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ABSTRACT 

In many reliability studies, the hazard rate h(x) is of prime importance. 

Therefore, the hazard rate estimation has gained considerable interest in 

statistical literature. Three significant estimators have been proposed and 

studied by Watson and Leadbetter (1963) and Rice and Rosenblatt ( 1976). 

The objective here is to provide a detailed and extensive analysis of these 

estimators. 

In Chapter II, the bias and asymptotic unbiasedness of these three 

estimators are scrutinized thoroughly. Chapter III deals with the asymptotic 

equivalence, normality and global deviation. In Chapter IV, a numerical 

example is given to test and demonstrate the goodness of performance and the 

asymptotic properties of the estimators. Finally, I generalize the idea of these 

estimators to give an estimate of hazard rate for censored data by adapting 

the reduced sample technique in Chapter V. A simple experiment was also 

done to indicate how censorship strongly affects the estimate under this 

reduced sample technique. 
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CHAPTER I 

INTRODUCTION 

Let X be a nonnegative random variable representing the time to failure 

(or death) of an article (or organism) with distribution function F(x) and 

probability density 

f(x) = F'(x). 

Then the conditional probability of failure during the next interval of duration 

x of an article (or organism) function at time t is 

F(xlt) = F(t+x)-F(t)  
1—FM 

Finally, we may obtain a conditional failure rate h(t) at time t: 

h(t) = Jim 1 F(t+x)-F(x)  
AX-4 0 X 1—FM 

f( t)  
- 1-Pet) 

Alternate names for h(t) defined in ( 1.1) are hazard rate, mortality intensity, 

age-specific death rate, instantaneous death rate, and force of mortality. If 

the distribution of X is exponential with mean A, then 

h(x) = A eXx 

=A 

1 

eXx 



2 

which is constant; for other distribution h(x) varies with time. 

There has been much interest in the above hazard rate. It is usefully 

utilized in reliability studies (Cox and Lewis, 1966), studies of mortality 

(Kimball, 1960) and in seismology (Gaisky, 1966; tjdias and Rice, 1975). 

Many authors have dedicated tremendous effort to the estimation of the hazard 

rate. Watson and Leadbetter (1964a) suggested that the most obvious 

estimator combines the estimates of f(x) and F(x) based on a single random 

sample. Let us define, for x1,. . .,x a simple random sample, 

then 

f(x) = 

i=1 

F(x) = (number of Xi's < x), 

(1.2) 

h1j)(x) _.  f(x) (1.4) 
- 1-F(x) 

Estimator ( 1.2) has been proposed and discussed by Watson and Leadbetter 

(1961) and Parzen ( 1962). Here { S(x)} is a S—function sequence defined in 

section 1.1. 

Let XCI) ≤ X( 2) X( n) be an ordered sample. If the data are 

assumed to come from an arbitrary distribution, the maximum—likelihood 

estimate of it in Grenander (1956) is a discrete distribution with probabilities 

1/n at X( D . This gives a hazard rate of 1/(n—i) at x = X( i) To avoid the 

infinity at i = n this estimate is changed to 1/(n - i + 1). To smooth 

linearly by using sequences of the smoothing function {5(x)}, Watson and 
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Leadbetter ( 1964a) derived 

Sn(x-X(1))  h 2)(x) = 
n—i+1 

Rice and Rosenblatt (1976) further studied h') (x) and h1y) (x) and 

presented a similar estimator as follows: 

n 
h, 3)(x) = a(x_XU))1og[1 + 

i=1 

Other nonparametric estimates of the hazard rate have been studied by 

Ahmad (1976), Ahmad and Lin (1977), Shaked (19.78), and Miller and 

Singpurwalla ( 1978). However in this thesis I only provide a detailed and 

extensive analysis of the estimators h1) (x), h12) (x) and h) (x). 

Appropriate definitions and preliminary results are described in the 

remainder of this chapter. Various convergence concepts and results also 

appear later. 

1.1 SOME BASIC DEFINITIONS 

Definition 1.1.1: 

A sequence of functions { 6(x)} will be called a 5—function sequence if 

the following conditions hold: 

(a) f I 5(x) I dx < A, all n, some fixed A. 
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(b) jSn(x)dx = 1, all n 
- 

(c) 6n(x) -+ 0 uniformly in lxi ≥ A, for any fixed A > 0. 

(d) 5 lSn(x)ldx i 0 as n i w for any fixed A > 0. 
lxl≥A 

A good example of such a 5-function sequence is 

IFnSn(x) = W(X) = 1 W U J 

where w is given as a bounded, band limited, symmetric function of integral 

one and bn 1 0 with nb - i w as n - w. In this thesis, the above 

example ( 1.1.2) is often considered as we can derive more results by assuming 

S(x)= — x 1 
B I J 

For estimator h2) (x), we further restrict the class of distributions. The 

introduction of such a class is for analytic convenience only. 

Definition 1.1.2: 

A class C5 of distribution functions F(x) is such that for any fixed x0, 

and any fixed A > 0, 

l5n(xo)l  
1-F(x) (1.1.3) 
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is, for all sufficiently large n, uniformly bounded in Ix—xol ≥ A. 

Here we consider GA as the upper bound of ( 1.1.3). 

Later in Chapter 3, a weak approximation will come into use. 

Therefore, it is of interest to provide some basic settings for a weak 

approximation here. 

A stochastic process is a collection [X(t):t E T] of random variables on a 

probability space (0, PP). Usually T is thought of as representing time. In 

most cases, T is the set of integers and time is discrete, or else T is an 

interval of the line and time is continuous. 

Definition 1.1.3: 

A stochastic process {W(t;w) = W(t); 0 < t < w}, where w e 0, and 

{0,5P} is a probability space, is called a Wiener process if 

(i) the'process starts at 0, i.e, W(0) = 0, 

(ii) the increment W(t) - W(s) is normally distributed with mean 

0 and variance t - s for all 0 ≤ s < t < w, 

(iii) W(t) is an independent increment process, that is 

W(t2) - W(ti), W(t4) - W(t3),...,W(t2 ) - W(t2 -1) are 

independent random variables for all 

O≤tl<t2≤t3<t4≤ ... ≤t21 <t2n<w(n=2,3,...), 

(iv) the sample path function W(t;w) is continuous in t for all 

WEO. 
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Intuitively, (i) - (iii) imply that E[W(t)] = 0, E[W2(t)] = t and 

E{W(s)W(t)] = s A t. 

The proofs of the existence of a Wiener process and the continuity of its 

path can be found in Billingsley ( 1986). 

Definition 1.1.4: 

A random element X(t), 0 ≤ t ≤ 1, is Gaussian if all its 

finite—dimensional distributions are normal. On the other hand, the 

distribution of X(t), 0 ≤ t ≤ 1, is normal and the joint distribution of 

X(ti), X(t2),...,X(t), 0 ≤ t1 < t2 < ... < tn ≤ 1 (n = 2,3,...,) is multivariate 

normal. These finite—dimensional distributions are completely determined by 

the means E[X(t)] ' and the covariance function E[X(s)X(t)], 0 ≤ .s,t ≤ 1. 

Definition 1.1.5: 

A stochastié process {B(t); 0 ≤ t ≤ 1} is called a Brownian bridge if 

(i) the joint distribution of B(t 1), B(t2),...,B(t) 

(0 t1 < t2 < ... < tn ≤ 1; n = 1,2,...) is Gaussian 

(ii) E[B(t)] = 0 and E[B(s)B(t)] = s A t - st, 0 ≤ s,t ≤ 1, 

(iii) the sample path function of B(t;w) is continuous in t with 

probability one. 

When t = 0 and 1, we have E[B2(t)] = 0. Thus, B(0) =B(1) = 0 

almost surely. 

Csorgo and Rëvësz (1981) provided us the relationship between B(t) and 

W(t) as follows: 
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(1) Let {W(t);O ≤ t < w} be a Wiener process. Then 

B(t) = W(t) - tW(1) (0 ≤ t ≤ 1) is a Brownian bridge. 

(1.1.4) 

(ii) Let B(t) be a Brownian bridge and define 

W(t) = (t+1)B [ - t ,T ] (0 ≤ t < w). 
Then W(t) is a Wiener process. (1.1.5) 

The existence of such a Gaussian process, B(t), follows immediately from 

(1.1.4). 

With the idea of a Brownian bridge, we now go further to discuss strong 

approximation of the Empirical processes by such a Gaussian process. We 

first define 

{19.(x); - < x < w} = {fir(F(x) - F(x)); w < X < co} 

(n = 1)2,..) (1.1.6) 

as the Empirical process. Then by the central limit theorem 

- N(0,F(x)(1—F(x))) (1.1.7) 

for each fixed x. 
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If F is continuous then F-1 (y) = mi {x:F(x) = y} and F(F 1(y)) =y. 

As such, we can further investigate the process {fi(x);—to < x < w} by letting 

U1 = F(X1). Then the U1 are U(0)1) random variable provided F is 

continuous. Now let E(y) be the empirical distribution of the sample 

U1,.. .,U and the resulting uniform Empirical process is given by 

{a(y);O ≤ y ≤ 1} = {j(E(y) - y); 0 ≤ y ≤ 1}, fl = 1,2,... 

Therefore, an(y) = fi(F 1(y)), 0 ≤ y ≤ 1. Further by ( 1.1.7) we have 

an(y) - N(0,y(1—y)) 

for each fixed y E (0,1). 

Finally, I display one of the best strong approximations of the Empirical 

process given by Komlós, Major and Tusnády ( 1975). For uniform empirical 

process, there exists a probability space on which one can define a sequence of 

Brownian bridges {B(y); 0 ≤ y ≤ 1} such that 

1 

sup I a(y)—B(y) 0(n-2 log n) 
0≤y≤1 

(1.1.10) 

1.2 SOME PROBABILISTICAL RESULTS 

• Theorem 1.2.1 (Chebyshev's Inequality): 

Suppose that the random variable X has a distribution with mean ji and 

variance 2. Then for every 6 > 0, 
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P(IX— I ≥ ea') ≤ 62 

Theorem 1.2.2 (The Glivenko—Canteffi lemma): 

Suppose that X1,X2,... are independent and have a common—distribution 

F. Then 

sup IF(x) - F(x) I a.s.  

as n -' W. In words, F converges to F uniformly in x with probability 1. 

Theorem 1.2.3 (Dominated Convergence Theorem): 

If If.1 g almost everywhere, where g is integrable and if f -* f 

almost everywhere, then f and the fn are integrable and / fdu -+ / f du. 

Theorem 1.2.4 (Markov's Inequality): 

Suppose X is a random variable, then for any E > 0 and k ≥ 0, 
1 k 

P(IXI ≥ E) ≤ E[IXI ]. 

Theorem 1.2.5 (Holder's Inequality): 

Let X and Y be random' variables and suppose that . + 1 1, p > 1, 

q > 1, then 

E[IXYI] {E[IxI]} 

Theorem 1.2.6 (Normal Convergence Criterion): 

If Xn,k are independent summands, then, for every c > o, the limiting 

n 
distribution of E X,k goes to N(a,o 2) and max P[JXfl,kl ≥ e] -' 0 if and 

k=1 k 
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only if, for every c > 0 and 'r > 0, 

n 
(i) E P[Xfl, k I ≥ e] -' 0 

k=1 

2 n 
0n,k(T) __ 0-2 E a,k ('i-) -+ a. 

k=1 . k=1 

Here an,k(T) = 5 xdF,k, cTn,i(T) = 5 
ixi<r 

x2dFn,k - 

ixl<r 

[5 r xdFflk]. 
ixi< 

Theorem 1.2.7 (CI—in equality): 

E[I X+Yl r] < CrE[ lxi "] + CrE[ Y r, where Cr = 1 or• 2r1 according as 

< 1 or r > 1. 

The proofs of theorem 1.2.1 - 1.2.7 can be easily found in many contexts 

of probability theory and hence will not be shown here. I have displayed 

these theorems here because they will be used later. 



CHAPTER II 

BIASEDNESS AND ITS ASYMPTOTIC RESULTS 

In this chapter, I will examine the bias of the three aforementioned 

estimators. I first adapt the idea suggested by Rice and Rosenblatt ( 1976) of 

calculating the bias by assuming f is twice continuously differentiable, and then 

provide a more detailed analysis of the bias. 

Watson and Leadbetter ( 1964b) has derived that h2) is asymptotically 

unbiased. Considering the relation between the expected values of h2) and 

h 3), I will also prove that h) is asymptotically unbiased. 

In this chapter O(E) has the usual meaning i.e. An = Op(cn) means 

that A/ e11 are bounded random variables in probability for large n. 

2.1 BIASEDNESS 

Theorem 2.1.1 (Rice and Rosenblatt 1976): 

Let X1,..-,X be independent random variables with common distribution 

F in C1 (continuously differentiable) and density 1. 

f(x) 
Let a(x) = 1—E(x) 

Then h1') (x) = an(x)[1 + 0 (.J. 

Choose S(x) = wn(x) and if 

continuously differentiable, 

)J 

11 

(2.1.1) 

(2.1.2) 

w(x)xdx exists and f is twice 



12 

CO 

- 1-P(x) + 1—Fx) w(v)v2dv + o(b). 
E[a(x)] -  f(x) f' '(x)  

—w 

(2.1.3) 

Proof: 

h1')(x) -  f(x)  
- 1—F(x) +[F(X)Fn(X)j 

Since by ( 1.1.7), 

So 

1  

fn(x)  1 - F(x  

1 - [Fn(x_F(x) 1 —(x) ] 

If  .x) S 1— (x) j i =O L  1—F(x) 

sup I Fn(x) - F(x) I = 0 (J). 
x 

f(x)  I 
i + 0(_ I 14(x) 

= a(x) I i + 0(_nD  ]. 
This completes the proof of the first part. 

Now, 
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Let 

E[a(x)} = 

SW 

Sn(x—u)  f(u)  du 
1-P(x) 

I x—u 1  f(u)  
L b j 1-E(x) du 

W(V) Ix—bnv) dv. 

g(v) = f(x—bnv), 

then by the twice continuously differentiability of f and Taylor's Formula, 

g(v) = g(0) + + v2 + R2, where R2 is the error term 

= f(x) - bf'(x)v + f"(x)v2 + R2. 

As R2 <  b  , / / (z), where z is between 0 and v, 
3! 

W W 

w(v)vdv E[a(x)] -  f(x)  5 w(v)dv bf'(x) f 
1-F (x'  - 1-P(x) 

bf"(x)  5 w(v)v2dv + o(b). 
+ 2[1—F(x)j - W 

Since w is a symmetric function of integral one, 
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CD 2 2  -  f(x)  
- 14(x) + 1FXj [f w(v)v2dvj + o(b). 

It follows from the above theorem, that the leading bias term of h(l)(x) 

is proportional to f' '(x)/(l-.-F(x)). Noticing that 

and 

h'(x) = f'(x) + F f(x)  12 
1—F(x) L 1-F(x) j 

h"(x) f''(x) fI(fSx 2f'(x)f(x)  
= 1—F(x) + [1 + [1_(x)]2 

f''(x) 3f'x)h(x) + 2(h(x))3. 
= 1—F(x) + 11 (x)J2 

It is of interest to rewrite 

+ 21  f(x)  1 
L 1-F(x) J 

1' / •X•h"(x) - 3h(x)[h'(x) - (h(x))2]-  2(h(x)) 3 
1—Fx 

= h"(x) - 3h(x) hl(x) + (h(x)) 3. 

(2.1.4) 

This rewritten expression shows for example that if hl(x) = 0 and h' '(x) > 0 

or if h is almost constant near x then the bias of h(n') (x) will be larger. 

Following the idea of assuming f being twice continuously differentiable, 

we can also obtain the bias for h12) and h 3) accordingly. To do this we 

need the following theorem. 
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Theorem 2.1.2 (Rice and Rosenblatt ( 1976): 

Let X1,... ,X be independent random variables with common distribution 

F in C  (continuously differentiable) and density f. 

E[I hn,lll(x) - h1ç3) (x) I] ≤ , some constant k. 

Co3 

(2.1.5) 

Further choose 6(x) = w(x) and if Jw(x)xdx exists and f is twice 

continuously differentiable, then 

Proof: 

('03 

Jwn(x_u) f(u)  du 
1-F(u) 

CO 
 X() h' '(x) v2dv + o(b).. = (x) 

n [ h(2) (X) - h 3)(x) = Sn(x—X1) jj- 1 log(1 + 
1=1 

Noticing that if 0 ≤ x < 1, 

CD .1 j+t x2 Ix - log(1 + x)I ≤ Ix - (-1) I ≤ -. 
j=1J 

Hence, 

(2.1.6) 

('w 
n-i1 

h2) (x)—h 3) (x) I] < I [in l] (F(u))' '(l—F(u)) 11Sn(xu)f(u)du 
- 1Dj1 
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U, i-i n -i [in 
i](u) (1—F(u)) 

O<F(u)<1 1=1 

S(x—u)f(u)du + I F(u)=1,O In 1F(u)''. 1=1 Li—li 

(1 -  F(u))'1 1 n—i+1 &(x—u)f(u)du 

J O<F(u)<1 
=E I i -i ] F(u)' ' (1 

ön(x-u) f(u)du 

- 

i-i n-i 1 
Now consider the expression [ ] F(u) (1—F(u)) For 

a < 1, the contribution from E is 0 1 I. 
i<an ' 

For contribution of E , we consider F(u) as the probability of success in a 
i≥an 

binomial distribution of sample size n and variance nF(u) ( 1—F(u)). There is 

an h > 0 such that F(u) ≤ F(u + h) < a < 1. Let Y be the random 

variable with the above binomial distribution, then 

i   

n ] F(u)"(l—F(u))n -. i>anL (n—i+1) i—i 

- [n1 i1 J F(u)ul(1_F(u))n1 
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≤ P[Y ≥ an] 

≤ P[Y - nF(u)I > n(a - F(u))]. 

By theorem ( 1.2.1) (Chebyshev's Inequality), 

-i 1  F(u)(1—F(u))  lj] F(u)''(l—F(u))" (n—i+1) 
i≥anL 

≤ , some constant K. 

Therefore, 

CO 

K 
E[Jh2) (x) - (x),I] ≤ ii: Sn(x—u)f(u)du. 

-a, 

By continuity f is bounded over (-a,,a,). Let f(u) ≤ M, Vu. Then, 

a, 

E[Ih 2)(x) - h(x)j] ≤ 5 KM 6.(x—U)du 
-w 

-n 

by (1.1.1(b)). 

Hence, 

I h,2) (x) - h1ç3) (x) I I ≤ , for some constant k. 
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Now if f is twice continuously differentiable, then by using the method of 

Taylor's Formula as in the proof of theorem (2.1.1), we have 

w 

fwn(x—u) f(u)  du 

= f CO w(v)h(x—brv)dv 

CD 

= S w(v)[h(x)—bnh'(x)v + h"(x)v2+o(b)]dv 

= h(x) 5 w(v)dv - bh'(x) f Ww(v)vdv 

w 

+ h"(x) 5 w(v)v2dv + o(b). 
-w 

As w is a symmetric function of integral one, 

CO 
fw  du = h(x) + n h' '(x) 5 w(v)v2dv + o(b). 

The proof of this theorem is completed. 

Now choose Sn(x) = W(X) and consider h2) (x), 
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IW(X-U) dF(u)  
- 1-F(u)+ [ F(U)-Fn(u)j 

U, 

S_wn(x—u)   I I F(u)—F(u) dFn(u) 
1-F(u) L (_ )3  1-F(u) lil 

U, 

= 5w(x-u) dF   3 5 w(x-u) F(u)-FU) dFn(u) 
-w -w 11_P(uJ 2  

+ o[ ] (2.1.7) 

The mean of the first term on the right side of (2.1.7) is 

U, 

IW(XU) f(u)  du. 
- 1-r(u) 

Thus by the preceding proved theorem (2.1.2), the leading bias term of 

h 2) (x) and h 3) (x) is proportional to h' '(x). From (2.1.4), 

  + 3f'(xTh(  + 2(h(x))3. h— (x) = 1-F [1-F(x)j 

This expression shows, for example, that if f' (x) = 0 and f' '(x) > 0 or if f is 

almost constant near x, the bias of h1(2) (x) and h, 3) (x) is greater. 

2.2 ASYMPTOTIC EJNBIASEDNESS 

In this section; various results concerning the asymptotic behavIour of the 

bias of the three estimators will be studied here. Referring to h,(') (x), some 
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results on the asymptotic behaviour of fn(x) and F(x) have been given in 

Leadbetter and Watson (1961) and Parzen (1962) and they have certain 

implications for asymptotic unbiasedness of h(n') (x). 

All theorems and lemmas except theorem (2.2.3) in this section are 

extracted from Watson and Leadbetter (1964b). 

Lemma 2.2.1: 

If g(x) is continuous at x = 0 and g(x) is integrable, and if { ö(x)} is a 

function sequence, then g(x)5(x) is integrable and j g(x)5(x)dx ) g(0) as 

n -+ m. 

Proof: 

CO 

By continuity g(x) is bounded in some interval (—A,A) with A > 0. 

Suppose g(x) ≤ M, for some fixed M whenever x E (—A,A), then 

II x 1< g(x)Sfl(x)dx ≤ M J I X I <A gn(x)dx. 

Hence g(x)5(x) is integrable over (—A,A) by (1.1.1(a)). That g(x)5n(x) is also 

integrable over the region lxi ≥ A follows from ( 1.1.1(c)) and integrability of 

g. Now let A be chosen as in ( 1.1.1(a)). Then for e > 0, A may be chosen 

such that I g(x) - g(0) I < c/A if I i < A. Thus, 

Jg(x)6n(x)dx - g(0) fg(x)8(x)dx - fg(0)6(x)dx 
—w —w 

by (1.1.1(b)) 



f"[g(x) - g(0)}S(x)dx 

f 9(x) - g(0)J I5n()Idx 

≤ f lxl<Alg(x) - g(0)I tn(x)Idx+ f jxj>Alg(x) - 

g(0)I J&(x)Jdx 

<5 g(x) - g(0) I I5n(x)Idx + f jX j•,\(Ig(x)l 

+ Ig(°)I1 I8n(x)Jdx 

= 5 - g(0) IS(x)Id + f I X g(x)I. 

I5n(x)Idx+ Ig(°)I f I x I >A I gn(x) I 

The first term of (2.2.1) 

5 1 < I(x) - 9 n(x) l5n()Idx < flxl<A f!8n(x)I dx 

E r J lxl<A Iän(x)Idx 

6 

(2.2.1) 

x A by ( 1.1.1(a)) 
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We let K = sup I 5n(x) I, then the second term of (2.2.1) 
Ix >A 

5 1j Ig(x)I I5n(x)Idx I 11Ig(x)Idx. 

By ( 1.1.1(b)), K -+ 0 as n -' w. Follows by the integrability of g, 

5 I1≥I(X)I I8n(x)Idx 0 as n 

By ( 1.1.1(d)), 

Since c is arbitrary, 

g(0) f ii>jSn(x)Idx 0 as n 

fW g(x) 8(x) g(0) as n 

This completes the proof of this lemma. 

By this important lemma, we have the following result. 

Theorem 2.2.1: 

Let { 5(x)} be a 8—function sequence and f(x) a probability density which 

i n 
is continuous at the point x0. Let f(xo) E ön(xo - X1) where X1,... ,Xn 

i=i 
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form an independent sample from the distribution. Then 

E{fn(xo)] - i f(x0) as n -' 

Proof: 

Since 

E[f(xo)] = 5 5(xo— u)f(u)du 

00  

= 5 S(v)f(xo - v)dv. 
w 

By Lemma (2.2.1), E[f(xo)] -+ f(xo) as ii' -' w. 

The sample distribution function F(x) is essentially a binomially 

distributed random variable with mean F(x). Therefore, 

and 

E[F(x)} = F(x) (2.2.2) 

var[F(x)} = F(x)[1—F(x)]. (2.2.3) 

So F(x) is an unbiased estimator of F(x). By the above results, we can 

obtain the asymptotic unbiasedness of h(n') (x). But since the asymptotic 

unbiasedness of h1çl) (x) follows immediately from the asymptotic normality of 

h1y) (x), we discuss it later in Chapter 3. 
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We now turn our attention to h12) (x). 

1 E[h2)(x)} = El i=1 n—i+1 Sfl(x_X(i))] 
L  

n 

OD 

f _w in1 ] F(u)hl[1_F(u)]fl1 I6n(x—u)f(u)du. 

w 

] l 1   C F(u)"[l—F(u)]n-i+l F(u)n}. [j  

5n(x—u)f(u)duIL 

w 

1 ] F(U)r [1 F(u)]}   F(u) fl}. 
—w Lr=O L 

S(x—u)f(u)du. 

Considering F(u) as the mean of a binomial distribution, then 

That is 

f n] F(u)r [1 —F(u)] 1. 
r=L r 

E[h 2)(x)] = fm 1 1  
1—F(u) F(u) I Sn(x_u)f(u)du 
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00 OD 

= 5 5(x—u)h(u)du - 5 6.(x—u)F(u)f(u)du 
(2.2.4) 

Lemma 2.2.2: 

If {&} is a 5—function sequence and if F(x) is a distribution function in 

the class C5, then, provided the associated hazard function h(x) is continuous 

at x0, we have 

SW 

Proof: 

xo—u)h(u)du - h(xo) as n -' w. 

For given e > 0, we choose A > 0 such that 

Ih(u) - h(xo)I < f if lu - xol < A. Then, 

5ID  5,,(u - xo)h(u)du - 

5 
CO 

fm 5n(u - xo)[h(u) - h(xo)}du 

CO 

- xo)h(u)du - 5 5(u—.xo)h(xo)du by ( 1.1.1(b)) 

fI U-XO I <A5n(u—xo)(u)_o)du+S I—xoI >A5n(x0)[h(u)_h(x0)1du 
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IIu—x0 < Sn(ux0) + u—xo I≥ASn(u_xo)[h(u)(xo)]du 

<5 I 11—xo I <A I Sn(uxo) I I h(u)—h(xo) I du+5 i U—Xo >A I S(u—x) I I h(u) I du 
-  

+ f I u—xo I >A I gn(u—xo) I Ih(xo)Idu 

Iu—xol < I on(ux0)Idu + I Iu—xoI>AI Sn(ux0)I Ih(u)Idu 

+ Ih(xo)I JIu_xol≥A1(u_xo)1du 

< E + 5 IuxoI >AISn(u—xo)I Ih(u)Idu + Ih(xo)I f i U_xo I >A I gn(u—xo) I du(2.2.5) 

By definition ( 1.1.2), the integrand of the second term of (2.2.5) is dominated 

by GAf(u). From ( 1.1.1(c)), this integrand tends to zero for all lu—xoj ≥ A. 

It follows from the dominated convergence theorem (1.2.3) that the second 

term tends to zero. Furthermore, the third term of ( 2.2.5) also tends to zero 

simply by ( 1.1.1(d)). Since c is arbitrary, the result follows. 

Theorem 2.2.2: 

Let { S} be a 5—function sequence and F(x) a distribution function in the 

class C5. If the hazard function h(x) is continuous at x0, and if F(xo) < 1, 

then h1ç2).(xo) is an asymptotically unbiased estim ator of h(xo). 

Proof: 

By (2.2.4) and lemma (2.2.2), it is sufficient to show that 
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5 Sn(x—u)F(u)f(u)du 0 as 

If A > 0 is chosen so that F(xo+A) < 1 and further h(u) is bounded in 

ju—xol < A, then 

f I 

= S IxO_uI≥Ao0_(u)[1_)] F(u)du 

< G 5 - [F(u) - F(u) f(u)du 
- A I xo—u l >A 

≤ Gj [F(u) - F(u)dF(u) 

11 1 
LiiRT jj 

1  1  
L (n+1)(n+2) ] 0 as n 

Further since h(u) is bounded in Ixo - UI <f I  A 

x0—u < 5n(xo_u)F(u)E1_F(u)1)u 

SIxo—ul <A5n(x0_u)F(u)K1du, some constant K1 
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≤ K15 xO—uji<Sn(Xo_U)F(Xo+A)dU 

= K iF(xO+A) fiXU<A8n(x0_U)dU 

≤ K1K2F(xo+A)" by (1.1.1(a)) 

which goes to zero as n goes to infinity. Combining the above two results, 

we have 

5(x—u)F(u)'1f(u)du - i 0 asn -' 

and the theorem follows. 

To show that h) (x) is also asymptotically unbiased, we should recall 

(2.1.5) from theorem (2.1.2) wherein 

E[Ih1c2)(x) - h,3)(x)l] < k - -' 0 as n -* w. -n 

Hence, 

E[1h1c2)(x) - h(3) (X) -' 0 as n -' w 

implying that h 3) (x) is also asymptotically unbiased by theorem ( 2.2.2). But 

we should note that a further condition (continuously differentiability of F) is 
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required here in accord with theorem (2.1.2). So we have the following 

theorem. 

Theorem 2.2.3: 

Let X1,... ,X be independent random variables with common distribution 

F in C1 and in the class C5. Let {5} be a 5-function sequence, then (x) 

is an asymptotically unbiased estimator of h(x). 



CHAPTER III 

ASYMPTOTIC NORMALITY AND DEVIATION 

Having examined the bias and its asymptotic behaviour of the three 

estimators in the previous chapter, I will now obtain other asymptotical 

results. In section 3.1, we show that if Sn(x) = wn(x) and the weight 

function w of ( 1.1.2) has finite support then all three estimators are 

asymptotically equivalent. In section 3.2, we then obtain the asymptotic 

normality of h') (x) by extracting some theorems and lemmas from Watson 

and Leadbetter ( 1964b). However, in the final section, we switch our 

concentration to the study of the global deviations of h 2) (x) and (x) via 

some convergence theorems. 

3.1 ASYMPTOTIC EQUIVALENCE 

Theorem 3.1.1: 

Let Xi,... ,X be independent random variables with common distribution 

F in C' (continuously differentiable) and density f. Choose 5(x) = w(x) and 

further if w has finite support, say vanishing outside [—A,A], then 

Proof: 

- In 

1 

h(l) (x) - h( ')(x) I = O(max(n2,b)). n 

30 
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rA 1 [ E J 1-F(u) dF(u) X-U 
! 

AA 1 Ix-ul  1  
U-nW [  1-F(x) dF(u) 

rw1  1 1  [ J LFn(u) 1-F(x) ] dF(u) 

r w 
x-u 1 F(u) - F(x)En [ En J [ 1-P)] [ 1-Fn(x)J1 dF(u) 

"A 
1 J f  F(x-by) - Fx)  

B; Lhl_Fn (Xbny)j [ 1- (x)] I by putting 

x-u 
Y -B; 

r < w(y) I [F(x-by)-F(x-by) I + I F (x)-F(x) I + I F 1x-by)-F(x) I  
-  Ii - .'n(Xbny)I 114'n(x) 

dFn(x-bny) 

By ( 1.1.7), 

supF(x-by) - F(x-by) 

and 

 = 
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I F(x - bay) F(x) I I by f() I, where f() = max f(t) 
x—bI YI≤t≤X+bnlyl 

≤ b1Af(). 

Hence 

I F(x - bay) - F(x) I = 0(b). 

Thus, 

I h( 2) (x) - h( 1) (x) f = O(max(n 2,bn)). in n 

Theorem 3.1.2 (Rice and Rosenblatt 1976): 

Let Xl,. .. ,Xn be independent random variables with common distribution 

F in C' (continuously differentiable) and density f, then 

Ih 2)(x) - h3)(x)I = o[ I-

Proof-

The proof follows immediately from (2.1.5) in theorem (2.1.2) where 

E[Ih 2) (x) - h13)(x)J] , some constant k 

then by Markov's inequality ( 1.2.4), 

P { Ih1Y'(x) - h1c 3) (x)I ≥ c} ≤ . E[Ih, 2)(x) - h13)(x)I] 

-i 0 as n - w. 



33 

By the above two significant theorems, we can conclude that all three 

estimators are asymptotically equivalent if 5(x) 

support. 

= w(x) and w has finite 

3.2 ASYMPTOTIC NORMALITY 

The asymptotic normal behaviour of h1ç1) (x) will be given here through a 

series of lemmas and theorems without the assumption that S = wn(x). 

Lemma 3.2.1: 

If {5,.} is a 5—function sequence, and for p ≥ 2, a = a(p) = 

a, 

JI & N I Pdx < w, then ' w as n ' w. 

Proof: 

It follows from ( 1.1.1(b) & ( d)) that if A > 0, 

('A 

Jon(x)dx -' 1 as n -' w. Now 

≤ f—A I 6n(x) I 

By Holders inequality ( 1.2.5) where q' = 1 - p', 

Therefore, 

f A 
—A Ô(x)dx (2) { tAIfl1 I . 
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Thus, 

CD 

(2) lim q 
nf {JIs(xdx 

1 1 a, 

nf (2) {L i 5(x) dx 

> urn inf 
fl -4 w 

f 
A S(x)dc 

lirninf p 1 .f ' 16'n(x)l p#1  
fl L  (2A) 

Go 

This is true for all A > 0, hence a = 3 I S(x) I "dx -, w as 'n -, w. 

Lemma' 3.2.2: 

Let { 6(x)} be a 5—function sequence with 

* 

OD. Then 5(x) =   is also a 5—function sequence, (p ≥ 2). 
Cn 

Proof: 

satisfies condition ( 1.1.1(a) & (b)) as 

CO 

an (P) = 

1 
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f
 co bn(x) I dx = f CO 

CO 

if 

p 
= anJ IS(x)I dx 

=1. 

Jn satisfies ( 1.1.1(c)) since Sn(x) - 0 uniformly in IxI ≥ A > 0 and an - w 

by lemma (3.2.1). Now let K = sup I S1(x) I, then 
IxI≥A 

I P-I S I5(x)Idx < K  I xI>I8n(X)I 
IxI≥A - L % f, 

Since K i 0, an w and f,xl>AjSfl(x)IdX 0 as n 

f I C(x) dx - i 0 as n - w i.e. ( 1.1.1(d)) is also satisfied by 5. The 
IxI≥A 

lemma follows. 

Theorem 3.2.1: 

Let { ö(x)} be a function sequehce with an f = S(x)dx < w and an 

o(n). Let xO be a continuity point of the density f. Then (n/an)var 

{f(xo)} -' f(xo) as n - 
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Proof: 

var[f(xo)] = . E[S(xo—Xi)] - -{E[6n(xo—Xj)]}2 

> [] var[f(xo)] = " -if " S(xo—u)f(u)du - 0 

fm 5,(xo—u)f(u) d' u 

* 2 
By lemma (3.2.2), 6n = S/a is also a 6—function sequence, then 

-11  I * 
an J '5.2(xo—u)f(u)du = ) Sn(xo—u)f(u)du - f(xo) as n -' co 

and an 

-w - 

fOD 6n(xo—u)f(u)du 
Hence, the theorem. 

by lemma (2.2.1), 

—' 0 by lemmas (2.2.1) and (3.2.1). 

Theorem 3.2.2: 

Let {&(x)} be a 6—function sequence such that 

an =J S(x)dx < w, = J I5n(x)l dx < w for some > 0, 

and such that  i4 /2 0 as n - w. Let x be a continuity point of 
n' a 

the probability density f. Then n2{f(x) - E[fn(x)]}/[af(x)]2 has the standard 

normal limiting distribution. 
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Proof: 

Let z, = {f(x) - E[f()1} then by theorem (3.2.1) it is sufficient to 

{var[f(x)]} 2 

show that Zn has the standard normal limiting distribution. But we can 

rewrite 

where 

Hence, 

Zn 
n 

= E 
i=1 

ILn = E[t5(x—X1)], an = var[ö(x—X1)], 

Xn,j = [o(x—X1) - ]/(n2cr). 

n n 
E E[X,1] = 0 and E var[X,] 
i=1 i=1 

=1. 

By normal convergence criterion (1.2.6), it is sufficient to show that 

n 
P[X n7 i I ≥ - 0 as n —+ co. If Fn,1 

i=1 

then by Markov's inequality (1.2.4) 

P[IX,1I ≥ g] ≤ 2i E[lX,1l 2'] 
i1 

n 
— 

C 

is the distribution function of X,1, 

S(x—Xi)—E I S n (x-Xi)]  

[nvar Sn(x—Xi)]2 
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Hence, we only need to show that 

nEf 5n(x-Xi)-E [ S, (x-Xi)]  1 

[nvar S(x-Xj)] 2 

— 0 as n  4 co. 

Following from the Cr-inequality (1.2.7) given in Loève ( 1960), this expression 

is dominated by 

2' ElSn(x-X 2+ i)l  lEfS(x-X1)1l2  } 
1 /2 1 2 n [var(S(x-Xi))] /2 + 

= 2' '[P 1, + P2,] say. 

By theorems (2.2.1) and (3.2.2), 

/ 2+19 

nl2[af(x)]1 1 

Also, 

El ö(x-X 1)j 2 

' n 'r/2 1 [cf(x)] 4i/2 

0 as n — 4 co by lemma (3.2.1). 

as n — 4 

9 
* 

By lemma (3.2.2), S(x) = I Sn(xXi) — is also a 6-function sequence. Then is 

* 

PIn Ers(-x)I 7  f(x)'y  

n  Cen 
11/. 1+1/ f(x) n /2 1+1/2f(x) 14-1/ 2 

as n —+ co 

by theorem ( 2.2.1). 
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Since by hypothesis ('yn ¶1/2 /n ç 1+1/2 -+ 0 as n -+ 

0 as n -' w. 

The theorem follows. 

Theorem 3.2.3: 

Let f(x) be the probability density of a non—negative random variable. 

Under the conditions of theorem (3.2.2) and [ . ] 2{E[f(x)] - f(x)} - 0 as 

n -+ w, then the random variable Y defined by 

Yn = [1 - F(x)] [n1anf(x)] [h 1) (x) - h(x)] 

has the standard normal limiting distribution. 

Proof: 

1 

E n x ]  
Let W = [1—F(x)] [ a)(x) ] { h') (x) i-f3 I 

1 

 fl I 1—F(x) I {fn(x) - E[f(x)] } 
L an f() ] L 1Fn(X) 

I 1—F(x)  
= L 1—F(x) I zn. 

By theorem ( 1.2,2),   - i 1 in probability. Following from the limiting 

standard normal distribution of Zj as in theorem (3.2.2), Wn converges to a 

standard normal random variable. But 
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1 

r n  2 I Eff(x)} } Yfl = W fl + L % f (X) I [1—F(x)] 1 

I  n I E1f1(x  
= fl + L af(x) j [1—F(x)] i- n(x } 

I 
1 

afif(X) ] 2 f(x) 

1. 

I n  
+ [ af(x) ]2 {Efn(x)] - f(x)} - Ia(x) ]2 E[f(x)] 

wn + 

+ C 

=wn + 

C " 1 2 JE{fn(x)]_F(x)E[fn ( x) }—E[fn(x)1+Fn(x)E[fn(x)1  
af(x) J 1 _ F(x) 

1 

n  
af(x) ]2 {E[f(x)] - f(x)} 

C 
1 

n  
Cen f(x) j 

F(x) —F(x) I E[f(x)] + 
1Fn(X)  2{E[fn(x)] 

(3.2.1) 

By (1.1.7) and lemma (3.2.1), 

[  2 {F(x) - F(x)] —' 0 as n co . Hence the second term of 

(3.2.1) tends to zero by theorem (2.2.1). The last term of (3.2.1) also tends 

to zero as n goes to infinity by the hypothesis. So Y has the same limiting 

distribution as Wn i.e. Yj has the standard normal limiting distribution. This 

completes the proof. 

Under the conditions of theorem (3.2.3), h1') (x) has a limiting normal 

distribution with mean h(x) and variance   . Therefore, h1ç1) (x) is 

n 14 x(x))asymptotically unbiased estimator with asymptotic variance °   By 
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the asymptotic equivalence in section 3.1, all three estimators have the same 

limiting normal distribution. As such the asymptotic unbiasedness of h2) (x) 

and h,ç3) (x) also follows from this important theorem (3.2.3). However, one 

should beware tht the choose of Sn(x) = Wn(X) and the requirement that the 

weight function w has finite support are required for the . asymptotic 

equivalence. 

Remark: Note that all three estimators have the same asymptotic variance, 

n 1h)) If we particularly assume a = o(n) 

an 14 X( X))  -' o as n - i OD 

(i.e. all three estimators are consistent). In fact, the variance converges in 

exactly the same way as an/n. 

This chapter has introduced quite a few conditions. Therefore, examples 

of 8(x) should be constructed to show how these conditions are satisfied. 

Example 3.2.1: 

Suppose that ö(x) = /K w(/iT x) where 

11 
, Ix ≤ 1 

L0 1 lxi > 1 
(3.2.2) 

Here S(x) is a particular example of ( 1.1.2) with b1, = 1//i. Clearly, w has 

finite support. Hence, if the life distribution F is continuously 
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differentiable with density f, all three estimators are asymptotic equivalent by 

theorem (3.1.1). 

We now turn our attention to the conditions inside the asymptotic 

normality theorem (3.2.2). Since 

= 

n 2 

- 

- 2 

Hence, a = o(n). Now let 

-m 

'yn S I 24 = Sx)I dx, > 0 

1Mi 
2+i =L[4] CIX 
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- L-

Thus, 

yn  - _( Jiii2)  
/2 1+11/ 2 '/'2 1+11/2 

n n (/ff/2) 

=  1 2Oasn 

(2ff)I 

We then assume f is continuously differentiable. So 

E[f(x)] = 5 Sn(xu) f(u)du 

-4 

= 5 w((x—u))f(u)du 

= 5 w(v) f(x— v)dv 

CD. 

= f(x) - - f'(u) 5 w(v)vdv + 

=f(x) + 

1 
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Therefore, 

L P {E[fn(x)] - f(x)} 
an 

[Ln 
]{f(x) + 0 () - f(x) 

vrn } 

(_i) —' Oasn-----4 M. 

Hence, by assuming f is continuously differentiable and using (3.2.2), we have 

the asymptotic normality for all three estimators. Furthermore, as a11 = o(n), 

all three estimators are consistent. 

3.3 GLOBAL MEASURE OF DEVIATION 

Rice and Rosenblatt ( 1976) strengthened the result§ of Bickel and 

Rosenblatt ( 1973), for the sample density function to obtain the asymptotic 

global results for h(l) by a weak approximation. Here I will discuss their 

result in detail. 

Unless otherwise specified, we assume gn as example ( 1.1.2) throughout 

this entire section that is, 
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1 

Let M = max I [nbf '(t)] 2 (f(t)-f(t)) 1, where a(n) - i w as n -' w 
ItI≤a(n) 

but log a(n) = 0(n). The weight function w is assumed to be zero outside 

an interval [-.A,A] and either (a) absolutely continuous on [-A,A] or (b) 

I 
absolutely continuous on (—co,w) with derivative w' such that j 1w' (t) I < o 

k = 1,2. Then the following theorem can be shown to hold. 

CD 

Theorem 3.3.1 (Rice and Rosenblatt 1976): 

Let f be a positive density on (—w,w) that is twice continuously 

differentiable with a bounded second derivative. 

Set 

-6 1 
b=n , o<5<. 

Choose the sequence (n) so that 

I I f' t +-( j--) 
sup f 2(t), sup ft = 0(n 2 ), 0(n 2 
ItI≤(n) ltl≤a(n) 

'for  some 6 > o with 1 - S - , S - c > o as n - i w. Let c(n) = 2a(n)/b. 

Then P (2 log c(n))2 Mn 

(A(w)) 2 

('w  

where )t(w) = J w2(t)dt, 
—w 
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and 

d = (2 log c(n)) + 1  log K içw) + 1 log log c(n) 

(2 log c(n)) 2 

w2(A) + w2(-A)  
with Ki(w) = 2)(w) 

if Ki(w) > 0 and otherwise 

d. 1 Ilog iI(2 1)] 
= (2 log c(n)) 2 + I 

(2 log c(n)) 

where K2(w) = fco 1W, (t)]2 dt 

A(w) 

Proof: 

E[f(t)] = 
1  I x—u 
F- W1 F--] f(u)du 

w(v) f(x - bv)du 

w(v) [f(x) - bf' (x)v + b 2f' '()V2 + o(b)]dv 

(By Taylor's Formula) 

f(x) + bf' '(x)  w(v)v2dv + o(b). 
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By assumption, f has a bounded second derivative and w has a finite support. 

Therefore, 

sup I f(t) - E[f(t)] I = O(b). 
t 

Then [nbf '(t)] 2 (f(t) —f(t)) can be replaced by 

Y(t) = [nbf '(t)] 2 (f(t) - E[f(t)]) 

11 

= b2f 2(t) J w t—s J d(F(s) - F(s)). 

1• 

Let Z°(t) = n2(F*(t) - t) and F* = F(F ) is the empirical distribution 

function of F(X1),...,F(X), then 

It—s1 
Y(t) = b2f 2(t) 5 W L J dZ0(F(s)). 

Let ZO(.) be the Brownian bridge, that is, 

ZO(t) = Z(t) - tZ(1), 

where Z is a standard Wiener process on [0,1]. The process oY, 1Y, 2Yn 

and 3Y j are given by 

11 
11 

0Y = bf(t) 5 w [] dZ°(F(s)), 
—m En 
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11 

b2f 2(t) 5 w 
1 

2Yn = [bf(t)]2 ) w 

It-s 
Lb;;- IdZ(F(s)), 

] 
1 

3yn = b2 5 w ]dZ(S). 
- T 

By a theorem of Koinlós, Major and Tusnády (1975) versions of Z0 and Z° 

can be constructed on the same probability space so that the maximal 

difference 

IIZ0 - Z011 = O(n2 log n). 

Using integration by parts with u = w [ ] and v = dZ 0(F(s)) 

Y(t) = [bf(t)] { 
1 
B; 

r t-s •l t+Abn 
[ 'En j Zn0(F(s))I A + 

w 
t-s 5 Z°(F(s))w' I j ds I 

-T 

[bf(t)] 2{ w(—A)Z°(F(+Ab))—w(A)Z°(F(t—Abn)) 
+ 5 Z0(F(s))w' [  ] ds}. 

The first two terms inside the curly brackets are 0 in the event of assumption 

(b) holds but (a) does not. Hence, 
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Y(t) = bf(t) J Z0(F(s))w' I  I ds 

= b2 ((t) fZ°(F(t—bu))w'(u)du, 

and 

oY(t) = f(t) f Z°(F(t—bu))w'(u)du. 

Therefore, 

lY(t)— oY(t)I = 

11 

bn 2 f2(t)I f 00 
[ZnO(F(t—bnu) )_Z0(F(t_bu))]w , / (u)du 

CO 14 

If(t) I 2sup I Z0(F(u))_Z°(F(u)) I J I w' (u) I du 
U -a, 

= I1(t)Ibn 2 O(n 2 log n) 

= 11 2(t) I O(bn n 2 log n). 

J _1_ 

Hence sup Y(t)-0Y(t) I = 0p (b 2n 2 log n) sup f 2(t) 
ItI≤a(n)  ItI<a(n) 

(3.3.1) 

Since Z°(t) = Z(t) - tZ(1), then 

IoY(t) - iY(t)I 
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1 1 

= b -2 f 2 (t) 

CO 
f 2(t) f w[ t-s j 1 

f b 

d(Z0(F(s)) - Z(F(s))) 

rt-s 
w 

wL - ]d(Z(F(s)) - F(s)Z(1) - Z(F(s))) 

1* 1 

= b2 f2 (t)IZ(1)I 
t—gl f OD w[jdF(s) 

= b2 f 2(t) I Z(1) I I E(f(t)) 

= OP( 1) b2 f 2(t) 

Therefore, 

1 

sup I 0Y(t) - 1Y(t) I O(i) b2 sup f 2(t) 
ItI≤(n) tKa(n) 

(3.3.2) 

Now we are going to show that the process 1Y and 2Y have the same 

probability structure. 

a, 

t—s 1 E{ 1Y(t)] = f(t) 5 w[ JdE[Z(F(s))] 
—w Fn 

=0 

and 
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11 OD 1 
1 t— 

E[2Y(t)] = b 2 f 2(t) J [ - I (f(s)) dE[Z(s)] 
—w 

=0. 

For 0 < t1,t2 < w, 

E[1Y(tj) .1Y(t2)] 

w 1 w 

1t 1—s1I _____ 

= E{[bfl 2f 2(tj ¶ b dZ(F(si))] [bfl -f-(t2J_w 1t22 L b jdZ(F(s2))]} 

= b ' f2(t 1)f 2(t2) f f 
—w —w 

= b ' f2(t 1)f 2(t 2) f f 
—w —w 

Wl 

w[ 

ti—s1 
b 

t1—si 
b 

•1 
= b 'f2(t 1)f 2(t2) fm w[ t1-s 

- bJ 

and 

E{2Y(t 1)2Y(t2)] 

1 ft 2—s2 
JL Fn 

1 1t2-52 
JL Un 

] d E[Z(F(si))Z(F(s2))] 

] d(F(sj) A F(s2)) 

w [ Un ] dF(s) 

OD 
t j—Sj 

= b2 (2(t i)5 [ b ] (f(si)) dZ(sl)]. 
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w 

[bn f_2(t2)J w[ b t22] (f(s2)) dZ(s2)]} 
-w 

w ai 1 1. 

= bn'12(ti)f2(t2)f 5 w[ t1—s1 ] w [ t2-s2 ] (f(s 1))(f(s2)) 
b b 

d[E(Z(s i)Z(s2)] 

OD ' w 1 

= bf 2(ti)f 2(t2)ff  w t i—si 1_ n 1 1 t2 2 b j W  b ](f(si))(f(s2)) 
-w -w 

d(si A s2) 

= bn1f2(ti)f2(t2)f w [ t i w[ 1 1 t2 1 _Yn —b--J f(s)ds 

Hence, 1Y and 2yn have the same mean and covariance implying that they 

have same probability structure. Further, 

1. 

2Y(t) - 3Y(t) = b2 f CO w[ t—s j C If Fn- I I ft ] 1] 

Using integration by parts with u = 

and v = dZ(s), then 

w( 

I Y(t) 3Y(t) I 

1 1 
f(s')  b2 w[ t—s 

= m;-] [[ fit) ]' 

t-s 
b J C [ f1 ] i] 

Z(s) I 
tAb 
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Go 1 
I I f(s  

+ b2 z(s)w' b j L L ft ] —1 L  

+ - J:Z(s)w [ t—s 1 1  f'(s)  ds 
b J I ii 

t[f(s)f(t)] 2i 

- b 2 w(—A) [1 f(t+Ab 11n) 2 L (t)  Z(t+Ab) 

1 Tt 
12 1 ] +Ab) -Z(t—Ab)- b2 w(A) [[  ) 

3 1 

+ b2 sup Z(s) sup 1 f(S  
S IS_tJ<AbLtf(t]] 

+ b2 sup Z(s) sup  1 f'(s)  i Abn 

Is-ti <Aba [f(s)f(t)]2 

ds 

t+Abn 

S w'[ 
t-Ab 

t+Abn 

WL I t—s 

t—s 

En 

ds I. 

ds 

The first two terms inside the absolute value sign vanish in the event that 

assumptibn (b) holds but (a) does not. Hence 

I 2Y(t) - 3Y(t) I 

1 f'(s)  

= b2 O(i) O(b) + b 2 O(l)  sups—t I < Abfl[f(s)f(t)]2 

1 
f'(s)  

= O(b2 ) sup 
Is-ti 

When n —+ a,, b1 .1. 0 and 
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f, (S) sup ___ f, (t)  
Is— ti f(t) 

By assumption, 

f'(t) - (6-e) 
sup ItJ< a(n)f(t) - O(n2 ). 

Therefore, 

1 

sup I 2Y(t)-3Y(t) = O1' 'b 2\ Q(2 ' 
/ I t I ≤ a(n) ni S  

6 

= O(n2) O(n2 ), by assumption 

(3.3.3) 

Finally, we try to indicate that 3yn has the same probability structure as Y(t) 

where Y(t) is the Gaussian process 

CO  
Y(t) Jw(t—s) dZ(s). 

1 CO 
I t—s 

E[3Y(t)J bri 2J w b ] dE[Z(s)] 
- 

=0 

and 



co 

E[Y(t)] = f w(t—s)dE[Z(s)] 

=0. • 

For 0 < t1,t2 < m, 

E{3Y(t i) 3Y(t2)J 

and 

= E.{[b2J 00 W 

=b 
- -w 

1 OD 

I ti—s1 
b ] d Z(s i)] Ibn -i JW 

I t2-52 
L b 

I  W t—s ] [ t2--S2 d E[Z(si)Z(s2)] 
t-Fn b 

I = bnlj 00 j W [ t1—s b 
—w - 

w[ t2—s2 b ] d(s, A S2) ]  

to 

bn j' W [#] [ t2—s 1 
on 

- 0) 

E[Y(t i)Y(t2)] 
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= E ff5 w(t i—s i)d Z(sl)] [5 w(t2)dZ(s2)ff. 
CwCw 

= J J w(t.i—si)w(t2—s2)dE[Z(si)Z(s2)] 

f co (' w 
= Jw(t 1—s i)w(t 2—s 

f C0 w(ti—s)w(t2_s)ds 

A s2) 

- bJ r L t1— w L s 1 r 
- J J 

—w 
ds. 

Since 3Y,-, and Y have the same mean and covariance implying that they have 

same probability structure. By all the above estimates, we have indeed shown 

that the limiting distribution of Mnis the same as that of sup Y(t). 
It!≤a(n) 

Applying the known result on the maxima of stationary Gaussian process in 

Bickel and Rosenblatt ( 1973) leads to the conclusion of this theorem. 

Now let 

= max (nbf '(t)) ( 1—F(t)) (h1y) (t)—h(t)) I. 
Jt I≤a(n) 

The global result of h,') is a direct corollary of theorem (3.3.1). 
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Corollary 3.3.1 (Rice and Rosenblatt 1976): 

Under the condition of theorem (3.3.1) and the additional assumption 

1 
sup (1—F(t)) = (334) 

It I ≤ a(n) 

one has 

as n -s 

Proof: 

1 1 

P (2 log c(n)) 2 A 
.Lfl 

- (( w))2 

What we need to prove here is M. - M as n ---+ . 

1 

= max (nbf '(t))(1—F(t))(h') (t)—h(t)) I 
ItI≤a(n) 

= max (nbf '(t))(1 - F(t)) 
 4') ItI≤c(n) 1 (t 

+f(t) I 1 1  1 
1—F(t) 1—F(t) 

= max f(nbf '(t))f max f(t)—f(t) 
It f <(n) It I ≤ a(n) 1 

00 

+fn(t) { 
(-i)flL F(t)—F(t) } 

i=° 1-F(t) ] —1 

= max f (nbnf'(t))21 max 
It I ≤a(n) It I 

1 
1  

+ f(t) [o(n) 1—F(t)] 

f(t)—f(t) 
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= max (nbnf'(t)) 21 max 
ti ≤c(n) it I <a(n) 

+ f(t) [op(n) o(n)] 

max I(nbnf'(t))21 max 
It I ≤a(n) It I <c(n) 

+ f(t) 0(1) 

f(t)—f(t) 

f(t)—f(t) 

= max I(n bf '(t))2 (f(t)—f(t)) I + 0(1) 
jtl≤c(n) 

= M + o(1). 

Hence, the corollary. 

Sethuraman and Singpurwalla (1981) have further obtained, in much the 

same way as Bickel and Rosenblatt, the asymptotic global result for h 3) (x): 

Theorem 3.3.2: 

Assume the following conditions hold: 

(Al) w has bandwidth 2bA, 

(A2) B' '(x) is bounded on 0 < x< K and inf B'(x) > 0 
0≤x≤K+A 

F(x)  
where B(x) = L4x) and K + A < X(n), 
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Co ('w 

(A3) let A(w) = J w2(t)dt, then either (a) J Iw'(t)Idt < w and 
— tD 

Co 
- 

- w2(A)+w2(_A) > 0 or (b) 5 (w'(t))2dt < w 'and' 
2.X(w) 

Ki(w) = 0, 

(A4) h(x) is twice continuously differentiable, 

(A5) nb 5 log b - 0 as n — i co. 

Let 

M= max I  ___ /nb  (h 3)(x) - h(x)) 
bA≤x≤L I VB'(x) 

Cn = (2 log (K/b)) 2, 

1. 

= 

and 

1 

f (A(w))2[C + log (C Ki(w)/V27r)]/Cn , when K i(w) > 0 

L 
an =1 1 

((w)) 2[C + log (K2(w)/ir)}/C, when Kj(w) = 0. 

Then for 0 < x < w, 

2 
- a,1) ≤ zj —' e. 
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The proof of theorem (3.3.2) is given in Sethuraman and Singpurwalla 

(1981) and will not be presented here. 

Towards this end, one should be reminded of the previous important 

result, asymptotic equivalence, in section 3.1. That is the two aforestated 

theorems in this section should both hold for all three estimators by their 

asymptotic equivalence. 



CHAPTER IV 

SIMULATIONS AND APPLICATIONS 

In this Chapter, I report the results of some numerical experiments 

conducted to demonstrate how reasonable the following results are for a finite 

sample size: 

the estimators are asymptotic equivalent, 

the asymptotic variance formula for the estimator is adequate, 

the estimators are asymptotically normal. 

Furthermore, the performances of these estimators were compared by using the 

average square error. 

4.1 PROCEDURE 

To study the asymptotic properties of the estimators mentioned above, it 

seemed best to draw samples from populations with smooth hazard functions. 

This was reminiscent of the well known exponential life distribution. We 

therefore used the GGEXN package of IMSL (International Mathematical and 

Statistical Library) to generate 1000 samples of size 100 with X exponentially 

distributed, mean one. To test the asymptotic results, the same was done 

with samples of size 500 and 1000. As unit mean was used, we had unit 

hazard rate here disregarding what the value of x was. 

As regard to the 5—function, example (2.2.1) was used here. That is, 

= /w(a) where 

61 
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11 
W(X) = , IxI ≤ 1 

[o , x>l 

I used (3.2.2) because it satisfies all the conditions of the previous asymptotic 

theorems. Unless otherwise specified, n is the sample size in this Chapter. 

To measure the goodness of performance of an estimator, many authors 

use the M.I.S.E. (Mean Integrated Square Error). However, the M.I.S.E. is 

quite difficult to obtain numerically. I therefore decided to use the average 

square error being defined as follows: 

1000 
1 [h,i)(x) - h(x)]2, j = 1,2,3. 

I J i=1 

From Chapter 3, I noted that all three estimators have asymptotic 

variance given by 

Var (h,çi)(x)) N a h(x) n 1—P(x) ' i = 1) 2,3. 

Hence, the asymptotic variance here is 

1 1 Var (h,i)(x)) N - = - e 
2n e 2 

(4.2'. 1) 

To test the adequacy of this formula, we calculate the sample variance to 

compare with. 
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For each sample size and each estimator, the values of average square 

error, sample variance S2 and estimated variance 2 (4.2.1) were computed and 

are found in Tables 4.2.1-9. 

To check the asymptotic equivalence, I calculated the average square 

difference between estimators, 

000 [ 2 1  1 , [hi) (x) - h(k) (x)], j k 
1000 j i=1 

at the sample points. Such values were computed and are given in Tables 

4.2.10-12. 

To compare all the above calculated values as a whole, I then computed 

for each sample size (i) the total average square error, (ii) the total average 

square difference between estimators and (iii) the relative total square 

difference between s2 and -2 as follows: 

2.0 1000 2 

[h1çi(x) - h(x)] , j = 1, 2,3 
X=0.1 1=1 

2.0 1000 2 

[hi)(x) - h(x)] , j 0 k 
X=0.1 1=1 

2.0 [2 - 1 cy2] 2 (1/2/rou)ex 

x=0.1 (1/2\,/ii) eX 

2.0 
= ,J  [2 - 

x=0 . 1 
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Remark: The relative value of total square difference was used here because 

the estimated variance is a decreasing function and I wanted to compare the 

results of large sample sizes with samples of 100. 

All. these solutions are given in Tables 4.2.13-15. These computations 

were done with computer algorithms written in APL (A Programming 

Language) because of programming simplicity. 

To assess asymptotic normality, I used the well known Kolmogorov— 

Smirnov Test for which the cumulative distribution functions for the observed 

data and the theoretical distribution are computed and subtracted, The 

Kolmogorov— Smirnov Z is determined from ' the largest difference (positive or 

negative). The larger the value of Z, the less likely it is that the observed 

and theoretical distributions are the same. I performed these tests with SPSS 

(Statistical Package for Social Sciences) using unit mean and 2 as the 

required - input information. The Kolmogorov—Smirnov Z values and 2—tailed 

p—values for each case are found in Tables 4.2.16-18. 

4.2 CONCLUSIONS 

Given that the total average square error decreases with increasing 

sample size (Table 4.2.13), all estimators will perform better with larger 

samples. HM gave the least total average square errors for each sample size: 

I therefore consider h1ç3) as a better estimator for finite sample sizes. 

Tables 4.2.14-16 indicate that the total average square difference between 

the estimators decreases as sample size increases. When n = 1000, this 

difference is almost negligible. This result confirms the asymptotic equivalence 

of the estimators. The tables also show that the total average square 



65 

difference between h1ç2) and h13) is much smaller than the other pairs; leading 

me to conclude that h12) and h,ç3) tend to each other faster than any other 

pair of estimators. 

Tables 4.2.1-9 indicate that the average square error and sample variance 

are increasing functiäns of x, as would be expected given that the estimated 

variance 2((l/2yhii)eX) is also an increasing function of x. Moreover, the 

relative total square difference between the S2 and 01 2 decreases as n increases 

(Tables 4.2.15), demonstrating that the asymptotic variance formula is quite 

adequate. 

I finally turn to asymptotic normality. Tables 4.2.16-18 show that when-

sample size increases, the normality hypothesis is rejected at a Type I error 

rate of 5% level of significance less frequently. When n = 1000, all the 

hypotheses at different values of x are accepted for h11) and. only 1 and 2 are 

being rejected for h,2) and respectively. Hence, if we further increase 

the sample size to 5000 or 10,000, a better result should be obtained; 

however, such a test could not be performed due to computer storage 

problems. Nevertheless, the Kolmogorov—Smirnov Tests indicate the 

asymptotic normality of the three estimators. 
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TABLE 4.2.1 

THE TABLE BELOW GIVES THE RESULTS FOR ESTIMATOR 

H') WHEN 1000 SAMPLES OF 100 WERE USED 

x 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

average 
average square sample estimated 
value error variance variance  
0.99912 0.05848 0.05853 0.05526 

1.00116 

1.00131 

1.00935 

1.00252 

0.99926 

1.00175 

1.01436 

1.03264 

1.02836 

1.004 

1.01633 

1.03141 

1.00933 

1.01904 

1.02075 

1.02872 

1.02427 

0.9981 

1.03943 

0.059 

0.06802 

0.07361 

0.08165 

0.09122 

0.10538 

0.11224 

0.13784 

0.14426 

0.16602 

0.1842 

0.20398 

0.19759 

0.24172 

0.2901 

0.33998 

0.36339 

0.34675 

0.44834 

0.05905 

0.06808 

0.07359 

0.08173 

0.09131 

0.10548 

0.11215 

0.13691 

0.1436 

0.16617 

0.18412 

0.20319 

0.1977 

0.2416 

0.28996 

0.3395 

0.36316 

0.3471 

0.44724 

0.06107 

0.06749 

0.07459 

0.08244 

0.09111 

0.10069 

0.11128 

0.12298 

0.13591 

0.15021 

0.16601 

0.18346 

0.20276 

0.22408 

0.24765 

0.2737 

0.30248 

0.33429 

0.36945 
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TABLE 4.2.2 

THE TABLE BELOW GIVES THE RESULTS FOR ESTIMATOR 
ll 2) WHEN 1000 SAMPLES OF 100 WERE USED 

x 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

average 
average square sample estimated 
value error variance variance  
0.99246 0.05699 0.05699 0.05526 

0.99215 0.05731 0.0573 0.06107 

0.99336 0.06603 0.06605 0.06749 

0.99954 0.07128 0.07135 0.07459 

0.9915 0.07904 0.07905 0.08244 

0.98817 0.08859 0.08853 0.09111 

0.98972 0.10207 0.10206 0.10069 

1.00168 0.10786 0.10796 0.11128 

1.0179 0.1328 0.13262 0.12298 

1.01026 0.1358 0.13583 0.13591 

0.98439 0.15716 0.15707 0.15021 

0.99961 0.17495 0.17513 0.16601 

1.00544 0.18555 0.1857 0.18346 

0.98498 0.18453 0.18448 0.20276 

0.99474 0.22855 0.22876 0.22408 

0.98898 0.26494 0.26509 0.24765 

0.99769 0.30826 0.30856 0.2737 

0.97973 0.31079 0.31069 0.30248 

0.96393 0.32328 0.3223 0.33429 

0.99234 0.38371 0.38403 0.36945 
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TABLE 4.2.3 

THE TABLE BELOV GIVES THE RESULTS FOR ESTIMATOR 
fl3) VIIEN 1000 SAMPLES OF 100 VERE USED 

4 

x 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

average 
average square sample estimated' 
value error variance variance  
0.98701 0.05642 0.0563 0.05526 

0.98613 

0.98669 

0.99213 

0.98339 

0.97922 

0.97984 

0.99062 

1.00539 

0.99655 

0.9697 

0.98301 

0.98697 

0.96495 

0.97228 

0.96425 

0.96995 

0.95007 

0.9314 

0.95529 

0.05667 

0.06518 

0.07018 

0.07782 

0.08709 

0.10012 

0.10529 

0.12877 

0.13151 

0.1526 

0.16858 

0.17803 

0.17701 

0.21741 

0.25053 

0.28873 

0.29157 

0.30132 

0.35187 

0.05654 

0.06507 

0.07019 

0.07763 

0.08674 

0.09982 

0,10531 

0.12887 

0.13163 

0.15183 

0.16846 

0.17804 

0.17596 

0.21686 

0.2495 

0.28811 

0.28937 

0.29691 

0.35023 

0.06107 

0.06749 

0.07459 

0.08244 

0.09111 

0.10069 

0.11128 

0.12298 

0.13591 

0.15021 

0.16601 

0.18346 

0.20276 

0.22408 

0.24765 

0.2737 

0.30248 

0.33429 

0.36945 
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TABLE 4.2.4 

THE TABLE BELOV GIVES THE RESULTS FOR ESTIMATOR 
HA(') VHEN 1000 SAMPLES OF 500 VE1tE USED 

x 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1-.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

average 
average square sample estimated 
value error variance variance  
1.01217 0.02635 0.02623 0.02471 

1.00214 0.02786 0.02789 0.02731 

0.99691 0.02944 0.02946 0.03018 

1.00614 0.03409 0.03408 0.03336 

0.997 0.04083 0.04087 0.03687 

1.00698 0.04198 0.04198 0.04074 

0.99675 0.04509 0.04512 0.04503 

0.99211 0.04611 0.0461 0.04976 

1.01351 0.0563 0.05618 0.055 

1.00551 0.06526 0.06529 0.06078 

1.0027 0.06479 0.06484 0.06718 

1.01454 0.07912 0.07899 0.07424 

1.00131 0.08857 0.08866 0.08205 

1.01556 0.10045 0.10031 0.09068 

1.01245 0.10515 0.1051 0.10021 

1.00299 0.10768 0.10778 0.11075 

1.01724 0.12944 0.12927 0.1224 

1.00106 0.13953 0.13967 0.13527 

1.02658 0.17047 0.16994 0.1495 

1.0108 0.18122 0.18128 0.16522 
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TABLE 4.2.5 

THE TABLE BELOVGIVES THE RESULTS FOR ESTIMATOR 
II 2) WHEN 1000 SAMPLES OF 500 WERE USED 

average 
average square sample estimated 

x value error variance variance  
0.1 1.01069 0.02618 0.02609 0.02471 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

1.00095 0.02783 0.02786 0.02731 

0.99606 0.02944 0.02945 0.03018 

1.00407 0.0339 0.03392 0.03336 

0.99522 0.04087 0.04089 0.03687 

1.00517 0.04167 0.04169 0.04074 

0.99411 0.04476 0.04477 0.04503 

0.98958 0.04568 0.04562 0.04976 

1.01028 0.05551 0.05546 0.055 

1.00247 0.06495 0.06501 0.06078 

0.99894 0.06429 0.06436 0.06718 

1.01072 0.07831 0.07828 0.07424 

0.99681 0.08751 0.08759 0.08205 

1.01102 0.09916 0.09914 0.09068 

1.00784 0.10378 0.10382 0.10021 

0.99764 0.10629 0.10639 0.11075 

1.01144 0.12806 0.12805 0.1224 

0.99416 0.13798 0.13809 0.13527 

1.01929 0.16719 0.16698 0.1495 

1.00302 0.17886 0.17903 0.16522 
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TABLE 4.2.6 

THE TABLE BELOV GIVES THE RESULTS FOR ESTIMATOR 
fl3) WEN 1000 SAMPLES OF 500 WERE USED 

x 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

average 
average square sample estimated 
value error variance variance  
1.00957 0.02609 0.02603 0.02471 

0.99973 0.02776 0.02779 0.02731 

0.99471 0.02937 0.02937 0.03018 

1.00257 0.03379 0.03381 0.03336 

0.99357 0.04075 0.04075 0.03687 

1.00334 0.04149 0.04152 0.04074 

0.9921 0.0446 0.04459 0.04503 

0.98738 0.04552 0.04541 0.04976 

1.0078 0.05518 0.05517 0.055 

0.99975 0.06457 0.06464 0.06078 

0.99594 0.06391 0.06396 0.06718 

1.00736 0.07771 0.07773 0.07424 

0.99314 0.08687 0.08691 0.08205 

1.0069 0.09824 0.09829 0.09068 

1.00331 0.10275 0.10284 0.10021 

0.99268 0.10523 0.10528 0.11075 

1.00588 0.12648 0.12657 0.1224 

0.98812 0.13634 0.13633 0.13527 

1.01243 0.16462 0.16463 0.1495 

0.99554 0.17603 0.17619 0.16522 
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TABLE 4.2.7 

THE TABLE BELOW GIVES THE RESULTS FOR ESTIMATOR 
I11y) WHEN 1000 SAMPLES OF 1000 WERE USED 

x 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1-.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

average 
average square sample estimated 
value error variance variance  
1.008 0.01683 0.01678 0.01747 

1.00178 0.01983 0.01985 0.01931 

0.99897 0.02097 0.02099 0.02134 

1.00517 0.02373 0.02372 0.02359 

1.00064 0.02587 0.0259 0.02607 

0.99778 0.02835 0.02837 0.02881 

1.00742 0.03234 0.03232 0.03184 

0.99806 0.03564 0.03567 0.03519 

1.00312 0.04033 0.04036 0.03889 

0.99399 0.04301 0.04301 0.04298 

1.01966 0.0444 0.04406 0.0475 

0.99336 0.05661 0.05662 0.0525 

1.00103 0.05863 0.05869 0.05802 

1.01171 0.0671 0.06703 0.06412 

1.00379 0.07281 0.07287 0.07086 

1.00197 0.07678 0.07685 0.07831 

1.01573 0.09124 0.09108 0.08655 

1.02801 0.10952 0.10885 0.09565 

1.00403 0.10333 0.10342 0.10571 

1.01355 0.10968 0.1096 0.11683 



73 

TABLE 4.2.8 

THE TABLE BELOW GIVES THE RESULTS FOR ESTIMATOR 
fl2) WHEN 1000 SAMPLES OF 1000 WERE USED 

x 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

average 
average square sample estimated 
value error variance variance  
1.00747 0.01686 0.01682 0.01747 

1.00109 

0.9981 

1.00415 

0.99982 

0.9967 

1.00641 

0.99663 

1.00152 

0.99271 

1.01788 

0.99132 

0.99917 

1.00882 

1.00139 

0.9996 

1.01251 

1.02469 

1.00075 

1.01017 

0.01986 

0.02085 

0.02362 

0.02585 

0.0282 

0.03218 

0.03563 

0.04021 

0.04301 

0.04404, 

0.05633 

0.05835 

0.06667 

0.07257 

0.07633 

0.09046 

0.10825 

0.10259 

0.10902 

0.01987 

0.02087 

0.02363 

0.02587 

0.02822 

0.03217 

0.03566 

0.04024 

0.043 

0.04377 

0.05631 

0.05841 

0.06665 

0.07264 

0.0764 

0.09039 

0.10775 

0.10269 

0.10903 

0.01931 

0.02134 

0.02359 

0.02607 

0.02881 

0.03184 

0.03519 

0.03889 

0.04298 

0.0475 

0.0525 

0.05802 

0.06412 

0.07086 

0.07831 

0.08655 

0.09565 

0.10571 

0.11683 
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TABLE 4.2.9 

THE TABLE BELOW GIVES THE RESULTS FOR ESTIMATOR 
H1 ) WHEN 1000 SAMPLES OF 1000 WERE USED 

average 
average square sample estimated 

x value error variance variance  
0.1 1.00692 0.01684 0.0168 0.01747 

0.2 1.00047 0.01983 0.01985 0.01931 

0.3 0.99742 0.02082 0.02084 0.02134 

0.4 1.0034 0.02358 0.02359 0.02359 

0.5 0.99899 0.02581 0.02583 0.02607 

0.6 0.99579 0.02815 0.02816 0.02881 

0.7 1.00539 0.0321 0.03211 0.03184 

0.8 0.99551 0.03556 0.03558 0.03519 

0.9 1.00029 0.0401 0.04014 0.03889 

1.0 0.99136 0.04291 0.04287 0.04298 

1.1 1.01635 0.04386 0.04363 0.0475 

1.2 0.98967 0.05617 0.05612 0.0525 

1.3 0.99733 0.05813 0.05818 0.05802 

1.4 1.00677 0.06636 0.06638 0.06412 

1.5 0.99914 0.07223 0.0723 0.07086 

1.6 0.99712 0.07594 0.07601 0.07831 

1.7 1.00972 0.08988 0.08987 0.08655 

1.8 1.02158 0.10743 0.10708 0.09565 

1.9 0.99739 0.10187 0.10196 0.10571 

2.0 1.00642 0.10812 0.10819 0.11683 
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TABLE 4.2.10 

THE TABLE BELOV GIVES THE AVERAGE SQUARE OF 
DIFFERENCES BETVEEN THE THREE ESTIMATORS VHEN 

1000 SAMPLES OF 100 VERE USED 

x 

H' ) & 11k') & H2) & 

111ç2) 111ç3) fl3) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

0.00072 0.00083 3.1856e-5 

0.00086 0.00101 3.8862e-5 

0.00086 0.00102 4.8186e-5 

0.00104 0.00125 5.9851e-5 

0.00112 0.00139 7.2686e-5 

0.00124 0.00154 8.9704e-5 

0.00145 0.00183 1.1119e-4 

0.00174 0.00219 1.4051e-4 

0.00206 0.00264 1.8578e-4 

0.00287 0.00371 2.2469e-4 

0.00287 0.00384 2.6585e-4 

0.00347 0.0045 3.4978e-4 

0.00445 0.00619 4.328e-4 

0.00408 0.00581 5.1721e-4 

0.00516 0.00723 6.8948e-4 

0.00686 0.00993 8.8666e-4 

0.00878 0.01273 1.1923e-3 

0.01155 0.01761 1.3431e-3 

0.00902 0.01348 1.721e-3 

0.01794 0.02725 2.3942e-3 
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TABLE 4.2.11 

THE TABLE BELUV GIVES THE AVERAGE SQUARE OF 
DIFFERENCES BETVEEN THE THREE ESTIMATORS WHEN 

1000 SAMPLES OF 500 WERE USED 

x 

H(') & II(') & 11(2) & n n n 

11( 2) 11 (2) I1() n 11 n 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

5.7795e-5 6.2487e-5 1.2814e-6 

5.9814e-5 6.425e-5 1.5403e-6 

6.6067e-5 7.0156e-5 1.8656e-6 

7.7362e-5 8.5996e-5 2.326e-6 

8.4324e-5 9.289e-5 2.8203e-6 

9.1617e-5 1.0223e-4 3.5217e-6 

1.019e-4 1.1732e-4 4.2191e-6 

1.2276e-4 1.3991e-4 5.1126e-6 

1.4557e-4 1.6979e-4 6.5654e-6 

1.5277e-4 1.7774e-4 8.0044e-6 

1.8591e-4 2.19e-4 9.6501e-6 

2.2548e-4 2.6528e-4 1.2297e-5 

2.1883e-4 2.7033e-4 1.4832e-5 

2.6811e-4 3.2853e-4 1.8847e-5 

2.9392e-4 3.6358e-4 2.3081e-5 

3.921e-4 4.7871e-4 2.7679e-5 

4.3424e-4 5.3959e-4 3.5531e-5 

4.7715e-4 6.1122e-4 4.2525e-5 

6.2531e-4 8.0041e-4 5.5871e-5 

5.9888e-4 7.9842e-4 .6.8209e-5 
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TABLE 4.2.12 

THE TABLE BELOW GIVES THE AVERAGE SqUARE OF 
DIFFERENCES BETWEEN THE THREE ESTIMATORS WHEN 

1000 SAMPLES OF 1000 WERE USED 

x 

II') & H1) & H2) & 

H2) H( 3) 111c3) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

1.8977e- 5 

1.9515e-5 

2.2403e-5 

2.6447e-5 

2.8674e-5 

3.3952e-5 

3.4862e-5 

3.7495e-5 

4.6376e-5 

4.6097e-5 

5.8931e-5 

7.1234e- 5 

6.895e-5 

9.669e-5 

9.5438e-5 

1.0726e-4 

1.371e-4 

1.449e-4 

1.6063e-4 

1.8855e-4 

1.9841e-5 

2.0713e-5 

2.4114e- 5 

2.86e-5 

3.0723e-5 

3.6882e-5 

3.8122e-5 

4.1933e- 5 

5.1967e-5 

5.1467e-5 

6.721e-5 

8.1327e-5 

7.9883e- 5 

1.1368e-4 

1.1198e-4 

1.2686e-4 

1.6531e-4 

1.7963e-4 

1.9739e-4 

2.3088e-4 

3.1535e-7 

3.8187e-7 

4.6434e- 7 

5.7573e-7 

6.9937e- 7 

8.5135e-7 

1.0648e-6 

1.2836e- 6 

1.5913e-6 

1.9181e-6 

2.4568e- 6 

2.8928e-6 

3.6062e-6 

4.5053e- 6 

5.5015e-6 

6.6899e-6 

8.5294e-6 

1.0819e-5 

1.2706e- 5 

1.5792e-5 
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TABLE 4.2.13 

THE TABLE BELOW GIVES THE VALUES OF TOTAL AVERAGE 
SQUARE ERROR FOR EACH SAMPLE SIZE AND ESTIMATOR 

Estimator II = 100 n = 500 n = 1000 

3.71370 

3.41949 

3.25670 

1.57973 

1.56222 

1.54730 

TABLE 4.2.14 

1.07700 

1.07088 

1.06569 

THE TABLE BELOW GIVES THE VALUES OF TOTAL AVERAGE SQUARE 
DIFFERENCE BETWEEN ESTIMATORS FOR EACH SAMPLE SIZE 

Estimator n = 100 n = 500 n = 1000 

0.08814 

0.01260 

0.01080 

0.00468 

0.00576 

0.00035 

TABLE 4.2.15 

0.00144 

0.00170 

8.265e-5 

THE TABLE BELOW GIVES THE VALUES OF RELATIVE TOTAL 

SQUARE DIFFERENCE BETWEEN S2 AND 2 FOR EACH SAMPLE SIZE 

Estimator 

H2) 

n = 100 n = 500 n = 1000 

0.01762 0.00224 0.00067 

0.00259 0.00168 0.00063 

0.00314 0.00125 0.00060 
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TABLE 4.2.16 

THE TABLE BELOW GIVES THE K- S Z- VALUES AND TWO TAILED 
P- VALUES FOR THE THREE ESTIMATORS WHEN 1000 SAMPLES 

OF 100 WERE USED 

x 

111(1') li 2) I1I ) 

K- S Z 2- TAILED P K- S Z 2- TAILED P K- S Z 2- TAILED P 
0.1 1.122 •0.161 2.764 0.000* 3.053 0.000* 

0.2 1.266 0.081 1.921 0.001* •2.235 0.000* 

0.3 1.263 0.082 1.709 0.006* 2.023 0.001* 

0.4 0.832 0.493 1.015 0.254 1.348 0.053 

0.5 1.391 0.042* 1.814 0.003* 2.197 0.000* 

0.6 1.633 0.010* 1.816 0.003* 2.239 0.000* 

0.7 1.387 0.043* 2.084 0.000* 2.398 0.000* 

0.,8 1.391 0.042* 1.764 0.004* 2.193 0.000* 

0.9 1.191 0.117 1.125 0.159 1.594 0.012* 

1.0 1.180 0.123 1.480 0.025* 2.053 0.000* 

1.1 1.328 0.059 1.714 0.006* 2.364 0.000* 

1.2 1.199 0.113 1.446 0.031* 1.963 0.001* 

1.3 1.328 0.059 1.784 0.003* 2.429 0.000* 

1.4 2.087 0.000* 2.313 0.000* 2.864 0.000* 

1.5 1.644 0.009* 2.191 0.000* 2.851 0.000* 

1.6 2.498 0.000* 2.796 0.000* 3.377 0.000* 

1.7 1.884 0.002* 2.336 0.000* 2.692 0.000* 

1.8 2.311 0.000* 2.861 0.000* 3.442 0.000* 

1.9 1.887 0.002* 2.507 0.000* 3.405 0.000* 

2.0 1.644 0.009* 2.352 0.000* 3.242 0.000* 

* - INDICATE THE HYPOTHESIS THAT THE ESTIMATOR. IS ASYMPTOTICALLY NORMAL 

WITH MEAN H(x) AND VARIANCE aII(x)/n(1-F(x)) IS REJECTED AT 57 

SIGNIFICANCE LEVEL. 
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TABLE 4.2.17 

THE TABLE BELOW GIVES THE K- S Z- VALUES AND TWO TAILED 
P- VALUES FOR THE THREE ESTIMATORS WHEN 1000 SAMPLES 

OF 500 WERE USED 

x 

II' I1]2) 

K- S Z 2- TAILED P K- S Z 2- TAILED P K- S Z 2- TAILED P 
0.1 1.365 .0.048* 1.235 0.095 1.147 0.144 

0.2 0.790 0.560 0.733 0.656 0.647 0.796 

0.3 0.923 0.362 0.930 0.352 1.029 0.241 

0.4 0.867 0.440 0.859 0.452 0.895 0.400 

0.5 1.095 0.181 1.172 0.128 1.264 0.082 

0.6 0.547 0.926 0.506 0.960 0.451 0.987 

0.7 1.112 0.168 1.381 0.044* 1.505 0.022* 

0.8 1.263 0.082 1.429 0.034* 1.548 0.017* 

0.9 0.857 0.454 0.926 0.357 0.950 0.327 

1.0 0.713 0.690 0.690 0.728 0.787 0.566 

1.1 1.069 0.203 . 1.349 0.053 1.509 0.021* 

1.2 1.071 0.201 0.948 0.329 0.853 0.461 

1.3 0.896 0.398 1.108 0.172 1.250 0.088 

1.4 1.202 0.111 1.089 0.187 0.973 0.301 

1.5 0.760 0.610 0.778 0.581 0.925 0.360 

1.6 1.040 0.230 1.185 0.120 1.334 0.057 

1.7 0.713 0.689 0.915 0.372 1.102 0.176 

1.8 1.050 0.220 1.337 0.056 1.525 0.019* 

1.9 1.347 0.053 1.057 0.213 0.931 0.352 

2.0 1.151 0.141 1.296 0.070 1.502 0.022* 

* - INDICATE THE HYPOTHESIS THAT THE ESTIMATOR IS ASYMPTOTICALLY NORMAL 

WITH MEAN 11(x) AND VARIANCE a11(x)/n(1-F(x)) IS REJECTED AT 5% 

SIGNIFICANCE LEVEL. 



81 

TABLE 4.2.18 

THE TABLE BELOW GIVES THE K- S Z- VALUES AND TWO TAILED 
P- VALUES FOR. THE THREE ESTIMATORS WHEN 1000 SAMPLES 

OF 1000 WERE USED 

x 

11' 11 (2) fl( 3) 

K- S Z 2- TAILED P K- S Z 2- TAILED P K- S Z 2- TAILED P 
0.1 1.078 0.195 1.049 0.221 1.029 0.240 

0.2 0.737 0.649 0.701 0.710 0.656 0.783 

0.3 0.594 0.872 0.631 0.820 0.659 0.779 

0.4 0.810 0.528 0.901 0.392 0.848 0.468 

0.5 1.072 0.200 1.030 0.240 1.096 0.181 

0.6 1.240 0.092 1.261 0.083 1.327 0.059 

0.7 0.625 0.830 0.612 0.847 0.599 0.865 

0.8 1.250 0.088 1.348 0.053 1.448 Ø•Ø3Ø* 

0.9 0.956 0.320 1.094 0.178 1.185 0.120 

1.0 1.063 0.208 1.058 0.213 1.130 0.155 

1.1 1.328 0.059 1.418 0.036* 1.345 0.054 

1.2 1.260 0.084 1.340 0.055 1.408 0.038* 

1.3 0.795 0.552 0.840 0.481 0.904 0.387 

1.4 0.780 0.577 0.751 0.626 0.649 0.793 

1.5 0.940 0.340 1.165 0.132 1.277 0.077 

1.6 0.948 0.330 0.988 0.283 1.105 0.174 

1.7 0.769 0.595 0.793 0.556 0.912 0.376 

1.8 1.228 0.098 1.026 0.243 0.934 0.347 

1.9 0.802 0.540 0.784 0.571 0.883 0.417 

2.0 1.179 0.124 1.229 0.097 1.349 0.053 

* - INDICATE THE HYPOTHESIS THAT THE ESTIMATOR IS ASYMPTOTICALLY NORMAL 

WITH MEAN 11(x) AND VARIANCE a11(x)/n(1-F(x)) IS REJECTED AT 

5% SIGNIFICANCE LEVEL. 



CHAPTER V 

CENSORED DATA MODEL 

The censored data model is one of the major models in the survival 

analysis. Its use ranges from clinical studies of patient survival time, 

reliability studies of different mechanisms to studies of. some geological features. 

The classical example is a medical follow—up study (say a cancer treatment 

study over a fixed tithe or open ended period.) In many cases we cannot 

observe the true random survival times Xl,...,Xr, of the n patients due to some 

patients dropping out of the study, live withdrawal of patients from accidents, 

the study being terminated, etc. . We then say the random variable X has 

been censored by another random variable Y1. On the other hand, we observe 

only the random vectors (d1,Z1),...,(d,Z) where 

d1 = and Z1 = min{X,Y}, i = 

If Y1 has support (o,w), the observations are right censored. There has been 

extensive literature on the hazard rate of the i.i.d. random variables X1,... 

with common distribution F whenever Y1,...,Y are also i.i.d. random variables 

with common distribution G. Here we define the degree of censorship fi as in 

Koziol and Green ( 1976)'s model: 

1 - G(x) = [1 - F(x)]13. 
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(Here ,8 = o corresponds to no censoring). For example, if F and G are 

exponential distributions with parameters A and IL correspondingly, then 

1—G(x)=e 

= [1 - 

That is, the degree of censorship is a/A. 

5.1 APPLICATION OF THE ESTIMATORS 

Now suppose f and g are the densities of the distribution F and G, then 

P[Y1>u,X1=u]=P [Xi = u,d1= 1] 

[1 - G(u)]f(u). 

Let 

= P(Z1 ≤ x, di = 1], 

then 

cx 
PN = J [1 - G(u)]f(u)du 
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and the density 

T(x) = [1 - G(x)]f(x). 

Suppose II is the common distribution function of Z1's, then 

1-ll(x)=P[Z>x] 

= P[X1> x and Yi > x] 

= [1 - F(x)][1 - G(x)]. 

Therefore, 

T W -  [1-0(x) fLx  
1-H(X) - 11-G (x) 1-P x)j 

-  f(x)  
- 1-F(x) 

= h(x). 

To provide an estimate of the hazard rate based on censored data, we need to 

obtain an estimator for T(x)/(1 - 11(x)). One simple method is the reduced 

sample' estimate by considering only those patients who died of cancer under 

study. That is, we only consider the random variable Z1 = X1. Now denote 

this reduced random sample as (R1R2•••Rn,) where 
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n 
n' = E d1 is the reduced sample size. Let 

i=1 

R, (x) = ,(number of R1's ≤ x), 

then the ' three modified estimators are as follows: 

1 

ii S,(X—R) 

h)(x) = 1 _ R,(x) 

n, 1 
h)(x) = - - R) n'—i+l 

n, 
h)(x) = - i=1 n - R(1)) log [ 1 + 1 ] '—i+l 

Where the RM 's are the order statistics. Intuitively, the asymptotic 

equivalence still holds here as the estimators are almost the same except for 

multiplication by the factor n'/n where n'/n - 1/(1 + ,8) as n -' 

However, if the degree of censorship increases, the reduced sample size 

decreases. That is censorship strongly affects the estimators under this 

reduced sample technique and a poor estimation will be obtained if the degree 

of the censorship is high. A better estimator has been discussed in Blum and 

Susarla ( 1980). However, I do not introduce it here as it is beyond the scope 

of studying the original estimators. 
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5.2 NUMERICAL EXAMPLES 

In studying the effect of censorship on the reduced sample method, I 

drew some reduced samples from populations with smooth hazard functions. 

The procedures were those used in Chapter 4. I first used IMSL to generate 

single samples of 1000 observations with: (i) X exponentially distributed, mean 

A = 1; (ii) Y exponentially distributed, mean p =0.1. I then set 

Z = min(X,Y) and sorted out all the Zi X1 to produce the reduced sample. 

This resulted in a degree of censorship of /3 = 0.1. The entire procedure was 

repeated for /3 = 0.5 and 1 (p = 0.5 and 1). To avoid rewriting the 

programme, I used (3.2.2) = In-7w ( i7x) as in Chapter 4, and computed 

h) (x), h) (x) and h) (x) with x = 0.1,0.2,...,2.0 . The results are found 

in Tables 5.2.1, 5.2.2 and 5.2.3 respectively. 

To compare results, I also computed the sum of square error 

2.0 2 

i.e. >J [hp) (x)—h(x)] . These values are provided in Table 5.2.4. 
x=0.1 
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TABLE 5.2.1 

THE TABLE BELOW GIVES THE VALUES OF 111çU(x) 

UNDER DIFFERENT DEGREE OF CENSORSHIP 

x 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

/3=0.1, /3=0.5, /3=1, 
n=1000 n'=917 n'691 n'=507  
1.04711 1.0797 1.18068 1.08983 

1.20411 1.17794 1.24013 1.15889 

1.00877 1.06301 1.03978 1.3239 

1.06566 1.06802 1.13843 1.22512 

0.88147 0.86428 0.84688 1.01553 

1.08421 1.00921 1.09383 1.05253 

0.7608 0.78078 1.04348 0.90126 

0.83028 0.89817 0.97944 0.95133 

1.01757 0.98007 0.8073 0.77516 

1.00459 1.15318 1.12784 0.92335 

0.81207 0.80198 0.87458 0.65501 

0.4681 0.54879 0.61056 0.68496 

0.96342 0.96587 0.96994 1.06195 

0.7187 0.63983 0.57971 0.43908 

0.7187 0.63754 0.86497 1.17517 

1.31762 1.19692 1.03796 1.59823 

0.9154 0.99822 0.86497 0 

1.13615 1.13976 1.60273 0.60084 

0.81607 0.89576 0.20183 1.07025 

0.43921 0.61435 1.08121 0 
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TABLE 5.2.2 

THE TABLE BELOV GIVES THE VALUES OF 1I1 2) (x) 

UNDER DIFFERENT DEGREE OF CENSORSHIP 

x 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

fl=0, fi=0.1, fl=0.5, fi=1, 
n=1000 n'=917 n'691 n'=507  
1.04923 1.08355 1.19735 1.1051 

1.20169 1.17375 1.23337 1.14199 

1.00702 1.06022 1.03848 1.3248 

1.05777 1.06095 1.12113 1.21493 

0.8794 0.8611 0.83939 0.98189 

1.08567 1.00965 1.09917 1.07469 

0.76414 0.7829 1.0491 0.89917 

0.82482 0.89247 0.97323 0.94857 

1.02171 0.97904 0.81008 0.76685 

0.99394 1.13869 1.10752 0.91189 

0.81224 0.80076 0.8688 0.66667 

0.46968 0.54994 0.60823 0.65303 

0.95685 0.95999 0.95232 1.02889 

0.72848 0.65044 0.583 0.43927 

0.72181 0.63765 0.86048 1.17926 

1.32761 1.20459 1.01723 1.60858 

0.90141 0.98575 0.85877 0 

1.12651 1.13194 1.5758 0.58582 

0.81362 0.89247 0.19744 1.00962 

0.44076 0.61994 1.13669 0 
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TABLE 5.2.3 

THE TABLE BELOV GIVES THE VALUES OF 111ç3)(x) 

UNDER DIFFERENT DEGREE OF CENSORSHIP 

x 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

fl=0, fi=0.1, fl=0.5, fl=1, 
n=1000 n'=917 n'691 n'=507  
1.04865 1.08289 1.19634 1.10376 

1.20094 1.17293 1.23214 1.14028 

1.00632 1.05939 1.03727 1.32228 

1.05694 1.06001 1.1196 1.21199 

0.87864 0.86024 0.83806 0.97898 

1.08464 1.00854 1.09716 1.07081 

0.76334 0.78194 1.04686 0.89525 

0.82388 0.89128 0.97086 0.94366 

1.02044 0.9776 0.80783 0.76219 

0.99258 1.13683 1.10398 0.90531 

0.81102 0.79932 0.86562 0.66116 

0.46891 0.54886 0.6057 0.64688 

0.95515 0.95792 0.94781 1.01744 

0.72709 0.64892 0.57991 0.43372 

0.72031 0.63603 0.85542 1.16214 

1.32452 1.20112 1.01017 1.57685 

0.89908 0.98258 0.85207 0 

1.12317 1.12776 1.56076 0.57127 

0.81102 0.8889 0.19532 0.98092 

0.43923 0.61718 1.12267 0 
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TABLE 5.2.4 

THE TABLE BELOV GIVES THE VALUES OF 
SUN OF SQUARE ERROR 

fi=O, /3=0.1, /3=0.5, /3=1 
Estimator n=1000 n'=917 n'=691 n'=507  

1.10849 0.87038 1.58890 3.35003 

1.10521 0.85508 1.57684 3.38463 

1.10875 0.85938 1.56721 3.36806 
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As indicated in Table 5.2.4, the total square error for /3 = 1 is 

extremely large compared with no censorship for all three estimators. This 

was expected since the sample size was reduced by almost one—half when 

= 1. I did not analyze these simulation further as they would resemble the 

results of Chapter 4. 
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