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Abstract

Vision and flight are closely linked, leading to a long-
standing interest in how the two are connected. Past re-
search has proposed models for vision in control for biolog-
ical examples of flight, and there has been recent interest in
the use of vision for low-level control of small robotic air-
craft such as quad-rotor helicopters. In the work presented
here, we show a system for stabilization of a small, fixed-
wing aircraft in the yaw axis using estimates of parametric
optical flow obtained by registration of consecutive video
images from a camera mounted on the aircraft. Estimates
of angular velocity from the registration replace the values
that would otherwise come from a gyro in a conventional
stabilization system. No markers or special targets are re-
quired – just an environment with enough visual variation
to enable image registration. We demonstrate the system in
flight and show qualitatively the efficacy of the stabilization
from external observation of the aircraft, and from the video
acquired from the onboard camera.

1 Introduction

The role of vision in flight is of long-term interest.
Whereas much of this interest stems from using an air-
craft to carry a vision system payload aloft – leaving the
vision system largely independent of the aircraft – we are
interested in the coupling of vision with the low-level con-
trol of an aircraft. In nature, the connection between vi-
sion and control of flight has been of interest [12]. Psy-
chological experiments, show that for humans vision plays
an important role in our sense of balance when standing
on the ground [13]. Similarly, a human pilot cannot fly
at night without the use of instruments in the form of in-
ertial measurement units (IMU). This connection between
balance/control and vision leads us to consider vision-based
mechanisms for stabilizing flight.

We present a system for stabilization of a fixed-wing air-
craft in the yaw axis using estimates of parametric optical

flow. The system uses a variation of Mann and Picard’s
parametric image registration [10] to estimate changes in
aircraft orientation, thus acting as avideo gyro. The con-
trol system, shown in Figure 2 is similar to that of Zufferey
et al. [18] – whereas Zufferey et al. use a gyro to stabilize
the aircraft, we replace the gyro with measurements gleaned
from an onboard camera.

2 Background

2.1 Vision in Flight

There is a long interest in the role of vision in flight,
some of which we summarize here. Corke et al. [6] provide
a review of vision and inertial sensor modalities in both bi-
ological and mechanical systems. They highlight the com-
plementary nature of these modalities and their potential for
fusion in robotic systems. These properties are applicable
to flying as well as ground-based systems.

Neumann and Bülthoff [12] describe a biological vision-
based system to control the translatory flight of insects.
They show that vision can provide the measurements nec-
essary for control and demonstrate this in simulation. In
another biological example, Tucker [16] examines vision in
falcons and other birds of prey. Of interest is his proposed
ideal falcon, a model of typical characteristics of the vision
system of falcons and similar birds of prey. Tucker indi-
cates that the falcons have two foveae per eye – one low-
acuity fovea15◦ off of forward, and one high-acuity fovea
approximately45◦ off of forward. The movement of the
eyeball in the head is negligible, so the falcon must turn ei-
ther its head or body to change viewing direction. Showing
the coupling of vision and control of flight, a falcon is most
aerodynamically efficient when its head is facing forward,
and therefore uses flight paths that keep the head forward
while fixating on prey with a high-acuity fovea.

Many examples of low-level control using vision in flight
use quad-rotor helicopters. Most of these examples rely on
markers of varying sorts placed in the environment to as-
sist the vision task. For example, Altuğ et al. [1] stabilize
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a quad-rotor with two cameras – one on ground and one on
the aircraft. They acquire visual measurements of the loca-
tions of colored blobs, and use this to control flight. Mu-
ratet et al. [11] use visual measurements of the divergence
of optical flow to compute time-to-impact (the well-known
looming effect). They use this to design a controller that
avoids collisions while flying in a cluttered environment and
demonstrate it in simulation. Tournier et al. [15] developed
a specialized target system that uses moiré patterns to assist
vision-based measurements. They demonstrate the result-
ing control system with a quad-rotor in flight. Vision sys-
tems have been demonstrated to work in conjunction with
inertial systems. For example, Kim and Sukkarieh [9] com-
bine visual and inertial measurements for simultaneous lo-
calization and mapping (SLAM) on a fixed wing aircraft.
Zhang et al. [17] control a quad-rotor with a combination of
vision and an IMU, where the vision system tracks mark-
ers placed in the environment. In related work, Kelly and
Sukhatme [8] describe a method to calibrate a camera with
respect to an IMU for combined visual and inertial control.
Finally, Cabecinhas et al. [4] stabilize a quad-rotor with im-
ages of landmarks from a pan-tilt-zoom (PTZ) camera on
the aircraft and data from other sensors. They actuate the
PTZ camera to keep the landmarks in view as the aircraft
moves, and demonstrate this in simulation.

Zufferey et al. [18] give an example of vision in fixed-
wing flight that is interesting because their aircraft has a
mass of only 10g, which places exceptional constraints on
the size and mass of the onboard vision system. Their vision
sensor has a single row of pixels to measure divergence in
the optical flow and estimate time to impact with walls. As
the aircraft approaches a wall, it turns to avoid impact. They
project a textured pattern onto the walls to assist the vision
system, and stability in flight is achieved by a combination
of aircraft configuration and an onboard gyro. Their gyro
also feeds forward to the optical flow calculations to remove
the rotational component of the flow.

2.2 Fixed-Wing Flight Requirements

Tennekes [14] provides an excellent introduction to the
requirements for fixed wing flight. As a first estimate, the
relationship between the mass, size, and speed of an air-
plane (or bird) is

W

S
∝ V 2, (1)

whereW is the weight of the aircraft (inN), S is the surface
area of the wing (inm2), andV is the speed (inm/s). The
quantityW/S is thewing loading. This tells us that if we
increase the weight of the airplane, it must fly faster (con-
suming more power) to stay aloft. This places constraints
on our vision system. With small aircraft, we are limited in
the mass and power consumption (because power requires
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Figure 1. Conventional aircraft coordinate
system [5].

batteries with mass) of a vision system.

Zufferey et al. [18] solve this with custom electronics
and working with only one row of pixels to get a total mass
of 10g. Alternatively, one can use a larger airplane such as
a mini unmanned air vehicle (UAV). However, UAVs of this
size are expensive, require trained operators, and impose a
plethora of regulatory and safety constraints. Our choice
is to go with smaller a smaller aircraft that is popular with
UAV hobbyists, and replace the mass of a vision system
with radio-frequency (RF) links to a vision system on the
ground. The RF equipment is significantly lighter, making
it possible to fly a slower and easier-to-operate airplane, at
the cost of limited range and reliability in the RF links.

As previously mentioned, quad-rotors offer an alterna-
tive to fixed-wing aircraft and have the advantage of being
able to hover. This makes them convenient to operate, es-
pecially indoors. However, this comes at a cost of energy
efficiency – in the words of Tennekes [14], “Hovering is an
uneconomical way of life.” Fixed-wing aircraft make more
efficient use of energy, but must maintain airspeed.

3 Rotation from Image Registration

3.1 Coordinate System

For this work, we use the coordinate system conventional
in flight [5, 12], shown in Figure 1. Thex axis points for-
ward in the direction of flight,y to the right wing, andz is
down. Rotation about these axes is denoted byφ, θ andψ,
and commonly referred to asroll , pitch, andyaw. Positive
φ rotates they axis towardsz, positiveθ rotates thez axis
towardsx, and positiveψ rotates thex axis towardsy. p, q,
andr denote the corresponding angular velocities.
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Figure 2. Control system for yaw stabilization,
adapted from Zufferey et al. [18]. In our sys-
tem, computer vision estimation of rotational
velocities replaces the gyro.

3.2 Overview

Figure 2 summarizes our system for stabilization. We
make the assumption that our aircraft is aerodynamically
stable, i.e., with control surfaces in their neutral position
and without external perturbation, the aircraft will fly level
(or glide if not powered) along a straight path. In this situ-
ation, stabilization is only required when the aircraft is per-
turbed, e.g., as by gusts of wind. In gusty conditions, stabi-
lization is necessary to keep the flight straight and level.

We consider stabilization only in the yaw axis, and leave
the problem of pitch stabilization aside. To that end, we start
from a yaw stabilization system based on a gyro, e.g., Zuf-
ferey et al. [18]. The signal,ra,set sets the desired yaw rate
in aircraft coordinates. The gyro senses the yaw of the air-
craft, ra and the control systems corrects by applying rud-
der to bring the error signal,era = ra,set − ra, to zero.
Zufferey et al. use a measurement of time to impact from
optical flow to changera,set for their aircraft to avoid col-
lision with walls. We replace the yaw gyro with three-axis
rotational velocity measurements from and onboard video
camera and image registration.kra is the control-loop pro-
portional gain and is set through experimentation.

3.3 Visual Measurements of Angular Velocity

To measure rotational velocities, we register consecutive
pairs of images from an onboard camera to compute Eu-
clidean parameters with three degrees of freedom. The pa-
rameters are:

• φ (image-plane rotation), and

• tx andty (horizontal and vertical image-plane transla-
tions).

φ corresponds toφc, the rotation of the camera about its
optical axis. Fromtx and ty, and camera calibration pa-
rameters we getθc andψc camera rotations. These and

the time interval between consecutive frames of video give
[ pc qc rc ]T , the angular velocity in the camera coor-
dinate frame. Transformation to account for the camera ori-
entation on the aircraft gives[ pa qa ra ]T , angular ve-
locity in aircraft coordinates.

To perform the image registration, we modify Mann and
Picard’s [10] least-squares method for estimating paramet-
ric flow to compute Euclidean flow parameters as follows.
Start with the Euclidean transformation between coordi-
nates(x, y) and(x′, y′) in image coordinates,

[

x′

y′

]

=

[

cosφ sinφ
− sinφ cosφ

] [

x
y

]

+

[

tx
ty

]

. (2)

Assumingφ is small, thencosφ ≈ 1 andsinφ ≈ φ. We
can rewrite Eq. (2) as

[

x′

y′

]

=

[

1 φ
−φ 1

] [

x
y

]

+

[

tx
ty

]

. (3)

By substitution into the optical flow constraint equation [7],

[

Ex Ey

]

[

x′ − x
y′ − y

]

= −Et, (4)

whereE is an intensity image, subscriptsx, y, andt indicate
partial derivatives in image space and time, we get

[

Ex Ey

]

([

1 θ
−θ 1

] [

x
y

]

+

[

tx
ty

]

−

[

x
y

])

(5)

= −Et.

We have one instance of Eq. (5) for all pixels inΩ, the
overlapping image regions. Rearranging Eq. (5) to solve
for [ tx ty φ ]T gives:

[

Ex Ey yEx − xEy

]





tx
ty
φ



 = −Et. (6)

Using least squares to solve overΩ, gives:

A3×3





tx
ty
φ



 = b3×1, (7)
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where the elements ofA andb are:

a11 =
∑

Ω

E2

x, (8)

a12 = a21 =
∑

Ω

ExEy, (9)

a13 = a31 =
∑

Ω

Ex(yEx − xEy), (10)

a22 =
∑

Ω

E2

y , (11)

a23 = a32 =
∑

Ω

Ey(yEx − xEy), (12)

a33 =
∑

Ω

(yEx − xEy)
2, (13)

b1 = −

∑

Ω

ExEt, (14)

b2 = −

∑

Ω

EyEt, and (15)

b3 = −

∑

Ω

Et(yEx − xEy). (16)

In the manner described by Mann and Picard, we solve
Equation (7) on an image pyramid starting at the coarsest
resolution and moving down to the finest, while iteratively
refining the solution in each pyramid layer.

Let αx andαy be the ratios of the camera focal length
to thex andy pixel size obtained by calibrating the camera.
Then we have

φc = φ, (17)

θc = arctan (−ty/αy) , and (18)

ψc = arctan (tx/αx) , (19)

whereφc, θc, andψc are rotations in the camera-centered
coordinate system. Let∆t be the time interval between
framesE andE′. The camera-centered angular velocity
estimates are:

pc = φc/∆t, (20)

qc = θc/∆t, and (21)

rc = ψc/∆t. (22)

Let aRc be the orthogonal matrix that transforms camera-
centered to aircraft-centered coordinates. We get:

[

pa qa ra
]T

= aRc

[

pc qc rc
]T
, (23)

thus giving the required angular velocities of the aircraft.

4 Test System

4.1 Overview

Figure 3 shows the system we use to test our yaw sta-
bilization system. The system has two sides: airborne and

Rx
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Pilot Link
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camera
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9600-baud
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ground

pilot

5.8 GHz
analog video
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Figure 3. Schematic diagram of aircraft stabi-
lization test system.

ground. Three radio frequency (RF) links connect compo-
nents on the two sides. These perform the following func-
tions.

1. A 5.8GHz link transmits analog video data from the
aircraft to the ground station.

2. A 900MHz link transmits digital data from the ground
to the aircraft. Although this is a bi-directional link,
we use it as an uplink only to maximize the bit rate at
9600 baud.

3. A 2.4GHz link provides manual control to a trained
radio-control pilot on the ground.

The control system of Figure 2 is embedded in the test
system as follows. A camera mounted on the nose of the
aircraft acquires video images during flight. The 5.8GHz
link transmits these images to the ground systems, where
they are digitized for processing on a laptop computer. The
laptop computer computes the angular velocities of the air-
craft using the method described in Section 3 and transmits
[ pa qa ra ]T from Equation (23) to the aircraft by the
900MHzuplink. Onboard the aircraft, a microcontroller re-
ceives the angular velocity data and uses it to computeera ,
apply the gain,kra , and actuate the rudder to steer the air-
craft and camera.

The microcontroller is anArduino[3] with an Atmel AT-
Mega328 in the form of anArduPilot [2], chosen because
it is small, light, and has low power consumption making
it excellent for small airborne applications. Furthermore,
because the ArduPilot was designed specifically for UAV
experimentation, it facilitates the use of conventional air-
craft servo motors and includes a failsafe mechanism to re-
turn manual control to the ground whenever necessary (for
safety and equipment longevity). The ArduPilot is not suit-
able for real-time video computations, but is more than ad-
equate for the other computations in our control system.
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(a) (b)

Figure 4. Unmanned aircraft (Multiplex Easys-
tar) configured for stabilization tests: (a) full
aircraft with camera and radio equipment vis-
ible, and (b) close-up view of camera fixed in
forward facing direction for stabilization.

The aircraft, shown in Figure 4(a), is a Multiplex Easys-
tar. The Easystar is a popular platform for experimentation
with small UAVs. It has excellent aerodynamic stability and
has sufficient wing area to lift a small camera and transmit-
ter at approximately10m/s airspeed. Fully configured for
our tests, the aircraft has a mass of 830g, which is 150g
over the manufacturers specification. Apusher propeller
configuration means there is no propeller at the front of the
aircraft that can interfere with the camera. The aircraft does
not have ailerons for roll control, using rudder (yaw), el-
evator (pitch) and throttle (thrust) control only. However,
when the rudder is actuated, the aerodynamic properties of
the aircraft will induce roll and yaw simultaneously.

We mount the camera facing forward and down (approx-
imately40◦), as shown in Figure 4(b). This ensures that the
camera will normally see textured regions on the ground –
better for image registration. Depending on altitude, optical
flow due to the ground passing under the aircraft can sig-
nificantly affect the angular velocities measured. However,
when facing forward, the yaw measurement is not affected.

4.2 Method

We test our system with a progression of experiments.
This starts with mounting the system on a ground robot in
the laboratory. While the results of this are trivial, it is a
necessary step to verify the system without catastrophic re-
sults.

The next step is to fly the aircraft with a yaw gyro on-
board, while carrying the camera. This serves two pur-
poses. First, we verify the range of the 900MHzand 5.8GHz
links before they become part of a critical control loop (we
know the quality and range of the 2.4GHzradio-control link
from prior extensive use). Second, we can verify the control
loop running on the microcontroller with known hardware
and establish a suitable range of values forkra . Using the
2.4GHzlink, the pilot can setkra manually until the aircraft

flies in straight in gusts without intervention. Note that gyro
control modules are available off-the-shelf that provide ex-
actly this function, but using our own system with a gyro
gives us numerical values forkra that we can then transfer
to the vision system.

Finally, we fly the aircraft with the vision system in the
loop and the gyro removed. During takeoff, the pilot uses
the failsafe system to have complete control of the aircraft.
Once the aircraft is at a safe altitude, the pilot engages the
vision control loop, and adjustskra (from a suitable range
determined by the gyro experiments) until the aircraft flies
straight in gusts without manual intervention.

5 Observations

We flew the aircraft on a day with south-south-east winds
averaging approximately15km/hwith gusts up to20km/h
and lulls down to7km/h. Figure 5 shows video images
from the aircraft while flying with video stabilization. The
flight path is approximately south over a runway with a
heading of200◦ – so the wind is coming from the upper-
left corner of the images.

Without the control loop engaged, the video images
show the constant movement of the aircraft as the wind per-
turbs it and the pilot makes continual adjustments to stay
on course. While it was not our goal to stabilize the video
for human viewers, the airborne video without control, sub-
ject to all of the aircraft motion, was decidedly unpleasant
to view and difficult to interpret.

With the control loop engaged, and no pilot interven-
tion, the airborne video gives a stable view without the rapid
movements characteristic of the un-stabilized flight. Sam-
ple video shows the aircraft flying for periods of up to30s
without pilot intervention. Intermittent gusts perturb the air-
craft but it always quickly returns to straight flight. Longer
durations were not possible because pilot intervention was
necessary to keep the aircraft within range of the RF links,
and away from nearby no-fly areas.

The efficacy of stabilization is easy to see from the
ground as the gain,kra , varies. With low gain, there is
no feedback and the aircraft is unable to keep a heading
through the wind. As the gain increases, the pilot can re-
lease control to the aircraft. As the gain increases further,
the tail of aircraft moves visibly as the control loop over-
corrects the yaw.

Our evaluation is subjective – we see the aircraft in sta-
ble flight – but it would be preferable to have empirical ev-
idence. Ideally, we would like to have compared readings
from a physical gyro in flight and compare measurements
when video stabilization is on or off. Unfortunately, our use
of RF links with limited bandwidth to save mass in the air-
plane prevents this. The 900MHzdatalink bandwidth drops
precipitously when used for bidirectional communication,
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Figure 5. Video frames extracted at equal in-
tervals from 13s of video-stabilized flight. Or-
der is row-major.

so acquiring telemetry data was not possible.

6 Discussion

A forward-facing camera allowed us to ignore visual yaw
induced by viewing the ground. This differs from Tucker’s
ideal falcon model [16] in which the foveae in each eye are
15◦ and45◦ off center. Thus, if a falcon were to use this
method to assist stabilizing flight, it would need to account
for ground speed. One option based on naive speculation is
to use flow from eyes on opposite sides of the head so that
visual yaw induced by ground speed cancels between the
two.

We did not implement pitch control. While we do get
visual pitch measurements, two factors confound its use in
stabilization. First, while drift in yaw control results ina
gradual turn of the aircraft, drift in pitch leads to a stall

or a dive. Intertial measurements from an accelerometer
are necessary. Second, ground speed produces visual pitch
that must be accounted for in control, and again, this would
likely require an accelerometer.

The week link in our system is the RF communication.
We have limited range, and even when in range, we get
frequent dropped, incomplete, or distorted video images.
These images lead to erroneous registrations and bad data
in the feedback loop. Fortunately, these are only intermit-
tent most of the time, and the aerodynamic properties of the
aircraft allow it to recover from momentary deflections of
the rudder.

We chose to compute Euclidean parameters for image
registration. It is equally possible to use affine parameters
decomposed into rotation, scale and translational degreesof
freedom.

7 Conclusion

We have demonstrated a working system that uses visual
image registration to stabilize fixed wing flight in the yaw
axis. Significantly, the systems requires no special markers
or targets, only enough visual variation in its environment
to facilitate image registration. For real-time operationon
a small aircraft, current technology requires that the vision
processing must be done on the ground. Lighter, low-power
vision systems will be necessary to duplicate the process
onboard an aircraft. of this size.
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