Abstract

Leader election canses a unique processor Lo be distingnished from nmong,
u collection of processors. As the study of this problem progressed, inereas
wgly ellicient, then more general algorithms emerged. Bventually, Law Vegan
ulgorithime for leader election on rings with identifiers and for those without,
thal achiieve asymptotically optimal expected message and bit communication
complexity emerged (AAGHK).

I this paper, the same results are achieved with a meh simpler algorithm
than previously proposed. That is, on a ring of size n without identificrs where
wn N know that satisfies N <n < 2N -1, a leader is eleeted nsing O(n log n)
axpected hits. If distinet identifiers are available, then the algorithin can he
ndapted to use O(nan) expected bits even without knowledge of the ring size,
where anis the size of the longest identifier. 'These results are optimal in
cannnunication complexity and in generality.

The algorithin’s sinplicity facilitates not only its proof of correctness, hut,
also itw extension Lo several other problems. An oplimal algorithm for ring
orientation follows easily even for situations where deterministic orientation s
tnpowsnible. The algorithi also generalizes to an optinal (expected bil, com
plexity O(an)) Las Vegas algorithm for election in an oriented complete graph
Thin algorithim, in turn, is adapted to an election algorithm in an oriented
wparse graph with no degradation in communication complexity.

I Introduction

Londer eleetion causes a unique processor, from awnong a specified subset of the pro
comotn, candidales, to enter a distinguished final state. This problem is fundamental
in that its koelution forms a building block for many more involved distributed compu
tatlons. The communication complexity of leader election on distributed rings with
vindlonn combinations of properties has been well studied. The reader is divectod
to the intraductory section of [1] for a review of results for various versions of the
lowdar election problem for rings. This paper addresses randomized leadeor election
on vings and on related networks either with identifiers or without (anonymous).

Il processors lack distinet identifiers then, as was first observed hy Angluin
[h], de termmistic algorithms are unable to elect leaders, even il ring size is known
o all proconsors. Hai and Rodeh [12] propose the use of randomized algovithms Lo
nhiet this limitation. They present a randomized algorithim that elects aleader in an
anynchronous ring of known size 2ousing O(nlogn) expected messages of O(log n)
Win ench. Abrahamson et al [1] improve this result with a randomized algorithn
to olect a leader on a unidirectional asynchronous ring with complexity matcehing,
the message complexity of the Ttai and Rodeh algorithm and using a factor of logn
fewaer bits. Farthermore, in this algorithm, ring size need only be known to within
n lactor of two.

Section 2 of this paper describes another algorithm for randomized leade
oloction on an anonymous ring with message and bit complexity matehing that ol
[1] e is wignilicantly simpler than the previous one and thus provides a ntrong,
Hhintration of the advantages (in terms of simplicity as well as complexity) that can

be achieved through randomization. The algorithm has evolved from the earlier
leader election algorithm, and is most naturally described in an analogous manner.

The simplicity of the election algorithm facilitates its extension or adaptation
to the solution of related problems. Section 3 presents solutions to orientation
problems and to election problems for other networks that are based on the leader
election algorithm of section 2.

2 Leader Election, Attrition and Solitude Detection

Initially set each candidate to be a contender. A leader election algorithm must
(1) eliminate all but one contender by converting some of the contenders to non-
contenders, and (2) confirm that only one contender remains. This suggests the
separation of leader election into two subtasks called attrition and solitude detec-
tion respectively (cf.[1]). A procedure solves the attrition problem if, when initiated
by every candidate, it never makes all candidates noncontenders, and with prob-
ability 1 it takes all but exactly one of these candidates into a permanent state
of noncontention. Typically an attrition procedure does not terminate but rather
enters an infinite loop in which the remaining contender continues to send messages
to itself. An algorithm solves the solitude detection problem if, when initiated by a
set of processors, it terminates with probability 1 and, upon termination, if there is
exactly one initiator then the initiator is in state “yes”, and if there is more than
one initiator then all initiators are in state “no”.

The relationship between leader election and the two subtasks, attrition and
solitude detection, was pointed out and exploited by Itai and Rodeh [12]. By tightly
interleaving the solutions to the two subproblems, the algorithm of Abrahamson et
al [1] achieves a lower expected bit complexity than the former algorithm. The
algorithm described herein employs a different interleaving strategy, which can be
implemented with a simpler attrition procedure. As a consequence, the proof of
correctness is significantly simplified.

The next three subsections describe, respectively, each of the three tasks:
attrition, solitude detection and interleaving for an asynchronous unidirectional ring.
Processors are message-driven. First some subset of processors each initiate one
message. Computation proceeds by each processor repeatedly executing the steps:
(1) block until some message is received, (2) do the specified local processing, and
(3) send the message (possibly null) determined by the local processing. The goal
is a Las Vegas leader election algorithm, and therefore the solution is required to
terminate with probability 1 and upon termination to have selected exactly one
leader.

2.1 The attrition procedure

The leader election algorithm describe here employs an extremely simple attrition
procedure. Attrition is initiated by all candidates (the initial contenders) for lead-
ership. Let the number of candidates be ¢. The procedure has an implicit round
structure. In each round, each contender independently tosses an unbiased coin,

sends the outcome to its contending successor (via the intervening noncontenders)
and waits to receive the coin toss generated by its contending predecessor. The
processor becomes a noncontender for the remainder of attrition if and only if it
sent a tail and received a head. Those processors remaining in contention proceed
with the next round.

Let my,..., 7, be the contenders at the beginning of an arbitrary round j of
attrition.

Correctness: If all flips in round j are the same then all m processors remain
contenders in round j + 1; if not all flips are the same then those that flipped heads
are guaranteed to be contenders in round j + 1. Therefore, not all processors can
become noncontenders. On the other hand, the probability that a given contender
sends a tail and receives a head is 1/4 as long as there is more than one contender.
Hence, with probability 1, the number of contenders decreases to one.

Complexity: When only one contender remains, it continually receives the same
flip as it last sent. This infinite loop is broken only by the intervention of solitude
detection. Therefore, the complexity of concern for the analysis of attrition is the
expected number of bits expended until the number of contenders is reduced to 1.
Define the random variables Y;,1 < ¢ < m, for round j by:

Y. = 1 if m; is a contender at the beginning of round j + 1
t 0 if m; is a noncontender at the beginning of round j + 1

Given that there are at least 2 contenders in round 7, the flip generated by contender
m; in round j is independent of that produced by its nearest preceding contender.
Therefore, E(Y;|m > 2) = 3/4. Let random variable X be the number of contenders
at the beginning of round j. Then X; = ¢. So, if m > 2:

(i)

=1

E(Xj41|X; =m)

m

= Y EX)

i=1

And E(X;41]X; = 1) = 1. Therefore:

E(Xj+1) =) E(XjulX; =m) Pr(X; =m)

m>1
= Y E(Xj41|X; =m)-Pr(X; =m)+Pr(X; =1)
m>2
3
= -m-Pr(X; =m Pr(X; =1
3 (gt = m) + i =)

3 1
= ZE(X]') + ZPI(XJ‘ =1)

Thus, after r = log% ¢ < 2.41logc rounds of attrition, E(X,), when ¢ candi-

dates initiate attrition, is a small constant (at most 3)!. The expected number of
rounds required to reduce from 3 contenders to 1 is a constant and each round of
attrition requires exactly n bits. Therefore:

Lemma 2.1 The ezpected number of bits communicated by the attrition procedure
when there are ¢ candidates, up to the point where there is only one remaining
contender is at most 2.41nlogc + O(n).

2.2 The solitude detection algorithm

On an anonymous ring of known size, solitude can be verified by confirming that
the gap between a contender and its nearest preceding contender is equal to the ring
size. Suppose that each processor knows the size n of the ring. A simple algorithm
for determining solitude has each contender initiate a counter, which is incremented
and forwarded by each noncontender until it reaches a contender, 7. By comparing
the received counter with n, 7, knows whether or not it is alone. As shown in
[1], this algorithm can be transformed into a solitude detection algorithm that has
constant length messages without any increase in bit communication complexity. It
is repeated here for completeness.

Each processor 7, whether contending or noncontending, maintains a counter
¢z, initialized to 0. Let d; > 0 denote the distance from 7, to its nearest preceding
contender. The algorithm maintains the invariant:

if 7, has received j bits then ¢; = d; mod 27.

Then if 7, reaches a state where ¢, = n, there must be n — 1 noncontenders
preceding 7, so T, can conclude that it is the sole contender. It remains to describe
a strategy for maintaining the invariant.

Contenders first send 0. Thereafter, all processors alternately receive and send
bits. If 7, is a noncontender, then 7, is required to send the j”‘ low order bit of d,
as its j** message. Contenders continue to send 0. Suppose a processor, T, has the
lowest order j — 1 bits of dy in ¢,. A simple inductive argument shows that when
Ty Teceives its 7" message (by assumption the j** bit of dy—1), it can compute the
first j bits of d, and thus can update the value of ¢, to satisfy ¢y, = dy mod 27.

The algorithm assumes that n is known exactly. Suppose instead that each
processor knows an integer N, such that N < n < 2N — 1. Then there can be at
most one gap of length N or more between neighbouring contenders. Thus, any gap
of less than N confirms nonsolitude. Any processor detecting a gap of m > N can
determine solitude by initiating a single round to check if the next gap is also m.
(For the purposes of leader election, it is sufficient for any contender that detects a
gap of N or more to declare itself the leader, since it has confidence that no other
processor can do the same.) The modified algorithm is a correct solitude detection
algorithm when ring size is known to within a factor of less than two.

!Logarithms denoted by “log”, without explicit bases, are assumed to be base 2.

Lemma 2.2 If each processor knows a value N such that the ring size n satisfies
N < n < 2N -1, then deterministic solitude detection can be achieved using at most
O(nlogn) bits with message length only 2 bits.

2.3 Interleaving attrition and solitude detection

A leader can be elected on a ring of size n € [N, 2N —1] with just a coarse interleaving
of the attrition procedure and a trivial solitude detection algorithm. First, attrition
is run until, with overwhelming probability, there is one remaining contender. This
is followed by a single round of solitude detection where each remaining contender
sends a counter to measure the gap between itself and its nearest preceding con-
tender. In the rare event that nonsolitude is confirmed, these two steps are repeated
by the remaining contenders until solitude is verified. Details appear in [11], where
it is shown that even this naive algorithm achieves O(nlogn) expected bit complex-
ity. Its shortcoming is that it cannot be adapted to one that provides an efficient
solution to leader election when there are distinct identifiers but no knowledge of
ring size nor of the number of candidates. The shortcoming is overcome by a tighter
interleaving of attrition and solitude detection messages. As an additional advan-
tage, the refined interleaving achieves early stopping. That is, if attrition proceeds
more quickly than expected, then this event will be detected and the time used to
elect a leader will correspondingly decrease.

Subsection 2.2 describes a solitude detection algorithm for a static configura-
tion of contenders and noncontenders on the ring. However, when solitude detection
is interleaved with attrition, gaps between contenders typically combine into longer
gaps before complete gap information is collected. (The algorithm just outlined
avoids this complication because it collects complete gap information each time
solitude is checked.) To eliminate this problem, restart flags are set to signal when
a processor’s accumulated gap information is no longer valid.

In each round, a message with 3 bits (an attrition bit, a solitude detection
bit, and a restart flag initialized to false) is sent by each contender and propagated
to the next contender. If a message arrives at a noncontender, m,, that was a
contender in the previous round (a new noncontender), then all processors following
7p, up to and including the next contender, have gap information that is no longer
correct. Noncontender 7, signals this situation to these successors by setting the
restart flag in the message. Any processors that receives a message with the restart
flag set, reinitializes its solitude detection variables. Note that a new noncontender
following a contender retains correct gap information, since the gap preceding this
new noncontender remains unchanged. In previous rounds, this new noncontender
accumulated some bits (at least one) of this unchanged gap. Therefore, it can send
the first bit of that gap as the required bit in the solitude detection field of its
message.

2.4 The leader election algorithm

The leader election algorithm presented in this subsection is designed for asyn-
chronous anonymous rings of size n € [N,2N — 1]. Recall that processor 7; main-
tains the following two local variables which are described in subsection 2.2. (The
gap from processor ; to its contending predecessor is denoted d;.)

Jit count of the number of messages received containing correct gap information.
c;: gap counter containing the value d; mod 2%,

The bit position of the outgoing solitude detection bit may lag behind the bit po-
sition of the incoming solitude detection bit. Therefore, an additional variable, o;,
representing the position of the outgoing solitude detection bit, is introduced. For
clarity, the following functions and procedures (see subsections 2.1 and 2.2) are
assumed as subroutines.

leader: a boolean function that returns true if and only if the local variable ¢; has
a value in [N,2N —1].

initializesv: sets gap variables to their initial values in preparation for processing
the first bit of gap information. (j; <0, o; <0 and ¢; «<0.)

gapupdate(z): Increments the position counters j; and o;. Then uses bit z to
update the gap information in the counter ¢; in order to maintain the invariant
¢; = d; mod 2%,

nextsvbit(b): produces the b** bit of the number d; given that ¢; = d; mod 2% and
Ji2b

random(z): assigns variable 2 a random coin flip in {A,t}.

Algorithm Ring LE:

initializesv; contender «true;

WHILE contender AND NOT leader DO
send(<random(myflip), 0, false>);
receive(<predflip, svbit, restart>);
IF restart THEN initializesv;
gapupdate(svbit) ;

If myflip =1t and predflip = h THEN
o «0;
contender —false;

WHILE NOT contender DO
receive(<predflip, svbit, restart>);
IF restart THEN initializesv;
gapupdate(svbit) ;

IF 0 =1 THEN restart «—true;
send(<predflip, nextsvbit(o), restart>).

Correctness: The correctness of attrition and solitude detection have been estab-
lished in Lemmas 2.1 and 2.2. With probability 1, attrition reduces the set of
contenders to one, and solitude detection confirms that one contender is left. It
only remains to prove that interleaving, using restart flags, correctly maintains gap
information. Define round number r of processor m; to be the interval in the execu-
tion of m; after it has received r messages and before it has received r + 1 messages.
Let variable v7 denote the value at the end of round r of processor r;’s local copy of
variable v. Let 47,...,7,, be the processors that are contenders at the beginning of
round r. Let d] be the distance from ; to the nearest predecessor in {77,...,77, }.

Claim 2.3 For every round number, 7, and for every 1 < i < n, ¢} = df mod 277

Proof: Clearly the claim holds at the end of round 1, given the correctness of
solitude detection. Consider a message from contender 7]_; to contender 7/ in
round r over gap d] and assume that all accumulated gap information is accurate at
the end of round r — 1. If no processor between 4/_; and 7] is a new noncontender,
then the gap d7 is unchanged from d!~! for any processor 7; between 77_, and 7;.
The correctness of solitude detection ensures that «; will accumulate one more bit of
information about d as required. Suppose that some processors py, ..., p, between
9{_; and 9] are new noncontenders®. They each have o = 0 and contender=false
at the beginning of round r. Since gapupdate increments o, each of py,..., p, sets
the restart flag. The restart flag is first set by py, so all processors from 7]_; to p;
retain their gap information and acquire one more significant bit. Hence, the claim
holds up to and including processor p;. Processor p; has at least the first two bits
of its preceding gap in its local copy of variable c. Therefore, it sends the correct
first bit to its successor. All remaining processors 7, up to and including 7] receive
a message with the restart flag set and a correct first bit of the new gap, d7. Thus,
the claim holds for these processors as well.]

Complexity: By the complexity of attrition, Ring LE expends less than 2.5nlogc+
O(n) expected messages and 7.5nlogc + O(n) expected bits up until one contender
remains. At this point, each message sent by the sole remaining contender drives
one bit of gap information back to it. After [log N]+1 more rounds (3nlogn+O(n)
bits) its solitude will be confirmed. Therefore,

Theorem 2.4 Algorithm Ring LE elects a leader on an anonymous ring of n pro-
cessors where n € [N,2N — 1] using O(nlogn) ezpected bits.

Ring LE elects a leader under the weakest possible condition on an anonymous
ring since solitude cannot even be verified if ring size is not constrained as Theorem
2.4 requires [1]. Furthermore, Q(nlogn) expected messages are necessary to elect a
leader even when ring size is know exactly [9, 11].

2For the attrition procedure of subsection 2.1, in a given round there can be at most one new
noncontender between any two contenders. For a generalization of the attrition procedure, described
in subsection 2.6, however, it will be possible to have a run of more than one new noncontenders
between two contenders. Therefore this possibility is included in the current proof.

2.5 Rings with identifiers

On a ring with distinct identifiers, a processor verifies its solitude by confirming
that the preceding contender has the same identifier as itself. Algorithm Ring LE
can easily be adapted to this situation — see [11] for details. The result is a leader
election algorithm for rings with distinct identifiers even when ring size is unknown.

Theorem 2.5 Algorithm Ring LE can be adapted to elect a leader on a ring of size
n where processors have distinct identifiers of length at most m bits using O(nm)
expected bits.

2.6 Tuning the leader election algorithm

Since there is only one attrition bit per message, the number of messages used by
Ring LE is expected to be more than nlog,/z¢ > 2.4nloge. When all n proces-
sors are candidates for leadership, this exceeds the complexity of the leader election
algorithm in [10] for rings with distinct identifiers. The algorithm in [10] has mes-
sage complexity less than 1.356n logn + O(n) and remains the deterministic leader
election algorithm with the best known message complexity.

However, the attrition procedure generalizes directly to one that sends a k-
bit random number in place of each coin flip (for details see [11]). Contenders
then become noncontenders if and only if they sent a number strictly smaller than
the one received. The expected message complexity of the revised attrition proce-
dure is at most (1 — log(1 + 27%))~1nlogc+ O(n), which can be brought arbitrarily
close to nloge by increasing k. Since (1 —log(1+427%))"1 < 1+ 2log(1 +27%) =
14 (2/1n2)In(1 +27%) < 14 (2/1n2)27%, the complexity of the general attrition
procedure is less than (1 + 2~%+?)nlogc + O(n) expected messages®. Similarly, the
nlogn messages sent by solitude detection after there remains only one contender,
can be reduced by a factor of I < logn by sending ! detection bits with each attrition
message. By tuning these parameters, the expected message complexity of leader
election can be reduced to within a factor of (1+¢) of nlogn for ¢ > 0. For example,
choosing parameter k& = 4, the expected message complexity of attrition drops to less
than 1.096nlogn. By choosing [= 4, the solitude detection adds only (nlogn)/4
messages for a total of less than 1.346nlogn expected messages. These settings
result in a Las Vegas leader election algorithm that has lower expected message
complexity than the lowest complexity known for a deterministic algorithm, while
retaining both constant length messages (only 9 bits) and simplicity. Clearly, the
same packaging idea can be employed whether solitude is detected using identifiers
or ring size information.

The optimal parameter setting for minimizing bit complexity of the leader
election algorithm occurs when messages are short. If k bits are used in an attrition
field, and ! bits are used in the solitude detection field, then the annotated messages
of Ring LE are k + [+ 1 bits each. First log n rounds of attrition are expected

until one contender remains, where k' = 2k+1/(2k + 1). This is followed by [l—"%ﬂ]

3Logarithms denoted by “In” stand for the natural logarithm, base e.

rounds to confirm solitude. Therefore, the expected total number of bits is n(k+1+
1)(logys n + [13%4)- This is minimized at k¥ = 2 and ! = 2 resulting in an expected
complexity for Ring LE of fewer than 8.88nlogn bits and fewer than 1.98nlogn
messages. Of course the bit complexity can be reduced further by running pure
attrition for several rounds before interleaving with solitude detection, since it is
known that at least logn rounds will be required anyway.

3 Applications of Las Vegas Leader Election

Because a leader can coordinate further computation, some problems that have
no deterministic algorithmic solutions, can be solved easily by employing random-
ized leader election. For some other problems, the efficient randomized leader elec-
tion algorithm implies an improvement in the communication complexity over that
achievable by deterministic algorithms. This section illustrates these phenomena by
extending the simple leader election algorithm of subsection 2.3.

3.1 Function evaluation

In a distributed setting, function evaluation refers to the problem of computing the
value of a fixed function of n variables where initially each processor in the network
has as input, the value of one of the variables. Evaluation of common functions on
rings is examined in some detail elsewhere [2, 8, 7,9, 11]. The problem of determining
the minimum possible complexity of evaluating any nontrivial function on a ring is
also addressed separately ([3, 15]). It is simply noted here that all functions on rings
can by inexpensively evaluated by preprocessing with leader election.

Once a leader is elected, the leader simply circulates a message which collects
all the necessary information to compute the given function. When the message
returns, the leader computes the function value locally and announces the result.
Thus, there exists an algorithm for evaluating any function in any situation where
a leader can be elected using only O(n) additional messages.

For example, SUM can be evaluated by a randomized algorithm on any ring
that has size known to within a factor of two, with an expected complexity of
O(nlogn) messages and O(nlogn + nlogS) bits, where S is the sum. In contrast,
SUM cannot be evaluated deterministically on any anonymous ring unless the ring
size is known exactly [7]. Computing AND has complexity §(n?) messages in the
deterministic anonymous model whereas, by employing randomized leader election
this can be reduced to O(nlogn) expected bits, even if ring size is known only to
within a factor of two.

3.2 Ring orientation

Attiya, Snir and Warmuth [7] first introduced the problem of determining a consis-
tent orientation on an anonymous bidirectional ring when processors have only local
labels on their incident edges. Let 7q,..., 7, be a ring of identical processors, such
that each processor 7; has two communication channels, a; and b;, each connected

to one of its neighbours. A solution to the ring orientation problem distinguishes
one channel in {a;, b;} for each processor, such that all the processors, together with
the collection of these distinguished channels, form a unidirectional ring.

Attiya et al show that there is no deterministic ring orientation algorithm for
rings if the ring size is unknow or if it is known and even. They further show that
(n?) messages are required in the worst case for any deterministic ring orientation
algorithm for ring of known odd size. A deterministic orientation algorithm for
rings of known and odd size is provided by Syrotiuk and Pachl in [18] with average
complexity O(n%/?) messages, assuming that all initial configurations of local ori-
entations are equally likely. With the help of randomization both the complexity
barrier and the impossibility barrier disappear.

Theorem 3.1 Ring orientation reduces to leader election in O(n) ezpected bits.

Proof: Let Ring LE be any leader election algorithm for a unidirectional ring. Con-
sider the following algorithm, which employs Ring LE as a subroutine. In addition
to the messages used by Ring LE, the algorithm uses two message types — leader
messages of the form <, finished> (I indicates that this is a leader message, and
finished is a boolean flag), and orientation messages. Each processor maintains a
local two-leaders flag initialized to false.

Algorithm Orientation:

1. Each processor, 7, is initially a candidate and initiates Ring LE by sending its
first message of Ring LE on its a link.

2. Upon receipt of an Ring LE message on link b, 7 proceeds exactly as in algo-
rithm Ring LE and sends its response (if there is one) on its a link.

3. Upon receipt of an Ring LE message on link a, 7 executes the leader election
code for a noncontender and forwards its response on its b link.

4. When a processor is elected, it sends a leader message on its a link with the
finished flag set to true.

5. A leader message is forwarded around the ring until it is received on link
by a processor that sent a leader message. (This recipient is necessarily the
originator of the message.) However, any processor receiving a leader message
on its a link, sets the finished flag to false and sets its local two-leaders flag
to true before forwarding the leader message on its b link.

6. When a leader message returns to its originator (necessarily on a b link),
this processor examines the finished flag. If finished = true then this leader
propagates a final orientation message on its a link. If finished = false, then
this leader delays until its local two-leaders flag is true.

7. When two-leaders is true, both leaders exchange independent random coin
tosses until they send and receive opposite tosses. The leader sending heads
and receiving tails propagates an orientation message on its a link.

10

8. The orientation message is forwarded until it returns to the originator of the
message. Each recipient sets its incoming link to be the one on which the
orientation message is received.

Correctness: Let A (respectively, B) be the subset of processors initially consistent
with a clockwise (respectively, counterclockwise) orientation. Steps 1 through 3
perform leader election simultaneously on sets A and B. Since the messages of each
election propagate in opposing directions, any interleaving of these two elections
cannot disturb their progress. Because at most one of sets A and B is empty,
eventually either one or two leaders are elected. Step 6 ensures that an elected
leader learns which is the situation for the current computation. If either A or B is
empty, step 6 ensures that the sole leader’s orientation is adopted by all processors.
If neither A nor B is empty, then the delay in step 6 ensures that set A and set B
have both selected a leader before the algorithm proceeds. It is then straightforward
to check that the number of leaders is reduced from two to one (step 7) and that
the ring is oriented consistently with this remaining leader (step 8).

Complexity: One orientation message and at most two leader messages, all of con-
stant length, are propagated once each around the ring accounting for O(n) bits.
It is expected that a constant number of exchanges of coin tosses are required to
select one leader from two, accounting for an additional O(n) expected bits. All
other messages are messages of Ring LE. |

Algorithm Orientation can be easily modified to work for any ring with distinct
identifiers even in the absence of any knowledge of ring size. Therefore:

Corollary 3.2 There are Las Vegas orientation algorithms for

1. anonymous unoriented rings with size bounded to within a factor of two
2. unoriented rings with distinct identifiers and no knowledge of ring size

that have ezpected complezity O(nlogn) bits where n is the size of the ring.

Although the algorithm is described for the situation when all processors start
simultaneously, it is easily converted to one tolerating arbitrary wake-up. Processors
that have not initiated the algorithm when a first message arrives simply adopt the
role of a noncontender for leadership.

The orientation algorithm demonstrates that lack of orientation in a bidirec-
tional ring does not significantly complicate the problem of leader election — a
leader can still be elected in O(nlogn) expected bits.

3.3 Leader election in oriented complete graphs

The problem of deterministically electing a leader in a complete network of distinct
processors has complexity ©(nlogn) messages [13, 4]. With an additional condition
however, the lower bound can be violated. Loui, Matsushita and West [14] and

11

Sack, Santoro and Urrutia [16] studied a version of election on a complete network
in which edge labels reflect distance information. Consider a complete network, in
which each processor labels its incident edges with the numbers 1 through n—1. Let
f(m, k) denote the processor connected to 7 via n’s link numbered k. The labelling
is consistent if and only if f(f(x,k),l) = f(m,(k +) mod n) for every processor =
and for every 0 < k,! < n — 1. The model assumed in [14, 16] is an asynchronous,
bidirectional complete network of processors with unique identifiers and consistently
labelled incident links. The “sense of direction” constraint in [14] is equivalent to
the consistent labelling property. Given this model, [14] presents a leader election
algorithm with communication complexity only O(n) messages. The messages used
in their solution contain both identifiers and link numbers and thus have order log n
bits each.

Call a network oriented if all edges that are present in the network satisfy
the consistent labelling constraint. Using randomization, leader election can be
solved in O(n) expected bits on an oriented complete asynchronous network, even if
processors lack unique identifiers. The randomized algorithm is similar to the leader
election algorithm for unidirectional rings of subsection 2.3, except that after each
round of attrition, the ring is updated so that subsequent messages need not pass
through passive processors. Rather, each contender communicates directly with its
nearest contending neighbours. Eventually only one contender remains, and the
ring is updated to just a self-loop at that survivor. Thus, this processor’s solitude is
confirmed automatically. No explicit solitude verification is required. Conceptually,
each phase of the algorithm has two parts:

1. around of attrition on the current ring — contenders send and receive a single
coin flip, and

2. ring revision to bypass the processors just eliminated in the attrition round.

A more detailed description follows. The algorithm is executed by each pro-
cessor. The instruction send(< m >:1) sends message < m > on the link with local
label I. The instruction receive(< m >) is a blocking receive; the processor waits
until a message arrives on some channel. There are two different types of messages
~— attrition messages containing a random coin toss and a link number, and gap
messages containing a link number or “0”. Contenders process these messages alter-
nately: if a message of one type arrives while a processor is waiting for the other, it
saves this message and continues to wait. It is a consequence of the algorithm that
a processor never has more than one message in a “holding” buffer. The function
random(z) is assumed to return an unbiased random coin toss and to store the result
in variable z.

Algorithm Complete graph LE:
sendlink «1;
REPEAT:
1. send(<random(sflip), sendlink> : sendlink);
receive(<rflip, receivelink>);

12

3. IF NOT (sflip = t AND rflip = h) THEN

4. send(<0> : N -—receivelink);

5. receive(<newgap>);

6. sendlink < (sendlink + newgap) mod n
UNTIL (sflip = t AND rflip = h) OR sendlink =0

7. IF sendlink =0 THEN

8. announce ‘‘elected’’
ELSE

9. receive(<0>);

10. send(<sendlink> : N -—receivelink).

Correctness: Let 7; be the total number of times that processor w; enters the repeat
loop of algorithm Complete graph LE. Define round j for m; , j < r; to be the jt*
pass of 7; through the loop. Say that x; is active for round j whenever j < r;
and that n; is active for r; rounds. If =; satisfies the condition “(sflip = t AND
rflip = h)” at the end of round r;, then say that m; went passive in round r;. Let
Tyeess 7r$;j denote the substring of 7y, ..., T, consisting of those processors that are

active in round j. Then clearly 7},...,7} =m,..., 7, and w{+1, ... ,w{;jfl is a not
necessarily contiguous substring of #7,... ,7r,{j.

The following claim means that processors interpret the implicit round struc-
ture consistently. It can be established by induction on the round number and by

tracing the effect of the communication on each active processor.

Claim 3.3 The coin flip sent by 7rf in its j** round is received by wf+1 in its jth
round.

The claim implies that rounds can be considered in isolation. Let x! denote the
value of variable x at the beginning of the j** round of processor 7;. The first
two lines following REPEAT constitute the attrition procedure of subsection 2.1.
Therefore, given that sendlink] is the number of the link connecting] to =7,
eventually there will remain one active processor. In round 1, all active processors
communicate along the links of a ring with sendlink}! =1 for all i. Suppose that
m] goes passive in round j. The attrition procedure guarantees that two adjacent
active processors cannot become passive in the same round. Therefore, 7!_; and
7},, must be active processors in round j+1. Lines 9 and 6 ensure that sendlink?_;
is updated to connect 7"?-1 to 7rzj +1- Alternatively, if 7rf remains active for round
j+1, then it sends a 0 (line 4) to 7"?—1 so that again 7"3-1 connects to its successor via

link number sendlink]_;. Finally, when one active processor remains, its sendlink

value must be 0 ensuring correct termination.

Complexity: On first inspection of the algorithm, it may appear that messages
are generally O(logn) bits long since link numbers are sent as part of the message.
However, large link numbers are only sent toward the end of the algorithm, when
fewer processors are active. This is enough to save a factor of logn bits from the
naive complexity analysis.

13

Specifically, in round 1, sendlink} = 1 for all i and it can at most double in
each round. Therefore:

Claim 3.4 At the beginning of round j sendlink{ < 291 for every active processor
7.

Let X; be the number of active processors in round j. From the analysis of
the attrition procedure in subsection 2.1, E(X;) = max{(3/4)'~'n,1}. Each active
processor in round j sends at most 1 + 2log(2?) < 2(j + 1) bits. Therefore, the

expected bit complexity is bounded above by:

B(Q_X;-2(+1)) = 3 (B(X;)-2(+1)) = D (3/4Y 'n-2(j + 1) = O(n).

J

The preceding discussion is summarized by:

Theorem 3.5 There is a Las Vegas algorithm that elects a leader on an anonymous,
asynchronous, oriented complete network with n processors in O(n) ezpected bits.

Algorithm Complete graph LE does not require that a processor know which
link carried an arriving message. The consistency of the labelling allows processors
to compute this number from the link number used by the sender and included in
the sender’s message. If the model provided this information to the processors, it
would be unnecessary to send link numbers with the coin tosses at line 1. The bit
complexity would then drop by a constant factor but remain O(n).

In a possible modification to the model, processors execute a selective blocking
receive — that is, receive(k) causes a processor to wait for a message on link k. Any
message arriving on link [# k is queued. Such a message is processed only when the
processor executes receive(l). Algorithm Complete graph LE can be adapted to
apply to the selective blocking model. After each round of attrition, each processor
must be informed of the link to its predecessor as well as to its successor so that it
can selectively block on the correct link.

3.4 Leader election in oriented sparse graphs

Santoro [17] discusses the impact of topological information on message complexity.
Results for oriented rings and oriented complete graphs are cited as evidence that
additional topological information can affect the inherent message complexity of a
problem. The oriented ring and the oriented complete network can be viewed as
the two extremes of a class of graphs with edges labelled in a globally consistent
way. In the oriented ring there is a globally consistent sense of left and right. In
the oriented complete network this sense of direction is extended; local link number
I connects a processor directly to the processor at distance ! via the ring links.
Attiya, Santoro and Zaks [6] observed that this transition from an oriented ring to
an oriented complete graph results in a drop of message complexity from ©(n logn)
to ©(n). They also show that the O(n) complexity can in fact be achieved in a
oriented graph that is much sparser than the complete graph. Let H be a network

14

consisting of a ring 7y, ..., 7, augmented with the chords (7;, 7i4;) and (7, Tipn—;)
for 2 < j <t-1 at each node 7;. Then aleader for H can be elected in 2% logn+3n
messages. Thus, there is an oriented graph consisting of a ring augmented with log n
chords at each node, such that a leader can be elected in O(n) messages [6].

The randomized algorithm, Complete graph LE for leader election on an ori-
ented complete graph can also be adapted to a much sparser graph without sig-
nificantly increasing the expected bit complexity. Let G be a network of n pro-
Cessors y,...,T, such that 7; is connected to m; o« via a link with label k,k =
0,...,|logn]. G is an oriented graph with degree [logn| + 1. For any d, a message
can be sent between m; and 744 using at most [logd] hops. By including a more
elaborate send and receive structure which allows for forwarding, algorithm Com-
plete graph LE can be converted to an algorithm which only uses the edges of G.
The messages need only be augmented with one additional field, remaining distance,
leaving the other fields of the original message unchanged. Consider the send in-
struction in line 1 of algorithm Complete graph LE. A message is sent directly from
its source, say 7, to its destination, say w4, on link number sendlink. To send it to
74 using edges of G, it is sent instead on link labelled a where 2 < sendlink < 2°11,
and the remaining distance field is set to sendlink—2*. Any processor (necessarily
a passive one) receiving a message with remaining distance not equal to 0, knows
that the message is not destined for it. Suppose remaining distance = d, where
2% < d < 2", The forwarding processor changes the remaining distance field to
d — 2° and forwards the message on its link labelled b. A similar strategy can be
used to send the messages of lines 4 and 9 which travel in the opposite direction.
The required forwarding direction can be resolved by adopting the convention that
remaining distance is positive for messages sent in line 1 and negative for those in
lines 4 and 9.

Complexity: In round j, successive active processors m; and = satisfy |i — | < 291,
Therefore, the remaining distance field can always be encoded in j bits. So a total of
fewer that 4(j + 1) bits are sent by each active processor in round j. Each message
requires at most [log2/] = j hops to reach its destination.

If X; is the number of active processors in round j, the expected bit complexity
is bounded above by:

j=1
E (E X4+ l)j) = O(n) since E(X;) = (%) n

Theorem 3.6 There is a oriented graph with n processors and n [logn] links on
which a leader can be elected in O(n) ezpected bits by a Las Vegas algorithm.

References

{1] Karl Abrahamson, Andrew Adler, Rachel Gelbart, Lisa Higham, and David
Kirkpatrick. The bit complexity of randomized leader election on a ring. SIAM
Journal on Computing, 18(1):12-29, 1989.

15

[2] Karl Abrahamson, Andrew Adler, Lisa Higham, and David Kirkpatrick. Prob-
abilistic evaluation of common functions on rings of known size. Technical
Report TR 88-15, University of British Columbia, 1988.

[3] Karl Abrahamson, Andrew Adler, Lisa Higham, and David Kirkpatrick. Ran-
domized function evaluation on a ring. Distributed Computing, 3(3):107-117,
1989.

[4] Yehuda Afek and Eli Gafni. Simple and efficient distributed algorithms for
election in complete networks. In Proc. 22nd Ann. Allerton Conf. on Commu-
nication, Control, and Computing, pages 689-698, 1984.

[5] D. Angluin. Local and global properties in networks of processors. In Proceed-
ings of the Twelfth Annual ACM Symposium on Theory of Computing, pages
82-93, 1980.

[6] Hagit Attiya, Nicola Santoro, and Shmuel Zaks. From rings to complete graphs
— B(nlogn) to 6(n) distributed leader election. Technical Report SCS-TR-109,
Carleton University, 1987.

[7] Hagit Attiya, Marc Snir, and Manfred Warmuth. Computing on an anonymous
ring. In Proc. fth Annual ACM Symp. on Principles of Distributed Computing,
pages 196-203, 1985.

[8] Hagit Attiya and Mark Snir. Better computing on the anonymous ring. In
Proc. Aegean Workshop on Computing, pages 329-338, 1988.

[9] Hans L. Bodlaender. New lower bound techniques for distributed leader finding
and other problems on rings of processors. Technical Report RUU-CS-88-18,
Rijksuniversiteit Utrecht, 1988.

[10] Danny Dolev, Maria Klawe, and Michael Rodeh. An O(nlogn) unidirectional
distributed algorithm for extrema finding in a circle. J. Algorithms, 3(3):245-
260, 1982.

[11] Lisa Higham. Randomized Distributed Computing on Rings. PhD thesis, Uni-
versity of British Columbia, Vancouver, Canada, 1988.

[12] Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks.
In Proc. 22nd Annual Symp. on Foundations of Comput. Sci., pages 150-158,
1981.

[13] E. Korach, S. Moran, and S. Zaks. Tight lower and upper bounds for some
distributed algorithms for a complete network of procesors. In Proc. 3rd Annual
ACM Symp. on Principles of Distributed Computing, pages 199-207, 1984.

[14] Michael Loui, Teresa Matsushita, and Douglas West. Election in a complete
network with a sense of direction. Information Processing Letters, 22(4):185~
187, 1986.

16

[15] Shlomo Moran and Manfred Warmuth. Gap theorems for distributed computa-
tion. In Proc. 5th Annual ACM Symp. on Principles of Distributed Computing,
pages 131-140, 1986.

[16] J. Sack, Nicola Santoro, and Jorge Urrutia. o(n) election algorithms in com-
plete graphs with sense of direction. Technical Report SCS-TR-49, Carleton
University , Ottawa, Ontario, 1984.

[17] Nicola Santoro. Sense of direction, topological awareness, and communication
complexity. SIGACT News, 16(2):50-56, 1984.

(18] Violet Syrotiuk and Jan Pachl. Average complexity of a distributed orienta-
tion algorithm. Technical Report CS-87-23, University of Waterloo, Waterloo,
Ontario, 1987.

17

