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ABSTRACT

In many reliability studies, the hazard rate h(x) is of prime importance.
Therefore, the hazard rate estimation has gained considerable interest in
statistical literature. = Three significant estimators have been péoposed and
studied by Watson and Leadbetter (1963) and Rice and Rosenblatt (1976).
The objective here is to provide a detailed and extensive analysis of these

estimators.

In Chapter II, the bias and asymptotic unbiasedness of these three
estimators are scrutinized thoroughly. Chapter III deals with the asymptotic
equivalence, normality and global deviation. In Chapter IV, a numerical
example is given to test and demonstrate the goodness of performance and the
asymptotic properties of the estimators. Finally, I generalize the id.ea, of these
estimators to give an estimate of hazard rate for censofed data by adapting
the reduced sample technique in Chapter V. A simple exber'iment was also
done to indicate how censorship strongly affects the estimate under this

reduced sample technique.
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CHAPTER 1
INTRODUCTION

Let X be a nonnegative random variable representing the time to failure
(or death) of an article (or orgamism) with distribution function F(x) and

probability density
i(x) = F’(x).

Then the conditional probability of failure during the next interval of duration

x of an article (or organism) function at time t is

F(t+x)F(t
F(x|t)=-ﬁr+_§%ﬂl_l.

Finally, we may obtain a conditional failure rate h(t) at time ft:

= . (1.1)

Alternate names for h(t) defined in (1.1) are hazard rate, mortality intensity,
age-specific death rate, instantaneous death rate, and force of mortality. If
the distribution of X is exponential with mean ), then

n(x) = A&
e'Xx



which is constant; for other distribution h(x) varies with time.

There has been much interest in the above hazard rate. It is usefully
utilized in reliability studies (Cox and Lewis, 1966), studies of mortality
(Kimball, 1960) and .in seismology (Gaisky, 1966; Udias and Rice, 1975).
Many authors have dedicated tremendous effort to the estimation of the hazard
rate.  Watson and Leadbetter (1964a) suggested that the most obvious
estimator combines the estimates of f(x) and F(x) based on a single random

sample. Let us define, for xy,...,x; a simple random sample,

f(x) = = 3 Gu(x-Xy), (1.2)
1=
Fn(x) = -Ilf (number of Xi’s < x), (1.3)
then
h{D(x) = l_nnxx . (1.4)

Estimator (1.2) has been proposed and discussed by Watson and Leadbetter
(1961) and Parzen (1962). Here {6n(x)} is a é&function sequence defined in

section 1.1.

Let X(D ¢ X(2) ¢ ... < X(n) be an ordered sample. | If the data are
assumed to come from an arbitrary distribution, the maximum-likelihood
estimate of it in Grenander (1956) is a discrete distribution with probabilities
1/n at X1, This gives a hazard rate of 1/(n-) at x = X1, To avoid the
infinity at i = n this estimate is changed to 1/(n —i + 1). To smooth

linearly by using sequences of the smoothing function {dn(x)}, Watson and



Leadbetter (1964a) derived

- .
Sn(x-X (1)
h(?(x) = 3% -&I(lf—lﬂ—l . (1.5)

i=1

Rice and Rosenblatt (1976) further studied h{V(x) and h{?(x) and

presented a similar estimator as follows:

n
B (x) = 3 fa(x-XD)logll + 7 |

i=

Other nonparametric estimates of the hazard rate have been studied by
Ahmad (1976), Ahmad and Lin (1977), Shaked (1978), and Miller and
Singpurwalla (1978). However in this thesis I only provide a detailed and

extensive analysis of the estimators h{" (x), h{? (x) and h{3 (x).

Appropriate definitions and preliminary results are described in the
remainder of this chapter.  Various convergence concepts and results also

appear later.

1.1 SOME BASIC DEFINITIONS
Definition 1.1.1:

A sequence of functions {fn(x)} will be called a éfunction sequence if

the following conditions hold:

o]

(a) f | 6a(x)|dx < A, all n, some fixed A.

-



o
(b) f fo(x)dx = 1, all n
o
(1.1.1)
(c) 8a(x) — 0 uniformly in |x| > A, for any fixed A > 0.
(d) f | bn(x)|dx — 0 as n — o for any fixed A > 0.
| x| >X
A good example of such a éfunction sequence is
_ _1 x |
() = walx) = £ w[ 5;] (112)

where w is giveﬁ as a bounded, band limited, symmetric function of integral
one and bp | 0 with nby — o as n — . In this thesis, the above

example (1.1.2) is often considered as we can derive more results by assuming

o= (5]

For estimator h{? (x), we further restrict the class of distributions. The

introduction of such a class is for analytic convenience only.

Definition 1.1.2:

A class G of distribution functions F(x) is such that for any fixed x,

and any fixed A > 0,

1) =
e | (1.1.3)



is, for all sufficiently large n, uniformly bounded in [x-xo| 2 A

" Here we consider G, as the upper bound of (1.1.3).

Later in Chapter 3, a weak approximation will come into use.
Thereforé, it is of interest to provide some basic settings for a weak

approximation here.

A stochastic process is a collection [X(t):t € T] of random variables on a
probability space (Q,‘S{P). Usually T is thought of as representing time. In
most cases, T is the set of iﬁteger_s and time is discrete, or else T is an

interval of the line and time is continuous.

Definition 1.1.3:

A stochastic process {W(t;w) = W(t); 0 < t < o}, where w e Q, and
{Q,ZP} is a probability space, is called a Wiener process if
(i) the process starts at 0, i.e, W(O) = 0,

(ii) the increment W(t) — W(s) is normally distributed with mean
0 and variance t — s for all 0 < 8 < t < o,

(iii) W(t) is an independent increment process, that is
W(te) — W(ty), W(ts) — W(ts),...,W(tan) — Wty are
independent random variables for all
0 <ty < tg<ts <ty €k by < tan < o (0 = 23,..),

(iv) the sample path function W(t;w) is continuous in t for all

w € Q.



Intuitively, (i) - (iii) imply that E[W(t)] =0, E[W2(t)] =t and
E[W(s)W(t)] = s A t. '

The proofs of the existence of a Wiener process and the continuity of its

path can be found in Billingsley (1986).

Definition 1.1.4:

A  random element X(t), 0<t <1, is Gaussian if all its
finite-dimensional distributions are mnormal. On the other hand, the
distribution of X(t), 0 <t < 1, is normal and the joint distribution of
X(ty), X(t2),.,X(tn), 0 <ty < t2 < ... < tp <1 (n = 23,..,) is multivariate
normal. These finite-dimensional distributions are completely determined by

the means E[X(t)] and the covariance function E[X(s)X(t)], 0 < s,t < 1.

Definition 1.1.5:

A stochastic process {B(t); 0 < t < 1} is called a Brownian bridge if

(i) ‘ the joint distribution of B(ty), B(ta),...,B(tn)
‘ (0 <ty <ty < ... <tp<1l;n=12..)is Gaussian

(i) E[B(t)] = 0 and E[B(s)B(t)] = s At —st, 0 < s, < 1,

(iii) the sample path function of B(t;w) is continuous in t with

probability one.

When t = 0 and 1, we have E[B2(t)] = 0. Thus, B(0) =B(1) = 0
almost surely.

Csorgd and Révész (1981) provi.ded us the relationship between B(t) and
W(t) as follows: |



(i) Let {W(t);0 < t < o} be a Wiener process. Then .

B(t) = W(t) - tW(1) (0 < t < 1) is a Brownian bridge.

(1.1.4)
(ii) Let B(t) be a Brownian bridge and define
W(t) = (t+1)B [ %I] (0 <t < o).
Then W(t) is a Wiener process. (1.1.5)

The existence of such a Gaussian process, B(t), follows immediately from

(1.1.4).
With the idea of a Brownian bridge, we now go further to discuss strong

approximation of the Empirical processes by such a Gaussian process. We

first define

{Bn(x); = < x < o} = {Vn(Fa(x) - F(x)), -0 < x < o}
(n = 1,2,...) (1.1.6)

as the Empirical process. Then by the central limit theorem
e ’ |
fn(x) —— N(0,F(x)(1-F(x))) (1.1.7)

for each fixed x.



If F is continuous then F_l»(y) = inf {xF(x) = y} and F(F—l(y)) =y.
As such, we can further investigate the process {fn(x);~» < x < o} by letting
U; = F(X;). Then the U; are U(0,1) random variable provided F is
continuous. Now let Ej(y) be the empirical distribution of the sample

Uy,...,Up .and the resulting uniform Empirical process is given by

{on(y)i0 ¢ ¥ € 1} = {ya(Bn(y) ~¥); 0 ¢y < 1}, n = 1,2,..
(1.1.8)
Therefore, an(y) = ﬁn(F—l(y)), 0 < y < 1. Further by (1.1.7) we have

a(y) =2 N(Oy(-y) (1.1.9)
for each fixed y € (0,1).

Finally, I display one of the best strong approximations of the Empirical
process given by Komlés, Major and Tusnddy (1975). For uniform empirical
process, there exists a probability space on which one can define a sequence of

Brownian bridges {Bn(y); 0 < y < 1} such that
g

sup | an(y)-Ba(y)| &£ O(n? log n) (1.1.10)
0<y<1

1.2 SOME PROBABILISTICAL RESULTS
"Theorem 1.2.1 (Chebyshev’s Inequality):

Suppose that the random variable X has a distribution with mean p and

variance c2. Then for every ¢ > 0,



1
P(|X—p| 2 e0) < -

Theorem 1.2.2 (The Glivenko—Cantelli lemma):

Suppose that X,Xs,... are independent and have a common—distribution

F. Then

sup|Fu(x) - F(x)] 255 0 (1.2.1)

as n — o. In words, F, converges to F uniformly in x with probability 1.

Theorem 1.2.3 (Dominated Convergence Theorem):

If |fn] <-g almost everywhere, where g is integrable and if f, — f

almost everywhere, then f and the f, are integrable and [ fodu — | .f du.

Theorem 1.2.4 (Markov’s Inequality):

Suppose X is a random variable, then for any ¢ > 0 and k > 0,

POIX] 2 ¢ ¢ & BIX.

Theorem 1.2.5 (Holder’s Inequality):

Let X and Y be random variables and suppose that —;5 + é— =1, p > 1,

q > 1, then

t 1
E[|XY]] < {E[|X]"]}» {E[|Y]]}a .

Theorem 1.2.6 (Normal Convergence Criterion):

If Xpn,x are independent summands, then, for every e > o, the limiting

n :
distribution of ¥ Xp,x goes to N(a,0?) and max P[|Xnx| > ¢ — 0 if and
k=1 k :
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only if, for every ¢ > 0 and 7 > 0,
‘ n
(i) 2 P[|Xnx| 2 ¢ —0
k=1

n 9 n
(11) % O'n;k('r) — 02, ) anmk (T) - o

Hel‘e an,k(T) = f Xan,k, a'n,}i('r) = f xzan,k - f Xan,k
|x|<T |x|<T |x|<T

Theorem 1.2.7 (Cr—iﬁequality):

E[|X+Y|] < CE[|X|] + G:E[|Y|"], where C;r = 1 or 2" according as

r<lorr?2 1.

The proofs of theorem 1.2.1 — 1.2.7 can be easily found in many contexts
of probability theory and hence will not be shown here. I have displayed

these theorems here because they will be used later.



CHAPTER II
BIASEDNESS AND ITS ASYMPTOQOTIC RESULTS

In this chapter, I will examine the bias of the three aforementioned
estimators. I first adapt the idea suggested by Rice and Rosenblatt (1976) of
calculatiﬁg the bias by‘ assuming f is twice continuously differentiaﬁle, and then
provide a more detailed analysis of the bias.

Watson and Leadbetter (1964b) has derived that h{2 is asymptotically
unbiased. Considering the relation between the expected values of h{2? and

h{3), I will also prove that h{3) is asymptotically unbiased.

In this chapter Op(en) has the usual meaning ie. Ay, = Op(en) means

that An/en are bounded random variables in probability for large n.

2.1 BIASEDNESS
Theorem 2.1.1 (Rice and Rosenblatt 1976):

Let Xjy,...,Xn be independent random variables with common distribution

Fin C (continuously differentiable) and density f.

Let an(x) = fa{x) - (2.1.1)
Then  hiD(x) = an(x) [1 + O (= )] (2.1.2)

®
Choose &n(x) = wn(x) and if f w(x)xdx exists and f is twice

-

continuously differentiable,

11



Elan(x)] = 1%%—)% + %—é{% f_ww(v)v2dv b—é + o(bd).
(2.1.3)

Proof:

Since by (1.1.7),

sup |Falx) — F(x)| = 0,(==)-

EL

So

hh (x) = [1 + 0p(75 }

n

= ap(x) ll + Op(:/—;) J

This completes the proof of the first part.

Now,

12



B%W[}%E] f(u) 4y

[¢9]
= f w(v) ff—b}‘;v dv.
—

Let -
g(v) = f(x-bav),

then by the twice continuously differentiability of f and Taylor’s Formula,
g(v) = g(0) + 5,—5-?-1 v + 54%9)- v2 + Ry, where R, is the error term
. V b2 -
= (x) - baf’(x)v + " *(x)v2 + Ra

3
As Rs ¢ J%’—L f-7/(z), where z is between 0 and v,

Elan(x)] = 1—{53(%) f_mw(v)dv - % f__mw(v)vdv
+ ﬁ’i‘—f;{%}[ f w(v)vidv + o(b3).

Since w is a symmetric function of integral one,

13
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E[an(x)] = I%é@% + {—L—%&;— [.f_mw(v)ﬂdv]b“ + o(b2).

It follows from the above theorem, that the leading bias term of h{¥(x)

is proportional to f’’/(x)/(1-F(x)). Noticing that

h'(x):f’x +[ f(x ]2

1-F(x -F(x

and

h// I'%X; + f:’L—‘X?f%xg + 2{:_§X)ffx’ [ E ’ :Is

£/ (x)

£/ (x)h 3
= 1) T Sk

&m2+m®y (214

3f
1
It is of interest to rewrite

R = 10 - 36 () - 06T - 2(0x)’

= h//(x) - 3h(x) h'(x) + (h(x))".

This rewritten expression shows for example that if h’(x) = 0 and h’’(x) > 0

or if h is almost constant near x then the bias of h{! (x) will be larger.
Following the idea of assuming f being twice continuously differentiable,

we can also obtain the bias for h{®» and h{¥ accordiﬁgly. To do this we

need the following theorem.



15

Theorem 2.1.2 (Rice and Rosenblatt (1976):
Let Xji,...,Xn be independent random variables with common distribution

Fin C (continuously differentiable) and density f.

E{|h{? (x) - B ()] < X, some constant k. (2.1.5)

o
Further choose 0n(x) = wq(x) and if f - w(x)xdx exists and f is twice

o

continuously differentiable, then

[14] [24]
2
f‘wn(x—u) 1‘%‘% du = Tfé‘z(%)' + b—g h’ 7 (x) f w(v)vidv + o(b2).
-

-

(2.1.6)

Noticing that if 0 < x < 1,

@ xi i+t x2
x —log(t + )] ¢ [x - 3 B () <5

=1

Hence,

n-i 1

E[|h{? (x)-h{3 (x)]] € f g [ifl-l] (F(u))i'.l(l_F(u)) g +16n(x—u)f(u)du
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‘ f 0<F(u)<1 igl [121] ENC O 2

fa(x=u)f(w)du + f P(a)=10 5 [iﬁl]F(u)i".

i=1

(F@)"” s Gilew)i(u)du

= f0<F(u)<1 51[ i1 ] F(u) " (1~ F(u)"" n_}_{_

) n(x—u) f(u)du

' n . . .
. . n i-1 n-i 1
Now consider the expression iil[ i1 ] F(u) (1-F(u)) =T - For
a < 1, the contribution from ¥  is 0[ % ]
i<om

For contribution of ¥ , we consider F(u) as the probability of success in a
i2om .

binomial distribution of sample size n and variance nF(u) (1-F(u)). There is

an h > 0 such that F(u) < F(u + h) < a < 1. Let Y be the random

variable with the above binomial distribution, then
i-1 n-i 1
3 [ ] F )

<3 (3] P s



I

P[Y > om]

I

P[[Y - nF(u)] 2 n(a - F())].

By theorem (1.2.1) (Chebyshev’s Inequality),

2[5 ) e R ety < S
< %, some constant K.
Therefore,
-
Bl|n{2 (x) - b9 ()] € 3 f fn((e-u)f(u)d.
-

By continuity f is bounded over (—w,0). Let f(u) < M, Yu. Then,

E[|h? (x) - b ()] € 22 | Gy(x-u)du

—0

I
B
g

by (1.1.1(b)).

Hence,

E[Jh{? (x) — h{® (x)]] %, for some constant k.

17
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Now if f is twice continuously differentiable, then by using the method of

Taylor’'s Formula as in the proof of theorem (2.1.1), we have

[t1]

f Wn(x—u) fuu du

-0

03]

. f w(v)[n(e)-bah (x)v + 2B b+ (x)v2+o(b)dv

—®

[11] [s4]

= h(x) J w(v)dv — bph(x) f w(v)vdv
+ b—‘g h’’(x) f w(v)vidv + o(bg).

As w is a symmetric function of integral one,

1]

f_mwn(x-u)l%% du = h(x) + 2 1 (x) f w(v)vidv + o(b2).

'

‘The proof of this theorem is completed.

Now choose 6p(x) = wn(x) and consider h{? (x),
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h{? (x) = f Wa(%-) TR (P PG

- L Wa(x-1) Ty [jio (-1 [Efl;l;}’(“—gﬁﬁ dFa(u)

o ® .
- f Wa(x—1) % - f wa(x-) DT g5, (o)
- -®

1
+ op[ -ﬁ] (2.1.7)
The mean of the first term on the right side of (2.1.7) is

1]

f Wn(x—u) 1f uu du.
-

Thus by the preceding proved theorem (2.1.2), the leading bias term of
h{2 (x) and h{3¥ (x) is proportional to h’’(x). From (2.1.4),

hee(x) = {q%} + 3{1—@%’]‘% + 2(h(x))”

This expression shows, for example, that if f/(x) = 0 and £/(x) > 0 or if f is

almost constant near x, the bias of h{? (x) and h{3 (x) is greater.

2.2 ASYMPTOTIC UNBIASEDNESS
In this section, various results concerning the asymptotic behaviour of the '

bias of the three estimators will be studied here. Referring to h{! (x), some
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results on the asymptotic behaviour of f;(x) and Fn(x) have been -given in
Leadbetter and Watson (1961) and Parzen (1962) and they have certain
implications for asymptotic unbiasedness of h{D (x).

All theorems and lemmas except theorem (2.2.3) in this “section are

extracted from Watson and Leadbetter (1964b).

Lemma 2.2.1:

If g(x) is continuous at x = 0 and g(x) is integrable, and if {&n(x)} is a

o

é~function sequence, then g(x)dn(x) is integrable and f g(x)dn(x)dx — g(0) as

~—0

n — m.

Proof:
By continuity g(x) is bounded in some interval (-A,)) with A > 0.
Suppose g(x) < M, for some fixed M whenever x € (-A,\), then

J‘lxl</\g(x)§n(x)dx S M f|x|</\6n(x)dx,

Hence g(x)0n(x) is integrable over (-A,A) by (1.1.1(a)). That g(x)ﬁn(x)\ is also
integrable over the region |x| > A follows from (1.1.1(c)) and integrability of
g. Now let A be chosen as in (1.1.1(a)). Then for ¢ > 0, A may be chosen
such that |g(x) — g(0)| < €/A if |x| < A. Thus, '

=0

l f_:g(x)én(x).dx - g(0)| = U_:g(x)%ﬁn(x)dx - fmg(o)ﬁn(x)dx

by (L.1.1(b))



N ’ f_:[g(x) ~ 8(0)]6a(x)dx

@

_sf 18(x) ~ g(0)] | ba(x)]dx

—m

sf‘xldlg(}c)—g(o)l | 6a(a) | dx+ LXIZAIg(x) -
8(0)] [ 6a(x)]dx

sf|x|<k|g<x>—g(0)| | 6a(x) | dx + Lxm[lg(x)l
+ 18] 16a(x)]dx

= f]x|<A|g(x)—g(0)| |6n(x)|d,; + flxl?_/\’g(x)l-

| 8a(x) | dx+ | g(0)] f x| 321 6a(x) | dx. (2.2.1)
The first term of (2.2.1)

flxkAlg(x) - g(0)] [8a(x)]dx < f|x|<,\ £]b(x) dx

=% f|x|</\ |8ax)]dx

<ExA by (1.1.1(a))

21
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We let Ky = Tu]i) | 6a(x)|, then the second term of (2.2.1)
x[2A ‘

f|x|2,\|g(x)| | 6n(x)]dx < Ky flxlelg(x)ldx'

By (1.1.1(b)), Ky — 0 as n — w. Follows by the integrability of g,

f|x|2A|g(X)| | 6a(x)|dx — 0 as n — w.

By (1.1.1(d)),

|g(0)] f|x|2)\|5n(X)|dx —0asn — o

Since ¢ is arbitrary,

s

f g(x) ba(x) — g(0) as n — .

-

This completes the proof of this lemma.
By this important lemma, we have the following result.

Theorem 2.2.1:

Let {0a(x)} be a éfunction sequence and f(x) a probability density which

n
7 2 6n(x0 - Xi) Whel'e Xl,...,Xn
i=1

Bl

is continuous at the point xg. Let fn(xo) =
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form an independent sample from the distribution. Then
E[fa(x0)] — f(x0) a8 n — w.

Proof:
Since

o

Elfn(x0)] = f n(xo— w)f(u)du

-

= f bn(v)i(xo — v)dv..
By Lemma (2.2.1), Elfn(x0)] — f(x0) as n — w.

The sample distribution function Fp(x) is essentially a binomially

distributed random variable with mean F(x). Therefore,

E[Fa(x)] = F(x) (2:2.2)
and

var[Fa(x)] = $F(x)[1-F(x)]. (2.2.3)

So Fp(x) is an unbiased estimator of F(x). By the above results, we can
obtain the asymptotic unbiasedness of h{!(x). But since the asymptotic
unbiasedness of h{! (x) follows immediately from the asymptotic normality of

h{? (x), we discuss it later in Chapter 3.
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We now turn our attention to h{? (x).

E 1’ [ 2 ] P(u) [P ]»6n(x—u)f(u)du

ntl n i- n-i+ n
=) {iil [ i1 ] F(u) P } { 1__%‘_(717 - F(u) }
bn(x—u)f(n)du

_ Lﬂ {EO [ n ] F(u)" [1 -F(u)]‘”} { "F%‘(H) - F(u)“}.
n(x—u)f(u)du.

Considering F(u) as the mean of a binomial distribution, then

n T

IEO[ Irl] P’ L P = L

That is

E[h{? (x)] = f { l_EF(E)' - F(u)n } n(x—u)f(u)du
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[0} [t}

=f Su(x—u)h(u)du — f bn(x-0)F(u)" £(u)du

- —w

(2.2.4)

Lemma 2.2.2:
If {6n} is a O-function sequence and if F(x) is a distribution function in
the class Cg, then, provided the associated hazard function h(x) is continuous

at x¢, we have

®

f én(xo-u)h(u)du — h(xo) as n — w.

—m

Proof:
For given ¢ > 0, we choose A > 0 such that
|h(u) = h(xo)| < 76¥ if |u — xo] < A. Then,

o

‘ f bn(1 — xo)R(uw)du — h(xo)

-m

[¢0]

= U: Sa(u — xo)h(u)du — f 5n(u-—-Xo)h(Xo)du

-

by (L.1.1(b))

_ U_:a,,(u — xo)[R(u) — h(xq)|du

= 'f|11—x0| < /\6n(u_X°)[h(u)"h(x°)]du+fIﬁ—xolz 3, fn(u=x0)[h(u)—h(x0)}du
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+‘f Iu_xolZAﬁn(u—Xo)[h(u)—h(xo)]du

| f | u—xo| <A én{u=x0)[h(u)-h(x0)]du

I

f wmsto] < | Ba(u-0)| | B()-hCxo) | dut f amso| 2] o0} 1) |

< i flu_X0|</\|6n(u—xo)|du + f|u—xo|2)\lan(u_x°)l |h(u)|du

+ | h(xo)| ‘flu_Xolz/\Mn(u—xo)]du

<€+ f|u_xOm|5n(u—xo)| |h(u)|du + |h(xo)| flu_Xolz)\l&n(u—xo)ldu
(2.2.5)

By definition (1.1.2), the integrand of the second term of (2.2.5) is dominated
by G,f(u). From (1.1.1(c)), this integrand tends to zero for all |u-xo| > A.
It follows from the dominated convergence theorem (1.2.3) that the second
term tends to zero. Furtherfnore, the third term of (2.2.5) also tends to zero

simply by (1.1.1(d)). Since e is arbitrary, the result follows.

Theorem 2.2.2: , ,

Let {én} be a 6function sequence and F(x) a distribution function in the
class C, If the hazard function h(x) is continuous at xo, and if F(xo) < 1,

then h{2 (x,) is an asymptotically unbiased estimator of h(x,).

Proof:

By (2.2.4) and lemma (2.2.2), it is sufficient to show that
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f Sa(x-0)F(u) f(u)du — 0 as 1 — .

If A > 0 is chosen so that F(x¢+A) < 1 and further h(u) is bounded in

|u—xo| < A, then
n
f |x0-u |2 3\ bn(xo—w)F(u) f(u)du

= f |-t | 35 (Ko=) (w)[1-F(w)] F(u) du

A

G, f x> JF@” - F)™ f(u)du

I

1
G Af [F(w)" - F(u)" ]dF(u)
0 .

[ Za

. [ 1 __1
2| T T ne

C |
% | mEF ] 0asn— o

I

Further since h(u) is bounded in |xy — u] < A,

f | xp-u] <A (ko wF () T-F(u)h(u)du

$ f Ixo-u| < Aﬁn(xo‘u)F(u)nKﬂuf some constant K
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. . n ’
< Klflxo—u|<A6n(x°_u)F(x°+’\) du |

= KlF(xo+,\)nf -y Aﬁn(xo—u)du
< KKoF(xo+A)" by (1.1.1(a)

which goes to zero as n goes to infinity. Combining the above two results,

we have

s1]

f 5n(x~u)F(u)nf(u)du — 0 asn — o,

i

and the theorem follows.

To- show that h{3 (x) is also asymptotically unbiased, we should recall

(2.1.5) from theorem (2.1.2) wherein

-

E[|h{?(x) - h{¥(x)[]] ¢ T — 0 as n — w.
Hence,
E[|h{ (x) - h{» (9)[] — 0 a5 1 —

implying that h{3 (x) is also asymptotically unbiased by theorem (2.2.2). But

we should note that a further condition (continuously differentiability of F) is



29

required here in accord with theorem (2.1.2). So we have the _followiﬁg

theorem.

Theorem. 2.2.3:

Let Xy,...,Xn be _independeﬁt random variables with common distribution
Fin C' and in the class C 5 Let {6a} be a 6-function sequence, then h{¥ (x)

is an asymptotically unbiased estimator of h(x).



CHAPTER III
ASYMPTOTIC NORMALITY AND DEVIATION

Having examined the bias and its asymptotic behaviour of the three
estimators in the previous chapter, I will now obtain other asymptotical
results. In section 3.1, we show that if fu(x) = wq(x) and the weight
function w of (1.1.2) has finite support then all three estimators are
asymptotically equivalent. In section 3.2, we then obtain the asymptotic
normality of h{! (x) by extracting some theorems and lemmas from Watson
and Leadbetter (1964b).  However, in the final section, we switch our
concentration to the study of the global deviations of h{? (x) and h{® (x) via

some convergence theorems.

3.1 ASYMPTOTIC EQUIVALENCE
Theorem 3.1.1:

Let Xi,...,Xn be independent random variables with common distribution
Fin C (continuously differentiable) and density f. Choose dy(x) = W,;(x) and

further if w has finite support, say vanishing outside [-A,A], then

t
|h{® (x) — h{D (x)] = Op(ma.x(n 2bn)).
Proof:

|B{? (x) - h{V ()]

30
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A
=.“[Ab—111 o[ 5] = dF“(u)‘f Ba v ) g o)

A :
= Ell fAW X;u [1—Fn(u) 1_%, ey ]an(u)

A
| 1 x-1 Fo(u) - Fo(x
a E;fAW W {1—1111 l—nx}an(u)

A .
1 n _bn Fn
~|P= —AW { —Fr(x}(cx—bzgf)lll—f(‘ﬁxn } bndFa(x-bny)|,

by putting
_x—u
y = b,

A .
< f 1w(y) | 1L Fn(x-bnY)—F(x—bny) |+ | Fo (x)-F(x) | 4| F(x-bny)}-F(x)|

—A - n(x—bnY)Ill— n(X)]
dFn(x-bny) - (3.1.1)
By (1.1.7),
Fo(x-byy) — F(x-bay)| = O (=%
81}ipl (x=bny) — F(x-bny)] P(ﬁ)
and

sup |Fa(x) - F(x)| = op(y-;).

Also by mean value theorem,
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|F(x = bny) — F(x)| < |bny f(£)|, where f(§) =  max f(t)
x~bn| y | {t<x4bn|y|

< b AlKE)].

Hence _
|F(x ~ bay) = F(x)| = O(ba).

Thus,

549 () — 14D ()] = O,(max(a ).

Theorem 3.1.2 (Rice and Rosenblatt 1976):

Let Xi,...,Xn be independent random variables with common distribution

Fin C (continuously differentiable) and density f, then

hp (x) - (] = 0, & -

Proof:
The proof follows immediately from (2.1.5) in-theorem (2.1.2) where

E[|hg? (x) — h{? (x)|] ¢ X, some constant k

then by Markov’s inequality (1.2.4),
P {|h{®(x) - h{¥(x)| 2 €} & % E[|h{? (x) - h{® (x)]]

k

{ — — — .
$ Te 0asn )
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By the above two significant theorems, we can conclude that all three
estimators are asymptotically equivalent if fy(x) = wn(x) and w has finite

support.

3.2 ASYMPTOTIC NORMALITY
The asymptotic normal behaviour of h{V (x) will be given here through a

series of lemmas and theorems without the assumption that 6y = wn(x).

Lemma 3.2.1:

If {én} is a S~function sequence, and for p > 2, « L=« n(p) =

1]

f |5n(x)|pdx < o, then ¢ — o as 0 — w.

—©

Proof:

It follows from (1.1.1(b) & (d)) that if A > 0,

A :
f fn(x)dx — 1 as n — . Now

‘ f_ i&n(x)dx

By Holders inequality (1.2.5) where q~1 =1-p,

| U_i bu(x)dx s(wé { f i|5n(X)|pdx}é.

A
¢ fA| 6a(x) | dx.

Therefore,
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t o L Lo t
@))? lim inf f | 6a(x)|Pdx}t ® = lim inf (22)° f | 8a(x)] Pdx}
n-ow -w n-w -
A
> lim inff bn(x)dx ’
n- o -
= 1.

Thus,

1

[+ I -
lim inf {f ]5n(x)|pd_x} -

n-+ o

A

N

22)

[s]
This is true for all A > 0, hence a = f |6n(x)|pdx “®asn - o

-

Lemma 3.2.2:

w
Let {6n(x)} be a 6-function sequence with a = o (p) = f |§n(x)|pdx

-

" P
< o. Then fu(x) = 52 Xl is also a &-function sequence, (p > 2).

n

Proof:

6: satisfies condition (1.1.1(a) & (b)) as
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fmwﬁ(xndx - fmal'i(x)dx

~m —o

il
bQ._l‘
d '
. 8
=
"

j
3
[a
e

¥ .
fn satisfies (1.1.1(c)) since 6a(x) — O uniformly in |x| 2 A > 0 and o, — o

by lemma (3.2.1). Now let K, = suﬁ) | 6n(x)|, then

J

p-1

|5:(x)|dxg [Kr&n ] J;XD)‘]&n(x)]dx.

x|2A

Since Kn — 0, o) — o and J;XIZ/\M“(X)IdX — 0asn — o

J

[ [6:(x)|dx — 0 as n — o ie (1.1.1(d)) is also satisfied by 5:. The
x[2A

lemma follows.

Theorem 3.2.1:

®

Let {6(x)} be a é-function sequence with o = f 5§(x)dx < o and a

)

= o(n). Let xo be a continuity point of the density f Then (n/a )var

{fn(XO)} — f(Xo) a5 n — .
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Proof:

var[fa(xo)] = 511- E[5121(X0—X1)] - %{E[‘sn(XO"Xi)]}2

® ‘ 2

=> [a—ﬂ‘var[fn(xo)] =toz; f_méz(xo—u)f(u)du - a; { f “ 6n(x0—u)f(u)du} :

-
¥ 2
By lemma (3.2.2), 6o = én/a is also a 6-function sequence, then

o] ©
-1

a f 5§(xo—u)f(u)du = f 6:(xo—u)f(u)du — f(x¢) as 1 — o

n
by lemma (2.2.1),

1]

and a; f fn(xo-u)f(u)du [ — 0 by lemmas (2.2.1) and (3.2.1).

-0

Hence, the theorem.

Theorem 3.2.2:

Let {fn(x)} be a 6~function sequence such that

1]

[11]
o =~f 6,2,(x)dx <o, Yo = f |6n(x)|2mdx < o for some 7 > 0,
—m ) —m

i
and such that —77#—17“77 — 0 as n — o. Let x be a continuity point of

n
aIl

1 t
the probability density f. Then n2{fa(x) — E[fa(x)]}/[e f(x)]? has the standard

normal limiting distribution.
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Proof:

Let 7, = ()= B} then by theorem (3.2.1)

it is sufficient to
{varlfn (x)]}? |
show that Zp has the standard normal limiting distribution. But we can
rewrite ‘ |
n
Zn = Y Xpi
where
2
n = Elfa(x=Xy)], on = var{fn(x—X1)},
L
Knyi = [6n(x—Xi) — pn]/(n20n).
Hence,

n n
i= i=1

By normal convergence criterion (1.2.6), it is sufficient to show that

n
ZP[X ;| 2 ¢ —0asn— o IfFyjis the distribution function of Xn,s,
i=1 !

then by Markov’s inequality (1.2.4)

e n 24
'21P[|Xn,i| > ¢ < ] E[|Xn,i| ]
i= €

v ? n
- = 2+'r|E
€

fn(x=X)-E[6n (X“)fl)]
[0 var 6, (x-X;)]2

Sy
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Hence, we only need to show that

Following from the Cr-inequality (1.2.7) given in Loéve (1960), this expression

bn(x~X1)-E[6n (X-PIQ)]

241
— 0 as n — w
[n var 6,(x-X;)]2

is dominated by

2““{ B 6n(xX)] " o 1E[sa (X )11 }
. 2" var(Ga(x=X ) 2" [var (Su(xX )]

1
= 2 m[Pl,n + P2,n] Say.

By theorems (2.2.1) and (3.2.2),

241
Pon — n}ﬁ(x)l Sy — 0 as n — o by lemma (3.2.1).
n/ o f(x)] 7.
Also,
241
Pin — B| 6 (x-X )] as n — o.

2"l f(x)]

* ba(x=X )"
By lemma (3.2.2), fn(x) = J—-l‘%———m— is also a éfunction sequence. Then
: n

*
: E[6n(x-X1)]7n £(x)7n

P ,n — n - — ; as n — o
o nﬂ/zcyn1 Tsz(x)m'/2 nn/zan1 1sz(x)w]/2

by theorem (2.2.1).
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14/2
f — 0 as n — w),

2
Since by hypothesis ('yn/nn/ o

Pijn —0asn— a

The theorem follows.

Theorem 3.2.3:

Let f(x) be the probability density of a non-negative random variable.
1
Under the conditions of theorem (3.2.2) and [ _a_n ]2{E[fn(x)] - f(x)} — 0 as
N ,
n — m, then the random variable Y, defined by

Yo = [1 = F(x)] In/agf(x)]? [hg (x) = h(x)]

has the standard normal limiting distribution.

Proof:

1
[ 2 [ 1-F
= a—lfl(;?j] [ = nxX ] {fn(x) — E[fa(x)] }
L n *
_ | I-F(x
~ L IFFa(x) ]Zn
By theorem (1.2,2), }:F xx — 1 in proba,bility: Following from the limiting
n .

standard normal distribution of Zn as in theorem (3.2.2), Wy converges to a

standard normal random variable. But
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-y

[1-F ()] { Ppul=l }

L
(Bl - 109} - | ey | Bl o)

<o+ [ o]

| i |

1
w2 ] {E{fn(xn—F(x%ngﬁ(x)]-E[fn(x>1+Fn(x)E[fn(x>1}

= a f(x) (%)
+ [ a2 | 1m0 - 1)
s z
=Wy + [ an:fl(x) ]2 F?EBJS,)I(;I)?(X) E[fa(x)] + [ a_;fl(fj ]2{E[fn(x)]
- 1{x) }
(3.2.1)

By (1.1.7) and lemma (3.2.1),
1

[ g— ]5 [Fa(x) — F(x)] — 0 as n — o. Hence the second term of
3 :

(3.2.1) tends to zero by theorem (2.2.1). The last term of (3.2.1) also tends
to zero as n goes to infinity by the hypothesis. So Yn has the same limiting
distribution as Wy i.e. Y, has the standard normal limiting distribution. This

completes the proof.

Under the conditions of theorem (3.2.3), h{! (x) has a limiting normal

o
distribution with mean h(x) and variance —ﬁ 1E X ~ Therefore, h{"(x) is

asymptotically unbiased estimator with asymptotic variance _o% 1E xx. By
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the asymptotic equivalence in section 3.1, all three estimators have the same
limiting normal distribution. As such the asymptotic unbiasedness of h{?2 (x)
and h{3)(x) also follows from this important theorem (3.2.3). However, one
should beware that the choose of 6n(x) = wn(x) and the requirement that the

weight function w has finite support are required for the . asymptotic

equivalence.
Remark: Note that all three estimators have the same asymptotic variance,
o
n h(x . —
5 Topr<y 1 we particularly assume o = o(n)

(i.e. all three estimators are conmsistent). In fact, the variance converges in

exactly the same way as « n/n.

This chapter has introduced quite a few conditions. Therefore, examples

of 8n(x) should be constructed to show how these conditions are satisfied.

Example 3.2.1:

Suppose that dn(x) = vn w(yn x) where

1
w(x) =4 27 x| <1 - (3.2.2)
0, |x| >1

Here 6n(x) is a particular example of (1.1.2) with by, = 1/4/n. Clearly, w has

finite support. Hence, if the life distribution F is continuously
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differentiable with density f, all three estimators are -asymptotic equivalent by

theorem (3.1.1).
We now turn our

normality theorem (3.2.2).

Hence, o, = o(n).

attention to the conditions inside the asymptotic

Since

Now let



I
—
CE)

)"
Th{ls,

14m
n/z%m/z = (f/{éz) Eyp
nl ey n '/ (yn/2)

1
= — 0 as n — o
ik

We then assume f is continuously differentiable. So

—0

E[fa(x)] = J‘ 5n(x-u). f(u)du

-

= f(x) - 7{1{ £(u) f w(v)vdv + 0[

Bl
[

43
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Therefore,

-

-

2] (Bl - 1)

!

- [‘3_;:2{f(x)+o(¢_;)-f(x)}
=2,/H[O(Fi)]——»0asn—»m.

Hence, by assuming f is continuously differentiable and using (3.2.2), we have
the asymptotic normality for all three estimators. Furthermore, as o = o(n),

all three estimators are consistent.

3.3 GLOBAL MEASURE OF DEVIATION

Rice and Rosenblatt (1976) strengthened the results of Bickel and
Rosenblatt (1973), for the sample density function to obtain the asymptotic
global results for h{1’ by a weak approximation. Here I will discuss their

result in detail.

Unless otherwise specified, we assume d, as example (1.1.2) throughout

this entire section that is,

5n=%:W[}'l§:]'
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!

Let My = max  |[nbaf (8)]° (fa(t)—£(t))], wheze o(n) — o a5 0 — o
| t]<a(n) :

but log a(n) = O(n). The weight function w is assumed to be zero outside

an interval [-A,A] and either (a) absolutely continuous on [-A,A] or (b)

®
absolutely continuous on (—w,») with derivative w’ such that f |[w' ()] < o,
-

k = 1,2. Then the following theorem can be shown to hold.

Theorem 3.3.1 (Rice and Rosenblatt 1976):
Let f be a positive density on (-w,0) that is twice continuously
differentiable with a bounded second derivative.

Set
-5
bh=1n, 0<§< % .
Choose the sequence a(n) so that

1 1
+§( 1-5-¢) +2(5-e)

),0(n )

Tgll) £2(t), sup ( )f' b - O(n

‘for some € > o with 1 = §~-¢ 6 —€¢>0asn— o Letc(n) = 2¢n)/bn.

Then P{(z log c(n))é ——M-l‘—-f —dn |< x } — e
(A(w))? |
where Mw) = f w2(t)dt,

—0
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and

1
5 1 K 1
dn = (2 log ¢(n))? + ————— { log ‘_W + 5 log log c(n) }3

(2 log c(n))? el

with  K(w) = WAAY +wil-A)

if Ky(w) > 0 and otherwise

dn = (2 log c(n))é + —lg [108 ) ]
(2 log c(n))?2

where Koy(w) = [f [w’(t)]zdt }2.

(W)

Proof:

= f w(v) [f(x) — baf’(x)v + ba2’/(x)v2 + o(b2)]dv

~m

(By Taylor’s Formula)

= f(x) + bf’’(x) f w(v)vidv + o(b2).
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By assumption, f has a bounded second derivative and w has a finite support.

Therefore,

sup [£(t) — E[fa(t)]] = O(b3).

L |
Then [nbaf (8)]2 (f,(t) ~£(t)) can be replaced by

1
Ya(t) = [mbaf (8)]2 (fa(t) - E[fa(8)])

= by A1) | L w [ {)i] JT d(Fa(s) — F(s)).

1 - .
Let Znd(t) = n2(Fo*(t) — t) and Fp* = Fu(F) is the empirical distribution
function of F(X,),...,F(Xn), then

Ya(t) = bn_éf-%(t) fm w [ g-;—s] dZ20(E(s)).

-

Let Z9(-) be the Brownian bridge, that is,
Zo(t) = Z(t) — tZ(1),

where Z is a standard Wiener process on [0,1]. The process ¢Yn, 1Yn, 2Yn

and ;Y are given by

-

Ya = by H () f K [ £ ] azoEe),
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=]

Yo = Dl ) w [ £2] (1))idz(s)

i)
3Yn = bn”5 J w [ Es— ]dZ(S).

By a theorem of Komlds, Major and Tusnddy (1975) versions of Znp0 and Z9¢
can be constructed on the same probability space so that the maximal

difference
L
12,0 - 2% = 0p(n 2 log n).

Using integration by parts with u = w [ ’g;s_ ] and v = dZ,%(F(s))
. n

t+4bn

1 ,
Yot) = [bnf(t)]-é { w [ %ES—] ZnO(F(S))lt_Abn 4+

:’o-]l—l

f Z20(F(s))w’ [ e ] ds }
A o
= ot | oAb )

+ i f_: Zoo(F(s))w | {f] ds}.

The first two terms inside the curly brackets are 0 in the event of assumption

(b) holds but (a) does not. Hence,



3 1 ®
Ya(t) = bn 2 2(t) Zn°(F(s))W'[ gi] ds
— n
R ®
=Dbn2fYt) | Zn'(F(t-bpu))w’(u)duy,
. —0
and
' At ® '
oYn(t) = bp 2 f2(t) Zo(F(t—bpu))w’ (u)du.
-m 2
Therefore,

Yt o¥a(9)] = [ba? £%(1)]

f [Z00(F(t-bau))-Z0(F(t=bnu))]w” (u)du

A A ®
< |£2(t)]ba 283P|Zn°(F(u))-Z°(F(u))I f |w’(u)|du

—®

1 { 1
= |f2(t)|by 2 Op(n 2 log n)

t £ 1
= |f2(t)] Op(bn ’n 2 log n).

: AL A
Hence sup | Yn(t)=0Yn(t)] = O (bp2n2log n) sup f2(t)
|t]<o(n) P |t]<a(n)

(3.3.1)
Since Z0(t) = Z(t) — tZ(1), then .

|o¥n(t) — 1Ya(t)]

49
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b £1) f w £ ] d(ZO(F(s))—Z(F(s)))l

o

.. = by 2 £2 (t)' f W t d(Z(F(s)) — F(s)Z(1) - Z(F(S)))’

n

= bn tn dF(s)
1 1
= ba? £2(t)|Z(1)| [E(fa(t))]
= 0,(1) bn% f-é(t).
Therefore,
L A
sup  |oYn(t) — 1Ya(t)] = O_(1) b2 sup {2(t) (3.3.2)

|t[<a(n) P |t[<a(n)

Now we are going to show that the process Y, and Y, have the same

probability structure.

BLYa(t)] = b £3) f w £ |dEEEE)

—m

and



E[;Ya(t)] = ba f t (f s))2 dE[Z(s)]

For 0 < ty3,t2 < o,

E[lyn(t 1) len(t2)]

o

- sl g ko gz

= b £ () B | 2] o B (s0)2(F(s2))]

and

51
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= b T ) f_m f:w[ oo ] w4 ) e

d[E(Z(s1)Z(s2)]
= b TR | | w[ Y] w M2 | (Hen)iteCea))?
d(81 A s2)

Hence, (Yn and Y, have the same mean and covariance implying that they

have same probability structure. Further,

1

P : . _ t—8 f(s) 15 _ ]
Using integration by parts with u = W[ B ] [ [ ] 1
and v = dZ(s), then

|2Yn(t) — 5¥n(t)]
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LR Y

oo [ow (2] (1))

+ %J Z(s)w[ ;‘);S} [ £(s) ; ds
- [£(s)£(t)]2)

t ) t
_ l ba 2 w(-A) [%{j—‘)@ﬁ | -1 ] Z(t+ana)
t

' - 1
_ bn 9 W(A) [ f t+Abn ]2 -1 ] Z(t—Abn)
3 1 t+4bn
o i(s) 15 [ t-s
+ bn 2 sup Z(s) sup [[ ]2 -1 ] W’ ] ds
. Y |s—t | <Aby k , t-Ab, b
) t+Abn
= ’ —
+ bp 2 sup Z(s) sup —f@—{ W[ é___s_ ds I
S |S—'t | <Ab, [f(S)f(t)]i - t=Abp 7

The first two terms inside the absolute value sign vanish in the event that

assumption (b) holds but (a) does not. Hence

|2Yn(t) — 3¥a(t)]

1 1

3 - £/(s
= bn 2 O (1) O(bn) + an 0 (1) Sup i
’ T st <Abagg )

= 0 (bn% ) sup f(s)
P st <Abagoy s

When n — o, by | 0 and
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sup 1/ (s) (L
[5=t | <Abagg) gty

[
o+

By assumption,

1
sup ftt — O(nz(ﬁ-e)).
|t]<a(n)
Therefore,
! l(6~t=.)
sup  |2¥n(t)=s¥Yn(t)] = O (b ?) O(n? )
|t|<e(n) P
2 1(8-&) :
= O p(n 2) O(n? ), 7 by assumption
Ry
= O(n ?). (3.3.3)

Finally, we try to indicate that ;Y. has the same probability structure as Y(t)

where Y(t) is the Gaussian process

and
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E[Y(t)] = f w(t—s)dE[Z(s)]

-m

=0.

For 0 < ty,t2 < o,

and

E[Y(t)Y(t2)]
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il
=
e he——
—
&_ﬁ

W(t =S 1)d Z(S 1)] [f W(tz~Sz)dZ(S2):l }

—m

f f w(t—s1) W(tz—Sz)dE[Z(SI)Z(SZ)]

-0

d

f w t1—S1 W(tz—Sz)d(Sl A Sz)
—0
= f w(t—s)w(tz—s)ds

-

t (8 to—s
i} fﬂw (1) [%7]

Since 3Yn and Y have the same mean and covariance implying that they have
same probability structure. By all the above estimates, we have indeed shown

that the limiting distribution of M, is the same as that of | Tup( )Y(t).
t|<a(n

Applying the known result on the maxima of stationary Gaussian process in

Bickel and Rosenblatt (1973) leads to the conclusion of this theorem.

Now let

L
Mo = max |(nbaf ()% (1-F(t)) (gD (t)-h(t))].
ltlééz(n)

The global result of h{! is a direct corollary of theorem (3.3.1).



Corollary 3.3.1 (Rice and Rosenblatt 1976):

Under the condition of theorem (3.3.1) and the additional assumption

1

’tng(n)(l—F(t)) = o(n2) -(3.3.4)
one has
P {(2 log c(n))i{ ) < x} g2
(A (w))?
as I — m.
Proof:

What we need to prove here is My — My as n — w.

1

Mo = max |(abaf (1))H(1-F(8))(b{0 (8)-h(t))]
|t ] <ofn)

(nbaf (£))%(1 — F(t)) { fnft) At

= max
|t <ofn)

+ fa(t) [ 1—F31(t) - 1‘311“) }} l

= ! T O

s j
+ 6a(1) { jio(—l) { (1) Ty ]-1} l

= max nbnf-lt % max fn(t)-I(t) .
T eamy O I e gy [

+ 50 | 0,0 iy |

fn(t)-(t)

57
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1
= max nbnf-lt 2 max fa(t)-f(t
Ty O P ey PO
+ (1) [ 0,0 ofad)]
= max 'nbnf-lt 5 max |f.(t)—f(t
gy P P e g [

+ fa(t) o1)

1

= max [(n baf (1))2 (Ra(8)-E(8)) | + o(1)
|t] <o)

= Mn + o(1).

Hence, the corollary.

Sethuraman and Singpurwalla (1981) have further obtained, in much the

same way as Bickel and Rosenblatt, the asymptotic global result for h{® (x):

Theorem 3.3.2:

Assume the following conditions hold:
(A1) w has bandwidth 2bjA,

(A2) B/“(x) is bounded on 0 < x ¢ K and inf B/(x) > 0
0<x<K+A

where B(x) = % and K + A < X(n),



(A3)

(A4)

(A5)
Lgt

and

Qn =

o

) o
let AM(w) = f w2(t)dt, then either (a) f |w’(t)]dt < o and

—m -

®
2(A 2(=A L
Ky(w) = ¥ (2%4(35)( ) > 0 or (b) f_m(wf(t))Zdt < o and
h(x) is twice continuously differentiable,
nby’% log by — 0 as n — .

‘Ma = max Vb (9 (x) - h(x))
by A<x<L ! /B’ (x)

)

Cn = (2 log (K/bn))%,

1

Ba = Cal(A(W))?,

1

(AW))2[Ca + log (Ca Ky(w)/VIM}/C, , when K(w) > 0

(A(W))HCa + log (Kao(w)/7)]/Cn, when K(w) = 0.

Then for 0 < x < o,

P[Ba(Mn - 0n) < 7] — e

59
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The proof of theorem (3.3.2) is given in Sethuraman and Singpurwalla

(1981) and will not be presented here.

Towards this end, ome should be reminded of the previous important
result, asymptotic equivalence, in section 3.1. That is the two aforestated
theorems in this section should both hold for all three estimators by their

asymptotic equivalence.



CHAPTER IV
SIMULATIONS AND APPLICATIONS

In this Chapter, I report the results of some numerical experiments
conducted to demonstrate how reasonable the following results are for a finite

sample size:

(1) the estimators are asymptotic equivalent,
(2) the asymptotic variance formula for the estimator is adequate,
(3) the estimators are asymptotically normal.

Furthermore, the performances of these estimators were compared by using the

average square error.

41 PROCEDURE

To study the asymptotic properties of the estimators mentioned above, it
seemed best to draw samples from populations with smooth hazard functions.
This was reminiscent of the well known exponential life dist_ribution. We
therefore used the GGEXN package of IMSL (International Mathematical and
Statistical Library) to generate 1000 samples of size 100 with X exponentially
distributed, mean one. To test the asymptétic results, the same was done
with samples of size 500 and 1000. As unit mean was used, we had unit

hazard rate here disregarding what the value of x was.

As regard to the dy—function, example (2.2.1) was used here. That is,

bn = ynw(ynx) where

61
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1
wx) =4 2  Ixl <1
o , x| >1
I used (3.2.2) because it satisfies all the conditions of the previous asymptotic

theorems. Unless otherwise specified, n is the sample size in this Chapter.

To measure the goodness; of performance of an estimator, many authors
use the M.LS.E. (Mean Integrated Square Error). However, the M.LS.E. is
quite difficult to obtain numerically. I therefore decided fo use the avera.géw
square error being defined as follows: |

. 7 1000 _—
[m] 3 [ (x) - hx)],, = 1,23

i=

From Chapter 3, I noted that all three estimators have asymptotic

variance given by

Var (h{d (x)) » &0 B 5 = 193,

Hence, the asymptotic variance here is

IH
o]

Var (b§0(x)) » 2 L =

X

e 2

e (4.2.1)

=

To test the adequacy of this formula, we calculate the sample variance to

compare with.
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For each sample size and each estimator, the values of average square
error, sample variance s? and estimated variance 62 (4.2.1) were computed and

are found in Tables 4.2.1-9.

To check the asymptotic equivalence, I calculated the average square

difference between estimators,

g "2 g0 () - ago G ¢
T(TO_G] i=1 n X) n X))

at the sample points. Such values were computed and are given in Tables

4.2.10-12.

To compare all the above calculated values as a whole, I then computed
for each sample size (i) the total average square error, (ii) the total average
square difference between estimators and (iii) the relative total square

difference between s2 and o2 as follows:

2.0 1000 2
(i) ¥ ¥ hiP(x) -h(x)], j=1283
x=0.1 i=1 :
2.0 1000 2
(ii) Z % [hiP(x)-h(x)], Jj+k
x=0.1 i=1

(i) 220 [s2 - 37 Q&@%@x
x=0.1 -~ (1/2yn)e
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Remark: The relative value of total square difference was used here because
the estimated variance is a decreasing function and I wanted to compare the

results of large sample sizes with samples of 100.

All. these solutions are given in Tables 4.2.13-15. These computations
were done with computer algorithms written in APL (A Programming

Language) because of programming simplicity.

To assess asymptotic normality, I used the well known Xolmogorov—
Smirnov Test for which the cumulative distribution functions for the observed
data and the theoretical distribution are computed and subtracted.  The
Kolmogorov— Smirnov Z is determined from the largest difference (positi?e or
negative). The larger the value of Z, the less likely it is that the observed
and theoretical distributions are the same. I performed these tests with SPSS
(Statistical Package for Social Sciences) using unit mean and o2 as the
required-’ input information. The Kolmogorov—-Smirnov Z values and 2-tailed

p—values for each case are found in Tables 4.2.16-18.

4.2 CONCLUSIONS

Given that the total average square error decreases with increasing
sample size (Table 4.2.13), all estimators will perform better with larger
~samples. H{3 gave the least total average square errors for each sample size:
I therefore consider h{3) as a better estimator for finite sample sizes.

Tables 4.2.14-16 indicate that the total average square difference between
the estimators decreases as sample size increésés. When n = 1000, this
difference is almost negligible. This result confirms the asymptotic equivalence

of the estimators. = The tables also show that the total average square
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difference between h{? and h{3® is much smaller than the other pairs; leading
me to conclude that h(? and h{3 tend to each other faster than any other

pair of estimators.

Tables 4.2.1-9 indicate that the average square error and sample variance
are increasing functions of x, as would be expected given that the estimated
variance 32((1/2J1'f)ex) is also an increasing function of x. Moreover, the
relative total square difference between the s? and 7?2 decreases as n increases
(Tables 4.2.15), demonstrating that the asymptotic variance formula is quite

adequate.

I finally turn to asymptotic normality. Tables 4.2.16-18 show that when-
sample size in.creases, the normality hypothesis is rejected at a Type I error
rate of 5% level of significance less frequently. When n = 1000, all the
hypotheses at different values of x are accepted for h{! and only 1 and 2 are
- being rejected for h{? and h{3 respectively. Hence, if we further increase
the sample size to 5000 or 10,000, a better result should be obtained;
however, such a test could not be performed due to computer storage
problems. Nevertheless, the Kolmogorov—Smirnov Tests indicate the

asymptotic normality of the three estimators.



TABLE 4.2.1
THE TABLE BELOW GIVES THE RESULTS FOR ESTIMATOR
H{1> VHEN 1000 SAMPLES OF 100 WERE USED

average
average square sample estimated
X value error variance variance
0.1 | 0.99912 0.05848 0.05853 0.05526
0.2 | 1.00116 0.059 0.05905 0.06107
0.3 | 1.00131 0.06802 0.06808 0.06749
0.4 | 1.00935 0.07361 0.07359 0.07459
0.5 | 1.00252 0.08165 0.08173 0.08244
0.6 | 0.99926 0.09122 0.09131 0.09111
0.7 | 1.00175 0.10538 0.10548 0.10069
0.8 | 1.01436 0.11224 0.11215 0.11128
0.9 | 1.03264 0.13784 0.13691 0.12298
1.0 | 1.02836 0.14426 0.1436 0.13591
1.1 | 1.004 0.16602 0.16617 0.15021
1.2 | 1.01633 0.1842 0.18412 0.16601
1.3 | 1.03141  0.20398 0.20319 0.18346
1.4 | 1.00933 0.19759 0.1977 0.20276
1.5 | 1.01904 0.24172 0.2416 0.22408
1.6 | 1.02075 0.2901 0.28996 0.24765
1.7 | 1.02872 0.33998 0.3395 0.2737
1.8 | 1.02427 0.36339 0.36316 0.30248
1.9 | 0.9981 0.34675 0.3471 0.33429
2.0 | 1.03943 0.44834 0.44724 0.36945




TABLE 4.2.2

THE TABLE BELOV GIVES THE RESULTS FOR ESTIMATOR
H{2?)> VHEN 1000 SAMPLES OF 100 WERE USED

average
average square sample estimated

X value error variance variance
0.1 | 0.99246 0.05699 0.05699 0.05526
0.2 | 0.99215 0.05731 0.0573 0.06107
0.3 | 0.99336 0.06603 0.06605 0.06749
0.4 | 0.99954 0.07128 0.07135 0.07459
0.5 [ 0.9915 0.07904 0.07905 0.08244
0.6 [ 0.98817 0.08859 0.08853 0.09111
0.7 | 0.98972 0.10207 0.10206 0.10069
0.8 | 1.00168 0.10786 0.10796 0.11128
0.9 | 1.0179 0.1328  0.13262 0.12298
1.0 | 1.01026 0.1358 0.13583 0.13591
1.1 | 0.98439 0.15716 0.15707 0.15021
1.2 | 0.99961 0.17495 ’0.17513 0.16601
1.3 | 1.00544 0.18555 0.1857 0.18346
1.4 1 0.98498 0.18453 0.18448 0.20276
1.5 | 0.99474 0.22855  0.22876 0.22408
1.6 | 0.98898 0.26494 0.26509 0.24765
1.7 | 0.99769 0.30826 0.30856 0.2737

1.8 0.97973  0.31079  0.31069 0.30248
1.9 | 0.96393 0.32328 0.3223 0.33429
2.0 | 0.99234 0.38371 0.38403 0.36945



TABLE 4.2.3

THE TABLE BELOW GIVES THE RESULTS FOR ESTIMATOR
H{3> WHEN 1000 SAMPLES OF 100 WERE USED

average
average square sample estimated-

X value error variance variance
0.1 | 0.98701 0.05642 0.0563 0.05526
0.2 | 0.98613 0.05667 0.05654 0.06107
0.3 | 0.98669 0.06518 0.06507 0.06749
0.4 | 0.99213 0.07018 0.07019 0.07459
0.5 | 0.98339 0.07782 0.07763 0.08244
0.6 { 0.97922 0.08709 0.08674 0.09111
0.7 | 0.97984 0.10012 0.09982 0.10069
0.8 | 0.99062 0.10529 0.10531 0.11128
0.9 | 1.00539 0.12877 0.12887 0.12208
1.0 | 0.99655 0.13151 0.13163 0.13591
1.1 ] 0.9697 0.1526 0.15183 0.15021
1.2 | 0.98301 0.16858 0.16846 0.16601
1.3 | 0.98697 0.17803 0.17804 0.18346
1.4 | 0.96495 0.17701 0.17596  0.20276
1.5 | 0.97228 0.21741 0.21686 0.22408
1.6 | 0.96425 0.25053 0.2495 0.24765
1.7 | 0.96995 0.28873 0.28811 0.2737
1.8 | 0.95007  0.29157 0.28937 0.30248
1.9 | 0.9314 0.30132 0.29691  0.33429
2.0 | 0.95529 0.35187 0.35023 0.36945




TABLE 4.2.4

THE TABLE BELOV GIVES THE RESULTS FOR ESTIMATOR
H{1) VHEN 1000 SAMPLES OF 500 WERE USED

average
average square sample estimated

X value error variance _ variance
0.1 | 1.01217 0.02635 0.02623 0.02471
0;2 1.00214  0.02786  0.02789 0.02731
0.3 | 0.99691 0.02944 0.02946 0.03018
0.4 | 1.00614 0.03409 0.03408 0.03336
0.5 | 0.997 0.04083  0.04087 .0.03687
0.6 | 1.00698 0.04198 0.04198 0.04074
0.7 { 0.99675 0.04509 0.04512 0.04503
0.8 | 0.99211 0.04611 0.0461 . 0.04976
0.9 | 1.01351 0.0563 0.05618 0.055
1.0 | 1.00551 0.06526 0.06529 0.06078
1.1} 1.0027 0.06479  0.06484 0.06718
1.2 | 1.01454 0.07912 0.07899 0.07424
1.3 | 1.00131 0.08857 .‘0.08866 0.08205
1.4 | 1.01556 0.10045 0.10031 0.09068
1.5 | 1.01245 0.10515 - 0.1051 0.10021
1.6 | 1.00299 0.10768 0.10778 0.11075
1.7 | 1.01724 0.12944 0.12927 0.1224
1.8 | 1.00106 0.13953 0.13967 0.13527
1.9 | 1.02658 0.17047 0.16994 0.1495
2.0 | 1.0108 0.18122 0.18128 0.16522




TABLE 4.2.5

THE TABLE BELOW GIVES THE RESULTS FOR ESTIMATOR
H{2) WVHEN 1000 SAMPLES OF 500 WERE USED

average
average square sample estimated
X value error ___ variance variance
0.1 | 1.01069 0.02618 0.02609 0.02471
0.2 | 1.00095 0.02783 0.02786 0.02731
0.3 | 0.99606 0.02944 0.02945 0.03018
0.4 | 1.00407 0.0339 0.03392 0.03336
0.5 | 0.99522 0.04087 0.04089 0.03687
0.6 | 1.00517 0.04167 0.04169 0.04074
0. 0.99411 0.04476  0.04477 0.04503
0.8 | 0.98958 0.04568 0.04562 0.04976
0.9 | 1.01028 0.05551 0.05546 0.055
1.0 | 1.00247 0.06495 0.06501 0.06078
1.1 | 0.99894 0.06429 0.06436 0.06718
1.2 | 1.01072 0.07831 0.07828 0.07424
©1.3 | 0.99681 0.08751 0.08759 0.08205
1.4 { 1.01102 0.09916 0.09914 0.09068
1.5 | 1.00784 "0w10378 0.10382 0.10021
1.6 | 0.99764 0.10629 0.10639 0.11075
1.7 | 1.01144 0.12806 0.12805 0.1224
1.8 | 0.99416  0.13798 ° 0.13809 0.13527
1.9 | 1.01929 0.16719 0.16698 0.1495
2.0 | 1.00302 0.17886 0.17903 0.16522




TABLE 4.2.6

THE TABLE BELOV GIVES THE RESULTS FOR ESTIMATOR
H{3) WHEN 1000 SAMPLES OF 500 WERE USED

average
average square  sample estimated

X value error variance variance
0.1 | 1.00957 0.02609 0.02603 0.02471
0.2 | 0.99973 0.02776 0.02779 0.02731
0.3 | 0.99471 0.02937 0.02937 0.03018
0.4 | 1.00257 0.03379 0.03381 0.03336
0.5 | 0.99357 0.04075 0.04075 0.03687
0.6 | 1.00334 0.04149 0.04152 0.04074
0.7 | 0.9921 0.0446 0.04459 0.04503
0.8 | 0.98738 0.04552 0.04541 0.04976
0.9 | 1.0078 0.05518  0.05517 0.055
1.0 | 0.99975 0.06457 0.06464 0.06078
1.1 | 0.99594 " 0.06391 0.06396 0.06718
1.2 | 1.00736 0.07771  0.07773 0.07424
1.3 | 0.99314 0.08687 0.08691 0.08205
1.4 | 1.0069 0.09824 0.09829 0.09068
1.5 | 1.00331 0.10275 0.10284 0.10021
1.6 | 0.99268 0.10523 0.10528 0.11075
1.7 | 1.00588 0.12648 0.12657 0.1224
1.8 | 0.98812 0.13634 0.13633 0.13527
1.9 | 1.01243 0.16462 0.16463 0.1495

2.0 | 0.99554 0.17603 0.17619 0.16522




TABLE 4.2.7

THE TABLE BELOV GIVES THE RESULTS FOR ESTIMATOR
H{1) WHEN 1000 SAMPLES OF 1000 VERE USED

average
average  square sample estimated
X value error variance variance
0.1 4§ 1,008 0.01683 0.01678 0.01747
0.2 | 1.00178 0.01983 0.01985 0.01931
0.3 | 0.99897 0.02097 0.02099 0.02134
1.00517 0.02373 0.02372 0.02359
0.5 | 1.00064 0.02587 0.0259 0.02607 -
0.6 { 0.99778 0.02835 0.02837 0.02881
0.7 { 1.00742 0.03234 0.03232 0.03184
0.8 | 0.99806 0.03564 0.03567 0.03519
0.9 ‘1.00312 0.04033 0.04036 0.03889
1.0 | 0.99399 0.04301 0.04301 0.04298
1.1 | 1.01966 0.0444  0.04406 0.0475
1.2 | 0.99336 0.05661 0.05662 0.0525
1.3 | 1.00103 0.05863 0.05869  0.05802
1.4 | 1.01171  0.0671 0.06703 0.06412
1.5 | 1.00379 0.07281 0.07287 0.07086
1.6 | 1.00197 0.07678 0.07685 0.07831
1.7 | 1.01573 0.09124 0.09108 0.08655
1.8 | 1.02801 0.10952 0.16885 0.09565
1.9 | 1.00403 0.10333 0.10342 0.10571
2.0 | 1.01355 0.10968 0.1096 0.11683




TABLE 4.2.8

THE TABLE BELOW GIVES THE RESULTS FOR ESTIMATOR
H{2) WHEN 1000 SAMPLES OF 1000 WERE USED

average
average square sample estimated

X value error variance variance
0.1 | 1,00747 0.01686 0.01682 0.01747
0.2 | 1.00109 0.01986 0.01987 0.01931
0.3 | 0.9981 0.02085  0.02087 0.02134
0.4 | 1.00415 0.02362 0.02363 0.02359
0.5 | 0.99982 0.02585 0.02587 0.02607
0.6 | 0.9967 0.0282 0.02822 0.02881
0.7 | 1.00641 0.03218 0.03217 0.03184
0.8 | 0.99663 0.03563 0.03566 0.03519
0.9 | 1.00152 0.04021 0.04024 0.03889
1.0 | 0.99271 0.04301 0.043 0.04298
1.1 1.bi788 0.04404  0.04377 0.0475
1.2 | 0.99132 0.05633' 0.05631 0.0525
1.3 | 0.99917 0.05835 0.05841 0.05802
1.4 | 1.00882 0.06667 0.06665 0.06412
1.5 | 1.00139 0.07257 0.07264 0.07086
1.6 | 0.9996 0.07633 0.0764 0.07831
1.7 | 1.01251  0.09046 0.09039 0.08655
1.8 | 1.02469 0.10825 0.10775  0.09565
1.9 | 1.00075 0.10259 0.10269 0.10571
2.0 | 1.01017 0.10902 0.10903 0.11683




TABLE 4.2.9

THE TABLE BELOV GIVES THE RESULTS FOR ESTIMATOR
H{3) WHEN 1000 SAMPLES OF 1000 VERE USED

average
average square sample estimated

X value error variance variance
0.1 | 1.00692 0.01684 0.0168 0.01747
0.2 | 1.00047 0.01983 0.01985 0.01931
0.3 | 0.99742 0.02082 0.02084 0.02134

.4 | 1.0034 0.02358 0.02359 0.02359
0.5 | 0.99899 0.02581 0.02583 0.02607
0.6 | 0.99579 0.02815 0.02816 0.02881
0.7 | 1.00539 0.0321 0.03211 0.03184
0.8 | 0.99551 0.03556 0.03558 0.03519
0.9 | 1.00029 0.0401 0.04014 0.03889
1.0 | 0.99136 0.04291 0.04287  0.04298
1.1 | 1.01635 0.04386 0.04363 0.0475
1.2 | 0.98967 0.05617 0.05612 0.0525
1.3 | 0.99733 0.05813 0.05818 0.05802
1.4 | 1.00677 0.06636 0.06638 0.06412
1.5 | 0.99914 0.07223  0.0723 0.07086
1.6 | 0.99712 0.07594 0.07601 0.07831
1.7 | 1.00972 0.08988  0.08987 0.08655
1.8 | 1.02158 0.10743 0.10708 0.09565
1.9 | 0.99739 0.10187 0.10196 0.10571
2.0 | 1.00642 0.10812 0.10819 0.11683




TABLE 4.2.10

THE TABLE BELOV GIVES THE AVERAGE SQUARE OF
DIFFERENCES BETWEEN THE THREE ESTIMATORS VHEN
1000 SAMPLES OF 100 VERE USED

B & HD & ED &

L | B H3) H(3)
0.1 | 0.00072  0.00083 3.1856e-5
0.2 | 0.00086  0.00101 3.8862e-5
0.3 | 0.00086  0.00102 4.8186e-5

.4 | 0.00104  0.00125 5.9851e-5
0.5 | 0.00112  0.00139  7.2686¢-5
0.6 | 0.00124  0.00154 8.9704e-5
0.7 | 0.00145  0.00183 1.1119e-4
0.8 | 0.00174  0.00219 1.4051le-4
0.9 | 0.00206  0.00264 1.8578e-4
1.0 | 0.00287  0.00371 2.2469e-4
1.1 | 0.00287  0.00384 2.6585¢-4
1.2 | 0.00347  0.0045  3.4978e-4
1.3 | 0.00445  0.00619 4.328e-4
1.4 | 0.00408  0.00581 5.1721e-4
1.5 | 0.00516  0.00723  6.8948e-4
1.6 | 0.00686  0.00993 8.8666e-4
1.7 | 0.00878 = 0.01273 1.1923e-3
1.8 | 0.01155  0.01761 1.3431e-3
1.9 | 0.00902  0.01348 1.721e-3
2.0 | 0.01794  0.02725  2.3942e-3



TABLE 4.2.11

THE TABLE BELOV GIVES THE AVERAGE SQUARE OF
DIFFERENCES BETWEEN THE THREE ESTIMATORS WHEN
1000 SAMPLES OF 500 WERE USED

B & HD & B2 &

<« | E® H(2) H(3)

0.1 | 5.7795e-5 6.2487e-5  1.2814e-6
0.2 | 5.9814e-5 6.425¢-5  1.5403¢-6
0.3 | 6.6067e-5 7.0156e-5 1.8656e-6
0.4 | 7.7362e-5 8.5996e-5  2.326e-6

0.5 | 8.4324e-5 9.289e-5  2.8203e-6
0.6 | 9.1617e-5 1.0223e-4  3.5217¢-6
0.7 | 1.019e-4  1.1732-4 4.2191e-6
0.8 | 1.2276e-4 1.3991e-4 5.1126e-6
0.9 | 1.4557e-4 1.6979%-4  6.5654e-6
1.0 | 1.5277e-4  1.7774e-4  8.0044e-6
1.1 | 1.8591e-4 2.19e-4  9.6501e-6
1.2 | 2.9548e-4  2.6528e-4  1.2207e-5
1.3 | 2.1883e-4  2.7033e-4  1.4832e-5
1.4 | 2.6811e-4 3.2853e-4  1.8847e-5
1.5 | 2.9392e-4 3.6358¢-4  2.3081e-5
1.6 | 3.921e-4  4.787le-4  2.7679¢-5
1.7 | 4.3424e-4  5.3959e-4  3.5531e-5
1.8 | 4.7715e-4  6.1122e-4  4.2525e-5
1.9 | 6.2531e-4  8.004le-4  5.5871e-5
2.0 | 5.9888¢-4 7.9842e-4  6.8209e-5



1000 SAMPLES OF 1000 WERE USED

TABLE 4.2.12

THE TABLE BELOV GIVES THE AVERAGE SQUARE OF
DIFFERENCES BETWEEN THE THREE ESTIMATORS VHEN

B & B & H(2) &

<« | ¥ H(3) H(3)

0.1 | 1.8977e-5  1.9841e-5  3.1535e-7
0.2 | 1.9515e-5  2.0713e-5  3.8187e-7
0.3 | 2.2403¢-5  2.4114e-5  4.6434e-7
0.4 | 2.6447e-5  2.86e-5 5.7573e-7
0.5 | 2.8674e-5  3.0723e-5  6.9937e-7
0.6 | 3.3952e-5 3.6882e-5  8.5135e-7
0.7 | 3.4862¢-5  3.8122e-5  1.0648¢-6
0.8 | 3.7495e-5  4.1933e-5  1.2836e-6
0.9 | 4.6376e-5  5.1967e-5  1.5913¢-6
1.0 | 4.6097e-5  5.1467e-5  1.9181e-6
1.1 | 5.8931e-5  6.72le-5  2.4568e-6
1.2 | 7.1234e-5  8.1327e-5  2.8928e-6
1.3 | 6.895¢-5 7.9883¢-5  3.6062e-6
1.4 | 9.669e-5 1.1368e-4  4.5053e-6
1.5 | 9.5438e-5  1.1198¢-4  5.5015e-6
1.6 | 1.0726e-4  1.2686e-4  6.6899¢-6
1.7 | 1.371e-4 1.6531e-4  8.5204e-6
1.8 | 1.449e-4 1.7963¢-4  1.0819¢-5
1.9 | 1.6063e-4  1.9730e-4  1.2706e-5
9.0 | 1.8855e-4  2.3088e-4  1.5792e-5
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TABLE 4.2.13

THE TABLE BELOW GIVES THE VALUES OF TOTAL AVERAGE
SQUARE ERROR FOR EACH SAMPLE SIZE AND ESTIMATOR

Estimator n=100 n = 500 n = 1000

HLD 3.71370  1.57973 1.07700

H{2) . 3.41949  1.56222 1.07088

H(3) 3.25670  1.54730 1.06569
TABLE 4.2.14

THE TABLE BELOW GIVES THE VALUES OF TOTAL AVERAGE SQUARE
DIFFERENCE BETWEEN ESTIMATORS FOR EACH SAMPLE SIZE

Estimator n =100 n = 500 n = 1000

H{D & H{2) 0.08814 0.00468 0.00144

i) & H{3) 0.01260 0.00576 0.00170

H{2) & H{3) 0.01080 0.00035 8.265e-5
TABLE 4.2.15

THE TABLE BELOV GIVES THE VALUES OF RELATIVE TOTAL
SQUARE DIFFERENCE BETVEEN s2 AND o2 FOR EACH SAMPLE SIZE

Estimator n = 100 "n = 500 n = 1000
H{D 0.01762 0.00224 0.00067

H(2) 0.00259  0.00168 0.00063

H{3) 0.00314 0.00125 0.00060



*

P-VALUES FOR THE THREE ESTIMATORS WHEN 1000 SAMPLES

TABLE 4.2.16
THE TABLE BELOW GIVES THE K-S Z-VALUES AND TW0 TAILED

0F 100 WERE USED

H(L) H2) H(3)

X K-S % | 2-TATLED P| K-S Z |2-TATILED P| K-S % |2-TAILED P
0.1 | 1.122 | -0.161 2.764 | 0.000* 3.053 | 0.000*
0.2 | 1.266 0.081 1.921 | 0.001* 2.235 | 0.000%*
0.3 | 1.263 0.082 1.709 | 0.006* 2.023 | 0.001*
0.4 | 0.832 0.493 1.015 | 0.254 1.348 | 0.053
0.5 | 1.391 0.042% 1.814 | 0.003* 2.197 | 0.000*
0.6 | 1.633 0.010%* 1.816 | 0.003* 2.239 | 0.000*
0.7 | 1.387 0.043* 2.084 | 0.000%* 2.398 | 0.000%*
918 1.391 0.042* 1.764 | 0.004* 2.193 | 0.000*
0.9 | 1.191 0.117 1.125 0.159 1.594 | 0.012%
1.0 | 1.180 0.123 1.480 | 0.025* 2.053 | 0.000*
1.1 ] 1.328 0.059 1.714 | 0.006%* 2.364 | 0.000*
1.2 ] 1.199 0.113 1.446 | 0.031* 1.963 | 0.001*
1.3 | 1.328 0.059 1.784 | 0.003* 2.429 | 0.000*
1.4 | 2.087 0.000* 2.313 | 0.000%* 2.864 | 0.000%*
1.5 | 1.644 0.009* 2.191 | 0.000* 2.851 | 0.000*
1.6 | 2.498 0.000* 2.796 | 0.000%* 3.377 | 0.000%*
1.7 | 1.884 0.002* 2.336 | 0.000%* 2.692 [ 0.000%
1.8 | 2.311 0.000%* 2.861 | 0.000% 3.442 0.0QO*
1.9 | 1.887 0.002* 2.507 | 0.000% 3.405 | 0.000*
2.0 | 1.644 0.009* 2.352 | 0.000%* 3.242 | 0.000*
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- INDICATE THE HYPOTHESIS THAT THE ESTIMATOR IS ASYMPTOTICALLY NORMAL

WVITH MEAN H(x) AND VARIANCE
SIGNIFICANCE LEVEL.

o H(x)/n(1-F(x)) IS REJECTED AT 57



THE TABLE BELOV GIVES THE K-S Z-VALUES AND TV0 TAILED

TABLE 4.2.17

P-VALUES FOR THE THREE ESTIMATORS WHEN 1000 SAMPLES
0F 500 WERE USED

80

(L) H(2) H{3)
K-S 7Z | 2-TAILED P| K-S Z |2-TAILED P| K-S 7 [2-TAILED P
0.1 | 1.365 | -0.048* 1.235 0.095 1.147 0.144
0.2 | 0.790 0.560 0.733 0.656 0.647 0.796
0.3 | 0.923 0.362 0.930 0.352 1.029 0.241
0.4 | 0.867 0.440 0.859 0.452 0.895 0.400
0.5 | 1.095 0.181 1.172 0.128 1.264 0.082
0.6 | 0.547 0.926 0.506 0.960 0.451 0.987
0.7 | 1.112 0.168 1.381 0.044* 1.505 0.022%*
0.8 | 1.263 0.082 1.429 0.034* 1.548 0.017*
0.9 | 0.857 0.454 0.926 0.357 0.950 0.327
1. 0.713 0.690 0.690 0.728 0.787 0.566
1.1 | 1.069 0.203 1.349 0.053 1.509 0.021%*
1.2 | 1.071 0.201 0.948 0.329 0.853 0.461
1.3 | 0.896 0.398 1.108 0.172 1.250 0.088
1.4 | 1.202 0.111 1.089 0.187 0.973 0.301
1.5 { 0.760 0.610 0.778 6.581 0.925 | 0.360
1.6 | 1.040 0.230 1.185 0.120 1.334 0.0587
1.7 | 0.713 0.689 0.915 0.372 1.102 0.176
1.8 1.050 0.220 1.337 0.056 1.525 0.019%
1.9 | 1.347 0.053 1.057 0.213 0.931 0.352
2.0 | 1.151 0.141 1.296 0.070 1.502 0.022%
* - INDICATE THE HYPOTHESIS THAT THE ESTIMATOR IS ASYMPTOTICALLY NORMAL

VITH MEAN H(x) AND VARIANCE o H(x)/n(1-F(x)) IS REJECTED AT 57
STIGNIFICANCE LEVEL.
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TABLE 4.2.18

THE TABLE BELOV GIVES THE K-S Z-VALUES AND TVW0 TAILED
P- VALUES FOR THE THREE ESTIMATORS WHEN 1000 SAMPLES
OF 1000 WERE USED

(L) . (2 H(S)
x| K-S 7 |2-TATLED P| K-S % |2-TAILED P| K-S % |2-TAILED P
0.1 | 1.078 |  0.195 | 1.049 | 0.221 | 1.029 | _ 0.240
0.2 | 0.737 | 0.649 | 0.701 | 0.710 | 0.656 | 0.783
0.3 | 0.594 | 0.872 | 0.631 | 0.820 | 0.659 | 0.779
0.4 | 0.810 | 0.528 | 0.901 | 0.392 | 0.848 | 0.468
0.5 | 1.072 | 0.200 | 1.030 | 0.240 | 1.006 | 0.181
0.6 | 1.240 | 0.092 | 1.261 | 0.083 | 1.327 | 0.059
0.7 | 0.625 |  0.830 | 0.612 | 0.847 | 0.599 | 0.865
0.8 | 1.250 | 0.088 | 1.348 | 0.053 | 1.448 | 0.030%
0.9 | 0.956 | 0.320 | 1.094 | 0.178 | 1.185 | 0.120
1.0 | 1.063 | 0.208 | 1.058 | 0.213 | 1.130 | 0.155
1.1 | 1.328 | 0.059 | 1.418 | 0.036* | 1.345 | 0.054
1.2 | 1.260 | 0.084 | 1.340 | 0.055 | 1.408 | 0.038*
1.3 | 0.795 | 0.552 | 0.840 | 0.481 | 0.904 | 0.387
1.4 | 0.780 | 0.577 | 0.751 | 0.626 | 0.649 | 0.793
1.5 | 0.940 | 0.340 | 1.165 | 0.132 | 1.277 | o0.077
1.6 | 0.948 | 0.330 | 0.988 | 0.283 | 1.105 | 0.174
1.7 | 0.769 | 0.595 | 0.793 | 0.556 | 0.912 | 0.376
1.8 | 1.228 | 0.008 | 1.026 | 0.243 | 0.934 | 0.347
1.9 | 0.802 | 0.540 | 0.784 | 0.57t | 0.883 | 0.417
2.0 | 1.179 | 0.124 | 1.229 | 0.097 | 1.349 | 0.053

_* - INDICATE THE HYPOTHESIS THAT THE ESTIHATOR IS ASYMPTOTICALLY NORMAL
WITH MEAN H(x) AND VARTANCE o H(x)/n(1-F(x)) IS REJECTED AT
5% SIGNIFICANCE LEVEL.



CHAPTER V
CENSORED DATA MODEL

The censored data model is one of the major models in the survival
analysis. Its use ranges from clinical studies of patient survival time,
reliability studies of different mechanisms to studies of.some ge;,ologica,l features.
The classical example is a medical follow—up study (say a cancer treatment
study over a fixed time or open ended period.) .In many cases we cannot
observe the true random survival times Xj,...,.X, of the n patients due to some
patients dropping out of the study, live withdrawal of patients from accidents,
the study being terminated, etc. . We then say the random variable X;j has
been censored by another random variable Y;. On the other hand, we observe

only the random vectors (dy,Zi),...,(dn,Zn) where

d; = I[Zi=Xi] and Z; = min{X;,Yi}, i=1,.,n.
If Y; has support (o,w), the observations are right censored. There has been
extensive literature on the hazard rate of the i.i.d. random variables Xy Xn
with common distribution F whenever Yy,...,Yn are also i.i.d. random variables
with common distribution G. Here we define the degree of censorship § as in

Koziol and Green (1976)’s model:

1 - Gx) = [1 - F)P. (5.1.1)
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(Here f§ = o corresponds to no censoring). For example, if F and G are

exponential distributions with parameters A and p correspondingly, then

1 -G =™

]

—AX]§

= [e

X

1 - Fe

That is, the 'degree of censorship is u/A.

5.1 APPLICATION OF THE ESTIMATORS
Now suppose f and g are the densities of the distribution F and G, then

PIY; > u, X; = u] = P[X; = ¢, d; = 1]

% [1 - G(u)]f(u).

Let

then

Fx) = f [1 - G(u)]f(u)du

—o
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and the density

Hx) = [1 - G)ix).

Suppose H is the common distribution function of Zj’s, then

1 - H(x) = P[Z; > x]

= P[X; > x and Y; > x|

= [1 - FII - G(x)).

Therefore,

Y(x) | [1—G(x)]f(x)

1- - I-G () [I1-F(x)]

f(x

1-F(x

= h(x).

To provide an estimate of the hazard rate based on censored data, we need to
obtain an estimator for ¥(x)/(1 — H(x)). One simple method is the ‘reduced
sample’ estimate by considering only those patients who died of cancer under
study. = That is, we only congider the random variable Z; = X;. Now denote

this reduced random sample as (Rl,Rz,...,Rn,) where
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n .
n’ = Y dj is the reduced sample size. Let
i=1

R n,(x) == %, (number of Ry’s < x),

then the three modified estimators are as follows:

1w’ (1) 1
hid(x) = — 3§ (x - R )log[1+n,_1+1]~

Where the R(i)/s are the order statistics. Intuitively, the asymptotic
equivalence still holds here as the estimators are almost the same except for
multiplication by the factor n‘/n where n’/n — 1/(1 + f) as n — o
However, if the degree of censorship increases, the reduced sample size
decreases.  That is censorship strongly affects the estimators under this
reduced sample technique and a poor estimation will be obtained if the degree
of the censorship is high. A better estimator has been discussed in Blum and
Susarla (1980). However, I do not introduce it here as it is beyond the scope

of studying the original estimators.
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5.2 NUMERICAL EXAMPLES

In studying the effect of censorship on the reduced sample method, I
drew some reduced samples from populations with smooth hazard functions.
The procedures were those used in Chapter 4. I first used IMSL to generate
single samples of 1000 observations with: (i) X exponentially distributed, mean
A =1; (ii) Y exponentially distributed, mean p =0.1. I then set
Z = min(X,Y) and sorted out all the Z; = X; to produce the reduced sample.
This resulted in a degree of censorship of § = 0.1. The entire procedure was
repeated for [ =05 and 1 (= 0.5 and 1). To avoid iewriting the
programme, I used (3.2.2) 6 , = yn’w (yn”x) as in Chapter 4, and computed
h{ 9 (x), h{? (x) and h{P (x) with x = 0.1,0.2,...,2.0 . The results are found
in Tables '5.2.1, 5.2.2 and 5.2.3 respectively.

To compare results, I also computed the sum of square error

2.0 ‘ 2
ie. ¥ [h{P(x)-h(x)]. These values are provided in Table 5.2.4.
x=0.1



TABLE 5.2.1

THE TABLE BELOW GIVES THE VALUES OF H{!) (x)
UNDER DIFFERENT DEGREE OF CENSORSHIP
g=0, p=0.1, [(=0.5, p=1,

X n=1000 n’=917 n’691 n’=507
0.1 | 1.04711 1.0797 1.18068  1.08983
0.2 | 1.20411 1.17794 1.24013 1.15889
0.3 | 1.00877 1.06301 1.03978 1.3239
0.4 | 1.06566 1.06802 1.13843 1.22512
0.5 | 0.88147 0.86428 0.84688 1.01553
0.6 | 1.08421 1.00921 1.09383 1.05253
0.7 | 0.7608 0.78078 1.04348 0.90126
0.8 | 0.83028 0.89817 0.97944 0.95133
0.9 | 1.01757 0.98007 0.8073 0.77516
1.0 | 1.00459 1.15318 1.12784  0.92335
1.1 | 0.81207 0.80198 0.87458 0.65501

" 1.2 | 0.4681 0.54879 0.61056 0.68496
1.3 | 0.96342 0.96587 0.96994 1.06195
1.4 | 0.7187 0.63983 0.57971  0.43908
1.5 | 0.7187 0.63754 0.86497 1.17517
1.6 | 1.31762 1.19692 1.03796  1.59823
1.7 | 0.9154 0.99822 0.86497 O
1.8 | 1.13615 1.13976 1.60273 0.60084
1.9 | 0.81607 0.89576 0.20183 1.07025
2.0 | 0.43921 0.61435 1.08121 O
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TABLE 5.2.2

THE TABLE BELOV GIVES THE VALUES OF H(2) (x)
UNDER DIFFERENT DEGREE OF CENSORSHIP
=0, f=0.1,  p=0.5,  p=1,

x n=1000 _ n’=917  n’691 n’=507
0.1 | 1.04923 1.08355 1.19735 1.1051
0.2 | 1.20169 1.17375 1.23337  1.14199
0.3 | 1.00702 1.06022 1.03848 1.3248
0.4 | 1.05777 1.06095 1.12113 1.21493
0.5 | 0.8794  0.8611  0.83939 0.98189
0.6 | 1.08567 1.00965 1.09917  1.07469
0.7 | 0.76414 0.7829  1.0491  0.89917
0.8 | 0.82482 0.89247 0.97323  0.94857
0.9 | 1.02171  0.97904 0.81008 0.76685
1.0 | 0.99394 1.13869 1.10752 0.91189
1.1 | 0.81224 0.80076 0.8688  0.66667
1.2 | 0.46968 0.54994  0.60823  0.65303
1.3 | 0.95685 0.95999  0.95232  1.02889
1.4 | 0.72848 0.65044 0.583 0.43927
1.5 | 0.72181  0.63765 0.86048 1.17926
1.6 | 1.32761 1.20459 1.01723  1.60858
1.7 | 0.90141  0.98575 0.85877 0
1.8 | 1.12651 1.13194 1.5758  0.58582
1.9 | 0.81362 0.89247 0.19744  1.00962
2.0 | 0.44076 0.61994 1.13669 0




TABLE 5.2.3

THE TABLE BELOV GIVES THE VALUES OF H(® (x)
UNDER DIFFERENT DEGREE OF CENSORSHIP
p=0,  p=0.1,  B=0.5,  p=1,

x | n=1000 /=017  n’691  1n’=507
0.1 | 1.04865 1.08289 1.19634  1.10376
0.2 | 1.20094 1.17293 1.23214  1.14028
0.3 | 1.00632 1.05939 1.03727  1.32228
0.4 | 1.05694 1.06001 1.1196  1.21199
0.5 | 0.87864 0.86024 0.83806 0.97898
0.6 | 1.08464 1.00854 1.09716  1.07081
0.7 | 0.76334 0.78194 1.04686  0.89525
0.8 | 0.82388 0.89128 0.97086  0.94366
0.9 | 1.02044 0.9776  0.80783  0.76219
1.0 | 0.99258 1.13683 1.10398  0.90531
1.1 | 0.81102 0.79932 0.86562 0.66116
1.2 | 0.46891 0.54886 0.6057  0.64688
1.3 | 0.95515 0.95792  0.94781  1.01744
1.4 | 0.72709  0.64892  0.57991  0.43372
1.5 | 0.72031  0.63603 0.85542 1.16214
1.6 | 1.32452  1.20112  1.01017  1.57685
1.7 | 0.89908  0.98258  0.85207 O
1.8 | 1.12317 1.12776  1.56076  0.57127
1.9 | 0.81102 0.8889  0.19532  0.98092
2.0 | 0.43923 0.61718 1.12267 O
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TABLE 5.2.4

THE TABLE BELOW GIVES THE VALUES OF
SUM OF SQUARE ERROR

f=0, f=0.1, f=0.5, f=1
Estimator n=1000 n-=917 n’=691 n’=507

H(S) 1.10849 0.87038 1.58830  3.35003
A
i

) 1.10521  0.85508 1.57684  3.38463

(2
nl
ﬁé) 1.10875 0.85938 1.56721  3.36806
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As indicated in Table 5.2.4, the total square error for A =1 is
extremely large compared with no censorship for all three estimators. This
was expected since the sample size was reduced by almost one-half when

= 1. I did not analyze these simulation further as they would resemble the

results of Chapter 4.
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