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ABSTRACT 

Local buckling behaviour of an elastic ring confined within a rigid boundary was 

investigated both theoretically and experimentally. The study involved considerations 

of material properties, dimensions, geometric imperfection, and the friction effect at the 

interface. 

The study started by using the dimensional analysis method to develop a fundamen-

tal relationship of the critical buckling compression stress with the elastic modulus, di-

mensions and the initial deflection. Then two discrete models were developed. One 

model was developed under the frictionless assumption and another was developed by 

taking the friction into consideration. Following this, an experimental apparatus was 

developed and a large scale tests were carried out. Finally, a finite element model was 

established and ANSYS 4.4 was used to carry out the calculations. 

The results indicated: 

(1) The Critical buckling load is proportional to the elastic modulus of materials. 

(2) The initial deflection 5, which may be caused by geometric imperfection of the 

boundary, or external disturbance, or combination of geometric imperfection and ex-

ternal disturbance, makes the ring buckle. When ö=O, there is no critical load in the 

elastic region. 

(3) Friction at the interface increases the stability of the ring. The larger the friction, 

the larger the critical load. The larger the friction, the more difficult for the ring to slide 

along the boundary. 

(4) Local plastic deformation which occurs in the lift out region of the ring has a 



negative effect on the critical buckling load. The larger the local plastic deformation, 

the lower the critical buckling load becomes. 

(5) In the elastic region, the critical load is proportional to the two dimensional var-

iables: the ratio of the thickness of the ring to the radius of the rigid boundary, (.) and 

the ratio of the thickness of the ring to the height of a point imperfection on the rigid 

boundary, (-h). 

(iv) 
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NOMENCLATURE 

A cross-section area of a ring 

B width of a ring 

C coefficient of the buckling function 

Ca coefficient of frictionless discrete element model 

Cf friction effect coefficient 

D diameter if a ring 

E elastic modulus of material 

Ff friction resistance force 

H height for friction measurement 

I moment of cross-section inertia of a ring 

L length for friction measurement 

total specimen length for modulus measurement 

M bending moment 

P compression force 

1'cr critical compression force 

R reaction force 

U energy 

W weight 

b,d undetermined exponents of buckling function 

k spring constant 

1 specimen gauge length for modulus measurement or link length 



q compression pressure 

qc critical compression pressure 

r radius of a ring or a boundary 

s acre length 

t thickness of a ring 

a half center angle of lifted portion of a ring 

6 initial deflection or height of imperfection 

p. friction coefficient 

friction angle 

axial stress 

cr critical axial stress 
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Chapter 1 

INTRODUCTION 

1.1 Problem 

A common type of design used in many mechanical applications is that of sleeving 

the inside of cylinders, pumps, or other types of pressure components or storage con-

tainers. The application may be in order to improve acoustic, electrical or thermal in-

sulation, to prevent leakage, corrosion or mechanical damage. In addition, the 

installation of a liner is often used for repairing components. The process involves ma-

chining a thin cylindrical shell and forcing it to contract by the use of cold temperature 

application and inserting the contracted shell into a pre-machined cylinder or casing. 

Once the two components have equalized in temperature a presure is set up at the inter-

face due to the designed mismatch. This combined with the effect of friction, mechan-

ically fixes the sleeve to the outer support cylinder. 

In practice, failure of interference fits often occurs as a result of local buckling and 

separation of the cylinders in contact. This problem has become of increasing concern 

in view of its safety and economic implications. For some pressure components where 

these interference shrink liners are utilized, equipment costs can be in excess of one mil-

lion dollars. Therefore the repair of a unit using a liner becomes extremely significant 

in terms of economic considerations. However, despite the fact that the stresses gener-

ated by various interference fits can be accurately determined by calculations, to date, 
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K 
(a) Before buckling 

(b) After buckling 

Figure 1.1 A Ring Confined within a Rigid Boundary 
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little information is available that can be used to predict the critical buckling conditions 

of interference fits. The design procedures currently employed by manufacturers such 

as Peacock Inc. and Fluor Canada rely on the experience accumulated from various trial 

and error experiments which can not provide a general solution especially when new 

materials or different dimensions are considered in the design. 

This problem can simplified as a ring surrounded by a rigid circular surface as 

shown in Figure 1.1. A hoop compression stress of the ring is created by themal expan-

sion, shrink-fitting, etc. When the value of the compression hoop stress reaches some 

critical point, the ring will suddenly lift off the rigid boundary and buckle inward as 

shown in Figure 1.1 (b). This problem has some characteristics which differ from ordi-

nary buckling problems in that, (1) it is an one-way buckling problem since the rigid 

boundary prevents outward displacement of the ring; (2) before and after buckling, the 

load conditions are largely different from each other. Before buckling occurs, there is 

a constant pressure at the interface between the ring and the rigid boundary. But after 

buckling occurs, a portion of the ring lifts off the rigid boundary and the pressure be-

tween the ring and the rigid boundary at this portion will vanish. 

1.2 Existing Industrial Rules of Thumb for Critical Buckling Pressure 

Although the analytical solution for buckling of thin rings due to an externally ap-

plied pressure does exist, there is not an analytical solution for buckling of thin rings 

shrunk in the inside of tubes. However, industrial rules of thumb are available. These 

rules are based on trial and error results from shop work, and have evolvedinto an ac-

cepted industry practice. A calculation using buckling versus non-buckling conditions 
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from industrial experience shows that buckling occurs at a factor of 3.5 times that pre-

dicted from external pressure on thin rings, while no buckling condition occurs at a fac-

tor of 3.0 [56]. This means when q:5 3.0 x q the inner ring will not buckle and when 

q ≥ 3.5 x q the inner ring will likely buckle, where q is a radial compression pressure 

for the shrunk ring and qc is the critical radial compression pressure for the free ring. 

1.3 Objective and Outline of This Work 

The purpose of this study is to develop a general relationship that describes the crit-

ical buckling conditions for various materials, dimensions, degrees of interference fits 

and imperfections or external disturbance. Meeting this objective should allow design-

ers of these components to accurately predict the conditions at which buckling or insta-

bility occurs. 

In this study the literature review was first conducted to become familiar with the 

current research situation on this problem. Then an initial experiment was carried out 

to obtain some first hand information. Upon this information, an experimental appara-

tus was designed and manufactured. By use of the principles of the dimensional anal-

ysis method, an approximate relationship between the critical buckling force and the 

geometric parameters and material properties was derived with some undetermined co-

efficients. Under the guidelines of this fundamental relationship, a large scale test was 

conducted and the undetermined coefficients were derived by experimental data fitting. 

Thereafter, two discrete element models were established. One is the frictionless model 

and another is the friction model. Finally a finite-element model was established and a 

finite-element software package, ANSYS 4.4 was used to carry out the calculations. 
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1.4 Major Contributions of the Study 

(1) Successfully introduce the dimensional analysis method to establish the funda-

mental relationship between the geometric parameters and material properties. 

(2) Design and conduct large scale experiments on various of materials and dimen-

sions. 

(3) Take the friction factor into consideration quantitatively in this problem. 

(4) Discrete models simplify the analysis. 

(5) Finite-element model makes simulation on various and real situations possible 

and provides verification of other' results. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

It is well known that thin-wall shells exhibit very favorable strength to weight ratios. 

Thus it is not surprising that they play an important role in modern engineering design, 

especially when it comes to weight sensitive applications, such as in the aerospace and 

related fields. However, thin shell structures are often prone to buckling instabilities. 

In the last few decades, due to the rapid development in many fields in which light struc-

tures and new materials have been utilized, numerous technical papers and books deal-

ing with the subject of shell stability have been published. Good reviews on the subject 

can be found in [1-3, 44-46]. 

At the beginning of the 1960's, another kind of shell stability problem came to the 

attention of scientists and engineers. This problem was concerned with the buckling be-

haviour of a cylindrical shell confined in a rigid or elastic circumferential boundary. In 

many applications a protective lining or coating is inserted into the interior of a cavity 

or cylindrical structure. Such a situation may occur, for instance, in pipes, vessels, tun-

nels, etc. For a long cylindrical shell with free end boundary conditions, this problem 

can be simplified as a thin elastic ring confined within a rigid boundary. Because the 

rigid boundary prevents outward displacement, this problem is also known as a "one-

way" buckling problem. A number of investigations were carried out to study the buck-
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ling of a cylindrical shell or circular ring with one-side connection with a surrounding 

elastic or absolutely rigid outside boundary. Experimental works were also conducted 

by some investigators. The following is a brief review of theoretical analysis and ex-

perimental results for one way buckling which appear in the literature. 

2.2 Theoretical Analysis 

A solution to the problem of buckling of a ring within a rigid surrounding was first 

proposed by Lo, Bogdanoff, Goldberg and Crawford in 1962 (4). They considered a 

complete circular ring surrounded by a rigid circular surface which prevented any out-

ward radial displacements. When the ring is subjected to a temperature increase or an 

end compression load, the induced hoop stress may cause the ring to buckle inward in 

a snap-through process. 

In order to conduct a theoretical analysis for the problem, there are some basic as-

sumptions: (1) The buckled configuration is single-wave as shown in Figure 2.1. That 

is the configuration consists of two regions, the detached region, where the ring sepa-

rates from the boundary wall; the attached region, where the ring keeps contact with the 

outside wall and has a constant curvature. (2) Buckled configuration is symmetric to one 

diameter of the ring. (3) The ring remains elastic and obeys Hooke's law all through 

the buckling process, which means that non-linearity of the stress-strain curve of the 

materials and possible plastic deformation in buckling process are not considered in the 

theoretical studies. (4) There is no friction resistance at the interface of the ring and the 

rigid boundary. 
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The solution to this reference [4] is as follows. In order to obtain the buckled con-

figuration of the ring, the post-buckling analysis was conducted. As shown in Figure 

2. 1, in its equilibrium configuration, the buckled ring may be separated into two parts: 

the buckled part C'D' and the unbuckled A 'C' and BD'. The buckled part of the ring 

is free of the support except at the two end points C' and D'. At these end points, the 

ring is tangent to the circular surface and has the same curvature (llr) as the circular sur-

face. Since there is no vertical load, equilibrium of the buckled portion CD' is main-

tained by two horizontal forces N as shown in Figure 2.2. 

To determine the buckled shape of part C'D', a coordinate system O1XY is chosen 

as shown in Figure 2.2. The arc length s along the buckled part of the ring is measured 

from the point 02 The angle 0 is defined by the following relations: 

The equation of bending is 

dx 
- = Cos  
ds 

dy 
- = sinG 
ds 

EI(ç) =Ny 

(2.1) 

(2.2) 

where E is the Young's modulus and I is the moment of inertia of cross section of the 

ring. 

The boundary conditions are 

at 02 s = 0 and 0 = 0 (2.3a) 
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1 AB 

Figure 2.1 Buckled Configuration of a Ring 

Confined within a Rigid Boundary 
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at D' s = s and 0 = Dt (2.3b) 

where 2s* is the total arc length of the buckled part C'D' of the ring. 

After some mathematical manipulations, equations defining the shape of the buck-

led part C'D' of the ring are obtained as, 

5 * 1 
- = —F k) 
rJ 

x_ 1 
[2Efl,k) —F(,k)J 

Y - 2k (cosJ3cosf3*) 

(2.4) 

(2.5) 

(2.6) 

where F(b, k) and E(b, k) are the elliptic integrals of the first and second kind respectively 

sin (0/2) 
sin = sin (0/2) 

(2.7) 

k = sin (0 M /2) (2.8) 

= Nr/EI (2.9) 

Three constant parameters N, k, and P * are related to one another by the following 

conditions. The first condition is that the curvature of the buckled part of the ring should 

be equal to the curvature of the unbuckled part at the point D'. That is 

= _2kcos3* (2.10) 
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Figure 2.2 Coordinate system 
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The second condition is that the coordinate x of the buckled part of the ring should be 

equal to the coordinate x of the unbuckled part at point D'. 

2E (13*,k) —F (13*k) = tanf3*jl _k2 sin2 [3* (2.11) 

If one of the three parameters, N , f3 and k, is given, the other two can be deter-

mined from Equations (2.10) and (2.11), and then the buckled shape is completely de-

fined by Equations (2.5) and (2.6). 

To determine the critical end compression load 1'cr or the critical temperature incre-

ment (iT)cr which causes the ring to buckle, Lo, et al. assumed that there is no energy 

transfer to or from the environment during the snap-through process. Thus, the total en-

ergy U just before the snap-through is equal to the total energy U just after. 

(2.12) 

From Equation (2.12) the critical end compression load or the critical temperature in-

crement can be obtained. Unfortunately this energy criterion is not suitable for this par-

ticular situation and the critical end compression loads obtained from this energy 

criterion are not confirmed by experimental results [6,7]. 
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Figure 2.3 A Ring under End Compression Load with 

a Point Obstacle on the Boundary 
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Hsu, Elkon and Pian [5] re-studied this problem by considering the effect of a point 

obstacle located at a point on the circular boundary, as shown in Figure 2.3. They were 

able to determine the critical compression load as a function of the height of the point 

obstacle. Their results also show that when the height of a point obstacle decreases to 

zero the critical end compression load goes to infinity. This means that if the system is 

geometrically perfect there is no limit point or critical end compression load as that 

found in a classical stability problem. 

Chan and McMinn [6,7] conducted an analysis similar to [4] and [5] when 

they studied the buckling of thin steel linings inside prestressed concrete cylinders. 

Their analysis indicated that there was no critical load as defined by classical theory, 

but that there was a state of unstable equilibrium which can be reached by small dis-

placements only from the unbuckled position and a state of stable equilibrium which ne-

cessitated large displacements. Work must always be done to displace the ring from the 

unbuckled state, but this was reduced as the uniform compression was increased. By in-

vestigating the ,effect of the imperfections, they concluded that errors in the curvature 

of the ring have no effect, but errors in curvature of the rigid support change the equi-

librium states. The ring would buckle at the point where the radius of curvature is larg-

est and would behave as though it had this radius throughout the whole ring. 

Later on, Bucciarelli and Pian [8] studied the effect of three types of initial geomet-

ric imperfections on the buckling behavior by employing shallow arch approximations. 

Figure 2.4 describes three types of initial imperfections for the ring. To conform with 

the shallow-beam approximation, the undeformed configurations are described by z(s), 

where the origin of the z-axis is so located that the boundary of the imperfect region is 

at s=L, z=O. The three types of initial imperfections are as follows. 



15 

(a) 

Z(S) 

(b) 

(c) 

S 

Figure 2.4 Three Forms of Geometric Imperfections 
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Case (a). The curvature of z(s) is everywhere negative as depicted in Figure 2.4 (a). 

Case (b). The slope and curvature are identically zero over a finite portion, while 

the curvature of the remaining portion is negative, as shown in Figure 2.4 (b). 

Case (c). The curvature of z(s) changes from positive to negative within this region 

of imperfection, as shown in Figure 2.4 (c). 

Their analysis yielded that in case (a), no bifurcation or limit point exists at finite 

load level; in case (b), bifurcation and snap buckling may occur; in case (c), the system 

admits of a limit point. 

Pian and Bucciarelli [9] and Zagustin and Herrmann [10,11] studied the stability of 

an elastic ring constrained in a rigid cavity and subjected to a uniformly distributed par-

allel loading per unit length of the ring in its plane. The buckling behavior of a ring un-

der this load condition is different from the ring under end compression load. 

E1-Bayoumy [12] analyzed the problem of a circular elastic ring confined to a uni-

formly contracting circular boundary by the variational method. He assumed that the 

detached (buckled) region of ring covered only a small portion of the circumference, 

thus the shallow-beam approximation could be employed. He treated the problem as a 

variational problem with variable 6nd points (the points of separation). The advantage 

of the variational formulation was that all the differential equations of equilibrium and 

the associated boundary conditions, including transversality conditions, followed auto-

matically as a consequence of applying the fundamental principles of the calculus of 

variations. Their study found that the constrained ring has three equilibrium branches 

I, II, and III which correspond to the unbuckled uniformly contracted state, the buckled 

"small" deformation state and the buckled "large" deformation state. The total potential 

energy along the three branches is plotted in Figure 2.5, in which fl is the total potential 
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energy and AD is the contraction parameter of the boundary. The figure shows that 

branch II (small deformation state) corresponds to higher energy than the other two 

branches. This means that equilibrium states along this branch are unstable. As the ring 

starts to contract, its equilibrium state moves along branch I which has the smallest en-

ergy up to point M at which branch I and branch ifi intersect. Beyond point M, the po-

tential energy is lowest along branch Ill. It seems that the ring would buckle as soon as 

DM is reached. However, in order for ring to buckle at point M to the large deformation 

state, it must go through the small deformation state first. But the total potential energy 

along branch II is always higher than the total potential energy along branch I. There-

fore an energy barrier given by the difference between the energies along branches I and 

II must be overcome in order for the ring to buckle. This difference in energy may be 

supplied by an external disturbance. That branches I and II did not intersect suggests 

that the circular ring, in the absence of geometric imperfections and external disturbanc-

es, will not snap through to the buckled state. 

Liszka and Trojnacki [13] considered the problem of two thin elastic rings of 

different stiffness (due to different materials or different thickness), one which has been 

forced into the other. Again, post buckling analysis was performed in order to deter-

mine the possible equilibrium states. In the deformed configuration, in which the rings 

have changed their initially circular shape so that an unknown separation region ap-

pears. For simplicity of analysis an equivalent system of three slender bars was ana-

lyzed, the continuity conditions must be satisfied at the point of connections. Their so-

lution of the problem was also in implicit form in terms of elliptic functions but much 

more complicated than Lo's solution [4]. 
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Figure 2.5 Potential Energy along Equilibrium Branches 
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Chicurel [14] was the first to study the problem by taking into account the friction 

between the ring and the external wall. When buckling occurs, part of the compressive 

strain is removed to make up for the slight difference in chordal lengths. This release 

of compressive strain would be confined to the buckled part of the ring if friction out-

side of the buckled region is sufficient to inhibit slip (non-slip case). On the other hand, 

if some slip takes place, then the buckled part must absorb a greater amount of released 

compressive strain, and the extreme case would occur when the friction coefficient is 

zero (non-friction case). Based on the non-slip assumption and the non-friction as-

sumption, two expressions of critical diametric interference were developed. For non-

slip case 

For non-friction case 

P01 = 2.487JAi 

P02 = 2.67AE () 
Ar2 

(2.13) 

(2.14) 

By comparison of the two results, it was found that the non-friction case was always 

more conservative. 

Burgess [15,l6]developed a general discrete variational method for one way struc-

tural system and later on used this method to investigated the buckling behavior of a ra-

dially constrained imperfect ring. It was found that when the initial imperfection on a 

ring is very small, initial loading tends to suppress the imperfection and the ring is 

locked on the boundary. So only when the initial imperfection on the ring reaches a rel-
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atively large magnitude, does the buckling occur for the ring. 

Soong and Choi [17] carried out the more general analysis of buckling of a com-

plete, thin ring confined in a non-circular hole subjected to hoop stress and studied an 

elliptical ring in detail. Their analysis included both the non-friction buckling case and 

the non-slip buckling case.Their study indicated that the ellipticity reduced the buckling 

load, because buckling occurred at the flatter part of the ring. The numerical results 

were obtained by an exact analysis in which the curvature change due to slipping was 

included. However, if the curvature change due to slipping in the contact zone was ne-

glected, the error was relatively insignificant. For the case they studied, the difference 

in buckling load was found to be less than one percent. 

Various other aspects of the problem of an elastic ring contained within a smooth 

rigid cavity were considered by several workers. These included a radially directed 

point load [18] and external and internal pressure[19-27]. The problems of a ring or a 

tube contained within a soil boundary or a elastic boundary were also explored [28 - 34]. 

Another kind of one-way buckling problem associated with a sheet or a beam on a flat 

foundation were also studied in [35-43]. 

2.3 Experimental Results 

Hsu, Elkon and Pian [5] conducted experimental investigations into this problem 

with controlled initial boundary imperfections. Snap-buckling behavior was in qualita-

tive agreement with the analytical results. However, because of friction between the 

ring and the rigid boundary and the development of plastic hinges, quantitative agree-

ment was difficult to obtain. For specimens with very small initial boundary imperfec-
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tions, yielding of the material was observed prior to local buckling of the circular ring. 

The experimental data was not provided in the paper. 

Chan's experimental work [7] revealed two things. First, none of the observed 

buckling loads agreed with Lo's predictions, and second, the actual buckling loads of 

apparently identical rings varied enormously. They attributed the first discrepancy to 

the use of the equal energy criterion, which was not suitable for this particular situation. 

But they did not give any reasons for the second phenomenon. 

2.4 Summary 

From the preceding review it can be seen that there is no bifurcation or limit point 

for the geometrically perfect system and buckling occurs at a limit load only when ge-

ometric imperfections or external disturbances provided energy to overcome the energy 

barrier. For the majority of the theoretical works, the interface condition of the ring and 

the ring boundary was simplified as the frictionless situation. This simplification made 

the analysis relatively simpler but experimental verification very difficult. For those 

who did take the friction into consideration [14,17], they only considered two extreme 

situations: non-slip case and non-friction case. Furthermore, their results were contra-

dictory to each other. In [14], the critical load ratio of non-slip case to non-friction case 

A 
is 0.932 (4-) . If (42-) = 106, the critical load ratio is 3.71. But in [17], the 

difference between two cases is only about 8 percent. This indicates that the friction ef-

fect on the buckling behaviour of the ring has to be considered in more detail before get-

ting a more realistic result. 

Although there are many papers carry the theoretical analysis of buckling of an elas-



22 
tic ring constrained by a rigid boundary, the experimental works are relatively limited 

and the results reported in the literature are rare. Agreement between theoretical and ex-

perimental results to date is very poor. 



23 

Chapter 3 

PRELIMINARY EXPERIMENTS 

3.1 Objective of the Experiments 

The buckling of interference fits is an important application problem in the industri-

al field in view of its safety and economic implications. It is also a very complicated and 

difficult problem to be solved due to the following factors: 

a). large deformations of the cylinder in contact; 

b). influence of initial imperfections; 

c). interaction conditions at the interface surfaces; 

To solve this problem, both the analytical approach and the experimental approach 

are necessary. As pointed out in Chapter 2, although there are a number of researchers 

dealing with the problem by various of theoretical analysis methods, the experimental 

works are relatively rare. In addition large discrepancies exist between the experiments 

and the analytical solutions. Therefore it is necessary to conduct a preliminary experi-

ment and obtain some first hand information. 

3.2 Background Information 

In order to design the experiment, some background information is first introduced 
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here. 

3.2.1 Critical Buckling Pressure of a Free Circular Cylindrical Shell 

For a better understanding of this problem and design of the experiment, a free cir-

cular ring subjected to a constant external compression pressure is first discussed. For 

a ring submitted to a uniform external pressure shown in Figure 3. 1, the critical value 

of the compression force P is [44] 

3E1 

r 
(3.1) 

where E is the Young's modulus and I is the moment of inertia of the cross section of 

the ring. The critical external pressure qc is 

3E1 
(3.2) 

Equation (3.1) can also be applied in the case of cylindrical shells with free edges 

subjected to a uniform lateral pressure. In this case as shown in Figure 3.2, an ele-

mental ring of unit width is taken into consideration and the critical value of the com-

pression force P in such a ring can be obtained by using  1 2 to substitute for E 

and by taking I = 12 where v is Poisson's ratio and t is the thickness of the circular 

cylinder; then from Equation (3.2) 

P  Et3 (3.3) 
C 4(1—v2)r2 
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Figure 3.1 A Ring Subjected to the External Compression Force 
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Figure 3.2 A Circular Cylinder Subjected to a Uniform External Pressure 
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Observing that the compression force P in the elemental ring of unit width is equal to 

qr where q is the uniform pressure, from Equation (3.3) the critical value of the exter-

nal pressure for an edge free circular cylinder is 

E  

= 4(l—v) 
(3.4) 

Equations (3.3) and (3.4) can also be applied in the case of a shell with some constraint 

at the edges if the length of the shell is so long that the stiffening effect of any constraint 

at the edges can be neglected. 

3.2.2 The Relationship of Interference and Interface-Pressure for Two Layer Cylinders 

For a long circular cylinder subjected to internal pressure, q1 and external pressure, 

q2, as shown in Figure 3.3, the displacement in the radial direction is [47] 

1—v (q1r—q24 1+v ((q1—q2)rr\j 

Ur E 2 2 E r—r Jr 
\. r2 —r1 ) 

If there is only external pressure, i.e., q1=O, the equation (3.5-a) becomes 

l—v( q2r \\ 22 rl l+v(q2rr\ 

= E r - rJ E 

If there is only internal pressure, i.e, q2=O, the equation (3.5-a) becomes 

1—v q1r '\ l+v q1rr 22 1 

E 12 21r+ 
r2-r1) E r_rJ1 

(3.5-a) 

(3.5-b) 

(3.5-c) 
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q2 

Figure 3.3 A Cylinder Subjected to Internal and External Pressures 
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For the interference fitted two layer circular cylinders, if the pressure q between the 

interference surface is given, then we can get the changes in diameters of the inner cyl-

inder and the outer cylinder at the interference surface respectively. For the inner cyl-

inder, we have 

r 1—v qr r 1 qr i+v1 i 

= 2L- ii (r2 _rJr2_ E1 r_rJT2] 

Similarly for the outer cylinder, we have 

qr •'\ l+V2(qrr 221r2+D2 = 2[l -V2 ( E2 r3—r2) E2 r_rJ1z] 

(3.6-a) 

(3.6-b) 

From equations (3.6-a) and (3.6-b), we obtain the interference allowance AD for the 

given interference pressure q. 

AD r r+r r+r V2 v1 
= AD 2 - AD  = 2r2[  (r - r) + E1 (r - r) + E2 El (3.7) 

where V1. V2 and E1, E2 are Poisson's ratios and Young's moduli of inner layer and outer 

layer respectively, and as shown in Figure 3.4, r1 is inner layer's inside radius, r3 is out-

er layer's outside radius and r2 is the interference surface radius, and AD is the interfer-

ence allowance. If the interference allowance AD is given based on the end use of the 

component, the pressure q in the interference surface also can be obtained from Equa-

tion (3.7) 
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Figure 3.4 An Inner Ring Shrunk in an Outside Ring 



AD 1  
q 2 2 2 2 

.r2 r3+r2 + r2+r1 + V2 V1 
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(3.8) 

For a thin elastic ring confined within a rigid boundary, the relationship between the in-

terference allowance and the interface-pressure (q) at the interference surface can be ob-

tained from Equation (3.7) and Equation (3.8) directly. 

and 

LID - 2qr2 
Et 

iDEt 

2r2 

(3.9) 

(3.10) 

where t is the thickness of the ring and r is the middle radius of the ring. 

3.3 Specimens and Dimensions 

The material of the specimens was C-4161 steel tube, and the properties of the ma-

terial are as following [48]: 

E = 200 GPa, v = 0.3, ay =1700 MPa, =1900 MPa 

The configuration of the specimens is shown in Figure 3.5, where D11 is the inside di-

ameter of the inner tube, D12 is the outside diameter of the inner tube, D21 is the inside 

diameter of the outside tube, and D22 is the outside diameter of the outer tube, L is the 
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length of the tubes.. 

From Figure 3.5, the interference allowance AD is 

AD = D12—D21 (3.11) 

From Equation (3.4), the critical buckling pressure of the inner tube in the free 

boundary conditions is 

E (D12_Dii 
q -

4(1—v2) 
) 3 (3.12) 

According to [56], if the buckling factor f is selected, the interface-pressure between the 

two tubes is 

qc = fq (3.13) 

By using Equation (3.7), we can calculate the interference allowance AD for the corre-

spondent pressure q. 

AD Dq rD 2 +D 1 D 1 +D  211 

- [D 2_D I D 1—D 1 
(3.14) 

The first experiment is designed to check the buckling data provided by industrial 

experience [56]. The inner tube's dimensions are 
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The inner tube 

Figure 3.5 Specimen Configuration 



34 

D12 = 95mm D11 = 92.5mm 

In free boundary conditions, from Equation (3.12) the critical buckling external pres-

sure is 

q = 0.76MPa 

The indUstrial rule of thumb states that buckling occurs at a factor of 3.5 times that 

predicted from external pressure on thin ring and no buckling condition occurs at a fac-

tor of 3.0 [56]. In order to observe the buckling behaviour of the inner tube, the buck-

ling factor f = 3.65 was selected and the corresponding interface-pressure qc is 

q =fq = 2.8MPa 

Using equation (3.14) and taking D12 approximately equal to D21, we obtain the inter-

ference allowance AD for the correspondent pressure qc 

AD = 0.062mm 

Then from Equation (3.11), we can determine the D12 

D12 = D21 - AD = 95-0.062 = 94.938mm 
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In order to machine the specimens, the reasonable tolerance in dimensions should be de-

fined. In consideration of practical usage and the machining ability in the workshop, 

the final dimensions of the specimens are defined as following: 

= 95 :mm 

D21 = 068 
95+0.034 mm-0.000 

5 °•017mm D11 = 92.-0.017 

= 115.0mm 

According to above dimensions, the average, maximum and minimum interference al-

lowance are 

AD = 0.0615mm 
M 

LW = 0.089mm 
max LDmin 0.034mm 

respectively. 

In order to investigate the effect in longitudinal direction, two different lengths of 

tube are designed, they are 

L1 = 25mm 

3.4 Experimental procedure 

L2 = 50mm 

In assembling the two tubes together, the inner tube is contracted by sub-zero cool-

ing to permit insertion into the outer tube and a tight fit is obtained as the temperature 

rises and the inner tube expands. In order to obtain the sub-zero temperature, liquid ni-
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trogen was used, which has a temperature of about -196 °C. During a temperature re-

duction from 24 °C to -196 °C, the shrinkage per millimetre of diameter varies from 

about 0.002 to 0.003 millimetre for steel [48]. For the inner tube specimen, the shrink-

age by using liquid nitrogen can reduce the outside diameter from D22 = 95 mm to 

94.99-94.72 mm. This is enough for dropping the inner tube into the outer tube. 

The experiment procedure includes following steps: 

Step 1 Place the inner ring into a container and pour liquid nitrogen into the container. 

Ensure that the whole inner tube is immersed in the liquid nitrogen for about 

10-20 seconds. 

Step 2 Pick up the inner ring and drop it into the outer tube quickly. 

This step should be completed in about 3-5 seconds. 

Step 3 Observe the inner tube's behaviour during the process in which the 

temperatures of inner and outer rings become equal. 

3.5 Results and Discussion 

The inner tube did not buckle even after the temperatures of the two tubes became 

equal. In order to investigate the buckling conditions, the assembly was mounted on 

the lathe and was cut little by little from inside. The cutting increment was 0.125 mm 

each time. When the thickness of the inner tube was reduced to 0.28 mm, it became 

loose along the interference surface but it still did not buckle. 

When the inner tube was loose, the ratio of the pressure at the interface surface, q, 

to the free tube buckling critical pressure, q, is 



37 

f = qc = 66 

which is much larger than the rules of industrial thumb. 

The preliminary experimental result shows that the rules of industrial thumb are too 

conservative and a more accurate method should be established to predict the buckling 

conditions for a ring confined within a rigid boundary. 
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Chapter 4 

DIMENSIONAL ANALYSIS METHOD 

4.1 Introduction 

Many problems in engineering and particularly in fluid mechanics are successfully 

resolved by an experimental analysis based on tests of appropriately established models 

using the dimensional analysis method. This method is particularly useful in the solu-

tion of complex problems in which prototype systems can be simulated by adequate 

models which can be easily built and tested. The feasibility of this analysis is usually 

limited by the material and other properties of the models. In experimental fluid me-

chanic a general methodology based on the dimensional analysis of models is well es-

tablished. In the field of elastic stability, however, theoretical methods dominated the 

area and experiments are used just as a verification on theoretical work. But a practical 

structural system may become extremely complex and a theoretical solution of the 

problem is very difficult or even impossible. Sometimes in a simplified and idealized 

situation, a theoretical solution may be obtained but it can only be used as a guide to 

the practical behaviour. Although no general experimental discipline based on the di-

mensional analysis of model structures has yet emerged in problems of structural stabil-

ity, a basis for an analysis of buckling problems is the same as for experimental fluid 

mechanics. 
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4.2 Dimensional Analysis 

The dimensional analysis method is based on two axioms [49] which are inherent in 

our methods of measurement and evaluation of quantities. 

1. Absolute numerical equality of quantities may exist only when the quantities are 

similar qualitatively. That is, a general relationship may be established between two 

quantities only when the two quantities have the same dimensions. 

2. The ratio of the magnitude of two like quantities is independent of the units used 

in their measurement, provided that the same units are used for evaluating each. 

Dimensional analysis, developed from these two axioms, differs from other meth-

ods of analysis in that it is based solely on the relationships that must exist among the 

pertinent variables because of their dimensions, instead of being based on other so-

called natural laws, such as Newton's Laws of Motion for example. In itself, dimension-

al analysis gives qualitative rather than quantitative relationships, but when combined 

with experimental procedures it often results in quantitative relationships and accurate 

prediction equations. 

If a certain number of dimensional variables are involved in a problem these varia-

bles can be combined in a definite number of dimensionless products. These products 

are usually denoted by the letter fl. A theorem due to Buckingham[49], also known as 

the Pi theorem, states that the number of such independent products is equal to the dif-

ference of the number m of the dimensional variables in the problem and the minimum 

number n of dimensions, in terms of how these variables can be described. Then, a ho-

mogeneous function F of the dimensionless products exists, such that 
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F (Hp fl2, .... 1TE) = 0 (4.1) 

From this relation any one of the products, say ll, can be written as 

= f(112, '13 'm-n (4.2) 

The key for the success of a dimensional analysis model is the choice of correct and suit-

able quantities for the functional Equation (4.2). 

For example[50], a cable is stretched between two points a fixed distance apart at 

the same level. Find a relationship between the tension, F, and the sag, h, the length of 

the cable, 1, and its weight, W. The problem is to express P as a function of W, h and 1, or 

P =f(W,h,l) 

where f( W, h, 1) is an unknown function. Assuming that this function is in the form of 

a production of powers, we have 

P = AWahllc (a) 

where A, a, b and c are unknown numbers. 

The dimensions of the quantities for the terms in Equation (a) are 
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[P] = [MLr2] 

[WI = [MLT 2] 

[hi = [U 
(b) 

where [M] presents for the dimension of mass, [U] for dimension of length and [Tj for 

dimension of time. Substituting (b) in (a) we have 

{MLT 2} = [MLr2] a [L] b [U] C (c) 

For dimensional homogeneity the powers of M, Land Tmust be the same on both sides 

of Equation (c). 

M: 1=a 

L: 1 = a+b+c 

T. —2=-2a 

From which we have 

a=1 

b= —c 

Thus Equation (a) becomes 
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P = AWh'l" = w [A()_C] 

In dimensionless form, this equation becomes 

;f(!) =A() 

(d) 

(e) 

Since neither A nor c is known, dimensional analysis has not provided a complete solu-

tion in this case. But it has indicated that P is directly proportional to Wand that the ratio 

is a determining factor in the relationship rather than the separate quantities h and 1. 

Now consider the shrink buckling problem, as pointed out in Chapter 2, if both the 

ring and rigid confinement are perfect geometrically and there is no external distur-

bance, there will be no limit point or critical pressure. In other words, the ring will never 

buckle when both the ring and rigid confinement are perfect geometrically unless there 

is a large enough external disturbance to overcome the energy barrier [12]. The exter-

nal disturbance is a random factor and is very difficult to be simulated and controlled. 

Therefore in the dimensional analysis model, the geometric imperfections of a ring and 

a rigid confinement should be taken into consideration. However, the influence of im-

perfections of the ring is not as large as the rigid confinement and can generally be ig-

nored[6,7]. For simplification, only a point imperfection on the rigid confinement was 

taken into consideration. Nevertheless, this point imperfection can also be considered 

as a combination effect of the geometric imperfection and the external disturbance. It is 

assumed that a point imperfection on the rigid confinement has a height ö and as a result 

the ring has an initial deflection 8 before buckling. 
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Figure 4.1 A Ring under Compression Load with 

a Point Obstacle on the Boundary 
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In the following process some basic assumptions were used: 

(1) The ring is made of a homogeneous, isotropic and linear elastic material. 

(2) There is no friction on the interface between a ring and a rigid boundary. 

(3) The unbuckled and the buckled configurations of the ring are both symmetrical 

to one of the diametral lines of the original ring. 

Under the above assumptions it is evident that the axial compressive buckling force 

P is determined completely by the following parameters (see Figure 4.1): 

E -- modulus of elasticity of the material of the ring. 

r -- radius of the ring. 

t -- thickness of the ring. 

-- initial deflection of the ring due to the imperfection of the rigid confinement at 

the buckling location. 

For a unit width ring it can be assume that 

PC = (4.3) 

where P is the critical buckling compression force per unit width of a ring, C is an un-

determined coefficient and a, b, c, and d are undetermined exponents. There are five di-

mensional quantities in Equation (4.3), which are P, E, i t, and 8. And the minimum 

of dimensions are two in Equation (4.3), which are [F] (force) and [L] (length). Accord-

ing to Pi theorem, m - n = 5 - 2 = 3; that is, Equation (4.3) can be described by three 

dimensionless products. The dimensions of the quantities in Equation (4.3) are 
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(4.4) 

Substituting Equation (4.4) into Equation (4.3), we have 

[FL'] = [FU 2]'[U]b[U]c[L] d (45) 

According to Axiom 1 both sides of Equation (4.5) should have the same dimen-

sions. That is the exponents of F(force) and L(length) must be the same on both sides 

of Equation (4.5) for dimensional homogeneity. Thus we obtain 

F: a = 1 (4.6a) 

U: -2a+b+c+d=-1 (4.6b) 

Expressing a and c in terms of b and din Equations (4.6), we obtain 

a=1 

c= 1-b--d 

Substituting Equation (4.7) into Equation (4.3) yields 

(4.7) 
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PC = CErbt(ll(!)öd1 

= CEt()() 
t 

Dividing two sides of Equation (4.8) by Et, we finally obtain 

where 

C 
-- =f[() ()] 

(4.8) 

(4.9) 

f[() ()] = C(() (4.10) 

rr I . ..... rf[ (.), (-i)  is an unknown function with two non-dimensional variables (.) 

and () , one undetermined coefficient C and two undetermined exponents b and d. 

This function is referred to as the buckling function hereafter. 

4.3 Validation Test for the Buckling Function 

From Equation (4.8) it can be seen that the critical buckling stress is proportional 

to elastic modulus, E, and the buckling function f[ (.), (-i)] is independent of the 

material properties in the elastic region. Whether or not the buckling function 

f[ (.), (7)] is in the form of Equation (4.10) can be examined by an experimental 

method [49]. First, experiments can be carried out by varying () and holding () 
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as a constant. From a plot of () against (!) , the relationship 

(cY \ 
I Cl 

\E)l =f1[() ()] (4.11) 
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where the bar over ( -i) denotes constant values, could be established. From another set 

of experiments with (r t)constant and ( 6 -i) variable, 

I C), 
(. =f2[) ()] (4.12) 

may be established. Equations such as equations (4.11) and (4.12), determined by hold-

ing all but one of the dimensionless variables in the function constant, will be called 

component equations. 

Under certain conditions the component equations may be combined to form the 

general prediction equation by the multiplication of Equation (4.11) and Equation 

(4.12), i.e., 

0' (Y\ ) RY 
C_I Cl I C 
E - —f _f 2 

(4.13) 

To establish those conditions, the constant C in equation (4.13) can first be deter-

mined by assuming that the component equations are simply multiplied to form the gen-

eral equation. 

r; 6 f[ (r),()] =f1[() ()]f2[()' (i)] (4.14) 
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If this is true, the first set of tests, with ( -i) constant, will give 

f[(.) ()] =f1[(.) ()]f2[(.) ()] (4.15) 

From which 

f[() ()] 

t] f2[()()] 
(4.16) 

The second set of tests, with () constant, gives, from Equation (4.14) 

f2[() ()] (4.17) 

Values of f1 [ , ] and f2[ (i), from Equations (4.16) and (4.17) are 

substituted into Equation (4.14) to give 

f[(;) ()] - f[() ()]f[ () ()] 
- f2[()  

However, from Equation (4.14) it is found that 

(4.18) 
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f[() ()] =f[() ]f, L() ' ()1 (4.19) 

Thus 

f[(.) ()] - 

f[() () ]f[(.) ()] 
f[() ()] 

Comparing equation (4.13) with equation (4.20), it is found 

1  
C-

f[() ()] 

(4.20) 

(4.21) 

and that the two component equations must have the same form. 

A test for the validity of combining the component equations as a product may now 

be developed by assuming that a third component equation is determined from a third 

set of data in which one of the dimensionless variables is held constant at a different val-

ue than in the preceding set of data. For example, the general equation (4.20) was de-

termined by holding the () constant at a value of () , but if valid, it could also have 

been determined from a set of data in which () = . Then 
t 't) 

f[() ()] - f[() ()1f[ J' ()] 
(4.22) 
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The right-hand side of equation (4.20) must equal the right-hand side of equation (4.22), 

hence, 

f[()  f[ (J ()] 
f[(.) (.)] f1 C'), () ] 

Similarly, if (-i) had been held constant at a different value, F•t 

f[()()1 f[() •t  
f[ () ()] f[() C•ti 

(4.23) 

(4.24) 

Equations (4.23) and (4.24) constitute a test for the validity of Equation (4.20). That is, 

if the supplementary sets of data satisfy either Equation (4.23) or Equation (4.24), the 

general equation may be formed by multiplying the component equations together and 

dividing by the constant, as indicated in Equation (4.20). 

4.4 Summary 

From the dimensional analysis we know: 

1. The critical buckling compression stress of a ring confined within a rigid bound-

ary is directly proportional to the elastic modulus of the material. 

2. The buckling function f[ (.), (7)] is independent of material properties but 
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3. The buckling function has one undetermined coefficient C and two undetermined 

exponents b and d. These undetermined coefficient and exponents can be derived from 

experimental results. 

All these conclusions are held only in elastic region. 
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Chapter 5 

DISCRETIZATION OF PROBLEM: MODEL ONE 

5.1 Introduction 

In Chapter 4, a approximate relationship between the compressive buckling stress 

of a thin elastic ring confined within a rigid boundary was derived by use of the dimen-

sional analysis. It was based upon the ring dimensions, material properties and the ge-

ometric imperfection of the rigid boundary. The geometric imperfection was treated as 

a point obstacle which results in creating an initial deflection in the ring prior to the 

buckling condition. This relationship (see Equations (4.9) and (4.10)) can be rewritten 

as one equation as follows: 

(5.1) 

In this chapter, the problem will be approached in a totally different manner. First, 

a physical discrete model will be established by applying the discrete element method. 

A relationship of the compressive buckling stress a with the radius of the boundary, r, 

the thickness of the ring, t, and the initial deflection, 8, will be derived from the equi-

librium analysis to the model. Finally, a comparison of the results from this model with 

results from the dimensional analysis method and the experiment will be made. 
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5.2 Basic Assumptions 

Before establishing the discrete model, some basic assumptions should be made as 

follows, 

(1) The ring is inextensible, i.e., before and after buckling, the length of the ring is 

the same; 

(2) The buckled configuration of the ring is symmetrical to one of the diameter lines 

of the boundary; 

(3) The ring is made of a homogeneous, isotropic and linear elastic material; 

(4) There is no friction in the interface between the ring and the rigid boundary. 

5.3 Discrete Element Method 

The discrete element method may be regarded as an elementary version of the finite 

element method [51]. The basic idea of the discrete element method can be illustrated 

by considering the elementary problem of finding the deflection of a simply supported 

beam such as that shown in Figure 5.1. The deflection curve will be approximated by 

two lines as shown in Figure 5.1(a). These straight lines of deflection correspond to a 

fictitious discrete system consisting of two rigid links connected at an elastic hinge (1) 

as shown in Figure 5.1 (b). The idea is equivalent to replacing the original continuous 

beam by a number of fictitious discrete links, and localizing the rotation at discrete nod-

al points which can be viewed as elastic hinges or frictionless hinges with linear elastic 

rotational springs. The main task is thus to find the elastic constants 



54 

P 
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0 

a 
k 

Figure 5.1 Basic Idea of the Discrete Element Method 
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k of these fictitious springs. To achieve this, we start from the well-known beam for-

mula (see Figure 5.2): 

M=EIe' 
dx 

From this, we see that 

which means 

- dO - M 

dx El 

ø M 
urn - = - 

x->OtX El 

(5.2) 

(5.3) 

(5.4) 

Discretilizing Equation (5.3), an approximate expression can be obtained as: 

AO  AO 
AX Ti- or M—xEI L 

(5.5) 

which for small angles is nearly exact. On the other hand, the bending moment in the 

two-link discrete model is 

M = kiXO (5.6) 

where AO is the change in the slope at the hinge. If the bending moment is to be the 

same in both the discrete and the continuous model, as it should be, then we would have 
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0(x) = dw 

Figure  5.2 General Relationship of the Slope and the Bending Moment 
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AO 
M = EIO'EI— = kz8 

Lx 

from which we obtain 

(5.7) 

(5.8) 

Observing that the Lx is nothing but where n is the number of links, we immediately 

find the expression for the constants of the fictitious spring as 

k=' 1 
L 

(5.9) 

In our particular example, k = Finding the maximum deflection is now a trivial 

matter from a simple application of the equilibrium method. In Figure 5.3, we find from 

= 0 that 

PL —kA0 = 0 

2E1 4 
Since k = -i-- and AO = L-,weobtain 

PL  PL  

- 32E1 EI 
  = 0.03 l25-- 

(5.10) 

(5.11) 

The exact value is 6 = 0.0208  the error is 33 per cent. In order to improve the 

result, we simply increase the number of links. 
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P/2 

Figure 5.3 Discrete Beam Link 
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5.4 Model Description 

According to the idea of the discrete element method and our basic assumptions, the 

ring will be replaced by the elastic chain shown in Figure 5.4, which consists of straight 

rigid links connected at frictionless hinges with elastic rotational springs whose spring 

constants are k. Therefore, the portion of buckled ring can be simplified as a model as 

shown in Figure 5.5 which consists of four rigid links with rotational springs at connect 

node 1,0 and 2. The node 0 lifts off from the rigid boundary because of an initial de-

flection which is caused by the imperfection at the point 0'. One half of the central angle 

subtended by the lifted portion 102 is a. The other nodes keep contact with the bound-

ary. 

The length of each link is 

1 = ar (5.12) 

and considering Equation (5.8), the constant of the rotational spring is 

El El 
' 1 ar 

Based on the inextensible assumption, node 1 and node 2 will not move when node 0 is 

lifted off the boundary by a point imperfection. Thus link chain 102 is symmetric about 

the x-axis with the original position 10'2. Then from Figure 5.5 we have 
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Figure 5.4 The Discrete Model of a Thin Ring with An Initial Deflection 
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Figure 5.5 Geometric Parameters at the Location 

of the Point Boundary Imperfection 
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= 2r(1—cos(x) (5.14) 

a 
0 2 

3 

(5.15) 

(5.16) 

From Equations (5. 12)-(5.26) it can be seen that for a given ring radius, r, the 

number of rigid link is totally determined by the initial deflection,ö. For instance, if 

r = 200mm, when 5 = 1mm, the number of rigid link for a quarter of ring is about 

22; when 5 = 5mm, the number of rigid link for a quarter ring is about 10. 

5.5 Equilibrium Equation and Solution 

Considering the free body diagram of link 01 as shown in Figure 5.6 and taking mo-

ments about point 1, we have 

M0-i-M1—F— R0 --lcos0 = 0 (5.17) 

where M0 and M1 are reaction moments at node 0 and 1 caused by the changes of angle 

between two bars connected at these points, i.e., 

MO = 4k0 (5.18) 
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Figure 5.6 Free Body Diagram of Link iT 
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M 1 = 20 (5.19) 

R0 is the reaction force of the point imperfection to the ring at point 0. There is only a 

horizontal reaction force F of link D72 to link D71 at point 0 because of the symmetric con-

dition. When buckling occurs, the reaction force of the point imperfection on the rigid 

boundary to the point 0 of the ring will vanish, thus R0 = 0. Then Equation (5.17) be-

comes 

M0+M1—F = 0 (5.20) 

There are two forces at point 1, R1 and P31. P 31is the reaction force of link 13 to link 

TO and R1 is the reaction force of the rigid boundary toward point lof the ring. From 

the equilibrium force equations in x and y directions, we have 

F— [P31 COS (f3-7) +R1sino] = 0 

R1cosa—P31 sin(I3—'y) = 0 

(5.21a) 

(5.21b) 

Solving the above equations we obtain 

F = P31 [cos (3 - y) + sin (f3 - ,y) tan a] (5.22) 

Bringing equations (5.18), (5.19) and (5.22) into equation (5.20) yields 
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2k8+4k0—P31 [ COS (13-7) + sin (13-y) tan cc] = 0 (5.23) 

then 

12k0 1  
P31 - cos (13- 'y) + sin (13 - ,y) tana 

(5.24) 

Figure 5.7 is the free body diagram of link T. Considering the moments about 

node 3 (Figure 5.7 (a)) we have 

M 1—P 13lsin7= 0 (5.25) 

Because P13=P31 and M1=2k8, we get 

2k0—P31 lsin'y = 0 (5.26) 

Bringing equation (5.24) into equation (5.26) yields 

3asin'y— (1 - cosc) [cos (13—y) + sin (13-y) tanoc] = 0 (5.27) 

From Figure 5.7 (b) we have 

a 
cos +'y) 

a 
cos .: 

(5.28) 
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(a) 

(b) 

Figure 5.7 Free Body Diagram of Link I 
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Substituting equation (5.24) into equation (5.28) we obtain 

a 
12k8 Cos (-+'y) 

a 
cos f [cos (f - ,y) + sin (3 - ,y) tana] 

(5.29) 

Substituting equations (5.13),(5.15) and (5.16) into equation (5.29), we obtain 

a 
- 6E1  cos(.+y) 

r8 a  
cos .- [cos ( a - ,y) + sin ( a - ,y) tan a] 

Considering 

and letting 

we finally obtain 

Bt3 
12 

3 3 
cos . U [cos ( a - ,y) + sin ( a - ,y) tan a] 

- 1 (r)(;)C 

(5.30) 

(5.31) 

(5.32) 

(5.33) 
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where a = is the compression stress of the ring. 

Bt 

5.6 Comparison with the Results of the Dimensional Analysis Method 

Up to now, we have obtained two formulations of the relationship between the crit-

ical buckling stress and the geometric factors of the structure from two totally different 

methods. Following the principles of the dimensional analysis, we derived Equation 

(5.1). By processing discrete model analysis, we obtained Equation (5.33). Compar-

ing Equation (5.1) with Equation (5.33), it is obvious that the two equations have essen-

tially the same relations. In Equation (5. 1), there are three undetermined constants C, b 

and d which can be determined by experimental data analysis. While in Equation (5.33) 

the corresponding three constants are 

C= Ca 

But the coefficient Cu is not a constant. The coefficient Ca in Equation (5.33) is a func-

tion of the center angle a as shown in Equation (5.32). Studying Equation (5.32) in de-

tail, it can be found that Ca has a little effect on the result for small a, which is always 

the case in real situations. Figure 5.8 is a diagram of Ca with a. It can be seen that 

Ca is very close to 1 in the range of a as shown in Figure 5.8. If we take Ca as 1, Equa-

tion (5.33) has a constant coefficient C = . Overall the comparison indicates that 

the discrete model for the buckling of an elastic thin ring confined in a rigid boundary 

is reasonable and quite accurately describes the characteristics of the problem. 
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5.7 Comparison with the Results From Experiment 

Figures 5.9-5.11 are comparisons of the experimental results (detail experimental 

procedure will be discussed in Chapter 7 and Chapter 8) and the discrete model result 

for three different materials. From these Figures we can see that the experimental data 

fitted curves are always above the curves of Equation (5.33). This may be due to two 

reasons. One is that the discrete element model is very accurate for small a but less ac-

curate for large a. The other one is due to the frictionless assumption in the discrete el-

ement model. Because in reality we can not eliminate the friction at the interface of the 

ring and the rigid boundary no matter how carefully we conduct the experiment. For-

tunately by neglecting the friction, the results of the discrete model are on the safe side 

which would be very conservative for design purposes. 

5.8 Summary 

From above discussions it can be seen that: 

The discrete model can accurately describe the behaviour of the buckling of the ring 

confined in a rigid boundary and is a simple and good model for theoretical analysis. In 

addition the results from the dimensional analysis method and the discrete element 

method have the same pattern which demonstrates that these two methods are powerful 

tools for the structure stability analysis and helps to substantiate the methods. 

The frictionless assumption results are on the safe side for a prediction of the critical 

buckling condition and are quite conservative for design purpose. This model is accu-
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rate for small a, and with a increasing, the error will increase. For more accurate anal-

ysis, the friction at the interface of the ring and the rigid boundary should be taken into 

consideration. In the next chapter, the model will be extended to account for friction. 
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Chapter 6 

DISCRETIZATION OF PROBLEM: MODEL TWO 

6.1 Introduction 

In Chapter 5, a discrete model was developed. In establishing the discrete model, 

the frictionless assumption was used. In this chapter, the discrete model will be ex-

panded and the friction at the interface of the ring and the rigid boundary will be taken 

into consideration. 

6.2 Basic Assumptions 

Similar to Chapter 5, the assumption (4) is changed as: 

(4) The frictional resistance force between the ring and the rigid boundary obeys 

Amonton's Laws, which are summarized as following statements [52]: (a) For low pres-

sures the frictional force is directly proportional to the normal pressure between the two 

surfaces. (b) The frictional force both in its total amount and its coefficient is independ-

ent of the areas in contact, providing the total pressure remains the same. 

6.3 Model Descriptions 

The model is established by the same discrete element method as described in Chapter 
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5. As shown in Figure 5.4 the continuous ring is replaced by a group of discrete rigid 

links which are connected at nodes by linear elastic rotational springs whose constant is 

k. The only difference is that there is frictional resistance force at each node which con-

tacts with the rigid boundary. 

6.4 Friction Consideration 

According to Amonton's laws of friction, the frictional force Ff is proportional to 

the weight W of the object which is being moved as shown in Figure 6. la. 

Ff = (6.1) 

where g is the coefficient of friction. In the frictionless situation, the reaction force R 

at the interface is in the direction of normal line n-n to the surface, while in the friction 

case, the total reaction force R is in the direction which has a angle with the surface 

normal line n-n due to the friction resistance force Ff. According to Figure 6. lb, we 

have 

F 
tan4 = 

n 

But R = W, then 

F 
taO = and Ff = tan4W 

(6.2) 

(6.3) 
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V 

(a) 

(b) 

Figure 6.1 Friction Coefficient and Friction Angle 
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Figure 6.2 Total Reaction Force at Node 1 
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Comparing Equation (6.2)and Equation (6.3) we obtain 

taO = R (6.4) 

Thus the angle is called as the friction angle. The friction angle defines the direction 

of the total reaction force at the inter-surface, and the friction angle is decided by the 

coefficient of friction at the inter-surface. 

For the discrete model, when buckling occurs, the nodes which contact the rigid 

boundary have a tendency to move along the rigid boundary toward the position where 

buckling takes place. Because of the existence of friction resistance force at the inter-

face, the total reaction force R1 at node 1 will act at the direction which has the angle 

4 with the radius line as shown in Figure 6.2. 

6.5 Equilibrium Analysis 

Figure 6.3 is the free body diagram of link 10, where R0 is the reaction force of the 

point obstacle to the node 0, R1 is the reaction force of the rigid boundary to node 1, P31 

is the reaction force of link T to link F is the reaction force of link N2 to link ?5T and 

M1 and M0 are reaction moments at node 1 and node 0 respectively. Because of the fric-

tional resistance force at node 1, the total reaction forceR1 has a angle with the normal 

line of the rigid boundary. P31 acts along a line which has an angle y with link TI. The 

angle y can be determined by equilibrium analysis of link T which will be done later. 

For the equilibrium in the vertical direction we obtain 
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R 
T +R1Cos (a—) —P31 sin (f3 —y) = 0 (6.5) 

Thus 

R 
=P31 sin (13—'y)—R1 Cos (a-4) (6.6) 

At the instant of buckling, the ring intends to lift off the boundary. Thus the critical con-

dition for the buckling is that the reaction force R0 at this moment vanishes, i.e. R. = 0. 

Then we have 

P = RI 1 sin (—'y) 
Cos (ec—th) 

(6.7) 

Considering the free body diagram of link Ofas shown in Figure 6.3 in the critical 

condition and taking moments about point 1, we have 

M0+M1—F = 0 (6.8) 

where M0 and M1 are reaction moments at node 0 and 1 caused by the changes of angle 

between two links connected at these points and they have the same values as described 

in Equations (5.18) and (5.19). 
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Figure 6.3 Free Body Diagram of link 01 
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There is only horizontal reaction force F at point 0 because of the symmetric condition. 

There are two forces at node 1, R1 and P31. P31 is the reaction force of link 13 to link 

10 and R1 is the total reaction force of the rigid boundary toward node 1. From the force 

equilibrium equation in the horizontal direction 

F— [P31 COS (3—?) +R1 sin (a-4)] = 0 (6.9) 

Substituting Equation (6.7) into Equation (6.9) we obtain 

F=P31[ COS (P — ?)+ sin (P—?) tan (a — )} (6.10) 

Bringing Equation (5.18), (5.19) and (6.9) into Equation (6.8) yields 

=0 (6.11) 

Then 

12k0 

P31 - {cos(—?) + sin (-7) tan (a—)} 

Bring Equation (5.13) into Equation (6.12) we have 

12E18 
P31 

r&x [COS (f3—y) + sin (—y) tan (a—)] 

(6.12) 

(6.13) 
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(a) 

3 

(b) 

Figure 6.4 Free Body Diagram of Link i 



84 
Bring Equation (5.31) into Equation (6.13) yields 

P31 — 
EBt38 

ra{cos (f3—'y) + sin (J3—y) tan (a—)] 

As shown in Figure 6.4 for the equilibrium at node 3 we must have 

cos 
P53 = 

Cos (+) 

Because P13=P31, we get 

(6.14) 

(6.15) 

a 
1Bt3E  Cos (.+7—) 

(6.16) 
53 - 2 r8 cos +) [cos (a —) + sin (a—y) tan (a_)] 

Also in Figure 6.4 taking the moments about node 3 we have 

M 1—P 13 lsin'y = 0 

Because P13=P31 and M1=2k0, we get 

2ke—P31 lsin'y = 0 

(6.17) 

(6.18) 
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Bringing Equation (6.12) into Equation (6.18) yields 

3asin'y— (1—cosa) [cos (0—y)+ sin (f3-7) tan (a—)] = 0 (6.19) 

For a given initial deflection 6, the angles a and 0 can be calculated from Equations 

(5.18) and (5.19). Then from Equation (6.26) angle 7 can be determined. 

As shown in Figure 6.5, we have 

- a 
cos(..—) 

P75 = P53 
a 

cos (. +) 
(6.20) 

It should be pointed out that only P13 deviates from acting axially along link 13 by an 

angle 7, while P53 and P75 are constrained to lie along link and link (see Figures 

6.4 - 6.5). This is because there is a reaction momentM1 at node 1 (see Figure 6.4) and 

a deviation angle 'y is needed to balance the moment M1. There are no reaction mo-

ments at nodes 3 and 5, thus P53 and P75 should be constrained to lie along link 53 and 

link 3 for equilibrium purposes. In the same manner, the force acting at the end of the 

half ring should be 

P=P53 

where 

-. a 
cos ( - 

a 
Cos (.-+) 

IC 
n = 

2a 

n 

(6.21) 

(6.22) 
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(a) 

5 

P75 

7C a 

Figure 6.5 Free Body Diagram of Link 35 
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Let 

Cf -

a 
cos ( +y—) 

_cos (-4) 

Cos (+) 

n 

cos(+4)[ Cos (a—') + sin (a_y) tan (a_)] 

Bringing Equations (6.16) and (6.23) into (6.21) we obtain 

Then 

P = EBt(!)()Cf 

- 

6.6 Comparison with the Results from the Frictionless Model 

(6.23) 

(6.24) 

(6.25) 

Comparing Equation (6.25) with Equation (5.33) it can be seen that only difference 

the two equations have is the coefficients Cf and C But if =O, we have Cf= C Then 

Equation (6.25) reduces to Equation (5.33). It means that Equation (6.25) is a general 

formulation of the buckling compression stress of a ring confined in a rigid boundary 

and the frictionless model is just a special case of the friction model. 

From Equation (6.23) it can be seen that Cf is affected both by the half center angle 

cc and the friction coefficient R. But a detailed study shows that in a small a region, Cf 
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is mainly affected by the friction coefficient Ii. Figure 6.6 is a diagram of Cf as affected 

by a. It shows that for a given value of p the changes of Cf with a are very small and 

for a small value of t, when p. = 0.0 - 0.6, the changes are insignificant. Figure 6.7 

is the relationship of Cf With p.. It shows that different values of [t will significantly 

change the value of C Therefore Cf is referred to as the friction effect coefficient and 

its value is mainly determined by the friction coefficient p.. 

6.7 Summary 

From the preceding analysis and comparison it can be seen that the friction plays an 

important role in the buckling behaviour of a thin elastic ring confined in a rigid bound-

ary. Friction resistance force at the interface increases the stability of a ring and thus has 

a positive effect on the critical buckling compression stress of the ring. The larger of 

the friction resistance force is, the larger the critical compression stress. The friction 

discrete model is closer to practice situation than the frictionless discrete model. The 

frictionless discrete model is just a special case of the friction discrete model. 
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Chapter 7 

EXPERIMENTAL ARRANGEMENT 

7.1 Introduction 

In Chapter 4-6, various models were developed. These models described the buck-

ling behaviour of a thin ring confined within a rigid boundary and can be used to predict 

the buckling load in certain conditions. These models are helpful to understand the 

problem and explore the properties that otherwise may be difficult to determine. But 

these models have to be verified by experiments. A fundamental relationship of the 

critical buckling compression stress with geometry, imperfection and material property 

was developed in Chapter 4 by using the dimensional analysis method. The undeter-

mined coefficients in this relationship need to be determined by experimental methods. 

In this chapter, an experimental apparatus will be described based on the loading situa-

tion and applicability. Experiments were carried out to explore the characteristics of 

buckling behaviours by using different materials, different geometries and different lu-

bricants. 

7.2 Experimental Apparatus 

An initial deflection of the ring can be introduced by an external disturbance or by 

an imperfection in the rigid boundary. An imperfection in the rigid boundary is much 
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easier to control and is much more reliable than an external disturbance in the experi-

mental process. Therefore an imperfection in the rigid boundary was imposed to create 

an initial centre deflection of the ring. Nevertheless, an initial deflection of a ring due to 

an imperfection can also be considered to be a combination effect of the geometric im-

perfection and the external disturbances. To stimulate the point imperfection on the rig-

id confinement a wire with diameter 5 was inserted between the ring and the rigid 

confinement as shown in Figure 7.1. By changing the diameter of the wire, different 

initial centre deflections can be imposed on the ring. 

In reality the hoop compression force P of a ring is introduced by a pressure between 

the ring and the outside boundary. The pressure is set up by a designed interference fit-

ting or radius mismatch between the ring and the rigid confinement as described in 

Chapter 3. Assume the radius of the ring is r1 and the radius of the rigid confinement is 

r. The difference of the two radii is 

Lr = r1—r (7.1) 

Then the pressure q at the interface between the ring and the rigid confinement will be 

given by (see Chapter 3) 

q = AE L?r —1 (7.2) 

where A is the cross-section area of the ring, E is the elastic modulus of the material. 

From Equation (7.2) it can be seen that different pressures can be obtained by changing 

the dimension mismatch zr. But it is very difficult to obtain a specific and exact 
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Figure 7.1 Insert a wire in between a Ring and a Rigid Confinement 

to Simulate a Point Imperfection on the Confinement 
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pressure between the ring and the boundary by designing the mismatched radii because 

variations or tolerances are unavoidable in machine shop practice. On the other hand, 

in order to get the critical pressure for a given initial centre deflection on the ring the 

continuous change of the radius mismatch is required. To obtain one critical pressure, a 

considerable number of specimens should be used. This makes the experiment very 

expensive and nearly practically impossible. Therefore the dimension mismatch meth-

od can only be used to check a specific rule or criteria. For a large scale of experimental 

investigation, an alternative method must be considered. This alternative method can 

be developed from the following analysis. 

As shown in Figure 7.2 an assembly of the ring and the rigid boundary was cut in 

half. There is a vertical compression load P acting at each end of the half ring. In the 

frictionless situation, this vertical compression load P (per unit width) is related to the 

pressure q at the interface between the ring and the rigid confinement by the following 

formulation[53] 

P = rq 

From Equation (7.3) it can be seen that the different pressures can be obtained by chang-

ing the end compression load P. On the other hand, for a specific vertical displacement 

at the end of the ring, a corresponding end vertical compression load. P can be ob-

tained. And subsequently a pressure, q at the interface between the ring and the rigid 

boundary can be found. If the end vertical displacement could change continuously, the 

end compression load would also change continuously. In this way, different pressures 

can be achieved by applying different vertical displacement at the end of the 
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P P 

Figure 7.2 A Half ring and Rigid Confinement Assembly 



96 
half ring. For a given initial centre deflection of the ring, we can continuously change 

the end vertical compression load by imposing a continuously changed end displace-

ment until the corresponding critical buckling compression load is reached. Thus to ob-

tain a critical load only one specimen is needed. This method is obviously more 

efficient, economical and practical than the dimension mismatch method. 

Based on the preceding analysis, an experimental apparatus was designed. Figure 

7.3 is a picture of the experimental apparatus. The experimental apparatus is schemat-

ically shown in Figure 7.4. In Figure 7.4, the rigid support (1) is a steel block with a 

half circular curvature and is considered as a rigid confinement. The machined surface 

of the rigid support was polished in order to reduce the friction between the ring and the 

support. Three rigid supports with different radii were used. The loading head (2) con-

sists of a steel bar and two load transfer plates. The two plates can slide along the steel 

bar. The specimen is item (3). The ends of the specimen are fixed by the two plates as 

shown. The plates are fastened together by two bolts. By adjusting the position of the 

plates on the load head, the portion of the specimen at the outside the rigid support can 

be made coincidental with the tangent of the half circular rigid support. A wire (4) is 

inserted at the bottom of the support to impose an initial deflection on the ring and to 

simulate a combination effect of the point imperfection and the outside disturbances. 

The apparatus was mounted in a materials testing machine MTS 810. The vertical load 

P can be measured and recorded continuously in response to the change of the end dis-

placement. 
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Figure 7.3 A Picture of the Experimental Apparatus 
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(2) Load head 

(3) Specimen 

(1) Rigid support 

(4) Inserted wire 

Figure 7.4 Schematic Diagram of the Experimental Apparatus 
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7.3 Specimens 

The specimens were made from four different materials, Steel (Steel shim 1010), 

Aluminium (Aluminium shim 1100), Plastic (Polyvinyl Chloride) and Cardboard. Di-

mensions of specimens and the elastic moduli E are listed in Table 7.1. The moduli of 

elasticity of steel and aluminium were taken from [48]. The moduli of plastic and card-

board were measured by the author (see Appendix A). From different thicknesses of 

the materials and three different radii of the rigid supports a wide range of () ratios 

could be obtained. 

Table 7.1(a) Test Materials' Elastic Moduli and Dimensions 

Materials Width B (mm) Thickness t (mm) E (GPa) 

Plastic Samplel 25.00 0.51 2.10 

Plastic Sample2 25.00 0.38 2.39 

Plastic Sample3 25.00 0.25 2.37 

Table 7.1(b) Test Materials' Elastic Moduli and dimensions 

Materials Width B (mm) Thickness t (mm) B (GPa) 

Steel Samplel 12.50 0.51 210 

Steel Sample2 12.50 0.38 210 

Steel Samp1e3 12.50 0.25 210 
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Table 7.1(c) Test Materials' Elastic Moduli and Dimensions 

Materials Width B (mm) Thickness t (mm) B (GPa) 

Aluminium Sample 1 12.50 0.51 78 

Aluminium 5amp1e2 12.50 0.38 78 

Aluminium Samp1e3   12.50 0.25 78 

Table 7.1(d) Test Materials' Elastic Moduli and Dimensions 

Materials Width B (mm) Thickness t (mm) B (GPa) 

Cardboard 25.00 0.60 4.15 

The three rigid support's radii are listed in Table 7.2. The diameters of the wires 

used to simulate the imperfections of the rigid boundary are listed in Table 7.3. 

Table 7.2 Radii of Rigid Supports 

Rigid Support No. Radius r (mm) 

1 203.2 

2 152.4 

3 101.6 

Table 7.3 Diameters of Inserted Wires 

mm 

81 82 83 54 85 56 57 68 

3.20 2.10 1.85 1.65 0.75 0.65 0.40 0.20 
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7.4 Experimental Procedure 

The tests were conducted on a MTS model 810 under displacement control mode. 

First, a specimen was bent elastically into position and pressed against the surface of the 

rigid boundary by imposing displacement on both ends. The component was then un-

loaded and a wire was inserted between the specimen and the rigid boundary as shown 

in Figure 7.4. The component was reloaded until buckling occurred. The displace-

ment-load curve was recorded on an X-Y recorder for both loading and unloading proc-

esses. 

Figure 7.5 is a typical displacement-load curve recorded during testing. Along curve 

B-C-D-E the end vertical displacement is increasing. Thus the curve B-C-D-E is called 

the loading curve. Along curve E-F-B the end displacement is decreasing. This portion 

of the curve E-F-B is called the unloading curve. From B to C the compression load P 

increases as the end displacement increases. The ring is in the stable equilibrium state. 

When the compression load reaches the critical point P, the specimen will suddenly 

jump to the large deflection position and the compression load drops rapidly from PC to 

D in a very short interval of time. Buckling occurs at point C. After this occurrence, 

the load will slowly decrease as the end displacement increases continually. When the 

curve reaches point E, the end displacement was reversed. From E to F the load increas-

es slowly as the end displacement decreases but when the end displacement decreases 

to a certain point, the specimen will suddenly jump back to the unbuckled position and 

the load increases to PF instantly. For a specific material the jump-back always occurs 

at the same point for the same specimen even if the buckling point is different for the 
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different initial deflection. This suggests that if the end compression load P is below 

the load PF at which the snap-back occurs, there is only one possible stable state which 

is the unbuckled state. If the load exceeds this point, there are two possible stable states, 

which are the original unbuckled state and the buckled large deflection state. Whether 

or not the specimen buckles when the load reaches this point depends on the magnitude 

of the imperfections or the external disturbances. This observation agrees with results 

from literature reviews in Chapter 2. 

7.5 Summary 

Based on equilibrium analysis an experimental apparatus was developed. Although 

the design of this apparatus is very simple, it is a powerful tool for experimental inves-

tigation of buckling behaviours of a ring confined within a rigid boundary. 
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Chapter 8 

EXPEREMENTAL RESULTS AND DISCUSSIONS 

8.1 Introduction 

In this chapter, experimental results for various materials and geometry will be dis-

cussed. First the three undetermined numbers in the buckling function developed in 

Chapter 4 will be derived from the experimental data. Then all the experimental results 

will be compared with the discrete element model results. Friction effects and local 

plastic deformation will also be discussed in detail. 

8.2 Experimental Results 

At each experimental point a minimum of four specimens was tested. The experi-

mental data at each point showed a amount of scatter. The average values at each point 

were calculated and used to derive the unknown quantities in Equation (4.10) and to 

compare with the discrete element model results. Table 8.1 -- Table 8.10 are average 

-s x103values from different materials. 
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Table 8.1 Ratio of aclE for Plastic Sample 1 
((TIE) x 103 

nt 
6.27 4.12 3.63 3.24 1.47 1.27 0.78 

200 1.70 2.53 2.93 3.10 6.30 

300 1.30 1.87 2.11 2.42 5.45 6.21 

400 0.92 1.36 1.55 1.73 3.92 4.54 6.75 

Table 8.2 Ratio of (TIE for Plastic Sample2 
((/E) x 103 

nt 

6/t 

8.42 5.53 4.87 4.34 1.97 1.71 1.05 

267 1.12 1.56 1.71 1.95 4.11 

400 0.77 1.15 1.28 1.36 2.98 3.42 5.14 

533 0.49 0.73 0.87 0.98 2.24 2.48 3.90 

Table 8.3 Ratio of cVE for Plastic Sample3 
(aYE) x iø 

nt 
6/t 

12.80 8.40 7.40 6.60 3.00 2.60 1.60 

400 0.48 0.69 0.77 0.86 1.42 1.53 

600 0.30 0.49 0.51 0.58 1.17 1.28 

800 0.24 0.35 0.41 0.46 0.91 1.02 1.44 

Table 8.4 Ratio of cfE for Aluminium Samplel 
(aYE) x 103 

nt 

alt 

6.22 3.94 3.50 3.11 1.38 1.18 

200 0.35 0.53 0.57 0.65 1.22 1.29 

300 0.30 0.45 0.52 0.62 1.13 1.27 

400 0.38 0.57 0.63 0.71 1.27 1.38 
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Table 8.5 Ratio of YIE for Aluminium Sample2 (/E) >< 103 

nt 
8.29 5.25 4.67 4.15 1.84 1.57 

267 0.30 0.44 0.50 0.54 1.11 1.28 

400 0.28 0.42 0.48 0.52 1.05 1.14 

533 0.34 0.48 0.54 0.62 1.24 1.32 

Table 8.6 Ratio of o/E for Aluminium Sample3 ((Y/E) x 103 

nt 
12.44 7.87 7.01 6.22 2.76 2.36 

400 0.16 0.23 0.28 0.30 0.57 0.74 

600 0.15 0.22 0.23 0.26 0.55 0.60 

800 0.16 0.22 0.25 0.28 0.50 0.65 

Table 8.7 Ratio of aclE for Steel Samplel (/E) >< 103 

nt 
12.60 9.33 6.22 3.94 3.50 3.11 1.38 

200 0.65 0.99 1.15 1.23 2.37 

300 0.58 0.85 0.99 1.07 1.85 

400 0.23 0.31 0.49 0.73 0.88 0.93 1.60 

Table 8.8 Ratio of /E for Steel Sample2 ((TIE) x 103 

nt 
8.29 5.25 4.67 4.15 1.84 1.57 

267 0.53 0.78 0.87 0.98 1.76 1.93 

400 0.42 0.72 0.79 0.86 1.56 1.99 

533 0.35 0.39 0.41 0.43 0.71 0.82 
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Table 8.9 Ratio of G/E for Steel 5amp1e3 
(cy/E) x 103 

nt 

alt 

12.44 7.87 7.01 6.22 2.76 2.36 

400 0.28 0.42 0.47 0.55 1.00 1.04 

600 0.21 0.29 0.37 0.44 0.79 0.83 

800 0.14 0.19 0.21 0.23 0.41 0.46 

Table 8.10 Ratio of o/E for Cardboard 

1.00 
nt 

6/t 

5.27 3.33 2.97 2.63 1.17 

170 1.14 1.75 1.82 1.97 

253 1.08 1.58 1.64 1.85 2.93 3.43 

nt 
17.92 11.89 8.94 5.92 3.81 3.06 1.43 1.17 0.28 

338 0.27 0.50 0.63 0.91 1.25 1.55 2.12 2.60 3.83 

8.3 Buckling Function and Verification 

In Chapter 4 a relationship of the critical buckling compression stress ac with the 

elastic modulus E and two dimensionless variables (.) and ( -i) were derived by us-

ing the dimensional analysis method (see Equations (4.9),(4.10) and (5.1)) 

From Equation (5.1) it can be seen that the critical buckling compression stress 

is proportional to the elastic modulus of the ring material. But the critical buckling com-

pression stress can not be completely determined unless the three numbers C, b and 
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d are known. Thereafter, the three unknown numbers C, b and d will be determined by 

using the least squares method for the different materials. 

Only experimental data in Table 8.1-Table 8.3 were used to derive the three unde-

termined numbers in the buckling function (8.1). The reason for this is that the buckling 

function was derived under the total elastic material assumption. In experiments, local 

plastic deformation was observed for all materials except the plastics. That is why ini-

tially only data from plastic materials were used. This initial analysis using a multi-var-

iable least square method resulted in the following three numbers. 

C = 1.9970 b = —0.9917 d = —0.9499 (8.la) 

The 99 percent confidence intervals for the three parameters are [57,58] 

CI (C) = [1.9414,2.0843] 

CI (b) = [-1.0318,-0.9508] 

CI (d) = [-0.9921,-0.9077] 

With 0.01 lever of significance we can accept that 

C = 2.00 b = —1.00 d = —0.95 (8.lb) 

Thus the buckling function for the plastic becomes 

-1.00 -0.95 

f[(r) 71 = 2.00(i) (7) = (8.2) 
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To test the validity of Equation (8.2), according to Chapter 4, first () is held con-

stant at a value of 4.34 and a component equation is determined by the least square 

method from the data in Table 8.2 

f[(.),4.34] = 0.4939x () 
-0.9885 

(8.3) 

Then (?) is held constant at a value of 400 and another component equation can be 

determined from the data in Table 8.2 

-0.9222 

f[400, (7)] = 0.5483x10 2(7) (8.4) 

Similarly another two component equations can be determined from the data in Table 

8.2 

And 

f[ (r) 4.87] 4.87] = 0.3768 -0.9605 

-1.0098 
f[533, ()] = 0.4247 x 10_2() 

(8.5) 

(8.6) 

f[400,4.341 = 1.36X 10-3 f[533, 4.871 = 0.87X 10-3(8.7) 

f[400,4.871 = 1.28X i0 f[533, 4.34] = 0.98 x i0 (8.8) 
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Using Equation (4.23) to test the validity of the prediction Equation (8.2), we have 

f[400, ()] ()] f[533, = -1.0098 
(8.9) = 4.0316( 

f[533, 4.34] f[400, 4.34] 

Figure 8.1 is the comparison of two equations in Equations (8.9). It is found that 

f[400, ()] f[533, (N 

f[400, 4.34] f[533, 434] 

Using Equation (4.24) to conduct another test, we obtain 

(8.10) 

f[ (r) 4.34] f[ (.), 4.87] 
  = 294.37 -0.9605 (8.11)   - 363.16 -0.9885 

f[400, 4.34] t f[400, 4.87] 

Figure 8.2 is the comparison of two equations in Equations (8.11). It is also found that 

f[(),4.34] f[(),4.87] 

f[400, 4.34] f[400, 4.87] 
(8.12) 

From the preceding test, it is concluded that the form of the prediction Equation (8.2) is 

valid. 

Figure 8.3 is a comparison of the dimensional analysis fitted curves with the exper-

imental data. Figure 8.4 is the comparison of Equation (8.2) with Lo and Chan's theo-

retical results. The experimental data are in good agreement with the curves of Equation 

(8.2) in Figure 8.3. But the curves of Equation (8.2) are well above Lo and Chan's the-

oretical results. This is due to the friction effect which will be discussed later. 
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8.4 Comparison with Discrete Element Model for Plastics Materials 

Figure 8.5 -Figure 8.13 are comparisons of the experimental data for plastic mate-

rials with the results of the discrete element model analysis. 

Comparing Equation (8.2) with Equation (5.33) and Equation (6.25) it is found that 

the exponents of two dimensionless variables () and ( -i) are in a very good agree-

ment with the discrete element model results and the exponents b and dare both approx-

imately -1. 

The coefficient C in Equation (8.2) is 2.00. In Equation (5.33) the coefficient C is 

approximately 1/2. It is obvious that the coefficient value from the experimental data is 

not in agreement with the frictionless discrete element model. This indicates that the 

friction resistance must exist in the experiment. It also indicates that the friction factor 

has a large effect on the coefficient and a little effect on the exponents of the buckling 

function. 

The friction coefficient i can be determined analytically by comparing Equation 

(8.2) with Equation (6.25). Let 

= 2.00 

Solving Equation (8.13) for a = 5°, we obtain 

(8.13) 

t0.87 (8.14) 
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Figure 8.13 Comparison of Experimental Results with Discrete Element Model Results for Plastic 
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From Figure 8.5 - Figure 8.13 it can be seen that the experimental data of plastic 

materials are scattered in the region of p. = 0.8 - 1.0. The friction coefficient meas-

ured as found in Appendix B is p. = 0.79 1.14. 

8.5 Comparison with Discrete Element Model for Other Materials 

For materials other than plastics, some local plastic deformations were observed in 

the experiments. The plastic deformation will affect both the coefficient C and the ex-

ponents b and d of the buckling function. 

For Aluminium, the three undetermined numbers are 

C = 5.6269 b = —0.2110 d = —0.8730 (8.15) 

For Steel, the three undetermined numbers are 

C = 296.50 b = —0.8367 d = —0.7752 (8.16) 

For Cardboard, the three undetermined numbers are 

C = 67.133 b = —0.5581 d = —0.6465 (8.17) 

The measured friction coefficient p. for three materials are (see Appendix B): 

Steel: p. = 0.24 - 0.34 
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Aluminium: g = 0.20 - 0.25 

Cardboard: g = 0.17 - 0.22 

Figure 8.14 -Figure S. 22 are the comparisons of the experimental data for steel with 

the discrete element model results. Figure 8.22-8.31 are the comparisons of the exper-

imental data for aluminium with the discrete element model results. Figure 8.32-Figure 

8.34 are the comparisons of the experimental data for cardboard with the discrete ele-

ment model results. 

Unlike plastic materials, the experimental data do not follow the curves of the dis-

crete element model. In the large imperfection region the experimental data follow the 

discrete element model results quite well. But in the small imperfection region, the ex-

perimental data are at below the discrete element model results. This can be explained 

by the local plastic deformation observed in the experiments for these materials. At the 

large imperfection region, the critical load is relatively low and the plastic deformation 

is negligible, so that the experimental data are in good agreement with the theoretical 

analytical results. But in the small imperfection region, the critical load is relatively 

large and the local plastic deformations are very obvious and have a strong effect on the 

critical buckling load as the experimental data are well below the theoretical analysis 

results. 
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Figure 8.17 Comparison of Experimental Results with Discrete Element Model Results for Aluminium 
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Figure 8.20 Comparison of Experimental Results with Discrete Element Model Results for Aluminium 
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Figure 8.21 Comparison of Experimental Results with Discrete Element Model Results for Aluminium 
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Figure 8.22 Comparison of Experimental Results with Discrete Element Model Results for Aluminium 
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Figure 8.23 Comparison of Experimental Results with Discrete Element Model Results for Steel 
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Figure 8.24 Comparison of Experimental Results with Discrete Element Model Results for Steel 
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Figure 8.26 Comparison of Experimental Results with Discrete Element Model Results for Steel 
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Figure 8.27 Comparison of Experimental Results with Discrete Element Model Results for Steel 
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Figure 8.28 Comparison of Experimental Results with Discrete Element Model Results for Steel 
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Figure 8.29 Comparison of Experimental Results with Discrete Element Model Results fo Steel 
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Figure 8.30 Comparison of Experimental Results with Discrete Element Model Results for Steel 
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Figure 8.31 Comparison of Experimental Results with Discrete Element Model Results for Steel 
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Figure 8.32 Comparison of Experimental Results with Discrete Element Model Results for Cardboard 
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Figure 8.33 Comparison of Experimental Results with Discrete Element Model Results for Cadboard 
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Figure 8.34 Comparison of Experimental Results with Discrete Element Model Results for Cardboard 
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8.6 Comparison of Results for Different Lubricants 

The friction resistance is one of the major factors which influences the critical buck-

ling stress. The friction coefficient is dependent on the materials. From preceding dis-

cussions it can be seen that for different materials, the friction coefficients are different. 

The friction coefficient is also dependent on the lubrication condition at the interface. 

Figure 8.35 is a comparison of different lubrication conditions for the same plastic 

material. In the first case, no lubricant was used. In the second case, a light viscosity 

oil (Three-in-One Oil) was used at the interface. In the third case, a dry lubricant, Mo-

lybdenum (IV) sulphide was used. Comparing these three cases, it is surprising to find 

that the oil lubricant case appears to have the largest friction resistance instead of no lu-

bricant case. The explanation is that the oil surface tension prevents the specimen from 

lifting off the rigid boundary. For the dry lubricant, there is no liquid surface tension. 

Therefore the smallest friction resistance case is the dry lubricant case. 
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8.7 Summary 

From the experimental results and discussions, we find that the experimental data 

are in good agreement with the discrete element model results for plastic materials. For 

other materials the experimental data are in good agreement with the discrete element 

model results in the large imperfection region when accounting for friction but are not 

in agreement with the discrete element model results in small imperfection region. Lo-

cal plastic deformation is the main factor which causes these discrepancies between the 

experimental data and the theoretical results. Friction coefficient has a strong effect on 

the critical buckling stress. But the friction resistance will only affect the coefficient of 

the buckling function. Local plastic deformation will affect both the coefficient and the 

exponents for the two dimensionless variables of the buckling function. 
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Chapter 9 

FINITE ELEMENT ANALYSIS 

9.1 Introduction 

The finite element method is a powerful numerical analysis technique for obtaining 

approximate solutions to a wide variety of engineering problems. In this chapter, the 

finite element method is used to investigate the behaviour of a ring confined within a 

rigid boundary. First, a half ring model will be developed to simulate the discrete ele-

ment models and the experimental model. ANSYS 4.4 was used to carry out the calcu-

lations. Then the results will be compared with the discrete element model results. 

9.2 Model Description 

The two dimensional beam element is used to establish the half ring model. As 

shown in Figure 9. 1, from 0 to 10 degrees centre angle region the arc was divided into 

1/4 degree per element. In this region the displacements and stresses change quickly be-

cause an initial deflection was caused by a point imperfection. From 10 to 20 degrees 

the arc was divided into 1 degree per element. Beyond 20 degrees the ring was divided 

into 10 degrees per element because in this region the changes of displacement and 

stress change are relatively small. 
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Figure 9.1 Half Ring Divided into Beam Elements 
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The interface between the ring and the rigid boundary was characterized by two-

dimensional interface elements. The two-dimensional interface element represents two 

surfaces which may maintain or break physical contact and may slide relative to each 

other. The element is capable of supporting only compression in the direction normal to 

the surfaces and shear (Coulomb friction) in the tangential direction. The geometry, 

nodal point locations, and the coordinate system for the elements are shown in Figure 

9.2. The element is defined by two nodal points, an angle to define the interface, a stiff-

ness K, an initial displacement interference, and an initial element status. An element 

coordinate system (T-N) is defined on the interface. The orientation of the interface is 

defined by angle 0 which is measured from the global X axis. The K value should be 

based upon the stiffness of the surfaces in contact. For this problem the local surface 

deformation is not important and K can be estimated as an order of magnitude of two 

greater than the adjacent element stiffness (AE/Q. The stiffness K is associated with a 

zero or positive interference. For the negative interference which represents the gap size 

of interface, the stiffness K is zero. The only material property used is the interface co-

efficient of friction i. A zero value represents frictionless surfaces. 

The finite element model is shown in Figure 9.3 in which only a quarter of the as-

sembly of a ring and a rigid boundary is presented because of the symmetry condition. 

The origin global coordinate system is located at the centre of the ring and the rigid 

boundary. A quarter of a ring was characterized by 59 elements having nodal points at 

the middle radius of the ring. The interface between the ring and the rigid boundary was 

characterized by 58 two-dimensional interface elements. ANSYS 4.4 preprocessing 

routine PRBP7 [54, 55] was used to generate the model. 
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Interface element 

Figure 9.3 Half Ring Finite Element Model 
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The boundary conditions are that both the displacement in the tangential direction 

and the rotation at node 1 are zero. At node 59, both the displacement in the direction 

of the radius and the rotation are zero. All displacments for the interface element nodes 

at the boundary side are zero. 

Two kinds of external conditions were applied. First at node 59 a vertical compres-

sion load P was applied. Then at node 1 a displacement 6 in the radial direction was ap-

plied. 

9.3 Calculation Steps 

In the experimental process an initial deflection 6 was given by inserting a wire with 

diameter 6 in between the ring and the rigid support at the bottom. Then the critical end 

compression force Par can be obtained from the displacement-load diagram recorded in 

the experimental process. In the finite-element calculations the reverse was done. That 

is an end compression force P was applied first while the initial deflection is zero at the 

bottom of the ring. Then a small deflection 80 was introduced at the bottom of the ring, 

then the reaction force  at the bottom can be calculated. As shown in Figure 9.3, if the 

reaction force at the bottom is 

R>O 

the ring is in a stable condition because a force is needed to push the ring in this position. 

If this force disappears, the ring will come back to the original position. After the initial 

deflection, the deflection will increase gradually until the reaction force R reaches zero. 
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R=O 

Then the deflection 6 corresponding to the zero reaction force is the critical deflection 

6r for the given end compression force P. That is if the inward displacement caused by 

the geometric imperfection, or the outside disturbance, or the combination of these two 

factors is smaller than 6, the ring will not buckle but if the inward displacement is larg-

er than 6,, the ring will buckle. When the initial deflection S reaches beyond the value 

S- the reaction force R will change direction, i.e. 

R<O 

Because this force at this stage is to hold the ring from jumping to the large deflection 

position, i.e. the buckled configuration. 

The calculation steps can be summarized as follows: 

Step 1 Apply load P at node 59. 

Step 2 Apply inward displacement S = 80 at node 1. 

Step 3 Calculate the vertical reaction force R at node 1. 

Step 4 If R=O, then 68, go to Step 6; else go to Step 5. 

Step 5 If R>0, 6 = S + AS, go to Step 3; else S = 8—A8, go to Step 3. 

Step 6 Stop. 

Figure 9.4 is the calculation flow chart. 
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Figure 9.4 Calculation Flow Chart 
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Figure 9.5 Comparison of Finite Element Results with Discrete Model Results 
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Figure 9.6 Buckled Configuration of the Ring 
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9.4 Results and Discussions 

Figure 9.5 is the comparison of finite-element calculation results with the discrete 

element model described in Chapter 6 and Chapter 7. The friction coefficient, p. is 0.4 

in Figure 9.5. It can be seen that the finite-element analysis results are in good agree-

ment with the discrete element model analysis results. Figure 9.6 is the buckled config-

uration of the ring. 

9.5 Summary 

A half ring finite element model was developed by using the beam element and the 

interface element. ANSYS 4.4 was used to carry out the calculations. The results are 

in good agreement with the discrete element model results. 
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Chapter 10 

CONCLUSIONS AND RECOMMENDATIONS 

10.1 Introduction 

From all theoretical analysis, experimental investigation and finite element calcula-

tion results presented from Chapter 1-Chapter 9, the buckling behaviour of a ring con-

fined within a rigid boundary and the major factors which influence the critical buckling 

conditions were quite clear. In this chapter, the major results will be briefly summa-

rized and conclusions and recommendations will be made. Finally, future work will be 

suggested. 

10.2 Dimensional Analysis 

A relationship of the critical buckling compression stress of a ring confined within 

a rigid boundary with the elastic modulus of the material, geometry and imperfections 

or external disturbances was developed by using the dimensional analysis method. 

The critical buckling compression stress is proportional to the elastic modulus of 

materials. The buckling function f[ (i), (-)] only depends on two dimensionless 

variables (.) and (7) . Thus the buckling function is determined by the geometry and 

the imperfections or the external disturbances. 

The buckling function has one undetermined coefficient C and two undetermined 
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exponents b and d. These undetermined coefficient and exponents can be determined 

from experimental results. 

10.3 Discrete Element Model Analysis 

The discrete element model can accurately describe the behaviour of the buckling 

of the ring confined in a rigid boundary and is a simple and good model for theoretical 

analysis. In addition the results from the dimensional analysis method and the discrete 

element method have the same pattern which demonstrates that these two methods are 

powerful tools for the structure stability analysis and helps to substantiate the methods. 

The frictionless model results are on the safe side for a prediction of the critical 

buckling condition and are very conservative. The friction model results are closer to 

the real situation and are suitable for design purposes. The discrete element model is 

accurate for small o, and with o increasing, the error will increase. 

Friction plays an important role in the buckling behaviour of a thin elastic ring con-

fined in a rigid boundary. Friction resistance force at the interface has a positive effect 

on the critical buckling compression stress of the ring. The larger the friction resist-

ance force, the larger the critical compression stress. The discrete element model when 

considering friction is closer to practice situation than the frictionless model. The fric-

tionless model is just a special case of the friction model. 

10.4 Experimental Results 

From the experimental results, we find that the two exponents for dimensionless 
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variables (.) and ( -i) are approximately -1 for total elastic materials, as displayed by 

the behaviour of the plastic materials. The experimental data are in good agreement 

with the discrete element model results for plastic materials. For other materials the 

experimental data are in good agreement with the discrete element model results in the 

large imperfection region when accounting for friction but are not in agreement with the 

discrete element model results in small imperfection region. Local plastic deformation 

is the main factor which causes these discrepancies between the experimental data and 

the discrete element model results. The friction coefficient has a strong effect on the crit-

ical buckling stress. But the friction resistance will only affect the coefficient of the 

buckling function. Local plastic deformation will affect both the coefficient and the ex-

ponents for the two dimensionless variables of the buckling function. 

10.5 Finite Element Analysis 

A half ring finite element model was developed by using the beam element and the 

interface element. ANSYS 4.4 was used to carry out the calculations. The results are 

in good agreement with the discrete element model results. 

10.6 Conclusions 

From the above brief summary, we conclude: 

(1) It is confirmed that the critical buckling load is proportional to the elastic mod-

ulus of materials. 

(2) It is also confirmed that the initial deflection ö, which may be caused by geomet-
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nc imperfection of the boundary, or external disturbance, or combination of geometric 

imperfection and external disturbance, makes the ring buckle. When 6=0, there is no 

critical load in the elastic region. 

(3) Friction at the interface has a positive effect on the critical load. The larger the 

friction is, the larger the critical load. The larger the friction is, the more difficult for 

the ring to slide along the boundary. 

(4) Local plastic deformation which occurs in the lift out region of the ring has a 

negative effect on the critical buckling load. The larger the local plastic deformation is, 

the lower the critical buckling load becomes. 

(5) In the elastic region, the critical load is proportional to the two dimensional var-

iables (!) and (h). 

10.7 Recommendations 

From above conclusions, we have following recommendations: 

(1) From the geometry view point, increasing the thickness, t, of the ring, reducing 

the radius, r, of the boundary can make the ring more stable. 

(2) From the material view point, choosing high elastic modulus and high yield 

strength materials can improve the stability of the ring. 

(3) From the boundary condition view point, increasing friction at the interface can 

increase the critical load. 

(4) Last but the most important point, reducing geometric imperfections of the 

boundary and external disturbances in the manufacture and assembly process can pre-

vent the ring from buckling. 
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10.8 Future Work 

Local plastic deformation plays the important role in determine the critical buckling 

conditions for a ring confined within a rigid boundary. So far in the study, no quantita-

tive relationship of plastic deformation and the critical buckling load has been derived. 

Further study should focus on this aspect. 
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Appendix A 

MEASUREMENT OF ELASTIC MODULUS 

The elastic modulus of a material is a very important property for the buckling anal-

ysis of a ring confined within a rigid boundary. In the buckling experiment, four kinds 

of materials were used. These materials are steel, aluminium, plastic and cardboard. For 

steel and aluminium, the moduli can be obtained from the resource or material hand-

books. For plastic and cardboard, these data are not available. Therefore the moduli of 

plastic and cardboard should be measured experimentally. 

It is assumed that the relationship of stress and strain is linear in the small load re-

gion 

o=EP_ (A.1) 

For cardboard, the tension modulus and the compression modulus are generally differ-

ent. But for the small compression load which is the case in our experiment, it can be 

assumed that the tension and compression moduli are the same. Thus the tension mod-

ulus instead of compression modulus can be measured. Since plastic and cardboard are 

soft material, the method used to measure the modulus of metal is not suitable for this 

case. If the material is steel, strain gages can be placed on the specimen and the curve 

of stress versus strain is obtained directly. Then from Equation (A. 1) the elastic modulus 

is easily deduced. But for the soft materials, strain gauges can not be placed on the spec-
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imen. The strain obtained this way would not be the real strain of the material because 

the material itself is much softer than the material of strain gauges. How to measure 

strains of soft materials such as tissues, papers and plastics is the technology challenge 

for the engineers and scientists. A new method was designed to measure the strains of 

the plastics and the cardboard, which is referred here as the relative method. Following 

is the detail description of the method. 

For each test, two specimens should be prepared. The two specimens are identical 

in all sizes except the length of the gage as shown in Figure A. 1. From Figure A. 1 we 

have 

L1= 2a+l 

= 2a+21 

At the same load, the total elongations of specimens are 

LL1=2Lia+ttl 

LL2 = 2a+2\J 

(A.2) 

(A.3) 

If we can measure the elongation LL1 and L'L2 of these two specimens, from Equa-

tions (A.3) we obtain: 

L\L2—LXL1 = Al (A.4) 
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L1 

21 

Figure A. 1 Specimens for Measurement of Elastic Modulus 
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In this way all boundary effects are eliminated and the real gage elongation Al is ob-

tained. Then the strain of the specimen is calculated by 

(A.5) 

As described above it can be sure that the relative method is a very effective and an easy 

method to measure the strains of soft material which can not be attached by strain gages 

or other gages. 

The experiments were conducted on the MTS machine in the Laboratory, Depart-

ment of Mechanical Engineering, The University of Calgary. The experimental setup 

is shown in Figure A.2. 

The relationship of the load and the displacement between two grips is recorded au-

tomatically by the x-y record. The loading is displacement control and the rate of dis-

placement is 0.00625 mm per second. For each material, at least three pairs of 

specimens were tested and an average of three data points were taken as the Young's 

modulus of the material. 
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Figure 4.2 Experimental Setup for Measurement of Elastic Modulus 
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Table A. 1 - A.4 are measured moduli of materials: cardboard and plastics. 

Table A. 1 Elastic Modulus of Cardboard 

P 
(N) 

t 

(mm) 
B 

(mm) 

CY 

(MPa) 

Al 

(mm) 
1 

(mm) 
a 

(10) 
E 

(GPa) 

Pair 1 222 0.60 20 18.53 0.44 100 4.45 4.17 

Pair 2 222 0.60 20 18.53 0,45 100 4.54 4.08 

Pair 3 222 0.53 20 20.98 0.50 100 5.00 4.20 

Average Modulus 4.15 

Table A.2 Elastic Modulus of Plastic Samplel 

P 
(N) 

t 
(mm) 

B 
(mm) 

'Y 

(MPa) 

Al 
(mm) 

1 
(mm) 

8 

(1O) 
B 

(GPa) 

Pair 1 222 0.508 20 21.89 1.07 100 10.70 2.05 

Pair 2 222 0.508 20 21.89 1.12 100 11.17 1.96 

Pair 3 222 0.508 20 21.89 0.95 100 9.53 2.29 

Average Modulus 2.10 
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Table A.3 Elastic Modulus of Plastic Sample2 

P 
(N) 

t 

(mm) 
B 

(mm) 

(Y 

(MPa) 

Al 
(mm) 

1 
(mm) 

a 
(l0) 

E 
(GPa) 

Pair 1 178 0.381 20 23.41 0.98 100 9.78 2.39 

Pair 2 178 0.381 20 23.41 0.97 100 9.65 2.43 

Pair 3 111 0.381 20 14.83 0.64 100 6.35 2.34 

Average Modulus 2.39 

Table A.4 Elastic Modulus of Plastic Sample3 

P 
(N) 

t 

(mm) 
B 

(mm) (MPa) (mm) 
1 

(mm) 
a 

(10) 
E 

(GPa) 

Pair 1 111 0.254 20 22.24 0.97 100 9.66 2.30 

Pair 2 111 0.254 20 22.24 0.99 100 9.91 2.25 

Pair 3 89 0.254 20 17.79 0.69 100 6.99 2.55 

Average Modulus 2.37 
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Appendix B 

MEASUREMENT OF FRICTION COEFFICIENT 

It is assumed that the friction between a ring and a rigid boundary obey Amonton 

and Coulomb's Law: (1) the friction resistance Ff is proportional to the weight of the 

object which is being moved as shown in Figure B.1, i.e. 

Ff =L.W (B.1) 

where p. is the fiction coefficient; (2) the frictional force is independent of the apparent 

area of contact; (3) the interfacial resistance between two surfaces is independent of the 

velocity of sliding. 

According to the definition of the friction coefficient p., there are many ways to 

measure the fiction coefficient. The direct way is that of increasing the pull force F grad-

ually until the object starts moving. Then from equilibrium condition, we have 

Then 

F=Ff =p.W 

F 
W 

(B.2) 

(B.3) 
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Figure B.1 Definition of the Friction Law 
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Figure B. 2 Setup for Measurement of Friction Coefficient 
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A different method was used to measure the friction coefficient. As shown in Figure 

B.2, we have 

N=Wcos$ 

Ff=Wsin$ 

According to Equation (B.1) 

Ff =pN 

Bringing Equation (B.4) into Equation (B.5), we obtain 

H 
= tan -  (B.6) 

JL2_H2 

(B.4) 

(B.5) 

where 4i is called friction angle. From Equation (B.6), it can be seen that the friction 

coefficient is independent of the weight of the object. The length of the base plate, L in 

Figure B.2 is known for the given setup. The only unknown is H. The base plate is made 

of the same material as the rigid support in the buckling experiment and was polished 

to be the same finish as the rigid support. 

The procedure of measurement is very simple. First, put a piece of material of the 

ring on the base plate. Then gradually increase the angle until the material starts slid-

ing along the plate. Measuring the height H and bringing it into Equation (B.6), we can 

calculate the friction coefficient. Ten measurements were made for each of materials. 

The results are listed in Table B.1-B.4. 
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Table B. 1 Friction Coefficient for Steel 

Lubricant. Three-in-one oil 

No. 1 2 3 4 5 6 7 8 9 10 Average 

H(mm) 59 77 73 63 73 73 70 66 69 81 70 +11 

ji 0.24 0.32 0.30 0.26 0.30 0.30 0.29 0.27 0.28 0.34 0.29 +0.05- 0.05 

Table B.2 Friction Coefficient for Aluminium 

Lubricant: Three-in-one oil 

No. 1 2 3 4 5 6 7 8 9 10 Average 

H(mm) 50 53 56 54 51 61 50 53 60 58 55 

p. 0.20 0.21 0.23 0.22 0.21 0.25 0.20 0.21 0.24 0.23 0.22 

Table B.3 Friction Coefficient for Cardboard 

Lubricant: None 

No. 1 2 3 4 5 6 7 8 9 10 Average 

H(mm) 49 42 46 44 48 50 55 55 52 51 49 

p. 0.20 0.17 0.18 0.18 0.19 0.20 0.22 0.22 0.21 0.20 0.20 

Table B.4 Friction Coefficient for Plastic 

Lubricant: Three-in-one oil 

No. 1 2 3 4 5 6 7 8 9 10 Average 

H(mm) 157 188 198 177 192 174 178 165 174 195 
18 
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9 0.79 1.10 1.24 0.97 1.15 0.94 0.98 0.85 0.94 1.20 l.O2 


