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ABSTRACT

Local buckling behaviour of an elastic ring confined within a rigid boundary was
investigated both theoretically and experimentally. The study involved considerations
of material properties, dimensions, geometric imperfection, and the friction effect at the
interface.

The study started by using the dimensional analysis method to develop a fundamen-
tal relationship of the critical buckling compression stress with the elastic modulus, di-
mensions and the initial deflection. Then two discrete models were developed. One
model was developed under the frictionless assumption and another was developed by
taking the friction into consideration. Following this, an experimental apparatus was
developed and a large scale tests were carried out. Finally, a finite element model was
established and ANSYS 4.4 was used to carry out the calculations.

The results indicated:

(1) The Critical buckling load is proportional to the elastic modulus of materials.

(2) The initial deflection 8, which may be caused by geometric imperfection of the
boundary, or external disturbance, or combination of geometric imperfection and ex-
ternal disturbance, makes the ring buckle. When 8=0, there is no critical load in the
elastic region.

(3) Friction at the interface increases the stability of the ring. The larger the friction,
the larger the critical load. The larger the friction, the more difficult for the ring to slide
along the boundary.

(4) Local plastic deformation which occurs in the lift out region of the ring has a

(i)



negative effect on the critical buckling load. The larger the local plastic deformation,
the lower the critical buckling load becomes.

(5) In the elastic region, the critical load is proportional to the two dimensional var-
iables: the ratio of the thickness of the ring to the radius of the rigid boundary, (; ) and

the ratio of the thickness of the ring to the height of a point imperfection on the rigid

boundary, ( %) .
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Chapter 1
INTRODUCTION

1.1 Problem

A common type of design used in many mechanical applications is that of sleeving
the inside of cylinders, pumps, or other types of pressure components or storage con-
tainers. The application may be in order to improve acoustic, electrical or thermal in-
sulation, to prevent leakage, corrosion or mechanical damage. In addition, the
installation of a liner is often used for repairing components. The process involves ma-
chining a thin cylindrical shell and forcing it to contract by the use of cold temperature
application and inserting the contracted shell into a pre-machined cylinder or casing.
Once the two components have equalized in temperature a presure is set up at the inter-
face due to the designed mismatch. This combined with the effect of friction, mechan-
ically fixes the sleeve to the outer support cylinder.

In practice, failure of interference fits often occurs as a result of local buckling and
separation of the cylinders in contact. This problem has become of increasing concern
in view of its s;afety and economic implications. For some pressure components where
these interference shrink liners are utilized, equipment costs can be in excess of one mil-
lion dollars. Therefore the repair of a unit using a liner becomes extremely significant
in terms of economic considerations. However, despite the fact that the stresses gener-

ated by various interference fits can be accurately determined by calculations, to date,



(a) Before buckling

(b) After buckling

Figure 1.1 A Ring Confined within a Rigid Boundary
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little information is available that can be used to predict the critical buckling conditions

of interference fits. The design procedures currently émployed by manufacturers such
as Peacock Inc. and Fluor Canada rely on the experience accumulated from various trial
and error experiments which can not provide a general solution especially when new
materials or different dimensions are considered in the design.

This problem can simplified as a ring surrounded by a rigid circular surface as
shown in Figure 1.1. A hoop compression stress of the ring is created by themal expan-
sion, shrink-fitting, etc. When the value of the compression hoop stress reaches some
critical point, the ring will suddenly lift off the rigid boundary and buckle inward as
shown in Figure 1.1 (b). This problem has some characteristics which differ from ordi-
nary buckling problems in that, (1) it is an one-way buckling problem since the rigid
boundary prevents outward displacement of the ring; (2) before and after buckling, the
load conditions are largely different from each other. Before buckling occurs, there is
a constant pressure at the interface between the ring and the rigid boundary. But after
buckling occurs, a portion of the ring lifts off the rigid boundary and the pressure be-

tween the ring and the rigid boundary at this portion will vanish.

1.2  Existing Industrial Rules of Thumb for Critical Buckling Pressure

Although the analytical solution for buckling of thin rings due to an externally ap-
plied pressure does exist, there is not an analytical solution for buckling of thin rings
shrunk in the inside of tubes. However, industrial rules of thumb are available. These
rules are based on trial and error results from shop work, and have evolved"iqto an ac-

cepted industry practice. A calculation using buckling versus non-buckling conditions
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from industrial experience shows that buckling occurs at a factor of 3.5 times that pre-

dicted from external pressure on thin rings, while no buckling condition occurs at a fac-
tor of 3.0 [56]. This means when g < 3.0 X g, the inner ring will not buckle and when
.q 2 3.5 X g, the inner ring will likely buckle, where ¢ is a radial compression pressure

for the shrunk ring and g, is the critical radial compression pressure for the free ring.
1.3 Objective and Outline of This Work

The purpose of this study is to develop a general relationship that describes the crit-
ical buckling conditions for various materials, dimensions, degrees of interference fits
and imperfections or external disturbance. Meeting this objective should allow design-
ers of these compbnents to accurately predict the conditions at which buckling or insta-
bility occurs.

In this study the literature review was first conducted to become familiar with the
current research situation on this problem. Then an initial experiment was carried out
to obtain some first hand information. Upon this information, an experimental appara-
tus was designed and manufactured. By use of the principles of the dimensional anal-
ysis method, an approximate relationship between the critical buckling force and the
geometric parameters and material properties was derived with some undetermined co-
efficients. Under the guidelines of this fundamental relationship, a large scale test was
conducted and the undetermined coefficients were derived by experimental data fitting.
Thereafter, two discrete element models were established. One is the frictionless model
and another is the friction model. Finally a finite-element model was established and a

finite-element software package, ANSYS 4.4 was used to carry out the calculations.



1.4 Major Contributions of the Study

(1) Successfully introduce the dimqnsional analysis method to establish the funda-
mental relationship between the geometric parameters and material properties.

(2) Design and conduct large scale experiments on varic;us of materials and dimen-
sions.

(3) Take the friction factor into consideration quantitatively in this problem.

(4) Discrete models simplify the analysis.

(5) Finite-element model makes simulation on various and real situations possible

and provides verification of other results.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

It is well known that thin-wall shells exhibit very favorable strength to weight ratios.
Thus it is not surprising that they play an important role in modern engineering design,
especially when it comes to weight sensitive applications, such as in the aerospace and
related fields. However, thin shell structures are often prone to buckling instabilities.
In the last few decades, due to the rapid development in many fields in which light struc-
tures and new materials have been utilized, numerous technical papers and books deal-
ing with the subject of shell stability have been published. Good reviews on the subject
can be found in [1-3, 44-46].

At the beginning of the 1960’s, another kind of shell stability problem came to the
attention of scientists and engineers. This problem was concerned with the buckling be-
haviour of a cylindrical shell confined in a rigid or elastic circumferential boundary. In
many applications a protective lining or coating is inserted into the interior of a cavity
or cylindrical structure. Such a situation may occur, for instance, in pipes, vessels, tun-
nels, etc. For a long cylindrical shell with free end boundary conditions, this problem
can be simplified as a thin elastic ring confined within a rigid boundary. Because the
rigid boundary prevents outward displacement, this problem is also known as a “one-

way” buckling problem. A number of investigations were carried out to study the buck-
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ling of a cylindrical shell or circular ring with one-side connection with a surrounding

elastic or absolutely rigid outside boundary. Experimental works were also conducted
by some investigators. The following is a brief review of theoretical analysis and ex-

perimental results for one way buckling which appear in the literature.

2.2 Theoretical Analysis

A solution to the problem of buckling of a ring within a rigid surrounding was first
" proposed by Lo, Bogdanoff, Goldberg and Crawford in 1962 [4]. They considered a
complete circular ring surrounded by a rigid circular surface which prevented any out-
ward radial displacements. When the ring is subjected to a temperature increase or an
end compression load, the induced hoop stress may cause the ring to buckle inward in
a snap-through process.

In order to conduct a theoretical analysis for the problem, there are some basic as-
sumptions: (1) The buckled configuration is single-wave as shown in Figure 2.1. That
is the configuration consists of two regions, the detached region, where the ring sepa-
rates from the boundary wall; the attached region, where the ring keeps contact with the
outside wall and has a constant curvature. (2) Buckled configuration is symmetric to one
diameter of the ring. (3) The ring remains elastic and obeys Hooke’s law all through
the buckling process, which means that non-linearity of the stress-strain curve of the
materials and possible plastic deformation in buckling process are not considered in the
theoretical studies. (4) There is no friction resistance at the interface of the ring and the

rigid boundary.



The solution to this reference [4] is as follows. In order to obtain the buckled con-
figuration of the ring, the post-buckling analysis was conducted. As shown in Figure
2.1, in its equilibrium configuration, the buckled ring may be separated into two parts:
the buckled part C’D’ and the unbuckled A’C’ and B’D’. The buckled part of the ring
is free of the support except at the two end points C’ and D’. At these end points, the
ring is tangent to the circular surface and has the same curvature (1/r) as the circular sur-
face. Since there is no vertical load, equilibrium of the buckled portion C’D’ is main-
tained by two horizontal forces N as shown in Figure 2.2.

To determine the buckled shape of part C’D’, a coordinate system O ;XY is chosen
as shown in Figure 2.2. The arc length s along the buckled part of the ring is measured

from the point Oy The angle 6 is defined by the following relations:

dx

— = c0s0
d

s 2.1)
dy _ sin® ‘
ds

The equation of bending is
do 1

EI(% - ;) = Ny (2.2)

where E is the Young’s modulus and [ is the moment of inertia of cross section of the
ring.

The boundary conditions are

a0y s =0 and 9 =0 (2.3a)



Figure 2.1 Buckled Configuration of a Ring
Confined within a Rigid Boundary
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atD’s = s* and 6 = 0, (2.3b)

where 2s* is the total arc length of the buckled part C’D’ of the ring.

After some mathematical manipulations, equations defining the shape of the buck-

led part C’D’ of the ring are obtained as,

S = Lrpen 2.4)
JN

* = L pEBr)-F@.0] @.5)

r N

% = 2_5 (cosB-cosP*) (2.6)

=0

where F(b,k) and E(b,k) are the elliptic integrals of the first and second kind respectively

ca sin (6/2)

sin =~ ©®_/2) @7
k= sin(8_/2) 29
N = Nr¥El (2.9)

Three constant parameters N,k and B* are related to one another by the following
conditions. The first condition is that the curvature of the buckled part of the ring should

be equal to the curvature of the unbuckled part at the point D’. That is

= —2kcosf* (2.10)

==



Figure 22 Coordinate system
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The second condition is that the coordinate x of the buckled part of the ring should be

equal to the coordinate x of the unbuckled part at point D’.

2E (B k) —F (B%k) = tanB*.1~K2sin?p* (2.11)

If one of the three parameters, N , P* and k, is given, the other two can be deter-
mined from Equations (2.10) and (2.11), and then the buckled shape is completely de-
fined by Equations (2.5) and (2.6).

To determine the critical end compression load P, or the critical temperature incre-
ment (AT) ., which causes the ring to buckle, Lo, et al. assumed that there is no energy
transfer to or from the environment during the snap-through process. Thus, the total en-

ergy U just before the snap-through is equal to the total energy U * just after.
U =U" 2.12)

From Equation (2.12) the critical end compression load or the critical temperature in-
crement can be obtained. Unfortunately this energy criterion is not suitable for this par-
ticular situation and the critical end compression loads obtained from this energy

criterion are not confirmed by experimental results [6,7].



Figure 2.3 A Ring under End Compression Load with

a Point Obstacle on the Boundary
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Hsu, Elkon and Pian [5] re-studied this problem by considering the effect of a point

obstacle located at a point on the circular boundary, as shown in Figure 2.3. They were
able to determine the critical compression load as a function of the height of the point
obstacle. Their results also show that when the height of a point obstacle decreases to
zero the critical end compression load goes to infinity. This means that if the system is
geometrically perfect there is no limit point or critical end compression load as that
found in a classical stability problem.

Chan and McMinn [6,7] conducted an analysis similar to [4] and [5] when
they studied the buckling of thin steel linings inside prestressed concrete cylinders.
Their analysis indicated that there was no critical load as defined by classical theory,
but that there was a state of unstable equilibrium which can be reached by small dis-
placements only from the unbuckled position and a state of stable equilibrium which ne-
cessitated large displacements. Work must always be done to displace the ring from the
unbuckled state, but this was reduced as the uniform compression was increased. By in-
vestigating the effect of the imperfections, they concluded that errors in the curvature '
of the ring have no effect, but errors in curvature of the rigid support change the equi-
librium states. The ring would buckle at the point where the radius of curvature is larg-
est and would behave as ‘though it had this radius throughout the whole ring.

Later on, Bucciarelli and Pian [8] studied the effect of three types of initial geomet-
ric imperfections on the buckling behavior by employing shallow arch approximations.
Figure 2.4 describes three types of initial imperfections for the ring. To conform with
the shallow-beam approximation, the undeformed configurations are described by z(s),
where the origin of the z-axis is so located that the boundary of the imperfect region is

at s=L, z=0. The three types of initial imperfections are as follows.
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Figure 2.4 Three Forms of Geometric Imperfections

15



16
Case (a). The curvature of z(s) is everywhere negative as depicted in Figure 2.4 (a).

Case (b). The slope and curvature are identically zero over a finite portion, while
the curvature of the remaining portion is negative, as shown in Figure 2.4 (b).

Case (c). The curvature of z(s) changes from positive to negative within this region
of imperfection, as shown in Figure 2.4 (c).

Their analysis yielded that in case (a), no bifurcation or limit point exists at finite
load level; in case (b), bifurcation and snap buckling may occur; in case (c), the system
admits of a limit point.

Pian and Bucciarelli [9] and Zagustin and Herrmann [10,11] studied the stability of
an elastic ring constrained in a rigid cavity and subjected to a uniformly distributed par-
allel loading per unit length of the ring in its plane. The buckling behavior of a ring un-
der this load condition is different from the ring under end compression load.

El-Bayoumy [12] analyzed the problem of a circular elastic ring confined to a uni-
formly contracting circular boundary by the variational method. He assumed that the
detached (buckled) region of ring covered only a small portion of the circumference,
thus the shallow-beam approximation could be employed. He treated the problem as a
variational problem with variable end points (the points of separation). The advantage
of the variational formulation was that all the differential equations of equilibrium and
the associated boundary conditions, including transversality conditions, followed auto-
matically as a consequence of applying the fundamental principles of the calculus of
variations. Their study found that the constrained ring has three equilibrium branches
I, II, and I which correspond to the unbuckled uniformly contracted state, the buckled
“small” deformation state and the buckled “large” deformation state. The total potential

energy along the three branches is plotted in Figure 2.5, in which IT is the total potential
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energy and AD is the contraction parameter of the boundary. The figure shows that

branch II (small deformation state) corresponds to higher energy than the other two
branches. This means that equilibrium states along this branch are unstable. As the ring
starts to contract, its equilibrium state moves along branch I which has the smallest en-
ergy up to point M at which branch I and branch III intersect. Beyond point M, the po-
tential energy is lowest along branch III. It seems that the ring would buckle as soon as
Dy is reached. However, in order for ring to buckle at point M to the large deformation
state, it must go through the small deformation state first. But the total potential energy
along branch II is always higher than the total potential energy along branch I. There-
fore an energy barrier given by the difference between the energies along branches I and
II must be overcome in order for the ring to buckle. This difference in energy may be
supplied by an external disturbance. That branches I and II did not intersect suggests
that the circular ring, in the absence of geometric imperfections and external disturbanc-
es, will not snap through to the buckled state.

Liszka and Trojnacki [13] considered the problem of two thin elastic rings of
different stiffness (due to different materials or different thickness), one which has been
forced into the other. Again, post buckling analysis was performed in order to deter-
mine the possible equilibrium states. In the deformed configuration, in which the rings
have changed their initially circular shape so that an unknown separation region ap-
pears. For simplicity of analysis an equivalent system of three slender bars was ana-
lyzed, the continuity conditions must be satisfied at the point of connections. Their so-
Iution of the problem was also in implicit form in terms of elliptic functions but much

more complicated than Lo’s solution [4].



Figure 2.5 Potential Energy along Equilibrium Branches
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Chicurel [14] was the first to study the problem by taking into account the friction

between the ring and the external wall. When buckling occurs, part of the compressive
strain is removed to make up for the slight difference in chordal lengths. This release
of compressive strain would be confined to the buckled part of the ring if friction out-
side of the buckled region is sufficient to inhibit slip (non-slip case). On the other hand,
if some slip takes place, then the buckled part must absorb a greater amount of released
compressive strain, and the extreme case would occur when the friction coefficient is
zero (non-friction case). Based on the non-slip assumption and the non-friction as-
sumption, two expressions of critical diametric interference were developed. For non-

slip case

Py, = 2.487%@ (2.13)
For non-friction case
I 3/5
Py, = 2.67AE(:4——2) . (2.14)
T

By comparison of the two results, it was found that the non-friction case was always
more conservative.

Burgess [15,16]developed a general discrete variational method for one way struc-
tural system and later on used this method to investigated the buckling behavior of a ra-
dially constrained imperfect ring. It was found that when the initial imperfection on a
ring is very small, initial loading tends to suppress the imperfection and the ring is

locked on the boundary. So only when the initial imperfection on the ring reaches a rel-
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atively large magnitude, does the buckling occur for the ring.

Soong and Choi [17] carried out the more general analysis of buckling of a com-
plete, thin ring confined in a non-circular hole subjected to hoop stress and studied an
elliptical ring in detail. Their analysis included both the non-friction buckling case and
the non-slip buckling case.Their study indicated that the ellipticity reduced the buckling
load, because buckling occurred at the flatter part of the ring. The numerical results
were obtained by an exact analysis in which the curvature change due to slipping was
included. However, if the curvature change due to slipping in the contact zone was ne-
glected, the error was relatively insignificant. For the case they studied, the difference
in buckling load was found to be less than one percent.

Various other aspects of the problem of an elastic ring contained within a smooth
rigid cavity were considered by several workers. These included a radially directed
point load [18] and external and internal pressure[19-27]. The problems of a ring or a
tube contained within a soil boundary or a elastic boundary were also explored [28 - 34].
Another kind of one-way buckling problem associated with a sheet or a beam on a flat

foundation were also studied in [35-43].
2.3 Experimental Results

Hsu, Elkon and Pian [5] conducted experimental investigations into this problem
with controlled initial boundary imiaerfections. Snap-buckling behavior was in qualita-
tive agreement with the analytical results. However, because of friction between the
ring and the rigid boundary and the development of plastic hinges, quantitative agree-

ment was difficult to obtain. For specimens with very small initial boundary imperfec-



21
tions, yielding of the material was observed prior to local buckling of the circular ring.

The experimental data was not provided in the paper.

Chan’s experimental work [7] revealed two things. First, none of the observed
buckling loads agreed with Lo’s predictions, and second, the actual buckling loads of
apparently identical rings varied enormously. They attributed the first discrepancy to
the use of the equal energy criterion, which was not suitable for this particular situation.

But they did not give any reasons for the second phenomenon.

2.4 Summary

From the preceding review it can be seen that there is no bifurcation or limit point
for the geometrically perfect system and buckling occurs at a limit load only when ge-
ometric imperfections or external disturbances provided energy to overcome the energy
barrier. For the majority of the theoretical works, the interface condition of the ring and
the ring boundary was simplified as the frictionless situation. This simplification made
the analysis relatively simpler but experimental verification very difficult. For those
who did take the friction into consideration [14,17], they only considered two extreme
situations: non-slip case and non-friction case. Furthermore, their results were contra-
dictory to each other. In [14], the critical load ratio of non-slip case to non-friction case
. Ar? 01 Ar? 6 .. .. .
is 0.932 (—T) If (-T) = 10°, the critical load ratio is 3.71. Butin [17], the
difference between two cases is only about 8 percent. This indicates that the friction ef-
fect on the buckling behaviour of the ring has to be considered in more detail before get-

ting a more realistic result.

Although there are many papers carry the theoretical analysis of buckling of an elas-
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tic ring constrained by a rigid boundary, the experimental works are relatively limited

and the results reported in the literature are rare. Agreement between theoretical and ex-

perimental results to date is very poor.
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Chapter 3
PRELIMINARY EXPERIMENTS
3.1 Objective of the Experiments

The buckling of interference fits is an important application problem in the industri-
al field in view of its safety and economic implications. It is also a very complicated and
difficult problem to be solved due to the following factors:

a). large deformations of the cylinder in contact;
b). influence of initial imperfections;
c). interaction conditions at the interface surfaces;

To solve this problem, both the analytical approach and the experimental approach
are necessary. As pointed out in Chapter 2, although there are a number of researchers
dealing with the problem by various of theoretical analysis methods, the experimental
works are relatively rare. In addition lérge discrepancies exist between the experiments
and the analytical solutions. Therefore it is necessary to conduct a preliminary experi-

ment and obtain some first hand information.
3.2 Background Information

In order to design the experiment, some background information is first introduced
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here.

3.2.1 Critical Buckling Pressure of a Free Circular Cylindrical Shell

For a better understanding of this pfoblem and design of the experiment, a free cir-
cular ring subjected to a constant external compression pressure is first discussed. For
a ring submitted to a uniform external pressure shown in Figure 3.1, the critical value
of the compression force P,, is [44]

3EI
P =— (3.1)

c 7'2

where E is the Young’s modulus and I is the moment of inertia of the cross section of

the ring. The critical external pressure g, is
4, = — ' (3.2)

Equation (3.1) can also be applied in the case of cylindrical shells with free edges
subjected to a uniform lateral pressure. In this case as shown in Figure 3.2, an ele-
mental ring of unit width is taken into consideration and the critical value of the com-

pression force P, in such a ring can be obtained by using ﬁ to substitute for £
-V
3
t

and by taking I = Sk where v is Poisson’s ratio and ¢ is the thickness of the circular

cylinder; then from Equation (3.2)

Ef

¢ L1V G-



Figure 3.1 A Ring Subjected to the External Compression Force
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Figure 3.2 A Circular Cylinder Subjected to a Uniform External Pressure
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Observing that the compression force P in the elemental ring of unit width is equal to

gr where q is the uniform pressure, from Equation (3.3) the critical value of the exter-
nal pressure for an edge free circular cylinder is
E t3

(<) (3.4

e 70—y 7

Equations (3.3) and (3.4) can also be applied in the case of a shell with some constraint
at the edges if the length of the shell is so long that the stiffening effect of any constraint

at the edges can be neglected.

3.2.2 The Relationship of Interference and Interface-Pressure for Two Layer Cylinders

For a long circular cylinder subjected to internal pressure, g; and external pressure,

g9, as shown in Figure 3.3, the displacement in the radial direction is [47]

1—-v (qlr%—qgrgj 1+v ((ql—ch) r%r%)1
u_ = r+

e = ) (3.5-2)

. If there is only external pressure, i.e., g1=0, the equation (3.5-a) becomes

L 1-v( @75\ 14V (2T (3.5
Uy = =% 2 r-—% Zp = 5-

If there is only internal pressure, i.e, go=0, the equation (3.5-a) becomes

. 1—v( ar )H_ 1+V(611r%r§)1 (3.5-0)
= - S-c
r2 E \2- E \2-72)r
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Figure 3.3 A Cylinder Subjected to Internal and External Pressures
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For the interference fitted two layer circular cylinders, if the pressure g between the

interference surface is given, then we can get the changes in diameters of the inner cyl-
inder and the outer cylinder at the interference surface respectively. For the inner cyl-

inder, we have

— 2 2.2 :
AD, = 2[— sl (—“’rz )rz—Hvl(‘”lrz )l} (362

E 2_ 2 E 2_ 2|7

Similarly for the outer cylinder, we have

1-v, gr 1+v, ( qrar:

2 472 2( 9773 \1

AD, = z[ = ( . 2)r2+ = ( > er—} (3.6-b)
2 7'3—7'2 2 I"3—}"2 2

From equations (3.6-a) and (3.6-b), we obtain the interference allowance AD for the

given interference pressure g.

ri+rs r2ert v, v,

AD = AD,-AD, = 2r2q[E2 (r% — r%) + z] (r% — r%) + E—; - Fl:| 3.7
where v{, v, and Eq, E, are Poisson’s ratios and Young’s moduli of inner layer and outer
layer respectively, and as shown in Figure 3.4, r; is inner layer’s inside radius, 73 is out-
er layer’s outside radius and r, is the interference surface radius, and AD is the interfer-
ence allowance. If the interference allowance AD is given based on the end use of the

component, the pressure g in the interference surface also can be obtained from Equa-

tion (3.7)



Figure 3.4 An Inner Ring Shrunk in an Outside Ring
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AD 1
g =7
2r, r§+r§ r%+r% V, Vv

+ —_— — —
E,(r2-12) E,(2-12) E, B

(3.8)

For a thin elastic ring confined within a rigid boundary, the relationship between the in-
terference allowance and the interface-pressure (g) at the interference surface can be ob-

tained from Equation (3.7) and Equation (3.8) directly.

and
ADE?
= (3.10)
7 2r?

where ¢ is the thickness of the ring and r is the middle radius of the ring.
3.3  Specimens and Dimensions

The material of the specimens was C-4161 steel tube, and the properties of the ma-
terial are as following [48]:
E=200GPa, v=03, Oy =1700 MPa, o, =1900 MPa
The configuration of the specimens is shown in Figure 3.5, where Dy; is the inside di-
ameter of the inner tube, D, is the outside diameter of the inner tube, D5 is the inside

diameter of the outside tube, and D5, is the outside diameter of the outer tube, L is the
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length of the tubes. .

From Figure 3.5, the interference allowance AD is

AD = Dy,—Dy, (3.11)

From Equation (3.4), the critical buckling pressure of the inner tube in the free

boundary conditions is

(3.12)

E (Dlz_DuT
q

T 4(1-v) | Dy

According to [56], if the buckling factor f is selected, the interface-pressure between the

two tubes is

g, = fq (3.13)

By using Equation (3.7), we can calculate the interference allowance AD for the corre-

spondent pressure g.

2 . n2 P2 oan2

_ Dyg.| Dyp+Dy Dy +Dyy
AP = —F|p2 2 D2 _p?
n—Dy Dy —Di

(3.14)

The first experiment is designed to check the buckling data provided by industrial

experience [56]. The inner tube’s dimensions are
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Figure 3.5 Specimen Configuration
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D,, = 95mm D, = 92.5mm

In free boundary conditions, from Equation (3.12) the critical buckling external pres-

sure is
g = 0.76MPa

The industrial rule of thumb states that buckling occurs at a factor of 3.5 times that
predicted from external pressure on thin ring and no buckling condition occurs at a fac-
tor of 3.0 [56]. In order to observe the buckling behaviour of the inner tube, the buck-

ling factor f = 3.65 was selected and the corresponding interface-pressure g, is
g, = fq = 2.8MPa

Using equation (3.14) and taking D, approximately equal to D,;, we obtain the inter-

ference allowance AD for the correspondent pressure g,
AD = 0.062mm
Then from Equation (3.11), we can determine the D,
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In order to machine the specimens, the reasonable tolerance in dimensions should be de-

fined. In consideration of practical usage and the machining ability in the workshop,

the final dimensions of the specimens are defined as following:

+0.089 +0.017

D, = 95:*'(2 80361’ mm D,, = 115.0mm

According to above dimensions, the average, maximum and minimum interference al-

lowance are

AD = 0.0615mm AD = 0.089mm AD_. = 0.034mm
m max min

respectively.
In order to investigate the effect in longitudinal direction, two different lengths of

tube are designed, they are
L; = 25mm L, = 50mm
3.4 Experimental procedure
In assembling the two tubes together, the innef tube is contracted by sub-zero cool-

ing to permit insertion into the outer tube and a tight fit is obtained as the temperature

rises and the inner tube expands. In order to obtain the sub-zero temperature, liquid ni-
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trogen was used, which has a temperature of about -196 °C. During a temperature re-

duction from 24 °C to -196 °C, the shrinkage per millimetre of diameter varies from

about 0.002 to 0.003 millimetre for steel [48]. For the inner tube specimen, the shrink-

age by using liquid nitrogen can reduce the outside diameter from Dy, = 95 mm to

94.99-94.72 mm. This is enough for dropping the inner tube into the outer tube.

The experiment procedure includes following steps:

Step 1 Place the inner ring into a container and pour liquid nitrogen into the container.
Ensure that the whole inner tube is immersed in the liquid nitrogen for about
10-20 seconds.

Step 2 Pick up the inner ring and drop it into the outer tube quickly.
This step should be completed in about 3-5 seconds.

Step 3 Observe the inner tube’s behaviour during the process in which the

temperatures of inner and outer rings become equal.

3.5 Results and Discussion

The inner tube did not buckle even after the temperatures of the two tubes became
equal. In order to investigate the buckling conditions, the assembly was mounted on
the lathe and was cut little by little from inside. The cutting increment was 0.125 mm
each time. When the thickness of the inner tube was reduced to 0.28 mm, it became
loose along the interference surface but it still did not buckle.

When the inner tube was loose, the ratio of the pressure at the interface surface, g,

to the free tube buckling critical pressure, g, is
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9. '
= — = 66
! q

which is much larger than the rules of industrial thumb.
The preliminary experimental result shows that the rules of industrial thumb are too
conservative and a more accurate method should be established to predict the buckling

conditions for a ring confined within a rigid boundary.
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Chapter 4

DIMENSIONAL ANALYSIS METHOD

4.1 Introduction

Many problems in engineering and particularly in fluid mechanics are successfully
resolved by an experimental analysis based on tests of appropriately established models
using the dimensional analysis method. This method is particularly useful in the solu-
tion of complex problems in which prototype systems can be simulated by adequate
models which can be easily built and tested. The feasibility of this analysis is usually
limited by the material and other properties of the models. In experimental fluid me-
chanics a general methodology based on the dimensional analysis of models is well es-
tablished. In the field of elastic stability, however, theoretical methods dominated the
area and experiments are used just as a verification on theoretical work. But a practical
structural system may become extremely complex and a theoretical solution of the
problem is very difficult or even impossible. Sometimes in a simplified and idealized
situation, a theoretical solution may be obtained but it can only be used as a guide to
the practical behaviour. Although no general experimental discipline based on the di-
mensional analysis of model structures has yet emerged in problems of structural stabil-
ity, a basis for an analysis of buckling problems is the same as for experimental fluid

mechanics.
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4.2 Dimensional Analysis

The dimensional analysis method is based on two axioms [49] which are inherent in
our methods of measurement and evaluation of quantities.

1. Absolute numerical equality of quantities may exist only when the quantities are
similar qualitatively. That is, a general relationship may be established between two
quantities only when the two quantities have the same dimensions.

2. The ratio of the magnitude of two like quantities is independent of the units used
in their measurement, provided that the same units are used for evaluating each.

Dimensional analysis, developed from these two axioms, differs from other meth-
ods of analysis in that it is based solely on the relationships that must exist among the
pertinent variables because of their dimensions, instead of being based on other so-
called natural laws, such as Newton’s Laws of Motion for example. In itself, dimension-
al analysis gives qualitative rather than quantitative relationships, but when combined
with experimental procedures it often results in quantitative relationships and accurate
prediction equations.

If a certain number of dimensional variables are involved in a problem these varia-
bles can be combined in a definite number of dimensionless products. These products
are usually denoted by the letter IT. A theorem due to Buckingham[49], also known as
the Pi theorem, states that the number of such independent products is equal to the dif-
ference of the number m of the dimensional variables in the problem and the minimum
number 7 of dimensions, in terms of how these variables can be describpd. Then, a ho-

mogeneous function F of the dimensionless products exists, such that
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F(I, Iy, TT__ ) =0 @.1)

From this relation any one of the products, say II;, can be written as

I, = £(IL,, I1,, ""Hm—n) 4.2)
The key for the success of a dimensional analysis model is the choice of correct and suit-
able quantities for the functional Equation (4.2).

For example[50], a cable is stretched between two points a fixed distance apart at
the same level. Find a relationship between the tension, P, and the sag, %, the length of

the cable, [, and its weight, W. The problem is to express P as a function of W, 2 and [, or

P = f(W,h,1I)

where (W, h, [) is an unknown function. Assuming that this function is in the form of

a production of powers, we have

P = AWHPIE ()

where A, a, b and ¢ are unknown numbers.

The dimensions of the quantities for the terms in Equation (a) are



41

[P] = [MLT?]
_ 2
[h] = [L]

L] = [L]

where [M] presents for the dimension of mass, [L] for dimension of length and [7] for

dimension of time. Substituting (b) in (a) we have

[MLT™?] = [MLT*1°[L1*[L]® ©)

For dimensional homogeneity the powers of M, L and T must be the same on both sides

of Equation (c).

L: l=a+b+c

T. -2 = -2a

From which we have

Thus Equation (a) becomes
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P = AWK = W[A (%)_c} @

In dimensionless form, this equation becomes

P h
w7

y=ady” ©)
Since neither A nor ¢ is known, dimensional analysis has not provided a complete solu-
tion in this case. But it has indicated that P is directly proportional to Wand that the ratio
% is a determining factor in the relationship rather than the separate quantities # and L
Now consider the shrink buckling problem, as pointed out in Chapter 2, if both the
ring and rigid confinement are perfect geometrically and there is no external distur-
bance, there will be no limit point or critical pressure. In other words, the ring will never
buckle when both the ring and rigid confinement are pexi‘fect geometrically unless there
is a large enough external disturbance to overcome the energy barrier [12]. The exter-
nal disturbance is a random factor and is very difficult to be simulated and controlled.
Therefore in the dimensional analysis model, the geometric imperfections of a ring and
a rigid confinement should be taken into consideration. However, the influence of im-
| perfections of the ring is not as large as the rigid confinement and can generally be ig-
nored[6,7]. For simplification, only a point imperfection on the rigid confinement was
taken into consideration. Nevertheless, this point imperfection can also be considered
as a combination effect of the geometric imperfection and the external disturbance. It is
assumed that a point imperfection on the rigid confinement has a height & and as a result

the ring has an initial deflection 8 before buckling.



Figure 4.1 A Ring under Compression Load with

a Point Obstacle on the Boundary
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In the following process some basic assumptions were used: ‘

(1) The ring is made of a homogeneous, isotropic and linear elastic material.

(2) There is no friction on the interface between a ring and a rigid boundary.

(3) The unbuckled and the buckled configurations of the ring are both symmetrical
to one of the diametral lines of the original ring.

Under the above assumptions it is evident that the axial compressive buckling force
P, is determined completely by the following parameters (see Figure 4.1):

E -- modulus of elasticity of the material of the ring.

r -- radius of the ring.

t -- thickness of the ring.

O -- initial deflection of the ring due to the imperfection (;f the rigid confinement at
the buckling location.

For a unit width ring it can be assume that
P, = CE°r’1°8¢ (4.3)

where P, is the critical buckling compression force per unit width of a ring, C is an un-
determined coefficient and a, b, ¢, and d are undetermined exponents. There are five di-
mensional quantities in Equation (4.3), which are P, E, 7, ¢, and 6. And the minimum

of dimensions are two in Equation (4.3), which are [F] (force) and [L] (length). Accord-
ing to Pitheorem, m —n = 5—2 = 3;thatis, Equation (4.3) can be described by three

dimensionless products. The dimensions of the quantities in Equation (4.3) are



[E] = [FL™%]

[r] = [L]

[¢] = [L] (4.4)
[8] = [L]
[P,] = [FL™!]

Substituting Equation (4.4) into Equation (4.3), we have

[FL™1] = [FL™21%[L]?[L]°[L]¢ 4.5)
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According to Axiom 1 both sides of Equation (4.5) should have the same dimen-

sions. That is the exponents of F(force) and L(length) must be the same on both sides

of Equation (4.5) for dimensional homogeneity. Thus we obtain
F: a=1 (4.6a)
L: —-2a+b+c+d = -1 (4.6b)

Expressing a and c in terms of b and d in Equations (4.6), we obtain

a=1

c=1-b-d @D

Substituting Equation (4.7) into Equation (4.3) yields
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_ crb(-b-D gd
P, = CErtt 8

b § d | (4.8)
= CEt(3) (3)

Dividing two sides of Equation (4.8) by Et, we finally obtain

% _ror B
==& 3] 9
where
ro 8 rb 8.
A&, ]=cd @ 4.10)

d.7. . . . . .
f [ (; )» (7) :l is an unknown function with two non-dimensional variables (’—; )
and (7) , one undetermined coefficient C and two undetermined exponents b and d.

This function is referred to as the buckling function hereafter.
4.3 Validation Test for the Buckling Function

From Equation (4.8) it can be seen that the critical buckling stress o is proportional
to elastic modulus, E, and the buckling function f |: (;) , \(g) } is independent of the
material properties in the elastic region. Whether or not the buckling function
f I: (1;) , (;) :| is in the form of Equation (4.10) can be examined by an experimental

method [49]. First, experiments can be carried out by varying (’—;) and holding (g)
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as a constant. From a plot of (_Eg) against (;) , the relationship
¢ re 0
(f)l =f1|:(;), (7)} (4.11)

)
where the bar over (7) denotes constant values, could be established. From another set

S
of experiments with (;) constant and (?) variable,

Gc) r. O
sz=hﬂy,qﬂ (4.12)

may be established. Equations such as equations (4.11) and (4.12), determined by hold-
ing all but one of the dimensionless variables in the function constant, will be called
component equations.

Under certain conditions the component equations may be combined to form the
general prediction equation by the multiplication of Equation (4.11) and Equation

(4.12), i.e.,

2 -of3)]

To establish thoée conditions, the constant C in equation (4.13) can first be deter-

GC
fl (4.13)

mined by assuming that the component equations are simply multiplied to form the gen-

eral equation.

0. &) =a[O.&[E. ] aw



If this is true, the first set of tests, with (-?) constant, will give
ro 8 r. 0 r. 0
f[(;), (7)] =f1l:(;)a (?):lfz[(;): (;):| (4.15)

From which
4.16)

)
The second set of tests, with (;) constant, gives, from Equation (4.14)

_ o
5[6%(§ﬂ==ﬂlitiﬁl @17)
Al

7]

r
t

o~
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Values of f; [ (L;) , (g):l and f2|: (;) , (g)] from Equations (4.16) and (4.17) are

substituted into'Equation (4.14) to give

3 7. 8
f[(r): (7)}1{(;)’ (7_)J (4.18)

A O O[O &)

o~ |

&, &) -

Howeyver, from Equation (4.14) it is found that
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1O, S] =& Ol[D. &S] am

t t

Thus

A0S &]

)
f[(g), (;)] = . (4.20)
r. ,0
1 &)
Comparing equation (4.13) with equation (4.20), it is found
c=__ Y ' 4.21)

and that the two component equations must have the same form.

A test for the validity of combining the component equations as a product may now
be developed by assuming that a third component equation is determined from a third
set of data in which one of the dimensionless variables is held constant at a different val-
ue than in thé preceding set of data. For example, the general equation (4.20) was de-

. termined by holding the (L; ) constant at a value of (é) , but if valid, it could also have

been determined from a set of data in which (’—;) = @) Then

f[(%), (g)] = (4.22)
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The right-hand side of equation (4.20) must equal the right-hand side of equation (4.22),

hence,

- = — (4.23)
0 7) 0
f[(t), (;)] f[ ;), (;)}
Similarly, if (g) had been held constant at a different value, (;),
3 3
19 @] f[(g)’(‘i)]
- = = — (4.24)
r 7. [®
f[(;), (t)] f[(%), (7)]

Equations (4.23) and (4.24) constitute a test for the validity of Equation (4.20). That is,
if the supplementary sets of data satisfy either Equation (4.23) or Equation (4.24), the
general equation may be formed by multiplying the component equations together and

dividing by the constant, as indicated in Equation (4.20).
4.4 Summary

From the dimensional analysis we know:
1. The critical buckling compression stress of aring confined within a rigid bound-
ary is directly proportional to the elastic modulus of the material.

)
2. The buckling function f I: (’—; ), (?) ] , is independent of material properties but
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dependent on two dimensionless variables (g) and (7) .

3. The buckling function has one undetermined coefficient C and two undetermined
exponents b and d. These undetermined coefficient and exponents can be derived from
experimental results.

All these conclusions are held only in elastic region.
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Chapter 5
DISCRETIZATION OF PROBLEM: MODEL ONE
5.1 Introduction

In Chapter 4, a approximate relationship between the‘compressive buckling stress
of a thin elastic ring confined within a rigid boundary was derived by use of the dimen-
sional analysis. It was based upon the ring dimensions, material properties and the ge-
ometric imperfection of the rigid boundary. The geometric imperfection was treated as
a point obstacle which results in creating an initial deflection in the ring prior to the
buckling condition. This relationship (see Equations (4.9) and (4.10)) can be rewritten
as one equation as follows:

b § d ,
=) (3) (5.1)

°

E

In this chapter, the problem will be approached in a totally different manner. First,

a physical discrete model will be established by applying the discrete element method.
A relationship of the compressive buckling stress ¢ with the radius of the boundary, r,
the thickness of the ring, #, and the initial deflection, §, will be derived from the equi-
librium analysis to the model. Finally, a comparison of the results from this model with

results from the dimensional analysis method and the experiment will be made.
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5.2 Basic Assumptions

Before establishing the discrete model, some basic assumptions should be made as
follows,

(1) The ring is inextensible, i.e., before and after buckling, the length of the ring is
the same;

(2) The buckled configuration of the ring is symmetrical to one of the diameter lines
of the boundary;

(3) The ring is made of a homogeneous, isotropic and linear elastic material;

(4) There is no friction in the interface between the ring and the rigid boundary.
5.3 Discrete Element Method

The discrete element method may be regarded as an elementary version of the finite
element method [51]. The basic idea of the discrete element method can be illustrated
by considering the elementary problem of finding the deflection of a simply supported
beam such as that shown in Figure 5.1. The deflection curve will be approximated by
two lines as shown in Figure 5.1(a). These straight lines of deflection correspond to a
fictitious discrete system consisting of two rigid links connected at an elastic hinge (1)
as shown in Figure 5.1 (b). The idea is equivalent to replacing the original continuous
beam by a number of fictitious discrete links, and localizing the rotation at discrete nod-
al points which can be viewed as elastic hinges or frictionless hinges with linear elastic

rotational springs. The main task is thus to find the elastic constants



‘4 L2 L2 >‘
A e

(@)

Ay = [\

Figure 5.1 Basic Idea of the Discrete Element Method
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k of these fictitious springs. To achieve this, we start from the well-known beam for-

mula (see Figure 5.2):

, , do
M = EIO 0’ = Tx (5.2)
From this, we see that
, d0 M _
0 = T = Bl (5.3)
which means
AO M

A0 Ar T OE 54

Discretilizing Equation (5.3), an approximate expression can be obtained as:

AB M AO
E = E—I or M= EEI (5.5)

which for small angles is nearly exact. On the other hand, the bending moment in the

two-link discrete model is

M = kA (5.6)

where A is the change in the slope at the hinge. If the bending moment is to be the

same in both the discrete and the continuous model, as it should be, then we would have



/7% w(x) v

e(X) = a

Figure 5.2 General Relationship of the Slope and the Bending Moment
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. _A®
M = EI§'~EI-~ = kA® (5.7)

from which we obtain

(5.8)

el

Observing that the Ax is nothing but Ii , where n is the number of links, we immediately

find the expression for the constants of the fictitious spring as
k= — “ (5.9

In our particular example, k = 12]—5—1- Finding the maximum deflection is now a trivial

matter from a simple application of the equilibrium method. In Figure 5.3, we find from

PTL _kA® = 0 (5.10)
49
Since k = Z—EI and A = —, we obtain
L L
pL? pL?
d = BE = 0’03125ﬁ (5.11)
: PL? , ,
The exact value is § = 0.0208,—1-1:,—1—; the error is 33 per cent. In order to improve the

result, we simply increase the number of links.



——

P/2

Figure 5.3 Discrete Beam Link

N% \

= k(20)
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5.4 Model Description

According to the idea of the discrete element method and our basic assumptions, the
ring will be replaced by the elastic chain shown in Figure 5.4, which consists of straight
rigid links connected at frictionless hinges with elastic rotational springs whose spring
constants are k. Therefore, the portion of buckled ring can be simplified as a model as
shown in Figure 5.5 which consists of four rigid links with rotational springs at connect
node 1,0 and 2. The node 0 lifts off from the rigid boundary because of an initial de-
flection which is caused by the imperfection at the point 0°. One half of the central angle
subtended by the lifted portion 102 is .. The other nodes keep contact with the bound-
ary.

The length of each link is

I =or (5.12)

and considering Equation (5.8), the constant of the rotational spring is

EI

k=-l—

S{js

(5.13)

Based on the inextensible assumption, node 1 and node 2 will not move when node 0 is
lifted off the boundary by a point imperfection. Thus link chain 102 is symmetric about

the x-axis with the original position 10°2. Then from Figure 5.5 we have



Figure 5.4 The Discrete Model of a Thin Ring with An Initial Deflection &
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- X

Figure 5.5 Geometric Parameters at the Location

of the Point Boundary Imperfection
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0 = 2r (1 —cosa) (5.14)
o

0= 5 (5.15)

B = %oc (5.16)

From Equations (5.12)-(5.26) it can be seen that for a given ring radius, 7 the
number of rigid link is totally determined by the initial deflection,d. For instance, if
r = 200mm, when & = lmm, the number of rigid link for a quarter of ring is about

22; when & = 5mm, the number of rigid link for a quarter ring is about 10.
5.5 Equilibrium Equation and Solution

Considering the free body diagram of link 01 as shown in Figure 5.6 and taking mo-

ments about point 1, we have

§ R
M0+M1—F§—70lcose =0 (5.17)

where M|, and M are reaction moments at node 0 and 1 caused by the changes of angle

between two bars connected at these points, i.e.,

M, = 4k0 (5.18)



Figure 5.6 Free Body Diagram of Link 0T
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M, = 2k0 (5.19)

Ry is the reaction force of the point imperfection to the ring at point 0. There is only a
horizontal reaction force F of link 02 to link 01 at point 0 because of the symmetric con-
dition. When buckling occurs, the reaction force of the point imperfection on the rigid
boundary to the point O of the ring will vénish, thus Ry = 0. Then Equation (5.17) be-

comes
8
My+M,-F= =0 (5.20)

2
There are two forces at point 1, Ry and P3;. P 3;is the reaction force of link 13 to link
10 and Ry is the reaction force of the rigid boundary toward point 1of the ring. From
the equilibrium force equations in x and y directions, we have
F— [P3;cos (B—7) +R;sina] = 0 (5.21a)
Ry coso,— Py sin (B—~7) =0 (5.21b)
Solving the above equations we obtain

F = Py [cos (B—7) +sin (f —7) tanat] (5.22)

Bringing equations (5.18), (5.19) and (5.22) into equation (5.20) yields
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2k0 + 4k0 — P4, [cos (B —1) + sin (B —1) tana] g =0 (5.23)

then

_ 12k06 1

Py = 5 o8 (B-7) +sin (B—17) tano (5.24)

Figure 5.7 is the free body diagram of link 13. Considering the moments about

node 3 (Figure 5.7 (a)) we have

Because P{3=P31 and M1=2k0, we get

2k0 — Py, Isiny = 0 (5.26)

Bringing equation (5.24) into equation (5.26) yields

3asiny— (1 —cosca) [cos (B—7) +sin (B —7) tana] = 0 (5.27)

From Figure 5.7 (b) we have

cos (% +7)
P=Py—7p— (5.28)

COs =
2



Figure 5.7 Free Body Diagram of Link 13



Substituting equation (5.24) into equation (5.28) we obtain

o
B 1260 cos (5 +7)

P = S (5.29)

cos%c [cos (B—17) + sin (B —7) tanc]

Substituting equations (5.13),(5.15) and (5.16) into equation (5.29), we obtain

>+
6EI cos (7 +7)
P = (5.30)
ro x cos(éoc—- )+sin(§oc— )tanoc}
Cosz[ 707 7%
Considering
B
I= 0 (5.31)
and letting
cos (%+’y)
o™ o 306— )+s'n(3oc— ) tanQ -
cosi[cos (§ v in (5 Y ]
we finally obtain
(o} 1 .10 -1
=5 (9 Cq (5.33)
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P . . .
where ¢ = T the compression stress of the ring.

5.6 Comparison with the Results of the Dimensional Analysis Method

Up to now, we have obtained two formulations of the relationship between the crit-
ical buckling stress and the geometric factors of the structure from two totally different
methods. Following the principles of the dimensional analysis, we derived Equation
(5.1). By processing discrete model analysis, we obtained Equation (5.33). Compar-
ing Equation (5.1) with Equation (5.33), it is obvious that the two equations have essen-
tially the same relations. In Equation (5.1), there are three undetermined constants C, b
and d which can be determined by experimental data analysis. While in Equation (5.33)

the corresponding three constants are

1

C=§Ca
b=-1
d=-1

But the coefficient Cy, is not a constant. The coefficient Cy, in Equation (5.33) is a func-
tion of the center angle o as shown in Equation (5.32). Studying Equation (5.32) in de-
tail, it can be found that C, has a little effect on the result for small o, which is always
the case in real situations. Figure 5.8 is a diagram of Cy with o. It can be seen that
C,, is very close to 1 in the range of o as shown in Figure 5.8. If we take Cy, as 1, Equa-
tion (;5.33) has a constant coefficient C = % Overall the compari'son indicates that

the discrete model for the buckling of an elastic thin ring confined in a rigid boundary

is reasonable and quite accurately describes the characteristics of the problem.
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Figure 5.9 Comparison of Results from Discrete Model and Experiments for Steel
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5.7 Comparison with the Results From Experiment

Figures 5.9-5.11 are comparisons of the experimental results (detail experimental
procedure will be discussed in Chapter 7 and Chapter 8) and the discrete model result
for three different materials. From these Figures we can see that the experimental data
fitted curves are always above the curves of Equation (5.33). This may be due to two
reasons. One is that the discrete element model is very accurate for smqll o. but less ac-
curate for large o. The other one is due to the frictionless assumption in the discrete el-
ement model. Because in reality we can not eliminate the friction at the interface of the
ring and the rigid boundary no matter how carefully we conduct the experiment. For-
tunately by neglecting the friction, the results of the discrete model are on the safe side

which would be very conservative for design purposes.

5.8 Summary

From above discussions it can be seen that:

The discrete model can accurately describe the behaviour of the buckling of the ring
confined in a rigid boundary and is a simple and good model for theoretical analysis. In
addition the results from the dimensional analysis method and the discrete element
method have the same pattern which demonstrates that these two methods are powerful
tools for the structure stability analysis and helps to substantiate the methods.

The frictionless assumption results are on the safe side for a prediction of the critical

buckling condition and are quite conservative for design purpose. This model is accu-
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rate for small o, and with o increasing, the error will increase. For more accurate anal-

ysis, the friction at the interface of the ring and the rigid boundary should be taken into

consideration. In the next chapter, the model will be extended to account for friction.
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Chapter 6

DISCRETIZATION OF PROBLEM: MODEL TWO

6.1 Introduction

In Chapter 5, a discrete model was developed. In establishing the discrete model,
the frictionless assumption was used. In this chapter, the discrete model will be ex-
panded and the friction at the interface of the ring and the rigid boundary will be taken

into consideration.

6.2 Basic Assumptions

Similar to Chapter 5, the assumption (4) is changed as:

(4) The frictional resistance force between the ring and the rigid boundary obeys
Amonton’s Laws, which are summarized as following statements [52]: (a) For low pres-
sures the frictional force is directly proportional to the normal pressure between the two
surfaces. (b) The frictional force both in its total amount and its coefficient is independ-

ent of the areas in contact, providing the total pressure remains the same.

6.3 Model Descriptions

The model is established by the same discrete element method as described in Chapter
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5. As shown in Figure 5.4 the continuous ring is replaced by a group of discrete rigid

links which are connected at nodes by linear elastic rotational springs whose constant is
k. The only difference is that there is frictional resistance force at each node which con-

tacts with the rigid boundary.

6.4 Friction Consideration

According to Amonton’s laws of friction, the frictional force F¢ is proportional to

the weight W of the object which is being moved as shown in Figure 6.1a.

Fy = uWw (6.1)

where L is the coefficient of friction. In the frictionless situation, the reaction force R,
at the interface is in the direction of normal line n-r to the surface, while in the friction
case, the total reaction force R is in the direction which has a angle ¢ with the surface
normal line n-» due to the friction resistance force F. According to Figure 6.1b, we

have

tand = ﬂ (6.2)
Rn
But R, = W, then
F
tng = =L and  F, = tangW (6.3)

w
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Figure 6.1 Friction Coefficient and Friction Angle
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Figure 6.2 Total Reaction Force at Node 1
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Comparing Equation (6.2)and Equation (6.3) we obtain

tang = (6.4)

Thus the angle ¢ is called as the friction angle. The friction angle defines the direction
of the total reaction force at the inter-surface, and the friction angle is decided by the
coefficient of friction at the inter-surface.

For the discrete model, when buckling occurs, the nodes which contact the rigid
boundary have a tendency to move élong the rigid boundary toward the position where
buckling takes place. Because of the existence of friction resistance force at the inter-
face, the total reaction force Ry at node 1 will act at the direction which has the angle

¢ with the radius line as shown in Figure 6.2.
6.5 Equilibrium Analysis

Figure 6.3 is the fgee body diagram of link 10, where R is the reaction force of the
point obstacle to the node 0, Ry is the reaction force of the rigid boundary to node 1, P3;
is the reaction force of link 31 to link 10, F is the reaction force of link 02 to link 0T and
My and My are reaction moments at node 1 and node O respectively. Because of the fric-
tional resistance force at node 1, the total reaction force Ry has a angle ¢ with the normal
line of the rigid boundary. Pz acts along a line which has an angle 'jwith link 31. The
angle y can be determined by equilibrium analysis of link 31 which will be done later.

For the equilibrium in the vertical direction we obtain
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R R
70+Rlcos(oc—<l>) '—P3lsin(B_'Y) =0 (6.5)
Thus
R, .
= = Paysin (B—7) — R;cos (0.~ ¢) (6.6)

At the instant of buckling, the ring intends to lift off the boundary. Thus the critical con-
dition for the buckling is that the reaction force Ry at this moment vanishes, i.e. R, = 0.

Then we have

cos (0~ b)

Pa = K=

6.7)
Considering the free body diagram of link 01 as shown in Figure 6.3 in the critical

condition and taking moments about point 1, we have

6 .
MO+M1-F§ =0 (6.8)
where M, and M are reaction moments at node 0 and 1 caused by the changes of angle
between two links connected at these points and they have the same values as described

in Equations (5.18) and (5.19).



Figure 6.3 Free Body Diagram of link 01
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There is only horizontal reaction force F at point 0 because of the symmetric condition.

There are two forces at node 1, Ry and P3;. Pz is the reaction force of link 13 to link
10 and Ry is the total reaction force of the rigid boundary toward node 1. From the force
equilibrium equation in the horizontal direction
F—[P3;cos (B—7) +Rysin(0—¢)] =0 (6.9)
Substituting Equation (6.7) into Equation (6.9) we obtain
F = Py;[cos (B—7) +sin(f—7)tan (0t —¢)] (6.10)
Bringing Equation (5.18), (5.19) and (6.9) into Equation (6.8) yields

240 + 4k — P4, [cos (B—7) + sin (B —7) tan(oc—q))]g =0 (6.11)

Then

P = 1249 (6.12)
31 7 §[cos (B—7) +sin(B—7) tan (0. — ¢) ]
Bring Equation (5.13) into Equation (6.12) we have
P = 12EI6 6.13
51 = 750 [eos (B—7) + sin (B—7) tan (0~ )] ©19
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Figure 6.4 Free Body Diagram of Link 13
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Bring Equation (5.31) into Equation (6.13) yields

o _ EB#0 614
31 7 8o [cos (B—7) + sin (B—7) tan (0. — &) ] 6.14)
As shown in Figure 6.4 for the equilibrium at node 3 we must have
o
Ccos (5 +v—9)
Py, = Py 5 (6.15)
s (5 +¢)
cos (5
Because Pyj3=P31, we get
o
Psg; = = (6.16)
2 rd o 3 . .3
cos (5 +9) [cos (50=7) +sin (G0~ 7) tan (00~ 9)
Also in Figure 6.4 taking the moments about node 3 we have

Because P{3=P31 and M{=2k60, we get

2k0 — Py, Isiny = 0 (6.18)
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Bringing Equation (6.12) into Equation (6.18) yields

3asiny— (1 —cosa) [cos (B—-v) +sin (B~v)tan(ox—¢)] =0  (6.19)

For a given initial deflection 9, the angles o and 3 can be calculated from Equations
(5.18) and (5.19). Then from Equation (6.26) angle Y can be determined.
As shown in Figure 6.5, we have
cos (5 = 9)
Pps = Psg| ——— (6.20)

cos (5 +0)
It should be pointed ou.t that only P;3 deviates from acting axially along link 13 by an
angle vy, while P53 and P75 are constrained to lie along link 53 and link 75 (see Figures
6.4 - 6.5). This is because there is a reaction moment M7 at node 1 (see Figure 6.4) and
a deviation angle 7 is needed to balance the moment M;. There are no reaction mo-
ments at nodes 3 and 5, thus Ps3 and P75 should be constrained to lie along link 53 and
link 75 for equilibrium purposes. In the same manner, the force acting at the end of the
half ring should be

cos (3-0) |

P =Pg — (6.21)
cos (§ +¢) :

where

~2 (6.22)

S
]
gl



P
. o P35 75
- (5-0)
T o
5 (—2‘ +¢)
Rs
(b)

Figure 6.5 Free Body Diagram of Link 35
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Let
a n
o cos ( )
cos (5 +v-0) m
cos (5 +¢)
Cr = S 3 — ) (6.23)
c0s (5 +) [cos (50-) +sin (3= tan (oc—¢)]
Bringing Equations (6.16) and (6.23) into (6.21) we obtain
1 ro-1 8 71
P = EEBt(;) (?) Cf (6.24)
Then
c 1,r.~L 8 1
=20 G (623

6.6 Comparison with the Results from the Frictionless Model

Comparing Equation (6.25) with Equation (5.33) it can be seen that only difference
the two equations have is the coefficients Cy and Cy Butif ¢=0, we have Cr= Co, Then
Equation (6.25) reduces to Equation (5.33). It means that Equation (6.25) is a general
formulation of the buckling compression stress of a ring confined in a rigid boundarir
and the frictionless model is just a special case of the friction model.

From Equation (6.23) it can be seen that Cy is affected both by the half center angle

o. and the friction coefficient L. But a detailed study shows that in a small o region, Cr
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is mainly affected by the friction coefficient [L. Figure 6.6 is a diagram of Cy as affected

by o. It shows that for a given value of | the changes of Cywith o are very small and
for a small value of 1, when L = 0.0 — 0.6, the changes are insignificant. Figure 6.7
is the relationship of Crwith . 1. It shows that different values of lp, will significantly

change the value of Cy. Therefore Cy is referred to as the friction effect coefficient and

its value is mainly determined by the friction coefficient [.
6.7 Summary

From the preceding analy;is and comparison it can be seen that the friction plays an
important role in the buckling behaviour of a thin elastic ring confined in a rigid bound-
ary. Friction resistance force at the interface increases the stability of a ring and thus has
a positive effect on the critical buckling compression stress of the ring. The larger of
the friction resistance force is, the larger the critical compression stress. The friction
discrete model is closer to practice situation than the frictionless discrete model. The

frictionless discrete model is just a special case of the friction discrete model.
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Chapter 7
EXPERIMENTAL ARRANGEMENT
7.1 Introduction

In Chapter 4-6, various models were developed. These models described the buck-
ling behaviour of a thin ring confined within a rigid boundary and can be used to predict
the buckling load in certain conditions. These models are helpful to understand the
problem and explore the properties that otherwise may be difficult to determine. But
these models have to be verified by experiments. A fundamental relationship of the
critical buckling compression stress with geometry, imperfection and material property
was developed in Chapter 4 by using the dimensional analysis method. The undeter-
mined coefficients in this relationship need to be determined by experimental methods.
In this chapter, an experimental apparatus will be described based on the loading situa-
tion and applicability. Expériments were carried out to explore the characteristics of
buckling behaviours by using different materials, different geometries and different Iu-

bricants.
7.2 Experimental Apparatus

An initial deflection of the ring can be introduced by an external disturbance or by

an imperfection in the rigid boundary. An imperfection in the rigid boundary is much
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easier to control and is much more reliable ;chan an external disturbance in the experi-
mental process. Therefore an imperfection in the rigid boundary was imposed to create
an initial centre deflection of the ring. Nevertheless, an initial deflection of aring due to
an imperfection can also be considered to be a combination effect of the geometric im-
perfection and the external disturbances. To stimulate the point imperfection on the rig-
id confinement a wire with diameter 6 was inserted between the ring and the rigid
confinement as shown in Figure 7.1. By changing the diameter of the wire, different
initial centre deflections can be imposed on the ring.

In reality the hoop compression force P of aring is introduced by a pressure between
the ring and the outside boundary. The pressure is set up by a designed interference fit-
ting or radius mismatch between the ring and the rigid confinement as described in
Chapter 3. Assume the radius of the ring is r; and the radius of the rigid confinement is

r. The difference of the two radii is
Ar =r —r (7.1)

Then the pressure g at the interface between the ring and the rigid confinement will be

given by (see Chapter 3)

Ar
q = AE—2 (7.2)
r

where A is the cross-section area of the ring, E is the elastic modulus of the material.
From Equation (7.2) it can be seen that different pressures can be obtained by changing

the dimension mismatch Ar. But it is very difficult to obtain a specific and exact
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pressure between the ring and the boundary by designing the mismatched radii because

variations or tolerances are unavoidable in machine shop practice. On the other hand,
in order to get the critical pressure for a given initial centre deflection on the ring the
continuous change of the radius mismatch is required. To obtain one critical pressure, a
considerable number of specimens should be used. This makes the experiment very
expensive and nearly practically impossible. Therefore the dimension mismatch meth-
od can only be used to check a specific rule or criteria. For a large scale of experimental
investigation, an alternative method must be considered. This alternative method can
be developed from the following analysis.

As shown in Figure 7.2 an assembly of the ring and the rigid boundary was cut in
half. There is a vertical compression load P acting at each end of the half ring. In the
frictionless situation, this vertical compression load P (per unit width) is related to the
pressure ¢ at the interface between the ring and the rigid confinement by the following

formulation[53]
P=rq (7.3)

From Equation (7.3) it can be seen that the different pressures can be obtained by chang-
ing the end compression load P. On the other hand, for a specific vertical displacement
at the end of the ring, a corresponding end vertical compression load, P can be ob-
tained. And subsequently a pressure, g at the interface between the ring and the rigid
boundary can be found. If the end vertical displacement could change continuously, the
end compression load would also change continuously. In this way, different pressures

can be achieved by applying different vertical displacement at the end of the



Figure 7.2 A Half ring and Rigid Confinement Assembly
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halfring. For a given initial centre deflection of the ring, we can continuously change

the end vertical compression load by imposing a continuously changed end displace-
ment until the corresponding critical buckling compression load is reached. Thus to ob-
tain a critical load only one specimen is needed. This method is obviously more
efficient, economical and practical than the dimension mismatch method.

Based on the preceding analysis, an experimental apparatus was designed. Figure
7.3 is a picture of the experimental apparatus. The experimental apparatus is schemat-
ically shown in Figure 7.4. In Figure 7.4, the rigid support (1) is a steel block with a
half circular curvature and is considered as arigid confinement. The machined surface
of the rigid support was polished in order to reduce the friction between the ring and the
support. Three rigid supports with different radii were used. The loading head (2) con-
sists of a steel bar and two load transfer plates. The two plates can slide along the steel
bar. The stecimen is item (3). The ends of the specimen are fixed by the two plates as
shown. The plates are fastened together by two bolts. By adjusting the position of the
plates on the load head, the portion of the specimen at the outside the rigid support can
be made coincidental with the tangent of the half circular rigid support. A wire (4) is
inserted at the bottom of the support to impose an initial deflection on the ring and to
simulate a combination effect of the point imperfection and the outside disturbances.
The apparatus was mounted in a materi;ﬂs testing machine MTS 810. The vertical load
P éan be measured and recorded continuously in response to the change of the end dis-

placement.



Figure 7.3 A Picture of the Experimental Apparatus
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(2) Load head

(3) Specimen

(1) Rigid support

\ (4) Inserted wire

Figure 7.4 Schematic Diagram of the Experimental Apparatus
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7.3 Specimens

The specimens were made from four different materials, Steel (Steel shim 1010),
Aluminium (Aluminium shim 1100), Plastic (Polyvinyl Chloride) and Cardboard. Di-
mensions of specimens and the elastic moduli E are listed in Table 7.1. The moduli of
elasticity of steel and aluminium were taken from [48]. The moduli of plastic and card-
board were measured by the author (see Appendix A). From different thicknesses of
the materials and three different radii of the rigid supports a wide range of (L; ) ratios

could be obtained.

Table 7.1(a) Test Materials’ Elastic Moduli and Dimensions

Materials Width B (mm) Thickness t (mm) E (GPa)
Plastic Samplel 25.00 0.51 2.10
Plastic Sample2 25.00 0.38 2.39
Plastic Sample3 25.00 0.25 2.37

Table 7.1(b) Test Materials’ Elastic Moduli and dimensions

Materials Width B (mm) Thickness t (mm) E (GPa)
Steel Samplel 1250 0.51 210
Steel Sample2 12.50 0.38 210
Steel Sample3 12.50 0.25 210




Table 7.1(c) Test Materials’ Elastic Moduli and Dimensions
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Materials Width B (mm) Thickness t (mm) E (GPa)
Aluminium Samplel 12.50 0.51 78
Aluminium Sample?2 12.50 0.38 78
Aluminium Sample3 12.50 0.25 78

Table 7.1(d) Test Materials’ Elastic Moduli and Dimensions
Materials Width B (mm) Thickness t (mm) E (GPa)
Cardboard 25.00 0.60 | 4.15

The three rigid support’s radii are listed in Table 7.2.

The diameters of the wires

used to simulate the imperfections of the rigid boundary are listed in Table 7.3.

Table 7.2 Radii of Rigid Supports

Rigid Support No. Radius r (mm)
1 203.2
2 152.4
3 101.6

Table 7.3 Diameters of Inserted Wires

o1 62 03

o4

05 36 o7

88

3.20 2.10 1.85 1.65

0.75 0.65 | 0.40

0.20
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7.4 Experimental Procedure

The tests were conducted on a MTS model 810 under displacement control mode.
First, a specimen was bent elastically into position and pressed against the surface of the
rigid boundary by imposing displacement on both ends. The component was then un-
loaded and a wire was inserted between the specimen and the rigid boundary as shown
in Figure 7.4. The component was reloaded until buckling occurred. The displace-
ment-load curve was recorded on an X-Y recorder for both loading and unloading proc-
esses.

Figure 7.5 is a typical displacement-load curve recorded during testing. Along curve
B-C-D-E the end vertical displacement is increasing. Thus the curve B-C-D-E is called
the loading curve. Along curve E-F-B the end displacement is decreasing. This portion
of the curve B-F-B is called the unloading curve. From B to C the compression load P
increases as the end displacement increases. The ring is in the stable equilibrium state.
When the compression load reaches the critical point P, the specimen will suddenly
jump to the large deflection position and the compression load drops rapidly from P to
Pp in a very short interval of time. Buckling occurs at point C. After this occurrence,
the load will slowly decrease as the end displacement increases continually. When the
curve reaches point E, the end displacement was reversed. From E to F the load increas-
es slowly as the end displacement decreases but when the end displacement decreases
to a certain point, the specimen will suddenly jump back to the unbuckled position and
the load increases to P instantly. For a specific material the jump-back always occurs

at the same point for the same specimen even if the buckling point is different for the
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different initial deflection. This suggests that if the end compression load P is below

the load P at which the snap-back occurs, there is only one possible stable state which
is the unbuckled state. If the load exceeds this point, there are two possible stable states,
which are the original unbuckled state and the buckled large deflection state. Whether
or not the specimen buckles when the load reaches this point depends on the magnitude
of the imperfections or the external disturbances. This observation agrees with results

from literature reviews in Chapter 2.

7.5 Summary

Based on equilibrium analysis an experimental apparatus was developed. Although
the design of this apparatus is very simple, it is a powerful tool for experimental inves-

tigation of buckling behaviours of a ring confined within a rigid boundary.
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Load P
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Figure 7.5 Loading and Unloading Curve



104

Chapter 8
EXPERIMENTAL RESULTS AND DISCUSSIONS
8.1 Introduction

In this chapter, experimental results for various materials and geometry will be dis-
cussed. First the three undetermined numbers in the buckling function developed in
Chapter 4 will be derived from the experimental data. Then all the experimental results
will be compared with the discrete element model results. Friction effects arid local

plastic deformation will also be discussed in detail.

8.2 Experimental Results

At each experimental point a minimum of four specimens was tested. The experi-
mental data at each point showed a amount of scatter. The average values at each point
were calculated and used to derive the unknown quantities in Equation (4.10) and to
compare with the discrete element model results. Table 8.1 -- Table 8.10 are average

—EE % 10° values from different materials.
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105

(6/E) x 10°
o/t
r/t
6.27 4.12 3.63 3.24 147 | 127 | 0.78
200 1.70 2.53 2.93 3.10 | 6.30
300 1.30 1.87 2.11 242 | 545 | 6.21
400 0.92 1.36 1.55 1.73 3.92 454 | 6.75
Table 8.2 Ratio of 6 /F for Plastic Sample2
(6/E) x10°
ot
r/t
8.42 5.53 4.87 434 | 197 | 171 1.05
267 1.12 1.56 1.71 195 | 411
400 0.77 1.15 1.28 136 | 298 | 342 | 5.14
533 0.49 0.73 0.87 098 | 224 | 248 | 3.90
Table 8.3 Ratio of 6 /E for Plastic Sample3 (6/E) % 103
1/t o
12.80 | 840 | 7.40 6.60 | 3.00 | 2.60 | 1.60
400 0.48 0.69 0.77 086 | 142 | 1.53
600 0.30 0.49 0.51 0.58 1.17 | 1.28
800 0.24 0.35 0.41 0.46 091 | 1.02 | 144
Table 8.4 Ratio of 6,/E for Aluminium Samplel 3
(6/E) X 10
o/t
r/t
6.22 3.94 3.50 3.11 1.38 | 1.18
200 0.35 0.53 0.57 065 | 1.22 1.29
300 030 | 045 | 052 | 062 | 1.13 | 127
400 0.38 0.57 0.63 0.71 1.27 | 1.38
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Table 8.5 Ratio of 6 /F for Aluminium Sample2 (6/E) x 10°

o/t
r/t
8.29 5.25 4.67 4.15 1.84 1.57
267 0.30 0.44 0.50 0.54 1.11 1.28
400 0.28 042 0.48 0.52 1.05 1.14
533 0.34 0.48 0.54 0.62 1.24 1.32

Table 8.6 Ratio of 6/E for Aluminium Sample3 (5/E) x 10

o/t
r/t

12.44 | 7.87 7.01 6.22 | 276 | 2.36

400 0.16 0.23 028 | 030 | 057 | 0.74

600 015 | 022 | 023 | 026 | 055 | 0.60

800 0.16 0.22 025 | 028 [ 050 | 0.65
Table 8.7 Ratio of 6/E for Steel Samplel (6/E) x10°

o/t
r/t

12.60 | 9.33 622 | 394 | 3.50 | 3.11 1.38
200 065 | 099 | 115 1.23 | 237
300 058 | 085 | 099 | 1.07 | 1.85
400 0.23 0.31 049 | 073 | 0.88 | 093 | 1.60

Table 8.8 Ratio of 6/E for Steel Sample2  (5/F) x 10°

o/t

v/t
8.29 5.25 4.67 4.15 1.84 1.57

267 0.53 0.78 0.87 098 | 1.76 1.93

400 0.42 0.72 0.79 0.86 1.56 1.99

533 0.35 0.39 041 0.43 0.71 | 0.82




Table 8.9 Ratio of ¢ /E for Steel Sample3
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(6/E) %103
o/t
r/t
1244 | 7.87 7.01 622 | 276 | 2.36
400 0.28 0.42 047 | 055 | 1.00 1.04
600 0.21 0.29 0.37 044 | 079 | 0.83
800 0.14 0.19 0.21 0.23 041 | 046
Table 8.10 Ratio of 6,/E for Cardboard 3
(6/E) x 10
o/t
v/t
5.27 3.33 297 | 2.63 1.17 | 1.00
170 1.14 1.75 1.82 1.97
253 1.08 1.58 1.64 185 | 293 | 3.43
o/t
¥/t
17.92 |11.89 | 894 | 592 | 3.81 |3.06 1.43 | 1.17 | 0.28
338 027 | 050 | 0.63 | 091 | 1.25 |1.55 2.12 | 2.60 | 3.83

8.3 Buckling Function and Verification

In Chapter 4 a relationship of the critical buckling compression stress ¢, with the

)
elastic modulus E and two dimensionless variables (’—;) and (7) were derived by us-

ing the dimensional analysis method (see Equations (4.9),(4.10) and (5.1))

From Equation (5.1) it can be seen that the critical buckling compression stress G,

is proportional to the elastic modulus of the ring material. But the critical buckling com-

pression stress G, can not be completely determined unless the three numbers C, b and
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d are known. Thereafter, the three unknown numbers C, b and d will be determined by

using the least squares method for the different materials.

Only experimental data in Table 8.1-Table 8.3 were used to derive the three unde-
termined numbers in the buckling function (8.1). The reason for this is that the bﬁckling
function was derived under the total elastic material assumption. In experiments, local
plastic deformation was observed for all materials except the plastics. That is why ini-
tially only data from plastic materials were used. This initial analysis using a multi-var-

iable least square method resulted in the following three numbers.
C = 1.9970 b = -0.9917 d = ~0.9499 (8.1a)

The 99 percent confidence intervals for the three parameters are [57,58]

CL(C) = [1.9414, 2.0843]
CI (b) = [-1.0318,—-0.9508]
CI (d) = [-0.9921,-0.9077]

With 0.01 lever of significance we can accept that
C = 2.00 b = -1.00 d =-095 (8.1b)

Thus the buckling function for the plastic becomes

~1.00 § -095 O

) = 8.2)

1&, (-?)] =200
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)
To test the validity of Equation (8.2), according to Chapter 4, first (;) is held con-
stant at a value of 4.34 and a component equation is determined by the least square

method from the data in Table 8.2

—-0.9885
f[(;),4.34] = 0.4939 x (g) | (8.3)

Then (-E) is held constant at a value of-400 and another component equation can be

determined from the data in Table 8.2

5 _ _2 -0.9222
400, () | = 05483 %107 (2) (84)

Similarly another two component equations can be determined from the data in Table

8.2

-0.9605
f[(-;),4.87] = 03768 % (%) (8.5)

8 5 —1.0098
f[533, (-t-)J = 04247x102(2) (8.6)
And

£1400,4.34] = 136x 107> f[533,4.87] = 0.87x 107 (8.7)

£[400,4.87] = 1.28x 10 f[533,4.34] = 0.98x 1073 (8.8)
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Using Equation (4.23) to test the validity of the prediction Equation (8.2), we have

f[400, (§)] § —0.9222 f[533, (g)] & -1.0008

t
Fraoo, 234 ~ “O0 () e - G 69

Figure 8.1 is the comparison of two equations in Equations (8.9). It is found that

. @] A= )]

71400, 434] ~ 1533, 434] 8.10)

Using Equation (4.24) to conduct another test, we obtain

,
ooms 1] (5),487]
1400, 4.87]

1 (), 434]

204 p. =0.9605
400, 4.34] = 294.37(3) (8.11)

= 363.16(-;:)

Figure 8.2 is the comparison of two equations in Equations (8.11). It is also found that

r
f[ (5),4.34} ] f[ (;),4.87] o1
71400, 4.34]  F1400, 4.87] ’

From the preceding test, it is concluded that the form of the prediction Equation (8.2) is
valid.

Figure 8.3 is a comparison of the dimensional analysis fitted curves with the exper-
imental data. Figure 8.4 is the comparison of Equation (8.2) with Lo and Chan’s theo-
retical results. The experimental data are in good agreement with the curves of Equation
(8.2) in Figure 8.3. But the curves of Equation (8.2) are well above Lo and Chan’s the-

oretical results. This is due to the friction effect which will be discussed later.
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8.4 Comparison with Discrete Element Model for Plastics Materials

Figure 8.5 -Figure 8.13 are comparisons of the experimental data for plastic mate-
rials with the results of the discrete element model analysis.

Comparing Equation (8.2) with Equation (5.33) and Equation (6.25) it is found that
the exponents of two dimensionless variables (; ) and (g) are in a very good agree-
ment with the discrete element model results and the exponents b and d are both approx-
imately -1.

The coefficient C in Equation (8.2) is 2.00. In Equation (5.33) the coefficient C is
approximately 1/2. Itis obvious that the coefficient value from the experimental data is
not in agreement with the frictionless discrete element model. This indicates that the
friction resistance must exist in the experiment. It also indicates that the friction factor
has a large effect on the coefficient and a little effect on the exponents of the buckling
function. |

The friction coefficient pL can be determined analytically by comparing Equation
(8.2) with Equation (6.25). Let

1
5Cp = 2.00 (8.13)

Solving Equation (8.13) for o, = 5°, we obtain

1L~ 0.87 (8.14)
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Figure 8.5 Comparison of Experimental Results with Discrete Element Model Result for Plastic
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Figure 8.8 Comparison of Experimental Results with Discrete Element Results for Plastic
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Figure 8.9 Comparison of Experimental Results with Discrete Element Results for Plastic
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Figure 8.10 Comparison of Experimental Results with Discrete Element Model Results for Plastic
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Figure 8.11 Comparison of Experimental Results with Discrete Element Model Results for Plastic
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Figure 8.12 Comparison of Experimental Results with Discrete Element Model Results for Plastic
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Figure 8.13 Comparison of Experimental Results with Discrete Element Model Results for Plastic
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From Figure 8.5 - Figure 8.13 it can be seen that the experimental data of plastic

materials are scattered in the region of L = 0.8 — 1.0. The friction coefficient meas-

ured as found in Appendix Bis p = 0.79 ~ 1.14.
8.5 Comparison with Discrete Element Model for Other Materials

For materials other than plastics, some local plastic deformations were observed in

the experiments. The plastic deformation will affect both the coefficient C and the ex-

ponents b and d of the buckling function.

For Aluminium, the three undetermined numbers are
C = 5.6269 b =-0.2110 d = —-0.8730 (8.15)
For Steel, the three undetermined numbers are
C = 296.50 b = —0.8367 d = —-0.7752 (8.16)
For Cardboard, the three undetermined numbers are
C = 67.133 b = —-0.5581 d = —0.6465 8.17)
The measured friction coefficient |t for three materials are (see Appendix B):

Steel: n = 024~0.34
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Aluminium: p = 0.20~0.25

Cardboard: p = 0.17~0.22

Figure 8.14 -Figure 8. 22 are the comparisons of the experimental data for steel with
the discrete element model results. Figure 8.22-8.31 are the comparisons of the exper-
imental data for aluminium with the discrete element model results. Figure 8.32-Figure
8.34 are the comparisons of the experimental data for cardboard with the discrete ele-
ment model results.

Unlike plastic materials, the experimental data do not follow the curves of the dis-
crete element model. In the large imperfection region the expérimental data follow the
discrete element model results quite well. But in the small imperfection region, the ex-
perimental data are at below the discrete element model results. This can be explained
by the local plastic deformation observed in the experiments for these materials. At the
large imperfection region, the critical load is relatively low and the plastic deformation
is negligible, so that the experimental data are in good agreement with the theoretical
analytical results. But in the small imperfection region, the critical load is relatively
large and the local plastic deformations are very obvious and have a strong effect on the
critical buckling load as the experimental data are well below the theoretical analysis

results.
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Figure 8.16 Comparison of Experiemntal results with Discrete Element Model Results for Alﬁminium
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Figure 8.17 Comparison of Experimental Results with Discrete Element Model Resuits for Aluminium
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Figure 8.18 Comparison of Expermental Results with Discrete Element Model Results for Aluminium
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Figure 8.19 Comparison of Experimental Results with Discrete Element Model Results for Aluminiom
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Figure 8.20 Comparison of Experimental Results with Discrete Element Model Results for Aluminium
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Figure 8.21 Comparison of Experimental Results with Discrete Element Model Results for Aluminium
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Figure 8.22 Comparison of Experimental Results with Discrete Element Model Results for Aluminium
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Figure 8.23 Comparison of Experimental Results with Discrete Element Model Results for Steel
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Figure 8.24 Comparison of Experimental Results with Discrete Element Model Results for Steel
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Figure 8.25 Comparison of Expermental Results with Discrete Element Model Results for Steel
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Figure 8.26 Comparison of Experimental Results with Discrete Element Model Results for Steel
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Figure 8.27 Comparison of Experimental Results with Discrete Element Model Resuits for S‘teel
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Figure 8.28 Comparison of Experimental Results with Discrete Element Model Results for Steel
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Figure 8.29 Comparison of Experimental Results with Discrete Element Model Resuits for Steel
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Figure 8.30 Comparison of Experimental Results with Discrete Element Model Results for Steel
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Figure 8.31 Comparison of Experimental Results with Discrete Element Model Results for Steel
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Figure 8.32 Comparison of Experimental Results with Discrete Element Model Results for Cardboard
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Figure 8.33 Comparison of Experimental Results with Discrete Element Model Results for Cardboard
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Figure 8.34 Comparison of Experimental Results with Discrete Element Model Results for Cardboard
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8.6 Comparison of Results for Different Lubricants

The friction resistance is one of the major factors which influences the critical buck-
ling stress. The friction coefficient is dependent on the materials. From preceding dis-
cussions it can be seen that for different materials, the friction coefficients are different.
The friction coefficient is also dependent on the lubrication condition at the interface.

Figure 8.35 is a comparison of different lubrication conditions for the same plastic
material. In the first case, no lubricant was used. In the second case, a light viscosity
oil (Three-in-One Oil) was used at the interface. In the third case, a dry lubricant, Mo-
lybdenum (IV) sulphide was used. Comparing these three cases, it is surprising to find
that the oil lubricant case appears to have the largest friction resistance instead of no lu-
bricant case. The explanation is that the oil surface tension prevents the specimen from
lifting off the rigid boundary. For the dry lubricant, there is no liquid surface tension.

Therefore the smallest friction resistance case is the dry lubricant case.
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8.7 Summary

From the experimental results and discussiéns, we find that the experimental data
are in good agreement with the discrete element model results for plastic materials. For
other materials the experimental data are in good agreement with the discrete element
model results in the large imperfection region when accounting for friction but are not
in agreement with the discrete element model results in small imperfection region. Lo-
cal plastic deformation is the main factor which causes these discrepancies between the
experimental data and the theoretical results. Friction coefficient has a strong effect on
the critical buckling stress. But the friction resistance will only affect the coefficient of
the buckling function. Local plastic deformation will affect both the coefficient and the

exponents for the two dimensionless variables of the buckling function.
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Chapter 9
FINITE ELEMENT ANALYSIS
9.1 Introduction

The finite element method is a powerful numerical analysis technique for obtaining
approximate solutions to a wide variety of engineering problems. In this chapter, the
finite element method is used to investigate the behaviour of a ring confined within a
rigid boundary. First, a half ring model will be developed to simulate the discrete ele-
ment models and the experimental model. ANSYS 4.4 was used to carry out the calcu-

lations. Then the results will be compared with the discrete element model results.

9.2 Model Description

The two dimensional beam element is used to establish the half ring model. As
shown in Figure 9.1, from 0 to 10 degrees centre angle region the arc was divided into
1/4 degree per element. In this region the displacements and stresses change quickly be-
cause an initial deflection was caused by a point imperfection. From 10 to 20 degrees
the arc was divided into 1 degr‘ee per element. Beyond 20 degrees the ring was divided
into 10 degrees per element becausé in this region the changes of displacement and

stress change are relatively small.
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Figure 9.2 Two-Dimensional Interface Element
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The interface between the ring and the rigid boundary was characterized by two-

dimensional interface elements. The two-dimensional interface element represents two
surfaces which may maintain or break physical contact and may slide relative to each
other. The element is capable of supporting only compression in the direction normal to
the surfaces and shear (Coulomb friction) in the tangential direction. The geometry,
nodal point locations, and the coordinate system for the elements are shown in Figure
9.2. The element is defined by two nodal points, an angle to define the interface, a stiff-
ness K, an initial displacement interference, an& an initial element status. An element
coordinate system (T-N) is defined on the interface. The orientation of the interface is
defined by angle 6 which is measured from the global X axis. The K value should be
based upon the stiffness of the surfaces in contact. For this problem the local surface
deformation is not important and K can be estimated as an order of magnitude of two
greater than the adjacept element stiffness (AE/L). The stiffness K is associated with a
zero or positive interference. For the negative interference which represents the gap size
of interface, the stiffness K is zero. The only material property used is the interface co-
efficient of friction W. A zero value represents frictionless surfaces.

The finite element model is shown in Figure 9.3 in which only a quarter of the as-
sembly of a ring and a rigid boundary is presented because of the symmetry condition.
The origin global coordinate system is located at the centre of the ring and the rigid
boundary. A quarter of a ring was characterized by 59 elements having nodal points at
the middle radius of the ring. The interface between the ring and the rigid boundary was
characterized by 58 two-dimensional interface elements. ANSYS 4.4 preprocessing

routine PREP7 [54, 55] was used to generate the model.
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Figure 9.3 Half Ring Finite Element Model
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The boundary conditions are that both the displacement in the tangential direction

and the rotation at node 1 are zero. At node 59, both the displacement in the direction
of the radius and the rotation are zero. All displacments for the interface element nodes
at the boundary side are zero.

Two kinds of external conditions were applied. First at node 59 a vertical compres-
sion load P was applied. Then at node 1 a displacement 9 in the radial direction was ap-

plied.

9.3 Calculation Steps

In the experimental process an initial deflection 8 was given by inserting a wire with
diameter & in between the ring and the rigid support at the bottom. Then the critical end
compression force P, can be obtained from the displacement-load diagram recorded in
the experimental process. In the finite-element calculations the reverse was done. That
is an end compression force P was applied first while the initial deflection is zero at the
bottom of the ring. Then a small deflection 8§ was introduced at the bottom of the ring,
then the reaction force R at the bottom can be calculated. As shown in Figure 9.3, if the

reaction force at the bottom is

R>0

the ring is in a stable condition because a force is needed to push the ring in this position.

If this force disappears, the ring will come back to the original position. After the initial

deflection, the deflection will increase gradually until the reaction force R reaches zero.
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Then the deflection & corresponding to the zero reaction force is the critical deflection

9. for the given end compression force P. That is if the inward displacement caused by
the geometric imperfection, or the outside disturbance, or the combination of these two
factors is smaller than J,, the ring will not buckle but if the inward displacement is larg-
er than §,,, the ring will buckle. When the initial deflection & reaches beyond the value

9.y the reaction force R will change direction, i.e.
R<0

Because this force at this stage is to hold the ring from jumping to the large deflection
position, i.e. the buckled configuration.

The calculation steps can be summarized as follows:

Step 1 Apply load P at node 59.

Step 2 Apply inward displacement 8 = &, at node 1.

Step 3 Calculate the vertical reaction force R at node 1.

Step 4 If R=0, then §.,=9, go to Step 6; else go to Step 5.

Step5 If R>0, 8 = 8+ AJ, goto Step 3; else & = & — A9, go t6 Step 3.

Step 6 Stop.

Figure 9.4 is the calculation flow chart.
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9.4 Results and Discussions

Figure 9.5 is the comparison of finite-element calculation results with the discrete
element model described in Chapter 6 and Chapter 7. The friction coefficient,  is 0.4
in Figure 9.5. It can be seen that the finite-element analysis results are in good agree-
ment with the discrete element model analysis results. Figure 9.6 is the buckled config-

uration of the ring.
9.5 Summary
A half ring finite element model was developed by using the beam element and the

interface element. ANSYS 4.4 was used to carry out the calculations. The results are

in good agreement with the discrete element model results.
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Chapter 10
CONCLUSIONS AND RECOMMENDATIONS
10.1 Introduction

From all theoretical analysis, experimental investigation and finite element calcula-
tion results presented from Chapter 1-Chapter 9, the buckling behaviour of a ring con-
fined within a rigid boundary and the major factors which influence the critical buckling
conditions were quite clear. In this chapter, the major results will be briefly summa-
rized and conclusions and recommendations will be made. Finally, future work will be

suggested.
10.2 Dimensional Analysis

A relationship of the critical buckling compression stress of a ring confined within
a rigid boundary with the elastic modulus of the material, geometry and imperfections
or external disturbances was developed by using the dimensional analysis method.

The critical buckling compression stress is proportional to the elastic modulus of
materials. The buckling function f| [ (’—;) , (;) ] , only depends on two dimensionless
variables (; ) and (—?) . Thus the buckling function is determined by the geometry and
the imperfections or the external disturbances.

The buckling function has one undetermined coefficient C and two undetermined
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exponents b and d. These undetermined coefficient and exponents can be determined

from experimental results.

10.3 Discrete Element Model Analysis

The discrete element model can accurately describe the behaviour of the buckling
of the ring confined in a rigid boundary and is a simple and good model for theoretical
analysis. In addition the results from the dimensional analysis method and the discrete
element method have the same pattern which demonstrates that these two methods are
powerful tools for the structure stability analysis and helps to substantiate the methods.

The frictionless model results are on the safe side for a prediction of the critical
buckling condition and are very conservative. The friction model results are closer to
the real situation and are suitable for design purposes. The discrete element model is
accurate for small o, and with o increasing, the error will increase.

Friction plays an important role in the buckling behaviour of a thin elastic ring con-
fined in a rigid boundary. Friction resistance force at the interface has a positive effect
on the critical buckling compression stress of the ring. The larger the friction resist-
ance force, the larger the critical compression stress. The discrete element model when
considering friction is closer to practice situation than the frictionless model. The fric-

tionless model is just a special case of the friction model.

10.4 Experimental Results

From the experimental results, we find that the two exponents for dimensionless
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variables (1; ) and (7) are approximately -1 for total elastic materials, as displayed by

the behaviour of the plastic materials. The experimental data are in good agreement
with the discrete element model results for plastic materials. For other materials the
experimental data are in good agreement with the discrete element model results in the
large imperfection region when accounting for friction but are not in agreement with the
discrete element model results in small imperfection region. Local plastic deformation
is the main factor which causes these discrepancies between the experimental data and
the discrete element model results. The friction coefficient has a strong effect on the crit-
ical buckling stress. But the friction resistance will only affect the coefficient of the
buckling function. Local plastic deformation will affect both the coefficient and the ex-

ponents for the two dimensionless variables of the buckling function.
10.5 Finite Element Analysis

A half ring finite element model was developed by using the beam element and the
interface element. ANSYS 4.4 was used to carry out the calculations. The results are

in good agreement with the discrete element model results.
10.6 Conclusions

From the above brief summary, we conclude:
(1) It is confirmed that the critical buckling load is proportional to the elastic mod-
ulus of materials.

(2) 1t is also confirmed that the initial deflection 8, which may be caused by geomet-
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ric imperfection of the boundary, or external disturbance, or combination of geometric

imperfection and external disturbance, makes the ring buckle. When 8=0, there is no
critical load in the elastic region.

(3) Friction at the interface has a positive effect on the critical load. The larger the
friction is, the larger the critical load. The larger the friction is, the more difficult for
the ring to slide along the boundary.

(4) Local plastic deformation which occurs in the lift out region of the ring has a
negative effect on the critical buckling load. The lérger the local plastic deformation is,
the lower the critical buckling load becomes.

(5) In the elastic region, the critical load is proportional to the two dimensional var-

. t t
iables (;) and (5) .
10.7 Recommendations

From above conclusions, we have following recommendations:

(1) From the geometry view point, increasing the thickness, ¢, of the ring, reducing
the radius, r, of the boundary can make the ring more stable.

(2) From the material view point, choosing high elastic modulus and high yield
strength materials can improve the stability of the ring.

(3) From the boundary condition view point, increasing friction at the interface can
increase the critical load.

(4) Last but the most important point, reducing geometric imperfections of the
boundary and external disturbances in the manufacture and assembly process can pre-

vent the ring from buckling.
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10.8 Future Work

Locai plastic deformation plays the important role in determine the critical buckling
conditions for a ring confined within a rigid boundary. So far in the study, no quantita-
tive relationship of plastic deformation and the critical buckling load has been derived.

Further study should focus on this aspect.
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Appendix A
MEASUREMENT OF ELASTIC MODULUS

The elastic modulus of a material is a very important property for the buckling anal-
ysis of a ring confined within a rigid boundary. In the buckling experiment, four kinds
of materials were used. These materials are steel, aluminium, plastic and cardboard. For
steel and aluminium, the moduli can be obtained from the resource or material hand-
books. For plastic and cardboard, these data are not available. Therefore the moduli of
plastic and cardboard should be measured experimentally.

It is assumed that the relationship of stress énd strain is linear in the small load re-

gion
o = Ee (A.1)

For cardboard, the tension modulus and the compression modulus are generally differ-
ent. But for the small compression load which is the case in our experiment, it can be

assumed that the tension and compression moduli are the same. Thus the tension mod-
ulus instead of compression modulus can be measured. Since plastic and cardboard are

soft material, the method used to measure the modulus of metal is not suitable for this
case. If the material is steel, strain gages can be placed on the specimen and the curve
of stress versus strain is obtained directly. Then from Equation (A.1) the elastic modulus

is easily deduced. But for the soft materials, strain gauges can not be placed on the spec-
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imen. The strain obtained this way would not be the real strain of the material because

the material itself is much softer than the material of strain gauges. How to measure
strains of soft materials such as tissues, papers and plastics is the technology challenge
for the engineers and scientists. A new method was designed to measure the strains of
the plastics and the cardboard, which is referred here as the relative method. Following
is the detail description of the method.

For each test, two specimens should be prepared. The two specimens are identical

in all sizes except the length of the gage as shown in Figure A.1. From Figure A.1 we

have

L,=2a+1
(A.2)
At the same load, the total elongations of specimens are
AL, =2Aa+ Al
(A.3)

AL, =2Aa+2Al

If we can measure the elongation AL; and AL, of these two specimens, from Equa-

tions (A.3) we obtain:

AL,—AL; = Al (A.4)
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Figure A.1 Specimens for Measurement of Elastic Modulus
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In this way all boundary effects are eliminated and the real gage elongation Al is ob-

tained. Then the strain of the specimen is calculated by

€= ATZ (A.5)
As described above it can be sure that the relative method is a very effective and an easy
method to measure the strains of soft material which can not be attached by strain gages
or other gages.

The experiments were conducted on the MTS machine in the Laboratory, Depart-
ment of Mechanical Engineering, The University of Calgary. The experimental setup
is shown in Figure A.2.

The relationship of the load and the displacement between two grips is recorded au-
tomatically by the x-y record. The loading is displacement control and the rate of dis-
placement is 0.00625 mm per second. For each material, at least three pairs of
specimens were tested and an average of three data points were taken as the Young’s

modulus of the material.
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Figure 4.2 Experimental Setup for Measurement of Elastic Modulus



Table A.1 - A.4 are measured moduli of materials: cardboard and plastics.
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Table A.1  Elastic Modulus of Cardboard
P t B c Al 1 € E
(N) | (mm) | (mm) |(MPa) | (mm) |(mm) | (107) | (GPa)
Pair 1 222 | 0.60 | 20 |18.53 | 044 | 100 | 4.45 4.17
Pair2 | 222 | 0.60 | 20 (1853 | 045 | 100 | 4.54 4.08
Pair 3 222 | 053 | 20 |2098} 0.50 | 100 | 5.00 4.20
Average Modulus 4.15
Table A.2  Elastic Modulus of Plastic Samplel
P t B c | Al 1 € E
M) | (mm) | (mm)|(MPa)| (mm) | (mm) | (103 | (GPa)
Pair1 | 222 ( 0.508 20 |21.89| 1.07 | 100 | 10.70 2.05
Pair2 | 222 | 0.508 20 (21.89| 1.12| 100 | 11.17 1.96
Pair3 | 222 | 0508 20 [21.89| 0.95| 100 | 9.53 2.29
Average Modulus 2.10




Table A.3  Elastic Modulus of Plastic Sample2
P t B c | Al 1 g E
(N) | (mm) | (mm)|(MPa)| (mm) | (mm) | (10%)| (GPa)
Pair1 | 178 { 0.381f 20 {2341 | 098 | 100 | 9.78 2.39
Pair2 | 178 | 0.381| 20 (2341 097 | 100 | 9.65 2.43
Pair3 | 111 | 0.381| 20 |[14.83| 0.64 | 100 | 6.35 2.34
Average Modulus 2.39
Table A.4  Elastic Modulus of Plastic Sample3
P t B G | Al 1 g E
(N)| (mm)| (mm)|(MP2)| (mm) | (mm) | (103)| (GPa)
Pair1 | 111 | 0.254 20 |22.24 | 0.97 | 100 | 9.66 2.30
Pair2 | 111 | 0.254 20 }|22.24| 099 | 100 | 9.91 2.25
Pair3 | 89 | 0.254 20 [17.79| 0.69 | 100 | 6.99 2.55
Average Modulus 2.37
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Appendix B
MEASUREMENT OF FRICTION COEFFICIENT

It is assumed that the friction between a ring and a rigid boundary obey Amonton
and Coulomb’s Law: (1) the friction resistance Fy is proportional to the weight of the

object which is being moved as shown in Figure B.1, i.e.
Fe = pW (B.1)

where |1 is the fiction coefficient; (2) the frictional force is independent of the apparent
area of contact; (3) the interfacial resistance between two surfaces is independent of the
velocity of sliding.

According to the definition of the friction coefficient \, there are many ways to
measure the fiction coefficient. The direct way is that of increasing the pull force F grad-

ually until the object starts moving. Then from equilibrium condition, we have
F =F;=uW B.2)

Then

b= ®.3)
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Figure B.1 Definition of the Friction Law
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Figure B.2 Setup for Measurement of Friction Coefficient
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A different method was used to measure the friction coefficient. As shown in Figure

B.2, we have

N = Wcos¢
F = Wsing (B.4)
According to Equation (B.1)
Fe = uN B.5)
Bringing Equation (B.4) into Equation (B.5), we obtain
L = tanp = _H (B.6)

JL? —H?

where ¢ is called friction angle. From Eqﬁation (B.6), it can be seen that the friction
coefficient is independent of the weight of the object. The length of the base plate, L in
Figure B.2 is known for the given setup. The only unknown is H. The base plate is made
of the same material as the rigid support in the buckling experiment and was polished
to be the same finish as the rigid support.

The procedure of measurement is very simple. First, put a piece of material of the
ring on the base plate. Then gradually increase the angle ¢ until the material starts slid-
ing along the plate. Measuring the height H and bringing it into Equation (B.6), we can
calculate the friction coefficient. Ten measurements were made for each of materials.

The results are listed in Table B.1-B.4.



Table B.1 Friction Coefficient for Steel

Lubricant; Three-in-one 0il
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No. 1 2|1 3| 45|16} 7| 8| 9| 10} Average
+11
H(mm)| 59 | 77| 73| 63| 73| 73| 70| 66| 69| 81| 70 _{;
+0.05
18 0.24 10.3210.30{0.26 10.30 |0.30]0.29(0.27]0.28 [0.34 0-29_0'05
| Table B.2 Friction Coefficient for Aluminium
Lubricant: Three-in-one oil
No. 1 21 3 4 5 6| 7 8 9| 10 [ Average
H(mm) 50| 53| 56| 54| 51| 6150} 53| 60| 58 55 '_*'g
1! 0.20]0.21 10.23 10.2210.21 {0.25 |0.20 |0.21 |0.24 | 0.23 | 0.22 ngg
Table B.3 Friction Coefficient for Cardboard
Lubricant: None
No. 1123|415 6 |71 8| 9| 10| Average
H(mm)| 49| 42 | 46 | 44| 48 50- 551 55| 52| 51| 49 Tg
18 0.20(0.17 [0.18 {0.18(0.19{0.20 |0.22 |0.22|0.21|0.20 {0-20 _+8;8§
Table B.4 Friction Coefficient for Plastic
Lubricant: Three-in-one oil
No. 1| 23|45 6| 7| 8| 9| 10| Average
H(mm) 157|188 |198 | 177|192 | 174|178 16511741195 180:%3
i} 0.7911.10 ]11.24 {0.97]1.15 |0.94 {0.98 |0.85 0.94 1.20 102:1-8%%




