A Low-Cost High-Accuracy Intelligent
Backtracking Algorithm

Alan D. Dewar John G. Cleary

Abstract

We present an intelligent backtracking algorithm with high accuracy and low
overhead, especially for certain classes of algorithms. Information is associated
with each variable binding and with each proof-tree node. Performance results
indicate that our approach can attain a similar accuracy, but at a lower cost,
when compared with other similar intelligent backtracking approaches.

1 Introduction

Standard interpreters for Prolog make use of backtracking to explore alternate pos-
sible paths to a solution. The straight-forward naive approach always retries the
most-recently-succeeded goal whenever a failure occurs. An intelligent backtracking
algorithm, on the other hand, is more selective in which goal it will retry. Specifi-
cally, only those goals which actually contributed to the failure should be considered
as potential backtrack points. Retrying other goals cannot prevent the failure, and
so simply results in unnecessary, and sometimes quite expensive, computation.

One of the issues affecting intelligent backtracking is the presence of non-logical pred-
icates in a logic program. These include ‘cut,’” which alters the control flow and hence
the meaning of a program, and built-in predicates which have side-effects, such as
input/output and changes to the database. Our approach does not address this issue,
but applies only to pure logic programs.

Intelligent backtracking necessarily involves overhead which is not present in naive
backtracking. A number of tradeoffs are possible, involving space, time, complexity
and accuracy. Generally, greater accuracy requires more space and time overhead and
a more complex algorithm. Some previous approaches to intelligent backtracking are
described below, ordered from most to least accurate and highest to lowest cost.

The approach of Cox, Matwin and Pietrzykowski [3, 7] separates the unification con-
straints from the proof-tree structure. The set of constraints, if consistent, defines a
solution; otherwise, maximal unifiable subsets of constraints are determined, in order
to select backtrack candidates. Although very precise selection of backtrack nodes is
possible, a substantial overhead is required.

The approach of Bruynooghe and Pereira [1] is complementary to that of Cox, Matwin
and Pietrzykowski, in that it deals with minimal non-unifiable subsets of constraints.
This approach associates a deduction tree with each variable binding and with each
call. The deduction tree associated with a variable binding specifies which calls
affected the value to which the variable is bound. When a unification conflict is
encountered, this information is used to determine which nodes should be considered
as potential backtrack candidates. The deduction tree associated with a call is used
to determine potential backtrack points when all clauses have been exhausted for a
particular call.

Our approach is similar to that of Bruynooghe and Pereira, but differs in that we
eliminate much of the overhead associated with a call. Whereas Bruynooghe and
Pereira associate a deduction tree with each call, we instead set a flag in the individual
nodes of the deduction tree itself when backtracking is initiated. The penalty of this
simplification is a slightly lower accuracy in some instances. Our algorithm performs
best with shallow data structures and combinatorial problems.

Kumar and Lin describe an algorithm which incurs very little overhead as execution
proceeds forward [6]. It is only when backtracking commences that their scheme is
invoked. Upon unification failure, the variables involved are examined and all proof-
tree nodes which contributed in any way to their values are considered as backtrack
candidates. The disadvantage of this is that many nodes which did not actually
contribute to the failure may become backtrack candidates. This results in lower
accuracy than our approach, but incurs less overhead.

Chang and Despain describe a semi-intelligent backtracking method which makes use
of static data dependency analysis [2]. Potential backtrack candidates for calls are
determined statically at compile time, based on worst-case assumptions. This results
in almost no run-time overhead. However, the accuracy of selection of backtrack
candidates is not high, due to the worst-case assumptions and to the inability of the
approach to deal with information which crosses clause boundaries.

A simple form of our algorithm is described in the next section. Section 3 expands
the description to the complete algorithm. In Section 4, some performance results are
presented. Section 5 concludes with a discussion of the results and the applicability
of the algorithm.

2 Basic Algorithm

Backtracking is initiated by a unification failure. Suitable candidates for a node
to which to backtrack thus include all nodes which contributed to the value of the
incompatible arguments to unification. For this reason, each variable has associated
with it a set of dependencies. This set is determined at the time at which the variable
is bound (possibly to another variable).

As an example of variable dependency sets, consider the unifications which occur in
the following clause:

X=Y, X=a.

Given the standard left-to-right execution order, and assuming that the variable X
is bound to Y rather than the reverse, the execution of this clause results in X being
bound to Y and Y being bound to the constant a. This may be denoted by the
expression X« Y«a. The dependency set of X includes Y, since Y was an argument to
the unification which bound X. Similarly, the dependency set of Y includes X, since a
unification involving X is what caused Y to become bound.

In addition to having a dependency set, each bound variable also keeps a reference
to an associated deduction-tree node, referred to as its binding node and represented
by a stack frame, denoting the call which caused the variable to become bound. In
the above example, the binding node of X is the call X=Y, and the binding node of Y
is the call X=a.

The unification algorithm is based on the standard recursive one. It receives as argu-
ments the two expressions to be unified, as well as a variable-argument set consisting
of all variables encountered as expression arguments at prior levels of recursion. The
set received by the top-level invocation is empty. The variable-argument set of a
particular invocation, which is passed to any recursive invocations, consists of all el-
ements of the received set plus those expression arguments which are variables. It
may be that neither expression is a variable, as in the unification of two structures or
of two constants, in which case the variable-argument set is the same as the received
set. If an argument consists of a variable, however, the variable is included in the
variable-argument set, even if it is bound to some value.

As an example of variable-argument sets, consider the unification We—X—f(Y) =
f(Z~a). The recursive unification which results in Y becoming bound to a has as its
variable-argument set {W,Y,Z}. X is not included, since it is not a direct argument to
an invocation of unification.

When unification causes a variable to become bound, it is the variable-argument set
which becomes that variable’s dependency set. Upon unification failure, the variable-

argument set at the point of the failure (possibly within a recursive invocation of
the unification algorithm) is returned, and denotes all variables whose bindings con-
tributed to the failure. This set can be viewed as the dependency set of the failure.

Before backtracking commences after a unification failure, the failure’s dependency
set is traversed. Each variable in the set has its binding node flagged as a backtrack
candidate. (All variables in the set must be bound, else the unification could not have
failed.) The same is done for the binding nodes of any bound variables to which these
variables are bound, and so on recursively. The current node is also flagged. The set
of backtrack candidates thus consists of all nodes at which a binding occurred which
contributed to the failure of the unification, plus the current node, which may have
later OR-siblings.

Backtracking consists of examining proof-tree nodes, from most- to least-recently
succeeded, until a node is found which is flagged. This is the node which is retried.
If no such node exists, there are no more solutions.

When retrying a node results in the exhaustion of clauses for the call, the parent node
of the retried node is flagged and backtracking recommences as above. The flagging
of the parent is necessary, in order that later OR-siblings of the parent may be tried.

A node’s flag is cleared only when the node is retried. Consequently, backtracking
may encounter a node which was flagged by an earlier unification failure than the one
causing the current backtracking. This is necessary, since retrying such nodes could
resolve the earlier unification failure and produce a solution.

The following example illustrates the basic algorithm. Consider the following program
and query:

p(a). (1)
p(l).

q(b,.).
q(-,a).

r(c).
r(d) :- ...

s(b).
?7- p(X), qX,V), r(2), s(¥).
The query has as its first solution X uninstantiated, Y«b, and Z—c. Execution

proceeds as follows (refer to Figure 1). First, p(X) succeeds and produces the binding
X<a at node 1. At node 2, q(X,Y) then fails, due to the conflict X«—a # b. Nodes

4

Figure 1: Deduction tree as call to s(Y) fails in Example 1

1 and 2 are flagged. Backtracking retries node 2, which succeeds with Y«—a. The call
r(X) then succeeds with Z—c. Next, as illustrated in Figure 1, the call s(Y) fails,
due to the conflict Ye—a # b. This causes nodes 2 and 4 to be flagged. Backtracking
fails to find any alternative clauses for s(Y), and so continues, skipping node 3 and
retrying node 2. No further alternatives exist for q(X,Y), and so node 1 is retried.
Forward execution then proceeds without further backtracking, producing a solution
to the query.

3 Improvements

The basic algorithm above can result in non-optimal backtracking in a number of
simple cases. Consider, for example, the following program and query:

p(a,2) :- q(2). (2)
plc,e) =

q(b).
q(a).

?- X=a, p(Y,Y), X=b.

Figure 2 shows the state of the deduction tree when backtracking commences due to
the conflict between X«a and b. Node 3 was involved in earlier backtracking, due
to a conflict between Z«—Y«a and b. As a result, node 2 was flagged as a back-

Figure 2: Deduction tree as backtracking commences in Example 2

track candidate. The current conflict has caused node 1 to be flagged. Backtracking
could logically skip back to node 1, but does not do so because of node 2’s flag. In-
stead, alternatives to the call p(Y,Y) are sought, involving arbitrarily much work and
guaranteed to result in the same conflict as encountered at node 4.

In order to avoid such problems, a different kind of flag is introduced. Rather than
a simple boolean indicator, a node indez is used for flagging proof-tree nodes which
are backtrack candidates.

Each node of the proof tree is assigned a unique node index, with indices monoton-
ically increasing as nodes are generated by forward execution. This monotonicity
applies to nodes generated following backtracking as well; i.e., the first node gen-
erated following backtracking will have an index greater than that of the last node
generated before backtracking, even if the new node replaces one which had a much
lower index.

Upon unification failure, backtrack candidates are flagged with the index of the node
for which the unification was being attempted. This index is referred to as the
backtrack index. Backtracking then involves a search for the most-recently-succeeded
node whose flag value is not less than the backtrack index. Thus, nodes which in the
simpler algorithm would have been flagged and retried may now be skipped because
their flag index is small.

LRI=o0

Figure 3: Deduction tree as backtracking commences in Example 2 (index flags)

Each node maintains a least retry indez. This value is initially infinity, and is updated
when the node is retried: if the backtrack index is less than the node’s least retry
index, the least retry index is set to the value of the backtrack index. Thus, the
least retry index denotes the least backtrack index due to which a node has ever been
retried.

If all clauses are exhausted for a call which is being retried, backtracking continues,
but with the node’s least retry index as the new backtrack index. The backtrack index
can thus decrease, but can never increase during a single backtrack phase (although
forward execution may be followed by new backtracking with a higher backtrack
index). As with the basic algorithm, the parent node of the retried node is flagged,
with the new backtrack index.

Continuing backtracking with a lower backtrack index constitutes the resumption of
some earlier backtracking. However, since the flag values which denote backtrack
points include not only the backtrack index but also any greater values, those nodes
which should be retried due to later backtracking are also found.

Figure 3 shows how the improved algorithm deals with Example 2. Backtracking
skips over node 2 and proceed directly to node 1. This occurs because the flag index
of node 2 is 3 (node 2 was flagged due to a conflict in node 3), whereas the backtrack
index is 4.

LRI=00

Figure 4: Deduction tree as call to s(Y) fails in Example 1 (index flags)

Figure 4 revisits Example 1. Execution proceeds as described earlier. When the call
to s(Y) fails, the flag index of node 1 is 2 (node 1 was flagged when q(X«a,Y) failed
to unify with q(b,_)), and of nodes 2 and 4 is 4 (s(Y«a) fails to unify with s(b)).
Node 3 is not flagged. Backtracking is able to retry node 1 because the backtrack
index changes from 4 to 2 when q(X,Y) is retried for the second time. This change
takes place because the least retry index of q(X,Y) is 2. This example thus illustrates
the need for the least retry index.

There are cases in which the selection of backtrack candidates can be inaccurate, as
a result of the backtrack index decreasing. The following example illustrates this:

p(a). (3)
p(b).

q(c).

r(b,b).
r(a,d).

s(e).
s(c).

t(b).

7- p(X), q(Y), r(X,2), s(Y), t(2).

Figure 5: Deduction tree as call to t(Z) fails in Example 3 (index flags)

The proof tree for this example, as t(Z) fails, is shown in Figure 5. Backtracking at
node 3 has caused node 1 to be flagged with index 3, and node 3’s least retry index
to be set to 3. Backtracking at node 4 has flagged node 2 with index 4, and has set
node 4’s least retry index to 4. The failure of t (Z«d) to unify with t(b) now causes
node 3 to be flagged with index 5. Backtracking at node 3 will find no more clauses
for r(X,2) and will continue backtracking with new backtrack index 3. Since node 2’s
flag is 4, node 2 will be retried, even though it did not contribute in any way to the
cause of the current backtracking.

4 Performance Results

Relative performance results for naive backtracking and backtracking with the basic
and improved algorithms above are presented below. Table 1 shows the number of
stack frames created by the interpreter. One stack frame is created for each call,
and is used for all clauses which are tried for the call. Table 2 shows the number
of variable bindings produced. This includes those bindings which were undone due
to backtracking, as well as the bindings in effect for the solution. Table 3 shows the
number of backtrack checks made. For the naive interpreter, this is the same as the
number of retries done. For the intelligent-backtracking interpreters, this includes
not only the number of retries done but also the number of times it was determined
that a call need not be retried.

The overhead associated with variables’ dependency sets is shown in Table 4. The
largest average size of the dependency sets is 2.45, and the overall maximum size is 3.

9

Flag/ Index/
Problem Naive Flag Index Naive Naive
5 queens 338 322 167 0.953 0.494
6 queens 6,619 6,326 2,487 0.956 0.376
7 queens 5,655 5,339 656 0944 0.116
8 queens 128,606 123,831 20,191 0.963 0.157
map colour (good order) 45 45 45 1.000 1.000
map colour (bad order) | 89,251 16,771 134 0.188 0.0015
Table 1: Stack frames
Flag/ Index/
Problem Naive Flag Index Naive Naive
5 queens 992 896 420 0.903 0.423
6 queens 19,317 17,559 6,206 0.909 0.321
7 queens 18,239 16,343 1,580 0.896 0.087
8 queens 361,786 333,136 45,548 0.921 0.126
map colour (good order) 35 35 35 1.000 1.000
map colour (bad order) | 33,730 9,966 73 0.295 0.0022
Table 2: Bindings
Flag/ Index/
Problem Naive Flag Index Naive Naive
5 queens 428 336 130 0.785 0.304
6 queens 9,347 7,542 2629 0.807 0.281
7 queens 8,713 6,929 594 0.795 0.068
8 queens 172,881 142,993 19,358 0.827 0.112
map colour (good order) 288 268 268 0.931 0.931
map colour (bad order) | 1,070,733 111,185 606 0.104 0.00057

Table 3: Backtracking checks

10

Problem Average Maximum

3 queens 2.26 3

6 queens 2.34 3

7 queens 2.35 3

8 queens 2.45 3
map colour (good order) | 1.37 2
map colour (bad order) 1.18 2

Table 4: Dependency-set size

Chang & Kumar Bruynooghe Dewar & Cleary

Problem Despain & Lin & Pereira binds checks
6 queens 1.000 1.1660 0.651 0.321 0.281
7 queens 1.000 — 0.195 0.087 0.068
8 queens 1.000 — 0.229 0.126 0.112

map colour (good order) | 1.007 0.9636 1.635 1.000 0.931
map colour (bad order) | 0.001 0.0007 0.003 0.002 0.00057

Table 5: Comparison of algorithms: ratio with naive

The problems to which the backtracking algorithms were applied include a simple
generate-and-test n-queens implementation, and a map-colouring problem. Both of
these examples are taken from Bruynooghe and Pereira [1]. In each case, the statistics
are for the first solution generated. The number of queens in the n-queens problem
ranges from five to eight. The map-colouring problem involves a map of thirteen
regions, with a “good” and a “bad” ordering of goals being tried.

The time overhead incurred by the intelligent backtracking algorithms is associated
with unification and backtracking. Typically, these are also the most time-intensive
aspects of a naive interpreter. Tables 2 and 3 thus give some indication of how much
speedup can be expected with intelligent backtracking. The actual speedup will be
somewhat lower than the operation-count ratio might imply, since naive backtracking
need not incur as much overhead for each operation.

A comparison of our results to those of some other approaches is presented in Table 5.
Note that a direct comparison is not possible, as the figures quoted are for different
quantities. Bruynooghe and Pereira compare actual timings, as do Kumar and Lin.
whereas Chang and Despain compare PLM instruction counts [4, 5]. (Kumar and Lir
also compare PLM instruction counts and machine cycles, though those figures are
not reproduced here.) The figures for our algorithm are taken from Tables 2 and 3.

11

5 Discussion

The information associated with variable bindings in our backtracking algorithm is
similar to that of Bruynooghe and Pereira’s approach [1]. However, where they main-
tain a set of proof-tree nodes, we maintain a set of variables. Bruynooghe and Pereira’s
approach can be more efficient when different variables maintain pointers to the same
proof-tree node. We eventually need to compute the same information thev already
store, when backtracking is initiated and nodes are to be flagged. The overhead of
potentially having several variables all refer to the same node can also be eliminated.
Our algorithm could easily be modified to use Bruynooghe and Pereira’s approach.

Our space overhead associated with proof-tree nodes, on the other hand, is less than
that of Bruynooghe and Pereira. Instead of having an entire proof tree (or set of
proof-tree nodes) associated with each node, we have only the overhead of three
pieces of information: the node’s index, its backtrack flag, and its least backtrack
index. However, we pay a penalty of decreased accuracy in some cases, as the result
of keeping less explicit information.

A variable’s dependency set can, in principle, be arbitrarily large. In practice, how-
ever, a size of three or less is most typical. Larger sets occur when unification involves
deep structures containing variables. Thus, our space overhead is minimal for shallow
structures.

Intelligent backtracking yields the greatest improvement for programs in which a large
amount of backtracking is done. Problems such as map colouring, which inherently
require backtracking and which have very shallow data structures, can benefit the
most from our intelligent backtracking algorithm.

A number of alternatives are possible to the approach we have taken to representing
information associated with bindings, with proof-tree nodes and with the cause of
backtracking. Different representations can result in more or less overhead and in
improved or diminished accuracy. These alternatives are the basis for future research.

In conclusion, the intelligent backtracking algorithm we have described provides sig-
nificant performance improvements for some classes of problems. By flagging proof-
tree nodes directly, rather than explicitly associating proof trees with nodes, we
achieve a lower overhead than Bruynooghe and Pereira’s similar approach, though
at some cost in accuracy.

12

6 Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council
of Canada.

References

[1] M. Bruynooghe and L.M. Pereira. Deduction revision by intelligent backtrack-
ing. In J.A. Campbell, editor, Implementations of Prolog, pages 194-215. Ellis
Horwood Limited, 1984.

[2] Jung-Herng Chang and Alvin M. Despain. Semi-intelligent backtracking of prolog
based on static data dependency analysis. In Proceedings of the 1985 Sympo-
sium on Logic Programming, pages 10-21, Boston, Massachusetts, 1985. IEEE
Computer Society.

[3] P.T. Cox. Finding backtrack points for intelligent backtracking. In J.A. Campbell.
editor, Implementations of Prolog, pages 216-233. Ellis Horwood Limited, 1984.

[4] A.M. Despain and Y.N. Patt. The berkeley prolog machine. In Proceedings of the
IEEE Spring CompCon Conference, San Francisco, California, 1985.

[5] T. Dobry, A.M. Despain, and Y.N. Patt. Performance studies of a prolog machine
architecture. In Proceedings of the 12th International Symposium on Computer
Architecture, Boston, Massachusetts, 1985.

[6] Vipin Kumar and Yow-Jian Lin. An intelligent backtracking scheme for prolog.
In Proceedings of the 1987 Symposium on Logic Programming, pages 406-414, San
Francisco, California, 1987. IEEE Computer Society.

[7] Stanislaw Matwin and Tomasz Pietrzykowski. [ntelligent backtracking in plan-
based deduction. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 7(6):682-692, November 1985.

13

