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Abstract 

Detonation is a very rapid and violent form of combustion. A number of important issues 

associated with occurrence of detonation waves remain poorly understood. Numerical 

simulation has become one of the main research tools on detonation waves, using 

Computational Fluid Dynamics (CFD). To limit the computational domain to manageable 

sizes, it is often useful to perform simulations in a frame of reference attached to the 

wave. The physical domain is then truncated, resulting in artificial inflow and outflow 

boundaries. Numerical non-reflecting boundary conditions are then necessary, ensuring 

that outgoing disturbances do not reflect back into the computational domain. We have 

implemented effective high order-accurate non-reflecting boundary conditions, coupled 

with an WENO (weighted essentially non-oscillatory) solver. In this thesis, typical 

techniques will be introduced on how non-reflecting boundary condition can be 

implemented. The characteristic method which we use will be described in detail. 

Validation and results for one dimensional shock-tube problem and for two dimensional 

detonations will be presented. 
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1.1 

Chapter 

ONE 

INTRODUCTION 

1-1 Detonation 

Detonation is the most rapid and violent form of combustion. Detonation waves 

can be described as an interaction between diffusionless gas dynamics and chemistry. 

Diffusive mechanism such as heat conduction and mass diffusion, which are very 

important in flames, can be neglected. In detonations, all important energy transfer 

involves chemistry and strongly compressible flow. The material is consumed 103 to 108 

times faster than if in a flame (Fickett & Davis 1979), and the rate of energy conversion 

is thus extremely high. For example, a detonation wave with an area of 20 square meters 

releases power at a rate equivalent to all the power that the earth receives from the sun. 

This property makes detonation either very dangerous or very useful. 

The detonation phenomenon was first recognized in 1881. The first attempt to 

theoretically explain the phenomenon is the well-known Chapman-Jouguet theory. It 

assumes that the entire flow is one-dimensional, and the front is treated as a 



INTRODUCTION 1.2 

discontinuity plane at which heat is released. The resulting Rankine-Hugoniot 

conservation laws apply across the discontinuity, where the chemical reaction is 

considered to complete instantaneously. Based on these assumptions, it is found that a 

minimum value exits for detonation velocity, or a maximum value for deflagration 

velocity, which are called the upper and lower Chapman-Jouguet (C-J) limits respectively. 

There is no solution for the wave speed when the detonation velocity is lower than the 

upper C-J limit or the deflagration velocity is higher than the lower C-J limit. This simple 

theory works reasonably well for predicting detonation velocities in gases. 

In 1927, the spinning detonation phenomenon was discovered, providing an early 

indication that real detonations might be more complex than the planar model. 

Meanwhile, recognizing the finite nature of reaction rates, Zel'dovich (1940), von 

Neumann (1942) and Doring (1943) independently proposed the model now named with 

their initials, ZND. The ZND model also assumes that the flow is steady and one-

dimensional. It still describes the leading shock as a singularity, but resolves finite rate 

chemistry behind the shock. However, mounting evidence was indicating that actual 

detonations were unsteady, and that the leading shock was not planar. 

In the past few decades, researchers have been trying to better understand the 

phenomena of detonation in order to prevent uncontrolled detonation or even use it to 

design advanced propulsion systems such as the Pulse Detonation Engine (PDE) and the 

Pulse Detonation Rocket Engine (PDRE). A number of important issues associated with 

occurrence of detonation waves remain poorly understood, such as deflagration-to-

detonation transition, which is the main mechanism leading to detonation. Some issues, 

such as the stability and the structure of detonations, have been extensively studied in 

experiments and numerical simulations and they are better understood. 

With the advent of Computational Fluid Dynamics (CFD), numerical simulation 

of shocks and detonation waves has become feasible. Multi-dimensional detonation 
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structures observed in experiments can be predicted and analyzed by numerical 

simulation. Two-dimensional transverse wave structures with single step chemistry have 

been simulated (Taki and Fujiwara 1978/1981, Oran et al. 1981/1982, Bourlioux 1992, 

Williams & Bauwens 1995, and Bauwens & Williams 1996). Because computational 

domains are unavoidably finite, large or infinite physical domains need to be truncated, 

resulting in artificial boundaries. The non-reflecting numerical boundary condition (BC) 

is a useful artificial boundary condition ensuring that outgoing disturbances will not be 

reflected back into the computational domain. The non-reflecting BC is not a true 

representation of an infinite domain, but in most' cases, it will provide a better 

approximation than other models, which by their very nature, will result in strong 

reflections. 

1-2 Objectives 

The objective of this research is to investigate available methods of non-reflecting 

boundary condition, select the most appropriate one for incorporation in our high 

accuracy detonation code and to implement and test it. Listed below are the specific 

objectives for this research: 

• Investigate numerical simulation algorithms used within the computational 

domain for time and spatial derivatives and develop a high order accuracy 

algorithm for spatial derivatives used at boundary condition. 

• Implement the selected method into our program with high order accuracy. 

• Validate the reflection at an outflow boundary. 

This thesis is organized as follows: Chapter 2 contains a review of the history of 

detonation simulation and classical models, such as the C-J theory as well as the ZND 
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model. Next, numerical issues related to our simulations are reviewed in Chapter 3. 

The scheme used for the inner computational domain and at the boundaries is described 

in Chapter 3. Different methods for non-reflecting boundary conditions are described 

briefly and the characteristics method, which is the method selected here, is introduced in 

detail in Chapter 4. Chapter 5 concentrates on validation of the characteristics method 

and analysis of the reflection in one-dimensional flow. Chapter 6 shows results from 

application of the characteristics based non-reflecting method in two-dimensional 

detonation simulations. Finally, Chapter 7 includes a summary and the conclusions. 



2.1 

Chapter 

TWO 

DETONATION 

2-1 History 

In early times, the word detonation was used when referring to the sudden 

decomposition of certain chemicals and mixtures with the production of considerable 

noise, "like thunder." Nowadays, in combustion science, the term detonation specifically 

describes shock-induced combustion (Strehlow 1984). The leading part of the detonation 

front is a strong shock wave propagating into the explosive or unreacted mixture. This 

shock heats the material by compressing it, thus dramatically increasing temperature-

sensitive chemical reaction rates. Finally, the rapid reaction that ensues results in 

expansion of the fluid, which supports the shock wave. 

The detonation phenomenon was first observed by Berthelot and Vieille and 

Mallard and LeChatelier in 1881 independently. Chapman (1899) and Jouguet (1905) 

developed a simple one-dimensional theory which explained the phenomenon 

theoretically. The Chapman-Jouguet theory assumes that concentrated heat release is 
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associated with a gas dynamic discontinuity across which the conservation laws are thus 

reduced to a set of jump conditions called the Rankine-Hugoniot conditions. Their theory 

made it possible to predict detonation velocities in gases. It provided a strong framework 

for classification of combustion waves into two distinct families, namely, supersonic 

shock-supported detonations and subsonic shockless deflagrations. The theory is 

discussed in more detail in the following section. 

In 1927, Campbell and Woodhead discovered the phenomenon of spinning 

detonation, which indicated that real detonations might be more complicated than the C-J 

model. A significant improvement to the C-J theory was made independently by 

Zeldovich (1940) in Russia, von Neumann (1942) in the United States, and Doring (1943) 

in Germany. Their model has come to be called the ZND model of detonation. It is based 

on the Euler equations of hydrodynamics and still assumes that the flow is one-

dimensional and steady. In addition, the shock is still treated as a discontinuity. But 

unlike the C-J model, the ZND model resolves the reaction zone for arbitrary finite rate 

models. 

During the period of 1950 -1963, many researchers including Berets, Greene, 

and Kistiakowsky, tried to compare one-dimensional theory with experimental 

measurements in gaseous systems. Their results suggested that the effective state point at 

the end of the reaction zone was in the vicinity of the weak detonation branch of the 

Hugoniot line. Instead of C-J (sonic) point as the theory would predict, the measured 

pressures and densities are typically ten to fifteen percent lower than the calculated 

values by C-J theory and the flow is supersonic instead of sonic. 

This disagreement between experiments and theory forced researchers to consider 

detonations: 1) in which the chemical reaction contains an arbitrary number of 

equilibrium chemical reactions so that a state of global chemical equilibrium can be 

attained; or 2) is described by the Navier-Stokes equations, including heat conduction, 
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diffusion, and viscosity, but with a thngle forward chemical reaction; or 3) in which the 

flow is slightly two-dimensional and affected by boundary layers or edge effects. In each 

of these cases, the flow equations are reduced to a set of autonomous, first-order, 

ordinary, differential equations with the detonation velocity as a parameter. However, 

without drastic and unwarranted assumptions •to simplify the equations, analytical 

solutions cannot be obtained. 

Because significant three-dimensional features were observed in experiments, 

instead of pursuing one-dimensional weak solutions, efforts were also directed toward 

studying detonation stability and the structure of the detonation front. The structure of 

detonation waves has been studied extensively for more than sixteen years and the now 

generally accepted three-dimensional model has been established mainly based on soot 

patterns formed on detonation tube walls. A three-dimensional structure has also been 

proposed, especially for single spin detonation in a round tube and multi-head detonation 

in a rectangular tube. These will be discussed in detail in section 2-5. 
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2-2 C-J Theory: 

If diffusive phenomena, which include viscosity, heat conduction and mass 

diffusion, are neglected, the flow can be expressed by the reactive Euler equations: 

(2-2.1) 

aE -(--) 
+ (pZu) = —KpZe P  

at 

a(PS) + V 
at . (psi!) ≥ 0 

L  

Where: E=-E+QpZ+!pu.0 
y—1 2 

ui+uj+u2k; 

-a a -a 
ay Oz 

p7 1p +Jp +p 

The basic assumptions leading to the C-J model are that the entire flow is steady 

and one-dimensional, hence isentropic except at the discontinuity, and that the shock and 

reaction zone collapse into a single jump discontinuity in which complete reaction takes 

place. The reaction can then be treated as a simple heat addition Q. The resulting model is 

shown in Fig. 2-2.1. 
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shock 

Q 

chemical reaction 

Fig. 2-2.1 Chapman-Jouguet detonation wave 

Based on these assumptions, the Euler equations, Eqs. (2-2.1), are reduced to the 

following jump conditions across the reactive shock, known as the Rankine-Hugoniot 

conditions: 

p0U0 =pu=m 

0 =PI+PIUI2 

h0+!u+Q=h1 + U 
1 2 
- 1 
2 

where:h= ' p 

(2-2.2) 

Eliminating uO and Uj and combining conservation of mass and momentum, one 

obtains the Rayleigh line, Eq. (2-2.3). Combining conservation of mass, momentum, and 

energy, and eliminating UO, Uj, h0, and hl in favor of pressure p and density p, the 

Hugoniot curve, Eq. (2-2.4), can be obtained. (The Hugoniot curve does rely upon mass 

conservation, but it is independent of the specific value of the mass flow rate across the 

discontinuity.) 
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Rayleigh line: 

Hugoniot curve: 

p0 pop0 p1 

p1 [2Q + (r +1) /(y —1)] - Po 1 Pt  

A [(y+l)/(y— DNA /p1)—1 

(2-2.3) 

(2-2.4) 

These two lines, plotted in the p1 /p0 vs. p0 /p1 (= v1 / v0) plane, are shown in 

Fig. (2-2.2). The Rayleigh line is a straight line, while the Hugoniot curve is a hyperbola. 

Starting from the unshocked state p1 /p0 = 1, v1 /v0 = p0 /p1 =1, actual solutions (i.e. 

combustion waves) correspond to intersection points between the Rayleigh and Hugoniot 

lines. Furthermore, from Eq. (2-2.3), it is clear that the slope of the Rayleigh line is 

negative in all cases, and one can see on the figure that there is a range of slopes for the 

Rayleigh line (hence mass flow rate) for which intersections do not exist. This range of 

slopes is comprised between two values at which tangency occurs between the two lines, 

at two points that have come to be known as the lower and the upper Chapman-Jouguet 

(C-J) points. Reaction with increasing pressure and density are detonation waves. 

Reaction with decreasing pressure and density are called deflagrations. 

The conservation conditions require that the final state point in the p1 /p0 

V1 / v0 plane must belong to both the Rayleigh line and the Hugoniot curve. If the slope 

of Rayleigh line is too slight on the detonation branch or too steep on the deflagration 

branch, there will be no intersection of the Rayleigh lines and the Hugoniot curve. So, 

there are minimum slope (9mm) on the detonation branch and maximum slope (q'm) on 

the deflagration branch, corresponding to the tangent points of the Rayleigh lines and 

Hugoniot curve, called the upper C-J point and lower C-J point respectively. If 

> 9mm on the detonation branch or 9 <9max on the deflagration branch, then there will be 

two intersections, called the strong solution and weak solution respectively. The current 

study will focus on detonation, which is the main objective. 
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Rayleigh line - Hugonlot curve 
15 

0 
0. 
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0  
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Strong detonation solution 

Upper C-J point 

Weak detonation solution 

Weak deflagration solution 

Lower C.J point 

Strong deflagration solution 

1 2 3 4 5 6 7 6 9 10 
vllvo 

Fig. 2-2.2 Rayleigh line--Hugoniot curve (C-J) 

Combining the Rayleigh line and Hugoniot curve, the tangent point data can be 

obtained. The C-J detonation velocity, i.e. the minimum velocity of a detonation wave, 

can then be derived: 

DC-J =-.frcji+ —1) + Q 
7 2 1)  

2y 2r 

The Rayleigh line contains the factor m (= p0u0 = p0D), which is proportional to 

the detonation velocity. For a velocity below C-J velocity, there is no intersection 

between the Rayleigh line and the Hugoniot curve, so there is no solution that satisfies all 

conservation laws. For a velocity above C-J velocity, the Rayleigh line and the Hugoniot 

curve have two intersections, named strong detonation solution (S) and weak detonation 

solution (W). See Fig. 2-2.3. The weak solution is rejected because there is no shock for 

the weak solution path; and this is inconsistent with the postulated condition, which is 
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that detonation is shock-induced combustion. 

Detonations with velocity greater than the C-J velocity are known as overdriven 

detonations. The overdrive factor  is defined as f = "  D 
)2 

Rayleigh line - Hugonlot wrve 
15 

10 

0.5 15 

Fig. 2-2.3 Rayleigh line--Hugoniot curve (C-J) (detonation branch) 

2-3 ZND Model 

Although C-J theory successfully predicts the velocity of freely propagating 

detonations, it does not describe the internal wave structure. Zel 'dovich (1940), von 

Neumann (1942), and Doring (1943) independently developed the one-dimensional 

theory for the internal structure of a detonation. Like the C-J theory, their ZND model is 

based upon the assumptions that the flow is steady and one-dimensional. All diffusive 

mechanisms are neglected, but now the chemical reaction rate while still zero in front of 

shock is resolved behind the shock, according to some prescribed finite rate models. Fig. 

(2-3.1). 
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shock 

chemical reaction 

 10. 

Fig. 2-3.1 ZND detonation wave 

Under these assumptions, the steady Euler equations result in Eqs. (2-3.1). The 

mass and momentum equations are the same as those for the jump discontinuity, Eqs. (2-

2.2) and Eqs. (2-3.1). So the Rayleigh lines described in Eqs. (2-2.3) and (2-3.2) are the 

same in the ZND model as they were in the C-J model. However, the energy or Hugoniot 

equation for the ZND model is a function of the longitudinal position x. In particular, q = 

q(x) is the total heat release from the shock to x. Alternatively, a progress variable ?(x) is 

introduced. 2(x) is the extent. of chemical reaction, measured as the fraction of the total 

heat release which varies continuously from 0 to 1. For typical multi-step and multi-

species kinetic model, 2(x) is implicitly determined by the set of rate equations, of the 

dZ 
form -! = f, (Z1 ,..., Zn). Integration of this usually stiff system, coupled with mass and 

dx 

momentum, becomes necessary. 

pQU0 = p 1u1 = m 

P0 

+p0u = p1 +p1u2 

(2-3.1) 

Iq = Q2(x) 
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The Rayleigh line is independent of the heat release. The only difference is 

that instead of a constant heat release Q, heat release q varies along x, and different, 

partial reaction, Hugoniot lines can be constructed for any special value of q(x). Thus, a 

series of Hugoniot curves similar to those obtained in section 2-2 can be introduced for 

arbitrary values of partial heat release q(x), or ?(x). 

Rayleigh line: 

Hugoniot curve: 

m2 (&_1) 

A pop0 p 

£L [2q+(r+1)/(y-1)]—p0/p  

A [(r+i)/(r — l)](p0 1p) —1 

Where: m = u0p 0 = u1p1 = J7Mc0p0 

(2-3.2) 

(2-3.3) 

Taking y =1.2, f = 1.2, Q=50, the p 1 /p0 - v1 / v0 (= p 0 /p1) diagram is 

presented in Fig. 2-3.2. The Hugoniot curve with 71 is the complete reaction curve. 

From C-J theory, for any particular value of the detonation velocity D (>D_), there are 

either two solutions, called the strong (S) and weak (VT) solutions respectively or only 

one double solution (C-J) to the two conditions (Hugoniot curve and Rayleigh line), if the 

Rayleigh line is tangent to the Hugoniot curve. Finally, for lower D, there is no solution. 

One can also show that, along the Hugoniot curve, entropy is maximum at the upper C-J 

point, and minimum at the lower C-J point. It can be shown that the flow at the upper or 

strong point is subsonic and supersonic at the weak point. At the tangent point, the flow is 

sonic. 
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Rayleigh line - Hugoniot curve 
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Fig. 2-3.2 Rayleigh line--Hugoniot curve (ZND) 

The ZND model resolves spatial heat release. Its description on the Hugoniot 

diagram requires a complete process starting at the initial unburnt state and ending on the 

burnt Hugoniot curve. For the weak solution, one can go directly from 0 to W smoothly. 

But the strong solution requires a shock, since point S can only be reached from above as 

shown on the Fig. 2-3.2. 

In this model, then as a particle passes through the shock at the front, the state is 

first changed instantaneously, without reaction, from the initial point 0 to the von 

Neumann point N, which corresponds to crossing the leading shock. It then moves down 

the Rayleigh line, from N to S, as the reaction proceeds. The final state of the reaction 

zone can be either a strong point S or the C-J point. The only conceivable path to the 
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weak final point would- correspond to a weak smooth (shockless) wave OW. It is 

conceivable that these might exist briefly in transient processes, but in theoretical 

scenarios that rely on them, the ultimate solution is always a strong C-J wave (Short, et al. 

Bauwens, 2000, 2002). 

Next, the evolution of the thermodynamic variables in the reaction zone is 

obtained. For a given overdrive factor f, the thermodynamic variables at the von 

Neumann point can be obtained, Fig. 2-3.2. The detonation velocity is: 

D=D Q(y-1) + 1Q(r2_1) ) 
2i 2r 

From the conservation laws, Eq. (2-3.1), one can obtain all thermodynamic 

variables for a given 2, the extent of chemical reaction (for instance, Lee and Stewart 

1990). 

PS 'I Ps 

.-= (i—pip5)  
+M S 

M2 (y -  1)M2 + 2 + 1 2yM(y —1)  
a= , b= 

2yM2—(y-1)' y+1 (1—a)2 (y+1) 

In addition to the conservation laws, a single step chemical reaction model is used, 

i.e., along a Lagrangian particle path: 

4±. =r(p,T,2) 
dt 

(2-3.4) 
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For instance, the simple first-order Arrhenius form for the reaction rate is: 

3.6): 

dA 

dt 
(2-3.5) 

Considering that particles travel at speed u, Eq. (2-3.5) is equivalent to Eq. (2-

dA 
u-=K(1—.Z)'e "° 
dx 

(2-3.6) 

Where K is the rate multiplier, which serves only to set the time and length 

scales. Using the time (or length) from the shock to the point where half the heat has been 

released corresponds to setting a value of K such that ti = 1 (or L112 = 1) when .Z = (for 

the reaction order v ≥ 1, the length to complete reaction approaches infinity; the full 

reaction length is thus not useful). Hence, one can obtain Eq. (2-3.7) [or Eq. (2-3.8)] by 

integrating Eq. (2-3.5) [or Eq. (2-3.6)]: 

EO 

" d K= 0.5 Je ..% for tii 1 (2-3.7) 

0.5 p/p 

 d,% 0  for L112= 1 (2-3.8) 

After the rate multiplier K is obtained, rearranging Eq. (2-3.6), one can obtain 

a relationship between the position x and the extent of chemical reaction 2, Eq. (2-3.9). 
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Eo 
--

1 ue" d% 
K0(1—A 

(2-3.9) 

Taking v = 0.999, then pressure, temperature, the extent of chemical reaction, 

and velocity profiles along x for a one-dimensional ZND wave can all be found. They 

are plotted in Fig. 2-3.3. 
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Fig. 2-3.3 Thermodynamic variables profile along x (ZND model) 
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2-4 Other Steady Detonation Models 

In section 2-3, the ZND model of steady detonation was constructed. As 

mentioned in the introduction, there are disagreements between experiments and theory. 

Typical measured pressure and densities are ten to fifteen percent below the calculated C-

J values, and the detonation velocities are one half to one percent above. These 

disagreements forced researchers to look for other types of steady solutions. 

By removing some of the restrictions of the ZND model, other types of steady 

solutions can be obtained, such as eigenvalue detonations (Fickett & Davis 1979). The 

eigenvalue solution is fairly close to experimental results. For a slight radial divergence 

of the flow, or viscosity, pathological detonations may exist if the reaction includes a 

decrement in the number of moles or if the chemical reaction ends with an endothermic 

step. In the eigenvalue solution, the location of the final state on the Hugoniot curve of 

detonation and the steady propagation velocity depend on the constitutive details. 

2-5 Multi-dimensional Structure 

The one-dimensional planar detonation structure revealed by the models 

described above is useful, but more in-depth experiments indicate that real detonations 

are more complex. For instance, the spin phenomenon, discovered by Campbell and 

Woodhead in 1927, showed disagreement between experiments and the ZND model. 

Denisov and Troshin (1959), and White (1961), noticed that detonations were unsteady 

and exhibited a three-dimensional structure which extended from the leading shock until 

far back into the reaction zone. This structure is characterized by a non-planar leading 

shock wave with many shock sections convex toward the incoming flow. 

A widely used technique to observe detonation structure is Schlieren photography. 
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This technique was first applied by Denisov and Troshin in 1959. Following that, a 

number of researchers, including Schott (1965), Soloukhin (1965), Edwards et al. (1970), 

Strehlow et al. (1967), Moen et al. (1985) and Shepherd et al. (1986), successfully used 

the smoke foil technique to unveil the detonation structure. In this technique, foil covered 

with soot is placed on the walls of a detonation or shock tube. A few examples of smoke-

foil records with propagating detonation are shown in Fig. 2-5.1 (Strehlow 1984). 

a 
(a) Rectangular mode, showing side, top and end foil records; 2 H2 + 02 + 3 Ar, P0 = 

14 kPa, entire record shown. 

(b) Planar mode; 0.2 H2 + 0.102 + 0.7 Ar, P0 = 9.3 kPa, entire record shown. 

Fig. 2-5.la Smoke-foil records of propagating detonations 
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C 

(c) Very regular structure; 0.0625 C2 H4 + 0.1875 02 + 0.75 Ar, Po = 13.33 kPa 

(d) Relatively regular structure; Acetylene-oxygen, 1 = 0.625, P0 = 6.67 kPa. 

f e 

(e) Irregular structure; 2 H2 + 02, Po = 16 kPa. 

(f) Irregular structure; 0.25 H4 + 0.75 02 Po = 5.33 kPa. 

Fig. 2-5.lb Smoke-foil records of propagating detonations 
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These experimental photographs reveal a diamond pattern of-detonation structures, 

called cells. The cell is formed by the track of triple points on the smoke foil, which is the 

intersection of incident shock, reflected shock, and Mach stem. Fig. 2-5.2 depicts a 

typical propagating Mach stem on a detonation front at two times, ti and t2. Here, IS, MS, 

RS, SS, and T stand for incident shock, Mach stem, reflected shock, slip stream, and 

triple point respectively. Each shock propagates in the direction normal to itself. As time 

progresses, the triple point is essentially generating both Mach-stem and reflected shocks 

and overriding the incident shock. 

Fig. 2-5.2 Propagation of detonation front at time of t1 and t2 

With the development of Computational Fluid Dynamics, numerical simulation 

of shocks and detonation structure has become commonplace. Taki & Fujiwara (1978, 

1981) and Oran et al. (1981, 1982) performed early simulations of gaseous detonation, 

which clearly showed the transverse wave structure. The structure of detonation 

simulation will be discussed in more detail in Chapter 6. 

In the past two decades, the structure of detonation has been studied extensively 
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inexperiments and numerical simulations. All these studies show that an interior shock 

joins to the leading shock in the conventional three-shock configuration. The Mach stem 

and the incident shock are part of the leading shock and the transverse wave is the 

reflected shock. 

Triple points and transverse waves move sideways across the front. Groups of 

them moving in the same direction take up a preferred spacing on the order of 100 

reaction-zone lengths. They are not steady, but continually decaying, and only stay alive 

by periodic rejuvenation through collision with other transverse waves moving in the 

opposite direction (Fickett & Davis 1979). 

Our work is based on the theories discussed above. We study the detonation 

structures by numerical techniques. The numerical issues and the schemes used in our 

simulations will be discussed in the following chapter. 



3.1 

Chapter 
THREE 

NUMERICAL SIMULATION OF DETONATION 

This chapter deals with the main issues in numerical simulation of multi-

dimensional detonations. Section 3-1 presents the physical model. In sections 3-2 to 3-6, 

the numerical schemes used in this study are introduced, although the method developed 

for dealing with non-reflecting boundary conditions at exits is dealt with in a separate 

chapter, Chapter 4. 

3-1 Physical Models 

3-1-1 Governing Equations 

In this study, the fluid is assumed to be an ideal gas with constant specific heats. 

Viscous, thermal and mass diffusion are neglected. Chemistry is modeled assuming no 

change in the number of moles and single step reaction (from reactants to products) with 

an Arrhenius depletion rate. Under these assumptions, the reactive two-dimensional Euler 

Equations, Eqs. (2-2.1), can be written in vector form as: 
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aUaFaG 
+S=0 

at ax 8y 
(3-1.1) 

All variables have been made dimensionless with respect to the inflow state, 

and length has been scaled by the half-reaction length L112 (or half-reaction time 

t112 )of the ZND wave. For a rate law with order ≥ 1, the length to complete reaction is 

infinite; for the sake of generality, L112, a scale that always exist regardless of the data, is 

used. Thus, the dimensionless variables are: 

p=/o, p=/0, T= T 

U= W.' U 0 = a.,'1JPO'PO 

j30 /(R 0) 

Uy = = y / JPo / iO 

x = /L112 , y = /L112, t _t/t112 

Using the dimensionless variables, the reactive two-dimensional Euler equations, 

Eqs. (3-1.1), can be written in the dimensionless form as: 

auaa 
_+_+_+s 0 
at ax ay 

where: U= F= 

(3-1.2) 

0 

0 

0 

0 

r 
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P  
+QpZ+— 2 pu.0 

y—1  

p=pT 

r = _KpZv exp(E0 IT) 

At the outflow boundary, the chemical reaction is very close to complete, which 

means that the mass fraction reactant Z (Z=1-) is very close to zero. Then, the non-

reactive dimensionless two-dimensional Euler Equations, Eqs. (3-1.2), become: 

ÔUFG 
0 +—+—= 

at & :i' 

where: U= F= 

Pull 

pux2 +p 

puxuy 

(E + p)u 

G= 

Puy 

puxuy 

PUY +P 

(E + p)u 

(3-1.3) 

The chemical reaction progress X (1-Z) depends upon x for a given set of y, 

Q, f, E0, and v. Table 3-1.1 and Fig. 3-1.1 show the relationship between Z and the 

position in the ZND wave (numbers of L112 ) under the following conditions: y= 1.2, Q = 

50, f =1.0, E0 = 10, v0.999. 

From table 3-1.1, one can conclude that when the domain length is long enough, 

the error when making Z equal to 1 is very small. If the error is required to be less than 

10-5, the domain length should be over 13.18 L112. 



NUMERICAL SIMULATION OF DETONATION 3.4 

Table 3-1.1: The relationship between Z and position in the ZND wave 

Domain Length (No. of Li 12) 1-Z Z 

0 0 1 

I 0.5 5.00E-01 

2 0.742723 2.57E-01 

3 0.858366 1.42E-01 

4 0.918253 8.17E-02 

5 0.951214 4.88E-02 

6 0.970112 2.99E-02 

7 0.981356 1.86E-02 

8 0.988085 1.19E-02 

9 0.992621 7.38E-03 

10 0.994729 5.27E-03 

11 0.996386 3.61E-03 

12 0.998043 1.96E-03 

13 0.999699 3.OIE-04 

13.0625 0.999803 1.97E-04 

13.15625 0.999958 4.18E-05 

13.1875 1 0.00E+00 

The chemical reaction progress vs. position in the ZND wave 
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Fig. 3-1.1 The chemical reaction progress vs. position in the ZND wave 
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3-1-2 Initial Conditions 

Well-posed time-dependent initial boundary value problems require an initial 

condition. However, the extent and nature of the effect of initial conditions are unclear in 

this irreversible problem. Indeed, the long term solution appears to approach a pattern 

independent to the initial condition. 

A one-dimensional steady ZND profile, to which a multi-dimensional 

perturbation is added, selected as the initial condition in our simulations. Different 

perturbations can be used. One approach is to increase the density at eight points around 

the centre along the y direction, behind leading shock wave, to twice its value, 2p. 

Another one is to add a sinusoidal or cosinusoidal perturbation along the y direction on 

the velocity u3, behind the leading shock wave, such as u, = UY sin coy. 

3-1-3 Boundary Conditions 

Fig. 3-1.2 illustrates the whole computational domain and boundary conditions. 

Top Boundary 

Inlet 

Boundary Inner Computational Domain 

Outlet 

Boundary 

Bottom Boundary 

Fig. 3-1.2 Computational domain and boundaries 
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To keep the domain size to minimum, it is convenient to use a moving frame of 

reference, attached to the wave. Relative to that frame, the shock is then approximately 

stationary. For a planar, stationary wave with a given overdrive f and a given heat 

release Q, the reactant is moving into the shock with velocity: 

D =//i+T 1) /Q(y21) 

2y \i 2y 

and the other variables are constant with time and y position. 

As mentioned above, these inlet boundary conditions correspond to setting a 

uniform inflow. This requires: 

po= 1, po= 1, zo=1, 

p(O,y,t)=p0 =1, 

p(O,y,t) = p0 = 1 

u(O,y,t) =u,0 = D 

u(O,y,t) = = 0 

pZ(0,y,t) = p0Z0 =1 

E(0,y,t) =  + 1p0D2 +p0Z0Q = ---+ 1 D2 +Q 
y-1 2 r—1 2 

For the outlet boundary condition, a non-reflecting boundary condition is used. 

This will be discussed in detail in Chapter 4. 

For the boundaries at bottom and top, the symmetric boundary condition along y 

is used, which means that all the variables within the bottom boundary are the same to 
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symmetric points variables relative to boundary at y = 1/2, and all the variables within the 

top boundary are the same to symmetric points variables relative to boundary at y =J+ 1/2, 

in which J are grid points in the y direction. 

3-2 Numerical Issues 

There are several issues associated with the numerical method, such as 

monotonicity preservation, conservation, CFL stability criterion, numerical diffusion and 

numerical errors (round off errors, iteration errors, approximation errors), and so forth. 

3-2-1 Numerical Technique 

One-dimensional case is used as example. Space is divided into uniform intervals 

of size Ax and Ay, and time is divided into time intervals At [t, t'' ]. The one-

dimensional integral forms of conservation laws are applied to each cell during each time 

interval and the following is obtained: 

X, +',2 - -

(U U")dx At J( +I,2 _f i/2)dt} (3-2.1) "' J 
Xj..112 [/" 

After introducing flux "F" notation, the numerical conservation can be written as 

a "flux" form as: 

u;''= u;'- 1 -{+112-_112} 
Ax 

(3-2.2) 

Here, J- are the numerical flux form Jf(xj,t)dt, which are time-integral 
I" 

averages. All variables at time-step n are known and at time-step n+1 are unknown after n 
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time steps. There are different schemes to calculate the numerical flux terms. The scheme 

used in this study are a fifth-order accuracy WENO scheme and fourth-order accuracy 

scheme. These schemes will be discussed in sections 3-3 and section 3-4. The numerical 

simulations to resolve the time derivative use the third-order accuracy Runge-

Kutta method. These methods will be discussed in section 3-5 and section 3-6. 

3-2-2 Monotonicity Preservation 

Monotonicity preservation is the property whereby if the initial data before the 

time step are monotonically increasing, then the numerical solution will be 

monotonically increasing after that step; and if the initial data are monotonically 

decreasing, the solution is monotonically decreasing. 

A stronger requirement, first suggested by Godunov (1959), is that of monotone 

schemes, which simply are monotone functions of their arguments. Godunov's theorem 

explains that linear monotone methods are at best first-order accuracy. In order to achieve 

high order accuracy, standard higher order finite-differences use linear schemes and this 

leads to a non-monotone solution near the shock. This results in large oscillations, 

leading to meaningless results. However, the derivatives do not exist near shocks, so high 

order accuracy can not be achieved near shock in any event. Instead, non-linear schemes 

are used, which lead to deterioration of accuracy to first order near shocks but do satisfy a 

monotonicity requirement. The WENO scheme described below is one such scheme. 

3-2-3 Conservation 

For an arbitrary volume ≤, bounded by a closed surface S, the integral forms of 

the conservation laws are: 
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$ [p,+c1.(pii)]dc=0 

cf [(pu)1+'1.(pu® ii) +'1p]dc=O 

J {E,-V1.[(E+p)u]}dc2=0 

(3-2.3) 

Because the volumes n are arbitrary, the integrands must vanish everywhere. 

The differential form of the Euler equations can then be obtained after some expansion, 

assuming all necessary derivatives exist and make sense: 

LP a(pu) + a(pu) 0 

at ox ay 

a(pu) + a(pu2) O(puu) + =0 
at ax ay ax 

(3-2.4) 

O(pu) + a(ouu) + 0(oui2) a   p 
+ =0 

at ax ay 

as u as as 
—+ —+u —=0 
at X Ox ay 

After expansion, the energy equation assumes the form of an entropy equation 

according to which the flow is isentropic. Clearly, this is not valid across shocks. When 

shocks are present, Eqs. (3-2.3) can not be expanded because when expanding, the 

required derivatives do not exist. 

Comparing Eqs. (3-2.3) with Eqs. (3-2.4), the integral form, Eqs. (3-2.3) 

determines a unique set of differential equations, but one can show that the reverse is not 
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true if the flow includes shocks. Still, these two sets of equations have the same solution 

whenever the flow is smooth. In the current context, the numerical scheme has to be a 

conservative scheme, which satisfies both the smooth flow and the flow including shocks. 

3-2-4 CFL Stability Criterion 

For explicit finite difference schemes from von Neumann stability analysis, one 

can show that the numerical speed of information propagation U,, = Ax  must be greater 
At 

than or equal to the physical speed of information propagation k I + c, i.e. 

CFL =(IuI+ c) -  At 
-- ≤1 

which leads to a maximum time step: 

tmax = 

AX 

This condition is usually known as the CFL (Courant-Friedrichs-Lewy) stability 

criterion, recognizing the contribution of these three researchers (1928). Implicit finite 

numerical schemes are not subject to the CFL stability criterion. Still, accuracy dictates 

the maximum time step. Typically, in gas dynamics, they are not worth the extra effort 

and complexity. 

3-3 WENO Scheme 

The Weighted Essentially Non-Oscillatory (WENO) scheme is used here. This 

scheme was introduced by Shu & Osher (1988, 1989) and Jiang & Shu (1996, 1999). 

WENO schemes belong to the family of ENO (Essentially Non-Oscillatory) 
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schemes. ENO schemes use the "smoothest" stencil among several candidates to 

approximate the fluxes at cell boundaries to a high order accuracy while at the same time 

avoiding spurious oscillations near shocks. Instead of choosing one of the candidate 

stencils, the WENO method uses a convex combination of all the candidate stencils. 

Each of the candidate stencils is assigned a weight which determines the contribution 

of this stencil to the final approximation of the numerical flux. By completely removing 

the logical statements that appear in the ENO stencil-choosing step, WENO schemes run 

at least twice as fast as ENO schemes and the fluxes in WENO schemes are smoother 

than in ENO schemes. In adaition, the accuracy of the WENO schemes constructed 

from the rth1order ENO schemes is of (2r- 1)" -order. 

The fifth-order WENO scheme is obtained from r=3, as follows, using the one-

dimensional Euler equation, Eqs. (3-3.1) as an example:. 

aua —+—=o at a 

To solve the ordinary differential equation (3-3.2) 

au = L(U) 
at 

(3-3.1) 

(3-3.2) 

Dividing space into uniform intervals of size Ax, the spatial operator L of the 

WENO scheme, which approximates (--i -) at x1, can be written as: 

L Ax (3-3.3) 

Here P is the numerical flux (approximating the physical flux F). To achieve 

(2r- l)t -order accuracy approximation, the P can be written as: 
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2 1+1/2 - qr-i \1 i-ri-I' 2 7;, i+r-1 (3-3.4) 

Assuming that q (13+k_r+I i3i-) (k=O, 1, ..., r-1) are all the candidate stencils 

and ák (k=O, 1, ..., r-1) are weights relative to the candidate stencils, the final 

approximation of F 1/2 is 

r-1 

13+1/2 cokqk ( 13 i-k-ri-I ' 
k=O 

Where: q(u0,. ,U,_1) = 

r-I 

10 

(3-3.5) 

Making sure that the Eqs. (3-3.5) is identical to Eqs. (3-3.4), which is (2r-1)'h - 

order accuracy, the weight 0k and coefficient Cr are found as follows (Jiang & Shu, 

1996): 

ak  

aO+ r i 

1-yr 

e=10'0, p=2 

Table 3-3.1: Optimal weights C (r = 3) 

k=0 k=1 k=2 

1/10 6/10 3/10 

ISO = 13  --(13- - 2]3 + '3)2 + -('32 - 413 13 + 3) 2 

is, = ---12 (13- —213 13 '3)2 + -(P - 

IS2 = ('3 —2'3 + '3+2 )2 +(3'3 —413 )2 i- + 13+2 
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Table 3-3.2: Constant coefficients a,, (r = 3) 

k 1=0 1=1 1=2 

0 1/3 -7/6 11/6 

1 -1/6 5/6 1/3 

2 1/3 5/6 -1/6 

3-4 Fourth-Order Spatial Accuracy Method 

To match the fifth-order accuracy method in space used in the inner domain, the 

fourth-order accuracy method in space is needed at boundaries (Poinsot et al. 1992). 

Using Taylor series, a fourth-order accuracy method is deduced below. 

ÔLT 
When all variables at time-step n are known and the space derivative --1 is 

ax 
constructed, five known variables U3 , U2 , U.1, Uo, and Ui at time-step n are used. 

Expanding them in Taylor series at Ui, a linear combination of these five points (U.3, 

U2 , U..i , Uo, U1), approximates L, to fourth-order spatial accuracy. Substituting 
ox 

  into Euler equations and applying non-reflecting BC, one can obtain all variables 

(Ui) at the outflow boundary. This will be discussed in Chapter 4. (See Fig. 3-4.1) 

Boundary 

U.4 U 3 U.2 U.1 U0 U1 U2 U3 U4 

Fig. 3-4.1 Illustration of grid cells 
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The Taylor series for U at boundary are: 

dx3  *U"t+_U(4) +O*(dx)4 
6 24 

(1) 

U 1 = U1 - 2dx * u; + (2dx)2 * (2dx)3  * (2dx)  UI +0 * (dx)4 (2) 
24 

= U, - 3 * u + (32 * U"   u (33 * ur+ (3 4 + o * ()4 
24 

(3) 

U 3 = U1 - 4dx * U + *U, (43 * u"+ (4 4 + 0 * (dx)4 (4) 
24 

Combining the four equations by a1 * (1) + a2 * (2) + a3 *(3) +a 4 (3) +a4 * (4), setting the 

coefficients of U', U, and to be zero and the coefficient of U' to be one, then 

solving a1 (i = 1, 2, 3, 4), one can obtain the linear combination that approximates aul -, 

which is Uj = —(a0U1 + a1U0 + a2U...1 + a3U 2 + a4U 3) and here, 

a0 = a1 + a2 + a3 + a4. * (1) + a2 * (2) + a3 * (3) + a4 * (4) is: 

a1U0 + a2U_1 +a3 U-2  + a4 U-3 

(a1 +a2+  a3+ a4) * U1 - (a1 +2a2 +3a3 +4a4)*  fr * U1' (3-4.1) 

+ (a1 +22a2 +32a3 +42a4 )*  

- (a1+23a2 +33a3 +43a4)* dx3 dx*U' 

+ (a1+24a2 +34a3 +44a4)**U(4)i +0*()4 
2 
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a1 +2a2 +3a3 +4a4 =1 

a1+22a2 +32a3 +42a4= 0 

setting: 

a1 +23a2 +33a3 +43a4 =0 

a+24a2 +34a3 +44a4 = 0 

(3-4.2) 

Solving the Eqs. (3-4.2), one can obtain the linear combination to approximate 

au,  
as: 

ax 

[25*U1 _48*U0 +36*U_1 _16*U_2 +3*U 3]+0*(dx)4 
ax 12 

Because only one-sided information is available close to the boundaries at time-

step n+1 for the rest points variables (U2 , U3 , U4) at outflow boundary, these points can 

be obtained by a fourth-order scheme, with a linear combination of the five points ahead. 

The linear combinations that approximate U2, U3, and U4 are deduced next. For the point 

U2, five known variables U3 , U.2 , U1 , Uo, and Ui at time-step n+1 are used and 

expanded in Taylor series at U2. Setting the coefficients of derivative terms to be zero 

and the coefficient of U2 to be one, then solving a. (i = 0, 1, 2, 3, 4), one can obtain 

the linear combination that approximates U2. Replacing the subscript 2 by 3 and 4, the 

linear combinations that approximate U3, and U4 are obtained. 

U1 = U2_dx*U+—*U_—*U"+--U(4)2+0*(dx)4 24 (1) 

U0 = U2 - 2d * U; + (2d )2 * U2" (2)  * U+ (2)  U 4 2 + 0 * ()4 (2) 
24 
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U..1 = U2 -3dx * U (3fr)2 + * U " 

2 '-'2 

U_2 =u2 - 4 * U (4cfr)2 + * U , 
'-'2 

2 

U = U - 5dx * U (5cfr)2 + * TI" 
3 2 2 '-'2 

(3 (3dx)4 cfr)3  U(4 
24 2+O*(dx)4 (3) 

(4dx)3  * u"+  + 0 * (fr)4 (4) 
24 

(5)3 +0*(dx)4 
6 24 

a0 * (1) + a1 * (2) + a2 * (3) + a * (4) + a4 * (5) 

a0U1+a1U0 +a2U 1+a3U 2 +a4U 3 =(a0 +a+a2 +a3 +a4)*U2 

- (a0 + 2a1 + 3a2 + 4% + 5a4) * dx * U 

+ (ao+22ai+32a2 +42a3+52a4)*dx*U 

- (a0+23a1+33 +43a3 +53a4)* dx3 _dx*U' 

(5) 

(3-4.1) 

dx4 
+ (a0 +24a1 +34a2+44 a3 +54a4)*_dx*U(4)2 +0*(dx)4 

2 

a0 + a1 +a2 +a3 +a4 = 1 

a0+2a1+3a2+4a3+5a4 =0 

setting: <a0 +22a1 +32a2 +42a3 +52a4 = 0 

a0 +23a1 +33a2 +43a3 +53a4 =0 

a0 +24a1 +34a2 +44a3 +54a4 =0 

The linear combinations to approximate interior points not at boundary (U2, U3, 
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U4) are: 

U2 = 5*U1_.1O*U0+1O*U_5*U+U+O*(cfr)4 

U3 = 5*U2_1O*U1+1O*U0_5*U+U+O*(dr)4 

U4 =  5*U3 -iOU2 +1OU1 _5*U0 +U_1+O*(dx)4 

3-5 Third-Order Accuracy Runge-Kutta Method 

Runge-Kutta methods are a family of single-point methods for solving non-linear 

first-order ordinary differential equation (ODE) problems. The third-order Total 

Variation Diminishing (TVD) Runge-Kutta method used in this study is as follows (Jiang 

& Shu 1996): 

= Ui" + At * 

(1) 

4 ! 4! 4 

U"+' =-U" +U (2) + At*L(U(2)), 
3' 31 3 

3-6 Second-Order Accuracy Method 

To match the third-order accuracy method in time used in the inner computational 

domain, the four-step second-order method in time used at the boundaries, Thompson 

(1979), is selected as following: 
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dU1 = 
dt 

= U," +I*Lt*L(U'1), 
4 

=U11' + !*&*L(U(1)), 
3 

= u," 
2 

= U," + At * L(U3) 

3-7 Implementation 

The schemes discussed above are finite-volume numerical approximations based 

directly on the conservation form. The fluxes in x direction and y direction can be 

obtained by using the schemes described in section 3-3 and section 3-4. Submit them into 

Eqs. (3-3.2). By using schemes described in section 3-5 and section 3-6, the next time-

step variables P' can be obtained. In this way, arbitrary time-step and spatial index 

variables U(J) will be obtained which are the approximations of analytical solutions 

U(XY,) respectively. 
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Initialization of inner conutational domain 
• ZND Model 
• Perturbation 

Smrietiic BC for top & bottom boundaries 

Initialization of boundaries 

V 

Solutions for inner conpitational domain 
• 5th-order accuracy WINO in space 

• 3rd-order accuracy Runge.Kutta in time 

Solutions at boundaries 

Constant BC for inlet boundary 

Relaxation BC for outlet boundary 

SmietticBC for top & bottom boundaries 

Solutions output 

No 

Time-stepping 

Stop 

Constant BC for inlet boundary 

Non-reflecting BC for cutlet boundary 

Other points 
• 4th-order accuracy (linear 
combination method) 

Fig. 3-7.1 flowchart of the detonation simulation 

First point 
• 4th-order accuracy in space 
• 2nd-order accuracy in time 



4.1 

Chapter 
FOUR 

THE CHARACTERISTICS METHOD 

4-1 Introduction 

Because computational domains are unavoidably finite, long or infinite physical 

domains require truncation, resulting in artificial boundaries. To minimize reflection of 

outgoing disturbances, non-reflecting numerical boundary conditions are needed at these 

artificial boundaries. 

There are several ways to construct non-reflecting boundary conditions (BCs), 

belonging to four categories: the characteristics-based method; far field asymptotic 

solutions; the buffer zone technique; the perfectly matched layer technique (PML). 

Main contributors to the characteristics method are Hedstrom (1979), Thompson 

(1979, 1990), Higdon (1987), Giles (1990), and Poinsot & Lele (1992). This is a 

straightforward method. All the conservation equations are rewritten into a set of wave 

equations and all the incoming waves are set to be constant, while all the outgoing waves 
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travel smoothly out at the non-reflecting BC. This is the method that has been selected 

here and a more detailed discussion is included below. 

Far Field Asymptotic Solutions have been studied by a number of researchers, 

including Enquist & Majda (1977), Bayliss & Turkel (1980, 1982), Hagstrom & 

Hariharan (1988), and Tam & Webb (1993). This method is based upon the concept of 

radiation boundary conditions. If the problem has wave-like solutions near infinity, these 

boundary conditions must simulate the radiation of energy out of the computational 

domain and towards infinity. If the time-dependent equations are only an intermediate 

step toward computing a steady state, a flow of energy into the computational domain can 

delay convergence. In the far field, the non-linear equations are often reduced to some 

simple forms, such as wave equations. This method relies upon ising an asymptotic 

solution. It is very accurate but the drawback is that asymptotic solutions are required, 

which may not be easy to obtain, and the computational cost could be high. 

Buffer Zone Techniques have been developed in the last twenty years. In these 

techniques, a buffer zone is created to damp the reflection. Different techniques are used 

in the buffer zone. For instance, Israeli & Orszag (1981), Colonius, and Lele & Mom 

(1993) use low-pass filters or grid stretching to damp the numerical solution. In contrast 

to this technique, Streett & Macaraeg (1989) and Ta'asan & Nark (1995) make the mean 

flow accelerate to supersonic at the end of the buffer domain thus making that boundary 

naturally non-reflecting. The accuracy of these methods depends upon how gradually the 

parameters vary inside the buffer zone. These methods are computationally costly as 

well. 

The Perfectly Matched Layer ( PML) is a new method of constructing a non-

reflecting boundary condition. It is based on the Perfectly Matched Layer technique. 

Similar to the buffer zone method, an extra layer is created in which the outgoing 
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waves are damped or "absorbed." This method was first introduced by Berenger (1994) 

for absorbing electromagnetic wave solutions of the Maxwell equations. Hu (1996, 2002) 

extended this method for spatially varying absorption coefficients. This method is very 

effective because it requires a small number of grid points to achieve satisfactory results. 

However, it only works for linear equations. 

In summary, Far Field Asymptotic Solutions and the Buffer Zone Technique are 

very accurate methods, but their computational costs are considerably high. In addition, 

the asymptotic forms are nut always available. The PML technique costs less 

computationally, but it is suitable for linear equations only. Here, the characteristics 

method is selected because it provides a reasonable trade off between performance and 

cost and it meets our accuracy requirement. The method is described in detail in the 

following sections. 

4-2. Characteristic Form of the One-dimensional Euler 

Equations 

For time-dependent problems, Hedstrom (1979) was the first to develop the 

characteristics method for the one dimensional rectangular non-linear case. Thompson 

(1979, 1990) extended this concept to the multi-dimensional case in non-rectangular 

coordinate systems. In this research, based on K. W. Thompson's study, higher order 

accuracy schemes are implemented and a more complete evaluation of the results is 

carried out. 

As mentioned in section 4-1, the characteristics method is based upon rewriting 

the conservation laws as a set of wave equations and setting every incoming Riemann 

variable to a constant value, which means no incoming waves, hence no reflection. 
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First, consider the one-dimensional flow in Cartesian coordinates. The non-linear 

Euler equations can then be written in conservative form as: 

ÔUÔF 
—+—+C =0 
at ax 

or in the primitive variable form as: 

au aU 
—+A—+C=0 
at ax 

(4-2.1) 

(4-2.2) 

Here C' and C are inhomogeneous source terms, not containing derivatives. In 

our case, C is zero. A is a n x n matrix and U are the primitive variables: 

P 
U 

S 

P 
2 

A C 
- U 

P 
_0 0 

0. 

P 
PS 

U 

A is diagonalizable and can be put in the diagonal form J by the similarity 

transformations: J = SAS'. Here, Sand g' are the left and right eigenvectors of A. Then 

Jis: 

J= 

U-C 0 0 - 

0 u 0 

0 0 u+c_ 

Next, the non-linear Euler equations are rewritten into characteristic form, 

yielding Eqs. (4-2.3): 
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au + au S—JS —=0 
at ax 

or in the component characteristic form, Eqs. (4-2.4): 

a Vi = 0 
at 'ax 

Let I be the set of left eigenvectors of A, then dV, = I1dU. 

(4-2.3) 

(4-2.4) 

This is a set of wave equations. Waves can be categorized into incoming waves 

and outgoing waves. At the inlet boundary, when 2,> 0, the waves are incoming waves; 

when 2j < 0, the waves are outgoing waves. At the outlet boundary, when 2,> 0, the 

waves are outgoing waves; when Aj < 0, the waves are incoming waves. 

Eliminating s in favor of p, p and u, Eqs.(4-2.4) can be written as Eqs. (4-2.5) 

ap au ap 
(--pc—)+(u—c)(---pc au )=Oax 

ap au ap 
(—+pc—)+(u+c)(—+pc)=Oax 

(aP 2 p ap 2 
-- —) +u(——c ap —)-0 
at at ax ax 

(4-2.5) 

Based on Hedstrom's (1979) concept, a non-reflecting boundary condition is 

defined as one in which the amplitude of the incoming waves is constant in time at the 

non-reflecting boundary. Assume the computational domain is the range of values of x 

between a and b (a<x<b). Then, the non-reflecting boundary condition can be expressed 

mathematically in the following form: 
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For inlet boundary (x = a), when Z,> 0, 

For outlet boundary (x = b), when Aj <0, 

ovi 0 
at 

at 

In a general form, the characteristic and non-reflecting boundary condition can be 

combined into: 

au. 
I--+L. =0 
'at 

0 

where L, = )L,I aul 

'ax 

for incoming waves 

for outgoing waves 

Given the L, values, the time derivatives of the primitive variables are: 

—L1) 
at 2pc 

.at c2 at 2 

(4-2.6) 

(4-2.7) 

(4-2.8) 

The relationship between the time derivatives of the primitive variables and the 

time derivatives of the conservative variables is shown in Eqs. (4-2.9): 
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tap =ap 
at at 

a(pu)  
at at at 

2P au 1 ap 
at 2 at at ' yiat 

(4-2.9) 

Integrating Eqs. (4-2.9) with the second- order accuracy method discussed in 

section 3-6, all the conservative variables at the outflow boundary can be obtained. 

Theoretically, setting all incoming waves to be constant makes the boundary 

fully non-reflecting. Numerically, however, only an approximation is obtained. The 

actual reflection rate depends on numerical factors, such as schemes, the length of 

computational domain, and so forth. 

4-3. Riemann Invariants 

The characteristic form of the non-linear Euler equations, Eqs. (4-2.5), can also 

be rewritten as follows: 

av L9  
---+(u—c)----= 0 
at ax 

av0 av0  =0 __+u at ax 

av av 
__± + (u + c) __± =0 
at 0x 

(4-3.1) 
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dv =du- 4  
PC 

where dV0 =dp  dp 

dV, =d±r4 
PC 

Then, rewriting Eqs. (4-3.1), 

dV_ = du - =0 on the characteristic dx = (u - c)dt 
PC 

dV0 = dp - =0 on the characteristic dx = udt 

dV+ = du + =0 on the characteristic dx = (u + c)dt 
PC 

(4-3.2) 

The special case in which entropy is spatially uniform is of some interest. Then 

s is constant everywhere and not just along the characteristic curves dx=u dt. For a 

perfect gas, we have: 

= const. and 
Pr 

C 
= const. Y-1 

P 2 

A short calculation can prove that 

rdp 2c  
+const. 

PC r-1 
(4-3.3) 

Then, integrating and combining with Eq. (4-3.3), Eqs. (4-3.2) become: 
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'S = const. 

V = u - 2c = const. on dx = (u - c)dt 

V = u + 2c = const. on dx = (u + c)dt 
y—1 

(4-3.4) 

The characteristic variables V are also known as the Riemann invariants. For 

isentropic flow, Eqs. (4-3.1) show that the Riemann invariants are constant along their 

respective characteristic lines. 

4-4. Characteristic Form of the Two-dimensional Euler 

Equations 

The standard conservation equations for two-dimensional flow can be written in 

the form of-

aU 
+ aF + aG + cx, + cy' = 0 

at ax 01Y 

Eqs. (4-4.1) can be rewritten in non-conservative form as: 

au + A au + B au -1 + C + C = 0 
at ox ay 

(4-4.1) 
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au + A -  +B - = 0. (4-4.3) 

Assuming the Ai are eigenvalues of A, liii are eigenvalues of B, Si and 511 are 

left and right eigenvectors of A for 2, T and Ti' are left and right eigenvectors of B for 

the matrices A and B can be put in the diagonal forms J and K by the similarity 

transformations: 

J = SAS', K = TBT' 

Then, Eqs. (4-4.3) can be written asau : 

+ au + T'KT au - = 0 
at ax ay 

(4-4.4) 

Let us consider boundaries where x is constant (x=a, x=b) with the index i = 0, 

i = 1+1, in which I is the grid points in x direction. The y derivative can be evaluated 

numerically as an interior term. The x derivative is in the normal direction and must be 

put in characteristic form so that the appropriate boundary conditions can be imposed at 

the x boundaries: 

+ S'JS-0 
at ay ax 

(4-4.5) 

Abbreviating the quantity JS. 2-1 as - au,at, we must evaluate auiat in 

Eqs. (4-4.6) 
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s.? i+ js au .-i=o 
at ax 

(4-4.6) 

To provide boundary conditions for Eqs. (4-4.6) at x boundaries, let us define 

the quantity L1: 

au 

ax 
for outgoing waves 

for incoming waves 

Given ÔU / at, aCT / 3t can be computed from Eqs. (4-4.7) 

au+aG 5au0 
at at 

(4-4.7) 

Here, the y derivatives are evaluated in conservative forms and the x direction 

terms are put in characteristic form. 

form: 

Two-dimensional Euler equations, Eqs. (4-4.1) can bewritten in the components 

ap + a(pu) + a(pu)  
at ax ay 

a(pu) + a( 2) + a(ouu) + ap 
at ax ay ax 

(4-4.8) 

+ a(,u) + a(u 2) + ap 
at ax ay ay 

as as as 
_+u +u —=0 
at X ax ay 
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S - S0 

p=p(y-1)e Cv 

... U= 

P 

U ., 

fly 

S 

C= ()P)112 

P 

fix - B= PS 
0 0 u 0 

0 0 Ux 

p 

1111 =Uy •C 

</12 - /13 = fly 

- fly +C 

The left eigenvectors of A are: 

Sj = (- c, p, 0, - S2 = (0, 0, 1, 0) 
SC 

53 = (0, 0, 0, 1) 54=(c,,p,0, -aSC -) 

UY 0 p 0 

0 UY 0 0 

—0u-
P PS 
0 0 0 u 

The characteristic equations in x direction are Eqs. (4-4.9). 
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atx atx ax ax 

all 
Ou 

_L + /12 = 0at ax 

(4-4.9) 

at at ax ax 

au ap 
(—+p_-)+24(—+p_)=: 0 
at at ax ax 

By using non-reflecting BC 

Let L,= 
au 
ax 

0 

for outgoing waves 

for incoming waves 

L1, L2, L3, and L4 can be obtained. Substituting them into Eqs. (4-4.9): 

ap — pc .aux--)+L =0 

au 
L+L 

atx 
(4-4.10) 

=0 
atx at 

p au 
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Rearranging Eqs. (4-4.10), the time derivatives of pressure, density and velocity 

can be obtained as in function of the L1. Eqs. (4-4.11): 

+L1) 
atx 2 

au  

atx 2pc 

(4-4.11) 

NY - —L2 

atx 

ap = 1(aP 
at c2 at 

The time derivatives of the conservative variables can be obtained, Eqs. (4-4.12): 

app 

atx 3t 

(4-4.12) 

5(pu,) ap au 
 =u —+ p— 

at at at., 

—=—(u +u + p(u — +u —)+--- 
ae 1 2 2) au 1 p 
at 2 X )' atx at ' at —1 at 
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Substituting Eqs. (4-4.12) into Eqs. (4-4.7), rewriting them into the components 

form, Eqs. (4-4.13) are obtained. 

ap apa(pu,) 0 

at at 8y 

a(pu) a(pu) + Puy  2 =o  

at at 

(4-4.13) 

a(pu) a(pu) ô(puu)ôp =0 
at at X ay ay 

5e -- + ae a -- 
at at X ay 

Using the numerical techniques and schemes discussed in Chapter 3 to integrate 

conservative variables, one can obtain the numerical conservative variables 17 J) 1 which 

are the approximation of analytical conservative variables and satisfies non-

reflecting boundary condition at out flow in the x direction. 
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Chapter 
FIVE 

VALIDATION 

The characteristics-based non-reflecting boundary condition proposed by 

Hedstrom (1979) has been implemented in our code. Since exact solutions can be 

obtained for many one-dimensional unsteady flows, we use various one-dimensional test 

cases with no chemical reaction to demonstrate the effectiveness of the method. The 

various problems used for validation include the pressure impulse test and the shock tube 

test. Results and discussion are presented in this section. 

In all the tests, within the inner computational domain, the Euler equations are 

solved by a fifth-order WENO scheme (Jiang & Shu 1996) for spatial derivatives and a 

third-order Runge-Kutta scheme (Hoffman 2001) in time. At the boundaries, a one-sided 

fourth-order scheme for spatial derivatives and a second-order scheme (Thompson 1979) 

for time derivatives have been implemented. In addition, in all cases, a ratio of specific 

heats of 1.2, a rate law v of 0.999, and a Courant number of 0.4 have been used. (See 

Chapter 3). 



VALIDATION 5.2 

5-1 Pressure Impulse Test 

A qualitative pressure impulse test is computed with the following initial 

conditions: 

1. A pressure peak with height of 20% above the surrounding pressure is placed 

at the center of the domain; 

2. The flow is convected from the left hand to the right hand side with a 

dimensionless velocity of 0.5 (see Fig. 5-1.1); 

3. To keep the temperatures constant along x, density has the same peak as 

pressure at the same position. 

Fig. 5-1.2, Fig. 5-1.3, and Fig. 5-1.4 depict the plots of pressure and total energy 

at three instants, before, when and after the disturbance crosses right boundary 

respectively. The results in the figures show that no reflection appears at the right 

boundary when the wave crosses it. 

Initial Pressure Profile 
(Tinie.step = 0) 

I I 

0.95o  20 40 
x 

60 80 

Fig. 5-1.1 Initial pressure profile 

100 
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Pressure Profile 
(Time.stcp .110) 
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Fig. 5-1.2 Pressure and total energy profiles before the disturbance crosses the outlet 
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Fig. 5-1.3 Pressure and total energy profiles when the disturbance crosses the outlet 
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Fig. 5-1.4 Pressure and total energy profiles after the disturbance crosses the outlet 
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5-2 Shock Tube Test 

Shock tube problems consider the evolution of initial one-dimensional 

discontinuities. Physically, the shock tube is a device in which normal shock waves 

and expansion waves are generated by the rupture of a diaphragm separating a high-

pressure gas from one at low pressure. The solution can always be constructed by self-

similarity for times before waves reach extremities; this is the Riemann problem. Here, it 

is assumed that the diaphragm is initially placed at the center of the computational 

domain. The initial condition at left side is a high-pressure with u = 0, while the right side 

is at low pressure also with u = 0. The diaphragm rupture occurs at t=0. 

Expansion wave contact surface shock 

Ug3 p3 u2 pp3 Us P; Ug=O Ti Ug=O p4 T44 

Fig. 5-2.1 Illustration of the shock tube solution 

Here, T1 and T4 are taken to be equal. Also, p2 =p. The solution is determined by 

the pre- and post-shock values of p, p and u, and the shock velocity u. It must satisfy 

the three shock jump conditions as follows: 

2y/(r-l) 

1 y-1  (R-1)  

2y 11+T+1(R_1) 

V 2y 

Here R is the pressure ratio p2/ p, (before and after shock pressure). 

(5-2.1) 
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There is one free parameter, the chosen pressure R. The relationship between 

the Mach number of the post-shock flow (Ug2 Ic1) and R is: 

M2= 2  (R-1)2  
yR y+1+(y—l)/R 

(5-2.2) 

The initial condition is shown in Fig. 5-2.2. After the diaphragm ruptures, a 

shock wave appears and moves right, while an expansion wave moves left as shown in 

Fig. 5-2.1. Fig. 5-2.3 illustrates the distribution of density, pressure, temperature, 

velocity, Riemann variable (m), and Riemann variable (n) after the shock crosses the 

right boundary and Fig. 5-2.4 shows the expansion wave is crossing the left boundary. 

From Fig. 5-2.3, one can see that when the non-reflecting boundary condition is 

used at both boundaries. There is no visible reflection when the shock wave crosses the 

right boundary or when the expansion wave crosses the left boundary. A quantitative 

reflection analyses, in which the value of the small remaining reflection is examined, are 

presented in section 5-3 and section 5-4. 
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Fig. 5-2.2 Shock tube at time-step 0. 
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0.0.0 - 

IN ISO 250 250 

Density 

0.05 

Pressure Temperature 

200 250 200 0 50 lOG ISO 200 250 200 

Velocity Riemann Variable (m) Riemann Variable (n) 

Fig. 5-2.3 Shock tube at time-step 1140 
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Fig. 5-2.4 Shock tube at time-step 1500 

10 000 ISO 200 

Riemann Variable (n) 

300 



VALIDATION 5.7 

5-3 Reflection Validation By Relative Error at Shock Waves 

For shock tubes, given the initial condition, including the high pressure p (or the 

pressure P2) and the low pressure pi, the exact solution consisting of the post-shock Mach 

number M and the shock pressure P2 can be obtained from Eq. (5-2.1) and Eq. (5-2.2). A 

reflection is generated when an outgoing subsonic shock wave crosses a boundary, as 

demonstrated by Hedstrom. If there is no reflection, the pressure p2 behind the shock 

should stay constant when the shock crosses the right boundary. So, a convenient 

measure of the reflection is the relative error in pressure after the shock has crossed the 

boundary, defined as: 

Relative error (%) =  - Pall  x100 (5-3.1) 
Pall 

Here, p,,,,, is numerical pressure and Pan is the analytical pressure. (Thompson 

1979). 

To evaluate the relationship between relative error and domain lengths, as 

well as between the relative error and the shock Mach number, different domain lengths 

and different P4 are selected while the grid Ax = 0.02 is maintained constant. The domain 

lengths are selected as 2, 4, 10, 20, and 40. So, the number of grid points are 100, 200, 

500, 1000, and 2000 and the selected values of p2 ipi are listed in Table 5-3.1. Because 

there are no length or time scales in this problem, fixed grid size and varying domain 

lengths would be equivalent to maintaining the constant length and varying the 

resolution. So, this test is equivalent to maintaining the constant length, say 10, then, the 

resolutions are 0.1, 0.05, 0.02, 0.01, and 0.005. However, because the error is taken over 

a fixed number of grid points, this is not equivalent to a convergence study, which is 

presented in section 5-4. 
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The pressure profile selected in the comparison is the profile just after the 

shock crosses the right boundary. The highest pressure within the last ten points in the 

selected profile is used as the numerical pressure and substituted into Eq. (5-3.1) to 

calculate the relative error. 

Table 5-3.1 shows the relative error (RE) in percentage at different pressure ratios 

R and the different domain lengths. Fig. 5-3.1 plots these relationship clearly. 

Table 5-3.1: Relative errors at different Mach numbers 

R 
P2/P 1 

P4/P 1 Mach 
Number 

RE (%) 
pts 100 

RE (%) 
pts 200 

RE (%) 
pts 500 

RE (%) 
pts 1000 

RE (%) 
pts 2000 

1.3 1.70069 0.4705 0.00354 0.00308 0.00862 0.00723 0.0111 

1.4 1.981006 0.534 0.014 0.0384 0.0535 0.0379 0.0557 

1.6 2.616611 0.6337 0.068 0.019 0.157 0.165 0.157 

1.8 3.35803 0.7116 0.120 0.351 0.355 0.330 0.382 

2 4.212763 0.7758 0.024 0.453 0.486 0.498 0.549 

2.2 5.188755 0.8307 0.145 0.183 0.595 0.565 0.571 

2.4 6.294559 0.8787 0.210 0.292 0.585 0.555 0.574 

2.6 7.539171 0.9214 0.146 0.166 0.523 0.560 0.54 

2.8 8.932149 0.9599 0.695 0.278 0.526 0.374 0.486 

3 10.48357 0.9951 0.867 0.375 0.458 0.363 0.414 

Note: "pts" stands for grid points (over the domain length) 
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Relative Error vs. Mach Number 
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Fig. 5-3.1 Relative error vs. Mach number 

From the results, one sees that with increasing Mach number, the reflection 

increases until the Mach number reaches 0.83 and then decreases when the Mach number 

is greater than 0.83 for domain lengths 10, 20 and 40. The worst case is at M=0.83 .with a 

reflection of 0.595%. However, we could not get the same pattern for the domain length 

2 and 4. Looking more closely at the perturbation of shock in shock tube for the short 

computational domain, it is found that the shock is not deep enough when the domain 

length is too short. So, we conclude that when the domain length is too short, the 

numerical simulation is not good enough to show shock conditions and the result. So, the 

results at domain length 2 and 4 do not show reflection pattern accurately. 

Comparing with Thompson's result, in which the worst case of RE is 0.82% at 

M=0.98, one can see that the reflection is also related to the numerical scheme; for 

higher order schemes, the reflection is lower. Thompson used a first-order accuracy 

method in space and second-order accuracy method in time; and he found that the worst 

case was obtained at M=0.98 while in our case this occurs at M0.85. 
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5-4 Reflection Validation Using the Riemann Variable 

According to the discussion in section 4-3, for isentropic flow, the Riemann 

invariants are constant along their characteristic lines, Eqs. (4-3.3). Denoting the 

Riemann variables by m and n, where zn=c— 2___ uand nc+—uy—1 , then Eqs. (4- 

3.3) are equivalent to Eqs. (5-4.1): 

S = const 

<m=c-1 u=const. for dx=(u—c)dt 

n=c+ '1 u=const. for dx=(u+c)dt 

(5-4.1) 

For the waves moving to left, the Riemann variable n is constant as follow 

(Kentfield 1993): 

n = c+( 1)u =const =C (5-4.2) 

In this shock tube case, the constant value C at the left hand boundary is: 

fl=C=C+(r)U= il.2 1.09544511501033 
2 V Po 

According to the analysis in section 4-3, the incoming Riemann variable should 

be constant if there is no reflection at the boundary. The fluctuation in the Riemann 

variable is a useful method to measure the reflections at the boundary and to verify 

accuracy. Because the analytical Riemann variable (n = 1.09544511501033 ) is very 
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close to 1, the absolute deviation between the numerical Riemann variable and the 

analytical Riemann variable is used to measure reflection instead of using a relative 

deviation (as above): 

Riemann Variable deviation = nnUM - I 

Where n111 is the numerical Riemann variable and n,,,, is the analytical Riemann 

variable. 

To analyze the relationship between Riemann variable deviations and the grid 

size when the expansion waves go through boundary, the reflection was evaluated on a 

fixed computational domain length, L=10, with variable number of grid cells, 100, 200, 

300, 500, 700, 1000, and 2000 in the domain. Accordingly, the grid sizes were 0. 1000, 

0.0500, 0.0333, 0.0200, 0.0143, 0.0100, and 0.0050. The program was tested in single 

and double precision format, for reasons that will become obvious in view of the results 

below. 

Table 5-4.1, Fig. 5-4.1 and Fig. 5-4.2 show the ten points average of the 

deviation between Riemann variables at the same, fixed, physical position for grid size 

0.1000, 0.0500, 0.0333, 0.0200, 0.0143, 0.0100, and 0.0050 with the same domain length 

10 and in single precision. Values shown are averaged over the ten grid points that 

surround the fixed physical location. 

The Riemann variable deviation (RVD) should decrease with decreasing grid 

size (GS). In addition, the relationship should be  VD = C(GS)3, where C is a constant 

number. Indeed, as indicated in Chapter 3, a fifth-order WENO scheme in space and a 

third-order Runge-Kutta method in time are used within the computational domain. 

Furthermore, at boundaries, a fourth-order one-sided scheme in space and second-order 

Runge-Kutta method in time are applied. So, we expect the Riemann variable deviation 
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to decrease while the grid size is reduced and that third-order accuracy will be obtained. 

Table 5-4.1: Riemann variable deviation for different grid sizes (single precision) 

No. of Grid Points Grid Size Deviation 

100 0.1 2.30E-06 

200 0.05 5E-07 

300 0.033333333 7.23E-07 

500 0.02 1.30799E-06 

700 0.014285714 1.58E-06 

1000 0.01 3.98E-06 

2000 0.005 8.78499E-06 

Riemann Variable Deviation vs Grid Size 

1.00E-05   

R
i
e
m
a
n
n
 V
ar
ia
bl
e 

0 0.02 0.04 0.06 0.08 0.1 0.12 

Grid Size 

Fig. 5-4.1 Riemann variable deviation vs grid size (single precision) 
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Log(RVD) vs. Log(GS) 
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Fig. 5-4.2 Riemann variable deviation vs. grid size on a log-log scale (single precision) 

In these single precision results, the Riemann variable deviation vs. grid size on 

a log-log scale is not proportional and the slope is off from 3 when the grid size is less 

than 0.05. Close examination of the data reveals that the Riemann variable deviations are 

less than iø when the grid size is less than 0.05. This is consistent with numerical 

round-off errors due to the limited (four bytes) accuracy that becomes significant 

compared with the Riemann variable deviations, or even greater than the expected values 

of the Riemann variable deviation. 

The same results as above but in double precision are shown in the table 5-4.2 and 

in Fig. 5-4.3 and Fig. 5-4.4. 

Fig. 5-4.5 to Fig. 5-4.8 show the same relationship on a log-log scale at four 

physical positions. Fig. 5-4.4 plots the ten physical positions average of log (RVD) and 

log (GS) at these positions. 
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Table 5-4.2: Riemann variable deviation at different grid sizes (double precision) 

No. of Grid Points Grid Size Deviation 

100 0.1 1.85E-06 

200 0.05 l.00594E-07 

300 0.033333333 2.42E-08 

500 0.02 8.89174E-09 

700 0.014285714 2.89E-09 

1000 0.01 1.39E-09 

2000 0.005 1.033E-1 I 

Riemann Variable Deviation vs. Grid Size 
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Fig. 5-4.3 Riemann variable deviation vs. grid size (double precision) 
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Log (RVD) vs. Log (GS) 
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Fig. 5-4.4 Riemann variable deviation vs. grid size on a log-log scale (double precision) 

Log (RVD) vs. Log (GS) 
at x=O.1, slop=3.35 
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Fig. 5-4.5 Riemann variable deviation vs. grid size on a log-log scale at x=0.l (double precision) 
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Log (RVD) vs. Log (GS) 
at x0.2, slop3.51 
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Fig. 5-4.6 Riemann variable deviation vs. grid size on a log-log scale at x=0.2 (double precision) 
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Fig. 5-4.7 Riemann variable deviation vs. grid size on a log-log scale at x=0.3 (double precision) 
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Log (RVD) vs. Log (OS) 
at x=O.4, slop2.78 
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Fig. 5-4.8 Riemann variable deviation vs. grid size on a log-log scale at x=O.4 (double precision) 

The results in Fig. 5-4.3 show a Riemann variable deviation decreasing when 

the grid sizes decrease, as expected, given the accuracy of the algorithm used. These 

results demonstrate that the code and boundary conditions as implemented are 

performing with the expected accuracy. In Fig. 5-4.4, the log-log plot is close to linear 

with a slope of approximately 4, which means that the overall accuracy of the scheme 

used is definitely of order 3. Moreover, this result also confirms that if the order of 

approximation near the boundary is equal to the scheme order minus one, the overall 

accuracy of the scheme used inside the domain is not affected (Poinsot et al. 1992). 
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5-5 Two-dimensional Validation 

There are no analytical solutions available for two-dimensional, unsteady flow. 

Thus, one cannot by comparison validate numerical results with an exact solution. 

However, since the goal of the non-reflecting boundary condition is to simulate infinite 

computational domain, it is reasonable to compare smoke foils for computational domain 

of varying lengths. 

Two different domain lengths (30 L112 and 50 L112 respectively) were used, with 

the same domain width (20 L112). Numerical smoke foils are shown on Fig. 5-5.1 and 

Fig. 5-5.2. 

Fig 5-5.1 Smoke foils width: 20 L112, length: 30 L1,2 

Fig 5-5.2 Smoke foils width: 20 L112, length: 50 L112 

Comparing Fig. 5-5.1 and Fig. 5-5.2, one can see that domain lengths of 30 L112 

and 50 L112 result in the same number of cells across the smoke foil. 
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Chapter 
SIX 

DETONATION CELL SIZE 

In this chapter, the non-reflecting boundary condition (BC) is used in a study of 

cell width and the comparison of smoke foils with non-reflecting BC and with the 

relaxation BC is performed. 

6-1. Numerical Simulation 

To demonstrate the relationship between domain width and cell size (or number 

of cells), computations were performed for the same set of parameters (see table 6-1.1) at 

different domain widths. Using the characteristic-based non-reflecting BC for the case 

described in table 6-1.1, the results are obtained and presented in figures below. 

Table 6-1.1: Parameters 

Overdrive 
(f) 

Rate law 
(v) 

Heat Release 

(Q) 
Activation Energy 

(Bo) 
Resolution 
(cells/Li /2) 

1.2 0.5 50 10 32 
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To show the effect of the different boundary conditions, computations were also 

performed for the same set of parameters (see table 6-1.1) but using the relaxation 

boundary condition. The relaxation boundary condition attempts to relax the flow to the 

desired conditions at infinity. To that effect, at the boundary, the variables are set as: 

0= (1— + 2:0 

The results are presented in the following figures. The figures show numerically 

generated smoke foils. 

As mentioned in Chapter 2, the structure of detonation fronts can be displayed on 

smoke foils not only experimentally but also numerically. There are different ways to 

generate numerical smoke foils. The method used here is based on the one discussed by 

Oran and Boris (1987) and used by Williams (2002). The leading shock is positioned by 

capturing the maximum flow acceleration along the propagation direction. The 

acceleration at each cell is calculated by the local pressure gradient divided by the 

average density, and the maximum acceleration is determined by using Eq. (6-1.1). 

amax = max(a1+112 ) = Max 
- p1-1,)  

(x1 - xi-l)(Pij + p1_i, )j 
(6-1.1) 

The smoke foil is then generated as a grayscale map of the leading shock pressure 

as a function of space and time in a frame of reference attached to the unburned fluid. 

This method clearly shows the triple point tracks. Its main drawback is that it does not 

show secondary structures within the reaction zone, behind the leading shock, see 

Williams (2002). 
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Fig. 6-1.1 Smoke foil width: 13 L112, length: 30 L112, Non-reflecting BC 

Fig. 6-1.2 Smoke foil width: 13 L112, length: 30 L1 , relaxation BC 

Fig. 6-1.3 Smoke foil width: 13 L112, length: 50 L112, relaxation BC 

Fig. 6-1.4 Smoke foil width: 14 L112, length: 30 L112, Non-reflecting BC 

Fig. 6-1.5 Smoke foil width: 14 L112, length: 30 L112, relaxation BC 
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Fig. 6-1.6 Smoke foil width: 14 L112, ength: 50 L112, relaxation BC 

Fig. 6-1.7 Smoke foil width: 24 L112, length: 30 L1,2, Non-reflecting BC 

Fig. 6-1.8 Smoke foil width: 24 L112, length: 30 L112, relaxation BC 

Fig. 6-1.9 Smoke foil width: 24 L112, length: 50 L1, relaxation BC 
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Fig. 6-1.10 Smoke foil width: 25 L112, length: 30 L112, Non-reflecting BC 

Fig. 6-1.11 Smoke foil width: 25 L112, length: 30 L112, relaxation BC 

Fig. 6-1.12 Smoke foil width: 25 L112, length: 50 L112, relaxation BC 
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Fig. 6-1.13 Smoke foil width: 41 L112, length: 30 L112, Non-reflecting BC 

Fig. 6-1.15 Smoke foil width: 41 L112, length: 50 L112, relaxation BC 

9 

6-1.14 Smoke ii1 width: 41 L1,,, 1enth: 30 L1 . rcictxatioii BC 
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6-2. Comparison Between the Two Sets of Results 

The comparison between two sets of numerical smoke foils is shown in table 

6-2.1: 

Table 6-2.1 The Comparison of smoke foils for different domain sizes and BC 

Number of Figs. Domain Size (Width X Length) 
umber of L112) 

Boundary Condition Number of Cells 
Across 

6-1.1 13 X 30 Non-reflecting 1 

6-1.2 13 X 30 Relaxation 1.5 

6-1.3 13 X 50 Relaxation 1 

6-1.4 14 X 30 Non-reflecting 1 

6-1.5 14 X 30 Relaxation 1.5 

6-1.6 14 X 50 Relaxation 1.5 

6-1.7 24 X 30 Non-reflecting 2 

6-1.8 24 X 30 Relaxation 1.5 

6-1.9 24 X 50 Relaxation 1.5 

6-1.10 25 X 30 Non-reflecting 2 

6-1.11 25 X 30 Relaxation 2 

6-1.12 25X50 Relaxation 2 

6-1.13 41 X 30 Non-reflecting 3 

6-1.14 41 X 30 Relaxation 3 

6-1.15 41 X 50 Relaxation 3 

From these results, one can conclude that: 

• The number of cells across on the smoke foil (hence size) depends upon 

domain width. The wider the domain width, the more cells. There is only 

one cell formed for domain width 13 L112 20 L112, but the cell size 

becomes bigger with increasing domain width. 
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• Comparing Fig. 6-1.2 with Fig. 6-1.3, one can see that the cell numbers for 

domain length 30 L112 and 50 L112 are different and longer time is needed 

for cell formation and stabilization when the relaxation boundary 

condition is used. Comparing Fig. 6-1.1 with Fig. 6-1.3, one can see that 

the smoke foils are the same as the same cell numbers for domain length 

30 L112 with non-reflecting BC and for 50 L112 with the relaxation BC. 

• Comparing Fig. 6-1.10 with Fig.6-1.11 and Fig. 6-1.12, one observes that 

the time for cell formation is shorter when the non-reflecting BC is applied 

than with relaxation BC. 

• From Fig. 6-1.8, one can see that the number of cells changes from 2 to 

1.5 with relaxation BC, when the domain length is 30 L112. When the 

domain is 50 L112, smoke foils with 1.5 cells across appear faster relatively 

and the cell number does not change (see Fig. 6-1.9). 
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Chapter 

SEVEN 

CONCLUSION 

A high order accurate Riemann variable-based non-reflecting boundary condition 

has been developed and incorporated into an ENO-based multidimensional reactive Euler 

solver. Validation was performed in three different ways. 

. One-dimensional validation by using relative error on pressure in shock tube 

problems: The relative error at the outflow boundary was evaluated. The results show that 

the relative error is proportional to the shock velocity when the shock Mach number is 

less than 0.83; when the Mach number is greater than 0.83, the reflection decreases as the 

Mach number increases. The overall relative error is less than 0.6% 

The relative error is also related to the numerical scheme. With a first-order 

accuracy numerical scheme, the relative error is less than 0.83%; with a third-order 

accuracy numerical scheme, the relative error is less than 0.6%. 
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One-dimensional validation by using Riemann variable: The incoming 

Riemann variable at a fixed location close to the exit boundary was evaluated for 

decreasing grid sizes. Log-log plots of the Riemann variable deviation vs. grid size were 

found to be close to linear, with slope approximately equal to 4, showing an overall 

accuracy of the scheme at least equal to 3. 

. Two-dimensional validation by comparing the different domain lengths of 

smoke foils: Since it is impossible to obtain exact solutions for two-dimensional, 

unsteady flow, the validation methods used for one-dimensional, unsteady flow can not 

be applied. It is also impossible to validate the result against experiments for two-

dimensional simulations with simple chemical models, which are not a realistic 

representation of actual mixtures. The most feasible way to validate the reflecting is then 

to compare the numerical smoke foils for different domain lengths. For sufficient domain 

lengths, it is found that the same number of cells are obtained in a given domain width 

when the characteristics non-reflecting boundary condition is applied. When the 

relaxation boundary condition is used, the results for different domain lengths still result 

in different numbers of cells for these shorter domain lengths. 
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