it has a unique minimal model

which is the intersection of all possible models for P denoted Mp. 0

Note that the intersection of all possible models for P is just the greatest lower

bound of all possible models.

For example 2, the minimal model is M1 which is equal to the intersection of

M1, M2, and M3. If we define the union of two interpretations in a similar way, we

CHAPTER 5. FORMAL PRESENTATION 84

will note that the union may even not be an interpretation. For example, the union

of M2 and M3 will contain r2 : r(f -+ 2) and r2 : r(f - 3). Therefore all possible

models of a program forms a meet-semilattice.

Theorem 5.20 Let P be a program. Then Mp = IF: F is a logical consequence

of P}.

Proof: We have that

F is a logical consequence of P.

if P U {-F} is unsatisfiable, by theorem 5.7.

if P U {-tF} has no Herbrand models, by theorem 5.9.

if for every Herbrand model M of F, not I=M -'F.

1ff for every Herbrand model M of F, =M F.

iffFEMp. 0

If a program has a unique minimal model, then it can be found by the operator

defined as follows.

Definition 5.49 Given a program P and an interpretation I, then

Tp(I) = {v(p) : p = p, ...,p E B, there exists 1 such that zi(pj, ...,p)}.

Clearly, Tp is monotonic, i.e, if I c '2, then Tp(Ii) C Tp(I2).

Theorem 5.21 Let P be a program and I be an interpretation of P. Then I is a

model for P if Tp(I) C I.

Proof: I is a model for P 1ff for each rule p = p, ...,p, in F, we have

= i v({pj,...,p}) implies 1=' u(p) if Tp(I) C I. 0

CHAPTER 5. FORMAL PRESENTATION 85

Theorem 5.22 Let L be a meet-semilattice and T : L --+ L be monotonic mapping

and T(x) ≤ x. Then T has a least fixpoint lfp(T) = glb{x : T(x) ≤ x}. 3

Proof: Put G = {x : T(x) ≤ x} and g = glb(G). We show that g E G. Now g ≤ x

for all a E G, so that by the monotonicity of T, we have T(g) ≤ T(x), for all x E G.

Thus T(g) x, for all x E G, and so T(g) ≤ g, by the definition of gib. Hence

gEG.

Next we show that g is a fixpoint of T. It remains to show that g ≤ T(g). Now

T(g) ≤ g implies T(T(g)) ≤ T(g) implies T(g) E G. Hence g ≤ T(g), so that g is a

fixpoint of T. 0

Definition 5.50 The powers of the operator Tp is defined as follows:

TpO=DB

Tpn=Tp(TpIn-1)UTptn-1,(n≥1)

Tp I w = lub{Tp T n : w denotes the first ordinal number and n. E w}

Theorem 5.23 The powers of the operator Tp has the following properties.

(a). For all a, Tp T a C lfp(Tp).

(b). For allaEw, TpaçTp1(a+1)

(c). For all a,/3 Ew, ifaf3, then TpacTp1/3.

(d). Fora1la,/3Ew,ifa</3andTpa=TpI/3,thenTpIa=lfp(Tp). D

Theorem 5.24 Let X = {Tp T n : n E w}. Then X is directed, i.e., every finite sub-

set of X has an upper bound in X, and zi({p1, ...,p,}) 9 lub(X) iff u({pi, ...,p}) c I,

for some I E X.

31n [29], this theorem holds for complete lattice, here I prove it also holds for meet-semilattice.

CHAPTER 5. FORMAL PRESENTATION 86

Proof: The first part of the theorem is straightforward. For the second part, it is

trivial that zi({p1, ...,p,}) 9 I implies v({p1, ...,p,} C lub(X).

Assume that u({p1, ...,p,}) 9 lub(X). Then for each i, 1 ≤ i ≤ n, we have

v(pi) E lub(X). If not v(pi) € I for all I € X, then not V(pi) € lub(X), which is a

contradiction to assumption. Therefore, for each V(pj), there is some 1i € X where

v(pi) E I. Since there are only a finite number of 1i and every finite subset of X

has an upper bound in X (part one of the theorem), we have some I E X such that

1= lub({I1,...,I}) and U({pi,...,pn}) C I. °

Theorem 5.25 Let P = (S,DB,R) and X = {Tp T n : n E c'}. Then Tp is

continuous on X, i.e., Tp(lub(X)) = iub(Tp(X)), and Tp T w = ifp(Tp).

Proof: Now we have that

v(p) E Tp(lub(X))

if p '= Pi, ...,p, E Rand v({pi, ...,p,}) lub(X)

1fFP P1,•,Pn € Rand v({pi,...,pn}) I, for some 1€ X

by theorem 5.24

if v(p) E Tp(I) for some I € X

if u(p) € lub(Tp(X)).

So we have Tp(lub(X)) = iub(Tp(X)).

For the second part of the theorem, we have that

Tp(Tp ' w) = Tp(lub(X)) = iub(Tp(X)) = lub{Tp(Tp T n) : n € w} =

Tplw.

SoTpw=lfp(Tp). 0

CHAPTER 5. FORMAL PRESENTATION 87

Theorem 5.26 Given a program P = (S, DB, R) which has a unique minimal

model M, then Tp T w exists and Tp T w = M.

Proof: Mp = glb{I : I is a model for P}, by theorem 5.19

glb{I: Tp(I) 9 I}, by theorem 5.21

lfp(Tp), by theorem 5.22

= Tp T w, by theorem 5.25. 0

Theorem 5.27 Let P be a program and Q be a query. Suppose ii is variable

assignment, then ii is an answer to the query Q 1ff =Mp v(Q).

Proof: (Only if part:) We have that

P = v(Q) by definition 5.43

implies that for every model M of F, I=M v(Q)

implies that for least (Herbrand) model Mp, IMp v(Q)

(If part:)Now we have I=mp 71(Q)

implies F=M v(Q) for every (Herbrand) model M

implies not M -'v(Q)

implies P U {,v(Q)} has no (Herbrand) models

implies P U {-iv(Q)} has no models by theorem 5.14

implies P U {-iv(Q)} is unsatisfiable by definition 5.41

implies P 1= v(Q) by theorem 5.12. 0

According to the above theorem, to prove that P = v(Q) where P is program

and Q is a goal, we just need to consider the least (Herbrand) model Mp of P. If

Mp v(Q) then v is an answer to the query Q, otherwise it is not an answer. This

concludes the whole theory for an S-logic program without negation.

Chapter 6

Transformation into First-Order Logic

Chapters 4 and 5 have shown that S-logic has an expressive syntax and sound se-

mantics. This chapter will show that S-logic is also implementable in practice. It

will show that satisfiable S-logic programs and queries can be transformed into a

first-order Horn-clause logic program and queries and get correct answers. However,

unsatisfiable programs can still work but generate undesired results.

6.1 Transformation of Type System

A type in S-logic is a name which has two aspects: extension and intension. The

extension of a type is the set of all known objects belonging to this type, the intension

of a type is the properties all objects belonging to this type have to have. So, each

type of S-logic is transformed into four predicates: class, attribute, class-object, and

class_set, class is used for denoting the existence of a type. If p is a type, then we

will have class(p) after the transformation. attribute is used for the intension of a

type. If p has a property b - 4 c, then we will have attribute(p, b, c). class-object

is used for denoting that an object is known to belong to a class. If c is an object

in type p, then we will have class_object(p, c). class-set is used for the extension of

a type. If p is a finite type, and {ai, ..., a,} are all elements of this type, then we

have class_s et(p, jai, ..., a}). If p is a infinite type, then it is impossible to list all its

extension. We can still use p to represent its extensions, so we have class_set(p,p). As

88

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 89

well, another predicate isa is used to represent subtype relationships over the abstract

types. If we know student is a subtype of person, then we have isa(student,person).

6.1.1 Transformation of Basic Types

It is supposed that there are two built-in predicates: integer(X) and string(X) in

the intended first-order logic. First, we have a general rule saying that every basic

type is a type:

class(X) : —basic..elass(X).

Then for each basic type, we transform it into a predicate basic-class. The following

transformations of the two basic types, integer and string are always included in

the transformed program of S-logic.

basic...cla.ss(integer).
class -object (integer, X) : —integer(X).
class -set (integer, integer).

basic-class (string).
class -object (string, X): —string(X).
class -set (string, string).

The basic types of S-logic other than integer and string are transformed as

follows:

. If we have s = string({ai, ..., a,}) in the program F, then it is transformed

into

basicclass(s).
class..object(s, X): —class(string), class -object (string, X),

(X = a1; ... ; X = an).
c1ass.set(s, X) : —class(s), setof (Y, class.i.bj ect(s, Y), X).

. If we have s = integer({lb. .rb}) in the program F, then it is transformed

into

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 90

basic.c1ass(s).
class...object(s, X) : —class(integer) , class..nbj ect(integer, X),

X≥lb,X≤rb.
class...set(s, X) : —class(s), setof (Y, class...obj ect(s, Y), X).

In fact, the above rules for predicate class-set can be extended to the following

general rule which applies to all types, so that we do not need to have one for each

type.

class..set(S, X) : —class(S),
setof (Y, class...obj ect(s, Y), X),
X 0 integer, X 0 string.

The transformations of gender = string({ 'Male', 'Female j) and agetype =

integer({ 1..120}) are as follows:

basic...class(gender).
class...object(gender, X) : —class(string), class...obj ect(string, X),

(X = 'Male'; X = 'Female').

basic...cla.ss(agetype).
class_object(ageiype, X) : —class (integer) , class..obj ect(integer, X),

1≤X≤120.

6.1.2 Transformation of Set Types

First, it is assumed that the transformed first-order logic has the setof predicate

which treats a set as a list. It is trivial to define subset predicate over lists. According

to the semantics of S-logic, if we have p which is either a basic type, a record type,

or a built-in type, than we automatically have a set type {p}. But a set set type

like {{p}} is not allowed. So we have the following transformation. Besides, built-in

types are used only for the semantics of S-logic programs so that we do not need to

include them in the transformed program.

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 91

class(set(S)) : —basic...ciass(S);
record_class(S).

ciass_object(set(S),X) : —class(set(S)),
setof(Y, ciass..obj ect(S, Y), Z),
subs et(X, Z).

6.1.3 Transformation of Record Types

The existence of record types is represented by the predicate record-class. The

following rule is included in the transformed program which says that every record

type is a type.

class(X) : —record_class(X).

For each record type without isa label p(ii. - pi, ..., in -+ pa), its transformation

is

record_class (p).
attribute(p, 11, pi) : —class(pi).

attribuie(p,l,p) : —class(p).

For each record type with isa label

p(isa -4 pi, ..., isa) Pm, 1m+1 ' Pm+i, ..., Ln —f p_n),

its transformation is

record_class (p).
isa(p,pi) : —class(pi).
class_object(pi, X) : —class..object(p, X).
attribute(p, X, Y) : —attribute(pi, X, Y), X =h im +1, ..., X 54 in.

isa(p,pm) : —class(pm).
class -object (pm, X) : —class_object(p, X).
attribute(p, X, Y) : —attribute(pm, X, Y), X lm +1, ..., X In-

attribute(p, 1m+1, Pm+i) : —class(p), class(pm+i).

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 92

attribuie(p, : —class(p) , c1ass(p).

For example, if there are two record types of S-logic

person(name -+ string,
sex -+ gender,
age -+ agetype,
address -* string).

siudent(isa -+ person,
age - p young,
studying-in - dept,
taking - {course},
borrowing - {book}).

Their transformations are

record_class (person).
attribute(person, name, string) : —class(string).
attribute(person, sex, gender) : —class (gender).
attribute(person, age, agetype) : —class (agetype).
attribute(person, address, string) : —class(string).

record-class (student).
isa (student, person) : —class(per.son).
class -object (person, X) : —dass...object(student, X).
attribute(student, X, Y) : — attribute (per.son, X, Y), X h age.
attribute(student, age, young) : —class(young).
attribute(student, studying-in, dept) : —class(dept).
attribute(student, taking, set(course)) : —class (set(course)).
attribute(student, borrowing, .set(book)) : —class(set(book)).

6.1.4 Transformation of the Built-in Types

The existence of built-in types is represented by the predicates built-in..elass(all),

and built-in -class (norte). The following rules are included in the transformed pro-

gram which says that built-in types all and none are classes, all existing objects are

also objects of all and all existing properties are also properties of none, and all is

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 93

a supertype of all existing types and none is a subtype of all existing types.

class(X) : —built-in-class(X).
class..object(P, X) : —class...object(all, X).
attribute(none, X, Y) : —attribuie(P, X, Y), class(P), P 0 none.
isa(X, all): —class(X), X 54 all.
isa(none, X) : —class(X), X 54 none.

A complete transformation of the sample type system of Chapter 4 is given in

Appendix A.

6.2 Transformation of the Database

The database determines the extension of record types. It tells which type a record

object in the database belongs to and what properties are known.

Let o : p(li -+ 0i, ..., l, -+ o,) be a record object of the database. According to

the definition, there is a record type p in the type system with properties i - p, 1 ≤

i ≤ n and o E p, oi E Pi, 1 ≤ I ≤ n. Two predicates class-object and attribute-value

are used for the transformation. The first is used for the extension of a type, the

other is used for the intension of an object. Set objects are represented by a list.

According to the semantics of a record object, we can have following transformation:

classobject(p, o)
attribute_value(o, li, O) : —attribute(p, III Pi))

classobject(pi, 01).

aUribute...value(o, l, o) : —attribute(p, li,pfl),
class -object (p, on).

However this transformation is not convenient because it needs to refer to the

type system. It can be changed into a convenient transformation with a general rule

as follows:

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 94

class...object(p, o)
attn but e_valueO(o, 11, 01).

attribute_vaiueO(o, l, o,).

attribute_value(O, L, O) : —attribute_valueO(O, Ii, Or),
attnibute(P, L, F1), class..object(P, 0), class_obj ect(P1, Or).

For example, suppose we have following record objects in the database:

sally: personi(name -* 'Sally', sex - 'Female', age -* 14).

john : person(name -* 'John', sex - 'Male', age - p 62,
address - '439 5th Av NE').

jenny : student(name -+ 'Jenny', sex - 'Female', age - 24,
studying-in -+ math, taking - p {m203,m321,es213}).

Their transformations are

class...object(person, sally).
attn but e_valueO(sally, name, 'Sally').
attnibute..valueO(sally, sex, 'Female).

attni but e_valueo(sally, age, 14).

class -object (person, john).
attnibute_valueO(johni, name, 'John').
attribute_valueO(john, sex, 'Male').
aitribute_valueO(john, age, 62).
attribute_valueO(john, address, '.439 5th Av NE').

class -object (student, jenny).
attnibute_valueO(jeriny, name, 'Jenny').
attnibute_valueO(jeriny, sex 'Female').
attnibute_valueO(jertny, age, 24).
attnibute_valueO(jenny, studying-in, math).
attnibute_valueO(jenny, taking, [m203, m321, cs213]).

attnibute_value(O, L, O) : —attribute...valueO(O, L, Or),
attnibute(P, L, .P1), class..object(P, 0), class -object (Pi, Or).

A complete transformation of the sample database of Chapter 4 is given is Ap-

pendix B.

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 95

6.3 Transformation of S-terms

For each basic object, type, label, object constructor, basic variable, or set-valued

variable, its transformation is still itself. For each set object, its transformation is a

list. Empty list []means an empty set. For example, the transformation of {a, b, c}

is [a, b, c]. Although a list structure is not a real set, the transformed program will

treat it as a real set. The set-grouping variable will be transformed based on the

context.

Transformation of Basic S-terms

• For a basic S-term X : p, its transformation is

ciass_object(p, X).

• For a basic S-term X : p(ii _+ Xi, •• Xm, 1m+1 {Xm+i}, In {X}),

its transformation is

cia.s.s(p),
cla.ss...object(p, X),
attribute(p, 11, pi))

attribute(P) i,,, F,.,),
attribute_value(X, 11, X1), clas-object (p1 , X1),

aUribute_value(X, In, Xm), class -obj ect (pm, Xm),
aUribute_value(X, 1m+1, Ym+i), member(Xm+i, Ym+i),

ciass.object(pm+i, Ym+i),

attribute_value(X, 1,,, Yn), rnember(X, Y),
ciass...object(pn, Y).

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 96

Transformation of Type S-Terms

• For a typed S-term P := S, its transformation is

class(P),
class..sei(P, S).

• For a typed S-term P(isa -+ Pi,..., isa -f Ps), its transformation is

class(P),
clas.s(Pi),

class(P,,),
isa(P, P1),

isa(P, Ps).

• For a typed S-term P(L1 - F1, ...,L -+ P,), its transformation is

class(P),
class(Pi),

class(P,,),
attribute(P, L1, F1),

attribute(P, L, Pa).

• For a typed S-term X:P(Li _ Xi, ...,Lm 4 X,,,, L,,,+,) {X,ni }, L

{X}), where F, L1,..., L, might be variables, its transformation is

class(P),
class.object(P, X),
attribute(P, L1, F1),

attribute(P, Lm, Pm),
attribute(P, Lm+i, Fm+i),

attribute(P, L, Pa),
attribute_value(X, L1, X1), class -object (Pi , Xi),

attribue_value(X, Lm, Xm), class.obj Ct(Pm, Xm),

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 97

attribute_value(X, Lm+i, Ym+i), member(Xm+i , Yrn+i),
class...objeet(Pmi, Ym+i),

attribute_value(X, L, Y), member(X, Y), class.obj ect(P, Y).

6.4 Transformation of Rules

A rule consists of a head and a body of the form p = body. The body is a collection

of basic literals which are either basic S-terms, negation of basic S-terms, disjunc-

tive basic S-terms or comparison expressions. The previous section showd how to

transform basic S-terms. Let 0 be a basic S-term and trans('1) stand for the trans-

formation of 0. For a negation of basic S-terms - i&, its transformation consists of the

negative sign followed by the transformation of the basic S-terms without negation,

i.e.trans(-iO) = —(trans()). For a disjunctive basic S-term ''i; 02, it transforma-

tion irans(''i; '2) = trans(&i); trans(,&2). For comparison expressions, their trans-

formation are simply themselves, i.e., trans(?/'iO/'2) =trans('bi) Otrans(i/'2), where

o € {=, , ≥, >, <} and 01 ,02 are basic variables or basic objects. The transfor-

mation of the body of a rule is the conjunction of the transformation of the literals

in the body. Later on trans(body) will be used to stand for the transformation of the

body. The transformation of the head of a rule is different from the transformation

of an S-term, which depends on the usage of the rule.

Rules are used in two different ways. One is to deduce attribute values for

existing objects. The other is to construct new objects and obtain their attribute

values. These two usages lead to two slightly different transformations of the head

of rules. The transformation of the body for both cases are the same.

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 98

Let X : p(ii _+ Xi,..., i,n Xm, 4n--i {X.+,}, L. - {X}) = body be a rule,

where X is either a basic variable or a basic object, p is a type, i, 1 ≤ i < n are

labels, X, 1 < i < n are basic variables. This rule is used to deduce n attribute

values for objects of type P. Its transformation is the following n sets of rules in

first-order logic, each of which is used for one attribute value.

attribute_value(X, 1, X1) : —class(p), ciass.obj ect(p, X),
attribute(p, 11, F1), class -object (Pi, X1), trans(body).

attribute_value(X, im, Xm) : —ciass(p) , class..object(p, X),
attribute(p, im, Pm), class -object (Pm, Xm), trans(body).

attribute_vaiuel(X, i,n+1, Xm+i) : —class(p) , class..obj ect(p, X),
trans (body).

attribute_value(X, 1m+1, Ym+i) : —attribute(p, 1m-j-1 Pm+i),
setof(Xm+i, attribute_valuel(X, 1m+1, Xm+i), Ym+i),
class -object (Pm+i, Ym+i),

attribute_vaiuel(X, i,,, X,) : —class(p) , cia.ss...obj ect(p, X),
trans(body).

attribute_value(X, i,,, Y,) : —attribute(p, in, F),
setof(X, attribute_vaiuel(X, in, Xn), Yn),
class -object (Fn, Y),

For example, given two S-logic rules of this kind:

(1) X : person(address —Y) A≤2O
X : person(age — A, father —f
Z : person(address - Y).

(2) X : employee (heading -* {Y}) =

Y: empioyee(working_in —* D),
D : dept(head -4 X).

Their transformations are:

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 99

(1) attribute_vaiue(X, address, Y) : —class(person),
ciass_object(person, X), attribute(person, address, F1),
ciass..object(Pi, Y), A ≤ 20, class(person),
class_object(person, X), attnibute_value(X, age, A),
attribute(person, age, F2), class..obj ect(F2, A),
attnibute_value(X, father, Z), attribute(person, father, F3),
clas.s_object(P3, Z), class(person) , class_obj ect(person, Z),
attnibute_valzze(Z, address, Y),
attribute(person, address, F4), class -object (P4, Y).

(2) attnibute_valuel(X, heading, Y) : —class (employee),
class -object (employee, X), class (employee),
class -object (employ ee, Y), attn bute_value(Y, working-in, D),
attribute(empioyee, working-in, F2), class -object (F2, D),
class(dept), class -object (dept , D), attribute_value(D, head, X),
attnibute(dept, head, F3), class_obj ect(F3, X).

attribute_vaiue(heading, X, Z) : — attribute (empioyee, heading, F1),
setof(Y, attn bute_valucl(heading, X, Y), Z).
class -object (Fi, Y),

Let f(X,,.., X,,,,) : p(ii -> Y1, ..., 1,,, -* {Y}) = body be a rule, where f is an

rn-ary function, X, 1 ≤ i ≤ m are basic variables or basic objects, Y2, 1 ≤ i ≤ n are

basic variables and i, 1 ≤ i < n are labels. This rule is used to construct objects

and obtain their attribute values. Its transformation is slightly different from the

transformation of the above rule which has one additional rule for the constructed

object as follows, in addition to the n sets of rules for attribute values:

ciass_object(p, f(X1, ..., X,)) : —class(p), trans(body).

For example, given an S-logic rule of this kind:

id(X, Y) : family(father - X, mother - Y, children -+ {Z}) <=
Z : person(fat her -* X, mother - Y).

The transformation is:

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 100

class..object(family, id(X, Y)) : —class(family),
class (person), clas&.obj ect(person, Z),
attribute_value(Z, father, X), attribute(person, father, F4),
class -object (P4, X), attribute..value(Z, mother, Y),
attribute(person, mother, F5), class -object (F5, Y).

attribute_value(id(X, Y), father, X) : —class(family),
class -object (family, id(X, Y)), attribute(family, father, F1),
class_obj ect(Fi, X), class(person), class_object(person, Z),
attribute_value(Z, father, X), attribute(person, father, F4),
class..object(F4, X), attn bute..value(Z, mother, Y),
attribute(person, mother, F5), class -object (Fs, Y).

attri bute_value(mot her, id(X, Y), Y) : —class(family),
class...object(family, id(X, Y)), attribute(family, mother, F2),
class_object(P2, Y), class (person), class -object (person, Z),
attnibute_value(Z, father, X), attribute(person, father, F4),
class...object(P4, X), attn bute_value(Z, mother, Y),
attribute(person, mother, F5), claas..obj ect(Ps, Y).

attribute_valuel(children, id(X, Y), Z) : —class(family),
class...object(family, id(X, Y)),
clas.s(person), class -object (person, Z),
attnibute_value(Z, father, X), attribute(person, father, F4),
class -object (P4, X), attn bute_value(Z, mother, Y),
attribute(person, mother, F5), class -object (Fs, Y).

attribute_value(id(X, Y), children, A) : —attribute(family, children, F3),
setof(Z, attn but e_valuel(id(X, Y), children, Z), A).
class..object(F3, A).

It is trivial to eliminate the redundancy in the transformed program. A complete

transformation of the sample rules of Chapter 4 is given in Appendix C.

6.5 Transformation of Queries

A query is a conjunction of literals starting with the question mark. Its transforma-

tion is just the conjunction of transformed literals. Section 6.3 already shows how

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 101

to transform S-terms which are either basic S-terms or typed S-terms. Let S1, S2

be any two S-terms and their transformations are trans(Si) and trans(52). For

a negative literal -iSi, trans(-iS1) = -iirans(Si). For a disjunctive literal S1; 82,

irans(Si; S2) = irans(Si); trans (S2). For comparison expressions 01 = 02, 01 0 02,

their transformations are just themselves. For comparison expressions 01 ≤ 02,

&i ≥ 02, &i <b2, &i > 2, their transformation depending on whether or not 0142

are basic variables or basic objects. If 01 and &2 are basic variables or objects, then

the transformations of above comparison expressions are themselves. If 01 and 02

are set-valued variables or set objects, then the transformation are as follows:

• For &i ≤02, it is transformed into subs et(I'i, /'2); 01 = 1'2.

• For ?/'l ≥ '2, it is transformed into subset(&2, &i); ?&i = &2.

• For 01 > &2, it is transformed into subs et('ib2, 01 t'2.

• For 01 <&2, it is transformed into subset(i, 1'2), 01

For example, given four queries of S-logic as follows:

(1)?X : person(age -f Y, sex -+ Z), Y ≥ 50.

(2)?bookstore : dept(staff -* {X}), X: employee(salary - p Y).

(3)?smiTh : X(L - 4 Y).

(4)?P1 := 51,P2 := S2, S, < 82.

Their transformations are

(1)? - class (person), clas&..obj ect(person , X),
aitribuie...value(X, age, Y), attn bute(penson, age,
class -object (F1, Y), attribute_value(X, sex, Z),
attnibute(person, sex, F2), classobj ect(P2, Z), Y ≥ 50.

CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 102

(2)? - class(dept), attn buie_value(bookstore, staff, Z),
attnibuie(dept, staff, F1), class.obj ect(Pi, Z), mem(X, Z),
class (employee), class -object (employee, X),
attn but e...value(X, salary, Y), at,tribute(employee, salary, F2),
class -object (F2, Y).

(3)? - class(X), class.obj ect(X, smith),
attribute.i,alue(smith, L, Y), aitribute(X, L, F'1),
class -object (P1, Y).

(4)?— class(Pi),class...set(Pi, Si),class(F2),class...set(P2, S2),
subs et(Si, S2).

A complete transformation of the sample queries of Chapter 4 is given in Ap-

pendix D and Appendix E.

I have run the sample examples by using NU-Prolog, which gives me satisfcatory

answers.

Chapter 7

Conclusion and Further Work

Approaches to deductive databases are torn by two opposing forces. On one side

there are the stringent real-world requirements of actual databases. The requirements

include efficient processing as well as the ability to express complex and subtle real-

world relationships. On the other side are the simple and clear semantics of logic

programming and its deductive power. The need for expressiveness has forced the

deductive models away from their simple roots in logic programming.

In this thesis, I have shown two major problems underlying the first-order logic

languages and examined several solutions to these problems. One is complex object

modeling, the other is the ability to represent higher-order features. For complex

object modeling, we need to represent object identity, data abstractions and inheri-

tance. For higher-order features, we need to represent higher-order queries and sets.

There is no direct way to represent these in first-order logic.

I propose a higher-order language called S-logic in an attempt to solve these

two problems. S-logic supports object identity, data abstractions and inheritance,

schemas, sets, and higher-order queries in a uniform way. Its definite programs have

a well-defined least fixpoint semantics. Programs which in LDL do not have models

have models in S-logic.

The treatment of multiple inheritance in S-logic is also noteworthy. In S-logic,

objects are grouped into classes called types and types can be organized into a

subtype hierarchy. Subtypes inherit all the properties of their supertypes and may

103

CHAPTER 7. CONCLUSION AND FURTHER WORK 104

have their own properties and may redefine (or restrict) their supertypes' properties.

Inheritance can be either single or multiple. In the case of single inheritance, the

subtype hierarchy has the form of a tree, i.e., every type has a unique supertype. In

the case of multiple inheritance, a subtype can has more than one supertypes, the

subtype relation forms a lattice. Multiple inheritance is more elegant than single

inheritance, but more difficult to handle normally. In this thesis, I have given a clear

set-inclusive semantics to multiple inheritance in S-logic.

I have also shown that S-logic can be transformed into Prolog so that S-logic is

implementable in practice. Of course, S-logic is intended as a real deductive database

language, and how to efficiently implement S-logic is a worthwhile topic for further

research.

The theory developed here only applies to definite programs, i.e., the body of

a rule in a program has no negation. Further work is needed to explore normal

programs which include negation. It seems that a theory of negation can be developed

similar to the stratification theory in [29].

7.1 Updates

There is another significant problem existing in deductive databases which I did not

touch in this thesis. That is the update problem.

In Prolog, the basic update primitives are assert and retract. Assert is used to

insert a single clause into the database. Assert always succeeds initially and fails

when the computation backtracks. Clauses are deleted from the database in Prolog

by calling retract. Initially, retract deletes the first clause in the database which

CHAPTER 7. CONCLUSION AND FURTHER WORK 105

unifies with the argument of retract. On backtracking, the next matching clause is

removed. Retract fails when there are no remaining matching clauses.

The semantics of assert and retract are not well-defined. Even if we did take one

particular implementation as the definition, the exact effect of calling code containing

assert and retract is often difficult to predict. There are two factors to be considered:

the set of answers returned and the resulting database update. These are interrelated

and both rely on the procedural semantics of Prolog, rather than just the declarative

semantics. The procedural semantics of Prolog affects what database updates are

done. The order of execution of subgoals is as important as the logical content of

the goal.

Many distributed Prolog systems have versions of retract with bugs or strange

behavior (sometimes called "features"). In an external or distributed database sys-

tem, the problems with assert and retract become much more severe. Even in the

single user case, concurrent access is required to data structures on disk which may

be quite complex. Multi-user access creates even more difficulties.

The notion of states is inherent in any notion of updates. The Dynamic Logic

approach assigns state transition semantics to a logic program [35]. The closure

operator associated with a logic program P computes a state of P in the sense that

it assigns valuations to the variables of P. Updates can be viewed as transitions of

a state through a state-space. In the absence of updates, a classical logic program

has only one state and queries map this state to itself. So it reduces to the classical

semantics of logic program. Two kinds of updates are distinguished in [35] which

have different semantics. First, those in which update actions depend on the order of

execution, that is, different orders of execution may yield different final states. This

CHAPTER 7. CONCLUSION AND FURTHER WORK 106

kind of update is represented by (a; /3) where a and /3 stand for update predicates.

The semantics for this kind does not require that a executed before and after /3 gives

the same result. The other kind are those in which all different orders of execution

yield the same final state. A syntactic test has been shown in that paper which can

ensure this property.

The Dynamic Logic interpretation of updates [35] gives a clean semantics and is

consonant with the operational meanings of the update predicates. But this seman-

tics is not declarative and is too complicated to be useful.

To reduce the number of database states by grouping small changes into big ones

and to address the issue of concurrency and atomicity of certain operations, the con-

cept of transactions are introduced into deductive databases in [34]. The transaction

concept has been widely used in relational database systems where transactions are

normally transparent to the users. A transaction is a collection of updates which

must be done atomically. This naturally specifies some form of concurrency control.

In [35], a transaction is specified by two sets: the facts to be deleted (D) and the

facts to be inserted (I). The new database state (New..xlb) after the transaction is

defined in terms of the old database state (Old_db) before the transaction, D and I:

New_db = (Old_db - D) U I

This definition corresponds to performing deletions before insertions. Only if the

transaction is committed, then the updates have been made by first doing all the

deletions then all the insertions.

The main advantage of introducing transactions is that it gives a simple declar-

ative semantics for updates. However explicitly specifying transactions seems to be

CHAPTER 7. CONCLUSION AND FURTHER WORK 107

a burden to the user.

Another approach which can solve the update problem is that of Starlog [13].

Starlog is a temporal logic programming language which handles time explicitly.

Every predicate in Starlog has a temporal argument which is a real interval. So the

database of Starlog is a history database and updates are represented as changes

with "logical" time.

There are two ways in which time can be used in the Starlog database. One way

is to use the time values to record actual history database information. Used in this

way, it should be possible to query information about the past. A different way of

using time in a database is just to express the semantics of updates and changes to

the database. Used in this way, time would have no meaning within the database

itself. In such a system the state of the database would be at its current time.

A query could be made only at the current time and updates would be inserted

and occur at the current time. The appropriate sequencing of updates would be

ensured by giving independent sources of updates (for example different users in a

multi-terminal system) their own unique time stamps.

A major feature of Starlog is that it permits a declarative semantics based on a

bottom-up, least-fixpoint computation instead of the top-down, left-right backtrack-

ing of Prolog. Another is that it can be used in conjunction with an algorithm such

as TimeWarp [24] to form a distributed database with a semantics identical to that

of the sequential implementation.

It seems that it is possible to extend S-logic based on the ideas of Starlog to solve

the update problem, i.e, incorporating an explicit temporal dimension into S-logic.

I have started working on this subject.

CHAPTER 7. CONCLUSION AND FURTHER WORK 108

It seems to me that the extended S-logic will be semantically sound. But a lot

more work is needed.

Bibliography

[1] Abiteboul, S., Grumbach, S. "COL: A Logic-Based Language for Complex
Objects," Proc. Inter. Conf. on Extending Database Technology, Venice, Italy,
1988, pp 271-293.

[2] Abiteboul, S., Hull, R. "IFO: A Formal Semantic Database Model," ACM
Trans. Database Systems, Vol. 12, No. 4, (Dec. 1987), pp 525-565.

Albano, A., Cardelli, L., and Orsini, R., "Galileo: A Strongly-Typed, Inter-
active Conceptual Language," ACM Trans. Database Systems, Vol. 10, No. 2
(June 1985), pp. 230-260.

[4] Been, C., Naqvi, S., Shmueli, 0. and Tsur, S., "Sets and Negation in a Logic
Database Language (LDL)," MCC Tech, Report DB-375-86, 1987.

Bic, L. and Gibert, J. P.
"Learning from Al: New Trends in Database Technology" IEEE Computer
Society, Vol. 19, No. 3 (March 1986), pp 44-54.

[6] Borkin, S. A., Data Models: A Semantic Approach For Database Systems, MIT
Press, 1980.

Brodie, M. L., "On the Development of Data Models," in On Conceptual Mod-
elling, M. L. Brodie, J, Mylopoulos, and J. W. Schmidt Eds., Springer-Verlag,
New York. 1984, pp. 19-48.

[8] Brodie, M. L., and Ridjanovic, D., "On the Design and Specification of
Database Transactions," in On Conceptual Modelling M. L. Brodie, J, My-
lopoulos, and J. W. Schmidt Eds. Springer-Verlag, New York. 1984, pp. 276-
232.

[3]

[5]

[7]

[9] Cardelli, L., "A Semantics of Multiple Inheritance," Proc. Inter. Sympo. on
Semantics of Data Types, LNCS 173, June, 1984, pp. 51-67.

[10] Ceni, S., Gottlob, G. and Wiederhold, G. "Efficient Database Access from
Prolog" IEEE Trans. Software Engineering, Vol. 15, No. 2 (Feb. 1989), pp
153-164.

[11] Chen, P. P. S. "The Entity-Relationship Model - Toward a Unified View of
Data" ACM Trans. Database System, Vol. 1, No. 1 (Mar. 1976), pp 9-36.

109

BIBLIOGRAPHY 110

[12] Chen, W. and Warren, D. S., "C-Logic for Complex Objects," ACM PODS,
1989, pp. 369-378.

[13] Cleary, J. G., "Colliding Pucks Solved Using a Temporal Logic," Proc. Conf. on
Distributed Simulation, Western Multiconference, S. C.S., San Diego, January
1990.

[14] Codd, E. F. "A Relational Model of Data for Large Shared Data Banks" Comm.
ACM, Vol. 13, No. 6 (June, 1970), pp 377-397.

[15] Codd, E. F. "Extending the Database Relational Model to Capture More Mean-
ing" ACM Trans. Database System, Vol. 4, No. 4 (Dec. 1979), pp 297-434.

[16] Copeland, G. P. and Khoshafian, S. N., "Identity and Versions for Complex
Objects" MCC Tech. Reposrt, DB-138-86, 1986.

[17] Genesereth, M.R., Ginsberg, M.L. "Logic Programming" Communications of
the ACM Vol. 28, No. 9 (Sept. 1984), pp 933-941.

[18] Gallaire, H., Minker, J., and Nicolas, J. M., "Logic and Databases: A Deductive
Approach," ACM Computing Surveys, Vol. 16, No. 2 (June 1984), pp. 153-186.

[19] Hammer, M. and McLeod, D., "Database Description with SDM: A Semantic
Database Model.," ACM Trans. Database Systems, Vol. 6, No. 3 (Sept. 1981),
pp. 351-386.

[20] Hassan, A. K., and Nasr, R., "LOGIN: A Logic Programming Language with
built-in Inheritance," Journal of Logic Programming, Vol. 3, No. 3 (Oct. 1986),
pp. 185-215.

[21] Hull, R. and King, R., "Semantic Database Modeling: Survey, Applications,
and Research issues," ACM Computing Surveys, Vol. 19, No. 3 (Sept. 1987),
pp. 201-260.

[22] Housel, B. C., Waddle, V. and Yao, S. B. "The Functional Dependency
Model for Logicial Databases Design" in Proc. 5th Intel. Conf. on Vary Large
Databases, October, 1979.

[23] Jacobs, B. E. "On Database Logic" Journal of ACM Vol. 29, No. 2 (April
1982), pp 310-332.

[24] Jefferson, D. R., "Virtual Time," ACM Trans. on Programming Languages and
Systems, Vol. 7, No.3 (July, 1985), pp. 404-423.

BIBLIOGRAPHY 111

[25] Kifer, M. and Wu, J., "A Logic for Object-Oriented Logic Programming
(Maier's 0-logic Revisited)," Proc. ACM PODS, 1989, pp. 379-393.

[26] Kifer, M. and Lausen, G., "F-Logic: A Higher-Order Language for Reasoning
about Objects, Inheritance, and Schema," Proc. ACM SIGMOD mt. Conf. on
Management of Data, 1989, pp. 134-146. -

[27] Krishnamurthy, R,. and Naqvi, S., "Towards a Real Horn Clause Language,"
Proc. 14th VLDB Los Angeles, USA, 1988, pp. 252-263.

[28] Kuper, G. M., "Logic Programming With Sets", Proc. ACM PODS, 1987, pp.
11-20.

[29] Lloyd, J. W., "Foundations of Logic Programming," Springer Verlag, 2nd edi-
tion, 1987.

[30] MacLennan, B. J., A View of Object-Oriented Programming, Naval Postgrad-
uate School Tech. Report, NPS52-83-001, 1983.

[31] Maier, D., "A Logic for Objects," Proc. the Workshop on Deductive Databases
and Logic Programming, 1986

[32] Maier, D., "Why Database Languages are a Bad Idea," Proc. the Workshop on
Databases Programming Languages, Roscoff, France,1987.

[33] Mylopoulos, J., Bernstein,P. A. and Wong, H. K. T. "A Language Facility for
Designing Database-Intensive Applications" ACM Trans. on Database Systems,
Vol. 5, No. 2 (June. 1980), pp 185-207.

[34] Naish, L., Thom, L. A., and Ramamohanarao, K., "Concurrent Database Up-
dates in Prolog," Proc. Fourth Inter. Conf. Logic Programming, (July. 1987),
pp. 178-195.

[35] Naqvi, S. and Krishnamurthy, R., "Database Updates in Logic Programming,"
ACM Sym. on PODS, 1988, pp. 261-262/

[36] Peckham, J. and Maryanski, F., "Semantic Database Models," ACM Comput-
ing Surveys, Vol. 20, No. 3 (Sept. 1988), pp. 153-189.

[37] Rybinski, H. "On First-Order Logic Databases" ACM Trans. Database Sys-
tems, Vol. 12, No. 3 (Sept. 1987), pp 325-349.

[38] Reiter, R., "Towards a Logical Reconstruction of Relational Database Theory,"
in On Conceptual Modelling, M. L. Brodie, J, Mylopoulos, and J. W. Schmidt
Eds., Springer-Verlag, New York. 1984, pp. 19-48.

BIBLIOGRAPHY 112

[39] Shipman, D. W. "The Functional Extending the Database Relational Model
to Capture More Meaning" ACM Trans. Database System, Vol. 4, No. 4 (Dec.
1979), pp 297-434.

[40] Smith, J. M., and Smith, D. C. P., "Database Abstractions: Aggregation and
Generalization," ACM Trans. on Database Systems, Vol. 2, No. 2 (June. 1977),
pp. 105-133.

[41] Su, S. Y. W., "Modeling Integrated Manufacturing Data with SAM*, IEEE
Computer Society, Vol. 19, No. 1 (Jan. 1986), pp. 34-49.

[42] Thom, J. A. and Zobel, J., NU—Prolog REference Manual, Department of Com-
puter Science, University of Melbourne, Tech. Report, 86/10, 1986.

[43] Tsichritzis, D. C. and Lochovsky, F. H. Data Models Prentice-Hall, Englewood
Cliffs, N.J. 1982

[44] Tsur, S. and Zaniolo, C., "LDL: A Logic-Based Data-Language," Proc. 12th
VLDB Kyoto, Japan, 1986, pp. 33-41.

[45] Ullman, J. D. Principles of Database Systesm. 2nd. ed. Computer Science Press,
Rockville, MD, 1982.

[46] Ullman, J. D. "Implementation of Logical Query Languages for Databases"
ACM Trans. Database Systems, Vol. 1, No. 1 (Feb. 1983), pp 3-23.

[47] Warren, D. H. D., "Higher-Order extensions to PROLOG: are they needed,"
in Machine Intelligence 10, J.E.Hayes, Donald Michie, and Y-H. Pao, eds, Ellis

Horwood with John Willey and Sons, 1982, pp. 441-454.

[48] Zaniolo, C., Act-Kaci, H., Beech, D., Cammarata, S., and Kerschberg, L.,
"Object Oriented Database Systems and Knowledge Systems," MCC Tech.
Report DB-038-85, 1985.

Appendix A

Transformation of Sample Type System

(Type 1.)

record_class(person).
attribute(person, name, string) : —class(string).
attribute(person, sex, gender) : —class (gender).
attribute(person, age, agetype) : —class(agetype).
attribute(person, spouse, person) : —class(person).
attribute(person, address, string) —c.lass(st ring).
attribute(person, father, person) : —class (person).
attribute(person, mother, person) : —class (person).

(Type 2.)

record-class (student).
isa(siudent, person).
class -object (person, X) : —class...object(student, X).
attribute(student, X, Y) : — attribute (per.son, X, Y), X age.
attribute(student, age, young) : —class(young).
attribute(student, studying-in, dept) : —class(dept).
attribute(student, taking, set(course)) : —class (set(course)).
attribute(student, borrowing, s et(book)) : —class (set(book)).

(Type 3.)

record_class(employee).
isa(employee, person).
class -object (person, X) : —class -object (employ ee, X).
attribute(employee, X, Y) : —attribute(person, X, Y), X age.
attribute(employee, age, midage) : —class(midage).
attribute(employee, working-in, dept) : —class(dept).
attribute(employee, heading, set(person)) : —class (set(person)).
attribute(employee, salary, employeesalary) : —class (employ eesalary).

113

APPENDIX A. TRANSFORMATION OF SAMPLE TYPE SYSTEM 114

(Type 4.)

record_class (workingstudent).
isa(workingstudent, student).
isa(workingstudent, employee).
class -object (employ ee, X) : —class -object (workingstudent, X).
class _obj ect(student , X): —class...obj ect(wor kin gstudent , X).
attri but e(workingstudent, X, Y) : —attribute(student, X, Y),

X 0 age,X 54 salary.
attribute(workingstudent, X, Y) : — attribute (ernployee, X, Y),

X 0 age,X salary.
attri but e(wor kingstudent, age, ymage) : —class(ymage).
attri but e(workingstudent, salary, support) : —class (support).

(Type 5.)

basic_clas.s(agetype).
class -object (agetype, X) : —x ≥ 1, X ≤ 120, class -object (intcger, X).

(Type 6.)

basic-class (young).
class -object (young, X) : —x ≥ 15, X ≤ 30, class -object (integer, X).

(Type 7.)

basic_class(midage).
class -object (midage,X) : —x ≥ 25,X < 60, class -object (integer,X).

(Type 8.)

basic_class(ymage).

class_object(ymage, X) : —x ≥ 25, X < 30, class_obj ect(integer, X).

(Type 9.)

basic_class(employeesalary).
class_object(employeesalary,X) : —x ≥ 0,X ≤ 50,

class_object(integer, X).

APPENDIX A. TRANSFORMATION OF SAMPLE TYPE SYSTEM 115

(Type 10.)

basic..class(support).
class -object (support, X) : —X ≥ 0, X ≤ 15, class -object (integer, X).

(Type 11.)

basic-class (gender).
class...objeci(gender, X) : —class(string), class -object (siring, X),

(X = "Male "; X = "Female").

(Type 12.)

record_class(dept).
attribute(dept, name, siring) : - class(string).
attribute(dept, head, employee): —class (employee).
attribute(dept, staff, set(employee)) : —class(set(employee)).

(Type 13.)

record_class(course).
attribute(course, name, string) : —class(string).
attribute(course, credit, integer) : —class (integer)
attribute(course, taken-by , set(student)) : —class(set(student)).

(Type 14.)

record_class(book).
attribute(book, name, string) : —class(string).
aitribute(book, no, siring) : —class(string).
aitribute(book, author, person) : —class(person).
aitribute(book, published-by, string) : —class(string).
attn bute(book, price, integer) : —class (integer).

(Type 15.)

record_class(family).
attribute(family, father, person) : —class(person).
attribute(family, mother, person) : —class(person).
attribute(family, children, set(person)) : —class (set(person)).

APPENDIX A. TRANSFORMATION OF SAMPLE TYPE SYSTEM 116

(Type 16.)

record_class(house).
attribuie(house, location, string) : —class(string).
attribute(house, occupied-by, set(person)) : —class (set(person)).

(Type 17.)

record...class(sameage).
attribute(sameage, number, agetype) : —class (agetype).
attribute(sameage, shared-by , set(person)) : —class (set(person)).

(General Rules for Type Systems)

class(X) : —basic-class(X); record-class(X); built-in-class(X).
class(set(X)) : —basic-class(X); record-class(X); built-in-class(X).
class...object(set(P), X) : —setof (Y, class...obj ect(P, Y), Z), subs et(X, Z).

basic...class(string).
class -object (string, X) : —string(X).
class -set (string, string).

basic-class (integer).
class.object(integer, X) : —integer(X).
class -set (integer, integer).

built-in...class(all).
builtin_class(none).
class.object(P, X) : —class -object (all, X).
attribute(none, X, Y) : —attribute(P, X, Y), class(P), P none.
isa(X, all): —class(X), X 54 all.
isa(none, X) : —class(X), X 54 none.

subset([], X).
subset([XIY], Z) : —mem(X, Z), del(X, Z, Z1), subs et(Y, Z1).

del(X, [XIY], Y).
del(X, [ZIY], [ZIY1]) : —del(X, Y, Y1).

mem(X, [X1]).
mem(X, [YjZ]) : —mem(X, Z).

APPENDIX A. TRANSFORMATION OF SAMPLE TYPE SYSTEM 117

class.se(X, Y): -x 54 integer, X 54 string,
.setof(A, class..obj ect(X, A), Y).

Appendix B

Transformation of Sample Database

(Record Object 1.)

class -object (person, sally).
attribute_valueO(sally, name, "Sally").
attribute_valueO(sally, sex, "Female").
attribute_valueO(sally, age, 14).
attribute_valueO(sally, father, bob).
attribute_valueO(sally, mother, mary).

(Record Object 2.)

class -object (person, john).
attribute..valueO (john, name, "John").
attribute.,valueO(john, sex, "Male")
attribute_valueO(john, age, 62).
attribute_valueO(john, address, "j39 5th Av NE").

(Record Object 3.)

class -object (student, jenny).
attribute_valueO(jenny, name, "Jenny").
attribute_valueO(jenny, sex, "Female").
attribute_v alueO(j enny, age, 24).
attribute_valueO(jenny, spouse, smith).
attribute_v alueO(j enny, father, henry).
attribute_valueO(jenny, studying-in, math).
attribute_valueO(jenny, taking, [m203, m321, cs213]).

(Record Object 4.)

class -object (studertt, phil).
attribute_valueO (phi 1, name, "Phil").
attribute_valueO(phil, sex, "Male").
attribute_valueO(phil, age, 18).
attribute_valueO (phi 1, father, bob).
attribute_valueO(phil, mother, mary).

118

APPENDIX B. TRANSFORMATION OF SAMPLE DATABASE 119

aitribute_valueo(phil, studying-in, cpsc).
attribute_valueo (phi l, taking, [cs450, cs213]).
attribute_va lueo (phi l, borrowing, [pascal, prolog]).

(Record Object 5.)

class -object (employee, mary).
attribute_va1ue0 (mary, name, "Mary").
attribute_valueo(mary, sex, "Female").
attribute_valueo(mary, age, 39).
attribute_va1ue0 (mary, spouse, bob).
attribute_valueo(mary, working-in, bookstore).
attri but e_valueo(mary, salary, 35).
attribute_valueo(mary, address, "128 2nd Ày SW").

(Record Object 6.)

class -object (employee, henry).
attribute_value0(henry, name, "Henry").
attribute..va1ue0(henry, sex, "Male").
attribute...valueO(henry, age, 50).
attribute_valueO (henry, father, bob).
attri but e_valueo(henry, working-in, cpsc).
attribute_valueO(henry,address, "128 2nd Av NW").
attribute_valueO(henry, salary, 50).

(Record Object 7.)

class -object (employee, bob).
attribute_va1ue0(bob, name, "Bob").
attribute_valueO(bob, sex, "Male").
attribute_va1ue0(bob, age, 40).
attribute_valueO(bob, father, john).
attribute_value0(bob, working-in, math).
attribute_va1ue0(bob, address, "257 9th Ày SW").
attribute_valueO(bob, salary, 40).

(Record Object 8.)

class -object (workin,gstudent, smith).
attribute_va1ue0(smith, name, "Smith").
attribute_va1ue0(smith, sex, 'Male").
attribute_va1ue0(smith, age, 30).

APPENDIX B. TRANSFORMATION OF SAMPLE DATABASE 120

attribute_valueO(smith, father,john).
attribute_va1ue0(smith, studying-in, cpsc).
attribute..va1ue0(smith, working-in, cpsc).
attribute_va1ue0(smith, address, "3 7th Av SW").
attribute_va1ue0(smith, salary, 12).
attribute...va1ue0(smith, taking, [cs450]).

(Record Object 9.)

class -object (workingstudent, dennis).
attribute_value0(dennis, name, "Dennis").
attribute_va1ue0(dennis, sex, "Male").
attribute_va1ue0(dennis, age, 30).
attribute_valueO(denni.s, father, henry).
attribute_va1ue0(dennis, studying_in, math).
attribute_valueO(dennis, working-in, bookstore).
attribute_value0(dennis, salary, 8).

(Record Object 10.)

class -object (dept, cpsc).
attribute_value0 (cpsc, name, "Computer Science").
attribute_va1ue0(cpsc, head, henry).

(Record Object 11.)

class -object (dept, math).
attribute_value0(math, name, "Mathematics").
attribute_valueO(math, head, bob).

(Record Object 12.)

class_object(dept, bookstore).
attn bute_va1ue0(bookst ore, name, "Book Store").
attri bute_va1ue0(bookst ore, manager, mary).

(Reocrd Object 13.)

class -object (course, cs213).
attri but e_va1ue0 (cs213, name, "Programming Language").
attri but e_va1ue0(cs213, credit, 2).

APPENDIX B. TRANSFORMATION OF SAMPLE DATABASE 121

(Record Object 14.)

class.object(course, cs450).
attribute_valueO (cs450, name, "Artificial Intelligence").
attribute_valueO(cs450, credit, 4).

(Record Object 15.)

class -object (course, m203).
attribute_valueO(m203, name, "Calculus").
attribute..valueO(m203, credit, 6).

(Record Object 16.)

class -object (course, m321).
attri but e_valueO(m321, name, "Algebra").
attribute_valueO(m321, credit, 4).

(Record Object 17.)

class -object (boolc, pascal).
attribute_va lueO(pascal, name, "Pascal").
attribute_valueO(pascal, author, henry).
attn bute_valueO(pascal, published_by, "Practice").
attnibute_valueO(pascal, price, 35).

(Record Object 18.)

class..object(book, prolog).
attnibute_valueO(prolog, name, "Prolog").
attribute.value0 (prolog, author, john)
attribute_valueO (prolog, published_by, "Springer").
attnibute_valueO(prolog, price, 50).

(General Rules for Database.)

class.object(set(S), X) —class(set(S)),
setof(Y, class.obj ect(S, Y), Z), subs et(X, Z).

attribute_value(O, L, 01): —attribute_va1ue0(0, L, 01),
attribute(P, L, Fl), class.obj ect(P, 0), class_obj ect(P1, 01).

Appendix C

Transformation of Sample Rules

(Rule 1.)

aitribute_value(X, address, Y) : -
class(person), clas&.obj ect(person , X),
attribute(person, address, F1), class..obj ect(Pi, Y),
A < 20, class(person) , class..obj ect(person, X),
attribute_value(X, age, A), attribute(person, age, F2),
class -object (F2, A), attribute_value(X, father, Z),
attribute(person, father, F3), class -object (P3, Z),
class(person), class -object (person, Z),
attribute_valuc(Z, address, Y), attribute(person, address, F4),
class...object(P4, Y).

(Rule 2.)

attribute_value(X, address, Y) : -
class(person), class-object (person, X),
attribute(person, address, F1), class...object(Pi, Y),
class(person), class -object (person, X),
attribute_value(X, spouse, Z), attribute(person, spouse, F2),
class -object (P2, Z), class(person), class -object (person, Z),
attribute_value(Z, address, Y), attribute(person, address, F3),
class.object(P3, Y).

(Rule 3.)

attribute_valuel(X, takendy, Y) : -
class(course), class -object (course, X),
class (student), class -object (student , Y),
attn but e_value(Y, taking, XX), attn bute(student , taking, F2),
class..object(P2, XX), mem(X, XX).

attnibute_value(X, taken Jiy, YY) : -
attnibute(course, takenJy, F1),
setof(Y, attn bute_valuel (X, taken Jiy, Y), YY),
class -object (F1, YY).

122

APPENDIX C. TRANSFORMATION OF SAMPLE RULES 123

(Rule 4.)

attribute_valuel(X, heading, Y) : -
class (employee), class -object (ernployee, X),
class (employee), class-object (employee, Y),
attribute..value(Y, working-in, D),
attribute(employee, working_in, F2),
class .obj eci(P2, D), class(dept), class.object(dept, D),
attribute_value(D, head, X), attn bute(dept, head, F3),
class_object(P3, X).

attribute_value(X, heading, YY)

attribute (employee, heading, F1),
setof(Y, attn bute_valuel(X, heading, Y), YY),
class -object (Pi, YY).

(Rule 5.)

attribute_valucl(X, staff, Y) : -
class (dept), class..obj ect(dept , X),
class (employee), class -object (employee, Y),
attn but e_value(Y, working-in, X),
attnibute(employee, working-in, F2),
class -object (F2, X).

attribute...value(X, staff, YY)

attribute(dept, staff, F1),
.setof(Y, attribute_valuel (X, staff, Y), YY),
class -object (Pi, YY).

(Rule 6.)

class -object (family, id(X, Y)) : -
class(family), class(person) , class -object (person, Z),
attnibute_value(Z, father, X), attnibute(person, father, F4),
class_object(P4, X), attn bute_value(Z, mother, Y),
attnibute(penson, mother, F5), class -object (F5, Y).

attnibute_value(id(X, Y), father, X) : —class(family),
class -object (family, id(X, Y)), attribute (family, father, F1),
class -object (Pi, X), class(person), class -object (person, Z),
attnibute_value(Z, father, X), attribute(person, father, F4),
class -object (P4, X), attn bute_value(Z, mother, Y),

APPENDIX C. TRANSFORMATION OF SAMPLE RULES 124

attribute(person, mother, F5), class _obj ect(P5, Y).

attribute_value(id(X, Y), mother, Y) : —class(family),
class_obj ect(family, id(X, Y)), attribute (family, mother, F2),
class_obj ect(P2, Y), class(person), class -object (person, Z),
attribute_value(Z, father, X), attribute(person, father, F4),
class -object (P4, X), attn bute_value(Z, mother, Y),
attribute(person, mother, F5), class -object (F5, Y).

attnibute_valuel(id(X, Y), children, Z) : —class(family),
class -object (family, id(X, Y)),
class(person), class -object (person, Z),
attn but e_value(Z, father, X), attribute(person, father, F1),
class...object(P1, X), attn bute_value(Z, mother, Y),
attribute(person, mother, F2), class -object (P2, Y).

attribute_value(X, children, YY) -

attribute(family, children, F3),
setof(Y, attnibute_valuel (X, children, Y), YY),
class...object(P3, YY).

(Rule 7.)

class_object(house, id(X)) : —class(house),
attribute_value(Y, address, X), attribute(person, address, F3),
class -object (F3, X).

attribute_value(id(X), location, X) : —class(house),
class -object (house, id(X)), attn bute(house, location, F1),
class_object(Fi, X),
class(person), class -object (person, Y),
attribute_value(Y, address, X), attribute(person, address, F3),
class_object(F3, X).

attribute_valuel(id(X), occupied_by, Y) : —class(house),
class -object (house, id(X)),
class(person), class_object(person, Y),
attnibute_value(Y, address, X), attribute(person, address, F3),
class -object (F3, X).

attribute_value(id(X), occupied-by, YY)

attnibute(hous e, occupied-by, F2),
setof(Y, attn bute_valuel(id(X), occupied-by, Y), YY),
class -object (P2, YY).

APPENDIX C. TRANSFORMATION OF SAMPLE RULES 125

(Rule 8.)

class..object(sameage, id(X)) :-class(sameage),
class(person),
class.object(person, Y),
attribuie_value(Y, age, X),
attribute(person, age, F3),
class -object (P3, X).

attribuie_value(id(X), number, X) —class(sameage),
class -object (sameage, id(X)),
attribute(sameage, number, F1), class -object (Fi, X),
class (person), class...obj ect(person, Y),
aUribue_value(Y, age, X), attn bute(person, age, F3),
class -object (Fa, X).

attribute_valuel(id(X), sharedJy, Y) —class(sameage),
class -object (sameage, id(X)),
class (person), class -object (person, Y),
attribute_value(Y, age, X), attn bute(person, age, F3),
class...object(P3, X).

attribute_value(id(X), sharedJy, YY)

attnibute(sameage, age, F2),
setof(Y, attn bute_valuel(id(X), shared-by, Y), YY),
class -object (P2, YY).

Appendix D

Transformation of Sample Queries (I)

(Query 1.)? class(person),
class...objec(person, X),
aitribute_value(X, age, Y),
atribute(persort, age,
class -object (Pi, Y),
attribuie_value(X, sex, Z),
atlribute(person, sex, F2),
classobject(F2, Z),
Y≥50.

(Query 2.)? class (workingstudeni),
class -object (worlcingstudent, X),
atribute_value(X, studying-in, Y),
atri but e(workingstudent, studying-in, F1),
class -object (Pi, Y),
attn but e_value(X, working-in, Y),
attnibute(workingstudent, working-in, F2),
class -object (F2, Y).

(Query 3.)? class(student),
class -object (student, T),
attribute..value(T, name) "Phil"),
attnibute(student, name, F1),
class...object(Pi, "Phil"),
attnibute_value(T, borrowing, XX),
attribute(student, borrowing, F2),
class -object (F2, XX),
mem(X, XX),
class(book),
classobject(book, X),
attribute_value(X, author, Y),
attribute(book, author, F3),
class -object (F3, Y),

126

APPENDIX D. TRANSFORMATION OF SAMPLE QUERIES (I) 127

attribute_value(X, price, Z),
attribuie(book, price, F4),
class...object(P4, Z).

(Query 4.)? class(course),
class_.obj ect(course, cs213),
attribute...value(cs213, taken-by, XX),
attribute(course, taken-by, F1),
class...object(Pi, XX),
mern(X, XX),
class(T),
class_object(T, X),
attribute_value(X, studying-in, Y),
attribute(T, studying_in, F2),
class..,object(P2, Y).

(Query 5.)? class(student),
class...object(student, X),
attn but e..value(X, taking, YY),
attribute(student, taking, F1),
class -object (Pi, YY),
mern(Y, YY),
class(T),
class_object(T, Y),
attribute_value(Y, name,
attribute(T, name, F2),
class...object(P2, Z).

(Query 6.)? class(family),
class_.obj ect(farnily, X),
attribute_value(X, mother, mary),
attribuie(family, mother, F1),
class_object(F1, mary),
atiribute_value(X, children, YY),
attribuie(family, children, F2),
class -object (F2, YY),
mem(Y, YY),
class(T),
class_object(T, Y),
attribute_value(Y, age,
attribute(T, age, F3),

APPENDIX D. TRANSFORMATION OF SAMPLE QUERIES (I) 128

class...object(P3, Z).

(Query 7.)? class(dept),
class -object (dept, bookstore),
attri bute_value(bookst ore, staff, XX),
attnibute(dept, staff, F1),
class -object (Pi, XX),
mem(X, XX),
elass(T),
elass..object(T, X),
aitribute_value(X, salary, Y),
attnibute(T, salary, F2),
class -object (P2, Y).

(Query 8.)? class(house),
class -object (house, T),
attn but e_value(T, address, X),
attnibute(house, address, F1),
class -object (Fi, X),
attn but e_value(T, occupied-by, Y),
attribute(house, occupied-by, .P2),
class -object (P2, Y).

(Query 9.)? clas.s(sameage),
class -object (.sameage, X),
attnibute_value(X, number, 30),
attnibute(sameage, number, F1),
class -object (Pi, 30),
aitribute_value(X, shared-by, Y),
attnibute(sameage, shared_by, F2),
class -object (P2, Y).

Appendix E

Transformation of Sample Queires (II)

(Query 1.)? class(X),
class...object(X, sally),
attribute_value(sally, L, Y),
attribuie(X, L, F1),
class...object(P1, Y).

class(siudent),
aUribute(student, L, Y).

class(X),
class(Y),
isa(X, Y).

class...sei(employee, X).

class -set (siuden, X).

class -set (ymage, X).

class -set (gender, X).

(Query 2.)?

(Query 3.)?

(Query 4.)?

(Query 5.)?

(Query 6.)?

(Query 7.)?

129

