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An optimal attitude estimator is presented for a human body-mounted inertial measurement

unit employing orthogonal triads of gyroscopes, accelerometers and magnetometers.
The estimator continuously fuses gyroscope and accelerometer measurements together in
a manner that minimizes the mean square error in the estimate of the gravity vector, based

on known spectral characteristics for the gyroscope noise and the linear acceleration of
points on the human body. The gyroscope noise is modelled as a white noise process
of power spectral density dn

2/2 while the linear acceleration is modelled as the derivative of a
band-limited white noise process of power spectral density dv

2/2. The estimator is robust to

centripetal acceleration and guaranteed to have zero mean error regardless of the motion of
the sensor. The mean square angular error in attitude is shown to be independent of the
module’s angular velocity and equal to 21/2gx1/2dn

3/2dv
1/2.
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1. INTRODUCTION. The emergence of microelectromechanical systems, or
MEMS, has provided new opportunities in navigation and tracking technology.
The small size and low power consumption of MEMS accelerometers and gyro-
scopes makes their use in human tracking completely feasible. Applications have
evolved to include pedestrian tracking in environments with degraded GPS recep-
tion (Stirling, 2005; Godha, 2006) as well as complete body motion tracking for
medicine in environments where traditional camera-based techniques are impracti-
cal (Mayagoitia, 2002; Biosyn, 2007). The dynamic movements of the human body,
coupled with the noise characteristics of MEMS-based sensors, impose different
requirements on tracking than do inertial navigation techniques on massive ships,
airplanes or vehicles. Solutions which are optimal in the latter case are not, in
general, optimal in the former case.

An important sub-problem in tracking is the sensing of up and down – or attitude.
Earth’s gravity presents an extremely robust signal of the vertical direction, deflecting
only arc seconds in the presence of Earth’s largest mountains (Analytic Sciences,
1974). In MEMS accelerometers, the effect of gravity is detected by observing the
force it exerts on a small test mass. Complicating this is the fact that linear acceler-
ation of the sensing structure also produces a force on the test mass, adding noise to
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the gravity signal and corrupting the measurement of attitude. Thus the best one can
hope for is to gain knowledge of the low-frequency components of attitude through a
filtering operation intended to attenuate the effect of linear acceleration (Luinge,
2004; Bernmark, 2002). Fortunately, by employing gyroscopes, the rate of change of
angular orientation can be measured directly, providing information on the high-
frequency components of attitude. It is reasonable, and has been accomplished in the
past (Foxlin, 1993; Bachman, 2000; Williamson, 2001; Luinge, 2002), to combine the
outputs of accelerometers and gyroscopes to produce an estimate of attitude that is
more accurate than could be produced by either type of sensor alone.

The primary contribution of this manuscript is a signal processing algorithm for
determining attitude from gyroscope and accelerometer measurements in a manner
that is optimal. The algorithm is optimal in the sense that it minimizes the mean-
square estimation error based on physically reasonable assumptions about the
mechanical motion of the inertial measurement unit (IMU) and the noise character-
istics of the MEMS sensors. Although similar estimators have been known to the
literature since at least as early as 1993, the proposed estimator is novel for two
distinct reasons. The first is that it is optimized for linear acceleration modelled as the
derivative of a band limited white noise process ; support for this model is given from
both the theoretical and experimental level. The second reason the filter is novel is
because it is shown to be robust to centripetal accelerations; this important filter
property has been largely ignored in the existing literature. Secondary contributions
include a discussion on how centripetal acceleration leads to bias error in many pre-
vious attitude estimators, and a discussion on how filters operating on Euler angles
can also lead to biased estimates.

Section 2.1 formalizes the problem of inertial/magnetic orientation sensing and
the sub-problem of attitude sensing with gyroscopes and accelerometers. Section
2.2 considers the problem of attitude determination based on the strap-down inte-
gration of rate gyroscopes measurements and shows that the presence of
measurement noise results in a mean-square error that grows at a rate proportional
to the product of the gyroscope noise power spectral density (NPSD) and the
elapsed time. This result echoes the well-established fact that attitude estimation
based on gyroscope measurements alone will always suffer from drift (Foxlin,
1996). Section 2.3 considers the power spectrum of human acceleration and re-
produces the important and well-known result that the average linear acceleration,
expressed in the Earth frame and taken over sufficiently long time periods, tends to
zero. This result is then extended to show that the power spectral density of the
acceleration at zero frequency must be zero. Models of the acceleration as a white
noise process, such as those used in previous attitude estimators (Luinge, 2005), are
therefore inconsistent with this result and not optimal. This section then shows,
based on an energy argument and empirical data, that a more accurate but equally
general model for the power spectrum of human acceleration is the derivative of a
band-limited white noise process. Such a process has the desired trait that its zero-
frequency component is zero and thus the process has, as it should, finite kinetic
energy.

The remainder of Section 2 explores two subtle conditions that have not been fully
appreciated in the literature under which attitude bias error can occur. Section 2.4
illustrates that although linear acceleration has zero mean value in the Earth
frame, when expressed in the sensor frame, linear acceleration has a mean value
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proportional to the sensor’s average centripetal acceleration. Since the accelerometer
measurements are naturally expressed in the sensor frame, one must be careful with
any type of accelerometer filtering, including ‘‘ indirect ’’ Kalman filtering discussed in
Section 4. Section 2.5 then illustrates how filters operating on the angular output of
inclinometers will, in general, lead to bias error when any type of acceleration is
present.

Section 3.1 applies a differential coordinate transformation from the sensor frame
to what we call the gyroscope-estimated Earth frame. We argue that in this frame, the
accelerometer measurements represent the sum of the low-frequency attitude infor-
mation lost in the gyroscope integration procedure and the corrupting linear accel-
eration. The problem of attitude estimation is then cast as one of Wiener filtering,
separating a signal of known statistical characteristics (the low-frequency attitude
information) from noise (the linear acceleration) with equally well known statistics.
The optimal filter in the transformed coordinates is shown to be a second-order
Butterworth filter acting on the transformed scalar accelerometer measurements.
Section 3.3 applies an inverse transformation to recover the optimal estimator oper-
ating on the real measurements taken in the sensor coordinate frame. Section 3.4
evaluates the accuracy of the proposed attitude estimator and presents formulae for
the mean-square estimation error as well as how the power in the estimation error is
distributed over frequency. Section 4 discusses the results in relation to the existing
literature. The manuscript concludes in Section 5.

2. FORMULATION OF THE PROBLEM.
2.1. Estimator architecture. The estimator explored in this manuscript uses

measurements from orthogonal triads of rate gyroscopes, yg, accelerometers, ya, and
magnetometers, ym, to estimate its angular orientation relative to a reference frame
fixed on earth. The gyroscopes measure the angular velocity vector, v, distorted by
random noise, ng, and a slowly changing offset, b :

yg=v+ng+b: (1)

The accelerometers measure the sum of the gravity vector, g, and the linear accel-
eration of the IMU, a :

ya=g+a, (2)

where the gravity vector is defined to point vertically upwards. (The random noise due
to shot effects inside the accelerometers is ignored because in practice it is dwarfed
in magnitude by the linear acceleration.) The magnetometers measure the sum of
Earth’s magnetic field vector, m, a magnetic distortion vector due to nearby ferrous
metal or stray magnetic fields, d, and a random noise component, nm :

ym=m+d+nm: (3)

The estimator’s purpose is to fuse the three vector measurements to extract the
directional information contained in g and m. It is a well-known fact in classical
mechanics that the orientation of a rigid body in space has three degrees of freedom
and thus requires three scalar parameters to fully describe its angular orientation. The
directions of the gravity vector and magnetic field vector provide a total of four
parameters, and thus over-constrain the problem. To eliminate the extra constraint,
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only the angle of the magnetic field vector projected onto the plane normal to the
gravity vector – the heading – is used.

Once the direction of the gravity vector and the heading are known in the sensor
coordinate frame, an orthogonal matrix, R̂, specifying the coordinate system of the
sensor relative to the Earth can be constructed using well-established techniques.
From this matrix, angular information such as Euler angles can be easily extracted.
Refer to (Stirling, 2005) for a graphical explanation of how the directions of the
gravity vector and magnetic north are used to define orientation.

The task of orientation estimation can logically be divided into the sub-problems
of estimating the direction of the gravity vector or attitude, and estimating a scalar
that specifies the heading, as shown in Figure 1. This paper focuses on the former,
leaving the equally challenging problem of the latter to be addressed in future
work. We also proceed assuming that the gyroscope offset estimator shown in the
figure is functioning, leaving out the details on how this can be accomplished in
practice. For brevity, we will drop the subscripts on ya and ng for the remainder of the
paper.

2.2. Noise power spectrum of a gyroscope orientation estimate. An orthogonal
triad of gyroscopes mounted to a rigid structure measures the structure’s angular
velocity vector. In this section, we consider integrating the angular velocity
measurement as the sensor structure rotates to correctly adjust the estimate of the
gravity vector. The basic kinematical law upon which the dynamical equations of
motion for a rigid body are founded states that the rate of change of a vector in a
stationary reference frame is related to its rate of change in a rotating frame by the
operator equation (Goldstein, 1980)

G d

dt

� �
=

S d

dt

� �
+vr (4)

acting on the given vector. The G superscript denotes the stationary ground or Earth
frame and the S superscript denotes the rotating sensor frame. Since the gravity

Figure 1. Orientation estimator architecture. This manuscript addresses the attitude estimator

boxed by the dashed lines.
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vector is static in the ground frame, G(dg/dt)=0. Applying Equation (4) to the gravity
vector furnishes its equation of motion in the rotating sensor frame,

dSg

dt
=xSvrSg: (5)

The gravity vector, as observed from the sensor frame at any later time t, regardless of
the sensor’s motion, follows from the integration of Equation (5) :

Sg(t)=x
Z t

0

Sv(t)rSg(t)dt+Sg(0): (6)

Equation (6) can be implemented easily using analogue or digital means. In
practice, this gyroscope integration technique fails for two distinct reasons. The
first is that the constant of integration, Sg(0), is unknown and thus the estimate
of Sg(t) will be biased. The second reason is that only an estimate of the angular
velocity,

v̂v=v+n, (7)

is available, which contains the true angular rate plus a random variable that rep-
resents measurement noise. As the noise component integrates, it produces an error
that walks randomly on the surface of a sphere.

In the frequency domain, each scalar component of n is assumed to be Gaussian
white noise of power spectral density

Sn(v)=d2
n=2: (8)

Sn(v) is defined for both positive and negative frequencies but is written such that dn
has units of radians per second per root Hertz for positive frequencies only (i.e. dn is
the value commonly quoted in sensor data sheets). (Note the unfortunate notation
where v refers the angular velocity vector while v refers to angular frequency.) It is a
well-known result that integration in the time domain corresponds to division by iv
in the frequency domain, and that power spectral density of a signal is equal to the
square of its magnitude. If we denote the orientation error, DW, as a vector that
specifies a small rotation about each of the coordinate axes, its power spectral den-
sity, for short time periods, becomes:

SDW(v)=
d2
n=2

v2
: (9)

The double pole at zero frequency in Equation (9) indicates that the gyroscope-
estimated coordinate system rotates slowly away from the true coordinate system, as
expected. Using techniques well established in Norbert Wiener’s famous treatise on
time series (Wiener, 1949), one can show that the mean square value of each com-
ponent of the orientation error grows at a rate proportional to the noise power
spectral density of the gyroscopes and the elapsed time:

DWi(t)
2� �
=

d2
nt

2
, to0: (10)

Since only two scalar components of DW contribute to the attitude error, the result-
ing root mean square (RMS) attitude error, DVRMS, again only valid for short
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periods of time, becomes

DVRMS(t)=dn
ffiffi
t

p
, to0: (11)

From a frequency domain perspective, gyroscope integration provides excellent
knowledge of the high frequency part of attitude but lacks the low frequency part –
the error – which has a power spectrum given by Equation (9). As previously out-
lined, we hope to recover the low frequency part from the accelerometer measure-
ments. To proceed further, the power spectrum of human acceleration needs to be
considered.

2.3. The power spectrum of human acceleration. The IMU’s acceleration, as
measured in the ground frame, can be thought of as noise that corrupts the desired
gravity signal. The average acceleration over a time interval T is given by

�aa=
v(o)xv(txT)

T
: (12)

Since the velocity of the IMU can be assumed finite, the average acceleration tends to
zero as the time interval becomes infinitely long:

lim
T!1

�aa= lim
T!1

v(o)xv(txT)

T

� �
=0: (13)

Equation (13) is another way of saying that the zero-frequency component of the
acceleration is zero.

Exactly how long the averaging time needs to be to eliminate a specific portion of
the acceleration is linked to the power spectral density of the sensor’s acceleration. An
approximation to the spectrum can be made by reasoning that a human can generate
kinetic energy equally well over a band-limited frequency interval between zero and
an upper frequency limit of human motor control, vc. Research on human motion
also supports this assumption (Burdea, 1996). Since kinetic energy is proportional to
the square of velocity, the velocity of the sensor can be modelled as band-limited
white noise with power spectral density

Sv(v)=
d2
v=2

1+(v=vc)
2 : (14)

The constant dv is proportional to the standard deviation of the sensor velocity but
can equally well be thought of as a parameter that specifies the intensity of the
motion, or the slosh as per the work of Eric Foxlin (Foxlin, 1996). Finally, since
acceleration is the derivative of velocity, the acceleration has a power spectral density
given by the derivative of a band-limit white noise process,

Sa(v)=
(d2

v=2)v
2

1+(v=vc)
2 : (15)

At frequencies much less than vc, Equation (15) can be approximated as

Sa(v)=(d2
v=2)v

2: (16)

Figure 2 shows the assumed power spectral density of human velocity and acceler-
ation. If we imagine measuring the acceleration with body-mounted accelerometers,
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then these measurements, when expressed in the Earth frame, will contain acceler-
ation signals with spectral characteristics described by Equation (15) added to a
constant vertical gravity vector.

Before deriving the optimum attitude estimator in Section 3, we take a detour for
the remainder of this section to examine two ways that bias can be introduced into
our estimate.

2.4. Bias error from centripetal acceleration. Although the acceleration in the
ground frame averaged over a long enough time tends to zero, this result does not
apply to time averages of acceleration expressed in the sensor frame. Consider an
IMU accelerating and rotating in an arbitrary manner in three-dimensional space.
The sensor-frame acceleration is related to the earth-frame acceleration by
Sa(t)=SRG(t)

Ga(t), where SRG(t) is the orthonormal matrix that represents a coordi-
nate tranformation from the ground to sensor frame. The time average of the sensor-
frame acceleration is (dropping the explicit time dependence)

1

T

Z 0

xT

Sadt=
1

T

Z 0

xT

SRG
Gadt: (17)

The right hand side of Eq. (18) can be expanded using the technique of integration by
parts :

R
SRG

Gadt=
R

SRG
G _vvdt=SRG

Gvx
R

S _RRG
Gvdt. Recognizing S _RRG=xSvrSRG

and Sv=SRG
Gv, one obtains

1

T

Z 0

xT

Sadt=
Sv(0)xSv(xT)

T
+

1

T

Z 0

xT

SvrSvdt: (18)

As the averaging time T tends to infinity, the boundary term vanishes because the
velocity of the sensor must remain finite, as per our discussion in Section 2.3. The
second term represents the centripetal acceleration of the sensor, which in general,
has a non-zero mean value:

Sa= lim
T!1

1

T

Z 0

xT

Sadt= lim
T!1

Sv(0)xSv(xT)

T
+

1

T

Z 0

xT

SvrSvdt

� �
:

=SvrSv

(19)

What this reveals is that any direct averaging of the sensor-mounted accelerometer
outputs will result in a steady-state error when centripetal acceleration is present.
Further implications of this are explored in Section 4.

Figure 2. Simplified velocity and acceleration power spectrum of points on a human body.
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2.5. Filters operating on angles introduce bias. Since an estimate of angular
orientation is ultimately sought, one is tempted to design a filter that operates on
angles. However, in circumstances when the sensor experiences acceleration com-
parable to the acceleration due to gravity, the use of angles may lead to significantly
biased results. Consider the case, as shown in Figure 3, where the sensor is subject to
simple harmonic motion along a 45x inclined plane with peak accelerations of

ffiffiffi
2

p
g.

The mean acceleration of the sensor is of course zero and a suitable low-pass filter
acting on the accelerometer output would attenuate the acceleration leaving behind
an unbiased estimate of the gravity vector. If the angle h were (linearly) filtered
instead, the average angle estimate would clearly be biased towards the large
(apparent) pitch angle near the block’s highest point.

3. OPTIMAL WIENER FILTER FOR ATTITUDE ESTIMATION.
3.1. Optimal fusion of accelerometer and gyroscope measurements to infer attitude

as a problem in Wiener filtering. The strap-down integration procedure outlined
in Section 2.2 results in an angular error with a power spectral density given
by Equation (9), while using all of the information available from the gyroscope
measurements. It is logical to try to recover the missing information from the
accelerometer measurements expressed in the gyroscope-estimated Earth frame.
As we will see, the fusing of angular velocity becomes implicit in the coordinate
transformation with this method. The problem can then be posed as one of Wiener
filtering – separating a signal with known power spectrum from noise with known

Figure 3. Sinusoidal acceleration along an inclined plane. The mean acceleration is zero;

however, the mean pitch angle found by averaging the apparent pitch angle is not equal to the

pitch of the inclined plane.
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power spectrum. To begin, we envision a transformation from the sensor frame,
where the measurements are available, into the gyroscope-estimated Earth frame via
the differential transformation Equation (4). To continue, we need to make two
subtle simplifications in order to formulate the Wiener filtering problem. The first
is to notice that the error in the gyroscope’s gravity vector estimate via Equation (9) is
in the form of an angle, constraining the vector to a random walk along the surface
of a sphere. Instead, we must express this error as a random vector added to the tip
of the gravity vector, thereby allowing it to walk randomly in three-dimensional
space. The length of this random vector is chosen such that its projection onto the
sphere is equal to the radius over which the gravity vector could have moved along
the sphere’s surface. The gravity vector, expressed in the gyroscope-estimated Earth
frame, can thus be considered composed of three scalar components each with power
spectral density given by

Sg(v)=g2
d2
n=2

v2
(20)

where g is the magnitude of the gravity vector. This simplification is of little conse-
quence as small changes to the radial component of the estimated gravity vector have
negligible effect on the estimation of attitude.

The second simplification involves assuming that the acceleration spectrum in the
ground frame is equal to the acceleration spectrum in the equivalent frame estimated
by the gyroscopes. Because the two frames differ only by a slow drift, only the very
low-frequency components of the acceleration are affected by this simplification.
Since the low-frequency components of the acceleration in the Earth frame
have vanishing magnitude, this assumption also has negligible effect on the attitude
estimate.

With these two assumptions, accelerometer measurements expressed in the
gyroscope-estimated ground frame, Sag(v), contain the desired signal. Sg(v), as well
as the corrupting acceleration noise, Sa(v),

Sag(v)=g2
(d2

n=2)

v2
+

(d2
v=2)v

2

1+(v=vc)
2 =

d2
vv

2
cv

4+g2d2
nv

2+g2d2
nv

2
c

2v2(v2+v2
c)

2

=
d2
vv

2
c

2

Q3
n=0 (vxzn)Q3
m=0 (vxpm)

:

(21)

From the work of Norbert Wiener1 (Wiener, 1949) we know that the optimum filter
for separating the desired signal, Sg(v), from the noise, Sa(v), is given by the solution
to the Wiener-Hopf equation for the problem.

H(v)=
1

S+
ag(v)

causal part of
Sg(v)

Sx
ag(v)

" #
(22)

where Sag
+(v) is the part of Sag(v) that has all its poles and zeros in the upper half

plane (and hence corresponds to the causal part of Sag(v)), and Sag
x(v) is the part of

1 Because the autocorrelation functions of Sa(v) or Sg(v) do not exist, this case is not strictly covered by

the theory of Wiener filtering. However, both Sa(v) or Sg(v) can be considered limiting cases of processes

that do possess autocorrelation functions. The former can be considered the output of a first order low pass

filter of vanishing cutoff frequency suject to a white noise input, while, to the later, one can add poles at a

frequency far greater than those that are important to the problem.
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Sag(v) that has all its poles and zeros in the lower half plane (and hence corresponds
to the anti causal part of Sag(v)).

The optimum filter,H(v), can be found by first splitting Sag(v) into causal and anti
causal factors. Because the numerator of Sag(v) is quadratic in v2, it can be written as

d2
vv

2
c

2
v2xZa

� 	
v2xZb

� 	
(23)

Using the quadratic formula, one then obtains zeros of v2 at

Z=x
g2d2

n

2d2
vv

2
c

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4d4

n

4d4
vv

4
c

x
g2d2

n

d2
v

s
(24)

With the definitions

vg=

ffiffiffiffiffiffiffi
gdn
dv

s
and Dv2

g=
g2d2

n

2d2
vv

2
c

=
v4

g

2v2
c

(25)

and making the assumption that vc>vg=
ffiffiffi
2

p
, Equation (24) can be written as

Za=Z*
b=xDv2

g+i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4

gxDv4
g

q
=v2

ge
+i p=2+Dwð Þ (26)

where

Dw= arcsin
Dv2

g

v2
g

 !
(27)

The zeroes of v follow easily by taking the square root of the polar form of
Equation (26) defining Z0 and Z1 to be causal zeros :

zn=
vge

i(2n+1)p=4eiDw=2, n=0, 2
vge

i(2n+1)p=4exiDw=2, n=1, 3

�
: (28)

The poles of Sag(v) include a double pole at the origin and symmetric poles at tivc :

pm=
0, m=0, 2
x1ð Þ

mx1
2 ivc, m=1, 3

�
(29)

Splitting Sag(v) into causal and anti causal factors yields

Sag(v)=
d2
vv

2
c

2

(vxz0)(vxz1)

v(vxp1)

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S+
ag(v)

(vxz2)(vxz3)

v(vxp3)

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sx
ag(v)

(30)

Dividing the power spectrum of the signal by the anti causal part of Sag(v) yields

Sg(v)

Sx
ag(v)

=
g2d2

n

2v2

v(vxp3)

(vxz1)(vxz3)

=x
g2d2

np3=z2z3
2v|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

causal part

+
g2d2

n(z2xp3)=z2(z2xz3)

2(vxz1)
+

g2d2
n(z3xp3)=z3(z3xz2)

2(vxz3)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
anticausal part

(31)
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where the pole at the origin is taken, without consequence, to be causal. Applying
Equation (22) gives

H(v)=
2

d2
vv

2
c

v(vxp1)

(vxz0)(vxz1)

 !
x

g2d2
np3=z2z3
2v

� �
(32)

which after simplification yields

H(v)=
v2

g(1+iv=vc)

xv2+
ffiffiffi
2

p
vg cos Dw2 + sin Dw

2

� �
iv+v2

g

(33)

In practice, however, vg=|zn| is much smaller than vc and thus the zero takes effect at
frequencies where the gain of the filter is extremely small. If we ignore this zero by
allowing the ratio vc/vg to tend to infinity then

H(v) �
v2

g

xv2+
ffiffiffi
2

p
vgiv+v2

g

, (34)

which is a second-order filter bearing the name of Stephen Butterworth who de-
scribed its properties in a paper published in 1930 (Butterworth, 1930). The
Butterworth filter is optimally flat in the pass band, which has a certain intuitive
appeal. What optimally flat means is that the rate of change of the filter gain with
frequency is as small as possible near v=0. For the present problem, we can take this
to mean that the filter passes as completely as possible the desired gravity vector
signal (centred around v=0), and then falls off at 40 decibels per decade to attenuate
the corrupting noise from the linear acceleration. The filter break point represents the
optimal balance between losing too much of the desired gravity information and
picking up too much of the corrupting linear acceleration.

3.2. The optimal Wiener filter expressed in the sensor coordinate frame. In the
previous section, we used Equation (4) to transform to a coordinate system where the
problem of attitude estimation could be formulated as one of Wiener filtering. Now
that the optimal filter is known, we wish to transform this filter back to the sensor
coordinate system where it can be applied directly to the gyroscope and accelerometer
measurements. To do so, we apply the inverse transformation

S d

dt

� �
=

G d

dt

� �
xv̂vr (35)

to our expression for the optimal filter in the time domain. The optimal Wiener filter
implicit in Equation (34) can be cast into the Laplace domain by making the substi-
tution ivps, where s is the Laplace variable. In the Earth frame, the filter acts on
(the scalar components of) the accelerometer measurement vector to produce the
gravity vector estimate:

H(s)y(s)=ĝg(s) (36)

where g(s) and y(s) represent the Laplace transforms of the corresponding signals in
the time domain. Rearranging Eq. (36) yields

(s2+
ffiffiffi
2

p
vgs+v2

g)ĝg(s)=vg
2y(s) (37)
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from which the time domain filter equations can be written directly as

1

v2
g

d 2ĝg

dt2
+

ffiffiffi
2

p

vg

dĝg

dt
+ĝg=y

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{gyroscope-estimated ground frame

: (38)

Inverse transformation by Eq. (35) produces the desired filter :
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v2
g

d 2ĝg

dt2
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ffiffiffi
2

p

vg

dĝg

dt
+ĝg=yx

2

v2
g

v̂vr
dĝg

dt
x

1

v2
g

dv̂v

dt
rĝgx

1

v2
g

v̂vrv̂vrĝgx

ffiffiffi
2

p

vg
v̂vrĝg

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{sensor frame

: (39)

To implement this filter, it is convenient to express it as two first-order vector differ-
ential equations. It is easy to show that Equation (39) can be decomposed into

dĝg1
dt

=
vgffiffiffi
2

p (2yxĝg1xĝg)xv̂vrĝg1

dĝg

dt
=

vgffiffiffi
2

p (ĝg1xĝg)xv̂vrĝg

(40)

where ĝ1 is an intermediate estimate of the gravity vector and ĝ is the desired optimal
estimate. The flow diagram for the computation implicit in Equation (40) is shown in
Figure 4.

3.3. Estimator accuracy. The filter transformation possible via Equation (4) is
also useful because it allows us to analyze estimator performance in the ground frame
where the estimator equations are simple second-order filters acting on the scalar
components of the transformed accelerometer output. The first interesting obser-
vation is that v̂v is absent from Equation (38) ; in fact, the only property of the gyro-
scopes that affects the filter accuracy is the noise power spectral density on the choice
of estimator pole locations. This means that the performance of the attitude estimator
is not affected by the angular velocity of the sensor2.

Figure 4. Flow diagram for the optimal Wiener filter in the sensor coordinate frame for attitude

estimation based on the fusion of gyroscope and accelerometer measurements. The constant

A=2x1/2vg.

2 This assumes that the angular velocity estimates, except for the white noise corruption, are otherwise

perfect. Specifically, it assumes that the gyroscope gain error is zero, that the gyroscope are not sensitive to

linear acceleration, and that the gyroscope signals do not saturate for use outside their operating range. In

practice, the performance does deteriorate slightly with increases in angular velocity.
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The accuracy of the estimator can be determined by considering the power spectral
density of the estimate error. The error spectrum (Simon, 2006) for the scalar com-
ponents of the gravity vector is given by

SDg(v)=[1xH(v)][1xH(xv)]Sg(v)+H(v)H(xv)Sa(v): (41)

This quantity can be thought of as the sum of the signal power (gravity vector) that
is rejected by the filter and the noise power (linear acceleration) that is accepted by
the filter. Using Equations (9), (22) and (41), the error spectrum becomes

SDg(v)=gdndv
1+(v=vg)

2

1+(v=vg)
4


 �
, (42)

which is plotted in Figure 5. The spectrum has a power density of gdndv at zero

frequency, a peak value of 1
2 (1+

ffiffiffi
2

p
)gdndv at v=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
x1

p
vg and falls off to zero

at 20 dB/decade at higher frequencies. Most of the error is therefore concentrated
at frequencies between zero and a few times vg, allowing clean estimates of deriva-
tives to be made. This is advantageous to camera-based motion capture techniques
where the angular error – arising from positional error in marker localization – is
more or less equi-distributed over frequency, resulting in noisy first and second
derivatives.

The mean square estimation error is found by integrating the error spectrum over
all frequencies,

Dg2
� �

=
1

2p

Z 1

x1
SDg(v)dv: (43)

Making the substitution x=v/vg and dv=vgdx we get

Dg2
� �

=
gdndvvg

2p

Z 1

x1

1+x2

1+x4
dx: (44)

The definite integral can be evaluated using residue theoryZ 1

x1

1+x2

1+x4
dx=

ffiffiffi
2

p
p (45)

frequency

N
PS

D

Figure 5. Noise power spectral density of gravity vector estimate for positive frequencies.
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and the mean square error of the scalar components becomes

Dg2
� �

=
1ffiffiffi
2

p gdndvvg=
1ffiffiffi
2

p g3=2d3=2
n d1=2

v : (46)

In practice, the gyroscope noise can be assumed constant whereas the noise caused by
linear acceleration corrupting the gravity signal depends strongly on the motion of
the sensor. The mean square estimation error can be determined again using
Equation (41), however, this time the acceleration power spectrum is scaled by the
positive quantity a2=(dvk/dv)2

Sa(v)=
a2d2

vv
2

2
: (47)

After some simplification, the mean square error, now a function of the parameter a,
works out to

Dg2
� �

=
gdndvvg

4p

Z 1

x1

2+(1+a2)x2

1+x4
dx: (48)

The integral can again be evaluated using residue theory resulting in a mean square
error of

Dg2
� �

=
3+a2

4
ffiffiffi
2

p
� �

gdndvvg=
3+a2

4
ffiffiffi
2

p
� �

g3=2d3=2
n d1=2

v (49)

If we assume that the error in the scalar components of the gravity vector estimate are
small compared to g, then the error in attitude can be approximated as

DV2
� �

� Dg?
2

(g+Dgk)
2 �

2Dg2

g2
=

3+a2

2
ffiffiffi
2

p
� �

d3=2
n d1=2

v

g1=2
, (50)

which is plotted in Figure 6.
We conclude this section by considering the root mean-square error for an attitude

sensor that we have built using off-the-shelf components, and assuming slosh levels

Figure 6. Mean square attitude error at various slosh levels for a filter optimized for slosh at the

fixed level dv (solid) and for a filter optimized at the arbitrary slosh level dvk (dashed).
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that correspond to vigorous human motion such as running with an IMU attached to
the ankle. The results are presented in Table 1 and reveal that even under conditions
of high linear acceleration, the achievable accuracy is better than 1x and likely suit-
able for most purposes.

4. DISCUSSION.
4.1. Estimator architecture. The orientation sensor presented in Figure 1 divides

the problem into the three natural sub-problems of estimating attitude, heading, and
gyroscope offsets. Such a division makes understanding the inner workings of the
filter easier without degrading filter performance. For instance, the heading estimate
does not provide any additional information to help solve the attitude estimation
problem beyond what was implicitly used to estimate the gyroscope offsets.

4.2. Linear acceleration power spectrum for human motion. Noise is often the
result of random thermal motions of charge carriers in the electronic sensor chips.
The energy associated with this random motion is commonly equi-distributed in
frequency and manifests itself as a random voltage with a certain RMS amplitude per
root Hertz. In the attitude estimation problem, the electrical noise on the acceler-
ometer outputs is dominated by the ‘‘noise ’’ caused by the mechanical motion of the
sensor. We argued that, to a first approximation, a human tends to generate kinetic
energy equi-distributed over a band-limited range of frequencies. From this, it was
shown that velocity can then be modelled as a band-limited white noise process and
linear acceleration as the derivative of such a process. In previous works, (for in-
stance: Luinge, 2005; Yun, 2005), the acceleration is modelled directly as a white
noise process, implying unrealistically that the root mean square velocity of the IMU
was infinite.

It is worthwhile to consider the accuracy of a filter designed for linear acceleration
with a white spectrum when subject to the more realistic spectrum proposed in this
manuscript. Such a filter isHk(v)=vgk/(iv+vgk). With the proposed optimal second-
order filter, H(v), the mean square error of the gravity vector components, nDg2m,
was shown to be proportional to gdndvvg. With the first-order filter, Hk(v), and
setting vgk=vg, one can easily show that the mean square error will instead be pro-
portional to gdndvvc, where vc is the frequency limit of human motion. The first
order filter will thus produce a mean square error that is larger by a factor pro-
portional to vc/vg. As Table 1 showed, vg will often be on the order of 10x1 rad/s,
whereas the frequency limit of human motion (vc) is on the order of 101 rad/s such
that vc/vgB100. Note, that the first-order filter can be optimized with a significantly
smaller cut-off frequency than the one previously assumed. Using the optimal cut-off
frequency, the mean square error for the first-order filter will be larger by the reduced
factor of (vc/vg)

1/3. In practice one cannot achieve this performance because it

Table 1. Maximum achievable performance of typical MEMS attitude sensors.

dn
(�=s=

ffiffiffiffi
H

p
z)

dv
(m=s=

ffiffiffiffi
H

p
z)

1/vg

(s)

DVRMS

(x)

DVRMS

(dvk=0.5dv) (x)

DVRMS

(dvk=2dv) (x)

0.10 1.0 7.6 0.33 0.30 0.44

0.10 2.0 10.8 0.39 0.35 0.52

0.20 1.0 5.4 0.55 0.50 0.73

0.20 2.0 7.6 0.66 0.59 0.87
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requires a cut-off frequency so low that un-modelled drift in the gyroscope offsets
become the dominant source of error. We thus expect considerably larger mean
square errors with a filter optimized for acceleration with a white power spectrum.

4.3. Bias error from centripetal acceleration. In Section 2.4 we showed that the
mean value of linear acceleration, when expressed in the sensor coordinate frame, is
non-zero and depends on the centripetal acceleration of the sensor. This is an im-
portant result because it can be used to clarify some confusion in the literature re-
garding the role of accelerometers. The accelerometer measurements, expressed in the
earth frame, indeed do provide low-frequency orientation information. The mea-
surements contain the sum of the gravity signal plus the zero-mean linear acceler-
ation. However, since the actual accelerometer measurements are made in the sensor
frame, the mean value is shifted by an amount equal to the centripetal acceleration.
Any averaging of the accelerometers then permanently fuses the gravity vector data
(attitude) with the mean centripetal acceleration, causing uncorrectable bias error.
The statement that when ‘‘averaged for a sufficiently long period, the output of an
accelerometer triad can be used to measure the components of the gravity vector ’’
(Bachmann, 2003), or that the accelerometers provide a good mean value (Vanagay,
1993) must be used with care.

Filtering of the accelerometer outputs, or values derived from their outputs, is
effectively an averaging operation. Such an operation will therefore cause bias error
in the mean estimate of the gravity vector by an amount that depends on the level of
centripetal acceleration and the strength of the filter employed. The result has im-
plications to what have become known as indirect filters (Setoodah, 2004; Luinge,
2005). The indirect Kalman filter operates on only the difference between the output
of an inclinometer and a gyroscope-based attitude sensor. The point is that when
centripetal acceleration is present, the mean value of the inclinometer will in general
contain bias error and thus the output of the Kalman filter will likewise contain bias
error. Only a filter operating directly and continuously on the accelerometers and
gyroscopes can hope to remove centripetal acceleration in all cases.

Many indirect formulations have been discussed in the literature. Setoodah
(Setoodah, 2004) argues that the indirect filtering approach ‘‘has a superior per-
formance from the viewpoint of computational complexity. ’’ In (Yun, 2003; 2005),
the investigators use a quaternion-based Kalman filter that fuses an accelerometer-
estimated orientation with a gyroscope-estimated orientation. The author is not
aware of any analysis done that includes the filter’s robustness to centripetal accel-
eration. Earlier work (Foxlin, 1996) recommended that the drift from angular
velocity integration only be corrected with accelerometers ‘‘during low acceleration
periods ’’ because of the problem of linear acceleration folding into the inclination
estimate and causing bias error. However, we have shown that by fusing the gyro-
scope and accelerometer information in the method proposed in this manuscript, the
filter will perform well and always extract useful information from the accelerometers
regardless of the intensity of the motion.

4.4. Filter accuracy. An important result of this manuscript is an analytic
description of the accuracy that can be achieved through accelerometer/gyroscope
attitude measurements. Table 1 shows that with off-the-shelf electronics, the
estimation error can quite easily be kept below 1 degree even during vigorous human
motion. This makes one question the use of more advanced techniques such as co-
variance estimation through wavelet decomposition (Seetodah, 2004). Our experience
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with this type of sensor is that a significant source of error is due to many subtle but
predictable effects. These include non-orthogonality of the sensing elements, non-
collocation of the accelerometer axes, non-simultaneous sampling of the individual
sensing elements, and bias drift on the accelerometer outputs. Except for the last,
each of these effects can be calibrated for and completely removed. The last effect
can be significantly reduced by using accelerometers with small bias drift and good
temperature stability.

5. CONCLUSION. This manuscript presented an optimal attitude estimator
for a human body-mounted inertial measurement unit employing orthogonal triads
of gyroscopes, accelerometers and magnetometers. It also presented formulae
that describe the spectrum and root mean square value of the estimation error.
From a historical perspective, the proposed attitude estimator is an extension
of Wiener optimal filtering applied to inertial attitude sensing. A differential coordi-
nate transformation was found that cast the problem of optimal attitude estimation
through multi-sensory fusion as the solution to three non-coupled Wiener-Hopf
equations. It was shown that linear filtering of the accelerometer measurements
in the transformed coordinates eliminated bias error from centripetal acceleration,
representing a new contribution to the literature. The two pieces of statistical infor-
mation (human acceleration power spectrum and gyroscope noise characteristics)
needed to apply Wiener filtering were defined. During this process, it was observed
that, in a very general sense, the kinetic energy of the inertial measurement unit
should be considered a band limited white noise process. The corollary of this is
that the power spectrum of the linear acceleration should be modelled as the deriva-
tive of such a process, also representing a new contribution to the literature. The
Wiener filtering problem was then solved to obtain the frequency domain represen-
tation for the optimal filter operating on the transformed accelerometer output. The
optimal filter was shown to be second order – a consequence of modelling the accel-
eration as the derivative of a white noise process. The inverse Laplace transform
was then used to determine the estimator’s time-domain equations. Finally, the in-
verse differential coordinate transformation was employed to obtain the optimal
multi-sensory fusion algorithm that can be directly applied to the accelerometer and
gyroscope measurements. The accuracy of the proposed filter was then explored
using conventional techniques. It was shown that root mean square attitude errors
less than 1x were obtainable during conditions of vigorous human activity using off-
the-shelf MEMS gyroscopes.

This manuscript did not discuss how the heading can best be inferred, nor how the
gyroscope offset can be continually estimated. The former is a much more difficult
problem than the latter, due to the distortion caused by nearby stray magnetic fields.
Investigators (Roetenberg, 2006; 2007) have attacked this problem using a Kalman
filter that estimates the ‘‘quality ’’ of the magnetic field and then adjusts the blending
between gyroscope and magnetometer to rely heavily on the gyroscopes when the
magnetic field is judged to contain significant distortion. The limitation of this tech-
nique is that it is not useful for correcting static distortions of the magnetic field. In
order for it to work effectively, the Kalman gain-weighted average of the magnetic
field direction must be correct and the duration of the distortions must be sufficiently
short such that the compounded error due to the integration of gyroscope noise does
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not become significant. If the IMU moves permanently into an area where the
magnetic field is twisted, the heading error will eventually become equal to the
magnitude of the twist. The problem of magnetic distortion will undoubtedly be an
area of future endeavour for inertial/magnetic tracking technology.
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