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Abstract 

The evolution of positioning technologies such as Ultra-Wide Band (UWB) has created an 

opportunity to improve the construction in various aspects. Enhanced situational awareness can be 

used to improve the level of safety and productivity of the construction. Providing information 

about situational awareness of static and moving objects on a construction site is feasible with 

applying positioning awareness. In order to apply positioning methods and technologies 

efficiently, they should be evaluated and assessed in different situations. The positioning 

performance changes when the dynamic parameters such as speed changes. In this study, two 

experiments are designed and carried out on the dynamic performance of UWB positioning. The 

result of the experiments and the evaluation of the results are stated in details.  
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Chapter One: INTRODUCTION 

1.1 Background 

Construction is one of the largest industries in many countries by making up a large 

proportion of Gross Domestic Product (GDP). For example, construction comprises ten (10) 

percent of the GDP in Japan (Stat. Japan 2014) and seven (7) percent in Canada in 2014 (Stat. 

Canada 2014). The growth rate of construction industry’s GDP in last four years in Canada is 

shown in Table 1.1 (Stat. Canada 2014). In Canada, the only industry exceeds from construction 

in GDP is manufacturing with a GDP of $173,442B comprising 10 percent of the total GDP in 

2014 (Stat. Canada 2014). 

Table 1.1 Growth rate of GDP in construction in Canada 

Year GDP Annual Growth  

2011 3.68% 

2012 6.50% 

2013 1.90% 

2014 0.59% 

While the construction industry is a remarkable contributor to Canada’s GDP, it is also 

considered to be one of the most dangerous industries as per the number of reported annual fatal 

injuries. For example in 2010, workers in the construction industry were three (3) times more likely 

to die from work-related collisions compared to the workers in other dangerous industries such as 

mining and agriculture (Cambraia et al. 2010, Ruff and Holden 2003). In 2010, approximately 

108,000 workers lost their lives in the construction industry, comprising one third of all fatal 

occupational injuries worldwide (Stat. Canada 2010). In Alberta, while only approximately 18 

percent of person-year worked is in the construction industry, 28 percent of days-lost due to injury 

among all industries are reported in construction (WCB 2010). 



 

2 

Besides the health and safety issues, injuries and work-related accidents have other major 

consequences such as financial losses and unpredicted project delays. Therefore, a considerable 

amount of resources has been put forth towards improving construction safety and reduce the 

number of injuries. As such, the safety management procedures, safety regulations, and developed 

tools such as personal protective equipment (PPE) have improved greatly in the recent years. For 

example, as shown in Table 1.2, the number of fatal injuries in the United States is on a decreasing 

trend since 2003 (BLS 2014). Similarly, Canada reports an improved rate of fatal injuries in the 

last decade (Stat. Canada, 2011). No doubt, today’s construction industry can be considered safer 

than ever. However, it is still an unsafe industry.  

Table 1.2 Construction fatalities in United States by year (BLS 2014) 

Year Fatalities 

2003 1131 

2004 1272 

2005 1224 

2006 1226 

2007 1204 

2008 969 

2009 

2010 

2011 

2012 

2013 

607 

816 

751 

775 

796 

Despite significant efforts, the construction industry is still suffering from poor safety 

records (HSE 2012, Hinze and Teizer 2011). Construction workers are exposed to a variety of 

hazards. The major two causes for construction fatalities and injuries are falling from heights and 

collisions (OSHA 2012). Therefore, reducing the number of collisions on the construction sites 

can have significant financial and, more important, human safety benefits.  
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The evolution of positioning technologies in recent decades can provide an opportunity to 

improve safety in the construction in both indoor and outdoor jobsites. Among various ways to 

improve safety, situational awareness has been suggested as a means that could have significant 

potential (Teizer et al. 2008b). Providing precise real-time position of moving objects on 

construction sites such as labourers and equipment on a construction jobsite is shown to have high 

potential for identifying and avoiding unsafe situations (Razavi and Haas 2010). Positioning can 

help to predict, detect, and prevent the collisions construction sites (Cheng and Teizer 2012). Ultra 

wide-band (UWB) tracking, as a wireless RF-based Real Time Location System (RTLS) is gaining 

more attention and been used in numerous practical applications (Cheng et al. 2011). UWB is 

considered as a low-range wireless positioning technology as its range is limited to 160 m 

(Ubisense 2010). The increased attention to the potential of UWB RTLS in various industries, in 

construction industry in particular, has led to examination of its application in construction 

industry.  

Performance assessment of UWB tracking is important as it relates to how it can be used 

and the way it can help to improve safety on construction sites. The accuracy of UWB RTLS 

changes when the dynamic parameters such as speed or acceleration change (Cheng and Teizer 

2012). In order to apply positioning methods and technologies effectively, the accuracy and 

performance of such technologies is required to be assessed. Such an assessment can help in 

defining safety boundaries for collision detection and safety management models. Previous studies 

have mainly analyzed the accuracy of UWB RTLS focusing on static resource tracking. Few 

studies have focused on the accuracy of UWB RTLS in tracking dynamic resources. However, the 

impact of speed and acceleration on the accuracy of the UWB RTLS has not been assessed to date.  
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1.2 Research Motivation 

Among various applications, using positioning technologies for improving the safety of 

construction sites has been proposed in previous studies (Oloufa et al. 2003, Cheng and Teizer 

2012, Sadeghpour 2006). For example, applying positioning technologies in monitoring and 

improving behaviour of the construction equipment drivers has also been examined in previous 

studies (Hammad and Zhang 2011). Positioning technologies, in addition to location estimation, 

has also been used for acquiring the speed of equipment on a construction site. The application 

which enables alerting or warning when a driver exceeds the speed limit or enters an unsafe 

situation (Wang and Razavi 2015, Chae and Yoshida 2010).  

The combination of using a robust alerting system and a reliable tracking technology can 

be invaluable for increasing the construction job-site safety levels and significantly reducing the 

number of collisions. In order to make a connection between a tracking and alerting system, object 

safety boundaries are used (Hwang 2012, Taubig et al. 2012). A safety boundary entails an area, 

commonly a circle, that covers a moving object equipped with positioning tags. The overlap of 

safety boundaries of two different objects can be defined as an unsafe situation or an on-site 

collision. 

In order to accurately define a safety boundary, the accuracy of the positioning system in 

both static and dynamic tracking is required. Tracking static and dynamic resources are, 

respectively, referred to as static and dynamic tracking. A safety boundary is considered more 

efficient if it entails a “dynamic safety boundary”. The radius of the dynamic safety boundary can 

be obtained by considering three factors: the smallest circle that entirely covers the moving object, 

minimum stopping distance of the moving object, and the accuracy of the positioning technology. 

The radius of the circumvent circle is constant, the minimum stopping distance and the 
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performance of the positioning technologies are functions of speed. In consequence, the radius of 

a dynamic safety boundary can be calculated as a function of speed. 

In Equation 1.1 and Figure 1.1, three factors are implemented for obtaining the radius of 

the safety boundary. These are referred to as: 1) object radius (ro); 2) minimum stopping distance 

(S); and 3) positioning accuracy (dPA) respectively.  

 

Figure 1.1 Dynamic safety boundary parameters 

Safety boundary Radius = ro + S + dPA                             (1.1) 

To further define the different acronyms, ro is the object radius, S stands for the minimum 

stopping distance, and dPA stands for positioning accuracy.  

Additionally, the radius of the smallest circle that entirely covers the moving object can be 

easily obtained.  
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The minimum stopping distance (S) is function of speed of the moving object and the 

perception and reaction time of the driver of the moving object (Roger et al. 1992). This factor can 

be obtained using the following equation: 

S=Spr +Sb                             (1.2) 

where Spr is the relocation of the moving object during the perception-reaction time of the driver 

and Sb is the distance that the moving object travels while decelerating from the initial travelling 

speed to zero. Spr and Sb can be calculated, respectively, using the following equations: 

Spr = 

v0

3.6 × tpr
                             (1.3) 

Sb = 

v0
2

254 × f
                                 (1.4) 

where V0 is the initial speed of the moving object in km/hr, tpr is the perception-reaction time in 

second, and f is the coefficient of longitudinal friction (see APPENDIX A). The perception-

reaction time (tpr) was matter of studies and experiments in different environments and situations 

(Alm and Nilsson 1995, Jurecki et al. 2014, Green 2000).  

The findings of these measurements in this study can be applied and utilized in obtaining 

the third factor of the radius of the dynamic safety boundary (dPA). 

1.3 Research Objectives and Scope 

The overall goal of this study is to evaluate the accuracy of UWB RTLS in tracking moving 

resources such as equipment and labourers in construction projects. The specific objective of this 

study is to examine the effect of speed and acceleration on the accuracy of UWB RTLS in dynamic 

tracking on construction sites. The findings of this study can be used for defining dynamic safety 

boundaries, as defined in the previous section, to reduce work related injuries and, in consequence, 
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increasing the safety level of construction jobsites. The scope of this study is to examine the 

performance of UWB RTLS in an indoor lab environment that is similar to an indoor construction 

jobsite. 

1.4 Methodology 

Two sets of experiments are conducted to assess the accuracy of UWB RTLS in tracking 

dynamic resources. In these experiments, the actual position of the UWB tag is compared with the 

estimated position. In the first set of experiments, the accuracy of UWB RTLS in tracking dynamic 

resources is evaluated while a tagged mobile object accelerates over a defined path. Analyzing the 

results raised the question that if acceleration had an impact on the accuracy of UWB tracking. 

Therefore, the second set of experiments were designed in an identical method, except that the 

acceleration was eliminated. In this experiment, the mobile object moves over its path with a 

constant speed and is observed at several observation points that are defined on the path. 

The performance of UWB tracking from the two experiments are compared using the 

accuracy measures, namely: offset, DRMS, and precision at various speeds allowed on 

construction sites. The confidence interval (CI) and prediction interval (PI) for the error of the data 

are calculated. The CI is used to obtain accuracy measures such as DRMS, precision, and offset. 

The PI can be used for defining the dynamic safety boundary for moving objects as described in 

section 1.2. 

1.5 Organization of Thesis 

This dissertation is organized as follows: in the second chapter, studies regarding the 

performance of several tracking technologies such as GPS, WLAN, and UWB in different 

environments for different applications are reviewed. In the third chapter, the accuracy of UWB 

RTLS in tracking dynamic resources is tested and discussed with different speeds. In the fourth 
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chapter, an experiment is conducted to assess whether acceleration affects the accuracy of the 

UWB RTLS in tracking dynamic resources. Conclusions, summaries, and recommendations for 

future research are discussed in the final chapter. 
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Chapter Two: LITERATURE REVIEW 

In this chapter, studies conducted on increasing the safety level of construction sites are 

reviewed. Because collisions are the main cause of most work-related serious and fatal injuries, 

this chapter focuses on studies related to collisions in construction. The reviewed studies are 

categorized into groups: collision detection and prediction models, collision warning approaches, 

and the reason for collisions. Positioning has shown a great potential to reduce the number of 

accidents. Therefore, studies conducted on assessing the performance of different positioning 

technologies are discussed and compared.  

2.1 Safety Approaches in Construction  

There are several categories of research on safety in construction sites at different phases 

of progression of a project such as design and process. In these studies, new software, 

methodologies, and hardware are applied in designing safer construction environment, training the 

people involved in the construction, and improving the safety of the workers during the 

construction.  

The main focus of one category is at the design level of a construction project and the 

impact of design on construction safety. It is mainly engaged with practitioners who develop and 

sustain a safe construction environment. In this research, time and energy are mainly focused on 

using databases, Building Information Modeling (BIM), and 4D Computer Aided Design (CAD) 

in different construction phases (Zhou et al. 2012). Different tools are developed to improve the 

safety of projects. These tools are taking advantage of online databases, such as Geographical 

Information Systems (GIS) 4D CAD and BIM, for site hazard avoidance. These tools are used in 

different phases of construction projects (Yu 2009).  
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At the process level, online databases are mostly used for enabling project safety 

information queries and communication between companies. At the process level, significant 

efforts have been dedicated to improving safety as well. Most of these efforts take advantage of 

4D CAD to enable safe project delivery. The integration of GIS and BIM with 4D CAD has 

resulted in a better understanding of construction safety (Zhou et al. 2012). Two main tools in this 

category are ToolSHeD (Cooke et al. 2008) and a knowledge-based safety design analysis 

prototype (Davison 2003). Their main advantage, respectively, is being suitable for multi-party 

collaboration and being integrated with design information. ToolSHeD is a web-based tool 

designed for assessing the risk of falling during building maintenance. The importance of this tool 

is shown in the UK's Health and Safety Executive report: by using this tool, researchers discovered 

that falling from buildings on construction sites during maintenance is the main cause of accidents 

in the UK (Cambraia et al. 2010).  

There are some studies that assess the impact of training of labourers on safety 

(Bouchlaghem 2005, Carbonari et al. 2011). The method of teaching and training for increasing 

safety is referred to as “proactive”. Virtual Reality (VR) is a term used for the combination of 

hardware technologies and software and it is used for developing 3D and real-time tools in a virtual 

environment such as computers or phone applications (Woo et al. 2011). The developed computer 

applications are used to train labourers in a virtual construction site. The main advantage of virtual 

training, e.g. Building Management Simulation Centre De Vries et al. 2004), is getting trained in 

a risk-free environment.  

In another branch of research, taking advantage of location estimation technologies is 

considered to be a solution for improving safety (Oloufa et al. 2003). In these studies, the 

researchers conduct experiments to determine the efficiency and reliability of the positioning 
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technologies on reducing the number of collisions, falls, and labourers get stuck by heavy 

machinery. The performance of the location estimation technologies, such as GPS, RFID, WLAN, 

and UWB, is evaluated in various construction environments, indoor and outdoor. (Khoury et al. 

2009, Riaz et al. 2006, Maalek and Sadeghpour 2013).  

2.2 Collision in Construction  

Collisions have always been an important issue in different fields, especially in the 

construction industry, which has a high number of collisions reduce the safety level of this 

industry. Construction sites are known as complex environments and have equipment, materials, 

tools, and workers in continuous interrelation. The nature of construction sites, and the 

interrelation of the moving objects, endanger the health of the labourers in this industry (Teizer et 

al. 2010b). Collisions cause major monetary and time losses, and, most importantly, serious and 

fatal injuries. Some of these accidents are attributed to the dynamic environment in which the 

workers and equipment operate too closely together (Behzadan et al. 2008). The significant 

number of accidents has resulted in more studies being conducted on the issue of collisions from 

different perspectives. The main goal of these studies is reducing the number of accidents and 

losses with focusing on collision detection, collision prediction, and collision warning as will be 

explained in this section.  

2.2.1 Collision Detection and Prediction 

Earlier research on reducing the number of collisions was focused on warning labourers 

when collisions were about to occur. In these models, detecting collisions that are about to occur 

is referred to as “collision detection”. Collision detection methods are categorized into two major 

groups: broad-phase and narrow-phase (Kockara et al. 2007, Cheng and Teizer 2012, Jiménez et 

al. 2001). In most of the collision detection models, both the broad-phase and narrow-phase 
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methods are used. In the broad-phase methods, the possibility of a collision between pairs of 

moving objects is examined by approximating the volume of the involved objects. In the narrow-

phase method, further inspection and calculation is conducted for each pair that demonstrated the 

possibility of collision, as detected in the broad-phase (Moore and Williams 1988, Lin and Canny 

1991, Mirtich 1998, Ehmann and Lin 2000). In the narrow-phase methods, the model concentrates 

on the shape and geometry of the objects to detect the probability of a collision occurring. In 

computer modeling and simulations, the position of the moving objects and their orientation can 

be extrapolated from the specification of parameters using the narrow-phase method (Steketee and 

Badler 1985).  

Another branch of research related to collision focuses on collision response, which is 

mainly implemented in computer animation (Moore and Williams 1988). Researchers are using 

the assumption of zero elasticity to use momentum equations that use an angular velocity vector 

for each object and an impulse vector. Improving the collision detection models and systems on 

construction sites reduces fatalities and injuries. This advancement will save time, money, and 

increase the safety of the conditions for construction workers. 

2.2.2 Collision Warning Approaches 

Alerting labourers to the possibility of an imminent crash or dangerous situation is referred 

to as a “collision warning”. The approaches used for warnings are divided into two groups: reactive 

and proactive. The reactive approach in most cases takes advantage of video cameras or time-lapse 

photography for data collection in real-time (Teizer et al. 2010b). Converting the data into useful 

real-time data and then sending warning messages to the labourers takes time and effort, which 

makes it nearly impossible to warn the operators in danger (Jog et al. 2011, Teizer and Vela 2009, 

Yang et al. 2010). In the proactive safety approach, the workers are alerted once they are in danger 
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of collision (Fullerton et al. 2009). In this approach, the safety system can collect data for detecting 

hazardous situations (Hinze and Teizer 2011).  

The most common proactive safety approach is the sensor-based proximity warning 

system, which detects objects and alerts the drivers. The main disadvantage of this approach is 

object discrimination (Bliss and Acton 2003). Object discrimination (recognition) is the ability to 

identify or perceive the objects' physical properties, such as colour and shape; the user does not 

have any understanding or experience of the detected object while using a sensor-based 

technology. Radar-based technologies are also used on construction sites for object detection 

(Porsani et al 2010). Due to the lack of visual information, it has been proposed to integrate visual 

monitoring methods with radar-based technologies to increase the reliability of the alerts (Ruff 

2006). However, this integration does not have enough precision in large-scale and complicated 

construction environments because the performance of long-range detection is limited in the 

current technologies (Wu et al. 2013).  

New forms of spatial awareness in construction sites are being developed using advances 

in information, sensing, and visualization technologies (Teizer et al. 2005, Weingarten et al. 2004, 

Choe et al. 2013). Considering the shortcomings of the mentioned technologies and approaches 

for collision warning, taking advantage of an appropriate positioning technology can be a giant 

leap forward in increasing safety in the construction industry. Positioning can improve safety by 

applying them in modeling, detecting, and tracking objects in hazardous zones (Teizer et al. 

2007a).  

An automated obstacle avoidance support system has been developed and studied to 

navigate and operate machines safely (McLaughlin 2004). Radio Frequency Identification (RFID) 

(Song et al. 2006), Ultra Wide-Band (UWB) (Fontana 2004), Video rate range imaging (Teizer 
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and Vela 2009), and Global Positioning System (GPS) (Navon 2005 and Caldas et al. 2006) are 

applicable technologies for tracking and locating the stationary and moving objects on a 

construction site. Experimental studies on tracking technologies demonstrated that the estimated 

position, dimension, direction, and speed have a reliable level of accuracy; they are compatible 

with the requirements of safety features of proactive approaches for construction environments. 

Hence, these technologies are able to be used for proactive warnings in dynamic and dangerous 

environments in construction sites. These active warning systems have the advantage of generating 

warnings and feedback to labourers when risks may occur close to them. 

The practicality of using real-time warning systems integrated with location estimation 

technologies in regular construction sites has been studied (Teizer et al. 2010b). However, the 

application of these technologies has various weaknesses. This study focuses on assessing the 

performance of UWB in tracking dynamic objects in conditions that are most common on 

construction sites. The results of this experiment will be used to estimate the variables required for 

defining safety zones. “Safety zone” is a definition used to define a collision or being in a 

dangerous situation.  

2.2.3 Collision in Construction 

Studying collision detection and prevention has been matter of attention in different fields 

such as computer graphics (Kim and Rosignac 2003), robotics (Gonzalez et al. 2002), and 

unmanned vehicles on the road (Sakkila et al. 2010). Although common goals and problems are 

shared between these fields and construction, there are significant differences in terms of context 

and environment. The concept of studying collisions on construction sites is relatively new with 

only a few studies previously conducted. These studies can be categorized as follows: 1. 

Equipment-to-people collision (Sakilla et al. 2010, Gonzalez et al. 2002), 2. Equipment-to-
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equipment collisions (Kim and Rossignac 2003), and 3. Equipment-to-facility collisions (Pratt et 

al. 2001, Teizer et al. 2005a). It is accepted that the techniques applied for collision detection in 

the above studies should satisfy sufficient geometric information, location of obstacles, and 

collection of missing data in real-time by the location estimation system. The third requirement 

highlights the necessity of continuous collision detection followed by collision prediction (i.e. 

assessment of the potential for a collision in advance). This study focuses on assessing the 

performance of UWB in tracking dynamic objects in conditions that are common on construction 

sites. The results of this experiments will be used to estimate the variables required to define a 

safety zone.  

2.3 Applications of Positioning in Construction 

Advancements in sensing technology and communication has resulted in the automation 

of field management in the construction industry. Acquiring data from construction processes has 

become automated more than ever before and it is still increasing. GPS, RFID, UWB, and WLAN 

are technologies that are used in construction automation (Bohn et al. 2009). The potential of 

automating construction projects in different phases using the location estimation technologies is 

high because they can be implemented in several applications, for example, project control, safety 

control, progress monitoring, and quality control. Automation in construction is an important 

factor that is able to increase the reliability of the construction environment where heavy 

equipment play an irreplaceable role because location estimation technologies can be used for 

several purposes such as collision detection (Esmaeilnejad and Sadeghpour 2014, Andolfo and 

Sadeghpour 2015), security (Choe et al. 2014), safety (Giretti et al. 2009), and productivity (Grau 

et al. 2009 and Sacks et al. 2003).  
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Esmaeilnejad and Sadeghpour (2014) developed a simulation for collision detection. The 

simulation was able to generate random trajectories for the moving objects on a construction site. 

In the collision detection model the number of warned collisions and real collisions were compared 

to obtain the efficiency of the model. This model was a simple model which only considered 

moving objects such as labourers and equipment. Andolfo and Sadeghpour (2015) developed and 

evaluated a collision detection model detecting the moving objects in danger situations. In this 

study the feasibility and efficiency of the model was assessed by considering the process time for 

the model using several frequencies for data acquisition. 

Using these technologies has been helpful in improving the quality, efficiency, and 

outcome of construction projects. The impact of equipping labourers, materials, tools, and 

equipment with location estimation tags has been assessed independently (Torrent et al. 2009, 

Grau et al. 2009). For security, some studies evaluate the trustworthiness and practicality of using 

positioning. In these studies, avoiding theft and loss of materials and tools on construction sites is 

assessed (Khoury et al. 2009, Riaz et al 2006).  

Further, equipment collisions are playing a significant role in damages and harms with 

serious health and monetary consequences. Collision detection is one of the most important 

applications of positioning technologies, which can help to reduce these losses (Teizer et al. 

2010b). Therefore, collision detection is matter of attention to several studies from different 

perspectives. For instance, some of them focus on the cause of the collision on a construction site 

(Hinze and Teizer 2011); some other studies attempt to recognize and alleviate the source of 

accidents such as blind spots in reverse movements (Teizer et al. 2010a).  
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2.3.1 Positioning for Safety in Construction 

The methodology of applying location estimation technologies on construction sites has an 

important impact on their efficiency. Some studies develop new methodologies while others focus 

on improving old ones (Li et al. 2013). For evaluation, the newer ones are compared with the 

previous ones. The methodologies focus on different phases of using the positioning technologies. 

In several studies, which focus on changing the methodology, collision detection, dangerous 

situation warning, and location estimation algorithms are major parts that captured great attention 

of the studies.  

A wide range of applications of tracking technologies in the construction industry resulted 

in studies focusing on their performance in both static and dynamic situations (Maalek and 

Sadeghpour 2013, Hwang 2012). In most of the accuracy assessment studies, either the static or 

dynamic performance is studied (Teizer et al. 2007b, and Maalek and Sadeghpour 2013, Saidi et 

al. 2011, Cheng et al. 2011, and Cho et al. 2008); the combination of these two modes was also 

researched (Cho et al. 2010, Jiang et al. 2010). The accuracy assessment experiments are 

categorized into two major classes: indoor and outdoor. The reason for this classification is that 

there are different factors in the environments that impact the performance of the tracking 

technologies. These parameters are considered and discussed in some of the studies (Saidi et al. 

2011). Other studies focus on the effect of construction progress on the accuracy of the tracking 

systems (Shahi et al. 2012). In these studies, the estimated position of the tags, while static, during 

the construction of the project, are recorded during several construction phases. The performance 

of the technology is compared in different construction phases using the recorded data and 

obtained results. 
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2.3.2 Positioning in Collision Detection   

Other studies pertaining to tracking in collision detection and prediction have recognized 

and evaluated the main specifications of location estimation technologies that affect their 

performance (Maalek and Sadeghpour 2013, Navon 2005, and Niu and Ma 2011). Several 

alternatives are available for tracking in collision detection and prevention. They differ in their 

cost, size, response time, reliability, and effective operational range. Different studies for location 

estimation technologies in construction sites are carried out using GPS, RFID, WLAN, and UWB 

(Khoury et al. 2009, Maalek and Sadeghpour 2013, and Riaz et al. 2006). Their performance in 

collision detection in real-time including of line-of-sight, cost, response time, reliability and 

operation range are evaluated and compared in several studies. (Maalek and Sadeghpour 2013, 

Khoury et al. 2009).  

Usage of ultrasound technology is constrained within line-of-sight arrangements of 

transmitters across the construction sites (Hightower and Borriello 2001). Ultrasound performance 

is poor in sunlight (Shahi et al. 2012). Further, only objects within a short range can be detected. 

These shortcomings make ultrasound less efficient for real-time location estimation in construction 

sites. Vision tracking is associated with line-of-sight and, similar to ultrasound, this property is a 

disadvantage because the Line-Of-Sight (LOS) can be blocked, for example, by materials and 

heavy equipment, easily and frequently in such environments.  

Image-based vision technology is becoming more popular in path-finding and navigation 

(Sim and Dudek 2003, Kim et al. 2003). Advanced technologies have been used for tracking and 

locating objects and people. GPS is known to be accurate and practical in a construction 

environment. However, its implementation cost is higher in comparison with other alternatives 

(Hightower and Boriello 2001, and Liu et al. 2007), and GPS does not work properly in indoor 
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environments, which is considered a highly restrictive feature. Some studies discuss the 

implementation of a combination of the two aforementioned positioning technologies with the goal 

of improving the performance of RTLS (Costin et al. 2012).  RFID + GPS, RFID + ultrasound, 

and RFID + wireless LAN are some of these combinations (Viani et al. 2012, Teizer and Castro-

Lacouture 2007, and Jiang et al. 2010). They demonstrated limitations in terms of scalability and 

reliability (Riaz et al. 2006).  

2.4 Remote RF-based Positioning 

Positioning technologies in the literature are Global Positioning System (GPS), Radio 

Frequency Identification (RFID), Wireless Local Area Network (WLAN), and Ultra-wide Band 

(UWB). Each of the positioning technologies has its own specifications and capabilities (see 

APPENDIX B). These technologies are introduced and compared in order to identify the best option 

for location estimation in the construction sites. 

2.4.1 Global Positioning System (GPS) 

The Global Positioning System (GPS) is a satellite-based navigation system. This positioning 

technology is made up of 24 satellites placed into orbit of earth with known positions. In order to 

perform the positioning in 3D four (4) satellites with LOS signals are required (three position 

coordinates and the deviation of the receiver clock from satellite time) (Lu et al. 2007, Su et al. 2014). 

GPS is known as an accurate and economical positioning technology. However, it does not 

work accurate in indoor places such as indoor construction jobsites because of signal attenuation 

caused by NLOS situations from the satellites (Lu et al. 2007). 

2.4.2 Wireless Local Area Network (WLAN) 

Wireless local area network (WLAN) is commonly used for communication and data transfer 

over short distances using RF. WLAN is a very good alternative for traditional cabling. WLAN are 

made up with access points (AP) connected to the edge of the wired network.  
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WLAN is also referred to as a Wireless Sensor Network (WSN) compatible with IEEE 

802.11 standard which is able to transfer relatively high amount of data. WLAN is widely used for 

transferring data, such as internet access points (Sugano et al. 2006). Therefore, there are some 

studies performed on using WLAN as an economical solution for indoor tracking (Retscher et al. 

2006). 

WLAN can be used for location estimation. In the case of having enough information and data 

about the WLAN antennas involved received signal strength can be used for positioning by applying 

finger printing method. In order to be able to use the finger printing method, a database form the APs’ 

RSS at different location in the area of interest is required. In addition, the data acquired from WLAN 

are commonly used for improving the positioning of A-GPS in the cell phones.  

2.4.3 Radio Frequency Identification (RFID) 

RFID is a technology that can be used for location estimation. This technology consists of two 

parts: reader and tags. Each tag has an identification code stored within the tag (Lu, et al., 2007). RFID 

tags vary based on their specifications: power source, carrier frequency, read range and rates, etc. As 

power source dictates other characteristics RFID tags are classified into two major groups: active and 

passive. Both kinds of tags communicate via radio frequency. The difference between passive and 

active tags is that active ones have internal batteries. The reader acquire the identification code of a tag 

while the tag is in the coverage range of the reader. The conventional RFID was known as a suitable 

alternative for barcodes (Lee and Seo 2005, Lee and Ju 2007). The reason is that RFID is able to work 

with a higher range, works in NLOS and harsh environments, and able to save more data. To be able 

to use RFID for positioning different methods can be used: finger printing, received signal strength 

(RSS), angle of arrival (AOA), and proximity methods. 
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2.4.4 Ultra-wide Band (UWB) 

UWB has a large bandwidth that enables this positioning technology to use TOA and AOA of 

the LOS signals for accurate location estimation. Moreover, the signal frequencies are well suited for 

penetrating through objects (Fernandez-Madrigal et al., 2007, Zhang et al. 2006). This characteristic 

of UWB makes it a very good alternative for positioning in the indoor construction jobsites where GPS 

does not perform accurate due to signal attenuation caused by NLOS condition. Positioning methods 

used by UWB are: AOA, TOA, and TDOA.  

There are two types of UWB signals: Impulse-based and Multicarrier-based. In the 

Multicarrier-based systems differentiating the LOS and multipath signals are performed by higher 

accuracy (Reed, 2005). However, the Multicarrier-based systems perform in lower ranges (5 – 10 m). 

Consequently, a Multicarrier-based UWB can provide better accuracy in lower range positioning.  

2.4.5 Comparison of RF-based Positioning Technologies 

Some studies analyzed and compared remote sensing technologies (e.g. GPS, RFID, 

WLAN, and UWB) considering different factors such as installation cost or number of receivers 

required for covering the area of interest (Retscher et al. 2006, Ciurana et al. 2006, Muthukrishnan 

and Hazas 2009, Welch et al. 2002). These studies are performed on the accuracy for tracking of 

the positioning technologies in both stationary and moving objects (labourers, equipment, tools, 

and materials) in different situations. Comparing the result of these studies shows that UWB is the 

best option considering the advantages and disadvantages of possible RF-based sensor options 

such as the accuracy, cost, maintainability, durability and the ability of working in harsh 

environments (Khoury and Kamat 2009, Maalek and Sadeghpour 2011).  

Results of studies on UWB show that UWB technology, in different construction 

environments, achieves the accuracy of 35 cm (Liu et al. 2007, and Maalek and Sadeghpour 2013). 
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UWB can be implemented in indoor environments and it has a superior response time and 

reliability compared to other location estimation technologies; UWB also has the same or less cost 

of installation and implementation. Considering different factors such as durability, 

maintainability, cost, accuracy, response time, and reliability; UWB RTLS has great potential of 

getting implemented in dynamic and cluttered construction environments for collision detection 

amongst possible RF-based sensor technologies (Maalek and Sadeghpour 2011).  

2.5 Ultra-Wide Band (UWB) in Construction 

Previous studies have shown that there is a high potential of using location estimation 

technologies in the construction industry. Most of these studies are mainly focused on tracking and 

locating the labourers and materials within a construction site (Lee et al. 2006, Song et al. 2006, 

and Yagi et al. 2005). There are various studies performed on the UWB RTLS focusing on its 

static accuracy in different indoor and outdoor environments, but fewer ones focused on the 

accuracy of tracking dynamic resources. The studies focused on dynamic performance are 

concerned with tracking and locating people (Teizer et al. 2008b and Venugopal et al. 2010). This 

technology can be used to improve the safety level on a construction site. UWB has been studied 

and successfully applied in different fields.  

UWB performance in the construction industry has been evaluated in several studies. These 

studies can be categorized in the following domains: real-time 3D construction resource tracking 

and positioning, on-site real-time safety management, robot equipped with UWB positioning 

system, pavement and railroad non-destructive evaluation, and application for localization in 

mining.  
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2.5.1 Resource Tracking and Positioning 

Real-time decision making is an indispensable factor for a construction project. Resource 

status assessment and work task performance should be performed quickly and efficiently to have 

a fast decision making system. This condition can be satisfied with using a real-time 3D location 

estimation system (Teizer et al. 2008). UWB technology performance for resource tracking and 

positioning in a construction environment is tested in different studies (Teizer et al. 2008b). 

Another branch of studies focuses on the performance of UWB in a dynamic environment because 

construction sites are dynamic and have a high probability of signal blockage.  

In this group of studies, the ability of signals to penetrate different materials is a matter of 

attention. Giretti et al. assessed the accuracy of UWB during the progression of a project (2009). 

The results state that single layer cellular blocks do not have considerable impact on signal 

penetration strength, but double layer concrete walls with insulation weaken the signal penetration 

strength. Another researcher evaluated the impact of wood and metal on UWB signal strength. In 

this study, tags are placed in boxes made of wood and metal (Shahi et al. 2012). This study revealed 

that wood does not have a tangible influence on UWB signal strength while the metal boxes 

changed the average accuracy of the system by 200 percent. Another study tested signal 

penetration strength through the human body (Welch et al. 2002). The result of this study 

demonstrates considerable signal attenuation after passing human body. 

2.5.2 Safety Management  

Construction safety is a major concern in the industry. The industry is suffering from 

various aspects of safety issues, such as health, monetary, and time delay concerns.  Location 

estimation combined with an efficient alerting system has been considered as a solution for many 
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years. A consistent model needs to be developed and studied to prevent probable consequences 

(Oloufa et al. 2002).  

Recognizing travel patterns of moving objects on a construction site can also lead to 

advancements in increasing safety. Travel pattern recognition requires accurate, real-time 

information regarding the speed, location, and trajectory of different equipment. In a study using 

UWB for positioning, an algorithm for locating and identifying the obstacles is developed and 

evaluated (Teizer et al. 2008a). In addition, this algorithm can be used in safe path planning studies.  

A very important factor in these models for on-site, real-time safety management is the 

continuity and sustainability of the system. The sustainability of UWB is evaluated in an 

environment similar to a construction site (Giretti et al. 2009). The size of a UWB tag is an 

advantage of this technology because they are small and, therefore, do not interfere with ongoing 

activities. The impact of the elevation of the tags relative to the readers’ elevation on the 

performance is assessed in some studies in both indoor and outdoor places (Saidi et al. 2011 and 

Cho et al. 2010). The results of these studies state that the higher the elevation of the tags, the 

higher the accuracy in location estimation.  

2.5.3 Robots 

A robot should be able to perform effectively and independently (Cho and Youn 2006). 

The performance of a path planning model integrated with UWB is evaluated in a study by Cho 

and Youn (2006). They used autonomous mobile robots to improve the navigation functions in 

indoor environments such as warehouses, office buildings, manufacturing facilities, and various 

construction sites. The architecture of this model is shown in Figure 2.1. UWB is used for the 

tracking for robot navigation. The acquired data are visualized to provide a better understanding 

of the performance of the designed system for indoor path planning (Cho and Youn 2006). 
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2.5.4 Non-destructive Evaluation of Pavement and Railroad 

In some experiments, part of a material is required to be taken apart to find out how it 

works. But sometimes it is hard or impossible to put it back together with the same condition.  Time 

and money would be saved if the pavements get evaluated in a non-destructive manner after 

construction. A study is carried out to assess the combination of a ground penetrating radar (GPR) 

system with UWB (Lee et al. 2004 and Al-Qadi et al. 2010). The evaluation is performed by 

measuring the thickness and relative permittivity of samples taken from the pavement. This branch 

of studies considers the fact that the energy of UWB transmitted signals is highly dependent on 

the frequency and transmission medium. The result of the studies show that the scattering patterns 

of the received signals can be used to recognize the air void volume in the ballast of the railroad. 

 

Figure 2.1 UWB integrated mobile robot tracking system architecture (Cho et al. 2008) 

2.5.5 Localization in Mining 

Mining is an underground process and, therefore, this industry is hazardous due to several 

factors such as poor visibility, poor ventilation, dangerous rock falls, and toxic gases. Using 
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wireless communication technologies can be beneficial in this industry, particularly in emergency 

situations. The goal of this study is to locate the mining equipment and miners during normal 

operations. UWB has the ability to penetrate obstacles in a cluttered environment and delivers a 

high performance compared to other available Wireless Sensor Networks (WSN); as a result, it 

was selected for in this study (Chehri et al. 2009). UWB positioning also has low complexity, 

excellent time domain, and low cost. WSN offers several advantages such as security, larger area 

coverage, and elimination of costly wires compared to traditional sensor networks. 

2.6 Accuracy Assessment of UWB  

Among the studies held on UWB tracking technology, there are some that have similar 

goals to our study. In this section, these studies are discussed in detail. The methodology and the 

results of these studies are reviewed to find an area where the UWB RTLS has not been studied 

and has the potential of being evaluated.  

Maalek and Sadeghpour (2013), performed six (6) different experiments on UWB 

performance in stationary modes; dynamic modes were not tested (Maalek and Sadeghpour 2013). 

These experiments were designed to assess the performance reliability of UWB in certain 

situations; the performance reliability was influenced by several factors that affected the 

performance of the positioning process such as the multipath effect, signal blockage, existence of 

a metal surface, removing the timing cable, number of tags, and number of receivers. In the real 

world, these factors are usually occur in a construction environment.  

The first experiment in this study is considered as the base experiment to identify the 

impact of the imposed changes on the experiment environment area. To be able to analyze the 

collected data, control points, points that we know their actual position using surveying tools, are 

used. The (x, y, z) coordinates of the control points are recorded for two minutes. In this time 



 

27 

period, 1000 location estimation data control points were collected. Distance Root Mean Squared 

(DRMS) is a parameter used in this study for comparing the 2D accuracy of the control points.  

The multipath effect in this study is modeled by putting tags below a metal table elevation. 

The result showed that the performance decreased almost 70 percent and 89 percent in 2D and 3D, 

respectively, compared to the base experiment. The signal blockage was modeled with turning off 

the closest receiver to the control point. The result of this designed experiment was a decrease in 

the performance, 21 cm in 2D and 38 cm in 3D. The experiment on the existence of metal surface 

in the lab resulted in almost the same result compared to base experiment. Removing the timing 

cables simulates the situation that position acquiring is only performed by Angle-of-Arrival (AOA) 

equations (see APPENDIX B). Therefore, the result of this experiment compares the location 

estimation performance of the method only applying AOA with the method applies both the AOA 

and Time-Difference-of-Arrival (TDOA) methods (see APPENDIX B). Applying this change to 

the system resulted in a decrease in accuracy: approximately 12 cm in 2D and 7 cm in 3D.  

The impact of number of the tags on the performance is assessed by increasing the number 

of tags by one in each subsequent experiment. The result demonstrated that the decrease in the 

performance is meaningful up to nine tags, but, with ten or more tags, the performance changes 

gradually as the number of tags increases. Thirteen settings out of 246 possible settings were 

experimented to find out the impact of the number of receivers on the location estimation 

performance. These thirteen settings, with two to seven receivers (readers), were discovered to be 

the worst out of the possible settings, in terms of LOS. The result of this study showed that the 

performance of UWB worsened when the number of receivers decreased. The average accuracy 

of location estimation was 14 cm in 2D and 26 cm in 3D. The results of this study are shown in 

Table 2.1.  
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Table 2.1 Result of the study by Maalek and Sadeghpour 2013 

  Average Accuracy (cm)   Minimal Accuracy (cm) 

 2D 3D  2D 3D 

Experiment 1: Base experiment 16 34  41 79 

Experiment 2: Multipath effect 24 60  67 146 

Experiment 3: Signal blockage 33 65  52 68 

Experiment 4: Metal surface 15 30  47 69 

Experiment 5: Removing timing cable 27 37  53 63 

Experiment 6: Number of tags 34 60  34 77 

Experiment 7: Number of receivers 14 26  54 76 

Saidi et al. conducted an experiment to evaluate the static and dynamic performance of 

UWB in free space and realistic construction environments using six receivers (readers) (Saidi et 

al. 2011). In this study, there are about 23 factors that potentially affect the UWB positioning 

performance. One of the factors, the impact of geometry (alignment) of the receivers on the static 

performance of UWB, is tested. The time interval for collecting the location estimation data is one 

minute with the frequency of 1 Hz. For each controlling point, 60 positioning datum are collected. 

 The experiment was designed to enable the evaluation of two characteristic of the UWB: 

1) The error in 3D and 2) the sensitivity of the performance of UWB to the accuracy of measuring 

the position of the readers. Each set of experiment is conducted twice; once with knowing the 

receiver position by ±1 mm accuracy, called “ideal setup,” and the second time with ±20 cm 

accuracy, called “GPS setup.” The position of the sensors are acquired using a total station and the 

second time with a differential GPS with the accuracy ranging between 20 cm to 30 cm to obtain 

the position coordination with the mentioned accuracies. The static performance assessment is 

performed in an open, grass-covered field with an area of 20 m × 10 m. The dynamic performance 

evaluation is conducted in a lay down yard zone, which was part of a construction site that included 

several construction machines and workers. The maximum mean error of the system was 77 
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percent and 12 percent higher in the GPS setup compared to the ideal setup in 2D and 3D, 

respectively. The result of the accuracy assessment in open space is shown in Table 2.2. 

Table 2.2 Open space accuracy assessment result (Saidi et al. 2011) 

 Average Accuracy (m) 

 Mean Standard Deviation 

2D 0.087 0.010 

3D 0.466 0.040 

The results of the experiments in the construction yard is presented in another way. 47 

percent of the collected data were less than 1.25 m and 87 percent were less than 2.5 m. In addition, 

different elevation of the tags are tested in this study. On average, tags at lower elevations have 

more errors. The error for the tags with elevation of 1 m to 3 m is in the range of 7 mm to 348 mm 

in 2D. This study does not take into account the magnitude of the mean and the standard deviation 

of the location estimation accuracy in the dynamic mode. In addition, regarding dynamic 

movement, there is no detail such as elevation of the tags.  

Cheng et al. carried out an experiment with the goal of evaluating the performance of the 

UWB technology in outdoor harsh construction environments (Cheng et al. 2011). In this study, 

four receivers cover the area of the experiment. A Robotic Total Station (RTS) is utilized for 

measuring the ground truth of the control points. The study is carried out in three different 

environments, one controlled environment wherein static performance is assessed, and two real-

world construction sites where the dynamic location estimation performance of UWB is assessed. 

One of the construction sites was a construction pit and one was a lay down yard for placing the 

steel materials. 

A new factor tested in this study is the frequency of the tags. The frequency that a tag 

transmits signals to the readers and can be set by the UWB software. Tags are set to frequencies 
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of 1 Hz, 15 Hz, 30 Hz, and 60 Hz. The results demonstrate the static accuracy of UWB, with 

implementing a tag with the frequency of 1 Hz, is less than 2 m. The result of the accuracy 

assessment in the last two environments are shown in Table 2.3. 

Table 2.3 Result of accuracy assessment of Cheng et al. 2011 

 Average Accuracy (m) 

 1 Hz 60 Hz 

 Raw Data Filtered Data  Raw Data Filtered Data 

Experiment 2: Construction Pit 0.48 0.40  0.36 0.34 

Experiment 3: Lay Down Yard 1.82 1.26  1.64 1.23 

The relationship between the speed of the moving objects and the accuracy of the location 

estimation is not analyzed. In addition, speed is not considered as a continuous variable and it is 

broken down into workers’ walking speed and speed of the machines. The considered data in this 

experiment is filtered for further analysis, but the method of filtering the data is not explained. 

Giretti et al. performed a study consisting of three different experiments designed for 

checking the UWB performance in an indoor and outdoor construction site (Giretti et al. 2009). 

The experiments were designed for simulating the tracking performance of a UWB system in three 

different phases of a six-storey building construction: 1) during the excavation, 2) after the 

completion of the concrete frame, and 3) after the erection of the walls. The method of 

implementing the experiments enables one to assess the performance of the UWB during the 

construction of a building. The area of the construction site is about 500 m2. The evaluation of 

UWB performance resulted in less than 0.3 m accuracy in different construction phases. The 

results showed that the performance of UWB remained constant during the different phases of the 

construction project. Therefore, the UWB system setup can stay untouched during this period of 

construction. The performance of UWB for different moving objects with various speeds, which 

is an important factors for the performance assessment, is not taken into consideration in this study. 
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Cho et al. conducted a study on various location estimation technologies such as WLAN, RFID, 

and UWB in both indoor and outdoor locations (Cho et al. 2008). Four receivers were mounted on 

tripods to cover an indoor space with an area of 400 m2. The position of the receivers were acquired 

using a total station. The result of the experiments in the open space is depicted in Table 2.4.  

Table 2.4 Result of UWB performance experiment in an indoor space (Cho et al. 2008) 

 Average Accuracy (cm) 

Tag Elevation Center Points Outermost Points 

Floor Level 7.9 30 

Raised 35 cm 6.2 13.8 

The author concluded that at least three receivers should have a clear LOS for a tag to 

achieve a high and desirable performance. In addition, the elevation of the receivers is important 

and it is recommended that they be as high as possible. The experiment in the closed space was 

the same as first experiment with slight differences, namely the elevation of the tags. The elevation 

of the tags in this experiment was 104 cm. The accuracy of the tags on the floor level was 40 cm 

and 48 cm for the elevated tags. The decrease in accuracy was attributed to presence of human 

subjects in the closed space test area. Similar experiments are carried out on WLAN and RFID. 

The average accuracy of these experiments according to this study is shown in Table 2.5. 

Table 2.5 RFID, WLAN, and UWB performance evaluation results 

Location estimation technology Average accuracy (cm) 

WLAN 0.93 

RFID 1.0 - 1.2 

UWB 0.45 

2.7 Summary 

This chapter reviewed statistics regarding some of the problems resulting in losses in the 

construction industry in Canada. These statistics demonstrate the necessity and importance of 
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improving the safety level of the construction industry. The previous related studies performed on 

two categories of collision reduction and applying RF-based technologies to increase the safety 

level in the construction industry are discussed. The studies conducted on collisions to improve 

the safety conditions in the construction industry (e.g. reasons, detection methods) are interpreted 

and compared. The advantages and disadvantages of the mentioned models are listed and 

explained as well. In addition, some of the proposed solutions are discussed. Among the proposed 

solutions, utilizing the RF-based technologies for tracking moving objects was found to be 

promising and more efficient considering the specifications and potentials of such technologies.  

Moreover, some of the studies carried out on the applicable remote sensing technologies 

(e.g. GPS, RFID, WLAN, and UWB) are explained and compared. The studies on their 

performance for tracking both stationary and moving objects (labourers, equipment, tools, and 

materials) in different situations in construction jobsites is reviewed and discussed as well. UWB 

is the best option considering the advantages and disadvantages of possible RF-based sensor 

options such as the accuracy, cost, maintainability, durability and the ability of working in harsh 

environments (Maalek and Sadeghpour 2011).  

Therefore, UWB is considered the most suitable alternative for tracking objects on 

construction sites with the aim of increasing the safety because of factors such as installation price, 

maintenance cost, and accuracy. Therefore, research that was reviewed focused on the studies 

performed on UWB mainly in the construction sites.  

In addition, some studies with the similar goals, methodology, or experiments to ours are 

discussed. The shortcomings and the potential for future research are listed in the following 

section. Based on discussions on previous studies, there is lack of experiments on determining the 

effect of speed on the performance of the UWB RTLS. Therefore, the experiments in this study 
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are designed to address this question. The results are stated in detail and evaluated in the following 

chapters of this dissertation.   
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Chapter Three: IMPACT OF SPEED ON THE ACCURACY OF UWB TRACKING FOR 

DYNAMIC RESOURCES 

3.1 Overview  

There are two (2) sets of experiments performed in this study. The first one is explained in 

this chapter. As mentioned in the previous chapter, the impact of speed on the performance of the 

UWB RTLS in an indoor construction environment has not been studied in detail. Therefore, the 

objective of the designed experiment in this chapter is evaluating the impact of speed on accuracy 

of UWB RTLS.  

In the following sections of this chapter, the UWB RTLS system is described in detail. It 

is followed by explanations and information regarding the test area and the experiment 

methodology (designing and performing). The next section provides an explanation of accuracy 

measures used for calculations and analyses. The application of the explained measures, analyses, 

results, and discussion of the results comprise the next sections. 
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3.2 Real-time Location Estimation with UWB  

UWB RTLS consists of four components: the central processor or location estimation 

platform, readers (sensors or receivers) (Figure 3.1a), tags (Figure 3.1b), and a communication 

system between the readers and the central processor.  

 

Figure 3.1 a) UWB reader (sensor) and b) UWB tag 

The readers receive signals transmitted from the tags. The received signals are sent to the 

central processor where data are processed into spatial information. There are different ways of 

conveying data from readers to the central system such as Wi-Fi access points, Cat5e Shield cables, 

and Ethernet switches. In this study, the received signals are conveyed to the central system via 

Cat5e shield cables. The synchronization of the readers, enabled with timing cables, helps to 

improve the performance of the tracking process (Saeed et al. 2006). The readers were 

synchronized in the first step of installing and running the system. The power of the receivers is 

provided by Power over Ethernet (POE) switch. The Ethernet cables connect each of the readers 

to the POE switch and both convey the power to the sensors and transfer the raw data collected by 

the readers to the positioning platform. One of the readers is assigned as the “Master Receiver” 

and the rest of the readers are called “Slave Receivers”. Both kinds of readers receive the signals 
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from tags. In addition to receiving signals, the master receiver is also responsible for sending 

commands to the tags (see Figure 3.2).  

 

Figure 3.2 Data collection using UWB (Maalek and Sadeghpour 2013) 

UWB uses different methods to track the tags: Angle-Of-Arrival (AOA), Received-Signal-

Strength (RSS), Time-Of-Arrival (TOA), and Time-Difference-Of-Arrival (TDOA). In the AOA 

method, the angle between a given tag and number of reference nodes (readers) are used in the 

positioning. In the RSS method, the distance between the given tag and the sensors are calculated 

by measuring the strength of the received signal. In this method at least three (3) readers are 

required. In the TOA and TDOA methods, the distance between the given tag and the readers is 

calculated using the travel times of signals between the tags and each of the readers. One of the 

advantages of UWB RTLS by Ubisense which is used in this study, is that it uses both TDOA and 

AOA methods for positioning (Ubisense 2010). In addition, the UWB by Ubisense is able to 

estimate the position of a tag in 3D using only two readers. This feature is very important in a 

construction environment where there is a high probability of signal blockage from the tags and 

sensors.  

The UWB Real-Time Locating System (RTLS) used in this study is manufactured by 

Ubisense. The UWB by Ubisense works in the frequency bandwidth of 6 to 8 GHz. The high 
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bandwidth decreases the probability of error caused by the misidentification of multi-path and line-

of-sight (LOS) signals. The best temperature range for the performance of UWB RTLS is 0 to 60 

degrees with the humidity of up to 95 percent. The reading range mentioned in the manual is 160 

m with an accuracy better than 15 cm in static tracking.  

3.3 Experiment Design and Setup 

In this experiment, a remote control car (RCC) equipped with an UWB tag was moved 

along on a predetermined path. This path was prepared in a way to pass a benchmark (observation) 

point. The benchmark was used for evaluating the estimated location of the UWB tag while passing 

this point. Since the precise location of this point was surveyed by a total station, the difference 

between the actual location and estimated location of the tag at this point can be measured. The 

speed of the RCC varied from 0 – 40 km/h. The estimated position of the RCC and its speed while 

passing the benchmark point are obtained by, respectively, using the recorded log file by Ubisense 

hub and the recordings from a camera installed on the scene. The experiment was repeated several 

times to collect the data in different speeds. Each run of this experiment was compromised of the 

following main steps: 

1. The RCC was moved along (operated) on the predetermined path. 

2. The video of the RCC while passing the benchmark point was recorded by a camera 

installed on the scene. 

3. The position log file of the tag located on the RCC was acquired by the UWB RTLS 

location estimation platform.  

4. The actual and estimated coordination (x, y, z) of the closest point to the benchmark point 

are obtained using the recording and the acquired log file. 

5. The speed of the RCC was obtained by the recording. 
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The details regarding the mobile object (RCC), experiment test area, selection of the 

benchmark point, and the data collection will be explained in sections 3.3.1 through 3.3.5. 

3.3.1 The Mobile Object   

A remote control car (RCC) was used in this study to play the role of the mobile object that 

was being tracked by the UWB. The RCC used in this study had a maximum speed of 48 km/h 

according on its manual. The RCC had a length of 39.1 cm, width of 33.4 cm, and axles spacing 

of 27.1 cm. This RCC was equipped with an UWB tag (Figure 3.3). The acquired position of the 

UWB tag while the RCC was passing the benchmark point was recorded. The recorded log file 

was used for data collection as it will be explained in section 3.3.5. 

 

Figure 3.3 RCC dimension and axles spacing 

3.3.2 Experiment Environment 

The experiment was conducted in the structural laboratory of the Civil Engineering 

department in the Schulich School of Engineering at the University of Calgary (see Figure 3.4). 

Due to the existence of concrete blocks, steel profiles, and wooden materials, the environment in 

the lab was similar to an indoor construction jobsite, and, therefore, it was suitable for conducting 

the experiment. The area of the laboratory, where the experiments are conducted, was 30×10 m2 

Length 

39.1 cm 

UWB tag 

39.1 cm 

Axles Spacing 
27.1 cm 

Width  
33.4 cm 
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(Figure 3.5). This area was covered by eight UWB readers. The location of eight (8) UWB readers 

used in this study are shown in Figure 3.5. The precise local position of the readers in the lab are 

brought in Table 3.1. In Figure 3.5, the guiderails (steel bars), benchmark point, and the 

alternatives for the single benchmark (observation) point are demonstrated. 

 

Figure 3.4 Experiment environment: department of civil engineering, structural laboratory  

 
Figure 3.5 Layout of the test area 

  

RCC 

 

Experiment Path 
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Table 3.1 Local (x, y, z) coordination of the readers 

Readers 

Coordination  A B C D E F G H 

X (m) 0.00 5.95 17.85 29.54 29.80 22.81 11.87 -0.04 

Y (m) 0.00 0.04 0.05 0.04 9.78 9.57 9.81 9.84 

Z (m) 5.34 5.37 5.35 5.36 5.36 5.35 5.33 5.33 

3.3.3 Benchmark Point  

The area in the lab for performing the experiment was required to be large enough to 

operate the RCC to meet the considered speed. In addition, this area should have an acceptable 

level of coverage of the readers. The result of a previous study on the accuracy assessment of the 

UWB RTLS (Maalek and Sadeghpour 2013) that was conducted in the same lab was used to make 

the decision for the approximate location of the test area. The results of the previous study are used 

to assign four alternative points for choosing the benchmark point. These points are selected in the 

zones where the assessed performance of UWB was high in the previous study. To identify the 

most accurate alternative point to be used as the benchmark, an accuracy assessment experiment 

on the four (4) alternative points was performed. The accuracy of the points is demonstrated using 

Distance Root Mean Squared (DRMS), a circular accuracy measure. The point with the highest 

DRMS was selected as the benchmark point. The result of the accuracy assessment experiment is 

shown in Table 3.2. The third alternative point was selected as the benchmark point as it has the 

highest accuracy with the lowest DRMS.   

Table 3.2 Accuracy of the acquired position of the alternative points 

 
Alternative 

Point 1 

Alternative 

Point 2 

Alternative 

Point 3 

Alternative 

Point 4 

DRMS (cm) 19.54 24.33 15.07 19.68 
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3.3.4 Experiment Test Area 

To prepare the lab for the experiment, a path was prepared for operating the RCC. The path 

was confined with steel bars to work as “guide rails” (see Figure 3.6). These bars were high and 

heavy enough to not let the car go off the path. Further, the concrete flooring of the lab was not 

suitable for operating the RCC as it causes the RCC to drift and not reach the higher speeds. 

Therefore, the confined path was covered by carpet, fixed to the concrete flooring, to avoid drifting 

of the RCC. 

 

Figure 3.6 Experiment path improved with steel profile bars and carpet flooring 

A self-leveling laser was used to set up the center of the camera lens along the benchmark 

line to decrease the probability of optical illusion. In addition, the self-leveling laser was used to 

ensure that the origin (0) of the measuring tape was perpendicularly on the benchmark line (see 

Figure 3.7). 

Guide Rails 

Self-leveling Laser  

Measuring Tape 

Concrete Flooring 

Carpet 

Flooring 
UWB tag 
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Figure 3.7 Experiment setup for data collection 

3.3.5 Data Collection 

In order to assess the impact of speed on the accuracy of UWB in dynamic tracking, the 

speed of the moving object was required in the data collection. Therefore, the collected data for 

each run included the coordination of the actual position and estimated of the tag and the speed of 

the RCC while passing the benchmark line. The experiment was repeated for 1087 times in speed 

range of 0 – 40 km/h as explained in detail below. 

Self-leveling Laser  

Laser Beam 

Carpet Flooring 

Mobile Device  
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3.3.5.1 Obtaining Estimated and Actual Locations 

While the RCC was approaching the benchmark line, the estimated position of the tag 

provided by the UWB system in the log file was constantly checked. The benchmark line was the 

line which was both perpendicular to the path and passes through the benchmark point. The 

estimated position by the UWB is not continuous; it is discrete. Therefore, the probability of 

getting an UWB position estimation for the position of the tag when it was exactly on the 

benchmark line was zero. Consequently, instead of aiming to acquire the estimated position of the 

benchmark point, it was aimed to acquire the actual location of the tag where the position 

estimation was provided by UWB.  

The UWB platform provides and displays the estimated location of the tag in real-time 

which were recognized with the time slot number saved while recording the data. So the 

comparison could be easily conducted, if the actual location of the tag could be obtained at the 

moments of location estimation. To enable the comparison and matching the actual and estimated 

locations of the tag, a mobile device (cell phone, laptop, or a tablet) duplicating the UWB location 

estimation platform display was set up at the test area (Figure 3.8). This mobile device was placed 

close and within the camera to identify the exact points in time (ti) where the estimated location 

was acquired. Since the camera vision was set up at the benchmark line as well (see Figure 3.7). 

Consequently, the actual locations of the tag at the times where the location estimation was 

acquired (ti) can be obtained using the known location of the benchmark point and the measuring 

tape set on the test area.  
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Figure 3.8 Mobile device (cell phone) showing the UWB hub display 

The perpendicular distance of the tag from the benchmark line (∆xi) was measured at ti. 

Among different estimated locations that were acquired close to the benchmark line the point with 

the minimum ∆xi- the closest estimated position to the benchmark line- was used as the true or 

actual point for each run (see Figure 3.9). In order to find the point with the minimum ∆xi, the two 

points from either side of the benchmark line were identified and the one with the smaller ∆xi was 

used for the comparison purposes for that run. The acquired actual and estimated locations of the 

tag coordinates were used for measuring the accuracy of UWB in dynamic tracking.  

Estimated Location 

Time Slot No. 
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Figure 3.9 Obtaining RCC position coordinates 

3.3.5.2 Calculating the Speed 

The speed of the RCC in each run was obtained from the recordings. The spacing of the 

axles (see Figure 3.3 and Figure 3.10) and the time lapse between the front and rear axles passing 

over the benchmark line were used to calculate the speed of the RCC (Equation 3.1 and 

Figure 3.10).  

Speed =  
𝑑axles

te − ts
                             (3.1) 

where 𝑑axles is the axle spacing in (m), te, and ts are the moments that, respectively, rear 

and front axles pass the benchmark line in second. The axles spacing was obtained from the user 

manual of the RCC and double checked by a computer drawing software. The te and ts were 

obtained by getting advantage of the recordings of the camera set up at the experiment test area. 

UWB tag  

(Actual Location) 

   Estimated Location 
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Figure 3.10 Calculating the speed of the RCC 

3.4 Accuracy Assessment Measures 

Accuracy measures were used in this study to represent and discuss the UWB RTLS 

dynamic tracking performance: 1. error, 2. DRMS, 3. offset, and 4. precision. The accuracy 

measures used in this study are all in 2D. In the following section these accuracy measures are 

explained and differentiated.  

3.4.1 Error (E) 

The distance of a single collected datum (estimated location) in 2D from the true point 

(actual location) is referred to as Error (E) (Chapra 2012). For such errors, the relationship between 

the true value and the observation value can be formulated as follows:  

Error = True Value – Observation Value                              (3.2) 

The true error is customarily defined as the absolute value of the error and referred to as 

the absolute error. Error in 2D can be calculated using equation 3.3: 

Error =  √(x − xTrue)2 +  (y − yTrue)2                              (3.3) 

where (x, y) are the coordinates of the estimated location, and (xTrue, yTrue) are the coordinates of 

the true point.  
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3.4.2 Precision 

Precision is the standard deviation of data showing the congestion of the collected data. 

The smaller value for precision means that the precision of the collected data is higher. Precision 

is a parameter that reflects the random error in positioning and calculated using equation 3.5 (Leick 

2013): 

Precision = √
∑  (xi−xMean)2n

i=1

n
+

∑  (yi−yMean)2n
i=1

n
                                   (3.4) 

where (x, y) are the coordinates of the estimated location, and (xMean, yMean) are the average of the 

coordinates of estimated locations, respectively, in x and y direction. 

3.4.3 Offset (Trueness) 

Offset is the distance of the average of collected data from the true point in the horizontal 

plain. The offset can be calculated as follows: 

Offset = √(xTrue − xMean)2 + (yTrue − yMean)2                             (3.5) 

where (xTrue, yTrue) are the coordinates of the true point, and (xMean, yMean) are the average of the 

coordinates of estimated locations, respectively, in x and y direction. 

3.4.4 DRMS 

Distance Root Mean Squared (DRMS), is used to measure the 2D performance of UWB 

tracking in this study. DRMS is an accuracy measure that expresses accuracy with a single number. 

The standard errors (σ) from the known location or zone are required in the direction of the 

coordinate axis to calculate the DRMS. In other words, the square root of the average of the square 

errors is referred to as DRMS and calculated using equation 3.6 (Leick 2013): 

DRMS = √
∑  (xi−xTrue)2n

i=1

n
+

∑  (yi−yTrue)2n
i=1

n
                                 (3.6) 
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where n is number of readings, (xi, yi) are the coordinates of the estimated location of the ith run 

out of n runs, and (xTrue, yTrue) are the coordinates of the actual location for each run (Leick 2013). 

DRMS is a value which is the simplification of error ellipse. The value of DRMS is equal to the 

average radius of the error ellipse. In 2D, the difference between variance in x direction and y 

direction defines the closeness of DRMS to the error ellipse (see APPENDIX C).  

The relationship between DRMS, precision, and offset is shown with equation 3.7. This 

equation helps to calculate the DRMS using offset and precision. The relationship between the 

accuracy measurements is visualized in Figure 3.11. In this figure, the true point is the center point 

of the concentric circles.   

DRMS = √Offset2 + Precision2                            (3.7) 

 

Figure 3.11 Relationship between DRMS, precision, and offset 

Figure 3.12 and Figure 3.13 differentiate the concept of the offset and the precision of the 

collected data. Offset can be defined as the difference of the average of the data from the true value 
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(point), while the precision is the closeness and congestion of the collected data. In Figure 3.13, 

the true point is the center point of the concentric circles. The more the measurements (red points) 

are congested, the more precise the measurements (collected data) are, which results in the smaller 

magnitude for precision.  

 
Figure 3.12 Relationship between offset and precision  

 
High Offset – Low Precision      Low Offset – Low Precision 

 
Low Offset – High Precision      High Offset – High Precision 

 

Figure 3.13 An example of illustrating the concept of offset and precision 
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3.4.5 Offset, Precision, and DRMS for Dynamic Positioning  

In order to obtain the accuracy measures (DRMS, offset, and precision) in different speeds, 

the collected data can be categorized into speed intervals. For example, the speed range of 0 – 40 

km/h can be categorized into four (4) speed intervals with the span of 10 km/h. Then, the accuracy 

measures will be calculated for each speed interval. After that, an estimation function can be 

obtained with the calculated values of the accuracy measures. The major problem with this method 

is that the calculated accuracy measures are not continuous in the speed range.  

Instead, it is proposed to obtain the error of the entire collected data as a function of speed 

without clustering them into groups. Using this approach allows to calculate continuous equations 

for accuracy measures (offset, precision, and DRMS) explained follow:  

 Offset is in fact the mean of the estimated location data in 2D from the true point. Therefore, 

the continuous equation of the offset can be obtained by calculating the mean regression line 

of the error. 

 Precision, as explained in section 3.4.2, is the standard deviation of the data with two degrees 

of freedom in this study. In order to obtain a continuous equation for precision, confidence 

interval (CI) of the mean regression line of the error is required. For two (2) degrees of freedom 

and the confidence level of 95%, the difference between the CI and the mean regression line 

is 5.99 times of the standard deviation (see APPENDIX E). 

 The DRMS can be easily derived from equation 3.7 after calculating the precision and offset. 

3.5 Experiment Results 

This section presents the results of the experiment by showing the calculated accuracy 

measures (error, offset, precision, and DRMS) of the collected data, as proposed above. In the 
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second part of this section the effect of time latency of the UWB system is discussed and compared 

to the first set of results. 

3.5.1 Error as a Function of Speed 

The designed experiments were repeated in 1087 runs in the speed range of 0 – 40 km/h. 

The error of the collected data is illustrated in a scatter plot in Figure 3.14. Several types of mean 

regression lines (linear, exponential, and polynomial) were tried to fit to the error. Based on R-

squared (R2), calculated for each type of mean regression line, and considering that over-fitting of 

the mean regression line can cause large errors, the mean regression line was selected (see 

APPENDIX D). The best-fit mean regression line selected for the error as a function of speed 

(including the outliers) is a polynomial of the fourth order. The polynomial equation with order of 

four (4) as the estimation function (regression line) with the R2 of 0.8071 is brought as equation 

3.8 and shown in Figure 3.14. 

y = 2×10-06 S4 - 9×10-05 S3 + 0.0002 S2 + 0.0543 S + 0.1498                             (3.8) 

where error is in meter and S is the speed in km/h. 

 

Figure 3.14 Observed error as a function of speed including outliers 
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The error has an S-shape pattern instead of a noise pattern. The reason of having such 

pattern can be explained by a bias caused by the time latency of the UWB system, systematic error 

of the positioning system, or errors deriving from the methodology of performing the experiment. 

The mentioned reasons are studied and examined in this chapter.  

3.5.2 Elimination of Time Latency 

The collected data includes the time latency impact. This issue occurs in the experiments 

conducted for studying the dynamic performance of the tracking systems. The reason is that UWB 

RTLS, same as other positioning technologies, has a small delay in displaying or saving the 

estimated position compared to real-time. Several factors have impact on the time latency of a 

positioning system such as the strength of the computer processor used as the hub, the strength, 

length, and material used for the cables. The problem is that the data including time latency cannot 

be used for generalizing the accuracy of UWB. Therefore, the time latency was tried to be 

eliminated from the data.  

Ubisense personal communication document indicate that the system has a time latency of 

5 to 27 ms, from receiving signals from the tags to showing the position result on the display 

(UWB RTLS by Ubisense 2010). In general, the time latency of positioning systems can be 

calculated experimentally and statistically. In our case, the time latency could not be calculated 

experimentally for the UWB RTLS because: 1. there was no access to the time of receiving the 

signals by the readers from the tags and 2. the time of recorded position data has the precision of 

a second. Consequently, the time latency was calculated statistically in this study.  

In order to calculate the time latency, a linear line was fitted to the error of the data as a 

function of speed. The slope of the fitted linear mean regression line can be used as the value of 

time latency (see Figure 3.15). 
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Figure 3.15 Fitting the linear mean regression line to the error in x-direction 

The slope of the linear mean regression line is 0.03659. The unit of the slope is (hr/1000). 

Therefore, after changing the unit of the slope, the time latency value was equal to 0.01016 sec. 

The calculated value for time latency is within the range of 5 – 27 ms (the range of time latency in 

the manual of UWB by Ubisense). Therefore, the impact of time latency from the data was 

eliminated with shifting the position data for each run against the x direction equal to the relocation 

of the moving object in 10.16 ms of time latency. After shifting the x dimension of position data 

(for each run), the error of the collected data was calculated and plotted to see the pattern of the 

error (see Figure 3.16). The pattern of error after elimination of time latency is S-shape. The reason 

why the error has a S-shape pattern is discussed in section 3.5.3 in more detail. 
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Figure 3.16 Observed error excluding time latency as a function of speed 

3.5.3 Pattern of Error 

It was noticed that the error of both the raw data and the data after elimination of time 

latency impact (Figure 3.16) have a S-shape pattern. It can be inferred that the error of the raw data 

is biased by one or more factors. In such cases if the bias source could be identified and eliminated 

correctly, the pattern of the data transforms to a noise by elimination of bias impact. In this study, 

it was noticed that one source of bias was the time latency of the UWB system in displaying the 

acquired position. The value of this factor was calculated by the assumption that the time latency 

of the system was constant. The error still had a S-shape pattern after elimination of time latency 

impact (Figure 3.16). It was inferred that there was another source of bias in the data.  

After performing the data analysis, it was noticed that another source of bias in the error of 

the data was in the methodology of the experiment. In order to obtain the actual location of the 

UWB tag in each run, the recordings prepared by a camera were used. The center of the lens of 
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the camera was set up along the benchmark line perpendicular to the path. In order to obtain the 

actual location of the RCC, the images from the recordings were used. The problem of this 

methodology is that when the RCC goes further from the benchmark line number of pixels in the 

image does not change proportional to the distance. This error is systematically biased by tangent 

(Martin and Pongratz 1974). Unfortunately, the value of this bias cannot be obtained as the distance 

of the camera from the center of the path was not obtained in each run of the experiment.  

 

Figure 3.17 Angular vision of the camera towards the moving object 

3.5.4 Using error in y direction (Ey) to calculate the accuracy measures 

In order to calculate the accuracy measures, the error in y direction was used. The reason 

of using the data in y direction was that, the prepared path was parallel with the x-axis and the 

collected data in the accuracy of positioning in y direction was independent from the time latency. 

As a result of the experiment setup there was no bias caused by lens focal in acquiring the position 

in y direction. The error in y direction (Ey) as a function of speed is plotted in Figure 3.18 to see if 

the pattern of the Ey was like a noise and suitable for calculating the accuracy measures.  
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Figure 3.18 Error in y direction as a function of speed 

Ey has a noise pattern and can be used for calculating the accuracy measures. Figure 3.18 

demonstrates that the congestion of the Ey, as expected earlier, decreases as the speed increases. 

In order to be elucidate the impact of speed on the accuracy of UWB system, the accuracy measures 

(offset, precision, and DRMS) were calculated. 

In order to be able to calculate the accuracy measures, the collected data should be 

categorized into smaller groups. It was considered that the number of data in each group is required 

to be enough for performing the data analysis (at least 35). In this study, the speed range (0 – 40 

km/h) was broken down into ten (10) speed intervals. In consequence, the span of each speed 

interval was 4 km/h (see Table 3.3).  
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Table 3.3 Accuracy measures for each speed group 

Speed Group 

(km/h) 

No. 

Data 

Average Speed 

(km/h) 

Offset 

(cm) 

Precision 

(cm) 

DRMS 

(cm) 

0 – 4  95 1.78 1.06 3.53 3.68 

4 – 8 128 6.09 0.98 6.69 6.76 

8 – 12 120 9.81 1.20 9.05 9.13 

12 – 16 127 14.08 1.50 11.59 11.69 

16 – 20 97 18.02 1.84 12.25 12.38 

20 – 24 109 21.98 1.67 13.66 13.76 

24 – 28 122 26.35 1.78 17.33 17.42 

28 – 32 61 30.48 2.02 16.58 16.71 

32 – 36 90 33.94 1.99 17.67 17.78 

36 – 40 81 37.93 2.58 25.38 25.51 

Table 3.3 is comprised of six (6) columns. The columns one through three, respectively, 

demonstrate the speed intervals, the number of data in each interval, and the average speed of the 

data in each interval. The last three columns shows the calculated accuracy measures for each 

interval. The accuracy measures are plotted in Figure 3.19 through Figure 3.21 as a function of 

speed. 

The offset as a function of speed is plotted in Figure 3.19. The offset varies in the range of 

1 to 2.5 cm in the speed range of 0 – 40 km/h. Based on the definition of the offset (see 

section 3.4.3), the distance of average value of collected data from the true point varies from 1 to 

2.5 cm in the speed range of 0 – 40 km/h. 
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Figure 3.19 Offset of the data as a function of speed 

The precision as a function of speed is plotted in Figure 3.20. The precision varies in the 

range of 4 to 25 cm in the speed range of 0 – 40 km/h. Based on the definition of the precision (see 

section 3.4.2), 67 percent of the data acquired by UWB is in a circle with the radius of 25 cm and 

the true point as the center point in the speed range of 0 – 40 km/h. 

 

Figure 3.20 Precision as a function of speed 
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The DRMS as a function of speed is plotted in Figure 3.20. The DRMS varies in the range 

of 4 to 25 cm in the speed range of 0 – 40 km/h. The DRMS is almost equal with the value of 

precision. The reason is that precision value is ten times larger than the offset in the same speeds 

(see equation 3.7)  

 

Figure 3.21 DRMS as a function of speed 
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eliminating the impact of the time latency from the error. Both methods resulted in error with a S-

shape pattern. It was noticed that another source of error was in the methodology of the data 

collection. Closer examination of the methodology revealed that error derived by the focal length 

of the camera lens used for recording in data collection. This error is systematically biased by 
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Therefore, the data in the y direction, which was independent from the time latency and systematic 

error caused by the camera, was used for calculating the accuracy measures. 

In order to calculate the accuracy measures, a group of data is required. In order to be able 

to calculate the accuracy measures, the collected data are categorized into smaller groups with 

breaking down the speed range into smaller speed intervals. The speed interval size considered for 

breaking down the speed range was 4 km/h.  

It was noticed that the offset changes in the range of 1 – 2.5 cm. It can be inferred that the 

offset value is independent from changes in speed. The value of offset demonstrates that the 

distance of the average of the collected data from the true point is less or equal with 2.5 cm in the 

speed range of 0 – 40 km/h.  

In these experiments, the offset value of the UWB is shown to be very small compared to 

the precision. The precision value at each speed is almost ten times larger of the offset at the same 

speed. It can be inferred that while positioning with single data might not be accurate, having more 

data for acquiring a position results in having a better accuracy. Higher number of data can 

obtained by increasing the frequency of data collection or increasing the time interval for 

positioning. In addition, it was noticed that the value of DRMS was almost equal to the precision 

value in different speeds. The reason was that the DRMS is the square root of summation of 

squared offset and squared precision (see equation 3.7). Since the value of offset compared to 

precision is negligible in this experiment, DRMS will be almost equal to the precision. 
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Chapter Four: IMPACT OF ACCELERATION ON THE ACCURACY OF UWB 

TRACKING FOR DYNAMIC RESOURCES 

4.1 Overview 

The experiment discussed in chapter three (3) was conducted to assess impact of speed on 

the accuracy of UWB RTLS in tracking dynamic resources. While analyzing the results of this 

experiment, the question raised if the acceleration has effect on the performance of UWB RTLS. 

Therefore, another experiment similar to the first experiment was designed. In the second 

experiment, the acceleration was eliminated from moving pattern of the mobile object.  

In this chapter, the methodology (designing and performing), calculations, and the results 

of the second experiment are discussed.  

4.2 Experiment Design and Setup 

As previously mentioned, the second experiment in this study has slight differences 

compared to the first one. This experiment consists of two major parts: data collection and data 

analysis. The data in this experiment was collected in dynamic tracking while changes in speed 

was minimal. In other words, it was tried to eliminate acceleration from the moving pattern of the 

mobile object. In order to have enough data for analysis, the experiment was repeated for 83 times. 

Each repetition of the experiment is called a run. 

Same as the first experiment, the RCC equipped with an UWB tag was operated on a 

straight path to generate data for dynamic tracking. In this experiment, four (4) benchmark points 

in a line were considered for data collection. Four (4) cameras recorded the RCC while passing 

the benchmark points. The data was collected while the RCC was traveling at approximate speeds 

of 5 km/h, 10 km/h, and 15 km/h. In other words, the collected data were categorized into three 

speed groups (5, 10, and 15 km/h). The following steps were followed to perform each run: 
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1. The RCC was moved along (operated) on the predetermined path. 

2. The video of the RCC while passing the benchmark point was recorded by a camera 

installed on the scene. 

3. The position log file of the tag located on the RCC was acquired by the UWB RTLS 

location estimation platform.  

4. The actual and estimated coordination (x, y, z) of the points close to each of the benchmark 

points were obtained using the recordings and the log file. 

5. The speed of the RCC was obtained by the recordings. 

The mobile object specifications, the experiment environment, the benchmark points, and 

the data collection for each run in this experiment are explained in the following sections. 

4.2.1 The Mobile Object 

The mobile object used for this experiment was the same RCC used in the previous 

experiment. The specifications and setup of this RCC were the same as the first experiment 

(explained in section 3.3.1).  

4.2.2 Experiment Environment 

The environment of the second experiment was the same as the previous experiment. 

However, the number of benchmark points and, consequently, the cameras was increased from 

one (1) to four (4) (see Figure 4.1). The position and orientation of the receivers, the calibration of 

the system, and the test area of the experiment were the same as the first experiment.  
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Figure 4.1 Experiment test bed 

4.2.3 Benchmark Points 

The major difference between the first and the second experiments was the number of 

benchmark points. In the second experiment, there were four benchmark points. These points were 

selected on a line parallel with the local x-axis. As such, the y-coordinates of the benchmark points 

were equal. As a result, the load of work for data collection was reduced.  

The DRMS of the benchmark points were presented in Table 4.1. Points 2 and 4 are the 

same points as, respectively, considered as alternative points 1 and 3 in in the first experiment (see 

Table 3.2). Although the experiment test area and UWB system setup was the same, the DRMS of 

these points were increased in Table 4.1. The reason is that the collected data for the calculating 

the DRMS in Table 4.1 was performed with a new computer with new calibration. Comparing the 

obtained DRMS in two sets of data collection states the importance of accuracy in system 

calibration. The higher accuracy in calibration the better performance of the UWB system in 

location estimation.   
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Table 4.1 DRMS of observation points 

 Point 1 Point 2 Point 3 Point 4 

DRMS (cm) 23.72 25.16 24.42 23.39 

As the data collection for the second experiment was performed with the first computer, 

the DRMS shown in Table 4.1 was only used for comparing the performance of UWB RTLS close 

to the benchmark points.  

4.2.4 Experiment Testbed  

The predetermined path was similar to the previous experiment (explained in section 3.3.4).  

4.2.5 Data Collection 

The data collection method performed for this experiment was almost the same as previous 

experiment (explained in section 3.3.5). The only difference in data collection, compared to the 

first experiment, was that there were four benchmark points and four cameras in the second 

experiment. Consequently, obtaining the coordinates and speed were performed four times for 

each run. 

4.3 Accuracy Measures 

The accuracy measure used for analysis and evaluation of the collected data, same as the 

first experiment, were error, offset, precision, and the DRMS. These measures are explained and 

illustrated in detail in section 3.4.  

4.4 Results 

The error of the collected data as a function of speed for the second experiment is presented 

in Figure 4.2. The data in this figure were categorized into three (3) groups. The red indicators 

show the error of the collected data for the runs with approximate speed of 5 km/h. The green and 

the blue indicators show the error of the collected data for the runs with speeds close to 10 km/h 

and 15 km/h, respectively.  
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Figure 4.2 Absolute observed error as a function of speed 

The details regarding each category of data collection are brought in Table 4.2. In each run, 

four sets of data were collected and used for the analysis. For example, the 23 runs performed at 5 

km/h category yielded 92 sets of data. 

Table 4.2 Information pertaining to the second experiment 

 Speed Classifications 

 5 km/h 10 km/h 15 km/h 

Number of Runs 23 28 32 

Speed Average (km/h) 5.06 10.18 14.88 

Standard Deviation of the Speed 0.61 0.55 0.60 

The number of collected data, average speed, and the standard deviation (SD) of the speed 

for each speed group are brought in Table 4.2. The average speed helps knowing the value of speed 

for comparing the accuracy measures with other experiments and the standard deviation elucidates 

the closeness and similarity of the collected data in each group. The smaller the standard deviation 

in value, the closer the collected data to each other. The SD of the speed for all three data groups 
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is about 0.6. Therefore, it can be assumed that the speed was constant in performing the 

experiments and the acceleration was eliminated in a good level. 

4.5 Discussion 

In this study, two sets of experiments were performed (including and excluding 

acceleration in the moving pattern of the mobile object). The data from these two experiments are 

compared in this section to find out the effect of acceleration on the performance of UWB RTLS 

tracking. In order to facilitate the discussion, the data, from both of the experiments, are shown 

with the same format. 

4.5.1 Absolute Error as a Function of Speed  

The absolute error of the collected data from the second experiment is plotted in Figure 4.3. 

The 95% confidence interval (CI) calculated in the first experiment for the error is illustrated in 

the same figure to enable comparing the data of both of the experiments (see Figure 4.3). The data 

plotted in Figure 4.3, from first and second experiment, is before eliminating the impact of time 

latency. In Figure 4.3, the black line is the mean regression line, the blue and red lines are, 

respectively, the upper and lower boundaries of CI.  
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Figure 4.3 Absolute observed error of second experiment, the mean regression line and the 95% 

confidence interval (CI) of the of the mean regression line of the error of the first experiment 

As shown in Figure 4.3, the distribution of the error of the collected data in the second 

experiment for speed groups of 10 km/h and 15 km/h are the same as the first experiment. While 

most of the error at 5 km/h is below the mean regression line and outside of the confined area of 

the 95% CI. It can be inferred that in lower speeds the acceleration decreases the accuracy of UWB 

RTLS. In addition, it can be inferred that the impact of acceleration compared to other sources that 

have impact on the accuracy of UWB positioning is negligible in the higher speeds. 

In Figure 4.3, there are some data that has less absolute error compared to the rest of the 

collected data. In order to find out the reason, the data collected close to each of the benchmark 

points were categorized by color (see Figure 4.4). 
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Figure 4.4 Absolute observed error classified with color – second experiment 

In Figure 4.4, the collected data close to observation points one through four are shown, 

respectively, with black, green, blue, and red indicators. Most of the indicators with lower absolute 

error are allocated to observation point one (1) and four (4). Both of the points, one and four, has 

better DRMS compared to the other points (see Table 4.1). It can be inferred that the coverage of 

area has a meaningful impact on the accuracy and performance of UWB positioning. 

4.5.2 Ex as a function of speed 

The error in the x direction (Ex), as a function of speed, after elimination of time latency 

bias impact, for both experiments are illustrated, respectively, in Figure 4.5 and Figure 4.6 with 

color classification. It is worth mentioning that the x direction was along the prepared path for data 

collection in the data collection. The indicators for both experiments are almost identical. It can be 

inferred that the acceleration does not have a meaningful impact on the accuracy of UWB 

positioning. However, it can be noticed that the congestion of the data is decreased after 
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elimination of the acceleration from moving pattern of the mobile object. It can be justified by 

different performance of UWB in the four observation points used for the second experiment. 

 
Figure 4.5 Ex as a function of speed with color classification - first experiment 

 
 

Figure 4.6 Ex as a function of speed with color classification - second experiment 
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4.5.3 Ey as a Function of Speed 

The error in the y direction (Ey) as a function of speed for both experiments are illustrated 

in Figure 4.7 and Figure 4.8. It can be seen that the error of the data collected in the direction 

perpendicular to the moving direction did not sensibly change when the mobile object accelerated. 

However, in the second experiment, the Ey is larger compared to the first experiment. It can be 

justified by considering that different observation points with different coverage and static 

accuracy were used in the second experiment. 

 
Figure 4.7 Ey as a function of speed - first experiment 

 
Figure 4.8 Ey as function of  speed - second experiment 
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4.5.4 Ex as a Function of Ey  

The error in the y direction (Ey) is pictured as a function of error in the x direction (Ex) in 

Figure 4.9 and Figure 4.10, respectively, for the first and the second experiment. The indicators 

from the first experiment were classified with colors (Figure 4.9a). Then, the indicator for the 

higher speeds in the first experiment was omitted (Figure 4.9b) to make the comparison and 

discussion easier. The indicators in Figure 4.9b and Figure 4.10 for the three speed classifications 

are in red, green, and blue colors. The color classification helps to show how the indicators for Ey 

as a function of Ex were distributes with the increase in speed. Comparing Figure 4.9b and 

Figure 4.10 shows that the error in the moving direction increases faster than the direction 

perpendicular to the moving direction. 

It is worth mentioning that Figure 4.9 and Figure 4.10 show the pattern of the collected 

data in the both experiments. Color classification of the data reveals that the error pattern in both 

experiments are the same. However, there is minor difference between the error patterns of the 

experiments. But this slight difference can be justified by the unequal performance of the 

observation points. Pattern of the data is a very important factor to see if a factor has impact on the 

data. Therefore, it can be inferred that the acceleration did not have meaningful impact on the 

pattern of the collected data.  
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Figure 4.9 Ey as a function of Ex – first experiment a) with color classification b) with color 

classification and omission of the higher speeds groups 
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Figure 4.10 Ey as a function of Ex - second experiment 

4.5.5 Ex and Ey  

The mean and the standard deviation of the error of the collected data in the second 

experiment is presented in Table 4.3. 

Table 4.3 The average and the standard deviation of the Ex and Ey - second experiment 

 Error of the Collected Data 

 5 km/h 10 km/h 15 km/h 

 Ex Ey Ex Ey Ex Ey 

Average (m) 0.25 0.19 0.37 0.20 0.74 0.22 

Standard Deviation (SD) 0.07 0.07 0.15 0.13 0.24 0.11 

The average and the standard deviation of Ey is almost the same in all speed categories. It 

can be inferred that as Ey is the error perpendicular to the moving direction, the offset (average) 

and the precision (standard deviation) of the positioning are almost independent from the speed of 

the moving object and excluding the bias caused by time latency or other source of biases which 

are result of the moving direction of the mobile object.  
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In addition, at lower speed, the average and the standard deviation of Ex and Ey are close. 

It can be inferred that when the moving object does not accelerate the error in both directions are 

almost equal. In addition, the average and the standard deviation of Ex increases with the increase 

in speed. It can be inferred that the error in positioning is mainly caused by the Ex which is the 

error in the moving direction of the mobile object. 

4.6 Conclusion 

Comparing the result of the two experiments showed that acceleration has more impact on 

the UWB performance in lower speeds. In addition, the standard deviation of the Ex and Ey in 2D 

was shown to be independent from acceleration. In other words, the findings suggest that 

acceleration does not significantly impact the precision of the UWB RTLS. 

Illustrating the 2D pattern of collected data with color classification revealed that the 

acceleration does not have meaningful impact on the pattern of the collected data. In addition, it 

was inferred that the decrease in the congestion of the collected data was mainly caused by the 

scattering of the data in the moving direction of the mobile objects. 

By comparing the Ex and Ey from the same speed groups, it was inferred that the error in 

positioning is mainly caused by the Ex which is error in the moving direction of the mobile object 

in this study. In addition, it was noticed that the moving direction of the mobile object does not 

influence the precision as the precision in both directions were almost equal. 
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Chapter Five: SUMMARY AND DISCUSSION 

A summary of the results of the experiments conducted in this study is brought in this 

chapter. The discussion on the results, contributions, limitations in conducting the experiments, 

and the recommendations for the future works are brought in the following sections. 

5.1 Summary 

The primary objective of this study was to assess the accuracy of UWB RTLS in dynamic 

tracking. In order to conduct this study, two sets of experiment are performed. The first experiment 

aimed to evaluate the impact of speed on the accuracy of UWB in dynamic tracking. This 

experiment conducted utilizing a remote control car (RCC) equipped with an UWB tag. The UWB-

equipped RCC was operated on a prepared path in the speed range of 0 – 40 km/h. A specific 

benchmark point was selected and the estimated position of the mobile object while passing the 

benchmark point was compared with the actual coordinates of that point. This experiment was 

repeated 1087 times to increase the reliability of the analyses.  

Similar to other positioning systems, the UWB RTLS has latency in presenting its 

estimated position. The time latency of the UWB RTLS in dynamic tracking was identified to be 

5.6 ms by comparing the deviation of average of the error from zero. Time latency brings bias in 

the data in addition to other source of bias in data collection in the x direction (along the moving 

path). Therefore, the position data collected in y direction- safe from the biases in the moving 

direction- was used for calculating the accuracy measures (DRMS, precision, and offset) as a 

function of speed.  

The abovementioned accuracy measures for the data when the time latency error is included 

can be referred to as real-time accuracy measures and the ones excluding the time latency can be 

referred to as dynamic accuracy measures. Consequently, the calculated accuracy measures are 
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considered as dynamic accuracy measures as the time latency effect is not included in the data in 

the y direction.  

The offset in the speed range of 0 – 40 km/h increased gradually from 1 to 2.5 cm as the 

speed increased. The R2 of the linear mean regression line fitted to the offset was equal to 0.89. 

Therefor it could be inferred that the offset had a linear correlation with the speed. 

The precision in the speed range of 0 – 40 km/h varied from 4 – 25 cm. Similar to the offset, 

the precision had a linear positive correlation with the speed as the R2 of the mean regression line 

fitted to the precision was equal to 0.93.  

The DRMS is equal to square root of summation of squares of precision and offset (see 

equation 3.7). As the offset was small in value compared to precision (particularly in the higher 

speeds), the DRMS was almost equal to precision and varied from 4 cm to 25 cm. 

In analyzing the results and values from the first experiment, it was noticed that the moving 

object had acceleration while passing the benchmark line. At this point, another research question 

was raised to verify if acceleration had an effect on the accuracy of UWB RTLS. Consequently, 

the second experiment was designed and performed with the goal of eliminating acceleration from 

the moving pattern of the RCC and examining the effect. In order to minimize and eliminate the 

effect of acceleration in the second experiment, four (4) benchmark points were assigned.  

The UWB-equipped RCC was operated as it remained in speeds close to 5, 10, and 15 km/h 

when passing through all benchmark points. A total of 83 runs, generating 332 data sets, were 

conducted. The generated data and results from both abovementioned experiments are separately 

presented in absolute error, error in x direction (Ex), and error in y direction (Ey) as function of 

speed and Ex as a function of Ey.   
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Comparing the result of the two experiments showed that acceleration has more impact on 

the UWB performance in the lower speeds. In addition, the standard deviation of the error in both 

x and y directions in 2D was shown to be independent from acceleration. In other words, the 

findings suggest that acceleration does not significantly impact the precision of the UWB RTLS.  

5.2 Discussion 

 In the dynamic safety boundary defined in section 1.2, two factors are required. The first 

parameter is function of size of the moving object. The second parameter is the minimum 

stopping distance which is function of speed, friction ratio, and the perception-reaction time 

(tpr). The tpr is a constant which is required to be identified based on the different factors in the 

place of using the safety management model. Based on the earlier studies, as the construction 

environment is a complex environment where the operators and labourers are alerted while 

working the tpr can considered to be 1.5 sec. The third factor for defining a dynamic safety 

boundary is the accuracy of positioning. Defining of this factor requires a coefficient level 

which depends on the application of the safety management model. In order to bring an 

example, the coefficient level is considered to be equal to 95 percent. Therefore, in order to 

cover the 95 percent of the collected data the offset (average) of the collected is required to be 

summed up with precision (SD) times 5.99.  

 The error of the collected data in the x direction (along with the direction of the moving object) 

was biased instead of having a noise pattern. Two sources of error were identified in the 

collected data: time latency and camera lens focal used for preparing the recordings. The time 

latency resulted in a linear bias in the error pattern. However, the focal of the camera lens biased 

the data with tangent which resulted in having a zero-mean S-shape error pattern. The first 

source of bias could be eliminated by calculating the time latency. As there was not enough 
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data recorded from the experiment setup, the bias from the second source could not be 

eliminated from the data. Two sources of bias only had impact on the collected data along to 

the moving direction which was x direction. Therefore, the error of the data in the y direction 

was double-checked to have a noise pattern and used for calculating the accuracy of the UWB 

in dynamic tracking. In the case that the pattern of the error of the data was acceptable and the 

bias was result of UWB positioning system performance, the value of upper boundary of 

prediction interval (PI) in each speed could be implemented in defining the third parameter of 

the dynamic safety boundary which is positioning accuracy (PA). The coefficient level for 

calculating the PI depends on the application. 

 In the case that the time latency was not eliminated for the calculating the accuracy measures 

the obtained accuracy was referred to as real-time accuracy. However, when the time latency is 

excluded from the data the accuracy is referred to as dynamic accuracy. Therefore, the accuracy 

measures calculated in this study are dynamic accuracy measures. Each of these accuracy 

measures, real-time and dynamic, has different values and applications. For example, in order 

to use the UWB in a construction environment for safety management systems such as collision 

detection, the real-time accuracy will be implemented. In contrast, the dynamic accuracy 

measures are more suitable when the positioning data is going to be used for identifying moving 

patterns of the labourers or equipment, which can be used for planning safer site layouts. 

Consequently, in defining the third factor of the dynamic safety boundary, the dynamic 

accuracy measures are required to be implemented and the impact of time latency on the 

accuracy of UWB positioning is required to be considered. 

 Two sets of experiments were conducted in this study in order to assess the impact of speed and 

acceleration on the accuracy of the UWB positioning. It was shown that as the speed increases 
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the value of the accuracy measures increase. However, comparing the result of the two 

experiments showed that acceleration has more impact on the UWB performance in the lower 

speeds. It can be inferred that when the speed increases the impact of acceleration compared to 

other sources of error is negligible. Therefore, it can be inferred that the acceleration did not 

have meaningful impact on the value of the accuracy measures calculated in the speed range of 

0 – 40 km/h. Based on the results it can be guessed that in the speeds higher than 40 km/h the 

result would be the same. However, it needs performing new experiments for assessing the 

impact of acceleration in the higher speeds.  

 Illustrating the 2D error pattern of the data revealed that that the decrease in the congestion of 

the collected data was mainly caused by the scattering of the data in the moving direction of the 

mobile objects (x direction). In other words, the precision in the moving direction of a mobile 

object is less than this value in the direction perpendicular to the moving direction. Therefore, 

in order to define a more efficient dynamic safety boundary, the precision in moving direction 

can be considered larger than this value in the perpendicular direction. 

5.3 Research Contributions 

The main contributions of this study can be listed as follow: 

 Assessing the impact of speed and acceleration on the accuracy of UWB in tracking dynamic 

resources within indoor construction jobsites in speed range of 0 – 40 km/h.  

 Providing a methodology for calculating the “positioning accuracy” (PA) factor of the dynamic 

safety boundary zone (as described in section 1.2) using the accuracy measures 

 A set of recommendations -derived from the results of each experiment- were provided for 

effective utilization of UWB resource tracking on construction sites. 
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5.4 Limitations 

There are several factors affecting the accuracy of the UWB RTLS in tracking dynamic 

resources. These factors include coverage of the readers, numbers of the readers, alignment of the 

readers, installation and calibration, and the experiment environment. This study only focused on 

assessing the impact of speed and acceleration on the accuracy of UWB in tracking dynamic 

resources. Further studies is required to assess the effect of other factors on the performance and 

accuracy of UWB in dynamic tracking. 

5.5 Recommendations for Future Work 

The following future researches can be considered imminent to the presented study and are 

recommended:  

 Assessing the impact of relative elevation of the UWB tag to the readers on the 

accuracy of the dynamic tracking. 

 Applying the result of this study and proposed dynamic safety boundary in safety 

management systems such as collision detection models. 

 Assessing the impact of coverage area, alignment, and geometry of the UWB RTLS 

readers on the accuracy of UWB RTLS in tracking dynamic resources. 

 Assessing the number of UWB tags in simultaneous tracking on the accuracy of the 

UWB RTLS in tracking dynamic resources.  

 Assessing the impact of the UWB tag frequency on the accuracy of UWB RTLS in 

dynamic tracking.  
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APPENDIX A: PERCEPTION-REACTION TIME 

In order to calculate the perception-reaction time (tpr) for a driver, generally four factors 

are considered: perception, intellection, emotion, and volition. Perception is the time to see an 

object, intellection is the time to understand the implication of the object, emotion is the time to 

decide how to react, and volition is the time to initiate the action.  

Perception-reaction time is defined for design and operations or control (AASHTO 2004). 

tpr is obtained to be 2.5 sec and 1.0 sec, respectively, for design and control. These numbers are 

obtained based on the behaviour of the 85th percentile of the drivers observed in their study. The 

2.5 sec for perception-reaction time is examined in some studies (Gazis et al. 1960, Wortman and 

Matthaas 1983, Chang et al. 1985, Sivak et al. 1982). The result of these studies demonstrated the 

maximums perception-reaction time of 1.9 sec and 2.5 sec, respectively, for the 85th percentile and 

the 95th percentile of the observations. 

In obtaining the tpr, the alertness of the drivers considered and experimented in other studies 

(Wortman and Mathias 1983). In the situations that the drivers are alerted tpr is obtained to be 0.9 

sec while tpr is equal to 1.3 sec in the surprised situations. Similar to the AASHTO, these numbers 

are obtained based on the behaviour of the 85th percentile of the drivers observed in their study. 

In addition, the complexity of the traffic conditions was suggested to be considered in the 

perception-reaction time (Sivak et al. 1982). The result of this study showed the minimum of 1.5 

sec and the maximum of 3.0 sec for tpr, respectively, for the low and high complexity conditions 

for the traffic. 
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APPENDIX B: LOCATION ESTIMATION METHODS FOR REMOTE SENSING 

Remote sensing is defined as acquisition of information from an object without making 

physical contact. Remote sensing technologies enable positioning using the acquired information. 

Different methods can be applied for performing the location estimation, namely, received signal 

strength indication (RSSI), angle of arrival (AOA), time of arrival (TOA), and time difference of 

arrival (TDOA).  

Location estimation technologies which use electromagnetic and sound waves for the data 

acquisition mostly consist of a transmitter and a receiver. The transmitter emits the signals and the 

receiver collects the transmitted signals. The signals that travel the straight path between the 

transmitter and the receiver is called the Line-of-Sight (LOS) signal and the signals that had 

reflection with the surrounding in their travel are called multipath signals. The reflections cause 

signal attenuation which is called multipath fading.  

Using the data acquired by LOS signals, the relative location estimation can be performed. 

In other words, the LOS signals transmitted by a tag (transmitter) and received by the receivers 

can be used in positioning methods. 

B.1 Received Signal Strength Indication (RSSI) 

The receivers measure the strength of the received signal. This method does not have high 

ability of differentiating the LOS signals from the multipath ones. Positioning by RSSI is 

performed by fingerprinting. In the fingerprinting method, a number of sample points are used to 

make a correlation between the RSS measures and the actual locations. Therefore, the accuracy of 

positioning highly depends on the accuracy of the collected data in the calibration of the system. 
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In addition, any changes in the surroundings result in changes in the RSSI that affects the accuracy 

of positioning. 

B.2 Time of Arrival (TOA) 

The time of receiving the LOS signals by the receivers is measured. Therefore, knowing 

the time of emitting the signal by the transmitter and the time of receiving the signal enables 

calculating the travel time of the LOS signals. The travel time times the speed of the 

electromagnetic waves the distance of the tag from the receivers can be easily obtained.  

In this method, the one-way and two- way travel time of the signals can be used for 

calculating the distance of the tag from the readers. Commonly, calculating the two-way method 

is easier as a lower precision clock can be used in the transmitter. In this method, LOS and multi-

path signals are required to be differentiated by the positioning technology (Dardari et al. 2009). 

B.3 Time Difference of Arrival (TDOA) 

This method is similar to TOA with the advantage of not requiring synchronization 

between the transmitter and the receivers. It means that a transmitted signal from a tag does not 

require having any information about the time of transmitting a signal. Instead, this method 

requires synchronization of the receivers which can be easily fulfilled using timing cables (Dardari 

et al. 2009). 

B.4 Angle of Arrival (AOA) 

In this positioning method, the angle of the received LOS signals by the receivers is 

measured. In the environments that the chance of signal multipath is high (like construction work 

environments), applying this method requires accurate calculations for differentiating the LOS 

signals from the reflected ones (Liu et al. 2007). Commonly, the angle of the signal with the highest 

strength, recognized as the LOS signal, is used for positioning calculations. The accuracy in 
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installation of the receivers in this method is important as highly affects the accuracy of 

positioning.  
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APPENDIX C: 2D ERROR ELLIPSE 

Error ellipse is an accuracy measure that can be used for addressing the accuracy and 

distribution of positioning data. In order to calculate and draw the error ellipse, variance in both x 

and y directions (σx,σy) and the covariance (σxy) are required. In 2D, the required elements can 

be obtained by calculating the covariance two-by-two matrix. The parameters of a general equation 

for defining an error ellipse can be obtained using following equations: 

a = √(
1

2
× (σx

2 +  σy
2) + √(

1

4
× (σx

2 −  σy
2)2 + σxy

2)                             (C.1) 
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θ = 0.5 arctan(
2σxy

σx
2 − σy

2)                             (C.3) 

where 2a and 2b are, respectively, the length of the major and the minor axis of the error ellipse 

centered at the origin and θ is the azimuth of the major axis (see Figure C.1).  

Generally, the equation of an error ellipse aligned with an axis (no orientation) is defined 

by the following equation:  

(
x

σx
)

2
+ (

y

σy
)

2

= s                              (C.4) 

where s is the scale of the error ellipse which defines the confidence level of this accuracy measure. 

The confidence level of the error ellipse states the percentage of the data covered by the ellipse. 

For example, the 99 percent confidence interval corresponds to s=9.210. The s value corresponding 

to the confidence interval of the error ellipse can be obtained using the chi-squared table.  
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Figure C.1 2D Error ellipse elements 

The orientation of the error ellipse in 2D is defined by the direction in which the data varies 

the most. The direction of the error ellipse can be calculated by the covariance matrix. In order to 

obtain the orientation of the error ellipse towards the x-axis, the angle of the largest eigenvector 

towards the x-axis is calculated using the following equation: 

α = arctan
V1 (y)

V1 (x)
                              (C.5) 

where V1 is the eigenvector of the covariance matrix corresponding to the largest eigenvalue. 
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APPENDIX D: REGRESSION ANALYSIS 

Statistical techniques are applied to find and model a mathematical relationship between 

the mean value of a variable and the other corresponding variables based on the available data or 

observations. There are different kinds of regression models and analyses such as linear, multiple, 

and non-linear regressions. 

D.1 Polynomial Regression 

If the scatter plot of the observations shows that there is at least one relative minimum or 

maximum value, a polynomial function may satisfy the approximation for the true regression 

function (Montgomery and Runger 2014). The kth- degree polynomial parametric regression 

equation is:  

Y=a0 + a1x
1 + … + akx

k + e                                (D.1) 

where “a” is a parameter and “e” is the error of the estimation model, which is, customarily, a 

distributed random variable. Therefore, the regression equation or the estimation function is shown 

as follows: 

µY.x = a0 + a1x
1 + … + akx

k                             (D.2) 

In the regression equation calculations, the observed values (x1, y1) through (xn, yn) are 

assumed to be generated or collected independently from the regression model equation. 

D.2 Calculation of Parameters 

Parameters are calculated by minimizing the difference between the estimation function 

and the observations. Therefore, a trial regression function is considered, such as equation D.3, 

and the fit of this equation can be calculated by equation D.4. 

y = a0 + a1x
1 + … + akx

k                            (D.3) 

f(a0, a1, … , ak) =  ∑ (yi − (a0 +  a1xi + ⋯ +  akxi
k))

2
n
i=1                              (D.4) 



 

106 

If the regression equation is well fitted to the observation, then the sum of the squared 

deviations has a low magnitude. The number of equations is equal to the number of observations. 

Consequently, the number of observations should be at least one more than the order of the 

regression model equation. The k+1 partial derivatives of the equations over the parameters are 

calculated and equated to 0 to find the value of the parameters that minimize equation D.4. The 

derivation over the parameters results in k+1 normal linear equations as shown in equation D.5. 

The equation can be solved easily by a linear least square method. 

 a0n +  a1 ∑ xi + a2 ∑ xi
2 + ⋯ +  ak ∑ xi

k =  ∑ yi                            (D.5) 

a0 ∑ xi +  a1 ∑ xi
2 + a2 ∑ xi

3 + ⋯ +  ak ∑ xi
k+1 =  ∑ xiyi 

. 

. 

a0 ∑ xi
k +  a1 ∑ xi

k+1 + ⋯ + ak ∑ xi
2k =  ∑ xi

kyi 

D.3 Adequacy of the Regression Models 

In fitting a regression model, several assumptions are made. For example, the mean of the 

errors is zero and has a constant variance, and the error is an uncorrelated random variable. The 

order of the model is always assumed to be correct. Therefore, after fitting a regression model, the 

correctness of the assumptions should be checked. 

D.3.1 Residual Analysis 

The residuals in each model are calculated in a similar method as the error for each 

observation. The difference between the estimation of the regression model and the observation is 

called a residual. The residuals might be standardized if they are expected to have a normal 

distributed error for an estimation model. The residuals outside this interval can be considered as 
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outliers. An outlier is an observation which is not a typical of the data for fitting a model. There 

are several methods for omitting the outliers; however, they can give important information about 

the experiment and, therefore, they should not be discarded automatically. Drawing the residuals 

is a way to see their pattern. Based on the pattern of the residuals, in the case that they do not have 

constant variance, there are transformations that can be applied. The transformation allows the 

model to have better conditions based on the assumptions explained earlier in this section. 

D.3.2 Coefficient of Determination (R2) 

The coefficient of determination (R2) is a common measurement for checking the 

regression models. R2 is a ratio of the sum of the square of the errors; it is calculated using the 

following equation:  

 R2 =  1 −  
SSE

SST
                             (D.6) 

where SSE is the sum of square of the errors of the estimation values compared to the observed 

values and SST is the total sum of squares of the response variable y.  

R2 ranges from zero to one (0 ≤ R2 ≤ 1). If the value of R2 is closer to one, the model is 

more accurately fitted to the data. This variable should be used with care because there is the 

possibility of making R2 equal to one by adding new terms to the model. For example, c can be 

equal to one if the order of the model is one less than number of observations. 
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APPENDIX E: CONFIDENCE INTERVAL (CI) ON THE MEAN RESPONSE 

In statistics, confidence interval (CI) is an interval based on the variance calculations. CI 

covers a specific portion of a sample data which can be indicated by the confidence coefficient of 

the CI. The confidence coefficient of a CI indicates this portion (Montgomery and Runger 2014). 

The desired level of confidence is optional and depends on how the result of the calculation is 

going to be applied; for example 50 percent, 95 percent and 99 percent can be chosen. A CI can 

evaluate the reliability of a sample or collected data. If the interval width is sufficiently large, the 

data is not reliable. Certain factors may affect the CI size including sample size, confidence 

coefficient, or level. If the sample size is large, a better estimation can be obtained. For example, 

60 percent means that for a calculated interval on sample data, 60 percent of the population of the 

data lies within this CI. In this example, if the variance of the collected data was constant, 20 

percent of the observations would be above the upper boundary of the CI and 20 percent below 

the lower boundary. 

The CI can be obtained by calculating the mean response at a specific value. The CI is 

often obtained along the mean regression line. The variance of a mean response is: 

Variance = σ2( 
1

𝑛
+ 

(𝑥0−𝑥𝑀𝑒𝑎𝑛)2

𝑆𝑥𝑥
 )                            (E.1) 

where σ2 is the variance of x, n is number of collected data, xmean is the average of x, and Sxx is the 

sum of the squares of the x data from xMean. Sxx can be calculated using following equation: 

 Sxx =  ∑ (xi − xMean)2n
i=1                                (E.2) 

The equation of a CI with a confidence coefficient of 100 × (1- a) % along the mean 

response at x = x0  is obtained by equation E.3. 

|CI − Mean Response|  ≤  ta

2
 ,   n−2  ×  √ σ2 ( 

1

n
+ 

(x0 − xMean)2

Sxx
 )                        (E.3) 

http://en.wikipedia.org/wiki/Statistics
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The CI value depends on the value of x0. Therefore, the interval width increases as the 

(x0 − xMean)2 increases. As a result, it can be inferred that the CI of a linear regression line is not 

parallel with the mean regression line. 
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APPENDIX F: PREDICTION INTERVAL (PI) 

In statistics, a prediction interval (PI) is an interval with a certain probability and range to 

cover the observations based on the data, which have already been collected or observed. PIs are 

usually used for regression analysis because they can estimate or predict future observations with 

a specific probability (Montgomery and Runger 2014). The equation of a CI with a confidence 

coefficient of 100 × (1-a) % on the mean response line at x = x0  is obtained by following equation: 

|PI − Mean Response|  ≤  ta

2
 ,   n−2 × √ σ2 (1 + 

1

n
+  

(x0 − xMean)2

Sxx
 )                        (F.1) 

The PI value depends on the value of x0. Therefore, the interval width increases as the 

(x0 − xMean)2 increases. In addition, it can be inferred that the PI of a linear regression line is not 

parallel with the mean regression line. By comparing equation F.1 and E.3, it can be inferred that 

the PI is wider than the CI at point x0 for the same data. The reason is that the PI depends on both 

the error of the fitting model and the error associated with the future observations. 


