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Abstract 

In this thesis, I discuss the significant problems inherent in deductive databases which 

result from the integration of relational database and logic programming techniques. 

I examine two broad areas where problems are apparent: complex object modeling 

and higher-order features. By complex object modeling, I mean the ability to natu-

rally represent object identity, data abstractions, and inheritance. By higher-order 

features, I mean the ability to uniformly represent schema and sets. 

A summary is given of attempts, in both the database and logic programming 

fields, to solve these problems separately. Among them are semantic data models 

which use data abstractions and inheritance, and extended logic terms which can 

represent the existence and internal structure of complex objects. 

Besides addressing these problems, this thesis also tries to solve them. It proposes 

a new higher-order logic language called S-logic which results from the integration of 

the semantic data model and extended logic term approaches. It shows that S-logic 

naturally models complex objects, and represents desired higher-order features and 

sets. It also shows that an S-logic program can be transformed into Prolog so that 

S-logic is implementable in practice. 

The major original contributions of the research presented here are twofold. First, 

a language, S-logic, is defined which has expressive syntax. Second, a well-defined 

least fixpoint semantics is given for definite S-logic programs. 
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Chapter 1 

Introduction 

Databases and logic programming are two independently developed areas in com-

puter science. Database technology has evolved in order to efficiently organize, man-

age and maintain large amounts of data. The relatively slow speed of secondary 

devices holding the data is one of the main limitations of database systems in the 

past. Hence, the internal organization of databases has been the primary focus of 

research in the past. Besides, the need to share information among a variety of users 

requires strict rules governing the manipulation of data to be imposed to preserve 

the integrity of the database and to guarantee privacy for each user. This led to the 

development of several basic models. 

A data model is a collection of well-defined concepts that helps the database 

users to understand and express the static and dynamic properties of applications. 

It determines the types of data structures visible to the user and the operations 

allowed on these structures. It also provides the conceptual basis for thinking about 

the applications and provides a formal basis in developing and using the database 

systems. A typical data model consists of two parts: a set of generating rules for 

constructing structural properties and a set of operations for expressing behavioral 

properties of applications [6, 7, 43]. A database schema consists of the definition of 

structural properties of all application object types based on the concepts provided 

by the corresponding data model. Corresponding to the schema is a data reposi-

tory called a database which is an instance of the database schema. The process 
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CHAPTER 1. INTRODUCTION 2 

of capturing the information requirements of applications and producing the corre-

sponding database schema is called data modeling. Obviously, the complexity of the 

data modeling depends on the data model used. 

Conventional data models, which include relational, hierarchical and network 

models, are machine-oriented. They arrange data in fixed linear sequences of field 

values and thus provide an efficient basis for storing and processing data. Each of 

the conventional models is based on some idealized data structure and has a set of 

operations associated with this structure. Of them, the relational data model is the 

most significant and widely used. The main attraction of the relational model is its 

mathematical clarity, which facilitates non-procedural, high-level queries and thus 

separates the user from the internal organization of data. In the last two decades, a 

great deal of thought and ingenuity has been invested in the efficient processing of 

queries and updates of relational databases in secondary memory. 

Logic programming began in the early 1970's as a direct outgrowth of earlier 

work in automatic theorem proving and artificial intelligence. Logic programming 

is based on mathematical logic, which is formalized in terms of proof theory and 

model theory. Proof theory provides formal specifications for correct reasoning with 

premises, while model theory prescribes how general assertions may be interpreted 

with respect to a collection of specific facts. Logic programming is programming 

by description. It uses logic to represent knowledge and uses deduction to solve 

problems by deriving logical consequences. Most logic programming is based on the 

Horn-clause form, which is a variant of first-order logic. Horn-clause logic has well 

defined model-theoretic and procedural semantics [29]. The state of the art in logic 

programming is represented by Prolog in its various manifestations. 
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Relational database and logic programming techniques have been found to be 

strongly similar in their representation of data. In the last few years, a lot of effort 

has been made toward the application of logic to relational databases. They are also 

found to be complementary. The combination of logic programming and relational 

database techniques has led to the active research area of deductive databases. It 

combines the benefits of these two approaches, such as representational and opera-

tional uniformity, deductive power, efficient secondary storage access, etc. 

Unfortunately, significant problems remain inherent in this synthesis. There are 

several broad areas where problems are apparent. The first problem area is that 

deductive databases based on relational databases and Prolog cannot naturally model 

complex objects, which include object identity, data abstractions and inheritance. 

The second problem area is that it cannot naturally deal with higher-order features 

which include schema and sets. Traditionally, a separate language is provided to 

specify and manipulate the schema information, and sets are not directly supported 

at all. These problems result from the underlying relational data models and pure 

Prolog which uses inexpressive flat structures. 

To improve the expressiveness of the relational data model, semantic data models 

have been proposed which use data abstractions and inheritance. So do extended 

terms with internal structure in logic programming. But, none of them can indepen-

dently solve the above problems of deductive databases. 

This thesis proposes a higher-order logic language for deductive databases called 

S-logic which is based on the semantic data model and extended term approaches. 

S-logic can naturally support object identity, semantic data abstractions and inher-

itance, and allows the definition and manipulation of database schema and data in 
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an integrated framework. 

1.1 Organization of Thesis 

In order to make this thesis as self-contained as possible, in Chapter 2, I first intro-

duce the relational database and logic programming techniques. Then I introduce 

the deductive database technique based on these two approaches. 

Chapter 3 analyzes the problems of the deductive databases. Since the problems 

result from the underlying relational data model and pure Prolog, I then discuss 

some solutions to these problems in these two areas. This results in the motivation 

of S-logic. 

The core of the thesis lies in Chapter 4 and Chapter 5 where a higher-order logic 

language is introduced first informally and then formally. 

Chapter 6 presents a transformation algorithm which converts S-logic to Prolog. 

Finally, I summarize and discuss further research directions in Chapter 7. 



Chapter 2 

Background 

2.1 Relational Databases 

Here, a briefly introduction is given to the basic concepts and definitions which 

underlie the relational data model. 

A domain is a usually finite set of values. The Cartesian Product of domains 

D1, D2, ..., D, (not necessarily distinct) is denoted by D1 x ... x Dn and is the set 

of all tuples (v1, ..., x,) such that Xi E D, i = 1, ..., n. A relation is a subset of the 

Cartesian product of one or more domains. The arity of a relation R C D1 x ... x D 

is n. The number of tuples in R is called its cardinality. A relation is finite if its 

cardinality is finite. A database is a finite set of finite relations. 

It is customary (though not essential) when discussing relations to represent a 

relation as a table in which each row represents a tuple. Examples of this represen-

tation are shown in Figure 2.1, which illustrates a relation describing employees. In 

the tabular representation of a relation, the following properties, which derive from 

the definition of a relation, should be observed: 

1) no two rows are identical; 

2) row order is insignificant; 

3) column order is significant; and 

4) every entry is an atomic value. 

In the tabular representation of a relation, it is customary to name the table and 

5 



CHAPTER 2. BACKGROUND 6 

to name each column, as shown in Figure 2.1. The table is named by a relation name. 

Each column of the table is called an attribute and has an attribute name. It should 

be noted that different attributes can draw values from the same domain in a relation. 

person name age address 
Bob 40 257 9th Av SW 
Henry 50 128 2nd St NW 
John 62 439 5th Av NE 
Jenny 24 725 6th Av SW 
Smith 30 283 4th St SE 

speaks name language 
Bob English 
Henry Chinese 
Henry Spanish 
John English 
Smith Franch 

Figure 2.1: Examples of Relations. 

A column (or set of columns) whose values uniquely identify rows of a relation is 

called a candidate key of the relation. It is possible for a relation to have more than 

one candidate key. In this case, it is customary to designate one as the primary key. 

Often a column or set of columns in one relation will correspond to a key of 

another relation so that different relations can be related. It is called a foreign key. 

A foreign key need not be (and often is not) a key of its own relation. 

The structure of a relation is represented by its relation schema which consists 

of a relation name and all its attribute names, whereas the specific relation is said 

to be an instance of the relation schema. 

Not all instances of a relation schema have meaningful interpretations; that is, 

they do not correspond to valid sets of data according to the intended semantics of 

the database. One therefore introduces a set of constraints, referred to as integrity 

constraints, associated with a relation schema to ensure that the database meets the 

intended semantics. There are two major kinds of integrity constraints: type con-

straints, which require the arguments of relations to be belong to specified domains, 
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or dependency constraints, which express structural properties of relations. 

To summarize, a database schema consists of a collection of relation schemes to-

gether with a set of integrity constraints. A database instance, also called a database 

state, is a collection of relation instances, one for each relation schema in the database 

schema. A database state is said to be valid if all relation instances that it contains 

obey the integrity constraints. 

Over the relational data model, there are three major relational languages to 

manipulate data in a relational database: relational algebra, domain calculus, and 

tuple calculus. All of them are equivalent [45]. Among them, relational algebra has 

strong origin in mathematics. The relational algebra is a collection of operators that 

deal with whole relations, yielding new relations as a result. The major operators of 

relational algebra include the following: 

• Projection: Given a relation .fl and A a set of attribute names of .11, the pro-

jection operation represented by 7rA(R) returns only the specified columns of 

the given relation, and eliminates duplicates from the results. 

• selection: Given a relation R and P a collection of conditions over the relation, 

the selection operation represented by crp(R) selects only those tuples of a 

relation which satisfy the given conditions. 

• (Natural) Join: Given two relations R and S, the natural join operation repre-

sented by 11*S is formed by computing the Cartesian product, II x 5, selecting 

out all tuples whose values on each attribute common to R and S coincide, and 

projecting one occurrence of each of the common attributes. 
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Of these three major operators, join is most frequently used to draw relationships 

between different relations via common attributes. However the join operator is also 

quite time consuming. A lot of efforts have been made to improve its performance. 

2.2 Logic Programming 

Mathematical logic is the study of the relationship between beliefs and conclusions. 

For example, if we believe that Art is the father of Bob and that fathers are parents, 

then we can conclude that Art is the parent of Bob. The first two sentences logically 

imply the conclusion. In logic programming the programmer encodes in a logic 

program a set of beliefs about the application area by using clauses, and the machine 

applies rules of inference to known beliefs and derives conclusions that are logically 

implied by those beliefs. Subsequent applications allow a program to derive further 

conclusions. And so forth. 

Most logic programming is based on Horn-clause form, which is a variant of 

first-order logic. A Horn-clause logic program [29] is a set of clauses of the form 

P0 4-- P1, ...,p,. Each p, 1 ≤ i < n is called either a positive literal (atom) if it has 

the form j(ti, ..., tm) or negative literal if it has the form —ip(t1, ..., t,,), where p is an 

rn-place predicate symbol and t1, ..., t,, are terms. A term can be either a constant, 

a variable, or a function which takes terms as its arguments. Normally, constants, 

functions and predicates are represented by a lower-case letter, while variables by 

upper-case letters or the underscore symbol. The positive literal Po is called the head 

or conclusion, and pi through Pn form the body or conditions of the clause. A term 

which contains no variables is called a ground term. A clause (a literal) in which no 
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variables appear is called a ground clause (ground literal). In terms of operational 

semantics, the meaning of a clause may be paraphrased as follows: in order to prove 

that po is true, it is sufficient to prove that pi through p are true. A clause with an 

empty set of conditions is always true; it is called a fact. A clause with non-empty 

head and conditions is called a rule. A clause with an empty head, on the other 

hand, is called a goal which the system tries to prove. 

Two complementary aspects of clauses are of interest. One deals with semantics 

or model theory, the specification of truth values to clauses, whereas the other deals 

with syntax or proof theory, the derivation of a clause from a given set of clauses. 

2.2.1 Semantics: Interpretation and Model 

The declarative semantics of a logic program is given by the usual model-theoretic 

semantics of formulas in first-order logic. 

In semantics we are concerned with interpretation, where an interpretation of a 

set of clauses consists of the specification of a nonempty set (or domain) D, over 

which the variables range. Every constant is assigned to an element of D. Each 

n-ary function symbol is assigned a mapping from D' to D. And every n-place 

predicate is assigned an n-ary relation on D. An interpretation thus specifies a 

meaning for each symbol in the formula. A variable assignment assigns each variable 

an element in the domain. Given an interpretation I with domain D, and a variable 

assignment V, the truth value, true or false, of a clause can be obtained as follows. If 

R is the relation assigned to an n-place predicate symbol p, then the positive literal 

p(ti, ..., tm) evaluates to true if < ti, tm >E R; otherwise it evaluates to false. A 

negative literal -'p evaluates to true if p is false; otherwise it evaluates to false. P1, P2 
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evaluates to true if both pi and P2 are true; otherwise it evaluates to false. Pi - P2 

evaluates to true if either p, is false or P2 is true; otherwise it evaluates to false. 

A model of a program is an interpretation in which all clauses are true. A clause 

G is said to be a logical consequence of a program P iff G is true in all models of P. 

This is denoted by P = G. However, it is impossible to prove that G is true in all 

models of P. The question can be changed to another one and we get a useful result 

which states that G is a logical consequence of P if P U {-G} is unsatisfiable, that 

is, if no interpretation is a model. 

It turns out that there is a small and convenient class of interpretations, which 

can show us unsatisfiability. These are the Herbrand interpretations. Given a set of 

clauses F, the domain U of a Herbrand interpretation is the Herbrand universe, which 

is the set of all ground terms in P. A Herbrand interpretation is any interpretation 

based on the Herbrand universe, in which each constant is assigned itself in U, while 

every n-ary function symbol is assigned a mapping Un to U denoted by itself. A 

Herbrand model of P is a Herbrand interpretation which is a model for P. A very 

useful theoretical result is that in order to prove unsatisfiability of a set of clauses, 

it suffices to consider only Herbrand interpretations. 

Of the Herbrand models, we are most interested in the exact one called the least 

Herbrand model (or minimal model) which is the intersection of all Herbrand models. 

It has a very important property: every atom in the least Herbrand model is a logical 

consequence of the set of clauses. 

Let P be a program, H is the set of all Herbrand interpretations of P which forms 

a complete lattice under the partial order of set inclusion C, we define a mapping 

T : H -* H as follows. Let I be a Herbrand interpretation. Then T(I) = {p E H: 



CHAPTER 2. BACKGROUND 11 

P - P1, ...,Pn is a ground instance of a clause in P and {pi, ...,pn} 9 I}. If I is a 

model of P, then we have T(I) C I. Since T is defined over a complete lattice and it 

is monotonic, it has a least fixpoint ifp(T). a is a least fixpoint of T if a is a fixpoint 

(that is, T(a) = a) and for all fixpoints b of T, we have a C b. An interesting result 

is that the least Herbrand model is equal to ifp(T). 

2.2.2 Proof Theory 

The first-order predicate calculus is a formal system that can create, or deduce new 

clauses, which are logical consequence of a given set of clauses by using the rules of 

inference. Of the rules that have been invented, resolution is the most extensively 

studied and used in logic programming. 

Two literals are said to be unifiable if they can be made identical by some sub-

stitution to the variables. For example, literals p(X, bob) and p(art, Y) are unifiable 

with the substitution {X/art, Y/bob} which is to be read: substitute art for X, bob 

for Y. Literals AX, bob) and p(Y, art), however, are not unifiable. 

(1)parent(X, bob) father(X, bob). 
(2)grandpareni(art, Z) +— parent(art, Y),parenI(Y, Z). 
(3)grandparent(art, Z) <— fat her(art, bob),parent(bob, Z). 

Figure 2.2: Example of Resolution 

Given two clauses with unifiable literals on different sides of two clauses, the 

resolution rule can be used to create, or deduce a new clause in which the left- and 

right-side are the unions of the left- and right-hand sides of the two original clauses, 

with the unified expressions deleted and the unifying substitution applied to the 

remaining expressions. An example of resolution is given in Figure 2.2, where a 
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new clause (3) is deduced from the clauses (1) and (2) using resolution which unifies 

parent(X, bob) and pareni(art, Y). 

Resolution is used mostly to carry out refutation proofs: Given a program P and 

a goal G, in order to prove G is deducible from F, written as P F G, we can try to 

show that P and -iG are not simultaneously satisfiable. If we can derive the empty 

clause, that is, a clause with no conditions and no conclusions, then P and G cannot 

simultaneously be satisfiable, thus we have proved the goal P F G. When a goal 

contains variables and the empty clause can be derived, then we have proved the 

goal, and furthermore found desired answers from the substitution. 

The most important two results we can get here is that if P and -iG have a 

refutation, i.e. P F G, then G E ifp(T), where ifp(T) is the fixpoint of the mapping 

T described earlier, which implies that G is a logical consequence of F, that is, 

P 1= G. This means that the resolution refutation is sound in that any conclusion it 

draws is guaranteed to be correct so long as its premises are correct. On the other 

hand, if P = G, then G E ifp(T), which implies that P U {-,G} has a refutation 

and hence P F C. This means that resolution refutation is also complete in that it 

can derive any logical implication from a given set of premises. We note here that 

the mapping T provides a link between the model theory and proof theory of a set 

of clauses. The semantics of Horn-clause logic can thus be described declaratively as 

well as operationally. 

Logic programming is programming by description [17]. In traditional program-

ming, one builds a program by specifying the operations to be performed in solving 

a problem, that is, by saying how the problem is to be solved. In logic program-

ming, however, a program is constructed by describing its application area, that is, 
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by saying what is true in terms of clauses which has the requisite declarative seman-

tics. The system will use the rules of inference to choose specific operations to draw 

conclusions about the application area and to answer questions even though these 

answers are not explicitly recorded in the description. 

The most often used logic programming language is top-down, left-right back-

tracking Prolog. 

2.3 Deductive Databases 

Deductive databases result from the integration of relational database and logic 

programming techniques. To show this clearly, let us first analyze the difference 

and connection between relational databases and Prolog, and the advantages and 

disadvantages of each. 

Pure Prolog is based on Horn-clause logic and a sequential execution-control 

model. Rules are searched and goals are examined in the order in which they are 

specified (SLD resolution). Thus, the responsibility for the efficient execution and 

termination of programs rests with the programmer: an improper ordering of the 

predicates or rules may result in poor performance or even in a non-terminating 

program. In addition, a number of extra-logical constructs (such as the cut) have 

been grafted onto the language, turning it into an imperative, rather than a purely 

declarative language. 

Relational systems are superior to standard implementations of Prolog with re-

spect to ease of use, data independence, suitability for parallel processing and sec-

ondary storage access [44]. The control over the execution of query languages is 
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the responsibility of the system which, via query optimization and compilation tech-

niques, ensures efficient performance over a wide range of storage structures and 

database demographies. The working assumption is that the volume of data to be 

manipulated is too large to be contained in the memory of a computer and hence, 

that special techniques for secondary memory data access and update must be em-

ployed. 

However, the expressive power and functionality offered by a relational database 

query language is limited compared with the logic programming languages. Besides, 

relational query languages are often powerless to express complete applications, and 

are thus embedded in traditional programming languages. This method causes an 

impedance mismatch [31, 48] between programming and relational query languages. 

Prolog, on the other hand, can be used as a general-purpose programming lan-

guage. It is in fact being used so with great success in varied applications such as 

symbolic manipulation, rule-based expert systems and natural language parsing. 

Now let us see the inherent connection between the relational model and Prolog. 

A logic program can be considered as a natural and powerful generalization of the 

relational model [18, 46, 38] because any relational tuple can be expressed as an atom, 

i.e., a predicate of the form p(ti, ...tm). Relational databases can be considered from 

the viewpoint of logic in two different ways: either the model-theoretical view or the 

proof-theoretical view. When considered from the model-theoretical view, queries 

and integrity constraints are clauses that are to be evaluated on the interpretation 

using the semantic definition of truth. From the proof-theoretical view, queries and 

integrity constraints are considered to be clauses that are to be proved. In order to 

determine answers to queries, using the latter view, one can derive data from the 



CHAPTER 2. BACKGROUND 15 

given clauses, therefore achieving the desired deductive power. 

The use of mathematical logic in describing relational database models has helped 

to solve a number of important problems, including the definition of formal query 

languages, the treatment of incomplete information (null values) in databases, and 

the definition and enforcement of integrity constraints. The primary attraction of 

logic here is the elegant formalism capable of expressing facts, deductive information, 

integrity constraints, and queries in a uniform way. Besides, by using first-order 

logic as a database language, it is possible to explore well-developed techniques of 

theorem proving for providing powerful deductive tools. Lastly, logic provides a firm 

theoretical basis upon which one can pursue the conventional data model theory in 

general. 

Based on the above comparison, it seems possible and productive to combine 

these two approaches and get the benefits of both. This combination did result in a 

new topic in computer science called deductive databases. 

The advantages of deductive databases can be summarized as follows: 

(1). Representational and operational uniformity. Horn-clause form can be used 

to express facts, integrity constraints, deductive information, and queries in a uniform 

way. 

(2). By using first-order logic as a database language, it is possible to use well-

developed techniques of theorem proving to provide powerful deductive tools. 

(3) Logic provides a firm theoretical basis upon which one can pursue problems 

of relational data model theory in general such as the treatment of incomplete in-

formation (null values) in databases, and the definition and enforcement of integrity 

constraints. 
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(4). It has great potential to be efficiently implemented based on the existing 

relational database and Prolog technology. 

As the theoretical basis has been formed, the next thing is to efficiently implement 

deductive databases. There are two ways. One can be termed as loosely-coupled 

Prolog and relational databases. The other as tightly-coupled Prolog and relational 

databases. 

In loosely-coupled systems, the connection between Prolog and relational databases 

is obtained by building an interface. The large collection of Prolog facts is managed 

in secondary storage by using the existing relational database technology, for exam-

ple, NU-Prolog does this [42]. This approach suffers from a mismatch between the 

computational models of these coupled subsystem: Prolog is oriented towards a fact 

(or tuple) at a time model, while relational model is oriented towards a set at a time. 

Tightly-coupled systems, on the other hand, use a logic-based language like Pro-

log, but is free of the sequential execution model and other spurious constructs 

of Prolog. It is based on bottom-up, fixpoint computation by extending database 

compilation and optimization techniques to handle the richer functionality of the 

language. LDL [44] is an example of this kind. 



Chapter 3 

Motivation 

Even though deductive databases have the advantages given in the previous chapter, 

they have significant inherent problems. Here I will discuss two broad areas where 

problems are apparent: one is complex object modeling; the other is higher-order 

features. These problems lie in the expressiveness of deductive database languages. 

Since their expressiveness depends on the underlying relational database and first-

order logic languages, I will focus my discussion on relational databases and first-

order languages. Interweaved with the discussion of the problems, I will also survey 

some of the attempts that have been made to solve these problems. This gives the 

motivation for S-logic. 

3.1 Complex Object Modeling 

In many novel applications, such as CAD/CAM, office information systems, decision 

support systems, knowledge systems, and database management systems, it has been 

realized that there are a host of powerful data modeling concepts which need to be 

introduced in both programming languages and database models. One of these 

concepts is the need to model arbitrarily complex objects. The ability to model 

complex objects is a main feature of modern object-oriented programming languages. 

The goal of complex object modeling is to naturally represent object identity, data 

abstractions and inheritance [20, 26, 31]. Relational data model using fiat relation 

17 
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structures and primary keys is not suitable for complex object modeling. In recent 

years, it has been recognized that Prolog is also not rich enough to naturally represent 

object identity, data abstractions and inheritance. The following subsections will 

show the reasons. 

3.1.1 Object Identity 

With Prolog, two facts cannot share subparts. Let us first see an example. Suppose 

we have two facts in Prolog: 

book ("Prolog", aut hor(name("Bob" , "Su"), address( "257 9th Av SW")). 
book ("Databases", aut hor(name("Bob" , "Su"), address( "257 9th Av SW")). 

both talking about the same individual, and if he moves, both facts should be up-

dated. Further more, the change is made by retracting those facts and asserting new 

facts: 

book ("Prolog", aut hor(name("Bob" , "Su"), address( "128 2nd St NW")). 
book( "Databases", author (name("Bob", "Su"), address( "128 2nd St NW")). 

In interpreting these new facts, nothing about them requires that the domain element 

representing name("Bob" , "Su") in the first case is the same as in the second. There 

is no way to say that everything stayed the same except the address. The problem 

here is that two facts cannot share subparts in the Horn clause logic programming 

language Prolog. The subpart is an object. We need something to identify it and we 

should be able to refer to its identity. A solution to this problem requires explicitly 

using a meaningless identifier to represent each object. For example, we can use: 

book ("Prolog", ml). 
book( "Databases",ml). 
author(ml, name( "Bob", "Su"), address( "257 9th Ày SW")). 

This solution requires systematically introducing "meaningless" terms such as ml 
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to identify the corresponding object by the user. There ought to be some way of 

doing this without exposing the inner organization of the database. This capability 

is called object identity [16]. 

Object identity is the property of an object that distinguishes it from all others 

regardless of their content, location, or addressability [30, 16]. Two criteria are used 

to measure the degree of content and location independence which the object identity 

provides: data independence which means that identity is preserved through changes 

in either data values or structure; location independence which means that identity is 

preserved through movement of objects among physical locations or address spaces. 

The solution given above which uses ml to identify the object is not data inde-

pendent. Some programming languages using variables to represent identity are not 

location independent. 

In relational databases, the notion of user-defined primary (identifier) keys is used 

to represent the identity of an object. This representation of identity is supported 

in many existing database systems. However, it is not data independent either. Any 

change to the identifier keys will cause a discontinuity in identity. 

As discussed in [16], the most powerful technique for supporting object iden-

tity is using surrogates. Surrogates are system-generated globally unique identifiers, 

completely independent of any physical location and data associated with objects. 

3.1.2 Data Abstractions and Inheritance 

The growing demand for systems of ever-increasing complexity and precision has 

stimulated the need for higher-level concepts, tools and techniques in every area of 

Computer Science. Many of these techniques are based on abstraction mechanisms 
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that advocate the development of software in a stepwise fashion, each step involving 

only some of the details of the whole problem while others, hopefully the less relevant 

ones, are suppressed until some later step. An abstraction is a simplified description 

that emphasizes some of the system's details or properties while suppressing others 

[8]. Abstractions can be used to organize and structure pieces of information into 

some natural and conceptually meaningful units (usually hierarchies). All the details 

of representing or implementing such a structure can be ignored at this abstracted 

level by the user of the structure so that the user can then just concentrate on objects 

and relationships between them and obtain more meaningful units. Each such unit 

of information is easily accessible in the system. 

Essential to modeling complex objects are the following four abstractions which 

are used to describe properties of different aspects of objects [2, 3, 8, 19, 21, 36, 40, 

41]. 

Classification is a form of abstraction in which a collection of objects is considered 

as a higher-level object class. An object class is a precise characterization of all 

properties shared by each object in the collection. An object is an instance of an 

object class if it has the properties defined in the class. Classification represents an 

instance-of relationship between an object class in a schema and an object in a 

database. For example, an object class employee that has properties name, age, and 

address may have as an instance the object with property values "Bob", 25, "p57 

9th Av SW". For another example, a Best-Selling-Book object class consists of all 

Book objects with sales greater than $10,000. Classification provides a mechanism 

for the specification of the type of a specific object. In the reminder of the chapter, 

"object" is used to refer to object classes and the associated objects except when the 
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two concepts must be distinguished. 

Aggregation, generalization, and association are used to relate objects. Some 

properties of an object are determined through inheritance by the role it plays in 

one or more of these relationships. Aggregation is a form of abstraction in which a re-

lationship between component objects is considered as a higher-level aggregate object. 

This is a part-of relationship. For example, class person could be an aggregate of 

its component class name, age, and address. 

Generalization is a form of abstraction in which a relationship between category 

objects is considered as a higher-level generic object. It represents the is-a relation-

ship. For instance, employee, is a generalization of the classes secretary, manager 

and accountant. 

Association is a form of abstraction in which a relationship between member 

objects is considered as a higher-level set object. This is the member-of relationship. 

For example, the set object trade-union is an association of the member class 

employee, each object in trade-union is a set in which each element belongs to 

employee. 

Inherent in these four abstractions is property inheritance. Property inheritance 

means that all properties of an object class are passed on to other objects or ob-

ject classes. Generalization and classification support downward inheritance. For 

example, class secretary, manager and accountant inherit all properties of the 

class employee, while j ohn inherits all the properties its object class person pos-

sesses such as name, age, and address. Aggregation and association support upward 

inheritance. For example, the properties of name, age, and address are inherited 

by the aggregate class employee, while the properties of employee such as name, 
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address and profession are inherited by its set class trade-union. 

Property inheritance enables us to reduce the redundancy of the specification 

while maintaining its completeness. Using some of the four abstractions for relating 

objects and constructing new objects, we can express very complex objects and take 

advantage of inheritance. 

There are other abstraction mechanisms, but the four above have received the 

most attention in both the programming language and database areas and are espe-

cially suitable for databases applications. 

The relational model has been found inadequate to support complex object mod-

eling. Its structure is too simple to naturally support sets, general hierarchies or 

class (or type), subclass and instance taxonomies. Relationships between objects 

have to be kept in the user's mind and obtained by using join operations. From the 

implementation point of view, using relational databases for complex object model-

ing is very costly in both speed and storage space because of the join operations and 

redundant information in the relationships. 

It is argued in [38] that Prolog could use logical implication to express data 

abstractions and inheritance. However Hassan and Nasr claim in [20] that using 

logical implication to represent data abstractions and inheritance does not naturally 

represent what we mean. For example, when it is asserted that "whales are mam-

mals", we understand that whatever properties mammals possess should also hold 

for whales. In traditional logic, this meaning of inheritance can be well captured by 

the semantics of logical implication: 

VxWhale(x) = Mammal(x) 
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This is indeed semantically satisfactory. However, it is argued that it is not prag-

matically satisfactory. In a first-order logic deduction system using this implication, 

inheritance from "mammal" to "whale" is achieved by an inference step. But the 

special kind of information expressed in this formula somehow does not seem to be 

meant as a deduction step—thus lengthening proofs. Rather, its purpose seems to 

be to accelerate, or focus, a deduction process—thus shortening proofs. I do not 

intended to enter the debate here as to whether implication can be made efficient or 

not. Rather, I have, as a practical measure, assumed that some other more specific 

mechanism will be needed. 

3.1.3 Solutions 

As a result of the lack of expressiveness in both relational databases and first-order 

languages, some attempts have been made to provide the missing functionalities. 

Semantic Data Models Based on conventional data models, a number of new 

data models called semantic data models have been developed to provide increased 

expressiveness to the modelers and incorporating a richer set of semantics into the 

stored data [6, 7, 8, 21, 36]. 

Many semantic data models support object identity by classifying objects into 

two kinds: abstract objects and printable objects. Abstract objects are referenced 

using internal identifiers while printable objects are referenced by themselves, i.e. 

printable objects are also their object identifiers. The primary reason for this is that 

abstract objects may not be uniquely identifiable using printable attributes that are 

directly associated with them. 
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Most semantic data models support the four data abstractions and inheritance in 

the way discussed earlier. The complex objects are first classified into object classes, 

then, generalization is used to represent the isa relationships between object classes, 

association is used to represent set classes and aggregation is used to describe the 

properties of each object class. The result of using these abstractions forms the 

schema of the semantic database. 

Figure 3.1 shows part of a schema definition based on TAXIS [33], where each 

class is an aggregation which defines a class and its properties by using other classes. 

Generalization is represented by the isa relationship over the classes. If (A isa B) 

then every definitional property of B is also a definitional property of A. Moreover, 

A can have additional properties that B does not have at all, or it can redefine some 

of the properties of B. Entity is an metaclass with no property, Person is defined 

as a class with four properties: name, sex, age, and address. Person is also a gen-

eralization of student and employee, therefore student inherits the name, sex, age, 

and address properties of person but redefines the age property by restricting age 

value. Besides, Student has its own properties, such as studying-in a Dept, taking a 

number of Courses, and borrowing a number of Books, where set of Course and set 

of Book are associations. In TAXIS, inheritance can be multiple. workingstudent is 

an example in Figure 3.1, which inherits all the properties of Student and Employee 

and redefines the salary property. A class defined by f 1 :: 120j} is called finitely 

defined. It has a finite collection of instances including all integers from 0 to 120. 

In semantic data models, objects are directly related by these abstractions, so 

the relationship between objects can be obtained without using the join operation. 
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class Person isa Entity with 
name: String; 
sex: {I'Male' 'Femalel}; 
age: {I1 :: 1201}; 
address: String; 

end Person. 

class Student isa Person with 
age: {I15 :: 301); 
studying-in: Dept; 
taking: set of Course; 
borrowing: set of Book; 

end Student. 

class Employee isa Person with 
age: {I20 651}; 
working-in: Dept; 
salary: {j0 :: 500001}; 

end Employee. 

class Workingstudent isa Student, Employee with 
salary: {I0 :: 150001); 

end Workingstudent. 

class Dept isa Entity with 
name: String; 
head: Employee; 

end Dept. 

class Course isa Entity with 
name: string; 
credit: {I0:: 101}; 

end Course. 

class Book isa Entity with 
name: string; 
author: person; 
price: 110 :: 150); 

end Book. 

Figure 3.1: Examples of Semantic Database Schema 
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0-Terms In logic programming, extended first-order terms called -terms are pro-

posed in [20] to replace traditional terms. A 0-term consists of a type constructor, 

labels, and sub-0-terms. Examples of sb-terms analogous to those in Figure 3.1 are 

given in Figure 3.2. It should be noted that 0-terms do not support set classes so 

that taking a number of courses and borrowing a number of books can not be directly 

represented. 

(l)person(name = string; 
.sex ['Male', 'Female'j; 
age = [0...120]; 
address => string). 

(2)student = person(age = [15...30]; 
studying-in => dept). 

(3)employee = person(age [20...65]; 
working-in => dept; 
salary [0...50000]). 

(4)workingstudent <student. 

(5)workingstudent = employee(salary = [0...15000]). 

(6)dept(name = string; 
head = employee). 

(7)course(name = string; 
credit = [0...10]). 

(8)book(name string; 
author => string; 
price {I0 1501)). 

Figure 3.2: Examples of -Terms 

In Figure 3.2, the first entry defines a,0-term called person which has attributes 

name, sex, age and address, and sub-1'-terms string, { 'Male', 'Female, [1...120], 
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and siring. The second entry defines student as a subtype of person which inherits 

all the properties of person but redefines age, and has its own property studying-in 

a dept. The third entry defines employee as a subtype of person. The fourth entry 

defines workingstudent as a subtype of student without any redefinition. The fifth 

entry defines workingstudeni as a subtype of employee with redefinition of salary. 

And so on. 

A /'-term differs from a traditional term. It is not a fixed-arity term. Its argu-

ments are identified by attribute labels, not by position. It allows information to 

be organized into a meaningful hierarchy not just over flat structures. A 0-term in 

fact is an aggregation hierarchy. The aggregates are called type constructors. Asso-

ciation is not supported. Generalization is represented either by the partial order < 

on the set of type constructors like (4), or by a 0-term definition like (2), (3) and 

(5) in Figure 3.2. Both are used to define the subtype relationships. The subtype 

relation in a 0-term reflects a set inclusion interpretation, i.e., if the set of students 

is contained in the set of persons, then the type student is a subtype of the type 

person. 

The motivation of the 'b-term approach is to extend the unification algorithm to 

compute the 0-term that is the greatest lower bound of two given0-terms. The major 

contributions of the paper [20] is that a &-term is more meaningful and expressive 

than the traditional term. Besides, the extended unification algorithm can replace 

costly resolution to draw inheritance information which might result in more efficient 

Prolog systems. The?k-term approach can support classification, aggregation, and 

generalization with set inclusion semantics. But, it does not support object identity 

and association. Besides, the paper only considers unification and is not general 
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enough for the object-oriented aspects of deductive databases. 

0-Logic family An extended first-order logic called 0-Logic (logic for objects) is 

described in [31]. The kernel of 0-logic is the 0-term, which is used to represent 

complex objects. An 0-term is similar to a 0-term, with a class name, a variable 

or a data value, labels and sub-0-terms. Following is an example of 0-terms where 

employee, person, dept, string, and number are class name; E, D, and P are vari-

ables; "Bob", "Male", 40, "CPSC", and "John" are data values; and name, sex, age, 

working-in and head are labels. 

employee:E(name -+ string: "Bob "; 

sex - string: "Male"; 
age - num:40; 
working-in - dept:D(name -4 string: "CPSC"; 

head - person:P(name -4 string: "John"))). 

Clearly, 0-logic supports aggregation and classfication. The class information 

can be generalized into a schema for the database. But it does not support asso-

ciation. Also generalization and the corresponding inheritance are not well-defined. 

Besides, object identity is represented by a variable in 0-logic which has the problems 

discussed in Section 3.1.1. 

C-logic [12] extends 0-logic by introducing function symbols to represent object 

identity so that the quantification problem can be expressed explicitly. For example, 

to represent the quantification VXVY2C in C-logic, one can use id(X, Y) directly 

to stand for the object C. This is consonant with the surrogate representation of 

object identity. Besides, C-logic can be transformed to first-order logic so that the 

semantics is well-defined. However, C-logic cannot represent inheritance naturally 
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because it still uses logical implication for that purpose. 

Based on 0-logic, an extended 0-logic was first presented in [25], followed by a 

more general F-logic (frame logic) in [26] as a solution to the problems of 0-logic. An 

F-term consists of a class to which the complex objects belong, an object constructor, 

labels and sub-F-terms which can be single-v.alued or set-valued. An example of the 

F-term is given below where student, string, mi, dept, course, and book are class 

objects, bob, cpsc, cs433, cs521, prolog, databases, and math are object identities, 

name, sex, age are single-valued labels and taking and borrowing are set-valued 

labels. It says that object bob identifies a student called Bob, male, aged 25, studying 

in the computer science department, who takes a number of courses identified by 

cs433 and, cs521 and borrows a number of books identified by prolog, databases, 

and math. 

student: bob[name - string: "Bob"; 
sex -+ string: "Male"; 
age -* mt : 25; 
studying-in - dept : cpsc}; 
taking -* {course : cs433, course : cs521}; 
borrowing -+ {book : prolog, book : databases, book: math}]. 

F-terms can support both aggregation and association. A generalization hier-

archy is represented by specifying F-terms. For example, to represent person is a 

generalization of student and employee in F-logic, we can use person:student[...] 

and person: employee[ ... ]. In this way, all classes and objects form a lattice, and 

thus inheritance can be reasoned about. In order to avoid higher-order semantics, 

F-logic does not support classification. There is no distinction between an individual 

object and an object class. An object can play dual roles: an instance of its class 

and a èlass of its instances. For example, student has dual roles in student:bob[ ... ] 
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and person:student[ ... ]. In this way F-logic achieves its so-called higher-order syntax 

with first-order semantics. 

F-logic is a general logic language compared to the -term approach, and has 

a well-defined semantics compared to 0-logic. However, it has several problems 

which prevent it from being a feasible deductive database language. It is impossible 

to define an overall schema for the database in F-logic because object classes and 

individual objects are interwoven together. But the database schemas are essential 

to many database applications. We can only have individual objects with arbitrary 

properties in F-logic databases. Besides, the dual roles of objects make the semantics 

of F-logic quite complicated and unintuitive. Also, the lattice of F-logic is over all 

objects not just over object classes, to specify a complex object we should also put it 

into the lattice by specifying its class and its instances. Besides, the lattice of F-logic 

is in reverse order from normal. However, specifying a lattice is quite different from 

specifying an object. This makes F-logic non-uniform, difficult to use, and hard to 

update to maintain integrity. 

3.2 Higher-Order Features 

In this section, I discuss two important higher-order features needed in deductive 

databases. One is how to define and manipulate database schema and data in an 

integrated framework. The other is how to deal with set expressions. 
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3.2.1 Uniformity of Schema and Data 

In traditional deductive databases, the definition and manipulation of data is done 

in a uniform way. However, the definition and manipulation of schema (or meta) 

information and data is not supported in such an integrated framework. To reason 

about schema information we need the capabilities of higher-order logic. For example, 

we might need to express a query which contains a higher-order variable X to list 

all the predicates in the database. The substitution for X should range over all 

the predicates. Similarly, we might need to express queries containing higher-order 

variables to list all attributes in the database or attributes in a predicate, etc. But 

higher-order logic have been met with skepticism since the unification problem is 

undecidable. So normally, a separate language is provided to specify and manipulate 

the schema information. 

In fact, deductive database applications require a rather restricted form of higher-

order logic. Can we provide a direct semantics for them? 

A higher-order language for deductive databases is proposed in [27] which en-

compasses meta-data and data by allowing higher-order predicates to be defined in 

the language. The solution to higher-order unification is based on a bottom up se-

mantics where unification is replaced by matching, i.e. only one of the two terms 

contains variables. The higher-order variables are limited to range over database 

attributes and predicates. A rule with higher-order variables can be rewritten by re-

placing variables with attributes or predicates. The rewritten rules are in first-order 

logic and their meaning is well-defined. Since the number of database attributes and 

predicates have to be finite, this makes the language decidable. This semantics is 
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called replacement semantics in that paper. Even though the higher-order language 

proposed in that paper is not rich enough to represent object identity, data abstrac-

tions and inheritance, etc., the replacement semantics for higher-order variables in 

that paper is of great value. It provides a natural way toward the integration of the 

definition and manipulation of schema and data. 

F-Logic [26] has an appearance of a higher-order logic, but it is tractable and 

has first-order semantics. It is capable of modeling certain higher-order features 

such as sets, class/subclass hierarchy and schemas. The first feature is modeled by 

means of set-valued functions described in Section 3.1.3. F-logic reifies classes and 

model membership by means of a lattice ordering instead of the true set-theoretic 

membership. It does not distinguish between individual objects and classes. All the 

objects are taken from the same domain and are organized into a lattice. The same 

object can be viewed as an instance of its superclass which is below it in the lattice, 

and at the same time, as a class of all objects located above it in the lattice. So, 

any element p may appear in an F-term in the instance position, q:p[ ... ] and in the 

class position, p:r[ ... ]. This gives F-Logic a feel of a higher-order language, but it is 

essentially first-order. 

3.2.2 Set Expressions 

The addition of set expressions to Prolog is very important because many problems 

cannot be expressed in pure Prolog without such an extension [47]. The extension 

takes the form of a built-in predicate: 

.setof(X, F, S) 

which is read as "The set of instances of X such that F is provable is S". The term 
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P represents a goal or goals. The term X is a variable occurring in P. The set S 

is represented as a list whose elements are sorted into a standard order without any 

duplicates. 

Unfortunately, there is no published formal semantics for for the setof predicate 

in Prolog. Besides, the usage of lists as sets is not expressive enough. The simple 

membership predicate has to specify details about implementation, such as how to 

iterate over the sets. When a predicate involves more than one set, the program 

can become quite complicated and unintuitive, which is contrary to the general 

philosophy of logic programming [28]. 

LDL [4, 44] proposed a different way of expressing sets based on bottom-up 

fixpoint computation. Set terms can be generated in LDL by using two constructors: 

set-enumeration and set-grouping. Set enumeration is the process of constructing a 

set by listing its elements. For example, if we want to derive a relation on sets of 

book titles from the book base relation such that their total price does not exceed 

$100. We can use the following rule in LDL: 

book_deal({X, Y, Z}) - book(X, Ps), book( Y, Pu), book(Z, F2), 
XY,X5LZ,Y 54 Z, 
Fv+Py+Fz <100. 

The same thing can not be directly represented in Prolog. 

Unlike set-enumeration, in set-grouping, the set is constructed by defining its 

elements by a property (i.e., a conjunction of predicates) that they satisfy. The 

following example shows a set-grouping in which all of the parts supplied by a supplier 

are grouped with the supplier number, where < P# > represents the constructed 

set. 
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parL.sets(S#,< P#>) - .supplier(S#,P#). 

LDL is based on traditional first-order logic, so the problems of complex ob-

ject modeling discussed in the previous section still exist. Besides, its use of sets 

and grouping has other severe semantic problems which result from LDL's syntactic 

limitations. 

Let's first look at a program which consists of a single fact in Prolog: 

q(2). 

The possible models for the program are {q(2)},{q(1),q(2)},{q(1),q(2),q(3)}. 

The intersection of these models is the minimal model {q(2)}. However this property 

does not hold for LDL because of the sets. Consider the following example: 

q(2). 

P(< X  >) : —q(X). 

This program may have the following models: 

{q(1),q(2),p({1,2})}, 
{q(2), q(3), p({2) 3})}, 
{q(1), q(2), q(3), p(11) 2, 3})}, 

The intersection of the above models is not a model as it does not contain p({2}). 

The reason is that the predicate p freezes its arguments such that p({1, 2}) and 

p({1, 2,3}) are not comparable. To solve this problem, LDL introduces the unnatural 

and complex concept on top of the notion of minimality. 

Let us look at another example in LDL which is equivalent to the famous set-

theoretic paradox: 

p(X). 

X< X  >) : —P(X)-

There is no model for this program because p has to contain the set of all sets as 
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an element. The main reason for this problem is that the same field can have both a 

set value and a single value. To cope with these kinds of problems, LDL introduces 

a restriction called stratification on its programs which would forbid the program 

above. 

C-logic [12], Extended 0-logic [25], and F-logic [26] support sets by using set-

valued (or multi-valued) labels. They combine set-enumeration and set-grouping 

into a single form. For the above set grouping example of LDL, the equivalent in 

F-logic is: 

supplier-set: id(S#)[sno - S#, supply..set - {P&}] 4= 
supplier: X[sno - S#, supply - P#]. 

where id(S#) is an object constructor which stands for exactly one object identity 

for each S#, supply-set is a set-valued label, sno, supply are single-valued labels 

and {F#} is a set grouping notation. The rule groups all of the parts supplied by a 

supplier into a set represented by {P#}. 

As discussed in [25], the sets here are flat, i.e., a set may contain only object 

identities as its elements, not other sets. But an object identifiers may represent a 

set, so that sets of arbitrary depth can be modeled. The use of single-valued labels 

and set-valued labels can syntactically avoid the semantic problems of LDL. More 

discussions on these aspects can be found in [25]. 

3.3 Motivation of S-logic 

Approaches to deductive databases are torn by two opposing forces. On one side 

there are the stringent real-world requirements of actual databases. The requirements 

include efficient processing as well as the ability to express complex and subtle real-
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world relationships. On the other side are the simple and clear semantics of logic 

programming and its deductive power. The need for expressiveness has forced the 

deductive databases away from their simple roots in logic programming and relational 

techniques. 

In this chapter, I have discussed two problems underlying the deductive databases, 

and shown a number of solutions, such as semantic data models, -terms, 0-logic, 

C-logic, F-logic, and LDL. But none of them can solve all three problems. Is it 

possible to obtain an uniform language which is expressive enough to solve all these 

two problems? The answer is yes. The rest of this thesis proposes a language for 

deductive databases called S-logic, which can meet these needs. To model complex 

objects, the proposed language should be able to model object identity, data ab-

stractions and inheritance, i.e. represent semantic data models in general. Besides, 

it is also a logic language. It should be able to logically represent the existence and 

internal structure of complex objects. I term this language S-logic. To represent 

schema and sets, S-logic should also be a higher-order language. 



Chapter 4 

Informal Presentation and Examples 

An S-logic program consists of four parts: type system, database, rules, and queries. 

The type system is the schema of the database and rules, which consists of all type 

definitions, and a lattice via the subtype (i.e. subset) relationship over all types. 

The database consists of all objects that satisfy the type system. Rules are used 

to represent deductive information over the database. Queries are defined over the 

database, rules, and type system in a uniform way to obtain information from the 

program. 

4.1 Type Systems 

A type in S-logic is a named class object which has two aspects. Under the dynamic 

aspect, a class object denotes the set of objects (object identities) in the class, and 

such membership may be changed by updates. This aspect is called the extension of 

the class object (or type). The static aspect represents common structural properties 

of all objects in the class, i.e., the properties an object needs in order to belong to 

a certain class. This may be changed if the type system is modified. This aspect is 

called the intension of the class object (or type). A type here naturally corresponds 

to a classification as discussed in Chapter 2. That an object belongs to a type 

means its object identity belongs to the set denoted by the type. In S-logic, objects 

are divided into two non-overlapping kinds: abstract objects and printable objects. 

37 
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Abstract objects are identified by their object identities, while printable objects are 

identified by themselves. 

A type based on printable objects is normally defined by specifying all the objects 

belonging to this type, i.e., its extension. A type based on abstract objects is defined 

by specifying the properties which should be satisfied by all of its objects, i.e., its 

intension, and leaving the extension with the database. 

There are four kinds of types in S-logic: basic types, record types, set types, and 

built-in types. 

The basic types include integer, string, and their subsets. Subsets are defined 

either by enumerating or by specifying the ranges and have type names associated 

with them. For example, agetype = integer({1..120}) specifies a subset of integer, 

each element of which is between 1 and 120 inclusive, while gender = string({ 'Male 

'Female '}) specifies a subset of string called gender which has only two elements 

Male and Female. All objects of basic types are also called printable objects. 

A record type consists of a root type and a collection of properties which have 

to be satisfied by all the objects belonging to this root type. A record type is used 

to define the intension of a root type. A property is described by an attribute label 

associated with a type called a component type. An attribute is a function from the 

root type to the component type. 

An example of a record type is 

person(name - siring, 
sex - gender, 
age - agetype). 

Here person is a record type which has the attributes name, age, and sex. name is 

a mapping from person to siring, read as every object in person has a name which 
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is an object in string, age is a mapping from person to agetype which is a subtype 

of integer, read as every object in person has an age which is a integer between 1 to 

120. sex is a mapping from person to gender, read as that the sex of every object 

in person is either male or female. 

A record type naturally corresponds to an aggregation as discussed earlier. Be-

sides, a generalization can also be represented by a record type via the isa label 

in S-logic. The isa label is just an identical mapping from the root type to its su-

pertype. It is useful here because it represents a subtype (or subset) relationships 

between the root type and its super type and allows automatic property inheritance. 

Besides, properties of the super type can be redefined and additional properties can 

be introduced. This representation is quite similar to that in semantic data models 

such as TAXIS [33]. Look at the following example in S-logic: 

student(isa -4 person, 
age - young, 
studying-in - dept, 
taking - p {eourse}, 
borrowing - {book}). 

The example defines that student is a subtype of person. Every definitional property 

of person is also a definitional property of student via the isa label, except age prop-

erty of person is redefined. Moreover, student has additional properties that person 

does not have at all, like studying in a department, taking a number of courses, and 

borrowing a number of books. The properties of student from inheritance are called 

inherited properties, which are name, sex, and age. The redefined properties and own 

properties of student are called direct properties which are age, studyingJn, taking, 

and borrowing. The intended meaning here is that every object belonging to the 
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type student also belongs to the type person, i.e., the extension of student is set-

included in the extension of person. If an object, say John, is a student then he has 

to be a person first via the isa label. As a person, he should have all the properties 

of person with his age between 15 and 30. As a student, he also has all the prop-

erties of student. So, the isa label here can allow all the properties of person to be 

inherited by student without any duplication in the type system. 

Based on the above discussion, we know that when an object belongs to person 

it does not mean that it has only the definitional properties of person, it means that 

it has at least those properties of person because it may belong to student and has 

all the properties of student. That a type has few properties means its objects have 

few restrictions and therefore are more general than those having more properties. 

In fact, here I give a set-inclusive interpretation to the subtype relationships. The 

subtype relation is reflexive, asymmetric, and transitive. Therefore it is a partial 

order. Using an isa label in record types might seem confusing, but I think it is 

syntactically expressive and semantically sound. 

A set type specifies a structure consisting of elements of an identical type called 

the set element type. Each object of a set type is a subset of its set element type. 

The extension of a set type is the power set of the extension of its set element type. 

To prevent infinite construction of set types, S-logic only allows a set type to be 

constructed from a set element type which is not a set type itself. For example, book 

is a type which denotes all the books (in a library), then {book} is a set type whose 

set element type is book. Each object of {book} is a subset of book. Using a set type 

{ book}, we can easily relate a person to a set of books. A set type corresponds to 

an association as discussed in Chapter 2. 
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There are two built-in types in S-logic. One is called all which has no properties 

at all but includes all the possible objects. According to the above discussion, an 

object in a type that has few properties means it may have other properties. It may 

belong to another type with more properties. So objects in all can belong to other 

types and every type in the type system is a subtype of all. The other built-in type 

is called none which has no object but has all the possible properties. Therefore, it 

is a subtype of all the possible types in the type system. 

Figure 4.1 shows an example of a sample type system which defines seventeen 

types for database and rules. The first defines a record type person which has 

attributes: name, age, sex, spouse, address, father, and mother. Note that person 

is recursively defined. The second defines a record type student who is a subtype 

of person with a redefinition of the age and who studies in a department and takes 

a number of courses and borrows a set of book. The third defines a record type 

employee who is also a subtype of the person with a redefinition of his age and who 

works in a department and heads a number of people, who has a property salary. 

The fourth defines a record type workingstudent who is a subtype of both student 

and employee with two redefinitions of his age and salary. The fifth, sixth, seventh 

and eighth define agetype, young, midage and ymage as subtypes of integer. The 

ninth employeesalary as a subtype of integer, while the tenth also defines support 

as a subtype of integer. The eleventh defines gender as a subtype of string. The 

twelfth defines a record type dept which has a department name and a head who is 

an employee, and the staff who are employees working in the dept. The thirteenth 

defines a record type course which has a course name, its credit, and a number 

of students who take the course. The fourteenth defines a record type book which 
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consists of the four parts: the book's name, its author, its publisher, and its price. 

The fifteenth defines a record type family which has a father, a mother, and a 

number of children. The sixteenth defines a record type house which has a location 

in which a number of people live. The last defines a record type sameage which is 

intended to describe how many people have the same age. 

Not all subtype definitions are useful. Suppose we have subtype relationships 

defined by following type definitions: 

(1) employee(isa - tourist). 
(2) tourist(isa -* businessman). 
(3) businessman(isa - employee). 

According to the set-inclusive interpretation, these three types will contain the same 

set of objects. Therefore, these types are redundant. 

Besides, not all redefinitions of the properties of a subtype are meaningful. Let 

person(age -* agetype) be a record type, student be a subtype of person. Since the 

age property of person is agetype, the age property of student has to be a subtype 

of agetype. Multiple inheritance makes things a little tricky. Suppose student has 

an attribute called social insurance number (SIN) of which the range is from 100000 

to 199999, employee also has a SIN of which the range is from 200000 to 399999, and 

worlcingstudent is a subtype of both student and employee, then worlcingstudent 

can not inherit the SIN property but redefine the SIN property. According to the 

set-inclusive interpretation, an object in worlcimgstudent is also the same object in 

both student and employee. Its SIN should belong to the range from 100000 to 

199999 and the range from 200000 to 399999. So, no objects of workingstudent can 

have this property. On the other hand, if the intersection of both ranges is not empty, 
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(1) person(name -4 string, 
sex - gender, 
age -4 agetype, 
spouse - person, 
address -4 string, 
father - person, 
mother -+ person). 

(2) student(isa -4 person, 
age -4 young, 
studying-in -+ dept, 
taking -+ {course}, 
borrowing -+ {book}). 

(3) employee(isa -* person, 
age -+ midage, 
working-in - dept, 
heading -+ {person}, 
salary -* employees alary). 

(4) workingstudent(isa -+ student, isa -+ employee, 
age -4 ymage, salary -* support). 

(5) agetype = integer ({1..120}) 

(6) young = integer ({15..30}) 

(7) midage = integer (125..60}) 

(8) ymage = integer({25..30}) 

(9) employ cesalary = integer({O..50000}) 

(10) support = integer({0..15000}) 

(11) gender = string({'Male', 'Female'}), 

(12) dept(name -* string, head -• employee, staff - 4 {employee}). 

(13) course(name -4 string, credit -* integer, taken-by -4 {student}). 

(14) boolc(name -f string, author -+ person, 
published-by - string,price - integer). 

(15) family(father -4 person, mother - person, children -+ {person}). 

(16) house(location -* string, occupied-by {person}). 

(17) sameage(number - agetype, shared-by -* {person}). 

Figure 4.1: A Sample Type System 
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then workingstudent can only have an non-empty subset of the intersection as the 

range of its SIN. In Figure 4.1, the range of the attribute age of workingstudent 

is redefined as ymage, a subset of both young and midage which are ranges of the 

attribute age of both supertypes student and employee respectively. In general, if 

several types have a common attribute, their subtype can not inherit but redefine this 

common attribute of which the component type must be a subtype of the component 

types of the common attribute of its supertypes. Look at another example. Let 

a(l -p student) and b(l -p employee) be two record types and c is a subtype of 

both a and b. If workingstudent is a subtype of both student and employee, then 

c(isa -+ student, isa - employee, 1 - workingstudent) is a meaningful record type. 

All types except set types in the S-logic's type system forms a (complete) lat-

tice based on subtype relationships. A partially-ordered set < 5, ≤> is a lattice, in 

mathematical sense, if the least upper bound and the greatest upper bound exist for 

every subset of S. Types in the lattice are either built-in, user-defined, or inferred 

from what the user has defined. The top element of the lattice is all and the bot-

tom element is none. Every type has its biggest subtypes under it in the lattice. 

Figure 4.2 shows a lattice based on the type system of Figure 4.1. In the lattice, all 

has as biggest subtypes string, sameage, dept, family, integer, course, person, book 

and house; string has gender as its biggest subtype; integer has agetype and 

employeesalary as its biggest subtypes; person has student and employee as its 

biggest subtypes; gender, sameage, dept, family, ymage, support, course, book, 

workingstudent, and house have none as their biggest subtypes; and so on. 

In summary, a type itself corresponds to a classification and its elements inherit all 

the properties of the type if there are any. A set type corresponds to an association. 
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Figure 4.2: The Lattice Over the Sample Type System 

house 

A record type definition with labels other than isa corresponds to an aggregation. 

A record type with isa labels corresponds to a generalization, and the properties of 

a super type are automatically inherited by this type. The type system consists of 

all type definitions and a lattice over all the types based on subtype relationships. 

4.2 Database 

The type system determines the extension of basic types, set types, and built-in 

types, and the intension of record types. The extension of record types is determined 

by the database and rules. The database in S-logic consists of all record objects, i.e., 
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objects of the record types. Such membership can be changed by updates. So the 

database is not fixed, it can be changed from time to time. But here, I assume that 

there is a fixed database. 

In the database, every record object belonging to a record type has all the prop-

erties of this type. According to the type system, a type inherits the properties of 

its supertypes via an isa label, individual objects in this type should have all the 

properties of this type, either of its own or from inheritance. Therefore, there can 

be no isa labels in the database. If a property of an object is not specified in the 

database, S-logic will assume an uninstantiated value, i.e, the attribute value exists 

but unknown. If a conflict happens, then fail will be inferred in the queries. There 

are two kinds of objects in S-logic, printable objects which are identified by them-

selves, and abstract objects which are identified by their identities (or surrogates) 

which are data independent and location independent. It is easy to tell whether an 

object is printable or abstract according to the type system. In S-logic, the database 

only tells what is known. The unknown information can be inferred directly from 

the type system. Besides, the order of properties of each object is not important at 

all. The component types are omitted in the database for convenience. 

Figure 4.3 shows a database corresponding to the type system of Figure 4.1, where 

abstract objects are represented by meaningful identities for a better understanding. 

The first says that sally stands for an object in the type person, called Sally, aged 14, 

female, whose father is an object in person represented by bob, whose mother is also 

an object in person represented by mary, whose spouse and address are unknown. 

The second says that john stands for an object also in the type person, called John, 

aged 62, male, and living at 439 5th Av NE. Other information about this person is 
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unknown. The third says that jenny stands for an object in student, called Jenny, 

aged 24, female, whose spouse is the object represented by smith in person, who is 

studying in a department represented by math and taking three courses represented 

by m203, m321, and cs213. The fourth also talks about a student called Phil, 

aged 18, female, whose father is bob, whose mother is mary, who is studying in a 

department represented by cpsc and taking two courses represented by cs213 and 

c.s450, who has borrowed two books represented by pascal and prolog. The fifth 

says that mary stands for an object in employee, called Mary, aged 39, female, 

whose spouse is the object represented by bob, who is working in a department, 

identified by bookstore, and whose salary is $35000 a year. The other information 

about this employee is unknown. The sixth says that henry stands for an object in 

employee called Henry, aged 50, male, living at 128 2nd St NW, who is working in a 

department represented by cpsc, and whose salary is $50,000 a year. The seventh says 

that bob is also an object in employee, aged 40, male, living at 257 9th Av SW, whose 

father is an object in person identified by john and who is working in a department 

represented by math, and whose salary is $40,000 a year. The eighth says that smith 

stands for an object in workingstudent, called Smith, aged 30, male, who lives at 

3 7th Ày SW and whose father is an object in person represented by john, who 

is studying in a department represented by cpsc, and taking a course represented 

by cs450, who is working in a department represented by cpsc, and whose salary is 

$12,000 a year. The ninth says that dennis is also an object in workingstudent, male, 

living at 3 7th Ày SW, whose father is henry, who is studying in math department, 

who is working in bookstore, whose salary is $8,000 a year. And so on. 
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(1) sally: person(name - 'Sally', age - 14, sex -* 'Female', 
father -+ bob, mother - mary). 

(2) john : person(name —+ 'John', age -s 62, sex —* 'Male', 
address - '$39 5th Ày NE'). 

(3) jenny : student(name —+ 'Jenny', age - 24, sex -+ 'Female', 
spouse —+ smith, father —+ henry, 
studying-in —+ math, taking — {m203, m321, cs213}). 

(4) phil: student(narne -s 'Phil', age -s 18, sex -s 'Male', father -s bob, 
mother -s mary, studying-in —* cpsc, 
taking -s {cs213, cs450}, borrowing -s {pascal, prolog}). 

(5) mary : employee(name -s 'Mary', age -4 39, sex -s 'Female', 
spouse bob, working-in - bookstore, salary -s 35000). 

(6) henry: employee(name -s 'Henry', age -s 50, address —+ '128 2nd St NW') 
sex -+ 'Male', working-in —* cpsc, salary —* 50000). 

(7) bob: employee(name -s 'Bob', age -s 40, address —+ '257 9th Ày SW', 
sex —+ 'Male', father -s john, working-in - math, 
salary —+ 40000). 

(8) smith: workingstudent(name -s 'Smith', age -s 30, address -s '8 7th Ày SW', 
sex -s 'Male', father —* john, studying-in —+ cpsc, 
taking -4 {cs450}, working-in -* cpsc). 

(9) dennis : workingstudent(name - 'Dennis', age -s 30, sex -s 'Male', 
father -s henry, studying-in -s math 
working-in -s bookstore, salary —+ 8000). 

(10) cpsc: dept(name —* 'Computer Science', head -s henry). 

(11) math: dept(name - 'Mathematics', head —+ bob). 

(12) bookstore : dept(name -+ 'Book Store', head -s mary) 

(13) cs213 : course(name -s Programming Language', credit —* 2)-

(14) cs450 : course(name 'Artificial Intelligence', credit —* 3). 

(15) m203 : course(name -s 'Calculus', credit - 6). 

(16) m321 : course(name -s 'Algebra', credit -s 4). 

(17) pascal: book(name -s 'Pascal', author -s henry, 
published-by - Prentice', price -s 35). 

(18) prolog : book(name -s Prolog', author -s john, 
published-by -s 'Springer', price -s 50). 

Figure 4.3: A Sample Database 
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4.3 Rules and Queries 

Based on the database, deductive information can be defined by using rules in S-

logic. A rule in S-logic is of the form p = p1, ... ,Pn. Every p(1 ≤ i ≤ n) in the 

body is either a positive literal which is a record object with variables, a comparison 

expression over variables and objects, or a negative literal which consists of a negation 

sign (-i) and a positive literal. The head p is a positive literal. 

A rule can be used to deduce attribute values for existing objects, or to describe 

how to construct objects and obtain their attribute values. S-logic provides functions 

called object constructors to construct objects. For example, id(mary, bob) is an 

object constructor which denotes an object of proper type in the context. 

Figure 4.4 shows several rules defined on the database given in Figure 4.3. The 

first rule obtains an address by assuming that a person lives with their father if 

they are less than 20 years old. With this rule, we do not need to repeat address 

information for a person under 20 in the database. If we specify address information 

in the database and we also can deduce address information, then two address values 

should be exactly the same because the address attribute is a single-valued label. 

Otherwise a fail will be returned. X and Z are variables over objects of person, A 

is a variable over objects of ageiype, and Y is a variable over objects of type string. 

The second rule obtains an address by assuming that if a person is married they are 

assumed to live with their spouse. With this rule, we do not need to repeat address 

information for each couple in the database. The third rule says that the spouse 

relation is reflexive so that we need only describe one party, for example, the wife, 

instead of both parties. The fourth rule says that all students who take a certain 
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course can be derived from each individual student who takes this course. Note 

here {Y} is a set grouping notation which represents a set over which the variable Y 

ranges. The fifth rule says that all employees that are managed by an employee X can 

be derived from each employee whose department head is X. The sixth query says 

that all the staff who are working in a dept can be derived from each employee object 

who is working in this dept. The above six rules are used to deduce attribute values 

for existing objects. The other three rules are used to describe how to construct 

objects and obtain their attribute values. The seventh rule says that objects in type 

family are constructed by an object constructor id(X, Y). For every pair of X, Y 

which are known, id(X, Y) obtains exactly one object identity (surrogate) which is 

also referred to by id(X, Y). It also says that the attribute values of each object 

of family can be obtained from the existing objects of person. The eighth rule 

says that objects in type house are constructed by object constructor id(X) and 

the attribute values of each object are obtained from the existing objects in person. 

Rule 9 is similar. 

Queries are defined over the database, rules, and the type system in a uniform way 

in S-logic. A query starts with the question mark? and is followed by a conjunction 

of literals. A positive literal in a query is either a type with variables, an object 

with variables, a comparison expression over variables and types, or a comparison 

expression over variables and objects. A negation literal in a query consists of a 

negation sign and a positive literal. Note literals in a query are more general than 

those in a rule, which contains types and type variables. 

Queries are used to ask for information which is either in the database, derivable 

from rules, or in the type system. If an attribute value is unknown, then an unbound 
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variable will be returned to a query. We can omit uninteresting variables in queries 

for convenience. 

(1) X : person(address -+ Y) =: A ≤ 20 
X : person (age - A, father - Z), 
Z : person(address -+ Y). 

(2) X : person(address -+ Y) = 

X : person(spouse  

Z : person(address - Y). 

(3) X person(spouse -+ Y) <--
Y : person(spouse -* X). 

(4) X : course(taken_by -.+ {Y}) '= 
Y : student (taking X}). 

(5) X: ernployee(heading - {Y}) = 

Y: cmployee(working_in - D), D : dept(head -* X). 

(6) X dept(staff - {Y}) --

Y:  emplyee(working..in - X). 

(7) id(X, Y) : family(father -* X, mother - Y, children -+ {Z}) .= 
Z person(father -+ X,mother - Y). 

(8) id(X) : hou.se(address X, occupied-by -+ {Y}) 
Y: person(address -* X). 

(9) id(X) : sameage(age -4 X, shared-by Y}) = 

Y : person (age -+ X). 

Figure 4.4: Sample Rules 

Figure 4.5 shows 9 sample queries and the corresponding answers based on the 

sample database and sample rules. The first query asks for information about all 

persons who are over or equal to 50 years old. The printed answer to this query, 

based on the database, is given in answers 1.1 and 1.2. The second query asks for 

information about all workingstudents who study and work in the same department. 

The only answer is given in answer 2.1. The third query asks for information about 
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(Query 1.) 
(Answer 1.1.) 
(Answer 1.2.) 

(Query 2.) 
(Answer 2.1.) 

(Query 8.) 

(Answer 3.1.) 
(Answer 3.2.) 

(Query 4.) 
(Answer .4.1.) 
(Answer .4.2.) 

(Query 5.) 
(Answer 5.1.) 
(Answer 5.2.) 
(Answer 5.3.) 
(Answer 5.4.) 
(Answer 5.5.) 
(Answer 5.6.) 

(Query 6.) 
(Answer 6.1.) 
(Answer 6.2.) 

(Query 7.) 
(Answer 7.1.) 
(Answer 7.1.) 

(Query 8.) 
(Answer 8.1.) 
(Answer 8.2.) 
(Answer 8.3.) 
(Answer 8.4.) 

(Query 9.) 
(Answer 9.1.) 

?X: person(age - p Y, sex - Z), Y ≥ 50. 
X = john, Y = 62,Z = 'Male'. 
X = henry,Y = 50,Z = 'Male'. 

?X : workingstudent(studying..in -+ Y, working-in - p Y). 
X = smith, Y = cpsc. 

student(name - 'Phil', borrowing --+ {X}), 
X: book( author --+ Y, price - Z). 
X = pascal, Y = henry,Z = 35. 
X = prolog, Y = john, Z = 50. 

?cs213 : course(taken_by - {X}), X : student(studying..in - Y). 
X = jenny, Y = math. 
X = phil, Y = cpsc. 

.student(takirtg -+ {Y}), Y: course(name -+ Z). 
X =jenny,Y = m203,Z = 'Calculus', 
X = jenny, Y = m321, Z = 'Algebra', 
X = jenny, Y = cs213, Z = Programming Language 
X = phil, Y = cs213, Z = Programming Language', 
X = phil, Y = cs450, Z = 'Artificial Intelligence', 
X = smith, Y = cs450, Z = 'Artificial Intelligence', 

family (mother -+ mary, children -+ {Y}),Y: (age -+ Z). 
X = id(mary, bob), Y = sally, Z = 14. 
X id(mary, bob), Y = phil, Z = 18. 

?bookstore: dept(staff - {X}),X : employee(salary - Y). 
X = mary,Y = 35000. 
X = dennis,Y = 8000. 

? : house(address -+ X, occupied-by -* Y). 
X —('257 9th Av SW'), Y = {mary, bob, sally, phil}. 
X =('489 5th Av NE'), Y = {john}. 
X =( '3 7th Av SW'), Y = {jenny, smith}. 
X =('128 2nd St NW '), Y = {henny}. 

sameage(age -+ 30, shared-by - p Y). 
X = id(30),Y = { smith, dennis}. 

Figure 4.5: Sample Queries and Answers (I) 
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(Query 1.) ?sally: X(L -+ Y). 
(Answer 1.1.) X = person, L = name, Y = 'Sally'. 
(Answer 1.2.) X = person, £ = sex, Y = 'Female'. 
(Answer 1.3.) X = person, L = age, Y = 14. 
(Answer 1.4.) X = person, L = address, Y = '257 9th Av SW, 
(Answer 1.5.) X = person, £ = spouse, Y = Y 
(Answer 1.6.) X = person, £ = father, Y = bob. 
(Answer 1.7.) X = person, L = mother,Y = mary. 

(Query 2.) ?.student(L - Y). 
(Answer 2. 1.) £ = name, Y = string. 
(Answer 2.2.) £ = sex, Y = gender. 
(Answer 2.3.) £ = age, Y = young. 
(Answer 2.4.) £ = spouse, Y = person. 
(Answer 2.5.) £ = address, Y = string. 
(Answer 2.6.) £ = father, Y person. 
(Answer 2.7.) £ = mother,Y = person. 
(Answer 2.8.) £ = studying..in,Y = dept. 
(Answer 2.9.) £ = taking, Y = {course}. 
(Answer 2.10.) £ = borrowing,Y = {book}. 

(Query 3.) ?X(isa -+ Y). 
(Answer 3.1.) X = student, Y = person. 
(Answer 3.52.) X = employee, Y = person. 
(Answer 3.3.) X = wor kingstudent , Y = student. 
(Answer 3.4.) X = wor kingstudent , Y = employee. 

(Query 4.) ?employee := X. 
(Answer 4.1.) X = {bob, dennis, henry, mary, smith}. 

(Query 5.) ?person := X!, employee := Y!, Z = X - Y. 
(Answer 5.1.) Z = { sally, john, jenny, phil}. 

(Query 6.) ?student := X!, employ ee := Y!,X < Y. 
(Answer 6.1.) fail. 

(Query 7.) ?ymage := X. 
(Answer 7.1.) X = {25, 26, 27, 28, 29, 30}. 

(Query 8.) ?gender := X. 
(Answer 8.1.) X =f 'Male', 'Female'}. 

Figure 4.6: Sample Queries and Answers (II) 
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books which have been borrowed by a particular student called Phil. The expected 

information is who the book's author is and what the price is. Here {X} is a set 

grouping variable and X is bound to an object. The fourth query asks for who are 

those students taking the cs213 course and in which dept they are studying. The 

answer to this query is obtained via rule 4 in Figure 4.4. The fifth query asks for the 

information about courses which each student is taking. The sixth query asks for 

information about mary's family, especially her children and their ages. The answer 

is obtained via rule 7. The seventh query asks for information about the staff of 

the bookstore dept and their salary. The answer is obtained via rule 6. The eighth 

query asks for information about each house. The expected information about this 

house is what is the location of the house and who lives there. Here Y is a set-valued 

variable which has to be bound to a set. The answer is obtained via rule 1, 2 and 8. 

Rule 1 finds that sally lives with his father bob because he is under 20; rule 2 finds 

that mary lives with her spouse bob; rule 8 puts the persons living at same address 

into a set. The ninth asks for information about people who have the same age, 30. 

The answer is obtained via rule 9. These examples also show the difference between 

set grouping variables and set-valued variables. 

Figure 4.6 shows 8 queries over the meta-information and the corresponding an-

swers based on the sample type system, database, and rules. The first query asks 

for information about sally's type, attribute labels, and corresponding values. If 

an attribute value is unknown, an uninstantiated variable is returned. The second 

query asks for property information about student in the type system. Note that 

student is a subtype of person, and therefore all properties of person are given as 

answers to the query. The third query asks for the subtype relations in the type 
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system. The fourth query asks for the extensions of employee. The fifth query asks 

for the difference of the extensions of person and employee, i.e., those objects in 

person not in employee. Note X! and Y! are just S-logic notation for not displaying 

their values which is called projection in relational databases. The sixth query asks 

for whether or not the extension of student is included in the extension of employee. 

The seventh query asks for the extension of ymage. The eighth query asks for the 

extension of gender. 



Chapter 5 

Formal Presentation 

S-logic is a logic language for deductive databases. This chapter defines the formal 

syntax and semantics of S-logic. The syntax is concerned with valid programs ad-

mitted by the grammar of S-logic. The semantics is concerned with the meanings 

attached to the valid programs and the symbols they contain. 

5.1 Syntax of S-logic 

This section introduces the syntax of S-logic, i.e., its alphabet, types, database, 

terms, rules and queries. 

Definition 5.1 The alphabet of S-logic consists of eleven classes of symbols: 

(1). the set A= fall, none}; 
(2). the set L = {integer, string}; 
(3). a countably infinite set Z of integers; 

(4). a countably infinite set S of strings; 

(5). a countably infinite set 0 of symbols called object identifiers; 

(6). a countably infinite set C of symbols called type constructors; 

(7). a countable infinite set L of symbols called attributes labels containing isa; 

(8). a countable infinite set F of function symbols, called object constructors; 

(9). a countably infinite set V of symbols called variables; 

(10). logical connective ; logical comparatives =, ≤, ≥, <, >, ; and 
(11). comma, dot, f  }, (, ), ', ', -+, :, ?, !, -, &, I. 

Here the sets A, B, Z, 5, 0, C, C, .T, V are assumed to be pairwise disjoint. 

56 
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Definition 5.2 all and none are types of S-logic called built-in types, which repre-

sent the biggest type and the smallest type respectively. 

Definition 5.3 The basic types of S-logic are defined as follows: 

• Every element of 5 is a basic type, i.e. integer and string are basic types. 

• If t is a type constructor in C, then t = string({ai, ..., a,}), (n ≥ 1) is a basic 

type and a1, -, an E S are called objects of the type t. 

• If t is a type constructor in C, then t = integer({lb..rb}) is a basic type and 

lb, rb E Z are called the left bound and right bound of the range of the type i. 

Definition 5.4 If P,Pi, ...,Pn, n ≥ 1 belong to C or 13, isa,lm, ...,l, 0 ≤ m ≤ n are 

labels of C, and we have p(isa—+pi,...,isa--  pm, lmi 4 Pm+i,...,ln.Pn), 

then p is a type of S-logic called a record type. Each Ii pi, m < i ≤ n is called a 

direct property of p, each pi is called a component type of p. For each direct property 

Ii - pi of p, the label Ii is called an attribute and is either a set-valued label if pi is 

a set type, or a single-valued lable if pj is not a set type. If l - p1, ..., lj,. -* 

1 < i < m are properties of p, and 1k l, 1 ≤ Ic ≤ n, m + 1 ≤ j ≤ n, then 

they are also properties of p called inherited properties, each p, 1 ≤ i < m is called 

a supertype of p. 

According to above definition, a record type inherits all the properties of its 

supertypes (if any) but may redefine them and may have its own properties. 

Definition 5.5 If s is a type of S-logic other than a set type, then {s} is a type of 

S-logic called set type and s itself is called a set element type. 
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Here I exclude the possibility of infinite useless set types, such as {...{person}...}. 

Intuitively, {all} is the biggest set type and {none} is the smallest set type. 

Definition 5.6 The type system S of S-logic consists of a finite set of types defined 

according to the definition 5.2 to 5.5. 

Definition 5.7 The objects of S-logic are defined as follows: 

• Every element of Z, S and 0 is an object, called a basic object. Every element 

of Z and S is called a printable object and every element of 0 is called an 

abstract object. 

• If f is a n-ary function symbol from T, 0 1, --- , On 

f(oi, ..., o,) is also called a basic object. 

are basic objects, then 

• If c, ...,o, are basic objects, then {o, ...,o} is called a set object. {} denotes 

the empty set object. 

• Let p C C, l, ...,i, E £,n ≥ 1, o be a basic object and 01,..., on be basic objects 

or set objects. Then o : p(ii —4 01, ..., in — p o) is called a record object of p. 

Each o, 1 ≤ i ≤ m is called an attribute value of Ii of the object o. 

Definition 5.8 The database of S-logic consists of a finite set of record objects. 

Next I will define rules and queries which are based on S-terms. 

Definition 5.9 The variables of S-logic are defined as follows: 

• Every element of V is called a variable. V is divided into four disjoint kinds: 

basic variables (or single-valued variables), set-valued variables, type variables 

and label variables. 
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• If X is a basic variable, then {X} is a set grouping variable. 

Definition 5.10 An object constructor is defined inductively as follows: 

59 

If f is an n-ary function symbol from .F, Y1, ..., Y, (n ≥ 1) are basic vari-

ables, basic objects, or object constructors, then f(Y1, ..., Y,) is also an object 

constructor. 

Definition 5.11 The typed S-terms are defined as follows: 

• If P is a type or type variable and S is either a set object or a set-valued 

variable, then P := S is a typed S-term. 

• If P,P1,...,P,Th ≥ 0 are types or type variables, then P(isa - P1,..., isa -+ 

P) is a typed S-term. 

• If P is a record type or a type variable, Pi,..., P, are types or type variables, 

and L1, ..., L(n ≥ 1) are labels (not isa) or label variables, then P(L1 - 

F1, ..., L, -+ F) is a typed S-term. 

• If P is a type or type variable, L1, ...,L, (n ≥ 0) are label variables or labels 

other than isa and at least one of F, L1, . . .L, is a variable, and X is either 

a basic variable, a basic object or an object constructor, X1, ..., X, are either 

basic variables, set-valued variables, set grouping variables, basic objects, set 

objects, or object constructors, then X : P(L1 -+ X1,..., L -f X) is a typed 

S-term. 

The typed S-terms are used only in queries to ask information about the type 

system. Note that a type in the type system is a closed typed S-term, i.e., without 

variables. 
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Following are examples of typed S-terms where X, Y, L are variables. 

person := X. 
X(isa -+ person). 
X(L - Y). 
X: ernployee(L -* Y). 

Definition 5.12 The basic S-terms are defined as follows: 

• If p is a type, X is either a basic variable, a set-valued variable, a set grouping 

variable, a basic object, or an object constructor, then X : p is a basic S-term. 

• If p is a type in C, X a basic variable, a basic object, or an object constructor, 

X, 1 < i < n is either a basic variable, a basic object, an object constructor 

a set-valued variable, a set grouping variable or a set object, then X : p(li - 

..., l, - X,) is a basic S-term. 

For example, chiidren(X,Y):family(i -+ Z) and X:student (taking - Y) are 

two examples of basic S-terms where X and Y are examples. Note that there are no 

isa labels in basic S-terms. 

The basic S-terms are used in both rules and queries. Note that a record object 

in the database is a closed basic S-term. 

Definition 5.13 The S-terms consists of all typed S-terms and basic S-terms. 

Let X : p be a basic S-term where X is a variable and p is type. If X is not of 

interest, then X : p can be replaced by : P for convenience. If p is not of interest, 

then X : p can be replaced by X : for convenience. 

Definition 5.14 A basic literal is defined as follows: 
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(1). A basic S-term is a positive basic literal. 

(2). '&i = 02, 01 ≤ 02, 01 ≥ b2, 01 < 02, 01 > 02, and 7k, 0 02 are basic 

literals, where 01, 02 are basic variables or basic objects. They are also called 

comparison expressions. 

(3). If p and q are basic literals, then the disjunction of p and q denoted as p; q is 

a disjunctive basic literal. 

(4). If p is a positive basic literal, then -'p is a negative basic literal. 

Definition 5.15 A rule is an expression of the form p = pi,..., p, where the body 

p is a conjunction of basic literals, the head p is a positive basic literal and all 

variables in the head must occur in the body. 

According to the definition, a rule has no type variables or label variables. Rules 

are used to derive information about objects and object attributes. Following is an 

example rule: 

f(X, Y) : family(children - {Z}) = 

Z : person(faTher - X,mother - Y). 

Definition 5.16 A literal is defined as follows: 

(1). An S-term is a positive literal. 

(2). 01 = b2, ,1'i ≤ 02, 01 ≥ t'2, b1 < ?)2, bi > 1'2 &i 54 0 2, are literals, where 

&i, 2 are either basic variables, basic objects, set variables or set objects. 

(3). If p and q are literals, then p; q is a disjunctive literal. 

(4). If p is a positive literal, -'p is a negative literal. 
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The basic literals are subset of literals, the later allows type variables, label 

variables, set variables or set objects occur. 

Definition 5.17 A query is a conjunction of literals starting with the question mark 

?Pi, ... ,Pn. 

A query is used to ask information about objects, object attributes and the type 

system. 

Definition 5.18 A program P is a triple P = (S, DB, R). 

(1). S is a type system, 

(2). DB is a database, 

(3). R is a finite collection of rules. 

5.2 Semantics 

Definition 5.19 Let L be a set, a binary relation R on L is a subset of the cartesian 

product L x L. 

Unless specified otherwise, all relations will implicitly considered to be binary 

from now on. The notation xRy stands for (x, y) € R. 

Definition 5.20 A relation R on a set L is 

• reflexive if xRx for all x E L. 

• symmetric if xRy implies yRx, for all x, y E L. 

• antisymmetric if xRy and yRx imply x = y, for all x,y € L. 
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• transitive if zRy and yRz imply xRz, for all x, y, z E L. 

Definition 5.21 A relation on a set L is a partial order if it is reflexive, antisym-

metric and transitive. 

Definition 5.22 Let S be a set with a partial order ≤. Then a E S is an upper 

bound of a subset X of S if x ≤ a, for all x E X. Similarly, b E S is a lower bound 

ofXifb≤x, for all xEX. 

Definition 5.23 Let S be a set with a partial order < Then a E S is the join or 

least upper bound (abbreviated lub) of s subset X of S if a is an upper bound of X 

and, for all upper bounds a' of X, we have a ≤ a'. Similarly, b E S is the meet or 

greatest lower bound (abbreviated gib) of s subset X of S if b is a lower bound of X 

and, for all lower bounds b' of X, we have b' ≤ b. 

Definition 5.24 A partial ordered set L is a meet-semilattice if for every subset X 

of L, there is a gib. 

Definition 5.25 A partial ordered set L is a join-semilattice if for every subset X 

of L, there is a lub. 

Definition 5.26 A partial ordered set L is a lattice if it is both a meet-semi-lattice 

and a join-semi-lattice. 

Definition 5.27 Given a program P of S-logic, its interpretation I is a tuple 

(U, YJ)P,lr,u.gc,gL,gO,gF). 1 

'This definition and some of the following definitions are based on [26] 
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(1). U is a universe of all objects. 

(2). E is a finite set of semantic types of which each denotes a class of objects of U 

under the mapping ir. 

(3). r is a finite set of semantic labels, which is divided into three kinds: r, r, 

a. I' is the set of single-valued labels. 

b. I is the set of set-valued labels. 

c. Ij is a singleton set {Sisa }. 

(4). ir interprets each semantic type as a subset of U, i.e., 7r : E -+ 

(5). o interprets each semantic label as a partial mapping as follows: 

a. for each f E r, o(f) is a single-valued mapping U - U, 

b. for each f € T, o(f) is a set-valued mapping U - 2, and 

C. o-(Sj) is an identity mapping U - U, i.e., for each u E U, cr(8j3a)(u) = U. 

(6). ga is a homomorphic function which interprets each syntactic type in C as a 

semantic type in E, i.e., ga : C -+ E. 

(7). gj, is a homomorphic function which interprets each syntactic label in £ as a 

semantic label in r, i.e., gi, : £ -+ F, especially, ilL : isa -* 

(8). go is a homomorphic function go : 0 U S U Z -* U. 

(9). gp' is a function which interprets each k-ary object constructor as a mapping 

Uk_U. 
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An interpretation I gives a denotational semantics to a program. It maps every 

syntactic object to a semantic object by the mapping go; every syntactic type to a 

semantic type by the mapping go; every syntactic label to a semantic label by the 

mapping 9L; every syntactic function to a semantic function by the mapping gF. It 

interprets every semantic type as a class of objects by the mapping ir; every semantic 

label as a function by the mapping o. 

Definition 5.28 Given an interpretation I, the intended semantics of types is given 

by ir o gc as follows: 

(1). For the basic types, 7r(go(integer)) = Z C U; ir(gc(.string)) = S C U; 

if s = string ({ai, ...,a}), then lr(go(s)) = {go(al), ..., go(an)} C S; 

if s = integer ({ib..rb}), then lr(go(s)) = {x : go (lb) ≤ x ≤ go(rb)} C Z. 

(2). For a set type {s}, lr(go({s})) = 2(9C(8)) C 2. 

(3). For a record type with definition p(ii - i, ..., l -+ 

lr(gc(p)) = {x : gj(l) E I', o(gL(ii))(x) E lr(gc(pj)), 1 ≤ i < n, }. 

(4). For built-in types, r(gc(all)) = U; lr(go(none)) = {}. 

Note that 7r o go determines the extensions of types in S-logic. 

Definition 5.29 Two types p and q have a subtype relation based on some interpre-

tation I denoted by p ≤ q if lr(gc(p)) c lr(go(q)). 

So two types have subtype relation if their extensions have subset relation. Im-

mediately, we have following theorems. 
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Theorem 5.1 Let S be a type system of a program P. Then the subtype relation 

is a partial order on S.D 

Theorem 5.2 Let S be a type system of a program P. 

(1). If s = integer({ib..rb}) € 5, then s < integer. 

(2). If t = string({a1,...,a}) € S, then s ≤ string. 

(3). Ifp≤q,p,q€S, then {p}≤{q}. 

(4). none <p for all p E S. 

(5). p 5 all for all p E S. 

Proof: (1) (2) (4) (5) are trivial. For (3), since p ≤ q, we have lr(ga(p)) 9 lr(gc(q)). 

For every x C lr(gc(p)), we have x i-(ga(q)). So we have 21r(gc(q)) 2-(9c (q)) i.e., 

{p}≤{q}. 0 

Record types have the following properties. 

Theorem 5.3 Let p be a record type with p(isa - P1, S.., isa Pm, 1m+1 

Pm+1, ..., ii,, -* p,),1 < in < n, Then p ≤ pi, 1 ≤ i ≤ in, i.e., p is a lower bound 

of p', ..•,Pm under the relation ≤, and lr(gc(p)) flj=l5r(ga(p)). 

Proof: we have that for each x € lr(gc(p)), cr(gL(isa))(x) € lr(gc(pj)), 1 ≤ m 

by the definition. Since 0(gL(isa))(x) = 0(5j8a)(X) = x € lr(gc(pj)), so lr(gc(p)) c 
lr(gc(pj)). Therefore we have p ≤ p, 1 ≤ i < m and 7r(gc(p)) c flir(ga(p)). 0 

This theorem says that the extension of p is a subset of the intersection of the 

extensions of P1, ...,Pm. 
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Theorem 5.4 If pi( .... isa _+ p, ... ),...,pm( .... isa p,...) are m record types in the 

type system S. Then p ≤ p,1 ≤ i ≤ in, i.e., p is a upper bound of pi, under 

the relation ≤, and flir(ga(p)) 9 ir(gc(p)). 

Proof: Since lr(ga(pj)) 9 ir(gc(p)), so pi p,1 ≤ i ≤ in. Therefore lr(gc(p)) 2 

/ I 

3=1 (gc(pi)), 1 ≤ i ≤ M. 0 

This theorem says that the extension of p is a superset of the union of the ex-

tensions of Pi, ",Pm, or p is an upper bound of pj, ...,p,. For example, person is an 

upper bound of student and employee in Figure 4.1. 

Theorem 5.5 Let p be a record type with p(i.sa - Pi, ..., isa - p, 1in+1 

Pm+1)••,1n _-pn),1 ≤ in < ii, i .-p3 be a redefined property of p, in <s < ii. and 

Psi) ... ,p, 1 ≤ S1 ≤ ... s ≤ m have properties 13 - pt, J, - Pt respectively. 

Then 0(9L(13))(lr(ga(p))) n:tk (ga(p1)). 

Proof: We have that 

lr(ga(p)) ç ir(yc(p3 )), 1 ≤ j ≤ Ic and 

o(gL(i3))(1r(gc(p3 ))) 9 ir(gc(pt)), 1 ≤ i ≤ Ic. 

0(gL(13))(lr(ga(p))) 9 ir(ga(pt)), 1 ≤ i ≤ Ic. 

Therefore o-(gL(13))(lr(gc(p))) c flr(gc (PA .0 
Not all redefinitions are meaningful. The following theorem shows us the reason. 

Theorem 5.6 Let p be a record type with p(isa - p, ...,isa " Pm, 1m+1 

Pm+1) ..., in - p4,1 < in < n, i -+ p be a redefined property of p, m + 1 < s < n. 

and p. 1, ..., p, 1 ≤ s1 ≤ ... ≤ sk m have properties l - Pt1, . . .13 -4 pt,, respec-

tively. Then 'Jr(gc(p3)) c flr(gc(p)). 
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Proof: Suppose not lr(gc(p3)) fl fl_ 1ir(ga(p)) c fl 1r(gc(p1)), then there may 

exist an x, x E lr(gc(p)) such that o(gL(l3))(x)= y E lr(gc(p8)) \ fl 1ir(gc(p)). So 

we have x E lr(gL(p)) but not x E lr(gL(pj)), 1 ≤ i ≤ m, which contradicts our in-

tended semantics (by theorem 5.3). Therefore, we have 7r(gc(p3)) fl fl 1ir(gc(pj)) 

flt ir(ga(p)), which implies 7r(gc(p3)) ir(gc(pj)).D 

For example, look at the record type workingstudent in Figure 4.1. It is a 

subtype of student and employee of which both have property age -+ young and 

age - midage respectively. workingstudent redefines the property to be age -+ 

yrnage where lr(ga(ymage)) = lr(gc(young) fl ir(g0(midage)). Besides, employee 

has a property salary - employeesalary, workingstudent redefines this property 

to be salary -+ support and ir(ga(support) C ir(ga (employ eesalary)). Therefore 

this record type is meaningful. 

Definition 5.30 A record type is acceptable if it satisfies the theorem 5.6. A type 

system is acceptable if each record type in it is acceptable. 

Theorem 5.7 If that all types except set types in a type system S form a lattice 

under the subtype relation and for each record type p with p(isa -* P1, ..., isa - 

Pm, 1m+1 "Pm+i, -4 p,,), 1 ≤ m < n, where i -* i is a redefined property of p, 

m <S < n and pS1, ... ,pS ,1≤ si ≤ ... Sk ≤ m have properties l 

respectively, and p, is a greatest lower bound of Pt1, ..., Pt,, 

type system S is acceptable. 0 

in the lattice, then the 

This theorem shows how to syntactically check whether a type system is mean-

ingful or not. Clearly, the sample type system in Chapter 4 is acceptable. In the 

following discussions, all type systems of programs are assumed to be acceptable. 
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In the above discussion, we exclude set types. But directly from theorem 5.2(3), 

we have 

Theorem 5.8 If all types except set types in a type system S form a lattice under 

the subtype relation ≤ with all as the biggest element and none as the smallest 

element, then all set types also form a lattice with fall} as the biggest element and 

{none} as least element. 0 

Definition 5.31 Given an interpretation I, the intended semantics of objects is as 

follows: 

(1). For each basic object o E $ U Z U 0, its intended semantics is given by an 

unique element u E U such that 90(o) = U. 

(2). For each basic object f(oj, ...,o,j, its intended semantics is given by a unique 

element u E U such that go(f(oi,...,On) = U. 

(3). For each set object {Oi, ..., o,}, its intended semantics is given by a subset 

of U which is {go(oi),...,go(op)} C U. We use go({oj,...,op}) to stand for 

{go(oi),...,go (OX . 

(4). For each record object in the database, 

0: p(li 4 O1, ---,lm-1 °m-1, 1m {0m,1, •.., Om,km }, in ) {0,i, ... O,k}), 

the intended semantics is 

(a.) go (o) E lr(ga(p)); 

(b.) for each single-valued lable li3 O(YL(lj)) E r, a(gL(li))(go(o)) = 90 (0 i), 

1<i<m; 
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(c.) for each set-valued label ij, 

g(lj) E I, gO({oj,i, ..., Oj,iq }) g 0(gL(lj))(go(o)), m ≤ i:5 n; 

Definition 5.32 Let P = (S, DB, R) be a program and I be an interpretation. A 

record object in the database DB, 0 : p(li —+ 0, ... i, — On) is well-typed if there 

exist a record type p with p(li — pi, ..., in ) pn) in the type system such that 

go(oi) E lr(gc(pj)), 1 ≤ i ≤ n. The database DB is well-typed if every record object 

of it is well-typed. 

Unless specified otherwise, all DBs are assumed to be well-typed. 

Definition 5.33 A variable assignment, ii, is a ground substitution which assigns 

an element in U to a basic variable, a subset of U to a set-valued variable, a type in 

E to a type variable, and a label in r other than r3 to a label variable. Besides, it 

is extended to non-variable elements as follows: 

(1). if 0 E 0 U S U Z, then v(o) = go(d); 

(2). if 1 E £, then v(l) = 9L (1); 

(3). if c E C, then v(c) = gc(c); 

(4). if I E F, then v(f) = gp(f); 

= Igo (oi),...,go(on)}; 

if t is an S-term, then v(t) is still an S-term resulting from t by applying v to 

every object, label, type, variable, and object constructor of t. 
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Now I define the notion of well-typed basic S-terms, satisfaction of S-terms, rules 

and programs. 

Definition 5.34 Given an interpretation I and a variable assignment 11 well-typed 

basic S-terms are defined as follows: 

(1). For a basic S-term X : p, it is well-typed if u(X) E lr(gc(p)). 

(2). For a basic S-term t = X : p(li —+ X1, ..., i, -+ X,), it is well-typed iff there 

is a record type p with p(ii - P1, ..., in ) p) in the type system such that 

zi(X) E 7r(gc(p)), zi(X) E lr(z.'(pj)), (1 ≤ i ≤ n). 

Definition 5.35 Given an interpretation I and a variable assignment v, the satis-

faction of an S-term 1' by I and ii, denoted by =r u(5), is defined as follows: 

(1). For a basic S-term X : p, =' v(X : p) if X : p is well-typed. 

(2). For a basic S-term t = X : p(ij. - X1, ..., i, -+ Xn), H, 71(t) iff 

(a.) t is well-typed; 

(b.) o(gL(i))(u(X)) = u(X), 1 ≤ i ≤ n, if .q(l) E r; 

a(gL(i))(z1(X)) zi(X), 1 ≤ i ≤ n, if g(l) E T; 

(c.) if Xi is a set grouping variable and X2 = {Y}, then v(Y) E gL(i)zJ(X), 

(1<i<n). 

(3). For a typed S-term P := S, I=i zi(P := S) if u(P) E E, ir(v(P)) = u(S). 

(4). For a typed S-term 1= P(isa—* P1,...,isa—* Pm), iu(t) if 

u(P), v(Pi), ..., (Pn) E E, and ir(zi(P)) C ir(v(P)), 1 ≤ i ≤ n. 
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(5). For a typed S-term t = P(L1 —* F1, ...,L —* Ps), 1=' v(t) iff 

v(P), zi(Fi), ..., zi(P,) € F,, v(Li) € r — {Sisa}, and 

o(v(L))(ir(u(F))) 'ir(u(P1)), 1 ≤ i ≤ n. 

(6). For a typed S-term t = X : P(L1 — X1, ..., L — X), =i v(t) iff 

1=1 X: zi(P)(v(Li) —* X1, ..., v(L) —* X)). 

Definition 5.36 Given an interpretation I and a variable assignment 71, the satis-

faction of literals other than S-terms are defined as follows: 

(1). I=iu('bi =b2) iff v(b1) =u(02). 

(2). J=' V(i 0 02) iff u(&i) V(02)-

(3). i z.'(bi ≤ 02) iff v(b1) ≤ ii('2), if V(i), V(2) € Z, or 

v(bi) ç U(02) if v('i),zi(b2) CU. 

(4). = i v(1'i ≥ ) iff V(i) ≥ V(02), if V(01), V(02) € Z, or 

V(01) 2 V(2) if V(01)) V(02) CU. 

(5). 1=' V(01 <&2) iff v(&i) <U(2), u(i), v(&2) € Z, or 

V(01) C u() if V(01), V(02) CU. 

(6). = i V(01 > ) iff u(1i) > v(b2), z4&i), U(2) € Z, or 

ii(&) D v(&) if u(vi), u(&2) C U-

(7)- 1=' u(p; q) if Hi v(p) or Ii v(q) 

(8). If & is an S-term, = j v(-?k), iff not j=' v(b). 

Clearly, for a ground S-term '/', i.e, an S-term without variable, its satisfaction is 

independent of a variable assignment, and it can be simply written as =j- b. 
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Theorem 5.9 Let P = (S, DB, R) be a program and DB be well-typed. Then for 

each type p in the type system and each record object r in the database, we have 

I=ip and =ir. 0 

Definition 5.37 Let I be an interpretation r = p = pi, ...,p a rule, r if for 

each variable assignment ii, if =,- v(pi) for each p,l ≤ i ≤ n, then =i u(p), or for 

some variable assignment z.', not H1 v(pi) for some pi, 1 ≤ i < n. 

Note here that the treatment of attribute values of the set-valued labels of a 

record object or a basic S-term is different to those of the single-valued labels. Look 

at following example. 

phil : .student(name - p 'Phil', taking - {es213, es3ll}). 

jenny : student (taking - {X}) = phil: student (taking - {X}). 

Here, the first record object says that phil's name is exactly 'Phil' and can not be 

anything else. But the courses which phil takes include cs213 and cs3ll but is not 

restricted to them. There may be other courses. The rule says that all courses which 

phil takes are also taken by jenny, i.e., all courses which phil takes are included in 

the courses which jenny takes, but not the only courses which jenny takes. This 

representation of the attribute values of set-valued labels is natural. 

If we want to represent that all courses which phil takes are only {cs213, cs3ll} 

and all courses which jenny takes are only those which phil takes, i.e., the set in a 

record object or a basic S-term is exactly the attribute value of some set-valued label, 

then we have to introduce stratification on sets as LDL [4] does. In LDL, a program 

is stratified if we are able to label the predicate symbols of the program with non-

negative integers such that for every rule p( ... ) - Li,..., L, the label of a predicate 
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symbol appearing in the body within a negative literal or a literal containing set 

terms is less than the label of p, and the labels of the other predicate symbols in the 

body are less than or equal to the label of p. 

Also note that there is a major difference between S-logic and Horn-clause logic 

in their satisfaction of a rule. In Horn-clause logic, a rule is always satisfied by all 

interpretations, while in S-logic, a rule may not be satisfied by any interpretation. 

Two reasons for a rule in S-logic not to be satisfied based on the above definition. 

One is that the head of the rule which is a basic S-term is not well-typed. The other 

is that the head of the rule contains variables which do not occur in the body of the 

rule, or occur in the comparison expressions in the body. For example, suppose we 

have a rule f(X) : p(li -+ X, 12 - Y) X : q, where 11 and 12 are single-valued 

labels. This rule has a variable Y in the head but not in the body. For each variable 

assignment, we can assign Y a different value but assign X to the same one. So the 

head of the rule is not satisfiable but the body is. Therefore this rule is not satisfiable 

by any interpretation. Similarly, rules like 

f(X) : p(li - X, 12 - Y) X : q, Y = Z, 

f(X) :p(lj - 4 X,12 - Y) =X : q,Y> 5, 

f(X) : p(l -+ X, 12 -+ Y) X : q, Y 5, etc. 

are also not satisfiable. 

Clearly, we can have a syntactic restriction on rules to guarantee their satisfia-

bility. 

Theorem 5.10 A rule is satisfiable if all of its variables in the head also occur in 

the body rather than comparison expressions. 



CHAPTER 5. FORMAL PRESENTATION 75 

Since all variables in the head of a rule occur in the body, the type information 

is easy to obtain. Therefore it is straightforward to check whether the head is well-

typed or not. 

From here on, we assume that all rules are satisfiable. 

Definition 5.38 Let I be an interpretation and T be a set of S-terms or rules, T 

iffI=i Ti, TET. 

Theorem 5.11 Let P = (S, DB, R) be any program and DB well-typed. Then we 

have I=xSand =1 DB. ° 

In this thesis, I will only consider definite programs [29], i.e., the body of a rule 

has no negative basic literals. Programs with negative basic literals in the body of 

rules are quite complicated and will be explored later. Unless specified otherwise, all 

programs will be implicitly considered as definite programs from now on. 

Definition 5.39 Let I be an interpretation and P = (S, DB, R) a program, 

iffjSUDBUR. 

Based on theorem 5.11, we have 1=1 P ifF =' R. 

Hi P 

Definition 5.40 A model M of a program P is an interpretation such that I=M P. 

Definition 5.41 Let P be a program and F be a ground S-term. We say F is a 

logical consequence of P written as P J= F, if for every interpretation I of F, =i P 

implies that =' F. 

It is impossible to prove P H F by proving that for every interpretation I =i P 

implies =i F. The question can be changed to another one which is possible. 
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Definition 5.42 Let P be a program, we say P is unsatisfiable if no interpretation 

of P is a model. 

Theorem 5.12 Let P be a program and F be a ground S-term. Then F is a logical 

consequence of P iff P U {-iF} is unsatisfiable. 2 

Proof: Suppose that F is a logical consequence of S. Let I be an interpretation of 

P and suppose I is a model for P. Then I is a model for F. Hence I is not a model 

for P U {-iF}. Thus P U {,F} is unsatisfiable. 

Conversely, suppose P U {-'F} is unsatisfiable. Let I be any interpretation of L. 

Suppose I is a model for P. Since P U {-'F} is unsatisfiable, I can not be a model 

for -'F. Thus I is a model for F and so F is a logical consequence of P. 0 

Definition 5.43 Given a program P = (5, DB, R) and a query Q, an answer to 

the query Q is a variable assignment ii for all variables of Q such that P ii(Q). 

Applying these definitions to programs, we see that when we give a goal Q to the 

system, with program P loaded, we are asking the system to show that P U {-Q} is 

unsatisfiable. Theorem 5.7 states that showing P U {,Q} is unsatisfiable is exactly 

the same as showing that there exists v such that u(Q) is a logical consequence of 

P. 

To prove that P = Q where P is a program and Q is a query, the basic problem 

is that of determining the unsatisfiability, or otherwise, of P U {-iQ}. According 

to the definition, this implies showing every interpretation of P U {-iQ} is not a 

model. Needless to say, this still seems to be a formidable problem. However, like 

'The whole theory from here on is based on [29] 
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first-order logic, it turns out that there is a much smaller and more convenient class 

of interpretations, which are all that need to be investigated to show unsatisfiability. 

These are the so-called Herbrand interpretations. 

5.3 Herbrand Interpretations 

Definition 5.44 An interpretation H = (U, r, ga, g) go, g) is a Herbrand 

interpretation if the following conditions hold: 

(1). U=UU2 I*. 

IT - 1100Z=l IT. 
1* - 

U2=U2_l U{f(ol,...,ok):fisafunctorofarityk,andoEU_l,1≤j≤k} 

Uo=suzuo, 

(2). >=C. 

(3). r=c. 

(4). gc(p) = p, for every p E C. 

(5). gr..,(l) = 1, for every 1 E £. 

(6). go(o) = o, for every  E ZUSUO. 

(7). g(f) = f, for every f E F. 

The domains of different Herbrand interpretations are the same, which are U U 

E U r. Besides, types, labels objects and and object constructors are interpreted 

as themselves in Herbrand interpretations. Only the extensions of types and the 

mappings of labels may be interpreted differently. So we can just represent an 

interpretation by listing all the extensions of types and all mappings of labels. 
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Example 1: Suppose we have following program. 

(a). Type System 

p(f — integer). 
q(s —+ {integer}). 

(b). Database 

p(f 
02: p(f - 2). 

(c). Rules 

0: q(s —+ {X}) = P: p(f - X). 

Clearly the database and rules are well-typed. An interpretation for this program 

is 

I = 7r (P) = {oi,o2,o3},o'(f)(oi) = 1,0(f)(02) = 2,o(f)(o3) = 3, 

r(q) = {o}, cr(.$)(o) 2 {1,2,3}} 

It is more intuitive to represent the interpretation in the following way: 

I = f 0 : p(f - 1), 02 : p(f —i. 2), 03 : p(f —+ 3), o: q(s — {1, 2, 3})}. 

Later on, interpretations will be represented by listing all the extensions of types 

and all mappings of labels in the record object form. 

Definition 5.45 Given a program F, a Herbrand model is a Herbrand interpretation 

which is a model for P. 

For example 1, the interpretation I is obviously a model for the given program. 

Theorem 5.13 Let P be a program and suppose p has a model. Then P has a 

Herbrand model. 

Proof: Let I be an interpretation of P. We define a Herbrand interpretation I' as 

follows: 
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I'=IUI. 

I={s:s=p(li—.pj,...,l--+p)andI=is} 

It t o : All -+ -+ and I=:i t} 

It is straightforward to show that if I is a model, then I' is also a model. 0 

Theorem 5.14 (Herbrand Theorem) Let P be a program. Then P is unsatisfi-

able if P has no Herbrand models. 

Proof: If P is satisfiable, then the above theorem shows that it has a Herbrand 

model. 0 

To prove that P 1= Q where P is a program and Q is a query, the basic problem 

has now changed to prove that P U {-iQ} has no Herbrand models. We will see 

that we only need to consider a special Herbrand model which is the least Herbrand 

model. This model is precisely the set of record objects plus the type system. We 

will also obtain an importan.t fixpoint characterisation of the least Herbrand model. 

Unless specified otherwise, all interpretations from here on will be implicitly 

considered as Herbrand interpretations and all models as Herbrand models. 

Example 2: Look at the following program of which the type system is omited. 

f(P, H) : q(s -+ X) = P : p(s - X), H: h(s - X). 
Pi : AS -* {X}) = R: r(f - X). 

r(f - 1). 
h(s - {1}). 

Possible models for the program are: 

M1 = {ri : r(f -+ 1), h1 : h(s -+ {l}),pi : p(s - {1}), f(pi, h1) : q(s  

M2 = {r1 : r(f -+ 1), r2 : r(f -+ 2), h1 : h(s - 4 {1}),p' : p(s -* {l, 2}), 
f(pi, h1) : q(s -+ {l})}. 

M3 = {r1 : r(f - 1), r2 : r(f -+ 3), h1 : h(s -+ 1}), pi : p(s 1, 3}), 
f(pi, h1) : q(s - {1})}. 
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Definition 5.46 Let P be a program, I = (U, E, r, ir1, 0 i) ga, g, go, g) and 12 = 

(U) E, F, 72, 2, gc, gL, go, g) be two models of P. Then Ii is a sub-interpretation of 

12, denoted by I 12 if the following conditions hold: 

(1). 71 (P) C 72(P), for every p E E. 

(2). if o1(l) is defined on o E U then o-(l)(o) = o2(l)(o), for every single-valued 

label 1 E F+. 

(3). if o-j(1) is defined on o E U then cri(l)(o) C 02(l)(o), for every set-valued label 

1 E r. 

Clearly, M1 g M2, M1 g M3 but not M2 C M3 or M3 g M2 for Example 2. 

Immediately, we have the following theorem. 

Theorem 5.15 The sub-interpretation relation over all possible interpretations of 

a given program is a partial order. 0 

Definition 5.47 Let P be a program and 11 = (U,E,F,?r1,o-1,gc,gL,go,gp') and 

12 = (U, E, F,7r2,o2,gc) g, go, g) be two interpretations of P. The intersection 

I = (U,E,F,1r,o',gc,gL,go,gF ), of 11 and 12, denoted by I = 11 fl 12, is defined as 

follows: 

(1). 7r (p) c iri(p) fl 112(p), for every p E E. 

(2). o'(l) is defined on o E U if both oi(l) and o2(l) is defined on o, and cri(l)(o) = 

E ir1(p), o e 7r2 (P), for some p E E, then o(l)(o) = o1(l)(o) and 

o E ir(p) for every single-valued label 1 E 1. 
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(3). o, (1) is defined on o € U if both cri(l) and 02(l) is defined on o, and o E ir1({p}) 

and o E ir2({p}) for some p e J, then o(l)(o) = c.ri(l)(o) fl 02(l)(o) and o E 

ir({p}), for every set-valued label 1 E r. 

The intersection of interpretations has the following properties. 

Theorem 5.16 The relation fl over interpretations of a given program is commuta-

tive and idempotent i.e., I fl 12 = '2 nIl and I nh = I for any two interpretations 

11 and '2. 0 

Theorem 5.17 The relation fl over interpretations of a given program is associative, 

i.e., I fl ('2 fl 13) = (11 fl '2) fl 13 for any three interpretations Ii, '2 and 13. 

Proof: Let 

= (u,E,r,'/rl,l,gc,gL, go, gF), 

'2 = (u,>,r,2,2,ga )gL,go,gp), 

13 = (U,E,r,R-2,o-2,yo )YL,go,gp), 

'23 = '2 fl 13 = (U, r,r,1r23,4723,gC,gL )go,gF), 

112 = I, n 12 = (u,E,r,11-12,012,gc,gL )go,gF), 

1123 'in 123 = (u,E,r, -123,l23,gc,gL,gO )gF), 

1123 = 112 fl 13 = (U,E,F,7r 23 ,o 23,gc,gL,go,gF), 

Now we prove that 1123 = 

For 123 we have 

R23(p) 9  ir2(p) 

023(l)(0) = a2(l)(o) = 03(l)(o) if 02(l)(o) = cr3(l)(o) for every 1 E r, 

023(1)(o) = a2(l)(o) fl a3 (l) (o) if 02(l) and o,3(l) are defined on o for every 1 € F; 
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So for '123 we have 

7r123(p) g 7ri(p) n ir23(p) c iri(p) fl ir2(p) fl ir3(j), 
c7123(l)(0) = oi(l)(o) = r23(l)(o) if o1(l)(o) = r23(l)(o) for every 1 E r, i.e., 
0123(l)(o) = cri(l)(o) if oi(l)(o) = 02(l)(o) = o3(l)(ô) for every 1 E F+, 

0123(l)(o) o1(l)(o) fl cr23(l)(o) = or, (l)(o) fl o2(l)(o) fl 03(l)(o) if o(l), o'2(l) and 

0-3(l) are defined on o for every 1 E T; 

Similarly for '123 we have 

i423(p) iri(p) fl ir2(p) fl 7r3(p), 

0123(l)(o) = o1(l)(o) if ai(l)(o) = o2(l)(o) = o3(l)(o) for every 1 e 

o-123(l)(o) = o-i(l)(o) fl cr(l)(o) fl o3(l)(o) if o'i(l), 0-2(l) and 0-3(l) are defined on o 

for every 1 E r; 
Therefore we have p123 = 123• Now we prove that ir123 = r123. In fact, we 

only need to prove that for every record type p E E 7r123 (p) = ir123 (p). For every 

object o E ir123(p), it has to satisfy all the properties of p under the mapping l23. 

Since 0 l23 = o also satisfy all the properties of p under the mapping 0-123, so 

o E 11123(p). For the same reason, for every object o C ir123(p) we have o C 

Therefore 11123 = 11123. 0 

Theorem 5.18 (Model Intersection Property) Let P be a program and {M} 1 be 

a non-empty set of models for P. Then the intersection fl€iM is also a model for 

P. 

Proof: Let M = fljEIMj. Clearly, M is an interpretation for P. If M is not model 

for F, then either some record types, record objects or rules are not satisfied by M. 

It is trivial to show that M must satisfy the type system of the program F. 
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Suppose that a record object t = o : p(f --+ 01, .s -* {o31 , ..., o8 }) can not be 

satisfied by M. Since M, i E I are models of F, then I=M1 t. That is, o E lrj(p), 

cr1(f)(o) = 01, {o31, ... ,o3 } o(s)(o), for all i El, i.e., fliElo-i(s)(0). 

Therefore I=M d, which is a contradiction. 

Suppose a rule r = p = Pi, ...,p, can be satisfied by M1, but not M. If one of M 

can not satisfy the body of the rule, then M can not satisfy the body therefore satisfy 

the rule. So suppose all Mi can satisfy the body. Let X1, ..., Xm be all the basic 

variables and }', ..., Y, be all the set-valued variables in the body of the rule. Let 

111,i E I be a variable assignment such that 1M1 vi (r) If all variable assignments are 

the same, then I=M vj(r), which is a contradiction. If some variable assignments are 

different only on some of I', ..., Y,, then we still have =M vi (r) based on the definition 

of the satisfaction of the basic S-terms for set-valued variables, which is another 

contradiction. If some variable assignments are different on some of X1, ..., Xm, let 

ii = fljzij, then there must be some pi such that not IM v(pj), therefore J=M r, 

which is still a contradiction. 0. 

Definition 5.48 A model M of F is minimal if for each model N of F, if N C M 

then N=M. 

Theorem 5.19 If a program P has a model, then it has a unique minimal model 

which is the intersection of all possible models for P denoted Mp. 0 

Note that the intersection of all possible models for P is just the greatest lower 

bound of all possible models. 

For example 2, the minimal model is M1 which is equal to the intersection of 

M1, M2, and M3. If we define the union of two interpretations in a similar way, we 
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will note that the union may even not be an interpretation. For example, the union 

of M2 and M3 will contain r2 : r(f -+ 2) and r2 : r(f - 3). Therefore all possible 

models of a program forms a meet-semilattice. 

Theorem 5.20 Let P be a program. Then Mp = IF: F is a logical consequence 

of P}. 

Proof: We have that 

F is a logical consequence of P. 

if P U {-F} is unsatisfiable, by theorem 5.7. 

if P U {-tF} has no Herbrand models, by theorem 5.9. 

if for every Herbrand model M of F, not I=M -'F. 

1ff for every Herbrand model M of F, =M F. 

iffFEMp. 0 

If a program has a unique minimal model, then it can be found by the operator 

defined as follows. 

Definition 5.49 Given a program P and an interpretation I, then 

Tp(I) = {v(p) : p = p, ...,p E B, there exists 1 such that zi(pj, ...,p)}. 

Clearly, Tp is monotonic, i.e, if I c '2, then Tp(Ii) C Tp(I2). 

Theorem 5.21 Let P be a program and I be an interpretation of P. Then I is a 

model for P if Tp(I) C I. 

Proof: I is a model for P 1ff for each rule p = p, ...,p, in F, we have 

= i v({pj,...,p}) implies 1=' u(p) if Tp(I) C I. 0 
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Theorem 5.22 Let L be a meet-semilattice and T : L --+ L be monotonic mapping 

and T(x) ≤ x. Then T has a least fixpoint lfp(T) = glb{x : T(x) ≤ x}. 3 

Proof: Put G = {x : T(x) ≤ x} and g = glb(G). We show that g E G. Now g ≤ x 

for all a E G, so that by the monotonicity of T, we have T(g) ≤ T(x), for all x E G. 

Thus T(g) x, for all x E G, and so T(g) ≤ g, by the definition of gib. Hence 

gEG. 

Next we show that g is a fixpoint of T. It remains to show that g ≤ T(g). Now 

T(g) ≤ g implies T(T(g)) ≤ T(g) implies T(g) E G. Hence g ≤ T(g), so that g is a 

fixpoint of T. 0 

Definition 5.50 The powers of the operator Tp is defined as follows: 

TpO=DB 

Tpn=Tp(TpIn-1)UTptn-1,(n≥1) 

Tp I w = lub{Tp T n : w denotes the first ordinal number and n. E w} 

Theorem 5.23 The powers of the operator Tp has the following properties. 

(a). For all a, Tp T a C lfp(Tp). 

(b). For allaEw, TpaçTp1(a+1) 

(c). For all a,/3 Ew, ifaf3, then TpacTp1/3. 

(d). Fora1la,/3Ew,ifa</3andTpa=TpI/3,thenTpIa=lfp(Tp). D 

Theorem 5.24 Let X = {Tp T n : n E w}. Then X is directed, i.e., every finite sub-

set of X has an upper bound in X, and zi({p1, ...,p,}) 9 lub(X) iff u({pi, ...,p}) c I, 

for some I E X. 

31n [29], this theorem holds for complete lattice, here I prove it also holds for meet-semilattice. 
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Proof: The first part of the theorem is straightforward. For the second part, it is 

trivial that zi({p1, ...,p,}) 9 I implies v({p1, ...,p,} C lub(X). 

Assume that u({p1, ...,p,}) 9 lub(X). Then for each i, 1 ≤ i ≤ n, we have 

v(pi) E lub(X). If not v(pi) € I for all I € X, then not V(pi) € lub(X), which is a 

contradiction to assumption. Therefore, for each V(pj), there is some 1i € X where 

v(pi) E I. Since there are only a finite number of 1i and every finite subset of X 

has an upper bound in X (part one of the theorem), we have some I E X such that 

1= lub({I1,...,I}) and U({pi,...,pn}) C I. ° 

Theorem 5.25 Let P = (S,DB,R) and X = {Tp T n : n E c'}. Then Tp is 

continuous on X, i.e., Tp(lub(X)) = iub(Tp(X)), and Tp T w = ifp(Tp). 

Proof: Now we have that 

v(p) E Tp(lub(X)) 

if p '= Pi, ...,p, E Rand v({pi, ...,p,}) lub(X) 

1fFP P1,•,Pn € Rand v({pi,...,pn}) I, for some 1€ X 

by theorem 5.24 

if v(p) E Tp(I) for some I € X 

if u(p) € lub(Tp(X)). 

So we have Tp(lub(X)) = iub(Tp(X)). 

For the second part of the theorem, we have that 

Tp(Tp ' w) = Tp(lub(X)) = iub(Tp(X)) = lub{Tp(Tp T n) : n € w} = 

Tplw. 

SoTpw=lfp(Tp). 0 
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Theorem 5.26 Given a program P = (S, DB, R) which has a unique minimal 

model M, then Tp T w exists and Tp T w = M. 

Proof: Mp = glb{I : I is a model for P}, by theorem 5.19 

glb{I: Tp(I) 9 I}, by theorem 5.21 

lfp(Tp), by theorem 5.22 

= Tp T w, by theorem 5.25. 0 

Theorem 5.27 Let P be a program and Q be a query. Suppose ii is variable 

assignment, then ii is an answer to the query Q 1ff =Mp v(Q). 

Proof: (Only if part:) We have that 

P = v(Q) by definition 5.43 

implies that for every model M of F, I=M v(Q) 

implies that for least (Herbrand) model Mp, IMp v(Q) 

(If part:)Now we have I=mp 71(Q) 

implies F=M v(Q) for every (Herbrand) model M 

implies not M  -'v(Q) 

implies P U {,v(Q)} has no (Herbrand) models 

implies P U {-iv(Q)} has no models by theorem 5.14 

implies P U {-iv(Q)} is unsatisfiable by definition 5.41 

implies P 1= v(Q) by theorem 5.12. 0 

According to the above theorem, to prove that P = v(Q) where P is program 

and Q is a goal, we just need to consider the least (Herbrand) model Mp of P. If 

Mp v(Q) then v is an answer to the query Q, otherwise it is not an answer. This 

concludes the whole theory for an S-logic program without negation. 



Chapter 6 

Transformation into First-Order Logic 

Chapters 4 and 5 have shown that S-logic has an expressive syntax and sound se-

mantics. This chapter will show that S-logic is also implementable in practice. It 

will show that satisfiable S-logic programs and queries can be transformed into a 

first-order Horn-clause logic program and queries and get correct answers. However, 

unsatisfiable programs can still work but generate undesired results. 

6.1 Transformation of Type System 

A type in S-logic is a name which has two aspects: extension and intension. The 

extension of a type is the set of all known objects belonging to this type, the intension 

of a type is the properties all objects belonging to this type have to have. So, each 

type of S-logic is transformed into four predicates: class, attribute, class-object, and 

class_set, class is used for denoting the existence of a type. If p is a type, then we 

will have class(p) after the transformation. attribute is used for the intension of a 

type. If p has a property b - 4 c, then we will have attribute(p, b, c). class-object 

is used for denoting that an object is known to belong to a class. If c is an object 

in type p, then we will have class_object(p, c). class-set is used for the extension of 

a type. If p is a finite type, and {ai, ..., a,} are all elements of this type, then we 

have class_s et(p, jai, ..., a}). If p is a infinite type, then it is impossible to list all its 

extension. We can still use p to represent its extensions, so we have class_set(p,p). As 

88 
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well, another predicate isa is used to represent subtype relationships over the abstract 

types. If we know student is a subtype of person, then we have isa(student,person). 

6.1.1 Transformation of Basic Types 

It is supposed that there are two built-in predicates: integer(X) and string(X) in 

the intended first-order logic. First, we have a general rule saying that every basic 

type is a type: 

class(X) : —basic..elass(X). 

Then for each basic type, we transform it into a predicate basic-class. The following 

transformations of the two basic types, integer and string are always included in 

the transformed program of S-logic. 

basic...cla.ss(integer). 
class -object (integer, X) : —integer(X). 
class -set (integer, integer). 

basic-class (string). 
class -object (string, X): —string(X). 
class -set (string, string). 

The basic types of S-logic other than integer and string are transformed as 

follows: 

. If we have s = string({ai, ..., a,}) in the program F, then it is transformed 

into 

basicclass(s). 
class..object(s, X): —class(string), class -object (string, X), 

(X = a1; ... ; X = an). 
c1ass.set(s, X) : —class(s), setof (Y, class.i.bj ect(s, Y), X). 

. If we have s = integer({lb. .rb}) in the program F, then it is transformed 

into 
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basic.c1ass(s). 
class...object(s, X) : —class(integer) , class..nbj ect(integer, X), 

X≥lb,X≤rb. 
class...set(s, X) : —class(s), setof (Y, class...obj ect(s, Y), X). 

In fact, the above rules for predicate class-set can be extended to the following 

general rule which applies to all types, so that we do not need to have one for each 

type. 

class..set(S, X) : —class(S), 
setof (Y, class...obj ect(s, Y), X), 
X 0 integer, X 0 string. 

The transformations of gender = string({ 'Male', 'Female j) and agetype = 

integer({ 1..120}) are as follows: 

basic...class(gender). 
class...object(gender, X) : —class(string), class...obj ect(string, X), 

(X = 'Male'; X = 'Female'). 

basic...cla.ss(agetype). 
class_object(ageiype, X) : —class (integer) , class..obj ect(integer, X), 

1≤X≤120. 

6.1.2 Transformation of Set Types 

First, it is assumed that the transformed first-order logic has the setof predicate 

which treats a set as a list. It is trivial to define subset predicate over lists. According 

to the semantics of S-logic, if we have p which is either a basic type, a record type, 

or a built-in type, than we automatically have a set type {p}. But a set set type 

like {{p}} is not allowed. So we have the following transformation. Besides, built-in 

types are used only for the semantics of S-logic programs so that we do not need to 

include them in the transformed program. 
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class(set(S)) : —basic...ciass(S); 
record_class(S). 

ciass_object(set(S),X) : —class(set(S)), 
setof(Y, ciass..obj ect(S, Y), Z), 
subs et(X, Z). 

6.1.3 Transformation of Record Types 

The existence of record types is represented by the predicate record-class. The 

following rule is included in the transformed program which says that every record 

type is a type. 

class(X) : —record_class(X). 

For each record type without isa label p(ii. - pi, ..., in -+ pa), its transformation 

is 

record_class (p). 
attribute(p, 11, pi) : —class(pi). 

attribuie(p,l,p) : —class(p). 

For each record type with isa label 

p(isa -4 pi, ..., isa ) Pm, 1m+1 ' Pm+i, ..., Ln —f p_n), 

its transformation is 

record_class (p). 
isa(p,pi) : —class(pi). 
class_object(pi, X) : —class..object(p, X). 
attribute(p, X, Y) : —attribute(pi, X, Y), X =h im +1, ..., X 54 in. 

isa(p,pm) : —class(pm ). 
class -object (pm, X) : —class_object(p, X). 
attribute(p, X, Y) : —attribute(pm, X, Y), X lm +1, ..., X In-

attribute(p, 1m+1, Pm+i) : —class(p), class(pm+i). 
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attribuie(p, : —class(p) , c1ass(p). 

For example, if there are two record types of S-logic 

person(name -+ string, 
sex -+ gender, 
age -+ agetype, 
address -* string). 

siudent(isa -+ person, 
age - p young, 
studying-in - dept, 
taking - {course}, 
borrowing - {book}). 

Their transformations are 

record_class (person). 
attribute(person, name, string) : —class(string). 
attribute(person, sex, gender) : —class (gender). 
attribute(person, age, agetype) : —class (agetype). 
attribute(person, address, string) : —class(string). 

record-class (student). 
isa (student, person) : —class(per.son). 
class -object (person, X) : —dass...object(student, X). 
attribute(student, X, Y) : — attribute (per.son, X, Y), X h age. 
attribute(student, age, young) : —class(young). 
attribute(student, studying-in, dept) : —class(dept). 
attribute(student, taking, set(course)) : —class (set(course)). 
attribute(student, borrowing, .set(book)) : —class(set(book)). 

6.1.4 Transformation of the Built-in Types 

The existence of built-in types is represented by the predicates built-in..elass(all), 

and built-in -class (norte). The following rules are included in the transformed pro-

gram which says that built-in types all and none are classes, all existing objects are 

also objects of all and all existing properties are also properties of none, and all is 
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a supertype of all existing types and none is a subtype of all existing types. 

class(X) : —built-in-class(X). 
class..object(P, X) : —class...object(all, X). 
attribute(none, X, Y) : —attribuie(P, X, Y), class(P), P 0 none. 
isa(X, all): —class(X), X 54 all. 
isa(none, X) : —class(X), X 54 none. 

A complete transformation of the sample type system of Chapter 4 is given in 

Appendix A. 

6.2 Transformation of the Database 

The database determines the extension of record types. It tells which type a record 

object in the database belongs to and what properties are known. 

Let o : p(li -+ 0i, ..., l, -+ o,) be a record object of the database. According to 

the definition, there is a record type p in the type system with properties i - p, 1 ≤ 

i ≤ n and o E p, oi E Pi, 1 ≤ I ≤ n. Two predicates class-object and attribute-value 

are used for the transformation. The first is used for the extension of a type, the 

other is used for the intension of an object. Set objects are represented by a list. 

According to the semantics of a record object, we can have following transformation: 

classobject(p, o) 
attribute_value(o, li, O) : —attribute(p, III Pi)) 

classobject(pi, 01). 

aUribute...value(o, l, o) : —attribute(p, li,pfl), 
class -object (p, on). 

However this transformation is not convenient because it needs to refer to the 

type system. It can be changed into a convenient transformation with a general rule 

as follows: 
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class...object(p, o) 
attn but e_valueO(o, 11, 01). 

attribute_vaiueO(o, l, o,). 

attribute_value(O, L, O) : —attribute_valueO(O, Ii, Or), 
attnibute(P, L, F1), class..object(P, 0), class_obj ect(P1, Or). 

For example, suppose we have following record objects in the database: 

sally: personi(name -* 'Sally', sex - 'Female', age -* 14). 

john : person(name -* 'John', sex - 'Male', age - p 62, 
address - '439 5th Av NE'). 

jenny : student(name -+ 'Jenny', sex - 'Female', age - 24, 
studying-in -+ math, taking - p {m203,m321,es213}). 

Their transformations are 

class...object(person, sally). 
attn but e_valueO(sally, name, 'Sally'). 
attnibute..valueO(sally, sex, 'Female ). 

attni but e_valueo(sally, age, 14). 

class -object (person, john). 
attnibute_valueO(johni, name, 'John'). 
attribute_valueO(john, sex, 'Male'). 
aitribute_valueO(john, age, 62). 
attribute_valueO(john, address, '.439 5th Av NE'). 

class -object (student, jenny). 
attnibute_valueO(jeriny, name, 'Jenny'). 
attnibute_valueO(jeriny, sex 'Female'). 
attnibute_valueO(jertny, age, 24). 
attnibute_valueO(jenny, studying-in, math). 
attnibute_valueO(jenny, taking, [m203, m321, cs213]). 

attnibute_value(O, L, O) : —attribute...valueO(O, L, Or), 
attnibute(P, L, .P1), class..object(P, 0), class -object (Pi, Or). 

A complete transformation of the sample database of Chapter 4 is given is Ap-

pendix B. 
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6.3 Transformation of S-terms 

For each basic object, type, label, object constructor, basic variable, or set-valued 

variable, its transformation is still itself. For each set object, its transformation is a 

list. Empty list []means an empty set. For example, the transformation of {a, b, c} 

is [a, b, c]. Although a list structure is not a real set, the transformed program will 

treat it as a real set. The set-grouping variable will be transformed based on the 

context. 

Transformation of Basic S-terms 

• For a basic S-term X : p, its transformation is 

ciass_object(p, X). 

• For a basic S-term X : p(ii _+ Xi, •• Xm, 1m+1 {Xm+i}, In {X}), 

its transformation is 

cia.s.s(p), 
cla.ss...object(p, X), 
attribute(p, 11, pi)) 

attribute(P) i,,, F,.,), 
attribute_value(X, 11, X1), clas-object (p1 , X1), 

aUribute_value(X, In, Xm ), class -obj ect (pm, Xm ), 
aUribute_value(X, 1m+1, Ym+i), member(Xm+i, Ym+i), 

ciass.object(pm+i, Ym+i), 

attribute_value(X, 1,,, Yn), rnember(X, Y), 
ciass...object(pn, Y). 



CHAPTER 6. TRANSFORMATION INTO FIRST-ORDER LOGIC 96 

Transformation of Type S-Terms 

• For a typed S-term P := S, its transformation is 

class(P), 
class..sei(P, S). 

• For a typed S-term P(isa -+ Pi,..., isa -f Ps), its transformation is 

class(P), 
clas.s(Pi), 

class(P,,), 
isa(P, P1), 

isa(P, Ps). 

• For a typed S-term P(L1 - F1, ...,L -+ P,), its transformation is 

class(P), 
class(Pi), 

class(P,,), 
attribute(P, L1, F1), 

attribute(P, L, Pa). 

• For a typed S-term X:P(Li _ Xi, ...,Lm 4 X,,,, L,,,+, ) {X,ni }, L 

{X}), where F, L1,..., L, might be variables, its transformation is 

class(P), 
class.object(P, X), 
attribute(P, L1, F1), 

attribute(P, Lm, Pm ), 
attribute(P, Lm+i, Fm+i), 

attribute(P, L, Pa), 
attribute_value(X, L1, X1), class -object (Pi , Xi), 

attribue_value(X, Lm, Xm ), class.obj Ct(Pm, Xm), 
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attribute_value(X, Lm+i, Ym+i), member(Xm+i , Yrn+i), 
class...objeet(Pmi, Ym+i), 

attribute_value(X, L, Y), member(X, Y), class.obj ect(P, Y). 

6.4 Transformation of Rules 

A rule consists of a head and a body of the form p = body. The body is a collection 

of basic literals which are either basic S-terms, negation of basic S-terms, disjunc-

tive basic S-terms or comparison expressions. The previous section showd how to 

transform basic S-terms. Let 0 be a basic S-term and trans('1) stand for the trans-

formation of 0. For a negation of basic S-terms - i&, its transformation consists of the 

negative sign followed by the transformation of the basic S-terms without negation, 

i.e.trans(-iO) = —(trans()). For a disjunctive basic S-term ''i; 02, it transforma-

tion irans(''i; '2) = trans(&i); trans(,&2). For comparison expressions, their trans-

formation are simply themselves, i.e., trans(?/'iO/'2) =trans('bi) Otrans(i/'2), where 

o € {=, , ≥, >, <} and 01 ,02 are basic variables or basic objects. The transfor-

mation of the body of a rule is the conjunction of the transformation of the literals 

in the body. Later on trans(body) will be used to stand for the transformation of the 

body. The transformation of the head of a rule is different from the transformation 

of an S-term, which depends on the usage of the rule. 

Rules are used in two different ways. One is to deduce attribute values for 

existing objects. The other is to construct new objects and obtain their attribute 

values. These two usages lead to two slightly different transformations of the head 

of rules. The transformation of the body for both cases are the same. 
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Let X : p(ii _+ Xi,..., i,n Xm, 4n--i {X.+,}, L. - {X}) = body be a rule, 

where X is either a basic variable or a basic object, p is a type, i, 1 ≤ i < n are 

labels, X, 1 < i < n are basic variables. This rule is used to deduce n attribute 

values for objects of type P. Its transformation is the following n sets of rules in 

first-order logic, each of which is used for one attribute value. 

attribute_value(X, 1, X1) : —class(p), ciass.obj ect(p, X), 
attribute(p, 11, F1), class -object (Pi, X1), trans(body). 

attribute_value(X, im, Xm) : —ciass(p) , class..object(p, X), 
attribute(p, im, Pm ), class -object (Pm, Xm), trans(body). 

attribute_vaiuel(X, i,n+1, Xm+i) : —class(p) , class..obj ect(p, X), 
trans (body). 

attribute_value(X, 1m+1, Ym+i) : —attribute(p, 1m-j-1 Pm+i), 
setof(Xm+i, attribute_valuel(X, 1m+1, Xm+i), Ym+i), 
class -object (Pm+i, Ym+i), 

attribute_vaiuel(X, i,,, X,) : —class(p) , cia.ss...obj ect(p, X), 
trans(body). 

attribute_value(X, i,,, Y,) : —attribute(p, in, F), 
setof(X, attribute_vaiuel(X, in, Xn), Yn), 
class -object (Fn, Y), 

For example, given two S-logic rules of this kind: 

(1) X : person(address —Y) A≤2O 
X : person(age — A, father —f 
Z : person(address - Y). 

(2) X : employee (heading -* {Y}) = 

Y: empioyee(working_in —* D), 
D : dept(head -4 X). 

Their transformations are: 
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(1) attribute_vaiue(X, address, Y) : —class(person), 
ciass_object(person, X), attribute(person, address, F1), 
ciass..object(Pi, Y), A ≤ 20, class(person), 
class_object(person, X), attnibute_value(X, age, A), 
attribute(person, age, F2), class..obj ect(F2, A), 
attnibute_value(X, father, Z), attribute(person, father, F3), 
clas.s_object(P3, Z), class(person) , class_obj ect(person, Z), 
attnibute_valzze(Z, address, Y), 
attribute(person, address, F4), class -object (P4, Y). 

(2) attnibute_valuel(X, heading, Y) : —class (employee), 
class -object (employee, X), class (employee), 
class -object (employ ee, Y), attn bute_value(Y, working-in, D), 
attribute(empioyee, working-in, F2), class -object (F2, D), 
class(dept), class -object (dept , D), attribute_value(D, head, X), 
attnibute(dept, head, F3), class_obj ect(F3, X). 

attribute_vaiue(heading, X, Z) : — attribute (empioyee, heading, F1), 
setof(Y, attn bute_valucl(heading, X, Y), Z). 
class -object (Fi, Y), 

Let f(X,,.., X,,,,) : p(ii -> Y1, ..., 1,,, -* {Y}) = body be a rule, where f is an 

rn-ary function, X, 1 ≤ i ≤ m are basic variables or basic objects, Y2, 1 ≤ i ≤ n are 

basic variables and i, 1 ≤ i < n are labels. This rule is used to construct objects 

and obtain their attribute values. Its transformation is slightly different from the 

transformation of the above rule which has one additional rule for the constructed 

object as follows, in addition to the n sets of rules for attribute values: 

ciass_object(p, f(X1, ..., X,)) : —class(p), trans(body). 

For example, given an S-logic rule of this kind: 

id(X, Y) : family(father - X, mother - Y, children -+ {Z}) <= 
Z : person(fat her -* X, mother - Y). 

The transformation is: 
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class..object(family, id(X, Y)) : —class(family), 
class (person), clas&.obj ect(person, Z), 
attribute_value(Z, father, X), attribute(person, father, F4), 
class -object (P4, X), attribute..value(Z, mother, Y), 
attribute(person, mother, F5), class -object (F5, Y). 

attribute_value(id(X, Y), father, X) : —class(family), 
class -object (family, id(X, Y)), attribute(family, father, F1), 
class_obj ect(Fi, X), class(person), class_object(person, Z), 
attribute_value(Z, father, X), attribute(person, father, F4), 
class..object(F4, X), attn bute..value(Z, mother, Y), 
attribute(person, mother, F5), class -object (Fs, Y). 

attri bute_value(mot her, id(X, Y), Y) : —class(family), 
class...object(family, id(X, Y)), attribute(family, mother, F2), 
class_object(P2, Y), class (person), class -object (person, Z), 
attnibute_value(Z, father, X), attribute(person, father, F4), 
class...object(P4, X), attn bute_value(Z, mother, Y), 
attribute(person, mother, F5), claas..obj ect(Ps, Y). 

attribute_valuel(children, id(X, Y), Z) : —class(family), 
class...object(family, id(X, Y)), 
clas.s(person), class -object (person, Z), 
attnibute_value(Z, father, X), attribute(person, father, F4), 
class -object (P4, X), attn bute_value(Z, mother, Y), 
attribute(person, mother, F5), class -object (Fs, Y). 

attribute_value(id(X, Y), children, A) : —attribute(family, children, F3), 
setof(Z, attn but e_valuel(id(X, Y), children, Z), A). 
class..object(F3, A). 

It is trivial to eliminate the redundancy in the transformed program. A complete 

transformation of the sample rules of Chapter 4 is given in Appendix C. 

6.5 Transformation of Queries 

A query is a conjunction of literals starting with the question mark. Its transforma-

tion is just the conjunction of transformed literals. Section 6.3 already shows how 
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to transform S-terms which are either basic S-terms or typed S-terms. Let S1, S2 

be any two S-terms and their transformations are trans(Si) and trans(52). For 

a negative literal -iSi, trans(-iS1) = -iirans(Si). For a disjunctive literal S1; 82, 

irans(Si; S2) = irans(Si); trans (S2). For comparison expressions 01 = 02, 01 0 02, 

their transformations are just themselves. For comparison expressions 01 ≤ 02, 

&i ≥ 02, &i <b2, &i > 2, their transformation depending on whether or not 0142 

are basic variables or basic objects. If 01 and &2 are basic variables or objects, then 

the transformations of above comparison expressions are themselves. If 01 and 02 

are set-valued variables or set objects, then the transformation are as follows: 

• For &i ≤02, it is transformed into subs et(I'i, /'2); 01 = 1'2. 

• For ?/'l ≥ '2, it is transformed into subset(&2, &i); ?&i = &2. 

• For 01 > &2, it is transformed into subs et('ib2, 01 t'2. 

• For 01 <&2, it is transformed into subset( i, 1'2), 01 

For example, given four queries of S-logic as follows: 

(1)?X : person(age -f Y, sex -+ Z), Y ≥ 50. 

(2)?bookstore : dept(staff -* {X}), X: employee(salary - p Y). 

(3)?smiTh : X(L - 4 Y). 

(4)?P1 := 51,P2 := S2, S, < 82. 

Their transformations are 

(1)? - class (person), clas&..obj ect(person , X), 
aitribuie...value(X, age, Y), attn bute(penson, age, 
class -object (F1, Y), attribute_value(X, sex, Z), 
attnibute(person, sex, F2), classobj ect(P2, Z), Y ≥ 50. 
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(2)? - class(dept), attn buie_value(bookstore, staff, Z), 
attnibuie(dept, staff, F1), class.obj ect(Pi, Z), mem(X, Z), 
class (employee), class -object (employee, X), 
attn but e...value(X, salary, Y), at,tribute(employee, salary, F2), 
class -object (F2, Y). 

(3)? - class(X), class.obj ect(X, smith), 
attribute.i,alue(smith, L, Y), aitribute(X, L, F'1), 
class -object (P1, Y). 

(4)?— class(Pi),class...set(Pi, Si),class(F2),class...set(P2, S2), 
subs et(Si, S2). 

A complete transformation of the sample queries of Chapter 4 is given in Ap-

pendix D and Appendix E. 

I have run the sample examples by using NU-Prolog, which gives me satisfcatory 

answers. 



Chapter 7 

Conclusion and Further Work 

Approaches to deductive databases are torn by two opposing forces. On one side 

there are the stringent real-world requirements of actual databases. The requirements 

include efficient processing as well as the ability to express complex and subtle real-

world relationships. On the other side are the simple and clear semantics of logic 

programming and its deductive power. The need for expressiveness has forced the 

deductive models away from their simple roots in logic programming. 

In this thesis, I have shown two major problems underlying the first-order logic 

languages and examined several solutions to these problems. One is complex object 

modeling, the other is the ability to represent higher-order features. For complex 

object modeling, we need to represent object identity, data abstractions and inheri-

tance. For higher-order features, we need to represent higher-order queries and sets. 

There is no direct way to represent these in first-order logic. 

I propose a higher-order language called S-logic in an attempt to solve these 

two problems. S-logic supports object identity, data abstractions and inheritance, 

schemas, sets, and higher-order queries in a uniform way. Its definite programs have 

a well-defined least fixpoint semantics. Programs which in LDL do not have models 

have models in S-logic. 

The treatment of multiple inheritance in S-logic is also noteworthy. In S-logic, 

objects are grouped into classes called types and types can be organized into a 

subtype hierarchy. Subtypes inherit all the properties of their supertypes and may 
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have their own properties and may redefine (or restrict) their supertypes' properties. 

Inheritance can be either single or multiple. In the case of single inheritance, the 

subtype hierarchy has the form of a tree, i.e., every type has a unique supertype. In 

the case of multiple inheritance, a subtype can has more than one supertypes, the 

subtype relation forms a lattice. Multiple inheritance is more elegant than single 

inheritance, but more difficult to handle normally. In this thesis, I have given a clear 

set-inclusive semantics to multiple inheritance in S-logic. 

I have also shown that S-logic can be transformed into Prolog so that S-logic is 

implementable in practice. Of course, S-logic is intended as a real deductive database 

language, and how to efficiently implement S-logic is a worthwhile topic for further 

research. 

The theory developed here only applies to definite programs, i.e., the body of 

a rule in a program has no negation. Further work is needed to explore normal 

programs which include negation. It seems that a theory of negation can be developed 

similar to the stratification theory in [29]. 

7.1 Updates 

There is another significant problem existing in deductive databases which I did not 

touch in this thesis. That is the update problem. 

In Prolog, the basic update primitives are assert and retract. Assert is used to 

insert a single clause into the database. Assert always succeeds initially and fails 

when the computation backtracks. Clauses are deleted from the database in Prolog 

by calling retract. Initially, retract deletes the first clause in the database which 
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unifies with the argument of retract. On backtracking, the next matching clause is 

removed. Retract fails when there are no remaining matching clauses. 

The semantics of assert and retract are not well-defined. Even if we did take one 

particular implementation as the definition, the exact effect of calling code containing 

assert and retract is often difficult to predict. There are two factors to be considered: 

the set of answers returned and the resulting database update. These are interrelated 

and both rely on the procedural semantics of Prolog, rather than just the declarative 

semantics. The procedural semantics of Prolog affects what database updates are 

done. The order of execution of subgoals is as important as the logical content of 

the goal. 

Many distributed Prolog systems have versions of retract with bugs or strange 

behavior (sometimes called "features"). In an external or distributed database sys-

tem, the problems with assert and retract become much more severe. Even in the 

single user case, concurrent access is required to data structures on disk which may 

be quite complex. Multi-user access creates even more difficulties. 

The notion of states is inherent in any notion of updates. The Dynamic Logic 

approach assigns state transition semantics to a logic program [35]. The closure 

operator associated with a logic program P computes a state of P in the sense that 

it assigns valuations to the variables of P. Updates can be viewed as transitions of 

a state through a state-space. In the absence of updates, a classical logic program 

has only one state and queries map this state to itself. So it reduces to the classical 

semantics of logic program. Two kinds of updates are distinguished in [35] which 

have different semantics. First, those in which update actions depend on the order of 

execution, that is, different orders of execution may yield different final states. This 
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kind of update is represented by (a; /3) where a and /3 stand for update predicates. 

The semantics for this kind does not require that a executed before and after /3 gives 

the same result. The other kind are those in which all different orders of execution 

yield the same final state. A syntactic test has been shown in that paper which can 

ensure this property. 

The Dynamic Logic interpretation of updates [35] gives a clean semantics and is 

consonant with the operational meanings of the update predicates. But this seman-

tics is not declarative and is too complicated to be useful. 

To reduce the number of database states by grouping small changes into big ones 

and to address the issue of concurrency and atomicity of certain operations, the con-

cept of transactions are introduced into deductive databases in [34]. The transaction 

concept has been widely used in relational database systems where transactions are 

normally transparent to the users. A transaction is a collection of updates which 

must be done atomically. This naturally specifies some form of concurrency control. 

In [35], a transaction is specified by two sets: the facts to be deleted (D) and the 

facts to be inserted (I). The new database state (New..xlb) after the transaction is 

defined in terms of the old database state (Old_db) before the transaction, D and I: 

New_db = (Old_db - D) U I 

This definition corresponds to performing deletions before insertions. Only if the 

transaction is committed, then the updates have been made by first doing all the 

deletions then all the insertions. 

The main advantage of introducing transactions is that it gives a simple declar-

ative semantics for updates. However explicitly specifying transactions seems to be 
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a burden to the user. 

Another approach which can solve the update problem is that of Starlog [13]. 

Starlog is a temporal logic programming language which handles time explicitly. 

Every predicate in Starlog has a temporal argument which is a real interval. So the 

database of Starlog is a history database and updates are represented as changes 

with "logical" time. 

There are two ways in which time can be used in the Starlog database. One way 

is to use the time values to record actual history database information. Used in this 

way, it should be possible to query information about the past. A different way of 

using time in a database is just to express the semantics of updates and changes to 

the database. Used in this way, time would have no meaning within the database 

itself. In such a system the state of the database would be at its current time. 

A query could be made only at the current time and updates would be inserted 

and occur at the current time. The appropriate sequencing of updates would be 

ensured by giving independent sources of updates (for example different users in a 

multi-terminal system) their own unique time stamps. 

A major feature of Starlog is that it permits a declarative semantics based on a 

bottom-up, least-fixpoint computation instead of the top-down, left-right backtrack-

ing of Prolog. Another is that it can be used in conjunction with an algorithm such 

as TimeWarp [24] to form a distributed database with a semantics identical to that 

of the sequential implementation. 

It seems that it is possible to extend S-logic based on the ideas of Starlog to solve 

the update problem, i.e, incorporating an explicit temporal dimension into S-logic. 

I have started working on this subject. 
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It seems to me that the extended S-logic will be semantically sound. But a lot 

more work is needed. 
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Appendix A 

Transformation of Sample Type System 

(Type 1.) 

record_class(person). 
attribute(person, name, string) : —class(string). 
attribute(person, sex, gender) : —class (gender). 
attribute(person, age, agetype) : —class(agetype). 
attribute(person, spouse, person) : —class(person). 
attribute(person, address, string) —c.lass(st ring). 
attribute(person, father, person) : —class (person). 
attribute(person, mother, person) : —class (person). 

(Type 2.) 

record-class (student). 
isa(siudent, person). 
class -object (person, X) : —class...object(student, X). 
attribute(student, X, Y) : — attribute (per.son, X, Y), X age. 
attribute(student, age, young) : —class(young). 
attribute(student, studying-in, dept) : —class(dept). 
attribute(student, taking, set(course)) : —class (set(course) ). 
attribute(student, borrowing, s et(book)) : —class (set(book)). 

(Type 3.) 

record_class(employee). 
isa(employee, person). 
class -object (person, X) : —class -object (employ ee, X). 
attribute(employee, X, Y) : —attribute(person, X, Y), X age. 
attribute(employee, age, midage) : —class(midage). 
attribute(employee, working-in, dept) : —class(dept). 
attribute(employee, heading, set(person)) : —class (set(person)). 
attribute(employee, salary, employeesalary) : —class (employ eesalary). 
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(Type 4.) 

record_class (workingstudent). 
isa(workingstudent, student). 
isa(workingstudent, employee). 
class -object (employ ee, X) : —class -object (workingstudent, X). 
class _obj ect(student , X): —class...obj ect(wor kin gstudent , X). 
attri but e(workingstudent, X, Y) : —attribute(student, X, Y), 

X 0 age,X 54 salary. 
attribute(workingstudent, X, Y) : — attribute (ernployee, X, Y), 

X 0 age,X salary. 
attri but e(wor kingstudent, age, ymage) : —class(ymage). 
attri but e(workingstudent, salary, support) : —class (support). 

(Type 5.) 

basic_clas.s(agetype). 
class -object (agetype, X) : —x ≥ 1, X ≤ 120, class -object (intcger, X). 

(Type 6.) 

basic-class (young). 
class -object (young, X) : —x ≥ 15, X ≤ 30, class -object (integer, X). 

(Type 7.) 

basic_class(midage). 
class -object (midage,X) : —x ≥ 25,X < 60, class -object (integer,X). 

(Type 8.) 

basic_class(ymage). 

class_object(ymage, X) : —x ≥ 25, X < 30, class_obj ect(integer, X). 

(Type 9.) 

basic_class(employeesalary). 
class_object(employeesalary,X) : —x ≥ 0,X ≤ 50, 

class_object(integer, X). 
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(Type 10.) 

basic..class(support). 
class -object (support, X) : —X ≥ 0, X ≤ 15, class -object (integer, X). 

(Type 11.) 

basic-class (gender). 
class...objeci(gender, X) : —class(string), class -object (siring, X), 

(X = "Male "; X = "Female"). 

(Type 12.) 

record_class(dept). 
attribute(dept, name, siring) : - class(string). 
attribute(dept, head, employee): —class (employee). 
attribute(dept, staff, set(employee)) : —class(set(employee)). 

(Type 13.) 

record_class(course). 
attribute(course, name, string) : —class(string). 
attribute(course, credit, integer) : —class (integer) 
attribute(course, taken-by , set(student)) : —class(set(student)). 

(Type 14.) 

record_class(book). 
attribute(book, name, string) : —class(string). 
aitribute(book, no, siring) : —class(string). 
aitribute(book, author, person) : —class(person). 
aitribute(book, published-by, string) : —class(string). 
attn bute(book, price, integer) : —class (integer). 

(Type 15.) 

record_class(family). 
attribute(family, father, person) : —class(person). 
attribute(family, mother, person) : —class(person). 
attribute(family, children, set(person)) : —class (set(person) ). 
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(Type 16.) 

record_class(house). 
attribuie(house, location, string) : —class(string). 
attribute(house, occupied-by, set(person)) : —class (set(person)). 

(Type 17.) 

record...class(sameage). 
attribute(sameage, number, agetype) : —class (agetype). 
attribute(sameage, shared-by ,  set(person)) : —class (set(person)). 

(General Rules for Type Systems) 

class(X) : —basic-class(X); record-class(X); built-in-class(X). 
class(set(X)) : —basic-class(X); record-class(X); built-in-class(X). 
class...object(set(P), X) : —setof (Y, class...obj ect(P, Y), Z), subs et(X, Z). 

basic...class(string). 
class -object (string, X) : —string(X). 
class -set (string, string). 

basic-class (integer). 
class.object(integer, X) : —integer(X). 
class -set (integer, integer). 

built-in...class(all). 
builtin_class(none). 
class.object(P, X) : —class -object (all, X). 
attribute(none, X, Y) : —attribute(P, X, Y), class(P), P none. 
isa(X, all): —class(X), X 54 all. 
isa(none, X) : —class(X), X 54 none. 

subset([], X). 
subset([XIY], Z) : —mem(X, Z), del(X, Z, Z1), subs et(Y, Z1). 

del(X, [XIY], Y). 
del(X, [ZIY], [ZIY1]) : —del(X, Y, Y1). 

mem(X, [X1]). 
mem(X, [YjZ]) : —mem(X, Z). 
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class.se(X, Y): -x 54 integer, X 54 string, 
.setof(A, class..obj ect(X, A), Y). 



Appendix B 

Transformation of Sample Database 

(Record Object 1.) 

class -object (person, sally). 
attribute_valueO(sally, name, "Sally"). 
attribute_valueO(sally, sex, "Female"). 
attribute_valueO(sally, age, 14). 
attribute_valueO(sally, father, bob). 
attribute_valueO(sally, mother, mary). 

(Record Object 2.) 

class -object (person, john). 
attribute..valueO (john, name, "John"). 
attribute.,valueO(john, sex, "Male") 
attribute_valueO(john, age, 62). 
attribute_valueO(john, address, "j39 5th Av NE"). 

(Record Object 3.) 

class -object (student, jenny). 
attribute_valueO(jenny, name, "Jenny"). 
attribute_valueO(jenny, sex, "Female"). 
attribute_v alueO(j enny, age, 24). 
attribute_valueO(jenny, spouse, smith). 
attribute_v alueO(j enny, father, henry). 
attribute_valueO(jenny, studying-in, math). 
attribute_valueO(jenny, taking, [m203, m321, cs213]). 

(Record Object 4.) 

class -object (studertt, phil). 
attribute_valueO (phi 1, name, "Phil"). 
attribute_valueO(phil, sex, "Male"). 
attribute_valueO(phil, age, 18). 
attribute_valueO (phi 1, father, bob). 
attribute_valueO(phil, mother, mary). 
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aitribute_valueo(phil, studying-in, cpsc). 
attribute_valueo (phi l, taking, [cs450, cs213]). 
attribute_va lueo (phi l, borrowing, [pascal, prolog]). 

(Record Object 5.) 

class -object (employee, mary). 
attribute_va1ue0 (mary, name, "Mary"). 
attribute_valueo(mary, sex, "Female"). 
attribute_valueo(mary, age, 39). 
attribute_va1ue0 (mary, spouse, bob). 
attribute_valueo(mary, working-in, bookstore). 
attri but e_valueo(mary, salary, 35). 
attribute_valueo(mary, address, "128 2nd Ày SW"). 

(Record Object 6.) 

class -object (employee, henry). 
attribute_value0(henry, name, "Henry"). 
attribute..va1ue0(henry, sex, "Male"). 
attribute...valueO(henry, age, 50). 
attribute_valueO (henry, father, bob). 
attri but e_valueo(henry, working-in, cpsc). 
attribute_valueO(henry,address, "128 2nd Av NW"). 
attribute_valueO(henry, salary, 50). 

(Record Object 7.) 

class -object (employee, bob). 
attribute_va1ue0(bob, name, "Bob"). 
attribute_valueO(bob, sex, "Male"). 
attribute_va1ue0(bob, age, 40). 
attribute_valueO(bob, father, john). 
attribute_value0(bob, working-in, math). 
attribute_va1ue0(bob, address, "257 9th Ày SW"). 
attribute_valueO(bob, salary, 40). 

(Record Object 8.) 

class -object (workin,gstudent, smith). 
attribute_va1ue0(smith, name, "Smith"). 
attribute_va1ue0(smith, sex, 'Male"). 
attribute_va1ue0(smith, age, 30). 
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attribute_valueO(smith, father,john). 
attribute_va1ue0(smith, studying-in, cpsc). 
attribute..va1ue0(smith, working-in, cpsc). 
attribute_va1ue0(smith, address, "3 7th Av SW"). 
attribute_va1ue0(smith, salary, 12). 
attribute...va1ue0(smith, taking, [cs450]). 

(Record Object 9.) 

class -object (workingstudent, dennis). 
attribute_value0(dennis, name, "Dennis"). 
attribute_va1ue0(dennis, sex, "Male"). 
attribute_va1ue0(dennis, age, 30). 
attribute_valueO(denni.s, father, henry). 
attribute_va1ue0(dennis, studying_in, math). 
attribute_valueO(dennis, working-in, bookstore). 
attribute_value0(dennis, salary, 8). 

(Record Object 10.) 

class -object (dept, cpsc). 
attribute_value0 (cpsc, name, "Computer Science"). 
attribute_va1ue0(cpsc, head, henry). 

(Record Object 11.) 

class -object (dept, math). 
attribute_value0(math, name, "Mathematics"). 
attribute_valueO(math, head, bob). 

(Record Object 12.) 

class_object(dept, bookstore). 
attn bute_va1ue0(bookst ore, name, "Book Store"). 
attri bute_va1ue0(bookst ore, manager, mary). 

(Reocrd Object 13.) 

class -object (course, cs213). 
attri but e_va1ue0 (cs213, name, "Programming Language"). 
attri but e_va1ue0(cs213, credit, 2). 
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(Record Object 14.) 

class.object(course, cs450). 
attribute_valueO (cs450, name, "Artificial Intelligence"). 
attribute_valueO(cs450, credit, 4). 

(Record Object 15.) 

class -object (course, m203). 
attribute_valueO(m203, name, "Calculus"). 
attribute..valueO(m203, credit, 6). 

(Record Object 16.) 

class -object (course, m321). 
attri but e_valueO(m321, name, "Algebra"). 
attribute_valueO(m321, credit, 4). 

(Record Object 17.) 

class -object (boolc, pascal). 
attribute_va lueO(pascal, name, "Pascal"). 
attribute_valueO(pascal, author, henry). 
attn bute_valueO(pascal, published_by, "Practice"). 
attnibute_valueO(pascal, price, 35). 

(Record Object 18.) 

class..object(book, prolog). 
attnibute_valueO(prolog, name, "Prolog"). 
attribute.value0 (prolog, author, john) 
attribute_valueO (prolog, published_by, "Springer"). 
attnibute_valueO(prolog, price, 50). 

(General Rules for Database.) 

class.object(set(S), X) —class(set(S)), 
setof(Y, class.obj ect(S, Y), Z), subs et(X, Z). 

attribute_value(O, L, 01): —attribute_va1ue0(0, L, 01), 
attribute(P, L, Fl), class.obj ect(P, 0), class_obj ect(P1, 01). 



Appendix C 

Transformation of Sample Rules 

(Rule 1.) 

aitribute_value(X, address, Y) : - 
class(person), clas&.obj ect(person , X), 
attribute(person, address, F1), class..obj ect(Pi, Y), 
A < 20, class(person) , class..obj ect(person, X), 
attribute_value(X, age, A), attribute(person, age, F2), 
class -object (F2, A), attribute_value(X, father, Z), 
attribute(person, father, F3), class -object (P3, Z), 
class(person), class -object (person, Z), 
attribute_valuc(Z, address, Y), attribute(person, address, F4), 
class...object(P4, Y). 

(Rule 2.) 

attribute_value(X, address, Y) : - 
class(person), class-object (person, X), 
attribute(person, address, F1), class...object(Pi, Y), 
class(person), class -object (person, X), 
attribute_value(X, spouse, Z), attribute(person, spouse, F2), 
class -object (P2, Z), class(person), class -object (person, Z), 
attribute_value(Z, address, Y), attribute(person, address, F3), 
class.object(P3, Y). 

(Rule 3.) 

attribute_valuel(X, takendy, Y) : - 
class(course), class -object (course, X), 
class (student), class -object (student , Y), 
attn but e_value(Y, taking, XX), attn bute(student , taking, F2), 
class..object(P2, XX), mem(X, XX). 

attnibute_value(X, taken Jiy, YY) : - 
attnibute(course, takenJy, F1), 
setof(Y, attn bute_valuel (X, taken Jiy, Y), YY), 
class -object (F1, YY). 

122 



APPENDIX C. TRANSFORMATION OF SAMPLE RULES 123 

(Rule 4.) 

attribute_valuel(X, heading, Y) : - 
class (employee), class -object (ernployee, X), 
class (employee), class-object (employee, Y), 
attribute..value(Y, working-in, D), 
attribute(employee, working_in, F2), 
class .obj eci(P2, D), class(dept), class.object(dept, D), 
attribute_value(D, head, X), attn bute(dept, head, F3), 
class_object(P3, X). 

attribute_value(X, heading, YY)  

attribute (employee, heading, F1), 
setof(Y, attn bute_valuel(X, heading, Y), YY), 
class -object (Pi, YY). 

(Rule 5.) 

attribute_valucl(X, staff, Y) : - 
class (dept), class..obj ect(dept , X), 
class (employee), class -object (employee, Y), 
attn but e_value(Y, working-in, X), 
attnibute(employee, working-in, F2), 
class -object (F2, X). 

attribute...value(X, staff, YY)  

attribute(dept, staff, F1), 
.setof(Y, attribute_valuel (X, staff, Y), YY), 
class -object (Pi, YY). 

(Rule 6.) 

class -object (family, id(X, Y)) : - 
class(family), class(person) , class -object (person, Z), 
attnibute_value(Z, father, X), attnibute(person, father, F4), 
class_object(P4, X), attn bute_value(Z, mother, Y), 
attnibute(penson, mother, F5), class -object (F5, Y). 

attnibute_value(id(X, Y), father, X) : —class(family), 
class -object (family, id(X, Y)), attribute (family, father, F1), 
class -object (Pi, X), class(person), class -object (person, Z), 
attnibute_value(Z, father, X), attribute(person, father, F4), 
class -object (P4, X), attn bute_value(Z, mother, Y), 
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attribute(person, mother, F5), class _obj ect(P5, Y). 

attribute_value(id(X, Y), mother, Y) : —class(family), 
class_obj ect(family, id(X, Y)), attribute (family, mother, F2), 
class_obj ect(P2, Y), class(person), class -object (person, Z), 
attribute_value(Z, father, X), attribute(person, father, F4), 
class -object (P4, X), attn bute_value(Z, mother, Y), 
attribute(person, mother, F5), class -object (F5, Y). 

attnibute_valuel(id(X, Y), children, Z) : —class(family), 
class -object (family, id(X, Y)), 
class(person), class -object (person, Z), 
attn but e_value(Z, father, X), attribute(person, father, F1), 
class...object(P1, X), attn bute_value(Z, mother, Y), 
attribute(person, mother, F2), class -object (P2, Y). 

attribute_value(X, children, YY) - 

attribute(family, children, F3), 
setof(Y, attnibute_valuel (X, children, Y), YY), 
class...object(P3, YY). 

(Rule 7.) 

class_object(house, id(X)) : —class(house), 
attribute_value(Y, address, X), attribute(person, address, F3), 
class -object (F3, X). 

attribute_value(id(X), location, X) : —class(house), 
class -object (house, id(X)), attn bute(house, location, F1), 
class_object(Fi, X), 
class(person), class -object (person, Y), 
attribute_value(Y, address, X), attribute(person, address, F3), 
class_object(F3, X). 

attribute_valuel(id(X), occupied_by, Y) : —class(house), 
class -object (house, id(X)), 
class(person), class_object(person, Y), 
attnibute_value(Y, address, X), attribute(person, address, F3), 
class -object (F3, X). 

attribute_value(id(X), occupied-by, YY)  

attnibute(hous e, occupied-by, F2), 
setof(Y, attn bute_valuel(id(X), occupied-by, Y), YY), 
class -object (P2, YY). 
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(Rule 8.) 

class..object(sameage, id(X)) :-class(sameage), 
class(person), 
class.object(person, Y), 
attribuie_value(Y, age, X), 
attribute(person, age, F3), 
class -object (P3, X). 

attribuie_value(id(X), number, X) —class(sameage), 
class -object (sameage, id(X)), 
attribute(sameage, number, F1), class -object (Fi, X), 
class (person), class...obj ect(person, Y), 
aUribue_value(Y, age, X), attn bute(person, age, F3), 
class -object (Fa, X). 

attribute_valuel(id(X), sharedJy, Y) —class(sameage), 
class -object (sameage, id(X)), 
class (person), class -object (person, Y), 
attribute_value(Y, age, X), attn bute(person, age, F3), 
class...object(P3, X). 

attribute_value(id(X), sharedJy, YY)  

attnibute(sameage, age, F2), 
setof(Y, attn bute_valuel(id(X), shared-by, Y), YY), 
class -object (P2, YY). 



Appendix D 

Transformation of Sample Queries (I) 

(Query 1.)? class(person), 
class...objec(person, X), 
aitribute_value(X, age, Y), 
atribute(persort, age, 
class -object (Pi, Y), 
attribuie_value(X, sex, Z), 
atlribute(person, sex, F2), 
classobject(F2, Z), 
Y≥50. 

(Query 2.)? class (workingstudeni), 
class -object (worlcingstudent, X), 
atribute_value(X, studying-in, Y), 
atri but e(workingstudent, studying-in, F1), 
class -object (Pi, Y), 
attn but e_value(X, working-in, Y), 
attnibute(workingstudent, working-in, F2), 
class -object (F2, Y). 

(Query 3.)? class(student), 
class -object (student, T), 
attribute..value(T, name) "Phil"), 
attnibute(student, name, F1), 
class...object(Pi, "Phil"), 
attnibute_value(T, borrowing, XX), 
attribute(student, borrowing, F2), 
class -object (F2, XX), 
mem(X, XX), 
class(book), 
classobject(book, X), 
attribute_value(X, author, Y), 
attribute(book, author, F3), 
class -object (F3, Y), 
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attribute_value(X, price, Z), 
attribuie(book, price, F4), 
class...object(P4, Z). 

(Query 4.)? class(course), 
class_.obj ect(course, cs213), 
attribute...value(cs213, taken-by, XX), 
attribute(course, taken-by, F1), 
class...object(Pi, XX), 
mern(X, XX), 
class(T), 
class_object(T, X), 
attribute_value(X, studying-in, Y), 
attribute(T, studying_in, F2), 
class..,object(P2, Y). 

(Query 5.)? class(student), 
class...object(student, X), 
attn but e..value(X, taking, YY), 
attribute(student, taking, F1), 
class -object (Pi, YY), 
mern(Y, YY), 
class(T), 
class_object(T, Y), 
attribute_value(Y, name, 
attribute(T, name, F2), 
class...object(P2, Z). 

(Query 6.)? class(family), 
class_.obj ect(farnily, X), 
attribute_value(X, mother, mary), 
attribuie(family, mother, F1), 
class_object(F1, mary), 
atiribute_value(X, children, YY), 
attribuie(family, children, F2), 
class -object (F2, YY), 
mem(Y, YY), 
class(T), 
class_object(T, Y), 
attribute_value(Y, age, 
attribute(T, age, F3), 
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class...object(P3, Z). 

(Query 7.)? class(dept), 
class -object (dept, bookstore), 
attri bute_value(bookst ore, staff, XX), 
attnibute(dept, staff, F1), 
class -object (Pi, XX), 
mem(X, XX), 
elass(T), 
elass..object(T, X), 
aitribute_value(X, salary, Y), 
attnibute(T, salary, F2), 
class -object (P2, Y). 

(Query 8.)? class(house), 
class -object (house, T), 
attn but e_value(T, address, X), 
attnibute(house, address, F1), 
class -object (Fi, X), 
attn but e_value(T, occupied-by, Y), 
attribute(house, occupied-by, .P2), 
class -object (P2, Y). 

(Query 9.)? clas.s(sameage), 
class -object (.sameage, X), 
attnibute_value(X, number, 30), 
attnibute(sameage, number, F1), 
class -object (Pi, 30), 
aitribute_value(X, shared-by, Y), 
attnibute(sameage, shared_by, F2), 
class -object (P2, Y). 



Appendix E 

Transformation of Sample Queires (II) 

(Query 1.)? class(X), 
class...object(X, sally), 
attribute_value(sally, L, Y), 
attribuie(X, L, F1), 
class...object(P1, Y). 

class(siudent), 
aUribute(student, L, Y). 

class(X), 
class(Y), 
isa(X, Y). 

class...sei(employee, X). 

class -set (siuden, X). 

class -set (ymage, X). 

class -set (gender, X). 

(Query 2.)? 

(Query 3.)? 

(Query 4.)? 

(Query 5.)? 

(Query 6.)? 

(Query 7.)? 

129 


