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ABSTRACT

This thesis constitutes a study of the Pell Egquation, Powerful
Numbers, and their relation to Fermat's Last Theorem. The first chapter
is a study of the Pell equations x? - dy®? = +1, and a description of
their solutions. In particular, the solvability of x? - dy2 = -1 1is
considered, as well as a study of certain divisibility properties of the
integers (x,y) which are solutions to these Pell equations. Chapter 2
is a study of the more general Pell equation x? - dy? = n where n is
any non-zero integer. A link between the factorization of the
fundamental unit and ambiguous classes of solutions to x® - dy®* = n is
also discussed. Chapter 3 is a study of differences of powerfﬁl
nunbers. It is shown that every integer is the proper difference of
non-square powerful numbers in infinitely many ways. The fourth and
last chapter is a survey style essay on many results involving powerful
numbers. In particular, new results are obhtained giving connections
between powerful numbers and Fermat's Last Theorem. As well, formulae
for the distribution of powerful numbers, powerful numbers in arithmetic

progression, and sums of powerful numbers are discussed.
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CHAPTER ONE

Section 1 The Pell Equation —-- A Brief History

The indeterminate equation x2 - Ay?2 =1, where A is not a
perfect square, is known as Pell's Equation, or the Pell Equation, named
after the seventeenth century mathematician John Pell. There has been a
long-standing controversy concerning the title of the equation, as many
feel that John Pell had little to do with the equation. The consensus,
as documented in Whitford's "The Pell Equation" [76], is that Euler must
have confused the contributions of Pell and those of Lord Brouncker, in
his reading of Wallis's algebra; and hence misnamed the equation.

Nevertheless, mathematicians have not failed to recognize the
contributions in this regard of Fermat, Brouncker, Wallis, Gauss,
Lagrange, and many others.

The history of the equation goes as far back as the ancient
Egyptian and Babylonian eras. Solutions to the Pell Equation are
closely related to primitive methods of approximating a square root, and
it is this connection which dates the equation to as far back as four
thousand years ago.

According to Whitford, the first traces of this connection are
found in the dimensions of ancient structures, such as the Pyramids. For
example, in the King's Chamber, in the pyramid of Cheops, the ratio of
the height to its breadth is about 1.117, or about .5/2, which is very
close to half the ratio =x/y of solutions to =x2 - 5y% = 1. A better
example is found in the temple of Acropolis, where the ratio 17/12

occurs quite often in the architectural structure. It is more than a



curiosity that x =17, vy = 12 is a solution to =x? - 2y% = 1.

The Ancient Greeks also had a hand in the history of the Pell
Equation. In particular, Pythagoras had an affection for approximations
of square roots. As well, Diophantus showed how to obtain infinitely
many solutions to a Pell Equation from a given one.

It is also known that the Hindus had also contributed to the
subject, although many feel their work depended greatly on the work of
the Greeks.

Along with the Hindus, during the time period 650 A.D. to 1200
A.D., the Arabs made some contributions to the history of the equation.
However it wasn't until the early modern era, about 1600 A.D., that the
equation was studied algebraically. Also, some associated equations
were studied, such as x2 - Ay? = -1, x? -~ Ay? = +4, x® -~ Ay? = ¢, and
mx? - ny? = +1.

Lord Brouncker was the first known to give an algorithm yielding
the fundamental solution to =x2? - Ay® = 1; i.e., the solution from
which all others are derived. His procedure may have been the
beginnings of what is now known as the continued fraction algorithm.

Euler showed how square values of quadratic polynomials are
directly related to Pell's equation via linear transformations,
generalizing the work of Brouncker. At this point though, no general
proof had been given to show that there are always solutions to
X2 - Ay? = 1 for every non-square positive integer A.

Finally in 1766, Lagrange solved the problem, and Gauss [18] was
quick to proclaim, "The treatise of Lagrange grasps the problem in its

entire generality and in this connection leaves nothing to be desired."



Liagrange also gave necessary conditions for the solvability of
x% -~ Ay? = -1, and generalized his existence proof to the equation
x? - Ay® = B.

Gauss transformed the problem by a method of substitutions, thereby
avoiding the use of continued fractions. Dirichlet extended Gauss's
work on the method of substitutions, now known as the theory of
Quadratic Forms. He also studied the solvability of x2? - MNy? = -1 in
terms of solvability of the related equations Mx? - Ny? = 1,2.
Dirichlet also showed that integer powers of the fundamental solution
yield all solutions to =x2 - Ay? = +1.

Euler calculated the fundamental solutions of x? - Ay2 =1 for A
between 2 and 99 in 1770. Many tables have been calculated since
then, and our supercomputers now can calculate the fundamental solution
to x? - Ay® = +1 for astronomically large A.

Although it is known that x® - Ay® = 1 always has a solution for
non-square positive integers A, the equation x® - Ay® = -1 remains
somevhat of a mystery. The problem of classifying all such integers A
in terms of the arithmetic of the quadratic field Q(+A) .remains an
unsolved problem to this day. Many necessary, and many sufficient
conditions have been given. For example, A cannot be divisible by any
prime of the form 4k + 3. But the unsolvability of x2 -~ 34y2 = -1
shows that this condition is not sufficient. Trotter [68], has given
necessary and sufficient conditions in terms of the solvability of a
related diophantine equation, cited earlier in our discussion of
Dirichlet.

There are other related diophantine equations. For example, Cohn



[10] has studied x4 - Ayz = +1, +4 and x2 - Ay4 = +1, +4. The

solvability of these two equations is related to certain divisibility
properties of solutions (x,y) to x2% - Ay? = +1. Lucas [32] and Lehnmer
[29] developed the well known "Lucas-Lehmer Theory"”, which laid the
groundwork for any further study in this directionm.

Recently, the equation has taken on some new directions. Cohn [7]
has studied the equation e? - 6% = 4i with e, &,  being Gaussian
integers.

For a more complete history of the subject, the reader can refer to

either Whitford [76] or Dickson [14, Ch. 17].

Section 2 Units in Quadratic Fields

Let d be a square-free integer. The field Q(J/A) is called a
quadratic extension of the rational field Q, or simply a Quadratic-
Field over Q, and consists of elements of the form a + b/ where a

and b are rational numbers. If d is positive, Q(JA) is a real

quadratic field, otherwise it is a complex quadratic field.

Let o be any complex number. If there exists a monic polynomial,

p(x) = "+ a xn"1 +...+ a,, with a, ez for i=20,...,n~1, such
n-1 i

that p(«x) 0, then o 1is called an algebraic integer. The set of all

algebraic integers is denoted by 4.

= 4N Q(/4), then it is easy to see that e, is a ring,

Let ¢© d

d
called the ring of integers of Q(A).

Theorem I.1. If d 1is a square-free integer then



8y = z[J/A] if d =2, 3 (mod 4)

14+ .4

5 ] ifd=1 (mod 4).

2l

Probf. See Samuel [55, Theorem 1, p. 35].
The ring 9d will generally be the setting for our study.

By Theorem I.1l, any element o € ed will be of the fornm

= 3—%4E£i for some a,b € 2z satisfying a = b (mod 2). When
d =2,3 (mod 4), a and b are always even, by Theorem I.1.
Given « = a-;-_chT €6, let o= 3—%-1)—’@—. & is called the

algebraic conjugate of «. It is easily verified that for any

o p €8y, oef = cep. Now define a function N: 6, »2 by

df
N(a) = aex. N is called the Norm function, and N(a) is called the
2 . 2
Norm of «. For « = E—%—Eﬁi . then N(«) = E——ETELEL It can be
checked that for any «,f € 64, N(aep) = N(a)eN(g).
Given «,B € 8qr Ve say « divides g if g-e 8q- An elenment

x €8y is a unit if « divides 1.
Proposition I.1. For a € 8qr & is a unit if and only if N(a) = +1.
Proof. See Samuel [55, Prop. 1., p. 60]. ]

The set of units in 84 is denoted by %d’ and clearly forms a

group. For negative d we have:

Theorem I.2. Let d be a square-free negative integer, then



J {+1} - if 4 # -1, -3
Uy = {+1,+1 } if 4= -1
l {11,3—“—1-—’2—’—4—"—3-} if a = -3
Proof. See Samuel [55, Prop. 1, p. 62] o

Theorem I.2 tells us that for complex quadratic fields, the group
of units is uninteresting. Therefore we consider only square-free

positive d henceforth.

Let « = §~%~Eﬁ§- be a unit other than +1. Then -«, ofl, —afl
are also units, and these foﬁr elements are precisely :3~%-Ei@-. It is

easy to see that exactly one of these four elements is greater than one,

namely the element JEJ—%%—Elhéi

. ¥We have proved:

Proposition I.2. A unit o« = E—iﬁhig- satisfies o« > 1 if and only if

a>0and b > 0. o

Units of this type will be called completely positive units, and
throughout this chapter, we will be primarily concerned with these.

Another important fact about units is given in the following result.
Proposition I.3. Let « = 2—%—23@- and B8 = §-§—Xﬁ@- be completely

positive units, then « < g if and only if a < x.

Proof. Since o and S are units, we have that a® - db® = +4 and

X% - dy® = +4. It follows that one of the three equations

(i) =x2 - a% = d(y? - b?)



1}

(ii) =x2? - a%? = d(y® - b2) - 8

(iii) =x% - a® = d(y? - b?) + 8 must hold.

Assume o < 8 and a » x, then b <y mnust hold. In this case (i)
implies vy < b, a contradiction. (ii) implies O < d(y® - b?) ¢ 8,
hence d =y =2 and b =1, and so x® - a%? = -2 which is not
possible. (iii) implies 0 > x? - a%? = d(y® - b?) + 8 > 0, again a
contradiction. Conversely assume a < x and « > 8, then b >y must
hold. In this case (i) implies y > b, a contradiction. (ii) implies
y > b also, which is a contradiction. (iii) implies

0 < d(b® - y2) <8, hence d=b=2 and y =1, f£forcing

X% - a? = 2, vwhich is not possible. ]

From Proposition I.3, it follows that the completely positive units

are linearly ordered by their rational parts. Given a square-free

positive integer d, let €3 = I.%.Hﬁ@: be the completely positive unit
in ed with smallest possible T. Then €3 is called the Fundamental
Unit of ed . and by an abuse of language, is sometimes called the

Fundamental Unit of Q(./4).

We still haven't proved the existence of units other than +1 in
ed for d& > 0, but it is worth noting that the existence of units
other than +1 in ed is tantamount to the existence of completely
positive units in o

ar {(and hence the existence of ed). We pursue this

in the next section.



Section 3 Solution to Pell's Eguation -~ The Fundamental Unit

When considering the Pell equations

xz - dyz il (1)

%2 - dy? = +4 (2)

for positive non-square integers d, it suffices to consider those 4
which are square-free, since we can pull all square factors of d into
V.

The solutions (41,0) to equation (1) and (+2,0) to equation (2)
will be considered trivial solutions. The existence of non-trivial
solutions to (1) and (2) is equivalent to the existence of €q- We
state the following theorem, first proved by Lagrange (e.g. see [42,

p. 531).

Theorem I.3. For any positive square-free integer 4, €3 exists.

Moreover U, = {iedn : n €2}, and all completely positive units are

d
of the form edk with k > 1.

In general, €3 will be of the form €3 = EL%%lkéi for some

positive integers T and U. VWhen d 25 (mod 8), T and U are even

(see [47, Theorem 3.10]), so that e takes on the form a + b /d with

d

a and b positive integers. When d =5 (mod 8), T and U may or

may not be even.

Propogition I.4. Let €q = !L%%jhéi . If T and ‘U are odd, then
T UkJ&' '
d =5 (mod 8). Let &g =—5 then if T and U are odd, Tk



and U, are even if and only if 3]k.

k

Proof. See Samuel [55, p. 64]. o

Proposition I.4 will be useful in later sections since it shows

that the subgroup wa = {ied3k : k e z2) of Uy contains all the units

of 6, which are of the form a + bJ/d with a,b €2, when T and U

4
1t A while e53 =2+ .5 . For

are odd. For example, e5 5 ‘

4 = 37, ed = 6 + /37 showing that T and U may be even when
d =5 (mod 8).
T, + UkJE
In general, units are of the form +( 5 } as described in

Proposition I.4, and (Tk’Uk) is a solution to equation (2). When Tk
Ty Y
and Uk are even, then 5 ¢ Ty is a solution to equation (1).

By the multiplicativity of the norm function, it can be seen that
if N(ed) =1, then all units in %y have norm 1. Therefore the
equations x% - dy® = -1,-4 are not solvable. It is a long-standing
problem to classify those d for which N(ed) = -1 in terms of the
arithmetic of the underlying field, Q(J/d). We shall study this in more

detail in the next section. For now we state the following easy result.

Theorem I.5. If N(ed) = 1 , then all units in wa have norm one,
hence the eguations x? - dy? = -1, -4 are not solvable. If

N(ed) = -1 , then all solutions to the equations x% - dy? = -1, -4

come from the set of units {ied2k+; + k ezl ., and all solutions to

the equations x2 - dy2 = 1,4 come from the set of units



10

{+ed2k i k ez}, x|

For example, N(ej) = N(2 + B) =22 - 123 =4 -3 =1, so that
X2 - 3y2 = -1 is not solvable. But N(ep) = N(1 + 2) = 12 - 122 =
1 -2=+-1 sgso that the equation x*® - 2y® = -1 is solvable and has in
fact infinitely many solutions, all coming from the units +(1 + v§32k+1
with k € Z. Theorem I.5 and Proposition I.4 give some insight into the
problem of finding solutions to the equation =x® - dy?® = 1. For
example, if d = 13, we may have to search quite a while to find

integers x and y that satisfy =x% - 13y? = 1. 1Instead, we merely

apply these two theorems in the following way. Since 3% - 13 = -4, we
have that « = 3;— /13 is a unit in 6,, and N(«) = -1. By

Proposition I.4, «® is of the form «® = a + b/I3 with a,b € 2. In
fact «® = 18 + 5.,13. By Theorem I.5, N(azk) =1 for k € 2, so that
N(a) = 1. Since «f = (a®)% = (18 + 5.,03)2 = 649 + 180,13, it follows
that (649)2% -~ (180)2e13 = 1. So we have found integer solutions to
X% ~ 13y2 = 1 with a minimal amount of work. Trying to find this
solution by trial and error may have been exhausting.

There are algorithms to find the fundamental unit of a quadratic
field. The most elementary of these is to write the numbers dy? for
y > 1. Letting v, be the first number for which dy,? differs from a
square, x,2, by 1 or 4 yields the fundamental unit x, + y,/d or

x, + Y:.«/a-
— respectively. For example, if d = 7 we obtain Tel2, Te22,

732, and 732 differs from 82 by 1, so that 8 + 3./ is the
fundamental unit of Q(J/7). Using the theory of continued fracfions,

there are much faster techniques for finding the fundamental unit. It
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is not our intention to include this in the scope of our discussion. We
merely mention it as a point of interest.
Before proceeding to the next section, we prove the following
proposition which will be used later.
n_nt Unvﬁ-
Propogition I.5. Let n > 1 and €q =~ — 3 - Assume that

(n,d) # (1,2), (1,5), or (2,5). Then

2. T > T, for n > 1.

3. Uu_»>u, for n > 1.

Proof. 1. If N(e 1, then Tn2 = Unzd + 4 Unz, so the result

d)
holds. Assume N(ed)

-1 and that U, 2T, Then Un2 > Tn2 =

dUn2 -4 Un2 - 4 forcing 0 Un2 - Tn2 ¢ 4. Since T, and U, are

of the same parity, it follows that Tn = Un' In this case, it follows

that -4 = Tn2 - Tnzd = Tnz[l—d], or equivalently, 4 - Tnz[d-l]. This
gives Tn =2, d=2 or Tn =1, d=5, hence (n,d) = (1,2) or

(n,d) = (1,5) contrary to our hypothesis.

2. This is precisely the result of Proposition I.3.

T, + U, T, + U,/ 1% T, + T,U.A
3. From the relation = | — =

2 2 - 2 !
we have that U, = T,U, > U, unless T, =1 , in which case d =5
and (n,d) = (2,5). In this case, U, =2 > U, = 1. Proceeding by

+ U A

From the relation ntl”"

induction, assume Un > Ul'
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T + U A 2T .. + (T,U_+ T U )&
P'; Uvﬁ'][ n - n ] I ; i1n nl , it follows that

Un + TnUl S Tlun + UnUI , 4 Un + UnU
“ 2 -

2

_h
n+l 2

1 1

U >U > Uu.. n}

= Unul = n 1

Section 4 Criteria for the Solvability of x2 - dy2 = -1,-4

As seen in Section 3, the equations

xz - dyz -1 (1)

xz -~ dyz -4 (2)

may not have solutions for a given square-free positive integer 4,

while the equations

|
[y

X% - dy? = (3)

i
N

x2 - dy? (4)

always have solutions.

The solvability of equations (1) and (2) is equivalent to
N(ed) = -1, In this section we will give some necessary and some
sufficient conditions for N(ed) = ~1, the first of which is given in

the following result.

Theorem I.6. If N(ed) = -1, then d has no prime factor of the fornm
4k + 3.
Proof. Let €q = ELié;&éi with N(ed) = -1, Then T2 - U%d = -4 so

that, for any odd prime divisor p of d, T2 = ~4 (mod p). This

. -4 4 -1 -1
h 1 = —— = —_— — = —_— .
congruence shows [ 5 ] [ D ][ 5 ] [ b ] hence
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p =1 (mod 4). o

Note that the converse of Theorem I.6 is false. A counterexample
is d = 34; 34 has no prime factor of the form 4k + 3, but
N{eg,) = N(35 + 6.34) = 1.

Trotter [68] has given necessary and sufficient conditions for
N(ed) = -1 in terms of solvability of another closely related

diophantine equation. We generalize Trotter's result and give an

arithmetical proof of his result as a corollary in what follows.

Theorem I.7. Let d = 25d' with 6 € {0,1} and d' an odd positive
square-free integer.' Then N(ed) =1 1if and only if one of the two

following conditions hold:;

1. €3 = 72 where r = Ez@l%.!béi for some integers a,b > 0 and
r,s > 1 such that Ja®r - b®s| =4 and d = rs.

2. e4 = 72/2 where 7 = aJ/r + bJ/s for some positive integers
a,b,r,s such that |a®r - b®s| =2 and d = rs.

Proof. It is easy to verify that if conditions (1) or (2) hold, then

N(e

d) 1. For the converse we have several cases. First note that

T + U
2

N(ed) 1 implies T > 2 where e, = , for if T =1, then

d

, i.e., 4= -3, a contradiction;

1= e - [ LA ) - Lo

2 4

: l.e.,

- 2
vhereas if T =2 then 1 = N(ed) = N[ g—i;lhéi ] = gL'ingL'

4
d =0, a contradiction. Henceforth assume T > 2.

Case 1. 6 =0, T odd.

Since T2 - 4 = U%d = (T-2)(T+2) and GCD(T-2,T+2) =1, it
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follows that T - 2 = A%r and T + 2 = B2s for some positive integers
A,B,xr,s, withAB=U and d=1rs. If r=1, then d =s and so
A2 - B2d = -4 contradicting N(ed) =1, If s=1, then d=r so

B + AJA

that B® - A24 = 4 and 5 is a completely positive unit

T + U
2

with T minimal, it follows that T =B and U = A. Since U = AB

satisfying B < U ¢ T. Since is the completely positive unit

from above, it follows that T = B = 1 contradicting T > 2. Thus

_ ALK + B
2

s> 1 holds and 7 can be seen to satisfy condition (1).

Cagse 2. 6=0, T =0 (mod 4).

In this case GCD(T-2,T+2) = 2 and so from (T-2)(T+2) = U?d we
obtain positive integers A,B,r,s such that T - 2 = 2A%r and
T+ 2 =2B% with U=2AB and d =rs. So Zﬁzs ~ 23%r = 4 holds,
and hence B2s - A®%r = 2. Setting 7 = A/ + BJs, 7 satisfies

condition (2).

Case 3. =0, T =2 (mod 4).

In this case, GCD(T-2,T+2) = 4 and from (T-2)(T+2) = Ud we
obtain positive integers A,B,r,s such that T - 2 = (2A)%r and
T+ 2= (2B)%s with U = 4AB and d = rs. Therefore, (2B)?s -

T=2AJF+zBJs‘=

(28)%r = 4 and by the same reasoning as case (1), 5

A/ + BJ/E can be seen to satisfy condition (1).

Case 4. & = 1.

In this case T? - 4 = U%d with d even, forcing both T and U

to be even. Thus T2 = 4 (mod 8), forcing T = 2 (mod 4). So
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GCD(T-2,T+2) = 4 and from (T-2)(T+2) = U2d , we have positive

integers A,B,r,s such that T - 2 = (2A)226r and (T + 2) =

(2B)221_es where U = 4AB, 4@ = 2rs, and e

0 or 1. This gives

(2B)221—es - (ZA)zser = 4, and again by the same reasoning as case 1,

€ 1-¢e
T = ZAJZ r ; ZBJZ 8 satisfies condition (1). o

From Theorem I.7 we obtain a useful set of corollaries. Among them

is the following theorem proved by Trotter.

Corollary I.1. Let d = 2%' with & e {0,1} and d' =1 (mod 4)
positive and square-free. Then N(ed) =1 if and only if d admits a
non-trivial factorization, d = rs, such that |a2r - b%s| =4 is

solvable.

Proof. If d admits such a factorization, it can be seen that

N(ed) = 1. Now assume N(ed) =1 with & as above. Note that we are
trying to prove that condition (1) of Theorem I.7 holds. The only case
for which condition (2) held in the proof of Theorem I.7 was the case

=0 and T =0 (mod 4). In this case, L and U are even, and

2
T )2 U 2
d =4' is odd. Thus [ 2—] - [ 5-] d* = 1, and hence
U 13 T 1%

[-Z-]d'= [—2-] ~1=0-1=3 (nod 4). It follows at once that
d* =3 (mod 4), contradicting our assumption that
d* =1 (mod 4). O

By Theorem I.6, classifying positive square~free integers 4 for
which N(ed) = -1, requires only considering those d for which the

odd prime factors are all of the form 4k + 1. Therefore in Corollary
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I.1 we could have replaced the condition d* =1 (mod 4) by the
condition that d*' is a product of primes of the form 4k + 1. For
those 4* which are divisible by primes of the form 4k + 3 we

actually have the following result.

Corollary I.2. Let d = 2°d* with & e {0,1} and d* =1 (mod 4)
positive, square-free, and divisible by a prime p = 3 (mod 4). Then d
admits a non-trivial factorization d = rs such that the equation

rx® -~ sy? = +4 is solvable.

Proof. By Theorem I.6, N(ed) = 1, and by Corollary I.l the result

follows. o

A special case of Corollary I.2 is given in the following result,

which we isolate as a motivating result.

Corollary I.3. Let p=¢ =3 (mod 4) be distinct primes. Then

px® - qy% = +4 1is solvable. o

This corollary sparks an interest in the more general equations
mx? - ny® = +4,+1 withm and n square-free positive integers. We
study this in more detail in the next chapter.

Another immediate consequence of Corollary I.1 is the following

well-known theorem.
Theorem I.8. If p =1 (mod 4) is prime, then N(ep) = -1,

Proof. Since p admits no non-trivial factorization p = rs,

condition (1) of Theorem I.7 can't hold, and hence N(ep) = ~1. x|
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Another consequence of Corollary I.1 is the following result which

is a sufficient condition for N(ed) = -1.

Theorem I.9. Let d = 25d' with 6 € {0,1} and d* a product of
primes of the form 4k + 1. If d has no non-trivial factorization
d = rs such that r and s are quadratic residues of each other, then

N(ed) = =1,

Proof. If N(ed) = 1, then by Corollary I.1, d=1rs with r > 1,
s >1 for some r and s such that a®r - b?s = +4 1is solvable. If

a and b are odd, it follows at once that they are quadratic residues

2 2
of each other. If a and b are even, then [ %-] r - [ %-] s = +1 is

solvable. From the form of the prime factors of r and s, it follows

immediately that r and 8 are guadratic residues of each other. |
As a special case -of the above we have the following result.

Corollary T.4. If p =5 (mod 8) is prime, then N(ezp) = -1,

Proof. Since [ %-] = ~1, d = 2p has no factorization as described in
Theorem I.9. Thus N(ezp) = 1. o

For example d = 10 = 2¢5 satisfies N(e;) = N(3 + JL0) = -1.
However if d = 82 = 412, then [ é%-] = [ Z%'] = 1, whereas
N(esz) = N(9 + JB2) = -1. This shows that Theorem I.9 gives only

sufficient but not necessary conditions for N(ed) = -1,



18

Section 5 Divisibility Properties of Solutions to Pell's Equation
Tn + UnJ&‘

_ T+ UM -
Let ed = 5 ‘ qa - 5
the sequences {Tn}nez and {Un}nez‘

Un = 0. Also, T_n = iTn and U__n = iUn holds for n ) 1. Thus,

and e for n e¢ 2. Consider

For n =0 we have 'I'n = 2 and

consider instead the sequences {T_} which we will

n'nl
denote by {Tn} and {Un}. These two sequences have been studied in

and {Un}n21 ,

great detail, e.g. see [23], [29], and the theory of these two sequences

has been generalized to the theory of second order linearly recurrent
sequences, and Lucas-Lehmer Theory.

A second order linearly recurrent sequence is a sequence {Wn}n>1

which satisfies the linearly recurrence relation Wn+2 = awn+1 + an

for some a,b € 2, such that no integer ¢ exists for which

') = an for all n > 1. We will see that the sequences {Tn} and

n+l
{Un} satisfy these criteria.

In Lucas-Lehmer Theory, a polynomial x2% - Px + Q is considered,
with P and Q vrelatively prime integers, and P? - 40 a non-square

positive integer. If a and b are the roots, then the sequences

n n

_a -b _.h n . . T+ U4
X, =31 and Y, =a + b~ are considered. Given €3 =3 .
then the polynomial =x% - Tx = N(ed) yields a = I—%—Hig: and

T - U4 — ,
b = —5— and hence the sequences {Xn}n21 and ;Yn}nzl defined

[P ]
above correspond to the sequences 1 ﬁ—-I and {Tn}n>1
}oinyl . =

respectively. Many of the theorems developed in this section hold for

sequences obtained via the Lucas-Lehmer theory. We will not go into any
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more detail with respect to the Lucas-Lehmer Theory. We mentioned the

above to show the connection with our sequences {Tn} and {Un}.
The most widely studied sequence of this type is the Fibonacci

sequence defined by £, = £, =1 and fn+2 = fn+1 + fn for n > 1. It

turns out that {£f } corresponds to the sequence {Un} for 4 = 5.

n'n>l

The corresponding sequence {Tn} is the Lucas sequence {Ln} which is

defined by L, =1, L, =3 , and Ln+2 =L + Ln for n > 1.

n+l
We first give a list of some elementary yet important properties of

{Tn} and {Un}.

T +U.A
Theorem I.13. Let €g = EL%%lﬁéi and edn = ~E—§——E——- for n > 1, and

N = N(ed). Then the following properties hold.

= pe _ onP =
(a) T2n = Tn 2N, U2n = TnUn
_ _ - _ ol
®) 7 =T _T -NT _,, U =U_ T -NU_, forky2n
k-1
= (_n?y 2 2
(c) Tkn = (~N) an (mod Tn) for k¥ >1, k odd
k-1
= (yy 2 2
(d) Ukn = (N) kUn (mod Un) for k > 1, k odd
() T, [T, for k>1, k odd
(£) U [U, for k1. o

We omit the proof of Theorem I.13 as it amounts to several tedious
calculations.

With these elementary properties established, we can obtain some
more properties which are quite interesting. First we note the

significance of property (b). If we put n =1, we get the recurrence
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formulae

T

n = TaTp-1 ~ MlegdTyp (1)

U, =TU,, ~ Neg)u (2)

From properties (a) and (b) with n=1, we get T, = T,% ~ ZN(ed) and
U, = T,U,. It is easy to see that no constant ¢ exists for which
Toig = STy oF Upy

are shown to be second order linearly recurrent sequences.

= cUn holds for all n. Thus {Tn} and {Unl

Before proceeding to the divisibility properties of {Tn} and
{Un} . we first state a lemma. We know that /

. .n
Tgn * Ukn“ﬁ-= Ty * Uyl
—2 |77 ]

.

for k,n > 1, and it is easy to see that

T, -U JA (T, - U.2)
.._]EP.._i.___k_r."_.._= ._]5__2__].{_ for k,n 2 1.

Combining these two equations we obtain

T, + U.A T, - U, 1"
T = Kk k N kK
nk 2 2

and

T, + U " T, - U A"
Uy = [—z—- i R

for k,n > 1. From the binomial theorem we obtain the following result.

Lemma I.3. For t,n > 1 the following relations hold;

n
-2-]
_ ol-n [ n n-2k.. 2k.k
T, =2 [Zk] v, M2y, K
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]
1-n a

U =9 5 [zn ] Ttn-Zk—lU k+1.k

K+l t a” . o

See Nagell [46, Theorem 104] for a similar result.

For the rest of this section, we are primarily concerned with the
divisibility properties of the sequences {Tn} and {Un}. The first

problem we tackle is how a prime behaves in these sequences. We begin

our study with the oddest prime, p = 2.

Theorem I.14. (Divisibility of Tn by 2).
If T, is odd then 2|T  if and only if 3|n. In this case; if

2|7y, then 27T for n >0 and 2|T, for n 1.

6n+3
If T, is even and Za"Tl, then Za"Tn for n odd and 2||Tn

for n even.

Proof. The first part of the theorem is a restatement of Proposition
I.4. Assume T, is odd and Za"T3 , with a > 1. We first show
2"T6K for k >1. If k =1, then because T6'=“T32 + 2, it follows
that 2||T¢. Also T,, = T¢® + 2, which forces 2||T,,, and so the

result holds for k = 2. By the relation TG(k+2) = TG(k+1)T6 + T6k it

follows that 2"T6(k+2) when 2"T6(k+1) and 2|T.. . The result now

follows by induction on k. Now assuming Za"T3 and ZaHTGk_3, from
. _ . a

the relation T, ., =T, Ty & Tpp o it follows that 2 "T6k+3‘ Thus

the result follows by induction on k. The second part of the theoren
is proved exactly in the same manner, with the exception that all

suberipts are divided by 3. o
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The same theorem for the sequence {Un} is similar but has more

cases.

Theorem I.15. (Divisibility of Un by 2).
If U, is odd then 2|Un if and only if 3|n. We now have four

cases.

1. If U, isodd, 2|u; , and 27|T,, then 2|Uy .. for k 30
and 2y koad, ro.
6k2
2. If U; is odd and 2a||U3 . then 2a||U6k+3 for k > 0, and
2o xoaa, ryo.
6k2
3. If U, is even, 2jU, , and Za"T1 . then 2||U2K+1 for k > 0
and 2%y k odd, r 3 0.
r+l
k2
4. If U, is even and 2a||U1 , then za"U2k+1 for k > 0 .and
22+ k odd, r » O.
k2r+1

Proof. It suffices to prove (1) and (2) since the proofs of (3) and (4)
differ only by the fact that all subscripts are divisible by 3.

{(1). Assume U, is odd, 2a||T3 where a > 1. PFirst we show that

2a+r+1"U , With k 'odd and r > 0. Since Ug = U,T, , it follows
6k2

that 2a+1"U6. For odd k, the congruence U6k = + kU6 (mod U¢2)

shows that 2a+1"U6k‘ So the result holds for r = 0. Assume now that

the result holds for r =t, 1i.e. 2a+1+t“U By Theorem I.14,

6x2t
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2||T £ and since U =T U . 1t follows that

6k2 6k2 6x2° 6kat

2a+1+t+1"U Thus the result holds for r =t + 1, and hence for

6k2
all r > 0 by induction. To show 2|U

t+1

t+l°

6k+3 for k¥ > 0 we use the

relation U3 = UsTs * Ugpo3- If 2||U6k__3 then it follows that
2||Ugy 3. The result follows inductively.

(2). Now assume ZaHU3 with a » 1 and 2"T3. By the same
reasoning as (1), 2a+r+1"U for r >0 and k odd. Also by the

6k2"

same reasoning as (1), Za"U for all k > O. o

6k+3

Thus we have completely determined how the prime p = 2 behaves in
the sequences {Tn} and {Un} {(given that we know how it appears in
the first or third terms). We will describe how the odd primes behave,

but first we prove the following well-known result of Lehmer [29].

Theorem I.16. If m and n are odd positive integers, then

GCD(Tm,Tn) =T If m and n are any positive integers, then

GCD(m,n) "
GCD(Um,Un) = UGCD(m,n)'
Proof. Let ¢ = GCD(Tm,Tn) and h = 6CD(n,n). By Theorem I.3, Th

divides both Tm and Tn , hence T. divides ¢. By the Euclidean

h

algorithm write h = xm + yn for some integers x and y, and assunme

without loss of generality that x is odd and y is even. Since

we have 2Th = meTny +

T, + Uhvﬁ' i [ Tox + Umxvﬁ-][ Tny + Unyvﬁ']
2 2 2 !

Umenyd' Since x is odd, TmIme , and so g'me‘ Since y 1is

even, Thus ngannUnIUanuny’ and so it follows that ¢|2T,.

UZnIUny'

It follows that g=1T, or g = 2T and so we will show that the

h h '’
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latter cannot hold. Referring to Theorem I.14, we have two cases; when
T, is even and when T, is odd. If T, is even and za“T1 , then
because m, n, and h are odd, Za“Tm, ZauTn, and zaﬂTh. It follows

that 2a"g so that ¢ = 2T, cannot hold. Now assume T, is odd,

h

Za"T3 , and g = 2T, for a contradiction. It follows that T, and

h

Tn are even, hence m and n are both odd and divisible by 3. From

Theorem I.14, we have zauTm and 2a||Tn + so that 2a"g, With n
and n divisible by 3, h is odd and divisible by 3, hence Za"Th

also. This contradicts ¢ = 2T In any case g = Th must hold as

he
desired. For the second part of the theorem we follow the same line of
argument as the first part of the proof to obtain

Referring to each

GCD(Um,Un) = UGCD(m,n) or GCD(Um,Un) = ZUGCD(m,n)'
case of Theorem I.15 shows that GCD(Um,Un) = ZUGCD(m,n) is nhot
possible, and hence GCD(Um,Un) = UGCD(m,n) holds as desired. o

These two facts are used to prove the law of repetition of odd
primes, which completely describes how an odd prime behaves in the
sequences {Tn} and {Un}. Lehmer [29, Theorem I.6] proves the law of
repetition for the sequence {Un}, but here we prove the result for both
sequences using the facts obtained so far. We first need two

preliminary results.

Lemma T.4. Let a >1 and p an odd prime. If pa||Tk then pa+1

a+l

I

for any Xk > 1. Similarly if pa"Uk then »p “Upk for any k ) 1.

U we obtain the

T and Ukl ok

Proof. We invoke Lemma I.3. Since T, | pk

identities
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p-1
p-1 Tpk _ 2 [ . p-2t-l. 2t.t
2Pt R [Zt] T, u,*%a
kK t=0
p-1
p-1 Upk 2 P p-2t-1_ 2t .t
S A [2t+t] Tx U 4.

Since p > 3 is an odd prime, p? divides all terms in the first
summation except the last term which is l§§1] U P“ld = pU P=iq 4,

Since p|Tk and p 1is an odd prime, p does not divide X ta .
and so this last term is properly divisible by », ‘hence so is the sum.
It follows that pa+1"TpK. Similarly, if pa”UK, then p? divides all
terms of the second summation except the first term, which is

P p-1 _ p-1 . - ) .
LJ Tk = ka . Since p]Uk . p does not divide Tk' and so this

last term is properly divisible by p, hence so is the second

summation. It follows that pa+1uupk. o

Lemma I.5. Let p be an odd prime and a > 1. 1If pa||Tk and £ 1is
odd such that GCD(p,2) = 1, then pa"Tk£.' Similarly if pa"Uk and £
is odd such that GCD(p,2) =1, then p U for all r » 0.

k22

ke ~ -~
pa"Tk and GCD(p,£) =1 then pa"Tkz. By the congruence

Proof. By the congruence T, 6 = +£Tk (mod Tkz), it follows that if

3 2 : . a
Uk£ = iLUk (mod Uk ). it follows that if »p “Uk

then pa"Uk£. We proceed by induction on r > 0. The result holds for

and GCD(p,2) =1

t, i.e. pa"U Since

k22

we have

r = 0. Now assume the result holds for r &

=1 T t and p does not divide T

k22° k2 ket
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a a
p U . Thus p U for all r > O. .o
K2ttt k2"

We can now prove the following result.

Theorem I.17. (The Law of Repetition for odd primes).

Let p be an odd prime and assume pa"Tk with a > 1. Then for

att
p

all t >0 and £ odd such that GCD(p.&) = 1, Similarly

iT .
kLpt

if pa"Uk with a > 1, then for all t > 0 and positive integers ¢

with 6cd(p, &) =1, p¥CfU .

kep

Proof. We will prove the result for the sequence {Tn} only. By Lemna
1.5, we have pa||Tk£ for all odd £ such that GCD(p.,&) = 1. By

att
IIT

repeated applications of Lemma I.4, we get p for any t > O.

k&pt

The proof for {Un} is similar. o

Theorgm I.17. completely describes how an odd prime bhehaves in the
sequences {Tn} and {Un} once it has occurred already. The natural
question to now ask is whether or not an odd prime p does occur, and
when it does occur, where does it appear first as a divisor of some
element in the sequence. Lehmer [29], in his discussion of Lucas
functions, completely solves this problem for the sequence {Un}, and
gives some partial results for the sequence {Tn}. Before proceeding we

need the following result.

Lemma T.6. Let 4 be a positive square-free integer, and p an odd

prime. Let e = I%J be the Legendre symbol, where e =0 if p]ld.

Then Tp = T1 {mod p) and Up = Ule (mod p).
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Proof. From Fermat's little theorem we have 2P =2 (mod p). Thus, by

Lemma I.3 we have the sequence of congruences, ZTp szp = (T, + Ulvﬁ3p

+ (T, - U,vﬁ3p = T,p + T,p = 2T1p {mod p). Hence it follows that

Tp = Tlp (mod p). If p|T, then because T1|Tp we have
Tp = T1 =0 (mod p). If p does not divide T,, then again by
Fermat's little theorem Tp = Tlp = T1 (mod p). Similarly, 2Up = ZpUp
p-1
= —1-[(T1 + U,Vﬁ3p - (T, - Ulvﬁ3p] = ZU,pd 2 (mod p), forcing
Ja
p-1
R
Up =U,"d {mod p). If p[Ul, then because Ul|Up we have
Up = Ule =0 (mod p). If p does not divide U,, then

p-1

Ulp = U, (mod p) so that Up = U,d (mod p). If p does not divide

p-1

d, then 4 2

EH (mod p), and so Up = U,e (mod p). If pjd,
then it can be seen by Lemma I.3 that plup, and hence Up = Ule =0

(mod p). o
Using Lemma I.6 we get the next result.
Theorem I.18. For e, d and p as in Lemma I.6, p]Up_e.

Proof. It is easy to see that 2U =+(TU -TU) =
p-e ep P e

1€ - Ter) (mod p). If e =1, then 2Up_1

0 (mod p). If e = -1, then because T_1 = N(ed)T1 and

i(TeU = +(T,U, - T,U,) =

U__1 = —N(ed)Tl, we have ZUp+1 = i(T_lul(—l) - T1U-1) = i(-—N(ed)T,U1 -

T;(-N(ed)U;)) = i(-N(ed)T,U1 + N(ed)(Tlul) =0 (mod p). If p|d then
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from Up Ule = 0 (mod p) we have U _ = Up = 0 (mod p). u|

p-e

Theorem I.18 is important from two perspectives. First of all, it
tells us that every prime divides some term in the sequence {Un}, and
hence infinitely many terms by Theorem I.13(f). Secondly, Theorem I.18
tells us where we can find a term divisible by p. For example, let
d=2 and p = 5. In this case, [ %-] = -1, and so 5 divides the
term U6 = 140. Unfortunately, 5 also divides U3 = 10 so that our
subscript p-e 1in Theorem I.18 may not be the smallest subscript «
for which p]Ud. The first subscript «(p) for which p|Ua(p) is
called the rank of apparition of p in the sequence {Uk}. By Theorem
I.18, «ofp) always exists. The corresponding rank of apparition of p
in the sequence {Tn} is denoted by pB(p), when it exists. We will

see that for a given d, infinitely many primes p exist for which

B(p) does not exist. By Theorem I.18 we have the following result.
Theorem I.19. «(p) divides p-e.

Proof. By Theorem I.16 GCD(U ) Since p

a(p) *Vp-e! = Yecn (alp) ,p-e)

«(p) and Up—e' it follows that p divides

By the definition of «(p), we have

divides both U
U -
GCD (a(p) ,p-e)

al(p) < GCD{alp),p-e). But clearly we have GCD(«(p),p-¢) < a(p), so

that equality holds. It follows that «(p) |p-e. ]

So oafp) is a divisor of p-e, and although we don't know which
one, we have certainly reduced the possible choices for «fp)

considerably. When N(ed) = 1 we can strengthen our result.
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Theorem I.20. If N(ed) =1, then «a(p) divides 355- for p not

dividing d. If p|d then a(p) =1 or «fp) = p.

Proof. The second statement clearly holds in general. Now assume p

does not divide d. From Theorem I.13(a), we have U =y T =
p-e P-¢ DpPre
2 2

0 (mod p), so it suffices to show Tp-e 2 0 (mod p). It is easy to see
2
that 2T =TT - UUd and hence 2T =T,2 -U,%d =4 (mod p),
p-e e P e p-e

or equivalently, T

i

p-e 2 {(mod p). If Tp-e =0 (mod p), then by
2

Theorem I.13(a), T

It
-3
i
o

]
N

It

2 -
p-e p-e = -2 (mod p), a

contradiction. o

Recall in Theorem I.3, it was stated that Pell's equation
x% - dy? = 1 1is solvable for any positive square-free integer d.
This, together with Theorem I.18 allows us to prove that x2% - Ay2 =1

is solvable for any non—-square positive integer A.
Propogition I.9. The equation x2 - Ay® = 1 1is solvable for every
non~square positive integer A, and has infinitely many solutions.

e
r+l

e

r+1....pk k as the prime

Proof. Write A = Zapl‘..pr P
decomposition of A, with PyreeeePy digtinct primes, a > 0, e, even
for r+l < i <k, and Ppppre==ePy distinct primes, but not
necessarily distinct from PyreeerD.. Let 6=0 1if a is even and
=1 1if a is odd. Set 4 = 26p1...pr, then Theorem I.3 states that

€3 exists, and hence x2% - dy? = 1 is solvable. Let &, be the

d



fundamental solution to x2% - dy? = 1, and write 83

i.e. treat &6, as the fundamental unit. For =r+l < i ¢k set

d

_[a . . _ .
ei = l§i] if pi does not divide d, and ei =0 if pild. Put
i €41 ®x
k -~ 1 2 2
m= I (pi - ei)pi . By Theorems I.18 and I.17, Pri1 RS O
r+l
divides Ukm for all k » 1. Choose k, > 1 divisible by a high
a-o
enough power of 2 so that 2 2 |[Ukem. This can be accomplished by
a-8 Cr+1 35.
o 2 2 2
Theorem I.15. Then Ukom = 2 pr+1 ...pk .t for some t > 1,
2 . 2 - 2 . 2 o : .
and so Tkom Ukomd Tkom At 1, showing that the equation

X% - Ay® = 1 is solvable. The last part is trivial. o

Another way to describe the above phenomena is as follows. Let
{Un} be any sequence derived from some positive square-free integer 4.
Let m be any other positive integer. Then m|Un for some n. This
will be useful in the next chapter. Recall that the Fibonacci sequence
corresponds to {Un} for 4 = 5. Thus every integer divides some
Fibonacci number, and hence divides infinitely many Fibonacci numbers.

It was mentioned earlier that for a given positive square-free
integer d, p(p), the first appearance of p as a divisor of some
term in the sequence {Tn}, does not exist for infinitely many primes
p. We have the following result, which is not found in the literature

to the best of our knowledge.
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Proposition I.10. Given an odd prime p such that p does not divide
the positive square-free integer d, then pgB(p) does not exist if and
only if p|Uk for some odd integer k. Hence infinitely many primes

exist for which p(p) does not exist.

Proof. Suppose pg(p) does not exist. A simple induction shows

r .
Up__e = Tp_e Tp_e .o Tp-e Up__6 where 27|[p-e. Since p|Up_e and
2 4 2r 2r
B(p) does not exist, it follows that p|Up_e, and BZ%— is odd.
= 2
oF

Conversely, assume p|Uk for some odd k and that pg(p) exists. Then
p]Tn for some n, and hence p|U2n = TnUn' Thus p|GCD(Uk,U2n) =
UGCD(k,Zn)' Since k 1is odd, it can be seen that GCD(k,2n) divides
n, and so p|Un. But then p|GCD(Tn,Un)|4, contradicting the fact
that p 1is an odd prime. To prove the last part, let P = {p is an

odd prime such that p does not divide U,d}. For p,gq €P, p #(,
P Uq
GCD(Up,Uq) = U,, so that GCD 7.0, = 1.

Also for p € P we have GCD[?EVU,] = 1 by Theorem I.17. So for
1

U
U
each p € P, there exists an odd prime, p*'. such that p']ﬁg- and p!
)3
U
does not divide U,, and p' does not divide ﬁg- for any other
1

geP. Let P' = {p'; p € P}, then we have a bijection £f: P 4 P* by
f(p) = p*. Since P 1is infinite, so is P'. Since for each p' € P
we have p']Up with p an odd subscript, it follows that pg(p*') does

not exist for any p' e P°. o
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Recall that the Lucas sequence corresponds to {Tn} for d = 5.

Hence infinitely many primes do not divide any Lucas number.

Theorem X.21. Let d bhe a positive square-free integer. Then

N(ed) =1 if and only if a prime p = 3 (mod 4) divides U, for some

k
odd subscript k.

Proof. Assume N(ed) =1. If d is divisible by a prime p =3
(mod 4) then p|Up. Assume that 4 = 25p1 -ee Py with & € {0,1} and

p; = 1 (mod 4) for 1 < i ¢ k. Choose a prime ¢ such that

i

728

g =1 (mod pi) for 1 ¢i <k and g =7 (mod 8). Then

~

[g-]=[p—i]=1 for 1 <1 k and so e={§-]=1 From our
q q =Tt q :

assumption that N(ed) 1, q]Uq__e by Theorem I.20, and in fact
2

q{u__. since e = 1. Since g%l-s 3 (mod 4) is odd, we have found our

subscript k.
For the converse, assume that N(ed) = -1. Then for k odd we
have T,2 + 4 = U,_2%d. Following the proof of Theorem I.6, it follows

k k

that U, is divisible only by primes p =1 (mod 4), contrary to our

k

assumption. o

As a corollary, we can prove the following generalization of

Theorem I.20 which was proved by Lehmer [29] and Motada [44].

Corollary I.5. Let e = [gi where d is a positive square-free

integer and p 1is an odd prime not dividing 2TUd with € = —5———
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N(ed)
If 5 = -1 then p divides Tp—e . otherwise p divides
. .

N(ed)
Proof. By Theorem I.18 plUp_e = Up-e Tp—e' Assune 5 = -1,
2 2

then it follows that N(ed) =-1 and p =3 (mod 4). If e =1, then

Up—e has odd subscript, and so, because N(ed) = -1, Theorem I.21
2
shows that p must divide Tp-e' Now assume e = -1, and suppose p
2
divides Up—e = Up+1. It follows that Tp+1 = +2 (mod p) and
2 2 2
furthermore that Tp+1 = 2 (mod p), by Theorem I.13(a). By Lemma I.6
we obtain the sequence of congruences 4 = 2T =TT, +0U0.4d=

ptl ~ "pl p 1l
T,2 + U,;2de =T,% - U,;%d = -4 (mod p). This contradicts the fact that
N(e
p

d)

p ig an odd prime. Thus p divides Tp—e' If [ ] = 1 then

there are two possibilities. The first is that N(ed) =1, in which

case Theorem I.20 shows p divides Up-e' The other case is

2

N(ed) =~-1 and p =1 (mod 4). By way of contradiction, assunme
Tp-e =0 (mod p). If e =1, then p[Tp__1 and it follows by Theoren
2 2
I.13(a) that Tp_1 = -2 (mod p). It is easy to see that

= - -4 = - = 23 - 2 =
2Tp__1 UpUld TpT1 and so -4 = UpUld TpT1 z elU,%d -~ T,% =
~(T,%2 -~ U,%d) =4 (mod p) by Lemma I.6, contradicting the fact that »p

is an odd prime. If e = -1 then p|Tp+1 and so Tp+1 = 2 (mod p).

2
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Thus 4 = 2Tp+1 =TT, +UU,de =T,%2 - U,%d = -4 (mod p), yielding the

pl rl
same contradiction. In either case we see that p]Up_e. o
2
In [44], Motada also discusses whether p divides Tp_e or Up_e
ok ok

in terms of power residues. It is not within the scope of our

discussion to do this. E. Lehmer [30] has studied criteria for p to

divide T or U .
p-e p-e
3 3
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CHAPTER TWO

Section 1 The Diophantine Equations mx? - ny®? = +1,4#4

The equations of the title are closely related to the Pell

equations x? - mny? = +1,+4, as was seen in Section 4 of Chapter I.

In our discussion we will assume m and n are positive square-free
integers with no common factor. D.T. Walker [73] has given an overview
of these equations, and most of the results of this section can be found
therein. We will be discussing integer solutions to these equations
when they exist, and how they are related to solutions of the Pell
Equations x2 - mny? = +1,+4. For reference purposes, we will label the

equations as

(1) nx? - ny? = 4 (la) mnx® - ny® = -4

(2) mx® - ny?2 =1 (2a) nx® - ny? = -1

(3) %2 - mny? = 4 (3a) x% - mny® = -4

(4) x? - my® =1 (4a) x? - mny? = -1.
Definition IT.1. An element 515;%%2242 is a solution to (1), resp.

(la), if =x®m - y®n = 4, resp. -4.

Definition II.2. An element o = is a solution to (2), resp.

A+ yA
2
{(2a), if « is a solution to (1), resp. (la), and both x and y are

even.
From these definitions, we see that any solution to (2), resp.

(2a), is also a solution to (1), resp. (la). Without loss of generality

we will henceforth concentrate mainly on the solvability of (1)
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and (1a).

/A + ysh
2

Definition II.3. A solution a = to (1), resp. (la), is

called a completely positive solution to (1), resp. (la), if x > 0 and
v > 0.
The following two results are similar to Propositions I.2 and I.3,

hence the proofs are omitted.

Propogition IT.1l. An element « is a completely positive solution to

(1) or (la) if and only if « > 1. 1]

Proposition II.2. Let « = and g =

X—————————ﬁ; v/ —a“’ﬁz bvh both be

completely positive solutions to one of the equations (1) or (la). Then

the following three conditions are equivalent;

1. < g
2. x < a
3. vy <b. 0

Clearly when solutions to (1), resp. (la), exist, then so do

completely positive solutions to (1), resp. (la). To see this, if

xﬁ;yﬁ |x[JhT42~ yihoLo

is a solution to (1), resp. (la), then
completely positive solution to (1), resp. (1a). The completely

xJM + yA
2

positive solution to (1), resp. (la), with x minimal will

be called the fundamental solution to (1), resp. (la), and will be

denoted by 7 It turns out that at most one of the two equations

m,n°
(1) and (la) is solvable, so that no confusion will arise.
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Our main result of this section is to prove that r; 0 = Sm when

L. exists, and so To.n satisfies the 7+ of condition (1) of
r 14

Theorem I.7. To prove this result, we need some preliminary results
whose proofs amount to tedious calculations, and so are omitted. First

note that if (1) or (la) is solvable, then N(emn) = 1 by Theorem I.7,

and so equation (3a) is not solvable.

Lemma II.1. If o« is a (completely positive) solution to (1), resp.
(1a), and B is a (completely positive) solution to (3), then «ep is

a (completely positive) solution to (1), resp. (la). u|

Lemma II.2. If « and B are (completely positive) solutions to (1),
resp. (la), then «es 1is a (completely positive) solution to (3). a|

Before proceeding, we note that an element o of the form

_ %+ yA
2

with x #0 and y # 0 can't be written in the form

5¥%£1Lll, and hence is not an element of o(Jmm). See Nagell [45].
0 2 =
Theorem IT.1l. If Tm,n exists, then Tm,n €n”
Proof. Assume To.n exists. From Lemma II.2, Tn n2 is a completely
14 r
positive solution to (3), and so r; n = emnk for some k > 1. If X
is even, then Toon = emnk/2 € Q(~in) which contradicts our discussion
14

above. Thus k 1is odd, say k = 22 + 1 for some & > 0. We have

£2 ._.£2
2 = =
Tm,n (em,n ) €nn’ and so (Tm;nemn ) € It follows that
T nemn—£ > 1 and is a solution to (1) or (la) by Lemma II.1. From

14
Proposition II.1 T nemn~£ is a completely positive solution to (1) or

(la). From our definition of Toon and Proposition II.2, it follows

r



38

it it .
that To,n S Tm,nemn . and hence 1 ¢ €on ° Since €an > 1 we know
emn—£ <1, and so emn-L = 1 must hold. This shows that £ = 0 and
k=1. o

Theorem II.2. One of equations (1) or (la) is not solvable.

Proof. If Toon does not exist, then neither (1) nor (la) is solvable.

’

Assume now that Toon exists and without loss of generality is a

r

solution to (1). For contradiction assume « 1s a solution to (1a). A

calculation shows Toon* is a solution to (3a),and hence N(emn)= -1.

r

Since 7 2=¢e , T satisfies the 7 of condition (I) of Theorem
m,n mn’ ‘m,n

I.7, and hence N(emn) = 1, a contradiction. Thus no such « exists,

and hence (la) is not solvable. I}

The following result is a structure theorem for all solutions to

(1), resp. (la), when they exist.

Theorem II.3. Assume Tnon exists and is a solution to (1), resp.

{(1a). Then (1), resp. (la), has infinitely many solutions which
2k+1

correspond to the set {irm n : k € 2l. The set of completely
positive solutions is {rm n2k+1 : k > 0}. We also have
14
%= {+r 2k 1 k ez},
nn m,n

2k+1

Proof. It is clear that any element of the form T with k ez

L4

is a solution to (1), resp. (la). Conversely, by the argument used in

the proof of Theorem II.l, any solution to (1), resp. (la), will be of

the form Ty n2k+1‘ This proves the first part of the theorem. The

r

second part of the theorem follows directly from Proposition II.1. The
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last part of the theorem follows from Theorem I.3. o

We are often interested in the situation where a solution

=xvﬁ’2ryﬁ

of (1), resp. (la), is also a solution to (2), resp.
(2a); i.e. vhen x and vy are even. The following result is similar

to Proposition I.4, so we omit the proof.

Proposition II.3. Assunme Ton = éiﬁ@;%—gﬁéi exists. For k ez, %k
X Akyfn— + Bk,./;n_ 7
odd, set Thp =5 - If A, and B; are even, then Ak

and Bk are even for every k. If A, and B; are odd, then

mn =5 (mod 8) and Ak and Bk are even if and only if

k =0 (mod 3). |

For example, Ty g = !9_%;£z , Wwhile Ty 73 = 3.8 + 2./7. 1If

L =‘§iﬁ;%—zﬁ§: with x and y even, then Toon will be called tﬁe

fundamental solution to (2), resp. (2a). If x and y are odd, L n3

will be the fundamental solution to (2), resp. (2a). In the exanmple

above, 7, .° = 3.8 + 2/7 is the fundamental solution to
3x2 - 7y? = -1, while Ty g = i§—§4zz is the fundamental solution to
3x%2 - 7y2 = -4. 1In our discussion of differences of non-square powerful

numbers in Chapter III, we will be mainly concerned with solutions to
(2) or (2a}).

Heretofore we have needed to use the notation Toon as opposed to

Ton for 4@ = mn might admit another factorization 4 = rs such that

rx? - sy? = +1,+4 might be solvable. In this instance we show that



this is not possible, and hence the notation Ton

Theorem IT.4.

most one non-trivial factorization d = mn such that T

For any positive square-free integer d,

40

can replace 7 .
P m,n

there is at

exists.
r

Proof. Suppose there exists two non-trivial factorizations d = mn and
d = rs such that Tm, and 7 ’ exist. Then &q = Tm,n 2 = Tr,sz’
and since both Tm,n and Ty,s are positive, Tm,n = Tr,s’ Set

Ton = zg@;g_zzﬁﬁ and 7, o= Eﬁf;%_?ﬁng then xJ& + yvh = ar + b5,

Multiplying this equality through by Jh yields

Again by Nagell [44] it follows that r =m or

is the same factorization as d = mn. ]

For example 7. . = Jb + .5, and so neither of

and we may simply write T30 = Jb + B

Section 2

(),

A real quadratic field,

be of Richaud-Degert type if d = £2 + r for some integers

r # 0 such that

[52].

of certain special characteristics they possess.

continued fraction expansion of A,
introductory section of Chapter I,
Because of this fact, the fundamental unit, €a

explicitly in terms of £ and r.

When Q(.A)

-2 <r <& and 42 =0 (mod r).

xm + vy = akm + b.sn.

r=n, and so 4 = rs

or 7, exist,

2,15 0,3

Special Types of Fundamental Units

with d square-free, is said to

£ > 0 and

Refer to [11] and

These quadratic fields have been studied in great detail because

In terms of the

which was briefly mentioned in the
Jd has a very short period.

can be written

is of Richaud-Degert type, we simply say that d is
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of R.D. type. If |r|=1or 4, d is said to be of narrow R.D. type,
otherwise if |r| # 1 or 4, d is of wide R.D. type.

The purpose of this section is to give fofmulae for the fundamental
units of all quadratic fields of R.D. type. It turns out that we may
drop the condition -£ < r < 4£ upon making the following definitionms.

Henceforth d is understood to be square-free.

Definition ITX.4. If d = 22 + r for some integers £ > 0 and r #0

such that 42 =0 (mod r) and d #5, 4 is said to be of extended R.D.

type.

Definition IT.5. If d dis of E.R.D. type with |r| =1 or 4 then 4

will be said to be of extended narrow R.D. type. Otherwise, when

|r| #1 or 4 then 4 is of extended wide R.D. type.

We will see at the end of this section that when d 1is of extended

R.D. type and N(ed) = 1, then e, satisfies an interesting criterion

d
which is related to the decomposition of €3 given in Theorem I.7.
To write down explicit formulae for the fundamental units of

extended R.D. type quadratic fields, we need two lemmas, the first of

which is proved by Nagell [46, Theorem 105].

T+ UA

Lemma IT.3. Suppose € =~ with T and U even and

N(ed) =1. If x and vy are positive integers satisfying

X2 - dy®2 =1 and x» %-yz -1, then x + yvAd = €q-

Lemma IT.4. Suppose N(ed) =1. If x and y are positive integers

satisfying x%2 - dy2 =4 and x > 2y%2 ~ 2, then €q = —3——



42

Proof. Clearly if y =1, then €y = E{EJQEQ Assume vy > 1. Let
€q = E—%—Eﬁﬁ; and assume by way of contradiction that y > b > 1, i.e.
2 2 _
€, # §¥t—zi§; Then d = 2 4. % 4 so that a?y? - b2%x2%? =
d 2 bz 2
Y
4(y® - b?®) =£ > 0. Let ay -bx=£, and ay + bx = £,. Then £,
‘ fz_fl
and £, are positive integers satisfying f,f, = £. Thus x = 55

¢ f-1_ 4y® - 4b® - 1 < 4y* - 4b* _ 2y? - 2b?
= 2b 2b 2b b

contradicting our assumption on x and vy. ]

74N

2y? - 2b% ¢ 2y2 - 2,

We can now write down the fundamental units of all extended R.D.

types in terms of £ and r.

Theorem II.5. Assume d is of extended R.D. type.

1. If 4 1is of extended narrow R.D. type, then
€ = |r[_1/2(£ + J2%Hr) .

2. If d 1is of extended wide R.D. type, then

€q = |r|—1(2£2 + r + 28/2%%r).

Proof. 1. 1In this case, |r|-1/2(£ + J22+r) is certainly a completely

a’ and of the fornm I—%—Ehéi

Since d #5 it follows that |r]—1/2(£ + /2%r) 1is in fact the

positive unit in @ with U =1 or 2.
fundamental unit of Q(/).

2. Assume now that 4 is of extended wide R.D. type. A
calculation shows that the completely positive unit given is not the

square of another unit in Q(J@), and so N(ed) = 1. We now have two
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separate cases.

Case 1. r divides 2z2.

2
! Sl 3 and y = T%%u Then x? - dy? = 1, and so by

Lemma II.3, it suffices to show x > %-yz -1, or equivalently,

2 2
gf—T%T£-> %-[Tg%] - 1. Rearranging terms, we see that this is the same

as showing 22%|r| - r|r| > 222 - |r|?, which clearly holds.

Case 2. r divides 42 but r does not divide 22.

In this case set x = ——2----(2£z +r) and y

Ix

y are odd positive integers satisfying x% - dy? = 4. Since r divides

T%% , then x and

42 and r does not divide 22, it follows that 4 divides r, and
since |r| # 4, we have |r| > 8. Thus the inequality 4£2%|r| + 2r|r|

> 3222 - 2|r|® holds. Rearranging this inequality shows that

2
_3__(2£2 +r) > 2 L2 R holds, hence x > 2y? - 2. By Lemma II.4,
x| Ir |
§—§—X1@-= €y as desired. a

It can be seen that the set of extended narrow R.D. type quadratic
fields is just the set of narrow R.D. type quadratic fields with Q(.13)
included. However, the set of wide R.D. type quadratic field is much

smaller than the set of extended wide R.D. type quadratic fields.

Example IT.1. If g = 9p + 4, where p and q are square—-free then
d = pg is of extended wide R.D. type, but not of wide R.D. type. To

see this, we see that d = (3p)% + 4p so that £ = 3p < 4p =r. 1In

this case we have g = %-(9p + 2 + 3.4).
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The following theorem gives necessary and sufficient conditions for
a fundamental unit to be of extended R.D. type with N(ed) =1 in terms

of the factorization of €3 given in Theorem I.7.

Theorem II.6. Assume N(ed) =1, and let = %—(avﬁ'+ b/h}2 or

€a
s = %-(avﬁ'+ b/A)2 be the factorization of ey as given in
Theorem I.7.

Then d is of extended narrow R.D. type if and only if a=>b =1

and d 1is of extended wide R.D. type if and only if exactly one of a

or b is 1 or at least one of a or b is 2.

Proof. will be of one of the following forms, either

*q
a2m - 2 + ab.Jn
2

d = mn is of extended narrow R.D. type if and only if the coefficient

or a?m - 1 + abJin. Since a = b (mod 2), and

of Jd is 1, we see that d 1is of extended narrow R.D. type if and
only if ab = 1. This is equivalent to a =b = 1. If exactly one of

a or b is 1 or at least one of a or b is 2, a trivial calculation
vields d = mn to be of extended wide R.D. type. Without loss of
generality, assume a®m > b3n aﬁd r > 0. Similar arguments hold for

222 + ¢ 2%

the other possible cases. In this case, we have ————;——~+ - 2%4r =
2 ﬁ 2
b7n + g t abvin . pen 4 1 + abJEm. In the first case éé——%—g£-=
2 2
bn + 2, and so - =bn, vhile L= ab. Thus bon = 2= ane,

and so bn = af. Clearly GCD(bn,a) divides 2, so that a =1 or
a = 2. This shows that exactly one of a or b is 1 or at least one
of a or b is 2, for if b =1 and a = 1 then d would be of

extended narrow R.D. type contradicting the fact that d is already
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assumed to be of extended wide R.D. type. Under the different cases of
r <0 and a®m < b%n, we would obtain b =1 or b =2 in exactly

the same way. n|

Section 3 The Diophantine Equations x2 - dv2 = N,4N

Nagell [46, p. 2041 and Stolt [61], [62], [63] have studied the

diophantine equations

X% - dy? =N and x? - dy? = 4N

respectively, where d is a square-free integer, and N is any
non-zZero integer. In this section we give an overview of their results
as a precursor to the next section, wherein we similarly study the

analogous diophantine equations
mx? - ny? = N,4N.

Henceforth d is a square-free positive integer, N is a non-zero
integer, and & 1is either 0 or 1. We will consider the diophantine
equation

(5) x2 - dy? = 2°%y

such that if 6 =1 then 4 =1 (mod 4) and a solution (x,y) = (a,b)

exists with both a and b being odd integers when any solution exists

at all.

If a and b are integers satisfying (5), the element i‘ighéi
2

is called a solution of (5).

T+ UA

If 5 is a solution to the Pell equation
2
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(6) x2 - dy? = 229

then &% +6b1J<1'= [a+de “T+UJCT

] is also a solution of (5), and

2 2% 2%
the two solutions, Ei—iggﬁéi and i_igﬁii . are called associated
2 2

solutions of (5). The set of all associated solutions of (5) is called

the class of solutions of (5). It can be seen that the class of

is the set

solutions corresponding to a particular solution E—ighéi

2

is the fundamental

k

| .| 2 +6bJ<T T +6uJoT kel where T +6UJ61“

1 2 2 J 2

solution to (6). It is also easily checked that two solutions, EAiégbéz
2

a, + bxﬁ
26
aa, ; bb,d and ab, ; a,b
2°N 2°N

Let L be a class of solutions of (5) consisting of the elements

and are assocliated with each other if and only if the

numbers are integers.

.+ b, A . - b.A
j ii—j;—jl—— for i Z1 . Then the set of elements J il————jl—— R Z1
5 85
1 e | [ [

is also a class of solutions of (5), called the conjugate class of L,

and denoted L. In general L and L are distinct classes, but when

L =1L L is called an ambiguous class. These will be studied in

further detail in Section 5 of this chapter.

a + b
5

i—ighﬁg- in a class L, let

2 2

*
the solution in L in which b takes on the least non-negative value

Among all solutions be

*
for b. Furthermore, if L is ambiguous, impose 'the condition that a

a® + b*vﬁ'
26

is non-negative. Then is uniquely determined, and called
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*x
the fundamental solution of the class L. It can be seen that |a | is

the least non-negative value possible for |a| among all solutions

* *
E—ighiﬁ: in L. It is also easy to see that if a =0 or b =0 or
2
N =1 then the class is ambiguous.
* *
The following theorem gives upper bounds for Ja | and b . For

proof see Nagell [46, Theorem 108] and Stolt [61].

* *® :
Theorem II.7. Let Q——igh4ﬁi be the fundamental solution of a class
2
L to (5) and Eliigkéi be the fundamental solution to (6). Then
2
£ 5=0 0 0< b Ul il
1. It 6=0, N> $ $ V| 30D
* 1
|a l < -Z-N(T-l'l)
= 0¢< b ﬁ1 N
* 1
|a | < §-N(T-1)
3. If 6=1, N> 0 0¢ b UJ N
y =1 $ $U) e
la | ¢ AN(T+2)
4. If65=1, N <O 0¢ b Ul =y
- Eesd $ SV T
*
la"| ¢ MT(T-2) o

Corollary II.1. The Diophantine Equation (5) has a finite number of

classes of solutions. o
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Stolt goes on to give precise formulae for'the number of classes of
solutions of (b) for a given N. It is not our intention to pursue
this.

M.J. De Leon [12] and [13] has given necessary and sufficient

conditions for a solution of a class to be fundamental. We first note

that a solution E—ighig- is the fundamental solution of a claSs L if
2
and only if :E—iigkéi is the fundamental solution of the class L,
2

when L is not ambiguous. Thus we can assume that a and b are
non-negative integers.

a + b

26

Theorem II.8. Let be a solution to (5) with a and b

a + bA

26

class of solutions to (5), it is necessary and sufficient that the

non-negative integers. For to be a fundamental solution of a

following inegualities hold;

1. a>kb with k=2+%  wyhen 5=0 and N> 0
2. b > ka with k = T H 1 when 6§=0 and N <O
3. a>kh  with k=2F2  yhen 5=1 and N> 0
4. b > ka  with k= —o when 5=1 and N< 0. @O

Example II.2. Let d =2, N=7, 6§ =0, then (5) becomes
%2 - 2y% = 7. This equation is solvable, and 3 + .2 is a solution.

In this case 3 + 2.2 is the fundamental solution to (6), and so
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3 +1
2

3 + .2 1ig the fundamental solution of its class. Note that -3 + J2

k =

=2, Now a=3 and b =1, and so a > kb holds so that

is the fundamental solution of the conjugate class.

Section 4 The Diophantine Equations mx® - nv? = N,4N.

In this section we let m and n be positive square-free
integers, as in Section 1 of this chapter, and N a non-zero integer.
Also, & will be 0 or 1. We will consider the diophantine equation

2

nx? - ny? = 2 oy (7)

it

with 6 =1 only vhen mn =1 (mod 4) and x and y are odd
integers. Results analogous to those from the previous section will be
given here.

If a and b are integers satisfying (7), then the number

E:@L%%}béi is called a solution to (7). If !Li;%giﬁl
2 2

28

is a solution to

2

%% - mny? = 2 (8)

then the number

8

ayh + by _ [aﬁmﬁ][wuﬁ
& &

] is also a

2 2 2
solution to (7), and is called a solution of (7) associated with the
solution Eﬁ@i%élkél . The set of all associated solutions is called a
2
class of solutions of (7), and it is easily seen that the class of
solutions of (7) in which 9:@&;%1&42 lies is the set
2
k
j + a/h + bA || T+ Ui tkez 1 where T+ Usin is the
1 2% 2% | 25

fundamental solution to (8). It can also be seen that two solutions,
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aJn + bl a,Jm+ bA
2% 2% '

aa'm - bb'n b*a - a‘b .
— and — are integers.
2N 2N

and are associated if and only if the numbers

Let L be a class of solutions of (7) generated by

aJim + bs
2% )

as/im - b/

26

Then the class of solutions of (7) generated by is called

the conjugate class of L, and is denoted by L. In general, L and

L are distinct, but when they are equal, L is said to be an ambiguous

class.

aJfi + b a b

+
2% 2%

*
be the solution in L in which b  takes on the least possible

Among all solutions in a class L, let

non-negative value. If the class is ambiguous, impose the condition

a i+ b A
26

determined, and called the fundamental solution of the class L. As

*
that a is also non-negative. Then is uniquely

* *
before, it can be seen that a =0, b =0, or N = +1 can only occur

*
when the class is ambiguous. It can be seen that |a | is the least

a/hn + b
25

‘ * *
in Theorem II.7, we can obtain upper bounds for |a | and b .

non-negative value |[a| among all solutions in a class. As

Theoren II.9. Let Eﬁﬁ;%—hﬁﬁz be the fundamental solution to (7) and
2
+ UJh . ,
I__EH__B, the fundamental solution to (8). Then we have the following
2

inequalities;
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* J T+ DN
2m

0¢ b gul-ﬂ%’ﬂ;—ﬂ— yhen N> 0 and &= 0.
NN E

0 < b* < U E%ggf"fr when N <0 and & = 0.
3. ia*i ¢ j lz_iﬁglg

when N > 0 and &

n
(Y
*

o
A
o
*
IA
<
=}
=
+i8
[N

I -(T - 2)N

n

* I ~Nm _
0< b U'(—.f—_—z)— when N <0 and & =1.

Proof. As the others are proved in a similar fashion, we will only

s
.
)
*
A

i

prove 1. here. Thus ah + bs/h 1is the fundamental solution of its
class, and asm + b)) (T - Un) = (aT - Ubn).fn + (BT - Uam). A is an

associated solution of avh + b /h. If a < 0 then it is easily checked

that -aJ/h + b is the fundamental solution of the class E. Thus we

b%n + N

will assume a » 0. Now a?T? = [ =

J + vamn =

(b*n + N)[ %-+ Uzn] > (b3n) (U%n) , hence aT » bUn, and so

aT - bUn » 0. Since avh + bsA is the fundamental solution of its
class, it follows that a < aT - bUn and so b?U®n® ¢ a®*(T - 1)%. From

T2 - 1
m

this inequality we obtain (a%m - N)[ ] < a%(T - 1)2 , and so
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N < T-1 . Multiplying through by T + 1, and rearranging

a2m T + 1

* £
yields Lz—gﬁllg-z a®?, and hence a ¢ I 12—%E11N. The inequality

* Nm , .
b ¢ UI ST+ 1) follows from the above inequality. o

Corollary II.2. The Diophantine equation (7) has a finite number of

1 -

classes of solutions.

As in Theorem II.8, necessary and sufficient conditions can be
given to determine whether a solution of (7) is fundamental or not. We

first need the following result.

aovil + boht

Lemma IT.5. Let B = —_— be the fundamental solution of a
2

class L of solutions to (1) such that both a, > 0 and b, > 0. Let

Bk denote Bek for k € 2, where e = E—iggiﬁg- is the fundamental
2
J akyﬁ'+ bkvﬁ’
solution to (8). Then the set {B, : k > 0} = t k>0

k

ig the set of all solutions of (7) in L for which a, 2 0 and b

for each k > 0. Moreover Ay > ay for egch k> 0.

Proof. It is élear that a, >0 and b, >0 for each  k > 0, and

k k
, & _ .
that a1 > a, since 2 Appg = akT + kan and T > 2. The class L
is precisely the set {iBek : k € 2l. Any element of the form ~Bek
—akﬁ - bkvf
with %k > 0 is of the form 5 and hence has negative

2

coefficients. Now consider elements of L of the form Be_k with

k > 0. Then this element has the form
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We will show that one of these coefficients is negative. Suppose that

[aoﬁ+boﬁ”'rk-ukﬁi] n

X X X km. Because

a, and b, are the smallest possible non-negative coefficients of a

they are both non-negative, a, T, > boU,n and b,T, > a,U

solution in L, it follows that aoTk - bOUkn > 25a° and

6 bonn
boTk - aonm > 2°b,. From these inequalities we obtain a, > =
T, - 2
k
2 2
a,U,m aoUym bﬂkm1 bmkma
and b, > 5 ! and so by 2 5 > ) > 5 55 = b,
Ty ~ 2 Ty - 2 (Tk -27) Ty - 2

a contradiction. Thus at least one of aOTk - bonn or boTk - aonm
is negative, so that Be_k, k > 0, has a negative coefficient.
Similarly one can show any element of the form —Bek with k > 0 has a

negative coefficient, and so the result holds. o

Theorem IT.11. Let g = be a solution of (7) in a class L

avin + bsh
26
such that b > 0. Then g 1is the fundamental solution of the class L

if and only if

1. la] 2kb  with k= 02— when 5=10, N> 0.
. Un

2. la] 2 kb with k = g—3 when &=1, N> 0.
. Un

3. b2 kla] with k = z— when &=0, N <O0.
. Un

4. b 2 kja] with k = when &6 =1, N < 0.
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Proof. As the others are proved in a similar fashion, we will only

prove 1. here. Also, we will assume that a > 0 since a solution

Eﬁﬁ;iéghéi is a fundamental solution of a class L if and only if
2

:EﬁéLii;béi is a fundamental solution of f, and the inequalities above
2

are identical for a or =-a. First, assume B is fundamental, and for

contradiction, assume a < kb.

21 2
Thus N = a®m - b2n < k2b2n - b2n = b2[k?m-n] = b2| — B - n|.
(T - 1)2

2 2.2
By Theorem II.9, gb—iz—i—ll-g N < bz[-—llll———

-n |. A trivial
U2n (r - 1)2

calculation shows

2b3(T + 1) _ ,.[ _U%n?
U23m (T - 1)2

- n ], and hence a

contradiction is established.

Now assume a > kb and for contradiction assume a.h + bR is not
the fundamental solution of its class. Since a >0and b » 0, avh+
b has the form (a ~& + b &) (T + Uvﬁ§3i for some i » 1. Thus
(avh + bsR) (T - Un) = (aT - bUn)J/i + (BT -~ Uam)sh is of the form
(a*vﬁ'+ b*vﬁ3(T + Uvﬁﬁ3i_l where i-1 » 0. By Lemma II.5, it follows

that 0 ¢ aT - bUn < a, and so a < kb, a contradiction. o

The remarkable aspect of Theorem II.11l is that the constant k

T + Uv/on to

never depends on N, but only on the fundamental solution 5
' 2

(8).

Exanple II1.3. Let m =5, n=3. Then U=1 and T = 4. Assuming




55

N > 0, the coefficient from Theorem II.1ll obtained is k = 1. Thus a
solution (a,b) to 5%2 - 3y? = N is fundamental if and only if

a > b. In other words, a solution to 5x2% - 3y2 = N exists if and only
if a solution (a,b) exists with a > b. For N = 98, 5.5 + 3.3 is

the fundamental solution, since a =5 > 3 = b.

Section 5 Ambiguous Classes of Solutions to x? - dy?2 = N

In this section we will find, for a positive square-free integer

26N has an

d, all integers N for which the eguation x2 - dy® = 2
ambiguous class of solutions. It turns out that this problem is closely
related to the factorization of the fundamental unit, €qr given in
Theorem I.7.

The following result shows that we need only consider those N

which are square-free.

Lemma II.6. Let N = mn®n where n is square-free. The equation

26N has an ambiguous c¢lass of solution if and only if the

2

X2 - dy? = 2

equation =x2 - dy?2 = 2 % has one also.

Proof. Let o = E—i521§: be a solution to x2% - dy2 = 226N and
2
= E—iggig: a unit such that ae = «. Then a?e = aloe) = a& =
2

2 = em®n. Thus o = Jeshm, and it follows

a b

N = m®n, or equivalently, «

that both a and b are divisible by m. Let a, = o and b, = =
a; + b A 26 _
then «; = — is a solution to x2% - dy? = 2°"n and o,e = «,.
2

Thus x? - dy2 = 226n has an ambiguous class of solutions. The
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converse is clear, as one simply multiplies solutions of

2

x2 - dy® = 2 % by m to obtain solutions of =x2 - dy? = 226N. o

Henceforth we will assume that N is square~free. The following

result, due to Nagell [45], gives a sufficient condition for

2

%2 - dy? = 2 6N to have an ambiguous class of solutions.

Theorem II.12. Let d be a square-free positive integer and N an
2

integer which divides 2d. Then x2% - dy2 = 2 6N has at most one class

of solutions, and if this class exists, it is ambiguous. o

We will derive a converse to this theorem, and find all square-free

25N has an ambiguous

integers N for which the equation x2% - dy? = 2
class of solutions. DNote that we do not consider N = +d, since

solutions of this type are derived by multiplying the units of Q(.4)
by .

2

Lemma II.7. Suppose x2% - dy? = 2 6N has a solution (x,,y,) where N

is square-free. Then GCD(y,,N) =1 or 2.

Proof. Let p divide 6CD(y,,N). Then p|x, and hence p? divides
both x,2 and dy,?. It follows that p? divides 225N, and since N
is square-free, p = 2. Also, since N is square-free, 22 does not

divide GCD(y,,N), forcing GCD(y, N) =1 or 2. 1]

We now prove a converse of Theorem II.12.

2

Theorem II.13. If x% - dy?% = 2 6N has an ambiguous class of

solutions, then N divides 2d.
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Proof. Let o = §~i—§ﬁ@: be a solution to =x% - dy? = 2%y and
2
e = EL:%;LKi a unit such that o = ce. Then o2 = Ne, and so
2
2 2
a® + b2d + 2ab/ _ NT + NUvﬁ.. Thus
226 25

(1) a® + b2d = 2°T
and

(2) 2ab = 2% .
Multiplying (1) by 4b? and subtracting (2) squared yields 4b%d =0
(mod N). By Lemma II.7, GCD(N,4b?) =1 or 2, and so N divides 2d.

o

Thus, to find all square-free integers N for which the équation
x? - dy? = 225N has an ambiguous class of solutions, it suffices to
consider those N which are divisors of 2d. The following result,
proved by Nagell [45], gives a more precise deécription of the possible
values for N and in fact leads us to a nice result connecting
ambiguous classes of solutions and the factorization of the fundamental

unit discussed earlier.

Theorem IT.14. Let 4 be a positive square-free integer and N a

square~free divisor of 24 such that N # 1 and N # +d. Furthermore,
if d =1 (mod 4), let N be odd.

2

i. If x2 - dy? = 2%y is solvable for N = -1, then it is not

solvable for any other possible value N.

2

2. If x2% - dy2 = 2 6N is not solvable for N = -1, then it is
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solvable for exactly two different values for N, say r

and s.

In the latter case, the product of these two values is -d unless 4
igs odd and one of r or s is even, in which case the product of these

two values is —4d. o

This result of Nagell can be restated the following way; in terms
of the factprization of the fundamental unit given in Theorem I.7.

Again, we make the same assumptions on N as above.

Theorem II.15. Let d be a positive square-free integer, and assume

that N(ed) = 1. Then

1. &g = 72 vwhere 71 = EZE;%_EiE

and r,s > 1 such that a?r - b®s =4 and d = rs if and

for some positive integers a,b

only if the equation x% - dy? = 226N has an ambiguous class
of solutions for precisely the values N =1vr and N = -s with

GCD(r,s) =1 and r,s > 1.

2. €q = %-rz where 7 = aJtf + bJs/s for some positive integers
a,b,r,s such that a%r - b?s =2 and d = rs if and only if
the equation x?2 - dy2? = 226N has an ambiguous class of

solutions for precisely the values N = 2r and N = -2s

with 6CD(r,s) =1 and r,s > 1.

Proof. We only prove (1), as (2) is similar. Let rk, k odd, be any

solution to x%r - y®s = 4. Then one can verify that rked—k = r_k,

hence (v??k)ed—k = £k 1t is easy to see that J 5 is of the
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a, + boJks
2 2. . _ 528 2 2 _ o428
form — and that a,® - by®%rs = 2" r. Thus x* - dy®* = 2" ¢
2
has an ambiguous class of solutions. Similarly, by multiplying
i 2 26 = 2 2 _ _adb
solgtlons of xX?%r - y%s =4 by .5 we see that =x2? - dy? = -2°“s has

an ambiguous class of solutions. By Theorem II.14 we know that these
are the only possible values. Clearly 6GCD(r,s) = 1.

25N has an ambiguous class of

Now assume that x? ~ dy® = 2
solutions for precisely the values N =r and N = -s. It follows from
Theorem II.13 that r divides 24 and s divides 2d. Since

GCD(r,s) = 1, we further have that r divides d or s divides 4.

Without loss of generality, assume that r divides d. Thus a solution

Xo + Yol
2
d. It follows that r divides x,, and hence the equation

exists to the equation x2% - dy? = —225r with r dividing

rx? - [gjyz = 4 1is solvable. Multiplying a solution of this equation

by [%} , we see that the equation x2 - dy2 = —226[%] has an

2l ks

ambiguous class of solutions, forcing = g, or equivalently, d = rs.
So the equation rx? - sy? = 4 is solvable with & =rs and r,s > 1.
Letting 7 be the fundamental solution to this equation, we see by

Theorem II.1 that &q = T2. o

We illustrate this theorem by two examples.
Example TI.4. Let d = 15. Since eg =4+ A5 = %-(4§'+ B2, we

refer to part (2) of Theorem II.15. It follows that N = 10 and

N

-6 are the only square-free integers, other than N =1 and

N = ~15 of course, which have an ambiguous class of solutions to the
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equation x2 - 15y% = N. By Lemma II.6, all integers N £or which
%% - 15y2 = N has an ambiguous class of solutions are of the form n?,

10m2, -6m? and 15m3.

Example II.5. Let d = 6. Since ey =5+ 2.6 = (B + J2)% , we refer
to part (1) of Theorem II.15. It follows that N =3 and N = -2 are
the only square-free integers, other than N =1 and N = -6, for
ﬁhich X% -~ 6y%® = N has an ambiguous class of solutions.

We have seen in sections 1, 2 and 5 of this chapter how the
factorization of the fundamental unit is related to several aspects of
the different Pell equations. As to how much more information can be
obtained about these and other related equations from this factorization
has yet to be determined, and is probably limited. Yet, this
information obtained has been informative and leads one to believe that

there is more to discover.



61

CHAPTER THREE

Section 1 Powerful Numbers

In [17], Erdos and Szekeres studied positive integers n
satisfying the property that pi divides n whenever the prime p
divides n, where i is a fixed positive integer. Golomb [19],

considered the case 1 = 2 and called these numbers Powerful Numbers.

Golomb asked many questions concerning the gaps between powerful
numbers, and in particular he asked which integers can be written as the
difference of two relatively prime powerful numbers. He conjectured
that 6 is not the difference of two relatively prime powerful numbers,
and that there are infinitely many such numbers.

It turns out that Golomb was wrong. In fact, this chapter will be
devoted to showing that every integer is the difference of two
relatively prime powerful numbers in infinitely many ways.

An elementary but useful result is the following:

Proposition ITI.1. The followigg statements are equivalent.
1. n is a powerful number.
2. n = x2y® for some positive integers =X,y with y
square—-free.
3. n = mnd? for some positive integers m,d such that mfd and

m is square-free.

Proof. (1) o (2).

e, e e
Let n =p, e pr pr+1 e pk

e
vhere ei 2 2 for
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1 <1<k, e, is even for 1 ¢ i ¢r, and e; is odd for
r+l ¢ i ¢ k. Then e, >3 for r+l <i <k, and so let
e, e e

-3 e 1/2
r r+l k-3
X = (P .. P, Piq eee Py ) and y = Pryq == Pp- Then

y is square-free and n = x%y°Z.
(2) = (3). Put m=y and d = xy, then the result is trivial.
(3) » (1). Assume p is any prime divisor of- n = md?. Certainly
if p|d, Then p?*|d®, and so p?*|n. If p|m then because m|d, it

follows that p|d also, forcing p?i|n. o

By Proposition III.1l, we can see that if k is the difference of
two powerful numbers, then we have a solution to the diophantine
equation rx? - sy® =k with r|x and s|y, and both r and s
square-free.

If neither r nor s is 1, then k is said to be the difference
of non-square powerful numbers. If exactlyoneof r or s dis 1, k
is said to be the difference of a square and a non-square powerful
number. If both r =8 =1, %k is a difference of squares. Since
every integer is the difference of squares in only finitely many ways,
we do not pursue these types of differences. We will only be

considering the first two types of differences described above.

Section 2 Consecutive Powerful Numbers
In finding consecutive powerful numbers, we are looking for

solutions to the equations

(1) rx® - sy® = #1 with r|x and s|y and r,s being positive

square-free integers, and
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(2) %% - dy® = #1 with d|y and d is positive a square-free

integer.

Both of these equations have been studied in great detail thus far,

and we can easily prove the following result.

Theorem ITI.1. There exist infinitely many pairs of consecutive

powerful numbers.

Proof. Consider the Pell Equation x® - dy? =1 where 4 is any
non-square powerful number. By Proposition I.9, this equation has
infinitely many solutions (x,y). For any such solution, dy? is a
powerful number so that x? and dy® are consecutive powerful

numbers. u}

Example TII.1. Let d = 27 = 3%, The fundamental solution of
X2 - 27y% = 1 is the element e,%® = 26 + 15,3 = 26 + 5.,27. Letting
A, + BT = (26 + 547" for k »1, it follows that A 2 - 3%B 2 =1
for each such k.

Although we now know that infinitely many pairs of consecutive
powerful numbers exist, it is of interest to see how these pairs can be

generated from the fundamental solution of x* - dy® = 41 of any

quadratic field Q(.A).

Theorem IIT.2. Let d be any positive square-free integer and T + UA
the fundamental solution to x2% - dy® = +1. Letting Tn + Unvﬁ'=

(T + U™ for n > 1, we have d[u, if and only if n =0 (wod d,)

d

where 4, = W .
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Proof. A modified form of Lemma I.3 shows that for each n ) 1,

n+l

[ ]
TR

k=0

n n-2k-1, 2k+1_k . .
k41 ] T i 47. Thus d[Un if and only if

2™ 10 2 0 (mod d). Since cep(T®1,d) = 1, this is equivalent to

nU = 0 (mod d). This is equivalent to n =0 (mod d,) where d, is as

defined above. u}

Example IIT.2. Let d = 5. The fundamental solution to x% - 5y% = 41

is 2+ .5. Since d, =4 =5, we take k =0 (mod 5). When k =5,

(2 + B)5 = 682 + 305.5, and hence 1 = 612653 - (682) 2.

Example III.3. Let d = 46. The fundamental solution to

X% - 46y% = 41 1is 24335 + 3588.46, and in this case

GCD (46, 3588)

obtain consecutive powerful numbers. When k = 1 we have

d, 1, so that we merely choose k =0 (mod 1) to

1 = (24335)2 - (46)%«(78) 2,

Corollary IITI.l. There exist infinitely many pairs of consecutive

powerful numbers, one of which is a perfect square. Moreover, these
types of consecutive powerful numbers can be generated from any given

real gquadratic field. u]

Notice that the pairs of consecutive powerful numbers generated so
far are a square and a non-square powerful number. Now we will consider
pairs of consecutive non-square powerful numbers. We have the following

result which is similar to Theorem III.2.
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Theorem IIT.3. Let r and s be square-free positive integers such
that rx?® - sy® = 1 is solvable. Let avk + b/ be the fundamental
solution to this equation and akvE'+ kaE'= (a sk + bvé7k for k odd

and k > 1. Then a, = 0 (mod r) and b, =0 (mod s) if and only if

k
= = =r_
k=0 (mdr,) and k =0 (mod s,) where r, Gcp(a,r) and
-5
%1 % GCd(a,s)"

Proof. We will show a =0 (mod r) if and only if kX =0 (mod r,).

As in the case of Lemma I.3 we have that for k odd, k > 1,

a = = k. (a«E3k_21(b~E321 - 5 k. ak—21 2 b21 i .
k . 21 . 21
i=0 i=0
k-1
Thus ay = 0 (mod r) if and only if kabk-ls 2 =0 (mod r). Since

GCD(bs,r) = 1, this is equivalent to ka =0 (mod r). This is
equivalent to k =0 (mod r,) where r, is as defined above. The

other congruence is proved in exactly the same fashion. 0

Example IIT.4. The fundamental solution to 7x* - 3y2 =1 is

27 + 33, In this case r, =7 and s, =1 so that we choose

k =0 (mod 7) to obtain our consecutive non-square powerful numbers.
When k =7 we have (247 + 3.8)7 = 26373627 + 4028637.3 and so
(376766) 72 ~ (1342879)%32 = 1.

The following was proved by Walker in [74].

Corollary ITTI.2. There exist infinitely many pairs of consecutive

non-square powerful numbers. o

Although there is an abundance of pairs of consecutive powerful



66

numbers, it is not known whether or not three consecutive powerful
numbers exist. This problem is very difficult and even has connections
with Fermat's Last Theorem, as will be seen in Chapter IV. At this
point we merely give necessary and sufficient conditions in terms of the
existence of a special unit in a real quadratic field. Note that four
consecutive powerful numbers cannot exist since one of the four

consecutive integers will be properly divisible by the prime p = 2.

Theorem ITI.4. (Mollin and Walsh [36]). The following are equivalent

statements.
1. There exist three consecutive powerful numbers.

2. There exists a positive square—free integer d = 7 (mod 8)

whose fundamental unit is T + U/ with T = 0 (mod 4), and

d

an odd positive integer k aeD (. a)

0 mod [ ] such that T

k
is a powerful number.

Proof. (1) o» (2). Let =x-1, x, %+1 Dbe the three consecutive powerful

numbers. Then clearly x = 0 (mod 4). Let x2 - 1 = dy? where d is

square-free. Since dy? 15 (mod 16), it follows that 4 = 7 (mod 8)

and that x + y/d = T, + Ukvﬁ'= (T + Uvﬁ7k for some k » 1, where

k
T + U/8 is the fundamental unit of Q(./d). Since UK is odd, k nmust
be odd. Since x2 - 1 = dy? = dUk2 is powerful, it follows from the
fact that d is square-free, that Uk =0 (mod d). Thus
_ d _ ,
k = 0 mod [ 65373737'] by Theorem III.2. Also X = TK is a powerful

number and sincé T =0 (mod 4) and k is odd, it follows from

k

Theorem I.14 that T = 0 (mod 4). The converse is clear. |
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It seems, for various reasons to be studied in Chapter IV, that the
condition (2) of Theorem III.4 can never be satisfied. Thus Mollin and

Walsh [36] made the following conjecture.

Conjecture III.l. Three consecutive powerful numbers do not exist.

In a paper by Erdts and Selfridge [16] concerning products of
consecutive integers, a conjecture was made which contains Conjecture
III.1. Similarly, Schinzel and Tijdeman [56] made a conjecture on
powerful values of higher order polynomials which is closely connected
with Conjecture III.1. Thus from several different perspectives, the
conjecture is believed to be true. The following example illustrates

how large a counter-example would be.

Example IIT.5. Let us suppose a counter-example could be derived from
Q(.f1). Then it would be a unit of the form (8 + 3N % vhere k > 1.
Since T, = 22291972857, the first possible value of %k £for which
T is powerful is k = 291972857. This follows from

7K
Theorem I.13(b). So we would have to calculate (8 + 3~ﬁ3114254287.
In sections 3 and 4, we generalize Corollaries III.1 and III.2
respectively. In each of these two sections we will show that the

corresponding result on differences of relatively prime powerful numbers

exist for every non-zero integer n, instead of just n = 1.
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Section 3 Differences of Square and Non-Square Powerful Numbers

In this section we will generalize Corollary III.1l and show that
every non-zero integer is the difference of two relatively prime
powerful numbers in infinitely many ways. ©Note that it suffices to show
that the result holds for either one of n or -n.

If P, and P, are powerful numbers such that GCD(P,,P,) =1,
then n =P, - P, is said to be the proper difference of P, and P,.

We are primarily concerned with proper differences as the following

example illustrates.

Example III.6. 1 =9 - 8 = 3% - 22 ig a difference of powerful
numbers. By multiplying through by 32, we obtain 32 = 9 = 39 ~ 2%32
as a difference of powerful numbers. This way of obtaining 9 as a
difference of powerful numbers is uninteresting, and so we will require
our differences to be proper from now on.

McDaniel [33] was the first to show that every non-zero integer is
the proper difference of two powerful numbers in infinitely many ways.
In his proof, all the differences obtained, except for those n = 2
(mod 4), are differences of a sqﬁare and a non-square powerful number.
Vanden Eynden [70] extended the work of McDaniel by considering the case
of n =2 (mod 4), hence showing that every non-zero integer is the
proper difference of a square and a non-square powerful number in
infinitely many ways. Before proceeding we state a useful result used

in [39], which is easily proved by induction on k.

Lemma III.1. Let T + U/d be a solution to x2 - dy2 = +1 and

Tk + Ukvﬁ'= (T + Uvﬁ3k for k > 1. Then T Tk (mod d) and

x =
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U = kT 1y (mod d). o

Lemma III.1 allows us to give sufficient conditions for a non-zero
integer n to be a proper difference of a square and a non-square
powerful number in infinitely many ways. We prove the following result

similar to one found in Mollin and Walsh [39].

Theorem III.5. Let n be a positive integer and suppose there exists a

non-square positive integer d such that the following conditions are

satisfied.

1. There exist positive integers a and b with GCD(a,n) =1

and a® - b?*d = .

2. There exist positivé integers T and U such that

T2 - U%d = +1 and r = GCD(U,d) divides b.

Then a, +D J&= (a + bA)(T + UJd')k with

___b - 3 1 2 . 23 =
k = [ f'] [ ] [ [ ]] satisfies ay b, *d n, dlbk,

and GCD(a zd) In other words, n is the proper difference of
the powerful numbers ak2 and bkzd for each k in the congruence

class given.

Proof. Because of the GCD conditions given, the congruence shown is
solvable, and so infinitely many integers k satisfy the congruence.

Clearly ak2 - bkzd = +n holds by the multiplicativity of the Norm

function defined in Section 1 of Chapter I. By the definition of ay

and b we have

kl
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(1) a, = aTy + bde

and

(2) b

X ka + aUk .

k k-1

Thus by Lemma III.1 we have bk = bT" + aT" kU Tk—l[bT + akU] (mod

d). Rearranging the congruence shows bT + akU =0 (mod d), thus

bk =0 (mod d) as desired. TFor the last part, it suffices to show

GCD(ak,bkd) = 1. Multiplying (1) by T, and (2) by U.d and then

k k

subtracting yields

(3) +a = Tydy ~ debk .

Multiplying (1) by U, and (2) by T, and subtracting yields

k k

(4) b =TUa - Tb

X *
If a prime p divides GCD(ak,bk), then by (3) and (4), it follows
that p divides 6CD(a,b), and hence p divides GCD(a,n) = 1. Thus
GCD(ak,bk) = 1, From (1) it is clear that GCD(ak,d) = 1, hence

GCD(ak,bkd) = 1. o

For each positive integer n we must now find integers d.a,b,T
and U which satisfy conditions (1) and (2) of Theorem IIT.5. The
following table gives the desired integers. We omit the special cases
of n=2, 5 and 10 as they are represented by (d,a,b,T,U) =

(7,3,1,8,3), (11,4,1,8,3) and (39,7,1,25,4) respectively.
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Table ITI.1.

n d a b T U
4k-1 16k2-8k+5 !8k%-6k+2 |2k-1 |32k>-24k3+12k-2 |8kZ-4k+1
4k+1 k1 4k?-4%~-1 2k 1 4k2%-4k 2k-1
4k 4k3+1 2k+1 1 2k 1
8k+2 or 8K-2 with |(2k-1)2+2 2k+1 1 d+l 2k-1
3jn ko1
8k-2 and 3|n 36k?*~20k+3 6k-1 1 9d-1 3(18k-5)

We must show that in each case, the conditions (1) and (2) of
Theorem III.5 are satisfied. A calculation shows in each case'that
a? - db%2 = +n and that T? - U?d = +1. Thus in each case we merely
show that GCD(a,n) =1 = GCD(U,d), and that d is a non-square

integer.

Case 1. n = 4k - 1.
d = (4k-1)% + 4, hence a non-square integer. If p|GCD(a,n),
then p|a - (2k-1)n = 1. Thus GCD(a,n) = 1. Also d - 20U =3 and 3

does not divide d, thus GCD(U,d) = 1.

Case 2. n = 4k + 1.
d = (2k-1)2 -~ 2, so d is a non-square integer.
GCD(a,n) = GCD(4k+1,2k) = 1. Lastly, d - U%? =-2 and d is odd so

that 6CD(U,d) = 1.

Case 3. n = 4k.

d = (2k)2 + 1, hence not a square. GCD(a,n) = GCD(4k,2k+1) = 1.
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Also, GCD(d,U) = GCD(d,1) 1.

Case 4. n=8k+2 or n=28k~2 with k =1 (mod 3).
d = (2k-1)% + 2 1is not a square integer. n - 4a = -2 and a is
odd so that GCD(a,n) = 1. Lastly, 4 - U® = +2 and U is odd so that

GCD(U,d) = 1.

Case 5. n =8k -2 and k 1 (mod 3).

It can be seen that (6k-2)2 < d < (6k-1)%, so that d is a
non-square integer. Since 3n - 4a = -2 and a is odd, it follows
that GCD(a,n) = 1. Lastly, it can be seen that a? - 81d = -18. Since
GCpn(d,6) = 1, it follows that GCD(U,d) = 1.

For each positive n, using the values given in Table III.1 and
the algorithm of Theorem III.5, we can find infinitely many pairs of
relatively prime powerful numbers differing by n, with one of the
powerful numbers being a perfect square and the other a non-square

powerful number. We state the following result.

Theorem III.6. Every non-zero integer is the proper difference of

powerful numbers, one of the powerful numbers being a perfect square, in

infinitely many ways. |

We illustrate the procedure by the following two examples.

Example III.7. Let n = 3. We refer to the first row of Table III.1 to

obtain the values (d4,a,b,T.U) (13,4,1,18,5). So we form the product

(4 + J3) (18 + 5ADF with k =3 (mod 13). When k = 3 we get the

element 177823 + 4932213 = 177823 + 379413./A3. Thus
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3 = 132(3794)% - (177823) 2.

Example IIT.8. Let n = 6. We refer to the last row of the table. We

obtain the values (d,a,b,T,U) = (19,5,1,170,39). So we form the
product (5 + J9) (170 + 399 % with k =4 (mod 19). When k = 4 we
obtain the element 62531004125 + 1434459620119 and hence

6 = (62531004125)7 - 19%¢(755031379) 2.

This last example is a counter—-example to the conjecture of Golomb

mentioned earlier in Section 1 of this chapter.

Section 4 Differences of Non-Square Powerful Numbers

In this section we will generalize Corollary III.2 and show that
every non-zero integer is the proper difference of non-square powerful
numbers in infinitely many ways.

Mollin and Walsh [38] and McDaniel [34] independently showed the
result for all odd integers, while in the same paper lMcDaniel showed the
result for integers n = 2 (mod 4). McDaniel also showed that for
n=0 (md 4), n is a difference of non-square powerful numbers in
infinitely many ways, but the differences given are never proper. In
[37], Mollin and Walsh attempted to show the result for all even
integers, but the result rested upon the existence of a unit T + U
in Q(J/d) with 6CD(U,d) = 1. They incorrectly invoked a theorem of
Slavutsky [59], leaving the problem unsolved. In [39], Mollin and Walsh
resolved the aforementioned gap in their proof, and thus the result was
finally shown to be true for all non-zero integers.

This section follows very much the same format as the previous
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gsection. We first give sufficient conditions for a non-zero integer n
to be the proper difference of two non-square powerful numbers in

infinitely many ways. This result can be found in [39].

Theorem III.7. Let n be a positive integer and suppose there exist

non-square positive integers r and s such that the following

conditions hold.

1. There exist positive integers a and b with GCD(ar,bs) =1
and a®r - b%s = 4n.
2. There exist positive integers T and U with 6CD(U,rs) =1

and T2 - U%rs = +1.

If (a /F + b ) = (af + bJE) (T + us)® with

1 (mod r) and k% = —Tb(aUr)"1 (mod ), then

a, 12 b, 1?
X 0 (mod r), [-Ji ] r? - [ —k-] s® = 4+n, and

2g) = 1. 1In other words n is the proper difference of two

k = -(Ta) (Ubs) "~

ay =0 (mod r), D

Ll

2
GCD(ak r,bk

non-square powerful numbers in infinitely many ways.

Proof. Let T, + Ukvﬁ'= (T + Uvﬁ3k with k chosen by the congruences

k

given. By the GCD conditions, the congruences are hoth solvable. Then

(1) a aT, + bsU

k k k

and

(2) b

X ka + arUk .

k—lU =

By Lemma III.1, a, = aTk + bskT Tk—l[aT + bskU] = 0 (mod r).

Similary bk =0 (mod s). Now suppose a prime p divides
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GCD(akzr,bkzs). Then p divides GCD(akr,bks). Thus by (1) we obtain

(3) arT, + brsUk pCy

and by (2) we obtain

(4) bsTk + arsUk pe,

for some integers ¢, and c¢,. Multiplying (3) by T, and (4) by rU

K
and subtracting yields p[czTk - clrUk] = +ar. Multiplying (4) by Tk

K

and (3) by sU._ and subtracting yields p[czTk - clsUk] = 4bs., Thus p

k

divides GCD(ar,bs) contradicting our assumption. Thus

2 b 2
GCD(akzr,bkzs) =1 for each k. Lastly [ —E-] r3 - [ —E-] s3 =

2% =} 24 = 2. 2
a,*r bk s (aTk + bUk) r (ka + arUk) s

{a?r - b"‘s)(Tk2 - rsUkz) = 4n. o

Thus by Theorem III.7, it suffices for each non-zero n to find
integers (r,s,a,b,T,U) satisfying the conditions given.

We give a table of values as in the previous section. The special
cases n =1, 2 or 4 are not listed in the table as they are
represented by (r,s,a,b,T,U) = (11,7,4,5,351,40), (5,3,1,1,4,1) and
(11,7,1,1,351,40) respectively. Also note that several choices in each
class of n modulo 4 are given to ensure that both r and s are
non-square integers in at least one choice. In each row, t > 1 unless

otherwise stated.
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Table TIT.2.
n r s a T U

2t+1 t#2(mod 5) | t3+2t+2| t3+1 1 t3+t+l 1

2t+1 t=2(mod 5) 2 2t242t+1 [t41 2t+1 1

4t+2 2t2+4t4+1 2t%-1 | 1 (2t2+2t-1) 2-1 | 2t2+2t-1
4t+2 tzl(mod 3) [2t3+4t+3] 2t3+1 | 1 (2t242t+1) 241 | 2t2+2t+1
4t+2 t=1l(mod 3) |6t3+8t+3|6t3+4t+1| 1 (18t2+18t+5) 241 |3 (18t 2+18t+5)
it t odd t242t+2 | t2-2t+2| 1 %&t5+3t2) %4t4+1)
4t t even 2t3+2t+1 j2t3-2t+1 | 1 2t2 1

4t t even 2t2+3t+1 [2¢3-t+1 | 1 4t3+2t2+1 2t

4t t even 2t3+t+1 [2t3-3t+1 | 1 4t3-2t2-1 2t

We must show that for each class modulo 4, there is at least one
row which satisfies all the conditions of Theorem III.7. Trivial

calculations show that a?r - b%s = +n and T2 - U%rs = +1 hold in

each case. We omit the proofs of all the GCD conditions, as these
proofs follow very closely the same type of reasoning as given in the
previous section concerning the GCD conditions. It suffices now to show
that at least one row, in each class modulo 4, contains both r and s

as non-square integers.

Case 1. n=2t+1, r=t%+ 2t + 2, s =t2 + 1.

In this case, both r and s are squares plus one, hence neither

are squares.

Case 2. n=2t+1, r=2,s=2t2+2t+1, t =2 (mod 5).
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In this case s =8+ 4+ 1 =3 (mod 5), hence r and s are not

squares.

Case 3. n=4t + 2, t 21 (mod 3).

In this case either r = 2(t+1)®* -1 and s = 2t%® - 1, or
r=2(t+1)2 + 1 and s = 2t% + 1., By considering the Pell equations
X2 - 2y® = 41, it can be seen that for any given t value, one of the

two choices for r and s produces non-square integers.

Case 4. n =4t + 2, t =1 (mod 3).
By considering r and s modulo 3, it can be seen that both r

and s produces non-square integers.

Case 5. n = 4t, t odd.
Since r = (t+1)2 + 1 and s = (t-1)2+ 1, r and s are both

non-square integers.

Case 6. n = 4t, t even.

We consider the last three lines of the table simultaneously. We
will show that for a given t value, no two of the s values can be
squares. Similarly no two of the r values can be squares for a given
t value. Thus at least one of the three rows contains both r and s
as non-square integers. Suppose that 2t2 - k,t + 1 = x2 and
2t%2 - kot + 1 = y®, vwhere k,,k, € {1,2,3} and k, < k,. Then

X2 - y2 = ¢t where ¢ =1 or 2. It follows that x + y ¢ 2t. If

t =2, then r =2t*+ 2t +1 =13 and s =2t* -2t +1 =5 are
non-squares. Now assume that t > 4. Then it can be seen that

2t2 -kt +1 > t® for k € {1,2,3} so that x>t and y > t. Thus
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x +y > 2t contradicting x + y < 2t obtained earlier. Thus no two s
values can simultaneously be squares, and hence at least one of the
three lines has both r and s as non-square integers for any given ¢
value.

Using the values of Table III.2 and the algorithm of Theorem III.7,

we have proved the following result, which is the main result of [39].

Theorem III.8. Every non-zero integer is the proper difference of two

non-square powerful numbers in infinitely many ways. %]
We illustrate the procedure in the following two examples.

Example III.9. n = 3. We refer to the first row. In this case
{r,s,a,b,T,U) = (5,2,1,1,3,1) and so we form the product

5+ 23 + v&ﬁ3k with %X = 1 (mod 10). When k = 1, we obtain the

element 5.6 + 8.2, and so 3 = 27 - 53,

Example III1.10. n = 16. We refer to the last line of the table. In
this case (r,s,a,b,T,U) = (37,21,1,1,223,8) and so we form the product
(BT + 21) (223 + zw777)k with k = 24 (mod 37) and k = 4 (mod 21) to

obtain our desired differences.
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CHAPTER PFOUR

Section 1 Introduction

Erdos and Szekeres [17] studied positive integers n satisfying
the property that pkln whenever the prime p|n. These are called
k-full numbers. Since then, many papers have been published on the
special case of 2-full numbers. These are also referred to as squareful
numbers, and more recently powerful numbers.

Authors have studied many different properties of powerful numbers.
In Chapter III we considered differences of powerful numbers. Other
topics on powerful numbers include the distribution éf powerful numbers,
powerful numbers in arithmetic progression, sums of powerful numbers,
and the connection between powerful numbers and the first case of
Fermat's Last Theorem.

In this chapter we give an overview of these topics and include
some conjectures and open questions on powerful numbers.

We first consider the connection hetween powerful numbers and
Fermat's Last Theorem.

In or about 1637, Pierre de Fermat stated that if n is an integer

> 3, then the diophantine equation

has no solutions in integers x, y, z with xyz # 0.
It is clear that it suffices to show the result whenever n is a
prime p. We denote this by (FLT)p. The problem has been split into

two cases;
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I. p does not divide xyz.
II. p divides xyz.

We denote these by (FLTI)p and (FLTII)p respectively. We will
see that the truth of certain conjectures on powerful numbers would
imply (FLTI)p for infinitely many primes p.

We note at this point that Adleman and Heath-Brown [1] have shown
that (FLTI)p does in fact hold for infinitely many primes p.

We then turn our attention to the existence of certain units in
quadratic fields possessing special properties. We will see that the
non—~existence of powerful numbers in certain linearly recurrent
sequences has some bearing on (FLTI)p as shown in Theorem IV.12.

In the last section we discuss some of the aforementioned
literature on powerful numbers, in particular, the distribution of,

arithmetic progressions of, and sums of powerful numbers.

Section 2. querful Numbers and Fermat's Last Theorem

From a result of Granville [20], it is known that the first case of
Fermat's Last Theorem, (FLTI)p . is related to the existence of
certain powerful numbers in a very strong way. In this section we
investigate some of these connections to give sufficient conditions for
(FLTI)p to hold for infinitely many prime exponents.

In 1909 Wieferich [75] proved the following remarkable result.

Theorem IV.1. If (FLTI)p fails for an odd prime p, then

oP =2 (mod p2). o
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Using Theorem IV.1 and the following Lemma, Granville [20] gave the

first connection between powerful numbers and (FLTI).

Lemma IV.1. If 2P =2 (mod p2) and p|2m—1 for some m > 1, then

p? |2"-1.

Proof. Let 2m-1 = kp. From Zp

2 {mod p%), it follows that

oM = ofP - (1 + kp)p =1 (mod p2) by the binomial theoren. o

ke (m)

Lemma IV.2. If (a,m) =1 then a =1 (mod m) for all m > 1,

k>1. If a 21 (nod m) and a® =1 (mod m), then GCD(k,#(m)) > 1.
Proof. See [69, p. 74].

Theorem IV.2. ({(Granville [20]). If three consecutive powerful numbers

do not exist, then (FLTI) holds for infinitely many primes.

Proof. Assume that (FLTI) fails for all primes p > p,.

Put t = 7 p(p-1). We will show that znt - 1 is powerful for
P<Po

all n > 1. Fix n and assume that ¢ is a prime such that q|2nt-1.
If ¢ < p,. then since nt =0 (mod #(q?)) it follows from Lemma IV.2
that q2|2nt—1. If g > p,, then by assumption (FLTI) f£fails for the
prime ¢. Thus 29 = 2 (mod q2) and q2]2nt~1 by Lemma IV.1l. This

shows that 2nt~1 is powerful. Similarly 22nt-1 is powerful. Since

2208 4 o (2PCgy (2%%41) and eep(2Pt-1,27%41) =1, both 2% -1 and

2nt + 1 are powerful. So for every n > 1, Znt—l, Znt, znt+1 are

three consecutive powerful numbers. a}

In the statement of his theorem, Granville [20] wrote that "if the
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conjecture of Mollin and Walsh is true, then there exists an infinite
sequence of primes p for which the First Case of Fermat's Last Theorem
is true."™ It should be noted that Erdss [15] had earlier conjectured

the non-existence of three consecutive powerful numbers.

Corollary IV.1. If only finitely many triples of three consecutive

powerful numbers of the form zk-l, 2k, 2k+1 exist, then (FLTI)p

holds for infinitely many primes p. o

Under the hypothesis that (FLTI)p fails for all sufficiently
large primes p, we have shown the existence of a large c¢lass of
powerful integers of the form zk - 1. Under the same hypothesis, we
can show that another class of integers of the form Zk - 1 is made up

of powerful numbers.

Theorem IV.3. Assume that (FLTI)p fails for all primes p > p,. If
k is a positive integer not divisible by any prime p < pyr then

- 1 1is powerful.

Proof. Assume k 1is divisible only by primes p > p,, and let q be
a prime such that q|2k~1. By Lemma IV.2, GCD{¢-1,k) > 1, and we have
that q > py. Thus (FLTI)p fails for p = ¢, and so

29 = 2 (mod g?). Lemma IV.1 shows that q2|2k~1, and hence Zk -1 is

powerful. u}

Summarizing Theorems IV.2 and IV.3, we have;

Corollary IV.2. If (FLTI) fails for all prime p > p, and
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t= 7 p{p-1l), then Zk-l is powerful if either t|k or
P<Po

GCD(t,k) = 1. ]

One could conjecture that numbers of the form 2%-1  are never
powerful, and if this were the case, the result of Adleman and
Heath-Brown would follow immediately. In fact, A. Schinzel conjectured
that infinitely many Mersenne numbers (numbers of the form 2P-1 with
P a prime) are square-free. Rotkiewicz [54] showed that if Schinzel's
conjecture is true then (FLTI)p holds for infinitely many primes p.

As a result of Theorem IV.3 we can prove the following similar result.

Corollary IV.3. If infinitely many Mersenne numbers are not powerful,

then (FLTI)p holds for infinitely many primes bp.
Proof. Let X be a prime p > p, in Theorem IV.3. -0

Although it is weaker to conjecture that infinitely many Mersenne
numbers are not powerful, as opposed to square-free, it is probably no
easier to prove the statement.

As another corollary to Theorem IV.3, we can prove the following

result of Puccioni [50].

Corollary IvV.4. If (FLTI)p fails for all sufficiently large primes

then there is an infinite sequence of primes {qi} s.t.

43
2 = 2 (mod qi3).

Proof. Let p, be a prime such that p > p, implies that (FLTI)

fails for p, and {p.}

itist be the set of primes p, < p, <... . By
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Py

Corollary IV.3, 2 =~ -1 =M, is powerful for each i. By the result

1

of Lebesgue [27], none of the Mi are squares, and so there exist

D,
s 3 1_ -~
primes qi[Mi such that 4 |2 "-1. It follows that pi|qi 1 and that

qi—l

2 =1 (mod qia). Clearly for i =# j, GCD(Mi,Mj) = 1 so that each

q; is distinct, and hence the set {qi}izl is infinite. x|

Mirimanoff [35] gave a result similar to that of Wieferich: if
(FLTI)p fails for the prime p, then 3P =3 (mod p2). By the work of
Vandiver [71], Pollaczek [49], Morishima [43], Granville and Monagan
[21], it is now known that if (FLTI)p fails for the prime P, then
qp~E g (mod p?) for all primes ¢ < 89. Because of these results, much

of the earlier work in this section can be generalized. To do this we

first need to generalize Lemma IV.1.

Lemma IV.3. Let p and ¢ be primes such that qp = ¢ (mod p?). 1If

m 1is an integer such that p|qm-1, then pzlqm~1.
Proof. Proceed exactly as in the proof of Lemma IV.1. O

Similar to Theorem IV.1l we have;

Theorem IV.4. If (FLTI)p fails for all primes p > p, and

t = 7. p(p-1) then qnt - 1 dis powerful for all primes ¢ < 8% and
PP,

integers n > 1.

Proof. Let p be a prime dividing qnt—l. If p < Py, then since

nt = 0 (mod #(p2)), it follows by Lemma IV.2 that pzlqnt—l. if
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p > p, then (FLTI)p fails for p, and so ¢

Lemma IV.3 it follows that pzlqnt—l. Thus qnt - 1 is powerful. ]

¢ (mod p?). By

L]

Note that the proof of Theorem IV.4 rests upon the fact that
(FLTI)p holds for all primes p < 89. In fact Granville and Monagan

[21] have shown that (FLTI)p holds for all primes p ¢ 7 x 109,

We can similarly generalize Theorem IV.3. We

first need the following result.

Lemma IV.4. If p, ¢ are primes and k is a product of primes greater
k

than q, then p|gq-1 implies that p does not divide qq : i .
a1 a atl k
Proof. Suppose p| =1 and assume p |lg-1. Then p [¢"-1, and so

GCD(k,pa(p—l)) > 1 by Lemma IV.2. But k is a product of prinmes
greater than ¢, and pa(p—l) is a product of primes less than ¢

since p < (. o

Theorem IV.5. Assunme (FLTI)p fails for all primes p > p,. If k is

k4

qg-1

is

an integer not divisible by any primes p < py, then d

powerful for all primes ¢ < 89.

Proof. Fix a prime ¢ < 89. By the result of Granville and Monagan

mentioned above, k is not divisible by any prime p < 89. Let p be

k
a prime such that Plgar%“ By Lemma IV.4 it follows that

g 1 (mod p). By Lemma IV.2 it follows that GCD(k,p-1) > 1. Thus

P

P> Do, and so ¢ =g (mod p2?). Lemma III.3 shows pzlqk—l, and
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~

qk -1
q-—

k
since p does not divide ¢q - 1, pzlga:%u Thus is

powerful. o
The following corollary is a special case of Theorem IV.5.

qp ~ 1
-1

Corollary IV.5. 1If (FLTI)p fails for all primes p > p, then

is powerful for all primes p > p, and g < 89. o

The result of Puccioni, Corollary IV.4, can similarly be
generalized. The proof is a hit more complicated. We use a result of

Walker [73, Theorem 10] to prove the following well known result.

Lemma IV.5. Let p and g be odd primes such that g -1 is not a

P _
square. If ga—:—%-= n® then gq=3, p=5, and n = 11,

p-1

p.— ——
Proof. From g&—:—%-= n® we have that v = ¢ 2 JI+nfg -1 is a

solution to x%q - v3®(¢-1) = 1. By Walker [73, Theorem 10], + 1is the

fundamental solution, or its third power, to the equation

x2q - yv2(q ~ 1) 1. Clearly the fundamental solution to

1 is the element .4 + /4 - 1, and the third power
p-1

x%*q - y3(q - 1)

is (4q - 3)/4 + (4q - 1) - 1. Thus d 2 . 4g - 3 and this forces

g=3,p=5,n=11. i

Lemma ITT.6. If ¢ is a prime and p,,p, are primes such that

P P2
g -1 g1 | _
P> > p; > ¢, then GCD[ =1 o-d ] = 1.

qp1_1 qu-l
-1 " q-1

Proof. Let r be a prime dividing GCD[ }. Then
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qp1 =1 (mod r) and qp1 = 1 (mod r). By the Euclidean Algorithm,

there are integers a,b such that 1 = ap; - bp,. Then
1+b
= q Pa

= = qap2 =1 (mod r). Thus r divides ¢q - 1. By Lemma IV.4
. qpl -1 qu -1
it follows that r does not divide either of or eI

q -1 a

contradiction. a}

Theorem IV.6. If (FLTI)p fails for all sufficiently large primes,

then for each prime ¢ < 89 there is an infinite sequence of primes

p.
i_ 3
{pi}izl such that g = = ¢ (mod P, ).

Proof. Fix q a prime, g < 89. Assume (FLTI)p fails for all primes
r > r,, and denote these primes r; <( r, ¢ ... . By Corollary III.5,

i
ga—:—Il-= Mi is powerful for i > 1. If q -1 is a square, then by

the result of Lebesgue [27], each Mi is not a square. If g -1 is

not a square, then by Lemma IV.5 each Mi is again not a square. Thus

we can choose for each i > 1 a prime p; such that pi3|Mi. By Lemma

Iv.6, GCD(Mi,Mj) =1 for 1 # j, and so the set of primes {pi}izl is
r.
infinite. Moreover, ( ] {mod piB). It is easy to see that
pi_l
rilpi-l for each i > 1, and so ¢ =1 (mod pi3). Equivalently
i
g = q (mod pi3) for each i > 1. a

Corollary IV.5 can be restated as follows.

Theorem IV.7. If (FLTI)p fails for all primes p > p,, then for

P> Por P a prime, the pth cyclotomic polynomial
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-1 . .
14+ x + %2 +...+4 xp 1s a powerful number whenever X = ¢ a prime and

¢ < 89. o

This leads us to consider certain polynomials and when they can
have values which are powerful numbers. The following is a conjecture

of Schinzel and Tijdeman [56].

Conjecture IV.1l. If a polynomial P(x) with rational coefficients has

at least three simple zeros, then the equation P(x) = y?z® has only

finitely many solutions in integers x,v.,z with yz # O. n

In the same paper, Schinzel and Tijdeman proved

Theorem III.8. If a polynomial P(x) with rational coefficients has at
least two distinct zeros, then the equation P(x) = ym with =x,v
integers and |y| > 1 implies m < c¢(P) where c¢(P) is an effectively

computable constant. |

Conjecture IV.1l is very deep, and perhaps intractable.

Proposition IV.1. If any of the following polynomials yield powerful

numbers as values for only finitely many integers X, then (FLTI)

holds for infinitely primes.

1. £,(x) = -1 n >3
2. fu(x) =x"+1 n33
3. f,(x) = x3® - x.

Proof. Assume (FLTI)p fails for all primes p > p,. If
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. p(p-1l), then zntk

P<Po
n>1, k >1. By putting x

ot
l
i+

1 is a powerful number for all integers

ztk in f£,(x) or f,(x) for k > 1,

we see that both £,(x) and £,(x) have powerful numbers as values for
infinitely many integers x. By putting =x = Zkt with k > 1 in
f,(x), we see that £f,(x) has powerful numbers as values for

infinitely many integers x. 0

Proposition IV.1l leads one to consider Catalan's eﬁuation. In [6]
Catalan conjectured that the only solution to the equation

- ym =1 with x> 1, ¢vy>1, n>1, n>1

is x=3=mn, y=n=2. In fact Tijdeman [66] proved;

Theorem IV.9. The equation xp - yq =1, x>1, vy>1,p>1l, g¢g>1

has only finitely many solutions in integers. Effective bounds for the
solutions p.q,X,y can be given. o

One can generalize Catalan's problem by considering the difference
of a proper power of degree at least 3, and pbwerful numbers. We make

the following conjecture similar to that of Catalan.

Conjecture III.2. The equation %" - m3y? = +1 1is solvable in integers

x>1, m>1, y>1, n> 2 if and only if (x,m,y,n) = (2,1,3,3) or

(x,m,v,n) = (23,2,39,3). o

We note that f,(x) = x® - x is the product of the three
consecutive integers x - 1, x and x + 1. Erdsds and Selfridge [16]
proved that the product of k > 2 consecutive positive integers is

never a square or higher power. In fact Brdds [15] conjectured that the
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product of three or more consecutive positive integers is always
properly divisible by some prime. Note that this conjecture is slightly
stronger than the conjecture that three consecutive powerful numbers do
not exist.

It would be of great interest if these problems, the Catalan
problem, the problem of Schinzel and Tijdeman, and the problem of Erdﬁs
and Selfridge, which have been solved for proper powers, could be solved
for the more general case of powerful numbers.

Although proofs of these conjectures for powerful numbers are
novhere in sight, it is of interest to see how these problems are
related to (FLTI)p. We hope that some of these connections can inspire
new approaches to (FLTI)p and perhaps that a more elementary proof of

the result of Adleman and Heath-Brown might be obtained.

Section 3. Certain QOuadratic Units and
Powerful Numbers in Recurrence Sequences

It was shown in Theorem III.4 (Mollin and Walsh [36]) that the
existence of three consecutive powerful numbers is equivalent to the
existence of a unit a + b in a real quadratic field Q(.J),

m =7 {(mod 8), satisfying the conditions;

=
.

[
m

0 (mod m)
2. a = x%y® for some integers x, vy and a even.

In this section we take a closer look at these two conditions
independently.

The condition b = 0 (mod m) is-of particular interest when
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a + b is the fundamental unit e, of Q (/).
When m dis a prime p = 1 (mod 4), Ankeny, Artin and Chowla [2]

made the following conjecture.

Conjecture IV.3. Let p be a prime p =1 (mod 4) and

ep = %-(T + Usb) be the fundamental unit of Q(.b). Then

U 20 (mod p). o
Mordell [40] was able to prove;

Theorem IV.10. If p is a prime p =5 (mod 8), then the fundamental

n

unit ey = %—(T + Up) satisfies U

0 (mod p) if and only if

Bp_1 =0 (mod p) where Bn is the Bernoulli number defined by
4
t t «° n-1 Bntzn
T =1 - gt Z (-1) . Moreover, this is equivalent to
e -1 n=1 (2n)
p-1 p-1
the congruence 1 2 +...+ (p-1) 2 2 0 (mod p?). 0

In [41], Yordell conjectured the similar result for primes

3 (mod 4). That is, if T + Up

v
1]

ep is the fundamental unit, then

U %20 (mod p). He was able to prove;

Theorem IV.11. If p is a prime p =3 (mod 4) and T + Up is the

i

fundamental unit of Q(+p) then U =0 (mod p) if and only if
th

Ep_3 = 0 (mod p) where En is the n Euler number defined by
4
o Enth
sec t = 2 - o
n=0 ‘28
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Chowla was then able to show that Theorem IV.10 holds for primes
P = i (mod 8).

Slavutski [59] was able to generalize these results slightly by
considering square-free positive integers of the form d = np with p
aprime p > 3 and n a positive integer 1 <(n < p.

It would be of great interest if these technigues could be
generalized to all square-free positive integers m, that is give
necessary and sufficient conditions for the fundamental unit
&y = %—(T + UJ) to satisfy U =0 (mod m).

Stephens and Williams [60] have recently shown that for m < 10%,
the condition U = 0 (mod m) holds only if m e {46, 430, 1817, 58254,
209991, 1752299, 3124318, 4099215}. 1In all of these cases, it can be

shown that N(em) = 1. This raises two questions:

1. Are there infinitely many square-free positive integers

such that e = %—(T + UJ/) satisfies U =0 (mod m)?

2. Does there exist square-free positive m such that

& = %—(T + UJ) satisfies N(em) = -1 and U =0 (mod m)?

These gquestions are very pertinent to (FLTI)p. After proving the
following lemma, the connection between these types of fundamental unit

and (FLTI)p will be shown.

Lemma IV.7. If a + b is.a unit in a real quadratic field Q(.h)
and a = 2% for so%e k > 2, then a + b/ = e the fundamental

unit.
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Proof. Since k > 1, it can be seen that m = +1 (mod 8), and so €n
is of the form ey =Tt U/. Thus a + b = (T + Ut = T, + U£Jﬁ
for some integer £ > 1. By Theorem I.14, £ is odd and Zk"T. This
shows a =T,6 < T. But certainly T ( T£ since £ > 1, hence a=T

£
and a + b = €ne ]

Theorem IV.12. If only finitely many real quadratic fields Q(./h) have

fundamental units em of the form 2k + U with U =0 (mod m), then

(FLTI)p holds for infinitely many primes p.

Proof. As in the proof of Theorem IV.1l, suppose (FLTI)p fails for all

primes p > p, and set t= & p(p - 1). Then for each n > 1 there
PP,

exist integers m and Y, with m, square-free such that

nt
nt _ ., _ . a2 . 5 2 .
2 1=m7% * Clearly t is even so that &5 =2 " + mnynvﬁ;' is a
unit in Q(vﬁ;3. By the lemma, sn =€, and each m, is a distinct
n
positive square-free integer. o

It should be noted that in the list of fundamental units given by

Stephens and Williams with U

0 {(mod m), none of the rational parts,
T, dis of the form zk. Thus there is no known example of a fundamental
unit of the form 2k + UM with U =0 (mod m).
The second condition mentioned at the outset of this section is of
. . 1 ’
great interest. Given that E'(T + Us) = e, and

n

1 _ 1
5—(Tn + Unvﬁ) =& v then when can Tn or §'Tn be a powerful number.

The guestion of when Tn or Un can be a proper power has long been



94

studied. The most widely studied sequences in this regard are the

Fibonacci and Lucas sequences {Fn}n>1 and {Ln}

n>1 defined by
L+ F B = [%—(1+£)]n .

Cohn [8], [9] proved that the only perfect squares in the Fibonacci
sequence are F, = F, =1 and F,, = 144. Also he showed that the only
perfect squares in the Lucas sequence are L, =1 and L, = 4.

London and Finkelstein [31] and Lagarias and Weisser [26]
independently showed that F, =F, =1 and Fg = 8 are the only cubes
in the Fibonacci sequence, and that L, = 1 dis the only cube in the
Lucas sequence.

It is natural to ask whether F, =F, =1, Fg =28, and F,, = 144
are the only Fibonacci numbers which are powerful numbers. Peths [48]

was able to prove the following result. Let r(p) be the smallest

positive k such that p]Fk.

Theorem IV.13. Suppose p 1is a prime and at least one of the following

conditions hold;
1. r(p) 1is not a prime power.
o

- n . N .
2. Fr(p) = ql cee A with ql,...,qn distinet prime n > 2

and 34a, 34«,.
3. r(p) 1is a power of 2, 3, 7, 13 or 17.
Then the equation Fn = p?x?® is not solvable for any positive

integers n or X.

In regard to this problem it should be noted that Carmichael [5]

proved that if N # 1, 2, 6, 12 then N = r(p) for some prime p.
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This can be found in [23] also. Moreover, if r(p2?) is the smallest
positive integer k such that p2|Fk, Williams [78] has shown that
r(p) # r(p?) for all primes p < 10°. If one could prove that
r{p) # r(p?) for all primes p, then it follows immediately that Fn
is never powerful unless n =1, 2, 6 or 12.

The more general question that one can raise here is: given a
non-degenerate second order linear sequence, are there only finitely
many powerful numbers in the sequence? 1In other words, given x, and

X, and x = ax, + bxn for some given a,b is there a constant ¢

n+l -1
depending on Xx,,X,,a,b such that if x is powerful then n < ¢?
Shorey and Stewart [58] have shown that given such a sequence, the
diophantine equation X, = ed? with |d] > 1 and g » 2 must satisfy
max{n, |d],q} < ¢ for some effectively computable constant c.
In the special case of Pell's equation, wherein we study the

sequences {Tn} and {Un}, Cohn [10] has proved the following result

on squares in these sequences.

Theorem IV.14. Assume that d 1is a positive square-free integer such

that the Pell equation x2% - dy® = -4 ig solvable in positive odd

integers x and y. Then

i. The equation x2 - dy* = 1 has only the solutions x = 9,

d = 5.

2. The equation =x*% -~ dy? = 1 is solvable for a finite number of
values d, and for these values of d, only one solution

exists.
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3. The equation y? ~ 4dx9 = 1 has only the solution x = 6,

d = 5.
4. The equation ¥2 - dx? = -1 has at most one solution for
any d.
5. The equation 4x? - dy? = -1 has only the solutions x = 1,
d=5 and x =3, d = 13.

6. The equation y? - dx% = 4 has only the solutions x =1, 12

for d =5 and at most one solution for d =# 5.

7. The equation y2% - dx? = -4 has at most one solution for

any d.

8. The equation =x% - dy® = -4 has at most one solution for

d #5 and only the solutions x=1,2 for 4 = 5. o

The assumptions of the above theorem are very restrictive.
Firstly, d must be =5 (mod 8), and this is not sufficient for
%2 - dy? = -4 to have solutions in odd integers, as the examples
d =37, 101 and 197 show.

Zhenfu [77] proved the following analogue of Cohn's result.

Theorem IV.15. If the Pell equation =x? - dy2 = -1 is solvable then

for n > 2, the diophantine equation x2n - dyz =1 is not

solvable. O

Thus Cohn and Zhenfu have shown that if N(ed) = -1 and

n

€ = %'(Tn + Undﬁ), then only a certain class of the numbers {Tn} or

{Un} can be squares or perfect powers. It would be of great interest
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if similar results for powerful numbers could be obtained. More
precisely, let x be any even powerful number. Write x2% - 1 = dy?2
with d square-free. Then x + y.@ is a unit in Q(.A), and in all
known cases, X + y./4 = €q- Is there an even powerful number x such
that x + yJ/d, as obtained above, is not the fundamental unit?

If one can prove that x + y A is always the fundamental unit,
then three consecutive powerful numbers always come from the fundamental
unit T + U/ in Theorem III.4. Then if one can show that only
finitely many square-free positive m exist for which U = 0 (mod m),
the problem of three consecutive powerful numbers would essentially be
solved. Of course both of the steps seem very difficult at this point,
but they are practically the only known avenues for solving this

problen.

Section 4. Results and Problems on Powerful Numbers

Since Erdcs and Szekeres [17] studied k-full numbers, there has
been an extensive amount of study on this topic.

Another topic of study has been the asymptotic density of powerful
numbers. More precisely, the number of powerful numbers up to a given
x> 0. For x>0 it is clear that the number of squares up to x is

1/2] where [x] represents the integer part of x. To obtain

[x
formulae for the asymptotic density of powerful numbers we first need to
make some definitions. We refer to [19].

e €y ‘
Definition. Let n be a positive integer and n = Py TreeerPy its

canonical prime factorization. The Mobius function u(n) is defined by
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un) =0 if e > 1 for some 1 ¢i <k
= (-nk if e, =1 for some 1 ¢ i <k
=1 if n=1.

The purpose of defining the Mobius function for the study of
powerful numbers is given in the following discussion.

It was proved in Proposition III.1 that every powerful number can
be uniquely written in the form n®m® with m square-free. Thus every
powerful number is uniguely determined by the form n®m3® with

plm) # 0.

[e ]
Definition. The Riemann zeta-function is defined by ¢(s) = = n >,

n=1
It is well known that ¢(s) converges for 1 ( s ¢ o, and that

¢(s) = ( 2 pks) =7 {1 - p—s)
b

k=0 s}

-1 where the products extend over all

primes p.

We will prove that k(x) = (# of n®m?® ¢ x pu(m) #0) is

1/2 with ¢ = gé%é%l% To show this, we first prove

the following result, which can be found in [67, Theorem 1.2.7, p. 5].

approximated by cx

5 HEm) _ ¢(s)

m=l m° ¢(2s)

Lemma IV.8.

© 2
Proof. An easy check shows z H—igl-= ¥/ [ 1+ l;-] where the
m=l P p

product extends over all primes p. Thus we obtain
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-8, -1
® 2 (m) -8 1 - p—2s g b $(s)
p B erap®) ma | —F | = 1 = . @
m=l m P ) 1-~-p 7 (1-p ) ¢(28)
P

We now give a simple formula for k(x), as proved in [18].

o0

1/2
Proposition IV.2. k(x) = = p*(m) [[E—-] ] where [x] denotes the

m=1 m2

integer part of x. o

By Proposition IV.2, we see that k(x) can be approximated by

[ ; gz(m) ] x1/2
- 3/2 )
m=1l nm

Theorem IV.16. The number of powerful numbers up to x > 0 is

approximately §(3/2) xl/z.
¢(3)

> Am _ e3/2)
Proof. By Lemma IV. g HB - § and so
e - 3/2 ¢(3)

m=l m
% 1/2 © 2
k(x) = z wm) |[ % -z Hml /2 sB/2) (172 o
m=1 m? m=1 m3/2 $(3)
The value of ¢(3/2) is approximately 2.1732, and so one concludes
¢(3)

that the number of non-square powerful numbers up to x will be greater
than the number of squares, provided that x is large enough.
Sharper estimates of k(x) have been given by Erdts and Szekeres

[17]1, who showed that

SO/2) 112, ot

Later, Bateman [3] showed that

/3

k(x) = )
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_ ¢(3/2) _1/2
k(X) = §(3)

Furthermore, it is known that if

_¢{(3/2) _1/2 $(3/2) _1/3 ] . e
k(x) = —5737—-x + —ETET—-X + O0(x’) then o satisfies
%— [ IR %E" We refer to [25] and [53] for this.

Improvements have been made on

$(3/2) _1/2 _ ¢(3/2) 1/3
(3 @

and Suryanarayana and Sitaramachandra Rao [65], but the proofs are too

Alx) = ki{x) -

by Bateman and Grosswald [4],

complicated for our discussion.
Suryanarayana [64] has introduced the idea of generalized powerful

numbers. He defines Ra b to be the set of positive integers
€1 ®x
D=p Te..py satisfying e, = 0 or a (mod b). Clearly R2 3 is the

set of powerful numbers. He has shown that Ra {x), the number of

/b

integers in Ra up to x satisfies the approximation

/b

_ ¢(b/a) 1/a, gla/b) 1/b

Rap® = s T em

a,b + A(x)

vhere A(x) 1is an error term depending on a and b.

Again it is beyond the scope of our discussion to include any of
his proofs here.

Golomb [19] defined a function similar to the ﬁiemann

Lo o]
zeta~-function, defined by F(s) =x ( Z p_ks) =7 [ 1+ 1 }.
b

k=0 P ps(ps—l)
k#1

Note that in the product-sum formula for F(s), we have the Riemann

zeta~function without the second term in each sum. A trivial check
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shows that F(s) = = r-s where %k is the set of powerful numbers.
rek
Although ¢(s) 1is defined for 1 < s < ®, it is easy to see that F(1)

is defined and moreover F(s) converges for %-( 8 < oo,

Propogition IV.3. F(s) converges for %-( s < oo,

®  -2s ® -3s
Proof. F(s) can be written as [ Z n }[ = p2(m) m }.

n=1 m=1

(o] o0
F,(s) = = n_zS converges for %—( s (o and F,(s) = Z n—3s

n=1 n=1
converges for %—( s < o, Thus their product F,eF,(s) converges for
%—( g ¢ o, Clearly F(s) ( F, « F,(s), and so F(s) converges for %
(s (o Itis clear that F[ %-] diverges since F[ %—] =

[e ]

z V2, 5 U2 %—=oo. a
rek r=n? n=1

F(1) can be calculated exactly since

F(l) = [ z n—2 ][ = ya(m)m_3] = ¢(2) o ggg; by Lemma IV.8. It is

n=1 m=1 s
w2 ind
well known that ¢(2) = i and ¢(6) = 5IE thus
F(l) = 315 ¢(3) = 1.9435 1is the sum of the reciprocals of the powerful
274
numbers.

Shiu [57] has studied the number of powerful numbers between
successive squares. Let f(n) be the number of powerful numbers
strictly between n? and (n + 1)2. Let Fm = {n : £(n) = m}. Let dm

be the asymptotic density of Fm' more precisely
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dm = linm = . Shiu was able to give the following
K00

formulae for dm'

o o]
Theorem IV.17. d4 = = (-1)
£2=0

£ (m+ 2)! =
'—ETZT_—'Cm+£ where C, =1 and

yz(bo)...pz(br)

Cr = z 373 and b, <( b, ... are the square-free
1<b0<...<br (bo...br)
positive integers. O

Shiu gives approximate values for dm for m ¢ 5. They are

dy = 0.2759 ... d, = 0.3955 ... d, = 0.2312 «e. 45 = 0.0770 ...

[=1)
ES
1

= 0.0170 ... dg = 0.0027 ... .

As an application, since d, > 0 one can conclude that infinitely
many integers n exist for which no powerful numbers lie strictly
between n® and (n + 1)%. In a sense this contradicts the fact
obtained earlier, that the number of non-square powerful numbers up to
x will exceed the number of squares, for large X.

Another topic of inquiry concerning powerful numbers has been
powerful numbers in arithmetic progression. This topic has been less
studied and there are still many unsolved problems in the area. Most of
the unsolved problems were first given by Erdds and then restated by Guy
in [22].

In particular, Erdos first asked what is the largest integer r
such that r powerful numbers are in arithmetic progression? If no GCD
conditions are imposed, then it is easy to see that r is unbounded.

Erdos tacitly assumed that consecutive powerful numbers in the
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progression are relatively prime.

It is easy to show that infinitely many triples of powerful numbers
in arithmetic progression exist. In fact if n = 4(m%2 - 23m) for some
integers m > £ GCD(m,2) =1, then ((2m2 + m2 - 22)2, (m® + 22)32,
(2me + £2 - m?)2) are squares differing by n.

The question one raises at this point is for which n do there
exist three powerful numbers in arithmetic progression differing by n.

The following theorem is similar to Theorem III.4.

Theorem IV.18. There exist three powerful numbers in arithmetic

progression differing by n if and only if the equation x? - dy? = n?
is solvable in positive integers x,v,d with & square-free, x a

powerful number, GCD(xn) =1, X £n (mod 2), and y =0 (mod d).

Proof. Suppose P,,P,,P, are powerful numbers satisfying

Pi " Pia

P,P, = y3d with d square-free. Then clearly =x?® - dy® = n?,

=n and GCD(Pi’Pi—l) =1 for i=2,3. Let x =P, and

GCDh(x,n) =1, yv =0 (mod d), and =X 1is a powerful number.
If x - n is even, then so is x + n. Since x~n and x + n
are powerful, they are both divisible by 4, so that their sum 2x is

divisible by 4. Thus x is even contradicting GCD(Pi,Pi_ )} =1 for

1
i=2,3.

Conversely, if x2% - dy? = n? is solvable with all those

4
d

Since GCD{(x,n) =1 and x #n (mod 2), it follows that

2
conditions listed, then (x - n)(x + n) = y34d = [ ] d® is powerful.

GCD(x - n, x + n) =1 so that both x ~n and x +n are powerful.
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Thus X - n, X, X + n are three powerful numbers in arithmetic

progression. o

It was conjectured that no triples of powerful numbers in
arithmetic progression exist for n = 1. We further conjecture that
infinitely many n do not have solutions, and for those n which have
solutions, only finitely many exist. There are no known examples of
four powerful numbers in arithmetic progression, although this certainly
does not preclude the non-existence of such quadruples.

It is of interest to consider when powerful numbers exist in an
arbitrary arithmetic progression. That is, when is the congruence
x%y® = a (mod b) solvable. This is completely solved in the following

result.

Theorem IIT.19. The congruence =x3y® = a (mod b) has either no
solutions or infinitely many. It is solvable if and only if for every

prime p such that plla, we have p24$.

Proof. Suppose =x®y® = a (mod b) and a prime p exists for which pja

and p?|b. Write a = k,p with 6CD(k,,p) =1 and b = k,p?. Then

2

x%y® = p[k, + ckppl, and GCD(k, + ck,p,p) = 1. Thus pl|x®y®, which
is a contradiction.

Conversely, write a = A;A,A; where GCD(A,,b) =1, if p|A,
then pjla and pjb, and p|A, inmplies p2|GCD(a,b). By our
assumption, a can be written this way. Note that A; is powerful and
A, 1is square-free. Since GCD(A,,b) = 1, there exists a solution to

A, X =1 (mod b). Write A, = Py---Py with 1 distinct primes. Let
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i

b
b, = =— for 1
p .

i i < k. By the definition of A,, GCD(bi,pi) =1 for

il

i,
1 ¢i <k, so let Qi be a solution to Qipi 1 (mod bi). It follows

that (Qipi)zpi = p, (mod b), and so P = ( .Hi Qizpi3)(A1X)2A1A3 =
1=

pl...pXA1A3 = A,A;A, = a (mod b), and P is powerful. Infinitely many

solutions exist since infinitely many choices exist for X and the Qi’

1<1i<k. g
(K) {K)

Erd®s considered k-full numbers U, < U, {... , and made the

following conjectures.

Conjecture IV.4.

(3)

1. There exist infinitely many triples of Ui in arithmetic

progression.

(4)

2. There do not exist triples of Ui in arithmetic

progression.

(3)

3. There are no consecutive Ui numbers,

0.3 _ . ) oy

i i is not solvable.

i.e.

(3)

We remark that no example of a triple of Ui in arithmetic

progression is known. Furthermore, Conjecture IV.4.3 can be

strengthened.

(3) _ @

J

Conjecture IV.5. The only solutions to the equation Ui
are 2%,32 and 23%,39%e23.
The last topic of study on powerful numbers is sums of powerful

numbers. It is well known that every integer is the sum of four
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squares, and hence the sum of four powerful numbers. It was conjectured
by Erdos that every sufficiently large integer is the sum of three
powerful numbers. In fact, Mollin and Walsh [36] conjectured that only
7., 15, 23, 87, 111, 119 are not representable as a sum of three
powerful numbers. Subbarao (unpublished) has produced a table for
integers n, wup to 105, giving the number of ways that n can be
written as a sum of three powerful numbers. From the table, one could
conjecture that the number of representations of n as a sum of three
powerful numbers tends to infinity as n gets large.

Heath-Brown [24] has recently proved the following unpublished
result, and we thank him for allowing us to give an outline of his

proof.

Theorem IV.20. There is an effectively computable constant n, such

that n > n, is a sum of at most 3 squareful numbers.

outline of Proof. It is well-known, see Mordell [42, p. 175, p. 178]

that if »n # 4t(8k + 7), then n is expressible as a sum of three
sgquares. PFurthermore, if n = 4t(8k + 7)) with t > 1, then n is
expressible as n = x® + y® + 2z® with 2|z. Thus it is left only to
consider those positive integers n =7 (mod 8). It is then shown that
for sufficiently large n, the equation pn = x% + y2 + p9z2 is

5 (mod 8).

solvable in integers x, vy and 2z with p a prime and »p
It follows that p|x®*+y® and so from Gaussian arithmetic p—l(x2 + y2)
is a sum of two squares, =2z2% + w2. It follows that

n = z% + w2 + p3z2. ]
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Heath-Brown conjectures that every sufficiently large integer is
expressible as n = x% + y?% + 5322, and more generally, it would seem

5 (mod 8) there is an n(p) such that if

1]

that for a given prime p
n > n{p) then n = x2 + y2 + p°z2 for some integers X, v and z.

This would show that the number of representations of n as a sum of
three powerful numbers tends to infinity as n gets large.

It is also of interest to find out which integers are the sum of
two powerful numbers. It is known that if n has no prime factor
p =3 (mod 4) to an odd exponent in its canonical prime factorization,
then n is a sum of two squares, hence the sum of two powerful numbers.
For other n, the problem seems very difficult.

Even when considering which primes p = 3 (mod 4) are the sum of
two powerful numbers, there is no known method. The only known result
in this direction comes from Gauss. If p is a prime, p =1 (mod 3),
and the congruence x® = 2 (mod p) dis solvable, then p = x% + 27y2
for some integers x and y. There is more discussion on sums of
powerful numbers in Mollin and Walsh [36].

We conclude this section with some more conjectures of Erdss.

Conjecture IV.6.

(3) (3) (3)

1. The equation Ui + Uj = UK has infinitely many
solutions.
2. The equation Ui(4) + Uj(4) = UK(4) has only finitely many

solutions.
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3. For k » 4 the equation U, (k) + U, (k)
1 2

(k)
Ui has only finitely many solutions.
k-1
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