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ABSTRACT 

This thesis constitutes a study of the Pell Equation, Powerful 

Numbers, and their relation to Fermat's Last Theorem. The first chapter 

is a study of the Pell equations x2 - dy 2 = ±1, and a description of 

their solutions. In particular, the solvability of x2 - dy 2 = -1 is 

considered, as well as a study of certain divisibility properties of the 

integers (x,y) which are solutions to these Pell equations. Chapter 2 

is a study of the more general Pell equation x2 - dy 2 = n where n is 

any non-zero integer. A link between the factorization of the 

fundamental unit and ambiguous classes of solutions to x2 - dy 2 = n is 

also discussed. Chapter 3 is a study of differences of powerful 

numbers. It is shown that every integer is the proper difference of 

non-square powerful numbers in infinitely many ways. The fourth and 

last chapter is a survey style essay on many results involving powerful 

numbers. In particular, new results are obtained giving connections 

between powerful numbers and Fermat's Last Theorem. As well, formulae 

for the distribution of powerful numbers, powerful numbers in arithmetic 

progression, and sums of powerful numbers are discussed. 
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CHAPTER ONE 

Section 1 The Pell Equation -- A Brief History  

The indeterminate equation x2 - Ay 2 = 1, where A is not a 

perfect square, is known as Pell's Equation, or the Pell Equation, named 

after the seventeenth century mathematician John Pell. There has been a 

long-standing controversy concerning the title of the equation, as many 

feel that John Pell had little to do with the equation. The consensus, 

as documented in Whitford's "The Pell Equation" E76], is that Euler must 

have confused the contributions of Pell and those of Lord Brouncker, in 

his reading of Wallis's algebra; and hence misnamed the equation. 

Nevertheless, mathematicians have not failed to recognize the 

contributions in this regard of Fermat, Brouncker, Wallis, Gauss, 

Lagrange, and many others. 

The history of the equation goes as far back as the ancient 

Egyptian and Babylonian eras. Solutions to the Pell Equation are 

closely related to primitive methods of approximating a square root, and 

it is this connection which dates the equation to as far back as four 

thousand years ago. 

According to Whitford, the first traces of this connection are 

found in the dimensions of ancient structures, such as the Pyramids. For 

example, in the King's Chamber, in the pyramid of Cheops, the ratio of 

the height to its breadth is about 1.117, or about iL'2, which is very 

close to half the ratio xfy of solutions to x2 - 5y 2 = 1. A better 

example is found in the temple of Acropolis, where the ratio 17/12 

occurs quite often in the architectural structure. It is more than a 
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curiosity that x = 17, y = 12 is a solution to x2 - 2y 2 = 1. 

The Ancient Greeks also had a hand in the history of the Pell 

Equation. In particular, Pythagoras had an affection for approximations 

of square roots. As well, Diophantus showed how to obtain infinitely 

many solutions to a Pell Equation from a given one. 

It is also known that the Hindus had also contributed to the 

subject, although many feel their work depended greatly on the work of 

the Greeks. 

Along with the Hindus, during the time period 650 A.D. to 1200 

A.D., the Arabs made some contributions to the history of the equation. 

However it wasn't until the early modern era, about 1600 A.D., that the 

equation was studied algebraically. Also, some associated equations 

were studied, such as x2 - Ay2 = -1, x2 - Ay2 = ±, x2 - Ay2 = c, and 

mx2 - fly2 = ±1. 

Lord Brouncker was the first known to give an algorithm yielding 

the fundamental solution to x2 - Ay2 = 1; i.e., the solution from 

which all others are derived. His procedure may have been the 

beginnings of what is now known as the continued fraction algorithm. 

Euler showed how square values of quadratic polynomials are 

directly related to Pell's equation via linear transformations, 

generalizing the work of Brouncker. At this point though, no general 

proof had been given to show that there are always solutions to 

x2 - Ay2 = 1 for every non-square positive integer A. 

Finally in 1766, Lagrange solved the problem, and Gauss (18] was 

quick to proclaim, "The treatise of Lagrange grasps the problem in its 

entire generality and in this connection leaves nothing to be desired." 
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Lagrange also gave necessary conditions for the solvability of 

x2 - Ay2 = -1, and generalized his, existence proof to the equation 

x2 - Ay2 = B. 

Gauss transformed the problem by a method of substitutions, thereby 

avoiding the use of continued fractions. Dirichiet extended Gauss's 

work on the method of substitutions, now known as the theory of 

Quadratic Forms. He also studied the solvability of x2 - NNy2 = -1 in 

terms of solvability of the related equations Nx2 - Ny2 = 1,2. 

Dirichiet also showed that integer powers of the fundamental solution 

yield all solutions to x2 - Ay2 = ±1. 

Euler calculated the fundamental solutions of x2 - Ay2 = 1 for A 

between 2 and 99 in 1770. Many tables have been calculated since 

then, and our supercomputers now can calculate the fundamental solution 

to x2 - Ay2 = ±1 for astronomically large A. 

Although it is known that x2 - Ay2 = 1 always has a solution for 

non-square positive integers A, the equation x2 - Ay 2 = -1 remains 

somewhat of a mystery. The problem of classifying all such integers A 

in terms of the arithmetic of the quadratic field Q(4) .remains an 

unsolved problem to this day. Many necessary, and many sufficient 

conditions have been given. For example, A cannot be divisible by any 

prime of the form 4k + 3. But the unsolvability of x2 - 34y2 = -1 

shows that this condition is not sufficient. Trotter [68], has given 

necessary and sufficient conditions in terms of the solvability of a 

related diophantine equation, cited earlier in our discussion of 

Dirichlet. 

There are other related diophantine equations. For example, Cohn 
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[10] has studied x4 - Ay  = ±1, ±4 and x2 - Ay  = ±1, The 

solvability of these two equations is related to certain divisibility 

properties of solutions (x,y) to x2 - Ay2 = ±1. Lucas [32] and Lehmer 

[29] developed the well known "Lucas-Lehmer Theory", which laid the 

groundwork for any further study in this direction. 

Recently, the equation has taken on some new directions. Cohn [7] 

has studied the equation € - = 4i with 6, 6, 17 being Gaussian 

integers. 

For a more complete history of the subject, the reader can refer to 

either Whitford [76] or Dickson [14, Ch. 17]. 

Section 2 Units in Quadratic Fields  

Let d be a square-free integer. The field Q(,Jd) is called a 

quadratic extension of the rational field Q, or simply a Quadratic  

Field over Q, and consists of elements of the form a + hid where a 

and b are rational numbers. If d is positive, Q(.Jd) is a real  

quadratic field, otherwise it is a complex quadratic field. 

Let c be any complex number. If there exists a monic polynomial, 

p(x) = xn + an_ix n-i +...+ a0, with a i E Z for i = 0,....n-1, such 

that p(c) = 0, then c is called an algebraic integer. The set of all 

algebraic integers is denoted by A. 

Let 9 = A fl Q(Jd), then it is easy to see that 0d is a ring, 

called the ring of integers of 0(.A). 

Theorem 1.1. If d is a square-free integer then 
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= if d2, 3 (mod 4) 

[1'd] ifdEl (mod 4). 

Proof. See Samuel [55, Theorem 1, p. 35]. 

The ring O will generally be the setting for our study. 

By Theorem 1.1, any element a e 0 will be of the form 

a = a  for some a,b e z satisfying a a b (mod 2). When 

d a 2,3 (mod 4), a and b are always even, by. Theorem I.I. 

Given = a + b,/ d- 6 , let = a - b.Jd is called the 

algebraic conjugate of a. It is easily verified that for any 

0d asp = a.. Now define a function N: -+ by 

N(a) = asa. N is called the Norm function, and N(a) is called the 

Norm of a. For a = a + b  , then N(cc) = a2 b 2 d It can be 

checked that for any a,p G O, N(a.p) = N(a).N(p). 

Given a,p 6 0c we say a divides p if 6 G. An element 

a 6 0d is a unit if a divides 1. 

Proposition 1.1. For a € 0d' a is a unit if and only if N(cc) = ±1. 

Proof. See Samuel [55, Prop. 1., p. 60]. 13 

The set of units in 0 is denoted by Udr and clearly forms a 

group. For negative 0. we have: 

Theorem 1.2. Let 0. be a square-free negative integer, then 
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[ { ±1} 
J {±1 ,±i I 

1 {±1,  

if d -1, -3 

if d=-1 

I if d=-3 

Proof. See Samuel [55, Prop. 1, P. 623 0 

Theorem 1.2 tells us that for complex quadratic fields, the group 

of units is uninteresting. Therefore we consider only square-free 

positive d henceforth. 

Let a - a + bFd be a unit other than ±1. Then -a, a', -a 1 

+ bid  
are also units, and these four elements are precisely - . It is 

easy to see that exactly one of these four elements is greater than one, 

namely the element lal Ibl'd . We have proved: 

Proposition 1.2. A unit a = a +21,'c satisfies cc > 1 if and only if 

a>O and b>O. 0 

Units of this type will be called completely positive units, and 

throughout this chapter, we will be primarily concerned with these. 

Another important fact about units is given in the following result. 

_ 
Proposition 1.3. Let a = 2 a+b/d and /3 2 x+y.Jd be completely 

positive units, then a < p if and only if a < x. 

Proof. Since a and p are units, we have that a2 - db2 = ±4 and 

X1 - dy2 = +4. It follows that one of the three equations 

(i) x2 - a2 = d(y2 - b2) 
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(ii) x2 - a2 = d(y2 - b2) - 8 

(iii) x2 - a2 = d(y2 - b2) + 8 must hold. 

Assume a ( p and a > x, then b < y must hold. In this case (i) 

implies y ≤ b, a contradiction. (ii) implies 0 < d(y2 - b2) ≤ 8, 

hence d = y = 2 and b = 1, and so x2 - a2 = -2 which is not 

possible. (iii) implies 0 > x2 - a2 = d(y2 - b2) + 8 > 0, again a 

contradiction. Conversely assume a ( x and a > p, then b > y must 

hold. In this case (i) implies y > b, a contradiction. (ii) implies 

y > b also, which is a contradiction. (iii) implies 

0 < d(b2 - y2) < 8, hence d = b = 2 and y = 1, forcing 

- a2 = 2, which is not possible. 

From Proposition 1.3, it follows that the completely positive units 

are linearly ordered by their rational parts. Given a square-free 

positive integer d, let 6d T  be the completely positive unit 

in 0 with smallest possible T. Then 'd is called the Fundamental 

Unit of 9  , and by an abuse of language, is sometimes called the 

Fundamental Unit of Q(.,W). 

We still haven't proved the existence of units other than ±1 in 

for d > 0, but it is worth noting that the existence of units 

other than ±1 in a is tantamount to the existence of completely 

positive units in 0d' (and hence the existence of €d). We pursue this 

in the next section. 
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Section 3 Solution to Pell's Equation -- The Fundamental Unit  

When considering the Pell equations 

x2 - dy2 = ±1 

x2 - dy2 = ±4 

(1) 

(2) 

for positive non-square integers d, it suffices to consider those d 

which are square-free, since we can pull all square factors of d into 

Y. 

The solutions (±1,0) to equation (1) and (t2,0) to equation (2) 

will be considered trivial solutions. The existence of non-trivial 

solutions to (1) and (2) is equivalent to the existence of We 

state the following theorem, first proved by Lagrange (e.g. see [42, 

P. 53]). 

Theorem 1.3. For any positive square-free integer d, ad exists. 

Moreover = {± ; n e }, and all completely positive units are 

of the form e with k ≥ 1. 

In general, ad will be of the form 6 - T + UFd for some 

positive integers T and U. When d 4 5 (mod 8), T and U are even 

(see [47, Theorem 3.10]), so that 6 takes on the form a + br with 

a and b positive integers. When d 5 (mod 8), T and U may or 

may not be even. 

Proiosition 1.4. Let ad - T + U.íW . If T and U are odd, then 

- T  + Uk.Ir 
d 5 (mod 8). Let adk 2 then if T and U are odd, 
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and U  are even if and only if 31k. 

Proof. See Samuel [55, p. 64]. 0 

Proposition 1.4 will be useful in later sections since it shows 

that the subgroup v4 =ltsd ; k e z) of d contains all the units 

of 0d which are of the form a + b,/d-.i with a,b E Z, when T and U 

are odd. For example, e = 1  , while = 2 + .j . For 

5 2d = 37, ed = 6 + showing that T and U may be even when 

d E 5 (mod 8) 

Tk+UkJd 
In general, units are of the form +(  2 ) as described in 

Proposition 1.4, and (TktUk) is a solution to equation (2). When Tk 

fi 
and U Uk k are even, then Tk [ - -- J is a solution to equation (1). 

By the multiplicativity of the norm function, it can be seen that 

if N(6a) = 1 , then all units in Ud have norm 1. Therefore the 

equations x2 - dy2 = -1,-4 are not solvable. It is a long-standing 

problem to classify those 4 for which N(.4) = -1 in terms of the 

arithmetic of the underlying field, Q(i). We shall study this in more 

detail in the next section. For now we state the following easy result. 

Theorem 1.5. If N(6d) = 1 , then all units in U have norm one, 

hence the equations x2 - dy2 = -1, -4 are not solvable. If 

= -1 , then all solutions to the equations x2 - dy2 = -1, -4 

come from the set of units Its 2k+1; k e Z} , and all solutions to 

the equations x2 - 4y2 = 1,4 come from the set of units 
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1±6d 2k ; k r= zi. El 

For example, N(43) N(2 + .i) = 22 - 12.3 = 4 - 3 = 1 , so that 

- 3y2 = -1 is not solvable. But N(.2) = N(1 + ..i) = 12 - 12.2 = 

1 - 2 = -1 so that the equation x2 - 2y2 = -1 is solvable and has in 

fact infinitely many solutions, all coming from the units ±(1 + )2k+1 

with k E Z. Theorem 1.5 and Proposition 1.4 give some insight into the 

problem of finding solutions to the equation x2 - dy2 = 1. For 

example, if d = 13, we may have to search quite a while to find 

integers x and y that satisfy x2 - 13y2 = 1. Instead, we merely 

apply these two theorems in the following way. Since 32 - 13 = -4, we 

have that a =   is a unit in 91, and N(a) = -1. By 

Proposition 1.4, a3 is of the form a3 = a + b,/T3— with a,b E Z. In 

fact & = 18 + 5AT. By Theorem 1.5, N(a2k) = 1 for k E Z, so that 

N(a6) = 1. Since a6 = (a3)2 = (18 + = 649 + 180.T, it follows 

that (649 )2 - (180) 2.13 = 1. So we have found integer solutions to 

X1 - 13y 2 = 1 with a minimal amount of work. Trying to find this 

solution by trial and error may have been exhausting. 

There are algorithms to find the fundamental unit of a quadratic 

field. The most elementary of these is to write the numbers dy2 for 

y >1. Letting y1 be the first number for which dy 2 differs from a 

square, x12, by 1 or 4 yields the fundamental unit x + y,,Fd or 

x I + yiW 

2 

7.32, and 7.32 differs from 82 by 1, so that 8 + 3.11 is the 

fundamental unit of Q(jI). Using the theory of continued fractions, 

there are much faster techniques for finding the fundamental unit. It 

respectively. For example, if d = 7 we obtain 7.l, 7.22, 



11 

is not our intention to include this in the scope of our discussion. We 

merely mention it as a point of interest. 

Before proceeding to the next section, we prove the following 

proposition which will be used later. 

T +UJ 
Proposition 1.5. Let n > 1 and 6d' -  2 n  

(n,d) 0 (1,2), (1,5), or (2,5). Then 

1. T > U 
n n 

2. T > T for n > 1. 

3• Un > U for n > 1. 

Assume that 

Proof. 1. If N(a) = 1, then T 2 = U 2d + 4 > U 2, so the result 

holds. Assume N(. d) = -1 and that U ≥ T. Then U 2 > T 2 = 

dUn2 - 4 > U 2 - 4 forcing 0 < U2 - Tn2 < 4. Since T ri and U are 

of the same parity, it follows that T  = U  In this case, it follows 

that -4 = T 2 - T 2d = T2[1-d]1 or equivalently, 4 - T2[d-1]. This 

gives T. 2, d = 2 or T = 1, d = 5, hence (n,d) = (1,2) or 

(n,d) = (1,5) contrary to our hypothesis. 

2. This is precisely the result of Proposition 1.3. 

3. From the relation 

we have that U2 = TjUj > U1 

2 

T1 + u1.1W 12 - T2 + T1U1vW 

.1 
2 I 2 

unless T1 = 1 , in which case d = 5 

and (n,d) = (2,5). In this case, U = 2 > U1 = 1. Proceeding  byFd 

induction, assume U > U . From the relation  + Uri I 
n 1 2 
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[T + u..1w TU + 'n ..1'a- 1 - 2T 1 + (T1U + 

2 I' II 2 4 
it follows that 

T 1 U +TU T i U +U n U U i U + UU 
- n h n i n nl_>> 

n+1 2 2 2 UnUl 

Section  4 Criteria for the Solvability of x2 - dy 2 = -1,-4  

As seen in Section 3, the equations 

x2 -dy2 =-1 (1) 

x2 -dy2 =--4 (2) 

may not have solutions for a given square-free positive integer d, 

while the equations 

x2 -dy2 =1 (3) 

x2 -dy2 =4 (4) 

always have solutions. 

The solvability of equations (1) and (2) is equivalent to 

-1. In this section we will give some necessary and some 

sufficient conditions for N(e.d) = -1, the first of which is given in 

the following result. 

Theorem 1.6. If N(d) = -1, then d has no prime factor of the form 

Proof. Let 6 = 2 UFd with N(sd) = -1. Then T2 - U2  = -4 so 

that, for any odd prime divisor p of d, T2 a -4 (mod p). This 

congruence shows 1 =  [!-)[' i 1 = [ _1  1 ' hence i '] =   ---i  
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pEl (mod 4). U 

Note that the converse of Theorem 1.6 is false. A counterexample 

is d = 34; 34 has no prime factor of the form 4k + 3, but 

N(s34) = N(35 + 641) = 1. 

Trotter [68] has given necessary and sufficient conditions for 

N(sd) = -1 in terms of solvability of another closely related 

diophantine equation. We generalize Trotter's result and give an 

arithmetical proof of his result as a corollary in what follows. 

Theorem 1.7. Let d = 28d' with 6 € {O,1.} and d' an odd positive 

square-free integer. Then N(sa) = 1 if and only if one of the two 

following conditions hold; 

1 a4+ b  for some integers a,b > 0 and . 6d where r 2 

r,s > 1 such that ja2r - b2sl = 4 and d = rs. 

2. sd = r212 where r = a4+ b., for some positive integers 

a,b,r,s such that Ia2r - b2sl = 2 and d = rs. 

Proof. It is easy to verify that if conditions (1) or (2) hold, then 

N(sd) = 1. For the converse we have several cases. First note that 

T + Uld-
N(6d) = 1 implies T > 2 where 5d = 2 , for if T = 1, then 

1 = N(sd) = N[ 1  ) = 1-U2d , i.e., d = -3, a contradiction; 

whereas if T = 2 then 1 = N(sd) = N{ 2 + uA } = 4 - U2  
4 

d = 0, a contradiction. Henceforth assume T > 2. 

Case 1. 6 = 0, T odd. 

i.e., 

Since T2 - 4 = U2d = (T-2)(T+2) and GCD(T-2,T+2) = 1, it 



14 

follows that T - 2 = A2r and T + 2 = B's for some positive integers 

A,B,r,s, with AB = U and d = rs. If r = 1, then d = s and so 

A2 - B 2 d = -4 contradicting N(E.a) = 1. If s = 1, then d = r SO 

that B2 - A 2 d = 4 and B + A1a  is a completely positive unit 
2 

satisfying B ≤ U < T. Since T + UFd is the completely positive unit 
2 

with T minimal, it follows that T = B and U = A. Since U = AB 

from above, it follows that T = B = 1 contradicting T > 2. Thus 

s > 1 holds and r -  AE  + B i2 can be seen to satisfy condition (1). 

Case 2. 6 = 0, T 0 (mod 4). 

In this case GCD(T-2,T+2) = 2 and so from (T-2)(T+2) = U2d we 

obtain positive integers A,B,r,s such that T - 2 = 2A2r and 

T + 2 = 2B 2Swith U = 2AB and d rs. So 2B 2S - 2AA2r = 4 holds, 

and hence B2s - A 2 = 2. Setting r = AE + BiL r satisfies 

condition (2). 

Case 3. 5 = 0, T 2 (mod 4). 

In this case, GCD(T-2,T+2) = 4 and from (T-2) (T+2) = U2  we 

obtain positive integers A,B,r,s such that T - 2 = (2A) 2r and 

T + 2 = (2B )2Swith U = 4AB and d = rs. Therefore, (2B )2S - 

(2A) 2r = 4 and by the same reasoning as case (1), r = 2Af+ 2B Fs  

A.1f + BFs can be seen to satisfy condition (1). 

Case 4. 6=1. 

In this case T2 - 4 = U2  with d even, forcing both T and U 

to be even. Thus T2 a 4 (mod 8), forcing T 2 (mod 4). So 
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GCD(T-2,T+2) = 4 and from (T-2) (T+2) = U2d , we have positive 

integers A,B,r,s such that T - 2 = (2A)226r and (T + 2) = 

(2B)2216s where U = 4AB, d = 2rs, and 6 = 0 or 1. This gives 

21-€. 26 
(2B) 2 s - (2A) s r = 4, and again by the same reasoning as case 1, 

2AJ26r + 2BJ21 s 
r - satisfies condition (1). 

2 
El 

From Theorem 1.7 we obtain a useful set of corollaries. Among them 

is the following theorem proved by Trotter. 

Corollary 1.1. Let d = 25d' with 5 E {0,1} and d' 1 (mod 4) 

positive and square-free. Then N(6d) = 1 if and only if d admits a 

non-trivial factorization, d = rs, such that Ia 2r - b2sf = 4 is 

solvable. 

Proof. If d admits such a factorization, it can be seen that 

= 1. Now assume N(6d) = 1 with d as above. Note that we are 

trying to prove that condition (1) of Theorem 1.7 holds. The only case 

for which condition (2) held in the proof of Theorem 1.7 was the case 

= 0 and T 0 (mod 4). In this case, and U are even, and 

IT d = d' is odd. Thus U ]2 d- - [ • = 1, and hence 

{ . ]'d- = [ . ] - 1 0 - 1 3 (mod 4). It follows at once that 

d' a 3 (mod 4), contradicting our assumption that 

d' a 1 (mod 4). 1] 

By Theorem 1.6, classifying positive square-free integers d for 

which N(6d) = -1, requires only considering those d for which the 

odd prime factors are all of the form 4k + 1. Therefore in Corollary 
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1.1 we could have replaced the condition d' 1 (mod 4) by the 

condition that d' is a product of primes of the form 4k + 1. For 

those d' which are divisible by primes of the form 4k + 3 we 

actually have the following result. 

Corollary 1.2. Let d = 26d' with 6 E {O,1} and d' 1 (mod 4) 

positive, square-free, and divisible by a prime p 3 (mod 4). Then d 

admits a non-trivial factorization d = rs such that the equation 

rx2 - sy2 = ±4 is solvable. 

Proof. By Theorem 1.6, N(.d) = 1, and by Corollary 1.1 the result 

follows. a 

A special case of Corollary 1.2 is given in the following result, 

which we isolate as a motivating result. 

Corollary 1.3. Let p q 3 (mod 4) be distinct primes. Then 

px 2 - qy2 = ±4 is solvable. a 

This corollary sparks an interest in the more general equations 

mx2 - ny2 = ±4,±1 with m and n square-free positive integers. We 

study this in more detail in the next chapter. 

Another immediate consequence of Corollary 1.1 is the following 

well-known theorem. 

Theorem 1.8. If p 1 (mod 4) is prime, then N(a) = -1. 

Proof. Since p admits no non-trivial factorization p = rs, 

condition (1) of Theorem 1.7 can't hold, and hence N(€) = -1. 13 
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Another consequence of Coronary 1.1 is the following result which 

is a sufficient condition for N(d) = -1.. 

Theorem 1.9. Let d = 26d' with 5 E {O,1} and d' a product of 

primes of the form 4k + 1. If d has no non-trivial factorization 

d = rs such that r and s are quadratic residues of each other, then 

= -1. 

Proof. If = 1, then by Corollary 1.1, d = rs with r > 1, 

s > 1 for some r and s such that a 2 r - b 2 = +4 is solvable. If 

a and b are odd, it follows at once that they are quadratic residues 

of each other. If a and b are even, then [ .- J2r - { !- ]s = ±1 is 

solvable. From the form of the prime factors of r and s, it follows 

immediately that r and s are quadratic residues of each other. a 

As a special case of the above we have the following result. 

Corollary 1.4. If p 5 (mod 8) is prime, then N(Ee2 ) = -1. 

Proof. Since [ - J = -1, d = 2p has no factorization as described in 

Theorem 1.9. Thus N(E 2 ) = -1. a 

For example d = 10 = 2.5 satisfies N(6d) = N(3 + 4) = -1. 

However if d = 82 = 41.2, then [ I = [ - J = 1, whereas 

N(682) = NO + = -1. This shows that Theorem 1.9 gives only 

sufficient but not necessary conditions for N(.a) = -1. 
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Section 5 Divisibility Properties of Solutions to Pell's Equation 

+u T +U n Fd .i 
Let = T 2 , and 6d n _ - n 2 for n 6 Z. Consider 

the sequences {T1 and {U1. For n = 0 we have T  = 2 and 

U = 0. Also, T_11 = ±T and = holds for n > 1. Thus, 

consider instead the sequences {Tn}n>i and JU n I , which we will 

denote by {T} and {U}. These two sequences have been studied in 

great detail, e.g. see (23], (29], and the theory of these two sequences 

has been generalized to the theory of second order linearly recurrent 

sequences, and Lucas-Lehmer Theory. 

A second order linearly recurrent sequence is a sequence 

which satisfies the linearly recurrence relation W+2 = aW 1 + bW 

for some a,b E Z, such that no integer c exists for which 

= cW for all n > 1. We will see that the sequences {T} and 

satisfy these criteria. 

In Lucas-Lehmer Theory, a polynomial x2 - Px + 9 is considered, 

with P and 9 relatively prime integers, and P2 - 49 a non-square 

positive integer. If a and b are the roots, then the sequences 

n n 
= aa : and n =  an + b' are considered. Given 6d - T +  2 

then the polynomial x2 - TX = yields a - T + UA and 

b = T U•A , and hence the sequences {Xn}n≥i and defined 

above correspond to the sequences J Un l 
1 1 Jn≥i 

and {Ti >1 

respectively. Many of the theorems developed in this section hold for 

sequences obtained via the Lucas-Lehmer theory. We will not go into any 
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more detail with respect to the Lucas-Lehmer Theory. We mentioned the 

above to show the connection with our sequences {T} and {U}. 

The most widely studied sequence of this type is the Fibonacci 

sequence defined by fl = f2 = 1 and f =f + f for ii > 1. It 

turns out that If n1nA corresponds to the sequence {U} for d = 5. 

The corresponding sequence ITnI is the Lucas sequence {L} which is 

defined by L = 1, L2 = 3 , and L2 = Ln+i + L for n > 1. 

We first give a list of some elementary yet important properties of 

{T} and {U}. 

T +U 
T+U  and n n n  Theorem 1.13. Let = Fd 
2 d - 2 

N = N(6d). Then the following properties hold. 

for n > 1, and 

(a) T2 = T -n n  2N' , U2 n = TUn 

(b) T  = TkT - NTk_2 flr U  = UkT - NUk_2n 

(c) Tkfl (-?) 2 kT (mod T) for k > 1, k odd 

(d) Ukfl (N) 2 kU (mod U2) for k ≥ 1, k odd 

(e) T ITuk for k ≥ 1, k odd 

(f) U n IUkn for k>1. U 
- 

for k > 2n 

We omit the proof of Theorem 1.13 as it amounts to several tedious 

calculations. 

With these elementary properties established, we can obtain some 

more properties which are quite interesting. First we note the 

significance of property (b). If we put n = 1, we get the recurrence 
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formulae 

= T1T_1 - N(eã)T2 

U =TU -N(6 )U 
n in-i d n2 

(1) 

(2) 

From properties (a) and (b) with n = 1, we get T2 = T2 - 2N(6d) and 

U2 = T1U. It is easy to see that no constant c exists for which 

Tn+i = CT or U 1 = cu holds for all n. Thus {T} and {U n} 

are shown to be second order linearly recurrent sequences. 

Before proceeding to the divisibility properties of 1TJ and 

{UJ , we first state a lemma. We know that 8 

Tk + Ukfl Fd 
- T  + Uk.1 1 

2 1 2 I 

Tkn - Uk  Fd - 

2 

and 

for k,n > 1, and it is easy to see that 

for k,n ≥ 1. 

Combining these two equations we obtain 

I T  - Uk 
Tk = { Tk 2 Uk] + [ 2 ] 

I T, + u1.A 1n I T1 - Uk.i 

U nk I - I  2 2  

for k,n ≥ i. From the binomial theorem we obtain the following result. 

Lemma 1.3. For t,n > 1 the following relations hold; 

T = 21-n [I [2n] fl 2ku 2kdk 
nt k=0  T t t 
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ln+1 

U =2 [2k+1 n 1 9' n-2k- 11nt J t U t d 
k=0 

See Nagell (46, Theorem 104] for a similar result. 

For the rest of this section, we are primarily concerned with the 

divisibility properties of the sequences {T} and {U1. The first 

problem we tackle is how a prime behaves in these sequences. We begin 

our study with the oddest prime, p = 2. 

Theorem 1.14. (Divisibility of T by 2). 

If T1 is odd then 2 IT n if and only if 3m. In this case; if 

2aIIT3, then 2a IIT6n+3 for n > 0 and 211T 6nfor n > 1. 

If T is even and 2aI(T then 2aIIT for n odd and 211T  

for n even. 

Proof. The first part of the theorem is a restatement of Proposition 

1.4. Assume T is odd and 2aIlT , with a > 1. We first show 

211T 6K for k > 1. If k = 1, then because T6 = T32 ± 2, it follows 

that 211T,.- Also T12 = T62+ 2, which forces 2IlT2, and so the 

result holds for k = 2. By the relation T6(k+2) = T6(k+l)T6 ± T 6 it 

follows that 211T 6(k+2) when 211T6(k+l) and 211T 6k* The result now 

follows by induction on k. Now assuming 2almT and 2a IIT6k_3, from 

the relation T6k+3 = T6kT3 ± T6k3 it follows that 2a ttT6k+3. Thus 

the result follows by induction on k. The second part of the theorem 

is proved exactly in the same manner, with the exception that all 

subcripts are divided by 3. 13 
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The same theorem for the sequence {UJ is similar but has more 

cases. 

Theorem 1.15. (Divisibility of U by 2). 

If U1 is odd then 2 IU n if and only if 31n. We now have four 

cases. 

1. If U1 is odd, 211U3 , and 2aJ1T 31 then 2!IU6k+3 for k 0 

and 2a+r+1 i1 k odd, r ≥ 0. 
6k2r 

2. If U1 is odd and 2ajj3 then 

21 IIu k odd, r 0. 
6k2r  

TY 
4 for k≥0, and 

3. If U1 is even, 211U1 , and 2aIIT1 , then 211U2,+, for k ≥ 0 

and 2a+r+l llu r+l k odd, r > 0. 

4. If U1 is even and 2a11 , then 2a IIU2k+l for k > 0 and 

k odd, r > 0. 

Proof. It suffices to prove (1) and (2) since the proofs of (3) and (4) 

differ only by the fact that all subscripts are divisible by 3. 

(1). Assume U1 is odd, 2aI1T where a > 1. First we show that 

2 1h Itu ' with k 'odd and r > 0. Since U. = U3T3 , it follows 
6k2 

that 2a+l,, For odd k, the congruence U 6  ± kU6 (mod U62) 

shows that 2a4.h llU6k. So the result holds for r = 0. Assume now that 

the result holds for r = t, i.e. 2a+l+tii By Theorem 1.14, 
6k2 



23 

211T , and since U = T , it follows that 
6k2 6k2 6k2 6k2 

Thus the result holds for r = t + 1, and hence for 
6k2 

all r > 0 by induction. To show 2IIU6k+3 for k > 0 we use the 

relation U6k+3 = U6kT3 + U6k_3. If 2IIU6k_3 then it follows that 

2IIU6k+3. The result follows inductively. 

(2). Now assume 2a0 with a > 1 and 211T3. By the same 

reasoning as (1), 2a+r+liiu r for r ≥ 0 and k odd. Also by the 
6k2 

(1), 2a 11U6k+3 same reasoning as for all k>0. 0 

Thus we have completely determined bow the prime p = 2 behaves in 

the sequences (Tn} and (U) (given that we know how it appears in 

the first or third terms). We will describe how the odd primes behave, 

but first we prove the following well-known result of Lehmer (29]. 

Theorem 1.16. If m and n are odd positive integers, then 

GCD(T m ,T n ) = TGCD(mn )• If m and n are any positive integers , then 

GCD(U m n GCD ,U ) U (m,n) 

Proof. Let g = GCD(TmtTn) and h = GCD(m,n). By Theorem 1.3, T  

divides both T  and T , hence T  divides g. By the Euclidean 

algorithm write h = xm + yn for some integers x and y, and assume 

without loss of generality that x is odd and y is even. Since 

[ .Th1T +u Th 
Th + Uh.I T +U - mx mx  Ii  ny ny  

we have 2T =T T + 
mx ny 

U mx ny U d. Since x is odd, Tm ITmx , and so gIT,x. Since y is 

even, U2IUny - Thus gT n I nT U n IU2n IUnyr and so it follows that 

It follows that g = T  or g = 2T  1 and so we will show that the 
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latter cannot hold. Referring to Theorem 1.14, we have two cases; when 

T1 is even 

because m, 

that 2a11g 

2a1IT3 

and when T a is odd. If T1 is even and 2 fiT 1 , then 

n, and h are odd, 2a(ITm, 2aIIT, and 2a1,Th. It follows 

so that g = 2T  cannot hold. Now assume T1 is odd, 

and g = 2T  for a contradiction. It follows that Tm and 

T are even, hence m and n are both odd and divisible by 3. From 

Theorem 1.14, we have 2a llTm and 2allTn , so that 2a11g With m 

and n divisible by 3, h is odd and divisible by 3, hence 2a ,ITh 

also. This contradicts g = 2T h* In any case g = T  must hold as 

desired. For the second part of the theorem we follow the same line of 

argument as the first part of the proof to obtain 

GCD(U,U) = UGCD() or GCD(Um Un) = 2UGCD(mn)• Referring to each 

case of Theorem 1.15 shows that GCD(Um IUn) = 2UGCD(mn) is not 

possible, and hence GCD(Um IUn) = UGC(mn) holds as desired. 0 

These two facts are used to prove the law of repetition of odd 

primes, which completely describes how an odd prime behaves in the 

sequences {T} and {Un} Lehmer (29, Theorem 1.6] proves the law of 

repetition for the sequence {UJ but here we prove the result for both 

sequences using the facts obtained so far. We first need two 

preliminary results. 

Lemma 1.4. Let a > 1 and p an odd prime. If pa ,ITk then p1IITk 

for any k > 1. Similarly if PIIU then p a+l,1 pk for any k ≥ 1. 

Proof. We invoke Lemma 1.3. Since TkITPk and UkIUPk we obtain the 

identities 
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p-i 

2P 1 
Tk t=O 

p-i 
U 2 

z 
Uk t=O 

r2t 

IP 
12t+t 

T P 2tlu 2tdt 
k k 

T P 2tiU 2tdt 
k k 

Since p > 3 is an odd prime, p2 divides all terms in the first 

p-i p-i 

summation except the last term which is [P-11 Ukd 2 = PUkd 2 

p-i 

Since PITk and p is an odd prime , p does not divide U k d 2 

and so this last term is properly divisible by p, hence so is the sum. 

It follows that P1IITpK. Similarly, if Pa,1U then p2 divides all 

terms of the second summation except the first term, which is 

ril TJ1' = PTk1. Since plUk , p does not divide TV  and so this 

last term is properly divisible by p, hence so is the second 

summation. It follows that pa+l11 

Lemma 1.5. Let p be an odd prime and a ≥ 1. If PailT and z is 

odd such that GCD(p,L) = 1, then PaliT similarly if PIIU and z. 

is odd such that GCD(p,L) = 1, then p a IN for all r > 0. 

Proof. By the congruence TkL E ±LTk (mod Tk 2), it follows that if 

and GCD(p,L) = 1 then PaliT kC By the congruence 

UkL +LUk (mod Uk2)? it follows that if p a11 and GCD(p,L) = i 

then p IIUkL. We proceed by induction on r ≥ 0. The result holds for 

r = 0. Now assume the result holds for r = t, i.e. p a11 kL2t . Since 

U = U t  and p does not divide T we have 
k1.2kL.2 kL2 kL2 
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P IN ti 11 Thus a r for all r > 0. 
kL.2 kL2 

We can now prove the following result. 

Theorem 1.17. (The Law of Repetition for odd primes). 

Let p be an odd prime and assume PafiT with a > 1. Then for 

all t ≥ 0 and £ odd such that GCD(p,L) = 1, p IIT Similarly 
kLp 

if PilUk with a > 1, then for all t > 0 and positive integers L. 

with GCD(p,L a+t) = 1, p ID' • 

kLp 

Proof. We will prove the result for the sequence {T} only. By Lemma 

1.5, we have Pa1JT for all odd £ such that GCD(p,L) = 1. By 

repeated applications of Lemma 1.4, we get Pa+tIIT for any t ≥ 0. 
kLp 

The proof for {U} is similar. 13 

Theorem 1.17. completely describes how an odd prime behaves in the 

sequences {T} and {U} once it has occurred already. The natural 

question to now ask is whether or not an odd prime p does occur, and 

when it does occur, where does it appear first as a divisor of some 

element in the sequence. Lehmer [29], in his discussion of Lucas 

functions, completely solves this problem for the sequence {U} V and 

gives some partial results for the sequence IT Before proceeding we 

need the following result. 

Lemma 1.6. Let d be a positive square-free integer, and p an odd 

prime. Let a = [-] be the Legendre symbol, where a = 0 if pid. 

Then T = T1 (mod p) and U, = U1e. (mod r). 
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Proof. From Fermat's little theorem we have 2 (mod p). Thus, by 

Lemma 1.3 we have the sequence of congruences, 2T = 2PT = (T 1 + 

+ (T 1 - Uj) a T + T1 2T 1 (mod p). Hence it follows that 

T1 (mod p). If PIT, then because T1IT we have 

T P = T1 = 0 (mod p). If p does not divide T, then again by 

Fermat's little theorem T = T11 T1 (mod p). Similarly, 2U = 2'U 

p-i 

-! ((T i + - (T - U1 )1'] 2U1d 2 (mod p), forcing 

p-i 

U P = U'd 2 (mod p). If pIU1, then because UjU we have 

U p = U1€ 0 (mod p). If p does not divide U,, then 

p-i 

UIP =U 1 (mod p) so that U, = U1d 2 (mod p). If P does not divide 

p-1 

d, then d 2 [d] (mod p), and so U U1e. (mod p). If pad, 

then it can be seen by Lemma 1.3 that plu and hence U = U 0 

(mod p). ci 

Using Lemma 1.6 we get the next result. 

Theorem 1.18. For €, d and p as in Lemma 1.6, plU. 

Proof. It is easy to see that 2Up6 P = +(T U - T P U ) 
-  

- T1U) (mod p). If 6 = 1, then 2U_ = ±(T 1U1 - T1U1) 

0 (mod p). If € = -i, then because T_1 = N(6d)Tl and 

U_ = -N(s)T1, we have 2U +i ±(T_1U1 (-1) - T1U_1) ±(N(sd)TzUl - 

TI(_N( 6d)UI)) ±(N(e.d)TlUl + N(d)(T1U1) a 0 (mod p). If pjd then 



28 

from U = U1€ 0 (mod p) we have U_6 = up = 0 (mod p). 0 

Theorem 1.18 is important from two perspectives. First of all, it 

tells us that every prime divides some term in the sequence {U11 and 

hence infinitely many terms by Theorem 1.13(f). Secondly, Theorem 1.18 

tells us where we can find a term divisible by p. For example, let 

d = 2 and p = 5. In this case, [  and so 5 divides the 

term U6 = 140. Unfortunately, 5 also divides U3 = 10 so that our 

subscript p-s in Theorem 1.18 may not be the smallest subscript c 

for which plU. The first subscript x(p) for which PIu3 (p) is 

called the rank of aiarition of p in the sequence (Uk). By Theorem 

1.18, c(p) always exists. The corresponding rank of apparition of p 

in the sequence (TnI is denoted by /3(p), when it exists. We will 

see that for a given d, infinitely many primes p exist for which 

p(p) does not exist. By Theorem 1.18 we have the following result. 

Theorem 1.19. a(p) divides p-€. 

Proof. By Theorem 1.16 GCD(Ua(P)?UP_6) = UGCD(a(p),p_) Since P 

divides both Ua(p) and U_ ,1 it follows that i divides 

UGCD(a(p)p...a) By the definition of a(p), we have 

a(p) ≤ GCD(c(p),p-6). But clearly we have GCD(cx(p),p-6) ≤ a(p), so 

that equality holds. It follows that a(p) I- • U 

So a(p) is a divisor of p-s, and although we don't know which 

one, we have certainly reduced the possible choices for a(p) 

considerably. When N(6a) = 1 we can strengthen our result. 
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Theorem 1.20. If N(€d) = 1, then a(p) divides for p not 

dividing d. If pid then a(p) = 1 or a(p) = p. 

Proof. The second statement clearly holds in general. Now assume p 

does not divide d. From Theorem 1.13(a), we have = U_6 T_6 a 

2 2 

0 (mod p), so it suffices to show T_6 il 0 (mod p). It is easy to see 

2 

that 2T p- 6 p 6 = T T - U U d and hence 2T T 2 - U 2d 4 (mod p), 

or equivalently, Tpe. = 2 (mod p). If Tp-E• = 0 (mod p), then by 

2 

Theorem 1.13(a), T = T2 - 2N(€d) 0 - 2 -2 (mod p), a 
p- E. p-S 

contradiction. LI 

Recall in Theorem 1.3, it was stated that Pell's equation 

X2 - dy2 = 1 is solvable for any positive square-free integer d. 

This, together with Theorem 1.18 allows us to prove that x2 - Ay2 = 1 

is solvable for any non-square positive integer A. 

Proposition 1.9. The equation x2 - Ay2 = 1 is solvable for every 

non-square positive integer A, and has infinitely many solutions. 

a e r+1 e k 
Proof. Write A = 2 1i"r r+1 "k as the prime 

decomposition of A, with 1'.. ."r distinct primes, a > 0, e1 even 

for r+1 < i < k, and p r+1'** ."k distinct primes, but not 

necessarily distinct from p,1'••'r• Let 6 = 0 if a is even and 

= 1 if a is odd. Set d = 25p1.. •r' then Theorem 1.3 states that 

exists, and hence x2 - dy2 = 1 is solvable. Let ad be the 
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fundamental solution to x2 - dy 2 = 1, and write as ad 
- T + U.i  

41 

i.e. treat 5d as the fundamental unit. For r+1 ≤ i ≤ k set 

Si = I-1 i p. does not divide d, and e.. = 0 if p. Id. Put 
1 pJ 1 1 1 

e. e r+1 e  1  

(p1 - 6)p . By Theorems 1.18 and 1.17, r+1 2 

divides Uk for all k > 1. Choose k0 > 1 divisible by a high 

enough power of 2 so that 22 lukom. This can be accomplished by 

a-6 er+l e  

Theorem 1.15. Then U = 22 r+1 2 T k0m t for some t > 1, 

and so T 2 - 2 = Tk0m 2 - k0m k0md At 2 = 1, showing that the equation 

- Ay2 = 1 is solvable. The last part is trivial. U 

Another way to describe the above phenomena is as follows. Let 

{U1 be any sequence derived from some positive square-free integer d. 

Let m be any other positive integer. Then mIIJ n for some n. This 

will be useful in the next chapter. Recall that the Fibonacci sequence 

corresponds to {U} for d = 5. Thus every integer divides some 

Fibonacci number, and hence divides infinitely many Fibonacci numbers. 

It was mentioned earlier that for a given positive square-free 

integer d, p(p), the first appearance of p as a divisor of some 

term in the sequence {Tn}t does not exist for infinitely many primes 

p. We have the following result, which is not found in the literature 

to the best of our knowledge. 
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Proposition 1.10. Given an odd prime p such that p does not divide 

the positive square-free integer d, then /3(p) does not exist if and 

only if PlUk for some odd integer k. Hence infinitely many primes 

exist for which p(p) does not exist. 

Proof. Suppose /3(p) does not exist. A simple induction shows 

U =T T T U_ where 2 p-6. Since p IU and 

---v 77 
p(p) does not exist, it follows that plU 6' and is odd. 

2r 

Conversely, assume PIUk for some odd k and that p(p) exists. Then 

PITH for some n, and hence PI'-2 = Thus pIGCD(Uk ,U2 fl) = 

UGCD(J2fl). Since k is odd, it can be seen that GCD(k,2n) divides 

n, and so But then pjGCD(T n 'U n )14, contradicting the fact 

that p is an odd prime. To prove the last part, let P = (p is an 

odd prime such that p does not divide UZc1}. For p,q E 1, p 0 q, 

ruu 

U 
GCD(U ,U ) = U, so that GCDP-, j1 - = I. 

P q ll 

Also for p e P we have GCDP..,U IJ = 1 by Theorem 1.17. So for 

each p e P, there exists an odd prime, p', such that p1l P and 1' 

does not divide U, and p' does not divide q for any other 

q E P. Let P' = {p'; p € P1, then we have a bijection f: P -, P' by 

f(p) = p'. Since P is infinite, so is P'. Since for each p' E P' 

we have p' JU with p an odd subscript, it follows that p(p') does 

not exist for any p' e P'. 13 
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Recall that the Lucas sequence corresponds to {T} for d = 5. 

Hence infinitely many primes do not divide any Lucas number. 

Theorem 1.21. Let d be a positive square-free integer. Then 

= 1 if and only if a prime p 3 (mod 4) divides U  for some 

odd subscript k. 

Proof. Assume N(6d) = 1. If d is divisible by a prime p a 3 

(mod 4) then Assume that d = 25p1 p with 5 € {0,1} and 

1 (mod 4) for 1 ≤ i < k. Choose a prime q such that 

q a 1 mod for 1 ≤ i ≤ k and q M 7 (mod 8). Then 

[] = [p-] = 1 for 1 ≤ i ≤ k, and so 6 = [-] = 1. From our 

assumption that N( 6 d) = 1, IUq_6 by Theorem 1.20, and in fact 

2 
q-

q 1 since 6 = 1. Since --- 3 (mod 4) is odd, we have found our 

2 

subscript k. 

For the converse, assume that N(6d) = -1. Then for k odd we 

have T k 2 + 4 = Uk2d. Following the proof of Theorem 1.6, it follows 

that U  is divisible only by primes p 1 (mod 4), contrary to our 

assumption. U 

As a corollary, we can prove the following generalization of 

Theorem 1.20 which was proved by Lehmer [29] and Motada [44]. 

Corollary 1.5. Let 6 = r-PI where d is a positive square-free 

T + 
integer and p is an odd prime not dividing 2TUd with 6 -  UTd  

d 2 



33 

I 

N(s) 1 
If  J = -1 then p divides T_5 , otherwise p divides 

2 

Proof. By Theorem 1.18 plUp-s = Up-s T p-s . Assume 

22 

then it follows that N(sd) = -1 and p 3 (mod 4). If e. = 1, then 

Up_s has odd subscript, and so, because N(sd) = -1, Theorem 1.21 

2 

shows that p must divide T_5. Now assume s = -1, and suppose p 

2 

divides U_5 = It follows that T 1 = ±2 (mod p) and 

2 2 2 

furthermore that T1 = 2 (mod p), by Theorem 1.13 (a). By Lemma 1.6 

we obtain the sequence of congruences 4 a 2T T,T1 + UU1d 

T 2 + U 2ds T, 2 U 2d -4 (mod p). This contradicts the fact that 

p is an odd prime. Thus p divides T 5. If   = 1 then 

2 

there are two possibilities. The first is that N(sd) 1, in which 

case Theorem 1.20 shows p divides U p_s . The other case is 

2 

N(sd) = -1 and p a 1 (mod 4). By way of contradiction, assume 

0 (mod p). If s = 1, then PIT _1 and it follows by Theorem 

2 2 

1.13(a) that T 1 -2 (mod p). It is easy to see that 

2T 1 = UU1d - TT1 and so -4 UU1d - TT1 = 6U12  - T12 

-(T12 U'2 d)4 (mod p) by Lemma 1.6, contradicting the fact that p 

is an odd prime. If s = -1 then PIT+i and so T +1 = 2 (mod p). 

2 
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Thus 4 a 2T+i + UU1d6 T. 2 - U 2d -4 (mod p), yielding the 

same contradiction. In either case we see that pJU_. 0 

2 

In [44], Notada also discusses whether p divides T or U 

in terms of power residues. It is not within the scope of our 

discussion to do this. E. Lehmer [30] has studied criteria for p to 

divide T or U 
P-6 
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CHAPTER TWO 

Section 1 The Diophantine Equations mx 2 - ny 2 = +1,+4  

The equations of the title are closely related to the Pell 

equations x2 - mny2 = ±1,±4, as was seen in Section 4 of Chapter I. 

In our discussion we will assume m and n are positive square-free 

integers with no common factor. D.T. Walker [73] has given an overview 

of these equations, and most of the results of this section can be found 

therein. We will be discussing integer solutions to these equations 

when they exist, and how they are related to solutions of the Pell 

Equations x2 - mny2 = ±1,±4. For reference purposes, we will label the 

equations as 

mx2 - ny2 = 4 

mx 2 - ny 2 = 1 

x2 - mny2 = 4 

X2 - mny2 = 1 

(ia) mx2 - ny2 = -4 

(2a) mx2 - ny2 = -1 

(3a) x2 - mny2 = -4 

(4a) x - 1nny2 = -1. 

x.,.A+  is a solution to (1), resp. Definition 11.1. An element 
2 

(la), if x2m - y2n = 4, resp. -4. 

x.A+  is a solution to (2), resp. Definition 11.2. An element c - 
2 

(2a), if a is a solution to (1), resp. (ia), and both x and y are 

even. 

From these definitions, we see that any solution to (2), resp. 

(2a), is also a solution to (1), resp. (la). Without loss of generality 

we will henceforth concentrate mainly on the solvability of (1) 
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and (la). 

Definition 11.3. A solution a - x4+  to (1), resp. (la), is 

called a completely positive solution to (1), resp. (la), if x > 0 and 

y > 0. 

The following two results are similar to Propositions 1.2 and 1.3, 

hence the proofs are omitted. 

Proposition 11.1. An element a is a completely positive solution to 

(1) or (la) if and only if a > 1. 0 

Proposition 11.2. Let a = X..4  and - a4  both be 

completely positive solutions to one of the equations (1) or (la). Then 

the following three conditions are equivalent; 

1. a<p 

2 x < a 

3. y<b. El 

Clearly when solutions to (1), resp. (la), exist, then so do 

completely positive solutions to (1), resp. (la). To see this, if 

x.4+  is a solution to (1), resp. (la), then IXI+ IYI-i1  is a 
2 2 

completely positive solution to (1), resp. (ia). The completely 

positive solution X,ATL+  to (1), resp. (la), with x minimal will 

be called the fundamental solution to (1), resp. (la), and will be 

denoted by Tmn. It turns out that at most one of the two equations 

(1) and (la) is solvable, so that no confusion will arise. 
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Our main result of this section is to prove that = 6 when 

7m,n exists, and so satisfies the r of condition (1) of 

Theorem 17. To prove this result, we need some preliminary results 

whose proofs amount to tedious calculations, and so are omitted. First 

note that if (1) or (la) is solvable, then N(mn) = 1 by Theorem 1.7, 

and so equation (3a) is not solvable. 

Lemma 11.1. If a is a (completely positive) solution to (1), resp. 

(la), and p is a (completely positive) solution to (3), then a.p is 

a (completely positive) solution to (1), resp. (la). 

Lemma 11.2. If a and p are (completely positive) solutions to (1), 

resp. (la), then a.p is a (completely positive) solution to (3). 

Before proceeding, we note that an element a of the form 

a =   with x 0 0 and y 0 0 can't be written in the form 

a + bi  
2 

and hence is not an element of o(4i). See Nagell (45]. 

Theorem 11.1. If Tmn exists, then TM,n2 
= 6lnn* 

Proof. Assume rm,n exists. From Lemma 11.2, imfl2 is a completely 

positive solution to (3), and so r 2 = 6mnk for some k ≥ 1. If k 
m,n 

is even, then rm n = mn k12 E Q(.i) which contradicts our discussion 
,  

above. Thus k is odd, say k = 2L. + 1 for some I. > 0. We have 

£ 
Tmn 2 = (€m 2 fl ) = s and so (rm.n mn mn . It follows that 

rm,n emn —L > 1 and is a solution to (1) or (la) by Lemma 11.1. From 

-L 
Proposition 11.1 r is a corn m,n e. mn pletely positive solution to (1) or 

(la). From our definition of r m,n and Proposition 11.2, it follows 
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that r m,n < Tm,n 6 inn , and hence 1 < Since 6 > 1 we know 
- - . inn inn  

6 inn inn < 1 , and so e. = 1 must hold. This shows that £. = 0 and 
-  

k=1. a 

Theorem 11.2. One of equations (1) or (la) is not solvable. 

Proof. If T does not exist, then neither (1) nor (la) is solvable. 

Assume now that r exists and without loss of generality is a 

solution to (1). For contradiction assume cc is a solution to (la). A 

calculation shows is a solution to (3a),and hence N(6mn)= 

Since rlfl,fl 2 =  inn, rm,n satisfies the r of condition (I) of Theorem 

1.7, and hence N(€ mn ) = 1, a contradiction. Thus no such a exists, 

and hence (la) is not solvable. ci 

The following result is a structure theorem for all solutions to 

(1), resp. (la), when they exist. 

Theorem 11.3. Assume Tmn exists and is a solution to (1), resp. 

(la). Then (1), resp. (la), has infinitely many solutions which 

correspond to the set {±rmn21 ; k e Z1. The set of completely 

positive solutions is {rm 2k+1; k > 01. We also have 

GU ={+r 2k ;kez}. 
inn - m,n 

Proof. It is clear that any element of the form with k € z 

is a solution to (1), resp. (la). Conversely, by the argument used in 

the proof of Theorem 11.1, any solution to (1), resp. (la), will be of 

the form ±Tmfl2''• This proves the first part of the theorem. The 

second part of the theorem follows directly from Proposition 11.1. The 
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last part of the theorem follows from Theorem 1.3. o 

We are often interested in the situation where a solution 

-   of (1), resp. (la), is also a solution to (2), resp. 

(2a); i.e. when x and y are even. The following result is similar 

to Proposition 1.4, so we omit the proof. 

Proposition 11.3. Assume T A1 /i+ B1  
m,n 2 

k Ak.i + BkA 
odd, set Tm ,n - 2  . If A1 and B1 are even, then Ak 

and B  are even for every k. If A1 and B1 are odd, then 

mn a 5 (mod 8) and A  and B  are even if and only if 

kO (mod 3). 0 

exists. For k E Z , k 

-ff 
For example, T37 - 2 +  while r3, 3 = 3.+ 2/7. If 

- xE+ YE with x and y even, then r will be called the 
Tmn _ 2 m,n 

fundamental solution to (2), resp. (2a). If x and y are odd, 1 
m,n 

will be the fundamental solution to (2), resp. (2a). In the example 

above, r37 3 = 3+ 2.17 is the fundamental solution to 

3x 2 - 7y2 = -1, while r3 -   is the fundamental solution to 

3x2 - 7y2 = -4. In our discussion of differences of non-square powerful 

numbers in Chapter III, we will be mainly concerned with solutions to 

(2) or (2a). 

Heretofore we have needed to use the notation as opposed to 

Tmn for d = mn might admit another factorization d = rs such that 

rx2 - sy2 = ±1,±4 might be solvable. In this instance we show that 
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this is not possible, and hence the notation rmn can replace 

Theorem 11.4. For any positive square-free integer d, there is at 

most one non-trivial factorization d = inn such that r exists. 

Proof. Suppose there exists two non-trivial factorizations d = inn and 

d = rs such that r d M, 11 r,s and r exist. Then e, = r m,n 2 = r r,s 2, 

and since both rmn and Trs are positive, Tmn = Trs• Set 

Tmn =   and r a..iF + b.J  , then x4 + y.E = a.k + 

Multiplying this equality through by 4i yields xm + y = a,i + b.i. 

Again by Nagell [44] it follows that r = m or r = n, and so d = rs 

is the same factorization as d = inn. 13 

For example r65 = iW+ .iL and so neither of r215 or r 10,3 exist, 

and we may simply write r 30 = + 

Section 2 Special Types of Fundamental Units  

A real quadratic field, Q(A, with d square-free, is said to 

be of Richaud-Decrert type if d = £ 2 + r for some integers L > 0 and 

r A 0 such that -L < r < Z and 4!. 0 (mod r). Refer to [11] and 

[52]. These quadratic fields have been studied in great detail because 

of certain special characteristics they possess. In terms of the 

continued fraction expansion of Fd , which was briefly mentioned in the 

introductory section of Chapter I, i has a very short period. 

Because of this fact, the fundamental unit, s can be written 

explicitly in terms of £ and r. 

When Q(.j) is of Richaud-Degert type, we simply say that d is 
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of R.D. type. If Irl = 1 or 4, d is said to be of narrow R.D. type, 

otherwise if Irl # 1 or 4, d is of wide R.D. type. 

The purpose of this section is to give formulae for the fundamental 

units of all quadratic fields of R.D. type. It turns out that we may 

drop the condition -L < r ≤ 4L upon making the following definitions. 

Henceforth d is understood to be square-free. 

Definition 11.4. If d = L2 + r for some integers L > 0 and r 0 0 

such that 4L 0 (mod r) and d 5, d is said to be of extended R.D.  

type. 

Definition 11.5. If d is of E.R.D. type with Irl = 1 or 4 then d 

will be said to be of extended narrow R.D. type. Otherwise, when 

Irl 0 1 or 4 then d is of extended wide R.D. type. 

We will see at the end of this section that when d is of extended 

R.D. type and N(6d)= 1, then 6 satisfies an interesting criterion 

which is related to the decomposition of 6d given in Theorem 1.7. 

To write down explicit formulae for the fundamental units of 

extended R.D. type quadratic fields, we need two lemmas, the first of 

which is proved by Nagell [46, Theorem 105]. 

Lemma 11.3. Suppose E.d 2 T + U.,T with T and U even and 

N(.d) = 1. If x and y are positive integers satisfying 

x2 -dy2 =1 and x>-y2_1, then x+y.A=6d. 

Lemma 11.4. Suppose N(€d) = 1. If x and y are positive integers 

satisfying x2 - dy 2 = 4 and x ≥ 2y2 - 2, then sd - x  
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, 
Proof. Clearly if y = 1, then s _ x+y,r 2 Assume y > 1. Let 

a + bTd  
- 2 and assume by way of contradiction that y > b ≥ 1, i.e. 

  Then d=a4=x2 _4 so that a2y2 -b 2x2 = 

b2 y2 

4(y 2 - b2) = f > 0. Let ay - bx = f, and ay + bx = f2. Then f1 

f2 - fl 

and f2 are positive integers satisfying f1f2 = f. Thus x - 
2b 

<fi _4y2 - 4b 2 - 1< 4y 2 -4b 2 _2y 2 - 2b2 < 2y 2 - 2], 2 <2y2 -2, 
- 2b 2b 2], b 

contradicting our assumption on x and y. El 

We can now write down the fundamental units of all extended R.D. 

types in terms of £ and r. 

Theorem 11.5. Assume d is of extended R.D. type. 

1. If d is of extended narrow R.D. type, then 

Ir _1/2 (L + .1L2+r). = 

2. If d is of extended wide R.D. type, then 

= Ir I l (2L2 + r + 2 L IZ 2+r). 

Proof. 1. In this case, IrI"2(L + .)z-2+r) is certainly a completely 

positive unit in 0d' and of the form T + U,/d- with U = 1 or 2. 

Since d 0 5 it follows that IrI112(L + /L—'+r) is in fact the 

fundamental unit of Q(A). 

2. Assume now that d is of extended wide R.D. type. A 

calculation shows that the completely positive unit given is not the 

square of another unit in Q(.jE), and so N(6d) = 1. We now have two 
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separate cases. 

Case 1. r divides 2!.. 

2L2 +r 2!. 
Set x= and y = Then x2 - dy2 = 1, and so by 

Lemma 11.3, it suf fices to show x > 1 -y 2 - 1, or equivalently, 

2!.2 +. r 1 1 2L 2 

jrj - [1 _J - 1. Rearranging terms, we see that this is the same 

as showing 2!.2 In - rirl > 2L - In 2, which clearly holds. 

Case 2. r divides 4!. but r does not divide 2!.. 

In this case set x = (21 2 + r) and r - then x and 

y are odd positive integers satisfying x2 - dy2 = 4. Since r divides 

4!. and r does not divide 2!., it follows that 4 divides r, and 

since Irl # 4, we have Irl > 8. Thus the inequality 4!.2 In + 2rlrt 

> 32L - 21r12 holds. Rearranging this inequality shows that 

(2 Z2 + r) > 2 [. 1 ]2 - 2 holds, hence x > 2y2 - 2. By Lemma 11.4, 

x+y.Jd  
2 6d as desired. Q 

It can be seen that the set of extended narrow R.D. type quadratic 

fields is just the set of narrow R.D. type quadratic fields with Q(.)IT) 

included. However, the set of wide R.D. type quadratic field is much 

smaller than the set of extended wide R.D. type quadratic fields. 

Example 11.1. If q = 9p + 4, where p and q are square-free then 

d = pq is of extended wide R.D. type, but not of wide R.D. type. To 

see this, we see that d = (3p) 2 + 4p so that z. = 3p < 4p = r. In 

this case we have 6d = (9p + 2 + 3,jD. 
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The following theorem gives necessary and sufficient conditions for 

a fundamental unit to be of extended R.D. type with N(6 a) 1 in terms 

of the factorization of e.d given in Theorem 1.7. 

Theorem 11.6. Assume N(6a) = 1, and let 6d = - (a.4+ bv) 2 or 

= - (a4 + b.\A) 2 be the factorization of as given in 

Theorem 1.7. 

Then d is of extended narrow R.D. type if and only if a = b = 1 

and d is of extended wide R.D. type if and only if exactly one of a 

or b is 1 or at least one of a or b is 2. 

Proof. e will be of one of the following forms, either 

a 2 m - 2 + ab.4i  
2 

or a 2 m - 1 + abAi. Since a b (mod 2), and 

d = mn is of extended narrow R.D. type if and only if the coefficient 

of .Jd is 1, we see that d is of extended narrow R.D. type if and 

only if ab = 1. This is equivalent to a = b = 1. If exactly one of 

a or b is 1 or at least one of a or b is 2, a trivial calculation 

yields d = mn to be of extended wide R.D. type. Without loss of 

generality, assume a 2 > b 2 n and r > 0. Similar arguments hold for 

the other possible cases. In this case, we have 2z.2 + r + .je.+r = 
r 

b n + 2 + ab,/En or b 2 n + 1 + abi1. In the first case 4L2 + 2r - 

b2n + 2, and so q-_- b2n, while 4= ab. Thus b 2 n = abL, 

and so bn = at. Clearly GCD(bn,a) divides 2, so that a = 1 or 

a = 2. This shows that exactly one of a or b isf 1 or at least one 

of a or b is 2, for if b = 1 and a = 1 then* d would be of 

extended narrow R.D. type contradicting the fact that d is already 
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assumed to be of extended wide R.D. type. Under the different cases of 

r < 0 and a2m < b2n, we would obtain b = 1 or b = 2 in exactly 

the same way. 13 

Section 3 The Diophantine Equations x2 - dy 2 = N,4N  

Nagell [46, p. 204] and Stolt [61], [62], [63] have studied the 

diophantine equations 

x2 -dy2 =N and x2 -dy2 =4N 

respectively, where d is a square-free integer, and N is any 

non-zero integer. In this section we give an overview of their results 

as a precursor to the next section, wherein we similarly study the 

analogous diophantine equations 

nix 2 - fly2 = N,4N. 

Henceforth d is a square-free positive integer, N is a non-zero 

integer, and 6 is either 0 or 1. We will consider the diophantine 

equation 

(5) x2 - dy 2 = 225N 

such that if 6 = 1 then d a 1 (mod 4) and a solution (x,y) = (a,b) 

exists with both a and b being odd integers when any solution exists 

at all. 

.j If a and b are integers satisfying (5), the element a + b Fd  

is called a solution of (5). 

Fd is a solution to the Pell equation 
If T + Uv  
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(6) x2 - dy2 = 225 

then 
a1 +b 1 _ fa+b.JdlfT+lLiff  

2 I 2 II 2 

the two solutions, 

is also a solution of (5), and 

a1 + b1.W a +  
and 2 , are called associated 

2 

solutions of (5). The set of all associated solutions of (5) is called 

the class of solutions of (5). It can be seen that the class of 

solutions corresponding to a particular solution a +  is the set 
2 

J 4 a + b.i 1 T +  is the fundamental 2 it 2 ]k ; k e where T + U  

solution to (6). It is also easily checked that two solutions, 
a + b./d-

2 

a1 + b1.A  
and are associated with each other if and only if the 

2 

numbers aa 1 - bb 1d and ab 1 - a1b are integers. 

26N 25N 

Let L be a class of solutions of (5) consisting of the elements 

fI a 1 . + b 1..W }  . Then the set of elements Jaj b  1 
2 i 2 : i C 

is also a class of solutions of (5), called the conjuqate class of L, 

and denoted L. In general L and L are distinct classes, but when 

L = L, L is called an ambicruous class. These will be studied in 

further detail in Section 5 of this chapter. 

* b.Jd a * 
Among all solutions a+  in a class L, let 2  Fd be 

2  
* 

the solution in L in which b takes on the least non-negative value 

* 
for b. Furthermore, if L is ambiguous, impose the condition that a 

is non-negative. Then a* + 6 b * Fd is uniquely determined, and called 
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the fundamental solution of the class L. It can be seen that Ia*I is 

the least non-negative value possible for tal among all solutions 

a+b,W * * 
in L. It is also easy to see that if a = 0 or b = 0 or 

2 

N = 1 then the class is ambiguous. 

* * 
The following theorem gives upper bounds for Ia I and b . For 

proof see Nagell [46, Theorem 108] and Stolt [61]. 

Theorem II. 

L to (5) and 

Let a* + 

2° 
be the fundamental solution of a class 

T + u,A  
be the fundamental solution to (6). Then 

2 

*  1. If 5=0,N>0 0< b <U 2(T+1) 

tat ≤ J - N(T+1) 
2. If a =0,N<0 0< b* 

tat ≤ J L N(T-1) 
* I 

3. If 6 = 1, N > 0 0 ≤ b ≤ Uj N (T+2) 

* 

Ia I ≤ -4(T+2) 

4. If5=1,N(0 0< b * ≤UI 
(T N -2) 

ta*I ≤ 4I(T-2) o 

Corollary 11.1. The Diophantine Equation (5) has a finite number of 

classes of solutions. 13 
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Stolt goes on to give precise formulae for the number of classes of 

solutions of (5) for a given N. It is not our intention to pursue 

this. 

N.J. De Leon [12] and [13] has given necessary and sufficient 

conditions for a solution of a class to be fundamental. We first note 

that a solution a+ b/d is the fundamental solution of a class L if 
26 

i 
-a+bii - 

i and only f s the fundamental solution of the class L, 
2 

when L is not ambiguous. Thus we can assume that a and b are 

non-negative integers. 

Theorem 11.8. Let a+  be a solution to (5) with a and b 26 b.J  

non-negative integers. For a + 8 bZ to be a fundamental solution of a 
2 

class of solutions to (5), it is necessary and sufficient that the 

following inequalities hold; 

1. a > kb with k - T + 1 when 5 = 0 and N ) 0 

2. 1, > ka with k = T 1 when 5 = 0 and N < 0 

3. a > kb with k - T+2 when 5 = 1 and N > 0 

4. b > ka with k = T 2 when S = 1 and N < 0. 0 

Example 11.2. Let d = 2, N = 7, 5 = 0, then (5) becomes 

x2 - 2y 2 = 7. This equation is solvable, and 3 + .J is a solution. 

In this case 3 + 2,E is the fundamental solution to (6), and so 
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k = + 1 - 2. Now a = 3 and b = 1, and so a > kb holds so that 

3 + 4 is the fundamental solution of its class. Note that -3 + VT 

is the fundamental solution of the conjugate class. 

Section 4 The Diophantine Equations xnx 2 - fly 2 = N,4N. 

In this section we let in and n be positive square-free 

integers, as in Section 1 of this chapter, and N a non-zero integer. 

Also, 6  will be 0 or 1. We will consider the diophantine equation 

mx2 - ny2 = 22 N (7) 

with a = 1 only when inn 1 (mod 4) and x and y are odd 

integers. Results analogous to those from the previous section will be 

given here. 

If a and b are integers satisfying (7), then the number 

a.Ai + b.j1  is called a solution to (7). If T + U4i  

2 2 

2 2 26 x - mny = 2 

is a solution to 

(8) 

then the number 
a4+ b1..4_ 1a+ b.AlIT + UEn-

2 [ 2 •I I. 2 j is also a 
solution to (7), and is called a solution of (7) associated with the 

a,E+ b  
solution . The set of all associated solutions is called a 

2 

class of solutions of (7), and it is easily seen that the class of 

solutions of (7) in which 

J+ a+bj1 T+U.Aiii  

2 8 1 2 

a.,4i + bE 

2 

k 

lies is the set 

k eZ where 
T + u,Ai  

26 
is the 

fundamental solution to (8). It can also be seen that two solutions, 
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a.4 + biE' a4 + b1.A  
6 and 26 are associated if and only if the numbers 
2  

aa'm - bb'n and b1a - alb are integers. 

26N 25N 

Let L be a class of solutions of (7) generated by 
ajE + bE 

2 

Then the class of solutions of (7) generated by a - b  
2 

is called 

the conjucrate class of L, and is denoted by L. In general, L and 

L are distinct, but when they are equal, L is said to be an ambicruous  

class. 

Among all solutions a.4i + b..E in a class L, let a4it +  

2 2 

be the solution in L in which b* takes on the least possible 

non-negative value. If the class is ambiguous, impose the condition 

that a* is also non-negative. Then a + b* is uniquely 

2 

determined, and called the fundamental solution of the class I. As 

* * 
before, it can be seen that a = 0, b = 0, or N = ±1 can only occur 

* 
when the class is ambiguous. It can be seen that Ia I is the least 

non-negative value jaj among all solutions a.4Ti + bE in a class. As 

* * 
in Theorem 11.7, we can obtain upper bounds for Ia I and b 

Theorem 11.9. Let a4+ b.1' be the fundamental solution to (7) and 
26 

T + u4i  
the fundamental solution to (8). Then we have the following 

6 
2 

inequalities; 
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1. lal ≤ j (T + 1)N  
2m 

I o ≤ b* ≤ U,j Nm  
2(T + 1) 

* I - 2. Ia I -(T 1)N 2m 

o < b ≤ U,1 -Nm  
2(T - 1) 

* I (T + 2)N  
3. iais m 

J  Nm  
O≤ b* <U 

- (T+2) 

4. Ia * 1< .1 I-(T- m 2)N  -  

* I -Nm  
O≤ b ≤UJ (T2) 

when N > 0 and 6 = 0. 

when N < 0 and 6 = 0. 

when N ) 0 and 6 = 1. 

when N<0 and 6=1. 

Proof. As the others are proved in a similar fashion, we will only 

prove 1. here. Thus a.4u+ b.ih is the fundamental solution of its 

class, and a,4+ bã)(T - U,/Fn—n) = (aT - Ubn)4+ (bT - Uam),E is an 

associated solution of a.An + bE. If a ≤ 0 then it is easily checked 

that -a4' + ID,Ai is the fundamental solution of the class L. Thus we 

will assume a > 0. Now a2T2 = I 3)2 N ](1 + U2mn) = 

(bb2n + N) [ - + uzn] (b 2n) (U2n) , hence aT > bUn, and so 

aT - bUn > 0. Since a4 + b4 is the fundamental solution of its 

class, it follows that a < aT - bUn and so b2U2n2 ≤ a2(T - 1) 2. From 

this inequality we obtain (a 2m - N) I TZm_ 1 ] a2(T - 1)2 , and so 
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1 T - 1 Multiplying through by T + 1, and rearranging 
a 2 m T+1 

(T + 1)N * (T + 1)N 
yields 2m > a2, and hence a < J 2m The inequality 

* I Nm  
b ≤ uj 2(T + 1) follows from the above inequality. El 

Corollary 11.2. The Diophantine equation (7) has a finite number of 

classes of solutions. 

As in Theorem 11.8, necessary and sufficient conditions can be 

given to determine whether a solution of (7) is fundamental or not. We 

first need the following result. 

a0R+ b0..E 
Lemma 11.5. Let B -   be the fundamental solution of a 

2 

class L of solutions to (1) such that both a0 0 and. b0 ≥ 0. Let 

B denote Bak for k E Z, where T + U,•R—n is the fundamental 
2 

ía £+ b ..A? 
solution to (8). Then the set {Bk k > 0} = k k  k ≥ 0 

2 45 

is the set of all solutions of (7) in L for which a  > 0 and 

for each k ≥ 0. Moreover ak+l > a] for each k > 0. 

1 
J 
> 

Proof. It is clear that a  > 0 and b  > 0 for each k ≥ 0, and 

that ak+l > a  since 26ak+l = a k T + bkUn and T > 2. The class L 

is precisely the set {±Be.1 : k € V. Any element of the form _Bsk 

with k > 0 is of the form 
ak4  - 

2 

coefficients. Now consider elements of L of the form Bsk with 

and hence has negative 

k > 0. Then this element has the form 
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[ Tin 
a,,,F  b4i T - U if k k  } = .-- (a,T - bkn).+ (boTk - 

2 0U 

We will show that one of these coefficients is negative. Suppose that 

they are both non-negative, a0Tk > boUkn and b0Tk > aoUkm. Because 

a0 and b0 are the smallest possible non-negative coefficients of a 

solution in L, it follows that a0Tk - boUkn ≥ 25a0 and 

boTk - aoUkm > 2 b0. From these inequalities we obtain a0 > 
- 2 

a oukm a OUkm b oukmn b oukmn - 

and b0   , and so b0 ≥   5 2 >  2 25 b0, 

Tk 25 Tk 2 (Tk 2 ) Tk -2 

a contradiction. Thus at least one of a0Tk - boUkn or boTk - aoUkm 

is negative, so that Be-k, k > 0, has a negative coefficient. 

Similarly one can show any element of the form _Bak with k ≥ 0 has a 

negative coefficient, and so the result holds. a 

Theorem 11.11. Let a,A + b  be a solution of (7) in a class L /3 - 

2 

such that b > 0. Then p is the fundamental solution of the class L 

if and only if 

1. lal > kb with k =   Un T- 1 when 6 = 0, N > 0 

2. lal > kb with k = Un  T - 2 when o = 1, N > 0 

3. b>klal with k= Un T_l when 6=0,N<0. 

Un  
4. b≥kjaj with k=T_2 when 5=1,N<0. 
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Proof. As the others are proved in a similar fashion, we will only 

prove 1. here. Also, we will assume that a > 0 since a solution 

a4 + b4  

2 

-a.4n+ b  

2 

is a fundamental solution of a class L if and only if 

is a fundamental solution of L, and the inequalities above 

are identical for a or -a. First, assume /3 is fundamental, and for 

contradiction, assume a < kb. 

Thus N = a 2 - b 2 n < k2b2m - b 2 n = b2[k2m-n] = b2 

By Theorem 11.9, 

calculation shows 

2b 2(T + 1)  ≤ N 

U2m 

2b 2 (T + 1) = 

U2m 

< b2[ U2n2  
(T - 1) 2 

U2n2 

(T - 1) 2 
n 

(T - 1) 2 

n . A trivial 

11, 

and hence a 

n]. 

contradiction is established. 

Now assume a > kb and for contradiction assume a4ii + b4 is not 

the fundamental solution of its class. Since a ≥ 0 and b > 0, aA+ 

b4 has the form (a* ,4 + b* 4) (T + Uv) i for some i > 1. Thus 

(a4i+ bW)(T - u4i) = (aT - bUn)vE+ (bT - Uam)4 is of the form 

(a*.Ai + b*..I)(T + Ui)' 1 where i-i > 0. By Lemma 11.5, it follows 

that 0 ≤ aT - bUn < a, and so a < kb, a contradiction. a 

The remarkable aspect of Theorem 11.11 is that the constant k 

never depends on N, but only on the fundamental solution 

(8). 

T + uA  
2 

Example 11.3. Let m = 5, n = 3. Then U = 1 and T = 4. Assuming 
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N > 0, the coefficient from Theorem 11.11 obtained is k = 1. Thus a 

solution (a,b) to 5x2 - 3y 2 = N is fundamental if and only if 

a ≥ b. In other words, a solution to 5x2 - 3y 2 = N exists if and only 

if a solution (a,b) exists with a > b For N = 98, 5j+ 34 is 

the fundamental solution, since a = 5 > 3 = b. 

Section 5 Ambiguous Classes of Solutions to x2 - dy2 = N 

In this section we will find, for a positive square-free integer 

d, all integers N for which the equation x2 - dy 2 = 2 26 N has an 

ambiguous class of solutions. It turns out that this problem is closely 

related to the factorization of the fundamental unit, e.df given in 

Theorem 1.7. 

The following result shows that we need only consider those N 

which are square-free. 

Lemma 11.6. Let N = m2n where n is square-free. The equation 

x2 - dy2 = 22 N has an ambiguous class of solution if and only if the 

equation x2 - dy2 = 22% has one also. 

Proof. Let a = a + be a solution to x2 - dy2 = 22 N and 
2  

T+U.W - 

6 = a unit such that c = a. Then a2€ = a(a6) = aa 2  = 

N = m2n, or equivalently, a2 = €m 2n. Thus a = ./e..Am, and it follows 

that both a and b are divisible by m. Let a1 = - and b1 = - 

2 

Thus x2 - dy2 = 22% has an ambiguous class of solutions. The 

a1 + 
then a1 =   is a solution to x2 - dy 2 = 22% and are. = 

6 
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converse is clear, as one simply multiplies solutions of 

2 2 25 2 2a X  dy = 2 n by m to obtain solutions of x - dy = 2 N. a 

Henceforth we will assume that N is square-free. The following 

result, due to Nagell E45], gives a sufficient condition for 

x2 - dy 2 = 22 N to have an ambiguous class of solutions. 

Theorem 11.12. Let d be a square-free positive integer and N an 

integer which divides 2d. Then x2 - dy 2 = 225N has at most one class 

of solutions, and if this class exists, it is ambiguous. ci 

We will derive a converse to this theorem, and find all square-free 

integers N for which the equation x2 - dy 2 = 225N has an ambiguous 

class of solutions. Note that we do not consider N = d, since 

solutions of this type are derived by multiplying the units of Q() 

by. 

Lemma 11.7. Suppose x2 - dy2 = 225N has a solution (x 0,y 0) where N 

is square-free. Then GCD(y 0,N) = 1 or 2. 

Proof. Let p divide GCD(y 0,N). Then px0 and hence p2 divides 

both x02 and dy 02. It follows that p2 divides 22 N, and since N 

is square-free, p = 2. Also, since N is square-free, 22 does not 

divide GCD(y 0,N), forcing GCD(y 01 N) = 1 or 2. ci 

We now prove a converse of Theorem 11.12. 

Theorem 11.13. If x2 - dy2 26 = 2 N has an ambiguous class of 

solutions, then N divides 2d. 
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Proof. Let a = a+bL be a solution to x2 - dy2 = 26N and 
26 

6 
- T + u.A  

2 
a unit such that a = as.. Then a2 = N6, and so 

a2 + b2d + 2ab. NT + NUFd  

226 2 

(1) a2 + b2d = 26NT 

and 

Thus 

(2) 2ab = 26NU 

Multiplying (1) by 4b 2 and subtracting (2) squared yields 4b 4d a 0 

(mod N). By Lemma 11.7, GCD(N,4b 4) = 1 or 2, and so N divides 2d. 

0 

Thus, to find all square-free integers N for which the equation 

- dy2 = 226N has an ambiguous class of solutions, it suffices to 

consider those N which are divisors of 2d. The following result, 

proved by Nagell [45], gives a more precise description of the possible 

values for N and in fact leads us to a nice result connecting 

ambiguous classes of solutions and the factorization of the fundamental 

unit discussed earlier. 

Theorem 11.14. Let d be a positive square-free integer and N a 

square-free divisor of 2d such that N # 1 and N * ±d. Furthermore, 

if d 1 (mod 4), let N be odd. 

1. If x2 - dy2 = 22 N is solvable for N = -1, then it is not 

solvable for any other possible value N. 

2. If x2 - dy 2 = 226N is not solvable for N = -1, then it is 
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solvable for exactly two different values for N, say r 

and s. 

In the latter case, the product of these two values is -d unless d 

is odd and one of r or s is even, in which case the product of these 

two values is -4d. El 

This result of Nagell can be restated the following way; in terms 

of the factorization of the fundamental unit given in Theorem 1.7. 

Again, we make the same assumptions on N as above. 

Theorem 11.15. Let d be a positive square-free integer, and assume 

that N(6a) = 1. Then 

1. 6d = r 2 where r - a 2 jf+bJs for some positive integers a,b 

and r,s > 1 such that a2r - b2s = 4 and d = rs if and 

only if the equation x2 - dy 2 = 225N has an ambiguous class 

of solutions for precisely the values N = r and N = -s with 

GCD(r,$) = 1 and r,s > 1. 

2. = r2 where r = ai + bFs for some positive integers 

a,b,r,s such that a 2 r - b2s = 2 and d = rs if and only if 

the equation x2 - dy 2 = 22 N has an ambiguous class of 

solutions for precisely the values N = 2r and N = -2s 

with GCD(r,$) = 1 and r,s > 1. 

Proof. We only prove (1), as (2) is similar. Let k odd, be any 

solution to X2  - y2s = 4. Then one can verify that rl6d_k = 

hence (.IFrk)€d k = ,,- -k It is easy to see that is of the 
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a0 +b 04 25 25 
form   and that a02 - b02rs = 2 r. Thus x2 - dy2 = 2 r 

2 

has an ambiguous class of solutions. Similarly, by multiplying 

solutions of x2r - y2s = 4 by we see that x2 - dy2 = _2255 has 

an ambiguous class of solutions. By Theorem 11.14 we know that these 

are the only possible values. Clearly GCD(r,$) = 1. 

Now assume that x2 - dy 2 = 225N has an ambiguous class of 

solutions for precisely the values N = r and N = -s. It follows from 

Theorem 11.13 that r divides 2d and s divides 2d. Since 

GCD(r,$) = 1, we further have that r divides d or s divides d. 

Without loss of generality, assume that r divides d. Thus a solution 

x0 + y0j 
2 exists to the equation x2 - dy2 = -22cr with r dividing 

d. It follows that r divides x0, and hence the equation 

rx2 - [.]y2 = 4 is solvable. Multiplying a solution of this equation 

by [-] , we see that the equation x2 - dy2 = _225[] has an 

ambiguous class of solutions, forcing -= s, or equivalently, d = rs. 

So the equation rx2 - sy 2 = 4 is solvable with d = rs and r,s > 1. 

Letting r be the fundamental solution to this equation, we see by 

Theorem 11.1 that ad = r2. 0 

We illustrate this theorem by two examples. 

Example 11.4. Let d = 15. Since s =4 + 4_= (,+ we 

refer to part (2) of Theorem 11.15. It follows that N = 10 and 

N = -6 are the only square-free integers, other than N = 1 and 

N = -15 of course, which have an ambiguous class of solutions to the 
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equation x2 - 15y2 = N. By Lemma 11.6, all integers N for which 

- 15y2 = N has an ambiguous class of solutions are of the form in 2, 

10m2, - 6m 2 and 15m 2. 

Example 11.5. Let d = 6. Since s = 5 + 2.i= (%iT+ j)2 , we refer 

to part (1) of Theorem 11.15. It follows that N = 3 and N = -2 are 

the only square-free integers, other than N = 1 and N = -6, for 

which x2 - 6y2 = N has an ambiguous class of solutions. 

We have seen in sections 1, 2 and 5 of this chapter how the 

factorization of the fundamental unit is related to several aspects of 

the different Pell equations. As to how much more information can be 

obtained about these and other related equations from this factorization 

has yet to be determined, and is probably limited. Yet, this 

information obtained has been informative and leads one to believe that 

there is more to discover. 
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CHAPTER THREE 

Section 1 Powerful Numbers  

In [17], Erdos and Szekeres studied positive integers n 

satisfying the property that p1 divides n whenever the prime p 

divides n, where i is a fixed positive integer. Golomb [19], 

considered the case i = 2 and called these numbers Powerful Numbers. 

Golomb asked many questions concerning the gaps between powerful 

numbers, and in particular he asked which integers can be written as the 

difference of two relatively prime powerful numbers. He conjectured 

that 6 is not the difference of two relatively prime powerful numbers, 

and that there are infinitely many such numbers. 

It turns out that Golomb was wrong. In fact, this chapter will be 

devoted to showing that every integer is the difference of two 

relatively prime powerful numbers in infinitely many ways. 

An elementary but useful result is the following: 

Proposition 111.1. The following statements are equivalent. 

1. n is a powerful number. 

2. n = x2y3 for some positive integers x,y with y 

square-free. 

3. n = md 2 for some positive integers m,d such that mid and 

in is square-free. 

Proof. (1) (2). 

e1 e e e 
r r+1 k 

Let n = p ... Pr p ... P k where e. > 2 for r r+1 k 1 
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1 < i ≤ k, e1 is even for 1 ≤ ± < r, and e1 is odd for 

r+1 < i < k. Then e. > 3 for r+1 < ± < k, and so let 
1 - - 

e e -3 e 1/2 
r r+1 k-3 

X = r r+1 P] ) and y = r+1 

y is square-free and n = x2y3. 

(2) (3). Put m = y and d = xy, then the result is trivial. 

(3) (1). Assume p is any prime divisor of n = md 2. Certainly 

if pid, Then p2 Jd 2, and so p2 In. If pim then because mid, it 

follows that pid also, forcing p2 In. o 

Then 

By Proposition 111.1, we can see that if k is the difference of 

two powerful numbers, then we have a solution to the diophantine 

equation rx2 - sy2 = I with r ix and sly, and both r and s 

square-free. 

If neither r nor s is 1, then k is said to be the difference 

of non-square powerful numbers. If exactly one of r or s is 1, k 

is said to be the difference of a square and a non-square powerful 

number. If both r = s = 1, k is a difference of squares. Since 

every integer is the difference of squares in only finitely many ways, 

we do not pursue these types of differences. We will only be 

considering the first two types of differences described above. 

Section 2 Consecutive Powerful Numbers  

in finding consecutive powerful numbers, we are looking for 

solutions to the equations 

(1) rx2 - sy2 = ±1 with rix and sly and r,s being positive 

square-free integers, and 
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(2) x2 - dy 2 = ±1 with d y and d is positive a square-free 

integer. 

Both of these equations have been studied in great detail thus far, 

and we can easily prove the following result. 

Theorem 111.1. There exist infinitely many pairs of consecutive 

powerful numbers. 

Proof. Consider the Pell Equation x2 - dy 2 = 1 where d is any 

non-square powerful number. By Proposition 1.9, this equation has 

infinitely many solutions (x,y). For any such solution, dy2 is a 

powerful number so that x2 and dy 2 are consecutive powerful 

numbers. 13 

Examifle 111.1. Let d = 27 = 33 The fundamental solution of 

- 27y2 = 1 is the element s.3 = 26 + 26 + Letting 

A  + 3k1T= (26 + for k ≥ 1, it follows that A k 2 - 33Bk2 = 1 

for each such k. 

Although we now know that infinitely many pairs of consecutive 

powerful numbers exist, it is of interest to see how these pairs can be 

generated from the fundamental solution of x2 - dy2 = ±1 of any 

quadratic field Q(,,ff). 

Theorem 111.2. Let d be any positive square-free integer and T + U.A 

the fundamental solution to x2 - dy2 = ±1. Letting T  + 

(T + U.W)' for n > 1, we have diUn if and only if n a 0 (mod d1) 

d  
where d1 - GCD(U,d) 
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Proof. A modified form of Lemma 1.3 shows that for each n > 1, 

[n+1 ] 

U  z [ I T  U d n2kl2lk. Thus dIU n if and only if 
k=O 

nT 1U a 0 (mod d). Since GCD(T' 11d) = 1, this is equivalent to 

flU 0 (mod d). This is equivalent to n a 0 (mod d1) where d is as 

defined above. 13 

Example 111.2. Let d = 5. The fundamental solution to x2 - 5y2 = ±1 

is 2 + i. Since d = d = 5, we take k 0 (mod 5). When k = 5, 

(2 + .,)s = 682 + 305-1w, and hence 1 = 61 2.5 3 - (682) 2. 

Example 111.3. Let d = 46. The fundamental solution to 

- 46y2 = ±1 is 24335 + 3588., and in this case 

- GCD(46 3588) - 1, so that we merely choose k E 0 (mod 1) to 

obtain consecutive powerful numbers. When k = 1 we have 

1 = (24335 )2 (46)3.(78) 2. 

Corollary 111.1. There exist infinitely many pairs of consecutive 

powerful numbers, one of which is a perfect square. Moreover, these 

types of consecutive powerful numbers can be generated from any given 

real quadratic field. a 

Notice that the pairs of consecutive powerful numbers generated so 

far are a square and a non-square powerful number. Now we will consider 

pairs of consecutive non-square powerful numbers. We have the following 

result which is similar to Theorem 111.2. 
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Theorem 111.3. Let r and s be square-free positive integers such 

that rx 2 - sy2 = 1 is solvable. Let a.if + b/s be the fundamental 

solution to this equation and ak .Jf+ bk. Is- = (a+ b.J)k for k odd 

and k > 1. Then ak 0 (mod r) and bk 0 (mod s) if and only if 

k a 0 (mod r1) and k r  and 0 (mod s) where r1 - GCD(a,r) 

S  

51 GCD(a,$) 

Proof. We will show ak E 0 (mod r) if and only if k 0 (mod r1). 

As in the case of Lemma 1.3 we have that for k odd, k > 1, 

k-2i-1  

ak= z I  ](a)21(b21 = [ z [j I a2r 2 b21su1 . 
k-i 

Thus ak 0 (mod r) if and only if kabkls 2 0 (mod r). Since 

GCD(bs,r) = 1, this is equivalent to ka a 0 (mod r). This is 

equivalent to k 0 (mod r1) where r1 is as defined above. The 

other congruence is proved in exactly the same fashion. a 

Example 111.4. The fundamental solution to 7x2 - 3y2 = 1 is 

2..1T+ 3. In this case r1 = 7 and s1 = 1 so that we choose 

k E 0 (mod 7) to obtain our consecutive non-square powerful numbers. 

When k = 7 we have (2,,7-+ = 26373620__ + 4028637ff and so 

(376766) 2.73 - (1342879)2.33 = 1. 

The following was proved by Walker in E74]. 

Corollary 111.2. There exist infinitely many pairs of consecutive 

non-square powerful numbers. a 

Although there is an abundance of pairs of consecutive powerful 
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numbers, it is not known whether or not three consecutive powerful 

numbers exist. This problem is very difficult and even has connections 

with Fermat's Last Theorem, as will be seen in Chapter IV. At this 

point we merely give necessary and sufficient conditions in terms of the 

existence of a special unit in a real quadratic field. Note that four 

consecutive powerful numbers cannot exist since one of the four 

consecutive integers will be properly divisible by the prime p = 2. 

Theorem 111.4. (Nollin and Walsh [36]). The following are equivalent 

statements. 

1. There exist three consecutive powerful numbers. 

2. There exists a positive square-free integer d a 7 (mod 8) 

whose fundamental unit is T + uJ with T a 0 (mod 4), and 

an odd positive integer k a 0 mod { GCD(U,d) ] such that 
is a powerful number. 

Proof. (1) (2). Let x-1, x, x+1 be the three consecutive powerful 

numbers. Then clearly x 0 (mod 4). Let x2 - 1 = dy2 where d is 

square-free. Since dy2 15 (mod 16), it follows that d 7 (mod 8) 

and that x + y€= T  + Uk.Ir= (T + UI)k for some k > 1, where 

T + u.i is the fundamental unit of Q(./d-). Since U K is odd, k must 

be odd. Since x2 - 1 = dy2 = dUk2 is powerful, it follows from the 

fact that d is square-free, that Uk 0 (mod d). Thus 

k a 0 mod [ GCD(d) ] by Theorem 111.2. Also x = TK is a powerful 

number and since Tk 0 (mod 4) and k is odd, it follows from 

Theorem 1.14 that T a 0 (mod 4). The converse is clear. 13 
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It seems, for various reasons to be studied in Chapter IV, that the 

condition (2) of Theorem 111.4 can never be satisfied. Thus Mollin and 

Walsh [36] made the following conjecture. 

Conjecture 111.1. Three consecutive powerful numbers do not exist. 

In a paper by Erdös and Selfridge [16] concerning products of 

consecutive integers, a conjecture was made which contains Conjecture 

111.1. Similarly, Schinzel and Tijdeman [56] made a conjecture on 

powerful values of higher order polynomials which is closely connected 

with Conjecture 111.1. Thus from several different perspectives, the 

conjecture is believed to be true. The following example illustrates 

how large a counter-example would be. 

Example 111.5. Let us suppose a counter-example could be derived from 

QLff). Then it would be a unit of the form (8 + 3)1)7k where k > 1. 

Since T, = 2.29.197.2857, the first possible value of k for which 

T 7 is powerful is k = 29.197.2857. This follows from 

Theorem 1.13(b). So we would have to calculate (8 + 34.)114254287 

In sections 3 and 4, we generalize Corollaries 111.1 and 111.2 

respectively. In each of these two sections we will show that the 

corresponding result on differences of relatively prime powerful numbers 

exist for every non-zero integer n, instead of just n = 1. 
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Section 3 Differences of Square and Non-Square Powerful Numbers  

In this section we will generalize Corollary 111.1 and show that 

every non-zero integer is the difference of two relatively prime 

powerful numbers in infinitely many ways. Note that it suffices to show 

that the result holds for either one of n or -n. 

If P and P2 are powerful numbers such that GCD(P,P 2) = 1, 

then n = P1 - P2 is said to be the proper difference of P and P2. 

We are primarily concerned with proper differences as the following 

example illustrates. 

Example 111.6. 1 = 9 - 8 = 32 - 22 is a difference of powerful 

numbers. By multiplying through by 32, we obtain 32 = 9 = 34 - 23.3 2 

as a difference of powerful numbers. This way of obtaining 9 as a 

difference of powerful numbers is uninteresting, and so we will require 

our differences to be proper from now on. 

McDaniel [33] was the first to show that every non-zero integer is 

the proper difference of two powerful numbers in infinitely many ways. 

In his proof , all the differences obtained, except for those n 2 

(mod 4), are differences of a square and a non-square powerful number. 

Vanden Eynden [70] extended the work of McDaniel by considering the case 

of n 2 (mod 4), hence showing that every non-zero integer is the 

proper difference of a square and a non-square powerful number in 

infinitely many ways. Before proceeding we state a useful result used 

in [39], which is easily proved by induction on k. 

Lemma 111.1. Let T + U,/d_ be a solution to x2 - dy2 = ±1 and 

+ Uk./d= (T + U.IW) k for k > 1. Then Tk T  (mod d) and 
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Uk kTklU (mod d). a 

Lemma 111.1 allows us to give sufficient conditions for a non-zero 

integer n to be a proper difference of a square and a non-square 

powerful number in infinitely many ways. We prove the following result 

similar to one found in Mollin and Walsh [39]. 

Theorem 111.5. Let n be a positive integer and suppose there exists a 

non-square positive integer d such that the following conditions are 

satisfied. 

1. There exist positive integers a and b with GCD(a,n) = 1 

and a2 - b2d = ±n. 

2. There exist positive integers T and U such that 

T2 - U2d = ±1 and r = GCD(U,d) divides b. 

Then a  + bkI= (a + b)(T + with 

k -[ - ] T[ ] {mod [ . }] satisfies ak - bk 2d = n, 

and GCD(ak2,bk2d) = 1. In other words, n is the proper difference of 

the powerful numbers a k 2 and b k 2 d for each k in the congruence 

class given. 

Proof. Because of the GCD conditions given, the congruence shown is 

solvable, and so infinitely many integers k satisfy the congruence. 

Clearly a k 2 - b k 2 d = ±n holds by the multiplicativity of the Norm 

function defined in Section 1 of Chapter I. By the definition of a  

and bkf we have 
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(1) a1 = aTk + bU1d 

and 

(2) b1 =bT1 +aU1 . 

Thus by Lemma 111.1 we have b1 = bT1 + aTk-1 kU  T11 [bT + akU] (mod 

d). Rearranging the congruence shows bT + akU 0 (mod d), thus 

0 (mod d) as desired. For the last part, it suffices to show 

GCD(a1 ,b1d) = 1. Multiplying (1) by T1 and (2) by U1d and then 

subtracting yields 

(3) ±a = T1a1 - U1db1 

Multiplying (1) by U1 and (2) by T1 and subtracting yields 

(4) ±b = U1a1 - T1b1 

If a prime p divides GCD(a11b1), then by (3) and (4), it follows 

that p divides GCD(a,b), and hence p divides GCD(a,n) = 1. Thus 

GCD(a1 ,b1) = 1. From (1) it is clear that GCD(a1 ,d) = 1, hence 

GCD(a1 ,b1d) = 1. ci 

For each positive integer n we must now find integers d,a,b,T 

and U which satisfy conditions (1) and (2) of Theorem 111.5. The 

following table gives the desired integers. We omit the special cases 

of n = 2, 5 and 10 as they are represented by (d,a,b,T,U) = 

(7,3,1,8,3), (11,4,1,8,3) and (39,7,1,25,4) respectively. 
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Table 111.1. 

n 

4k-i 

4k+i k>1 

4k 

8k+2 or 8K-2 with 
k>1 

8k-2 and 3 

d a 

16k 2-8k+5 8k 2-6k+2 

4k 2-4k-1 2k 

4k 2+1 2k-I-i 

(2k-1) 2±2 2k+1 

36k 2-20k+3 6k-i 

b 'T U 

:1. 

32k 3-24k 2+12k-2 8k 2-4k+i 

4k 2-4k 

2k 

d+i 

9d-1 

2k-i 

1 

2k-i 

3(18k-5) 

We must show that in each case, the conditions (1) and (2) of 

Theorem 111.5 are satisfied. A calculation shows in each case that 

a2 - db2 = +n and that T2 - U2d = ±1. Thus in each case we merely 

show that GCD(a,n) = 1 = GCD(U,d), and that d is a non-square 

integer. 

Case 1. n=4k-i. 

d = (4k-i) 2 + 4, hence a non-square integer. If pIGCD(a,n), 

then pa - (2k-1)n = 1. Thus GCD(a,n) = 1. Also d - 2U = 3 and 3 

does not divide d, thus GCD(U,d) = 1. 

Case 2. n=4k+1. 

d = (2k-1 )2 - 2, so d is a non-square integer. 

GCD(a,n) = GCD(4k+1,2k) = 1. Lastly, d - U2 = -2 and d is odd so 

that GCD(U,d) = 1. 

Case 3. n = 4k. 

d = (2k) 2 + 1, hence not a square. GCD(a,n) = GCD(4k,2k+1) = 1. 
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Also, GCD(d,U) = GCD(d,i) = 1. 

Case 4. n = 8k + 2 or n = 8k - 2 with k 1 (mod 3). 

d = (2k-1 )2 ± 2 is not a square integer. n - 4a = -2 and a is 

odd so that GCD(a,n) = 1. Lastly, d - U2 = ±2 and U is odd so that 

GCD(U,d) = 1. 

Case 5. n = 8k - 2 and k at 1 (mod 3). 

It can be seen that (6k-2) 2 < d < (6k-1 )2' so that d is a 

non-square integer. Since 3n - 4a = -2 and a is odd., it follows 

that GCD(a,n) = 1. Lastly, it can be seen that a2 - 81d = -18. Since 

GCD(d,6) = 1, it follows that GCD(U,d) = 1. 

For each positive n, using the values given in Table 111.1 and 

the algorithm of Theorem 111.5, we can find infinitely many pairs of 

relatively prime powerful numbers differing by ii, with one of the 

powerful numbers being a perfect square and the other a non-square 

powerful number. We state the following result. 

Theorem 111.6. Every non-zero integer is the proper difference of 

powerful numbers, one of the powerful numbers being a perfect square, in 

infinitely many ways. a 

We illustrate the procedure by the following two examples. 

Example 111.7. Let n = 3. We refer to the first row of Table 111.1 to 

obtain the values (d,a,b,T.U) = (13,4,1,18,5). So we form the product 

(4 + .4T)(i8 + 5)k with k a 3 (mod 13). When k = 3 we get the 

element 177823 + 49322T = 177823 + 3794.13.15T. Thus 
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3 = 133.(3794) 2 - (177823) 2. 

Example 111.8. Let n = 6. We refer to the last row of the table. We 

obtain the values (d,a,b,T,U) = (19,5,1,170,39). So we form the 

product (5 + 4)(170 + 391)k with k 4 (mod 19). When k = 4 we 

obtain the element 62531004125 + 14344596201,,T9— and hence 

6 = (62531004125) 2 - 193.(755031379) 2. 

This last example is a counter-example to the conjecture of Golomb 

mentioned earlier in Section 1 of this chapter. 

Section 4 Differences of Non-Suuare Powerful Numbers  

In this section we will generalize Corollary 111.2 and show that 

every non-zero integer is the proper difference of non-square powerful 

numbers in infinitely many ways. 

Mollin and Walsh [38] and McDaniel [34] independently showed the 

result for all odd integers, while in the same paper McDaniel showed the 

result for integers n 2 (mod 4). McDaniel also showed that for 

n 0 (mod 4), n is a difference of non-square powerful numbers in 

infinitely many ways, but the differences given are never proper. In 

[37], Mollin and Walsh attempted to show the result for all even 

integers, but the result rested upon the existence of a unit T + UFd 

in Q(i) with GCD(U,d) = 1. They incorrectly invoked a theorem of 

Slavutsky [59], leaving the problem unsolved. In [39], Mollin and Walsh 

resolved the aforementioned gap in their proof, and thus the result was 

finally shown to be true for all non-zero integers. 

This section follows very much the same format as the previous 
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section. We first give sufficient conditions for a non-zero integer n 

to be the proper difference of two non-square powerful numbers in 

infinitely many ways. This result can be found in [39]. 

Theorem 111.7. Let n be a positive integer and suppose there exist 

non-square positive integers r and s such that the following 

conditions hold. 

1. There exist positive integers a and b with GCD(ar,bs) = 1 

and a 2 r - b 2 = ±n. 

2. There exist positive integers T and U with GCD(U,rs) = 1 

and T2 - U2rs = ±1. 

If (a k4 + = (a.k + b..i) (T + U.,)k with 

k -(Ta)(Ubs) 1 (mod r) and k a -Tb(aUr) 1 (mod s), then 

a, ] 2  bk 2 
ak E 0 (mod r), bk = 0 (mod r), r3 - s3 = ±n, and 

GCD(ak2r1bk2s) = 1. In other words n is the proper difference of two 

non-square powerful numbers in infinitely many ways. 

Proof. Let T  + UkA= (T + with k chosen by the congruences 

given. By the GCD conditions, the congruences are both solvable. Then 

(1) a  = aTk + bsUk 

and 

(2) b  = bTk + arUk 

By Lemma 111.1, ak E aTk + bskTk-1 U Tkl[aT + bskU] 0 (mod r). 

Similary bk 0 (mod s). Now suppose a prime p divides 
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GCD(ak2r(bk25). Then p divides GCD(akrfbks). Thus by (1) we obtain 

(3) arT + brsUk = Pc' 

and by (2) we obtain 

(4) bsT + arsUk = PC 2 

for some integers c1 and c2. Multiplying (3) by T  and (4) by rUK 

and subtracting yields p[c2Tk - cirUk] = ±ar. Multiplying (4) by 

and (3) by sUk and subtracting yields PEC2Tk - cisUk] = ±bs. Thus p 

divides GCD(ar,bs) contradicting our assumption. Thus 

a 2 

GCD(ak 2r?bk 25) = 1 for each k. Lastly r3 

akr - bk25 = (aTk + bUk) 2r - (bTk + arUk) 25 = 

(a 2r 
- b2s) (Tk 2 - rsUk) = 

(b) 2 = 

Thus by Theorem 111.7, it suffices for each non-zero n to find 

integers (r,s,a,b,T,U) satisfying the conditions given. 

We give a table of values as in the previous section. The special 

cases n = 1, 2 or 4 are not listed in the table as they are 

represented by (r,s,a,b,T,U) = (11,7,4,5,351,40), (5,3,1,1,4,1) and 

(11,7,1,1,351,40) respectively. Also note that several choices in each 

class of n modulo 4 are given to ensure that both r and s are 

non-square integers in at least one choice. In each row, t > 1 unless 

otherwise stated. 
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Table 111.2. 

n 

2t+1 t2 (mod 5) 

2t+1 tE2(mod 5) 

4t+2 

4t+2 t1(mod 3) 

4t+2 t21(mod 3) 

4t todd 

4t t even 

4t t even 

4t t even 

r s 

t2+2t+2 t2+1 

2 2t 2+2t+1 

2t 2+4t+1 2t 2-1 

2t 2+4t+3 

6t 2+8t+3 

t 2+2t+2 

2t 2+2t+i 

2t 2+3t+i 

2t 2+t+1 

2t 2+i 

6t 2+4t+1 

t 2-2t+2 

2t 2-2t+1 

2t 2-t+1 

2t 2-3t+1 

a b 

1 1 

t+1 1 

1 1 

11 

1 1 

11 

11 

11 

11 

T U 

t2+t+1 

2t+1 

(2t2+2t-1) 2_i 

(2t2+2t+1) 2+1 

(18t2+18t+5) 2+1 

L(t r-+3 

2t 2 

4t 3+2t 2+1 

4t 3-2t 2-1 

1 

1 

2t 2+2t-1 

2t 2+2t+1 

3 (18t 2+18t+5) 

+i) 

1 

2t 

2t 

We must show that for each class modulo 4, there is at least one 

row which satisfies all the conditions of Theorem 111.7. Trivial 

calculations show that a2r - b 2 = ±n and T2 - U2rs = ±1 hold in 

each case. We omit the proofs of all the GCD conditions, as these 

proofs follow very closely the same type of reasoning as given in the 

previous section concerning the GCD conditions. It suffices now to show 

that at least one row, in each class modulo 4, contains both r and s 

as non-square integers. 

Case 1. n = 2t + 1, r = t2 + 2t + 2, s = t2 + 1. 

In this case, both r and s are squares plus one, hence neither 

are squares. 

Case 2. n = 2t + 1, r = 2, s = 2t 2 + 2t + 1, t E 2 (mod 5). 
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In this case s 8 + 4 + 1 a 3 (mod 5), hence r and s are not 

squares. 

Case 3. n = 4t + 2, t 1 (mod 3). 

In this case either r = 2(t-i-1) 2 - 1 and s = 2t 2 - 1, or 

r = 2(t+1) 2 + 1 and s = 2t 2 + 1. By considering the Pell equations 

x2 - 2y2 = ±1, it can be seen that for any given t value, one of the 

two choices for r and s produces non-square integers. 

Case 4. n = 4t + 2, t 1 (mod 3). 

By considering r and s modulo 3, it can be seen that both r 

and s produces non-square integers. 

Case 5. n = 4t, t odd. 

Since r = (t+1) 2 + 1 and s = (t-1) 2 + 1, r and s are both 

non-square integers. 

Case 6. n = 4t, t even. 

We consider the last three lines of the table simultaneously. We 

will show that for a given t value, no two of the s values can be 

squares. Similarly no two of the r values can be squares for a given 

t value. Thus at least one of the three rows contains both r and s 

as non-square integers. Suppose that 2t 2 - k1t + 1 = x2 and 

2t 2 - k2t + 1 = y2, where k1,k 2 E {1,2,3} and k1 < k2. Then 

- y2 = ct where c = 1 or 2. It follows that x + y < 2t. If 

t=2, then r = 2 t2 + 2t + 1 = 13 and s=2t 2 -2t+1=5 are 

non-squares. Now assume that t > 4. Then it can be seen that 

2t 2 - kt + 1 > t2 for k E 11,2,3} so that x > t and y > t. Thus 
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x + y > 2t contradicting x + y < 2t obtained earlier. Thus no two s 

values can simultaneously be squares, and hence at least one of the 

three lines has both r and s as non-square integers for any given t 

value. 

Using the values of Table 111.2 and the algorithm of Theorem 111.7, 

we have proved the following result, which is the main result of [39]. 

Theorem 111.8. Every non-zero integer is the proper difference of two 

non-square powerful numbers in infinitely many ways. 11 

We illustrate the procedure in the following two examples. 

Example 111.9. n' = 3. We refer to the first row. In this case 

(r,s,a,b,T,U) = (5,2,1,1,3,1) and so we form the product 

(.j+ .j)(3 + with k 1 (mod 10). When k = 1, we obtain the 

element 5+ 8Z, and so 3 = 2 - 53 • 

Example 111.10. n = 16. We refer to the last line of the table. In 

this case (r,s,a,b,T,U) = (37,21,1,1,223,8) and so we form the product 

(.T+ .,T)(223 + 8,fl7)k with k 24 (mod 37) and k 4 (mod 21) to 

obtain our desired differences. 
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CHAPTER FOUR 

Section 1 Introduction  

Erdbs and Szekeres [17] studied positive integers n satisfying 

the property that p k in whenever the prime pin. These are called 

k-full numbers. Since then, many papers have been published on the 

special case of 2-full numbers. These are also referred to as squareful 

numbers, and more recently powerful numbers. 

Authors have studied many different properties of powerful numbers. 

In Chapter III we considered differences of powerful numbers. Other 

topics on powerful numbers include the distribution of powerful numbers, 

powerful numbers in arithmetic progression, sums of powerful numbers, 

and the connection between powerful numbers and the first case of 

Fermat's Last Theorem. 

In this chapter we give an overview of these topics and include 

some conjectures and open questions on powerful numbers. 

We first consider the connection between powerful numbers and 

Fermat's Last Theorem. 

In or about 1637, Pierre de Fermat stated that if n is an integer 

> 3, then the diophantine equation 

n n n 
x+y=z 

has no solutions in integers x, y, z with xyz 0 0. 

It is clear that it suffices to show the result whenever n is a 

prime p. We denote this by (FIT). The problem has been split into 

two cases; 
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I. p does not divide xyz. 

II. p divides xyz. 

We denote these by (FLTI) and (FIiTII) respectively. We will 

see that the truth of certain conjectures on powerful numbers would 

imply (FLTI) for infinitely many primes p. 

We note at this point that Adleman and Heath-Brown El] have shown 

that (FLTI) does in fact hold for infinitely many primes p. 

We then turn our attention to the existence of certain units in 

quadratic fields possessing special properties. We will see that the 

non-existence of powerful numbers in certain linearly recurrent 

sequences has some bearing on (FLTI) as shown in Theorem IV.12. 

In the last section we discuss some of the aforementioned 

literature on powerful numbers, in particular, the distribution of, 

arithmetic progressions of, and sums of powerful numbers. 

Section 2. Powerful Numbers and Fermat's Last Theorem  

From a result of Granville [20], it is known that the first case of 

Fermat's Last Theorem, (FLTI) , is related to the existence of 

certain powerful numbers in a very strong way. In this section we 

investigate some of these connections to give sufficient conditions for 

(FLTI) to hold for infinitely many prime exponents. 

In 1909 Wieferich [75] proved the following remarkable result. 

Theorem IV.1. If (FLTI) fails for an odd prime p, then 

2 (mod p2). E3 
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Using Theorem IV.1 and the following Lemma, Granville [20] gave the 

first connection between powerful numbers and (FLTI). 

Lemma IV.1. If 2p =2 (mod p2) and 12m_1 for some m ≥ 1, then 

2 
p 12m -1. 

Proof. Let 2m_1 = kp. From 2P =2 (mod p2), it follows that 

2m - 2mp (1 + kp) a 1 (mod p2) by the binomial theorem. El 

Lemma IV.2. If (a,m) = 1 then akm) 1 (mod m) for all m > 1, 

k > 1. If a 1 (mod m) and ak = 1 (mod m), then GCD(k,i'(m)) > 1. 

Proof. See [69, p. 74]. 

Theorem IV.2. (Granville [20]). If three consecutive powerful numbers 

do not exist, then (FLTI) holds for infinitely many primes. 

Proof. Assume that (FLTI) fails for all primes p > p0. 

Put t = 1% p(p-1). We will show that 2 n - 1 is powerful for 

P≤P0 

all n > 1. Fix n and assume that q is a prime such that q12flt_1. 

If q ≤ p0, then since nt 0 (mod (q 2)) it follows from Lemma IV.2 

that q2I21t_l. If q > p0, then by assumption (FLTI) fails for the 

prime q. Thus 2q = 2 (mod q2) and q2l2hlt_1 by Lemma IV.1. This 

shows that 2nt_1 is powerful. Similarly 22nt_1 is powerful. Since 

= (22nt 1) (2nt1) and GCD(21t_l,2nt+l) = 1, both 2nt 
- 1 and 

nt nt nt nt 2 + 1 are powerful. So for every n 1, 2 -1, 2 2 +1 are 

three consecutive powerful numbers. a 

In the statement of his theorem, Granville [20] wrote that "if the 
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conjecture of Nollin and Walsh is true, then there exists an infinite 

sequence of primes p for which the First Case of Fermat's Last Theorem 

is true." It should be noted that Erdbs [15] had earlier conjectured 

the non-existence of three consecutive powerful numbers. 

Corollary IV.1. If only finitely many triples of three consecutive 

powerful numbers of the form 2k_1, 2k 2k+1 exist, then (FLTI) 

holds for infinitely many primes p. 0 

P 

Under the hypothesis that (FLTI) fails for all sufficiently 

large primes p, we have shown the existence of a large class of 

powerful integers of the form 2 k -  1. Under the same hypothesis, we 

can show that another class of integers of the form 2 - 1 is made up 

of powerful numbers. 

Theorem IV.3. Assume that (FLTI) fails for all primes p > p0. If 

k is a positive integer not divisible by any prime p < p0, then 

- 1 is powerful. 

Proof. Assume k is divisible only by primes p > p0, and let q be 

a prime such that q12 k_1. By Lemma IV.2, GCD(q-1,k) > 1, and we have 

that q > p0. Thus (FLTI) fails for p = q, and so 

2q = 2 (mod q2). Lemma IV.1 shows that q212 k_1, and hence 2 - 1 is 

powerful. 0 

Summarizing Theorems IV.2 and IV.3, we have; 

Corollary IV.2. If (FLTI) fails for all prime p > p0 and 
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t = ii p(p-1), then is powerful if either tik or 

P≤P0 

GCD(t,k) = 1. a 

One could conjecture that numbers of the form are never 

powerful, and if this were the case, the result of Adleman and 

Heath-Brown would follow immediately. In fact, A. Schinzel conjectured 

that infinitely many Mersenne numbers (numbers of the form 2l with 

p a prime) are square-free. Rotkiewicz [54] showed that if Schinzel's 

conjecture is true then (FLTI) holds for infinitely many primes p. 

As a result of Theorem IV.3 we can prove the following similar result. 

Corollary IV.3. If infinitely many Mersenne numbers are not powerful, 

then (FLTI) holds for infinitely many primes p. 

Proof. Let k be a prime p ) p0 in Theorem IV.3. a 

Although it is weaker to conjecture that infinitely many Mersenne 

numbers are not powerful, as opposed to square-free, it is probably no 

easier to prove the statement. 

As another corollary to Theorem IV.3, we can prove the following 

result of Puccioni [50]. 

Corollary IV.4. If (FLTI) fails for all sufficiently large primes 

then there is an infinite sequence of primes {q s.t. 

q. 
2 1 2 (mod 

Proof. Let p0 be a prime such that p > p0 implies that (FLTI) 

fails for p, and JpiJi > 1 be the set of primes p0 < p1, <... . By 
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p1 
Corollary IV.3, 2 - 1 = N1 is powerful for each i. By the result 

of Lebesgue [27], none of the N i are squares, and so there exist 

primes c.i IN, 
i 

such that q13 2 Pi-1. It follows that P1I-1 and that 

q.-1 
2 1 1 (mod q13). Clearly for i # j, GCD(MiIN) = 1 so that each 

q1 is distinct, and hence the set is infinite. U 

Nirimanoff [35] gave a result similar to that of Wieferich: if 

(FLTI) fails for the prime p, then 3p =3 (mod p2). By the work of 

Vandiver [71], Pollaczek [49], Norishima [43], Granville and Monagan 

[21], it is now known that if (FLTI) fails for the prime 'p, then 

qP q (mod p2) for all primes q < 89. Because of these results, much 

of the earlier work in this section can be generalized. To do this we 

first need to generalize Lemma IV.1. 

Lemma IV.3. Let p and q be primes such that qP = q (mod p2). If 

m is an integer such that p1qm_1, then 21m_1 

Proof. Proceed exactly as in the proof of Lemma IV.1. 13 

Similar to Theorem IV.1 we have; 

Theorem IV.4. If (FLTI) fails for all primes p > p0 and 

t = ff. p(p-1) then qflt - 1 is powerful for all primes q ≤ 89 and 

P≤Po 

integers n ≥ 1. 

Proof. Let p be a prime dividing q nt -1. If p < p0, then since 

nt a 0 (mod (p 2)), it follows by Lemma IV.2 that p2q1t_1. If 
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p > p0 then (FLTI) fails for p, and so qP = q (mod p2). By 

Lemma IV.3 it follows that p2qh1t_l. Thus qflt - 1 is powerful. El 

Note that the proof of Theorem IV.4 rests upon the fact that 

(FLTI) holds for all primes p ≤ 89. In fact Granville and Monagan 

[21] have shown that (FLTI) holds for all primes p ≤ 7 x 10 14. 

We can similarly generalize Theorem IV.3. We 

first need the following result. 

Lemma IV.4. If p, q are primes and k is a product of primes greater 

k 
than q, then pq-1 implies that p does not divide q : 

Proof. Suppose pl and assume p a q-1. Then a+1 p k_1, -1, and so 

GCD(k, Pa(P_1)) > 1 by Lemma IV.2. But k is a product of primes 

greater than q, and p a(_1) is a product of primes less than q 

since p<q. IJ 

Theorem IV.5. Assume (FLTI) fails for all primes 

an integer not divisible by any primes 

powerful for all primes q ≤ 89. 

p ≤ p0, then 

If k is 

is 

Proof. Fix a prime g < 89. By the result of Granville and Monagan 

mentioned above, k is not divisible by any prime p ≤ 89. Let p be 

k 
a prime such that PJdq  By Lemma IV.4 it follows that 

q 1 (mod p). By Lemma IV.2 it follows that GCD(k,p-1) > 1. Thus 

p > p0, and so qP = q (mod p2). Lemma 111.3 shows p2lqk_l, and 
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since p does not divide 

powerful. 0 

q - 1, 21q1  Thus is 

The following corollary is a special case of Theorem IV.5. 

Corollary IV.5. If (FLTI) fails for all primes 

is powerful for all primes p > p0 and q ≤ 89. 0 

p ) p0 then 

The result of Puccioni, Corollary IV.4, can similarly be 

generalized. The proof is a bit more complicated. We use a result of 

Walker [73, Theorem 10] to prove the following well known result. 

Lemma IV.5. Let p and q be odd primes such that q - 1 is not a 

square. If  = - n2 then q = 3, p = 5, and n = 11. 

p-i 

Proof. From q  n2 we have that 'Y = q 2 n.Jq - 1 is a 

solution to X2  - y2(q-1) = 1. By Walker [73, Theorem 10], i is the 

fundamental solution, or its third power, to the equation 

x 2 q - y2(q - 1) = 1. Clearly the fundamental solution to 

x 2 - y2(q - 1) = 1 is the element .i+ Jq 1, and the third power 

p-i 

is (4q - 3)+ (4q - 1)Jq - 1. Thus q 2 = 4q - 3 and this forces 

q = 3, p = 5, n = 11. 0 

Lemma 111.6. If q is a prime and pj,p 2 are primes such that 

P2 > p1 > q, then GCD[ q -1 qP 2_i 
q-i ' q-i 

Proof. Let r be a prime dividing GCD qp1_i qP2_l 
q-1 ' q-1 

Then 
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qPi 1 (mod r) and qPi. 1 (mod r). By the Euclidean Algorithm, 

there are integers a,b such that 1 = ap 1 - bp,. Then 

q ql+bP i = qaP2 = 1 (mod r). Thus r divides q - 1. By Lemma IV.4 

_i 
it follows that r does not divide either of   or qP2 q-1 q-1 a 

contradiction. 0 

Theorem IV.6. If (FLTI) fails for all sufficiently large primes, 

then for each prime q < 89 there is an infinite sequence of primes 

p.1 
such that q  q (mod 3) 

Proof. Fix q a prime, q < 89. Assume (FLTI) fails for all primes 

r > r0, and denote these primes r < r2 < ... . By Corollary 111.5, 

q  
q-1 

is powerful for i > 1. If q - 1 is a square, then by 

the result of Lebesgue [27], each M is not a square. If q - 1 is 

not a square, then by Lemma IV.5 each N1 is again not a square. Thus 

we can choose for each i ≥ 1 a prime pi such that pN1. By Lemma 

IV.6, GCD(N1 M) = 1 for I 0 j, and so the set of primes i>l is 

ri 
infinite. Moreover, q 1 (mod p1 3). It is easy to see that 

1 
rjjp-1 for each i ≥ 1, and so q  1 (mod pc). Equivalently 

p.1 
q  q (mod p) for each i > 1. ci 

Corollary IV.5 can be restated as follows. 

Theorem IV.7. If (FLTI) fails for all primes p > p0, then for 

p > p0, p a prime, the p th cyclotomic polynomial 
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1 + x + x2 +...+ is a powerful number whenever x = q a prime and. 

q≤89. 0 

This leads us to consider certain polynomials and when they can 

have values which are powerful numbers. The following is a conjecture 

of Schinzel and Tijdeman [56]. 

Conjecture IV.1. If a polynomial P(x) with rational coefficients has 

at least three simple zeros, then the equation P(x) = y2z3 has only 

finitely many solutions in integers x,y,z with yz 0. 9 

In the same paper, Schinze]. and Tijdeman proved 

Theorem 111.8. If a polynomial P(x) with rational coefficients has at 

least two distinct zeros, then the equation P(s) = m with x,y 

integers and IYI > 1 implies m < c(P) where c(P) is an effectively 

computable constant. 0 

Conjecture IV.1 is very deep, and perhaps intractable. 

Proposition IV.1. If any of the following polynomials yield powerful 

numbers as values for only finitely many integers x, then (FLTI) 

holds for infinitely primes. 

1. f1(x) = - 1 n > 3 

2. f2 (x) = + 1 n > 3 

3. f3(x) x3 - x. 

Proof. Assume (FLTI) fails for all primes p > p0. If 
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t = ii p(p-1), then 2ntk ± 1 is a powerful number for all integers 

P≤P0 

n > 1, k > 1. By putting x = 2 t in f1(x) or f2 (x) for k ≥ 1, 

we see that both f1(x) and f2 (x) have powerful numbers as values for 

infinitely many integers x. By putting x = 2 k with k > 1 in 

f1(x), we see that f3(x) has powerful numbers as values for 

infinitely many integers x. a 

Proposition IV.1 leads one to consider Catalan's equation. In [6] 

Catalan conjectured that the only solution to the equation 

- ym  = 1 with x > 1, y > 1, n > 1, m > 1 

is x = 3 = m, y = n = 2. In fact Tijdeman [66] proved; 

Theorem IV.9. The equation Xp - = 1, x > 1, y > 1, p > 1, q > 1 

has only finitely many solutions in integers. Effective bounds for the 

solutions p,q,x,y can be given. D 

one can generalize Catalans problem by considering the difference 

of a proper power of degree at least 3, and powerful numbers. We make 

the following conjecture similar to that of Catalan. 

Conjecture 111.2. The equation x n - m3y2 = ±1 is solvable in integers 

x > 1, m > 1, y > 1, n > 2 if and only if (x,m,y,n) = (2,1,3,3) or 

(x,m,y,n) = (23,2,39,3). 0 

We note that f3 (x) = x3 - x is the product of the three 

consecutive integers x - 1, x and x + 1. Erdös and Selfridge [16] 

proved that the product of k ≥ 2 consecutive positive integers is 

never a square or higher power. In fact Erdös [15] conjectured that the 
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product of three or more consecutive positive integers is always 

properly divisible by some prime. Note that this conjecture is slightly 

stronger than the conjecture that three consecutive powerful numbers do 

not exist. 

It would be of great interest if these problems, the Catalan 

problem, the problem of Schinzel and Tijdeman, and the problem of Erdbs 

and Selfridge, which have been solved for proper powers, could be solved 

for the more general case of powerful numbers. 

Although proofs of these conjectures for powerful numbers are 

nowhere in sight, it is of interest to see how these problems are 

related to (FLTI). We hope that some of these connections can inspire 

new approaches to (FLTI) and perhaps that a more elementary proof of 

the result of Adleman and Heath-Brown might be obtained. 

Section 3. Certain Quadratic Units and  
Powerful Numbers in Recurrence Sequences  

It was shown in Theorem 111.4 (Mollin and Walsh [36]) that the 

existence of three consecutive powerful numbers is equivalent to the 

existence of a unit a + b..4i in a real quadratic field Q(-Ai), 

in 7 (mod 8), satisfying the conditions; 

1. b0 (mod m) 

2. a = x2y3 for some integers x, y and a even. 

In this section we take a closer look at these two conditions 

independently. 

The condition b a 0 (mod in) isof particular interest when 
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a + bAi is the fundamental unit 6m of  

When m is a prime p 1 (mod 4), Ankeny, Artin and Chowla [2] 

made the following conjecture. 

Conjecture IV.3. Let p be a prime p E 1 (mod 4) and 

6 = (T + U4) be the fundamental unit of Q(.F). Then 

UO (mod p). ci 

Mordell [40] was able to prove; 

Theorem IV.10. If p is a prime p 5 (mod 8), then the fundamental 

unit ep = (T + u4) satisfies U 0 (mod p) if and only if 

Bp-1 = 0 (mod i) where B is the Bernoulli number defined by 

4 

00 
nn  

  1 - + z (_1) fl-1 Bt2 
e t -1 n=1 (2n) 

Moreover, this is equivalent to 

p-i p-i 

the congruence 1 2 (p-i) 2 0 (mod p2). ci 

In [41], Nordell conjectured the similar result for primes 

P 3 (mod 4). That is, if T + U-ijD = 6 is the fundamental unit, then 

U 0 (mod p). He was able to prove; 

Theorem IV.11. If p is a prime p 3 (mod 4) and T + is the 

fundamental unit of Q(.,) then U a 0 (mod p) if and only if 

E_3 = 0 (mod p) where En is the n th Euler number defined by 

4 

Co Et2" 

sec t = Z (2n)! 
n=0 

ci 
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Chowla was then able to show that Theorem IV.10 holds for primes 

p 1 (mod 8). 

Slavutski [59] was able to generalize these results slightly by 

considering square-free positive integers of the form d = np with p 

a prime p > 3 and n a positive integer 1 < n < p. 

It would be of great interest if these techniques could be 

generalized to all square-free positive integers in, that is give 

necessary and sufficient conditions for the fundamental unit 

6m = - (T + U.Ai) to satisfy U 0 (mod in). 

Stephens and Williams [60] have recently shown that for in < 10e, 

the condition U a 0 (mod m) holds only if in c {46, 430, 1817, 58254, 

209991, 1752299, 3124318, 4099215}. In all of these cases, it can be 

shown that N(e.) = 1. This raises two questions: 

1. Are there infinitely many square-free positive integers in 

such that sm = - (T + tLA) satisfies U 0 (mod in)? 

2. Does there exist square-free positive in such that 

= - (T + U4) satisfies N(s) = -1 and U 0 (mod in)? 

These questions are very pertinent to (FLTI). After proving the 

following lemma, the connection between these types of fundamental unit 

and (FLTI) will he shown. 

Lemma IV.7. If a + b,4 isa unit in a real quadratic field Q(.i) 

and a = 2k for sone k > 2, then a + b,, = 6 the fundamental 

unit. 
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Proof. Since k > 1, it can be seen that m ±1 (mod 8), and so 

is of the form 6 = T + u4. Thus a + b.4i= (T + U.jfu)L = TL + 

for some integer £ > 1. By Theorem 1.14, £ is odd and 2k11T. This 

shows a = TL ≤ T. But certainly T ≤ TL since £ > 1, hence a = T 

and a+b.A= 4m. 0 

Theorem IV.12. If only finitely many real quadratic fields Q(,.4i) have 

fundamental units 6 of the form 2k + u-E with U 0 (mod rn), then 

(FLTI) holds for infinitely many primes p. 

Proof. As in the proof of Theorem IV.1, suppose (FLTI) fails for all 

primes p > p0 and set t = iT p(p - 1). Then for each n > 1 there 

P≤P0 

exist integers m and y with m square-free such that 

nt 

- 1 = m 3Y 2. Clearly t is even so that = 2 2 + is a 

unit in Q(,Aç). By the lemma, = and each m  is a distinct 

positive square-free integer. a 

It should be noted that in the list of fundamental units given by 

Stephens and Williams with U 0 (mod m), none of the rational parts, 

T, is of the form Thus there is no known example of a fundamental 

unit of the form 2 + U-4F with U a 0 (mod m). 

The second condition mentioned at the outset of this section is of 

great interest. Given that (T + US) = and 

1 n 1 
- (T + = Sm then when can Tn or - T be a powerful number. 

The question of when T or U can be a proper power has long been 
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studied. The most widely studied sequences in this regard are the 

Fibonacci and Lucas sequences {F1>i 

-(L +Fi5) = ( L (1 + ,T) ]n 
2 n 

and {L I 
n n>1 

defined by 

Cohn [8], [9] proved that the only perfect squares in the Fibonacci 

sequence are F1 = F2 = 1 and F12 = 144. Also he showed that the only 

perfect squares in the Lucas sequence are L1 = 1 and L3 = 4. 

London and Finkelstein [31] and Lagarias and Weisser [26] 

independently showed that F = F2 = 1 and F = 8 are the only cubes 

in the Fibonacci sequence, and that L1 = 1 is the only cube in the 

Lucas sequence. 

It is natural to ask whether F1 = F2 = 1, F6 = 8, and F12 = 144 

are the only Fibonacci numbers which are powerful numbers. Pethö (48] 

was able to prove the following result. Let r(p) be the smallest 

positive k such that plFk. 

Theorem IV.13. Suppose p is a prime and at least one of the following 

conditions hold; 

1. r(p) is not a prime power. 

2. Fr(p) = q 01 q% with distinct prime n > 2 

and 34x, 342 

3. r(p) is a power of 2, 3, 7, 13 or 17. 

Then the equation F = p2x3 is not solvable for any positive 

integers n or x. El 

In regard to this problem it should be noted that Carmichael [5] 

proved that if N # 1, 2, 6, 12 then N = r(p) for some prime p. 
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This can be found in [23] also. Moreover, if r(p 2) is the smallest 

positive integer k such that PZIFk, Williams [78] has shown that 

r(p) # r(p 2) for all primes p < 10 1. If one could prove that 

r(p) # r(p 2) for all primes p, then it follows immediately that Fn 

is never powerful unless n = 1, 2, 6 or 12. 

The more general question that one can raise here is: given a 

non-degenerate second order linear sequence, are there only finitely 

many powerful numbers in the sequence? In other words, given x0 and 

x and x 1 = ax + bXn_i for some given a,b is there a constant c 

depending on x0,x,a,b such that if x is powerful then n < c'? 

Shorey and Stewart [58] have shown that given such a sequence, the 

diophantine equation x = ed  with Idi > 1 and q > 2 must satisfy 

max{n, d,q} < c for some effectively computable constant c. 

In the special case of Fell's equation, wherein we study the 

sequences {T} and IU n 1, Cohn [10] has proved the following result 

on squares in these sequences. 

Theorem IV.14. Assume that d is a positive square-free integer such 

that the Fell equation x2 - dy2 = -4 is solvable in positive odd 

integers x and y. Then 

1. The equation x2 - dy 4 = 1 has only the solutions x = 9, 

d = 5. 

2. The equation x4 - dy2 = 1 is solvable for a finite number of 

values d, and for these values of d, only one solution 

exists. 
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3. The equation y2 - 4dx 4 = 1 has only the solution x = 6, 

d = 5. 

4. The equation y2 - dx 4 = -1 has at most one solution for 

any d. 

5. The equation 4x - dy 2 = -1 has only the solutions x = 1, 

d = 5 and x = 3, d = 13. 

6. The equation y2 - dx 4 = 4 has only the solutions x = 1, 12 

for d = 5 and at most one solution for d o 5. 

7. The equation y2 - dx 4 = -4 has at most one solution for 

any a. 

8. The equation x4 - dy 2 = -4 has at most one solution for 

d 0 5 and only the solutions x = 1,2 for d = 5. 13 

The assumptions of the above theorem are very restrictive. 

Firstly, d must be S (mod 8), and this is not sufficient for 

- dy2 = -4 to have solutions in odd integers, as the examples 

d = 37, 101 and 197 show. 

Zhenfu [77] proved the following analogue of Cohn's result. 

Theorem IV.15. If the Pell equation x2 - dy 2 = -1 is solvable then 

for n > 2, the diophantine equation x2 - dy2 = 1 is not 

solvable. a 

Thus Cohn and Zhenfu have shown that if N(6d) = -1 and 

n_i - 

£ (T +U/d), 
d 2 11 n 

then only a certain class of the numbers {T} or 

fun  can be squares or perfect powers. It would be of great interest 
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if similar results for powerful numbers could be obtained. More 

precisely, let x be any even powerful number. Write x2 - 1 = dy2 

with d square-free. Then x + yFd is a unit in Q(,/d), and in all 

known cases, x + y= 6d Is there an even powerful number x such 

that x + as obtained above, is not the fundamental unit? 

If one can prove that x + y.Jd is always the fundamental unit, 

then three consecutive powerful numbers always come from the fundamental 

unit T + UE in Theorem 111.4. Then if one can show that only 

finitely many square-free positive m exist for which U 0 (mod m), 

the problem of three consecutive powerful numbers would essentially be 

solved. Of course both of the steps seem very difficult at this point, 

but they are practically the only known avenues for solving this 

problem. 

Section 4. Results and Problems on Powerful Numbers  

Since Erdös and Szekeres [17] studied k-full numbers, there has 

been an extensive amount of study on this topic. 

Another topic of study has been the asymptotic density of powerful 

numbers. More precisely, the number of powerful numbers up to a given 

x > 0. For x > 0 it is clear that the number of squares up to x is 

[x112] where [x] represents the integer part of x. To obtain 

formulae for the asymptotic density of powerful numbers we first need to 

make some definitions. We refer to [19]. 

Definition. Let n be a positive integer and n = p1 e1 ek '•'k its 

canonical prime factorization. The Möbius function p(n) is defined by 
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Y (n) = 0 

= (1) k 

=1 

if e. > 1 for some 1 < i < k 
1 - - 

if e. = 1 for some 1 < i < k 
1 - - 

if n=1. 

The purpose of defining the Möbius function for the study of 

powerful numbers is given in the following discussion. 

It was proved in Proposition 111.1 that every powerful number can 

be uniquely written in the form n2m3 with m square-free. Thus every 

powerful number is uniquely determined by the form n2m3 with 

/4(m) i-• 0. 

00 

Definition. The Riemann zeta-function is defined by (s) = z n. 
n=1 

It is well known that c(s) converges for 1 < s < co, and that 

00 

Z ks) = 27 (1 - p S) l 

p k=0 p 

primes p. 

where the products extend over all 

We will prove that k(x) = (# of n2M3 < x p(m) 0 0) is 

1/2 (3/2)  
approximated by ex with c - . To show this, we first prove 

the following result, which can be found in [67, Theorem 1.2.7, p. 5]. 

'° 

Lemma IV.8.  11 (m)  -   

m=1 m S (2s) 

00 
Proof. An easy check shows   - Zr 1 + where the 

m=1 m p p 

product extends over all primes p. Thus we obtain 
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H 00 (1 - p_S ) l 

- if(1+p ) _ 
-2s 

P2 (m) -s 1-p  p  _(s)  
0 

m=1 m p p[1-p I if(1-p - ) 1 (2s) -s 2s 5 

p 

We now give a simple formula for k(x), as proved in (18]. 

00 

Proposition IV.2. k(x) = z p2 (m) ]112] [[X 

m=1 m3 

integer part of x. 0 

where [x] denotes the 

By Proposition IV.2, we see that k(x) can be approximated by 

° p2 (m) 112 
17, 3/2 

M= 1 m 

Theorem IV.16. The number of powerful numbers up to x > 0 is 

(3/2) 1/2 
approximately (3) x * 

002 

Proof. By Lemma IV. 2 (m)  -  (3/2)  
m=1 m 3/2 (3) 

k(x) = 

00 

2 
m=1 

and so 

1/2 00 2 
ri ] ] .. p (m)  x112 -  (3/2)  x112. 2 

3/2 (3) 
[[m 3 m=1 m 

The value of   is approximately 2.1732, and so one concludes 

that the number of non-square powerful numbers up to x will be greater 

than the number of squares, provided that x is large enough. 

Sharper estimates of k(x) have been given by Erdös and Szekeres 

(17], who showed that 

k(x) -  (3/2) x +0 1/2 (x113) 
4 (3) 

Later, Bateman [3] showed that 
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k(x) - (3/2)  x 1/2 + (3/2) 1/3 (x115) 
- (3) (2) +0 

Furthermore, it is known that if 

3/2) 1/2 (3/2) 1/3 
k(x) - X + (2) x + 0(x0) then 0 satisfies 

< e < . We refer to [25] and [53] for this. 

Improvements have been made on 

(x) = k(x)   x112  x'3 by Bateman and Grosswald [4], 

and Suryanarayana and Sitaramachandra Rao [65], but the proofs are too 

complicated for our discussion. 

Suryanarayana [64] has introduced the idea of generalized powerful 

numbers. He defines Rab to be the set of positive integers 

fl k ek satisfying e i = 0 or a (mod b). Clearly R23 is the 

set of powerful numbers. He has shown that Rab(X)I the number of 

integers in Rab up to x satisfies the approximation 

-  (b/a)  1/a c(a/b) 1/b 
Rab(X) (2b/a) x + (2) x + A(x) 

where (x) is an error term depending on a and b. 

Again it is beyond the scope of our discussion to include any of 

his proofs here. 

Golomb [19] defined a function similar to the Riemann 

00 
zeta-function, defined by F(s) = ir ( z p 5) = ir 1 +   

p k=0 P p5 (p5 i) 
k#i 

I-
Note that in the product-sum formula for F(s), we have the Riemann 

zeta-function without the second term in each sum. A trivial check 
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shows that F(s) = Z r 5 where k is the set of powerful numbers. 
r €k 

Although '(s) is defined for 1 < s < co, it is easy to see that F(1) 

is defined and moreover F(s) converges for L < s < 00• 

Proposition IV.3. F(s) converges for L < s < co. 

00 00 
-2s -3s 

Proof. F(s) can be written as z n 2 p2 (m) m 
n=1 I m=1 

00 F, (s) = z n 2 converges for L < s < o and F2 (s), = Z 
n=1 n=1 

converges for 1 < s < 00• Thus their product F.F 2 (s) converges for 

1 
2< s < oo. Clearly F(s) < F • F2(s), and so F(s) converges for 

< s < oo It is clear that F[ L ] diverges since F[ L ] = 

-1/2 -1/2 1 Zr >2 r = GO Z  
rEk r=n 2 n=1 

F(1) can be calculated exactly since 

00 -2 00 

F(1) = [i ] [ mi P2(m)m n 3] = (2) •   by Lemma IV.8. It is 

well known that (2) = - and '(6) -  thus 
945 

1 
2 

F(1) - 315-  (3) 1.9435 is the sum of the reciprocals of the powerful 
2 

numbers. 

Shiu [57] has studied the number of powerful numbers between 

successive squares. Let f(n) be the number of powerful numbers 

strictly between n2 and (n + 1)2. Let Fm = In : f(n) = m}. Let d 

be the asymptotic density of Fmr more precisely 
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d = urn In ≤ x ; f(n) ml  m x • Shiu was able to give the following 

formulae for d. 

00 

Theorem IV.17. d (1) L (m + ii!  
m MI L.I C+, where Co = 1 and 

p2(b0) ... p2(b) 
C= z 
r 1(b <<b (b .b )312 and b0 < b1 ... are the square-free 

... 
0 r 0" r 

positive integers. 0 

Shiu gives approximate values for dm for m ≤ 5. They are 

do = 0.2759 ... d = 0.3955 ... d2 = 0.2312 ... a3 = 0.0770 

d4 = 0.0170 ... ds = 0.0027 

As an application, since d0 > 0 one can conclude that infinitely 

many integers n exist for which no powerful numbers lie strictly 

between n2 and (n + 1) 2. In a sense this contradicts the fact 

obtained earlier, that the number of non-square powerful numbers up to 

x will exceed the number of squares, for large x. 

Another topic of inquiry concerning powerful numbers has been 

powerful numbers in arithmetic progression. This topic has been less 

studied and there are still many unsolved problems in the area. Most of 

the unsolved problems were first given by Erdös and then restated by Guy 

in [22]. 

In particular, Erdös first asked what is the largest integer r 

such that r powerful numbers are in arithmetic progression? If no GCD 

conditions are imposed, then it is easy to see that r is unbounded. 

Erdös tacitly assumed that consecutive powerful numbers in the 
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progression are relatively prime. 

It is easy to show that infinitely many triples of powerful numbers 

in arithmetic progression exist. In fact if n = 4(m 3L - £.3rn) for some 

integers rn > £ GCD(rn,L) = 1, then ((2mL + m2 - L2)2, (m 2 + 

(2rnL + 42 - rn2)2) are squares differing by n. 

The question one raises at this point is for which n do there 

exist three powerful numbers in arithmetic progression differing by n. 

The following theorem is similar to Theorem 111.4. 

£2) 2 

Theorem IV.18. There exist three powerful numbers in arithmetic 

progression differing by n if and only if the equation x2 - dy 2 = n2 

is solvable in positive integers x,y,d with d square-free, x a 

powerful number, GCD(x,n) = 1, x 4 n (mod 2), and y 0 (mod d). 

Proof. Suppose P,P 2,P 3 are powerful numbers satisfying 

- i-1 
= n and GCD(P1 1P1_1) = 1 for i = 2,3. Let x = P. and 

= y 2 d with d square-free. Then clearly x2 - dy 2 = n2, 

GCD(x,n) = 1, y a 0 (mod d), and x is a powerful number. 

If x - n is even, then so is x + n. Since x - n and x + n 

are powerful, they are both divisible by 4, so that their sum 2x is 

divisible by 4. Thus x is even contradicting GCD(P1 P_1) = 1 for 

i = 2,3. 

Conversely, if x2 - dy 2 = n2 is solvable with all those 

conditions listed, then (x - n) (x + n) = y2d = [ - ] d3 is powerful. 

Since GCD(x,n) = 1 and x n (mod 2), it follows that 

GCD(x - n, x + n) = 1 so that both x - n and x + n are powerful. 
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Thus x - n, x, x + n are three powerful numbers in arithmetic 

progression. El 

It was conjectured that no triples of powerful numbers in 

arithmetic progression exist for n = 1. We further conjecture that 

infinitely many n do not have solutions, and for those n which have 

solutions, only finitely many exist. There are no known examples of 

four powerful numbers in arithmetic progression, although this certainly 

does not preclude the non-existence of such quadruples. 

It is of interest to consider when powerful numbers exist in an 

arbitrary arithmetic progression. That is, when is the congruence 

x 2 y 3 = a (mod b) solvable. This is completely solved in the following 

result. 

Theorem 111.19. The congruence x2y3 a a (mod b) has either no 

solutions or infinitely many. It is solvable if and only if for every 

prime p such that pjja, we have p4b. 

Proof. Suppose x2y3 a (mod b) and a prime p exists for which pita 

and p2 lb. Write a = k1p with GCD(k 1,p) = 1 and b = k2p2. Then 

x2y3 = p[k 1 + ck 2p], and GCD(k L + ck 2p,p) = 1. Thus pl(x2y3, which 

is a contradiction. 

Conversely, write a = A1A2A3 where GCD(A,b) = 1, if ptA2 

then pita and pflb, and pjA 3 implies p2IGCD(a,b). By our 

assumption, a can be written this way. Note that A. is powerful and 

A2 is square-free. Since GCD(A 1,b) = 1, there exists a solution to 

A,X E 1 (mod b). Write A2 = 1k with p distinct primes. Let 
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= for 1 ≤ i ≤ k. By the definition of A2, GCD(b,P) = 1 for 
Pi 

1 ≤ ± ≤ k, so let Qi be a solution to Qipi E 1 (mod bk). It follows 

k 
and so P = ( IT Q. 2p. 3)(AX) 2A1A3 

i=1 
that 2p1 p (mod b), 

PixAiA3 = A2A1A = a (mod b), and P is powerful. Infinitely many 

solutions exist since infinitely many choices exist for X and the Q.,, 

1<±<k. a 

Erdös considered k-full numbers U, < U2 C.. , and made the 

following conjectures. 

Conjecture IV.4. 

1. There exist infinitely many triples of U. in arithmetic 

progression. 

2. There do not exist triples of U in arithmetic 

progression. 

3. There are no consecutive u1 3' numbers, 

i.e. U - U  = 1 is not solvable. 

We remark that no example of a triple of U (3) in arithmetic 

progression is known. Furthermore, Conjecture IV.4.3 can be 

strengthened. 

Conjecture IV5. The only solutions to the equation U - = ±1 

are 23,32 and 233,39 2.23. 

The last topic of study on powerful numbers is sums of powerful 

numbers. It is well known that every integer is the sum of four 
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squares, and hence the sum of four powerful numbers. It was conjectured 

by Erdös that every sufficiently large integer is the sum of three 

powerful numbers. In fact, Mollin and Walsh [36] conjectured that only 

7, 15, 23, 87, 111, 119 are not representable as a sum of three 

powerful numbers. Subbarao (unpublished) has produced a table for 

integers n, up to io, giving the number of ways that n can be 

written as a sum of three powerful numbers. From the table, one could 

conjecture that the number of representations of n as a sum of three 

powerful numbers tends to infinity as n gets large. 

Heath-Brown [24] has recently proved the following unpublished 

result, and we thank him for allowing us to give an outline of his 

proof. 

Theorem IV.20. There is an effectively computable constant no such 

that n ≥ no is a sum of at most 3 squareful numbers. 

Outline of Proof. It is well-known, see Mordell [42, p. 175, p. 178] 

that if n 0 4t(8k + 7), then n is expressible as a sum of three 

squares. Furthermore, if n = 4t(sk + 7) with t > 1, then n is 

expressible as n = x2 + y2 + 2z 2 with 2Jz. Thus it is left only to 

consider those positive integers n 7 (mod 8). It is then shown that 

for sufficiently large n, the equation pn = x2 + y2 + p4z2 is 

solvable in integers x, y and z with p a prime and p M 5 (mod 8). 

It follows that px2+y2 and so from Gaussian arithmetic p1(x2 + y2) 

is a sum of two squares, z2 + w2. It follows that 

n = z2 + w2 + p3z2. 13 
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Heath-Brown conjectures that every sufficiently large integer is 

expressible as n = x2 + y2 + 5z 2, and more generally, it would seem 

that for a given prime p a 5 (mod 8) there is an n(p) such that if 

n > n(p) then n = x2 + y2 + p3z2 for some integers x, y and z. 

This would show that the number of representations of n as a sum of 

three powerful numbers tends to infinity as n gets large. 

It is also of interest to find out which integers are the sum of 

two powerful numbers. It is known that if n has no prime factor 

p 3 (mod 4) to an odd exponent in its canonical prime factorization, 

then n is a sum of two squares, hence the sum of two powerful numbers. 

For other n, the problem seems very difficult. 

Even when considering which primes p E 3 (mod 4) are the sum of 

two powerful numbers, there is no known method. The only known result 

in this direction comes from Gauss. If p is a prime, p 1 (mod 3), 

and the congruence x3 2 (mod p) is solvable, then p = x2 + 27y2 

for some integers x and y. There is more discussion on sums of 

powerful numbers in Mollin and Walsh [36]. 

We conclude this section with some more conjectures of Erdös. 

Conjecture IV.6. 

1. The equation U + = UK3 has infinitely many 

solutions. 

2. The equation U + = 

solutions. 

has only finitely many 
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3. For k > 4 the equation u. (k) + u. (k) + + (k) = 

- 1 12 

(k) 
U. has only finitely many solutions. 
'k-i  
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